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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

A classical problem in hydrology is that of estimating the magnitude of the 

flood flow which corresponds to a given probability of exceedance. For those sites at 

which a sequence of observed peak annual flows is available, the traditional approach 

has been to fit a theoretical probability density function to the flows in order to inf er 

the probability of occurrence of future floods. This procedure is commonly ref erred 

to as flood estimation by application of distribution theory. In many cases, however, 

the subject of an engineering decision is an ungaged watershed for which no data are 

available. It is axiomatic that the traditional approach may not be directly applied in 

such cases. Instead, the analysis must be conducted using one of the many methods 

of ungaged site estimation. 

The subject of uncertainty has for some time been recognized as another of the 

problems of hydrology. However, it is only recently that researchers have attempted 

to develop procedures to analyze uncertainty and incorporate it into predictive 

frameworks. For a given hydrologic process, there exists a natural uncertainty 

which is derived from the inherent randomness of the process. When the process is to 

be represented by some model, there exists uncertainty in the model parameters which 

are determined by means of a comparison of predicted and observed outputs. This 

uncertainty arises because hydrologic records are typically short, leading to 

parameter estimates of questionable accuracy. One can not be sure, based upon the 

available data, of the true value of the parameter. 
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Procedures for estimating floods for ungaged watersheds are fraught with 

parametric uncertainty. However, such estimation procedures tend to beg the ques­

tion of how parametric uncertainty influences the interpretation of the estimates. 

Objectives 

The objectives of this research were to: 

1. Analyze uncertainty in the parameters of an event-based rainfall-runoff 

model for a set of gaged watersheds. 

2. Use the rainfall-runoff model and results of Objective 1 to develop flood 

estimation methodologies for both ungaged watersheds and watersheds with 

short records which explicitly account for parametric uncertainty. 

3. Evaluate the flood estimation methodologies with regard to their accuracy, 

their ability to demonstrate the effects of parametric uncertainty, and their 

practicality. 

General Procedure 

The SCS unit hydrograph model (1972) was selected to develop the flood estima­

tion methodology. In order to fulfill the first objective, elements of Bayesian statis­

tical theory were employed to determine the probability density functions of the 

model parameters S and Tp for a set of 15 watersheds. These probability density 

functions are derived using data on both peak flows and runoff volumes. 

The flood estimation procedure for ungaged watersheds was developed by 

relating the probability density functions of Sand Tp to geomorphic parameters via a 

set of regression-based prediction equations. The prediction equations provided a 

means of estimating probability density functions of S and Tp for ungaged water­

sheds. Flood frequency curves for the ungaged watersheds were determined by first 

assuming that the recurrence intervals of peak flow and associated rainfall are equal. 
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Next, the stochastic behavior of the peak flow corresponding to a given recurrence 

interval was inf erred by using the appropriate rainfall event and a sample of random 

pairs of values of Sand Tp generated from their respective probability density func-

tions as inputs to the SCS unit hydrograph model and computing the resulting peak 

flows. The point estimate of the peak flow corresponding to the recurrence interval 

was taken as the mean of all peak flows computed for that recurrence interval. 

In order to estimate floods for watersheds with short records, site-specific data 

on peak flow and runoff volume were combined through Bayes' Theorem with the 

estimated probability density functions of S and Tp to reduce uncertainty in the two 

model parameters as reflected in modified probability density functions for these 

parameters. The remainder of this procedure of flood estimation was essentially the 

same as for ungaged watersheds. 

The two flood estimation methodologies were evaluated using a Jackknife 

approach. Flood frequency curves were estimated for each of the 15 watersheds as if 

it were initially ungaged. The estimated flood frequency curves were compared to 

the observed flood frequency curves using a Kolmogorov-Smirnov goodness of fit test. 

The accuracy of the two methodologies relative to USGS (Tortorelli and Bergman, 

1985) and SCS (1972) procedures was appraised by means of visual comparison of the 

• 
resultant flood frequency curves and comparison of the Kolmogorov-Smirnov test 

statistics. 



CHAPTER II 

REVIEW OF LITERATURE 

The research described in this dissertation is intimately related to two major 

subjects: flood estimation for ungaged watersheds and analysis of hydrologic uncer­

tainty. Accordingly, this chapter summarizes the state of the art of both topics. 

Flood estimation methods are classified with a brief description of each method. 

Following the discussion of flood estimation procedures, three methods of analyzing 

uncertainty are presented. Two methods, first order analysis and non-parametric 

analysis, are described in moderate detail. A similar treatment of the third method 

presented, Bayesian analysis, is def erred until the succeeding chapter. 

Flood Estimation for Ungaged Watersheds 

Numerous methods have been proposed as possible solutions to the very prac­

tical problem of flood estimation for ungaged watersheds. Indeed, a modest-sized 

body of literature exists which merely attempts to classify, describe, and compare 

methods of flood estimation (Allison, 1967; Fleming and Franz, 1971; Reich and 

Jackson, 1971; Bowers, et al., 1972; Clarke, 1973; McCuen, et al., 1977; Mccuen and 

Rawls, 1979). Following the classification of McCuen, et al. ( 1977), flood estimation 

procedures may be generally described as: 

I. Statistical estimates of peak flows, 

2. Statistical estimates of the moments of the distribution of peak flows, 

3. Index flood estimation, 

4. Estimation by transfer of peak flows, 



5. Empirical equations, 

6. Single storm event modeling with peak flow recurrence interval assumed 

equal to the rainfall recurrence interval, 

7. Modeling of multiple discrete events, and 

8. Estimation by continuous simulation modeling. 

Statistical Estimates of Peak Flows 

Statistical es ti ma ti on approaches attempt to relate peak flows of various 

exceedance probabilities to measurable watershed characteristics (such as area, 

average slope, proportion of wooded area, etc.) via multiple regression techniques. 

The concept of regionalization, or delineation of hydrologically similar areas for 

purposes of relating watershed characteristics to other quantities of interest (see 

Solomon (1976) for a discussion of regionalization), is normally used in such analyses, 

be it implicitly used or explicitly stated. The results of a statistical estimation 

approach are usually a set of equations which are used to compute peak flows 

corresponding to recurrence intervals of interest. The equations may then be applied 

to ungaged watersheds in regions which are hydrologically similar to those from 

which the equations were developed. The methods described by Benson (1962, 1964), 

Decoursey (I 972), Thomas and Corley (1977), and Tortorelli and Bergman (1985) are 

representative of statistical estimation procedures. 

Statistical Estimation of Moments 

A similar approach to ungaged estimation is that of estimating the moments of 

the distribution of peak flows. In this method, it is the moments of the random 

variable annual peak flow, rather than peak flows of selected recurrence intervals, 

that are related to measurable watershed characteristics, again through multiple 

regression. Normally, the mean and variance are the moments estimated, and peak 
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annual flow is taken as following the Log-Pearson Type III distribution. The third 

moment, skewness, is typically more unstable than the first two moments and is 

commonly determined from maps of regional skew such as those provided by the U.S. 

Geological Survey Hydrology Subcommittee (1981). Saah, et al. (1967) and the U.S. 

Army Corps of Engineers (1975) are among those who have proposed moment-estima­

tion procedures to estimate peak flows for ungaged watersheds. 

Index Flood Es ti ma tion 

The index flood method is predicated on the assumption that the probability 

density function of the random variable peak annual flow, normalized by an index 

flow (commonly taken as the mean annual peak flow), is the same for all watersheds 

within regions defined as hydrologically similar. This assumption allows the 

average ratios of the index flow to flows of other recurrence intervals to be specified 

as constants within a given hydrologic region. These average ratios must be deter­

mined using existing information. Dalrymple ( 1960), Reich, et al. ( 1971 ), and 

Reich and Jackson (1971) have used multiple regression techniques to estimate the 

mean annual peak flow of ungaged watersheds on the basis of physical characteristics 

of the watersheds. 

Estimation by Transfer of Peak Flows 

This category is a rather nebulous one, and most examples given by McCuen, et 

al. (1977) could easily have been classified under other categories. Noteworthy excep­

tions include the methods advocated by Crippen and Conrad (1977), who developed 

envelope curves of potential maximum peak flows, and Riggs (1974, 1976) who 

regressed peak flow against variables such as channel dimensions, high water marks, 

and slope of the water surface. 

Empirical Equations 
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Empirical equations which explicitly relate flow to rainfall and other variables 

have been developed by a number of researchers. Betson, et al. (1969), Chow (1962), 

Hewlett, et al.(I 977), and Smith and Hauser (I 976) describe the development of rela­

tively simple equations suitable for use on ungaged watersheds. 

Single Storm Event Modeling 

The single storm event modeling procedure typically entails inputting a rainfall 

depth, duration, and temporal distribution to an event-based rainfall-runoff model 

and obtaining the resulting storm hydrograph. The peak flow is then taken as 

having the same recurrence interval as the rainfall event. Chu and Lytle (1972), 

Ha wk ins (I 973), and Danushkodi (1979) have discussed this method using the SCS 

TR-20 model (SCS, 1969). Beran (1976), McSparran (1968), and Gray (1961) have used 

variations of other unit hydrograph methods. Others (Huggins and Monke, 1968; 

Judah, et al., 197 5; Mein, et al., 197 4) have developed their own models specifically 

suited to ungaged watersheds. 

Multiple Discrete Event Modeling 

The multiple discrete event modeling procedure uses a series of rainfall events, 

either actual or synthetic, as inputs to an event-based rainfall-runoff model with the 

end result being the flood frequency curve for the ungaged watershed of interest. 

This approach is very similar to that described in the previous section; the only 

difference is in the amount of input data used. Fogel, et al. (I 97 4, 197 5) present such 

an approach to flood estimation. 

Continuous Simulation Modeling 

The continuous simulation modeling approach to ungaged site estimation 

employs a continuous streamflow synthesis model, such as the Stanford Watershed 
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Model (Crawford and Linsley, 1966) or the USGS rainfall-runoff model (Dawdy, et 

al., 1972), operated using either actual or synthetic rainfall inputs. Model output is 

then used to construct a histogram of annual peak flows, and inferences regarding the 

occurrence of peak flows are drawn based upon a probability density function fit to 

the histogram. Lichty and Liscum (1978) discuss such an approach using the USGS 

rainfall-runoff model in which the model output for a gaged location is generalized to 

similar areas by use of multiple regression. Such an approach to ungaged site estima­

tion appears promising due to the explicit manner in which many of the components 

of the hydrologic cycle are treated. However, continuous streamflow models typi­

cally have many parameters, the values of which must be determined (optimized) by 

comparison of predicted flows to observed flows. Magette, et al. (1976) attempted to 

surmount the need for a calibration data base by relating parameters of the Stanford 

watershed model to watershed characteristics such as area, average slope, drainage 

density, etc. through multiple regression. "Variable" results were reported with the 

regression predictions of the parameters as much as 700% in error of the optimized 

values of the parameters. Clearly, more reliable regression-based parameter estimation 

procedures are required before the simulation modeling approach may be confidently 

applied to ungaged watersheds. 

Hydrologic Uncertainty 

A factor common to any method of flood estimation, be it for gaged or ungaged 

watersheds, is that of hydrologic uncertainty. In a flood frequency curve developed 

for a gaged watershed, there exists uncertainty in both the "true" flood frequency 

model and in the values of the parameters of that model. Following Kuczera's (1983) 

definition of the true value of a parameter (that obtained from fitting the model to an 

arbitrarily long sequence of data), we are uncertain of the true value of the 

parameters because perfect information is not available. Uncertainty plays an even 
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greater role in flood estimation for ungaged watersheds because 

a. The method of estimation may not be appropriate for the site in question; it 

may have been developed for watersheds with different hydrologic conditions. 

b. The "constant" factors which are present in most of these methods of flood 

estimation represent the fitting of an originally parametric model to 

experimental data from other watersheds. These constants should therefore be 

considered as uncertain parameters, owing to their being estimated from limited 

data. 

The effects of uncertainty on flood estimation may be of considerable 

significance, as evidenced by the work of Wood (1976, 1978). It is generally recog­

nized that flood estimation procedures which account for uncertainty are more 

conservative than those which do not account for uncertainty. Therefore, it is 

desirable in several respects to couple any flood estimation methodologies with an 

analysis and incorporation of the associated uncertainty. 

Vicens, et al. (l 975a) classified hydrologic uncertainty as being of two types: 

natural uncertainty and informational uncertainty. Natural uncertainty may be 

thought of as the uncertainty due to the inherent random or stochastic nature of the 

hydrologic process. Informational uncertainty arises from the lack of perfect infor­

mation regarding the hydrologic process of interest. Informational uncertainty may 

be further classified as either model or parameter uncertainty. Model uncertainty 

refers to the fact that the model used to represent the hydrologic process may not be 

"correct" in some sense. It is possible, given several realizations of a hydrologic 

process, to inf er differing models as being the correct representative mechanism of 

the process. Parameter uncertainty is present due to estimating the model parameters 

from limited data; different sets of data will generally result in different estimates of 

model parameters. For this reason, model parameters estimated from imperfect data 
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may be considered random variables characterized by their probability density 

functions. 

It has been the focus of stochastic hydrology to analyze hydrologic processes in 

terms of natural uncertainty. This is evidenced by the development of a multitude 

of models which are capable of synthesizing hydrologic processes with little 

consideration of informational uncertainty. Research performed during the last two 

decades, however, has led to an increased awareness of the existence and effects of 

informational uncertainty. Uncertainty in the parameters of flood frequency models 

has received a particularly high degree of attention. 

Uncertainty in a parameter of a hydrologic model may be quantified in terms of 

a probability density function of the parameter, or merely in terms of the mean and 

variance of the parameter. Among the methods available to quantify and/or analyze 

the effects of parameter uncertainty are first order analysis, non-parametric statis-

tical methods such as the Jackknife and Bootstrap methods, and Bayesian methods. 

First Order Analysis of Uncertainty 

First order analysis (Benjamin and Cornell, 1970) has been presented as a 

method of assessing the effects of uncertain model parameters on model output. To 

demonstrate the application of first order analysis, consider a random variable Y 

functionally related to a random, independent n-vector K; i.e., Y = f(K). The 

second-order Taylor series expansion of Y about & the mean of ~ is 

(I) 
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Taking expectations, it follows that 

E(Y) (2) 

and 

n n 

Var(Y) = l l a°i.. I a°i.. I Cov(Xi,Xj) 
. 1. 1 1 X=1L J X=IL 1= J= - c::.... - c::.... 

(3) 

In the case where the X. are uncorrelated, the variance of Y may be approximated by 
1 

(4) 

In this manner, the uncertainty in Y is expressed as a function of the uncertainty in 

X. It may be noted that use of first order analysis implies that the uncertainty in the 

random variable is satisfactorily described by only its variance. 

Following its presentation in a hydrologic context (Cornell, 1972), first order 

analysis has been applied to equations describing flow in open channels (Mays, 1979; 

Tung and Mays, 1980, 198la) and pipes (Clarke, et al., 1981), to flood plain mapping 

(Burgess, 1979), and to simulated hydrographs (Garen and Burgess, 1981 ). 

The most obvious advantage of using first-order analysis is its relative 

simplicity as compared to a full probabilistic analysis, which uses probability density 

functions of uncertain parameters and the method of derived distributions to describe 

uncertainty in model output. Even when full probabilistic analyses are performed, 

often only the first two moments of the variable of interest are presented (Freeze, 

1975); these are determined much more readily by first order analysis. Additionally, 



12 

first order analysis is suited to situations in which the dependent variable is not 

related to the independent variables via a single equation (e.g., a simulation model). 

This method of analysis is limited, however, in that it is at best incomplete, it is 

approximate, and it may not be appropriate for some relationships of interest (e.g., 

Y = max(X)). 

Non-Parametric Methods of Analysis 

Non-parametric methods have been developed to obtain estimates of the means 

and variances of sample statistics. Non-parametric methods do not assume a priori 

the distribution of a sample statistic (e.g., a normal distribution for the mean of a 

normally distributed population), but instead rely on empirical methods to derive the 

distribution of the statistic of interest. Two non-parametric methods which have been 

reported in the hydrologic literature are the Jackknife and Bootstrap methods. 

Jackknife Method. The Jackknife method was developed by Quenouille (1949) 

in order to estimate the bias of a sample statistic. Tukey (1958) proposed that the 

Jackknife method also be used to estimate the variance of the statistic. To illustrate 

the method, consider a data set.& where!_= (x 1,x2, ... ,xn). Consider next a statistic F 

which is estimated as a function of the data set &_ i.e., 

A 

F = F(x 1,x2, ... ,xn) (5) 

The Jackknife method requires that the statistic F be estimated n times, each time 

with the ith data point deleted (i=l,2, ... ,n). 

A 

F. = F(x
1
,x

2
, .. .,x. 

1
,x. 

1
,. .. ,x ) 

1 1- i+ n 
(6) 

Efron (1983) gives the Jackknife estimate of F as 



n 

1 l"' - F. 
n 1 

i=l 

The bias-corrected estimate of F is 

"' nF-(n-l)F 
( •) 

2 
The Jackknife estimate of the variance of F (cr1) is 

n 

( n-11 \ [F.-F 12 
n L i ( •) 

i=l 

The n estimates of F provide the empirical distribution of F. 
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(7) 

(8) 

(9) 

Bootstrap Method. The Bootstrap, developed by Efron ( 1979, 1982), is an alterna-

tive non-parametric method of estimating the mean and variance of a sample statistic. 

To illustrate the Bootstrap method, consider again a data set .!_and a statistic F which 

is estimated as a function of!.:. The data set .!_is randomly sampled with replacement 

• • • • to yield R realizations of the data. Each of the new data sets, !r = {x 1,x2'° .. ,xn}, 

r=l,2, ... ,R, is used to estimate F, providing R estimates of F. The Bootstrap estimate of 

F is 

(10) 

"' The bias of F ( •) (B) is estimated by 



2 The Bootstrap estimate of the variance of F (uB) is 

R 

;~ = ( R~l] .l [FB-F( •)12 

l=l 
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(I 1) 

(12) 

As with the Jackknife method, the empirical distribution of F is defined by the R 

estimates of F. 

Applications of the Jackknife and Bootstrap methods in a hydrologic context 

have been infrequently reported in the hydrologic literature. Tung and Mays 

(I 981 b) used the Jackknife and Bootstrap methods to estimate means and variances of 

the parameters of the Log-Pearson Type III probability density function. Cover and 

Unny (I 986) have used similar methods to analyze uncertainty in the parameters of an 

autoregressive moving average model. 

Bayesian Methods 

Bayesian analysis may be used to quantify parameter uncertainty in the event 

one has prior, or additional, information regarding the parameter. The prior informa-

tion must be expressible in probabilistic terms in order to be useful in a Bayesian 

analysis. Bayesian techniques are appealing from a hydrologic perspective because 

uncertainty in the parameters of models is explicitly accounted for and translated to 

uncertainty in the process of interest. Following Bernier's (I 967) application of 

Bayesian statistical theory to improve peak flow estimates of desired recurrence 

intervals, there have been several reports of Bayesian techniques used in a hydrologic 

context. Conover (1971) coupled Bayesian methods with a decision analysis in order 

to find the optimal estimator for the correlation coefficient of an autoregressive 

model. Davis, et al. (I 972) present an excellent account of applying Bayesian 
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methods in the context of decision theoretic analysis. The authors determined the 

optimal level of flood protection (expressed as flood levee height) to be provided and 

whether or not to def er the decision until more data had been collected. Vicens, et al. 

{1975a, 1975b) investigated reducing uncertainty in the parameters of a streamflow 

synthesis model via Bayesian methods. It was found that prior information from 

regional analyses, when appropriately expressed, significantly reduced parameter 

uncertainty in the presence of short periods of record {less than 25 years) with which 

to estimate the parameters. Wood and Rodriguez-Iturbe {l 975a) applied Bayesian 

principles to flood frequency analysis and derived the Bayesian distribution of 

annual peak flows for Normal, Log-Normal, and Exceedance flood frequency models. 

Kuczera (1982) proposed Empirical Bayes Theory, as discussed by Robbins 

{1964 ), as a method of combining regional and site-specific information in order to 

estimate peak flows of desired recurrence intervals. Regional estimates of the mean 

and variance of the annual flood series were used to provide the necessary prior 

information. This prior information was then coupled with site-specific informa­

tion to derive the joint probability density function of the site mean and variance. 

Compound distribution theory was then used to derive the probability density func­

tion of the peak flow of the desired recurrence interval. It was noted that in general, 

the incorporation of regional information reduced uncertainty in the site-specific 

estimate of this peak flow, particularly when site records were short. 

Bayesian methods have also been proposed as a method of selecting the "most 

correct" flood frequency model from an assortment of competing models. Wood and 

Rodriguez-Iturbe {1975b) used marginal likelihoods, derived using a Bayesian 

methodology, to find the probabilities that the correct flood frequency model was 

either Normal, Log-Normal, or Exceedance. The result of this procedure was the 

specification of a composite flood frequency model, which was the algebraic sum of 

weighted outputs of the competing models. Whereas Wood and Rodriguez-Iturbe 
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(I 975b) considered only models belonging to families of natural conjugate distribu­

tions (families characterized by attractive combinative properties), Bodo and Unny 

( 1976) broadened their scope to include some of the less tractable flood frequency 

models, such as the Gumbel, Gamma, and Log-Gamma models, as candidates for the 

"true" model and used likelihood ratios to discriminate between model candidates. The 

researchers encountered difficulties in the integrations required in their analysis and 

were forced to resort to ad hoc numerical procedures. 

Kuczera (1983) presented an interesting and innovative application of Bayesian 

methods to the problem of reducing uncertainty in the parameters of a deterministic 

hydrologic model. Noting the limited success of using regression techniques to relate 

optimized model parameters to geomorphic parameters (see, for example, Magette, et 

al., 1976), the author suggested that even if there exists a useful relationship between 

model parameters and geomorphic parameters, poorly inf erred model parameters can 

obfuscate this relationship. The approach to parameter inference was to first consider 

the model (in this case a water yield model developed by Langford, et al., 1978) as a 

non-linear regression model, with residuals being possibly both heteroscedastic and 

correlated. Initially, the ordinary least-squares criterion was used to optimize the 

parameters based upon available data. If the residuals were found to violate the 

assumptions of ordinary least-squares estimation, namely homoscedasticity and 

independence of the residuals, then a power transformation and/or autoregressive 

moving average model was fit to the residuals and the parameters redetermined. 

Beginning with an assumed distribution of the transformed residuals, the joint proba­

bility density function of the model parameters was analytically derived. This joint 

probability density function was found to be proportional to the sum of squares of the 

transformed residuals, raised to some power. It was then assumed that the sum of 

squares function could be adequately approximated as a linear function of the model 

parameters, and Beale's measure of nonlinearity (Beale, 1960) was used as a criterion 
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for checking the validity of this assumption. Given a satisfactory linearization, the 

joint probability density function of the model parameters was found to reduce to 

that of a multivariate t distribution. In the presence of a large number of observa­

tions of the watershed response, the multivariate t distribution may be approximated 

by a multivariate normal distribution, greatly simplifying the task of inferring 

parameter uncertainty. Compared to independent estimates of the means and standard 

errors of the parameters, the Bayesian process was found to significantly reduce 

uncertainty in the optimized parameters. 



CHAPTER III 

THEORY 

This research has drawn heavily upon present knowledge regarding two 

major subjects: Bayesian analysis of uncertainty and parameter estimation. 

Discussion of these two subjects comprises the totality of this chapter. 

Bayesian Analysis 

Bayesian analysis is a relatively straight forward method of analyzing 

uncertainty in model parameters. This method of analysis has as its basis 

Bayes' Theorem, which in itself is nothing more than a statement of relation­

ships between conditional probabilities. It has been mentioned that Bayesian 

analysis requires prior information regarding the parameters of interest. This 

information must generally be expressible as a probability density function. 

Specification of this "prior" probability density function is at the heart of the 

controversy associated with Bayesian methods. It is intuitive that 

misspecification of the prior probability density function may adversely affect 

the quality of the results of the analysis. In addition, if one obtains the prior 

probability density function through questionable means, the results of the 

analysis are likely to be viewed by others as highly dubious. Because of the 

importance of how prior information is incorporated into Bayesian analysis, 

formulation of the prior probability density function is discussed in detail later 

in this chapter. 
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Bayes' Theorem 

Consider a vector Y,:'(Y l'Y 2, ... ,y n) as n observations of a random variable Y, and 

suppose that the joint probability density function of Y, p(~ is dependent on the 

values of~ a k-vector of parameters. Note that the probability density function of 

Y is expressed as conditional upon ~ implying that 0 is a random rather than fixed 

vector. Considering 0 thusly is a concept central to Bayesian statistical theory; that is 

to say, parameters of probability density functions are and should be treated as 

random variables. To continue, it follows from the definition of conditional proba-

bility that 

p(~(~ = p(~ = p(~p(~ 

Given Y.L Bayes' Theorem states that 

p"(~ 
= p(yl9)p'( 9) 

p(y} 

(13) 

(14) 

The expression p'(~ is known as the prior probability density function of the 

parameter vector~ it represents what is known about 0 prior to collection of Y.:. The 

expression p"(~ is known as the posterior probability density function of 0. It 

embodies knowledge of 0 after collection of Y.:_ A definition regarding conditional 

probability density functions may be invoked to restate Bayes' Theorem as 

p"(~ 
p(yl9)p'( 9) 

I p(~'(fil_d!_ 
(15) 

where the integration is over k-dimensional real space. 

Bayes' Theorem and the Likelihood Function 

After obtaining Y.L the probability density function p(~ may be considered a 

function of 0 rather than Y.:. When viewed from this perspective, the function p(~is 
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ref erred to as the likelihood function of 0. When the observations L_are independent 

and identically distributed, the likelihood function is defined as 

n 

l(~ = n p(y i'~ 
i=l 

(16) 

In terms of the likelihood function, Bayes' Theorem may now be written as: 

p"(~ 
= l(8fy)p'( 9) 

J l(~p'(~d!_ 
(17) 

where the integration is again taken over k-dimensional real space. It is apparent 

that the denominator of Eqn. 17 serves only as a normalizing constant; i.e., it ensures 

that p"(~ integrates to unity. Recognition of the role of the denominator leads to an 

important restatement of Bayes' Theorem: 

p"(~ oc l(~p'(~ (18) 

With Bayes' Theorem written thusly, the importance of the likelihood function is 

obvious: it is the sole means by which prior knowledge on 0 is modified by collec-

tion of data. 

Sequential Application of Bayes' Theorem 

Bayes' Theorem is attractive from the standpoint that it provides a convenient 

algorithm for updating knowledge on 0 as data on Y become available. To illustrate, 

suppose that an initial prior probability density function, p'(~ is specified, and 

suppose that an initial sample of observations on Y, ~·are collected. Then, by Bayes' 

Theorem, 

p"(~) oc p'(~l(~) (19) 
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Following collection of more data, denoted by ~· information on 0 is updated by 

p"(~ ·~) oc p'(~l(~ )l(~) (20) 

which may be restated as 

p"(~ ,~) oc p"(~ )l(~) (21) 

The general forms of Eqns. 19 and 21 are identical; they differ only in which 

expressions serve in the roles of the prior probability density function and likelihood 

function of e. The point to be made is that the above procedure can be repeated 

without limit and is analogous to the fundamental process of learning from 

experience. 

Bayesian Probability Density Function 

When, as is most often the case, the interest lies in the probability density 

function of Y, p(y), compound distribution theory may be applied to yield 

p(y) = I p(yl~"(~d~ (22) 

where the integration is taken over appropriately dimensioned real space. 

The probability density function of Y when derived as in Eqn. 22 is referred to 

as the Bayesian (Benjamin and Cornell, 1970) or predictive (Zellner, 1971) probability 

density function of the random variable Y. It may be thought of as the average 

probability density function of Y, weighted by all possible values of the parameter 

vector e. 

The Bayesian probability density function of Y may be updated as more infor­

mation becomes available by first updating the probability density function of 0 via 

Eqn. 21 and then updating the probability density function of Y through Eqn. 22. It is 
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The Prior Probability Density Function 

For One Parameter 
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Perhaps the most contentious aspect of Bayesian analysis regards the formula­

tion of the prior probability density function. Depending on how it is derived, the 

prior probability density function may be classified as being data based or non-data 

based (Vicens et al., l 975a). This section is devoted to discussion of the two classes of 

prior probability density functions with observations on their relative strengths and 

shortcomings. 

Data Based Priors. Data based prior probability density functions are those 

obtained through "objective" methods (e.g., regional analysis). Provided sound 

methods are used in its derivation, one will seldom be criticized for using a data based 

prior probability density function in a Bayesian analysis. 

It is convenient, though not necessary, to specify data based prior probability 

density functions in such a manner as to simplify the derivation of the posterior 

probability density function. This may be done by selecting the prior probability 

density function from a family of probability density functions having mathemati­

cally attractive combinative properties. Raiffa and Schlaifer (1961) suggest 

desirable characteristics for such families of probability density functions, which 

may be summarized as: 

I. The posterior probability density function of a parameter should be easily 

determined given the prior probability density function and sample data. 

2. It should be easy to find the moments of both the posterior probability 

density function of the parameter and functions of the parameter. 

3. The family should be closed in the sense that the posterior probability density 



23 

function will be a member of the same family as the prior probability density 

function. 

Such families of probability density functions, known as natural conjugate 

families, are characterized by similar kernels. Many natural conjugate families of 

probability density functions are developed and discussed by Raiffa and Schlaifer 

(I 961 ). 

In spite of the appealing characteristics of data based prior probability density 

functions, there are at least two reasons why one may hesitate to specify one in a 

Bayesian analysis. It is possible, when specifying a data based prior probability 

density function, for the prior probability density function to dominate the likeli­

hood function in Eqn. 17. This is tantamount to suppression of the data in favor of 

the prior knowledge on the parameters. Box and Tiao (1973) forcefully argue that a 

dominant prior probability density function is rarely appropriate for the analysis of 

scientific data, commenting that it is unlikely an investigation would be undertaken 

unless data provided by the investigation were not of considerably greater precision 

than existing data. The second reason why one might opt not to use a data based 

prior probability density function is that such functions do not in themselves ensure 

robust inference; i.e., inferences may change appreciably depending on the prior 

probability density function specified. The subject of robust inference is magnified 

in importance when the Bayesian analysis is not an end in itself, but merely a 

component of a complex decision analysis. Berger (1985) demonstrates several cases 

in which use of a prior probability density function from a natural conjugate family 

does not lead to robust inference. 

Non-Data Based Priors. Non-data based prior probability density functions 

include those based on subjective opinions, theoretical considerations, or other such 

information. Except for non-informative prior probability density functions, a 

special case of the non-data based class, non-data based prior probability density 
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functions are seldom used in scientific analyses due to their vulnerability to criticism. 

Further treatment of such prior probability density functions is irrelevant in the 

context of this dissertation. The non-informative prior probability density func-

tions, however, are deserving of further discussion. 

Non-informative prior probability density functions are specified in order to 

reflect ignorance regarding the prior distribution of the parameters. This is not to 

say that nothing of the parameters is known prior to conduct of the experiment; 

indeed, Bodo and Unny (1976) state that complete prior ignorance is a "remarkably 

difficult state to achieve". Instead, use of non-informative prior probability density 

functions indicates merely that the prior knowledge about the parameters is minimal 

compared to that expected from the experiment. A traditional method of expressing 

prior ignorance is to invoke Bayes' Postulate; i.e., to specify a uniform prior proba-

bility density function of the form 

p'(9) oc I(, (23) 

Obviously, if the domain of the parameter is unbounded, the uniform prior proba-

bility density function is improper in that it does not integrate to unity. Box and 

Tiao (1973) circumvent this theoretical difficulty by proposing that the probability 

density function be considered as "locally uniform" over the range of appreciably 

non-zero likelihood and as tailing off to zero outside this range. It may be seen that 

such a prior probability density function does not dominate the likelihood in Eqn. 17 

by observing that if p'(9) oc I(., then 

p"(91tl 
1(91y)p'( 6) l(Oly) 

J 1(91tlp'(9)d9 = J l(Oltld9 

(24) 

Box and Tiao (1973) advocate the use of data-translated likelihood functions to 

assist in the specification of non-informative prior probability density functions. A 
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data-translated likelihood function may be defined as one for which the curve is 

completely specified, except for the location, prior to collection of the data. 

Depending on the probability density function of Y and the parameter in question, it 

may be necessary to transform the parameter 9 in order to obtain a data-translated 

likelihood. Assuming such a transformation exists, Box and Tiao (1973) define a 

non-informative prior probability density function as one which is locally uniform on 

the parameter space of the data-translated likelihood. To illustrate, consider speci-

fying a non-informative prior probability density function for the mean µ of the 

random variable Y, which is N(µ,u
2

) with known variance u
2

. The likelihood func-

tion of µ is given by 

n 

l(µlu,}'.} oc exp 

-L: (Y(µ)2 
i=l (25) 

where y is the mean of then observations of y. It may be shown that the likelihood 

function given by Eqn. 25 is data-translated. Therefore, a suitable prior probability 

density function is simply 

p'(µ) oc K, (26) 

If, however, the quantity of immediate interest is not µ but rather v, where 

v=µ-
1, then a different prior probability density function is appropriate. The likeli-

hood function of v is 

[ -1 2] -n(y-3 
l(vlu,}'.} oc exp 2 0'~ (27) 

In contrast to the likelihood function defined by Eqn. 25, this likelihood function is 
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not data-translated. A locally uniform prior probability density function for v thus 

will not qualify as non-informative as defined previously. To derive a non-informa-

tive prior probability density function for v, we recall that the uniform distribution 

was non-informative for µ. By the change of variables theorem, we may write 

p'(vlu) 2 p'(µju)µ 1 
oc -

2 (28) 
I.I 

In practice, it is the parameter transformation which produces the data-trans-

lated likelihood function that is unknown, and one must derive such a transformation 

first and then work in the direction opposite that of the example. 

The Prior Probability Density Function 

For Multiple Parameters 

It is appropriate for most scientific work to extend the considerations involved 

in selection of a prior probability density function for the single parameter situation 

to the situation of multiple parameters. More concisely stated, non-informative prior 

probability density functions are, in general, desirable for the situation of multiple 

parameters. To aid in the specification of non-informative prior probability density 

functions, one may extend Jeffreys' Rule (Jeffreys, 1961) for the single parameter 

case to the multiple parameter case. With regard to the single parameter case, Jeffreys' 

Rule states that a prior probability density function is approximately non-informa-

tive if it is taken as proportional to the square root of Fisher's (1922, 1925) measure of 

information. Given an observation y from a population having a conditional 

distribution p(yl9), Fisher's measure of information is defined as 

7(9) = E [Oln p(yl9)] 
2 

yl9 89 
(29) 

When a random sample of size n is drawn, then Fisher's measure of information for 



the entire sample is given as 

7 = n7(9) 
n 

27 

(30) 

Suppose now that the distribution of Y is conditional upon values of ~ a 

k-vector of parameters. For a random sample y_ drawn from this distribution, 

Fisher's measure of information (now contained within a kxk matrix) is given as 

7 (~ = ~-82ln p(yl9)] 
-n 9 89.89. 

1 J 
(31) 

Jeffreys' Rule as extended to the multiple parameter case states that the prior proba-

bility density function of the parameters should be taken as proportional to the 

square root of the determinant of the information matrix; i.e., 

p'(~ oc 17 c~l~ -n 
(32) 

Parameter Estimation 

The term "parameter estimation" refers to some process of comparing model 

predictions to observations with the purpose of deriving an "optimal" set of model 

parameters. The optimal set of parameters is that (preferably unique) set which 

satisfies some criterion or "objective function" specified by the model user. 

The role of the objective function is central in the process of parameter estima-

tion. In specifying an objective function, the model user commonly hopes to accom-

plish several things. First, the user desires to find model parameters that will lead to 

the best possible model predictions. The term "best" is not absolute, but will vary 

with the goals of the model user. For example, it may be important to one model user 

to accurately predict extreme events; another model user may be more interested in 

accuracy of model predictions over a range of magnitudes. The goals of the model 
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user will affect the form of the objective function which is specified. A second goal 

in specifying an objective function is to produce unbiased model predictions. The 

appropriate objective function becomes, in this case, a function of the form of the 

model. For very simple models, the popular least-squares criterion (minimization of 

the sum of squared residuals) may produce unbiased model predictions. For more 

detailed models, a more complex objective function may be in order. A third goal in 

specifying an objective function is to produce residuals with statistically appealing 

properties. It is quite common for the model user to require that the residuals fulfill 

certain requirements in order for the parameters to be considered optimal for that 

user. 

Two methods of parameter estimation, per se, are presented in the following 

sections of this chapter. The discussion of parameter estimation for linear and 

non-linear models serves as an introductory treatment of the derivation of optimal 

parameters using the least-squares criterion. Following is a section which describes 

the consequences of misapplying the least-squares criterion. The sections on Bayesian 

estimation of parameters are more concerned with the derivation of the probability 

density functions of model parameters rather than the optimal values of the 

parameters. However, the optimal values of parameters may be determined as a 

by-product of the Bayesian estimation procedure, and it is for this reason that these 

methods are discussed in this sequence. The chapter concludes with a discussion of 

specifying an objective function with the purpose of obtaining residuals with certain 

statistical properties. 

Estimation of Parameters in Linear Models 

If an independent variable Y is modeled as 

" Y. 
1 

(33) 
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then the model is said to be linear in the parameters. The general model of Eqn. 33 

may be written in vector notation as 

I\ 

Y. = X.0+e. 
1 --i- 1 

(34) 

where X. is a lxk vector of inputs, e is a kxl vector of parameters, and e. is the 
--i 1 

residual of the ith prediction. The most popular criterion used in estimation of e is 

I\ 

that e minimize the sum of squared residuals. This is ref erred to as the least-squares 

criterion. The resulting objective function is then 

min 
I\ 

I\ I\ T 
(Y-X0)(Y-X0) (35) 

e 

where Y is an nx 1 vector of observations and the i th row of X is X .. Minimization of 
- - --i 

Eqn. 35 leads to the linear normal equations, given by 

(36) 

The well known solution to the normal equations is given by 

(37) 

No assumptions other than that of non-singular X TX are necessary up to this 

point. If, however, some assumptions about the stochastic nature of the residuals are 

I\ 

postulated, it follows that e will possess certain optimal (from a statistical perspec-

ti ve) properties. These assumptions are: 

1. The residuals have a mean of zero. 

2. The variance of the residuals is constant. 
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3. The residuals are uncorrelated. 

Assumptions 1-3 are ref erred to as the least-squares assumptions. If these 

" assumptions are satisfied, then the least-squares estimate 0 is an unbiased, minimum 

variance estimator of 0. Draper and Smith (1966) point out that if it may further be 

assumed that 

4. Each residual is N(O,cr2) 

" then the sampling distribution of 0 for fixed X. is multivariate normal. Statistical 
- --i 

hypothesis tests and the specification of confidence intervals may then be conducted 

relatively simply. 

Estimation of Parameters in Non-linear Models 

The non-linear class of models is much more relevant in a hydrologic context. 

An example of a non-linear model is 

which is not of the form specified in Eqn. 33. Even so, the least-squares criterion 

may be again specified for parameter estimation in non-linear models. The function 

to be minimized may be generally written as: 

min 
" 

[Y-f(~~][Y-f(~~]T (39) 
9 

where Y is a nxl vector of observations, Xis a nxk matrix of inputs, and 0 is an mxl 

vector of parameters. Draper and Smith (1966) give the resulting normal equations, 

this time non-linear, as 
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(40) 

where X. is the i th row vector of X. The non-linear normal equations, in contrast to 
--i -

the linear normal equations, have in general no closed form solution. One is 

compelled then to use a numerical approach to estimate 0. Beck and Arnold (1977) and 

Bard (1974) review methods of estimating 0 by solution of systems of non-linear 

equations. 

Again, some assumptions regarding the stochastic nature of the residuals are 

A 

necessary in order to make statements concerning the optimality of the estimate 0. 

Draper and Smith (1966) observe that if the residuals are judged to satisfy assump-

A 

tions 1-4 stated earlier, then the non-linear least-squares estimate 0 may be taken as 

identical to the maximum likelihood estimate of 0. This implies that the least-squares 

estimate possesses the same optimal properties as the maximum likelihood estimate; 

namely, unbiasedness, minimum variance, and asymptotic efficiency. 

Violation of the Least Squares Assumptions 

Clarke (1973) and Sorooshian and Dracup (1980) have noted that the least-

squares assumptions are particularly strong and often are not satisfied by the 

residuals of hydrologic models. However, as Clarke (1973) has observed, parameters 

of hydrologic models are most often optimized using the least-squares criterion, 

usually without benefit of an analysis of the residuals. In those cases in which the 

least-squares assumptions are not justified, the resulting parameter estimates are not 

statistically optimal in several respects. More specifically, 

I. If the residuals have a non-zero mean, the resulting parameter estimates are 

A 

biased; i.e., E(~)ffl. 
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2. If the residuals have a variance which is dependent upon the response, the 

resulting parameter estimates do not have minimum variance. 

3. If the errors are correlated, both bias and non-minimum variance are induced 

in the parameter estimates. 

Draper and Smith ( 1966) off er several suggestions regarding analysis of 

residuals, including construction of residual plots and analysis of runs of the 

residuals. 

Bayesian Estimation of Parameters 

For One Model Output 

Bayesian techniques may be used to provide point estimates of the parameter set 

e as well as to determine the distribution of 0. It should be remembered, however, 

that e is considered in Bayesian estimation to be a random, rather than fixed, vector 

of parameters. The Bayes' estimator of~ then, carries a different connotation than 

A 

the classical estimator. The Bayes' estimator of ~ ~is taken as the most probable 

A 

value of the random vector ~ in other words, !_is the mode of the posterior joint 

probability density function of e. The assumptions necessary for the Bayesian estima-

A 

tion procedure are that the residuals resulting from use of !_satisfy the least squares 

assumptions. To begin the estimation procedure, an initial judgement regarding the 

residuals is necessary. Box and Tiao (1973) advocate use of the exponential power 

distribution, a family of symmetric probability density functions which includes the 

normal, to describe the stochastic nature of the residuals. The probability density 

function of a random variable X following this distribution is given by 

2 

p(xlµ,u,,8) = ws@> exp [-c(,8) IX~µ, 11+,8 J 
where µ = a value of the random mean of X, 

(41) 
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u = a value of the random standard deviation of X, 

/3 = a value of the random measure of non-normality of X, 

c(/3) 
r LJ (I+/3)] 

= 1 
(42) 

(1+13)r LJ (I+/3)] l+/3 

and 

1 

w(/3) = 

[ r [J (I+~)J i2 
3 

(43) 

(l+/3)( r LJ (I+/3)]] 
2 

Note that this is a conditional probability density function, dependent on the values 

(µ,u,{3). It may be found upon substitution that for {3=0, the power exponential 

distribution simplifies to the normal distribution. For /3=-1 and {3=1, the resulting 

distributions are the uniform and double exponential distributions, respectively. 

Assume now a random variable Y. modeled as some function of a lxk vector of 
1 

inputs X. and a mxl vector of parameters 0. If the residuals satisfy the least-squares 
--i -

assumptions and follow the power exponential distribution, then the probability 

density function of one of these residuals may be written as 

2 

p( eju,/3) = ws(3) exp [-c(/3) I~ l +/3 J (44) 

Given the data L. the likelihood function of the uncertain model parameters is 

given by 
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(45) 

where n is the number of observations on Y. If the measure of non-normality is taken 

as fixed, then Eqn. 45 simplifies to 

(46) 

Assuming prior independence between the vector of model parameters and the 

standard deviation of the residuals, an appropriate non-informative prior probability 

density function for these random variables is 

p'(~u) 
1 

oc: -
O' 

(47) 

By Bayes' Theorem, the posterior probability density function is proportional to 

the product of the prior probability density function and the likelihood function. 

This leads to a posterior joint probability density function of 

(48) 

Since we are interested only in the distribution of~ we may find the marginal 

density of e by integrating Eqn. 48 with respect to u. Noting that the probability 

density function of Eqn. 48 belongs to the gamma family of probability density 

functions, the integration may be performed to yield the joint probability density 

function of e as 
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(49) 

or, equivalently, 

(50) 

The exact density of 0 is readily seen to be 

p"(~.y} = (51) 

where the integral is taken over appropriately dimensioned real space. The Bayes' 

A 

estimator of~ ~is taken as the mode of the posterior probability density function of 

0 and is found by solving 

min 
A (52) 
9 

It is noted that in the preceding derivation of the probability density function 

of ~ it was unnecessary to assume a model linear in the parameters or a normal 

distribution of the residuals. If, however, the residuals should happen to be 

normally distributed, then the Bayes' estimator of 0 is found as 



36 

min 
A (53) 
9 

Equation 53 may be viewed as a justification for least-squares parameter estimation 

obtained in a Bayesian context. 

Bayesian Estimation of Parameters 

For Multiple Model Outputs 

The situation sometimes arises where a model produces not one, but rather 

several outputs. To develop the framework for parameter inference in this case, let .L 

be an nxp matrix of observed responses, ~an nxk matrix of inputs, !_an mx I vector of 

model parameters, and ~an nxp matrix of residuals. No assumptions regarding 

whether all inputs and parameters are common to all responses are necessary. We 

may write 

i:'._ = f(x;9) + E (54) 

Eq ui val en ti y, 

E = i:'._ - f (x;9) (55) 

Suppose now that the individual vectors of observed responses v. = (y
1
., •.. ,y .)T 

'-t 1 PI 

are independent and that each of the n corresponding vectors of residuals is N (O,~, p 

where l:: is the mxm covariance matrix of the residuals. The joint probability density 

function of the n vectors of errors is given by 

n 

p(~= n p(~~~ 
i=l 

(56) 



Expanding, we have 

-n 2 -n 2 1 T -1 

[ 
n J p(~~ = (27r) p/ lld I exp -2 .l <4 £_ !) 

I=l 

Consider now a matrix ~ = [S .. (9.,9.)] where 
lJ 1 J 

n 

Si)9i,9j) = 2 ekiekj 

k=l 

Box and Tiao (1973) show that 

n 

'\" T -1 Le. :E e. = 
i=l-i- - -i-

tr[:E-1 film 

Substituting this result into Eqn. 57, we have 
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(57) 

(58) 

(59) 

(60) 

Given the data ri_ we may write the likelihood function of the uncertain 

parameters as 

(61) 

At this point, a prior probability density function of the model parameters and 

the elements of the covariance matrix must be specified. If it may be assumed that 

(~~ are independent, then we may write 

p'(~~ = p'(~p'(~ (62) 
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If 6 is not highly dimensioned, then the appropriate non-informative prior probability 

density function is 

p'(~ IX K, (63) 

which leads to 

p'(~~ IX p'(~ (64) 

Applying Jeffreys' Rule for multiple parameters leads to selection of the prior proba-

bility density function of the covariance matrix as 

p'(~ IX l~-(p+ 1 )/2 (65) 

If the residuals are uncorrelated, then Eqn. 65 reduces to 

p'(~ IX ~ CT:~ [ J
-(p+l)/2 

i= 1 
11 

(66) 

By Bayes' Theorem, the posterior joint probability density function of the model 

parameters and the covariance matrix is proportional to the product of their likeli-

hood function and their prior joint probability density function. Box and Tiao (1973) 

provide a derivation of the marginal posterior probability density function of ~ 

which is given by the remarkably simple relationship 

(67) 

Upon substitution, it may be seen that for the case of p=l, Eqn. 67 reduces to 

Eqn. 50 for /3=0. Similarly to the situation of one response, the Bayes' estimator of~ 

"" f!.i. is found as 
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min l~-n/i 
A (68) 
9 

Corrective Actions for Violations of 

The Least-Squares Assumptions 

If the residuals are found to have a variance which is dependent on the 

predicted response y, then a variance-stabilizing transformation should be applied. 

Box and Cox (1964) present the following member of a family of parametric transfor-

mations which is commonly used to achieve constant variance: 

y<>..) = y>.. >..f() 

= ln(y), >..=0 

(69a) 

(69b) 

The goal in using such a transformation is to select the parameter >.. such that the 

transformation induces constant variance of the transformed residuals. Sorooshian 

and Dracup (1980) and Kuczera (1983) discuss application of the above transforma-

tion in the context of estimating parameters of a hydrologic model. 

The transformed errors are defined as 

(70) 

The probability density function of the response Y is related to that of the trans-

formed errors by 

p(y) = p(77)l!L (71) 

where !_is the Jacobian of the transformation between '1 and y. If >.. is greater then 

unity, it is evident that 
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a,,. ~-1 y . 
1 .:...i_ for i=j ay. - ~ 
J 

(72a) 

and 

a,,. 
1 0 for i#=j, ay. = 
J 

(72b) 

The Jacobian is then given by 

n 

J = n [y(] (73) 

i=l 

If the residuals are found to be serially correlated, then an appropriate correc-

tive action is to fit an autoregressive-moving average (ARMA) model to the residuals. 

Box and Jenkins (1976) present the ARMA(u,v) model as 

E. = q,
1 

E. 
1 
+ ..• +</> E. +ct.+w

1 
ct. 

1 
+ ... +w ct. 1 1- u 1-u 1 1- v 1-v (74) 

where q,1, ... ,</>u are autoregressive parameters, w1, ... ,wv are moving average parameters, 

and ct. are values of a random variable A with some white noise distribution. Again, 
1 

the density of the response Y is related to the random disturbance A by 

p(y) p(ct)l!L (75) 

where Lis the Jacobian of the transformation between ct and y. It is readily seen that 

8ct. 
1 

1 i=j, (Jy. - ' 
J 

(76a) 
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and 

Bo:. 
1 0, if:j By. -
J 

(76b) 

implying that the Jacobian is unity. 

In the situation where correlated residuals with non-constant variance occur (as 

commonly arises in a continuous hydrologic simulation model), both corrective 

actions are appropriate. The probability density function of the response Y is then 

related to the twice-transformed errors by application of Eqns. 71 and 75. Upon 

collection of the observed model responses, the joint probability density function of 

the residuals becomes by definition the likelihood function of the uncertain 

parameters. Bayesian estimation of the parameters and the derivation of the 

posterior joint probability density function of the parameters then proceeds as 

discussed earlier. 



CHAPTER IV 

RAINFALL-RUNOFF MODEL AND 

EXPERIMENT AL DAT A 

Description of Rainfall-Runoff Model 

The SCS unit hydrograph model (SCS, 1972) was selected as the event-

based rainfall-runoff model to be used in this research. The primary reasons 

for the choice of this particular model were its applicability to ungaged water-

sheds, its widespread use, and the lack of other popular models which consider 

even superficially the hydrology of rainfall-runoff phenomena. At the heart 

of the model is the well-known relationship relating runoff volume to total 

depth of rainfall, given by 

V = (P-0.2S)
2 

(P+0.8S) 

where V = runoff depth [l], 

P = total precipitation [l], and 

S = maximum potential soil moisture storage [l]. 

(77) 

The parameter S (in units of inches) may be calculated from the relationship 

s = 
1~~0 - lo (78) 

where CN is the familiar curve number. CN may be determined from tables 

furnished by the SCS (I 972) provided one has knowledge of the soil group, land use, 

and hydrologic condition of the watershed. Should the watershed be heterogeneous 



43 

with respect to the previously mentioned criteria, then an areally-weighted, composite 

CN is appropriate. 

The storm hydrograph is determined by convoluting runoff volume with a unit 

hydrograph, shown in Fig. 1. The peak of the unit hydrograph is computed as 

1290.7 A 
= Tp(l+r) 

where Q = flow rate (ft3 /s), 
p 

A = watershed area (mi2), 

Tp = time to peak (hr), and 

(79) 

r = ratio of the falling limb to the rising limb of the unit hydrograph. 

The value of 1.67 is recommended for use as r in Eqn. 79. The SCS further 

recommends that the routing increment d be taken as 0.2Tp. The currently recom-

mended procedure for computing Tp is discussed in detail by the SCS (1986). One 

relationship which has been reported by the SCS (1972) for use in determining Tp for 

small (less than 2000 acres) watersheds is 

Tp = 
L 0.8(S+l)0.7 

1710 s0·5 
a 

where L = maximum length of the watershed (ft) and 

S = average watershed slope (%). 
a 

(80) 

Given the parameters which determine the ordinates of the unit hydrograph, the 

ordinates of the storm hydrograph are determined as 

n 
Q(n) = E A V(i)UH(n - i) 

i=l 
(81) 



where Q(n) = ordinate of the storm hydrograph for the nth 

routing increment (1
3 /t], 

tl,. V = incremental runoff depth [l], and 

UH = ordinate of the unit hydrograph (1
3 /t]. 
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Incremental runoff volumes are determined by first applying Eqn. 77 to 

cumulative rainfall at each routing increment in order to find cumulative runoff 

volume at that time. Incremental runoff volumes are then found as the difference 

between two consecutive values of cumulative runoff volume. 

Uncertain Model Parameters 

The model parameters S, Tp, r, and d were taken as uncertain for the purposes 

of this research. Hawkins (1975) and Bondelid, et al. (1982) have investigated the 

sensitivity of SCS methods to the variation in the parameter S, thereby obliquely 

suggesting the validity of considering the parameter as uncertain. Haan and 

Edwards (1987), Haan and Wilson (1987), and Haan and Schulze (1986) have explicitly 

considered Sas an uncertain parameter and have reported the effects of this approach 

on the results of runoff volume frequency analyses. McCuen and Bondelid (1983) 

recognized the inadequacy of the value of r recommended by the SCS and have 

reported alternative methods for selecting appropriate values of this parameter. Their 

analysis, however, included no acknowledgement of a stochastic nature of r. Although 

there are no parallel reports of considering the parameters Tp and d as uncertain, 

there is no compelling reason why they should not be so considered. 

Experimental Data 

A considerable quantity of data was necessary in order to meet the objectives of 

this research. The following subsections describe the nature of the data and the 
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methods used in obtaining them. No attempt is made in this chapter to describe how 

the data are used as this will be addressed in the following chapters. The specific 

topics discussed are the selection of the watersheds used, the demarcation of 

appropriate periods of record for each watershed, data used as inputs to the SCS unit 

hydrograph model, geomorphic parameters, and flood series data. 

Study Watersheds and Periods of Record 

The criteria for selection of the group of study watersheds were basically the 

physical proximity of all watersheds within the group and the availability of suffi­

cient experimental data for each watershed. The USDA-ARS had, for approximately 

16 years, gaged several watersheds of various sizes in the Washita River basin in 

southern-central Oklahoma. The existence and availability of a vast amount of 

hydrologic data for these watersheds, which were in many cases adjacent, led to the 

selection of a subset of these watersheds for use in this research. 

In total, 15 watersheds were chosen for use in this research. Selection criteria for 

specific watersheds to be used were that sufficient data exist for each watershed, no 

study watershed be contained within another study watershed, land usage remain 

relatively constant over the period of record used in this research, and that, on the 

whole, the watersheds exhibit a variety of sizes. Table I summarizes some of the 

characteristics of the study watersheds. 

Fifty rainfall-runoff events for each study watershed were selected for use in 

the analysis of uncertainty in model parameters. In selecting these events, study 

periods were determined during which land usage was relatively constant. This was 

accomplished with the aid of the tables of land usage periodically reported for each 

watershed by the USDA-ARS (1962-1977). For most watersheds, changes in land usage, 

per se, were of relatively little consequence. More important were changes in the 

hydrologic regime due to the construction on several watersheds of floodwater 
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TABLE I 

SUMMARIZED CHARACTERISTICS OF 
THE STUDY WATERSHEDS 

--------------------------------------------------------------------
ID Area Years of Predominant 

(ac) Record Soil 

--------------------------------------------------------------------

111 16640.0 7 Sandy Loam 

131 25660.0 16 Sandy Loam 

311 15206.0 11 Silt Loam 

411 34180.0 13 Silt Loam 

511 38910.0 9 Silt Loam 

513 12314.0 8 Loam 

5142 360.3 6 Loam 

5143 485.8 6 Silt Loam 

5145 252.8 6 Loam 

515 1620.0 5 Silt Loam 

611 4845.0 5 Loam/Silt Loam. 

RS 23.7 11 Silt Loam 

R6 27.2 11 Silt Loam 

R7 19.2 11 Silt Loam 

RS 27.6 11 Silt Loam 
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TABLE I (Continued) 

--------------------------------------------------------------------
ID Percentage of Watershed In 

Cultivation Pasture Wooded Misc. 
Pasture 

--------------------------------------------------------------------

111 10 83 4 3 

131 21 49 28 2 

311 36 64 0 0 

411 75 23 0 2 

511 58 38 1 3 

513 7 85 4 4 

5142 0 100 0 0 

5143 0 100 0 0 

5145 0 100 0 0 

515 31 51 0 0 

611 22 72 5 1 

R5 0 100 0 0 

R6 0 100 0 0 

R7 0 100 0 0 

R8 0 100 0 0 

--------------------------------------------------------------------
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retarding structures. Completion dates of the structures and the area controlled by 

each structure have been reported by USDA (1983). This knowledge allowed for the 

specification of study periods prior to the completion of these floodwater retarding 

structures. The study periods were further restricted to events occurring during the 

months of April through September in order that soil and vegetation characteristics 

might be considered relatively constant for all events. After establishing study 

periods for each watershed, all runoff-producing rainfall events occurring within 

these study periods were tabulated based upon data published by the USDA-ARS 

(1962-1977). From these sets of all events occurring during the study periods, 50 events 

per study watershed were selected. For those watersheds with more than 50 eligible 

events, the study events were taken as the "selected events" reported by the USDA­

ARS (1962-1977) and a random sample of the remainder of the eligible events. For 

the watersheds with slightly less than 50 eligible events, the study periods had to be 

slightly expanded beyond the months of April through September, inclusive. 

Model Input Data 

Rainfall Data. The SCS unit hydrograph model requires knowledge of the 

temporal distribution of rainfall such as that obtained from the charts of recording 

rainfall gages. Each of the study watersheds contains at least two recording rainfall 

gages which will provide the necessary information on the distribution of rainfall. 

Rather than make direct use of all available rainfall gages, however, it was decided to 

use only the most centrally-located rainfall gages of each of the study watersheds as 

sources of information regarding the temporal distribution of rainfall. The infor­

mation from other raingages in the study watersheds is used indirectly by correcting 

rainfall amounts recorded by the central gages on the basis of the Thiessen-weighted 

averages reported by the USDA-ARS (1962-1977). The original, unpublished rainfall 

charts for the study watersheds are stored by the USDA-ARS Watershed Research 
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Laboratory in Chickasha, Oklahoma. The necessary charts were copied at that loca­

tion and later digitized to form a computer-readable data file for each rainfall­

runoff event. 

Curve Number Data. The SCS ( 1972, 1986) provides guidelines for determining 

CN for ungaged watersheds. The information required in the determination of a 

composite CN is, for each soil present in the watershed, the proportion of the 

watershed composed of the particular soil and the proportion of that soil in a 

particular land use. Data reported by the USDA-ARS (I 962-1977) list for each study 

watershed the proportion of that watershed in a particular land use and the propor­

tion of the watershed which a particular soil comprises. No further breakdown of 

soils and land uses is available from that source. Local soil surveys and topographic 

maps were of no benefit in determining the composition of a watershed by land usage 

and soil due to their low resolution. For seven of the study watersheds, this 

presented no problem as they were used solely as pasture/range. For the remaining 

eight watersheds, however, it was not possible to compute the composite CN and the 

corresponding composite S while strictly adhering to SCS guidelines. The following 

assumptions were made to allow for the determination of a composite CN for these 

watersheds: 

I. The various soils comprising a particular watershed are uniformly distributed 

within that watershed. 

2. The cropping practices used represent an amalgam of the alternatives 

presented by the SCS with respect to the determination of CN. 

3. The CN for land reported by the USDA-ARS (1962-1977) as in a "miscel­

laneous" disposition is 90. This land use includes county roads, highways, 

airports, etc. 

The values of S resulting from the composite CN's computed on the basis of these 

assumptions appear in Table II. 



TABLE II 

VALUES OF S COMPUTED FOR 
THE STUDY WATERSHEDS 

ID 

111 

131 

311 

411 

511 

513 

5142 

5143 

5145 

515 

611 

RS 

R6 

R7 

RS 

s 
(in) 

4.2 

4.0 

3.3 

3.2 

3.4 

3.6 

3.8 

4.9 

3.5 

2.2 

3.8 

4.1 

4.4 

3.0 

2.9 

50 
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Observed Model Responses 

The SCS unit hydrograph model may be thought of as producing two distinct 

outputs which are relevant to this research: runoff volume and peak flow. Estima-

tion of the model parameters therefore requires comparisons of observed to predicted 

runoff volumes, observed to predicted peaks, or both. The USDA-ARS Watershed 

Research Laboratory in Chickasha, OK, stores data on the temporal distribution of 

discharge for each of the study watersheds. Unpublished printouts of discharge 

measurements and computations were made available to the writer and copied at the 

laboratory. These data made possible the determination of peak flow and runoff 

volume for each study event, both of which were computed under the assumption of 

constant base flow. 

A summary of the rainfall-runoff events used in this research, in terms of storm 

dates, durations, depths, peak flows, and runoff volumes, is provided in Appendix A. 

Geomorphic Parameters 

Geomorphic parameters of the study were measured by Misra (1988) and are 

presented in Table III. The following abbreviations appearing in Table III are 

defined as follows: 

A = watershed area (mi2). 

P = watershed perimeter (mi). 

L = maximum length of the watershed (mi). m 

W = maximum width perpendicular to the main channel (mi). 

L = length of the main channel (mi). 
c 

H = maximum relief of the watershed (ft). 
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D d = watershed drainage density (m( 
1 
), the ratio of the total length of all 

identifiable streams to the watershed area. 

R = relief ratio, the ratio of the maximum relief of the watershed to the 
r 

maximum length of the watershed. 

RR = relative relief, the ratio of the maximum relief of the watershed to the 

perimeter of the watershed. 

Sa = average slope of the watershed (%). 

Sc = average slope of the main channel (%). 

R =elongation ratio, the ratio of the diameter of a circle having the same area 
e 

as the watershed to the maximum length of the watershed. 

R =circularity ratio, the ratio of the perimeter of a circle having the same area c 

as the watershed to the watershed perimeter. 

Sf= watershed stream frequency (m(
2

), the ratio of the number of all identifi-

able streams to the watershed area. 

The correlation matrix for the geomorphic parameters of Table III and the 

values of S shown in Table II (denoted as St) is presented in Table IV. The correla-

tion matrix for the logarithmic transformations of these variables is given in Table V. 

Flood Series Data 

Partial duration series of peak flows were collected for each of the study water-

sheds. These peaks flows were obtained from the same source as the observed model 

responses discussed previously. The threshold value of peak flow varied with each 

study watershed, but was generally chosen so that each series would contain at least 50 

events. Appendix B lists the partial duration series collected for each watershed. 
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TABLE III 

GEOMORPHIC PARAMETERS OF 
THE STUDY WATERSHEDS 

------------------------------------------------------------------------------------
ID A p L L w H Dd c m 

(mi2) (mi) (mi) (mi) (mi) (ft) (m(l) 

------------------------------------------------------------------------------------

111 26.0 23.43 6.71 6.64 4.25 341.0 2.11 

131 40.0 28.44 9.73 8.56 5.52 380.0 1.95 

311 23.76 24.57 10.83 9.07 2.81 252.0 2.07 

411 53.4 33.77 13.40 11.54 7.77 312.0 1.62 

511 60.8 39.85 16.14 15.12 5.12 272.0 1.93 

513 19.24 24.34 10.19 8.44 2.32 295.0 2.52 

5142 0.56 3.13 0.94 1.11 0.85 100.0 2.94 

5143 0.76 4.19 1.63 1.70 0.78 150.0 3.13 

5145 0.40 3.07 1.13 1.23 0.32 130.0 2.86 

515 2.59 6.49 1.67 2.16 1.93 96.0 1.32 

611 7.57 13.61 4.64 5.51 2.58 180.0 1.02 

RS 0.04 0.84 0.14 0.32 0.15 45.8 3.86 

R6 0.04 0.86 0.19 0.37 0.17 55.0 4.42 

R7 0.03 0.69 0.09 0.22 0.16 40.0 3.76 

RS 0.04 0.85 0.27 0.30 0.16 76.0 14.45 
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TABLE III (Continued) 

-------------------------------------------------------------------------------------
ID R RR s s R R sr r a c e c 

(%) (%) (m(2) 

-------------------------------------------------------------------------------------

111 0.010 0.003 4.53 0.49 0.87 0.77 2.73 

131 0.008 0.003 4.92 0.27 0.83 0.79 2.07 

311 0.005 0.002 3.13 0.13 0.60 0.70 1.94 

411 0.005 0.002 3.94 0.16 0.71 0.77 1.37 

511 0.003 0.001 3.99 0.16 0.58 0.69 1.86 

513 0.007 0.002 4.53 0.28 0.58 0.64 2.65 

5142 0.017 0.006 6.55 0.81 0.76 0.85 5.33 

5143 0.017 0.007 7.84 1.36 0.58 0.74 3.95 

5145 0.020 0.008 6.54 0.95 0.58 0.73 2.53 

515 0.008 0.003 3.03 0.46 0.84 0.88 1.93 

611 0.006 0.003 5.56 0.18 0.56 0.72 0.53 

RS 0.027 0.010 3.80 2.41 0.68 0.80 27.03 

R6 0.028 0.012 4.98 2.71 0.63 0.85 23.53 

R7 0.034 0.011 5.31 2.71 0.88 0.88 100.33 

RS 0.048 0.017 7.79 ·4.22 0.79 0.87 207.37 

-------------------------------------------------------------------------------------
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TABLE IV 

CORRELATION MA TRIX OF THE 
GEOMORPHIC PARAMETERS 

-----------------------------------------------------------------------------------
A p L L w H Dd c m 

-----------------------------------------------------------------------------------

A 1.000 

p 0.962 1.000 

L 0.949 0.987 1.000 
c 

L 0.952 0.990 0.994 1.000 
m 

w 0.929 0.914 0.870 0.877 1.000 

H 0.819 0.902 0.852 0.845 0.860 1.000 

Dd -0.351 -0.432 -0.405 -0.430 -0.438 -0.418 1.000 

R -0.630 -0.751 -0.732 -0.753 -0.703 -0.727 0.841 
r 

RR -0.659 -0.780 -0.753 -0.773 -0.737 -0.760 0.822 

s -0.464 a -0.507 -0.504 -0.501 -0.465 -0.324 0.553 

s -0.582 -0.706 -0.681 -0.702 -0.669 -0.719 0.840 
c 

R -0.052 e -0.132 -0.228 -0.231 0.077 -0.029 0.190 

R -0.458 -0.611 -0.652 
c 

-0.649 -0.372 -0.615 0.430 

sr -0.337 -0.426 -0.405 -0.423 -0.410 -0.455 0.928 

st -0.081 -0.066 -0.095 -0.089 -0.092 0.127 -0.164 



R 
r 

RR 

s a 

s c 

R e 

R c 

sr 

st 

R 
r 

1.000 

0.987 

0.552 

0.981 

0.288 

0.649 

0.857 

-0.040 

1.000 

0.565 

0.979 

0.174 

0.612 

0.798 

0.034 

TABLE IV (Continued) 

1.000 

0.456 

-0.085 

0.157 

0.459 

0.339 

1.000 

0.241 

0.632 

0.848 

-0.006 

R 
e 

1.000 

0.731 

0.364 

-0.348 

R 
c 

1.000 

0.532 

-0.285 

56 

1.000 

-0.335 1.000 
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TABLE V 
CORRELATION MA TRIX OF LOGARITHMS OF 

THE GEOMORPHIC PARAMETERS 

-----------------------------------------------------------------------------------
A p L L w H Dd c m 

-----------------------------------------------------------------------------------

A 1.000 

p 0.999 1.000 

L c 0.987 0.991 1.000 

L 0.994 0.997 0.994 1.000 
m 

w 0.984 0.976 0.956 0.967 1.000 

H 0.953 0.957 0.969 0.952 0.915 1.000 

Dd -0.720 -0.716 -0.666 -0.722 -0.755 -0.555 1.000 

R -0.942 -0.944 -0.927 -0.955 -0.927 -0.817 0.816 
r 

RR -0.963 -0.962 -0.935 -0.962 -0.954 -0.840 0.803 

s a -0.439 -0.428 -0.357 -0.418 -0.439 -0.217 0.535 

s c -0.945 -0.947 -0.935 -0.954 -0.928 -0.842 0.816 

R -0.153 -0.195 -0.268 e -0.263 -0.053 -0.190 0.173 

Re -0.638 -0.676 -0.711 -0.707 -0.521 -0.687 0.421 

sr -0.831 -0.836 -0.838 -0.855 -0.828 -0.762 0.899 

st -0.024 -0.003 0.014 0.019 -0.054 0.139 0.052 



R 
r 

RR 

s a 

s c 

R 
e 

R c 

sr 

st 

R 
r 

1.000 

0.990 

0.574 

0.977 

0.312 

0.663 

0.867 

0.101 

1.000 

0.592 

0.971 

0.193 

0.619 

0.835 

0.135 

TABLE V (Continued) 

1.000 

0.527 

-0.086 

0.139 

0.352 

0.391 

1.000 

0.280 

0.654 

0.880 

0.110 

R 
e 

1.000 

0.743 

0.392 

-0.370 

R 
c 

1.000 

0.635 

-0.309 

58 

1.000 

-0.091 1.000 
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CHAPTER V 

AN AL YSIS OF PARAMETRIC UNCERTAINTY 

The ultimate goal of the analysis of parametric uncertainty was the determina­

tion of the joint and marginal probability density functions of the uncertain model 

parameters for each of the study watersheds. The Bayesian methodology described 

in Chapter Ill was used under the assumption of minimal prior knowledge on the 

model parameters. The first step in this direction was to find the optimal set of 

parameters for each study watershed as determined by either Eqn. 52 or Eqn. 68. 

This derivation of a point estimator for the set of model parameters was necessary in 

order to make judgments regarding the stochastic nature of the associated residuals. If 

the optimal parameter sets result in residuals which satisfy the necessary assumptions, 

then the joint probability density functions of the model parameters may be found as 

the solution to either Eqn. 51 or Eqn. 67, depending on how the parameter sets were 

determined. If, however, the optimal parameter sets do not produce residuals which 

satisfy the necessary assumptions, then a corrective action of some fashion is 

required, and the optimal values of the model parameters must be redetermined and 

the residuals rechecked before deriving the joint probability density functions of the 

parameters. Given parameter sets which, on the whole, result in satisfactory 

residuals, the marginal probability density functions of the model parameters may be 

derived upon integration of the joint probability density functions of the parameters. 

This chapter describes the results of this approach applied to the 15 study watersheds. 



Parameters Obtained From Comparisons 

Of Peak Flows 
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The optimal values of the parameters S, Tp, r, and d of the SCS unit hydrograph 

model were derived for each study watershed as the solution to Eqn. 53. Model 

inputs for each study watershed were the area and the hyetographs for each of the 50 

study events, and model outputs were taken as the corresponding peak flows. The 

direct search routine developed by Hooke and Jeeves (1961) and modified by Monro 

(1971) was used with multiple starting points in order to determine each set of optimal 

parameters. The only constraints placed on the optimal parameters were that d be 

less than Tp and that r be greater than unity. The resulting parameters are shown in 

Table VI. A sample of the plots of residual peak flow vs. predicted peak flow 

appears in Figs. 2 through 5. The four watersheds (511, 5142, 611, and RS) from 

which Figs. 2 through 5 were derived were selected to show representative results and 

to approximately span the range of watershed areas. The practice of using results 

particular to these four watersheds to make certain points is widespread within this 

dissertation. The reader should be aware that these four watersheds did not produce 

results generally better or generally worse than the remaining 11 watersheds. 

It is apparent from Figs. 2 through 5 that the residual variance is not constant 

but increases with the magnitude of predicted peak flow. It should be recalled at this 

point that the necessary assumptions underlying Bayesian estimation of model 

parameters are the least squares assumptions, one of which is the assumption of 

homoscedasticity of the residuals. The parameter sets presented in Table VI do not, 

therefore, appear to satisfy this particular assumption. Little more can be said 

regarding whether the residuals are homoscedastic since there is no means of formally 

testing a hypothesis of homoscedasticity in this situation. It is also worthy of 

comment that several of the optimal values of the parameter S presented in Table VI 
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TABLE VI 

OPTIMAL MODEL PARAMETERS, 1 

----------------------------------------------------------------
ID r Tp s d 

(hr) (in) (hr) 

----------------------------------------------------------------

111 8.17 7.02 1.52 1.10 

131 16.42 17.50 0.25 1.75 

311 3.31 11.75 1.23 0.03 

411 14.61 17.77 0.51 1.97 

511 2.50 6.92 3.26 0.82 

513 6.04 4.00 1.53 0.50 

5142 1.01 3.97 1.49 0.20 

5143 6.52 2.56 1.79 0.60 

5145 1.43 2.11 1.57 0.20 

515 9.97 6.00 0.41 0.40 

611 1.00 1.41 4.41 0.20 

R5 1.00 0.29 3.36 0.06 

R6 1.38 0.06 2.65 0.05 

R7 2.63 0.15 0.79 0.06 

RS 1.20 0.07 1.80 0.06 

----------------------------------------------------------------
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are remarkably low. This leads to runoff volume predictions for these study water­

sheds which are, in general, extremely high. Although runoff volume is not in itself a 

relevant quantity at this point in terms of obtaining optimal parameter sets, it is 

intimately related via unit hydrograph theory to peak flow. This makes it a trou­

bling proposition to accept parameter values which are guaranteed to produce severe 

overestimates of this intermediate result in the SCS unit hydrograph procedure. The 

conclusion regarding this particular attempt to obtain optimal estimates of parameters 

is that the optimization criterion, the minimization of the sum of squared residual 

peak flows, is not strong enough to produce parameter estimates which are acceptable 

in the context of the SCS unit hydrograph model. 

Parameters Obtained From Comparisons Of 

Peak Flows And Runoff Volumes 

Due to the inferior characteristics associated with the optimal parameter sets 

presente·d in the preceding section, Eqn. 68 was adopted as the criterion for obtaining 

optimal parameter estimates. Model inputs remained the same as discussed earlier. 

The model was considered as producing two outputs, peak flow and runoff volume. 

The resulting optimal parameter sets are shown in Table VII. The problem of unreal­

istically low values of the parameter S has been overcome by assigning runoff volume 

a role in the optimization process. The values of the other model parameters also 

appear, on the whole, to be within the reasonable bounds which may be inferred from 

their use and physical significance. Figures 6 through 9 depict the relationship 

between residual peak flow and predicted peak flow for a subset of the study water­

sheds. It may be inf erred from these figures that the problem of heteroscedasticity 

in residual peak flows has not been overcome with the adoption of the more stringent 

optimization criterion. Figures 10 through 13, which are plots of residual runoff 

volume vs. predicted runoff volume, also exhibit heteroscedasticity in the residuals. 
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TABLE VII 

OPTIMAL MODEL PARAMETERS, 2 

------------------------------------------------------------------
ID r Tp s d 

(hr) (in) (hr) 

------------------------------------------------------------------

111 1.31 0.72 8.85 0.72 

131 2.07 3.96 12.18 1.72 

311 2.81 3.86 3.62 1.56 

411 3.95 3.92 8.70 0.98 

511 1.05 5.98 4.72 1.33 

513 1.10 3.50 5.12 0.50 

5142 1.34 0.18 5.27 0.14 

5143 1.60 0.40 10.60 0.13 

5145 1.95 0.75 3.14 0.35 

515 3.34 2.38 3.84 0.34 

611 1.78 0.74 5.18 0.38 

RS 1.59 0.22 3.43 0.15 

R6 1.84 0.06 2.73 0.04 

R7 1.03 0.18 1.80 0.09 

R8 1.00 0.12 1.87 0.03 

------------------------------------------------------------------
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The problems with the sets of optimal model parameters at this point are not 

their values, per se, but rather the statistical properties of the associated residuals; 

namely, heteroscedasticity. Transformation of the model output has been addressed 

earlier as a possible means of correcting this violation of the least squares assumptions 

and is next employed. 

Parameters Obtained From Comparisons of 

Transformed Peak Flows and Transformed 

Runoff Volumes 

The square root transformation, which is a member of the family of Box and 

Cox (1964) transformations presented in Eqns. 69a and 69b, was selected for use in 

order to induce homoscedasticity in peak flow and runoff volume residuals. However, 

the optimization criterion presented in Eqn. 68 was derived without consideration of 

transformations of the model responses. In order to consider transforming model 

responses as a possible tool in obtaining optimal parameter estimates, the posterior 

joint probability density function of the model parameters must be derived in terms 

of these transformed responses. 

Consider a model f(xi~1 where x. = (x
1 

.,x
2 

., ... ,x .. ) and 9={9
1
,o

2
, ... ,9k)T, which 

-;: ,1 ,1 J,1 

is used to predict responses Y 1 and Y 2. The residuals may be defined as 

El . ,1 

E2. 
,1 

y
1 

.-f 1 (x.;~ = y
1 

.-E(Y
1 

.) 
,1 -;: ,1 ,1 

= y
2 

.-f2(x.;~ = y
2 

.-E(Y
2 

.) 
,1 -;: ,1 ,1 

(82) 

(83) 

The transformed errors ('1
1 

.,,,
2 

.) are now defined as the differences between 
,1 ,1 

the square roots of the observations and the square roots of the predictions. 

"1 . ,1 
= yl .~ - E(Y .)~ 

,1 1,1 
(84) 



66 

"12. ,1 
= Y2 _Ya - E(Y .)Ya 

,1 2,1 (85) 

2 2 
Assume now that the .,,l,i are N(O,a1) and the .,,2,i are N(O,a2). Then (.,,l,i'.,,2) 

are N
2

(0,:E), and their probability density function may be written as 

(86) 

where 11.=(.,,
1 

.,.,,
2 
.?. We may relate the probability density function of a vector of 

""""t ,1 ,1 

transformed errors to that corresponding vector of observations as 

(87) 

where ~ = (y l,i,y2)T• and :!_is the Jacobian of the transformation from !Zr to ~· 

given by 

J= 

a.,,1 . a.,,1 . 
_d_d 

8yl . 8y2. 
,1 ,1 

a.,,2. a.,,2. 
-=.!. -=.!. 
8yl . 8y2. 

,1 ,1 

Upon substitution, we find that 

Ya 0 
2y 1 . 1 

IR= 
,1 = 

0 
Ya 4(y I ·Y2 .) 

2y2. 
,1 ,1 

,1 

Ya 

The probability density function of ~ is then 

(88) 

(89) 
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(90) 

where the argument inside the exponentiation operator is indeed a function of rr as 

defined by Eqns. 84 and 85, but is presented in this fashion for the sake of brevity. 

Now define ~(~'.-:l'~·····~)T and suppose that the -4 are uncorrelated for all i. Then 

the joint probability density function of Lis found as 

n 
P(fl = II P(I.r) 

i=l 

This is expanded to form 

-n -n 2 -1 T -1 
[ [ n ]l P(fl = g(tl(211') I~ I exp 2 .:1 (.!4 :E .!4) 

n 

where g(fl = n --1
--4(y l .y

2 
.)~ 

,1 ,1 
i=l 

(91) 

(92) 

(93) 

Given the data L. the probability density function of Lis a function of only ~ 

and !!.:.... Therefore, the right side of Eqn. 92 may then be taken as the likelihood 

function of (~~ Discarding all constants, we are left with 

(94) 

From this point, the derivation of the posterior probability density function of 

the model parameters proceeds exactly as described earlier in the section regarding 

parameter estimation in the case of multiple responses. The resulting probability 
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density function is identical to Eqn. 67, but the elements of~ are derived from the 

transformed errors. The Bayes' estimator of 0 is given by Eqn. 68 with the same 

adjustment of the elements of S(O). 

The parameters obtained from fitting the model to transformed peak flows and 

runoff volumes are shown in Table VIII. Figs. 14 through 17, plots of transformed 

residual peak flow vs. transformed predicted peak flow, do not immediately lead 

one to reject a hypothesis that the transformed residuals exhibit homoscedasticity. 

Likewise, Figs. 18 through 21, which are plots of transformed residual runoff volume 

vs. predicted runoff volume, seem to indicate homoscedasticity of the residuals. 

These parameter sets may therefore be taken as satisfying this particular least squares 

assumption. 

Another assumption which should be verified at this point is the assumption of 

normality of residuals, which was required in the derivation of the joint density of 

model parameters. Figs. 22 through 25 show transformed peak discharge rate 

residuals plotted on a normal probability scale. The distributions of the residuals are 

seen to be well approximated by normals. Additionally, Figs. 26 through 29, plots of 

transformed runoff volume residuals on a normal probability scale, suggest that the 

distributions of transformed runoff volume residuals may be taken as normal. 

Kolmogorov-Smirnov goodness of fit tests were performed on the transformed peak 

flow and runoff volume residuals for each of the study watersheds as a more quan­

titative method of classifying the residual distributions as normal or non-normal. 

The null hypothesis of normally distributed transformed peak flow residuals was not 

rejected at the 0.05 significance level for 14 of the study watersheds. The null 

hypothesis of normally distributed transformed runoff volume residuals was not 

rejected at the 0.05 significance level for 12 of the study watersheds. Lowering the 

power of the test to the 0.01 significance level led to the non-rejection of this null 

hypothesis for one more of the study watersheds. 
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TABLE VIII 

OPTIMAL MODEL PARAMETERS, 3 

------------------------------------------------------------------
ID r Tp s d 

(hr) (in) (hr) 

------------------------------------------------------------------

111 1.15 I. 71 6.85 0.44 

131 1.93 4.32 6.85 0.85 

311 2.36 4.54 3.31 0.95 

411 2.69 4.53 6.40 1.09 

511 1.86 4.36 4.57 1.00 

513 1.00 3.53 3.94 1.00 

5142 2.05 0.38 3.55 0.08 

5143 1.40 0.80 5.20 0.14 

5145 2.17 0.56 2.53 0.11 

515 2.19 3.03 2.90 0.61 

611 1.05 1.29 4.56 0.26 

R5 2.58 0.25 3.44 0.05 

R6 1.00 0.22 2.68 0.05 

R7 I.IO 0.16 1.30 0.03 

R8 1.40 0.11 1.75 0.05 

------------------------------------------------------------------
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The least-squares assumption of unbiased residuals was checked by testing the 

null hypothesis of zero-mean residuals against the alternative hypothesis of non-zero 

mean residuals. For the residuals of the transformed peak flows, the null hypothesis 

was not rejected for IO of the study watersheds for tests conducted at the 0.05 

significance level. For the residuals of the transformed runoff volume residuals, the 

null hypothesis was not rejected for 11 of the study watersheds for a test of the same 

power. 

Draper and Smith (1966) propose runs tests as a tool in determining whether 

there exists correlation in the residuals. However, owing to the manner in which 

study rainfall-runoff events were selected for use in this research, there was no 

reason to suppose that the residuals might be correlated. Therefore, the least-squares 

assumption of uncorrelated residuals was not checked. 

It was concluded at this juncture that the parameter sets obtained from this 

optimization procedure lead to the satisfaction of the least-squares assumptions and 

are therefore acceptable from a statistical perspective. The joint probability density 

function may accordingly be taken as the solution to Eqn. 67. Furthermore, the values 

of the optimized parameters are not, on the whole, a source of trepidation. 

Moving Toward Parsimonious 

Model Parameterization 

It was decided that any parameters to which model performance is insensitive 

should not be considered as uncertain, but should be considered as fixed. This will 

have the effect of simplifying the SCS unit hydrograph model to one containing less 

than the current total of four parameters. The following subsections describe the 

investigation of model sensitivity to the parameters d and r and their subsequent 

elimination from the analysis of parametric uncertainty. 
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Elimination of d 

The first parameter to be examined in light of its possible elimination was the 

routing increment, d. To examine the effect of removing d from the model, the 

remaining parameters were re-optimized as in the last section, but with d set to its 

recommended value of 0.2Tp. The resulting optimal parameter sets are shown in 

Table IX. 

Figures 30 through 33, as well as Figs. 34 through 37, indicate no inducement of 

heteroscedasticity in either transformed peak flow or runoff volume residuals as a 

result of eliminating d as an uncertain model parameter. Figures 38 through 41 and 42 

through 45 suggest that transformed peak flow and runoff volume residuals remain 

approximately normally distributed. This is supported by the fact that the results of 

the Kolmogorov-Smirnov goodness of fit tests were, for the transformed peak flow 

residuals, identical to those obtained when d was considered an uncertain model 

parameter. Furthermore, the elimination of d resulted in one additional watershed's 

having transformed runoff volume residuals which could be considered normally 

distributed. Hypothesis tests for biasedness of transformed peak flow residuals 

produced results identical to those for the four-parameter version of the model. 

Nine of the watersheds were found to have transformed runoff volume residuals 

which could be considered unbiased, a decrease of one as compared to the four­

parameter version of the model. 

In order to determine whether overall model performance suffered from the 

elimination of d, transformed peak flow residual variances were compared. The null 

hypothesis of equal transformed peak flow residual variances failed to be rejected for 

all of the study watersheds on the basis of a chi-square test conducted at the 0.05 

significance level. It is concluded that eliminating d from consideration in this 

analysis has no adverse effects on the optimality of the estimates of the remaining 
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TABLE IX 

OPTIMAL MODEL PARAMETERS, 4 

----------------------------------------------------
ID r Tp s 

(hr) (in) 

----------------------------------------------------

111 1.00 1.91 6.91 

131 2.26 3.93 6.93 

311 2.22 4.81 3.31 

411 2.67 4.68 7.15 

511 2.06 4.21 4.55 

513 1.00 3.86 3.98 

5142 1.85 0.41 3.55 

5143 1.69 0.65 5.65 

5145 2.20 0.56 2.53 

515 2.17 3.05 2.90 

611 1.04 1.29 4.58 

R5 2.60 0.25 3.44 

R6 1.00 0.23 2.69 

R7 1.06 0.16 1.35 

R8 1.20 0.14 1.75 

----------------------------------------------------
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parameters, from the perspective of either the probabilistic nature of the residuals or 

the model's ability to predict peak flows. 

Elimination of r 

The model parameters r and Tp may be suspected as being highly interactive 

upon examination of the SCS unit hydrograph model. This suspicion was fueled by 

the behavior of the search routine in attempts to locate optimal parameter sets. Figure 

46, which is a contour plot of the objective function of Eqn. 68 in the r-Tp plane for 

fixed, optimal S for watershed 511, confirms the presence of interaction between the 

two parameters. It is seen that there is a relatively long "trough" in the contour plot 

corresponding to pairs of values of r and Tp which may be used in the model with 

virtually no difference in model performance as judged by the right hand side of Eqn. 

68. One may therefore choose any value of one parameter, at least within very broad 

limits, and choose the value of the other parameter as determined by the trough in the 

contour plot with the assurance of obtaining near-optimal model performance. 

Clearly, only one of these two parameters is deserving of consideration as uncertain. 

It was decided to discard the parameter r from the analysis in favor of retaining Tp. 

The rainfall-runoff model thus becomes a two-parameter model rather than the 

original four-parameter model. 

The resulting optimal sets of the parameters Sand Tp are presented in Table X. 

Figures 47 through 50 indicate no undesirable effects on the variance of the trans­

formed peak flow residuals. Similar conclusions may be drawn regarding the runoff 

volume residuals upon examination of Figs. 51 through 54. Figures 55 through 62 

suggest that the distribution of transformed peak flow and runoff volume residuals is 

still approximately normal. Kolmogorov-Smirnov tests conducted at the 0.05 

significance level lead to non-rejection of the null hypothesis of normality for 14 of 

the watersheds in the case of transformed peak discharge rate residuals and for 12 of 



TABLE X 

OPTIMAL MODEL PARAMETERS, 5 

ID Tp 
(hr) 

s 
(in) 

----------------------------------------------------

111 1.51 6.83 

131 4.72 6.95 

311 5.87 3.34 

411 6.25 6.39 

511 4.77 4.55 

513 2.79 3.95 

5142 0.46 3.51 

5143 0.67 5.60 

5145 0.68 2.53 

515 3.63 2.88 

611 0.99 4.54 

RS 0.34 3.48 

R6 0.20 2.64 

R7 0.12 1.32 

R8 0.12 1.72 

-----------------------------------------------------
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the watersheds in the case of transformed runoff volume residuals. Diminishing the 

power of the test to the 0.01 significance level leads to non-rejection of the null 

hypothesis for one additional case of transformed runoff volume residuals. Tests for 

biasedness of transformed residuals indicated that 10 of the study watersheds could 

be considered to have unbiased transformed peak flow rate residuals, and 11 could be 

considered to have unbiased transformed runoff volume residuals. 

Transformed peak discharge residual variances resulting from the two­

parameter model were compared with those from the three-parameter model by means 

of a chi-square test conducted at the 0.05 significance level. In no case was the 

transformed peak flow residual variance from the two-parameter model significantly 

greater than that from the three-parameter model. These residual variances 

resulting from the two-parameter model were also compared to those resulting from 

the four-parameter model, with the same result. 

It is concluded that the removal of r as an uncertain parameter has, on the 

whole, no adverse effects on either the stochastic nature of the model residuals or the 

model's ability to predict peak flows. The two-parameter version of the model may 

thus be considered as valid a flood estimation mechanism as either the three or 

four-parameter version. 

Marginal Probability Density Functions 

Of the Model Parameters S and Tp 

Marginal probability density functions of the model parameters S and Tp were 

computed by numerically integrating Eqn. 67 for each of the study watersheds. 

These marginal densities were again numerically integrated in order to determine the 

mean, variance, and skewness of each using the respective definitions of each of these 

quantities. The covariance of the two model parameters was determined by 

integrating their joint probability density function for each study watershed. 
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Simpson's 3/8 rule was employed as the quadrature in each integration. Figures 63 

through 66 depict the probability density function of the parameter S, while Figs. 67 

through 70 depict the probability density function of the parameter Tp for a sample 

of the study watersheds. Table XI summarizes the relevant statistics associated with 

the two parameters. A key result of Table XI is that the correlation between 

parameters S and Tp is neither consistently high nor consistently low, suggesting that 

there no strong correlation structure between the two parameters which may be gener­

ally described for all 15 watersheds. For this reason, the two parameters are 

henceforth considered independent. Another important result that may be inf erred 

from Table XI is that the coefficients of skewness of S and Tp are generally small in 

magnitude. The small coefficients of skewness, coupled with the shapes of the 

probability density functions in Figs. 63 through 70, lead to the assumption of normal 

distributions for the parameters S and Tp in all following treatments of these 

parameters. 
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TABLE XI 

ST A TISTICS OF PARAMETERS S AND Tp, I 

-----------------------------------------------------------------------------------
ID ms SS &s mT ST gT p(S,Tp) 

(in) (in) (in3) (hr) (hr) (hr3) 

-----------------------------------------------------------------------------------

111 8.49 1.52 0.02 1.10 0.72 4.67 -0.17 

131 7.19 1.17 5.96 4.89 0.79 8.89 0.53 

311 3.43 0.27 0.16 5.87 0.19 -0.11 -0.02 

411 7.09 0.96 1.25 6.64 0.99 1.22 0.10 

511 4.60 0.28 0.15 4.80 0.21 1.46 0.29 

513 4.02 0.29 0.56 2.77 0.14 0.23 -0.06 

5142 3.55 0.33 0.38 0.46 0.12 0.59 -0.66 

5143 5.74 1.10 4.52 0.71 0.32 13.68 0.90 

5145 2.69 0.32 0.51 0.68 0.09 0.35 -0.21 

515 2.89 0.32 0.30 3.73 0.35 0.15 -0.36 

611 4.57 0.36 0.61 0.92 0.11 1.50 -0.31 

RS 3.59 0.28 0.14 0.35 0.03 -0.43 -0.29 

R6 2.79 0.27 0.15 0.18 0.04 -0.06 -0.58 

R7 1.36 0.13 0.47 0.12 0.02 0.08 -0.04 

RS 1.75 0.10 0.14 0.12 0.02 0.27 0.00 

------------------------------------------------------------------------------------

ms = Mean of S. 

sS = Standard deviation of S. 

&s = Skewness coefficient of S. 

mT = Mean of Tp. 

sT = Standard deviation of Tp. 

gT = Skewness coefficient of Tp. 

p(S,Tp) = Corr(S,Tp). 
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CHAPTER VI 

DEVELOPMENT OF A FLOOD ESTIMATION 

METHODOLOGY FOR UNGAGED 

WATERSHEDS 

A question that should be answered prior to developing a flood estimation 

methodology for ungaged watersheds is "To what end is the methodology to be used?" 

In the context of this research, the answer lies in the following assumptions which are 

made: 

1. The purpose of implementing the flood estimation methodology is practical; 

i.e., the methodology will be used as a tool in specifying design criteria for 

hydraulic structures such as bridges, culverts, spillways, etc. 

2. The flood estimation methodology will be used to provide approximate know­

ledge of the hydrologic response of the watershed over the spectrum of rainfall 

events and antecedent moisture conditions, rather than for specific events. 

3. The hydrologic quantity of interest is the magnitude of the peak flow, as 

opposed to the runoff volume or entire flood hydrograph. 

These assumptions give rise to the form of the flood estimation methodology 

which is presented in this chapter as well as the procedures which are used to evaluate 

it. 

The flood estimation procedure presented in this chapter has as its primary 

objective the generation of flood frequency curves for ungaged watersheds. An 

additional characteristic of the procedure, which stems from its probabilistic nature, 

is its ability to produce confidence intervals for these flood frequency curves. 
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Hence the procedure is concerned with the overall hydrologic response of ungaged 

watersheds, rather than responses due to specific events. Although hydrologic 

responses of ungaged watersheds to specific events may be approximated as a by­

product of this methodology, such responses are not specifically considered within 

this dissertation. 

A distinguishing feature of this flood estimation methodology, in view of its 

(admittedly tenuous) relationship to cause and effect hydrologic relationships, is its 

use of regional information to gain knowledge on the probability density functions of 

the model parameters for ungaged watersheds. This regional information is incorpo­

rated into a regression framework for obtaining estimates of the mean and variance 

of each of the model parameters. Additionally, the uncertainty of these estimates is 

incorporated into the flood estimation methodology. 

The approach to flood estimation described in this chapter is to, in effect, 

regionalize the probability density functions of the model parameters S and Tp and 

adjust these functions to reflect the uncertainty introduced in the regionalization. 

Random pairs of values of S and Tp may then be generated from these adjusted 

probability density functions and used as inputs to the SCS unit hydrograph model. 

The flood frequency curve follows from the selection of appropriate rainfall amounts 

and durations as further inputs to the model. 

Regionalization of S 

The means of the model parameter S as reported in Table XI were linearly 

regressed against the geomorphic parameters of Table III and the computed values of 

S derived from Table II. Both the untransformed variables and the logarithmic 

transformations of the variables were used in a stepwise linear regression process (see 

Dillon and Goldstein, 1984, for a discussion of stepwise linear regression). The 
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relationship obtained from the untransformed variables was the more satisfactory 

one, and is given by 

A 

µs = -3.42 - 0.06 A + 1.2 w + 1.61 st (95) 

A 

where µS = predicted mean of S (in), 

A = watershed area (mi
2

), 

W = maximum watershed width normal to the main channel (mi), and 

st = the value of s derived from scs (1986) tables (in). 

The standard error of estimate of Eqn. 95 is 0.676, and the corresponding coefficient 

of determination is 0.92. 

The next regionalization to be undertaken was of the standard deviation of the 

model parameter S. The same independent variables listed in the previous section were 

used in the linear regression analysis, with the exception that only their logarithmic-

transformed values were used. The values used for the dependent variable are derived 

from Table XI. The stepwise linear regression procedure resulted in a six-parameter 

prediction equation for the standard deviation of S. In view of the fact that there are 

only 15 data points, this equation was judged to contain an unacceptable number of 

parameters. As an alternative, a prediction equation with the same independent 

variables as in Eqn. 95 was derived and adopted. The resulting equation is given by 

A 

ln(uS) = -3.64 - 0.431 ln(A) + 1.20 ln(W) + 2.23 ln(St) (96) 

A 

where ln(uS) is the predicted logarithm of the standard deviation of the model 

parameter S and all other variables are as previously defined. The standard error of 

estimate is 0.451 and the coefficient of determination is 0.86. 
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Regionalization of Tp 

The set of means of the model parameter Tp shown in Table XI were regressed 

against the independent variables previously discussed, again using logarithmic trans-

formations of all variables. The stepwise linear regression analysis resulted in a 

prediction equation given by 

2.28 + 0.62 ln(L ) - 1.67 ln(S ) c a 

"' where ln(µT) = estimated logarithm of the mean of Tp (hr), 

S = average land slope of the watershed (%), and 
a 

L = length of the main channel (mi). 
c 

(97) 

The standard error of estimate of this equation is 1.047, and the coefficient of deter-

mination is 0.83. 

The last variable to be regionalized was the standard deviation of the model 

parameter Tp. Again, a stepwise linear regression procedure was employed using 

logarithmic transformations of all variables. The resulting prediction equation is 

given by 

"' ln(ut) = -0.8 + 1.31 ln(W) + 1.23 ln(Sc) - 0.4 ln(Sf) (98) 

"' where ln(ut) = estimated logarithm of the standard deviation of Tp (hr), and 

.-2 
sf = stream frequency (m1 ) 

The standard error of estimate for Eqn. 98 is 0.402 and the coefficient of determina-

tion is 0.96. 

Upon obtaining the relationship of Eqn. 98, it was decided to minimize the 

number of independent variables required to estimate the means and variances of the 
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model parameters and search for an alternative prediction equation for the standard 

deviation of Tp which uses only variables in Eqns. 95 through 97. The equation 

adopted is given by 

A 

ln(ut) = -3.09 - 0.38 ln(A) + 1.52 ln(W) + 0.98 ln(St) (99) 

where all variables are as previously defined. The standard error of prediction for 

this equation is 0.599, and the coefficient of determination is 0.82. 

Analysis of variance tables and other information relating to Eqns. 95, 96, 97, 

and 99 are given in Appendix C. 

A Framework for Using Regional Information 

A sample of the densities of the model parameters Sand Tp was presented in the 

previous chapter, where it was stated that these densities would be considered normal. 

The broad assumption now made is that the model parameters Sand Tp are normally 

distributed for all watersheds in the general vicinity of the study watersheds. 

Consider now an ungaged watershed in this vicinity for which the prediction equa-

tions developed in the two previous sections apply. On this watershed, the proba-

bility density function of the model parameter S (to choose one of the two model 

parameters) may be written as 

-Yi -1 p(s)=(21r) u 
s 

where µ. = mean of S (in) and s 

u = standard deviation of S (in) s 

(100) 

Since the watershed under consideration is ungaged, there are no data available 

to use in an analysis such as that performed in the previous chapter. The mean and 
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standard deviation of S must therefore be estimated using the relationships of Eqns. 

95 and 96. These estimates are uncertain, implying that the mean and variance of S 

should themselves be considered random variables. Equation 100 must therefore be 

rewritten as a conditional probability density function, given by 

-Yi -1 p(slµ ,u )=(21r) u 
s s s ex{~ ['~f] 

The unconditional probability density function of S is found as 

0000 

p(s} = J J p(slµs,u s)p(µs,u s}dµs du s 

.oo..oo 

(IOI) 

(102) 

It is now necessary to specify a joint probability density function for (µ ,u ). 
s s 

One which is convenient in terms of its ability to tractably accommodate correlation 

between two variables is the bivariate normal probability density function. For 

p(x,y) -1 2 -Y. [ -1 J = (21ru u ) (1-p ) exp 
2 

g(x,y) 
x y 2(1-p ) 

(103) 

where 

(104) 

It is noted now that under the assumptions commonly employed in linear regres-

sion (particularly that of normally distributed residuals), the sampling distribution of 

the dependent variable, conditioned upon a fixed independent variable, is normal. 

This result may be used in conjunction with the results of the regionalization of the 
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A 

model parameter S to state that µ. is N(µ. , ~ ) where ~ is the standard error of s s µ. µ. 

estimate associated with Eqn. 95. Similarly, it may be said that ln(u ) is s 

A 

N(ln(us),~ln(u»• where ~ln(u) is the standard error of Eqn. 96. If p is taken as the 
0 

observed correlation between the values of the mean and logarithm of the standard 

deviation of S, which may be derived from Table XI, then (µ. ,u ) may be taken as s s 

The probability density function of (µ. ,u ) may now be s s 

determined upon an elementary application of the theory of derived distributions. 

(105) 

where J is the Jacobian of the transformation from (µ. ,ln(u )) to (µ. ,u ) . 
- s s s s 

Substituting the appropriate expressions into Eqn. 105, the probability density func-

tion of (µ. ,u ) is given as s s 

where K. 

(106) 

(107) 

(108) 

It is unreasonable to hope for a closed-form solution to Eqn. 102, therefore a 

numerical approach is adopted in order to derive the probability density function of 

S. The mean and variance of S for the ungaged watershed are next determined by 

numerically integrating the empirical probability density function of S. Since S is a 
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priori assumed normally distributed, its mean and variance completely describe the 

uncertainty associated with it. 

A parallel approach may be taken in deriving the probability density function 

of the model parameter Tp. The unconditional probability density function of Tp is 

given by 

0000 

p(tp) = J J p(tplµt,O't)p(µt,O't)dµtdO't (109) 

-00..00 

where Tp is N(µt'ut), conditional upon the values of its uncertain mean and variance. 

Using the same reasoning employed in specifying the distribution of the uncertain 

mean and variance of S, it follows that 

= _l_ exp [ -1 2 g(µt,ut)J 
ll:O't 2(1-p ) 

0 

~ = standard error of Eqn. 97 µ. 

~ln(u) = standard error of Eqn. 99 

(110) 

(111) 

(112) 

p = observed correlation between values of the logarithms of the mean and 
0 

standard deviation of Tp, derived from Table XI. 
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Equation 109 may be numerically integrated to derive the probability density 

function of Tp. The result may be again integrated to find the mean and variance of 

Tp. Again, Tp is a priori assumed normally distributed, so the derivation of its mean 

and variance suffice to describe its uncertainty. 

Estimation of Flood Frequency Curves 

The preceding sections have described how the probability density functions of 

the model parameters S and Tp may be estimated for an ungaged watershed on the 

basis of regional information. It has been noted elsewhere that the correlation 

between S and Tp is generally neither strongly negative nor strongly positive, and the 

parameters may for this reason be considered independent. That is to say, 

(113) 

For a rainfall event of given depth, duration, and distribution, the two-

parameter version of the SCS unit hydrograph model computes peak flow as a func-

tion of watershed area (which is taken as fixed), S, and Tp. The probability density 

function of peak flow Q and some dummy variable X may be determined as 

p(q,x) = p(s)p(tp)l!L (114) 

where Lis the Jacobian of the transformation between (S,Tp) and (Q,X). In this 

context, Laccounts for the manner in which the SCS unit hydrograph model computes 

Q and X as a function of Sand Tp. The marginal probability density function of Q 

is found by integrating Eqn. 114 with respect to X. 

00 

p(q) = J p(s)p(tp)l!l_dx (115) 
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Given the nature of the SCS unit hydrograph model, it is not possible to state in 

closed form an expression for h This approach to deriving the probability density 

function of Q must therefore be modified. The alternative selected for this research 

was a Monte Carlo method of deriving the probability density function of Q. To use 

this method, one need only generate multiple pairs of values of S and Tp from their 

respective probability density functions and compute the resulting values of Q for the 

rainfall event of interest. These values of Q constitute an empirical probability 

density function of Q, from which may be derived E(Q), Var(Q), and desired 

confidence intervals on Q. It should be said regarding the generation of values of S 

and Tp that at this point, practice must diverge from theory. It is possible, given the 

probability density functions of the two model parameters, that negative values 

would be generated. If the two parameters are taken as having any physical 

significance, then negative values of the parameters are largely meaningless. The 

solution to the problem of negative values was to truncate the parameters' probability 

density functions at zero and to then rescale the probability density functions so that 

they integrated to unity. 

It is now assumed that the recurrence interval of a particular peak flow is equal 

to the recurrence interval of the rainfall event which produced that peak flow. Thus 

derivation of p(q) for rainfall events of varying return periods allows for the 

construction of the flood frequency curve. The peak flow having recurrence interval 

T is computed as E(Q) where p(q) is derived using a rainfall event of recurrence 

interval T. Confidence intervals may be placed on the entire flood frequency diagram 

by determining the confidence intervals on Q for each recurrence interval selected. 

The only point to be resolved at this stage is the specification of appropriate 

rainfall events in terms of their durations, depths, and temporal distributions. For 

the purposes of this research, the rainfall duration to be used for a particular 

watershed is taken as equal to its time of concentration. The SCS (1972) states that 
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the time of concentration may be taken as l.5Tp. The appropriate rainfall duration to 

be used for an ungaged watershed is thus taken as 1.5 times the Tp estimated from 

Eqn. 97. Rainfall depths corresponding to various durations and return periods were 

presented by Hershfield (1963) and are obtained from this source. The temporal 

distribution of rainfall is determined by adapting the SCS (1986) Type II rainfall 

distribution to the appropriate duration. 

Summarized Flood Estimation Methodology 

For Ungaged Watersheds 

The steps involved in this flood estimation methodology are summarized as 

follows: 

I. Estimate µ.s using Eqn. 95. 

,... 
2. Estimate In( CT ) using Eqn. 96. s 

3. Derive the unconditional probability density function of S as the solution to 

Eqn. 102. 

4. Integrate the result of Step 3 in order to find the mean and variance of S. 

5. Estimate µ.t using Eqn. 97. 

6. Estimate <Tt using Eqn. 99. 

7. Derive the unconditional probability density function of Tp as the solution to 

Eqn. 109. 

8. Integrate the result of Step 8 in order to find the mean and variance of Tp. 

9. Compute the appropriate rainfall duration to be used as 1.5 times the result of 

Step 5. 

I 0. Obtain the rainfall depth for the desired recurrence interval from 

Hershfield (1963) using the rainfall duration obtained in Step 9. 
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11. Generate multiple pairs of non-negative values for S and Tp taking S as 

normally distributed with mean and variance as determined in Step 4 and Tp as 

normally distributed with mean and variance as determined in Step 8. 

12. Input each pair of values of Sand Tp to the SCS unit hydrograph along with 

the watershed area, the rainfall depth determined in Step 10, and the temporal 

distribution of the rainfall (taken as SCS Type II), and compute the resulting 

peak flows. 

13. Compute the mean resultant peak flow and assign to it the same recurrence 

interval as for the rainfall event. 

14. Compute the upper and lower bounds of the (I-et)% confidence interval for 

resultant peak flow from the empirical distribution of peak flow. 

15. Repeat Steps IO through 14 for all desired recurrence intervals. 

16. Plotting mean resultant peak flow and the bounds of the (I-et)% confidence 

interval vs. recurrence interval results in the estimated flood frequency curve, 

with confidence intervals, for the ungaged watershed. 



CHAPTER VII 

EVALUATION OF THE FLOOD ESTIMATION 

METHODOLOGY FOR UNGAGED 

WATERSHEDS 

A problem which was encountered in this research was a relative shortage of 

suitable study watersheds in the region selected for use. This problem impacts most 

greatly upon the evaluation stage of the research. Ideally, one would develop a flood 

estimation methodology using data from a subset of the available study watersheds 

and judge the merit of the procedure by applying it to the remainder of the study 

watersheds. However, there exist in this situation several factors which preclude the 

"ideal" strategy of evaluating the flood estimation methodology. 

The heart of the flood estimation methodology is the procedure for obtaining 

estimates of the means and variances of the model parameters S and Tp, which 

includes using a set of regression-based prediction equations. There are only 15 data 

points available for the regressions of each of these quantities. To set aside a 

significant number of the study watersheds for use only in the evaluation stage of the 

research is to omit that number of data points from the regressions. The omission of 

an appreciable number of data points will have the effect of increasing the standard 

errors of the prediction equations for the mean and variance of the model parameters 

and will thus diminish the amount of information gained from the regionalization 

process. Of course, the flood estimation methodology may be tested on only one of 

the study watersheds after withholding it from the regression analyses, but this would 

be a relatively weak evaluation. 

159 
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The alternative method of evaluation employed in this research is a Jackknife 

approach. The flood estimation methodology will be tested on each of the 15 study 

watersheds as if it were the only one withheld from the regional analysis. The 

coefficients of the regionally-derived prediction equations (Eqns. 95, 96, 97, and 99) 

will be redetermined for each study watershed by omitting that watershed from the 

linear regression analyses. The observed correlations between the mean and 

logarithm of the standard deviation of S, as well as between the logarithms of the 

mean and standard deviation of Tp, will be redetermined for each study watershed in 

an analogous manner. The method of estimating flood frequency curves then 

proceeds exactly as discussed in Chapter VI. This strategy of evaluation will circum­

vent the potential problem of omitting a relatively large number of data points from 

the regression analyses, and it will yield more information on the performance of the 

flood estimation methodology than would be obtained from testing it on only one 

study watershed. 

The specific method of testing the flood estimation methodology for ungaged 

watersheds is to compare the resulting flood frequency curves, referred to as the 

Bayesian flood frequency curves, to those resulting from fitting the partial duration 

series data to a Log-Pearson Type III distribution; i.e., the observed flood frequency 

curves derived from the partial duration series are taken as the standards. In order 

to make comments regarding the performance of the methodology relative to other 

existing methods of flood estimation, flood frequency curves derived from applica­

tion of the USGS method described by Tortorelli and Bergman ( 1985) are presented. 

Also included for this purpose are flood frequency curves resulting from use of SCS 

( 1972) unit hydrograph procedures in their unmodified context. 
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Data Used to Estimate Flood Frequency Curves 

Data on Model Parameters S and Tp 

The prediction equations for the mean and logarithm of the standard deviation 

of the model parameter S may be represented in a generalized fashion as 

"' µs = a0 + a 1 A + a2 w + a3 st (116) 

(117) 

where the a. and b. are coefficients determined by the linear regression procedure 
1 1 

and all other variables are as previously defined in Eqns. 95 and 96. Fifteen sets of 

the coefficients a. and b. were determined by omitting the information derived from 
1 1 

Tables II, III and XI for each of the study watersheds and determining the resulting 

least-squares estimates of the coefficients. The mean and standard deviation of S 

were then estimated for each study watershed using the coefficients derived by omit-

ting its data points. The estimates of the mean and logarithm of the standard 

deviation of S, as well as their associated standard errors appear in Table XII. Also 

appearing in Table XII are the jackknived computations of the correlation between 

the mean of S and the logarithm of the standard deviation of S which were derived 

from Table XI. 

Estimates of the logarithms of the mean and standard deviation of the model 

parameter Tp are derived from equations of the form 

"' ln(µT) = c0 + c1 ln(Lc) + c2 ln(Sa) (I 18) 

(I 19) 



TABLE XII 

DAT A USED TO DERIVE PROBABILITY 
DENSITY FUNCTIONS OF S 

------------------------------------------------------------------------------------
A A 

ID µ.s ~ µ. ln(crs) ~ln(cr) Po 
(in) (in) [ln(in)] [ln(in)] 

------------------------------------------------------------------------------------

111 

131 

311 

411 

511 

513 

5142 

5143 

5145 

515 

611 

RS 

R6 

R7 

R8 

6.45 0.53 

7.16 0.71 

3.90 0.69 

8.40 0.65 

3.81 0.70 

3.91 0.71 

3.66 0.71 

5.11 0.69 

2.63 0.71 

1.60 0.65 

5.57 0.65 

3.24 0.70 

4.19 0.59 

1.71 0.70 

1.32 0.70 

A 

µ.S = Estimated mean of S. 
A 

~ = Standard error of µ.. 
µ. 

A 

-0.23 0.44 0.89 

-0.15 0.46 0.90 

-1.00 0.46 0.91 

-0.42 0.46 0.90 

-0.58 0.43 0.93 

-1.00 0.47 0.92 

-0.50 0.44 0.92 

-0.44 0.45 0.92 

-2.13 0.40 0.92 

-2.07 0.43 0.92 

-0.29 0.42 0.92 

-1.37 0.47 0.91 

-1.04 0.47 0.92 

-1.85 0.47 0.90 

-2.07 0.47 0.91 

ln(cr) = Estimated logarithm of the standard deviation of S. 
A 

~ln(crS) = Standard error of ln(cr). 

p
0 

= Corr[µ.S,ln(crs)]. 
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where the c. and d. are generalized coefficients and the other variables have been 
1 1 

defined in connection with Eqns. 97 and 99. A procedure analogous to that described 

in the previous paragraph was employed in order to obtain the coefficients c. and d. 
1 1 

for each of the study watersheds. The resulting estimates of the logarithm of the 

mean and standard deviation of Tp appear with their respective standard errors in 

Table XIII. Jackknived computations of the correlation between the logarithm of 

the mean of Tp and the logarithm of the standard deviation of Tp, which were 

derived from Table XI, also appear in Table XIII. 

The information appearing in Tables XII and XIII were substituted into Eqns. 

102 and 109, respectively, in order to determine the unconditional probability density 

functions of Sand Tp. The means, standard deviations, and coefficients of skewness 

of the two parameters were next computed by integrating these probability density 

functions as described in Chapter VI, and are shown in Table XIV. The means and 

standard deviations of Table XIV completely specify the (normal) probability density 

functions from which values of S and Tp were generated. 

Data on Rainfall Depth and Duration 

It is assumed for the purposes of this flood estimation methodology that for a 

given duration, rainfall depth follows the Extreme Value Type I distribution. Haan 

(1977) states that the parameters of this distribution may be found as functions of the 

2-year and 100-year rainfall depths. Hershfield (1963) presents rainfall depths for 

recurrence intervals including 2 and 100 years and for durations of 0.5, 1, 2, 3, 6, 9, 12, 

and 24 hours. Rainfall depths for recurrence intervals of 2, 5, 10, 25, 50, and 100 

years were found for each study watershed by taking storm duration as 1.5 times the 

estimate of Tp derived from Table XIII (rounded up to the nearest duration accom-

modated by Hershfield), determining the 2-year and 100-year rainfall depths reported 
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TABLE XIII 

DAT A USED TO DERIVE PROBABILITY 
DENSITY FUNCTIONS OF Tp 

-------------------------------------------------------------------------------------
A A 

ID ln(µT) ~In(µ) ln(uT) ~ln(u) Po 
[ln(hr)] [ln(hr)] [ln(hr)] [ln(hr)] 

-------------------------------------------------------------------------------------

111 1.05 0.36 -0.80 0.61 0.86 

131 0.94 0.42 -0.60 0.62 0.80 

311 1.90 0.45 -1.49 0.63 0.85 

411 1.56 0.44 -0.46 0.62 0.79 

511 1.74 0.45 -0.80 0.59 0.83 

513 1.24 0.45 -1.58 0.62 0.83 

5142 -0.89 0.45 -1.72 0.62 0.82 

5143 -1.01 0.42 -2.06 0.58 0.84 

5145 -0.82 0.44 -3.63 0.54 0.82 

515 0.54 0.41 -2.62 0.54 0.81 

611 0.45 0.43 -0.93 0.50 0.82 

RS -1.19 0.45 -3.28 0.63 0.81 

R6 -1.34 0.44 -3.16 0.63 0.80 

R7 -1.93 0.45 -3.27 0.59 0.78 

RS -1.86 0.45 -3.59 0.63 0.78 

A 

ln(µT) = Estimated logarithm of the mean of Tp. 

~In(µ) = Standard error of In(;). 
A 

ln(uT) = Estimated logarithm of the standard deviation of Tp. 
A 

~ln(u) = Standard error of ln(u). 

p 
0 

= Corr[ln(µT),ln( u T)]. 
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TABLE XIV 

STATISTICS OF PARAMETERS S AND Tp, 2 

----------------------------------------------------------------------------------
ID ms SS gs mT ST gT 

(in) (in) (in3) (hr) (hr) (hr3) 

----------------------------------------------------------------------------------

111 6.45 1.10 0.84 3.05 1.30 1.42 

131 7.16 1.27 0.88 2.79 1.43 1.45 

311 3.92 0.83 0.61 7.07 2.91 0.72 

411 8.40 1.03 0.90 5.18 2.40 1.08 

511 3.81 0.97 0.85 6.11 2.63 0.84 

513 3.93 0.84 0.60 3.81 1.77 1.27 

5142 3.66 1.02 0.89 0.46 0.34 1.73 

5143 5.10 1.05 0.93 0.40 0.26 1.60 

5145 2.50 0.53 1.57 0.50 0.23 1.39 

515 1.48 0.53 1.37 1.82 0.80 1.44 

611 5.57 1.10 0.88 1.71 0.92 1.54 

R5 3.22 0.83 0.17 0.24 0.14 4.04 

R6 4.21 0.73 0.68 0.30 0.16 1.27 

R7 1.55 0.72 0.81 0.14 0.10 1.80 

RS 1.23 0.58 1.24 0.15 0.10 1.69 

----------------------------------------------------------------------------------

ms = mean of S. 

SS = standard deviation of s. 

gs = coefficient of skewness of S. 

mT = mean of Tp. 

sT = standard deviation of Tp. 

gT = coefficient of skewness of Tp. 
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by Hershfield, determining the corresponding parameters of the Extreme Value Type 

I distribution as per Haan, and solving the cumulative distribution function for the 

rainfall amounts corresponding to the appropriate exceedance probabilities. Table XV 

lists the rainfall duration used for each of the study watersheds with the 

corresponding 2-year and 100-year rainfall depths. 

Flood Frequency Curves Used For 

Comparison Purposes 

Log-Pearson Type III Flood Frequency Curves 

The parameters of the Log-Pearson Type III probability density function were 

determined for each study watershed on the basis of the partial duration series data 

presented in Appendix B. The flood frequency curves result from deriving the annual 

peak flows corresponding to various recurrence intervals and then adjusting these 

recurrence intervals according to the procedure described by Chow (1964). 

USGS Flood Frequency Curves 

Tortorelli and Bergman (1985) present equations for computing annual peak 

flow, as a function of mean annual precipitation and watershed area, for recurrence 

intervals of 2, 5, 10, 25, 50, 100, and 500 years. These equations, with the exception of 

the one for estimating the 500-year peak flow, were applied to each of the study 

watersheds in order to derive their respective flood frequency curves resulting from 

the USGS procedure. 

SCS Flood Frequency Curves 

The SCS ( 1972) proposes that the peak flow corresponding to a particular recur­

rence interval be determined as an output of their unit hydrograph model using the 

24-hour rainfall depth of the same recurrence interval as an input. Repetition of 
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TABLE XV 

RAINFALL DURA TIO NS AND DEPTHS 
OF THE CORRESPONDING 2 AND 
100-YEAR RAINFALL EVENTS, 1 

------------------------------------------------------------
ID Duration R2 RlOO 

(hr) (in) (in) 

------------------------------------------------------------

111 6.0 2.54 5.95 

131 6.0 2.46 5.77 

311 12.0 3.10 7.28 

411 12.0 2.98 6.98 

511 12.0 2.98 6.98 

513 6.0 2.57 6.01 

5142 1.0 1.80 4.10 

5143 1.0 1.80 4.10 

5145 1.0 1.80 4.10 

515 3.0 2.25 5.35 

611 3.0 2.23 5.30 

RS 0.5 1.42 3.20 

R6 0.5 1.42 3.20 

R7 0.5 1.42 3.20 

R8 0.5 1.42 3.20 

------------------------------------------------------------

R2 = 2-year rainfall depth. 

RlOO = 100-year rainfall depth. 
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this process for various rainfall recurrence intervals produces a flood frequency 

curve. 

The SCS flood frequency curve was derived for each of the study watersheds 

having an area of less than 2000 acres. No SCS flood frequency curves were computed 

for the larger watersheds because of the inapplicability of Eqn. 80 to computation of 

Tp. The SCS (1986) has presented methods of determining Tp for larger watersheds, 

but these methods require a tremendous amount of data which were not readily 

available for the larger study watersheds. The SCS estimates of Tp for the eight 

watersheds of area less than 2000 acres were computed using Eqn. 80 and the informa­

tion contained within Tables II and III. The estimates are shown in Table XVI. 

The recurrence intervals of the rainfall depths used for these eight study water­

sheds were taken as 2, 5, 10, 25, 50, and 100 years so as to maintain uniformity with 

respect to recurrence intervals. The 2-year, 24-hour rainfall depth and the 100-year, 

24-hour rainfall depth are, according to Hershfield (1963), the same for each of the 

eight watersheds and were determined as 3.7 and 8.75 inches, respectively. The 24-

hour rainfall depths corresponding to the intermediate recurrence intervals were 

computed under the assumption of an Extreme Value Type I distribution of depths as 

discussed in the previous section. 

Discussion of Flood Frequency Curves 

Figures 71 through 85 illustrate the results of the flood estimation methodology, 

as modified by the Jackknived prediction equations and correlation coefficients, 

applied to the 15 study watersheds. Each of the six data points (and each 

corresponding confidence interval) from which the Bayesian flood frequency curves 

were constructed was derived using 2000 values of Sand Tp randomly generated from 

their respective probability density functions. Superimposed on the Bayesian flood 

frequency curves of Figs. 71 through 85 are the observed (Log-Pearson Type III) 



TABLE XVI 

SCS ESTIMATES OF Tp FOR 
THE STUDY WATERSHEDS 

ID 

5142 

5143 

5145 

515 

RS 

R6 

R7 

RS 

Tp 
(hr) 

0.70 

1.05 

0.74 

1.33 

0.35 

0.37 

0.19 

0.20 
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curves, the USGS curves, and the SCS curves (where applicable). 

The Bayesian flood frequency curves approximate the observed flood frequency 

curves with varying degrees of accuracy. The Bayesian curves were somewhat 

conservative for eleven of the study watersheds (watersheds 111, 131, 311, 411, 511, 

513, 515, 5142, 5143, 5145, and RS), especially up to recurrence intervals of about 10 

years. The Bayesian curves for watersheds 311, 513, 5142, 5145, R5, R7, and RS 

approximated the observed flood frequency curves with considerable accuracy for 

recurrence intervals of I 0 years and less. 

The accuracy of the Bayesian flood frequency curves relative to those derived 

from USGS and SCS methods may be inferred from direct comparisons of the curves 

of Figs. 71 through S5. The curves resulting from the SCS procedure are by far the 

most conservative group of flood frequency curves. Indeed, they are conservative to 

such a degree that they may confidently be dismissed from consideration as true 

representatives of their respective peak annual flow generation processes. The USGS 

curves are in general more conservative than the Bayesian flood frequency curves. 

They also appear to better approximate the observed curves at higher recurrence 

intervals than do the Bayesian flood frequency curves. However, one should exer­

cise a measure of common sense in drawing conclusions regarding the relative merits 

of the Bayesian and USGS curves on the basis of how they compare to the observed 

curves at high recurrence intervals. One will find upon examining Table I that the 

maximum length of record for the study watersheds is 16 years, and some record 

lengths are as short as five years. To extrapolate this historical information on peak 

flows to recurrence intervals of 25 years may raise serious questions on the worth of 

the extrapolation; to extrapolate to recurrence intervals of 100 years and greater may 

produce results only slightly better than what could be obtained from tarot cards or 

tea leaves. Thus the behavior of the observed curves in the region of high (> 25 

years) recurrence intervals is suspect due to the lack of historical information, and 
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there is no overwhelming reason for the any of the competing flood estimation 

methods to produce flood frequency curves which well simulate the behavior of the 

observed curves in this region. In the region where one may have confidence in the 

observed flood frequency curves (i.e., for recurrence intervals of up to about 15 

years), the Bayesian curves better represent the observed curves for six watersheds 

(111, 131, 311, 411, 5143, and R5). For five of the watersheds (513, 5142, 5145, R7, and 

RS) there is little difference in the accuracy of the curves. For the remaining four 

study watersheds (511, 515, 611, and R6), the USGS curves more closely approximate 

the observed curves than do the Bayesian curves. The performance of one flood 

estimation method relative to another does not appear to be a function of watershed 

area or any other parameter. 

Further inferences regarding the relative accuracy of the competing flood 

frequency curves may be drawn from Table XVII, which lists Kolmogorov-Smirnov 

statistics for testing the hypotheses that the different curves are equal to their respec­

tive observed curves. Because the critical value (that above which the null 

hypothesis of equal flood frequency curves is rejected) of the test statistic is 0.521 at 

the 0.05 significance level, each of the flood frequency curves may be taken as equal 

to its respective observed curve. Therefore Table XVII may not, strictly speaking, be 

used to discriminate between significantly better and worse curves. However, one 

may obtain a very general idea of the relative accuracy of the various curves by 

comparing the test statistics. The test statistic is taken as the maximum deviation 

between the cumulative distribution function (derived from the flood frequency 

curve) of one of the competitors and the observed cumulative distribution function, 

and it almost invariably takes its value as the result of a deviation in the vicinity of 

50% cumulative probability. When one flood frequency curve has a lower test 

statistic than its competitor, one may inf er that it is a better representative of the 

observed curve in the region of 2-5 year recurrence intervals. Since the observed 



TABLE XVII 

KOLMOGOROV-SMIRNOV TEST ST A TISTICS, 

----------------------------------------------------------------------
ID Estimated USGS scs 
----------------------------------------------------------------------

111 

131 

311 

411 

511 

513 

5142 

5143 

5145 

515 

611 

RS 

R6 

R7 

RS 

0.28 0.39 • 
0.38 0.45 • 
0.16 0.15 • 
0.28 0.45 • 
0.30 0.14 • 
0.16 0.10 • 
0.20 0.19 •• 
0.27 0.39 •• 
0.17 0.05 •• 
0.46 0.35 •• 
0.17 0.06 • 
0.07 0.29 0.49 

0.30 0.23 0.48 

0.09 0.23 •• 
0.29 0.02 •• 

• Not available. 
•• Kolmogorov-Smirnov test statistic could 

not be derived. 
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curves are probably most accurate in this region, this type of comparison is not 

altogether meaningless; it is only statistically inconclusive. For six of the study 

watersheds, the Bayesian flood frequency curves have a lower test statistic than the 

USGS curves. For the remainder of the study watersheds, the USGS curves have a 

lower test statistic. It may be inferred from this comparison that in general, the 

USGS curves seem to better represent the observed curves in the region of 

approximately 2-5 year recurrence intervals. 

A striking feature of Figs. 71 through 85 is the width of the 90% confidence 

intervals for the modeled flood frequency curves. The 90% confidence interval on 

the 100-year flood for the largest study watershed (511) is from approximately 9000 to 

36000 cfs; for the smallest study watershed (R 7), the bounds are from approximately 

80 to 400 cfs. The widths of these confidence intervals, which are indicative of the 

degree of uncertainty in the Bayesian flood frequency curves, are a function of 

informational uncertainty. At this point, the knowledge on the model parameters S 

and Tp is derived solely on the basis of the regression relationships. As such, it is 

necessarily less precise than that which would be obtained from site-specific informa­

tion. The penalty for the lack of site-specific information is relatively high uncer­

tainty in Sand Tp, which is in turn passed on to the Bayesian flood frequency curves 

in the form of relatively wide confidence intervals. 

The confidence intervals on the Bayesian flood frequency curves will have a 

direct impact on engineering judgments regarding hydrologic structures built upon 

these watersheds. To illustrate, assume that the procedure for estimating the flood 

frequency curves is valid and that one of these curves is to be used to design a 

hydrologic structure for watershed 511. If a design criterion for a hydrologic struc­

ture is that it accommodate the 100-year peak flow, then the structure must be 

designed for a flow of roughly 36000 cfs in order to be 90% certain that it would meet 

this criterion. Therefore, one must say at this point that there is a 10% risk that the 
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structure will fail to meet the criterion if it is designed for this flow. It would be 

more common to design the structure for a flow of about 17000 cfs, which is the 

expected value of the 100-year peak flow. However, the concomitant risk that the 

structure will fail to accommodate the true 100-year flow will be increased to 50%. 

The effect of the confidence intervals is to complicate the questions of risk associated 

with a particular structure. One may not design a structure on watershed 511 for a 

flow of 17000 cfs and state that there is an annual risk of failure of 1 %. The annual 

risk of failure is in fact somewhat greater than 1 % because the value of the 100-year 

peak annual flow is itself uncertain, with its uncertainty described in part by its 

confidence intervals. 

Concluding Remarks 

The Bayesian flood frequency curves appear, in general, to overestimate the 

observed curves; however, the differences between the Bayesian and observed curves 

are insignificant from the standpoint of Kolmogorov-Smirnov goodness of fit tests 

conducted at the 0.05 significance level. By the same token, the USGS curves are not 

significantly different than the observed curves. In addition, the USGS curves seem, 

on the whole, to better represent the observed curves than do the Bayesian curves. 

The SCS curves appear to be greatly in error with respect to the observed curves and 

uniformly overestimate the T-year annual peak flow relative to either the Bayesian or 

USGS curves. 

The 90% confidence intervals on the Bayesian flood frequency curves seem to be 

quite wide, indicating a high degree of uncertainty in the curves. This is not unex­

pected; it simply reflects the imprecision of the data available at this point on the 

model parameters S and Tp. 

The flood estimation methodology itself has been shown practicable. Although 

conclusive statements regarding its accuracy are not possible, it seems to produce 
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reasonable results. This procedure of flood estimation contains several advantages 

over its competitors. First, the methodology is more concerned with the factors 

which influence the rainfall-runoff phenomena than the USGS procedure. It allows 

one to isolate, to a degree, the effects of land slope, channel length, and land usage, as 

well as other hydrologic quantities. In contrast to unmodified SCS procedures, the 

flood estimation methodology produces confidence limits on the flood frequency 

curves, allowing one to infer the uncertainty of the curves. Also, the prediction 

equations regarding Tp allow one to estimate this parameter for watersheds having 

area greater than 2000 acres without the necessity for the impractically large amount 

of data required by SCS methods. 

There are several possible sources of error in the procedure for estimating flood 

frequency curves for ungaged watersheds, all of which may contribute to differences 

between Bayesian and observed curves. The first source of error is the model itself. 

The SCS unit hydrograph model is not a physically-based model, but rather an over­

simplification of the rainfall-runoff process. There is necessarily a limit to the 

accuracy one may reasonably expect from such a model, regardless of the precision 

with which its parameters are determined. A second source of error is the assump­

tion that the T-year rainfall produces the T-year annual peak flow. This assumption 

is commonly made, but it is by no means universally held as true. Thirdly, the 

rainfall depths determined from Hershfield (1963) may not be accurate for the region 

in which the study watersheds are located. Haan and Edwards (1987) reported 

problems in some cases in resolving Hershfield's rainfall depths to observed rainfall 

depths. A fourth potential source of error is the regionally-derived prediction equa­

tions. The prediction equations were derived from a relatively small set of observa­

tions. The addition of more observations would certainly affect the values of the 

coefficients and may even change the basic forms of the equations. Even if the 

forms of the equations and their coefficients are correct, the random nature of the 
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relationship between predictions and observations may lead in some cases to relatively 

large errors of prediction which would adversely affect the accuracy of the Bayesian 

flood frequency curves. 
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CHAPTER VIII 

DEVELOPMENT OF A FLOOD ESTIMATION 

METHODOLOGY FOR WATERSHEDS WITH 

SHORT RECORDS 

The flood estimation methodology developed in Chapter VI is now extended to 

the situation of watersheds with short records. The objective is to combine site­

specific information with the regionally-derived information in order to reduce 

informational uncertainty in the model parameters S and Tp. The reduction of 

uncertainty in S and Tp will be translated into a reduction of uncertainty in the 

estimated flood frequency curves and will effect a narrowing of the 90% confidence 

intervals of Figs. 71 through 85. The basic approach is to consider the joint proba­

bility density function of the model parameters S and Tp derived from regional 

information as the prior probability density function of Eqn. 18, which is a version of 

Bayes' Theorem. Such a prior probability density function is thus data based. To 

use this type of prior probability density function implies significant information on 

the parameters S and Tp prior to collecting site-specific data, and this information 

will augment the likelihood function of Eqn. 18 in a definite fashion. This is in 

contrast to the non-informative prior probability density functions used in Chapter 

IV, which were derived by assuming negligible prior information and contributed 

virtually nothing to the posterior probability density function of the model 

parameters. Site-specific data on peak flow and runoff volume are used to derive the 

likelihood function of S and Tp. Substituting this likelihood function into Eqn. 18 

allows for the determination of the posterior probability density function of the 
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model parameters. The remainder of the flood estimation methodology closely 

follows that presented in Chapter VI. 

Derivation of the Posterior Probability Density 

Function Of the Model Parameters 

Given the available data on peak flow and runoff volume, the likelihood func-

tion of~ where e = (S,Tp,m,. is given by the right-hand side of Eqn. 94. The prior 

probability density function of (S,Tp) is derived using regional information as 

described in Chapter VI, which results in S being taken as N(µS,17;) and Tp being 

2 taken as N(µT,17T). Since S and Tp are considered a priori independent, their prior 

joint probability density function may be written as 

(120) 

(121) 

The prior probability density function of :Eis given by Eqn. 65. If it may be 

assumed that (S,Tp) and :E are independent, then 

p'(~ oc p'(s,t )P'<m 
p 

(123) 

Bayes' Theorem may now be applied to yield the posterior probability density 

function of <m as 

p"(~ oc l(~p'(s,t )P'<m p 
(124) 
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The covariance matrix of the transformed residuals, ~ is of no interest; it is a 

nuisance parameter. It should therefore be integrated out of Eqn. 124 to yield the 

marginal probability density function of (S,Tp) as 

(125) 

where the integral is taken over m-dimensional real space. Box and Tiao (1973) state 

that if E is positive definite symmetric (as it must be in this context), then the 

solution to Eqn. 125 is given by 

(126) 

where~ is as defined in connection with Eqn. 94. The marginal posterior proba­

bility density functions of S and Tp may be found upon integrating Eqn. 126 with 

respect to each of the model parameters. 

Marginal Probability Density Functions 

Of the Model Parameters 

The integration of Eqn. 126 was performed for each of the study watersheds and 

then integrated with respect to each of the model parameters in order to derive the 

marginal posterior probability density functions of S and Tp. A sample of these are 

shown in Figs. 86 through 93. In order to illustrate the effect of site-specific infor­

mation on these functions, the corresponding prior probability density functions are 

also plotted in these figures. It may be seen that in every case, the site-specific 

information has the effect of decreasing the uncertainty in the model parameters. 

This is evidenced by the relative peakedness of the posterior probability density 

functions. It may also be seen that in some cases the site-specific information has 

caused the peak of the posterior probability density function to be translated with 
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respect to the peak of the prior probability density function. This illustrates that for 

a given watershed, the site-specific information tends to adjust the regression-based 

prediction of the mean of a parameter to its true (see Chapter II for a definition of 

"true") value. 

The posterior means, variances, and coefficients of skewness of the model 

parameters Sand Tp were computed by integrating the marginal posterior probability 

density functions of the two parameters. Their values appear in Table XVIII. A 

comparison of the variances of this table to those of Table XIV will demonstrate that 

the site-specific information has indeed reduced uncertainty in the model parameters. 

The coefficients of skewness presented in Table XVIII are generally small in magni­

tude. Because of these low coefficients of skewness and the shapes of the posterior 

probability density functions of Figs. 86 through 93, the posterior distributions of S 

and Tp may be considered normal. 

Summarized Flood Estimation Procedure For 

Watersheds with Short Records 

The flood estimation methodology for watersheds with short records is 

summarized as: 

I. Derive the prior probability density functions of S and Tp as described in 

Chapter VI. 

2. Solve Eqn. 126 to find the joint posterior probability density function of 

(S,Tp). 

3. Compute the marginal posterior probability density functions of S and Tp by 

integrating the result of Step 2 with respect to each of the parameters. 

4. Integrate the marginal posterior probability density functions of Sand Tp in 

order to derive the mean of S (ms), the variance of S (s~), the mean of Tp (mT)' 
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TABLE XVIII 

ST A TISTICS OF PARAMETERS S AND Tp, 3 

----------------------------------------------------------------------------------
ID ms SS ss mT ST gT 

(in) (in) (in3) (hr) (hr) (hr3) 

----------------------------------------------------------------------------------

111 6.84 0.67 0.90 1.51 0.24 -0.44 

131 7.06 0.48 0.43 4.69 0.35 0.42 

311 3.47 0.26 0.10 5.86 0.19 0.22 

411 7.61 0.71 0.15 6.40 0.87 0.41 

511 4.54 0.26 0.07 4.89 0.18 0.49 

513 4.01 0.27 0.41 2.78 0.14 0.14 

5142 3.56 0.31 0.30 0.46 0.11 0.46 

5143 5.55 0.38 0.07 0.64 0.10 0.29 

5145 2.65 0.27 0.40 0.67 0.08 -0.25 

515 2.64 0.25 0.09 3.57 0.29 -0.07 

611 4.66 0.34 0.55 0.97 0.08 0.86 

R5 3.46 0.26 0.38 0.34 0.03 0.22 

R6 2.89 0.26 0.15 0.17 0.04 -0.03 

R7 1.36 0.15 0.27 0.12 0.01 -0.09 

RS 1.69 0.14 0.28 0.12 0.02 0.46 

----------------------------------------------------------------------------------

ms = mean of S. 

sS = standard deviation of S. 

gs = coefficient of skewness of S. 

mT = mean of Tp. 

sT = standard deviation of Tp. 

gT = coefficient of skewness of Tp. 
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and the variance of Tp (sT). 

5. Compute the appropriate rainfall duration to be used as l.5mT" 
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6. Obtain the rainfall depth for the desired recurrence interval from Hershfield 

( 1963) using the rainfall duration obtained in Step 6. 

7. Generate multiple pairs of non-negative values for S and Tp taking S as 

8. Input each pair of values of Sand Tp to the SCS unit hydrograph model along 

with the watershed area, the rainfall depth determined in Step 6, and the 

temporal distribution of the rainfall (taken as SCS Type II), and compute the 

resulting peak flows. 

9. Compute the mean resultant peak flow and assign to it the same recurrence 

interval as the rainfall event. 

10. Compute the upper and lower bounds of the (l-Q)% confidence interval for 

resultant peak flow. 

11. Repeat Steps 5 through 10 for all desired recurrence intervals. 

12. Plotting mean resultant peak flow and the bounds of the (l-Q)% confidence 

interval vs. recurrence interval results in the estimated flood frequency curve, 

wi.th confidence intervals, for the watershed. 
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CHAPTER IX 

EVALUATION OF THE FLOOD ESTIMATION 

METHODOLOGY FOR WATERSHEDS 

WITH SHORT RECORDS 
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Flood frequency curves were estimated for each of the study watersheds using 

the procedure described in Chapter VIII and using the information in Table XVIII to 

specify posterior probability density functions of the model parameters. Because the 

data of Tables XII and XIII were used to construct the prior probability density 

functions resulting in the contents of Table XVIII, this is again a Jack knife ·approach 

to the evaluation. For some of the watersheds, the mean of Tp reported in XVI was 

appreciably different than the value reported in Table XIII. This changed the 

rainfall durations and depths used for these watersheds. Table XIX lists the rainfall 

durations and corresponding 2-year and 100-year rainfall depths for each study 

watershed; depths for intermediate recurrence intervals were determined as functions 

of the 2-year and 100-year depths as discussed previously. 

The Baysian flood frequency curves, with their associated 90% confidence 

intervals, appear in Figs. 94 through 108. Again, each of the six data points (and 

each corresponding 90% confidence interval) on the Bayesian curves was derived 

from 2000 values of S and Tp generated randomly from their respective probability 

density functions. Also shown in Figs. 94 through 108 are the the observed curves 

and the curves derived from the USGS and SCS (where applicable) procedures. Since 

the USGS flood estimation procedure contains no provisions for incorporating site­

specific information, the USGS curves remain unchanged with the collection of such 
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TABLE XIX 

RAINFALL DURA TIO NS AND DEPTHS 
OF THE CORRESPONDING 2 AND 
100-YEAR RAINFALL EVENTS, 2 

-----------------------------------------------------------
ID Duration R2 RlOO 

(hr) (in) (in) 

-----------------------------------------------------------

111 3.0 2.16 5.14 

131 12.0 2.98 6.98 

311 12.0 3.10 7.28 

411 12.0 2.98 6.98 

511 12.0 2.98 6.98 

513 6.0 2.57 6.01 

5142 1.0 1.80 4.10 

5143 1.0 1.80 4.10 

5145 1.0 1.80 4.10 

515 6.0 2.65 6.20 

611 2.0 2.08 4.85 

RS 0.5 1.42 3.20 

R6 0.5 1.42 3.20 

R7 0.5 1.42 3.20 

R8 0.5 1.42 3.20 

R 2 = 2-year rainfall depth. 

R 
100 

= 100-year rainfall depth. 
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data. The SCS (1972) describes a procedure for modifying estimates of CN as site­

specific data become available. The modified estimates of CN will lead to new 

estimates of Tp as computed by Eqn. 80. The changes in these two parameters will 

act in conjunction to effect changes in the flood frequency curves of Figs. 77 

through 80 and 82 through 85. The modified CN is taken as that which leads to 

equal numbers of overpredictions and underpredictions of runoff volume. Modified 

CN's were computed for the eight watersheds having area less than 2000 acres using 

each of these watershed's 50 study rainfall-runoff events. The values of S resulting 

from the modified CN's and the SCS estimates of Tp appear in Table XX. The same 

procedure as described in Chapter VII was used to determine the modified SCS flood 

frequency curves with the exception that the values of S and Tp shown in Table XX 

were used rather than the values shown in Tables II and XVI. 

Discussion of Flood Frequency Curves 

The Baysian flood frequency curves appear to be uniformly conservative rela­

tive to the observed curves for watersheds 111, 131, and 411. For watersheds 311, 

513, 5142, 5143, 5145, 515, 611, and RS, the Baysian curves closely approximate the 

observed curves up to recurrence intervals of roughly 10 years. For the remainder of 

the study watersheds (511, RS, R6, and R 7), the Baysian curves generally underes­

timate the T-year peak flow. 

The SCS flood frequency curves are again seen to greatly overestimate the 

T-year annual peak flow relative to the observed curves and the Baysian curves. As 

a group, they seem to be the worst from the standpoint of approximating the observed 

curves. This may be due to the input rainfall events. One will find upon examina­

tion of Tables XVIII and XIX that there is little difference between the SCS estimates 

of Sand Tp and the means of Sand Tp computed on the basis of regional/site-specific 

information. Therefore, the primary reason for differences between the SCS and 



TABLE XX 

MODIFIED SCS ESTIMATES 
OF SAND Tp 

ID s 
(in) 

Tp 
(hr) 

--------------------------------------------

5142 2.9 0.61 

5143 3.1 0.81 

5145 2.0 0.55 

515 2.5 1.41 

RS 2.5 0.27 

R6 2.2 0.25 

R7 1.3 0.13 

R8 1.7 0.15 

209 
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Baysian flood frequency curves must be that different rainfall events are used to 

generate the two sets of curves. It is almost certain that the SCS flood frequency 

curves would be less in error if the duration of the input rainfall events were allowed 

to vary with watershed area rather than being held at 24 hours. 

The USGS flood frequency curves are very similar to the Baysian curves for 

watersheds 511, 513, 5142, 611, R7, and R8 for recurrence intervals up to about 10 

years. For watersheds 111, 131, 411, 5143, 515, and 5145, the USGS curves are 

uniformly conservative relative to the Baysian curves. From this group, the USGS 

curve for watershed 5145 is the only one which appears to better approximate the 

observed curve than the Baysian curve; for the others, the USGS curves lead to 

consistently worse estimates of the T-year peak flow than the Baysian flood 

frequency curves. For watersheds 311, R5, and R6, the USGS estimates of the T-year 

peak flow are worse than those resulting from the Baysian curves for recurrence 

intervals of up to approximately 10-20 years, but better for the higher recurrence 

intervals. However, the significance of this is uncertain due to the short lengths of 

record used to construct the observed curves. 

Table XXI shows the Kolmogorov-Smirnov statistics for testing the hypotheses 

that the Baysian and USGS flood frequency curves are equal to the observed curves 

for each of the study watersheds. As discussed earlier, the critical value of the test 

statistic is such that all curves resulting from both procedures may be taken as equal 

to the respective observed curves. As in Chapter VII, however, one may obtain a 

very general idea of the relative performance of the two procedures by comparing the 

two test statistics. For nine of the study watersheds, the test statistic is lower for the 

Baysian curves than for the USGS curves; for five of the study watersheds, the 

reverse is true; for one study watershed, the test statistics are the same. By no means 

should these results be construed as meaning that the Baysian curves are in general 

significantly better than the USGS curves. All that may be inf erred from Table XXI 



TABLE XXI 

KOLMOGOROV-SMIRNOV TEST STATISTICS, 2 

-----------------------------------------------------------------------
ID Estimated USGS scs 
-----------------------------------------------------------------------

111 

131 

311 

411 

511 

513 

5142 

5143 

5145 

515 

611 

R5 

R6 

R7 

RS 

0.17 0.39 

0.36 0.45 

0.19 0.15 

0.29 0.45 

0.22 0.14 

0.16 0.10 

0.13 0.19 

0.04 0.39 

0.08 0.05 

0.28 0.35 

0.06 0.06 

0.19 0.29 

0.08 0.23 

0.09 0.23 

0.18 0.02 

* Not available. 
** Kolmogorov-Smirnov test statistic could 

not be derived. 

* 

* 

* 

* 

* 

* 

** 

** 

** 

** 

* 

** 

** 

** 

** 
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is that on the whole, the Baysian curves seem to better approximate the observed 

curves for recurrence intervals of roughly 2-5 years. 

Effects of Site-Specific Data on the Bayesian 

Flood Frequency Curves 

In Chapter VIII it was shown that site-specific information reduces uncertainty 

in the model parameters S and Tp. The effect of this reduction of informational 

uncertainty on the resultant Baysian flood frequency curves is illustrated in Figures 

109 through 123, which are plots of the 90% confidence intervals about the Baysian 

curves resulting from using regional and regional/site-specific information. In every 

case, the inclusion of site-specific information is seen to reduce uncertainty in the 

Baysian flood frequency curve. The reduction of the 90% confidence bounds is in 

many cases quite marked. For watershed 511, the 90% confidence interval on the 

100-year peak flow is approximately 9000 to 36000 cfs when derived from only 

regional information. Site-specific information has reduced this interval to about 

16000 to 18500 cfs. Recall now the scenario presented in Chapter VII regarding the 

construction of a structure on this watershed. It was stated that if the structure were 

designed for a peak flow of 36000 cfs, there would be a 10% risk that the structure 

would fail to accommodate the 100-year peak flow. Site-specific information in 

effect allows the structure to now be designed for a peak flow of only 18500 cfs with 

the same risk of failure. Thus the risk one assigns to a particular design is seen to be 

a function of informational uncertainty. 

In addition to reducing the confidence intervals of the Baysian flood frequency 

curves, the addition of site-specific information appears to generally improve the 

estimate of the flood frequency curve. Figures 124 through 138 compare the curves 

estimated from regional and regional/site-specific information to the observed 

curves. For nine of the study watersheds (131, 411, 511, 5142, 5143, 515, 611, R6, and 
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RS), the site-specific information has resulted in flood frequency curves which are 

noticeably better approximations of the observed curves (at least, up to recurrence 

intervals of about 10 years) than the curves derived using only regional information. 

For watersheds Ill, 311, 513, and R7, the regional and regional/site-specific curves 

are largely indistinguishable. The regional curve is somewhat a better fit to the 

observed curve on watershed R5, and both curves seem to be equally in error up to a 

recurrence interval of 10 years for watershed 5145. A comparison of of Tables XIX 

and XXI yields the result that in 10 cases, the Kolmogorov-Smirnov test statistic is 

lower for the regional/site-specific flood frequency curves than for the regional 

curves. In two cases, the test statistics are the same. In three cases, the test statistic 

is lower for the regional flood frequency curves. Again, one may not inf er from this 

type of comparison that the regional/site-specific curves are significantly better than 

the strictly regional curves, only that as a group they appear to perform better for 

recurrence intervals of about 2-5 years. 

Concluding Remarks 

Based upon the results of Table XXI, the Baysian curves are statistically indis­

tinguishable from the observed curves. However, because of the relative weakness 

of the goodness of fit tests, little shall be made of these results. All that shall be 

ventured is to say that the procedure for estimating flood frequency curves for 

watersheds with short records seems to produce reasonable results. On basis of Table 

XXI, the same may be said of the USGS procedure for determining flood frequency 

curves. However, a pairwise comparison of the test statistics of Table XXI seems to 

indicate that the USGS curves are somewhat inferior as a group to the Baysian curves. 

The SCS flood frequency curves are ostensibly worse than either the Baysian or USGS 

curves, but this judgement is not supported by any statistical tests. 

Uncertainty in the Baysian flood frequency curves has been shown to decrease 
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with the collection and incorporation of site-specific information. This result was 

anticipated in the previous chapter and is a natural result of gaining this relatively 

precise data. The effects of this reduction in informational uncertainty have been 

alluded to in a very rudimentary manner, but it seems certain that there are a multi­

tude of situations for which this approach may be employed to rigorously investigate 

relationships between risk and uncertainty. 

The flood estimation methodology of Chapter VIII has, in addition to those 

noted in Chapter VIII, several characteristics which make it preferable to the USGS 

and SCS procedures. In addition to its argueably greater accuracy, this method of 

flood estimation has an obvious advantage over the USGS procedure: it incorporates 

site-specific information to improve the Baysian flood frequency curves. For a 

watershed with a long length of record, this advantage is trivial; flood frequency 

inference by means of distribution theory will produce the best results. For water­

sheds with short records, however, the procedure presented in Chapter IX will make 

maximum use of all available information via a logical framework for integrating 

regional and site-specific data. 

The flood estimation methodology of Chapter VIII also has at least one 

advantage over the SCS procedures. Although SCS procedures make use of site­

specific information, the only site-specific information used is data on runoff 

volumes. These data provide a means of modifying the estimate of S, which in turn 

modifies the estimate of Tp. Intuitively, it seems incredulous that runoff volume 

data will provide information on Tp; it would seem more logical that Tp would be 

better inf erred from data on both runoff volumes and peak flows. The procedure of 

Chapter VIII makes use of both of these types of data to provide a more sound 

framework for inf erring S and Tp. Furthermore, the Chapter VIII procedure 

produces flood frequency curves which seem to be more accurate than the SCS curves. 

The regional/site-specific flood estimation procedure contains at this point the 
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same potential sources of error as described in Chapter VII; namely, error due to the 

model, error due to the assumption of equal recurrence intervals for rainfall and peak 

flow, error due to the values of the rainfall depths used, and error due to the 

regionally-derived prediction equations. The results of this chapter indicate that 

effects of the fourth source of error are masked by the incorporation of site-specific 

data; with the collection and incorporation of increasing site-specific data, the 

regionally-derived information on the parameters will become less important, and the 

probability density functions of the model parameters will converge to their limiting 

form. This has already been suggested by the translation of the posterior probability 

density functions of the model parameters with respect to their prior probability 

density functions. While it is not possible, at this point, to rigorously analyze the 

effects of the second and third sources of error, it does not appear that they exercise a 

systematically adverse influence on the Baysian flood frequency curves. This state­

ment is supported by the lack of clear patterns of overestimation or underestimation 

of the T-year peak annual flow up to recurrence intervals of about 10 years. It is 

therefore reasonable to suspect that the nature of the rainfall-runoff model is to be 

credited with much of the error which exists in the Baysian flood frequency curves. 

This is not a criticism, per se, of the SCS unit hydrograph model. It should be said in 

defense of the SCS that their model was formulated with very specific goals in mind 

and possesses several definite advantages over some of its competitors with regard to 

the fulfillment of these goals. However, because of the approximate nature of the 

model, it must be recognized that there will be a limit to the accuracy of its output. 

The limited accuracy of the model seems to be the largest contributor to the 

occasionally appreciable divergence between the Baysian and observed flood 

frequency curves. 
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CHAPTER X 

SUMMARY AND CONCLUSIONS 

Summary 

This dissertation has presented the development and evaluation of two flood 

estimation methodologies: one for ungaged watersheds and one for watersheds with 

short records. Both procedures use a variation of the SCS (I 972) unit hydrograph 

model. The end result of both procedures is an estimated flood frequency curve, 

ref erred to as the Bayesian flood frequency curve. An additional characteristic of 

the procedures is the ability to specify confidence intervals on the Baysian curves, 

thereby yielding an indication of the uncertainty in the curves. 

Probability density functions of the model parameters S and Tp were derived 

for 15 watersheds using methods of Bayesian statistical theory. All watersheds are 

contained within a relatively small region of the Washita River basin. The means 

and standard deviations of S and Tp computed from their respective probability 

density functions constitute, in effect, a pool of regional information which may be 

integrated into some framework for estimating floods for ungaged watersheds. Such 

a framework was developed, and the regional information was used in the form of 

prediction equations to estimate the mean and variance of S and Tp for ungaged 

watersheds. Based upon the probability density functions derived for the gaged 

watersheds, S and Tp may be taken as normally distributed. Thus for an ungaged 

watershed, the distributions of S and Tp may be taken as normal, and the regional 

information may be used to estimate the means and variances of these model 

parameters. Flood frequency curves are generated by taking a fixed rainfall event 
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having duration equal to the watershed's time of concentration as an input to the SCS 

unit hydrograph model. Successive values of S and Tp are generated from their 

respective probability density functions as further model input. The mean of the 

resulting peak flows is taken as having a recurrence interval equal to that of the 

rainfall event. Confidence intervals are derived from the empirical distribution of 

peak flow. 

The flood estimation procedure for ungaged watersheds was evaluated using a 

Jackknife approach. Flood frequency curves were estimated for each of the study 

watersheds as if it were ungaged; that is to say, the regional pool of information was 

adjusted to omit each study watershed as its flood frequency curve was estimated. 

On the basis of this type of evaluation, the procedure appeared to produce reasonable 

results. Kolmogorov-Smirnov goodness of fit tests indicate that one may not reject 

the hypothesis that the Baysian flood frequency curves are equal to the curves 

derived from site data. The Baysian curves were very similar to curves derived 

using USGS {Tortorelli and Bergman, 1985) procedures, and appeared obviously 

superior to curves derived using SCS (1972) procedures. The confidence bounds on 

the Baysian flood frequency curves indicate high uncertainty in the curves, due in 

great part to the imprecision of the regionally-derived data. 

Flood frequency curves are estimated for watersheds with short records by 

augmenting, via Bayes' Theorem, regionally-derived information with site specific 

information as it becomes available. In proper terminology, the regionally-derived 

information is used to specify the prior probability density function of S and Tp. 

Site-specific information is used to derive the likelihood function of the two 

parameters. The posterior probability density function, which represents an integra­

tion of both regionally-derived and site-specific information, is determined directly 

upon application of Bayes' Theorem. An examination of the posterior probability 

density functions of S and Tp suggests that they may again be considered normal. 
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The remainder of the flood estimation procedure is analogous to that for ungaged 

watersheds. 

A Jackknife approach was again used in the evaluation of the flood estimation 

procedure for watersheds with short records. The Baysian flood frequency curves 

again seemed reasonable, and Kolmogorov-Smirnov goodness of fit tests indicate that 

they are not significantly different from the observed curves. The addition of the 

site-specific data appeared to improve the accuracy of the Baysian curves relative to 

the USGS curves, which were unchanged with the addition of this data. The SCS 

flood frequency curves were modified as a result of the site-specific information, but 

their performance with regard to accuracy was virtually the same as without the 

site-specific information. 

The site-specific information apparently resulted in more accurate flood 

frequency curves than resulted from regionally-derived information alone. It also 

resulted in a dramatic decrease in the 90% confidence intervals on the Baysian curves, 

illustrating quantitatively the effects of relatively precise data on uncertainty in the 

flood frequency curves. 

Conclusions 

Based upon the results of this research, the following conclusions are drawn: 

1. The flood estimation methodologies for ungaged watersheds and for water­

sheds with short records are practical and yield reasonable estimates of flood 

frequency curves. 

2. The statistical foundation of these two methodologies gives rise to the logical 

incorporation of all available data, both regionally-derived and site-specific, 

and provides an excellent means of conveying the uncertainty associated with 

the Baysian flood frequency curves. 
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3. Site-specific information reduces uncertainty in the Baysian flood frequency 

curves. 

Recommendations for Further Research 

The following topics are suggested as deserving of further investigation: 

1. The statistical concepts elucidated in this dissertation should be applied to 

other rainfall-runoff models with a view toward improving Baysian flood 

frequency curve~ 

2. The worth of site-specific information should be investigated from a statis­

tical and/or economic perspective. 

3. The worth of regionally-derived information should be investigated from a 

statistical and/or economic perspective. 

4. Improvements on the prediction equations should be attempted in order to 

improve the precision of regionally-derived information. 

5. The relationship between informational uncertainty and risk should be inves­

tigated in the context of hydrologic projects. 
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Summarized Study Events for Watershed 111 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
I 083162 1.50 3.25 297.38 0.03325 
2 091562 2.24 4.75 775.80 0.12280 
3 092062 0.42 0.75 33.70 0.00492 
4 042663 1.69 7.00 136.20 0.03553 
5 053163 0.93 1.00 112.52 0.01517 
6 060363 0.55 1.75 8.43 0.00763 
7 071363 0.80 6.75 27.69 0.00569 
8 042564 0.39 0.50 13.80 0.00289 
9 050964 1.61 3.00 697.10 0.14261 

10 051064 0.98 1.00 759.70 0.14215 
11 052964 1.35 11.50 69.50 0.01813 
12 061164 1.33 2.50 276.10 0.05014 
13 081864 1.24 3.75 49.60 0.00664 
14 091564 0.69 2.75 12.80 0.00225 
15 092064 2.47 6.00 356.00 0.05178 
16 092264 0.73 7.50 18.20 0.00630 
17 092664 1.28 8.00 256.20 0.04298 
18 040565 1.18 1.75 343.60 0.06654 
19 050965 0.98 1.75 150.70 0.02363 
20 052865 0.69 8.25 8.90 0.00556 
21 060165 1.20 3.25 102.20 0.02429 
22 061365 1.36 8.25 33.00 0.01275 
23 062565 0.63 3.25 15.60 0.00592 
24 082865 1.17 3.00 32.10 0.00898 
25 091965 1.51 5.50 43.80 0.00789 
26 042366 0.75 5.75 9.30 0.00552 
27 052166 1.35 4.00 53.00 0.01539 
28 060866 0.66 3.75 6.10 0.00381 
29 073066 1.04 1.75 45.40 0.00823 
30 081166 0.64 2.00 5.70 0.00111 
31 081966 0.97 0.75 19.30 0.00564 
32 082366 0.70 7.00 5.30 0.00330 
33 091466 0.61 1.00 55.20 0.01351 
34 092766 1.18 5.25 79.30 0.02073 
35 040967 1.29 5.50 134.50 0.02375 
36 041267 1.70 10.00 636.90 0.10245 
37 050567 0.87 3.75 33.00 0.00869 
38 052067 0.70 8.25 9.40 0.00470 
39 062667 0.60 6.50 4.80 0.00175 
40 070367 l.17 4.25 24.60 0.00768 
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Summarized Study Events for Watershed 111 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 072867 0.70 3.25 6.20 0.00143 
42 091467 0.53 2.75 2.10 0.00088 
43 092667 0.95 2.50 4.60 0.00207 
44 050968 1.33 13.00 107.50 0.02280 
45 051568 0.90 0.75 157.10 0.03241 
46 053168 1.01 3.50 84.80 0.02323 
47 061568 1.48 1.00 248.00 0.04751 
48 071468 1.42 5.75 87.80 0.01571 
49 090368 1.79 2.00 50.20 0.01231 
50 092368 0.60 1.50 17.90 0.00366 
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Summarized Study Events for Watershed 131 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
1 091562 1.75 3.75 96.80 0.02931 
2 042663 1.99 6.50 180.00 0.05548 
3 053163 0.90 1.00 35.15 0.00752 
4 062363 1.30 2.25 31.53 0.00886 
5 051064 1.15 1.00 420.90 0.08523 
6 092064 1.69 5.00 41.30 0.00446 
7 040565 0.61 0.50 35.00 0.00619 
8 041465 0.39 0.75 25.00 0.00671 
9 050965 1.95 3.25 457.60 0.11265 

10 052665 0.58 5.75 7.70 0.00563 
11 052865 0.95 2.50 6.30 0.00354 
12 060265 1.31 2.25 29.70 0.00936 
13 082865 2.03 3.75 73.30 0.01275 
14 042266 1.38 8.50 13.90 0.00749 
15 052166 1.46 3.75 60.00 0.01200 
16 041267 1.77 9.75 336.90 0.06971 
17 092667 1.02 2.50 4.80 0.00081 
18 050968 2.15 2.50 731.80 0.13886 
19 071468 1.03 6.00 24.50 0.00873 
20 041669 1.62 1.75 552.20 0.06802 
21 042669 0.90 1.00 318.10 0.04957 
22 050669 1.59 6.75 471.20 0.18050 
23 051470 1.70 5.50 76.90 0.01908 
24 092270 3.43 10.00 117.10 0.01247 
25 053171 2.41 4.00 591.47 0.15693 
26 080871 1.50 6.50 21.35 0.00371 
27 042772 1.59 6.50 119.71 0.04269 
28 052972 1.72 5.00 51.61 0.01862 
29 060273 2.30 8.25 1052.47 0.36132 
30 061873 0.98 1.00 65.69 0.01616 
31 092673 2.13 7.00 75.40 0.03720 
32 041174 1.26 3.25 38.87 0.02215 
33 050174 1.16 5.50 162.97 0.07427 
34 061774 0.69 2.50 4.08 0.00314 
35 070474 0.86 1.00 8.09 0.00257 
36 082774 1.90 6.25 40.92 0.00747 
37 050275 1.34 6.25 241.10 0.07038 
38 052275 2.35 7.25 220.81 0.10867 
39 062475 1.66 2.75 627.30 0.18667 
40 072475 3.63 3.75 186.61 0.08180 
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Summarized Study Events for Watershed 131 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total . Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 072975 1.10 1.25 445.32 0.11706 
42 080275 0.49 0.75 21.48 0.01093 
43 041576 0.88 4.50 20.33 0.01041 
44 041776 0.64 5.50 41.58 0.01666 
45 091376 1.93 8.00 13.20 0.00371 
46 042077 3.29 7.00 769.61 0.17621 
47 053077 1.94 1.75 1196.85 0.38033 
48 081077 0.38 0.75 4.86 0.00081 
49 082977 0.83 2.50 36.11 0.00569 
50 090577 0.73 7.25 3.22 0.00093 
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Summarized Study Events for Watershed 311 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
1 092067 0.80 2.50 8.00 0.00264 
2 050567 1.01 4.25 92.10 0.04829 
3 062567 1.64 4.50 137.70 0.05706 
4 092667 1.01 2.75 42.20 0.02791 
5 041868 1.63 2.75 347.60 0.19205 
6 070168 0.86 4.75 20.60 0.00499 
7 071868 0.67 1.00 5.50 0.00281 
8 041669 1.65 1.75 441.50 0.25494 
9 042669 1.03 1.00 229.90 0.15667 

10 050469 1.65 3.50 1117.40 0.57864 
11 050669 1.85 6.75 1136.00 0.82057 
12 061369 2.30 10.75 244.10 0.14947 
13 062569 1.11 2.25 94.60 0.05371 
14 092269 0.62 2.75 8.10 0.00836 
15 091669 1.62 3.00 16.80 0.01672 
16 042970 3.52 8.25 908.60 0.61991 
17 052970 3.09 5.50 1369.90 0.75169 
18 061170 1.65 1.25 943.60 0.36930 
19 052671 1.95 4.75 195.69 0.12839 
20 053171 1.43 3.25 528.31 0.24135 
21 060371 2.16 5.50 859.17 0.59320 
22 060771 1.29 2.25 569.63 0.30309 
23 060971 0.50 3.25 34.00 0.01220 
24 061071 0.74 3.25 144.17 0.07824 
25 072871 0.92 3.50 1.60 0.00084 
26 091871 1.05 7.00 2.51 0.00108 
27 092471 1.49 8.25 88.52 0.07038 
28 060273 2.06 14.00 903.64 0.60450 
29 080973 1.02 1.25 13.00 0.00792 
30 091773 0.91 2.00 120.95 0.06400 
31 042074 0.62 1.00 13.04 0.01768 
32 050174 1.49 7.75 667.07 0.32814 
33 053174 2.61 3.75 1145.80 0.54914 
34 081074 0.82 2.00 175.36 0.09738 
35 040775 0.55 3.25 149.17 0.10128 
36 050275 0.93 2.00 31.94 0.04114 
37 060675 0.56 1.00 19.17 0.00719 
38 062275 0.97 8.25 23.58 0.01934 
39 062375 0.66 2.75 56.49 0.03676 
40 070375 0.50 3.50 14.53 0.00749 
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Summarized Study Events for Watershed 311 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 070775 0.70 1.00 420.94 0.17636 
42 080175 0.64 1.75 109.61 0.04961 
43 041976 0.69 1.00 112.18 0.05604 
44 042876 0.85 4.50 14.17 0.02306 
45 071576 1.19 2.25 6.00 0.01059 
46 091476 1.93 10.25 134.85 0.03544 
47 052077 1.89 9.00 898.06 0.52975 
48 052677 1.74 10.00 326.60 0.22158 
49 062877 0.93 2.25 35.20 0.01714 
50 070177 1.69 3.00 371.02 0.18670 
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Summarized Study Events for Watershed 411 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in ) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
1 062363 3.19 2.50 416.30 0.11124 
2 050964 0.94 3.25 354.01 0.04619 
3 061564 0.23 0.75 70.83 0.00855 
4 081864 0.73 3.25 49.31 0.00478 
5 092664 0.88 6.75 155.62 0.03935 
6 050965 0.98 2.50 17.70 0.00264 
7 051065 0.21 1.50 33.50 0.00703 
8 051365 0.57 2.00 13.20 0.00194 
9 052665 0.77 4.50 12.60 \0.00211 

10 062465 0.62 2.50 27.80 0.00275 
11 082765 0.28 0.75 17.90 0.00077 
12 082865 2.42 3.75 2008.40 0.30883 
13 091965 0.74 4.00 18.20 0.00230 
14 092165 0.71 1.00 96.10 0.01542 
15 042266 1.22 6.50 6.50 0.00112 
16 061566 1.21 1.00 23.20 0.00176 
17 073066 0.49 0.75 7.70 0.00023 
18 092766 0.90 3.00 5.00 0.00038 
19 041267 1.99 9.25 869.10 0.20783 
20 042067 0.75 1.75 258.10 0.03703 
21 050968 0.72 2.00 2.80 0.00021 
22 051568 0.50 1.00 6.60 0.00208 
23 052568 0.24 0.50 2.50 0.00111 
24 061568 0.81 1.50 69.20 0.00899 
25 071468 0.57 1.25 3.30 0.00012 
26 092468 0.60 2.25 17.40 0.00178 
27 050469 1.77 5.75 256.00 0.19365 
28 061369 0.40 1.50 8.30 0.00022 
29 080269 0.96 3.25 21.00 0.00079 
30 091669 1.40 3.00 39.20 0.00401 
31 051470 1.34 4.50 48.60 0.00536 
32 052970 1.31 3.75 46.40 0.00883 
33 091370 0.44 2.75 18.80 0.00136 
34 092270 3.23 12.75 47.10 0.01615 
35 050971 0.62 2.75 14.52 0.00111 
36 053071 0.40 2.75 3.55 0.00027 
37 053171 2.24 2.75 167.00 0.00943 
38 072371 0.32 6.25 7.55 0.00046 
39 080871 1.13 3.75 73.57 0.00652 
40 100271 2.72 7.75 1208.83 0.57079 
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Summarized Study Events for Watershed 411 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in ) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 041572 1.19 3.00 22.31 0.00137 
42 042772 1.41 6.25 54.77 0.02175 
43 042972 1.01 2.75 50.72 0.01935 
44 052273 2.03 3.00 57.83 0.00668 
45 060273 1.89 10.50 792.35 0.45350 
46 061673 0.30 0.50 15.67 0.00045 
47 061873 0.71 1.25 13.67 0.00040 
48 091273 0.54 0.75 41.20 0.00325 
49 042974 1.32 3.75 740.08 0.16573 
50 081074 3.30 12.00 42.01 0.01089 
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Summarized Study Events for Watershed 511 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
I 042663 2.12 8.25 1397.50 0.39436 
2 062363 2.53 2.25 1183.80 0.17295 
3 051064 1.32 1.75 568.80 0.09251 
4 061564 0.44 1.50 42.40 0.00649 
5 080764 1.39 7.00 31.80 0.00664 
6 081564 2.22 7.50 265.80 0.07429 
7 091564 0.59 3.25 8.90 0.00352 
8 092064 0.76 2.75 115.70 0.01788 
9 092664 0.51 7.75 61.00 0.01535 

10 041465 1.02 3.00 969.40 0.09763 
11 060165 0.60 2.50 21.90 0.00580 
12 070965 0.72 1.00 89.20 0.01439 
13 080765 2.85 1.00 3118.40 0.56559 
14 082865 1.45 4.75 816.20 0.10458 
15 091965 0.48 3.50 9.40 0.00087 
16 092165 0.58 0.75 132.20 0.02475 
17 081166 0.34 3.50 8.60 0.00131 
18 041267 2.61 8.75 3291.10 0.66910 
19 042067 0.76 2.75 1584.10 0.16721 
20 050567 1.14 3.00 405.30 0.07865 
21 052067 0.85 8.75 47.10 0.00854 
22 062567 1.54 5.50 282.10 0.05219 
23 090367 1.00 3.50 28.00 0.00690 
24 090567 0.87 5.00 37.30 0.00850 
25 092067 0.82 3.25 13.10 0.00760 
26 092667 1.08 3.25 148.00 0.02156 
27 041868 0.63 6.25 223.20 0.03911 
28 051568 0.34 1.00 59.50 0.01079 
29 052568 1.17 2.25 223.80 0.04518 
30 070168 1.75 4.75 73.80 0.02745 
31 071468 0.75 6.75 62.80 0.01876 
32 081568 1.56 4.75 172.50 0.02819 
33 090468 1.91 10.25 129.40 0.04069 
34 092368 1.26 4.50 282.00 0.04602 
35 041769 0.69 1.50 88.30 0.03152 
36 042669 0.87 1.00 459.40 0.08166 
37 050669 1.32 6.25 1451.10 0.21328 
38 061469 2.88 3.25 2758.50 0.47016 
39 072069 1.28 2.50 179.20 0.03444 
40 082269 1.39 5.75 804.10 0.12922 
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Summarized Study Events for Watershed 511 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

---------------------------------------------------------------------------------.----
41 090369 0.28 0.75 38.40 0.00664 
42 091669 1.87 4.00 478.50 0.08211 
43 043070 2.56 7.50 1874.40 0.38400 
44 051470 1.89 6.25 777.20 0.12971 
45 052970 2.55 4.00 2839.20 0.49805 
46 072870 0.71 1.50 9.60 0.00235 
47 052671 1.40 5.75 10.33 0.00561 
48 060771 1.79 2.25 2002.38 0.36218 
49 072871 0.94 3.25 8.97 0.00161 
50 081471 1.02 6.00 46.53 0.01271 
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Summarized Study Events for Watershed 513 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
I 041465 0.58 2.25 121.10 0.03400 
2 051365 0.72 1.75 22.80 0.01004 
3 052665 0.69 4.25 5.40 0.00644 
4 052865 1.01 8.75 25.90 0.02104 
5 080765 3.00 1.25 2100.20 0.59117 
6 082865 1.79 4.75 772.70 0.13882 
7 091965 0.83 4.25 59.00 0.02065 
8 042266 1.17 6.50 12.40 0.01261 
9 042566 1.33 10.50 205.50 0.11594 

10 051166 0.40 0.50 11.10 0.00656 
11 072466 1.21 2.50 295.00 0.07355 
12 082166 1.52 6.00 927.40 0.19397 
13 083166 0.89 2.50 280.00 0.09608 
14 091366 2.05 3.25 1143.20 0.50339 
15 040967 1.05 5.75 126.30 0.03945 
16 041267 2.60 8.50 1879.10 0.64283 
17 042067 1.44 1.00 1861.20 0.53425 
18 050567 1.07 4.50 183.70 0.06925 
19 090567 0.68 5.00 28.40 0.01786 
20 092067 0.91 2.50 23.30 0.00998 
21 041968 0.02 0.25 4.70 0.00723 
22 050968 0.36 3.00 5.10 0.00716 
23 052568 1.23 5.25 166.20 0.06659 
24 060168 0.32 4.50 62.70 0.03038 
25 070168 2.04 5.00 156.10 0.06553 
26 071368 0.80 1.50 52.80 0.01912 
27 090468 2.35 10.00 257.20 0.07920 
28 092168 0.51 1.75 80.00 0.02713 
29 092368 0.82 2.75 40.30 0.01497 
30 042669 0.65 0.75 48.70 0.02233 
31 050369 1.57 6.25 403.20 0.14835 
32 050669 1.72 6.00 1391.70 0.51219 
33 061469 3.27 3.50 1713.40 0.62644 
34 072069 3.04 2.50 846.30 0.32614 
35 072569 0.41 1.25 7.90 0.00644 
36 082269 0.92 5.50 10.90 0.00866 
37 043070 1.18 4.25 106.30 0.05698 
38 052670 1.91 3.25 623.50 0.20781 
39 060370 0.41 3.00 4.10 0.00097 
40 081970 2.24 7.00 91.90 0.02816 
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Summarized Study Events for Watershed 513 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 052671 1.11 4.25 9.14 0.00972 
42 052371 0.99 1.50 102.19 0.01521 
43 053171 1.04 3.00 86.31 0.03446 
44 060271 1.74 5.75 550.34 0.20407 
45 061271 0.92 2.00 211.22 0.11232 
46 041572 1.26 3.00 57.35 0.03645 
47 042772 1.23 4.75 104.26 0.05909 
48 051272 1.98 6.00 278.78 0.17426 
49 052972 0.66 6.00 3.93 0.00608 
50 070372 0.26 2.75 8.91 0.00335 
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Summarized Study Events for Watershed 5142 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
1 040967 1.08 4.33 25.19 0.56290 
2 041267 2.45 5.83 180.35 0.46659 
3 042067 0.63 0.67 12.23 0.02361 
4 050567 1.09 3.50 36.93 0.05298 
5 052067 1.29 4.17 18.31 0.03631 
6 053067 0.50 2.17 1.48 0.00654 
7 062567 0.86 4.67 0.36 0.00306 
8 062667 0.79 4.33 3.72 0.01408 
9 070567 0.24 0.67 0.13 0.00076 

10 080467 0.58 5.17 0.04 0.00349 
11 090267 0.62 5.17 0.24 0.00217 
12 090367 1.19 3.00 17.75 0.03010 
13 090567 0.82 3.17 6.23 0.02468 
14 092667 1.05 2.00 12.77 0.02649 
15 041968 0.36 0.50 2.06 0.00567 
16 050968 0.39 2.00 0.16 0.00138 
17 052568 1.12 5.00 6.85 0.03762 
18 053168 0.50 4.50 1.56 0.00569 
19 060168 0.55 3.33 7.15 0.24320 
20 060768 0.55 2.83 8.57 0.22440 
21 061668 0.19 0.67 0.09 0.00070 
22 070168 1.75 5.00 12.29 0.03070 
23 081568 0.73 4.50 0.23 0.00220 
24 090368 1.06 1.33 3.97 0.01121 
25 090468 1.26 3.50 72.82 0.09913 
26 042669 0.44 0.50 0.11 0.00083 
27 050369 1.45 2.00 29.72 0.07183 
28 050569 0.54 4.83 1.31 0.01224 
29 050669 1.77 6.00 148.34 0.33282 
30 051269 0.67 5.33 4.50 0.01388 
31 061369 2.81 3.17 134.11 0.34942 
32 072069 2.75 2.33 74.28 0.16241 
33 092269 0.62 2.00 1.80 0.00782 
34 042970 0.36 0.33 0.11 0.00102 
35 043070 0.89 4.33 3.84 0.01112 
36 052970 1.61 2.33 27.55 0.07502 
37 081970 1.85 7.00 3.76 0.00877 
38 091470 0.76 0.83 2.93 0.00594 
39 091770 0.46 4.67 0.14 0.00115 
40 092270 1.24 2.33 49.93 0.08459 
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Summarized Study Events for Watershed 5142 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 052371 1.01 1.17 4.95 0.00954 
42 053171 0.75 2.00 9.11 0.01899 
43 061271 0.91 1.67 22.26 0.05882 
44 070171 0.45 0.33 2.15 0.00587 
45 081371 0.54 0.83 0.83 0.00244 
46 081471 1.20 5.67 7.17 0.02973 
47 043072 0.32 1.83 0.31 0.00177 
48 052972 0.65 5.17 0.17 0.00158 
49 070272 0.77 1.17 0.37 0.00167 
50 090872 0.68 1.17 1.52 0.00476 
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Summarized Study Events for Watershed 5143 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
I 040967 1.05 5.33 5.89 0.01333 
2 041067 0.90 2.17 12.67 0.03554 
3 041267 2.44 8.00 143.07 0.35755 
4 041367 0.50 2.00 4.06 0.02579 
5 042067 0.64 1.17 7.13 0.02244 
6 050567 1.09 4.67 11.17 0.02622 
7 052067 1.23 4.17 3.29 0.01637 
8 062667 0.70 4.00 0.97 0.00482 
9 090567 0.88 4.67 0.71 0.00250 

10 092667 1.09 2.83 2.05 0.00584 
11 041968 0.25 0.33 2.08 0.00613 
12 050668 0.60 1.67 0.69 0.00636 
13 051368 0.18 1.00 0.20 0.00144 
14 052568 0.54 1.33 1.31 0.00809 
15 053168 0.45 4.33 0.34 0.00702 
16 060768 0.56 2.00 3.57 0.01478 
17 061668 0.45 1.00 0.32 0.00242 
18 070168 1.95 4.83 12.21 0.03662 
19 071368 0.79 1.33 2.03 0.01328 
20 071868 0.81 0.83 1.26 0.00787 
21 090468 1.27 3.50 26.87 0.04146 
22 041769 0.40 0.83 0.27 0.00270 
23 042669 0.38 0.50 0.58 0.00386 
24 050369 2.05 6.50 13.27 0.11237 
25 050669 1.77 6.17 119.43 0.52889 
26 051669 0.34 3.00 0.44 0.00513 
27 060169 0.51 0.50 1.65 0.00652 
28 072069 2.36 1.67 22.04 0.06568 
29 072569 0.35 0.50 0.30 0.00379 
30 091669 I.IO 4.00 1.39 0.00923 
31 092269 0.66 2.17 2.00 0.00941 
32 043070 0.93 4.50 2.12 0.01205 
33 051470 2.15 4.83 25.04 0.06097 
34 052970 1.58 2.17 8.22 0.03402 
35 092270 1.35 1.67 10.26 0.05625 
36 052371 I.IO 1.17 1.97 0.00727 
37 053171 0.89 2.83 1.02 0.00608 
38 060271 0.85 1.00 5.60 0.02020 
39 060371 0.71 1.00 14.45 0.03454 
40 060771 0.89 2.00 2.24 0.00799 
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Summarized Study Events for Watershed 5143 (Continued 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 061271 0.66 1.50 3.19 0.01469 
42 081471 0.60 3.17 0.97 0.00632 
43 091871 2.65 7.17 26.80 0.06468 
44 092471 1.71 3.33 26.80 0.07662 
45 041572 1.10 3.50 1.42 0.01309 
46 042072 0.50 1.50 0.46 0.00786 
47 042672 1.15 2.67 10.88 0.03719 
48 043072 0.29 2.33 0.16 0.00171 
49 051272 1.78 6.00 2.96 0.05795 
50 070272 0.79 1.33 0.34 0.00197 
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Summarized Study Events for Watershed S14S 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
1 041067 0.91 2.1S 31.32 0.232S9 
2 041267 3.01 8.2S 193.18 1.30422 
3 041367 0.S4 0.2S 7.07 0.12232 
4 OSOS61 1.21 4.SO 44.9S 0.15714 
s OS3067 0.54 4.00 4.07 0.03372 
6 062667 0.67 4.17 S.31 0.02688 
7 072167 0.43 o.so 3.SS 0.00967 
8 090467 0.96 s.so 8.63 0.06963 
9 092667 1.17 3.00 34.67 0.0992S 

10 041868 0.2S 0.67 0.47 O.OOS8S 
11 042268 o.ss 2.SO 3.12 0.02399 
12 OS0968 O.S1 2.SO 2.92 0.02297 
13 051368 0.37 4.33 2.63 0.03068 
14 OS2S68 1.23 5.17 13.68 0.12469 
lS OS3168 0.40 4.00 3.77 0.016Sl 
16 060168 O.S1 3.17 8.22 0.04S6S 
17 060S68 O.Sl 2.00 1.37 0.0141S 
18 060768 O.S1 2.SO 17.46 0.07034 
19 070168 1.63 S.33 11.09 0.06917 
20 071368 0.73 2.33 2.19 0.00787 
21 071868 0.93 1.33 18.08 O.OSS43 
22 081S68 0.9S 4.67 0.8S O.OOS52 
23 090368 1.19 3.67 2.63 0.0139S 
24 090468 1.36 3.SO 76.39 0.173SO 
2S 090268 0.67 2.33 0.31 0.00121 
26 092368 0.70 2.17 0.3S 0.00146 
27 042669 o.so 0.83 I.SS 0.01136 
28 OS0469 O.S1 3.33 2.17 0.0291S 
29 OS0669 2.76 6.33 111.74 1.S3723 
30 OS1269 0.49 2.83 2.46 0.019S3 
31 OS1669 0.27 2.67 0.lS 0.00761 
32 060169 o.ss o.so 10.01 O.OS024 
33 072069 3.0S 2.17 87.86 0.3917S 
34 072S69 0.3S 0.67 O.lS 0.00048 
3S 082S69 0.90 4.17 0.48 0.00283 
36 092269 0.64 2.17 9.63 O.OS387 
37 OS1470 1.27 4.83 13.84 0.0S949 
38 OS2970 1.99 2.83 S6.80 0.33864 
39 081870 2.33 1.SO 23.46 0.08063 
40 091470 0.40 1.17 4.08 0.01213 
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Summarized Study Events for Watershed 5145 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 052671 1.09 4.33 1.17 0.01422 
42 053171 0.90 2.67 24.54 0.11127 
43 060271 1.22 1.33 70.93 0.33942 
44 072371 0.28 2.67 24.18 0.04313 
45 080871 0.65 3.17 4.37 0.00936 
46 081371 0.33 1.67 1.81 0.00339 
47 081471 1.25 5.33 9.77 0.05645 
48 091871 2.52 7.00 65.58 0.44303 
49 042772 1.55 4.50 60.48 0.24989 
50 051272 1.88 6.33 18.00 0.38589 
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Summarized Study Events for Watershed 515 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
1 041573 0.82 7.75 17.00 0.12760 
2 041973 0.56 1.50 18.16 0.24497 
3 050673 0.72 1.00 11.68 0.02156 
4 052273 0.97 3.75 6.19 0.00905 
5 052473 0.99 1.75 105.08 0.34291 
6 053173 2.27 7.75 96.84 0.48686 
7 060273 1.81 9.50 202.51 0.74909 
8 060473 1.38 2.25 129.87 0.57465 
9 061973 0.39 4.50 5.35 0.00656 

10 080973 2.37 1.25 135.77 0.15966 
11 091273 0.91 1.00 16.73 0.01222 
12 092673 1.68 8.00 9.23 0.02196 
13 041174 1.30 3.50 16.67 0.05806 
14 042974 0.93 3.75 64.26 0.09202 
15 050174 1.41 7.50 83.69 0.39590 
16 053174 1.20 3.50 23.87 0.04466 
17 060674 0.66 0.75 8.17 0.01382 
18 072974 1.76 4.75 11.67 0.01208 
19 080974 1.48 2.50 62.78 0.05756 
20 081074 1.85 5.75 89.67 0.31971 
21 032775 0.55 2.50 8.90 0.05538 
22 040775 1.03 3.75 63.16 0.28653 
23 050275 0.86 2.75 16.20 0.03592 
24 051375 1.41 4.00 48.30 0.19009 
25 052275 2.49 11.25 89.00 0.78729 
26 052875 1.27 11.00 32.98 0.36846 
27 060675 0.56 1.25 3.06 0.01069 
28 061075 0.77 2.75 42.72 0.23757 
29 061775 0.33 0.75 3.39 0.00381 
30 062275 0.96 4.25 24.97 0.07903 
31 062375 0.61 2.50 21.86 0.14039 
32 070775 0.71 2.25 10.66 0.01675 
33 071075 0.49 2.50 9:80 0.02312 
34 072475 1.82 4.75 20.86 0.04818 
35 072675 0.23 1.00 9.02 0.03323 
36 080275 0.37 3.50 2.51 0.02548 
37 090575 0.80 1.00 1.92 0.00166 
38 032976 0.49 0.75 1.37 0.00248 
39 041976 0.76 0.75 54.90 0.09011 
40 042876 0.81 4.75 1.18 0.00810 
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Summarized Study Events for Watershed 515 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 062476 1.25 4.50 12.23 0.01480 
42 080576 0.87 2.50 1.51 0.00172 
43 091376 2.01 8.25 0.85 0.00238 
44 042077 2.00 5.75 5.18 0.00880 
45 051977 2.44 6.25 93.79 0.13453 
46 052077 1.97 5.50 105.14 0.41232 
47 052777 0.23 1.00 5.73 0.02301 
48 053177 0.80 3.00 9.45 0.03520 
49 062877 0.86 1.00 4.84 0.00436 
50 070177 1.00 3.00 14.42 0.03194 
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Summarized Study Events for Watershed 611 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
I 042762 0.75 4.25 54.63 0.01891 
2 052662 1.22 1.00 52.05 0.02479 
3 060162 1.15 4.00 23.11 0.00867 
4 060162 1.15 5.50 232.91 0.17171 
5 060762 0.51 3.50 46.46 0.04807 
6 060962 1.39 4.25 295.11 0.18199 
7 072562 1.82 4.75 266.70 . 0.08272 
8 091562 1.16 4.25 14.80 0.01285 
9 092062 2.20 10.50 165.93 0.08552 

10 102762 0.89 0.50 40.81 0.01626 
11 042663 2.32 7.83 668.97 0.21462 
12 062363 2.52 2.00 584.55 0.19527 
13 071363 0.83 1.67 21.05 0.01201 
14 111963 2.14 8.33 47.09 0.02038 
15 112263 0.55 4.17 1.13 0.00145 
16 050664 1.85 2.83 414.20 0.12858 
17 050764 0.37 2.50 7.70 0.00607 
18 050964 2.21 1.67 2406.80 0.67669 
19 051064 0.95 0.50 805.60 0.32473 
20 052964 0.62 2.83 4.80 0.00448 
21 053064 0.67 1.50 205.10 0.09496 
22 060464 0.23 0.33 5.80 0.00419 
23 080764 1.53 6.75 58.64 0.02673 
24 081564 1.03 4.25 4.65 0.00358 
25 090464 0.69 1.00 15.79 0.00627 
26 091664 1.29 2.50 245.45 0.07624 
27 092064 0.25 4.00 0.70 0.00044 
28 092764 0.97 5.75 15.00 0.01445 
29 110364 1.46 7.25 63.13 0.03044 
30 111664 1.81 3.25 605.68 0.31216 
31 111864 0.37 1.75 63.42 0.03196 
32 041465 0.57 8.75 5.60 0.00385 
33 051365 0.69 3.25 1.86 0.00270 
34 052665 1.55 4.75 134.91 0.05069 
35 060265 0.88 2.00 78.84 0.03087 
36 062165 0.62 0.75 2.93 0.00256 
37 080665 1.78 4.00 97.97 0.03709 
38 080765 0.45 0.75 17.85 0.00591 
39 081065 0.45 0.75 43.32 0.01758 
40 082265 0.38 1.00 5.90 0.00395 
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Summarized Study Events for Watershed 611 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 082865 0.98 4.75 9.82 0.00947 
42 083165 0.54 1.25 4.46 0.00355 
43 090365 1.16 4.25 104.06 0.04357 
44 091965 0.51 4.00 4.65 0.00543 
45 042266 1.88 12.00 20.11 0.01868 
46 042566 1.68 10.00 198.66 0.17625 
47 061566 1.81 1.25 357.26 0.11797 
48 072366 1.35 3.25 1.05 0.00091 
49 072466 1.16 1.50 204.22 0.08136. 
50 081166 1.15 3.50 3.42 0.00255 
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Summarized Study Events for Watershed R5 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
I 040967 0.89 2.83 0.03 0.00693 
2 04I067 1.I5 2.50 3.96 O.I 8042 
3 04I267 2.50 8.00 2I.02 0.80895 
4 050669 1.67 5.83 I6.87 0.56790 
5 043070 0.98 4.33 0.02 O.OOI69 
6 05I470 1.69 4.50 0.38 O.OI839 
7 052970 1.42 2.00 0.35 O.OI898 
8 092270 1.39 1.67 2.I7 0.06204 
9 092270 0.39 0.50 0.52 0.02506 

IO 092270 0.47 0.67 0.87 0.03925 
I I 06027I 0.70 1.00 0.22 O.OI982 
I2 06037I 0.78 0.67 4.80 O.I2I39 
13 06I27I 1.I4 1.17 4.09 O.I683I 
I4 08I47I 0.87 2.67 0.03 0.00277 
I5 09I87I 2.08 4.67 1.43 0.08548 
I6 09247I 1.62 3.00 1.43 O.I I792 
I7 I0027I 1.54 1.17 4.5I 0.1352I 
I8 042072 0.62 4.50 O.OI 0.00I80 
I9 042772 1.53 4.33 1.82 0.07567 
20 05I272 1.80 5.50 0.55 0.05I24 
2I 04I573 0.53 1.50 I.I I O.OI038 
22 04I573 0.29 1.00 0.22 0.02542 
23 04I973 0.58 2.00 0.83 0.06050 
24 052273 1.I6 2.50 0.08 0.006I8 
25 052473 3.73 1.50 63.07 1.80087 
26 053I73 2.08 8.I 7 3.45 O.I 9982 
27 060I73 0.57 1.33 0.26 0.037I2 
28 060273 1.I2 2.00 I3.27 0.69828 
29 060473 1.28 2.17 I7.86 0.6565I 
30 06I973 0.48 0.83 0.9I O.OI423 
3I 080973 1.26 1.50 0.15 0.0086I 
32 09I273 0.87 0.83 O.OI 0.00083 
33 092673 1.64 6.I7 O.I7 0.02295 
34 092773 0.45 5.50 0.02 0.00443 
35 03I074 0.69 2.50 0.99 0.06269 
36 042974 1.90 2.33 7.78 0.39964 
37 050I74 0.50 I.17 3.09 0.23527 
38 040775 0.80 1.83 0.60 0.03842 
39 042975 1.13 1.00 3.33 O.I I226 
40 05I375 1.I2 4.50 0.03 0.0036I 
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Summarized Study Events for Watershed RS (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 OS147S 0.32 3.SO 0.02 0.00169 
42 OS227S 2.03 1.33 20.6S 0.721S7 
43 OS291S 0.42 6.33 0.17 0.02960 
44 06107S 0.97 2.17 0.93 0.07732 
4S 06177S 0.4S o.so 0.02 0.00273 
46 06237S 1.26 1.33 11.lS 0.42726 
47 071S76 0.87 2.67 0.32 0.01674 
48 042077 1.40 2.67 2.26 0.06316 
49 OS1977 2.68 s.so 11.66 0.42401 
so OS2077 1.94 3.00 10.91 0.7683S 
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Summarized Study Events for Watershed R6 

---------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

---------------------------------------------------------------------------------------
I 041067 1.18 2.33 3.93 0.13627 
2 041267 2.28 3.17 29.24 0.85776 
3 090468 1.26 3.33 1.28 0.02534 
4 050669 1.73 6.50 23.31 0.66450 
5 092270 1.24 1.67 1.89 0.03633 
6 092270 0.47 1.00 0.98 0.02384 
7 053171 0.76 1.50 0.06 0.00206 
8 060271 0.82 1.00 1.36 0.02387 
9 060371 0.80 0.83 3.93 0.08829 

10 081471 0.72 3.17 0.05 0.00252 
11 091871 0.82 1.17 0.47 0.01010 
12 051272 1.80 6.00 0.93 0.09268 
13 040273 0.29 1.83 0.08 0.00870 
14 040873 0.30 2.33 0.02 0.00313 
15 041973 0.55 1.83 2.15 0.07462 
16 050673 0.62 1.00 1.29 0.02734 
17 052273 1.14 2.17 2.34 0.05558 
18 052473 3.75 1.33 105.10 2.05997 
19 053173 1.23 3.50 6.41 0.01677 
20 060173 0.55 1.17 1.16 0.05388 
21 060273 1.10 2.83 21.01 0.69068 
22 060473 1.24 2.00 27.43 0.61101 
23 061673 0.52 0.67 0.24 0.00669 
24 061873 0.65 2.17 1.29 0.03207 
25 061973 0.50 0.83 1.36 0.04437 
26 071373 0.57 0.33 0.37 0.00803 
27 072273 1.01 2.33 1.65 0.04326 
28 081573 0.81 1.00 0.11 0.00305 
29 091273 0.88 0.83 1.10 0.02477 
30 092673 0.98 2.33 0.41 0.01501 
31 041174 1.27 3.00 0.55 0.02613 
32 042974 1.93 4.00 9.45 0.33496 
33 050174 0.55 1.17 4.78 0.16714 
34 051375 1.08 3.50 0.63 0.02216 
35 060675 0.68 1.17 0.68 0.03289 
36 061075 1.03 2.50 4.34 0.19470 
37 062375 1.01 2.33 12.14 0.28948 
38 070775 0.86 1.33 1.22 0.38450 
39 072475 0.69 3.67 0.29 0.01984 
40 072675 0.26 2.00 0.07 0.00389 
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Summarized Study Events for Watershed R6 (Continued) 

---------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

---------------------------------------------------------------------------------------
41 041976 0.81 2.83 0.63 0.01620 
42 042876 0.91 4.50 0.06 0.00329 
43 062476 0.94 2.00 1.16 0.03510 
44 071576 0.75 2.67 1.65 0.04324 
45 071576 1.95 2.67 1.22 0.04754 
46 042077 1.24 0.67 11.88 0.22066 
47 050377 0.51 0.83 0.82 0.02156 
48 050577 0.42 1.17 0.55 0.01258 
49 051977 2.77 5.67 33.54 0.79538 
50 052077 2.00 2.83 33.54 0.96604 
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Summarized Study Events for Watershed R7 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
I 04I067 1.06 2.83 I3.20 0.52520 
2 04I267 2.09 2.83 38.53 1.23474 
3 070I68 2.36 4.83 I0.35 0.62659 
4 06I469 2.94 3.00 20.25 I.20627 
5 043070 0.9I 4.33 4.9I 0.2I408 
6 052970 1.24 2.00 4.9I O.I9230 
7 08I970 0.69 3.50 2.43 0.05370 
8 09I470 0.65 0.83 0.44 O.OI406 
9 092270 1.37 1.67 I5.86 0.54797 

IO 092270 0.44 0.83 8.I2 0.I 7538 
I I 092270 0.44 1.00 0.07 O.OOI80 
I2 05237I 1.02 1.17 2.84 0.06354 
13 06077I 0.68 1.83 1.09 0.03I54 
I4 06I27I 1.I 7 1.33 I5.55 0.54I I9 
I5 042072 0.38 0.83 6.22 0.2404I 
I6 042072 0.69 1.67 8.76 0.I9633 
I7 043072 0.43 2.33 0.98 0.04408 
I8 040273 0.25 1.67 0.59 0.02880 
I9 04I973 0.60 2.I 7 9.89 O.I9724 
20 052273 1.22 2.83 I3.48 0.34733 
2I 052473 3.39 1.33 97.90 2.3I979 
22 060473 1.04 0.67 5I.37 0.68623 
23 06I673 0.5I 0.67 2.33 0.04580 
24 06I873 0.75 1.50 I3.48 0.24927 
25 06I973 0.35 0.50 9.20 0.I8832 
26 071373 0.63 0.50 4.62 0.056I3 
27 072073 0.36 1.83 0.5I 0.00707 
28 073073 0.33 2.50 O.I5 0.00288 
29 080973 1.26 1.50 I8.48 0.32893 
30 08I573 0.83 1.I 7 7.52 0.I5060 
3I 09I273 0.92 0.83 I8.83 0.32205 
32 050I74 0.52 0.83 21.36 0.34455 
33 052574 0.33 1.83 0.I 7 0.00357 
34 060674 0.50 0.67 5.88 0.06452 
35 080974 1.77 2.00 I 1.85 0.38993 
36 09I574 0.82 5.33 0.77 0.04064 
37 062375 0.83 2.33 I2.38 0.32II8 
38 072475 0.68 3.50 0.92 0.024I2 
39 042876 0.89 4.50 1.I5 O.I0662 
40 062476 1.74 4.67 8.98 0.34409 
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Summarized Study Events for Watershed R 7 (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 071576 1.79 2.67 10.84 0.39181 
42 071676 0.82 2.67 7.52 0.30490 
43 080576 0.91 2.50 0.34 0.00949 
44 042077 1.18 0.83 30.65 0.59478 
45 050377 0.71 0.67 12.38 0.24081 
46 051377 0.52 0.67 0.82 0.02095 
47 051577 0.37 1.83 0.34 0.00942 
48 051977 2.77 5.67 49.44 1.26251 
49 052077 1.80 3.00 41.58 1.04937 
50 062877 0.72 0.83 1.15 0.02400 
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Summarized Study Events for Watershed RS 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
I 041067 0.52 0.33 5.86 0.19962 
2 041267 2.17 3.33 32.38 1.33288 
3 070168 2.43 4.83 10.31 0.38066 
4 061469 3.22 3.50 26.83 0.77062 
5 092270 1.54 1.67 17.06 0.41994 
6 092270 0.54 0.83 9.61 0.21386 
7 052671 1.07 4.17 0.67 0.03279 
8 053171 0.70 1.67 2.52 0.05383 
9 060271 0.89 1.00 12.06 0.18713 

IO 060371 0.80 1.00 17.05 0.31740 
11 061271 0.93 1.33 6.20 0.21294 
12 062171 0.78 3.67 0.02 0.00139 
13 080871 0.83 1.50 0.77 0.01684 
14 081471 0.73 2.67 4.75 0.10232 
15 091871 2.82 7.17 19.77 0.63133 
16 092471 1.62 3.33 14.28 0.58875 
17 042072 0.73 1.67 4.90 0.09958 
18 042772 1.39 4.33 12.33 0.31844 
19 041573 0.24 0.83 2.05 0.08359 
20 041573 0.51 1.83 4.04 0.10521 
21 052473 3.64 1.50 133.70 2.33195 
22 060273 1.19 5.50 26.84 0.68861 
23 060473 1.14 2.17 41.75 0.60286 
24 072273 1.12 3.83 7.49 0.18335 
25 091273 0.89 0.67 8.30 0.15534 
26 091773 0.53 4.17 0.09 0.00410 
27 092673 1.70 7.67 4.75 0.33722 
28 041174 1.28 3.00 2.84 0.16209 
29 053174 0.48 2.83 0.03 0.00189 
30 060674 0.45 0.33 2.14 0.02991 
31 081074 1.56 2.33 9.38 0.17732 
32 051375 1.02 3.33 3.17 0.08551 
33 051475 0.33 3.67 0.72 0.04903 
34 052275 0.45 2.83 0.26 0.00722 
35 061075 1.09 2.50 14.87 0.47190 
36 061775 0.53 0.67 10.79 0.16203 
37 062275 0.75 5.50 2.52 0.05973 
38 070775 0.73 1.17 2.33 0.03538 
39 072475 0.70 3.67 1.96 0.06052 
40 072675 0.22 2.33 0.59 0.01341 
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Summarized Study Events for Watershed RS (Continued) 

-------------------------------------------------------------------------------------
Event Date Total Duration Peak Runoff 

Rainfall Flow Depth 
(mmddyy) (in) (hr) (cfs) (in) 

-------------------------------------------------------------------------------------
41 041576 0.53 4.00 0.07 0.00301 
42 041976 0.76 3.83 4.90 0.10450 
43 071576 1.86 3.00 14.57 0.35725 
44 080576 1.05 6.67 3.65 0.05979 
45 051377 0.54 1.00 3.78 0.04771 
46 051577 0.40 1.83 1.88 0.02989 
47 051977 2.90 5.67 69.14 1.39128 
48 052677 0.98 2.67 7.69 0.13664 
49 062577 0.66 2.67 4.18 0.03503 
50 062877 0.73 1.50 7.69 0.08167 
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Partial Duration Series for Watershed 111 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 072362 28.6 26 092664 256.5 
2 072562 173.9 27 110364 276.4 
3 083162 298.0 28 111664 368.0 
4 090462 31.6 29 111864 57.6 
5 090762 12.9 30 111964 105.8 
6 091562 489.2 31 031165 8.2 
7 092062 35.2 32 040565 346.3 
8 102862 18.6 33 050965 152.5 
9 120262 26.0 34 052865 9.8 

10 042663 136.9 35 060265 103.3 
11 053163 114.5 36 061365 34.0 
12 060363 9.7 37 062565 16.7 
13 071363 28.5 38 080665 9.8 
14 111963 36.7 39 082865 32.1 
15 112263 7.6 40 091965 43.8 
16 042564 16.2 41 092165 22.6 
17 050964 697.6 42 101865 7.5 
18 051064 771.8 43 031266 9.8 
19 052964 70.2 44 042266 9.6 
20 053064 115.9 45 042366 12.3 
21 061164 277.2 46 042566 15.2 
22 081864 49.6 47 052166 53.7 
23 091664 12.8 48 060966 6.1 
24 092064 356.0 49 073066 45.4 
25 092264 18.3 50 081166 5.7 
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Partial Duration Series for Watershed 111 (Continued) 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------
51 081966 19.3 71 100767 42.4 
52 082366 5.3 72 011268 15.3 
53 090166 11.0 73 011868 5.1 
54 091466 55.4 74 050968 108.2 
55 092766 79.7 75 051568 158.6 
56 032267 14.1 76 053168 85.7 
57 040967 135.8 77 060168 28.1 
58 041067 56.4 78 061568 248.3 
59 041267 638.8 79 070168 101.6 
60 041367 53.7 80 071468 88.0 
61 042067 20.2 81 071568 27.0 
62 050667 34.0 82 081568 7.3 
63 052067 9.9 83 090468 70.5 
64 062667 4.8 84 092368 8.5 
65 070367 24.7 85 092468 18.2 
66 072867 6.2 86 100968 284.2 
67 090367 5.0 87 110268 7.8 
68 090467 27.4 88 111568 54.5 
69 090567 7.5 89 111268 32.9 
70 092767 4.6 
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Partial Duration Series for Watershed 131 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 090462 37.1 31 090468 48.3 
2 091562 131.4 32 100968 87.1 
3 092062 68.6 33 041669 554.5 
4 042663 176.9 34 042669 320.7 
5 053163 36.5 35 050569 328.3 
6 062363 31.6 36 050669 480.3 
7 051064 429.9 37 061469 107.2 
8 053064 48.4 38 043070 49.0 
9 081864 79.0 39 051570 77.3 

10 092064 41.3 40 062070 171.4 
11 110364 111.1 41 092270 117.1 
12 111764 267.9 42 060171 601.5 
13 111964 58.7 43 081471 61.2 
14 040565 37.5 44 091871 44.6 
15 050965 458.7 45 092471 40.4 
16 060265 31.6 46 100371 437.5 
17 082865 73.3 47 121471 55.3 
18 042566 31.6 48 041572 32.1 
19 052166 60.5 49 042772 120.5 
20 040967 131.6 50 043072 107.8 
21 041267 340.3 51 051272 31.0 
22 041367 40.2 52 052972 51.9 
23 042067 229.2 53 103172 65.3 
24 090467 32.7 54 031073 144.5 
25 050968 732.6 55 032473 169.8 
26 051368 33.0 56 041573 40.9 
27 051568 79.8 57 052373 156.5 
28 060168 45.3 58 053173 135.5 
29 061568 103.0 59 060173 159.2 
30 070168 35.4 60 060273 1082.1 
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Partial Duration Series for Watershed 131 (Continued) 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------
61 061873 68.1 83 052375 223.7 
62 072173 62.6 84 052975 95.1 
63 072373 208.8 85 062275 41.6 
64 090673 37.6 86 062475 634.9 
65 091373 38.3 87 072475 187.8 
66 092673 76.7 88 072675 79.l 
67 101173 32.1 89 072975 452.5 
68 101273 34.5 90 030876 40.9 
69 022074 154.8 91 041776 41.6 
70 030874 179.7 92 041976 72.9 
71 031074 272.4 93 053176 43.7 
72 041174 41.6 94 062476 46.5 
73 043074 123.2 95 080476 71.9 
74 051074 171.6 96 042077 771.2 
75 052574 110.3 97 050277 97.6 
76 053174 111.5 98 050477 33.3 
77 082774 40.9 99 051977 242.2 
78 110274 209.8 100 052077 135.5 
79 010275 40.9 101 052777 197.7 
80 040875 44.4 102 053177 1201.0 
81 050275 242.5 103 082977 36.3 
82 051475 86.0 
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Partial Duration Series for Watershed 311 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 040967 18.1 36 100670 38.4 
2 041067 25.1 37 100870 33.9 
3 041267 4900.0 38 042671 31.0 
4 050567 93.0 39 052771 195.7 
5 062567 138.8 40 060171 528.5 
6 090467 49.1 41 060371 859.2 
7 092667 42.2 42 060871 570.4 
8 100767 707.9 43 061171 153.5 
9 041968 347.6 44 062171 579.0 

10 051468 18.7 45 092471 88.5 
11 052568 183.9 46 100271 181.7 
12 060168 54.2 47 121571 40.8 
13 061568 38.6 48 042772 17.3 
14 061668 45.8 49 051272 36.1 
15 070168 20.7 50 103172 277.5 
16 081568 12.2 51 111372 10.1 
17 100968 30.3 52 111972 12.3 
18 111568 59.9 53 010373 132.6 
19 112768 27.8 54 011773 33.5 
20 112868 23.8 55 012173 171.5 
21 032369 35.1 56 012673 47.2 
22 041769 427.3 57 030673 27.7 
23 042769 229.9 58 031073 506.7 
24 050469 307.8 59 032473 456.7 
25 050569 1129.7 60 033173 35.7 
26 050669 1147.2 61 040373 24.7 
27 061469 244.1 62 041673 109.0 
28 062669 95.0 63 041973 50.9 
29 091669 16.8 64 050773 11.4 
30 043070 908.7 65 052373 12.0 
31 051470 198.7 66 053173 268.3 
32 052970 1369.9 67 060273 924.8 
33 061170 943.6 68 061973 126.7 
34 081970 16.9 69 080973 13.0 
35 092270 22.5 70 091373 206.5 
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Partial Duration Series for Watershed 311 (Continued) 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

71 091773 122.3 106 060775 19.2 
72 092673 244.3 107 062275 24.7 
73 100473 27.0 108 062375 60.5 
74 101173 242.3 109 062575 63.5 
75 101273 193.9 110 070475 15.5 
76 112473 25.4 111 070575 14.l 
77 022174 168.2 112 070775 422.5 
78 030974 643.4 113 071075 65.9 
79 031074 594.8 114 072475 272.4 
80 041074 10.1 115 072575 455.5 
81 042174 13.8 116 072875 282.7 
82 043074 95.9. 117 080175 119.7 
83 050174 676.7 118 080275 202.9 
84 053174 1145.8 119 081475 28.5 
85 060374 32.6 120 030376 20.5 
86 060674 72.8 121 030976 26.2 
87 060874 38.4 122 041976 118.0 
88 081074 174.0 123 042376 23.2 
89 102674 202.8 124 042876 15.5 
90 102874 25.4 125 052676 94.4 
91 103174 164.0 126 062476 11.4 
92 110274 600.6 127 091476 134.9 
93 010275 100.4 128 042177 37.9 
94 013175 141.0 129 043077 185.2 
95 020475 69.0 130 050277 44.7 
96 022275 42.2 131 050377 92.2 
97 031175 14.4 132 051977 329.2 
98 031975 27.0 133 052177 921.3 
99 032775 27.3 134 052777 330.3 

100 040875 154.3 135 053177 102.0 
101 050375 33.9 136 061277 31.4 
102 051375 87.1 137 062977 35.2 
103 052375 390.6 138 070177 371.6 
104 052875 58.1 139 081077 10.6 
105 053075 186.0 
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Partial Duration Series for Watershed 411 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 120262 155.6 32 060371 124.2 
2 042663 407.9 33 062071 112.9 
3 062363 373.0 34 072871 45.0 
4 071363 237.3 35 080871 73.6 
5 051064 354.0 36 092471 59.3 
6 051164 306.9 37 100371 1208.8 
7 061564 70.8 38 042772 55.5 
8 081864 49.31 39 042972 55.5 
9 092764 155.6 40 051272 50.3 

IO 111764 365.3 41 061572 80.8 
11 111964 403.2 42 103172 476.8 
12 080665 58.6 43 031073 43.5 
13 080765 48.4 44 032473 166.2 
14 082865 2008.4 45 041673 43.5 
15 092165 96.1 46 052373 109.7 
16 091466 91.9 47 052473 143.5 
17 041067 107.7 48 053173 128.9 
18 041267 869.1 49 060273 832.4 
19 042067 258.1 50 071363 42.1 
20 081767 44.7 51 090673 42.8 
21 061568 69.2 52 091273 41.8 
22 070168 60.5 53 092773 79.3 
23 100968 135.4 54 101273 78.8 
24 050569 256.0 55 112573 50.2 
25 050669 439.8 56 022174 65.7 
26 043070 109.9 57 030974 140.3 
27 051470 48.6 58 031074 486.5 
28 052970 46.4 59 043074 740.8 
29 092270 47.1 60 050174 617.7 
30 053171 167.0 61 053174 221.6 
31 060171 150.4 62 080974 71.3 
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Partial Duration Series for Watershed 511 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 033063 322.1 41 060168 183.4 
2 042463 101.5 42 060568 77.1 
3 042663 953.1 43 070168 73.8 
4 062363 1183.8 44 071468 62.8 
5 072863 222.1 45 081568 172.5 
6 051064 568.8 46 090468 129.4 
7 053064 65.9 47 092468 282.0 
8 081564 265.8 48 100968 381.9 
9 092064 115.9 49 111568 75.5 

10 092764 61.2 50 112768 56.2 
11 101264 110.8 51 032369 55.5 
12 110464 114.8 52 041769 92.3 
13 111764 410.9 53 042769 436.6 
14 111964 633.1 54 050369 292.7 
15 040565 139.2 55 050469 184.7 
16 041565 991.9 56 050769 1451.1 
17 071065 89.2 57 051669 91.3 
18 080865 3122.4 58 061469 2758.5 
19 082865 816.5 59 072169 179.2 
20 092165 135.7 60 082369 804.1 
21 031266 495.2 61 091669 478.6 
22 042366 66.5 62 092369 1005.0 
23 042566 127.7 63 043070 1876.0 
24 082066 195.2 64 051570 779.0 
25 082166 103.4 65 052970 2740.7 
26 082266 1331.4 66 081970 94.7 
27 082366 928.4 67 092270 941.4 
28 083166 171.8 68 100570 113.3 
29 090466 544.8 69 100870 130.1 
30 091466 2881.8 70 022171 97.9 
31 032567 505.9 71 060171 468.6 
32 041067 224.0 72 060371 1766.4 
33 041267 3297.8 73 060871 2005.4 
34 042067 1593.6 74 062171 144.5 
35 050667 407.7 75 070271 87.4 
36 062567 282.1 76 091871 151.5 
37 092667 148.0 77 092471 528.4 
38 041968 225.8 78 100371 3071.6 
39 051568 67.4 79 120971 52.3 
40 052568 224.3 80 121571 307.0 
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Partial Duration Series for Watershed 513 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 030165 26.6 44 112668 41.5 
2 031265 23.5 45 021469 21.1 
3 041465 134.9 46 032369 59.7 
4 051465 23.5 47 042769 51.1 
5 052865 27.5 48 050369 405.4 
6 080865 2100.2 49 050569 65.1 
7 082865 772.9 50 050669 1399.8 
8 092065 59.8 51 051269 22.2 
9 092165 81.8 52 061469 1713.4 

10 020966 23.1 53 072169 846.3 
11 031266 372.8 54 091669 64.3 
12 042366 83.7 55 092369 79.6 
13 042566 207.6 56 043070 107.6 
14 060666 75.5 57 051570 344.1 
15 072466 295.0 58 052970 624.2 
16 081966 61.3 59 053070 20.3 
17 082166 927.4 60 081970 91.9 
18 082366 121.2 61 092270 842.5 
19 083166 280.4 62 100570 94.9 
20 090466 87.6 63 100870 38.0 
21 091466 1222.2 64 022171 31.2 
22 041067 133.6 65 052371 102.2 
23 041267 1801.2 66 060171 87.0 
24 041367 209.3 67 060371 551.1 
25 042067 1861.2 68 060871 481.8 
26 050667 186.4 69 061271 213.6 
27 052067 40.2 70 062171 55.3 
28 062567 43.3 71 081471 63.5 
29 090367 24.0 72 091871 164.7 
30 090567 29.0 73 092471 217.0 
31 092167 24.0 74 100271 1374.6 
32 092667 40.2 75 121471 293.4 
33 100767 26.6 76 032172 42.1 
34 031968 20.6 77 041572 59.0 
35 050768 39.7 78 042072 23.9 
36 052568 167.6 79 042172 22.2 
37 060168 66.7 80 042772 106.5 
38 070168 156.2 81 051272 281.0 
39 071368 53.1 82 102272 69.2 
40 090468 257.2 83 103072 220.5 
41 092368 40.3 84 103172 535.5 
42 100968 104.4 85 111372 21.4 
43 111568 79.6 



315 

Partial Duration Series for Watershed 5142 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 040967 25.2 34 082569 2.0 
2 041067 61.7 35 043070 3.9 
3 041267 180.4 36 051470 60.3 
4 041367 9.3 37 052970 27.6 
5 042067 12.3 38 081970 3.8 
6 050667 37.0 39 091470 2.9 
7 052067 18.3 40 092270 53.3 
8 062667 3.8 41 100570 5.8 
9 090367 17.6 42 100770 5.4 

10 090567 6.2 43 100870 4.7 
11 092667 12.8 44· 052371 5.0 
12 100767 8.4 45 053171 9.1 
13 031968 4.1 46 060271 34.0 
14 041968 2.1 47 060371 67.9 
15 052568 6.9 48 060771 16.8 
16 060168 7.7 49 061271 22.3 
17 060568 3.2 50 070171 2.2 
18 060768 8.6 51 081471 7.2 
19 070168 12.3 52 091871 78.8 
20 071368 7.2 53 092471 73.2 
21 071868 2.1 54 100271 92.4 
22 090368 4.0 55 101971 2.8 
23 090468 72.9 56 121471 45.2 
24 100568 5.7 57 032072 5.2 
25 100968 16.6 58 041572 7.5 
26 111568 8.2 59 042072 3.3 
27 112668 5.1 60 042772 42.9 
28 050369 29.7 61 051272 11.6 
29 050669 148.4 62 102172 6.7 
30 051269 4.6 63 103072 73.1 
31 060169 2.7 64 103172 34.6 
32 061469 134.2 65 110172 2.2 
33 072069 74.3 66 111272 16.2 
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Partial Duration Series for Watershed 5143 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 041067 12.8 28 082569 1.2 
2 041267 143.1 29 091669 1.4 
3 041367 4.8 30 092269 2.1 
4 042067 7.2 31 043070 2.2 
5 050567 11.2 32 051470 25.0 
6 052067 3.3 33 052970 8.2 
7 092667 2.1 34 092270 30.8 
8 031968 3.3 35 100570 2.5 
9 041968 2.1 36 100870 1.6 

10 052568 3.8 37 022171 1.3 
11 060168 2.1 38 032071 1.4 
12 060768 3.7 39 041571 1.4 
13 070168 12.2 40 052371 2.0 
14 071368 2.1 41 053171 1.0 
15 071868 1.3 42 060271 5.6 
16 090468 27.1 43 060371 15.0 
17 100968 6.1 44 060771 2.2 
18 111568 3.8 45 061271 3.2 
19 032369 3.4 46 091871 26.8 
20 050369 13.4 47 092471 26.8 
21 050569 1.9 48 100271 60.0 
22 050669 119.6 49 102171 1.2 
23 051269 2.8 50 111271 2.1 
24 060169 2.0 51 121472 16.5 
25 061469 56.1 52 042772 11.0 
26 072069 22.0 53 051272 3.0 
27 082569 1.2 54 103072 18.8 
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Partial Duration Series for Watershed 5145 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 040967 30.5 43 092269 9.63 
2 041067 29.3 44 043070 5.3 
3 041267 193.2 45 051470 13.8 
4 041367 7.2 46 052970 56.8 
5 042067 26.3 47 081970 23.5 
6 050567 45.0 48 091470 4.1 
7 052067 10.5 49 092270 104.3 
8 053067 4.1 50 100570 22.5 
9 062667 5.3 51 100770 2.8 

10 072167 3.6 52 100870 19.6 
11 090367 19.6 53 102270 2.9 
12 090567 8.6 54 022171 8.8 
13 092667 34.7 55 052371 44.6 
14 100767 2.3 56 053171 24.5 
15 101567 17.0 57 060271 70.9 
16 031968 46.4 58 060371 48.8 
17 042268 3.1 59 060771 21.7 
18 050668 3.3 60 061271 13.9 
19 050968 2.9 61 070171 50.5 
20 051368 2.6 62 072371 24.2 
21 052568 13.7 63 080871 4.4 
22 053168 3.8 64 081471 9.8 
23 060168 8.3 65 091771 13.6 
24 060768 17.5 66 091871 65.6 
25 061668 8.3 67 092471 45.1 
26 070168 11.l 68 092571 2.3 
27 071368 2.2 69 100271 224.1 
28 071868 18.1 70 101871 13.1 
29 090368 2.6 71 102671 2.5 
30 090468 76.5 72 121471 80.9 
31 100568 3.6 73 122971 7.5 
32 100968 12.5 74 041572 15.7 
33 111568 3.3 75 042072 9.8 
34 112668 4.3 76 042772 60.5 
35 032369 4.0 77 050672 3.2 
36 050369 71.5 78 051272 23.8 
37 050669 112.2 79 070272 8.8 
38 051269 2.6 80 102172 6.2 
39 060169 10.0 81 103072 56.2 
40 061469 104.3 82 103172 73.0 
41 072069 87.9 83 111272 31.1 
42 091669 2.5 
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Partial Duration Series for Watershed 515 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

I 012173 13.8 32 072974 11.7 
2 012673 8.5 33 080974 62.8 
3 030673 25.3 34 081074 91.2 
4 031073 71.5 35 102874 10.8 
5 032373 85.4 36 103074 25.3 
6 041573 17.5 37 110274 12.3 
7 041973 18.6 38 010275 15.8 
8 042273 8.5 39 020275 50.5 
9 050673 12.0 40 032775 9.3 

10 052373 6.3 41 040775 63.6 
11 052473 105.2 42 050275 16.5 
12 053073 5.0 43 051375 48.5 
13 053173 97.1 44 052375 89.3 
14 060173 23.1 45 052875 33.3 
15 060273 210.3 46 052975 86.7 
16 060473 132.8 47 061075 43.4 
17 061973 5.7 48 062275 25.3 
18 080973 135.8 49 062375 27.6 
19 091273 16.8 50 070775 10.8 
20 092673 9.3 51 071075 10.0 
21 101173 18.3 52 072475 29.5 
22 101273 11.7 53 072675 41.0 
23 112473 39.8 54 030876 5.4 
24 022174 12.6 55 041976 56.1 
25 030874 103.2 56 062476 12.3 
26 031074 106.6 57 042077 5.2 
27 041174 16.8 58 051977 93.8 
28 042974 64.6 59 052077 105.2 
29 050174 84.2 60 052777 6.1 
30 053174 23.9 61 053177 9.5 
31 060674 8.3 62 070177 14.4 



319 

Partial Duration Series for Watershed 611 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 042762 56.5 31 111664 605.7 
2 052662 52.1 32 111864 64.1 
3 060162 223.2 33 111964 64.1 
4 060862 45.6 34 041465 5.7 
5 060962 296.3 35 052665 135.0 
6 072562 267.1 36 060265 78.9 
7 091562 14.8 37 080665 98.0 
8 092062 166.0 38 080765 17.9 
9 102862 465.7 39 080865 23.5 

10 110762 4.4 40 081065 43.3 
11 112662 9.1 41 082265 5.9 
12 120262 64.8 42 082865 9.8 
13 042663 669.6 43 083165 4.5 
14 062363 584.6 44 090365 104.1 
15 071363 21.1 45 091965 4.7 
16 111963 47.l 46 092065 8.9 
17 020464 3.0 47 020866 45.6 
18 020564 7.6 48 031266 105.3 
19 050664 414.2 49 042266 20.1 
20 050864 7.8 50 042366 61.3 
21 050964 2406.8 51 042566 198.7 
22 051064 807.9 52 061666 357.3 
23 053064 206.1 53 072466 204.2 
24 060464 5.9 54 081166 3.4 
25 080764 58.6 55 081966 5.3 
26 081564 4.7 56 082366 35.1 
27 090464 15.8 57 083166 3.8 
28 091664 245.5 58 091466 123.7 
29 092764 15.0 59 092766 5.7 
30 110364 63.1 
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Partial Duration Series for Watershed R5 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 041067 3.83 39 012673 0.38 
2 041267 20.65 40 030673 1.82 
3 041367 0.52 41 031073 2.56 
4 050567 0.44 42 032373 5.43 
5 052067 0.29 43 032473 9.49 
6 031968 1.82 44 041573 0.22 
7 032168 0.17 45 041973 0.83 
8 052568 0.52 46 052473 63.07 
9 060168 0.12 47 053173 3.45 

10 060768 0.26 48 060173 0.26 
11 090468 0.15 49 060273 13.27 
12 021469 0.24 50 060473 17.86 
13 022069 0.12 51 061973 0.19 
14 022169 0.15 52 092673 0.17 
15 032369 0.29 53 102773 0.26 
16 050369 0.15 54 111973 19.93 
17 050669 16.87 55 112473 2.26 
18 061469 9.26 56 022174 0.14 
19 072069 5.92 57 031074 0.99 
20 051470 0.38 58 042974 6.27 
21 052970 0.35 59 051074 3.09 
22 092270 2.98 60 081074 0.60 
23 100870 0.11 61 103074 1.30 
24 060271 0.19 62 010275 0.35 
25 060371 4.81 63 020375 0.32 
26 061271 4.09 64 022275 0.11 
27 091871 1.44 65 032775 0.17 
28 092474 1.44 66 040775 0.60 
29 100271 9.95 67 042975 3.33 
30 121471 2.66 68 052275 20.65 
31 042772 1.74 69 052975 0.17 
32 051272 0.55 70 061075 0.93 
33 103072 3.45 71 062375 11.15 
34 103172 4.66 72 071576 0.32 
35 110172 2.26 73 042077 2.26 
36 111672 0.68 74 051977 11.41 
37 010373 0.38 75 052077 10.91 
38 012173 0.41 
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Partial Duration Series for Watershed R6 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 040967 0.98 31 060371 3.94 
2 041067 3.80 32 061271 2.06 
3 041267 29.26 33 081471 1.29 
4 041367 0.55 34 091871 4.21 
5 050567 1.57 35 092471 3.31 
6 052067 1.04 36 100271 12.41 
7 090567 0.26 37 121471 2.44 
8 092667 0.14 38 022172 0.31 
9 031968 1.65 39 041572 0.47 

10 032168 0.14 40 042072 0.51 
11 052568 0.63 41 042772 4.78 
12 060168 0.24 42 051272 0.93 
13 060768 0.34 43 060272 1.29 
14 070168 0.37 44 102172 0.21 
15 090468 1.29 45 103072 5.89 
16 100968 0.29 46 103172 4.63 
17 111568 0.26 47 010373 0.34 
18 021469 0.21 48 012173 0.63 
19 032369 0.44 49 012673 0.21 
20 050369 0.55 50 030673 1.65 
21 050669 23.31 51 031073 1.73 
22 051269 0.19 52 032373 5.24 
23 061469 7.15 53 032473 12.95 
24 072069 4.34 54 041573 1.10 
25 043070 0.37 55 041973 2.15 
26 051470 1.10 56 050673 1.29 
27 052970 0.72 57 052373 2.34 
28 092270 2.54 58 052473 105.10 
29 100770 0.37 59 053073 0.63 
30 100870 0.26 60 053173 6.41 
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Partial Duration Series for Watershed R6 (Continued) 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------
61 060173 1.16 89 022275 0.24 
62 060273 21.01 90 032775 1.43 
63 060473 27.48 91 040775 2.64 
64 061673 0.24 92 042975 8.36 
65 061873 1.29 93 050275 0.11 
66 061973 1.36 94 051375 0.63 
67 071373 0.37 95 052275 29.26 
68 072773 1.65 96 052875 0.34 
69 080973 2.54 97 052975 0.24 
70 081573 0.11 98 060675 0.68 
71 091273 1.10 99 061075 4.34 
72 092673 0.41 100 061775 2.15 
73 101173 0.14 101 062275 0.63 
74 102873 0.82 102 062375 12.14 
75 111973 36.08 103 070775 1.22 
76 112473 2.44 104 072475 0.29 
77 022174 0.51 105 030876 0.17 
78 031074 2.25 106 041976 0.63 
79 041174 0.55 107 062476 1.16 
80 042974 9.45 108 071576 1.22 
81 050174 4.78 109 071576 1.65 
82 080974 0.63 110 042077 11.88 
83 081074 2.15 111 050377 0.82 
84 102874 0.15 112 050577 0.55 
85 103074 1.50 113 051977 33.54 
86 110374 0.29 114 052077 33.54 
87 010275 0.51 115 052677 0.82 
88 020375 0.19 116 062877 0.31 



323 

Partial Duration Series for Watershed R 7 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

1 040967 7.13 41 112868 0.21 
2 041067 12.92 42 021469 0.40 
3 041267 29.26 43 022069 0.29 
4 041367 3.42 44 022169 0.47 
5 042067 1.42 45 032369 1.97 
6 050567 10.84 46 050369 3.07 
7 052067 9.65 47 050569 0.92 
8 053067 1.28 48 050669 41.58 
9 053167 0.77 49 051269 2.53 

10 062667 0.44 50 061469 34.57 
11 070567 0.14 51 072069 15.55 
12 090367 6.05 52 082569 0.77 
13 090567 7.13 53 091669 2.15 
14 092667 3.79 54 092169 0.37 
15 100767 1.04 55 092269 2.15 
16 011868 1.28 56 043070 4.91 
17 011968 0.37 57 051470 10.35 
18 012768 1.09 58 052970 4.91 
19 013068 0.34 59 081970 2.43 
20 031468 0.63 60 091470 0.44 
21 031968 7.13 61 092270 15.86 
22 032168 0.51 62 100570 3.42 
23 041968 0.92 63 100770 3.92 
24 042268 0.55 64 100870 1.64 
25 050968 0.29 65 102270 0.15 
26 051368 1.89 66 022171 3.30 
27 052568 4.47 67 052371 2.84 
28 060168 4.06 68 052671 1.49 
29 060568 0.40 69 053171 4.62 
30 060768 4.91 70 060271 18.48 
31 061668 2.43 71 060371 18.14 
32 070168 10.11 72 060771 1.04 
33 071368 10.84 73 061171 0.63 
34 071468 0.72 74 061271 15.55 
35 071868 0.34 75 080871 0.19 
36 090468 23.29 76 081471 13.20 
37 100568 4.06 77 091771 6.05 
38 100968 6.76 78 091871 21.73 
39 111568 5.07 79 092471 13.77 
40 112668 1.09 80 100271 38.25 



324 

Partial Duration Series for Watershed R 7 (Continued) 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------

81 101971 3.54 121 072073 0.51 
82 102671 1.22 122 072273 17.14 
83 120871 1.04 123 073073 0.15 
84 121071 0.63 124 080973 18.48 
85 121471 10.84 125 081573 7.52 
86 122971 0.92 126 090673 1.57 
87 041572 5.38 127 091273 18.83 
88 042072 8.54 128 092273 0.51 
89 042772 19.17 129 092673 5.38 
90 043072 0.98 130 092773 1.22 
91 051272 7.32 131 100473 3,42 
92 102172 2.84 132 100673 0.10 
93 103072 24.91 133 101173 6.05 
94 103172 12.12 134 101273 2.06 
95 110172 8.98 135 102773 11.09 
96 111272 2.53 136 111973 56.08 
97 111872 0.87 137 112473 4.91 
98 010373 2.15 138 022174 4.06 
99 011673 1.42 139 031074 18.14 

100 012173 5.54 140 041174 6.22 
101 012673 0.77 141 042974 22.12 
102 030673 12.12 142 050174 21.36 
103 031073 7.32 143 052574 0.17 
104 032373 8.12 144 060674 5.89 
105 032473 4.33 145 080974 11.85 
106 040273 0.59 146 081074 12.92 
107 041573 6.58 147 090274 1.89 
108 041973 9.88 148 091674 0.77 
109 050673 12.12 149 092474 0.77 
110 052273 13.48 150 102574 0.68 
111 052473 97.90 151 102874 6.94 
112 053073 13.48 152 103074 14.05 
113 053173 28.36 153 103174 0.55 
114 060173 9.88 154 110274 1.22 
115 060273 30.19 155 110374 4.06 
116 060473 51.37 156 110974 0.19 
117 061673 2.33 157 111074 0.24 
118 061873 13.48 158 121074 0.31 
119 061973 9.20 159 121174 0.26 
120 071373 4.62 160 010275 2.33 



325 

Partial Duration Series for Watershed R 7 (Continued) 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 
--------------------------------------------------------------------------------------
161 013075 0.15 184 072475 0.92 
162 020175 0.82 185 072675 0.77 
163 020275 0.26 186 030876 1.09 
164 020375 0.98 187 041976 5.22 
165 021775 0.17 188 042876 1.16 
166 022275 1.16 189 052676 1.89 
167 032775 5.38 190 062476 8.98 
168 040775 15.24 191 071576 10.84 
169 042775 0.29 192 080576 0.34 
170 042975 17.47 193 091376 0.55 
171 050275 2.06 194 021177 0.19 
172 051375 4.91 195 042077 30.65 
173 051475 0.92 196 050377 12.38 
174 051975 0.47 197 050577 6.22 
175 052275 33.07 198 051377 0.82 
176 052875 1.49 199 051577 0.34 
177 052975 0.72 200 051977 49.44 
178 060675 2.33 201 052077 41.58 
179 060875 1.16 202 052677 4.91 
180 061075 17.14 203 052777 1.28 
181 061775 4.76 204 062577 0.37 
182 062275 2.06 205 062877 1.16 
183 062375 12.38 
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Partial Duration Series for Watershed RS 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 

--------------------------------------------------------------------------------------
1 040967 1.96 41 060371 17.05 
2 041067 5.85 42 061271 6.20 
3 041267 32.32 43 081471 4.75 
4 041367 2.14 44 091771 3.41 
5 050567 6.02 45 091871 19.42 
6 052067 5.69 46 092471 14.28 
7 090367 3.53 47 100271 36.33 
8 090567 2.14 48 100371 5.20 
9 031968 2.84 49 101971 2.42 

10 051368 1.15 50 121471 8.51 
11 052568 3.06 51 122971 1.22 
12 060168 3.17 52 041572 2.94 
13 060768 3.65 53 042072 4.75 
14 061668 2.05 54 042772 12.33 
15 070168 10.31 55 051272 3.06 
16 071368 7.30 56 102172 1.15 
17 090468 20.86 57 103072 22.36 
18 100568 2.74 58 103172 13.14 
19 100968 4.60 59 110172 1.49 
20 111568 1.96 60 111272 2.05 
2J 050369 4.75 61 010373 1.56 
22 050669 50.79 62 012173 2.62 
23 051269 1.42 63 030673 3.29 
24 061469 26.41 64 031073 3.91 
25 072069 19.77 65 032373 9.84 
26 091669 1.09 66 032473 7.30 
27 092269 1.56 67 041573 4.04 
28 043070 1.80 68 041973 4.18 
29 051470 8.51 69 050673 5.05 
30 052970 3.41 70 052273 10.07 
31 081970 2.14 71 052473 133.70 
32 091470 1.64 72 053073 6.92 
33 092270 16.72 73 053173 25.16 
34 100570 1.88 74 060173 6.20 
35 100770 4.04 75 060273 26.84 
36 100870 1.35 76 060473 41.75 
37 022171 1.64 77 061673 1.72 
38 052371 2.73 78 061873 6.20 
39 053171 2.52 79 061973 3.65 
40 060271 12.06 80 071373 1.96 
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Partial Duration Series for Watershed RS (Continued) 

--------------------------------------------------------------------------------------
Event Date Peak Flow Event Date Peak Flow 

(mmddyy) (cfs) (mmddyy) (cfs) 

--------------------------------------------------------------------------------------
81 072273 7.49 112 052275 39.53 
82 080973 6.55 113 052875 1.42 
83 081573 7.49 114 060675 2.73 
84 091273 8.30 115 060875 1.28 
85 092673 4.75 116 061075 . 14.87 
86 100473 3.06 117 061775 10.79 
87 101173 1.64 118 062275 2.52 
88 101273 1.15 119 062375 10.31 
89 102773 6.37 120 070775 2.33 
90 111973 59.52 121 072475 1.96 
91 112473 5.36 122 081475 2.14 
92 022174 2.73 123 030876 1.15 
93 031074 9.84 124 041576 1.22 
94 041174 2.84 125 041976 4.90 
95 042974 23.53 126 062476 14.87 
96 050174 19.07 127 071576 14.57 
97 060674 2.14 128 080576 3.65 
98 080974 9.38 129 042077 27.71 
99 081074 15.78 130 050377 8.30 

100 090274 1.42 131 050577 9.61 
101 091574 1.28 132 051377 3.78 
102 102874 7.69 133 051577 1.88 
103 103074 16.72 134 051977 69.14 
104 110374 4.46 135 052077 78.81 
105 010275 1.80 136 052677 7.69 
106 020375 3.06 137 052777 1.42 
107 032775 3.53 138 062577 4.18 
108 040775 10.31 139 062877 7.69 
109 042975 24.34 140 072777 1.22 
110 050275 1.35 141 091377 2.05 
111 051375 3.17 
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Source 

Regression 
Residual 

Total 

ANOV A Table For Eqn. 95 

Sum of 
Squares 

54.80 
5.02 

59.82 

Degrees of 
Freedom 

3 
11 
14 

Standard Error of Estimate = 0.676 

2 
r = 0.916 

r = 0.957 

Variable Regression Standard F(l,11) 
Coefficient Error 

-0.06 
1.20 
1.61 

Constant -3.42 

0.02 
0.21 
0.26 

7.11 
34.22 
37.13 

Mean 
Square 

18.26 
0.46 

F 

40.03 

Partial r2 

0.39 
0.76 
0.77 
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Source 

Regression 
Residual 

Total 

ANOVA Table For Eqn. 96 

Sum of 
Squares 

6.26 
2.34 
8.50 

Degrees of 
Freedom 

3 
11 
14 

Standard Error of Estimate = 0.451 

2 
r = 0.737 

r = 0.859 

Variable Regression Standard F(l,11) 
Coefficient Error 

ln(A) 
ln(W) 
ln(St) 

-0.43 
1.20 
2.23 

Constant -3.64 

0.24 
0.47 
0.62 

3.32 
6.42 

12.90 

Mean 
Square 

2.09 
0.20 

F 

10.27 

Partial r2 

0.23 
0.37 
0.54 
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Source 

Regression 
Residual 

Total 

ANOV A Table For Eqn. 97 

Sum of 
Squares 

26.26 
2.25 

28.51 

Degrees of 
Freedom 

2 
12 
14 

Standard Error of Estimate = 0.433 

2 
r = 0.921 

r = 0.960 

Variable Regression Standard F(l,11) 

ln(L ) 
c 

ln(S ) 
a 

Coefficient Error 

0.62 

-1.66 

0.07 

0.42 

Constant 2.28 

81.01 

15.68 

Mean 
Square 

13.13 
0.19 

F 

69.96 

Partial r2 

0.87 

0.57 
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Source 

Regression 
Residual 

Total 

ANOV A Table For Eqn. 99 

Sum of 
Squares 

18.13 
3.95 

22.09 

Degrees of 
Freedom 

3 
11 
14 

Standard Error of Estimate = 0.599 

2 r = 0.821 

r = 0.906 

Variable Regression Standard F(l,11} 
Coefficient Error 

ln(A) 
ln(W) 
ln(St) 

-0.37 
1.52 
0.98 

Constant -3.09 

0.31 
0.63 
0.83 

1.46 
5.83 
1.42 

Mean 
Square 

6.04 
0.36 

F 

16.83 

Partial r2 

0.12 
0.35 
0.11 
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