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Chapter 1

INTRODUCTION

The trajectory trackillg control problem of the robot manipulators is an important research

topic since many of the tasks performed by robot manipulators involve such a problem.

The tasks include material handling, transportatioD, part assembly, etc. All these problems

simulated the growing interest of many control system researchers. Many of these problems

have been well studied and many different .control approaches have been proposed to im

prove the performance of the trajectory tracking of robot manipulators. It is believed that

all of these control approaches work well for a rigid robot manipulator with both known

and unknown constant parameters. However, for many situations, some of the unknown

parameters especially the mass of the payload or the mass of the links are time-varying.

For example, carrying a leaking payload, pouring operations, filling operations and so on.

Usually, if there .is a slow change of the time-varying parameters, then we can neglect the

effects due to the time-varying parameters. However, if the change is significant, then the

rigid robot dynamics model for constant parameters may not accurately describe the dy

namic behavior of the motion. Hence, it is desirable to develop a new model for robot

manipulators with time-varying payloads and time-varying link masses.

The purpose of this research is to introduce a framework to deal with the time-varying

payload problem in the robot motion control. By using Lagrange's equations, a new dynamic

model for the robot manipulator with the time-varying masses is developed. We obtain the

robot dynamics model in which the derivative of the time-varying parameters (rate ofchange

of mass and inertia) are isolated from the inertia matrix and gravitational force vector. Also

note that the manipulator here is modeled as a set of n rigid bodies connected in a serial
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chain. In contrast to most of the existing work, where the Lyapunov direct method is

used to study the stability, we present modified controllers that are applicable to trajectory

control of robot manipulator consisting of time-varying masses.

Theoretical analysis and computer simulation are important parts of controller design

but experimental implementation is necessary to check the practicality of the designed con

trollers. Since inherent factors such as unmodeled high-frequency dynamics and measure

ment noise are generally neglected in the stability analysis , we believe that the ultimate

justification for the value and application of the designed controllers lies in its actually

hardware implementation. Based on this perspective, this research also examines the de

signed controllers experimentally on an NSK two-link SCARA robot with a time-varying

payload. It is shown that all the proposed controllers are stable and the tracking error

either converges to zero or is bounded.

1.1 Literature Review

This section will first review motion control research of the robotic systems. The controller

design for uncertain robotic system which of constant or slow change time-varying uncertain

parameters are briefly reviewed. Finally, recent work for the robotic system consisting of

time-varying parameters are reviewed.

A standard method for deriving the dynamic equations of mechanical systems is via

the so called Euler-Lagrange equations. Detail derivation of the dynamic equations and

its application can be found in [1, 2, 3]. In [4] and [5], derivation of Lagrange's equations

for time-dependent generalized coordinate system is shown. [6] and [7] present a detail

and standard method for deriving the dynamic equations for the rigid robot manipulators.

However, all these derivations are based on the assumption that the mass of the link and

payloads are constant or slowly changing with respect to time.

There are basically two common approaches used to control uncertain systems: the

adaptive control approach and the robust control approach. In the adaptive approach, the

controller attempts to converge the tracking error of the closed-system to zero by estimating

the uncertain parameters of the system. For the robust approach, the controller has a fixed-
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structure which yields" acceptable" performance for a given uncertain parameters set. In

general, the adaptive control approach is more applicable than the robust control approach

to a wide range of uncertainty and requires no prior knowledge of the uncertain bounds, but

robust controller are simpler to implement and no time is required to tune the controller to

the plant variations.

Significant research has been done in both adaptive and robust control of rigid ma-

nipulators. A survey of the robust control for rigid rubot manipulators is given in [8].

This survey discusses five major robust control designs for rigid manipulators. These are

feedback-linearization approach, passivity-based approach, variable-structure approach, ro

bust saturation approach and robust adaptive approach. In our research, we emphasis on

designing nonlinear compensators to eliminate the uncertainties of the system.

[9] proposed a robust control law of the robot manipulators by using Lyapunov stability

theory to guarantee ultimate boundedness of the tracking error. This C€>ntrol strategy is

based on the work of [10, 11, 12]. [13] proposed. a linear robust feedback control law with a

constant gain and conduct similar stability analysis as in [9]. It is also shown that globally

asymptotic stability can be guaranteed as feedback gain approach infinity. Another simple

robust nonlinear control is proposed by Spong in [14). In [14]' the uncertain bounds only

depend on the inertia parameters, not desired trajectory and state vector. 115] proposed a

control law that requires no a priori information about the upper bound on the uncertainty.

A simple estimation law is used to estimate the upper bound 80 that uniform ultimate

boundedness of the state can be guaranteed. All of these controllers are derived based on

the the Lyapunov's direct method and the work of [10, 11, 12]. Other control approach such

as variable-structure controllers are proposed in [16, 17] and their modified versions can be

found in [18, 19].

The nonlinear compensator can be divided into three types: discontinuous type, satura-

tion type and smooth type. Discontinuous and saturation type nonlinear compensators can

be found in [6, 20, 21]. [22] presents a general design approach for robust controller design

of uncertain dynamics systems. However, only practica1stabilityof the closed-loop system is

guaranteed. [23] proposed a smooth time-varying compensator that guarantees asymptotic

stability of the system state. Application of this smooth compensator to compensate joint

3



-

stick-slip friction can be found in [24].

We also review here different adaptive control designs for motion control of robot IIUV

nipulators. A discussion of adaptive controller design for robot manipulators can be found

in [25]. This paper provides a framework for comparison of controllers which have been

shown to be globally convergent. In [26, 27], a new version of adaptive controller is pre

sented by introducing a modified error and convergence of both position error and velocity

error were shown. In [28], the controller [26, 27] is modified to enhance its robustness.

Furthermore observer based adaptive controller design. can be found in [29, 30]. [20, 18, 31]

also provide a detailed discussion on the application of adaptive control in the robotics

industry.

Several modifications have been done to the general adaptive controller to enhance

its robustness. A general design procedure for designing robust adaptive controller can be

found in [32]. In [32J, a new approach is shown to unify almost all global adaptive results for

both continuous-time plant with or without modeling error. Application of robust adaptive

control method to robotic manipulators is proposed in [33J. [34, 35] use smooth nonlinear

compensator to design an adaptive robust controller and global asymptotic stability of the

closed-loop system is guaranteed using this controller. Different approach of robust adaptive

controller can be found in [36, 37]. The adaptive robust controller is the combination of best

quantities of the adaptive controller and the robust controller. Some recent work can be

found in [38], a scaled projection method is used to derived the adaptive robust controller.

A new adaptive robust controller for controlling a high perfoI'IIWlce machine tool in the

presence of both parameter uncertainties and uncertain nonlinearities is proposed in [39].

Practical experiments with comparisons between PD control, inverse dynamics and

adaptive control is presented in [27]; the adaptive controller presented in [26] is implemented

by using a recursive Newton-Euler formulation. In [39], comparison experiment between

the proposed adaptive robust controller and PD and DOB (disturbance observer)is done on

the X-Y table of a Matsunura 510VSS high-speed vertical machining center. Comparative

experimental study of robust saturation based control scheme on a two-link robot manip

ulators is presented in [40]. The proposed controller can deal with different sources of

uncertainty separately, and possesses an enhanced fine-tuning ability.
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All of the controllers reviewed above work well under an assumption that the mass of the

links or payloads are constant or slowly time-varying. However, under certain circumstance

such as pouring and filling operation, the mass of the payload is not constant or rapidly

time-varying. [41,42] proposed a new dynamic model for robot manipulators consisting of

the time-varying parameters. In (41, 42], the properties of the element by element product

of matrices is used to isolate the time-varying parameters from the inertia matrix. However,

the time-varying parameters robot models presents in the [41, 42] is not derived based on

Lagrange's equations, but just simply assuming that the parameters of the system are

time-varying. A switching type controller is proposed in these papers to yield asymptotic

stability of the tracking error. A robust adaptive control for robot manipulators consisting

of time-varying parameters is presented in [33]. In [33], the upper bound of the unknown

parameters are required to obtain robustness of the closed-loop system.

1.2 Thesis Contribution

In this report, a new dynamics equations of the robot manipulators consisting of time

varying ma.ss is derived based on the Lagrange's equations. Properties of the new model

are carefully examined and the passivity property of this model is also shown. A new

adaptive controller is designed under the assumption that the time-varying payload has

~ finite number of non-zero derivatives. For this controllers design, we assume that the time

rate of change of payload is a finite length polynomial in time. A robust adaptive controller

based on the work of Corless-Leitmann is proposed. This controller includes an adaptation

law for the upper bound of the parametric uncertainty. Using Lyapunov stability theory,

uniform ultimate boundedness of the closed-loop system is shown for this controller. A

modified robust adaptive control is also presented. In this controller, once the system

solution enters a boundary layer, integral action is added to further reduce the tracking

error and asymptotic stability is achieved. Stability of all the proposed control algorithms

is proposed.

A unique experimental platform is designed for the implementation of the proposed

controllers. The experimental platform consists of a two-link direct drive manipulator with
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a time-varying payload on its end-effector. The time-varying nature for the payload is ob

tained by pumping fluid in and out of the vessel during the manipulator motion. Satisfactory

experimental results validate the effectiveness of the proposed controllers.

1.3 Thesis Outline

The organization of this report is as follows. Chapter 2 establishes a new robot manipu

lator dynamic model which consists of time-varying mass. The controller designs for the

time-varying mass system are given in chapter 3 and the stability analysis of the designed

controllers is also showed. In Chapter 4, the hardware setup used in the experiments are

described. Dynamic model of the two-link manipulator is derived. Implementation of de

signed controller to the two-link manipulator to illustrate the application and effectiveness

of the proposed controllers and design procedure are also given in Chapter 4. In Chap

ter 5, experimental results are discussed. Chapter 6 lists some remarks of this work and

suggestions for future research.
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Chapter 2

DYNAMIC MODELING OF TIME-VARYING

LAGRANGIAN SYSTEMS

This chapter deals with modeling of robot manipulators with time-varying masses. Ap

plication of a robot manipulator carrying a time-varying payload are many. For example,

carrying a leaking payload, pouring operations, filling operations and so OR. Typically, if

there is a slow change of the time-varying masses, then we can neglect the effects due to the

time varying masses. However, if the change is significant, then the rigid robot dynamics

model for constant parameters may not accurately describe the dynamics. Hence, the ob

jective of this chapter is to develop a new model for robot manipulators with time-varying

payloads and time-varying link masses. Our approach is to first derive the kinetic and

potential energy of the manipulator consisting of time-varying masses, then use Lagrange's
...
equations to obtain a new model for robot manipulators with time-varying payloads and

time-varying link masses. Note that the manipulator here is modeled as a set of n rigid

bodies connected in a serial chain.

The material in this chapter is organized as follows. The validity of applying Lagrange's

equations of motion for the time-varying case is verified. The derivation of the dynamic

equations for time-varying systems by using the Lagrange's equations of motion is pre

sented. Finally, the properties of the time-varying masses dynamic equation are also briefly

discussed.
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2.1 Time-Varying Mass and Inertia

In this section, we will study the relation between the mass and the inertia of the system.

We can show that inertia of a system is always directly proportional to the mass of the

system and has the same sign.

Assume that an incompressible, homogeneous fluid inside a uniform cross-sectional

(A(x, y» container is leaking. The fluid level function h(t) is a time-varying function.

If the container is empty initially, i.e. V(O) = 0, then the volume of the fluid inside the

container can be written as

ciV(t) = A(x, y)dh

and the mass of the fluid is

or Vet) = / A(x, y)dh (2.1)

(2.2)

(2.3)

met) = p(x, y, z)V(t)

= lp(x,y,z)A(x,y)dh

where p(x,y,z) is the density of the working fluid, and B is the region ofthree-dimensional

space that is occupied by the fluid. Notice that the mass is only a function of time for

homogeneous fluid and uniform cross-section container. The moment of inertia of the entire

body about the principal axis is defined as

1= Lr2dm

where r is the distance from the element to the axis. Notice that the moment of inertia is

always a positive quantity. Using equation (2.2), we can rewrite the moment of inertia as

1= Lr2p(x,y,z)A(x,y)dh (2.4)

Since the working fluid level, h(t), is a time-varying function, the moment of inertia is also a

time varying function. Thus we can conclude that if the mass of the link i is a time-varying

function, then the inertia of the link i is also a time-varying function. Furthermore, we can

also show that the rate of change of the inertia always has the same sign as the rate of

change of mass. From (2.3), if we take the derivative on the both sides, we obtain

dI =-?dm

8
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Since r2 2: 0, so it is obvious that the sign of dI is the same as dm, Le. if~ of link i is

positive at time ti, then the ii for that particular link is also positive at time ti.

2.2 Lagrangian Formulation

In this section, we will study whether the kinetic energy of a system can be written in

the quadratic form for systems with time-varying masses. We derive expressions for both

kinetic and potential energies for systems with time-varying masses. Lagrange's equations

are then used to derive the dynamic equation.

Lemma 2.1. For both constant and time-varying mass system, the kinetic energy of the

system is always a homogeneous quadratic form in the generalized velocities provided that

the generalized constraints do not contain time explicitly.

Proof. For the constant mass particle, the linear momentum p of the particle is defined to

be the product of the particle mass and its velocity as

p=mv. (2.6)

where m and v represent the mass and velocity of the system. Then Newton's second law

may be expressed as

dp d
F= - = -(mv).

dt dt
(2.7)

The change in kinetic energy of a system is defined as work done on the system by a force

F in transforming the system from point 1 to point 2, and it can written as

So the kinetic energy of the system can be expressed as

1 2T=-mv.
2

9
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d(m(t)T) =F.p
dt

For the time varying mass system, momentum can still expressed as

pet) = m (t) v.

then we can write the differential equation of the kinetic energy as

()

By using the Newton's second law, equation (2.11) can be written as

m (t) T =f p . dp

Since dp (t) = vdm (t) + m (t) dv, then

T = m
1
(t) Jm (t) v (vdm (t) + m (t) dv)

1
- 2"m(t)v2

(2.10)

(2.11)

(2.12)

(2.13)

Therefore, we can conclude that the kinetic energy of the system is always a quadratic

form of velocity regardless ~f whet~er the mass of the system is constant or time-varying.

However, this may not be true if the generalized constraints depend on time explicitly. Next,

we are going to show that the kinetic energy of the system, T, is always a homogeneous

quadratic form in the generalized velocities only if the generalized constraints do not contain

time explicitly.

If the generalized constraints contain time explicitly, the Cartesian coordinate of any

.... arbitrary mass mi can be expressed in terms of n generalized coordinates as

Vi -

then

dri
dt
~ Uri Uri- 6-+-

. oqj at
:J

The total kinetic energy of the system can be written as

10
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It is clear that on carrying out the expansion, T can be written as the sum of the three

homogeneous functions of the generalized velocities,

(2.17)

where

(2.18)

Note that the To is independent of the generalized velocities, T1 is linear in the generalized

velocities, and T2 is quadratic in the generalized velocities. If the generalized constraints

do not contain time explicitly, i.e. ~ = 0, then T is always a homogeneous quadratic form

in the generalized velocities. In other word, T can be written as a homogeneous quadratic

function for both constant and tim~varyingmasses system only when the constraints are

independent of time. For serial manipulators, this would imply that the length of the links

should be fixed.

2.2.1 Kinetic Energy of the Manipulator

Consider an n link manipulator, the translation velocity, Vei, and the angular velocity, Wei,

of link i can be written as

Vci - Jvc• (q)q,

Wei - R;(q)Jwi(q)q (2.19)

where q = [ql Q2 ••. qn] T is the joint vector, ~ E R3x3 is the rotational matrix that

transforms a moving vector in the i-th frame to the inertial frame. JVci E R,3X3, JWi E !i3X3

are Jacobian matrices of the manipulator that relate joint velocities to linear and angular

velocities, respectively. Then the total kinetic energy of the manipulator of link i is

n
K = ~(lL [ffii (t) JJ:.(q)Jvci (q) + J2:(q)~(q)Ii (t) RT(q)Jw.(q)) q

i=l

11
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where 1Jl.i (t),Ii (t) are the.mass and inertia matrix of link i respectively. Note that m; (t)

is a scalar time function, however Ii(t) is the 3 x 3 symmetry matrix defined as

Define

I(t) =
J(y2 +z2)dm

- fxydm

- fxzdm

- Jxydm

f(x2 + z2)dm

- Jyzdm

- fxzdm

- fyzdm

J(x2 +y2)dm

(2.21)

n

M(q, m,I) = L [mi (t) J~;(q)JvCi(q) + JZ:(q)~(q)Ii (t) Rf(q)Jw;(q)] (2.22)
i=l

which is always referred to as the manipulator inertia tensor. The matrix M(q, m, I) in

corporates all the mass properties of the entire manipulator for both translational and

rotational motion about the centroid. M(q, m,I) is a symmetric positive definite matrix

because m and I of the manipulator are always positive. Note also that M(q, m, I) also

involves the Jacobian matrices, which vary with arm configuration. Therefore M(q, m, 1)

represents only the instantaneous composite mass properties of the manipulator at the

current arm configuration. The kinetic energy of the manipulator can be written as

K = ~qTM(q,m,1)q (2.23)

where q, m are functions of time. Note that the kinetic energy is always a strictly positive

quantity unless the system is at rest. Also notice that the kinetic energy of time-varying

mass system not only depends on the generalized coordinate q, but also on the mass and

inertia of the manipulator. However the kinetic energy is still a quadratic function of

generalized velocity, q, which is similar to the constant mass manipulators case.

2.2.2 Potential Energy of the Manipulator

The potential energy of the robot manipulator is given by

V - l gTrdm = gTrcdm

V _ V(q,m) (2.24)

Notice that the potential energy is only a function of the joint variables and the link masses,

but not a function of the inertia.

12



2.2.3 Dynamic Equations for n-link manipulatOl$

Define the Lagrangian as

L(q,m,I) - K - V

_ ~qTM(q, m, 1)4 - V(q, m)

or

n

L(q,m,I) = ~ 'LdiJ{q,m,1)4i4j - V(q,m)
i,j

(2.25)

(2.26)

where M(q, m, 1) = [dij]. By assuming that the generalized constraints do not contain

time implicitly, L(q, m, I) is only a function of the generalized coordinates q, and both

time-varying mass met) and inertia let). By using the Lagrange's equations of motion

We have

8L

d4k

d (8L)
dt d4k

n

- 2: dk,j(q, m, 1)4j
j

- tdk,j(q,m,l)ijj + t(~dk,j(q,m,I»4j
j i,j

(2.27)

(2.28)

For simplicity, let dk,j = dk,j(q, m, 1), then

~ (8L) _ ~ d . "". ~ [8dk,j". 8dk,j.. 8dk,j t] ."
dt ,/;, - L- k,]Q, + L- 8" ql + 8 . m l + 8L 1 q,

""'ik. . . q, m, ,
, I,]

Define that

d (8L) ~ d .. ~ [8dk,j " ( ) . {3( )1"] "dt d4k =~ k,jqj +~ 8qj qi + a q mi + q i qj
, J

and

13
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The Lagrange's equations become

n n [~ n ] n.. Udk' 1 adi·.. .'. BVL dk,jl}j +L a .J - -2 L a J qiqj +L [a(q)rJli + P(q)Ii] qj - ~ = 7A:
. . ql .. qk. uqlc

} J IJ J

which can also be written as

M(q, m,I}ij + C(q, q, m, I)q + F(q, m, i)q + g{q, m) = r

where the k,j-th element of the matrix C(q, q, m, I) is defined as

(2.33)

(2.34)

(2.35)

Note also Cijk are known as Christoffel symbols of the first kind. For a fixed k, we have

Cjjk = Cjib which reduces the number of computations of these symbols by a factor of ~.

The term which involves joint variables q, and both derivative of mass and inertia, mand

j is defined as follows

(2.36)

Equation (2.34) consists of four different types of terms. The first term represents inertia

torques, and it involves the second derivative of the generalized coordinates. The second

terms are quadratic terms in the first derivatives of the generalized coordinate, q. It accounts

for the Coriolis (i =1= j) and Centrifugal (i = j) effects of motion. The third term involves the

product between the first derivatives of the mass/inertia and the generalized coordinates, q.

The last terms is represents gravity and it involves only q and m(t) but not their derivatives.

2.2.4 Matrix Form

In this section, we will write the dynamic equations in matrix form. From equation (2.25),

the Lagrangian of the system can be written as

L = ~qTM(q,m,I)q - V(q,m)

14
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where q is the (nx 1) generalized coordinates vector, M(q, m, I) is (n xn) the inertia matrix,

V(q, m) is the scalar potential energy function. Then the Lagrange's equations are given

by

- M(q,m,I)q

Also

8L
dq

d (8L) =
dt dq M(q, m, l)ij + M(q, m, I)q (2.38)

8L 1 (8 .T . ) T 8V
dq = 2 8q (q M(q, m, I)q) - 8q

Thus the dynamics equation is

(2.39)

M(q, m,I)ij + { 114'(q, m,I)q - ~ (~ (tiTM(q, m,I)q)r} + g(q, m) ~ T (2.40)

Notice that the time derivative of the inertia matrix M(·) can be written as

M( I) _ 8M(q,m,I) . 8M(q,m,I) - 8M(q,m,I).
q, m, - 8q q + am m + 81 I

By defining

C(' I) 8M(q,m,I).. 1 (8 (.T ( ) .))Tq,q,m, = 8q qq- 2" 8q q M q,m,I q

~and also

F( . J') = 8M(q,m,I). 8M(q,m,I)J'
q,m, 8m m+ 81

We obtain the dynamic equations in matrix form,

M(q, m, l)ij + C(q, 4, m, 1)4 + F(q, rh., j)q + g(q, m) = r

2.3 Dynamic Model Properties

(2.41)

(2.42)

(2.43)

(2.44)

•

In this section, useful properties of the manipulator dynamics are briefly discussed. These

properties are important in both stability and performance analysis. All these properties

are derived from the fundamental physical behavior of the manipulator dynamics.
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Property 1 The inertia matrix M(q, m,I) of the time-varying system is a symmetric

positive definite matrix which. satisfies

(2.45)

where Am (AM < 00) denotes the positive minimum (maximum) eigenvalue of M(q, m, 1) for

all manipulator configuration q. This property is valid only when both time-varying mass,

met) and inertia, let), are some bounded time functions.

Property 2 The matrix F(q, m, i) of the time-varying mass system is a symmetric matrix.

The positive definiteness of matrix F(q, m, j) depends on the sign of mand 1. The following

are all possible cases:

• If mand j are constant, the matrix can be written as

n

F(q, m,j) = L [~(t) J~.(q)Jt1ci(q) + J~(q)~(q)ii (t) Rf(q)Jw, (q)]
i=l

We should reaJ..lze that the matrix F(q, m, 1) has exactly the same structure as M(q, m, 1)

except the both m and 1 are replaces with m and j, respectively. Furthermore we

also know that both rh and i always have the same sign. Therefore we can conclude

that ifmof the system is constant and always positive, then the matrix F(q, rh, j) is

a symmetric positive definite matrix which satisfies

(2.46)

where AI (AF < 00) denotes the positive minimum (maximum) eigenvalue of F(q, rh, i)

for all configuration q. On the other hand, we can also show that if m is a constant

and always negative, then matrix F(q, m, i) is a symmetry negative definite matrix

with the same bound as shown above.

• Ifm and i are some time dependent functions, it is always possible to write F(q, m, j)

as

F(
. J") _ 8M(q, m, 1) . + 8M(q, m, 1) j

q,m, - 8m m 81

where aM~m,T) and 8M(~;.n,l) are always symmetric positive definite matrix. Again,

if m is bounded by some positive definite function, then F(q, m, i) is a bounded

16



symmetric positive matrix. On the other hand, it is also true ifm is bounded by some

negative function. However, if mis not bounded by any function, then no conclusion

about definiteness of F(q, m, j) can be drawn.

Property 3 The matrix N(q,q, m,I) = M(q, m, I) - 2C(q, ti, m,I) - F(q, m, j) is skew

symmetric, Le. matrix N(q, q, m, I) always satisfies the following

N(q, ti, m, I) = -N(q, q, m, l)T

for any (n x 1) vector x.

or xTN(q,q,m,I)x = 0 (2.47)

Proof. Given the inertia matrix M(q, m, I). By using chain rule, the kj-th component of

the inertia matrix is given as

(2.48)

(2.49)

note that dkj -Ai = :E?=l [ag:; ]tk Therefore, the kj-th component of N(q, q, m, I) =

M(q, q, m,I) - 2C(q, q, m,i) - F(q, m, I) is given by

nkj = dkj - 2Ckj - Ai

= ~ [adkj _ {8dlcj + adki _ 8dij }] tii
LJ 8qi· 8qi 8qj 8qk
1=1_t [8dij _ 8dki ]
i=l 8qk 8qj

Since the inertia matrix M(q, m,I) is symmetric (l4j = dji), then from above, we can

conclude that

(2.50)

which completes the proof.

Property 4 The dynamic equation (2.34) is linear in the unknown parameters. This

property may be expressed as

M(q, m, l)ij + C(q, q, m, I)q + F(q, m, j)q + g(q, m) = Y(q, q, ij)¢J (2.51)

17
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where ¢ is the parameter vector and Y(q,q,ii) is a matrix which depends on the joint

variables, joint velocities and joint acceleration.

The above properties are important in understanding the dynamics and are useful during

stability analysis. For a revolute-joint manipulator, matrix M(q, m, I) is not only positive

definite but also its dependence on q is in the form of trigonometric function, sine and cosine.

This implies that ifboth time-varying mass and inertia can be bounded by a. constant, then

M(q, m, 1) can also be bounded by a. constant. On the other hand, if the both time-varying

mass and inertia are bounded by some functions, then the bounds of M(q, m,I) are not a

constant but are general functions.

18
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Chapter 3

CONTROLLER DESIGN FOR TRAJECTORY

CONTROL

In this chapter, we use Lyapunov-based control schemes and passivity-based control schemes

to design robust and adaptive controllers. In comparison with the inverse dynamics method,

passivity based controllers are expected to have better robustness properties because they

do not rely on the exact cancellation of nonlinearities. Moreover, passivity based controllers

also require less computation time as compared to inverse dynamics method. The outline

of this chapter is as follows: First, we give some background material that will be used

in the rest of the report. Then, we formulate the closed loop dynamics for the system in

the presence of parameter uncertainty. Our control designs will be composed of an inner

controller and an outer controller. The inner controller deals with the cancellation of known
...
terms. We will discuss several different control strategies for the outer control. Stability of

all designed controllers will be analyzed.

3.1 Background

Class K Function

A function 'Y (.) : R.t ........ R+ belongs to class K if and only if it is continuous and satisfies

'Y (0) = 0, and

19
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A function 'Y (.) :~ ~ R+ belongs to class KR if and only if it belong to K and

lim 'Y (r) = 00.
r~oo

Global Practical Stabilizability

In this section we give a definition of global practical stabilizability which is the desired

behavior we would like our closed loop system to possess in the presence of uncertainties.

The uncertain system we consider is of the form

y(t) =F(t,y(t),u(t),w) (3.1)

where t E R is the time variable, y (t) ERn is the state variable, and u E Rm is the control

.input. All the uncertainty in the system is represented by the lumped uncertain element

wEn. The only information assumed about w is that the set n is not an empty set. Let

Gr denote the closed ball of radius r, that is

(3.2)

Note that II . II denotes the Euclidean 2-norm. System (3.1) is said to be globally practical

stabilizable with respect to the closed ball Gdo if and only if, given any 4. > do, there exists

a feedback control p : R x Rn ~ ~ for which the following properties hold:

(i) Existence of Solutions.

Given (Yo, to) E Rn x R, the closed loop system

y(t) =F(t,y(t),p(t,y),w)

has a solution y(.) : [to, td -.+-IF, y(to) = Yo, 'tItl > to·

(3.3)

(ii) Uniform Boundedness.

Given r E (O,oo), there exists a positive quantity d(r) < 00 such that for alisolutionB

y(.) : [to, tt} -t IF, y(to) = YO, of the closed loop system (3.3)

"Yo" ~ r =} lIy (t)" ~ d(r), for alit E [to,td·

20



(iii) Extension of Solutions.

Every solution y(.) : [to, td -+ Jl!l of closed loop system (3.3) can be extended over

[to, co).

(iv) Uniform Ultimate Boundedness.

Given any d> q aJ:!,d any r E (0,00), there is a T(d,r) E [to, co) such. that for every

solution y(.) : [to, co) -+ IF, y(to) = Yo of the closed loop system (3.3)

IIYoll ~ r ::} y (t) EGa, for all t ? to +T(d, r).

(v) Uniform Stability.

Given any d > q, there is a positive d(d) such that for every solution y(.) : [to, co) -+

R n , y(to) = Yo of the closed loop system (3.3)

Yo E G6(d) => Y (t) EGa for all t ? to.

The following theorem is useful in proving the stability of our controller designs. The proof

can be found in [12].

Theorem 3.1. Consider an uncertain system (3.1) with wEn and suppose that P is a

collection of feedback control functions, p : R x Rn -+ R""'. If there exists a candidate

LyapunotJ function V : R x R n -+ R.t and a class K function (1 : R+ -+ R+ such that for

each c > 0 there exists pE E P which assures for all wEn

and

iJ (t) = F (t, Y (t) ,pE(t, y(t»,w)

av~,y) + av~y) F(t,y(t) ,pE(t,y(t»,w) ~ -(1(l!yID + c

(3.4)

(3.5)

for all t E R, y (t) ERn, then P is a pmc.tically stabilizing family with respect to {OJ where

{OJ is the zero state.

21
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3.2 Model- Formulation for Robust Control Design. .

The dynamic model formulation used in our robust control design is of the parametric form

(Spong 1992):

(3.6)

where ¢ is an m-dimensional vector of unknown physical parameters of the robot manipu

lator I and Y is an n x m matrix of known functions of the generalized coordinates and their

derivatives. Note that for the time-varying mass system, we can only write the dynamic

model in the parametric form when the length of the manipulator links is known. With

this assumption, we have

(3.7)

where <Po is the vector of constant parameters, 4>1 consists of the time-varying mass and

inertia, and <h. consists of the first derivatives of the time-varying mass and inertia Note

that Y1(-), Y2 (-) may consist of not only the joint variables, but also the link lengths. In

this formulation, we assume that some components of 4> are not exactly known, only an

estimated value ~ is known. The uncertainty is represented by

¢= ~-4>.

If ¢ is some bounded function, then the model uncertainty is bOl.Wded as

II¢II ~ p p > 0

3.3 The Proposed Controllers

(3.8)

The controller design problem is as follows: Given the desired trajectory qd (t), and with

some or all of the manipulator parameters being unknown but the bounds are known, derive

a robust control law for the actuator torques such that the manipulator output q (t) tracks

the desired trajectories and also overcomes the effects of presence of uncertainty in the

system. The Lyapunov second method will be used for both robust and adaptive controller

design in this chapter. The robust control design. technique that we discuss is based on the
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theory of guaranteed stability of uncertain systems as developed in Leitmann and Corless

(1981).

3.3.1 Robust Control

In this subsection the problem of counteracting model parameter uncertainty is considered.

Some different robust control schemes will be discussed. The robust controller is derived

in two steps. First, a simple inner loop control law is designed by using the feedback

linearization technique to cancel all the known nonlinear terms. The outer loop control1aw

is designed by using the second method of Lyapunov. The Lyapunov-based control laws

are more robust than the inverse dynamics based control law. because the Lyapunov-based

control1aws do not rely on the exact cancellation of the system nontinearities, whereas

inverse dynamics based control laws do.

Closed-Loop Dynwnics

Consider the following change of the coordinates,

( - lid - Ae

ev - q- ( = e+ Ae (3.9)

~p.ere e = q - qd denotes· the tracking .error in the manipulator joint coordinates and A

is a constant, positive definite (n x n) matrix. The control input is given by 'T = 'To + T1,

where TO is given by the inner control law and T1 by the outer control law. Choose the inner

control1aw as

TO = Mo(q, m, 1)( + Co(q, q, m, 1)( + Fo(q, m, i)( + go(q, m) - KDev (3.10)

where MoO, Co(·),FoO and 90(') are the known estimates of the M(·), C(·), F(·) and g(.),

respectively, and KD is the positive definite gain. This control law gives the error equation

as

M(q, m,I)e·v + C(q,q,m,I)ev + ~F(q,m,i)~ + (KD + ~F (·))ev = Y(q,q,qd,qd,iid)¢ + T1

(3.11)
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where ¢ is defined in (3.8} , and Y(q, q, qd, qd, iid) is given by

(3.12)

where

M(.) - Mo (0) - M (-),

CO - Co (-) - C (-) ,

FO - Fo (-) - F (0) ,

g(-) - 90 (.) - g (0) (3.13)

Note that Y (-) ¢ is independent of the joint acceleration. This is important in implementa

tion because the joint acceleration is always not measurable and its response is discontinuous

if the saturation type controllers are employed. Also note that the nonlinearityfperturbation

term Y (-) ¢ is state-dependent, and therefore it cannot be assumed to be a priori bounded

by some positive constant_ Moreover I the matrix function Y (0) consists of a highJy nonlinear

term C(·} which causes Y(o)¢ more difficult to deal with in the stability analysis.

Bounding of the Nonlinear Dynamics in Y (0) ¢

Suppose that we have only limited knowledge of the parameters, but we do know the

tructure ()f the dynamic equation, then it is always possible to find a bounding function for

Y(-)¢. Following is a way to find a bounding function for Y C·) ¢. From [21], by defining

x = [e e]T, we have

IIM(q,m,I)iidll < IIM(q,m,I)II·lIiidll 5: f31·

IIM(q, m, I)ell < IIM(q, m, I)I!-lIell 5: /hllxll·

also

IIC(q,q,m,I)iidll < IIC(q,m,I)II'lIiidIl2 + IIqdll'\IGCq,m,I)II-llell

< f33 + f34I1xll·

IIC(q,q,m,I)ell < IIqdll-IIC(q,m,I)llo Hell + lIell-IIC(q,m,I)II·lIell

< ..85 + ~lIxll2o
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By using the Property 2 from Chapter 2, the time-varying inertia matrix can be botmded

as

lip (q, rh, i) tidll < lip (q, m, i) II· lltidll $ fJr·

lip (q, rh, i) ell < liP (q, m, i) II· II ell $ f3s IIxll·

Also assume that the gravitational effect is bounded as

119 (q, m) II $ {3g

Thus, generally the uncertainty can be bounded by some function such as

(3.14)

where

Developing a bounding function is one of the key steps in designing nonlinear robust

control law. Existence of these bounding functions is guaranteed by the inherent properties

f the robotics system, Le. mass and inertia o~ a link. is always botmded. However, finding

the coefficients of these bounding functions requires a priori knowledge of the uncertain

ties such as ranges of the parameter variations and maximum variation of load. In most

applications, partial knowledge of the uncertainties are always available. However, if the

knowledge of the uncertainties are not available, robust control law can still be designed by

using a combination of robust control and adaptive control.

Furthermore, if the size of the bounds are not available, then the functional form of the

bounding function for robotic systems can still be found because analytical expressions for

the robot dynamics are available. Refer to [21], notice that no matter what the size of ¢,

the following inequality holds:

(3.15)
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where gain kr > 0 can be chosen freely by the designer. Since any function that bounds

uncertainties can be chosen as the bounding function, we can also define the bounding

function p (0) as

1 11-11
2

k
r

2p(.) = kr ¢ + 4 I1Y (0)1I .

Also notice that if a bound on ¢ is known, then the first term is just a constant term, then

we can remove the first and a new bounding function for the unknown uncertainties as

This bounding function requires no information about the robot parameters and payload.

It is also obvious that the larger the gain lor, smaller the ultimate bound on the state. In

the next section, it is shown that kr is the key gain to decide whether the controller behaves

more robust or adaptive in adaptive robust controller. Since no information about robot

parameters and payload is required, it is easy to use during implementation.

Stability Analysis

For the stability analysis, first we have to find a Lyapunov function candidate. Consider

the foYowing positive definite function of ev :

(3.16)

Taking the time derivative along the solutions to the error equation gives

T 1 T 0

V - et! M(·)ev + 2"ev M(o)ev

- e~ (-COev - ~F(.)ev - KDev + Y(-)¢ + 7"1) + ~erM(q)ev

- -e~ ( KD + ~FO) ev + ~e~ (M(.) - 2C(·) - F(o)ev) + e~ (YO¢ + 7"1)

_ -er(KD+~F('))ev+e~Y(-)¢+er7"1 (3017)

Since F(o) is given by

.' 8M(q,m,I) 0 8M(q,m, l) i
F(q,m,I) = am m + 81

26
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and the definiteness of F(·) depends on the sign of m, i.e. F(.) is positive definite when

m is positive and F(.) is negative definite when m is negative. This mean that, when m

is negative the gain matrix KD should be chosen such that the matrix (KD + ~F(.» is

positive definite. By designing different nonlinear compensators, T1, both asymptotic and

practical stability can be proved. The design of 7"1 (outer control law) will be discussed in

detail in the next section.

3.3.2 Nonlinear Compensators Design

In this subsection, by designing the nonlinear compensator, we would like to make the

tracking error approach either to a boundary region or to zero asymptotically. For robust

controller design, we assume that there exist a known function p(.) : Ern x R ~ Rf such

that

for all (ev,t) E R2n x R, pT(ev,t) is a scalar function.

(i) Discontinuous Type Compensator

Theoretically, this compensator will guarantee asymptotic stability of the closed-loop sys

tem; however, this compensator appears too forceful due to the compensators' discontinuous
~ . - '.

nature in practice. Furthermore, this compensator will also excite the high frequency mode

and unmodeled dynamics of the system thus resulting in chattering, which is often unde

sirable. The discontinuous compensator has the form

(3.19)

for all II ev II =1= 0, otherwise 71 = O. Note that the function is discontinuous at lIev ll = 0 and

this compensator also does not have any boundary layer.

Stability analysis: From above, we have
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If II ev II =I- 0, then

v < -Amin (KD + ~F(.») lIev l2 + e~Y(.)~ - ~:~ p(.)

< -Amin ( KD + ~F('») lIevl2 + lIevIlIlY(-)~II-lIevllp(-)

< -Amin (KD + ~FH) lIevil2 + lIevll (1IYo~lI- pO)

< -Amin ( KD + ~F(.») lIevl2

Since V is positive definite and V is negative definite, we can conclude that ev ~ 0 asymJr

toticaJ1y. Also, since ev = e+ Ae, e, e~ 0 as t -+ O. However, cha.ttering will always be

introduced due to the discontinuous nature of the control law and it is often undesirable

since the high frequency component in the control can excite unmodeled dynamics of the

system.

(ii) Saturation Type Compensator

Second type considered is the saturation compensator. This compensator improves the sys

tem performance by introducing an error boundary layer. Also the saturation compensator

will result in uniform ultimate boundedness, often called practical stability, i.e., the states

converge to bounded neighborhood of the origin. But this is inadequate for some application

uch as high precision manufacturing. The compensator is given by

where £ is a positive constant, and defines the thickness of the boundary layer.

Stability analysis: From above, if lIev II > e, then we have

V < -Amin(KD+ ~F('»lIevIl2+e~Y(-)~-e;(II~IIP(-))

< -AmiD ( KD + ~F('») lIevl12 + 1Ie"III1YO~1I - "~~ p(.)

< -Amin (KD + ~F('») lIevll2 + lIevll (IIY(')~II- p (.»)

< -Amin (KD + ~F(.») lIevll2
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If lIev ll ~ c, then

v < -AmiD (KD + ~F('») IIev ll 2 + e?;,y(.)J> - e?;' (~ p(.»)

< -AmiD (KD + ~F('») lie" 11 2 + lIevllllYO¢1I + 1I~"2pO

< -AmiD (KD + ~F(-)) lIev ll 2 + lIevllp(,) + lIevllp(·)

< -AmiD (KD) lIev ll 2 + 2cp(·)

Using Theorem 1, uniform ultimate boundedness of the system state is guaranteed. Leit

mann and Corless (1981) showed that there exist a time tE; which the solution trajectory

intersects with the boundary layer. However, it is not guarantee that the solution trajectory

will remain inside the layer. Therefore if c is not not chosen properly, switching in and out

of the layer may happen and introduce chattering.

(iii) Smooth Type Compensator

Third type of compensator considered is the smooth robust nonlinear compensator. There

will be no switching of controller during the process, hence the motion is expected to be

more smooth than the saturation compensator. The outer loop control for this type of

compensator is time-varying, I.e. explicitly depends on time. The controller has the form

T1 = -p(.) tanh[(a + bt)evl (3.21)

where a, b are positive constants, and tanhlCa + bt)ev] = [tanh[(a + bt)ev1J,'" ,tanh[(a +
bt)evn]T.

Stability analysis: From above, we have
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Since Otanh(aO) 20 for'aiUJ"and a > 0, and also Itanh(8)I= tanh(I0/), then we have

V < -Amin(KD + ~F('»lIevll2 + lIev!lllY(-)¢II- pe~(-) tanh[(a + bt)ev]

< -Amin (KD + ~FO) 1I~1I2 - p(-) (t leml tanh [(a + btl levin - "Y('~¢lllIevll)
1:;:1 P ()

< -Am;. ( Kv + ~F(.)) 110,,11' - p (.) (~I"",I tanh [(a + btl 1"",1] - 00~ 1""'1)

where 00 = lI:g~[j and 0 ~ 00 < 1. Then it is obvious that V ~ 0 as long as the following

condition is satisfied.

n n

L levil tanh [(a + btl levil} - 00 L Iftril 20
i:;:1 i:;:l

==> levil tanh [(a + btl levil]- 00 levil 20

Solving the inequality, we have

(3.22)

where

1 In (1 +(0);0 =
2 (a + bt) 1 - 00 -

If (3.22) is satisfied, then ev will converge to a the closed ball centered at the origin with

radius of ;0. Furthermore, as t approaches to infinity, ;0 will also approach to O. Thus as

t -t 00, V < 0 and V = 0 when ev = O. Hence we can conclude that ev asymptotically

converges to zero.

3.3.3 Adaptive Robust Control

The nonlinear compensators that we discussed above require a priori knowledge of the bound

of uncertainty. However, the upper bound of the tim&varying unknown parameter may not

be known or if the range of the time-varying unknown parameter is chosen large will result

in poor performance. With these reasons, we propose an adaptive robust controller which

does require prior knowledge of the bound of uncertainty and guarantees uniform ultimate
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bOUlldedness of the system state. The different between the adaptive robust and adaptive

controller is the adaptive robust controller adapts the upper bound of the unknown param

eters instead of the unknown parameters, which adaptive controller does. The following

theorem gives the outer loop controller and its stability.

Theorem 3.2. : Let E > 0 and choose the outer control law and estimate PI of PI as

71 = { -~ (Llh (.) + P? (.») lIevll > E

-~ (k~pd') + P2' (-)) lIevll ~ E

and

(3.23)

; {~rllevllPI =
o

where PI and p? are defined by

Ilev II > E:

lIevll ~ £

(3.24)

11¢11
2

< PI (.)

kr IIY (-)112 < P2 (-)
4

then, practical stability of the closed-loop system can be guaranteed.

Proof. Choose the Lyapunov function as

1 T ) 1 ~r-l-V = 2"ev M(q, m, I ev + 2Pl Pl· (3.25)

where r is a positive definite constant and .01 = PI - Pl' Taking the time derivative along

the solutions to the error equation gives

iT _ -er (KD + ~F('») e" + ~er (M(.) - 20(·) - F(.») ev +er (yT(.)~ + 71) + pfr-lpl

-er (KD + ~F(-») ev + er (yT(.)~ +71) + pfr-1pl

From equation (3.15) we obtain
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then

v ~ -e~ ( KD + ~F(o») ev + e~ (~ 1I¢;112 + : IIY 0112+ 7"1) + PITr-1pl

IT lIev ll > £, then

v < -e;; (KD + ~F(-)) ev+ lIevll (~ II¢1I
2

+ ~ IIY (0)1I
2

) - e;; (II~II (:r PI (0) + P2 (0»))
+p[r-Ipl

T ( 1 ) II II ( 1 ( ) ( ») e~ev 1 ( ) erev -T I·< -ev KD + 2F (0) ev + ev k
r

PI - + P2 0 - lIevll kr PI 0 - l\evll P2 (-) - PI r- PI

< -e;; (KD + ~F(-») ev+ lIevl! (:r P2 (-) + P2 (-)) - "~lIpdo) -lIev ll P2 (-) - prr-I~1

< T (K IF( ») lIev ll_ -Tr-I ~o-ev D + 2" . ev + ~Pl - PI PI

< -e;; (KD + ~F(-)) ev + p[ (II~" - r-Ifil)

< -e;; (KD + ~F(o») ev

IT lIev ll ~ c, then

V < -e;; (KD + ~FO) ev +e; (~ pd,) + P2 0 - ~ (~ pd·) + P2 (-)) )

< -e;; (KD + ~F(o») ev + lIevll (:r P2 (0) + 2P2 0)
< -e;; (KD + ~F(.») ev + 2eP2 (-) + :r CPI (0)

In oder have the V ~ 0, the following needed to satisfied:

For (3.22), we have

and the adaptation law

IIKDII > II~F(o)"
1

AM {KD} > 2"kp IIqll
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3.3.4 Adaptive Control

Since the linear parametrization property holds ever for the case of the time-varying masses,

it is possible to design an adaptive control law for the system. All the results using this

control law are based on the assumption that the unknown time-varying parameter tPl is

continuous and its n-th derivative is constant. From (3.7), we know that the uncertainty of

the time-varying masses system can be written as

(3.29)

First we consider a simple case that the mass flow rate is constant, Le. ~ = 0, and

~ = ¢>2, then we have

(3.29) can be written as

y(.}cjJ - YQ(-)¢o + Y1 (-} (kIt + ko) + Y2 (·)k1

Yo(-)¢o + Y1(·)tk1 + Y2 (·)k1 + Y1(·)ko

Yo(')tPo + (Y1(-)t + Y2(-» k1 + Yl(-)ko (3.30)

Notice that <P0,k1 , ko are a.ll constant parameters. Assuming that the constant parameters

of'the robot are mow, i.e. tPo is mown and the time-varying parameters tPl is unknown,

i.e. ko and k1 are unknown, then choose the control law

with the adaptation law

r = M(.)( + 6(·)( + F(.)( + gO - KDe"

k1 -rl (Y1(·)t + y2(·»T ev

ko -rOYl OTev

(3.31)

can guarantee asymptotic stability of the closed loop system. The following theorem gives

a general version of the control law we discussed.
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Theorem 3.3. Assume that the time-varying fUnction ¢1 is continuous and has finite num

ber of non-zero derivatives, i. e. there exist some vector constants ko, k1l .• - 1 kn such that

then with inner control law

T = M(-), + C(.)( + FO' + gO - KDev

and adaptation law

ko - -roY1(-fev ;

k1 - -r1 {Y1(-)t + Y2{o»T ev;

kn-l - -r1'-1 (Y1(-)t + (n - 1)Y2{-})T tn- 2ev;

kn - -rn(Yl(-)t+nY2(-»Ttn-lev

will result in a globally asymptotically stable closed loop system_

Proof. From (3.32) we know that

...,
and

then we have

Yd-)¢I + Y2(-)¢2 - YI(-) (100 + kIt + k2t2 +. --+ kntn )

+Y2(') (k1+ 2k2t + .. -+ nkntn-
1
)

YI(-)ko + (Yi(-)t + Y2(·»k1+ {YI(-)t + Y2(-»tk2 +. -

+(Yd.)t + nY2(·»tn-Ikn

(3.32)

(3_33)

(3.34)

with this parametrization, the global asymptotic stability of the closed loop system can be

easily shown.
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3.3.5 Integral Saturation Adaptive Robust Controller

To improve the robustness of the control law, a boundary layer is introduced in adaptive

robust controL However, with this only uniform ultimate boundedness of the closed loop

error can be guaranteed. In addition, chattering may be introduced if the value of E is not

properly chosen. In this subsection, an integral term is introduced when the solution enters

the layer and global asymptotically stable can be shown.

Theorem 3.4. : Consider the following outer loop control law and an update law for P as

and

(3.35)

where P is given by

~rllevll Hevll > £

o lIevll S E

(3.36)

_·IIY(·)~II s p(.)

Then, the closed-loop system is global asymptotically stable. Note that PI is the constant

limit of p. Here we assume that p is updated only when t S tf;'
...

Proof. In [43), the existence of tf; has been shown. The total time spent by the solution

trajectory outside the layer is finite. Moreover, it is assumed that the upper bound estimate

pconverges to a constant finite value PI before t approaches tf;. Choose Lyapunov candidate

as

1 T ) 1::Tr-1-V = 2"ev M(q,m,I ev + 2"1' p.

From Section (3.3.3) I for t S tf;' we get

V < -e~ (KD + ~F(')) ev

< o.
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For t > t" we can choose the Lyapunov function as

where

1/J - Ki1yO¢ - (t evdt
lcc

1/J - -e"

(3.37)

(3.38)

where Kr is the positive gain matrix. Then the time derivative of the Lyapunov function is

v - -e~M(q,m,I)e~ + pTr-1p+ ~1/JTKI¢

- -e~ (KD + ~FO) e" + e~ (yTO¢ - e; Pt - K[ it evdt) +1/JTKrtb

- -e~ (KD + ~FO) ev + e~ (YT (-)¢ - ~ Pt - Kr it evdt) + ~TKJ'I/J

T( 1 ) T(T - ev it)- -ev KD + 2"F(o) ev + ev Y (.)¢ - E:Pt - Kr te e"dt

-e~KJ (Ki1y(.)¢ -icc evdt)

< -e;; (KD + ~FO) ev - ~ lIev ll 2
. (3.39)

As t > t" then the estimated parameter {J will converges to finite value pj, so ¢ = ev is

true only when t > t,. Since V ::; 0 as t > te;, the solution trajectory will remain inside the

layer in the absence of any disturbances.

In this chapter, several control laws, which are combinations of robust and adaptive

approaches were discussed. However, the ultimate justification of value and applicability

of these control algorithms lie in actually implementing them on real systems. Therefore,

the designed controllers will be applied to the NSK two-link direct drive manipulator in the

next chapter.
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Chapter 4

EXPERIMENTAL BACKGROUND

In this chapter we describe the implementation of the proposed controllers on a direct drive

NSK two-link manipulator. First) the experimental setup is described. Then) the dynamic

equations for the NSK tw~link manipulator with a time-varying payload are given and

their properties are studied. Parameterization of the robot dynamics is illustrated..

4.1 Hardware Setup

A detailed drawing of the experimental facility is shown in Figure 4.1. The experimental

setup consists of a tw~degree-freedom direct drive manipulator with a vessel sitting on the

end of the second link. A pipe is connected. from the top of vessel to a pump either to pump
,-

fluid in or out of the vessel. Pumping of fluid in or out of the vessel during the motion of

robot gives the time varying nature for the payload.

The two-degree-freedom manipulator is driven by two direct drive switched reluctance

type NSK motors. The base motor (model 1410) and elbow motor (model 608) have a maxi

mum rated torque of 245 N-m and 39.2 N-m, respectively. Details of the motor specifications

are shown in Table 4.1. Sensors for both position and velocity measurement are integrated

within each motor, which provide measurement of joint position and joint velocity. The

actuator position of each link is measured with a 1So-pole resolver, which provides approx

imately a resolution of 2 arc-seconds. The analog position signal is processed through a

1o-bit resolver to a digital converter that provides 150x1024=1S3,600 counts per resolution

. This gives a resolution of 0.0000409 radians per encoder counter. A velocity signal is also
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available through frequency-through-voltage converter that provides an analog signal that

is proportional to joint velocity. However, due to noise, joint velocities used in the experi

ment were calculated from the joint position by using first order finite difference method.

Constant parameters of the NSK manipulator are lis~ in Table 4.3.

A servo sampling rate of two milli-seconds is used in the implementation. Also" torque

mode" is chosen as the operator mode for the NSK motors. Under this mode, the motors

behave like current amplifiers which produce a motor torque command that is proportional

to the input voltage signal.

The time-varying payload is modeled by a 4" inner diameter PVC pipe. It is closed

on both ends by two PVC caps with 4" inner diameter. A 6.25" ,diameter and 0.75" thick

aluminum mount is built to mount the vessel on the second link. of the robot. The position

of the vessel is fixed by using three 5" screws which connect the mount and the aluminum

ring. The length of the vessel is 16", so it provides an approximate volume of 201.06 in3•

The working fluid used in our experiment is water and its density is 998.2 kgjm3 under

room temperature. So the mass of the payload varies from 0 kg to 3.289 kg or 7.253 lb. A

garden pump with 30 gallons/ hour is used to pump water in or out of the vessel. A 3/8"

inner diameter pipe is used to connect the vessel to the pump which provides approximately

0.206 kgjs or 3.289 Ibis flow rate. Pumping of water in or out can be done by switching the

inlet and outlet of the pump to the pipe. The parameters of the vessel are given in Table,.

4.2.
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To Pump

Mount
Aluminium 6061
Thickness 3/4n

Diameter 6 1/4"

Ring
Aluminium 6061
ill 4114"
Thickness 118"

Pipe
II) 3/8"
Long 15'

J

10.6 kg
0.565 kg-m
380mm

Link 1
Mass
Inertia
Length

\
Link 2

4.85 kg
0.099kg-m
240mm

Vessel(PVC Pipe)
High 16"
ill 4"
4" ill Cap

Link 2
Mass
Inertia
Length

1

Motor 1

NSK

39.2 N-m
1.1 rps
153,600 cps
0.0077 kg-m

NSKRS 1410
Max. Torque 245 N-m
Max Speed 1.1 rps
Encoder Res. 153,OOOcpr
Rotor Inertia 0.267 kg-m

NSKRS 608
Max. Torque
Max. Speed
Encoder Res.
Rotor Inertia

Figure 4.1: Experimental Setup
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Model 1410 Model 608

Maximum Torque (N-m) 245.0 39.2

Rotor Inertia (Kg_m2) 0.267 0.0077

Maximum Speed (rps) 1.1 1.1

Mass (Kg) 71 13

Resolver Resolution (Counts/rev) 153,600 153,600

BeariDg Friction Torque (N-m) 7.84 2.94

Table 4.1: Motor Specifications

Symbol SI Value ' Definition

Pw 998.2 Density of water

R o 0.0508 Outer radius

~ 0.05 Inner radius

nip 0.206 Water flow rate
,

fflpl 1.814 Mass of the vessel

Ipl 0.0023 Inertia of the vessel

~:
"

I
,~.

'".,

....

Table 4.2: Parameters for the vessel and liquid
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....

Symbol 81 Value Definition

It 0.2675 Motor 1 rotor inertia

12 0.360 Arm 1 inertia (about c.g.)

13 0.0077 Motor 2 rotor inertia

lac 0.040 Motor 1 stator inertia

14 0.051 Arm 2 inertia (about c.g.)

ml 73.0 Motor 1 mass

m2 10.6 Arm 1 mass

m3 12 Motor 2 mass

ID.4 4.85 Arm 2 mass

It 0.38 Arm 1 length

12 0.24 Arm 2 length

h 0.139 Arm 1 radius of gyration

14 0.099 Arm 2 radius of gyration
I

Table 4.3: Constant Parameters for N8K Robot Manipulator
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m12 - h + 1.i + 1p(t) + l~m4 + l~rnp(t) + (11/4174 + 1112rnp(t}) COS(Ch)

= [13 +14+ l~m4] + [lt I4m 4] cos(q2) + [l~ +hI2cos(Ch)] rnp(t) + 1p(t)

- 113 +P2 COS(Q2) + tI2(Ch)rnp(t) + 1pCt)

= m21

m22 - 13 + 1.t + Ip + lim4 + l~rnp

- [13+ 14+ l~m4] + l~mp + 1p(t)

- P3 + V3ffip(t) + Ip(t)

where the Pi represents the constant inertia. parameters and Vi is the variable inertia pa

rameters. Also note that the variable inertia parameters are always functions of the joint

variables except for the last link. Next we can compute the Christoffel symbols as follows:

CUI
! 8du = 0
2 8ql

18du .
C121 = C211 = 2 8Q2 = - CP2 + 11 12mp(t» sm(Q2)

8d12 18d22 .
C221 = - - -- = - CP2 + lt I21np(t» sm(Q2)

8m 2 8ql
8d21 18dll .

C1l2 = - - -- = CP2 + lt12TTl.p(t» sm(q2)
8ql 2 8q2

18d22
Cl22 = C212 = --- =0

28ql

...
C222

~ 8d22 = o.-
.28q2

Hence

[

ioP7
C(q, q, TTl.p, I p ) = -. .

-QlP7
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For simplicity, C(q, q, ffip, Ip ) can be written in terms of parameter 'P7, which is a hmction of

both joint variables and time-varying mass. From the definition, time-varying mass matrix

can be written as

1] .IIp. (4.4)

Notice that the time-varying matrix depends only on the variable inertia parameters and

not constant inertia parameters. This is because the variable inertia. parameters are only

associated with the time-varying mass.

Skew-Symmetry of (M - 2C - F)

In this subsection, the skew-symmetry property is checked for a two-link robot manipulator

carrying a time-varying payload at the end of the second link. From Chapter 2, we prove

that (M - 2C - F) is a s~ew-symmetry matrix. To verify this property for the two-link

manipulator, the following calculations are performed. First, we calculate the derivative of

the inertia matrix

....

where

rnu -2P2 sin(CJ2)~ - 2lt12 sin(CJ2)Q2 + VI (q2)ffip(t) + ip(t)

- -2(1J2 + ltI2ffip(t» sin(CJ2)th + VI (CJ2)rhp(t) + ip(t)

- -2P7Q2 + VI (CJ2)rh.p(t) + ip(t)

mI2 - -P2 sin(q2)th -1112 sin(q2)thffip(t) + V2(Q2)1hp(t) + ip(t)

- -(1J2 + ltI2171.p(t» Sin(Q2)th + V2(CJ2)ffip(t) + ip(t)

- -P7Q2 + V2(Q2)m,,(t) + ip(t)
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V2(Q2) ]. [ 1rhp(t) +
va 1

note that, M can be written as

M(.) = _ [2P7t12 P7t12] + [ V1(~)
P7i2 0 V2(Q2)

We can write S(-) = M(-) -2C(-) - F(.) as

S(-) _ _ [2~q2 P742] + 2 [~7 (41 +0112) P7 ]

P7Q2 0 -Q1P7

= [ 0 (2ql +(2)P7 ]

- (241 + 112) P7 0

(4.5)

Furthermore, since sro + B(-) = 0, we can conclude that M(-) - 2C(-) - F(·) is skew-

sYIDDaetry DlatriK.

Linearity in the Unknown Parameters

Linearity in the paraDleters is an important property of robot manipulators that is used in

both robust control and adaptive control designs. This property can be expressed as

where

[~:
V12 V13 Wll W13 W12

WI< ]yeo) =
V22 V23 W21 W23 W22 W24

¢ - [ PI P2P3 fflp 11' rhp i
1'

]T
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and

Vll = iiI

V12 - 2cos(}2)(iil + ih) - (24142 + ~)sin«}2)

VI3 = ih

V2l = 0

V22 - cos(Q2)iil + sin(tJ2)t}f

V23 - iiI + ih

Wn = Vl(Q2)iil + v2(1J2)ih - sin(CJ2) (~+ 2t,h42) hl2

W12 - VI (q2)4l + V2(1J2)42 + h l2sin(1J2}4i

W13 - iiI + ih

W14 - 41 + (12

W2l - V2(Q2)iil + v3ii2)

W22 V2(Q2)tit + V3(:l2

W23 - iiI + ih

W24 - til + 42

Both constant and time-varying inertia parameters are listed in Table 4.4 and Table 4.5

separately. -FUrthermore, Y(.) caD also·be decomposed to associate with constant parameters

and time-varying parameters

(4.7)

where

<PI _ [fflp I p ] T ,

~ _ [ffip ip ] T ,
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Symbol SI Value Definition

PI 4.2420 Constant inertia parameter 1

P2 0.1825 Constant inertia parameter 2

P3 0.1062 Constant inertia parameter 3

Table 4.4: Constant Inertia Parameters

Symbol SI Value Definition

VI 0.202 + 0.1824cos(Q2) Time-varying inertia parameter 1

V2 0.0576 + 0.0 912cos{Q2) Time-varying inertia parameter 2

V3 0.0576 Time-varying inertia parameter 3

Table 4.5: Time-varying Inertia Parameters

Robot Parameters

The time-varying payload mass can be written as

(4.8)

where ffipi is mass of the vessel and mp2 is the mass of the liquid inside the vessel. Also

(4.9)

where 1p1 and 1p2 are inertia of the vessel and inertia of the liquid inside the vessel about

the center gravity, respectively. The inertia of the cylindrical vessel can be written as

(4.10)

where Ro and 14 are the outer and inner radius of the vessel. Note that since ffipl is fixed

then 1
p1

is also a constant. The inertia is a function of the mass and radius of the vessel.
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The time-varying mass ffip2 can be written as

fflp2(t) - Iv PwdV

- Pw1rR;h(t). (4.11)

where h(t) is the time function of liquid level. The inertia of the time dependent mass is

(4.12)

also the derivative of the inertia is

(4.13)

If the mass is time-varying, then the inertia is also time-varying. Note that if the derivative

of the mass, m is a constant, then the derivative of the inertia is also a constant. On the

other hand, ifm is a time dependent function, then j is also a time dependent fllllction.

In the implementation, the uncertainty term is written as

y (.) if, = Sf (.) (+ 6 (.) (+ F (.) <

were
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then the Y (.) ¢ can be written as

filp

Y(-)¢= [ all a12 a13 al. ] I"
a21 a22 a23 a24 inp.

11'
where

an - Vl(12 + V2(21 -lt12 sin(lJ2)(th(n + (til + (h)(2d,

a12 - (11 + (21,

a13 = VI (12 + V2(21,

a14 (11 + (211

a21 - V2(12 + V3(21 + l1l2Sin(lJ2)l,h(1l,

.. ..
a22 - (n + (21,

It is also possible to write matrix Y (.) ¢ as

Y (-) ¢ = Yi (.) ¢? +Y2 (.)~

where

[

all a12],Y1 (0) -
a21 a22

Y, (.j = [:: :],

~I [ ~ ] ,

~ - [;.p].

(4.14)

Note the ¢1 represents the time-varying parameters and ¢? is the first derivative of the

time-varying parameters.
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4.3 Reference Trajectory

The trajectory used in the experiment is shown in Figure 4.2. The desired trajectory is

smooth in joint position, velocity and acceleration. The magnitude of the desired accelera

tion is adjusted such that the control torque does not excess the motors limit at least for

the feedforward case. Figure 4.3 shows the reference trajectory in task space.

4.4 Implementation of Designed Controller

In this section, the controllers that are proposed in Chapter 3 are implemented on the NSK

two-link robot manipulator. Following are the gains that are used in implementation.

Case 1: PD control PD control has the form

T = KDev = KD (e + >.e)

[
15 0] [150 0 ]where KD = ,>. =
o 8 0 40

(4.15)

Case 2: Computed torque control The computed torque controller has the form:

T = M(·)( +C(·)( - KDev (4.16)

'[ ] [ ]22 0 150 0 .
where KD = ,>. =

o 14 0 40

Case 3: Robust adaptive with time-varying model The robust adaptive can be di

vided into inner and outer control law which has the form:

T = TO +Tl

where

and

TO = M(·}( + C(·)( +F(.}( - KDev (4.17)

-Tferr (t P1 + (2) lIel! ~ £

-~P2 lIell < £
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Trajectory of end effector
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Figure 4.3: Reference trajectory in Cartesian coordinate

52

-



where update law is given by

PI = ~ !lI et/lldt

P2 = IIYOll2 (4.19)

with KD ~ [~2 :] ,r ~ [: :], k. = 2, and • = 0.08. Notice that a small

adaptation gain for the first link. is chosen. This is because the parameters of the first

link are assumed to be known.

Case 4: Adaptive control by assuming constant flow rate In this case, the constant

:flow rate of the water is assumed, then we can write

then

,,-

where

Then choose

and updated laws are

Y(-)¢ - Y 1(')¢1 + Y2(-)~

= Yd·)tfo+ (Yl(·)t + Y2(o» flo

1'"0 = M(·)( + C(·)' + F(o)' - KDev

ko -rl ! Y l (0) tevdt

"1 - -r2! (Ydo)t + Y2(-» eudt
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(4.22)

(4.23)
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where

f, [:.045 :.0014]'

f, - [:.045 :.025]'
and the parameters G.i are defined in (4.14).

Case 5: Integral saturation adaptive robust controller The inner control law is cho-

sen same as Case 3 and outer control law is given by

(4.24)

where t E = 10 sec, is the time where upper bound is estimated, and PI will remain

constant after tEo
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Chapter 5

IMPLEMENTATION RESULTS

5.1 Results

All the control laws outlined in Chapter 3 were implemented on the NSK direct drive

two-link manipulator. The influence of the unknown time-varying payload is examined

experimentally. A sampling time of 2 milli-seconds and a period of 2 seconds is chosen for

the trajectory. Eight cycles are implemented for each controller. Both pumping water in

and out of the vessel is performed. Experimental results are given in Figure 5.1 through

5.13.

The following controllers were implemented on the experimental setup: (1) PD control

(Figures 5.1, 5.2}j (2) Computed torque control (Figures 5.3, SA); (3) Saturation type
",.

adaptive robust control (Figures 5.5, 5.6); (4) Adaptive control (Figures 5.8, 5.9, 5.10,

5.11); (5) Integral saturation adaptive control (Figures 5.12, 5.13). For all cases, pumping

of water in and out of the vessel during motion is considered: Also note that in Case 5, the

water is pump in/out before robot starts. The purpose of of doing this is to make sure that

upper bound is estimated before fifth period.

• In the case PD controller (Figures 5.1 and 5.2), the tracking error of the first link is

the same for each cyde. The tracking error in the second link decreases as the mass of

the payload decreases (pump water out, Figure 5.2 ) and increases as the mass of the

payload increases (pump water in, Figure 5.1). This is expected as the tim&-varying

payload directly sits on the second link. Another possible reason is that the PD gains

are fined. We have chosen high gains to tune the PD controller, and this may cause
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the system to destabilize if there are any other disturbances.

• Computed torque control law (Figures. 5.3 and 5.4), has better perfonnance as com

pared to PD controller as expected because it includes as exactly feedforward term

to compensate the nonlinear dynamics. From Figures 5.3 and 5.4, we notice that the

error do increases/decreasesas the mass of the payload increases/decreases.

• In comparison the PD and computed torque controller, the robust adaptive controller

(Figures 5.5 and 5.6) has better tracking error perfonnance and seems to adjust well to

the tracking error in the second link, Figures 5.5 and 5.6, improves considerably after

several cycles, and this is a significant improvement over PD and computed torque

control as the payload is on the second link.

• The results of adaptive controller are given in Figure 5.8 through Figure 5.11. In terms

of the tracking error, the pure adaptive controller has similar performance as adaptive

robust controller. In addition, Figure 5.9 and Figure 5.11 show the convergence of

the updated parameters to some fixed values. We do not know if these are the true

values as we do not know the actual flow rate in/out of the experiment.

• Results of integra1saturation adaptive controller are given in Figure 5.12 and Figure

5.13. The performance is comparable to pure adaptive and adaptive robust controller.

But, the saturation introduces chattering in the second link.

In conclusion, both adaptive robust controller and pure adaptive controller give satis

factory performance in the presence of uncertain time-varying payload.

The following remarks illustrate some other observations from the experiments.

1. Even though the velocity is estimated by the first order backward difference of position,

it still appears quite noisy resulting in chattering.

2. It should be noticed that increasing payload mass (pump water in) degrades the

performance of all controllers as compared to decreasing payload mass (pump water

out). The controllers that are least affected by this phenomena are pure adaptive

controller and adaptive robust controller as expected.
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3. Since the time-varying payload is on the second link, the tracking error in the second

link is directly affected, as can be noticed from the results.

4. The choice of "e", the boundary layer thickness, is critical in the control gain tuning

process.

5. The mass flow rate of the fluid in/out of the vessel is quite small for our experimental

setup and is constrained by the choice of the size pipe and pump capacity. We expect

to see a more contrasting results between several controllers if the mass flow rate is

higher.
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5.2 Experimental Plots

In this section, the data frOID.- the experiments is plotted using MATLAB. The total time

for each experiment is 16 seconds, which corresponds to eight cycles. el and e2 are tracking

erros in link 1 and link2, respectively.
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Tlrne, t (second)

Figure 5.1: Position error of pumping water in using PD control
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Figure 5.2: Position error of pumping water out using PD control
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Figure 5.3: Pump water in using computed torque control
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Figure 5.4: Pump water out using computed torque control
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Figure 5.5: Position error of pumping water in using adaptive robust controller
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Figure 5.7: Torque of pumping water out using adaptive robust controller
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Figure 5.8: Position error of pumping water out using pure adaptive controller
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Figure 5.9: Parameter estimate
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Figure 5.11: Parameter estimate
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controller
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Chapter 6

CONCLUSIONS

A new dynamic model for robot manipulators which consisting of time-varying mass is

derived. The compact dynamic model developed is suitable for controller designs as param

eterization of the dynamics into a known part and an unknown part can be easily done.

It is also shown that most of the properties for the traditional time-invariant manipulators

are preserved for the time-varying model.

A stable robust adaptive control law and pure adaptive control law have been designed

for the time-varying robot manipulator system and a comparison with their counterpart

control laws have been presented in this report. Both analytical and experimental compar

isons were conducted, and the results confirm the merit of the proposed control laws. The

results from the experiments show that the proposed control laws improve the performance.. :

of trajectory tracking in presence of an unknown time-varying payload.

Future research in this area can be extended towards analysis and design of performance

based control laws, especially for the case of faster time-varying payloads. Since the robot

dynamics is highly nonlinear, the controller designs can find application in other nonlinear

systems. The design of the experimental platform and its availability for implementation is

an added advantage in checking the practicality of the control designs.
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Appendix: Source Code

pau8.c

r. The following file is the servo file for the adaptive control

r. by assuming constant flow rate.

r.

#include <cntrl.h>

#include <math.h>

/*==========,=========--=======

Name: pau8.c Parameterize Adaptive Control (constant mass flow rate)

Control algorithm using trajectory down loaded in advance

All calculation inside the user algorithm base

011 Engineering NM-rad unit system

Note:

1. All position read be timesed by c2r=O.00004091 before being used.

2. Taul times t2c_1=2047/tau_ma.xl=8. 3551 before being outputed.

Tau2 2047/tau~2=5l.75----------------------.

3. Torque to Voltage is:

t2v_l=10/tau_ma.xl=O.040816

t2v_2=10/tau_ma.x2=O.25

4. Relations between kp based on counter and kpe based on

Engineering unit is:

kpel=tau_ma.xl/(2047*c2r) kp1=2925.6 kpl.

kpe2=477 .65 kp2.

==============*/
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#define TRAJPT 1000

J* Gain base on Engineering Unit *1
float VF_kpe1=15,VF_kpe2=8;

float VF_lambdapl=50,VF_lambdap2=20;

float def_kpl=2000,def_kp2=500,def_kdl=15,def_kd2=5;

1*-------------------------------
Robot constant paramet.er

---------------------------------*1

float 1_1=0.2675, 1_2=0.360, 1_3=0.0077, 1_3c=0.040, 1_4=0.051;

float m-l=73.0, m_2=10.6, m_3=12, m_4=4.85, m_p=O;

float 1_1=0.38. 1_2=0.24, 1_3=0.139, 1_4=0.099, I_p=O;

1* Inertia parameter *J
float p_l, p_2, p_3;

1* p_l = 4.2420 *1
1* p_2 = 0.1825 *1
1* p_3 = 0.1062 *1

float taul, tau2; .

float t2c_l=8.3551,t2c_2=51.75;

float. errl=0,err2=O,olderrl,olderr2,derrl,derr2;

float dposl,dpos2, oldposl, oldpos2;

float mdot_p=O.Ol, Idot_p=O.OOl;

float zeta1d, zeta2d ,zet,a1dd. zeta2dd;

float ev1=0.ev2=0;

float Ts;

float c2r=O.00004091. pi=3.1415927;

float rl.r1d.r1dd.r2.r2d.r2dd;

int i=O.j=O;

float v_l,v_2.v_3,v_4;

float mil"m12,m21,m22;

float c11,c12,c21,c22;

float f11,f12.f21,f22;
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float h11 ,h12;

float al1,a12,a13,a14,a21,a22,a23,a24;

float Yl1,Y12,Y21,Y22;

float time;

float sumrll=O, sumr12=O,sumr21=O,sumr22=O;

float Irhol1=O,Irho12=O,1rho21=O,1rho22=Oj

float kl_adp=O.05, k2_adp=O.003, k3_adp=O.05, k4_adp=O.003j

float rhohat11, rhohat12, rhohat21, rhohat22;

float u_01, u_02j

float TF_outputl[TRAJPT*8]j

float TF_errl[TRAJPT*8];

float TF_derr1[TRAJPT*8];

/*float TF_u_Ol[TRAJPT*8];

float TF_evl[TRAJPT*8]j

*/

float TF_output2[TRAJPT*8]j

float TF_err2[TRAJPT*8];

float TF_derr2[TRAJPT*8];

I*float TF_u_02[TRAJPT*8];

float TF_ev2[TRAJPT*8]; */

float circle=2;

float TF_refl[TRAJPT],TF_ref2[TRAJPT] j

float TF_rv1[TRAJPT],TF_rv2[TRAJPT];

float TF_xcl[TRAJPT],TF_xc2[TRAJPT];

float TF_k[40];

float VF_kl1=2000,VF_kl2=200j

float VF_x1=3,VF_x2=3;

init_controlO
{

Ts=O.002;
p_l = 1_1 + 1_2 + 1_3c + 1_3*1_3~_2 + 1_1*1_1.(m_3+m_4) + 1_3 + 1_4 + 1_4.1_4~4;

p_2 = 1_1*1_4~_4;

72



}

control()
{

if(Host_Triggertt(i<=TRAJPT*8))
{

/* ------------- READ REF DATA ------*/

if(j>=TRAJPT) j=j-TRAJPT;
r1=TF_ref1 [j] ;

r2=TF_ref2[j];

r1d=TF_rv1[j];
r2d=TF_rv2[j] ;

r1dd=TF_xc1[j);

r2dd=TF_xc2[j];

/*-----------------------------
Define error and relative error

----------------------------------*/

olderr1=err1;

olderr2=err2;

dpos1=c2r*(float) (pos1-o1dposl)/Tsj

dpos2=c2r*(float) (pos2-o1dpos2)/Ts;

oldposl=posl;

oldpos2=pos2;

errl=c2r*(float)posl-rl;

err2=c2r*(float)pos2-r2;

derr1=(errl-olderrl)/Ts;

derr2=(err2-olderr2)/Ts;

zetald=rld-VF_lambdapl*errl;

zeta2d=r2d-VF_lambdap2*err2;

zetaldd=rldd-VF_lambdapl*derrl;
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zeta2dd=r2dd-VF_1ambdap2*derr2;

ev1=derr1+VF_1ambdap1*err1;

ev2=derr2+VF_lambdap2*err2;

1*------------------------------
Inertia variable

---------------------------------*/

v_1 = 1_1*1_1 + 1_2*1_2 + 2*1_1*1_2*cos(pos2):

v_2 = 1_2*1_2 + 1_1*1_2*cos(pos2);
v_3 = 1_2*1_2;

1*------------------------------
Inertia Matrix

-------------------------------*/

mi1 = p_l + 2*p_2*cos(pos2) + v_l~_p + I_p:

m12 = p_3 + p_2*cos(pos2) + v_2*m_p + I_p;

m21 = m12;
m22 = p_3 + v_3*m_p + I_p;

/*-~-----------------------------

Centripental/Corio1is Matrix

--------------------------------*/

v_4 = (p_2 + 1_1*1_2*.m_p).sin(pos2);

cll = -v_4*dpos2;

c12 = -v_4*(dposl+dpos2);

c21 = v3*dposl;

c22 = 0;

/*--------------------------------
Time-varying Mass Dependent Matrix

-----------------------------------*/

fl1 = v_l*.mdot_p + Idot_p;

f12 = v_2*.mdot_p + Idot_Pi

f21 = f12:
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hl1 = ml1*zetaldd+m12*zet,a2dd+(cl1+fl1)*zetald+(c12+f12)*zeta2d;

h12 = m21*zetaldd+m22*zeta2dd+(c21+f21)*zetald+(c22+f22)*zeta2d;

/*-----------------------------------------
Y(.) matrix

----------------------------------------*/
all=v_l*zetaldd+v_2*zeta2dd-l_l*1_2*sin(pos2)*(dpos2*zetaId+(dposl+dpos2)*zeta2d);

a12=zetaldd+zeta2dd;

a13=v_l*zetald+v_2*zeta2dj

a14=zetald+zeta2d;

a21=v_2*zetaldd+v_3*zeta2dd+l_l*1_2*sin(pos2)*dposl*zetald;

a22=zetaldd+zeta2dd;

a23=v_2*zetald+v_3*zeta2d;

a24=zetald+zeta2d;

time=i*Ts;

Yl1=al1*time+a13;

Y12=a12*time+a14;

Y21=a21*time+a23;

Y22=a22*time+a24;

sumrl1=sumrl1+(Yl1*evl+Y21*ev2)*Ts;

sumr12=sumr12+(Y12*evl+Y22*ev2)*Ts;

sumr21=sumr21+(al1*evl+a21*ev2)*Ts;

sumr22=sumr22+(a12*evl+a22*ev2)*Ts;

Irhol1=sumrl1;

Irho12=sumr12;

Irho21=sumr21;

Irho22=sumr22;

rhohatl1=kl_adp*Irholl;

rhohat12=k2_adp*Irho12;
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rhohat21=k3_adp*Irho21;

rhohat22=k4_adp*Irho22;

1* if(ri>=TRAJPT) ri=ri-TRAJPT; *1

1*-----------------------------------
Adaptive Controller

------------------------------------*1
u_Ol=Yl1*rhohatll+Y12*rhohat12+al1*rhohat21+a12*rhohat22;

u_02=Y21*rhohat11+Y22*rhohat12+a21*rhohat21+a22*rhohat22;

1* u_01=1;

u_02=O;*1

taul=hll-VF_kpe1*evl-u_Ol;

tau2=h12-VF_kpe2*ev2-u_02;

ul=(int)(taul*t2c_l);

u2=(int)(tau2*t2c_2);

if (i<TRAJPT*8) {

TF_outputl[i]=(float)tau1;

TF_errl[i]=(float)errl;

TF_derrl[i]=(float)derrl;

1* TF_u_Ol[i]=(float)u_Ol;

TF_evl[i]=(float)evl;*1

TF_output2[i]=(float)tau2;

TF_err2[i]=(float)err2;

TF_derr2[i]=(float)derr2;

1* TF_u_02[i]=(float)u-02;

TF_ev2[i]=(float)ev2;*1

}

i++;j++;
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Userl=rhohat21 ;

User2=rhohat22;

Userl=errlj

User2=err2j

Userl=u_Ol;

User2=u_02;

Userl=vhatl j

User2=vhat2;

User1=ul ;

User2=u2;

}

else
{

rl=c2r*(float)posl;

r2=c2r*(float)pos2;

oldposl=posl;

oldpos2=pos2;

rld=Oj

r2d=O;

rldd=O;

r2dd=O;

Irholl=O;

Irho12=O;

Irho21=Oj

Irho22=O;

sumrl1=O;

sumr12=O;

sumr21=O;

sumr22=O;

/*---------------------------
default algorithm
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-----------------------------*1
err1 = c2r*(posl-refl);

err2 = c2r*(pos2-ref2);

derrl=(errl-01derrl)/Ts;

derr2=(err2-o1derr2)/Ts;

olderrl=errl;

olderr2=err2;

1* = -
Calculate the controller outputs for the next

period.

tau1 = -(def_kp1 * err1+def_kdl*derrl)

tau2 = -(def_kp2 .. err2+deCkd2*derr2)

ul=(int)(tau1*t2c_l);

u2=(int)(tau2*t2c_2);

1*
Userl=taul;

User2=tau2;

*1
Userl=err2;User2=errl;

if(!Host_Trigger)i=O;j=O;

}

}

rpl.h

%
%This is the RPL used in motor for before and after the input

%data or desired trajectory.

7.

#include IlRPL.H"

RPLO

{

int i;
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int j;

Sample_Time«double).004);

Jointspace_Kax_Vel«double)3.0);

Jointspace_Acc.eleration«double) 15.0) ;
Kove_Jointa(O.O);

1* Move_Jointa(O.245,-O.582762)j */
Wait_For(.5) ;

Slave_Trigger(1.0);

for(j=1;j<100;j++)
{

}

Slave_Trigger(O.O);
Wait_For(O.5);

Move_Jointr(-O.3,-O.3);

*1
Wait_For(O.5);

Kove_Jointa(O,O);
}

plotpaul.m

1.
1. 'This is the Katlab that used to plot the data from the experiment

1.

t=O:1:7999;

load c:\matlab5\data\simulation\expplot\pau21_o1.dat;

load c:\matlab5\data\simulation\expplot\pau21_o2.dat;

load c:\matlab6\data\simulation\expplot\pau21_o3.dat;

errl=pau21_o1(:,2);

err2=pau21_o1(:,3);

evl=pau21_o2(:.2);

ev2=pau21_o2(:.3);

tau1=pau21_o3(:,2);
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tau2=pau21_o3(:,3);

derrl=pau21_04(:,2);

derrl=pau21_04(:,3);

figure;

subplot(211),plot(t,errl);grid;

title('Position error for link 1 t 2 for PD Control with unknown payload');
ylabel('e_{l} (rad) ')

subplot(212),plot(t,err2);grid;

ylabel('e_{2} (rad)')

xlabel('Time, t (second)');

·figure;

subplot(211),plot(t,evl);grid;

title('Relative error for link 1 t 2 for PD Control with unknown payload');

ylabel('\sigma_{l} (rad) ,)

subplot(212),plot(t,ev2);grid;

ylabel('\sigma_{2} (rad) ,)

xlabel('Time, t (second)');

figure;

subplot(211),plot(t,taul);grid;

title('Input torque for link 1 & 2 for PD Control with unknown payload');

ylabel('\tau_{l} (N.m) ,)

subplot(212),plot(t,tau2);grid;

ylabel('\tau_{2} (N.m)')

xlabel('Time, t (second)');

figure;
subplot(211),plot(t,derrl);grid;
title('Velocity error for link 1 t 2 for PD Control with unknown payload');

ylabel('dot{e} (rad/s) ,)

subplot(212),plot(t,derr2);grid;

ylabel('dot{e}_{2} (rad/s)')

xlabel('Time, t (second)');
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