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CHAPTER I 

INTRODUCTION 

It is generally accepted that modern communications systems will rely 

heavily not on transistors alone but also on light-matter interactions in all-optical 

or opto-electronic information processing. The intense optical electric fields made 

available with the development of the laser in the early 1960's has permitted work­

ers to push the study of nonlinear optical interactions as well as devices based on 

such processes so that a dual goal may be achieved: a better understanding of the 

basic physics of nonlinear optical interactions in materials and an incorporation 

of these effects into modern optical information processing systems. Nonlinear 

optical effects such as CW and pulsed four-wave mixing, two-beam coupling, 

frequency-doubling, and holographic information storage are phenomena which 

are likely to form part of the foundation necessary to realize high-speed switching 

and computing. 

It is the purpose of this work to present the results of certain studies of 

fast nonlinear optical effects, effects which may find use in optical information 

processing, in the II-VI semiconducting compound cadmium telluride ( CdTe ). 

Single-crystal CdTe was chosen as an object of study because of its relatively 

fast response time, large electrooptic coefficient, and large two-photon absorp­

tion coefficient in the near-infrared spectral region, where many high-gain lasers 

operate. Each of these attributes marks CdTe as a candidate for use in modern 

optical information processing. 
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Summary of the Thesis 

This Thesis reports the results of several picosecond, near-infrared non­

linear optical studies performed on the II-VI unintentionally-doped semiconduc­

tor cadmium telluride ( CdTe ). 

Chapter II presents the results of a series of experiments performed to 

determine the Pulse-Probe Degenerate Four-wave Mixing (PP DFWM) response 

of CdTe under picosecond, near-infrared laser excitation. It is found that the 

nonlinear response of the material can be described by the free-carrier optical 

nonlinearity. From these measurements we deduce the ambipolar diffusion co­

efficient and free-carrier lifetime under several hundred megawatt per square 

centimeter picosecond excitation. The results of thin-grating, two-beam scat­

tering are presented, from which the laser-induced refractive index changes are 

deduced. An investigation of band-edge enhancement of the PP response is also 

presented, which shows that in this particular sample for the conditions of excita­

tion investigated no significant enhancement to the absolute scattering efficiency 

vs. excitation wavelength is obtained. 

Chapter III presents the results of the first observation of picosecond 

photorefractive two-beam coupling in a material (undoped CdTe) lacking appre­

ciable linear absorption. Additionally, results of polarization rotation by scalar 

gratings are also presented. 

Chapter IV presents the results of a series of measurements made of 

second harmonic generation in a transmission geometry in various thicknesses 

of CdTe. It is found that the second harmonic light originates in the material 

bulk rather than at the exit surface, and that no significant enhancement to 

the conversion efficiency is obtained by varying the sample thickness, down to a 

thickness of roughly six times the second harmonic generation coherence length. 

Results are presented for both 1064 nm and 921 nm excitation. 



CHAPTER II 

PULSE-PROBE DEGENERATE FOUR-WAVE MIXING 

Introduction 

Interest in the nonlinear optical properties of some III-V [5] and II-VI 

semiconductors has undergone a recent resurgence with the realization that these 

materials can be used effectively in optical processing. Of the II-VI compounds, 

renewed interest has been taken in CdTe owing to its relatively high electro­

optic coefficient in the near infrared [6]. In addition, its nonlinear response to 

two-photon absorption (TP A) in the infrared is of interest because the material 

is transparent in this spectral region. We have used the laser-induced grating 

technique of picosecond pulse-probe (PP) degenerate four-wave mixing and two­

beam self scattering (SS) to determine the nonlinear optical responses of CdTe 

due to free carriers. The ambipolar diffusion coefficient Da, free carrier lifetime 

TJc, and laser-induced change in refractive index An were found for samples of 

CdTe having different conductivity types. 

Dynamic holographic gratings were first observed in semiconductors by 

Woerdman, et al (7] in Si and first studied in CdTe by Kremenitskii, et al [8]. 

Two in-phase laser beams are crossed inside the sample to form an interference 

pattern in the shape of a sine wave. Through one or two-photon absorption, this 

creates an initial distribution of free carriers with the same spatial distribution 

as the light interference pattern. The nonlinear optical properties associated 

with a free carrier population density cause this spatial distribution to act as a 

refractive index grating. A third beam incident on this grating is diffracted in 

a well-defined direction and can be detected by a photodiode. The strength of 

this scattered beam is then monitored as a function of time delay between the 

3 
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pulses writing the grating and the probe pulse reading the grating. The write 

beam crossing angle, 28, is used as a variable parameter since it determines the 

wavelength of the laser-induced grating. 

Because of its high TPA coefficient in the infrared, dynamic gratings can 

be created in CdTe using pump photons of energy less than that of the band gap 

energy, E9 • Since the linear optical absorption coefficient of CdTe at 1.064 J.Lm 

is approximately 0.8 cm-t, the laser-induced grating created by TPA will extend 

throughout the entire thickness of the sample. The method therefore constitutes 

a nondestructive way to determine bulk material properties. 

The samples used in this work were prepared by Eagle-Picher Laborato­

ries. Stoichiometric quantities of 6-9's pure Cd and Te were loaded into a graphite 

crucible and the vessel was pressurized to 650 psi with argon and held above the 

melting point of CdTe until complete reaction was assured. The molten CdTe was 

then quenched to room temperature. Crystal growth was accomplished by the 

modified Bridgman technique using a Cd overpressure to suppress vaporization 

and control the desired type and resistivity of the growing crystal. 

Theoretical Background 

In this section we derive the basic equations for the scattering efficiency 

of both thin and thick transmission gratings. The approach will be to solve the 

wave equation in the medium assuming one monochromatic incident wave, and 

an initially infinite number of scattered waves. Once the difference-differential 

equation for the various scattered waves is obtained, we will solve it for two 

limiting cases; one where the scattered waves differ little in phase at the exit 

plane of the grating, and the other where this phase difference is substantial. 

The two cases define the thin and thick grating regimes, respectively. We assume 

that the incident wave is polarized perpendicular to the plane of incidence, or, 

the transverse magnetic (TM) case. The transverse electric (TE) case is treated 

in [1],[2], and [3]. The geometry for the ensuing discussion is shown in Fig. 1. 



X 

~--------+---------, 
IA 

Figure 1. Coupled Wave Theory Geometry, Showing the Incident Wave k0 , and 

Scattered Waves kt, k2, .. .. 
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We begin by writing the wave equation for the electric field inside the 

material 

2 82E 8E 
V E = "of-- + "·oCT-,- 8t2 ,- 8t (II.l) 

where the permeability J.Lo is taken to be unity, f = fo(l + x) is the permittivity 

for linear susceptibility x, and u is the conductivity. Anticipating the form of 

the refractive index/absorption coefficient modulation, we assume a total electric 

field in the material of the form 

00 

Etot = L 4>p(z) exp[i(kp. r- wt)] (II.2) 
p=-oo 

where </>p, kp = nbk + pkg, and w are the amplitude, wave vector, and angular 

frequency, respectively, of the pth scattered wave inside the material. kg = kg£ 

is the wavevector of the refractive index/absorption grating, and corresponds 

to a grating wavelength A = 21rjkg. k is the wave vector of the incident wave 

(i.e., zeroth order) in free space, and nb is the background refractive index of the 

material. For compactness of notation, the explicit summation symbol in Eq. 

(II.2) will be dropped; the sum remains implicit. 

Substituting the electric field in Eq. (II.2) into the wave equation in Eq. 

(ILl) gives 

where k; = (kp); + (kp);, and the prime denotes differentiation with respect to 

z. Here K is the complex propagation constant defined as 

(II.4) 

where c2 = (J.Lofo)-112 , n 2 = 1 + X is the square of the refractive index, and 

a= J.Locu/2n is the absorption coefficient. En route to Eq. (II.3), we invoked the 

Slowly Varying Envelope (SVE) approximation, embodied in 
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(II.5) 

which states that there is only a small absorption loss per unit wavelength and 

a slow interchange (per wavelength) of energy between the waves. It is also 

assumed that the variation of l/>p with z is small compared to the variation with 

z. 

The refractive index and the absorption coefficient appearing in the ex­

pression forK. can be characterized by a background value plus some small devi­

ation from that value. Or, 

(II.6) 

(II.7) 

The quantities nb and a 0 are the background refractive index and absorption 

coefficient, respectively, while 8n and 8a represent the maximum deviations of 

these quantities from the background values. Neglecting terms in second order 

(8n8a, for example) and using Eqs. (II.6) and (II.7) for n and a, respectively, 

gtves 

K. R:: f35 + 2iaof3o + 2f3o(2-rr8nf>-. + i8a) (II.8) 

where f3o = 2-rrnb/ >-., and ).. is the wavelength of the incident wave in free space. 

If we now use for 8n and 8a the forms 

8n = nl cos( kg. r + c5) 

8a = al cos( kg. r + c5) 

(II.9) 

(II.lO) 

where c5 is an arbitrary phase, and substitute them into the wave equation of Eq. 

(II.3) we find, after equating like coefficients of the phases of the fields, 



where lis the grating thickness along the z direction and 

Q - k;l/knb cos 8 

A - -(nbk/k9 )sin8 

r - l (21r . ) 
cos 8 -:xnl + u:rl 

s - 7r/2. 

8 

(II.ll) 

(II.12) 

(II.13) 

(II.14) 

(ILlS) 

(II.16) 

In obtaining Eq. (ILll) for the field amplitudes </>p, it is instructive to 

note that the multiplication of the fields Ep by the grating terms .6-n and .6-a on 

the right-hand side of the wave equation Eq. (II.3) gives rise to terms of the sort 

exp[i(kp ± k9 ) • f1. Observing that such a term is just exp[i(kp±l · T)], for dummy 

index p, reveals that the shifting of that index on the associated </>p term by =fl 

is the origin of the p =f 1 terms in Eq. (II.ll). 

The parameter Q in Eq. (II.12) is a measure of the difference in phase 

of the various partial waves due to their different directions of propagation. A 

plane wave travelling across the index grating at an angle eP with respect to the 

z axis travels an optical path of 

(IL17) 

and since the angle between adjacent orders is approximately 

(ILlS) 

the difference in spatial phase for the wave travelling in the ep direction and a 

wave travelling parallel to the z axis is 
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(II.19) 

When the phase difference between these two waves becomes large (say 

Q ~ 1), the diffracted light tends to remain in the lower orders because of the 

large disparity in phase. When the phase difference is very small (say Q ~ 1) 

light can be scattered into and remain in the higher orders during propagation 

through the material. 

We consider the two limiting casess for which analytical solutions to the 

difference-differential equations can be had: Q ~ 1 and Q ~ 1. For the case 

Q ~ 1, the solution must be obtained numerically. For Q ~ 1, the number of 

diffracted orders is usually relatively sma.ll, say 10 or less; the absolute value of p 

is therefore also small. However, for moderate angles of incidence A can be quite 

large, since it is expressed in normalized units of diffraction angles. Therefore, 

in Eq. (II.12) the term in Qp2 can be neglected compared to the term in 2AQp, 

so that the wave equation becomes 

(II.20) 

Neglecting losses (a:~ 0), Klein et al. [4] have shown the solution of Eq. (II.20) 

for the t/>p to be 

t/>p = exp(ipQAz/2l)Jp [~:sin (Q~z)] , 
subject to 

t/>o(z = 0) - 1 

tPP#;o(z = 0) O, 

(II.21) 

(II.22) 

(II.23) 

where v = 21rln1 /).cos 8 and Jp is the ordinary Bessel function of integer order p. 

The quantity of interest is the &cattering efficiency 7], defined as the irradiance 

of the pth diffracted wave at z = l divided by the irradiance of the incident wave 
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at z = 0. Since 4>0 is normalized to unity at the grating boundary z = O, 1J is 

simply 

1]p I 4>p(z = l) 12 (11.24) 

12 [ sin(QA/2)] 
- P v QA/2 . 

At normal incidence, A = 0 and the intensity reduces to 

(II.25) 

Q ¢: 1 constitutes the thin grating regime. 

We next treat the case Q ~ 1, where, from the discussion above, light 

appears in only one or two of the lower diffraction orders. Assuming, then, only 

one scattered wave, and for incidence at the Bragg angle, {for which k; = f35 in 

Eq. (II.ll)), we obtain from Eq. (II.12) 

where 

A.' o:o -~.. 
't'Q + --0 't'O -cos 
A.' O:o -~.. 
't'l + --0 't'l -cos 

e = r;2z. 

(II.26) 

{11.27) 

(II.28) 

The arbitrary phase factor S in Eqs. (II.9) and (II.10), has been set to zero. 

Assuming solutions of the form 

r1 exp{t1z) + r2 exp(t2z) 

81 exp{t1z) + 82 exp{t2z), 

(II.29) 

(II.30) 

substituting them into the coupled wave equations of Eqs. (1!.26) and (II.27), 

and setting z = 0 (the relations must hold for all z) results in 



(cosO[i + ao)ri - i{si 

(COS O[i + ao)Si - i{ri• 
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(II.31) 

(II.32) 

Multiplying these two equations together provides an expression quadratic in the 

"Yi 

from which follows 

cos2 o,; + 2a cos o,i +(a~- e)= o, 

"Yl --1-(ao + i{) 
cosO 

12 - --1-(ao- i{). 
cosO 

(II.33) 

(II.34) 

(II.35) 

Applying the boundary conditions to the incident and diffracted waves 

4>o(z = 0) - 1 

</>1(z = 0) - 0 

and combining the result with Eqs. (II.31) and (II.32) gives 

Sl - _ _!5_ (_!_ - _!_) 
cosO 11 12 

- -82. 

Since the scattering efficiency 'TJ is again given by 

(II.36) 

(II.37) 

(11.38) 

(11.39) 

we combine Eq. (11.28) for{, (11.30) for </>1(z), and (11.34) and (11.35) for the lit 

to give 

TJ = exp( -2a0l/ cos 0) [sin2 (~ :~ 0n1) + sinh2 ( 2 c!s 0a1)] , 

which is the desired result for thick grating& ( Q ~ 1 ). 

(11.40) 
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Experimental Procedure 

The resistivity, mobility, infrared transmission, and etch pit density were 

determined on samples cut from locations near the bottom and top of the ingot. 

The resistivity and mobility were determined by Hall measurement at room tem­

perature. The resistivity, mobility, and majority carrier dark number density for 

then-type sample are 13 n em, 1040 cm2 v-1 s-1, and 4.6 x1014 cm-3 , respec­

tively, and for the p-type sample 5.5 Mn em, 90.1 cm2 v-1 s-1 , and 1.3 x 1010 

cm-3 • 

Polished, 1 x 1 x 0.1 em, n-and p-type samples of CdTe were used in this 

study. Then- and p-type samples were taken from Eagle-Picher Lot Numbers 

FT84325-01-05 and FT87104-01-05, respectively. The polished surfaces were 

(111) faces. Room temperature absorption spectra were obtained using a Perkin­

Elmer Model 330 Spectrophotometer. In the PP and SS experiments performed 

at 1.064 JLm, the samples were excited and probed with Tp = 18 ps full-width-half­

maximum (FWHM) Gaussian pulses of the A= 1.064 JLm emission of a YAG:Nd 

laser operating at a repetition rate of 10 Hz. Incident pulse intensities were in 

the 24 MW cm-2 range. We also have made a preliminary study of band-edge 

enhancement of the pulse-probe signal in the wavelength range of 880-930 nm in 

the same material. For this work, a tunable short cavity dye laser, pumped at 

532 nm by a frequency-doubled picosecond YAG:Nd laser was used. 

Figure 2 depicts schematically the experimental setup used in the PP 

study. A single, vertically polarized laser pulse was split into three parts, two 

write beams, and a probe beam. The relative intensities of the two write beams 

had a ratio of 2:1 and the probe beam intensity was ten times less than the weaker 

write beam. All three beams were linearly polarized, and the polarization vectors 

of the write beams were parallel. The write beams were focused down to a 1 mm 

diameter spot size and directed non-collinearly onto one of the (111) faces of the 

sample so as to intersect at an angle 20, measured out&ide the sample. This angle 

of intersection is termed the write angle. By mechanical adjustment of a variable 



30ps 
Nd!YAG 
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ENERGY 
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Figure 2. Block Diagram of the Experimental Setup for Pulse-probe and 
Self-scattering Measurements. M, Mirror; BS, Beam Splitter; VD, Optical Vari­
able Delay Line; P, Polarization Analyzer; PR, Polarization Rotator; L, Lens; F, 
Filter; PD, Photo diode. 



14 

optical delay line through which one of the write beams passed, the optical path 

difference between the write beams was maintained equal to zero to ensure that 

the beams arrived at the sample in phase and at the same time. 

The probe beam also passed through a variable optical delay line, al­

lowing the time delay between the writing and probing of the grating to be 

continuously adjusted. This feature of the setup allowed the characterization of 

the grating decay kinetics. The longest pulse/probe delay realizable with this 

setup was 2 ns. After passing through the delay line, and having its polariza­

tion vector rotated 90° with respect to the write beam polarization, the probe 

beam was also focused down to a 1 mm diameter spot size and introduced into 

the sample exactly conjugate to one of the write beams. At each value of time 

delay the probe beam was realigned to assure best counterpropagation to the 

appropriate write beam. The rotated polarization of the probe beam, together 

with its relatively weak intensity, precludes it from interacting with one of the 

write beams to create additional grating effects in the sample. The PP diffracted 

beam is also of wavelength 1.064 J.Lm and, according to the Bragg scattering con­

dition, is conjugate to the other write beam. The signal was monitored with 

an EG&G Photon Devices YAG-100A photodiode. To minimize the background 

signal levels introduced by scattered light and band edge luminescence, a polar­

ization analyzer and absorbing filter were placed in series before the photodiode 

to allow passage of only those beams with the same polarization and wavelength 

as the probe beam. This filtered signal was averaged by an EG&G PAR 4202 

Signal Averager, and the resultant intensity read from an oscilloscope driven by 

the signal averager. 

The experimental setup for the SS study is similar to that described 

above for the PP study with the exception that only two parallel-polarized, equal 

intensity write beams were used to produce the scattered signal beams. The 

two in-phase, focused write beams are again directed onto the sample so as to 

intersect inside at a write angle 28. At sufficiently small values of the grating 

parameter Q, higher scattered orders may be observed. The relative intensities 
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of these diffracted orders were measured using the photodiode/signal averager 

setup described above. 

Experimental Results 

Optical Absorption and Luminescence 

Figure 3 shows the results · of room temperature optical transmission 

measurements on the samples studied. The band gap, Eg, in both samples is 

about 1.4 eV. No pronounced regions of decreased transmission were observed 

in the energy range 0.48 e V up to the fundamental absorption edge at 1.4 e V, 

with special attention directed to the region near the laser photon energy of 1.17 

eV. It should be noted that the transmission spectra is not corrected for Fresnel 

losses. Using the index of refraction of CdTe at 1.064 p.m, and assuming normal 

incidence leads to a value of the transmission at 1.064 p.m of 0.99, corresponding 

to a linear absorption coefficient of no greater than 0.1 cm-1• Also shown in Fig. 

3 is the room temperature luminescence spectra of CdTe under 1.064 p.m laser 

excitation. 

The dependence of the band edge luminescence intensity on the laser ex­

citation intensity is shown in Fig. 4. The observed quadratic dependence demon­

strates that one of two possible types of two-photon processes is responsible for 

the excitation process. The first is a sequential two-photon absorption (STPA) 

process, where there is a real intermediate impurity state between the initial and 

final electron/hole state; the second a virtual two-photon absorption (VTPA) 

process, where there is no real intermediate state between the initial and fi­

nal elect:ron/hole state. Both the lack of appreciable optical absorption at 1.17 

eV and the known-high value of the TPA coefficient of CdTe at this excitation 

wavelength [9] indicate free-carrier populations created via VTP A processes. In 

addition, the observed charge carrier dynamics described below are consistent 

with the creation of electron-hole pairs. 
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Pulse-Probe Four-wave Mixing 

Figure 5 shows the dependence of the PP signal intensity on the laser 

beam power density Iexc for two write beam crossing angles and several probe 

delay times. For each case it is found that the PP signal l 8ig is approximately 

proportional to the 3. 7-4.0th power of the laser up to an excitation level at which 

saturation is reached. Because the scattering efficiency is proportional to Lln2 

for small modulation depths, one expects an 1:xc power dependence for free­

carrrier gratings created through two-photon absorption and for probe beams 

proportional to Iexc· At higher excitation intensities, the signal levels off due to 

TPA and free-carrier absorption. The PP signal intensities exhibit saturation 

behavior near Iexc = 3 X 108 W cm-2 for large write beam crossing angles and 

an order of magnitude lower for small 

Figure 6 shows the grating decay kinetics of the p- and n-type samples 

measured at five different values of 20. From the relation between the grating 

spacing and write beam crossing angle, A= >../2 sin(), this set of write angles cor­

responds to grating spacings ranging from 8. 7 to 1.5 p,m. Figure 7 shows the laser 

write beam autocorrelation overlaid on the PP signal rise times, making apparent 

that the autocorrelation is the origin of the seemingly-finite signal response time. 

At the largest three write angles, both samples also exhibit single-exponential 

decays for times after the initial rise. At the two smallest write angles, how­

ever, the signal from the n-type sample exhibits kinetics that are clearly not 

single-exponential. In the n-type sample at 15°, the decay is composed of a two 

components, one active up to about 1.75 ns, with a rate constant of 2.04 x 109 

s-1, and a longer lived component for times after 1. 75 ns with a rate constant 

too small to accurately measure. At 7° the signal again tapers off at a rate that 

is too small to measure accurately. The p-type sample exhibited no multiple 

components of decay at 15°. 

For optically thin samples, assuming intensity variations are important 

in only one transverse direction z, and the pulse width is much smaller than the 
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Figure 5. PP Signal Intensity Dependence on Laser Excitation Intensity at Var­
ious Times After Grating Creation for N- and P-type CdTe. (a) 28 = 7°; 
( •) b.t = 175 ps, (D) b.t = 2450 ps. (b) 28 = 41 °j ( •) b.t = 119 ps, (D) .6.t = 189 
ps, ( /::;.) b.t = 280 ps, ( o) b.t = 455 ps. 
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carrier lifetime, the spatial and temporal dependence of the free carrier density, 

N, is given by the one-dimensional diffusion equation 

8N(z,t) _ -N(z,t) D 82N(z,t) 
8t - +a 82 • 

Tjc Z 
(II.41) 

Here Tfc is the free carrier lifetime, defined as Tr-rtf(-rr + Tt), where Tr and Tt are 

the recombination time and trapping time, respectively, and Dais the ambipolar 

diffusion coefficient. The ambipolar diffusion approximation can be shown to be 

valid from considerations based on the range of grating spacings and fl.uences 

used here [11]. For a distribution of carriers varying sinusoidally in space with 

period A, the solutions to Eq. (II.41) decay exponentially with a time constant 

K/2, where K is the observed PP Jignal decay time given by 

K _ 2_ 81r2Da 
- + A2 • 

Tjc 
(II.42) 

Therefore, for grating wavenumber k9 = 21rjA, a plot of K vs. 2k;, as shown in 

Fig. 8, gives a straight line with intercept 2/TJc and slope Da. 

The solid line in Fig. 8 is drawn for reference and corresponds to Da = 3.0 

cm2 s-1 and Tfc = 12.0 ns. Specifically, we find ambipolar diffusion coefficients 

3.1 ± 1.5 cm2 s-1 and 2.9 ± 1.0 cm2 s-1 , and free carrier lifetimes 12.0 ± 9.0 ns 

and 12.5 ± 9.0 ns, for n- and p-type material, respectively. 

For a laser-generated electron-hole plasma, the ambipolar diffusion coef­

ficient is defined as 

(II.43) 

where 

(II.44) 

Eq. (II.44) is the Einstein relation between the electron-hole diffusion coefficient 

and mobilities, J.Le,h, at temperature T. e is the modulus of the electronic charge 

and kB is Boltzmann's constant. Assuming J.Le in the p-type material is equal 
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Figure 8. PP Signal Decay Rate Kin CdTe as a Function of Twice the Square 
of the Grating Wavenumber. 
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to J.Le in the n-type material, and that J.Lh in the n-type material is equal to J.Lh 

in the p-type material, and using the measured room temperature values of the 

mobilities for these samples gives for both samples Da = 4.3 cm2 s-1 , in good 

agreement with the values determined by the picosecond laser-induced grating 

method. 

Two-beam Self-Scattering 

At sufficiently small write angles, multiple diffracted orders are observed 

on the side of the sample opposite that of the two incident write beams, as 

schematically depicted in Fig. 9. This effect, first observed in semiconductors by 

Woerdman and Bolger [7], is known as self-scattering, or Raman-Nath scattering 

[12], and defines the "thin grating" regime. Figure 10 shows the dependence of 

the first order scattered beam intensity on laser power density Iexc for p-type 

CdTe, with similar results obtaining for n-type material. As in the PP power 

dependence, the signal intensity is proportional to the third power of Iexc and 

saturation occurs near Iexc = 3 X 108 W cm-2• 

The intensity of the ith order in self-scattering is given by [12] 

{II.45) 

where 

-r=----
A cos Bz:tal 

{II.46) 

where A is a constant of proportionality, l is the grating thickness, ~n is the 

induced change in refractive index, (J is one-half the write beam crossing angle 

inside the material, and Ji is the ordinary Bessel function of integer order i. As a 

first approximation, lis taken to be the 0.1 em sample thickness, since the length 

of the beam overlap region along the write angle bisector is much larger than the 

sample thickness at small write angles. The grating Q factor for this case is 
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(II.47) 

(II.48) 

The criteria for Raman-Nath scattering is Q ¢:: 1. However, the as­

sumption of l being equal to the sample thickness is almost certainly overly op­

timistic, since beam depletion due to two-photon absorption will tend to restrict 

the depths of strong carrier (refractive index) modulation to the front layers of 

the sample. This reduced-thickness grating reduces the Q factor sufficiently to 

force the scattering process into the thin grating regime, and therefore provides 

preliminary justification for applying the Raman-Nath form of the scattering 

efficiency in Eq. (II.45). 

Since both write beams, I+ and I_ in Fig. 9, will scatter off the grating 

independently, there will be two significant contributions to each bright spot, 

one from, say, order i of I+, and another from order i + 1 of I_. We neglect 

the further scattering of thus scattered beams as a process of insignificantly high 

order. Thus, for equal write beam intensity, the expression for the scattering 

efficiency becomes 

(II.49) 

Figure 11 shows examples of the relative intensities of the diffracted 

orders vs. order. A numerical fit of the data to Eq. (II.49), treating A and ~n 

as adjustable parameters, gives the free carrier-induced change in the refractive 

index. We find in the p- and n-type samples values of ~n = 4.6 x 10-4 , and 

6.n = 3.8 X 10-4 , respectively. 

In a study complementing the pulse-probe work at 1.064 p,m described 

above, we measured the absolute PP scattering efficiency in p-type CdTe as a 

function of excitation wavelength. The results are shown in Fig. 12, and were ob­

tained using a tunable dye laser. The write angle for these measurements was 18°, 

measured outside the sample, corresponding to a grating wavelength of 3.4 p,m. 
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The excitation intensity Iexc was ~ 1 X 108 W /cm2• Although the write beams 

produce additional photocarriers (which increases the refractive index modula­

tion) as the excitation wavelength is scanned nearer to resonance with the band 

edge energy, we observe no significant increase in the PP scattering efficiency 

due to resonant enhancement. The reason for this is that the probe beam, which 

is at the same wavelength as the write beams, also produces photocarriers more 

efficiently and therefore suffers increased attenuation as it passes through the 

material. Hence, the essentially constant scattering efficiency over the tens of 

nanometers shown in Fig. 12. 

Discussion and Conclusions 

The signals observed in laser-induced grating experiments such as those 

described here can be associated with bound charges, free carriers, and photore­

fractive effects. The bound charge contribution will be very small compared to 

the other contributions. 

Before discussing particular results it is helpful to clarify what is meant 

by the term "photorefractive signal". In a material which has some non vanishing 

tensor components of the electro-optic coefficient, an electric field present in such 

a direction as to couple into one of these nonvanishing components will produce 

a change in the refractive index, n, in the vicinity of the field through the linear 

electro-optic effect. If the index-modulating electric field is a space charge field 

arising from a charge distribution induced by laser beams incident on the material 

then it is called the photorefractive effect (PRE). The space charge field giving 

rise to the PRE can be associated with either a trapped charge distribution or 

with a spatial distribution of free charge carriers. An example of the latter case 

is that due to separating distributions of electrons and holes having different 

mobilities, as in the Dember effect. 

Two features which were observed in the PP study are of particular 

interest: The general kinetics are similar for n- and p-type samples, and the 

long component of decay at large grating spacings in the n-type sample. The 
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observation that the results obtained in these experiments are the same for n­

and p-type samples is evidence that we are dealing with band-to-band transitions 

in the production of electrons and holes. 

The inflection in the decay near 1.75 ns at 15° indicates the presence of 

a PRE associated with trapped charge. To explain these long-lived contributions 

to the decay, we must consider the ultimate fate of the free carriers. Some will 

undergo linear or bimolecular recombination, terminating their contribution to 

the free-carrier, laser-induced change in the index of refraction. Others will relax 

into trap levels within the band gap, setting up a spatially modulated static space 

charge field. This field creates an additional index grating. This trapped charge 

grating is responsible for the long-lived index modulation. This modulation of n 

persists as long as the static space charge exists, which, for metastable impurity 

states, may be much longer th~n the free carrier lifetime. 

At the larger write beam crossing angles, i.e., smaller grating spacings, 

the trapped charge photorefractive component of the PP signal is not observable 

because the free carriers have a smaller probability of finding a trap before the 

grating is destroyed. This trapped charge will have a spatially uniform distribu­

tion which will not give rise to a photorefractive grating. The trapped charge 

component of the PP signal will be considerably weaker when the grating spac­

ing is smaller than the carrier diffusion length, Ld, than when it is larger than 

Ld. Although there is no sharp transition from one region to another, the grat­

ing spacing at which the trapped charge contribution to the signal may become 

important can be estimated from 

Ac = 2 .>.. (} ~ Ld = J2DaTJc· (II.50) 
Sill c 

In the n-type sample this gives a value for the write angle 20c of about 22°, Oc 

being measured outside the sample. Inspection of Fig. 6(b) shows that the long 

component of decay becomes negligible between 15° and 25°, which is consistent 

with this analysis. 
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Rough estimates can be made for some of the magnitudes of the different 

types of contributions to the observed signal. First consider the free carrier 

contribution. To confirm the assumption that the value of An obtained from the 

SS study is associated with free carrier effects, consider the number of carriers 

generated by a 18 ps FWHM Gaussian laser pulse through TP A, 

j oo (3P 
NTPA = -- dt. 

-oo 2hw 
(II.51) 

Here {3 is the TP A coefficient I is the laser intensity, and hw is the laser photon 

energy. Using I = 1.9 x 108 W cm-2 , and Van Stryland's [9] value of {3 = 26 em 

GW-1 from gives NTPA ~ 3.0 x 1016 cm-3• This assumes no significant beam 

depletio~n due to free carrier absorption, so therefore NTPA represents an upper 

bound on the carrier density. 

The Drude model can be used to estimate the induced change in the 

refractive index due a distribution of free carriers. The change is given by 

(II.52) 

where An is the total change in refractive index, and neh is the change in refrac­

tive index per carrier. The latter is given by 

(II. 53) 

where nb is the background index of refraction at 1.064 p.m, w is the laser fre­

quency, m:h = (m:mh.)/(m: + mh.) is the reduced optical effective mass of an 

electron-hole pair in CdTe [13] (which depends on the band structure and hence, 

carrier number density), and e0 is the free space permittivity. Using a value [14) 

of nb = 2.82 and the value of NTPA for NDrude in Eqs. (II.52) and (II.53) predicts 

An = 0. 7 X 10-4, well within an order of magnitude of the value obtained from 

the SS measurements. Thus this corroborates the assumption that the SS signal 

observed is due to the presence of a distribution of free carriers. 
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In both PP and SS experiments, the results exhibit a saturation in the 

signal intensity at excitation power densities between 2 X 107 and 3 x 108 W 

cm-2 • Several mechanisms may cause the observed saturation, including state­

or band-filling [15,16], and free carrier absorption (FCA). The power density at 

which the latter process will be important is given by [17] 

(II.54) 

where 0' is the FCA cross section. Assuming a value [13] of 0' = 1 X 10-18 cm2, 

Eq. (II.54) gives a value of IFcA = 2.4 x 108 W cm-2, which is within the range 

of observed saturation power densities. 

In summary, the nonlinear optical responses of CdTe on a picosecond 

time scale have been interpreted in terms of the generation and dynamics of 

electron-hole pairs. Contributions to the observed laser-induced changes in ti.n 

were found from the initial free carrier distribution, the transient photorefractive 

signal associated with the spatially separated electron and hole distributions, 

and the photorefractive effect associated with trapped charge. No significant en­

hancement to the PP DFWM scattering efficiency was observed as the excitation 

wavelength was scanned toward the material band-edge. 



CHAPTER III 

PHOTOREFRACTIVE TWO-BEAM COUPLING 

Introduction 

Laser induced refractive index gratings provide an effective way to study 

various wave mixing phenomena in nonlinear optical materials. Because of their 

fast temporal response, high infrared sensitivity, and relatively large linear elec­

trooptic coefficient, semiconductors such as CdTe have potential device applica­

tions in the area of fast optical switches and spatial light modulators [18,13,19]. 

Typically, in order to probe the nonlinear optical properties of a material, 

two copolarized write beams intersect inside the material to form a spatially 

sinusoidal interference pattern. In the regions of constructive interference charge 

is preferentially excited to the conduction and/ or valence bands either through 

mid-gap defect ionization or band-to-band transitions. H the ionized charges do 

not quickly undergo recombination or trapping, they will diffuse away from the 

spatially-fixed, ionized defects and establish an electric field between themselves 

and the charged centers from which they were ionized. This space charge field Esc' 

acting through the linear electrooptic effect, modulates the refractive index of 

the material; this light-induced refractive index modulation is the photorefractive 

effect. 

The photorefractive effect in semiconductors using CW excitation has 

been observed in studies on CdTe:V [6], GaAs:EL2 [20], and InP:Fe [21]. Picosec­

ond photorefractive effects have also been observed in these same materials [22]. 

Closely related CW work at 1.06 p.m involving the electrooptic effect and photo­

conductivity has also been performed in the optical switching study by Steier et 

al. on CdTe:In [19]. Work on probe beam transmission in the presence of a strong 

34 
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pump beam has also been done by Riickmann et al. in nonintentionally-doped 

CdTe and CdTe:Ge [23]. In the CdTe study undertaken by Valley et al. [22], 

mid-gap defect states introduced by the vanadium dopant provided the centers 

of charge photoionization necessary to produce the internal space charge field. 

An electron-hole plasma can be produced at sufficiently high incident 

intensities in CdTe and other semiconductors by two-photon, band-to-band ab­

sorption, despite an absence of mid-gap defect states. Through the Dember effect 

[24], this plasma can give rise to an electric space charge field, and lead, there­

fore, to a picosecond photorefractive effect. The linear absorption coefficient at 

1.064 p,m of the sample of CdTe investigated in the work we present here is no 

greater than 0.1 cm-1• Because the linear absorption coefficient in our material 

is so small, single-photon absorption contributes little to free-carrier populations. 

Through virtual-intermediate-state, two-photon absorption (TP A), however, sig­

nificant free carrier populations can be produced, and, when spatially modulated, 

result in free carrier gratings. 

In the absence of an appreciable mid-gap defect density, the charge distri­

bution in this sample, therefore, consists of an electron-hole plasma. The initial 

electron-hole charge distribution, in phase with the irradiance distribution, will 

spatially modulate the refractive index as in the Drude model. However, for 

properly oriented crystals, the Dember field can couple into the linear electroop­

tic coefficient of the material to induce an additional refractive index grating 

through the photorefractive effect, which is phase shifted with respect to the 

free carrier grating and light intensity pattern. This phase shifted index grating 

can cause transfer of energy out of one laser beam and into the other at low to 

moderate fl.uences, with the direction of transfer dependent on the crystal orien­

tation; at higher fl.uences the unshifted free carrier refractive index grating can 

cause orientation-independent transient energy transfer [5]. 

This paper describes what we believe to be the first observation of pi­

cosecond two-beam coupling (BC) in a sample of CdTe lacking appreciable linear 

absorption. The basic equations used to model the two-beam coupling interaction 
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presented here are a system of rate equations which govern the charge generation 

and migration and a wave equation which describes the gain (or loss) of the op­

tical electric fields as they propagate through the material. Although the details 

of the solution are covered elsewhere [25], we restate here the key results for the 

sake of completeness. 

A subsidiary demonstration of polarization rotation through scalar grat­

ings (SPR) was also performed in single crystalline CdTe, showing that the ma­

terial can be used as a polarization switch. 

Theoretical Background 

The picosecond beam coupling theory requires a set of rate equations for 

the charge generation and migration and an equation describing the change of 

the optical fields as they traverse the sample. The rate equations are given by 

8p 
-(1/e)V · h + {312 /(2hv) (III.1) 

8t -
8n 

(1/e)V · Jn + {312 /(2hv) (III.2) - -8t 
7 - (III.3) ]p eJLppE11c- j.LpkBTVp 

7 - (III.4) ]n - eJLnnE11c + JLnkBT\Tn 

- (eje.)(p- n), (III.5) \1 ·E11c -

where n and p are the electron and hole number densities, respectively, in and 

jp are the electron and hole current densities, respectively, I is the irradiance, 

T is the absolute temperature, kB is Boltzmann's constant, e is the electronic 

charge, vis the optical field frequency, and e. is the dielectric constant. Table III 

contains the definitions of the remaining symbols, their numerical values and the 

references from which these values were taken. 

In earlier work in this material [26] we found a free-carrier lifetime of 

approximately 12 ns. Therefore on picosecond time scales carrier recombination 



TABLE I 

ROOM TEMPERATURE MATERIAL PROPERTIES 
OF UNDOPED CDTE AT 1.064 p.m *t 

Parameter Value Reference 

Refractive index, nb 2.82 
Dielectric constant, f/ f.o 10.4 
Electrooptic coefficient, r 41 (pm/V) 5.5 
Absorption coefficient, o: ( crD.-1 ) 0.1 
Electron effective mass, me 0.1 
Heavy-hole effective mass, me 0.4 
Band gap, E9 ( e V) 1.49 
Electron mobility, P.e ( cm2 v-1 s-1 ) 1050 
Hole mobility, P.h (em 2 v-1 s-1 ) 90 
Two-photon absorption coefficient, /3 ( cm/GW) 26.0 
Free-electron absorption cross section, s fc ( cm2 ) 1 x 10-18 

Sample length, l (em) 0.1 
Positive defect number density, N+ ( cm-3 ) NA 
Neutral defect number density, N (cm-3) NA 
Electron-photoionization cross section, se ( cm2) NA 
Hole-photoionization cross section, sh ( cm2) NA 

* The quantity was obtained from measurements made in this paper. 
t N A, value unknown. 

[14] 
[13] 
[38] 

* 
[13] 
[13] 
[13] 

* 
* [9] 

[13] 
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and trapping can be neglected, hence the absence of such terms in the rate equa­

tions. The rate equations Eqs. (III.l)-(III.5) must be supplemented with a wave 

equation for the optical field. H the amplitude E of the optical frequency electric 

field is slowly varying compared to a wavelength (Slowly Varying Envelope ap­

proximation) and if the beams can be approximated by plane waves propagating 

at a small angle to the z direction, then the wave equation can be written as 

8E 
cos 8 Bz - ihpRE&cE + ihnEn- nbEocf3 IE 12 E (III.6) 

-s fcnE /2 - CtnpE /2, 

where 8 is the angle between the direction of propagation and the z axis inside 

the crystal. The coordinate system is defined in Fig. 1. We have assumed that 

any refractive index changes can be separated into two parts, one due to the 

photorefractive effect, the other due to modulations due to free carrier (Drude) 

effects. These two contributions appear as bpR and hn, respectively, in Eq. 

(III.6) for the optical field. The conventional loss terms are represented by the 

per carrier s fc free carrier absorption cross section and by what we call a non­

photo refractive absorption coefficient Ctnp, defined as all linear absorption not 

creating an electron-hole pair or electron-empty trap complex. 

The photorefractive coupling coefficient bpR is given by 

(III. 7) 

where r41 is the electrooptic coefficient for this geometry, nb is the background 

refractive index, and A is the vacuum wavelength. The Drude-Lorentz or free 

carrier plasma coupling coefficient hn given by Jain and Klein [15] is 

(III.8) 

where the plasma frequency for a number density N is given by w'Jv = e2 N f( fom;), 

w is the optical frequency, w9 is the band gap energy divided by h (Planck's 

constant divided by 21r ), and m; is the electron effective mass. 
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The term of central importance in the rate and optical field equations 

is that which contains the photorefractive coupling coefficient SPR in Eq. (III.6). 

The divergence operator in Poisson's equation in Eq. (III.5) induces a 1r /2 spatial 

phase shift of E 3 c with respect to the irradiance pattern. Treating this phase shift 

as a complex number, the first term in the optical field equation becomes, after 

multiplication by the existing factor of .J=I, strictly real, with the result that 

the optical field E suffers either a gain or loss, depending on the sign of r 41 and 

therefore of SPR· 

The experimental quantity of interest is the relative change in probe 

transmission l:l.T /To = (T- T0 )/T0 , where T is the probe transmission in the 

presence of the pump, and T0 is the probe transmission in the absence of the 

pump. The transmission in each case is obtained by numerically solving the 

coupled rate and optical field equations. For a sample of length l l:l.T /To can be 

expressed as 

l:l.T /To = [exp( -al ± l:l.al + rl) - exp( -al)]/ exp( -al), (III.9) 

where the al term represents probe absorption independent of the pump, l:l.al 

represents probe absorption that depends on the pump, which may due to pro­

cesses such as saturable absorption, two-photon absorption, transient energy 

transfer' or absorption gratings, and rz represents probe photorefractive gain 

that depends on the pump. Since the photorefractive gain is dependent on crys­

tal orientation, it can be separated from the isotropic contributions of probe gain 

or loss by measuring l:l.T /To in two orientations - one differing from the other by a 

180° rotation about the bisector of the write angle. The probe absorbance l:l.Apr 

is defined as the negative natural logarithm of the probe transmission, -ln Tpr, 

therefore the relationship between l:l.T /To and the change in probe absorbance 

l:l.A is 

l:l.A Apr(with pump)- Apr(without pump) (III.lO) 



- ln(T0 /T) 

- -ln[.6.T/To+1], 

which, upon using the expression for .6.T /To in Eq. (III.9), becomes 

.6.A - ln[exp( -al)f exp( -al + rz ± .6.al)] 

- -(rl ± .6.al). 
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(III.ll) 

From the expressions for .6.A in Eqs. (III.10) and (III.ll ), and from the fact that 

r changes sign under a 180° rotation about the write beam angle bisector we 

obtain for the photorefractive gain and loss, respectively, 

r - -{1/21) 1 [(.6.T /To)<'Tr) + 1] 
. n (.6.)(0) + 1 . 

.6.a - ±(1/2l)ln{[(.6.T/T0)(7r) + 1][(.6.)(o) + 1]}, 

{III.12) 

(III.13) 

where the superscript (0) denotes measurements made in the orientation for 

photorefractive probe gain and ( 1r) denotes measurements made in an orientation 

for probe beam loss. 

For the case where the write beams are cross-polarized, no grating is 

formed in the material, and therefore no photorefractive probe beam gain occurs. 

The probe beam will, however, undergo losses due to linear and two-photon 

absorption. For this material, over the range of irradiances considered, TP A 

dominates linear absorption [26]. Neglecting linear absorption, the equations 

which govern the signal beam intensity, 13 , in the presence of the pump lp are, 

for a large pump to probe ratio 

dla 
dz 
dip 

dz 

- -{3111/p 

- -{31;, 

(III.14) 

(III.l5) 

where Tis the Gaussian pulse width, p0 is the 1/e2 Gaussian beam radius, 18 = 
J~O)exp[-(t2f,-2+p2jpg)], Jp = J~O)exp[-(t2f,-2+p2fp5)), and J(O) = £j(1r3/2pgT), 
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forincident energy E. Solving the equations for dl3 /dz and dlvfdz in Eqs. (III.14) 

and (III.15), respectively, for / 3 gives 

1~0) exp[-(t2 /r2 + p2 / P5)] 13 (p' t) = -(,_..,.)__;;,_.______;;;...;..._.:..___:_ _ ____;._~;..:..:,.._-
Jpo Pl exp[-(t2 /r2 + p2 / P5)] + 1 

(III.16) 

Numerical integration over the temporal and spatial variables provides a value 

of fl.T /To as a function of £ for the case of cross-polarized write beams. 

Experimental Procedure 

In all of the pulsed laser work described below the source of excitation was 

an actively and passively mode locked Y3 Al50 12:Nd3+ (YAG:Nd) laser operating 

at its fundamental wavelength of 1.064 p.m. The laser full-width-half maximum 

(FWHM) Gaussian pulse width r, which was determined by autocorrelation, was 

18 ps. The laser repetition rate was 10 Hz. In the study to determine the CW 

beam coupling response of our material, a 200 m W, linearly polarized, diode­

pumped CW YAG:Nd laser was used. 

The polished, high resistivity, p-type single crystalline CdTe used in these 

experiments was grown by Eagle-Picher Research Laboratories, where the Hall 

electron and hole mobilities were also measured. Crystal growth details are the 

same as those described earlier [26]. Table 1lists the 1.064 p,m, room temperature 

material parameters of the sample used. The sample cut and orientation with 

respect to the laser write beams for the BC experiment are shown in Fig. 13. The 

pump:probe ratio of the u polarized write beams was 10:1. The angle between 

the write beams inside the crystal was 11.2°, corresponding to a grating period 

1.9 p.m. The combination of 1 mm sample thickness and 11.2° crossing angle 

indicates the experiment was performed in the Bragg, or thick grating, regime. 

The zero time delay between the two write beams was determined by replacing, 

in the sample plane, the CdTe sample with a LiNb03 crystal and adjusting an 

optical variable delay line to achieve a maximum in the second harmonic signal 

intensity generated along the bisector of the write beam angle. The transmitted 
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Figure 13. Picosecond Two-beam Coupling Geometry. 
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laser beams were then monitored as a function of total fiuence with an infrared­

sensitive photodiode. 

In the SPR study, two pump beams are crossed in the sample at an an­

gle of 13.7°, with one of the write beams tT polarized and the other having equal 

components of tT and 1r polarizations. In this configuration, the lT components of 

the two write beams writes a free carrier refractive index grating in the sample, 

and the 1r component present in the pump beam scatters off the grating into the 

direction of transmission of the purely tT beam. The ratio of the lT components of 

the write beams was 13:1. The 1r polarized signal was then monitored as a func­

tion of increasing irradiance with an infrared-sensitive photodiode. The sample 

used in this study had the same electrical properties as that used in the beam 

coupling experiment. However, the polished front and back faces were parallel to 

the (100) and (100) crystallographic planes, respectively. The remaining edges 

were parallel to the (010) and (001) planes, respectively. 

Experimental Results 

Picosecond Beam Coupling 

Figure 14 shows the result of picosecond beam coupling on high resis­

tivity p-type CdTe using copolarized write beams. The open circles denote the 

measured values of .l:l.T /To for the orientation where energy transfer is from pump 

to probe while the solid circles denote .l:l.T /To for the orientation where the trans­

fer is from probe to pump. The dashed lines indicate the solution of the rate and 

optical field equations, Eqs. (111.1)-(111.5) and Eq. (111.6), respectively, based on 

the literature values of the material parameters, for the change in probe trans­

mission in the two different crystal orientations. The solid lines indicate a better 

fit to the data, using r41 = 10 pm/V, f3 =50 cm/GW, and value of Sn one third 

the value of that given by the expression for Sn in Eq. (111.8). Figure 15 shows 

the gain and loss curves obtained by applying Eqs. (111.12) and (111.13) for gain 

and loss, respectively, to the experimental data and to the theoretical fit. 
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Figure 14. ll.T /To as a Function of Total Fluence for the Case of Copolar­
ized Write Beams. Open Circles Denote Data for the Orientation where Energy 
Transfer is from Pump to Probe and Solid Circles for the Case of Transfer from 
Probe to Pump. The Dashed Lines Indicate the Theoretical Results Based on 
the Literature Values of the Parameters for CdTe in Table I. The Solid Lines 
are the Theoretical Results Based on the Increased Values of the TPA Coefficient 
and Electrooptic Coefficient as Discussed in the Text. 
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Figure 15. Photorefractive Gain and TP A Loss as a Function of Total Fluence 
for Copolarized Write Beams. Open Circles Denote Photorefractive Probe Beam 
Gain and Solid Circles Denote Pump-dependent Probe Loss, Due Primarily to 
TPA. The Points were Obtained from Smoothing the Data in Fig. 14; Interpola­
tion was used to Obtain Points Lying between Actual Data Points. The Dashed 
Lines Indicate the Theoretical Results Based on the Literature Values of the Pa­
rameters for CdTe in Table I. The Solid Lines are the Theoretical Results Based 
on the Increased Values of the TPA Coefficient and Electrooptic Coefficient as 
Discussed in the Text. 
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Figure 16 shows the results of a measurement of !::iT /To using cross­

polarized write beams. The dashed line represents the theoretical result based 

on Eq. (III.16) using the literature value of {3. The solid line is the corresponding 

result using {3 =50 cm/GW. 

For the same experimental geometry, but using a CW YAG:Nd laser 

instead of a pulsed laser, we find that this same sample displays no CW beam 

coupling signal for incident irradiances in the 10 W /cm2 range using copolarized 

write beams and a grating spacing of 1.4 p.m. 

Polarization Rotation by Scalar Gratings 

Many types of optical spatial light modulators are based on changing 

the state of the polarization of a light beam. One particular method of optical 

switching or limiting made possible through laser induced gratings is scalar po­

larization rotation (27]. The technique consists of crossing two write beams I1 

and I2, where 11 is u polarized and 12 contains equal components of 1r and u 

polarizations, in the sample in the usual manner. The u components of 11 and 

I 2 write a index grating in the nonlinear material and the 1r component of 12 , 

incident at the Bragg angle, scatters off the grating in the direction of the trans­

mitted 11 beam. Figure 17 shows the dependence of the 1r signal in the direction 

of 11 as a function of the total u polarization irradiance for undoped n- and 

p-type CdTe. In this configuration, the device can be used as an optical switch 

if the detector is placed along the [ 1 direction, or as an optical limiter if placed 

along the direction of [2• Assuming operation in the 500 MW /cm2 range, an 18 

picosecond pulse width, and a square pixel ten microns on a side, we find that 

energies on the order of a nanojoule are sufficient to operate such a device. In 

addition, significant enhancements to the rotation effect have been demonstrated 

by using photorefractive polarization rotatio'n (28]. 
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Figure 16. AT /To as a Function of Total Fluence for the Case of Cross-polarized 
Write Beams. The Open Circles Denote Data Acquired in an Orientation 
that Otherwise Would Have Led to Probe Beam Gain, and the Solid Circles 
Denote Data Acquired in an Orientation that Otherwise Would Have Led to 
Pump-dependent Probe Loss. The Solid Line is the Theoretical Result Based on 
Eq. (III.16). 
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Discussion and Conclusion 

The picosecond BC results in Fig. 14 show several features which are of 

particular interest. First, since the sample showed no CW beam coupling, we 

can assume that linear absorption plays at best a minor role in photocarrier pro­

duction; therefore, the pulsed-laser results constitute the first observation of pi­

cosecond photorefractive two-beam coupling in a material which displays neither 

appreciable intrinsic nor mid-gap defect absorption. As such, the photorefrac­

tive gain occurring in the probe beam must originate as a two-photon absorption 

process, out of which arises a Dember field produced by separating distributions 

of electrons and holes. Such an effect has been observed in GaAs [20,22,29] but it 

was accompanied by non-negligible contributions from linear absorption. GaAs 

has significant linear absorption at 1.064 p,m due to the native mid-gap EL2 level 

located 820 me V below the conduction band, so that both charge migration from 

ionized EL2 levels and TP A processes can provide the space charge field required 

for photorefractive beam coupling. In our CdTe, where there is no significant 

absorption from mid-gap levels, the spatial separation of the charge distributions 

is due to the significant difference in the mobilities of the electrons and holes. 

With the exception of the electron and hole absorption cross sections, se 

and sh the values of the material parameters in Table 1 are taken from literature 

sources. Since the linear absorption coefficient is quite small in this material, 

we have used Se = sh = 0 in the numerical modelling. For material parameters 

based on those literature values and for :fluences greater than 1 mJ cm-2, we 

observe values of 6.T /To which are consistently less, or more negative, than 

those predicted by the theory. This may due to one or more types of increased 

absorption seen by the probe beam, either enhanced free carrier absorption or 

TP A. Also, the separation between the two experimental curves is larger than 

that predicted by the theory for those same literature value parameters, meaning 

that the photorefractive probe beam gain is larger than that predicted by the 

theory. A better fit to the data, as shown in Fig. 14, is obtained by adjusting f3 
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and T41 to twice their literature values. The TPA coefficient has been reported 

to be 26 cm/GW [9]. However, several mechanisms, which can vary from sample 

to sample, may affect this value, such as the anisotropy of f3 [30] and other 

competing nonlinear effects, such as bulk second harmonic generation [31-33]. 

The value of 50 cm/GWis therefore tenable. The required value ofr41 = 10 pm/V 

is more problematic, but may nonetheless be considered an effective electrooptic 

coefficient, operative in the excited, highly dynamic, state of the semiconductor 

during and just after excitation, in contrast with the literature value obtained 

under equilibrium conditions. Moreover, Martynov et al. [34] have shown that 

the electrooptic coefficient exhibits an impurity content dependence, which may 

be related to the increased value we require to fit the data. The reduced value 

of the Drude-Lorentz coupling coefficient to one third of its theoretical value is 

not unreasonable, since the exact form of the corresponding term in the optical 

field in Eq. (III.6) is not well understood or agreed upon. 

We also note that the power densities considered here, assuming a pho­

toinduced carrier density described by dNfdt = f3J2/(2hw), induce a carrier 

density N ~ 1016 cm-3 , corresponding to a plasma frequency of roughly 1013 Hz, 

well below the frequency of the optical field. We also neglect refractive index 

changes due to phenomena such as band renormalization, band filling, and state 

filling because the carrier densities required to produce these effects is typically 

at least an order of magnitude larger than those produced here [35,36,16]. 

The results of Fig. 16 correspond to the case where the pump and probe 

beams are cross polarized. No grating is written in the material and therefore, 

for this geometry, no photorefractive gain takes place and the two curves are 

expected to overlap. The smooth solid curve is a plot of the cross-polarized 

ll.T/T0 given by Eq. (III.16) using a value of f3 =50 cm/GW. Despite a certain 

amount of noise in the data, it is clear that there is no gross difference between 

the two orientations. The theoretical plot using f3 =50 cm/GW better describes 

the data than the value of f3 from other samples in the existing literature, and is 
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therefore consistent with the value of fJ needed to obtain a good fit to the data 

in Fig. 15. 

Summary and Conclusions 

In summary, we have observed what we believe to be the first instance of 

picosecond photorefractive two-beam coupling in a material which exhibits very 

little linear absorption, but has a high twO-photon absorption coefficient. No CW 

beam coupling signal was observed in this material at the irradiances investigated. 

The observed average photorefractive gain r = 2.3 cm-1 is believed to arise out 

of a Dember space charge field produced by the separation of electrons and holes, 

and shows that this undoped material has potential applications in the area of 

beam manipulation and other fields of optical processing. Polarization rotation 

by scalar gratings in undoped. CdTe was also demonstrated and may prove to 

be an additional technique in the area of laser beam manipulation, owing to its 

nJ / J.Lm2 turn-on power density. 



CHAPTER IV 

SECOND HARMONIC GENERATION 

Introduction 

Because of their potential applications in optical device technology 

[13,18], the optical properties of semiconductors such as CdTe have been the 

subject of widespread and intense investigation. Among the various studies un­

dertaken on these materials are those in which the nonlinear interaction of interest 

depends on laser-induced charge generation. Recent examples of such work in­

clude pulse-probe degenerate four-wave mixing (PP DFWM) and Raman-Nath 

self-scattering in CdTe [26,6,40], and picosecond two-beam coupling in CdTe, 

CdTe:Ge, CdTe:V, GaAs:EL2, and InP:Fe [41,29,22,23]. Because of their de­

pendence on charge generation in the semiconductor bulk, it is important to 

accurately account for the physical mechanisms of photocarrier production in 

the course of modelling these nonlinear interactions. 

Aside from the usual carrier generation mechanisms in semiconductors 

of single- and two-photon band-to-band absorption, and single- and two-photon 

absorption from defect levels to the conduction or valence band, an alternative 

method of photocarrier production in materials lacking inversion symmetry is ab­

sorption of internally generated frequency-doubled light, if the energy gap E9 is 

less than 21iw. One of the areas in which this second harmonic generation (SHG) 

process will be important is in the description of the various contributing mech­

anisms to the measured value of the two-photon absorption (TPA) coefficient. 

Despite considerable effort in quantifying the TPA coefficient in CdTe, and other 

semiconductors, its value remains known only with limited accuracy, due to a 

lack of knowledge of contributing mechanisms, as well as their relative strength 
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[9,42,33]. The absorption of any internally generated frequency-doubled radia­

tion may, therefore, represent a nontrivial contribution to the measured TPA 

coefficient, or other absorption-dependent phenomena. Preliminary results [31] 

on 1 mm thick single-crystal, undoped CdTe have already shown the ratio of the 

number of photons created via SHG to the number created through all other 

TPA processes to be approximately 0.04. We extend that work here by inves­

tigating the dependence of the SHG efficiency on sample thickness, the angular 

dependence of the observed signals to quantify any enhancement to the conver­

sion efficiency due to phase matching, and to determine the origin of the SHG 

signal, be it bulk or surface. 

Theoretical Background 

In this section the basic expressions describing the second order nonlinear 

optical effect of &econd harmonic generation or frequency doubling are derived. 

We also treat the dependence of the resultant frequency-doubled intensity on the 

Cartesian components of the input fields. Finally, the results are specialized to 

the case of materials with 43m symmetry, such as cadmium telluride. 

We begin by writing the wave equation for the electric field inside what 

is assumed to be a lossless ( u = 0) material. 

(IV.l) 

for nonlinear polarization PNL, and permittivity f. All waves are assumed to 

travel in the z direction. Anticipating a three-wave (x<2)) process, we write for 

the total electric field inside the material 

(IV.2) 

whose components are defined by 

(IV.3) 



E}W2)(z, t) 

E[w3 )(z, t) 

- ! [E2i(z)exp[i(k2z- w2t)] + c.c.] 
2 

- ~ [E3z(z) exp[i(k3z- w3t)] + c.c.] 
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(IV.4) 

(IV.5) 

where Eaf3 is the field amplitude of the ,8th Cartesian component oscillating 

at angular frequency wa, and c.c. denotes the complex conjugate. Assuming 

propagation along the z-direction and a 1 az = a 1 ay = o, we obtain for the 

spatial derivative of the ith field component oscillating at W 01 

(IV.6) 

where the prime denotes differentiation with respect to z. In deriving this ex­

pression we have used the Slowly Varying Envelope approximation (SVE), which 

is to neglect the second derivatives with respect to z. From Appendix A the 

ith component of the nonlinear polarization oscillating at w3 = Wt + w2 can be 

written 

(IV.7) 

where the dijk are the elements of the second order nonlinear susceptibility tensor 

referred to the crystallographic axes of the nonlinear material. Subsituting the 

fields and nonlinear polarization into the wave equation of Eq. (IV.l), keeping 

on both sides only those terms oscillating at w3 , and assuming that the input 

fields remain largely undiminished as they propagate through the material leads 

to the single equation describing the evolution of the frequency-doubled field 

where 

w 

(IV.8) 

(IV.9) 

(IV.lO) 
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and 

(IV.ll) 

Note that ll.k vanishes, or efficient pha&e matching occurs, only when the refrac­

tive index at the fundamental wavelength is twice that at the doubled wavelength 

for a given component. Such is the case for proper crystal orientation in certain 

birefringent materials. 

Integrating Eq. (IV.8) from z = 0 to crystal thickness l gives 

~ exp(iAkl-1) 
E3r(l) = 2wy Pot e3dlijE1iE2j Akl . (IV.12) 

where the leading factor of 2 results from the sum over i, j. 

The quantity in which we are interested is the intensity [I(l)]r of the lth 

polarization component in the frequency-doubled beam at z = l, given by 

[I(l)]r - ~ J f3 / J-LoE3r E;r (IV.13) 

-
1.;;:;;;;; 2 2 2 2 sin2(Akl/2) 
2 J.to/E3w drijEliE2i (Akl/2)2 (IV.14) 

-
1 v;;;;;; 2a3 2 2 sin2(1l.kl/2) 
2 J.to f3w lijEliEli (Akl/2)2 • (IV.15) 

where in the last of these equations we have assumed that the two input fields 

originate in the same input beam. 

To describe the dependence of the intensity of frequency-doubled light as 

the components of the input fields E1[J vary, we can proceed in one of two ways. 

We may fix the nonlinear material in space and allow the input field polarization 

vectors to rotate, or we may fix the field polarization vectors, referring them to 

a convenient laboratory frame, and rotate the crystal in the opposite direction. 

Although the two approaches lead to equivalent results, we shall follow the latter, 

where the crystal is presumed to rotate. The effective elements ( dijk)eJJ then 

change as the crystal rotates, and are given by [43] 



def 1 = 2: bidi;ka;ak 
ijk 
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(IV.16) 

where a and bare the unit polarization vectors of the input field and frequency­

doubled field, respectively, referred to the cry.&tallographic aze& ijk. Inspection 

of Eq. (IV.12) for the frequency-doubled field E3 shows that b may be either 

parallel or perpendicular to a. 
For cadmium telluride (point group 43m), all but the following elements 

dijk are nonzero [44] 

(IV.17) 

(IV.18) 

(IV.19) 

Moreover, each of these elements is equal to each other. This single value is 

hereafter referred to as simply d. Performing the prescribed sum in Eq. (IV.16) 

leads to 

(IV.20) 

We consider two cases: one for which the input field propagation vector 

k is anti-parallel to the [110] crystallographic direction, and the other where 

k is anti-parallel to the [111] crystallographic direction. (Hereafter, integers in 

square brackets denote crystallographic directions). In either case, two frames of 

reference sharing a common origin are required, a laboratory frame and cry&tal 

frame. 

In the first case, for propagation anti-parallel to [110], the laboratory 

frame, or primed frame, is obtained by rotating the crystal frame about the £­

axis through an angle 0 = rr/4. The vectors a' and b' referred to the laboratory 

frame are 



a' 

il 

0 

sin¢ 

cos¢ 

0 

-cos 4> 

sin¢ 
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(IV.21) 

(IV.22) 

where 4> is the angle between a' and [001]. a and bare then obtained from their 

primed counterparts by applying the rotation operator 'Re 

where 

'Re = 

for poJitive angle E>. This yields 

a -

b -

a - 'J?._ ~I ea 

b - 'Reb' 

cosE> -sinE> 

sinE> cos E> 

0 0 

- sin E> sin 4> 

cos E> sin¢ 

cos¢ 

sinE> cos 4> 

- cos E> cos 4> 

sin 4> 

(IV.23) 

(IV.24) 

0 

0 (IV.25) 

1 

(IV.26) 

(IV.27) 

Using these crystal-frame components in the expression for de// in Eq. (IV.20) 

gives the angular dependence of the parallel (b 11 a) and perpendicular (b .i a) 
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polarization components of the frequency-doubled light for the case of incidence 

normal to a (110) crystallographic face 

1(2w )u oc ( def ,)" 

oc sin 4 <P cos2 <P 

1(2w )1. oc ( deJJ )l 
oc sin2 </J(l- 3 cos2 tfJ)2 

(IV.28) 

(IV.29) 

(IV.30) 

(IV.31) 

Again, this treatment assumes that the input field polarization vectors are fized 

with respect to the laboratory frame. 

In the second case, for an input field propagation vector k anti-parallel to 

[111], the laboratory frame is obtained from the crystal frame by two consecutive 

rotations. The first is a positive rotation about the crystal z-axis by 7r /4, giving 

rise to the primed coordinate system. The second rotation occurs about the 

y'-axis (which coincides with [110]) through an angle W =arccos !lf3 R:: 54.7°, 

taking z' into the [111] direction, giving rise to the doubly-primed coordinate 

system. The components of a" and il', where the double primes denote the 

laboratory frame, are 

a" -

ll' -

sin 'I/; 

cos 1/; 

0 

-cos 'I/; 

sin.,P 

0 

(IV.32) 

(IV.33) 

where .,P is the angle between a" and y", or, equivalently, between a" and [HO]. 

The crystal coordinates are obtained from those in the laboratory frame by ap­

plying the rotation operators Re and Rw 



where 14> is defined in Eq. (IV.25) and 

cosW 0 sin W 

0 1 0 

-sin W 0 cos..P 
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(IV.34) 

(IV.35) 

(IV.36) 

again noting that W is a po&itive angle. The components of the vectors a and b 
are then 

face 

a 

b -

cos E> cos W sin ,P - sin E> cos ,P 

sin e cos q, sin ,p + cos E> cos ,p 
- sin W sin ,P 

- cos E> cos q, cos ,p - sin e sin ,p 
- sin E> cos W cos ,P + cos E> sin ,P 

sin W cos ,P 

(IV.37) 

(IV.38) 

This gives for the case of incidence normal to a (111) crystallographic 

I(2w) 11 ex (de//)" (IV.39) 

I(2w)u ex sin2 37/J (IV.40) 

I(2w )J. ex (deJI )fl (IV.41) 

1(2w )1. ex cos2 37/J. (IV.42) 
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Experimental Procedure 

In all of the work described below the source of excitation was an actively 

and passively mode locked Y3Als012:Nd3+ (YAG:Nd) laser operating at its fun­

damental wavelength of 1.064 p.m. The laser full-width-half maximum (FWHM) 

Gaussian pulse width T, which was determined by autocorrelation, was 18 ps. 

The laser repetition rate was 10 Hz. 

The polished, high resistivity, p-type single crystalline CdTe used in these 

experiments was grown by Eagle-Picher Research Laboratories. Crystal growth 

details are the same as those described earlier [26]. The experimental geometry, 

shown in Fig. 18, is the same as that used in our preliminary work on SHG in 1 

mm thick samples of CdTe [31]. Three different materials were investigated here 

to determine the film thickness dependence of the SHG efficiency. Two samples 

were Bridgman-grown material, one with dimensions 1 em X 1 em x 127 p,m, 

the other 1 em X 1 em X 254 p,m, each grown on a sapphire substrate. The 

orientation of these samples is the same: a polished face parallel to the (110) 

plane, and remaining edges parallel to the (110) and (001) planes, respectively. 

Material oriented in this way is hereafter referred to as "(110)" material. The 

third sample was a 6 p,m thick film of MOCVD CdTe deposited on ap. optical 

quality ZnSe substrate. Although the exact orientation of this sample was un­

known, knowledge of the growth characteristics suggests that the polished face 

was parallel to the (111) plane. The sample had no other well defined direc­

tions. Material oriented in this way is hereafter referred to as "(111)" material. 

The Eagle-Picher Lot Numbers for the 127, 254, and 6 p,m thick material are 

FC89277-01-18, FC89277-01-16, FC89320, respectively. 

Experimental Results 

The contributions to TPA are known to be dependent on various material 

parameters of the samples used in the experiment, such as the anisotropy of 

TPA [30] and impurity levels in the forbidden gap. SHG in semiconductors 
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Figure 18. Experimental Geometry Used in the SHG Investigation. M, Mirror; 
P1.064 , Polarizing Beam Splitter Coated for 1.064 JLm; CdTe, CdTe Sample; P 532 , 

Polarizing Beam Splitter Coated for 532 nm; GF, Green Filter (Corning Filter 
#1-56); NDF, Neutral Density Filter; PMT, Photomultiplier Tube. 
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has been observed in reflection geometries at air-surface interfaces in several 

III-V compounds [45,46], in transmission geometries at 10.6 p.m [47,48], and 

in internally generated SHG in semiconductor lasers [49-51]. There have also 

been observations of transmitted SHG [52,53], similar to that reported here, 

where the frequency-doubled radiation lies above the intrinsic absorption edge 

of the material. However, to our knowledge SHG followed by single photon 

absorption has not been considered as a mechanism leading to a laser-induced 

free carrier population in the context of measurements of the TP A coefficient or in 

the analysis of photorefractive effects in this material. In either of linear or two­

photon band-to-band absorption, or SHG followed by single photon absorption, 

a charge distribution is produced which can affect the nonlinear interaction of 

interest. The mechanism of charge generation is, however, quite different, and 

should be considered in the modelling of these interactions. 

Preliminary results [31] were presented on a 1 mm thick sample of (110) 

material. The dependence of the second harmonic intensity was determined both 

as a function of the angle </> between the optical electric field unit vector e and 

the [001] crystallographic direction at constant pump intensity and the absolute 

efficiency of SHG on pump intensity for constant¢. The variation of the u and 

1r polarization components of the second harmonic intensity with </> was found 

to agree well with the theoretical model of bulk SHG, where the u component 

is defined as the polarization component of second harmonic light generated 

perpendicular to e, and the 1r component is that generated parallel to e. In that 

study it was also found that in the 100 MW cm-2 intensity range, the ratio of 

the total number of photocarriers created via absorption of frequency-doubled 

light to that created via all other TPA processes to be about 0.04. Although this 

ratio is small, its presence should be addressed in charge generation models. It is 

also of some interest to note that, using proper eye protection, the transmitted 

SHG signal was easily visible to the eye in moderate to low room lighting. 

It was thought that for diminishing sample thickness, an increased effi­

ciency might be obtained owing to the absence of a mismatch between the SHG 
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coherence length and the sample thickness. We measured the absolute signal 

intensity in three additional samples, two Bridgman-grown samples on sapphire 

substrates, one of 127 p,m and the other of 254 p,m thickness, and the third an 

MOCVD film of thickness 6 p,m, grown on a ZnSe substrate. We recorded the 

same (±5%) absolute 1r component signal intensity emerging from the sample in 

each of the two Bridgman samples, and a signal intensity half that in the 6 p,m, 

thin film material. For purposes of comparison, the absolute SHG signal inten­

sity of the 1 mm thick sample used in our preliminary study [31] was remeasured 

and found to be the same to within experimental error as that recorded in the 

127 and 254 p,m Bridgman materials, under the same pump conditions. The 

measurements were made on the 1r signal component at the angle for which the 

SHG signal was maximum. 

The angular dependences of the 1r and u component SHG signal intensi­

ties for incidence on a (110) plane are given by 

(IV.43) 

(IV.44) 

respectively, where Ep( w) is the amplitude of the optical electric field oscillating 

at angular frequency w, P(2w) is the induced nonlinear polarization oscillating 

at 2w, and X = Xl23 = X213 = X3l2 is the bulk second harmonic generation con­

tribution to x<2> in materials with 43m symmetry. The experimentally observed 

angular dependence of the 1r and u polarization components in the 127 p,m and 

254 p,m (110) samples is shown in Fig. 1g. The theoretical curves corresponding 

to Eqs. (IV.43) and (IV.44) are shown as solid lines. We obtain agreement with 

the theory over the full range of angles, with the exception of the 1r component 

signal near 4> = goo, where the signal falls short of the predicted intensity by a 

factor of about 2/3. This same diminished 1r component signal intensity at </> = 

goo is observed in all three (110) materials. 
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Figure 19. SHG Signal Intensity as a Function of Crystal Orientation in (110) 
Bridgman Material. (a) 127 J.Lm-thick material, (b) 254 J.Lm-thick material. Open 
Circles Denote the 1r Polarization Component, and Solid Circles Denote the u 
Component. The Angle, l/>, is Defined in the Text. The Solid Lines are the 
Corresponding Bulk Theoretical Curves. 
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The angular dependences of the 1r and u component SHG signal intensi­

ties for incidence normal to a (111) plane are given by 

(IV.45) 

(IV.46) 

respectively, where ,Pis the angle lying in the (111) crystallographic plane be­

tween e and the [110] crystallographic direction. Figure 20(a) shows for the thin 

film MOCVD material the dependence of the u component second harmonic in­

tensity on ,P; Fig. 20(b) shows the 1r component signal intensity dependence on 

,P. The theoretical curves corresponding to Eqs. (IV.45) and (IV.46) are shown 

as solid lines. 

Assuming a uniform value of the frequency conversion efficiency along 

the fundamental laser beam path in the sample (equivalent to neglecting Maker 

oscillations), the total number of frequency-doubled photons Nt generated in the 

crystal may be estimated from 

(IV.47) 

where a is the absorption coefficient at 532 nm, Npmt is the number of 532 nm 

photons reaching the photodetector, and l is the sample thickness. Figure 21 

shows the total second harmonic conversion efficiency 11 vs. input laser intensity, 

where 11 is defined as the ratio of Nt to the number of 1064 nm photons introduced 

into the sample. The intensity at which 11 saturates, I R: 200 MW /em 2, is consis­

tent with the saturation intensities observed in our other picosecond wave-mixing 

work [26], and is again attributed to free-carrier absorption. The measurement of 

11 was performed on (110) material for second harmonic light polarized parallel to 

the excitation beam, at an angle between the [001] direction and the polarization 

vector of the excitation beam that maximized the frequency-doubled signal. 

Figure 22 shows the frequency-doubled signal at 461 nm obtained by 
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pumping the 1 mm thick, (110) sample with the output of a short cavity dye 

laser centered near g21 nm, demonstrating that the frequency-doubling in CdTe 

is not limited to 1.064 p,m excitation. 

Discussion and Conclusions 

The agreement of the data obtained on the (110) material with the the­

oretical curves based on the bulk material is quite good, suggesting that most 

of the observed signal in these particular samples has its origin in bulk SHG. 

Referring to Figs. 1g(a) and 1g(b) for the (110) material, it is seen, however, 

that there is a discrepancy between experiment and theory in the 1r polarization 

component at 4> = goo, where the observed signal intensity falls short of the 

theoretical value by a factor of about 2/3. For this angle, e points along the 

[110] crystallographic direction. This shortfall in signal strength was attributed 

in our preliminary work to increased free photocarrier absorption. However, the 

diminution in signal strength at 4> = goo does not depend strongly on incident 

laser intensity. An alternative mechanism may be rooted in a dependence of the 

linear absorption coefficient on the orientation of e with respect to the crystallo­

graphic a.xes, viz. a dichroic effect. It is also possible that a change in the phase 

matching conditions, caused by photocarrier-induced refractive index changes, 

is responsible for the smaller signal strength [33]. A similar decrease in signal 

intensity under these conditions was observed in our earlier study [31], leading 

us to conclude that we are observing a material property rather than an artifact 

of experimental parameters. 

The presumed-(111) type MOCVD material shows results that are quite 

different than the bulk (111) SHG theory predicts. For this sample, neither the 

crystallographic orientation or the quality of the film are well characterized. If the 

film is to a degree polycrystalline, or if growth did not occur along (111) planes, 

the observed signal is not expected to obey the bulk, single-crystal equations 

used above. A reasonable explanation of the deviation of the observed signals 

from the bulk (111) theory would credit each of these effects in some measure. 
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In the theory of SHG [44], the second harmonic power per unit area is 

modulated spatially by the factor which gives rise to Maker fringes [54,55] 

sin2(Akl/2) 
(Akl/2)2 

(IV.48) 

where Ak = k(2w) - 2k(w) is the phase mismatch, and l is the sample thickness. 

This results assumes a low sample electrical conductivity. The coherence length 

lc is defined as the distance between adjacent peaks of Eq. (IV.48) and is given 

by 

(IV.49) 

2( n(2w) _ n(w)) 

for free-space fundamental wavelength A. The coherence length puts an upper 

limit on the maximum useful thickness of an efficient second harmonic generator. 

Using values of the refractive index of CdTe [14,56] of n1.064 = 2.82 and n 532 = 3.2 

at 1.064 p,m and 532 nm, respectively, gives a coherence length of 1.4 p.m. The 

absorption length labs, defined as the reciprocal of the absorption coefficient at 

532 nm, is approximately 0.17 p,m, using [57] a value of a = 6 x 104 cm-1• This 

suggests that very little enhancement, even for film thicknesses approaching the 

coherence length, is obtained by varying film thickness, since any newly-generated 

frequency-doubled light in the bulk is almost immediately absorbed. 

With the exception of the MOCVD sample, the experimental results dis­

cussed above are consistent, in the limit of negligible pump depletion, with signals 

of constant absolute intensity in samples thicker than labs· We therefore find no 

enhancement owing to decreasing film thickness for the range of thicknesses con­

sidered here. This contrasts sharply with the increase in efficiency realized in 

transparent materials where the indices of refraction at both the fundamental 

and doubled frequency are largely real so that phase matching techniques can be 

applied [44,55]. The origin of the factor of two difference in the signal strength 
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in the MOCVD film remains unknown and may be related to a combination of 

unknown film quality and sample symmetry. 

In summary, we have studied transmission geometry optical second har­

monic generation in several thin films of CdTe and have found that the absolute 

registered second harmonic intensity is constant for three samples of well-defined 

symmetry, and a factor of two less for a thin MOCVD film, whose properties are 

not well characterized. In both types of samples the magnitude of the frequency­

doubled signals is large enough to contribute to free carrier populations. In the 

materials of well-defined symmetry we find an angular dependence of the SHG 

signal intensity consistent with signals originating in the material bulk. The 

deviation of the presumed-(111) MOCVD SHG signals from the bulk (111) the­

ory is attributed to a combination of unknown crystal symmetry and possible 

polycrystalline effects. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The experimental results of several picosecond, near-infrared nonlinear 

optical studies performed on the II-VI unintentionally-doped semiconductor cad~ 

mium telluride (CdTe) have been reported. The results of a series of experiments 

performed to determine the PP DFWM response of CdTe under picosecond laser 

excitation reveals the nonlinear response of the material can be described by the 

free-carrier optical nonlinearity. From these measurements values of the the am­

bipolar diffusion coefficient and free-carrier lifetime are deduced. The results of 

thin-grating, two-beam scattering are presented, from which is deduced the laser­

induced refractive index change. An investigation of band-edge enhancement of 

the PP DFWM response is also presented, and shows that in this particular 

sample for the conditions of excitation investigated no significant enhancement 

to the absolute scattering efficiency vs. excitation wavelength is had, with an 

average scattering efficiency of approximately 10-4• A description is presented of 

the first observation of picosecond photorefractive two-beam coupling in a mate­

rial (undoped CdTe) lacking appreciable linear absorption, along with the first 

observation of polarization rotation by scalar gratings. 

We have reported the results of a series of measurements made of second 

harmonic generation in a transmission geometry in various thicknesses of CdTe. 

We find that the second harmonic light originates in the material bulk rather 

than at the exit surface, and that no significant enhancement to the conversion 

efficiency is obtained by varying the sample thickness, down to a thickness of 

roughly six times the second harmonic generation coherence length. Results are 

presented for both 1064 nm and 921 nm excitation. 
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CLASSICAL ANHARMONIC OSCILLATOR 

It is the purpose of this appendix to discuss the derivation and form of the 

nonlinear optical constants in the classical anharmonic oscillator approximation. 

We begin by writing the equation of motion for the anharmonic oscillator 

d2r .... _, 
m- = -eE- VU(r) 

dt 2 ' 
(A.l) 

where m is the oscillator effective mass, r is the position of the electron, EJ is the 

driving optical electric field, and 

U(r) = U = u(z) + u<3) + u<4) (A.2) 

is the anharmonic potential to order four in the displacement r. Generally, 

3 
u<z) - :z= aiQ~z) (A.3) 

i::::l 

9 
U(3) :z=f3;QP) 

i::::O 

15 
U(4) :z= 'YiQ~ 4)' 

i::::l 

where the a;,/3;, and 'Yi are th,e expansion coefficients of the polynomials Q(n) of 

order n = 2, 3, and 4. In treating a particular point group we require that the 

potential be invariant under the group symmetry operation, or 

(A.4) 
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for symmetry operation 0. When applying the symmetry operation in Eq. (A.4) 

to U we will find that generally not all the expansion coefficients are nonzero, so 

that the potential simplifies. 

We take as a specific example the construction of the invariant potential 

for the point group S4 • Crystal class S4 is a cyclic group containing the single 

generator s4 which gives 

S4(x,y,z) - (y,-x,-z), 

S~(x,y,z) 

S~(:z:, y, z) 

(-x,-y,z), 

( -y, :z:, -z). 

The general form for the second order potential U(2) is 

(A.5) 

(A.6) 

and becomes under the application of the symmetry operation in Eq. (A.4) be-

comes 

(A.7) 

Making a one-to-one correspondence between similar terms in :z:, y, and z in the 

expressions for U(2) and S4 U(2) in Eqs. (A.6) and (A.7), respectively, we find the 

following 

(A.8) 

The second order contribution to the potential U is therefore 

a1(:z:2 + y2) + a3z2 (A.9) 

- ~m:cw;(x2 + y2 ) + ~mzw;z2 , 
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where, for the linear solution, we have taken a:i = miw[ /2. The mi are the 

oscillator effective masses in the i = z, y and z direction. 

Moving now to the third order potential U(3) and referring to Table I, 

we can see that generally U(3) is 

1a 3 1a 3 1a 3 a 2 a 2 
31-11Z + 31-12Y + 31-13Z + tJ4Z. y + fJ5Z Z (A.10) 

+{36zy2 + {37y2z + f3szz2 + (3gyz2 + 2f3ozyz. 

With the application of the symmetry operation of Eq. (A.4) U3 becomes 

(A.ll) 

Making the same one-to-one correspondence between similar terms in z, y, and 

z in (A.10) and (A.ll) leads to the following relationships among the third order 

coefficients 

{31 - -{32, {32 = {31 (A.12) 

{33 -{33, {34 = {36 

f3s - -{37, {36 = -{34 

{37 - -f3s, f3s = -(3g 

(3g - f3s, f3o = f3o. 

Examination of these equations leads to the conclusion that only those involving 

{35, {37, and {30 are self-consistent; therefore, these are the only nonzero coefficients 

in U3 for point group 84 , with {35 = -{37. All other f3i = 0. This gives 

(A.13) 

We turn our attention now to the fourth order potential U(4), given generally by 



TABLE II 

POLYNOMIALS OF ORDER n, Q~n), AND EXPANSION 
COEFFICIENT IN POTENTIAL ENERGY U(n) 

Expansion Coefficient Q~n} 

O:t l:z:2 
2 

0:2 !Y2 
0:3 !z2 

2 
f3t !:z:3 

3 
{32 iY3 

/33 lz3 
3 

{34 :z:2y 

f3s :z:2z 

{36 :z:y2 

{37 y2z 

f3s :z:z2 

f3g yz2 

f3o 2:z:yz 

"Yl l:z:4 
4 

"Y2 iY4 

"Y3 lz4 
4 

"Y4 :z:3y 

"Ys :z:3z 

"Y6 :z:y3 

"Y7 y3z 

"Ys :z:z3 

"Y9 yz3 

"YlO '2:z:2y2 

"Yn i:z:2z2 

"Y12 ~y2z2 
"Y13 3:z:2yz 

"Y14 3:z:y2z 

"Yl5 3:z:yz2 
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(4) 1 4 1 4 1 4 3 3 3 (A 14) 
U - 4"Y1Z + 4"Y2Y + 4{3Z + {4Z Y + "Y5Z Z + {6ZY • 

3 3 3 
+/7Y3 z + /sZ z3 + /9Y z3 + 2"YIOz2y2 + 21'11 z2 z2 + 2/12Y2 z2 

+3/13z2y z + 3{14zy2 z + 3/1sZY z2• 

Applying Eq. (A.4) to this gives 

(4) 1 4 1 4 1 4 3 3 3 (A 15) 
S4U - 4'"Y2Z + 4 /1Y + 4 {3Z - {6Z Y + "Y7Z Z -{4ZY • 

3 3 3 3 22 3 22 3 22 
-{5Y Z + {gZ Z - "YsY Z + 2/IOZ Y + 2"Y12Z Z + 2111Y Z 

-8-y14z2yz + 3{13zy2z- 3{15zyz2• 

A comparison of (A.14) and (A.15) yields 

"Y1 /2, /2 ={1 (A.l6) 

/3 - /3, /4 = --y6 

/5 - {7, "Y6 = --y4 

/7 -{s, /8 ={g 

/9 -{s, /10 = {10 

"Yll - /12, /12 = /11 

/13 -{14, {14 = /13 

/15 - -{15• 

Examination ofthese equations reveals that only those involving "Yb -y2, { 3, -y4, 

{6, 110, "Y1h and 1'12 are self-consistent, therefore these are the only nonzero 

coefficients in U<4> for class S4, with 11 = -y2, -y4 = --y6, and 111 = /12· We 

therefore have for U(4 ) 

(A.17) 
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This completes the construction of the invariant potential U for crystal class 84 

through order 4. We will not solve the equation of motion for this class, but 

reserve that for the more general case of crystal class Cb the potential for which 

we now address. 

Because crystal class C1 has no symmetry all of the terms in Table 1 will 

be present in U. Substitution of the full expression for U from Eq. (A.2) into 

the equation of motion Eq. (A.l) gives for the three components 

and 

- eEx- mxw;x- {31x2 - 2{34xy- 2f3sxz - {36y2 (A.18) 

-f3sz2 - f3oYZ -/1X3 - 3/4X2y- 3/sX2 Z -/6Y3 

-!sZ3 - 3/wXY2 - 3/nXZ2 - 6113xyz- 3/14Y2Z- 3/Isyz2, 

myy - - eEy- myw;y- {32x 2 - {34x2 - 2{36xy- {37yz 

-{3gz2 - 2f3oxz -12Y3 -14x3 - 3/6XY2 - 3!7Y2Z 

(A.19) 

-~gz3 - 3!wx2y- 3!12YZ2 - 3/I3x2z- 6114xyz- 3/Isxz2, 

- eEz- mzw;z- {33z2 - f3sx 2 - {37y2 - 2f3sxz (A.20) 

-2{3gyz- 2f3oxy -13z3 -/sX3 -11Y3 - 3!sxz2 

-3/gyz2 - 3/nX2Z- 3/12Y2Z- 3/13x2y- 3/I4XY2 - 6/Isxyz. 

Reflecting the perturbational approach we shall adopt, we let 

Eq -+ Eq6 (A.21) 

q -+ q16 + q262 + q363, 

where E is the optical electric field, q is the displacement, which can be either 

x, y, or z, with each consisting of a first, second, and third order contribution. 
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The parameter 5 serves only as a tag so that we might track the various orders 
' of the solution through the calculations. Once the first, second, and third order 
• 

equations of motion have been written down, 5 will be set equal to unity. Terms 

in 5 of order higher than 3 will not be considered, as such terms were not included 

in the original form of the solution in Eq. (A.21). 

Substituting the form of the solution from Eq. {A.21) into the equation of motion 

and collecting on like powers of 5 gives us through third order the solutions in z, 

y, and z 

-')'tZf- 3')'4Z~y1 - 3')'sZ~Z1 - 'Y6Yt- ')'szt- 3')'toZtYf 

-3')'nZI Zf - 6"')'13ZIY1 Z1 - 3')'I4Yf Z1 - 3')'I5YI Zf' 

myy2 - - myw;y2 - f32Yf - f34z~ - 2/36z1 y1 - 2/37Y1 z1 

-f3gz~ - 2f3oz1 z1 

(A.22) 

(A.23) 

(A.24) 

{A.25) 

{A.26) 



and 

myy3 - - myw;y3- 2f32Y1Y2 - 2{34zlz2- 2{36(Z2Y1 + Z1Y2) 

-2f3r(y1z2 + y2z1)- 2{3gz1z2 - 2{3o(z1z2 + z 2z1) -12Yr 

-14zr- 3'Y6Z1Yf- 317YfZl -lgZr- 3'Y10ZfY1 

-3'Y12Yl zi - 3'Y13Z~ z1 - 6114z1y1 z1 - 3'Ylsz1 Zf, 

Let us assume for the form of the optical electric field 

E = 2: Eja)eiwitaa 
a,j 
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(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.32) 

where Eja> is the ath component of the electric field oscillating at angular fre­

quency Wj and aa is a unit vector in the a direction. For an input optical field with 

n Fourier components, the index j takes on values -n, -n + 1, ... , -1, 1, ... , n-

1, n, with the understanding that Wj = -W-j, and Eja) = (E~j>)* where ( *) 
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denotes the complex conjugate. The wave vector k dependence of E will be sup­

pressed in this discussion since it does not enter directly into the calculations at 

this time. It may be inserted into the final results so that one might discuss the 

notion of pha&e matching. 

Let us take as an example for solution the z component of the first order 

equation of motion. Substituting the z component of the optical electric field in 

Eq. (A.32) into the equation of motion Eq. (A.22) gives 

mx:ih = -e l:E]x)eiwit- mxw;zl• 
j 

Assuming a trial solution of the form 

. ZI = 2: z~j) eiwit' 
j 

and performing the differentiation yields 

Equating coefficients of synchronous terms gives the z~i) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

where Di(wi) = (mi/e)(w[- wJ). Similar operations lead to the first order y and 

z coefficients 

(A.37) 

(A.38) 

from which follow the first order solutions 
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E(x) . 
:Z:t _ 2::: 1 e'wit (A.39) 

j Dx(wj) 

E(Y) . 
(A.40) Yt _ 2::: J e'wit 

i Dy(wi) 

E(z) . 
Zt - _ 2::: 1 e'wit. (A.41) 

j Dz(wi) 

The polarization Pin the a: direction is related to the nth order displacement qn 

through 

(A.42) 

where N is the number of displaced electrons and e is the modulus of the elec-
. . 

tronic charge (a positive number). However, we may also expand the polarization 

in powers of the electric field E 

Pa = L x~~ E<i> + L x~AE(i) E(k) + L x~A1E(i) E(k) E(l) + ... (A.43) 
j j,k j,k,l 

A comparison of these two forms of the polarization gives the linear susceptibility 

x<t> 

(A.44) 

Note that :z:1 contains no frequency component& not contained in the driving field 

Ex, reflecting the fact that :z:1 is the first order solution; it therefore describes 

only linear optical effects. We shall continue to refer to Eqs. (A.42) and (A.43) 

throughout this work, as we seek the nonlinear susceptibility tensor elements. 

We now proceed to the second order solution in :z:. Substituting the first 

order solutions in :z:, y, and z into the second order equation of motion Eq. (A.23) 

for :z: gives 
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(A.45) 

~~m ~~~ ~~m ------"--- + + ....,...--------,~--~ 
(w;- wJ)(w;- wf) (w;- wJ)(w;- wf) (w;- wJ)(w;- wf) 

f3sEJEt + 2f3oEJ Et ) ei(w;+w")t 

(w;- wJ)(w;- wf) (w;- wJ)(w;- wf) · 

As in the first order case, we try a solution z2 that has the same time dependence 

as the driving term. Let z 2 be of the form 

Z2 = L z~j,k) ei(w;+wk)t. 

j,k 

(A.46) 

Substitution of this into the equation of motion and equating coefficients of syn­

chronous terms gives 

( e/m)2 ( f31Ej Ef (A.47) 
[w;- (wi + wk)2] (w;- wJ)(w;- Wf) 

~~m ~~~ ~~m + + + -:-------,..,~----:,..,... 
(w;- wJ)(w;- wf) (w;- wJ)(w;- wf) (w;- wJ)(w;- w~) 

f3sEJ EZ + 2f3oEJ EZ ) ei(w;+w")t 

(w;- wJ)(w;- wf) (w;- wJ)(w;- wf) ' 

from which follows the second order solution in z 

(A.48) 

Similar operations provide the second order solutions in y and z 

(A.49) 
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and 

2 ""' 1 ( (33Ej E% 
z2 - -(e/m) f,t[w;-(wJ+wf)] (w;-wJ)(w;-wD 

(A.50) 

~~~ ~~m ~~~ 
-:------::-:-":----:07"" + + -:-------:::-:-:=----::-:-
(w;- wJ)(w;- wD (w;- wJ)(w;- wf) (w;- wJ)(w;- Wf) 

2(3gEJ E% + 2{3oEf E% ) ei(wi+w~;)t 
(w;- wJ)(w;- wD (w;- wJ)(w;- wD ' 

respectively, where we have for simplicity assumed that the effective masses are 

equal. These expressions for z 2 , y2 , and z2 are sufficient to describe nonlinear 

effects arising from the second order polarization. 

Let us now take as an example second harmonic generation to show how 

we might extract the nonlinear second order susceptibility tensor elements for a 

particular wave mixing process. Considering the z component of the polarization, 

and letting the optical pump field consist of the single Fourier component w = wp, 

we focus on those terms in Eq. (A.48) oscillating at 2wp. This gives 

(A.51) 

Knowing that the second order polarization P for displacement z 2 is 

given by 

(A.52) 
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= I: x~~~E(j) E<k> 
j,k 

we can identify the values of the elements of the second order nonlinear optical 

susceptibility tensor x~~k· For example, for j = k = z, we have 

(2) N(e/mP /31 

Xxxx = (w2 - 4w2) ( 2 - 2)2 + c.c. 
x P wx wP 

(A.53) 

Now that we have obtained the first and second order solutions in z, y, 

and z, we can proceed to third order. Because of the considerable amount of 

algebraic overhead in transcribing these equations we will only discuss the third 

order solution in the variable z, and even then we will keep only those terms 

involving the [i· Let us assume a form of the third order solution given by 

Z3 . L z~·k,l) ei(wi+w~c+wl)t. 
j,k,l 

(A.54) 

Substitution of this, and the lower order solutions, into Eq. (A.24), and equating 

coefficients of synchronous terms in the /i yields 

where we have again assumed for simplicity that the effective masses are equal. 

As an example of how to extract the values of the third order nonlinear 

susceptibility tensor let us consider third harmonic generation. In this case the 
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input optical pump field has only one Fourier component w = Wp. The nonlinear 

response from the medium then gives rise to a polarization oscillating at 3wp. 

Writing only those terms in 'Yi oscillating at 3wp in Eq. (A.55) we have 

Knowing that the third order polarization P for displacement z3 is given 

by 

pp)(3wp) - -N ez3 (3wp) (A.57) 

- """'x<3) (3w )E(i) E(k) E(l)ei3wpt LJ XJk/ P 
j,k,l 

where j, k, and l are each summed over the Cartesian components z, y, and z, a 

comparison of Eq. (A.56) and (A.57) gives 

(A.58) 
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SEMICLASSICAL DENSITY MATRIX 

It is the purpose of this appendix to discuss the form and derivation of 

the nonlinear optical constants in the semiclassical density matrix approximation. 

The density matrix method in quantum mechanics allows us to gain information 

about a physical system without precise knowledge of the system's wave functions 

l'lf(t)). In place of this exact knowledge of the wavefunctions we substitute our 

knowledge of the probability of the system taking on a certain wavefunction. 

Consider a system whose wavefunction is at timet 

I 'lf(t)) = L Cn(t) I Un) (B.l) 
n 

where the kets Un form an orthonormal basis for the state space and the coeffi­

cients en( t) satisfy the relationship 

(B.2) 
n 

an expression of the fact that the '!f(t)'s are normalized. If we now consider an 

observable A with matrix elements 

(B.3) 

then the mean value of A at the instant t is 

(A)(t) ('lf(t) I A I 'lf(t)} (B.4) 

(Lc~(t)un I A I l:cv(t)uv} 
n p 

L c~(t)cv(t)Anp· 
n,p 

95 



96 

Eq. (B.4) shows that the coefficients cn(t) enter into the mean values 

through quadratic expressions of the form c~(t)cp(t). These are simply the matrix 

elements of the operator 

p(t) =17/J(t))(.,P(t) I (B.5) 

taken between the basis vectors I up) and I un)· That is, 

Ppn - (up I p(t) I Un} (B.6) 

- (up 17/J(t)) (.,P(t) I Un} 

- (up I I: Ci(t)ui)(L: cj(t)uj I un) 
j 

- I: Ci(t)cj(t)(up I ui}(Uj I un) 
i,j 

I: ci(t)cj(t)opiDnj 
i,j 

- c~ ( t)cp( t). 

The operator p(t) is called the density operator and its matrix elements Ppn 

constitute the density matri:z:. We will now show that the specification of p(t) 

suffices to characterize the physical properties of the system; that is, it will allow 

us to obtain all the physical information that can be calculated using the kets 

.,P( t). 

According to the statement of normalization of the .,P(t) in Eq. (B.2) and 

the relationship between the Ppn and expansion coefficients ck(t) in Eq. (B.6), a 

sum over the diagonal elements of p(t) results in unity, or, 

n n 

Tr[p(t)] 

- 1. 

(B.7) 
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The mean value of A given in Eq. (B.4) may be rewritten by combining Eq. (B.3) 

for the matrix elements of A with the result for the matrix elements of p(t) in 

Eq. (B.6). This produces 

{A(t)) - l:[c:( t)cp( t)] [Anp] (B.8) 
n,p 

- l:[Ppn][Anp] 
n,p 

- I:[(up I p(t) I Un}][(un I A I Up}] 
n,p 

l:(up I f>(t)A I up) 
p 

- Tr[f>(t)A], 

where the fourth line follows from the third due to closure. * 
The time evolution of the density operator may be obtained with the aid 

of Schrodinger's equation, 

so that 

d A 

in dt 1 ,P(t)) = H 1 ,P(t)), 

d~~t) - ~ I 1/J(t)) (,P(t)l 

- (! 11/J(t))) (,P(t)l + 11/J(t)) (! (,P(t)l) 

1 A 1 A 

in H 11/J(t)) (,P(t)l + (-in) 11/J(t)) (,P(t)l H 

- ~~ [h,f>(t)], 

where H is the Hamiltonian of the system. 

(B.9) 

(B.10) 

Let us consider more closely the commutator given in Eq. (B.lO) by 

noting that the Hamiltonian consists of two terms 

h = Ho+V (B.ll) 

*A brief discussion of closure can be found in Appendix F . 
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where flo is the unperturbed diagonal Hamiltonian of the system and Vis an 

applied perturbation. Substituting this total Hamiltonian into the equation of 

motion for p(t) in Eq. (B.lO) gives 

dp(t) 
dt - -k [flo+ V,p(t)] 

- -k [(flo+ v) p(t)- p(t) (flo+ v)] 

-k [flop(t)- p(t)flo + v p(t)- p(t)v] 

-k {[flo,p(t)] + [v,p(t)]}. 

This result may be written for a particular matrix element of dp(t)fdt 

d;;j = -* [flo,p(t)Lj- * [v,p(t)Lj. 

Let us consider the first term in this equation. We have 

Hf1 Hf2 Hfa 

H~~ H~2 H~a 

ngl ng2 nga 

P11 P12 P1a 

P21 P22 P2a 

Pa1 Pa2 Paa 

Pn P12 P1a 

P21 P22 P2a 

Pa1 Pa2 Paa 

Hf1 Hf2 Hfa 

H~~ H~2 H~a 

Hgl Hg2 Hga ij 

(B.12) 

(B.13) 

(B.14) 

assuming a three-level system and where Hij = Hiibij = £1Sij for energy £i of 

the ith level of the system. Following the usual prescription for taking a matrix 

product, Eq. (B.14) can be cast as 

(B.15) 
n n 

L ( H?nPnjbin - PinH~jbnj) 
n 
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where Wij = (£i-£i)/1i. With this, Eq. (B.13) for the equation of motion becomes 

dpii . · i [V~ ~( )] dt = -'tWijPii- h ,p t ij· (B.16) 

Let us now make explicit the perturbational nature of our approach. We 

shall let the following take effect: 

v ~ sv (B.17) 

(B.18) 

where the parameter 6 serves, as in the classical discussion, as a tag to track the 

various orders of the final solution. Substitution of these last two equations into . 

the equation of motion Eq. (B.16) leaves us with 

(B.19) 

't [nr (0) c (1) c2 (2)) -h 0 v 'Pij + OPij + 0 Pij • 

By expanding the commutator and equating like powers of 6 we find 

d (n) • 
Pii . (n) 't [v (n 1)] -- = -tw· ·p·. - - p -
dt t) t) 1i ' ij ' 

(B.20) 

showing that solutions in order n depend on solutions of order n -1. The zeroth 

order solution is p~J) = Pii6ij, where the physical meaning of the Kronecker 6ij lies 

in our foreknowledge that only diagonal elements of p( t) (which are proportional 

to the population in state i) are nonzero at thermal equilibrium (denoted by the 

superscript (0)). In the absence of a perturbation there is no phase coherence 

between states i and j, a coherence which would otherwise manifest itself as 

nonzero off-diagonal matrix elements. 

Before we attempt to solve this particular equation, let us take for a 

moment a slightly more general type of situation, solve it, and then make the 

identifications useful to us at the end. Consider a differential equation of the 

form 
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d~~t) = iwy(t) + g(t). (B.21) 

Assume a solution of the form y(t) = C(t)eiwt and substitute it into the differen­

tial equation for y in Eq. (B.21) to give 

· dC · · t e•wt dt + iwe•wtc = iwCe'w + g(t), 

which, upon solving for dC / dt and integrating, gives 

C(t) = f~oo e-iwt'g(t')dt', 

from which follows the solution y(t) 

y( t) :::: eiwt f_oo e -iwt' g( t')dt'. 

Making the identifications 

y(t) --+ 
(n) 

Pii 

w --+ -Wij 

g(t) --+ -~ [v p<n-1)] 
h ' ij 

leaves us with an extremely powerful integral equation for the Pii: 

. t 
p~j) = -~e-iw;;t 1 eiw;;t' [V,p(n-1)] .. (t')dt'. 

It, -oo '3 

(B.22) 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

For Eq. (B.28) to agree with what is actually observed in physical sys­

tems, we must supplement it in such a way as to ensure that the various Pii go 

to zero at t = -oo. This is done by adding a phenomenological damping term 

to the equation of motion in Eq. (B.20) to give 

d (n) . 
Pii . (n) ' [v (n-1)] r (n) -- = _,w· ·p.. - - p - "P· · dt '3 '3 h ' ij '3 lJ ' 

(B.29) 
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where rii is equal to the decay rate oflevel i when i = j (so-called T1 processes) 

and equal to the dephasing rate between states i and j when i i= j (T2 processes). 

With this new damping term, the integral equation for Pij given by Eq. (B.28) 

becomes 

(B.30) 

What remains of this discussion of nonlinear optical constants will rest almost 

entirely on this most broad-shouldered equation for the Pii· 

Let us now specify the applied perturbation by impressing on the system 

an external optical electric field of the form 

E(t) =I: aaEJa)eiWjt, (B.31) 
Ot,j 

for unit polarization vector aOI in the ath direction, field amplitude E]01> oscillat­

ing at Wj, and Fourier component Wj. As was done in the classical case for a field 

consisting of n Fourier components, j ranges from -n, -n + 1, ... , -1, 1, ... , n-

1,n, with the understanding that Wj = -W-j and that Ej = (E~j)*. As in the 

classical discussion, the the dependence of Eon the wave vector k will be sup­

pressed since k does not directly affect the calculations, but can, of course, be 

inserted back into the results when pha$e matching must be considered. 

As was alluded to earlier, we will for the sake of example assume a 

three-level system characterized by discrete energy levels £1 < £2 < £3 , each 

corresponding to an angular frequency w1 < w2 < w3 , respectively, with the Wi 

obtained from the relation £i = 1iwi. We also assume that Ievell is the only level 

with a population at thermal equilibrium. 

Assuming an electric dipole transition *, we have for the perturbation V 

v = -er·E (B.32) 

*A derivation of the form of the electric dipole interaction can be found in 
Appendix D. 



il·E 

a,j 

where e is the electronic charge (taken to be positive), ris the position of the 

electron about the nucleus, and j1 = -er is the electric dipole moment. The 

perturbation matrix element is then 

lf;. 
J) (1/Jj I v I 1/Ji} (B.33) 

(1/Jj I i1· E I 1/Ji} 

- (,Pj I L JLaE)a)eiwjt I 1/Ji} 
a,j 

L E}a)eiwit(,P; I J.£a I 1/Ji} 
a,j 

- L E)a) eiwit(J.£a )ij' 
a,j 

where the dipole matrix element is defined as 

(B.34) 

The matrix of V then takes the form 

o Vi2 V13 

v = V21 o V23 (B.35) 

V31 V32 o 

Because the states of the system have a definite parity and because V is an odd 

operator, matrix elements taken between states of the same parity vanish, and 

therefore the diagonal elements of V are zero. In addition, we may choose the 

phase of the wave functions such that J.£ii = J.£ji· 

We are interested in the polarization P given by 

Pa = NTr(pJLa), (B.36) 
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where we have used Eq. (B.8) ~n calculating the expectation value of jl. Let us 

deal for the time being with the dipole moment of a single electron, Tr(pJLa), 

only later generalizing to the total polarization given in Eq. (B.36). We have 

(JLa} - Tr(pJLa) (B.37) 

- l:Pik(JLa)ki 
i,k 

- P12(JLn)a + P13(JL3I)a + P21(JLI2)a + P23(JL32)a + P3I(JLI3)a + P32(JL23)a 

- (JL12)a(P12 + P~2) + (JLI3)a(PI3 + P~3) + (JL23)a(P23 + P;3) 

where we have used JLii = O, JLij = JLji, and Pii = Pji· We are therefore left with 

the conceptually simple task of calculating to third order each of the elements 

P12, P13, and P32· 

Since the requisite algebra to climb to the heights of third order in the 

density matrix expansion is quite involved and not particularly instructive past 

a certain point, our approach will be to do a few calculations to sample the 

mechanics of the process, and then to simply quote the remaining results, noting 

only the more interesting points. 

Let us begin by considering p12. From the integral equation for the Pii 

in Eq. (B.30) we have 

. t 
p~~ = -~e-i(w12 -if12)t j_oo ei(w12-ift2)t' [V,p(o)] 12 (t') dt'. (B.38) 

Focussing attention on the commutator 

0 Vi2 Vi3 p<o> 
11 0 0 

[v,p<o>]12 - V21 0 V23 0 0 0 (B.39) 

V:31 Va2 0 0 0 0 

-(0) 
Pu 0 0 0 Vi2 Vi3 

0 0 0 V2I 0 V23 

0 0 0 Val l'a2 0 
12 
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where in the form of p(o) we see a reflection of the assumption that only level 

1 has a thermal equilibrium population. Substitution of this into the integral 

equation Eq. (B.38) for p~~) and using the form of Vi2 in by Eq. (B.33) gives 

Similar operations for PW lead to 

-(0) ( ) E(a) iw·t 
(1) _ Pu "'"' !-La 13 i e ' 

P13 - i: L..t ( ·r ) , 
. "' a,j W13 + Wj - 1. 13 

(B.41) 

and 

(1) 
P23 = 0, (B.42) 

since [V, p<0>]23 = 0. This completes the calculation of the required first order 

terms and leaves us with the first order density matrix 

p(1) = P(1) 
21 

(1) 
P31 

0 

0 

0 

0 

(B.43) 

As a final example of how to calculate the p~j) let us consider a second 

order term, PW. Referring to the integral equation for the p~j> in Eq. (B.30) we 

have 

{2) 
P12 (B.44) 
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_ _i_e-i(w12-ir12)t jt ei(w12-ir12)t' E>(t) dt' 
1i -oo 

- P~~> 2: (JLcr )32(JLf3 h3E)cr> Elf3) ei(w;+w,.)t 

n2 a,{3,j,k (w12 + Wj + Wk- if12)(w31 + Wj- if3t)' 

where 

(B.45) 

Similar operations yield for the remaining second order terms 

(B.46) 

and 

(2) _ _ P~~> 2: (JLa)t2(JLf3)t3E)cr> Elf3)[w21 +wt3 + 2wi- i(ft3 + f 2t)]ei(w;+w,.)t 

p23 - n2 a,{3,j,k (w23 + Wj + Wk- if23)(w13 + Wj- if13)(w21 + Wj- if21) • 
(B.47) 

Similar operations give for the third order terms 

(3) 
P12 

(3) 
Pt3 

P-<0> (u ) E~cr) E(f3) E<-r> 
_ ___!_!_ I: r-'Y 12 3 k 1 X (BAS) 

n3 cr,{3,'"(,j,k,l (w12 + Wj + Wk +WI- if12) 

[ 2(J-tcr)12(J-tf3h2(wi- if12) 
(wi + Wk- iK2)[wi2 - i(wi- if12)2] 

(J-tcrh3(J-tf3h3[w12 + Wt3 + 2Wj- i(ft3 + f12)] 
(w32 + wi + wk- if32)(w12 + wi- ir12)(w31 + wi- ift3) 

(JLcrh3(JLf3 )23 
(Wt3 + Wj + Wk- ift3)(wt2 + Wj- ift2) 

+ 2(J-tcr)t2(J-tf3h2(wj- ift2) ] i(w;+w,.+wl)t 

(w; + Wk- iKt)[wi2 - (wi- if12 )2] e ' 



and 

{3) 
P13 

(w23 + wi + wk- ir23)(w13 + wi- ir13)(w21 + wi- ir21) 

+ (1Lah2(1L.Bh2 
(w12 + wi + wk- ir12)(w31 + wi- ir3I) 

+ 2(tLa)I2(tL,e)I2(wj- ir12) ] i(w;+w~o+w1 )t 
(wi + wk- iKI)[wi2 - (wi- ir12)2] e ' 

(w12 + wi + wk- ir12)(w31 + wi- ir3I) 
2(tLa)12(IL,e)12(wi- ir12) 

(wi + wk- iK2)[wi2- (wi- ir12)2] 

+ (1La)I2(IL,e)I2 
(w31 + wi+ wk- ir31)(w21 + wi- ir21) 

+ 2(tLah3(tL,e)I3(Wj- ir13) ] i(w;+w~o+w!)t 
(wi + Wk- iK3)[wi3 - (wi- ir13)2] e ' 

where Ki is the decay rate of level i. 
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(B.50) 

To illustrate how one might extract the elements of the second order 

nonlinear susceptibility tensor for a given process let us consider the second 

order effect of difference frequency mixing. Assume that the input optical field 

has two Fourier frequency components, w2 and w3 , which are nearly in resonance 

with levels 2 and 3, respectively, and that w3 - w2 ~ w32 . Keeping only those 

terms oscillating at w = w3 - w2 , we find for pg> of Eq. (B.44) 

(B.51) 

A similar procedure yields for the p~~ term 

(B.52) 
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Finally, for the p~~ term we have 

(B.53) 

where we retain only near-resonant denominators in the square brackets. 

Let us now make two additional simplifying assumptions. First, let the 

optical fields be linearly polarized, and second, apply the fields such that E~y) = 

E~z) = E~xJ = E~zJ = 0. Carrying out the sums over a and f3 for these three 

terms we find 

and 

p~~) 
h2(w2a + w- ir2a) x (B.S6) 

[ (JLxh2(JLy)ta + (JLx)ta(JLv)t2 ] E(x) E(y) iwt 

(wta + wa- irta) (w21- w2 - ir21 ) 3 _2 e • 

Suppose that we are now interested in the induced polarization oscillating 

at w along, say, the z direction. From the expression for the polarization in Eq. 

(B.36) we have 
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pp>(w) - N[pl~(JLxhl + Pl~(JLxhl + P~~(JLxh2] + C.C. (B.57) 

_ _ Np~~) { (JLxhl [ (JLx)a2(JLy)I3 + (JLxh3(JLy)a2 ] 
n2 W12 + W- ir12 W31 + W3- ir31 W31- W2- ir31 

+ (JLx )31 . [ (JLx )I2(JLy )_23 + (JLx h3(JLy )_12 ] 

W13 + W- tr13 W12 + W3- tr12 W12- W2- tr12 

+ (JLx)a2. [ (JLxh2(JLy).13 + (JLxh3(JLy).12 ] } E~x) E~Jeiwt 
W23 + W- tr23 W13 + W3- tr13 W21- W2- tr21 

+ c.c. 

Using pp> = "L.,i,k x~?kEU)E(k), we proceed to make the identification 

X~~v x1~x (B.58) 

_ _ Np~~) { (JLxhl [ (JLxh2(JLy)I3 + (JLx)I3(JLy)32 ] 
n2 W12 + W- ir12 W31 + W3- ir31 W31 - W2- ir31 

+ (JLxhl. [ (JLxh2(JLy).23 + (JLxh3(JLy).12 ] 

W13 + W- tr13 W12 + W3- lr12 W12- W2- tr12 

+ (JLx)a2 • [ (JLxh2(JLy),13 + (JLxh3(JLy)•12 ] } + C.C. 

W23 + W- tr23 W13 + W3- tr13 W21- W2- tr21 

The permuting of the last zy on x(2) is permissible since it makes no physical 

sense to hold that field E(x) could be applied before (or after) field E(Y). 

Let us now take as an example third harmonic generation to show how 

to extract the elements of the third order nonlinear susceptibility tensor for this 

particular process. We will assume an input optical field with only one Fourier 

component wp, and, as with our discussion of difference frequency mixing, we 

shall focus only on those terms in P(3) of interest, namely those oscillating at 

3wp. Let us also assume that as in the previous case the optical electric field is 

linearly polarized and contains only an z component. That is, E(Y) = E(z) = 0. 

From Eq. (B.48) for p~~ we have for the terms oscillating at 3wp 

(B.59) 



{ 2(J.Lxh2(J.Lxh2(J.Lx)12(wp- ir12) 
(2wp- iK2)[w?2- (wp- ir12)2] 

(J.Lx)I2(J.Lx)I3(J.Lxh3[WI2 + W13 + 2wp- i(ri3 + r12)] 
(w32 + 2wP- ir32)(w12 + wp- ir12)(w31 + wP- ir3I) 

(J.Lx )t2(J.Lx )32(/.Lx h2 
(w12 + wp- ir12)(w13 + 2wp- irt3) 

_ 2(J.Lx h2(J.Lx)t2(J.Lx)t2(wp -. ir 12) } E(x) E(x) E(x)e3iwpt. 
(2wp- iKt)[wr2- (wp- ,r12)2] 

For the corresponding terms in p~~ we have 

(3)( ) P13 3wp 
::.{0) 

Pn x (B.60) 
li3(w13 + 3wp- ir13) 

{ 2(JLxh3(JLx)I3(JLxh3(wp- irt3) 
(2wp- iK3)[w?3- (wp- ir13)2] 

(J.Lxh3(J.Lxh2(JLx)12[w21 + W13 + 2Wp- i(r13 + r21)] 
(w23 + 2wp- ir23)(w13 + wp- ir13)(w21 + wp- ir2t) 

+ (JLx )t3(JLx )32(JLx )32 
(w31 + wP- ir31)(w12 + 2wp- ir12) 

+ 2(JLxh3(J.Lxh2(J.Lxh2(wp- ir12) } E(x) E(x) E(x) 3iwpt 
(2wP- iKt)[wr2- (wP- ir12 )2] e . 

Finally, for the third harmonic term originating in p~~ we have 

(3)( ) P32 3wp 
-(0) 
Pn X (B.61) 

li3(w32 + 3wP- ir32) 

{ (JLx )32(JLx )31 (JLx )31 
(w31 + w- ir31)(w12 + 2wP- ir12) 

+ (J.Lx)32(J.Lx)l2(JLxh2(2wp- ir12) 
(2wp- iK2)[w?2- (wp- ir12)2] 

(J.Lx )32(J.Lx )t2(JLx )12 
(w31 + 2wp- ir31)(w21 + wp- ir21) 

_ 2(J.Lxh2(J.Lx)I3(J.Lx)t3(wp- irt3)} E(x)E(x)E(x) 3iwpt 
(2wp- iK3)[wr3- (wp- ir13)2] e . 

If we are interested in, for example, the z component of the polarization P 

oscillating at 3wp, we have 

(B.62) 
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Using the results just obtained for the third harmonic terms in p~j> above we can 

write for the polarization 

pp>(3wp) - - Pn J.Lx 21 (B.63) 
N-(o) { ( ) 

n3 (w12 + 3wp- ir12) X 

[ 2(J.Lxh2(J.Lxh2(J.Lx)12(wp- ir12) 
(2wp- iK2)[wr2- (wp- ir12)2] 

(J.Lx)12(J.Lxh3(J.Lx)13[W12 + W13 + 2Wp- i(r13 + r12)] 
(w32 + 2wp- ir32)(w12 + wp- ir12)(w31 + wp- ir31) 

(J.Lx h2 (J.Lx )a2 (J.Lz )a2 
(w12 + wp- ir12)(w13 + 2wp- ir13) 

_ 2(J.L.x)12(J.L.xh2(J.L.xh2(wp- ir12)] 
(2wp- iK1)[wr2- (wp- ir12)2] 

+ (J.Lx h1 [ 2(J.Lx h3(J.L.x )13(J.L.x )13( Wp - ir 13) 
(w13 + 3wP.- ir13) (2wp- iK3)[wr3 - (wP- ir13)2] 

(J.L.xh3(J.Lx)12(J.L.xh2[w21 + W13 + 2Wp- i(r13 + r21)] 
(w23 + 2wp- ir23)(w13 + wp- ir13)(w21 + wp- ir21) 

+ (J.Lx h3 (J.Lz h2 (J.Lz )32 
(w31 + wp- ir31)(w12 + 2wp- ir12) 

+ 2(J.L.xh3(J.Lxh2(J.L.x)12(wp- ir12) l 
(2wp- iKt)[wr2- (wp- ir12)2] 

+ (J.L.x h2 [- (J.L.x )a2(J.Lz )al (J.L.x )a1 
(w32 + 3wp- ir32) (w31 + w- ir31)(w12 + 2wp- ir12) 

+ (J.Lzh2(J.L.xh2(J.L.x)l2(2wp- ir12) 
(2wp- iK2)[wr2- (wp- ir12)2] 

(J.Lx )a2(J.L.x h2(J.Lz h2 
(w31 + 2wp- ir31)(w21 + wp- ir21) 

_ 2(J.L.x)a2(J.Lx )t3(J.Lxh3(wp - ir 13) ] } E(x) E(x) E(z) 3iwpt 

(2wp -. iK3)[wr3- (wp- ir13)2] e 
+ c.c., 
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from which we can make the identification 

- -Np~~) { (J.txhl x (B.64) 
1i3 (w12 + 3wv- ir12) 

[ 2(J.£x)t2(J.£xh2(J.£x)12(wp- ir12) 
(2wv- iK2)[w?2- (wv- ir12)2] 

(J.£xh2(J.£xh3(J.£xh3[w12 + W13 + 2Wp- i(rl3 + r12)] 
(w32 + 2wv- ir32)(w12 +wv- ir12)(w31 + wv- ir3t) 

(JLx h2(J.£x h2(J.£x h2 
(w12 + wv- ir12)(w13 + 2wp- ir13) 

_ 2(J.£x)t2(J.£xh2(J.£xh2(wp- ir12) l 
(2wp- iKt)[wf2- (wv- ir12)2] 

+ (JLx h1 [ 2(J.£x )I3(JLx h3(JLx )t3( Wp - ir 13) 
(w13 + 3wv- irt3) (2wv- iK3)[wf3- (wv- ir13)2] 

(J.£xh3(J.£x)12(J.£xh2[w21 + W13 + 2Wp- i(r13 + r21)] 
(w23 + 2wp- ir23)(w13 + wv- ir13)(w21 + wv- ir21) 

+ (JLx )t3(JLx )32(J.£x )32 
(w31 + wv- ir31)(w12 + 2wv- ir12) 

+ 2(JLx)t3(J.£x)t2(J.£xh2(wp- ir12) J 
(2wp- iKt)[wf2- (wv- ir12)2] 

+ (J.£xh2 [- (J.£x)32(J.£xhl(J.£xhl 
(w32 + 3wP- ir32) (w31 + w- ir31)(w12 + 2wv- ir12) 

+ (JLxh2(JLxh2(JLxh2(2wp- ir12) 
(2wv- iK2)[w?2- (wv- ir12)2] 

(JLx )32(JLx h2(J.£x h2 
(w31 + 2wp- ir31)(w21 + wv- ir21) 

_ 2(JLx)32(JLx)t3(JLxh3(wp- irt3) l} 
(2wv- iK3)[wf3 - (wv- ir13)2] 

+ c.c. 
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MAXWELL'S EQUATIONS 

In this section we will briefly review Maxwell's equations, using MKS 

units throughout. They are 

..... ..... aiJ 
(C.l) Vx E 

8t 
(~araday's law) 

..... 

Vx 
..... 

H 
fJD -: 
8t + J (Ampere's law) (C.2) 

..... ..... 
(Poisson's equation) (C.3) V·D p 

..... ..... 
(no name) (C.4) V·B 0. 

for electric field E, magnetic induction B = p,H = JLo(if + M), magnetization 

M (density of magnetic dipoles), polarization P (density of electric dipoles), 

i5 = t:.0 E +Pis the electric displacement, and p and J are the charge and current 

densities, respectively. p and J are related by the continuity equation 

-+ ..... 8p 
V·i=-at· (C.5) 

The linear polarization PL is related to the electric field by 

..... (1) ..... 
PL = t:.oX E, (C.6) 

where x(l) is the linear susceptibility and the dielectric constant is given by 

(C.7) 

The nonlinear polarization is made up of terms such as 
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(C.S) 

where the x<n) are the nonlinear susceptibility tensors. 

Taking the curl of both sides of Faraday's Law in Eq. (C.l), we get, 

assuming a nonmagnetic material (M = 0), 

Using the vector identity 

-+ ...... ..... ..... -+ -+ -+2 ..... 
V x V x E = V(V · E) - V E, 

we get for a charge-free region of space (V · E = 0) 

.... 2.... a (.... ....) 
V E=J.Loat V x H . 

Ampere's law in Eq. (C.2) may be recast as 

.... .... .... 8eE 8PNL 
V x H=uE+-+--

8t 8t ' 

(C.9) 

(C.lO) 

(C.ll) 

(C.l2) 

where we have used Eqs. (C.6) and (C.7), and assumed an ohmic conductor 

(} = uE). Substituting this last equation for curl H into Eq. (C.ll) we find 

(C.l3) 

which shows how a nonlinear polarization PNL can act as a driving term for the 

wave equation in E. 
On a slightly different note, the electric field E is related to the electro­

static scalar potential 4> by 

E = -v¢. (C.l4) 

Since the divergence of B is zero we can define a vector potential A such that 
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.... .... .... 
B = v X A, (C.15) 

where we note that V · V X G = 0 for any vector function G. Substituting this 

expression for B from Eq. (C.15) into the expression for the curl of E in Eq. 

(C.l) we have 

or 

from which follows 

vxE a .... -
- - 8t(V X A) 

.... (8A) - -V X 8t 

.... ( .... 8A) v X E + 8t = o, 

... 8A 
E=--

8t 

(C.16) 

(C.17) 

(C.18) 

Finally, we might note that the first of Maxwell's equations involving the curl 

of E is satisfied by an electric field to which has been added the gradient of 

an arbitrary scalar function .,P, since we always have V X V.,P = 0. Thus, for 

generality, we let the new E be 

.... 8A ... 
E = --- V.,P 

8t 
(C.19) 
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ELECTRIC DIPOLE APPROXIMATION 

In this section we will derive the electric dipole interaction Hamiltonian. 

Throughout this discussion, the charge on the electron is taken to be -e, where 

e is a positive number. We begin by writing the Lorentz force on an electron in 

an electromagnetic field 

(D.l) 

where vis the electron velocity. Referring to Appendix Con Maxwell's equations, 

let us substitute into the equation for the Lorentz force the expressions forE and 

.iJ from Eqs. (C.19) and (C.15), respectively. This gives for F 

... [ 8A ... ... ""'] F = -e -Bt- \1'1/J + v x (V x A) (D.2) 

Using the vector identity 

and noting that the velocity is a function of time but not position, we can recast 

the third term in the Lorentz force in Eq. (D.2) as 

(D.4) 

from which follows 

... [aA ... ... ... ... ... ] 
F = e Bt + ( v · V)A - V( v ·A) + V,P (D.5) 
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The first two terms inside the square brackets evaluate to dA/ dt, and are 

collectively called the convective derivative of A. To see this consider the time 

rate of change of A at the location of the moving particle. Suppose that at time 

t the particle is at point ; where the potential is i.( ;, t), and a moment later it is 

at (r + v dt), where the potential is A(r + v dt, t + dt). The change in i., then, is 

di. - i.(r+vdt,t+dt)-i.(r,t) (D.6) 

- ( ~!) (v,dt) + ( ~) (v.dt) + ( ~;) (v,dt) + ( 0:) dt, 

or, 

di. = ai. + (v. v)i.. 
dt at 

(D.7) 

The Lorentz force equation then becomes 

_ [ - ( - ) di.l F=e -V v·A-.,P +dt. (D.S) 

We now associate the quantity 

U=e(v·A-1/J) (D.9) 

with the generalized potential We may then write the Lagrangian for this system 

as 

L T-U 
1 -2 .,p - --mv + e - ev ·A 
2 ' 

for kinetic energy T. Recalling that the generalized momentum Px is 

where 4x = Vx, we find 

8L 
Px = -8 ., 

qx 

(D.lO) 

(D.11) 



and similarly for y and z. From the definition of the Hamiltonian 

H - LPiqi-L 

- (mv2 - ev. i) - ( m:2 + e~ - ev ·A) 
mv2 

-2--e~. 

Using Eq. (D.12) for v, we obtain 

m (.... ~2 H = - p + eA - e~, ' 2 ' 
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(D.12) 

(D.13) 

(D.14) 

The vector potential seen by an electron varies, in general, from point to 

point in space. Given the relatively small size of the atom, however, the spatial 

variation of A over the dimensions of the atom is slight for the externally applied 

fields that will be of interest to us. We therefore expand the vector potential A 
about the nuclear position R. 

l(ii + r, t) = l(ii, t) + (r. v R)l(ii, t) + ... , (D.l5) 

where 

(D.16) 

and a I 8R:c denotes partial differentiation with respect to z evaluated at the 

nuclear position. The first term in the expansion when substituted into the 

Lagrangian of Eq. (D.lO) yields 

mVl · ........ 
L = 2 +e~- er·A(R,t), (D.17) 

noting that this approximation amounts to neglecting the spatial variation of 

1 over atomic dimensions. Since a total time derivative can be added to the 



120 

Lagrangian without changing the equations of motion of the system *, a term of 

the form 

d [ .... .... ] edt r· A(R,t) (D.18) 

is added to L to give 

2 .... (.... ) 
L mv V nl. ... dA R, t = -2- - + e'f' + er • dt . (D.19) 

The corresponding Hamiltonian can be obtained from Eq. (D.13) _ 

H = i2 + V- en'·- er· dA(R,t) 
2m '~" dt ' 

(D.20) 

where we have added a term V(r') to account for the effective potential of the 

electron about the nucleus. With the appropriate choice of gauge transformations 

it is possible to choose the potential function so that the scalar '1/J vanishes. We 

then refer back to the expression given by Eq. (C.18) relating the electric field E 
to the vector potential A to yield 

¥ ....... 
H = 2m + V - f1· E(R, t), (D.21) 

where we have introduced the dipole moment j1 = -er. 

Therefore, the dipole moment term represents the interaction of the elec-

tromagnetic field with the atomic system when terms dependent on r in the 

multipole expansion of A in Eq. (D.15) can be neglected. This limiting case is 

referred to as. the electric dipole appro:z:imation. 

*See Appendix E. 
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HAMILTON'S PRINCIPLE 

We will show here that it is possible to add to the Lagrangian of a system 

a total derivative with respect to time without changing the equations of motion 

of the system. 

The most general formulation of the law governing the motion of me­

chanical systems is taken to be Hamilton's principle, or the principle of least 

action, according to which every mechanical system is characterized by a defi­

nite function L( q, q) and that the motion of the system is such that a certain 

condition is satisfied. 

Let the system occupy, at the instants t1 and t2 , positions defined by 

two set of values of the coordinates, q(l) and q(2). Then the condition is that the 

system moves between these positions in such a way that the integral 

t2 

S = 1 L(q,q)dt 
tl 

(E.l) 

takes the least possible value. The function L is called the Lagrangian, and 

the integral is called the action~ q = q(t) and q = q(t), are the generalized 

coordinate and velocity, respectively, at time t. Hamilton's principle states that 

the variation, which we denote by h, of Sis zero 

t2 

hS=bi L(q,q)dt =0, 
tt 

(E.2) 

where the function q(t) is assumed to minimize S. We will first show that La­

grange's equations can be obtained from the variation of S, and then proceed to 

demonstrate that the addition of a total time derivative to L leaves those same 

equations unchanged. 
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Since S is minimized by the function q(t), Sis increased when q is re­

placed by any function of the form 

q(t) + 6q(t), (E.3) 

where 6q(t) is a function which is small everywhere in the interval of time from 

t1 to t 2 ; 6q(t) is called the variation of the function q(t). Since, for t = t1 and 

t = t2 , the function in Eq. (E.3) must take the values q(l) and q(2), respectively, 

it follows that 

(E.4) 

Effecting the variation of S, we have 

1t2 

SS - 6 L(q,q)dt 
tl 

(E.5) 

1t2 (8L 8L ) 
tl 8q 6q + 8q Sq dt. 

Noting that Sq = (d/dt)Sq, we may integrate the second term in the integrand 

by parts as follows 

1t2 8L [8L l t2 1t2 d aL 
-a· oqdt = -8 . oq - -d -a· 6qdt. 

tl q q t1 tl t q 
(E.6) 

From the equation for the variations of q(t) in Eq. (E.4) we see that the integrated 

term on the right hand side vanishes. Combining the remaining integral with the 

first term in Eq. (E.5) for 6S we have 

ss = ---- 6qdt = 0. 1t2 (8L d 8L) 
fi aq dt 8q 

(E.7) 

Since this equation must be true for all 6q, the integrand itself must vanish, and 

we have the familiar Lagrange's equations 

(E.S) 
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from which the equations of motion can be had. 

We have now shown that the equations of motion can be obtained from 

the action S. What we now show is that the addition of a total derivative to 

the Lagrangian has no effect on the variation of S and therefore no effect on the 

equations of motion. We first transform L to the form 

L--+ L dF(q,q) 
+ dt ' (E.9) 

for an arbitrary function F( q, q ). In terms of the variation of S, we postulate 

that 

(E.lO) 

Omitting the treatment of the original portion of the variation of S, we 

obtain for that part concerning dF / dt 

(E.ll) 

- F[q(t2) + c5q(t2), q(t2) + c5q(t2)]- F[q(t2), q(t2)] 

-F[q(t1) + c5q(ti), q(t1) + c5q(t1)] + F[q(t1), q(ti)] 

- F[q(t2), q(t2)]- F[q(t2), q(t2)] 

-F[q(t1), q(t1)] + F[q(t1), q(ti)] 

- o, (E.12) 

where we have proceeded from the second of these equations to the third by way 

of Eq. (E.4). This proves the proposition stated in Eq. (E.lO). 
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THE CLOSURE RELATION 

A discrete set, I un), or a continuous one, I wa), constitutes a basis if 

every ket 11/J) has a unique expansion on the I un) or the I wa)· Considering the 

discrete basis, I un), we have 

(F.l) 

Let us also assume that the basis is orthonormal. Then performing the scalar 

multiplication on both sides of Eq. (F.l) with {uj I gives us 

{ui I I:ci I ui) 

L Cj(Uj I Uj) 

I:cibij 

c· J 

(F.2) 

Now substitute {ui 11/J) for the Ci in the expression for 1/J in Eq. (F.l) to give 

I 1/J) L Cj I Uj} 
i 

L{Ui I .,P} I Uj} 
i 

L I ui){ui 11/J) 
a 

( ~ I Uj){Uj 1) 11/J} 

Since 11/J) is arbitrary, we must have 
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(F.3) 



I: 1 ui}(ui I= 1 
i 

The result given by Eq. (F.4) is called the clo.w.re relation. 
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