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ABSTRACT

The most general density-cubic equation of state is derived 

through a mathematical analysis. The adequacy of the density dependence 

to describe the thermodynamic behavior of real fluids over all fluid 

states is demonstrated through a case study of propane thermodynamic 

behavior along isotherms. Provisional temperature dependence is intro­

duced into the equation of state and the resultant equation of state 

predicts the thermodynamic behavior of methane, propane, n-heptane and 

n-octane over wide ranges of temperature and pressure to a high level of 

accuracy hitherto attainable using only non-cubic equations like the 

modified Benedict-Webb-Rubin equation of state. The equation of state 

is later generalized using the thermodynamic property values for the 

normal straight chain paraffin hydrocarbons methane through n-decane.

The generalized equation of state predicts density and vapor pressure 

values within nine tenths of a percent for methane through n-decane and 

the enthalpy departure is predicted within 1.7 Btu/lb average absolute 

deviation. The generalized equation of state is applied to normal 

saturated hydrocarbons n-undecane through n-eicosane resulting in an 

overall deviation of 1.87 percent from reported values of density and 

vapor pressure. When applied to other major natural gas constituents 

the equation of state predicts the thermodynamic properties density, 

vapor pressure and enthalpy departure with the same level of accuracy

ix



as the modified Benedict-Webb-Rubin equation of state. The equation of 

state gives a reasonably good description of the thermodynamic behavior 

of selected key coal chemicals, namely benzene, naphthalene, tetralin, 

quinoline and phenanthrene. The basic density dependence of the equation 

of state describes the thermodynamic properties of water when provisional 

temperature dependence is Introduced, to a high level of accuracy over 

all fluid states.



DEVELOPMENT OF THE MOST GENERAL DENSITY-CUBIC 
EQUATION OF STATE

CHAPTER I 

INTRODUCTION

Many attempts have been made over the years to describe the 

thermodynamic behavior of real fluids via equations of state. These 

equations of state have achieved varying degrees of success, enabling 

us to divide them into three separate classes. In the first class, we 

have the equations of state which are cubic in density. A few of the 

more popular density-cubic equations are the van der Waals equation 

(1873), the Redlich-Kwong equation (1949), the Soave equation (1972) 

and the Peng-Robinson equation (1976). The density-cubic equations 

of state give reasonable descriptions of the thermodynamic behavior 

of real fluids, with each equation being more accurate in the chrono­

logical order of appearance in the literature. The Beattie-Bridgeman 

equation (1928), the Benedict-Webb-Rubin equation (1940) and the 

Modified Benedict-Webb-Rubin equation (1973) are popular examples of 

the second class of equations of state. They are non-cubic in density 

and provide a good description of the thermodynamic behavior of real 

fluids for all fluid states. In the third class of equations, arè 

the non-analytic equations of state which are highly constrained for



each specific fluid (Goodwin, 1975) and give a highly accurate descri­

ption of real fluid behavior.

In most industrial design situations as well as research measure­

ments of derived properties, the unknown variable is density, whereas 

the easily measurable properties pressure and temperature, are known. 

Consequently, the first class of equations, namely the density-cubic 

equations are of particular interest since they provide an analytical 

solution for the density, as compared to the more complicated non- 

cubic and non-analytic equations of state, which require time consuming 

iterative procedures to solve for the density.

The presently available popular density-cubic equations of 

state like the Soave and the Peng-Robinson equations provide good 

descriptions of real fluid behavior in the two phase region and in the 

gas phase, but in the compressed liquid region they lack by far the 

accuracy levels attainable using the second class of equations of state.

When we look at the form of the density-cubic equations in the 

chronological order of appearance in the literature, we find that in 

general the more recent equations have more density dependence (when 

expressed in a pressure explicit form) than their precedents. For 

example, the Redlich-Kwong equation has more density dependence than 

the van der Waals equation, as seen below

P = _ gp2 (van der Waals)
1 - pb

PRT aT-%p2
^ - ( W b )  -  ( I W  ' "



Similarly, the Peng-Robinson equation of state has more density depen­

dence than the Redlich-Kwong equation

P = — -----9:̂ -). P̂ ._____  (Peng-Robinson)
1— pb (l+2bp -b2p2)

In general, the overall performance in fluid properties predi­

ction is greatly enhanced when using the Peng-Robinson equation (45 ) 

as compared to the Redlich-Kwong equation and the Redlich-Kwong equation 

(49) in turn is better than the van der Waals equation. Thus, though 

the temperature dependence of each equation is different it can be 

projected that at a particular temperature, a higher density dependence 

leads to a more accurate equation of state. Continuing in the same 

vein, it can be stated that the most density dependence (in terms of 

pressure) that can be introduced into a dénsity-cubic equationawill 

ift turn lead to the most accurate cubic equation of state. This fact 

is very important because if the most general density-cubic equation 

of state can provide an accuracy level comparable to the second class of 

equations of state for all fluid states it becomes highly desirable 

in situations where repetitive calculations for the density are required 

due to its inherent advantages.

This research presents the derivation of the most general density 

cubic equation of state. A study of the adequacy of the density depen­

dence in describing real fluid behavior is also presented. Provisional 

analytical relations for the temperature dependence are developed 

through a careful study of individual isotherms of propane. The temper­

ature dependent equation is later generalized using the thermodynamic



data for normal saturated hydrocarbons from methane through normal

decane. The equation of state is then applied to fluids not used in 

the generalization.



CHAPTER II

THE MOST GENERAL DENSITY-CUBIC 

EQUATION OF STATE

The most general density-cubic equation of state can be derived 

as discussed below.

A direct density (or volume) expansion for pressure which is

cubic in density is given by the following expression

P = + a^ p 4- a^ p^+ a^ p^ (1)

where P is the absolute pressure, p is the molar density and a^, a^, a^,

a^ are parameters which can be temperature dependent. It is known that

an expansion of the above form, which is similar to the virial equation 

of state up to the third virial coefficient, can only describe the 

"low density gas phase behavior of a fluid. An equation for pressure 

of the above form which can describe both the gas and liquid phase

behavior of a fluid can be written as follows

00 4-1
p = (2)

However, equation 2 is of infinite order in density. An equ­

ation of state which can approximate an infinite series in density using



pressure as the dependent variable and yet requires solution of only 
a cubic expression for density (given pressure) is a ratio of polynomials

2 ^ 3a + a p + a p + a p 
P = - L  2----- 3 -  L -  (3)

Sg + 3gp + a^p + agp

Equation 3 represents the most general form of a density-cubic

or, alternatively, volume-cubic mathematical equation, where a^ through

a are parameters which can be temperature and composition dependent.8
When multiplied out, equation 3 can be shown to yield a cubic in density, 

as follows

(Pa^ - a^) + (Pa^ - a^)p + (Pa^ - a^)p^ + (Pa^ - a^)p^ = 0 (4)

In terms of the compressibility factor Z (=P/pRT), equation 3

becomes

2(c,/p) + c, + CoP + c,p 
Z = — -------   i----- V  (5)

where c^ = a^/RT, i = 1,2,3,4, R is the universal gas constant, and T 

is the absolute temperature.

Before equation 5 can be subjected to the thermodynamic ideal 

gas limit that as p->-0, Z 1, Cj is required to be zero to prevent the

divergence of Z as p » 0. Letting c^ = 0, we have

Z = ---—  - 2^ -----g (6)
a^ + agP + a^p^ + agp^



Now in the limit as p ^ 0

Z = 12 (7)lim Scp -> 0 5

To satisfy the thermodynamic requirement as p ->■ 0, Z 1, c^must be

equal to a^. Letting = a^ and dividing the numerator and denominator 

on the right-hand side of equation 6 by we have

Now letting Cg/cg = d^, c^/cg = dg, a^/cg = dg, a^/cg = d^, and ag/cg=dg, 

we have

1 + d^p + dg p2
Z =    (9)

1 + dgp + d^pZ + dgp3

Equation 9 represents the most general form for a cubic equation of 

state in density which satisfies the requirement that in the limit as 

p -)■ 0, Z -> 1. The five coefficients d^, d^, d^, d^, and d^ must be 

density independent but can be temperature dependent (for a given pure 

fluid) and composition dependent (for a mixture).

We can now show that the density-cubic equations presented in 

the literature are special cases of equation 9. To do so, we choose 

a few of the most popular cubic equations, namely the van der Waals 

equation (65 ), the Redlich Kwong equation (49), the Soave equation (55)>



the Peng-Robinson equation (45) and Martin's equation (36 ).

In equation 9, if we let = -a/RT; dg = ab/RT; dg = -b and

d, = d\. = 0 we have4 5

1 . _ %  + si p2
Z -    (10)1 - bp

or

Z = 1 - (1 - bp) pa/RT
1 - bp

In terms of P and the specific volume V, equation 12 becomes

P = - M  g_ (13)
V - b V%

which is the well known van der Waals equation of state (65)•

The Redlich-Kwong equation can be shown to be a special case

of equation 9 if we let d^ = (b - a/RT^^^), d^ = (ab/RT^/^); d^ = 0;

d^ = -b^, and d^ = 0 we have

Z = 1 + (b-a/RTS&)p + (ab/RT3|2)p2
(1 - b2p2)

(1 + pb) - (a/RT3/2)(l - pb)p /,c\
(1 - pb)(l + pb) ^



z = --- ------p (16)
1 - pb 1 + pb

In tenus of F and the specific volume V, equation 16 becomes

P = — ----— r-^-------  (17)
V - b T^VV(V+b)

which is the Redlich-Kwong equation of state ( 49 ).

The Soave equation (55 ) expressed below is a modification 

of the Redlich-Kwong equation only in the temperature dependence and 

thus is also a special case of equation 9

P = — ---------—  (18)
V - b V(V+b)

The Peng-Robinson equation (45 ) is a special case of equation 

9 if we let

, d^ = (2b -a/RT); d^ = (ab/RT - b^); d^ = b; d^ = -3b^ and 
3dg = b , so that

Z = 1 + (2b - a/RT)p + (ab/RT - b^)p^

or

1 + bp - 3b^p^+ b^p3

2 _ 1 + 2pb - p2b% - a/RT (1 - pb)p ^^Q)
(1 - pb) (1 +2 pb T p^b^ )

or
Z = — -----_(a/RT)p----  (21)

(1 - pb) (1+2 pb-p2 b^)
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In terms of P and specific volume, V, equation 21 becomes

p = — —  - ---- -------------  (22)
V - b V(V + b) +b(V - b)

which is the Peng-Robinson equation of state.

Martin's general cubic equation (36) is also a special case 

of equation 9 if we let

d^ = (y + e- a(T)/RT); d^ = (yg + 6(T)/RT); d^ = (y +g );

d^ =yg ; dg = 0 we have

2 = 1 + (y + 6- g(T)/RT)p + (yg + S(T)/RT)p^ .gg)
1 + (y + g)p + ygpZ

or

Z = 1 - (g(T)/RT)p _ (6(T)/RT)p2 (24)
(1 +3p)(l +YP) (1 +gp)(l +yp)

In terms of P and the specific volume, V, equation 24 becomes

p = ^  _  û(T)--- — a(T)--------  (25)
V (V+g )(V+Y) V(V+g )(V+y)

which is Martin’s equation (36).

Thus equation 9 represents the most general form of a density- 

cubic equation of state.



CHAPTER III

ADEQUACY OF THE DENSITY DEPENDENCE OF 

THE EQUATION OF STATE

It has been shown, that equation 9 is the most general density- 

cubic equation through a mathematical analysis. But the effort would 

be futile unless it can be shown that the equation of state can describe 

the thermodynamic behavior of real fluids quite well.

Due to the cubic nature of the equation of state, the density

dependence is restricted, whereas there is no limit on the amount of 

temperature dependence that can be introduced into the equation. Thus, 

it is of primary importance to make sure that the density dependence 

of the equation of state is adequate enough to describe real fluid 

behavior to a high level of accuracy. For this purpose thermodynamic 

property values are required along isotherms for wide ranges of temper­

ature and pressure conditions.

Equation 9 can be written in a computationally more convenient 

form by writing the denominator as a product of a first order term and

a quadratic function by setting d^ = A^, dg = Ag, d^ = A^ - A^,

^4 = A4 - A-iAg and d^ = -A^A^,

(1 - P ^ ) ( l  +  A g  p p  +  A ^  p2 )

11
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where = p/p^

To determine the adequacy of. the density dependence of equation 

26, values of density, vapor pressure and the partial derivative of 

pressure with respect to density ( 3P/3p)^ along isotherms were taken 

from Goodwin's (26 ) compilation of the thermodynamic functions for 

propane. For each isotherm the above property values were used in multi­

property regression analysis to obtain an optimum set of values for 

through Ag which gave minimum deviation from Goodwin's values for all 

the properties considered. Table 1 gives the values of the parameters A^ 

through A^ for a total of twenty four isotherms, while Table 2 gives 

the average absolute deviations from Goodwin's values for each property 

for each isotherm.

From Table 2 it can be seen that the most general density-cubic 

equation predicts density and vapor pressure values with an average 

absolute deviation of one tenth of one percent in most regions except 

in the neighborhood of the critical point. It is interesting to note 

that both the liquid and gas phase behavior of propane are predicted 

accurately. In principle, it is possible to develop analytical relations 

for the temperature dependence of equation 26 with sufficient accuracy 

to approach the accuracy levels in Table 2; this will be discussed 

in the next chapter. Thus, the density dependence of equation 26 is 

adequate enough to provide a good description of the thermodynamic 

behavior of propane for all fluid states, an achievement which hitherto 

was possible only using equations of state which had higher order 

density dependence than cubic.
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TABLE 1

Parameter Values to be used In Equation 26 at each Isotherm

Isotherm
K &1 ^2 4 A5

95.0 0.238893 1.98446 -0.109443 -0.014541 -6.85230
100.0 0.238893 1.99047 -0.072851 -0.016547 -6.84378
110.0 0.238893 3.07607 0.196683 -0.058884 -10.2735
120.0 0.238893 2.45458 -0.024084 -0.002970 -8.14833
140.0 0.238893 1.54402 0.086821 -0.059602 -5.10893
160.0 0.238893 2.03587 0.473150 -0.144922 -6.45341
180.0 0.238893 1.62803 0.356993 -0.119238 -5.08307
200.0 0.238893 1.33797 0.277608 -0.102911 -4.11997
220.0 0.238893 1.12157 0.218121 -0.091477 -3.41094
240.0 0.238893 0.956634 0.179106 -0.085520 -2.87692
260.0 0.238893 0.827365 0.163771 -0.086826 -2.46335
280.0 0.238893 0.726484 0.252970 -0.124678 -2.14209
300.0 0.238893 0.625929 0.159633 -0.100661 -1.83994
320.0 0.238893 0.530456 0.268477 -0.159891 -1.57053
340.0 0.238893 0.452896 0.371161 -0.203345 -1.35399
360.0 0.238893 0.402792 0.425081 -0.227933 -1.19976
369.8 0.286248 0.382062 0.550612 -0.102961 -1.09690
373.15 0.357457 0.354061 0.604742 -0.084248 -1.06924
380.0 0.238893 0.386103 0.347454 -0.190000 -1.10065
400.0 0.238893 0.367507 0.211830 -0.136204 -1.03826
420.0 0.238893 0.309305 0.273097 -0.182537 -0.91335
450.0 0.238893 0.282088 0.197213 -0.159802 -0.828237
500.0 0.238893 0.249403 0.112407 -0.126038 -0.715034
550.0 0.238893 0.168536 0.170428 -0.180027 -0.546128
600.0 0.238893 0.174003 0.078716 -0.126537 -0.509963

Critical temperature of propane
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TABLE 2

Average Absolute Deviations (A.A.D.) of Properties of Propane from 
Reported Values of Goodwin at Each Isotherm and Pressure Range of 
Data Used for Determination of Parameters in Equation 26.

Isotherm
K

Density Vapor
Pressure (BP/Bp)?

No. of 
Points

Pressure 
Range kPA A.A.D.% A.A.D.%

No. of 
Points

Pressure 
Range kPA A.A.D.%

95.0 8 6600-67320 0.350 4.330 . 8 6600-67320 10.01
100.0 9 .1300-66280 0.012 0.074 9 1300-66280 1.24
110.0 10 4550-73040 0.007 0.010 10 4550-73040 1.71
120.0 11 1710-70130 0.010 0-032 11 1710-70130 2.33
140.0 13 2250-72250 0.014 0.007 13 2250-72250 0.02
160.0 15 2970-73810 0.0001 0.0008 15 2970-73180 0.02
180.0 18 724-73250 0.0005 0.0003 18 724-73250 0.04
200.0 20 2350-72750 0.0007 0.0007 20 2350-72750 0.06
220.0 23 1970-71900 0.0014 0.0008 23 1970-71900 0.10
240.0 29 100-74920 0.019 0.0021 29 100-74920 0.20
260.0 35 103-73330 0.061 0.061 35 103-73330 0.40
280.0 42 110-71760 0.136 0.095 42 110-71760 1.59
300.0 27 240-73300 0.285 0.030 27 240-73300 1.29
320.0 34 255-68900 0.691 0.060 ■ 34 255-68900 4.53
340.0 46 270-70030 0.673 0.044 46 270-70030 6.50
360.0 33 565-66410 0.965 0.512 33 565-66410 7.22
369.8 30 1110-64690 4.3895 — — " —  —

373.15 80 101-101860 1.8987 —  — — — — -
380.0 30 1151-71340 2.780 30 1155-71340 14.35
400.0 29 1220-67780 1.330 29 1220-67780 6.48
420.0 28 1296-64700 0.347 28 1296-64700 2.72
450.0 27 1400-66500 0.177 27 1400-66500 1.68
500.0 25 1580-64350 0.159 25 1580-64350 0.94
550.0 24 1760-70930 0.085 24 1760-70930 0.95
600.0 22 1930-65900 0.120 22 1930-65900 0.42
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Comparisons with other cubic equations of state. Trad it ionally, 

two of the parameters occuring in a cubic equation of state have been 

determined using the classical critical constraints, while any remaining 

parameters have been determined by empirically curve fitting thermo­

dynamic property values (e.g., vapor pressure). In the present work

the parameters occurring in equation 26 have been determined through 
regression analysis of propane thermodynamic property values. Therefore, 

it is only appropriate that the comparison be made on the same basis,

that is, the parameters occurring in each cubic equation which is compared 
also should be determined from regression analysis in the same manner, 

using the same thermodynamic data. From Table 2, it can be seen that 

the deviations increase in the neighborhood of the critical region of 

propane for equation 26. A comparison in this region of least accuracy 

for equation 26 would be of interest, to confirm the superiority of 

equation 26 over all previously reported cubic equations of state. The 

comparisons are made in two steps, starting with a comparison along 

the critical isotherm of propane using Goodwin's reported values in the 

pressure range of 160 psia to 9380 psia. Experimental PVT data have 

been reported along an isotherm a few degrees above the critical temp­

erature by Beattie et.al., ( 9 ), Cherney et.al. (15 ), Deschner et.al.

(is ) and Dittmar et.al. (19 ) in the pressure range of 14.7 psia 

to 14770 psia. These data were used in the second step for comparison 

to substantiate the results obtained using Goodwin's values along the 

critical isotherm. The cubic equations compared are the van der Waals 

equation (65 ), the Redlich-Kwong equation (49 )» Martin's general 

equation, the Soave equation (55 ), Abbott's generic equation ( 1 )
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and the Peng-Robinson equation (45). The results of the study are 

presented in Table 3. It can be seen that equation 26 emerges as the  ̂

best density-cubic equation of state according to this comparison.

To show how a constrained cubic equation performs along the 

critical isotherm as well as isotherms above and below the critical 

temperature, a set of calculations was made using the Peng-Robinson 

equation of state ( with parameters determined using the relations given 

by Peng-Robinson), since it is considered to be one of the best equations 

of state among the previously reported density-cubic equations in the 

literature. The results are presented in Table 4. A comparison with 

the results presented in Table 2, shows that equation 26 is by far 

superior to the constrained Peng-Robinson equation. Although phe intro­

duction of analytical temperature dependence into equation 26 will yield 

a temperature-density explicit equation of state of lower accuracy 

than the discrete isotherm results in Table 2, with an accurate descri­

ption of the temperature dependence, the resultant equation of state 

will still be superior to all previously reported cubic equations due 

to the fact that it is the most general density-cubic equation of state.



TABLE 3

Results of Performance of Unconstrained Cubic Equations in the 
Critical Region of Propane

Average Absolute Deviation in Density %
Isotherm

K
No. of 
Points

Pressure 
Range kPA

Van der 
Waals

Redlich-Kwong 
or 
Soave

Abbott
Peng-
Robinson Martin Equation 26

369.8 30 1100-64690 13.07 6.899 5,494 5.599 5.366 4,389

373.15 80 101-101860 8.74 3.59 3.760 4,620 2.720 1.898



TABLE 4
Average Absolute Deviations (A.A.D.) of Predicted Properties of 

Propane from Reported Values of Goodwin at Each Isotherm 
for the Peng-Robinson Equation of State

Isotherm
K

Density Vapor
Pressure OP/3p)^

No. of 
Points

Pressure 
Range kPA A.A.D.% A.A.D.%

No. of 
Points

Pressure 
Range kPA A.A.D.%

160.0 15 2970-73180 5.110 •— 15 2970-73180 27.61
2 0 0 . 0 2 0 2350-72750 6.630 3.466 2 0 2350-72750 9.41
240.0 29 100-74920 7.334 1.746 29 100-74920 10.42
300.0 27 240-73300 6.070 1.227 27 240-73300 20.17
320.0 34 255-68900 5.370 0.725 - 34 255-68900 20.44
360.0 33 565-66410 4.500 0.006 33 565-66410 21.24
369.8 30 1110-64690 7.468 — —— — --
373.15 80 101-101860 5.050 — “ — -
380.0 30 1150-71340 4.480 30 1150-71340 17.91
420.0 28 1296-64700 3.300 28 1296-64700 12.93
450.0 27 1400-66500 2.870 27 1400-66500 11.38
550.0 24 1760-70930 2 . 1 1 0 24 1760-70930 8.55

00



CHAPTER IV

DEVELOPMENT OF A PROVISIONAL TEMPERATURE DEPENDENCE 

FOR THE EQUATION OF STATE

The requirement that the equation of state be cubic in density 

restricts the density dependence, but the temperature dependence is 

open for analysis, with practical application of the equation of state 

being the only criteria in restricting the order of the temperature 

dependence. The evaluation of polynomials consumes very little com­

puting time as compared to repeated calculations using a do-loop and 

thus, adding more terms to a polynomial in temperature does not for 

all practical purposes increase the time required for an analytical 

solution of the cubic equation. In the development of the temperature 

dependence of the equation of state the goal was to attain a level 

of accuracy comparable to the second class of equations of state like 

the Modified Benedict-Webb-Rubin equation of state ( 56 ).

In order to determine the form of the temperature dependence, 

the expressions for the second virial coefficient and third virial 

coefficient were obtained from equation 26 by expanding it into a poly­

nomial in density. The second and third virial coefficients are given 

by the following equations

B = Ag - Ag + A^ (27)

19
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C = Ag - - (Ag - A^)Ag + (A^ - A^)^ (28)

where B and C are the second and third virial coefficients, respectively. 

It is known (63 ) that the second and third virial coefficients can be 

well represented by reciprocal temperature expansions. Since all the 

five parameters A^ through A^ appear in the expressions for the second 

and third virial coefficients, reciprocal temperature expansions were 

chosen for the temperature dependence of the equation of state.

In Table 1 the value of parameter Aĵ  is a constant for all 

temperatures except very near the critical point and hence it was fixed 

at that value. The values of A^ through A^ were plotted against reduced 

reciprocal temperature as shown in Figures 1 to 4. Though the plots 

for Ag and A^ give reasonably smooth curves, the plots for A^ and A^ 

show a big scatter of the values. This is probably due to a high corre­

lation between the parameters. In order to avoid the scatter in the 

plots for A^ and A^ against reduced temperature, A^ and A^ were fitted 

to a polynomial in reciprocal temperature and A^ and A^ were redeter­

mined for each isotherm using density, vapor pressure and ( 9P/9p)^ 

values for propane and plotted against reciprocal reduced temperature.

This led to a smoother curve for A, and A, remained almost a constant.3 4
This procedure led to the following temperature dependence for the 

equation of state

I + A (T^) + A (T ) p2
Z =  E---E-----------E----------- (29)

(1 - A j p ^ d  + A^(T^) p^ + A^ p2)

where the temperature dependent parameters A^, A^ and A^ are expressed
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FIGURE 1. Plot of parameter versus reciprocal
reduced temperature.
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l / \

FIGURE 2. Plot of parameter versus reciprocal 
reduced temperature.
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0.60 .

FIGURE 3. Plot of parameter versus reciprocal
reduced temperature.
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- 0.1

FIGURE 4.

1/T^

Plot of parameter versus reciprocal
reduced temperature.
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as follows

S i S 2 + + S 4 +

s V ? ?

S i S 2 ■*■^24
T ^ r T  ̂r

S i S 3
Tr V T  ̂r

AjCIr)

Ajd^)

The parameters occuring in equation 29 were redetermined using 

thermodynamic property values over a wide range of temperature and 

pressure conditions. Equation 29 predicts propane density covering a 

wide range of fluid states from a reduced temperature of 0.24 to a 

reduced temperature of 1.62 and up to a reduced pressure of 17 with 

an average absolute deviation of about half a percent. Vapor pressure 

values from = 0.27 to the critical temperature are predicted within 

half a percent. The derivatives ( 3P/ 3T)p and ( 3P/3p)^ calculated 

using Goodwin's non-analytic equation (26) are predicted within 5 per­

cent by equation 29. The equation of state parameters for propane are 

presented in Table 5.

The results for propane are compared with those obtained using 

the Modified Benedict-Webb-Rubin equation of state (56) and the Peng- 

Robinson equation of state and are presented in Table 6. Before the 

discussion of the results it has to be stated that the Peng-Robinson 

equation of state is a generalized equation whereas equation 29 and 

the Modified Benedict-Webb-Rubin equation are for a specific fluid.
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TABLE 5
Reduced Parameters for use in Equation 29

Parameter Value for Propane
0.239000

^21 -0.182160
A2 2  0.368512
A2 3  0.243401
A2 ^ -0.031339
Ag^ -0.082134
A3 2  0.528881
A3 3  -0.139924
A^^ 0.012492
A^ -0.188000
Ag^ 0.091565

Ag2  -0.034023
Agg -1.451970
Ag^ 0.238376
Agg -0.011072



TABLE 6
Deviations of Predicted Properties of Propane from Reported Values of Goodwin and

Comparison of Results between Equation 29, Peng-Robinson and
Modified BWR Equations of State

Property
No. of 
Points

Temperature 
Range, R

Pressure Range 
psia

Av. Abs . Percent Deviation
Equation 29 Peng-

Robinson
MBWR

Density 332 162.0-1080.0 0.22xl0"^-i0636 0.584 4.662 0.890
-5 *Vapor Pressure 23 180.0-665.64 0.46x10 -616.3 0.440 2.19 0.458

(9P/9T)p 166 162.0-1080.0 29.7 -10624 5.766 9.23 28.43

(Bp/ap)? 164 162.0-1080.0 16.5 -10624 4.212 22.97 1 0 . 0 0 2

Vapor Pressure Calculation does not converge below 324 R.

N)
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The large deviation in density for the Peng-Robinson equation is due 

to its inability to predict the compressed liquid region accurately.

Also the latter equation of state could not be used to calculate vapor 

pressures below 324 R. From the comparison presented in Table 6 it 

can be concluded that equation 29 is quite superior to the Peng-Robinson 

equation due to its ability to predict the liquid phase densities 

and the low temperature vapor pressures accurately. Equation 29 is on 

par with the Modified Benedict-Webb-Rubin equation of state in its 

ability to predict the properties of propane in the overall region of 

fluid states but at the same time it has the added advantage of comput­

ational speed due to the simple analytical solution for the density.



CHAPTER V

APPLICATION OF THE EQUATION OF STATE TO 

SELECTED INDIVIDUAL PURE FLUIDS

One of the basic requirements for an equation of state to achieve 

widespread use in research and industry is the ability to predict the 

thermodynamic behavior of a wide range of fluids. After having developed 

the temperature dependence of the equation of state using thermodynamic 

property values for propane the equation of state is applied to selected 

lower and higher members of the normal saturated hydrocarbon series.

This procedure not only helps to ascertain the applicability of equation 

29 to fluids other than propane but it also provides the basis for later 

generalization of the equation of state.

Methane was chosen as one of the fluids since it is the first 

member of the normal saturated hydrocarbon series and n-heptane and 

n-octane were selected as the higher members of the series.

Experimental density, vapor pressure and enthalpy departure 

data were used in multiproperty regression analysis to determine the 

optimum set of parameters in equation 29 which gave minimum deviations 

from the experimental values for all the properties considered.

1 + A X T  ) p + A (T ) pI
Z = --------- ^ ^ ----------  (29)

(1 - A^p^)(l + Ag(T^) p^ + A^ p2)

29
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where the temperature dependent parameters A^, and A^ are expressed as 

follows

A3 CT ) =
T T  T T r r r r

A (T ) = ^ 2 1 ^ ^ ^ ^ ^ ^
Tr T /  t /

A (T ) = + b i  + h i  + h i
■i  ̂ T T Tr r r

Table 7 lists the values of the parameters for each fluid. The 

results obtained for the fluids considered using the most general density- 

cubic equation of state are presented in Tables 8 to 10 along with a 

comparison with the results obtained using the Peng-Robinson and the 

Modified Benedict-Webb-Rubin equations of state.

From the results it can be seen that the most general density- 

cubic equation of state performs quite well for fluids other than propane 

and thus it is amenable to generalization. In comparison to the Peng- 

Robinson equation, equation 29 describes the low temperature vapor 

pressures and the liquid densities quite well and it is comparable to 

the Modified Benedict-Webb-Rubin equation in the overall fluid states.
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TABLE 7

Reduced Parameters for Methane, 
n-Heptane and n-Octane

Parameter Value
Parameter Methane n-Heptane n-Octane

4 0.239000 0.241042 0.244282

^21 -0.224680 -0.220132 -0.119012

^22 0.428590 0.426032 -0.299461

^23 0.205501 0.241123 0.683564

^24 -0.034396 -0.020819 0.075546

^31 -0.082134 -0.076883 0.407431

^32 0.528881 0.515652 0,351472

^33 -0.139924 -0.140302 0.106380

^34 0.012492 0.012955 0.052481

^  ■ ■ -0.188000 -0.187943 -0.193307

^51 0.026275 0.249747 0.289404

^52 -0.013015 -0.136615 0.540259

^53 -1.431860 -1.537200 -1.280060

&54 0.322188 0.205520 -0.556054

*55 -0.029629 -0.006019 -0.001416



TABLE 8

Deviations of Predicted Properties of Methane using Equation 29 and Comparison of
Results between Equation 29, Peng-Robinson and

Modified BWR Equations of State

Property No. of Temperature Pressure Av. Abs. Percent Deviation
Points Range, R Range, psia Equation 29 Peng-

Robinson
MBWR

Density 41 206.2-1121.7 129.7-2324.7 0.256 5.320 0.322

Vapor Pressure 29 200.9- 343.2 14.7- 668.7 0.308 0.660 0.441

Enthalpy Departure 38 209.7- 509.7 450.0-2000.0 0.559* 2.404* 0 .6 8 *

Deviations in Btu/lb

toio



TABLE 9
Deviations of Predicted Properties of n-Heptane using Equation 29 and

Comparison of Results between Equation 29, Peng-Robinson and
Modified BWR Equations of State

No. of 
Points

Temperature 
Range, R

Pressure 
Range, psia

Av. Abs. Percent Deviation
Property Equation 29 Peng-

Robinson
MBWR

Density 41 370 ~ 920 14.7 'V' 3082 0.461 1.47 0.645

Vapor Pressure 44 347 ~ 957 0.0001 350 1.374 0.920* 1.850

Enthalpy Departure 17 972 «Y, 1167 79 2363 **1.657 **1.06 *0.756

Vapor Pressure Calculation does not converge below 598 R. 
* * Deviations in Btu/lb.

ww



TABLE 10

Deviations of Predicted Properties of n-Octane using Equation 29 and
Comparison of Results between Equation 29, Peng-Robinson and

Modified BWR Equations of State

No. of 
Points

Temperature . 
Range, R

Pressure 
Range, psia

Av. Abs. Percent Deviation
Property Equation 29 Peng-

Robinson
MBWR

Density 54 389.7 ~ 970 14.7 'V, 239 1 . 1 0 3.92 1.821

Vapor Pressure 63 390 1019.7 0.0003 350 1.55 *1.51 2.51

Enthalpy Departure 6 8 535 ~ 1060 200 'Vi 1400 * *1.17 **2.83 * *2.18

**
Vapor Pressure calculation does riot converge below 608 R.
kDeviations in Btu/lb.

w



CHAPTER VI

DEVELOPMENT OF A GENERALIZED EQUATION OF STATE 

USING DATA FOR METHANE THROUGH n-DECANE

The most general density-cubic equation of state has been shown 

to describe the thermodynamic behavior of methane, propane, n-heptane 

and n-octane quite well. To extend the usefulness of this equation of 

state for which parameters have been determined only for a limited 

number of fluids, it is desirable to have available a practical means 

of generating parameters for other fluids of interest.

In the three parameter corresponding states theory proposed by 

Pitzer (47) the compressibility factor, Z can be expressed in a power 

series in the acentric factor w, with the expansion truncated after 

the first order term.

Z = Z^ + Ẑ o) + . . . (30)

Zo- (Ir- (31)

h  ' V  (32)

where T = T/T and P = P/P . r c r c
For simple fluids like argon the acentric factor is zero and 

the compressibility factor is given by Z^. For other fluids the

35
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acentric factor is calculated from the following defining relation 

given by Pitzer,

ti) = - log P^ •" 1.000 

where P^ is the reduced vapor pressure at = 0.70. Z^+ represents

the compressibility factor for fluids which deviate from the simple 

fluid behavior. This theory has been successfully applied to a wide 

class of fluids.

A similar approach has been taken for the generalization of 

equation 29, repeated here

1 + A ( T )  p + A ( T ) p 2  
Z =  ^ -   (29)

(1 - A^p^)(l +  Ag(T^)p^ +  A^p2 )

where the temperature dependent parameters A^, A^ and A^ are expressed 

as follows

Ag(T ) = + ̂  + +
T T  T T r r r r

Ag(T ) = ^21
T T Tr r r

A (T ) = ^31 ̂  ̂  ̂  ̂  ̂  ̂
T T Tr r r

The values of A^ and A^ obtained for methane, propane, n-heptane 

and n-octane were plotted against the acentric factor, w as shown in 

figures 5 and 6. The values of A^(T^), AgCT^) and Ag(T^) were plotted 

against the acentric factor at various reduced temperatures as shown in
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0.246

0.244

0.242

0.240

0.238

0.236
0.40.3

Acentric factor, w

FIGURE 5. Plot of parameter versus acentric 
factor, 03
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- 0.182

- 0.186

0.192

-0.196

. 0.1  0.2

Acentric factor 

FIGURE 6. Plot of parameter versus acentric factor, (Ü
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figures 7,8 and 9. From figures 3 and 6 it can be infered that is 
a function of the acentric factor and is practically a constant. The 
parameters A^(T^), A^(T^) and AgCT^) show almost a linear dependence on 
the acentric factor except at the low reduced temperatures where a higher 
order dependence on the acentric factor may be required. In the initial 
process of the generalization the following relationships were chosen 
for the parameters

Ai = bĵ j + b^gW (33)

" b2^(Tp(l + b22<̂  + b230)2) (34)

Ag(T^) = ̂ 31(%?)(! + ^32* + bggwZ) (35)

A4 . b^i (36)

As(Tp) = b3^(Tj(l + b52̂ o + b330)2) (37)

Experimental density and vapor pressure data for methane through 

n-decane over a wide range of fluid states were used in multiproperty 

regression analysis to obtain an optimum set of parameters in the 

generalized equation of state, which gave minimum deviation in the 

density and vapor pressure values. To obtain a good set of initial 

values for the parameters occuring in the generalized equation, previously 

determined parameter values for propane were used in equations 33 to 

37 as follows

baiffr) =
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0.0

- 1.0
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-3.0

0.6

-4.0

0.5
-5.0

- 6.0

0 0.1 0.40.2 0.3
Acentric factor, w

FIGURE 7. Plot of the parameter A-(T ) versus acentric factor 
at various reduced temperatures
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6.0

0.3

0.42.C-

0.5

-1.0, 0.3

Acentric factor, w

Figure 8. Plot of the parameter versus acentric
factor, Ü) at various reduced temperatures
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FIGURE 9. Plot of the parameter Ag(T^) versus
acentric factor, w at various reduced 
temperatures.
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"31 J

"51 ( V  -

"11 = '̂ ICj

and w was replaced by (w - w_ ).
^3

The reason for the choice of propane instead of methane parameter 

values is due to the fact that the data for propane exist at lower re­

duced temperatures than those of methane. A regression analysis for 

the rest of the parameters occuring in equations 32 to 37 using the 

density and vapor pressure data of methane through n-decane gave an 

overall average absolute deviation of about 1.8 percent. With this 

result as a starting point, the generalized equation of state was

further developed following the methodology presented by Coin (25) to

achieve an accuracy level comparable to the generalized Modified 

Benedict-Webb-Rubin equation of state cast in a three parameter corres­

ponding states framework (57). This led to the following equation of 

state which gave an overall average absolute deviation of 1.05 percent 

from the experimental values of vapor pressure and density for all the 

fluids considered, namely methane through n-decane.

1 + A (T ) p + A (T ) p2
Z =----- ----------— ---- ----- -—  ---   (38)

(1 - P.j.) (1 + Ag(T^) + A^ p2)
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where

AgCTr) 53 54,
T

1 +C

, ^21 . ^22 . ^23 . ^24 \
I + -----+ — 2 ■*■ ~~1 /T T Tr r r

1 + &2;W

AjWr) ( !31 + !3| H-! »  ) 1 + a „  .2

= a11
= a41

However, when equation 38 was used to generate enthalpy departure 

values for the fluids methane through n-octane the deviations from the 

experimental values were of the order of 3 Btu/lb. An acceptable value 

would be around 2 Btu/lb, which is the result obtained when using the 

Modified Benedict-Webb-Rubin equation of state. The probable reason 

for the larger deviations is the fact that the functions of acentric 

factor within the brackets in the above equations for A^(T^), A^(T^) 

and Ag(T^) are highly dependent on the values of the temperature 

functions within the parentheses, a situation which magnifies itself 

in the calculation of the enthalpy departure where temperature derivatives 

of the functions are required.

To correct this problem the functions for A^(T^), A^(T^) and 

AgfT^) were written in a linear form in the acentric factor and selected

enthalpy data were included along with the vapor pressure and density
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data previously used to develop the following equation of state

1 + A:(T ) p + A (T ) p2 
Z =  — ---  — ---—  (39)

(1 - AjppCl +  Ag(T^) p^ + A^ P^

T T T m T T
r r r r r r

A^CV = ( " 2 1 + f % + % ) + ( M  + :25+:26).
If Tf Tr V  \

^ T T  T T T Tr r r r r r

h  ' h i

\  = h i

The intuition to add a high order temperature dependence term 

for Ag(T^) and A^CT^) came from the work by Tsonopoulos (63) on the 

second virial coefficients of non-polar and polar fluids and their 

mixtures. Equation 39 predicts the density and vapor pressure data 

of methane through n-decane with an average absolute deviation of 1.0 

percent from the experimental values. The enthalpy departure values 

are predicted within 1.7 Btu/lb average absolute deviation.

The value of the acentric factor, w depends on the source from 

which it is obtained. For example the value of the acentric factor for 

methane has been quoted as 0.0072, 0.008 and 0.0115 in three sources
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(43, 50, 44) of which the first and the last value are by the same 

principal author along with different co-authors. This is because the 

value of the acentric factor depends upon the accuracy of the vapor 

pressure value at a reduced temperature of 0.7 and the accuracy of the 

critical temperature and critical pressure for that fluid. Usually the 

vapor pressure at the reduced temperature of 0.7 is not reported and 

hence the vapor pressure is either interpolated from other reported 

values or it is obtained from a vapor pressure equation. In any case 

the accuracy of an empirical equation of state like the most general 

density-cubic equation depends on the values of the acentric factor 

used in the determination of the rest of the parameters. Thus, in order 

to make the value of the acentric factor compatible with the equation 

of state an effective value.of the acentric factor which we call ’y* 

was determined for each fluid from regression analysis of theirmodynamic 

properties retaining the other parameters in the equation at the same 

value. When the values of y were substituted for w in equation 39 the 

overall deviation in density and vapor pressure values for methane 

through n-decane reduced to 0.9 percent. The uncertainty in the enthalpy 

departure values is 1.68 Btu/lb. The physical properties of the fluids 

along with the values of w and y are presented in Table 11. The values 

of the parameters in equation 39 are reported in Table 12. A summary 

of the results obtained using w and y, the range of data used and the 

sources from which the data has been obtained are presented in Table 13.

The generalized equation (equation 39) is compared with the 

results obtained by using the generalized Modified Benedict-Webb-Rubin 

equation (57) and the Peng-Robinson equation using identical data sets



TABLE 11

Characterization Parameters for Methane through n-Decane to be 

used with the Generalized Equation of State

Fluid Critical 
Temp.,°R

Critical 
Density, Ibmole/ 

cu.ft.
Molecular
Weight

Acentric 
Factor,w

Effective
Acentric
Factor,Y

Methane 343.24 0.6274 16.042 0.0115 0.0115
Ethane 549.70 0.4218 30.068 0.0980 0.0980
Propane 665.64 0.3096 44.094 0.1520 0.1520
n-Butane 765.34 0.2448 58.120 0.1930 0.1956
n-Pentane 845.09 0.2007 72.146 0.2510 0.2480
n-Hexane 913.02 0.1696 86,172 0.2960 0.2974
n-Heptane 972.52 0.1465 100.198 0.3510 0.3476
n-Octane 1023.46 0.1284 114.224 0.3940 0.3940
n-Nonane 1070.17 0.1150 128.240 0.4440 0.4469
n-Decane 1111.57 0.1037 142.276 0.4970 0.4874

•vj



TABLE 12
Generalized Parameters used in Equation 39

i ^li ^2i *3i *4i *5i

1 0.261470 -0.177989 0.578522 -0.263225 -1.097760

2 0.267322 -0.041516 0.041857

3 0.247866 -1.561630 0.521565

4 -0.236432 2.455580 -1.063570

5 0.411015 -1.280740 0.193772

6 0.000276 0.233100 -0.001081

4>-
CO



TABLE 13

Prediction of Thermodynamic Properties of Methane 
through n-Decane using Equation 39 

( p= density, H-H^ = enthalpy departure, P^ = vapor pressure)

Fluid Property No. of Temperature Pressure
Av.
Dev

Abs. * • Data
Points Range, "R Range, psia w Y Reference

P 41 206 ; 17 > \ j 1121.7 129.70 2324.7 1.159 1.159 21,66,68
Methane 29 200.99 343.16 14.696 668.72 1.048 1.048 37

H-H° 38 209.67 'b 509.67 450 'b 2000 1.787 1.787 29,74

P 46 239.67 769.67 14.7 'Vi 8000.0 1.567 1.591 2,14,53
Ethane 46 249.67 549.68 0.49 709.80 1.022 1.022 2,14

H-H° 98 299.67 769.67 200 3500 1.561 1.561 53

P 70 162.0 ' \ j 1080.0 16.48 10636.0 0.620 0.620 26
Propane 21 216.0 665.64 0.0004 616.30 0.873 0.873 26

H-H° 39 209.67 709.67 500 • X j 2000 1.464 1.464 74

P 40 259.67 'U 889.67 14.7 'X j 7000.0 0.549 0.511 2,53
n-Butane 38 364.67 ' X j 765.29 0.342 O. 550.7 0.850 0.479 2,14

39 559.67 889.67 200 5000,0 0.687 0.653 53
VO



TABLE 13 
(continued)

Fluid Property No. of Temperature Pressure
Av.
Dey.

Abs*
Data

points Range,°R Range, psia Ü) Y Reference

9 41 259.67 ~ 919.67 14.7 ~ 10000.0 . 0.841 0.868 2,53
n-Pentane 50 323.28 ~ 845.59 0.003 ~ 489.50 1.272 1.156 2,14

H-H° 39 559.67 ~ 919.67 200 ~ 10000.0 1.215 1.083 53

P 41 319.67 ~ 739.67 14.70 ~ 2980.0 0.257 0.267 2,58
n-Hexane 53 395.75 ~ 919.17 0.020 ~ 439.70 0.982 0.844 2,14

P 41 369.67 ~ 919.67 14.7 ~ 3081.5 0.384 0.420 2,61
n-Heptane 44 346.93 ~ 956.87 0.00013~ 350.0 1.618 0.730 2,30

H-H° 17 971.97 ~ 1069.2 78.770 ~ 2363.1 1.224 1.200 24

P 50 389.67 ~ 969.7 14.7 ~ 239.0 1.120 1.120 2,22
n-Octane 47 393.67 ~ 989.67 0.0004 ~ 283.0 1.331 1.331 2,41,75

H-H° 68 534.67 ~ 1059.7 200.0 ~ 1400 2.95 2.95 33

n-Nonane 24 402.75 ~ 814.67 0.00012~ 29.65 1.84 1.585 2

P 32 559.67 ~ 919.67 200.0 ~ 6000.0 0.334 0.343 53
n-Decane 24 438.30 ~ 859.67 0.0002 ~ 30.0 1.507 1.448 2 Oio

% for p, P^, Btu/lb for H-H^
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in Table 14. It can be seen that equation 39 is as good as the MBWR 

equation of state and that it is superior to the Peng-Robinson equation 

of state. In almost all cases where low temperature vapor pressure 

data have been compared the Peng-Robinson equation invariably fails to 

converge to the correct solution. The large deviations in the density 

are due to the Peng-Robinson equation’s inability to predict the 

compressed liquid densities accurately. The Peng-Robinson equation 

of state was developed using vapor pressure data from the normal boiling 

point up to the critical point (45) and thus it fails to converge at 

the lower temperatures and hence comparisons of the vapor pressures are 

not reported except for methane. In the range of the normal boiling 

point to the critical point the vapor pressures are predicted quite 

accurately by the Peng-Robinson equation as reported in their paper (45). 

It is not the intention of this research to play down the Peng-Robinson 

equation or other cubic equations but to show that the most general 

density-cubic equation is much better in predicting the thermodynamic 

behavior of the fluids investigated thus far than any previously re­

ported cubic equation of state.



TABLE 14

Comparison of Results between Equation 39, Generalized

MBWR and the Peng-Robinson Equation of State

Av. Abs. Dev. (% for Pi'Pjjj Btu/lb for H-H°)
Fluid Property Equation 39 Peng-Robinson MBWR

P 1.156 5.330 0.650
Methane P* 1.048 0.660 0.680

H-H° 1.787 2.404 1.390

P 1.591 5.350 1.230
Ethane Pa 1.022 -- 1.100

H-H° 1.561 1.612 0.980

P 0.620 3.836 1.010
Propane ?o 0.873 -- 0.460

H-H° 1.464 3.607 1.450

P 0.511 3.650 0.550
n-Butane Po 0.479 — 0.530

H-H° 0.653 1.359 0.500 LnM



TABLE 14 

(continued)

Av. Abs, Dev, (% for p, P^, Btu/lb for H-H^

Fluid Property Equation 39 Peng-Robinson MBWR

P 0.868 3,142 1.150
n-Pentane 1.156 — 1.030

H-H° 1.083 1.791 0.630

P 0.267 1.594 0.530
n-Hexane 0.844 — 0.980

P 0.420 1.470 0.650
n-Heptane 0.730 — — 0.750

H-H° 1.200 1.060 0.740

P 1.121 3.920 1.180
n-Octane 1.331 ---- 1.160

H-H° 2.950 2.830 1.850

n-Nonane P
a 1.585 -- 1.460

P 0.342 4.711 1.090
n-Decane 1.448 0.770 Lnw



CHAPTER VII

APPLICATION OF THE GENERALIZED EQUATION OF STATE 

TO THE NORMAL SATURATED HYDROCARBONS 

n-UNDECANE THROUGH n-EICOSANE

The generalized equation of state was developed using data for 

methane through n-decane, but the purpose of the generalization is to 

make the equation of state applicable to other fluids of interest with 

a minimum input of information.

To use the generalized equation of state to calculate the thermo­

dynamic properties of a fluid the critical temperature, the critical 

density and the value of the effective acentric factor, y are required.

In most cases the value of y is very close to the value of the acentric 

factor, ÜJ. For the fluids studied in this research the effective acentric 

factor, Y has been determined through the use of thermodynamic property 

data. For other fluids the value of w can be used, which is defined by 

the following well known relation of Pitzer

Ü) = - log P^ - 1.000

where P^ is the reduced vapor pressure at a reduced temperature of 0.70. 

The values of the acentric factor have also been tabulated and are avail­

able from several sources in the literature (43, 50).

54
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The critical temperature, the critical density and the acentric 

factor for the saturated hydrocarbons n-undecane, n-dodecane, n-tridecane, 

n-tetradecane, n-pentadecane, n-'hexadecane, n-heptadecane, n-octadecane, 

n-nonadecane and n-eicosane were obtained from the literature (50).

These values were used in equation 39 repeated here to generate thermo­

dynamic property values namely, vapor pressure and density

1 + A (T ) p + A (T ) p2 
Z =------  — ----   — ----   (39)

(1 - p^)(l + Ag(T^) p^ + A^p2)

As(T^) = + + ̂  +  ̂  + 0.
^ T T T m T Tr r r r . r r

Ag(T ) = ( *21 +:j%L + + +
^  ̂ T T  T T  Tr r r r r

S ' V  “ ( — +  ̂ )  + ( — + ^  +  ̂  +  »
T /  1/

4  ■ ^11

\  = ^ 1

where Z is the compressibility factor, p^ is the reduced density 

( Pp = p/Pg), T^ is the reduced temperature (T^ = T/T^) and a^^ are the 

generalized equation of state parameters.

When compared with the experimental vapor pressure and density 

values the overall deviation for the ten fluids was around 5 percent, 

with large deviations occuring at the higher end of the hydrocarbon
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series. However, when the effective acentric factor, y was obtained

for each, of the above fluids from the thermodynamic properties information,

the overall average absolute deviation dropped to 1.87 percent.

The physical properties of the fluids and the values of w and y 

are presented in Table 15. A summary of the results including the ranges 

of temperature and pressure of the data used are presented in Table 16.

From the results presented in Table 16 it can be concluded that 

the generalized equation of state, when applied to fluids outside the 

range of those used in the development of the equation, does quite well 

in predicting the thermodynamic properties. The use of an effective 

acentric factor, y improves the results considerably and at the same 

time the use of w gives a reasonable result, taking into account the fact 

that the data for n-undecane through n-eicosane are not as accurate as the 

data for methane through n-decane.



TABLE 15

Characterization Parameters for n-Undecane through n-Eicosane to be 

used with the Generalized Equation of State

Fluid Critical 
Temp., R

Critical 
Density, Ibmole/ 

cu.ft.
Molecular
Weight

Acentric 
Factor,Ü3

Effective 
Acentric 
Factor,Y

n-Undecane 1149.84 0.09460 156.313 0.535 0.5338
n-rDodecane 1184.94 0.08756 170.340 0.562 0.5781
n-Tridecane 1216.44 0.08004 188.367 0.623 0.6185
n-Tetradecane 1249.20 0,07522 198.394 0.679 0.6531
n-Pentadecane 1272.60 0.07094 212.421 0.706 0.7107
n-Hexadecane 1290.60 0.06616 226.448 0.742 0.7793
n-Heptadecane 1319.40 0.06243 240.475 0.770 0.7997
n-Octadecane 1341.00 0.05887 254.502 0.790 0.8406
n-Nonadecane 1360.80 0.05579 268.529 0.827 0.8862
n-Eicosane 1380.60 0.05303 282.556 0.907 0.9298

Ln



TABLE 16

Prediction of Thermodynamic Properties of n-Undecane 
through n-Eicosane using Equation 39 
( p= density, P^ = vapor pressure)

Fluid Property No. of 
Points

Temperature 
Range, °R

Pressure 
Range, psia

Av. Abs. 
Dev., %
ÜJ Y

Data
Reference

n-Undecane 19 624.67 ~ 899.67 0.182 'b 29.60 0.654 0.620 67

P 17 581.67 ■ ~ 869,70 0.016 12.63 2.064 0.817
n—Dodecane Pa 22 581.67 ~1186.5 0.016 '0 262.52 6.312 2.253 67

P 17 617.70 ~ 905.70 0.024 '\i 12.93 1.501 1.449
n-Tridecane P

a
19 617.70 ~1218.9 0.024 249.5 1.778 0.790 67

P 14 707.70 ~ 941.70 0.180 13.540 3.179 2.922
n-Tetradecane P

a
16 707.70 ~1251.0 0.180 'V; 235.00 7.792 0.796 67

P 14 743.70 ~ 977.70 0.238 >\i 14.44 4.118 4.162
n-Pentadecane P

a
14 743.70 ~ 995.70 0.238 17.91 1.544 0.317 67

Ln
00



TABLE 16 
(continued)

Fluid Property No. of 
Points

Temperature 
Range, R

Pressure 
Range, psia

Av.
Dev.

Abs. 
, % Data

Reference0) Y

P 9 833.70 'b 977.70 1.003 <b 10.094 3.412 3.728
n—Hsxadecane 6710 833.70 'b 995.70 1.003 'b 12.659 9.992 0.242

P 13 779.70 'b 995.70 0.181 'b 8.891 4.236 4.491
n-Heptadecane Pa 16 779.67 'b 1049.70 0.181 <b 17.106 4.875 0.378 67

P 13 815.70 'Xj 1031.70 0.254 <\3 10.090 4.148 4.561
n-Octadecane P

a
15 815.70 "b 1067.70 0.254 'b 15.470 14.54 0.203 67

P 12 833.67 'b 1031.7 0.236 'b 7.367 4.484 4.947
n-Nonadecane P

a
16 833.67 <\j 1103.7 0.236 ■b 17.332 16.360 0.771 67

n-Eicosane P
a

17 851.67 'b 1395.3 0.222 fb 161.6 5.573 3.143 67

UiVO



CHAPTER VIII

PREDICTION OF PROPERTIES OF MAJOR NATURAL 

GAS CONSTITUENTS USING THE GENERALIZED 

EQUATION OF STATE

The thermodynamic properties of the normal saturated hydrocarbons 

methane, ethane, propane, n-butane, n-pentane, n-hexane, n-heptane and 

the higher members of the series which occur in natural gas systems, 

were shown to be predicted accurately by the generalized equation of 

state. Here, the generalized equation of state is applied to other 

major fluids found in natural gas systems, namely isobutane, isopentane, 

carbon dioxide, hydrogen sulfide and nitrogen and to ethylene and propy­

lene. Isobutane and isopentane are also primary candidate working fluids 

in low temperature Rankine Cycles, particularly Geothermal Cycles (73).

The generalized equation of state, repeated here, is expressed 

as follows

1 + A (T ) p + A (T ) p2 Z = -------- ------- r i__r r  (39)
(1 - Aj pp(l + Ag(T^) p^ + A^p2 )

v v  = ( 4 + 4 )  + ( — + 4 + ^ + 4 ) "
V  '̂ r V  V  V

60
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AgCTj = —  + ̂ )  + ( —  + ̂  + ̂ ) o ,
T T T T Tr r r r r

AsCT ) = ( + f32 ) + ( Î33 + Î34 + + f[36 )
rp T  T  T  T  Tr r r r r r

*1 ' *11 

\  = *41

where Z is the compressibility factor, is the reduced density (p^=p/p^),

T is the reduced temperature (T = T/T ) and a., are the generalized r _ r c ij
parameters presented in Table 12. The characterization parameters for 

isobutane, isopentane, ethylene, propylene, carbon dioxide, hydrogen 

sulfide and nitrogen are presented in Table 17. The values of the 

effective acentric factor, y were determined using experimental density, 

vapor pressure and enthalpy departure values in multiproperty regression 

analysis for each fluid. In most cases the value of y is very close 

to that of (1), as shown in Table 17.

The average absolute deviations and the ranges of data used for 

isobutane and isopentane are presented in Table 18. In Table 19 the 

results for ethylene and propylene are presented. The results for 

carbon dioxide, hydrogen sulfide and nitrogen are presented in Table 20. 

These results are comparable with those obtained for the normal straight 

chain hydrocarbons methane through n-decane, though the fluids in 

Table 18 to 20 were not used for the development of the generalized 

equation of state.



TABLE 17

Characterization Parameters for Isobutane, Isopentane, Ethylene, 
Propylene, Carbon dioxide. Hydrogen sulfide and 

Nitrogen to be used with the Generalized 
Equation of State

Fluid Critical 
Temp.,°R

Critical
Density

Ibmole/cft
Molecular
Weight

Acentric 
Factor, ÜJ

Effective 
Acentric 
Factor,Y

Isobutane 734.13 0.2438 58.120 0.1760 0.1833

Isopentane 828.67 0.2027 72.146 0.2270 0.2251

Ethylene 509.49 0.5035 28.05 0.0850 0.0993

Propylene 657.07 0.3449 42.08 0.1480 0.1473

Carbon dioxide 547.47 0.6641 44.01 0.2250 0.2117

Hydrogen sulfide 672.37 0.6571 34.076 0.1000 0.1079

Nitrogen 227.07 0.6929 28.016 0.0400 0.0392

C\to



TABLE 18

Prediction of Thermodynamic Properties of Isobutane and 
Isopentane using Equation 39

(p = density, H-H® = enthalpy departure, P^ = vapor pressure)

Fluid Property No, of 
Points

Temperature 
Range, °R

Pressure 
Range, psia

Av.
Dev

(1)

Abs. 
., %

Y
Data

Reference

P 354 333.8 1032 0.18 ~ 5000 0.93 0.93 12,40,51,52,53,70
Isobutane 64 335 734.13 0.18 ~ 526.6 2.64 0.49 7,16,17,52,69,76,71

H-HO++ 24 560 <b 940 250 ~ 3000 0.93 1.13 10,14

P 116 224.9 <b 851.67 0.3xl0"& 2674 1.24 1.22 21,51,54
P„ 64 390.9 'b 828.7 0.211~ 490.4 0.60 0.40 8,51

Isopentane AH* 3 503 <b 541.8 6.54 ~ 14.7 0.33 0.13 8
B+ 10 491.7 fb 851.7 — 5.67 5.68 54

tt

Enthalpy of Vaporization 
Second virial coefficient 
Deviation in Btu/lb.

asw



TABLE 19

Prediction of Thermodynamic Properties of Ethylene 

and Propylene using Equation 39

( p= density, H^H = enthalpy departure, P^ = vapor pressure)

Fluid Property No. of 
Points

Temperature 
Range, °R

Pressure 
Range, psia

Av.
Dev.
(Ü

Abs.
%
Y

Data
Reference

P 41 209.67 ~ 719,67 14.7 ~ 2000 1.79 1.91 14,51,38
Ethylene P 36 239.67 ~ 509.49 0.88 ~ 742.1 6.84 2.08 14,51,62

H-H°^ 38 339.67 ~ 719.67 100 ~ 2000 1.69 1.49 14

P 61 409.68 ~ 909.67 16.2 ~ 2939 1.43 1.43 14,39,51
Propylene Po 28 264.47 'b 656.87 0.04 ~ 670.3 1.21 1.06 14,51,62

Deviation in Btu/lb.

o«



TABLE 20

Prediction of Thermodynamic Properties of Carbon dioxide

Hydrogen sulfide and Nitrogen using Equation 39 
( p= density, H-H° = enthalpy departure, P^ = vapor pressure)

Av. Abs.
Fluid Property No. of Temperature Pressure Dev ., % Data

Points Range, R Range, psia 0) Y Reference

P 41 437.67 ~ 743.67 220 ~ 4410 0.76 0.75 20
Carbon dioxide P„ 33 389.67 ~ 547.67 75 ~ 1070 2.42 0.91 14

H-HO+ 39 437.67 ~ 743.67 441 ~ 7350 2.13 2.12 20

P 41 499.67 ~ 799.67 100 ~ 2000 1.99 2.05 34,48
Hydrogen sulfide Pa 24 383.27 ~ 672.37 14.7 ~ 1306 2.09 1.16 31,71

P 41 139.67 ~ 699.67 14.7 ~ 8936 1.40 1.40 14,60
Nitrogen P 19 159.67 'v, 226.67 29 -V 492 0,90 0.90 23

H-H°^ 79 159.67 ~ 509.67 200 ~ 2500 0.56 0.56 35

t.
o\Ul

Deviation in Btu/lb.
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The results obtained using equation 39 are compared with those 

obtained using the Modified Benedict-Webb-Rubin equation of state (57) 

in Table 21. From the results it can be infered that the most general 

density-cubic equation of state is comparable to the Modified Benedict- 

Webb-Rubin equation of state when extended to fluids not used in the 

development of the generalized equation of state.



TABLE 21
Comparison of Results between Equation 39 and the

Generalized MBWR Equation of State

Fluid Property
Av. Abs. Dev. (% for p, P , Btu/lb for H-H° )

Equation 39 MBWR

P 0.929 1.90
Isobutane* ^0 0.495 1.95

H-H° 1.128 1.10

P 1,223 1.50
Isopentane* 0.399 0.37

P 1.911 2.73
Ethylene 2.08 2,08

H-H° 1.494 1.97

P 1.428 1.58
Propylene 1.060 0.69

p 0.75 0,65
Carbon Dioxide 0.91 0.76

H-H° 2.12 2.69
cy>



-TABLE 21 
(continued)

Fluid Property

Av. Abs. Dev. (% for p, P^, Btu/lb for H-H°)

Equation 39 MBWR

, P 1.40 0.27
Nitrogen 0.90 0.90

0.56 0.48

P 2.05 1.85
Hydrogen sulfide P

a 1.16 0.72

Identical data sets were not used for comparison.

03



CHAPTER IX

PREDICTION OF PROPERTIES OF SELECTED 

PURE COAL FLUIDS

In recent years, due to the high price of oil, the use of coal 

as an important or rather primary source of energy has received great 

attention. In the very near future the mental image of coal as a solid 

fuel will gradually change to that of a liquid which will be pumped from 

a liquefaction plant close to the mining site through pipelines just as 

oil is pumped through pipelines today. In this context, the economic 

design of coal liquefaction demonstration plants requires the use of 

design data. Since very little design information is available at this 

point in time, it is necessary to develop correlations which can help 

in the design of these plants.

As the generalized equation of state has been developed in a 

framework which allows the use of other characterization parameters such 

as dipole moment etc., the equation of state is applied here to some 

selected pure coal fluids, namely benzene, naphthalene, tetralin, quino­

line and phenanthrene to test the applicability of this equation for 

later use in the prediction of the thermodynamic properties of defined 

and undefined coal mixtures. The fluids were so chosen as to cover 

a broad class of aromatic hydrocarbons, namely single ring, two ring and

69
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three ring fluids. Naphthalene, tetraliji and ..quinoline are two ring 

aromatic hydrocarbons; in addition, tetralin and quinoline are polar 

fluids. Phenanthrene was chosen from the class of three ring aromatic 

hydrocarbons.

The characterization parameters for use in the generalized 

equation of state are presented in Table 22. Table 23 presents the 

results for the fluids considered using literature values for the acentric 

factor, w, and also using the values for the effective acentric factor, y, 

determined from regression analysis of the experimental data.

From the results presented in Table 23 it can be seen that the 

generalized equation of state predicts the vapor pressure and density 

of these complex fluids to a reasonable level of accuracy.



TABLE 22

Characterization Parameters for Benzene, Naphthalene, 

Tetralin, Quinoline and Phenanthrene to be used 

with the Generalized Equation of State

Fluid Critical 
Temp.,°R

Critical 
Density 
Ibmole/cft

Molecular
Weight

Acentric 
Factor,Ü)

Effective 
Acentric 
Factor,Y

Benzene 1011.89 0.24136 78.1134 0.2125 0.2138

Naphthalene 1347.03 0.15099 128.1732 0.3020 0.3004

Tetralin 1296.27 0.14166 132.2048 0.2970 0.3168

Quinoline 1407.87 0.15515 129.1610 0.330 0.2587

Phenanthrene 1571.67 0.11278 178.233 0.540 0.4641



TABLE 23

Prediction of Thermodynamic Properties of Selected 
Pure Coal Fluids using Equation 39

Fluid Property No. of 
Points

Temperature 
Range, R

Pressure 
Range, psia

Av.
Dev.
Ü)

Abs.

Y
Data

Reference

P 60 923.7 1103.7 374.3 ~ 867.4 1.828 1.821 2

Benzene 36 504.7 ~ 995.7 0.76 ~ 639.9 0.582 0.502 2

P 18 648.0 ~ 1800.0 14.7 ~ 290.1 2.61 2.62 4
Naphthalene P

a
15 810.3 ~ 1279.7 4.2 ~ 490.0 3.23 3.12 72

P 17 540.0 ~ 1800.0 14.7 ~ 1450.7 2.796 2.631 5
Tetralin P

0
16 810.3 ~ 1279.7 6.74 -b 488.0 4.928 2.634 72

P 17 576.0 ~ 1800.0 14.7 'V/ 1450.4 3.621 4.24 3
Quinoline P

0
8 959.7 ~ 1309.7 23.8 ~ 407.0 14.01 5.68 72

P 7 671.7 ~ 1031.7 0.0004'v- 10.022 3.716 4.65 6

Phenanthrene P
0

1 2 865.8 ~ 1309.7 0.650 ~ 99.0 19.20 4.64 72.



CHAPTER X

APPLICABILITY OF THE MOST GENERAL DENSITY-CUBIC 

EQUATION-OF STATE TO POLAR FLUIDS

The generalized equation of state which has been developed in 

a three parameter corresponding states framework for non-polar fluids can 

be extended to polar and associative fluids if adequate characterization 

is provided for the effects of polarity and hydrogen bonding. This 

leads to a multi-parameter corresponding states framework where the 

equation of state, and in turn the parameters in the cubic equation can 

be expressed as

Ai(Tr> = A^^(T^) + A^gCTp.w ) + A.^(T^, / )  + A.^(T^,a ) + . . (40)

*where p is the reduced dipole moment and a is a measure of the associ­

ative effects. Thus far, the equation of state extends up to the second

term. When the equation of state is used in the present form to predict

the properties of fluids like water and ammonia which are highly polar 

and associative the deviations in the properties are relatively high.

For ammonia the overall average absolute deviation is around 4 percent 

for vapor pressure and density over all fluid states with a 9 Btu/lb 

deviation on the enthalpy departure. The overall deviation for water 

is about 8 percent. In restricted regions the equation of state can be

73
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shown to perform better, but in order to get an accurate description

of polar and associative fluids over all fluid states, additional chara-
*cterization parameters like the reduced dipole moment p are required. 

Before attempting this task the applicability of the basic equation 

formulation has to be tested. For this purpose a provisional temper­

ature dependence for the most general density-cubic equation of state was 

developed exclusively for water. This equation of state is presented 

below

1 + A (T ) p + A (T ) p2
Z = ----------- ^ ^ ------    (41)

(1 - ppCl + Ag(T^) p^ +  A* p2 )

where the temperature dependent parameters A^(T^), A^(T^) and A^(T^) 

are expressed as

A C T )  = + + + +
^ ^ T T T T

r r r r r r

A (T ) = : ^  + ̂  + ^  + ̂  +  ̂  +  ̂ 2 6 \
^ ^ rp T T T Tr r r r r

As(T^) - Ag]_ + A^2T^

Table 24 presents the parameters for water for use in equation 41. 

The above form of the temperature dependence for the equation gives 

accurate results for water density and vapor pressure whereas the enthalpy 

departures have a greater uncertainty from the reported values over all 

fluid states as shown in Table 25. A systematic study of the thermo-
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TABLE 24

Parameters for water to be used in 

Equation 41

Parameter Parameter Value

0.248539

A^^ -0.280423

A2 2  0,606953

A 2 3  0.086806

-0.035691

A 2 3  0.006724

A2 3  -0.012962

Â ĵ  1.05855

A,^ -0.248420

A^ -0.063821

A3 J, 0.117006

A^ 2  1.128286
A 3 3  -2.442082

A^^ 0.0713956

A3 3  -0.128320

Agg 0.143604

A3 y -0.027056

A3 g 0.052152



TABLE 25

Prediction of Thermodynamic Properties of 

Water using Equation 41

Property No. of 
Points

Temperature 
Range, R

Pressure 
Range, psia

Average
Absolute
Deviation

Data
Reference

Density 335 540 ~ 2860 0.7 ~ 20305 0.94% 28,32

Vapor pressure 66 491.7 ~ 1160 0.09 ~ 3090 0.27% 28,32

Satd. Liquid 60 
Density

492 0. 1023 0.09 ~ 1161 0.56% 28,32

Vapor Enthalpy
Departure 158 560 ~ 2860 0.7 ~ 7781 2.71 Btu/lb 28,32

Liquid Enthalpy 
Departure 49 510 -v. 1460 452.6 ~ 15203 2.12% 28,32
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dynamic properties of water along isotherms similar to the study of pro­

pane can lead to a more accurate equation of state than equation 41. 

However, this study demonstrates the capability of the most general 

density-cubic equation in predicting the properties of highly polar and 

associative fluids like water.



CHAPTER XI

CONCLUSIONS

This research presents the most general density-cubic equation of 

state. All previously reported cubic equations are only special cases 

of the most general density-cubic equation of state. A detailed study 

of the thermodynamic properties of propane along isotherms showed that 

the density dependence of the equation of state was adequate enough to 

describe propane themodynamic behavior over all fluid states.

The introduction of a provisional temperature dependence into 

the equation of state led to an equation which provided an accurate 

description of the thermodynamic behavior of methane, propane, n-heptane 

and n-octane, thus making the equation of state amenable to generali­

zation.

The generalization of the equation of state was carried out to 

provide a flexible equation of state, where the temperature dependence 

and in effect the equation of state can be changed to accommodate the 

thermodynamic behavior of polar fluids, etc.

The generalized equation of state was applied to 32 pure fluids 

consisting mainly of non-polar hydrocarbons. Where comparisons have 

been made the generalized equation of state is superior to the Peng- 

Robinson equation of state and it is as good as the Modified Benedict-

78
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Webb-Rubin equation of state. It has also been shown that the basic 

density dependence of the equation of state is capable of describing the 

thermodynamic behavior of water, which is polar and associative, to 

a reasonable level of accuracy in the overall fluid states. Finally, 

the most general density-cubic equation of state has been shown to per­

form as well as a non-cubic equation of state such as the Modified 

Benedict-Webb-Rubin equation of state in the overall fluid states.
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APPENDIX A

EXPRESSIONS FOR DERIVED THERMODYNAMIC PROPERTIES

The classical relationships for the derived properties were 

converted into a reduced form irt terms of the variables = p/p^ and 

T^ = T/T^. For example the classical relationship for the enthalpy 

departure of a pure fluid is given by

H-H° = P/p - RT + { P - T(3P/3T)p} ^

In terms of the reduced temperature T^, the reduced density p^ and the 

compressibility factor Z equation A.1 becomes

= T^(Z-l) -TpZ f r  (3Z/3Tp)p d In p^ A.2

The expression for the entropy departure is given by

(Z-l)d In p -T ( 3Z/3T) d In p - In P/ZR 0 r r 0 r
A.3

The internal energy departure expression is

^ 7 °  = -t/  in A.4

84
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The Helmholtz free energy departure expression is

/Pr (Z-1) d In Pp + In P/Z A.5

Gibbs free energy departure expression is

;Pr (Z-1) d In In P/Z + T^(Z-l)
c "

A .6

The fugacity expression is

In (f/P) = ;Pr (Z-1) d In p - In Z + (Z-1) A.70 ^

when the integrals /^r (Z-1) d In p and /^r (3Z/3T ) d In p are0 r Q r p^ r
evaluated from the equation of state, all of the above properties can 

be determined. The equation of state expressions for the two integrals 

are given below.

The generalized equation of state, repeated here is expressed

as

1 + Ae(T ) p + A (T ) p;
Z = --------- -------1-- - L - £---1----  (39)

(1 - A^p^)(l + Ag(T^) p^ + A^p2 )

rn ^  T  T  T  T  T
r r r r r r

AgCT^) = + ̂  + ̂ )  + ( ^  +  ̂  + ̂ ) m
^  ^ T T  T  T  T

r r r r r
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\  = ^11

4  = ^11

where Z is the compressibility factor, is the reduced temperature, 

is the reduced density and a^^ are the generalized parameters presen­

ted in Table 12. w is the acentric factor which is replaced by the 

effective acentric factor y for the fluids considered in this research. 

The expression for the integral /^r(Z-l)d In is given as

follows

;Pr(Z-l)d In p^ = -F In (1-A^ p^) + In (I + Ag(T^) p^ + A^p2)

+ A^CT^XF - l)/2 + (A^F - A2(T^))/A^ 

'' \

2 + (A (T ) + A_2(T ) - 4 A.) p
In { ------ — ------ 2 ^ } A.B

2 + (Ag(T^) - Ag^(Tp) - 4 A^) p^

A (T ) A + A ^  + A„(T ) 
where F = -----------

Ag(T^) Aj + A^^ + A^

The temperature derivatjsfes of the functions A^(T^), AgCT^) 

and Ag(T^) are given as follows



\/l =

(^I)^VP

J %
JL 7 JL C iLP ^ g.

-i" C •" ( i) V - J - 7 ( 1) S  + - j ' —  \  = ^S
( I) VP ( D ^ v p  ( D ^ v p

X .% X
3,J -( 1)=V - " ̂  + J — Ç—  ( = ‘'S

( d H p ( I) V  ( D ^ V P

a JIP IP T
(^D^VP (^D^VP

S

aufgap sn la-i

■ï, .1 i
r b C 7 C y I IP

^  sê;^ ê ë ; ) - ( ï ê ;^ ̂  t ê ;

J  J  J  X^ X Xg I (. I — I c y I IP
o r v  " ( & -  + & -  + i r ) - ( ? # -  +  & - ) - = - r92^8 CZgg 3Zç (^D^VP

a J J a a a a__- I (. I . I y I . I _ I '  IP
6-V " (-#r—  + & -  + & —  + & - ) - ( & —  + & - ) -  =t^Bg ^^B Z^Bg tSgg (^I)^VP

L2
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= 1 + AjK + A.K

\  = i + A j C y p ^  + A ^ p

Ql = 4A» - A/(T^)

Then the expression for the integral /^r (3Z/9T ) d In p is given0 r ^
as

f v  0Z/3T^) d In Pp = -K {Pa In (l-A^P^ +
1 X

( S3 - (A3 C1P

dAjd^)
■  " d l ~ ^  - A4P1/P2) (AsC^r) + + (=2 + ‘

dA (I )
— âî  (1 - A4K ) - Pj/PjCAjd^) + A^K)) (2A^ - Ajdj)

(A3d̂ )+ Â p̂  )) - -f in (P̂ ) + ^ h \  S- ^  + ̂ ( 2A ^ K - A 3 d p )

P,A
+ 7T (\(T ) (A,(T^)/A.-K) -2 (1-AX)) - (A.(T_)3 r 3 r 4

dA (T )
+ 2A^K) + — ^  - P^(A3(T^)/2 + A^K)

Ql?: 3' r

In (( 2 + (AgCr^)

+ /- Qi)Pr)/(2+(Ag(T^) - /- Q^) Pp )) } A.12

Since the two integrals /^r (Z-l)d In p and /^r (3Z/3T ) dlnp
0 0 f Pp f
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along with. Z occur in the expressions for the above mentioned derived 

thermodynamic properties, a good description of the density, vapor 

pressure and enthalpy departure of a fluid ensures good descriptions 

of all the other derived properties.



APPENDIX B

DENSITY SOLUTION OF THE CUBIC EQUATION WHEN 

TEMPERATURE AND PRESSURE ARE SPECIFIED

The most general density-cubic equation of state is expressed as

1 + A (T ) p + A (T )
Z = -------- Ï ^------ —  B.l

Cl - Â pp)(l + A2(T̂ )p  ̂+ Â p2 )

For the purpose of solving for the density the temperature dependent 

parameters can be treated as constants. In terms of pressure P, equation

B.l becomes

p RTp(l + AcP + A^pZ)
P =      — ----— ---  B.2

(I - AjP^)(I + AgPp + A^pZ )

Equation B.2 can be expressed as a cubic equation in density

p Ag - A^ A, - A. A
RTp  ̂ RTp "^S^^r +  ̂ RTp " ^2^ ^r " \^l^r °c C C

B.3

Let

-P/ (RTp^A^A^) = r, (Ag - (A^ - A^)/R,Tp^)/A^A^ = q,

90
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(Ag - (A^ - A^A2)/RTp^)/A^A^ = p, then we have

Py + PPj + 9Pj. + r = 0 B.4

Equation B.4 can be reduced to 

3
X  + ax + b = 0  B.5

by substituting for the value x - p/3 (64). Here 

a = (3q - p^)/3 and b = (2p^ - 9pq + 27r)/27

The solution of the cubic equation has been adapted here to the problem

of solving for the liquid and vapor roots in an equation of state from

the general solution presented by Uspensky (64).

Equation B.5 can be solved by setting x = u + v. On substituting

this expression into B.5 and rearranging, u and v have to satisfy the

equation

u^ + v^ + (a + 3uv) (u + v) + b = 0 B.6

with two unknowns. This problem is indeterminate unless another relation

between u and v is given. For this relation we take

3uv + a = 0

or

uv = -a/3
3 3Then it follows u + v = - b

so that the solution of the cubic equation B.5 can be obtained by solving

the system of two equations
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3 3u + v = - b ,  u v = - a / 3  B.7

Taking the cube of the latter equation we have

3 3 3ui V = - a^/27 B .8

From equations B.7 and B .8 we know the sum and the product of the two
3 3unknown quantities u and v . These quantities are the roots of the 

quadratic equation

t^ + bt - a^/27 = 0 B.9

Denoting them by A and B, we have then

A = -b/2 + Jh^/^ + a^/27

-/b^/4 + -^

Now

B = -b/2 - J b  /4 + a /27

3 3u = A and v = B

The three possible values of u will be

u = u = w Va, u  =  (1)̂  V a

where w = (-1 + i /3)/2 is an imaginary cube root of unity and the three 

possible values for v are

V  =  ^/B, V  =w ^7b and v =tû

but the correct combination of u and v gives the solution for the cubic 

equation B.5. Due to the assumption uv = -a/3 the product of the cube 

roots of A and B has to satisfy this relation. Thus if satisfies



the relation

3yi .3yâ = -a/3 

then the three roots of the cubic equation are given by
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Xo = S/A + w 3/T

3 2The above formulas are known as Cardan’s formulas. When 4a + 27b > 0 ,

there will be one real and two conjugate imaginary roots.
3 2When 4a + 27b = 0 ,  there will be three real roots of which at least two

are equal.
3 2When 4a + 27b < 0, there will be three real and unequal roots.

3 2In situations where the determinant 4a + 27b is less than or 

equal to zero, the solution of the cubic equation can be obtained trigono­

metrically (46). In this case the roots are given by

x^ = ±2 /-a/3 Cos { (j)/3 + 2irk/3 k = 0,1,2 

where ()i = Cos  ̂/(-27b^/4a^) and the upper sign applies if b < 0, the 

lower if b-> 0.

The largest root gives the liquid density and the smallest root 

gives the vapor density.



APPENDIX C

SOURCE LISTING OF EQUATION OF STATE 

FUNCTION SUBPROGRAMS

c The following function subprograms have to be used in the c Ezfit prodram developed bs K»M<Goin to calculate pure
c f 1 uid propert:i.es usind the denera 1 ized l<umar-Star 1 ind
c equation of state
c Procedures for usind the followind are explained in
c K*M,Goin's dissertation (Univ* of Oklahoma ? 1973)
c Punctioi"i pres(t?rho) ca 1 cu 1 ates the pressure at a diven
c ■ temperature and density 

function pres(t?rho)
comIIIon / p riTi/  rdas ? ren r d y t c  r i  t  ? pc r i  t  y rhoc i> w ? a 1 pha y be ta  y xinw. 

1 ? a ( 4 0 ) y b ( 7 ) ynterms ynparmynumbyr t o p y rmid1 y rmidv 
rho s  -b e t  a>Kr ho /rh  o c 
t  s  t  a r -  a 1 p a >K t  / t e r  i  t  
x=l/tstar
a7=((<a(5)*x*x*x*x+a(17))*x+a(14))*x*x+a( 13) )îüx
39=(((3(2)*x+a(10))*x+3(13))*x+3(15))*x
38= ( ( a ( 1 ) *x*x*x*x*x*x+3 ( 16 ) ) *x+a ( 19 ) ) )Kx
3p2= ( (a(9)*x+a(8) )*x+3(7))-faS>Kw
ap3= ( ( a ( 12 ) >Kxia ( 11 ) ) *x ) +a9X<w
3P5= ( a ( 4 ) *xf a (3)) #x#x4'a7>Kw
3Pl=3(20)
3P4=3(6)
CP=l-3Pl*rhos 
b p 1 + a p 31 r h o s 1 a p 41 r fi o s >K 2 
a p "" 1 f a p 5 * r h o s -f a p 21 r h o s 2 
dp=bp#cp
Z=3P/dP
pres=z*rho*rd3S*t
return
end
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c Punction f.i.l<t?rho) calculates the integral (z-l)dln(rho)
c which is used in the calculation of the fudacity
c coefficient

fI..Inction f i 1 (t y rho)
common /nrin/rdas y renrdy y to r i t y no r i t y rhoc y w y a 1 nha y beta y xmw 
1 y a ( 40) y b (7) y n t e r in s y n n a r in y i-i u in b y rton y r in i d 1 y r m i d v 
t s t a r -  a il. nha* t ,  / 1  c r i t 
rhos=beta#rho/rhoc 
if (rhos« dt♦3♦8) rhos-3♦8 
x~l/tstar
a7- ( ( ( a ( 5 ) )Kx)kx*x)Kx+a (17)) >Kxta (14)) *x&x+a (13)) :Kx
a9=(((a(2)*x+8(10))*x+a(18))*x+a(15))*x
38= ( (ad) *x*x*x*x*x*xta (16)) >Kx-fa (19) ) *x
3P2= ( (a(9)*x+a(8))*x+a(7)) +a8*w
ap3= ( ( a ( 12 ) *x+a (ID) ̂ x ) +a9*w
3p5“ ( a ( 4 ) >Kxf a (3)) *x*xta7*w
apl-a(20)
3p4=a(6)
f == ( ap5#apltapl*apliap2)/( ap3#apltapl%apltap4 )
a - s ci r t ( a p 3 'M a p 3-4* a p 4 )
dp- 1-ap 1*rhos
bp“l+rhos*(ap3tap4*rhos)
i f ( b P , 1 e ♦0♦0)  b p “ 0 ♦1e - 0 5
if(dP,le,0*0) dP=0,1e-05
d2“(rhos*(ap3fe)+2)/(rhos*(ap3-e)+2)
if(d2,It,0,0) d2=0,le-05
d3=0,5*ap3*(f-l)+(ap4*f-ap2)Zap1
d4“d3/a*alod(d2)
•(•' i l =  -  f *  3 1 o d ( d p ) -f 0 * 5 * ( f  -1  ) * a  1 o d ( b p ) f d 4
return
end
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c Funct i on f i 2 ( t y rho ) 0 3 1 ou 1 ates the i nte^ ra .1 dz/dt dln(rho)
o which is used in the calculation of the enthalpy
c departure

fi.incioi"i f i2(ty rho)
common /p r m / r d a s yrenrdw y teri t y peri t yr h o c yw y alpha y beta y xmw 

1 y a (40) y b ( 7 ) y n t e r m s .»nparm y ri 1..1 mbyrtopyrmidl y rmidv 
tstar-a 1pha*t/tcrit 
rhos=beta*rho/rhoc 
x=l/tstar
i f (r hos♦dt + 3,9) r h o s " 3 ♦9
37=(((3(5)*X*X*X*X+3(17))*X+3(14))*X*X+3(13))*x 
39=(((3(2)*X+3(10))*X+3(18))*X+3(15))*x
a8= ( (a ( 1 )*X)KX* X* x*x *x+a (16))>Kxia( 19) )*x
3P2= ( (a (9)5«x+a(8))* x + a (7)) +a8*w
ap3=“ ( ( a ( 12 ) :{<xta ( 11 ) ) >Kx ) ta9*w
3P5= (3(4) *x+a (3)) *x*x+a7)Kw
apl=a(20)
3p4=a(6)
ap33=-'( 2*3 (1 2 ) *x +3 ( I D )  *x**2 
b p 3 3 = - (((4+0 * 3 (2)* x + 3 +0*3 (10))* x + 2 +0 * 3 (18))* x + a (15))*x*x 
3 P 2 2 = - (2+0*3(9)* x + 3 (8 ))*x**2 
b p 2 2 = - ((8,0*3(1)* x * x * x * x * x * x + 2 +0 * a (16))* x + a (19))*x*x
a 19=8♦0 * a (5)*x*x*x 
a p 21 = 3 p 2 2+b p 2 2 * w
bp55=-(((3l9*x+4*3(17))*x+3*3(14))*x*x+a(13))*x*x
3p55=- ( 3 + 0*3 ( 4 ) *X'f 2 + 0*a ( 3 ) ) *x*x*x
3P5 1=ap55tbp55*w
ap3I=ap33tbp33*w
Sl=3P51-3P31
s 2= a p 51 * a p 3 -f a p 21 ~ a p 31 * a p 5 
s 3 a p 51 * a p 4 -f a p 21 * a p 3 ~ a p 31 * a p 2 
s4=ap21*ap4 
ak""l + /apl
p1 = ((s4*3k+s3)*ak+s 2)*akts1 
p 2 ;l. -f ( 3 p 4 * a U.+a p 3 ) * a k 
P3=pl/p2/p2
p X =1 -f ( a p 4 * V h o s 'f a p 3 ) * ï' h o s 
a ;l. 4 + 0 * a p 4 - a p 3 * <3 p 3 
G2::=sert (-0 I )
■::j 1 =31 Dd < ( 2t < 8P3+o2 ) * rhos ) / ( 2 1 ( ap3-a2 ) * rhos ) ) / a2 
d p =p B * B ;i. o d ( ;l. •••• a p 1 * r } i o s )
h p ■■■■ ( s  3 -  a p 21 * ( a  p 3 3 p 4 * a k ) •••• <u p 4 * p a  * p 2 ) * ( a p 3 ••}• 2 * a  p 4 * r  hi o s  ) 
b p "" C h p -f < s  2 4- s  3 * a  k  -  3  p 21 * ( :l. a  p 4 * a  k  * a  i<. ) -  p <3 * p 2 * ( a p 3 4- a  p 4 * a  k  ) )

* * ( 2 * a p 4 a p 3 * ( a p 3 4- a p 4 * rhos ) ) ) * r hi o s / ts 1 / p x 
d p=-0 •> 5 * p a * a 1 o d ( p x )
e p "" ( 2 * a  p 4 * s  2 4- s  3 * ( 2 * a p 4 * a  k <3 p 3 ) -  s  4 * ( 2 * ( 1 -- a  p 4 * a  k  * a  k  ) ■••• a p 3

* * ( a  p 3 /  a  p 4 •••• a  k ) ) -  ( a  p 34-2 * a  p 4 * a  l< ) * p ,3 * p 2 * a  p 4 ) 
c  p -  i e p /  o :!. 4- a p 21 -  p a >K C 0 + 5 * a  p 3 4- a  p 4 * a l<. ) ) * \-.{ 1
r :i. 2 -• a k. * ( d p -f b p -f d p c p )
retu rn
end
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c Function densl(typ) calculates the lieuid density foy
c solvind for the lieuid root in the cubic eeuetion
c analytically at a diven temperature and pressure

function densl(typ)
comp lex r ;L y r2 9 y 1 » det rvier? f unf y d y v3 y dd y ra ? r b 
data t r d yd yd d / 0 .333333y(-0*5y0,8660254) y (-0♦ 5 y••••0«8660254)/ 
common /prm/rdas y r e n r d y y terit y perit ?rhoc y w y alpha y beta y xmw 

1 ya(40)yb(7) y nteriTis y npariTi y numb y rtop y rmidl y rmidv 
data V 8 P y b a p / 4 ♦1888 y 2♦0945/ 
tstar~t/tcrit 
x==l ♦/tstar
a (((a(5)* x * x * x * x + a (17))* x + a (14))* x * x + a(13))*x 
89=(((8(2)* x + a (10))* x + a (18))* x + 8 (15))*x
a8=( (a ( 1 )*x>Kx)|(x>Kx*x*x+a( 16) )>Kx+a(19) )*x
8 P 2 = ((8(9)* x + a (8))* x + a (7))+a8*w
8P3=((8(12)*x+a(ll))*x)+a9*w
8 p 5 = (a (4)* x + 3 (3))*x*x+a7*w
apl=a(20)
ap4=a(6>
f a c = p / (rdas*D*rhoc) 
div=fac*apl*ap4+ap2 
p 1=(a p 5 + f a c * (8 P 1* 8 P 3 - 8 P 4 ))/div 
e 1 = ( 1+fac* ( ap'l -ap3 ))/div 
r==~f ac/di V 
sa=(3,*al-pl**2)/3, 
s b = (2 «* P l * * 3 - 9 .* p 1*el+ 2 7 ♦ $ r ) / 2 7 ,0 
p e t = (s b * * 2 / 4 .+ s a * * 3 / 2 7 *) 
if(pet,dt,0,0) do to 22 
theta=arcos(2,59807:!<sb/(sa>Ksert(-sa) ) ) 
t t = 2 ,O ^ s e r t (- s a / 3 ,0) 
t h = t h e t a / 3 ,0 
rhos= ( tt>Kcos ( th ) -p 1 / 3 ,0 ) 
i f (r h o s ,d t ,4,0) do to 27 
d e n s 1=rhos#rhoc 
return 

27 th=th+vap
rhos= ( tt>|(cos ( th ) -p 1 / 3 ,0 ) 
i f (rhos,dt,4,0,or,rhos,It,0,0) rhos=3,0 
d e n s l = rhos)Kr h o c 
return 

2 2 I..I n=5 e r t ( P' e t  )
p8=-sb/2+un 
pb=“sb/2~un
if(pa,dt,0,0) do to 50 
if(pa,ee,0,0) do to 30 

10 ra=~sb/2+un
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c Function d e n s K t u p ) continued. 
v i e r = c l o d (ra) 
ri=cexp(trd*vier) 
do to 40 

30 rl=0,0
40 if(pb,ea,0,0) do to 60

rb=-sb/2-un 
funf=clod(rb) 
r2=cexp(trdWfunf) 
do to 70 

60 r2=0,0
do to 70 

50 rl=P3**trd
if(pb,dt,0,0) do to 80 
if(pb,eo,0,0) do to 77 
rb=-sb/2-un 
funf“Clod< rb) 
r2=cexp(trd*funf) 
do to 70 

77 r2=0,0
do to 70^

80 r2=pb%*trd 
70 if(sa/3,dt,0,0) do to 20

y;l” ( rl + r2”p;L/3)>Krhoc 
do to 15 

20 v3=dd*r2
y 1 “ ( r 1+V 3 “ p :l. / 3 ) r h a c 

15 densl=real(yl) 
return 
end


