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ABSTRACT

The most general density-cubic equation of state is derived
through a mathematical analysis. The adequacy of the density dependence
to describe the thermodynamic behavior of real fluids over all fluid
states is demonstrated through a case study of propane thermodynamic
behavior along isotherms. Provisional temperature dependence is intro-
duced into the equation of state and the resultant equation of state
predicts the thermodynamic behavior of methane, propane, n-heptane and
n-octane over wide ranges of temperature and pressure to a high-level of
accuracy hitherto attainable using only non-cubic equations like the
modified Benedict-Webb-~Rubin equation of state. The equation of state
is later generalized using the thermodynamic property values for the
normal straight chain paraffin hydrocarbons methane through n-decane.
The generalized equation of state predicts density and vapor pressure
values within nine tenths of a percent for methane through n-decane and
the enthalpy departure is predicted within 1.7 Btu/ib average absolute
deviation. The generalized equation of state is applied to normal
saturated hydrocarbons n-undecane through n-eicosane resulting in an
overall deviation of 1.87 percent from reported values of density and
vapor pressure. When applied to other major natural gas constituents
the equation of state predicts the thermodynamic properties density,
vapor pressure and enthalpy departure with the same level of accuracy

ix



as the modified Benedict-Webb-Rubin equation of state. The equation of
state gives a reasonably good description of the thermodynamic behavior
of selected key coal chemicals, namely benzene, naphthalene, tetralin,
quinoline and phenanthrene. The basic density dependence of the equation
of state describes the thermodynamic properties of water when provisional
temperature dependence is introduced, to a high level of accuracy over

all f£luid states.



DEVELOPMENT OF THE MOST GENERAL DENSITY-CUBIC
EQUATION OF STATE

CHAPTER I

INTRODUCTION

Many attempts have been made over the years to describe the
thermodynamic behavior of real fluids via equaﬁions of state. These
equations of state have achieved varying deg:ees of success, enabling
us to divide them into three separate classes. 1In the first class, we
have the equations of state which are cubic in density. A few of the
more popular density-cubic equations are the van der Waals equation
(1873), the Redlich-Kwong equation (1949), the Soave equation (1972)
and the Peng-Robinson equation (1976). The density-cubic equations
of state give reasonable descriptions of the thermodynamic behavior
of real fluids, with each equation being more accurate in the chrono-
logical order of appearance in the literature. The Beattie-Bridgeman
equation (1928), the Benedict-Webb-Rubin equation (1940) and the
Modified Benedict-Webb-Rubin equation (1973) are popular examples of
the second class of equations of state. They are non-cubic in density
and provide a good description of the thermodynamic behavior of real
fluids for all fluid states. In the third class of equations, aré

the non—-analytic equations of state which are highly constrained for



each specific fluid (Goodwin, 1975) and give a highly accurate descri-
ption of real fluid behavior.

In most industrial design situations as well as research measure-~
ments of derived properties, the unknown variable is density, whereas
the easily measurable properties pressure and temperature, are known.
Consequently, the first class of equations, namely the density-cubic
equations are of particular interest since they provide an analytical
solution for the density, as compared to the more complicated non-
cubic and non-analytic equations of state, which require time consuming
iterative procedures to solve for the density.

The presently available popular density-cubic equatidns of
state like the Soave and the Peng-Robinson equations provide good‘
descriptions of real fluid behavior in the two phase region and in the
gas phase, but in the compressed liquid region they lack by far the
accuracy levels attainable using the second class of equations of state,

When we look at the form of the density=-cubic equations in the
chronological order of appearance in the literature, we find that in
general the more recent equations have more density dependence (when
expressed in a pressure explicit form) than their precedents. For
example, the Redlich-Kwong equation has more density dependence than

the van der Waals equation, as seen below

oRT
1= gb

- ap? (van der Waals)

ORT aT-4%p2

— e (Redlich Kwong)
(1-pb) (1+pb)



Similarly, the Peng-Robinson equation of state has more density depen-

dence than the Redlich-Kwong equation

2
P = PRT _ a(T) o (Peng-Robinson)

1- pb  (142bp -b2p2)

In general, the overall performance in f£luid properties predi-
ction is greatly enhanced when using the Peng-Robinson equation'(45 )
as compared to the Redlich-Kwong equation and the Redlich-Kwong equation
(49) in turn is better than the van der Waals equation. Thus, though
the temperature dependence of each equation is different it can be
projected that at a particular temperature, a higher density dependence
leads to a more accurate aguailon of state. Continuing in the same
vein, it can be stated that the most density dependence (in terms of
pressure) that can be intyodaced dinfo a - dénsity=cubic equation-will
in turn lead to the most accurate cubic equation of state. This fact
is very important because if the most general density~-cubic equation
of state can provide an accuracy level comparable to the second class of
equations of state for all fluid states it becomes highly desirable
in situations where repetitive calculations for the density are required
due to its inherent advantages.

This research presents the derivation of the most general density
cubic equation of state. A study of the adequacy of the density depen=-
dence in describing real fluid behavior is also presented. Provisional
analytical relations for the temperature dependence are developed
through a careful study of individual isotherms of propane. The temper-

ature dependent equation is later generalized using the thermodynamic



data for normal saturated hydrocarbons from methane through normal

decane. The equation of state is then applied to fluids not used in

the generalization.



CHAPTER II

THE MOST GENERAL DENSITY-CUBIC

EQUATION OF STATE

The most general density-cubic equation of state can be derived
as discussed below.
"A direct density (or volume) expansion for pressure which is

cubic in density is given by the following expression

5 -
P = a; .+ a,p+ ay ™+ g, p3 1)

where P is the absolute pressure, p is the molar density and al, az, a3,

a, are parameters which can be temperature dependent. It is known that

4
an expansion of the above form, which is similar to the virial equation
of state up to the thitd virial coefficient, can only describe the

‘low density gas phase behavior of a fluid. An equation for pressure

of the above form which can describe both the gas and liquid phase

behavior of a fluid can be written as follows
P = 2 a.p (2)

However, equation 2 is of infinite order in density. An equ-~

ation of state which can approximate an infinite series in density using



pressure as the dependent variable and yet requires solution of only

a cubic expression for density (given pressure) is a ratio of polynomials

2
a, +a.p+ap +a,p
P = 1 2 3 4 (3)

2 3
a5 + 36p + a7p + asp

Equation 3 represents the most general form of a density-cubic

or, alternatively, volume-cubic mathematical equation, where a_, through

1

a8 are parameters which can be temperature and composition dependent.
When multiplied out, equation 3 can be shown to yield a cubic in density,

as follows

2 3
(Pa5 - al) + (Pa6 - a2)p + (Pa7 - a3)p + (Pa8 - a4)p =0 (4)

In terms of the compressibility factor Z (=P/pRT), equation 3

becomes

(c /o) + ¢, + cop + 2
p (YA
. - 1 2t o o4f )

2
+
a5 + a6p a7p + a8p

where c; = ai/RT, i=1,2,3,4, R is the universal gas constant, and T
is the absélute temperature.

Before equation 5 can be subjected to the thermodynamic ideal
gas limit that as p*0, Z + 1, ¢; is required to be zero to prevent the
divergence of Z as p + 0. Letting ¢; = 0, we have

c2 + c3p + c

40
Z = 5 3 (6)
as + a6p + a7p + a8p




Now in the limit as p -+ 0

tom gg @
0 >0 5

To satisfy the thermodynamic requirement.as p =+ 0, Z > 1, c,must be
equal to as. Letting c2 = a5 and dividing the numerator and denominator
on the right-hand side of equation 6 by c, we have
c c,
1 +-E§ p+ Eﬁ-pz
2 2
Z = : (8)
% 27 2,28 3
L+ ot g ot ap
€2 % )

Now letting c3/c2 = d;, c4/c2 =d,, a6/c2 = d3, a7/c2 = 4,, and a8/c2=d5,

we have

. 2
1+ dlp + d2 o}
VA = (9)
' 2 3
1+ d3p + d4p + dsp

Equation 9 represents the most general form for a cubic equation of
state in density which satisfies the requirement that in the limit as
d , d

p »0, Z~+1. The five coefficients d d , and d5 must be

17 72”737 4
density independent but can be temperature dependent (for a given pure
fluid) and composition dependent (for a mixture).

We can now show that the demsity-cubic equations presented in
the literature are special cases of equation 9. To do so, we choose

a few of the most popular cubic equations, namely the van der Waals

equation (65 ), the Redlich Kwong equation (49), the Soave equation (55),



the Peng-Robinson equation (45) and Martin's equation (36 ).

In equation 9, if we let d1 = -a/RT; d, = ab/RT; d3 = -b and
d4.= ds = 0:we have
a ab
1 = —p + — p?
7 = RT RT P (10)
- 1 - bp
or
2 = 1 - (1 - bp) pal/RT (11)
1 ~bp
= 1l ___ap
2 1955~ RT (12)

In terms of P and the specific volume V, equation 12 becomes

P = BRI _ _a (13)
V-b V2

which is the well known van der Waals equation of state (65).
The Redlich~Kwong equation can be shown to be a special case

of equation 9 if we let 4, = (b - a/RI3/2), d2 = (ab/RT3/2); dy = 03

1
= s 2 =
d4 b4, and d5 0 we have
- 3Py P2y,2
g = Lt (b-a/RT%jo + (ab/RT¥)o (14)

(1 - b%p2?)

(L4 gb) - (a/RT3/2)(1 - pb)p
2 = (1= pb) (L + pb) (13)




3 .
;- 1 _(a/rr3/2y o (16)

1-pb 1+ pb

In terms of P and the specific volume V, equation 16 becomes

P = RT _ a (17)

V-b T%VV(V*b)

which is the Redlich-Kwong equation of state (49 ).
The Soave equation (55 ) expressed below is a modification
of the Redlich-Kwong equation only in the temperature dependence and

thus is also a special case of equation 9

P = RT  _ __ a(T) (18)

V-5 V(V+b)

The Peng-Robinson equation (45 ) is a special case of equation

9 if we let

. d, = (2b -a/RT); d, = (ab/RT - b%); d = b; d, = -3b” and

» 4
i 3
d. = b”, so that

7 = 1+ (2b - a/RT)p + (ab/RT - b2)p? (19)

1 + bp - 3b%p%+ b3p3

or
- p212 . -
7 = 1+ 20b - p%b a/RT (1 - pb)p (20)
(1 = pb) (1 42 pb = p?b2 )
or
7 = 1 - (a/RT)p (21)

(1 - pb) (1+2 pb-p2 b2)



10
In terms of P and specific volume, V, equation 21 becomes

P = RT a(T) (22)

V-b V(V + b) +b(V = b)

which is the Peng-Robinson equation of state.
Martin's general cubic equation ( 36) is also a special case

of equation 9 if we let
dy = (y + 8= a(T)/RT)5 d, = (yB + &(T)/RT); dg = (v +8 );
d4 =yB 3 d. = 0 we have

g = L+ (y + 8= o(T)/RT)p + (v + §(D/RT)o2 4y

1+ (y + B)p + yBp?

or ‘
: . 5
7 = 1 (a(T)/RT?p _ _(s8(T)/RT)p (24)
(1 +8p) (1 +yp) (1 +Bp) (L +yp)
In terms of P and the specific volume, V, equation 24 becomes
P = RT oM, o) (25)

v (V8 ) (VHy) V(U8 ) (V)

which is Martin's equation (36).
Thus equation 9 represents the most general form of a density-

cubic equation of state.



CHAPTER III

ADEQUACY OF THE DENSITY DEPENDENCE OF

THE EQUATION OF STATE

It has been shown that equation 9 is the most general density-
cubic equation through a mathematical analysis. But the effort would
be futile unless it can be shown that the equatidn of state can describe
the thermodynamic behavior of real fluids quite well.

Due to the cubic nature of the equation of state, the density
dependence is restricted, whereas there is no limit on the amount of
temperature dependence that can be introduced into the equation. Thus,
it is of primary importance to make sure that the density dependence
of the equation of state is adequate enough to describe real fluid
behavior to a high level of accurécy. For this purpose thermodynamic
property values are required along isotherms for wide ranges of temper-
ature and pressure conditions. |

Equation 9 can be written in a computationally more convenient
form by writing the denominator as a product of a first order term and
a quadratic function by setting d1 = AS’ d2 = AZ’ d3 =A - Al’

d, =A, - AA, and d. = -A

4 4 173 5 1742

2
1+A_p +A,p
7 = 5 "r 2 °r (26)

- 2
(1 Al pr)(l + A3 P, + A4 S )

11



12

where pr = p/pc

To determine the adequacy of the density dependence of equation
26, values of density, vapor pressure and the partial derivative of
pressure with respect to density ( BP/Bp)é along isotherms were taken
from Goodwin's (26 ) compilation of the thermodynamic functions for
propane. For each isotherm the above property values were used in multi-
property regression analysis to obtain an optimum set of values for A1
through A.5 which gave minimum deviation from Goodwin's values for all
the properties considered. Table 1 gives the values of the parameters A1
through A5 for a total of twenty four isotherms, while Table 2 gives
the average absolute deviations from Goodwin's values for each property
for each isotherm.

From Table 2 it can ge seen that the most general density-gubic
equation predicts density and vapor pressure values with an average
csolute deviation of one tenth of one percent in most regions except
in the neighborhood of the critical point. It is interesting to note
that both the liquid and gas phase behavior of propans are pradicted
accurately. In prinqiple, it is possible to develop analytiéal relations
for the temperature debendence of equation 26 with sufficient accuracy
to approach the accuracy levels in Table 2; this will be discussed
in the next chapter. Thus, the density dependence of equation 26 is
adequate enough to provide a good description of the thermodynamic
behavior of propane for all fluid states, an achievement which hitherto
was possible only using equations of state which had higher order

density dependence than cubic.



TABLE 1

Parameter Values to be used in Equation 26 at each Isotherm

o 4 By Aq A, As
95.0 0.238893  1.98446  -0.109443  -0.014541  -6.85230
100.0 0.238893  1.99047  -0.072851  =0.016547  -6.84378
110.0 0.238893  3.07607  0.196683  -0.058884 -10.2735
120.0 0.238893  2.45458  -0.024084  -0.002970  -8.14833
140.0 0.238893  1.54402  0.086821  =0.059602  ~5.10893
160.0 0.238893  2.03587  0.473150  -0.144922  -6.45341
180.0 0.238893  1.62803  0.356993  -0.119238  -5.08307
206.0 0.238893  1.33797  0.277608  -0.102911  =4.11997
220.0 0.238893  1.12157  0.218121  -0.091477  =3.41094
240.0 0.238893  0.956634  0.179106  -0.085520  -2.87692
260.0 0.238893  0.827365  0.163771  -0.086826  -2.46335
280.0 0.238893  0.726484  0.252970  -0.124678  -2.14209
300.0 0.238893  0.625929  0.159633  -0.100661  -1.83994
320.0 0.238893  0.530456  0.268477  -0.159891  -1.57053
340.0 0.238893  0.452896  0.371161  -0.203345  -1.35399
360.0 0.238893  0.402792  0.425081  -0.227933  -1.19976
369.8"  0.286248  0.382062  0.550612  -0.102961  -1.09690
373.15  0.357457  0.354061  0.604742  -0.084248  -1.06924
380.0 0.238893  0.386103  0.347454  -0.190000  -1.10065
400.0 0.238893  0.367507  0.211830  -0.136204  -1.03826
420.0 0.238893  0.309305  0.273097  -0.182537  -0.91335
450.0 0.238893  0.282088  0.197213  -0.159802  -0.828237
500.0 0.238893  0.249403  0.112407  ~-0.126038  -0.715034
550.0 0.238893  0.168536  0.170428  ~-0.180027  -0.546128
600.0 0.238893  0.174003  0.078716  -0.126537  =0.509963

Critical temperature of propane
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TABLE 2

Average Absolute Deviations (A.A.D.) of Properties of Propane from
Reported Values of Goodwin at Each Isotherm and Pressure Range of
Data Used for Determination of Parameters in Equation 26.

pensity Vapor (8P/3p)T
Tsotherm Pressure
X No: of Pressure No: of Pressure
Points Range kPA A.A.D.% A.A.D.% Points Range kPA A.A.D.%
95.0 8 6600~.67320 0.350 4.330 . 8 6600.67320 10.01
100.0 9  .1300.66280 0.012 0.074 9 1300.66280 1.24
110.0 10 4550.73040 0.007. 0.010 10 4550.73040 1.71
120.0 11 171070130 0.010 0.032 11 1710.70130 2.33
140.0 13 2250.72250 0.014 0.007 13 2250.72250 0.02
160.0 15 2970.73810 0.0001 0.0008 15 2970.73180 0.02
180.0 18 724..73250 0.0005 0.0003 18 724.73250 0.04
200.0 20 2350.72750 0.0007 0.0007 20 2350.72750 0.06
220.0 23 1970.71900 0.0014 0.0008 23 1970.71900 0.10
240.0 29 100.74920 0.019 0.0021 29 100.74%20 0.20
260.0 35 103.73330 0.061 0.061 35 103.73330 0.40
280.0 42 110.71760 0.136 0.095 42 110.71760 1.59
300.0 27 240.73300 0.285 0.030 27 240.73300 1.29
320.0 34 255.68900 0.691 0.060 - 34 255..68900 4.53
340.0 46 270.70030 0.673 0.044 46 270.70030 6.50
360.0 33 565.66410 0.965 0.512 33 565.66410 7.22
369.8 30 lllb~64690 4.3895 - - —= ==
373.15 80 101.101860 1.8987 - - - -
380.0 30 1151.71340 2.780 30 . 1155.71340 14.35
400.0 29 1220~67780 1.330 29 122067780 6.48
420.0 28 129664700 0.347 : 28 1296.64700 2.72
450.0 27 1400.66500 0.177 - 27 1400.66500 1.68
500.0 25 1580.64350 0.159 25 1580.64350 0.94
550.0 24 1760.70930 0.085 ' 24 1760.70930 0.95
0.42

600.0 22 1930.65900 0.120 ' 22 1930~.65900
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Comparisons with other cubic equations cf state. Traditionally,

two of the parameters occuring in a cubic equation of state have been
determined using the classical critical constraints, while any remaining
parameters have been determined by empirically curve fitting thermo-
dynamic property values (e.g., vapor pressure). In the present work

the parameters occurring in equation 26 have been determined through
regression analysis of propane thermodynamic property values. Therefore,
it is only appropriate that the comparison be made on the same basis,
that is, the parameters occurring in each cubic equation which is compared
also should be determined from regression analysis in the same manner,
using the same thermodynamic data. From Table 2, it can be seen that
the deviations increase in the neighborhood of the critical region of
propane for equation 26. A comparison in this region of least accuracy
for equation 26 would be of interest, to confirm the superiority of
equation 26 over all previously reported cubic equations of state. The
comparisons are made in two steps, starting with a comparison along

the critical isotherm of propane using Goodwin's reported values in the
pressure range of 160 psia to 9380 psia. Experimental PVT data have
been reported along an isotherm a few degrees above the critical temp-
erature by Beattie et.al., ( 9 ), Cherney et.al. (15 ), Deschner et.al.
(18 ) and Dittmar et.al. (19 ) in the pressure range of 14.7 psia

to 14770 psia. These data were used in the second step for comparison
to substantiate the results obtained using Goodwin's values along the
critical isotherm. The cubic equations compared are the van der Waals
equation (65 ), the Redlich-Kwong equation (49 ), Martin's general

equation, the Soave equation (55 ), Abbott's generic equation ( 1)
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and the Peng-Robinson equation ( 45). The results of the study are
presented in Table 3. It can be seen that equation 26 emerges as the
best density-cubic equation of state according to this comparison.

To show how a constrained cubic equation performs along the
critical isotherm as well as isotherms above and below the critical
temperature, a set of calculations was made using the Peng~Robinson
equation of state ( with parameters determined using the relations given
by Peng-Robinson), since it is considered to be one of the best equations
of state among the previously reported density-cubic equations in the
literature. The results are presented in Table 4. A comparison with
the results presented in Table 2, showé that equation 26 is by far
superior to the constrained Peng-Robinson eqﬁation. Although fhe intro-
duction of analytical temperature dependence into equation 26 will yield
a temperature-density explicit equation of state of lower accuracy
than the discrete isotherm results in Table 2, with an accurate descri-
ption of the temperature dependence, the fesultant equation of state
will still be superior to all previously reported cubic equations due

to the fact that it is the most general density-cubic equation of state.



TABLE 3

Results of Performance of Unconstrained Cubic Equations in the

Critical Region of Propane

Average Absolute Deviation in Density %

Isotherm No. of Pressure Van der  Redlich-Kwong Peng-~
K Points Range kPA Waals or Abbott - Robinson Martin Equation 26
Soave
369.8 30 1100~64690 13.07 6.899 5.494 5.599 5.366 4,389
373.15 80 101.101860 8,74 3.59 3.760 2,720 1.898

4,620

L1



TABLE 4

Average Absolute Deviations (A.A.D.) of Predicted Properties of

Propane from Reported Values of Goodwin at Each Isotherm

for the Peng-Robinson Equation of State

Vapor

Isotherm Density Pressure . (BP/ap)T
K No. of Pressure - ) No. of Pressure
Points Range kPA A.A.D.% A.A.D.% Points Range kPA A.A.D.%

160.0 15 2970~73180 5.110 — 15 2970~73180 27.61
200.0 20 2350~.72750 6.630 3.466 20 2350~72750 9.41
240.0 29 100~.74920 7.334 1.746 29 100~.74920 10.42
300.0 27 240.73300 6.070 1.227 27 240.73300 20.17
320.0 34 255..68900 5.370 0.725 34 255.68900 20.44
360.0 33 565.66410 4.500 0.006 33 565.66410 21.24
369.8 30 1110-..64690 7.468 - - - -
373.15 80 101.101860 5.050 - - - -
380.0 30 1150.71340 4.480 30 1150.71340 17.91
420.0 28 1296..64700 3.300 28 129664700 12.93
450.0 27 1400;66500 2.870 27 1400-.66500 11.38
550.0 24 1760.70930 2.110 24 1760.70930 8.55

81



CHAPTER IV

DEVELOPMENT OF A PROVISIONAL TEMPERATURE DEPENDENCE

FOR THE EQUATION OF STATE

The requirement that the equation of state be cubic in density
restricts the density dependence, but the temperature dependence is
open for analysis, with practical application of the equation of state
being the only criteria in restricting the order of the temperature
dependence. The evaluation of polynomials consumes very little com-
puting time as compared to repeated calculations using a do-loop and
thus, adding more terms to a polynomial in temperature does not for
all practical purposes increase the time required for an analytical
solution of the cubic equation. In the development of the temperature
dependence of the equation of state the goal was to attain a level
of accuracy comparable to the second class of equations of state like
the Modified Benedict-Webb-Rubin equation of state (56 ).

In order to determine the form of the temperature dependence,
the expressions for the second virial coefficient and third virial.
coefficient were obtained from equation 26 by expanding it into a poly-
nomial in density. The second and third virial coefficients are given
by the following equations

B = A.-A, +A (27)

5 = 83 7 &
19
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2

C=A4, -4, +AA, - (A3—A1)A5+(A3-A1) (28)

2 4 1

where B and C are the second and third virial coefficients, respectively.
It is known (63 ) that the second and third virial coefficients can be
well represented by reciprocal temperature expansions. Since all the
five parameters Al through A5 appear in the expressions for the second
and third virial coefficients, reciprocal temperature expansions were
chosen for the temperature dependence of the equation of state.

In Table 1 the value of parameter A1 is a constant for all
temperatures except very near the critical point and hence it was fixed
at that value. The values of A2 through As.were plotteéd against reduced
reciprocal temperature as shown in Figures 1 to 4. Though the plots
for A5 and A2 give reasonably smooth curves, the plots for A3 and A4
show a big scatter of the values. This is probably due to a high corre-
lation between the paraméters. In order to avoid the scatter in the

plots for A, and A4 against reduced temperature, A2 and A5 were fitted

3
to a polynomial in reciprocal temperature and A3 and A4 were redeter-
mined for each isotherm using density, vapor pressure and (WBP/ap)T
values for propane and plotted against reciprocal reduced temperature.
This led to a smoother curve for A3 and A4 remained almost a constant.
This procedure led to the following temperature dependence for the
equation of state

L+ Ag(T) o + A (T) o2

Z = (29)
(1 - A0 )1 +A(T) o+ 4, 0%)

where the temperature dependent parameters AS’ A3 and A2 are expressed



FIGURE 1. Plot of parameter A. versus reciprocal
reduced temperature.
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as follows

Agy + Agy + Agg + Ay, Agg
T T T3 T
r r r r
A +A. +A. +A

AZ(Tr) = 2

A3(Tr) - 2

The parameters occuring in equation 29 were redetermined using
thermodyﬁamic property values over a wide range of temperature and
pressure conditions. Equation 29 predicts propane density covering a
wide range of fluid states from a reduced temperature of 0.24 to a
reduced temperature of 1.62 and up to a reduced pressure of 17 with'
an average absolute deviation of about half a percent. Vapor pressure
values from Tr = 0.27 to the critical temperature are predicted within
half a percent. The derivatives ( 3P/ 3T)p and ( 8P/8p)T calculated
using Goodwin's non-analytic equation ( 26) are predicted within 5 per-
cent by equation 29. The equation of state parameters for propane are
presented in Table 5.

The results for propane are compared with those obtained using
the Modified Benedict-Webb-Rubin equation of state ( 56) and the Peng-
Robinson equation of state and are presented in Table 6. Before the
discussion of the results it has to be stated that the Peng-Robinson
equation of state is a generalized equation whereas equation 29 and

the Modified Benedict-~Webb-Rubin equation are for a specific fluid.



TABLE 5

Reduced Parameters for use in Equation 29

Parameter Value for Propane
Al 0.239000
A21 -0.182160
a,, 0.368512
A23 0.243401
Ao -0.031339
Ay, -0.082134
A5, 0.528881
A;, -0.139924
Ay, 0.012492
A4 «0.189000
Ag, 0.091565
Ag, -0.034023
A53 -1.451970
A54 | 0.238376
A -0.011072




TABLE 6

Deviations of Predicted Properties of Propane from Reported Values of Goodwin and
Comparison of Results between Equation 29, Peng-Robinson and

Modified BWR Equations of State

Av. Abs. Percent Deviation

No. of Temperature Pressure Range

Property Points Range, R psia Equation 29 Peng- MBWR

. . Robinson
Density 332 162.0~1080.0 0.22x10-6~10636 0.584 4,662 0.890
Vapor Pressure | 23 180.0~665.64 0.46x10-5~616.§ 0.440 2.19* 0.458
(3P/8T)p " 166 162.0~1080.0 29,7 -~10624 5.766 9.23 28.43
(3P/Bp)T 164 162.0~1080.0 16.5' ~10624 4,212 22,97 10.002

*
Vapor Pressure Calculation does not converge below 324 R.

Le
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The large deviation in density for the Peng-Robinson equation is due

to its inability to predict the compressed liquid region accurately.
Also the latter equation of state could not be used to calculate vapor
pressures below 324 R. From the comparison presented in Table 6 it

can be concluded that equation 29 is quite superior to the Peng-Robinson
equation due to its ability to predict the liquid phase densities

and the low temperature vapor pressures accurately. Equation 29 is on
par with the Modified Benedict-Webb-Rubin equation of state in its -
ability to predict the properties of propane in the overall region of
fluid states but at the same time it has the added advantage of comput-

ational speed due to the simple analytical solution for the density.



CHAPTER V

APPLICATION OF THE EQUATION OF STATE TO

SELECTED INDIVIDUAL PURE FLUIDS

One of the basic requirements for an equation of st;te to achieve
widespread use in research and industry is the ability to predict the
thefmodynamic behavior of a wide range of fluids. After having developed
the temperature dependence of the equation of state using thermodynamic
property values for propane the equation of state is applied to selected
lower and higher members of the normal saturated hy&rocarbon series.

This procedure not only helps to ascertain the applicability of equation
29 to fluids other than propane but it also provides the basis for later
generalization of the equation of state.

Methane was chosen as one of the fluids since it is the first
member of the normal saturated hydrocarbon series and n-heptane and
n-octane were selected as the higher members of the series.

Experimental density, vapor pressure and enthalpy departure
data were used in multiproperty regression analysis to determine the
optimum set of parameters in equation 29 which gave minimum deviations
from the experimental values for all the properties considered.

1+ A(T) p_ + Ay (T) 02

(1 - A0 )(1 +A(T) p_+4, p2)

29
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where the temperature dependent parameters A_, A, and A2 are expressed as

5> 73
follows
A A A A A
As(Tr) - 51 + 52 + 52 + 53 + 52
T T T T
T r r r
A A A A
Az(Tr) - 21 + 22 + 23 + 23
T T T
r r r
. A, A A A
A = 31+32+33+3g
3 T T T
r r r

Table 7 lists thé values of the parameters for each fluid. The
results obtained for the fluids considered using the most general density-
cubic equation of state are presented in Tables 8 to 10 along with a
comparison with the results obtained using the Peng-Robinson and the
Modified Benedict-Webb~-Rubin equations of state.

From the results it can be seen that the most general density-
cubic equation of state performs quite well for fluids other than propane
and thus it is amenable to generalization. In comparison to the Peng-
Robinson equation, equation 29 describes the low temperature vapor
pressures and the liquid densities quite well and it is comparable to

the Modified Benedict-Webb-Rubin equation in the overall fluid states.



TABLE 7

n-Heptane and n-Octane

Reduced Parameters for Methane,

31

Parameter Value

Parameter Methane n—Héptane n-Octane
A 0.239000 0.241042  0.244282
Ay -0.224680 -0.220132 -0.119012
A, 0.428590 0.426032 =-0.299461
Bys 0.205501  0.241123  0.683564
Aoy -0.034396 -0.020819  0.075546
Ay -0.082134 -0.076883  0.407431
Ay, 0.528881 0.515652  0,351472
A, -0.139924 -0.140302  0.106380
Ay, 0.012492 0.012955  0,052481
2, -0.188000 -0.187943 -0.193307
Ay 0.026275 0.249747  0.289404
Ac, -0.013015 -0.136615  0.540259
Ag, -1.431860 -1.537200 ~1.280060
Ag, 0.322188 0.205520 -0.556054
A -0.029629. -0.006019 -0.001416




TABLE 8

Deviations of Predicted Properties of Methane using Equation 29 and Comparison of
Results between Equation 29, Peng-Robinson and
Modified BWR Equations of State

. Abs. rcen iati
No. of Temperature Pressure Av Percent Deviation

Property Points Range, R Range, psia Equation 29 Peng- MBWR

‘ o Robinson
Density 41 206.2~1121.7 129.7~2324.7 0.256 5.320 0.322
Vapoxr Pressure 29 200.9~ 343.2 14.7~ 668.7 - 0,308 0.660 0.441
. x . *
Enthalpy Departure 38 209.7~ 509.7 450.0~2000.0 . 0.559 2.404 0.68

* .
Deviations in Btu/lb

[2"



Deviations of Predicted Properties of n-Heptane using Equation 29 and

TABLE 9

Comparison of Results between Eguation 29, Peng-Robinson and

Modified BWR Equations of State

Av. Abs. Percent Deviation

No. of ‘Temperature Pressure -
Property Points Range, R Range, psia Equation 29 ' Peng- MBWR
- Robinson
Density 41 370 n 920 14.7 v 3082 0.461 1.47 0.645
: *
Vapor Pressure 44 347 v 957 0.0001 v 350 .1.374 0.920 1.850
- : %% *% *%
Enthalpy Departure 17 972 v 1167 79 A 2363 1.657 1.06 0.756

*
Vapor Pressure Calculation

*

* .
Deviations in Btu/lb.

does not converge below 598 R.

133



Deviations of Predicted Properties of n-Octane using Equation 29 and

Comparison of Results between Equation 29, Peng-Robinson and

TABLE 10

Modified BWR Equations of State

Av. Abs. Percent Deviation

éro ert No. of Temperature Pressure
perty Points Range, R Range, psia Equation 29 Peng- MBWR
Robinson
Density 54 389.7 v 970 14.7 Vv 239 1.10 3.92 1.821
. *

Vapor Pressure 63 390 " 1019.7 0.0003 v 350 1.55 1.51 2.51
. * % *%k *%k
Enthalpy Departure 68 535 2 1060 200 v 1400 1.17 2.83 2,18 -

*

*%

vapor Pressure calculation does not converge below 608 R.

Deviations in Btu/lb.

%€



CHAPTER VI

DEVELOPMENT OF A GENERALIZED EQUATION OF STATE

USING DATA FOR METHANE THROUGH n-DECANE

The most general density-cubic equation of state has been shown
to describe the thermodynamic behavior of methane, propane, n~heptane
and n-octane quite well. To extend the usefulness of this equation of
state for which parameters have been determined only for a limited
number of fluids, it is desirable to have available a practical means
of generating parametefs for other fluids of interest.

In the three parameter corresponding states theéry proposed by
Pitzer (47) the compressibility factor, Z can be expressed in a power
series in the acentric factor w, with the expansion truncated after

the first order term,

Z=2 +Z2w+. .. . (30)
Z,=12, (Tr, Pr) | (31)
Z, = Zl('l'r, Pr) (32)

where T_ = T/T_ and P_ = P/P .
r c r c
For simple fluids like argon the acentric factor is zero and

the compressibility factor is given by Zo' For other fluids the

35



36

acentric factor is calculated from the following defining relation
given by Pitzer,
w = - log Pr - 1.000

where Pr is the reduced vapor pressure at Tr = 0.70. Z°+ Z.w represents

1
the compressibility factor for fluids which deviate from the simple
fluid behavior. This theory has been successfully applied to é wide
class of fluids.
A similar approach has been taken for the generalization of
equation 29, repeated here
1+ Ag(T) o, +A4,(T) p2

z = , (29)
(1 - App )(L + A (T )+ A02)

where the temperature dependent parameters A

59 A2 and A3 are expressed
as follows
A A A A A
AS(Tr) - 51 + 52 + 53 + Sg + 52
T T T T
T r r T
A A A A
Az(Tr) - 21 + 22 + 23 + 23
T T T
r T r
A A A A
AB(Tr) - 31 + 32 + 32 + 33
T T T
b T r

The values of Al and A4 obtained for methane, propane, n-heptane
and n-octane were plotted against the acentric factor, w as shown in
figures 5 and 6. The values 6f AS(Tr)’ AZ(Tr) and A3(Tr) were plotted

against the acentric factor at various reduced temperatures as shown in
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figures 7,8 and 9. From figures 3> znd 5 it can be infered that A, is

1
a function of the acentric factor and A4 is practically a constant. The
parameters As(Tr), AB(Tr) and Az(Tr) show almost a linear dependence on
the acentric factor except at the low reduced temperatures where a higher
order dependence on the acentric factor may be required. In the initial

process of the generalization the following relationships were chosen

for the parameters

Al = b11 + blzw (33)
Ay(T)) = by (T (L + by, + b23w2) (34)
Ay(T) = by (T ) +byu+ b33w2) (35)
A, = Py o (36)
Ag(T) = by (T )+ bgyu + b53m2) (37)

Experimental density and vapor pressure data for methane through
n-decane over a wide range of fluid states were used in multiproperty
regression analysis to obtain an optimum set of parameters in the
generaliged equation of state,; which gave minimum &eviation in the
density and vapor pressure values. To obtain a good set of initial
values for the parameters occuring in the generalized equation, previously

determined parameter values for propane were used in equations 33 to

37 as follows

bZl(Tr) = AZ(Tr)C3
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b3l(Ir) = AS(Tr)C3

b5, (T) = A5(-Tr)c3
byr = Az;c?
SIS TR

and w was replaced by (w - g ).
3
The reason for the choice of propane instead of methane parameter
values is due to the fact that the data for propane exist at lower re-
duced temperatures than those of methane. A regression analysis for
the rest of the parameters occuring in equations 32 to 37 using the
density and vapor pressure data of methane through n-decane gave an
overall average absolute deviation of about 1.8 percent. With this
result as a starting point, the generalized equation of state was
further developed following the methodology presented by Goin (25) to
achieve an accuracy level comparable to the generalized Modified
Benedict~-Webb-Rubin equation of state cast in a three parameter corres=-
ponding states framework (57). This led to the following equation of
state which gave an overall average absolute deviation of 1.05 percent
from the experimental values of vapor pressure and density for all the
fluids considered, namely methane through n-decane.
1+ Ag(T) p_ + Ay(T) 02

z= (38)
(1 -8, 0)10+A(T) 0o+ 4 p2)
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where
a a a a a a a
ar) = (51,352,753, Pty |y %55 56, P57y
SYr 3 2
T T T T
r T r r r
a a a a
21 22 23 24
A(T) = ( + + + Y1 +a,.0
2 °r T T 2 T 3 25
r T r
a a a a a
Ay(T) (31+ 3§+ 3:33) 1 +( 34+—35)m+a36 w?
T T T T
r r T r
A = ay
by T2y

However, when equation 38 was used to generate enthalpy departure
values for the fluids methane through n-octane the deviations from the
experimental values were of the order of 3 Btu/lb. An acceptable value
would be around 2 Btu/lb, which is the result obtained when using the
Modified Benedict-Webb-Rubin equation of state. The probable reason
for the larger deviations is the fact that the functions of acentric
factor within the brackets in the above equations for AZ(Tr)’ AS(Tr)
and AB(Tr) are highly dependent on the values of the temperature
functions within the parentheses, a situation which magnifies itself
in the calculation of the enthalpy departure where temperature derivatives
of the functions are required.

To correct this problem the functions for A3(Tr), AS(Tr) and
Az(Tr) were written in a linear form in the acentric factor and selected

enthalpy data were included along with the vapor pressure and density
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data previously used to develop the following equation of state

14+ A(T) p_+ A, (T ) p2
7 = 5’ "r 2V r’ "r - (39)
(1 - Alﬂr) (1 + A3 (Tr) Dr + A4 pT.'

a a a a a a
A = (+32)e (R 22,38,
T T T T T T
r r r r r r
a a a a a
amy = (2,2 Pasy P Pas Py
2 °r 2 8
T T T T
r T r r r
a a a a a a
@y = (LR (fm Ltk st
T T T T T T
r r r r r r
A = a,
A, = ey

The intuition to add a high order temperature dependence term
for AS(Tr) and AZ(Tr) came from the work by Tsonopoulos (63) on the
second virial coefficients of non-polar and polar fluids and their
mixtures. Equation 39 predicts the density and vapor pressure data
of methane through n-~decane with an average absolute deviation of 1.0
percent from the experimental values. The enthalpy departure values
are predicted within 1.7 Btu/lb average absolute deviation.

The value of the acentric factor, w depends on the source from
which it is obtained. For example the value of the acentric factor for

methane has been quoted as 0.0072, 0.008 and 0.0115 in three sources
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(43, 50, 44) of which the first and the last value are by the same
principal author along with different co-authors. This is because the
value of the acentric factor depends upon the accuracy of the vapor
pressure value at a reduced temperature of 0.7 and the accuracy of the
critical temperature and critical pressure for that fluid. Usually the
vapor pressure at the reduced temperature of 0.7 is not reported and
hence the vapor pressure is either interpolated from other reported
values or it is obtained from a vapor pressure equation. In any case
the accuracy of an empirical equation of state like the most general
density-cubic equation depends on the values of the acentric factor
used in the determination of the rest of the parameters. Thus, in order
to make the value of the acentric factor compatible with the equation
of state an effective value.of the acentric factor which we call 'y'
was determined for each fluid from regression analysis of thermodynamic
properties retaining the other parameters in the equation at the sams
value. When the values of y were substituted for w in equation 39 the
overall deviation in density and vapor pressure values for methane
through n-decane reduced to 0.9 percent. The uncertainty in the enthalpy
 departure values is 1.68 Btu/lb. The physical properties of the fluids
along with the values of w and vy are presented in Table 11. The values
of the parameters in equation 39 are reported in Table 12. A summary
of the results obtained using w and Yy, the range of data used andﬁthe
sources from which the data has been obtained are presented in Table 13.
The generalized equation (equation 39) is compared with the
results obtained by using the generalized Modified Benedict-Webb-Rubin

equation (57) and the Peng-Robinson equation using identical data sets



TABLE 11

Characterization Parameters for Methane through n-Decane to be

used with the Generalized Equation of State

Critical Effective

Fluid Criticgl Density, lbmole/ Molecular Acentric Acentric
Temp., R cu.ft. Weight Factor,w Factor,y
Methane 343.24 0.6274 16.042 0.0115 0.0115
Ethane 549.70 0.4218 30.068 0.0980 0.0980
Propane 665.64 0.3096 44,094 0.1520 0.1520
n-Butane 765.34 0.2448 58.120 0.1930 0.1956
n-Pentane 845.09 0.2007 72,146 0.2510 0.2480
n-Hexane 913.02 0.1696 86.172 0.2960 0.2974
n-Heptane 972.52 0.1465 100.198 0.3510 0.3476
n~Octane 1023.46 0.1284 114.224 0.3940 0.3940
n~-Nonane 1070.17 0.1150 128.240 0.4440 0.4469
n-Decane 1111.57 0.1037 142,276 0.4970 0.4874

Ly



TABLE 12

Generalized Parameters used in Equation 39

14 821 431 241 351
0.261470 -0.177989  0.578522 -0.263225 -1.097760
0.267322 —0.041516 0.041857
0.247866 -1.561630 0.521565
-0.236432  2.455580 -1.063570
0.411015 -1.280740 0.193772
0.000276  0.233100 -0.001081

8y



TABLE 13

Prediction of Thermodynamic Properties of Methane

through n-Decane using Equation 39
( p= density, H-HO

= enthalpy departure, Po

= vapor pressure)

Av. Abs.
Fluid Property No. of Temperagure Pressure Dev.* "’ Data
Points Range, R Range, psia w Y Reference
) 41 206317 v 1121.7 129.70 v 2324.7 1.159 1,159 21,66,68
Methane P, 29 200.99 v 343.16 14.696 “ 668.72 1.048 1.048 37
H-uo 38 209.67 v 509.67 450  ~v 2000 1.787 1.787 29,74
p 46 239.67 v 769.67 14.7 ~ 8000.0 1.567 1.591 2,14,53
Ethane P, 46 249.67 v 549,68 0.49 ~ 709.80 1.022  1.022 2,14
H-HO 98 299.67 v 769.67 200 ~ 3500 1.561 1.561 53
o 70 162.0 ~ 1080.0 16.48 ~ 10636.0 0.620 0.620 26
Propane P 21 216.0 ~ 665.64 0.0004 ~ 616.30 0.873 0.873 26
H-HO 39 209.67 ~ 709.67 500 ~ 2000 1.464 1.464 74
o 40 259.67 " 889.67 14.7 ~ 7000.0  0.549 0.511 2,53
n-Butane P 38 364.67 v 765.29 0.342 ~ 550.7 0.850 0.479 2,14
H-uY 39 559.67 ~ 889.67 200 ~ 5000.0 0.687 0.653 53

6%



TABLE 13

(continued)
Av. Abs
Dey.*
Fluid Property No. of Temperature Pressure o Data
points Range,OR Range, psia w Y Reference
P 41 259.67 v 919.67 14.7 "V 10000.0 0.841. 0.868 2,53
n-Pentane P 50 323.28 v 845.59 0.003 v 489.50 1.272. 1.156 2,14
B-HO 39 559.67 v 919.67 200 "~ 10000.0 1.215 1.083 53
P 41 319.67 ™~ 739.67 14.70 "~ 2980.0 0.257 0.267 2,58
n-Hexane | 53 395.75 ~ 919.17 0,020 ~ 439.70 0.982 0.844 2,14
P 41 369.67 ~ 919.67 14.7 ~ 3081.5 0.384 0.420 2,61
n-Heptane P0 44 346.93 v~ 956.87 0.00013%v 350.0 1.618 0.730 2,30
H-HO 17 971.97 ™~ 1069.2 78.770 v 2363.1 1.224 1.200 24
o 50 389.67 v 969.7 14.7 n 239.0 1.120 1.120 2,22
n-Octane P0 47 393.67 "~ 989.67 0.0004 n~ 283.0 1.331 1.331 2,41,75
H-HO 68 534.67 ~ 1059.7 200.0 ~ 1400 2.95 2.95 33
n-Nonane P_ 24 402.75 ~ 814.67 0.00012% 29.65 1.84 1.585 2
p 32 559.67 " .919.67 200.0 ~ 6000.0 0.334 0.343 53
- n-Decane P0 24 438.30 v 859.67 0.0002:~ 30.0 1.507 1.448 2

*
% for p, Pc’ Btu/1b for H-HO

0¢
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in Table 14. It can be seen that equation 39 is as good as the MBWR
equation of state and that it is superior to the Peng-Robinson equation
of state. In almost all cases where low temperature vapor pressure

data have been compared the Peng-Robinson equation invariably fails to
converge to the correct solution. The large deviations in the density
are due to the Peng-Robinson equation's inability to predict the
compressed liquid densities accurately. The Peng-Robinson equation

of state was developed using vapor pressure data from the normal boiling
point up to the critical point (45) and thus it fails to converge at

the lower temperatures and hence cbmparisons of the vapor pressures are
not reported except for methane. 1In the range of the normal boiling
point to the critical point the vapor pressures are predicted quite
accurately by the Peng-Robinson equation as reported in their paper (45).
It is not the intention of this research to play down the Peng-Robinson
equation or other cubic equations but to show that the most gemeral
density-cubic equation is much better in predicting the thermodynamic
behavior of the fluids investigated thus far than any previously re~

ported cubic equation of state.



TABLE 14

Comparison of Results between Equation 39, Generalized

MBWR and the Peng-Robinson Equation of State

Av. Abs. Dev. (% for p;Po, Btu/1b for H—Ho)

Fluid Property Equation 39 Peng-Robinson MBWR

p 1.156 5.330 0.650

Methane P, 1.048 0.660 0.680
H-u 1.787 2.404 1.390

p 1.591 . 5.350 1.230

Ethane P0 1.022 - 1.100
H-HO 1.561 1.612 0.980

o 0.620 3.836 1.010

Propane P0 0.873 - 0.460
H-HO0 1,464 3.607 1.450

p 0.511 3.650 0.550

n~-Butane P0 0.479 - 0.530
H-HO 0.653 1.359 0.500

4



TABLE 14

(continued)

Av. Abs, Dev. (% for p, P_, Btu/lb for H-HO

Fluid Property Equation 39 Peng-Robinson MBWR

p 0.868 3,142 1.150

n-Pentane Pc 1.156 - 1.030
H-HO 1.083 1.791 0.630

P 0.267 1.594 0.530

n-Hexane P0 0.844 - 0.980
p 0.420 1.470 0.650

n-Heptane ?0 0.730 - 0.750
H-HO 1.200 1.060 0.740

o) 1.121 3.920 1.180

n-Octane Pc 1.331 - 1.160
B-HO . 2.950 2.830 1.850

n-Nonane P0 1.585 - 1.460
0 0.342 4,711 1.090

n-Decane P 1.448 — 0.770

€S




CHAPTER VII

APPLICATION OF THE GENERALIZED EQUATION OF STATE
TO THE NORMAL SATURATED HYDROCARBONS

n-UNDECANE THROUGH n-EICOSANE

The generalized equation of state was developed using data for
methane through n~decane, but the purpose of the generalization is to
make the equation of state applicable to other fluids of interest with
a minimum input of information. |

To use the generalized equation'of state to calculate the thermo-
dynamic properties of a fluid the critical temperature, the critical
density and the value of the effective acentric factor, y are required.
In most cases the value of y is very close to the value of the acentric
factor, w. For the fluids studied in this research the effective acentric
factor, y has been determined through the use of thermodynamic property
data. For other fluids the value of w can be used, which is defined by

the following well known relation of Pitzer
w = =~ log Pr - 1.000

where Pr is the reduced vapor pressure at a reduced temperature of 0.70.
The values of the acentric factor have also been tabulated and are avail-

able from several sources in the literature (43, 50).
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The critical temperature, the critical demsity and the acentric
factor for the saturated hydrocarbons n-undecane, n-dodecane, n-tridecane,
n-tetradecane, n—-pentadecane, n-hexadecane, n-heptadecane, n-octadecane,
n~nonadecane and n-eicosane were obtained from the literature (50).

These values were used in equation 39 repeated here to generate thermo-
dynamic property values namely, vapor pressure and density
L+ A (L) p_+ A (T) o2

Z = (39)
(1 =4 p )1 +A,(T) 0+ A&pﬁ)

_ 251 %53 254 %55 Zse
A(T) = ( -—75 ) + ( 3+ =5+ 3 )
T T T
r r T r . r r
. a
2V 2 8
T T
r r r r r
a a a
A3(Tr) - ( 31 )+( 33 342} + 33 + 32 ) w
T T T T T T
r r r r r r
AL = 8y
Ay =3y

where Z is the compressibility factor, Pr is the reduced density
= i thae =
( o, p/pc), Tr is the reduced temperature (Tr T/Tc) and aij are the
generalized equation of state parameters.
When compared with the experimental vapor pressure and density
values the overall deviation for the ten fluids was around 5 percent,

with large deviations occuring at the higher end of the hydrocarbon
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series. However, when the effective acentric factor, y was obtained
for each of the above fluids from the thermodynamic properties information,
the overall average absolute deviation dropped to 1.87 percent.

The physical properties of the fluids and the values of w and y
are presented in Table 15. A summary of the results including the ranges
of temperature and pressure of the data used are presented in Table 16.

From the results presented in Table 16 it can be concluded that
the generalized equation of state, when applied to fluids outside the
range of those used in the development of the equation, does quite well
in predicting the thermodynamic properties. The use of an effective
acentric factér, Y improves the results considerably and at the same
time the use of w gives a reasonable result, taking into account the fact
that the data for n-undecane through n-eicosane are not as accurate as the

data for methane through n-decane.



TABLE 15

‘Characterization Parameters for n-Undecane through n-Eicosane to be

used with the Generalized Equation of State

Critical Effective

Fluid Critical Density, lbmole/ Molecular Acentric Acentric

Temp., R cu.ft. Weight Factor,w Factor,y
n-Undecane 1149.84 0.09460 : 156.313 0.535 0.5338
n-Dodecane 1184.94 0.08756 170.340 0.562 0.5781
n~-Tridecane 1216.44 0.08004 188.367 0.623 0.6185
n-Tetradecane 1249.20 0.07522 198.394 0.679 0.6531
n-Pentadecane 1272.60 0.07094 212.421 0.706 0.7107
n-Hexadecane 1290.60 0.06616 226.448 0.742 0.7793
n-Heptadecane 1319.40 0.06243 240.475 0.770 0.7997
n-Octadecane 1341.00 0.05887 254,502 0.790 0.8406
n-Nonadecane 1360.80 0.05579 268.529 0.827 0.8862
n-Eicosane 1380.60 0.05303 282,556 0.907 0.9298

LS



TABLE 16

Prediction of Thermodynamic Properties of n-Undecane
through n-Eicosane using Equation 39

( p= density, Pc = vapor pressure)

Av. Abs.
. Dev., %
Fluid Property No. of Temperagure Pressure Data
Points Range, R Range, psia w Y Reference
n-Undecane P, 19 624.67 ~ 899.67 0.182 ~ 29,60 0.654 0.620 67
o 17 581.67 '~ 869,70 0.016 ~ 12,63 2,064 0.817 ;
n-Dodecane 5 22 581.67 ~1186.5 0.016 ~ 262.52 6.312 2.253 67
o 17 617.70 ~ 905.70 0.024 ~ 12.93 1.501  1.449
n-Tridecane P_ 19 617.70 ~1218.9  0.024 ~ 249.5 1.778  0.790 67
4 o 14 707.70 ~ 941.70 0.180 ~ 13.540 3.179 2.922
n-Tetradecane P 16 707.70 ~1251.0 0,180 ~ 235.00 7.792  0.796 67
o 14 743.70 ~ 977.70 0.238 & 14.44 4.118  4.162
n-Pentadecane 5 14 743.70 ~ 995.70 0.238 ~ 17.91 1.544  0.317 67

8¢



TABLE 16

(continued)
Av. Abs.
Dev., % Data
Fluid Property No. Temperagure Pressure
Points Range, R Range, psia W Y Reference
p 9 833.70 ~ 977.70 1.003 ~ 10.094 3.412 3.728
n-Hexadecane P, 10 833.70 v 995.70 1.003 ~ 12.659 9.992 0.242 67
0 13 779.70 ~ 995.70 0.181 ~ 8.891 4.236 4.491
n-Heptadecane 5 16 779.67 ~ 1049.70 0.181 ~ 17.106 4.875 0.378 67
0 13 815.70 ~ 1031.70  0.254 ~ 10.090 4.148 4.561
n-Octadecane P_ 15 815.70 ~ 1067.70 0.254 ~ 15.470 14.54 0.203 67
o 12 833.67 ~ 1031.7 0.236 ~ 7.367 4.484  4.947
n-Nonadecane P 16 833.67 ~ 1103.7 0.236 ~ 17.332 16.360 0.771 67
n-Eicosane P 17 851.67 ~ 1395.3  0.222 ~ 161.6 5.573 3.143 67
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CHAPTER VIII

PREDICTION OF PROPERTIES OF MAJOR NATURAL
GAS CONSTITUENTS USING THE GENERALIZED

EQUATION OF STATE

The thermodynamic properties of the normal saturated hydrocarbomns
methane, ethane, propane, n-butane, n-pentane, n-hexane, n-heptane and
the higher members of the series which occur in natural gas systems,
were shown to be predicted accurately by the generalized equation of
state. Here, the generalized equation of state is applied to other
major fluids found in natural gas systems, namely isobutane, isopentane,
carbon dioxide, hydrogen sulfide and nitrogen and to ethyiene and propy-
lene. Isobutane and isopentane are also primary candidate working fluids
in low temperature Rankine Cycles, particularly Geothermal Cycles (73).

The generalized equation of state, repeated here, is expressed

as follows

1 +A(T) o +A.(T) p2
7 = 5''r T 2t r - (39)
(1-A 0 )1 +a,(T) p_+A4,02)

a a a a a a
A(T) = ( 5;+—5-%)+( 23 2%, 55, 56)“’

Tr Tr Tr Tr Tr Tr
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a a a a a
a,@) - (21+22+2g)+(24+22+ 2g)m
T T T oT? T
r r r b of T
a a a a a a
B 31 | 232 33 . 234 . 335 336
A3(Tr) ( +——2)+( + =+ =5+ 4)m
T 3
r X r r r r
A = oAy
Ay =3y,

where Z is the compressibility factor, o, is the reduced density (pr=p/pé),

T. is the reduced temperature (Tr = T/Tc) and a;, are the generalized

3
parameters presented in Table 12. The characterization parameters for
isobutane, isopentane, ethylene, propylene, carbon dioxide, hydrogen
sulfide and nitrogen are presented in Table 17. The values of the
effective acentric factor, y were determined using experimental density,
vapor pressure and enthalpy departure values in multiproperty regression
analysis for each fluid. In most cases the value of y is very close

to that of w, as shown in Table 17.

The average absolute deviations and the ranges of data used for
isobutane and isopegtane are presented in Table 18. In Table 19 the
results for ethylene and propylene are presented. The results for
carbon dioxide, hydrogen sulfide and nitrogen are presented in Table 20.
These results are comparable with those obtained for the normal straight
chain hydrocarbons methane through n-decane, though the fluids in
Table 18 to 20 were not used for the development of the generalized

equation of state.



TABLE 17

Characterization Parameters for Isobutane, Isopentane, Ethylene,
Propylene, Carbon dioxide, Hydrogen sulfide and
Nitrogen to be used with the Generalized

Equation of State

Critical Effective

Fluid Criticgl Density Molecular Acentric Acentric
Temp., R 1bmole/cft Weight Factor,w Factor,y
Isobutane 734.13 0.2438 58.120 0.1760 0.1833
Isopentane 828.67 0.2027 72.146 0.2270 0.2251
Ethylene 509.49 0.5035 28.05 0.0850 0.0993
Propylene 657.07 0.3449 42.08 0.1480 0.1473
Carbon dioxide 547 .47 0.6641 44.01 0.2250 0.2117
Hydrogen sulfide 672.37 0.6571 34.076 0.1000 0.1079
Nitrogen 227.07 0.6929 28.016 0.0400 0.0392

[4°]



TABLE 18

Prediction of Thermodynamic Properties of Isobutane and

Isopentane using Equation 39

(p = density, H-1O0 = enthalpy departure, Po = vapor pressure)

Av. Abs.
. : , Dev., %
Fluid Property : No, of Temperagure Pressure Data
Points Range, R Range, psia ® Y Reference
p 354 333.8 v~ 1032 “.0.18 5000 0.93 0.93 12,40,51,52,53,70
Isobutane P0 64 335 v 734.13 0.18 v 526.6 2.64 0.49 7,16,17,52,69,76,70
a-m0TT 24 560~ 940 250 ~ 3000 0.93 1.13. 10,14
p 116 224.9 v 851.67 0.3x10—2 2674 1.24 1.22 21,51,54
e P0 64 390.9. v 828.7 0.211~ 490.4 0.60 0.40 8,51
Isopentane AH* 3 503 ~ 541.8 6.54 v 14.7 0.33  0.13 8
B 10 491.7 ~ 851,7 : 5.67 5.68 54

%
Enthalpy of Vaporization

Second virial coefficient

Tt Deviation in Btu/1lb.

€9



TABLE 19

Prediction of Thermodynamic Properties of Ethylene

and Propylene using Equation 39

( p= density, B-H° = enthalpy departure, Po = vapor pressure)

Av. Abs,
Fluid Property No. of Temperagure Pressure Dev., 7% Data
Points Range, R Range, psia w Y Reference
) 41 209.67 ~ 719.67 14.7 ~ 2000 1.79 1.91 14,51,38
Ethylene P0 36 239.67 ~ 509.49 0.88 ~ 742.1 6.84 2.08 14,51,62
H—HOT 38 339.67 ~ 719.67 100 ~ 2000 1.69 1.49 14
o 61 409.68 ~ 909.67 16.2 ~ 2939 1.43 1.43 14,39,51
Propylene P 28 264.47 ~ 656.87 0.04 ~ 670.3 1.21 1.06  14,51,62

Deviation in Btu/1b.

%9



( p= density, B-HO = enthalpy departure, Pa

TABLE 20

Prediction of Thermodynamic Properties of Carbon dioxide

Hydrogen sulfide and Nitrogen using Equation 39

vapor pressure)

Av. Abs.
. Dev., %
Fluid Property No. Temperagure Pressure Data
Points Range, R Range, psia w Y Reference
P 41 437.67 ™~ 743.67 220 v 4410 0.76 0.75 20
Carbon dioxide Py 33 389.67 v 547.67 75 v 1070 2.42 0.91 14
H—HO+ 39 437.67 v 743,67 441 ~ 7350 2.13 2.12 20
p 41 499.67 ~ 799.67 100 ~ 2000 1.99 2.05 34,48
Hydrogen sulfide P_ 24 383.27 ~ 672.37 14.7 ~ 1306 2.00 1.16 31,71
p 41 139.67 ~ 699.67 14,7 ~ 8936 1.40 1.40 14,60
Nitrogen Po 19 159.67 ~ 226.67 29 v 492 0.90 0.90 23
H—HOT 79 159.67 ~ 509.67 200 ~v 2500 0.56 0.56 35

1.Deviat:i.on in

Btu/1b.

<9
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The results obtained using equation 39 are compared with those
obtained using the Modified Benedict~-Webb-Rubin equaFion of state (57)
in Table 21. From the results it can be infered that the most general
density-cubic equation of state is comparable to the Modified Benedict-
Webb-Rubin equation of state when extended to fluids not used in the

development of the generalized equation of state.



TABLE 21
Comparison of Results between Equation 39 and the

Generalized MBWR Equation of State

AV. Abs. Dev. (% for p, Po’ Btu/1lb for H-HO)

Fluid Property Equation 39 MBWR

P 0.929 1.90

Isobutane® P, 0.495 1.95
B-H° 1.128 1.10

P 1,223 1.50

Isopentane® P, 0.399 0.37
p 1.911 2.73

Ethylene Po 2.08 2,08
H-HO 1.494 1.97

p 1.428 1.58

Propylene G 1.060 0.69
p 0.75 ~ 0.65

Carbon Dioxide Pd 0.91 0.76
H-HO 2.12 2.69

L9



TABLE 21
(continued)

Av. Abs. Dev, (% for o, P> Btu/1b for H-HO)

Fluid - Property Equation 39 MBWR

P 1.40 0.27

Nitrogen P0 0.90 0.90
a-HO 0.56 0.43

p 2.05 1.85

Hydrogen sulfide Po 1.16 0.72

*
Identical data sets were not used for comparison.
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CHAPTER IX

PREDICTION OF PROPERTIES OF SELECTED

PURE COAL FLUIDS

In recent years, due to the high price of oil, the use of coal
as an important or rather primary source of energy has received great
attention. In the ﬁery near future the mental image of coal as a solid
fuel will gradually change to that of a liquid which will be pumped from
a liquefaction plant close to the mining site through pipelines just as
0il is pumped through pipelines today; In this context, the economic
design of coal liquefaction demonstration plants requires the use of
design data. Since very little design information is available at this
point in time, it is necessary to develop correlations which can help
in the design of these plants.

As the generalized equation of state has been developed in a
framework which allows the use of other characterization parameters such
as dipole moment etc., the equation of state is applied here to some
selected pure coal fluids, namely benzene, naphthalene, tetralin, quino-
line and phenanthrene to test the applicability of this equation for
later use in the prediction of the thermodynamic properties of defined
and undefined coal mixtures. The fluids were so chosen as to cover

a broad class of aromatic hydrocarbons, namely single ring, two ring and

69
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three ring fluids. Naphthalene, tetralin.and.quinoline are two ring
aromatic hydrocarbons; in addition, tetralin and quinoline are polar
fluids. Phenanthrene was chosen from the class of three ring aromatic
hydrocarbons.

The characterization parameters for use in the generalized
equation of state are presented in Table 22. Table 23 presents the
results for the fluids considered using literature values for the acentric
factor, w, and also using the values for the effective acentric factor, 'y,
determined from regression analysis of the experimental data.

From the results presented in Table 23 it can be seen that the
generalized equation of state predicts the vapor pressure aﬁd density

of these complex fluids to a reasonable level of accuracy.



TABLE 22

Characterization Parameters for Benzene, Naphthalene,

Tetralin, Quinoline and Phenanthrene to be used

with the Generalized Equation of State

Critical Effective

Fluid Criticgl Density Molecular Acentric Acentric
Temp., R 1bmole/cft Weight Factor,w Factor,y
Benzene 1011.89 0.24136 78,1134 0.2125 0.2138
Naphthalene 1347.03 0.15099 128.1732 0.3020 0.3004
Tetralin 1296.27 0.14166 132.2048 0.2970 0.3168
Quinoline 1407.87 0.15515 129.1610 0.330 0.2587
Phenanthrene 1571.67 0.11278 178.233 0.540 0.4641

VA



TABLE 22

Prediction of Thermodynamic Properties of Selected
Pure Coal Fluids using Equation 39

Av. Abs.
. ‘ Dev.,% .
Fluid Property No. of Temperagure Pressure Data
Points Range, R Range, psia w Y Reference
p 60 923.7 ~ 1103.7 374.3 ~ 867.4 1.828 1.821
Benzene 5 36 504.7 v 995.7 0.76 "~ 639.9 0.582 0.502
o 18 648.0 ~ 1800.0 4.7 ~ 290.1 2.61 2.62 &
Naphthalene . 15  810.3 ~ 1279.7 4.2~ 490.0 3.23 3.12 72
o 17 540.0 ~ 1800.0 14.7 ~ 1450.7 2.796 2.631 5
Tetralin P_ 16 810.3 ~ 1279.7 6.74 ~ 488.0 4.928 2.634 72
0 17 576.0 ~ 1800.0 14.7 ~ 1450.4 3.621 4.24 3
Quinoline . '8 959.7 4 1309.7  23.8 ~ 407.0  14.01 5.68 72
0 7 671.7 ~ 1031.7 0.0004~ 10.022 3.716 465 6
Phenanthrene 5 12 865.8 ~ 1309.7 0.650 ~ 99.0 19.20 4.64 72

cL



CHAPTER X

APPLICABILITY OF THE MOST GENERAL DENSITY-CUBIC

EQUATION.OF STATE TO POLAR FLUIDS

The generalized equation of state which has been developed in
a three parameter corresponding states framework for non-polar fluids can
be extended to polar and associative fluids if adequate characterization
is provided for the effects of polarity and hydrogen bonding. This
leads to a multi-parameter corresponding states framework where the
equation of state, and in turn the parameters in the cubic equation can

be expressed as
% ‘
Ai(Tr) = Ail(Tr) + Aiz(Tr,w ) + AiS(Tr’ u) + Ai4(Tr,a ) + . . (40)

Where'u* is the reduced dipole moment and o is a measure of the associ-
ative effects. Thus far, the equation of state extends up to the second
term. When the equation of state is used in the present form to predict
the properties of fluids like water and ammonia which are highly polar
andvassociative the deviations in the properties are relatively high.
For ammonia the overall average absolute deviation is around 4 percent
for vapor pressure and density over all fluid states with a 9 Btu/lb
deviation on the enthalpy departure. The overall deviation for water

is about 8 percent. In restricted regions the equation of state can be
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shown ﬁo perform better, but in order to get an accurate description
of‘polar and associative fluids over all fluid states, additional chara-
cterization parameters like the reduced dipole moment u* are required.
Before attempting this task the applicability of the basic equation
formulation has to be tested. For this purpose a provisional temper-
ature dependence for the most general density-cubic equation of state was
developed exclusively for water. This equation of state is presented
below

1+ Ag(T) o + A, (T) 02

(L -4 p )1 +A3(T) 0, + 4, 05)

where the temperature dependent parameters AS(Tr)’ AZ(Tr) and A3(Tr)

are expressed as

A A A A A A A A_T
A5(Tr) - 51 + 52 + 52 + Sg + 52 + Sg + 5; + 58"r
T T T T T T
T T T r r r
A A A A A AT

|
+
+
+
+

AZ(Tr)

]
>

A3(Tr)

Table 24 presents the parameters for water for use in equation 41.
The above form of the temperature dependence for the equation gives
accurate results for water density and vapor pressure whereas the enthalpy
departures have a greater uncertainty from the reported values over all

fluid states as shown in Table 25. A systematic study of the thermo-



TABLE 24

Parameters for water to be used in

Equation 41

Parameter Parameter Value
A1 0.248539
A21 ~0.280423
A22 0.606953
A23 0.086806
A24 -0.035691
A25 0.006724
A26 -0.012962
A31 1.05855
A32 -0.248420
A4 -0.063821
A51 0.117006
A52 1.128286
A53 -2.442082
A54 0.0713956
A55 -0.128320
A56 0.143604
A57 ~0.027056
A 0.052152

(%]
[0}



TABLE 25

Prediction of Thermodynamic Properties of

Water using Equation 41

. Average
Property No. of Temperature Pressure Absolute Data
Points Range, R Range, psia Deviation Reference
Density 335 540 ~ 2860 0.7 ~ 20305 0.94% 28,32
Vapor pressure 66 491.7 ~ 1160 0.09 ~ 3090 0.27% 28,32
Satd. Liquid 60 492 ~ 1023 0.09 ~ 1161 0.56% 28,32
Density

Vapor Enthalpy

Departure 158 560 ~ 2860 0.7 ~ 7781 2.71 Btu/lb 28,32
Liquid Enthalpy

Departure 49 510 ~ 1460 452.6 v 15203 2,127 28,32

9L
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dynamic properties of water along isotherms similar to the study of pro-
pane can lead to a more accurate equation of state than equation 41.
However, this study demonstrates the capability of the most general
density-cubic equation in predicting the properties of highly polar and

associative fluids like water.



CHAPTER XI
CONCLUSIONS

This research presents the most general density-cubic equation of
state. All previously reported cubic equations are only special cases
of the most general density-cubic equation of state. A detailed study
of the thermodynamic properties of propane along isotherms showed that
the density dependence of the equation of state was adequate enough to
describe propane thermodynamic behavior over all fluid states.

The introduction of a provisional temperature dependence into
the equation of state led to an equation which provided an accurate
description of the thermodynamic behavior of methane, propane, n-heptane
and n-octane, thus making the equation of state amenable to generali-
zation.

The generalization of the equation of state was carried out to
provide a flexible equation of state, where the temperature dependence
and in effect the equation of state can be changed to accommodate the
thermodynamic behavior of polar fluids, etc.

The generalized equation of state was applied to 32 pure fluids
consisting mainly of non-polar hydrocarbons. Where comparisons have
been made the generalized equation of state is superior to the Peng-
Robinson equation of state and it is as good as the Modified Benedict~-
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Webb-Rubin equation of state. It has also been shown that the basic
density dependence of the equation of state is capable of describing the
thermodynamic behavior of water, which is polar and associative, to

a reasonable level of accuracy in the overall fluid states. Finally,
the most general density-cubic equation of state has been shown to per-
form as well as a non-cubic equation of state such as the Modified

Benedict-Webb-Rubin equation of state in the overall fluid states.
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APPENDIX A
EXPRESSIONS FOR DERIVED THERMODYNAMIC PROPERTIES

The classical relationships for the derived properties were
converted into a reduced form in terms of the variables G p/pc and
Tr = T/Tc' For example the classical relationship for the enthalpy

departure of a pure fluid is given b&

} dp A.l

H-E® = P/p - RT +'£9 (P - TER/AD) } =

p

In terms of the reduced temperature Tr’ the reduced density or and the

compressibility factor Z equation A.l1 becomes

B-H¢
RT
C

2

~1) - p
Tr(Z 1) Tr 6 T (BZ/BTr)p d In Py A.2

r

The expression for the entropy departure is given by

_a0
587 o _yPr (z-1)d lmp_ -T_ fPr (3Z/3T) d In p_ - 1n P/Z
R 0 r ‘ry Py r
A.3
The internal energy departure expression is
u-u0 2 0
RT = Tr 6 r ( BZ/BTr)p d In o, A.b4

r
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The Helmholtz free energy departure expression is

A-a) T fPr@-1)dlnp +T 1n P/Z A.5
RTc r p r r

Gibbs free energy departure expression is

G-G0 _ )
RTc = 'l‘r 6 r (Z-1) d 1n Py + Tr In P/Z + Tr(Z-l)
A. 6
The fugacity expression is
In (£/P) = épr (z-1) d In p_ = 1n Z + (2-1) A.7

when the integrals gpr (Z-1) d 1In P, and gpr (SZIBTr)pd 1n p, are
evaluated from the equation of state, all of the above pzoperties can
be determined. The equation cf state expressions for the two integrals
are given below.

The generalized equation of state, repeated here is expressed

as

1+ A(T) o + A (T) p2
7 = 5Yr "r ' 2 T - (39)
(1 - A ) (L +Au(T) o+ A,02)

. a a a a a a
A (T) = (—5; +———~5§ )+ (=24 53+ 52-1— 52 )
T T T T T T
r r r r r r
a a a a a a
21 22 23 24 25 26
() = (T +—==+-5)+( +—S+—g)o
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a a a
A@) = (——31+-——3§)+( 33 3‘2*+ 3;‘*‘ 32):»
T T T T T
r r r r r r
A, = ap
A = ag

where Z is the compressibility factor, Tr is the reduced temperature,

CI is the reduced density and a,., are the generalized parameters presen-

ij
ted in Table 12. w is the acentric factor which is replaced by the
effective acentric factor y for the fluids considered in this research.

The expression for the integral gpr(z—l)d in L is given as
follows

P - . - (F-1) 2
£ r(Z-1)d 1n o= Fln (1 Al pr) + 5 In (1 + A3(Tr) o, + Aépr)

+ A (T)(F - 1)/2 + (AF - AZ(Tr))/Al
v

2
A3 (Tr) -4 A4

L2+ (Aag(T)) + A32(Tr) -4 4) 0,
1n {

3 } A.8
( - - .
2 + (A3\Tr) A3 (Tr) 4 A4) G

2

AS(Tr) A +4,7 4+ AZ(Tr)
2

A3(Tr) A1 + A1 + A4

where F =

The temperature derivatimwes of the functions AS(Tr)’ Az(Tr)

and AB(Tr) are given as follows
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p = 1+AK+AK
B, = B /R,
P.o= 1+A (e +4, p§
Q = 4A

2
4 - AB (Tr)

as

P
[r (BZ/aTr) 0 d In o

r

Then the expression for the integral Pr (azlarr) 0 d In Py is given
T
0

P
K{P, In (1-A1p ) + g5-|(85 - (Ay(T)
1"x
da, (T_)
--4,K) Tfr_— - A4P1/P2) (A3(Tr) + 28,0 ) + (32 + S4K -
dAZ(Tr) 2
T (1 - AR = P /P, (A5(T ) + A4K)) (2A4 - 84(T)
} Py . 28,A, S,
(a5 (T )+ Ao, )| - — 1n (2) + T +-QI (28,K - A (T )
S P,A
4 2 174
+ q (A3(Tr) (A5(T )/A,=K) -2 (1-A,K )) - 61?2' (A,(T)
dAZ(Tr)
+ 24,K) + T, - P_(A4(T)/2 + A/K)

In (( 2 + (a(T)
+ /= Qe )/ (2+A4(T) - V- Q) e ) }

A.12

r

Since the two integrals épr (Zz-1)d 1n pr,and gpr (BZ/BTr)p dlnpr
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along with Z occur in the expressions for the above mentioned derived
thermodynamic properties, a good description of the density, vapor -
pressure and enthalpy departure of a fluid ensures good descriptions

of all the other derived properties.



APPENDIX B

DENSITY SOLUTION OF THE CUBIC EQUATION WHEN

TEMPERATURE AND PRESSURE ARE SPECIFIED
The most general density-cubic equation of state is expressed as

2
1+ AS(Tr) .+ AZ(Tr) Py

- 2
(1 - A (L + Ay(T o + A2 )

For the purpose of solving for the density the temperature dependent
parameters can be treated as constants. In terms of pressure P, equation

B.1 becomes

2
erTpc(l + Aspr + Azpr)

- 2
a Alpr)(l + A3pr + Aépr )

Equation B.2 can be expressed as a cubic equation in density

A, - A A, - A1A3

P 3 1 I S 2 _ 3 2
RTp_ RTp_ Aglo, + ( RTp_ Ay) oy - Agppp =0

4
B.3
Let

-P/(RTpcA4A1) =1, (A - (4 - Al)/RTpé)/A4A1 = q,
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4, - QA4 - A1A3)/RTpc)/A4A1 = p, then we have
3, .2 -
pp + el tgo +r =0 B.4

Equation B.4 can be reduced to
3
x +ax+b = 0 B.5
by substituting for Py the value x - p/3 (64). Here
2 3
a= (3¢ -p7)/3 and b = (2p~ - 9pq + 27r)/27

The solution of the cubic equation has been adapted here to the problem
of solving for the liquid and vapor roots in an equation of state from
the general solution presented by Uspensky (64).

Equation B.5 can be solved by setting k = yu + v. On substituting
this expression into B.5 and rearranging, u and v have to satisfy the
equation

u3 + v3 + @+ 3uv)(u+v)+Dd = 0 R.6

with two unknowns. This problem is indeterminate unless another relation

between u and v is given. For this relation we take

3uv+a2a = 0

or
uv = -a/3
3 3
Then it follows u” + v = =)

so that the solution of the cubic equation B.5 can be obtained by solving

the system of two equations
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u3+v3 =-b, uv= - a/3 B.7

Taking the cube of the latter equation we have

u3 v3 = - a3/27 ' B.8

From equations B.7 and B.8 we know the sum and the product of the two
unknown quantities u3 and v3. These quantities are the roots of the

quadratic equation

t2 + bt - a3/27 = 0 B.9

Denoting them by A and B, we have then

-b/2 +jb2/4 + a3/27

A =

B = -b/2 -/b2/4 + a>/27
Now

u3 = A and v3 = B

The three possible values of u will be

u=3/&E u=uwv3/E u=uwdF
where w = (-1 + i v3)/2 is an imaginary cube root of unity and the three

possible values for v are
v = 3/B, v =0 3/B and v =0? 3/B

but the correct combination of u and v gives the solution for the cubic
equation B.5. Due to the assumption uv = -a/3 the product of the cube

roots of A and B has to satisfy this relation. Thus if 3/F satisfies
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the relation

3/E .3/K = -a/3

then the three roots of the cubic equation are given by

X = 3/E+ 3/8
X, = W 3/ + w2 37
x3=m2 VA +w 3B

The above formulas are known as Cardan's formulas. When 4a3 + 27b2 >0,
there will be one real and two conjugate imaginary roots.
When 4a3 + 27b2 = 0, there will be three real roots of which at least two
are equal.
When 4a3 + 27b2 < 0, there will be three real and unequal roots. -

In situations where the determinant 4a3 + 27b2 is less than or

equal to zero, the solution of the cubic equation can be obtained trigono-

metrically (46). In this case the roots are given by

x, = %2 /=a/3 Cos { ¢/3 + 21k/3 }, k = 0,1,2
where ¢ = Cos 1t Y (~27b%/4a>) and the upper sign applies if b < 0, the
lower if b:> 0.

The largest root gives the liquid density and the smallest root

gives the vapor density.
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APPENDIX C

SOURCE LISTING OF EQUATION OF STATE

FUNCTION SUBPROGRAMS

following Tunection vuhwroﬁramv nave to be used in the
= IL srogram develored bw KoM Goinm to caloulate rure
Fluid mrorFerties wusing the dgeneralized Kumsr-Starling
eavation of state

Frocedures Tor using the following are exwelaimed in
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a7={({a( J)*)(*h‘"«( cisba (L7 )¥seta(lad) ddoteta L) ) Ky
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Fumetion fildtyrho) caloulztes the intedral (z-1)dinm(rho)
which is wused in the calewlation of Lthe fusdgscity
coefficient

Furetiorn fil by rho)

commor Jevm/rgasy rernrgyybtorityreority rhocrwralmharbeltay nw

L o sa8CAM) e () rrtermasymearmyroamizy rbory rmicdl e rmidy

tatar=alrhakt/terit

rhos=hetakrhio/ rhoe

AT(rhos.81.3.8) rhos=3.8

w=ml/hetar

a7Z=(C(Caddykonaknkutadl 7)) kta(la) ) Kuekuta (L3) )k
av=( (B2 Xta l0) keta i) Ykt (1G) ) Xy
a8=( (a (L) Xeokeokokakeoketa (L) Y Xuda (1) )k
ar2em((a(?)X+a(8) YKt (7))+aB%u
arl={(a(l2)X0ta(li) )R +a?ku
ard=(a(4)kota(3) YKuktaZkw

arl=z(20)

ardmg (h)

fa={grfkarltarlikarltar) /(de3karltarliXarltard)
aEsard (ar3keed-4Kerd)

greml-arel¥rhos :
pemltrhosk(arItard4irnos)

ifl{lhmel@e0.+0) hap=0,le-03

LT s, le,.0.0) gr=Q,lo-09
gR=(rnosX(ar3+)+D) /(rhosk(aed3-Q)4+2)
PFE2e1L.0.0) 02=0,.le~05

13m0 BKar IR F-1) 4+ {apdXf-ar) ae]l
d=d 3/ akalog(dl)
film-fkalos{drd+0, 5K CF~1)kalod (e )+l
IR AREY

end
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Furmetion fi2(tyrho) caleoulstes Lthe integral dz/db dlm(rho)
which is wused in the caloulation of the ermthalew

gerarbure

Funetion Pi2(ts rho)

common /Jerm/rdgasy renrgesborityroerityrhocrwryalrharbetay mw
1 3(40)vh(?)ynt@rmﬁpnwarmynumbvrtwpvrmidlyrmidv

rhosmh@t6*rho/rhoc

w=lhebagr

LFCrnos.g8b.3+9) rhos=3,9

aZ=({(a (@) keokokedta (L7 ydkta (14) Ykeokutba (13) ) K

a2=(((a(2)Xta(lO) yKut+a (18 Ydkta LSy Yk
a8=({a L yXKeekeekerKu ekt (16) YKt 19) )k

ar2=((a () %ta(8))Xcta(7) Y +aBXu
arid=((a(l)Xta i) )0 +a9kw
ardm(a(4)Xta (3 1kt a7Xw
arlma(20)
ardngz(§)
edlmel 2R (12 Keka (1LY Y XKeaku2
b 3Zumee ( ({4, 0K (2% +3 e 0XaCl0) b2, 0ka (L8 YKt (L) ) &Ky
BrER2m-(2,0Ka (23 Kba () 20RE2
DE2d=-( (8, O*a(l)*" k ST ST $¥3 S¥¢ SYL NS 2 RGN D DY $X8 - R G RDIDE/ $¥3 ¢¥;
a1 9=8,0Ka (5 KKK
apr2l=grd24+ihr Q2 Kw
REdSme (((al9Kt4kadl7) YK b3ka (L4) YRkt a (L3 ) ) ¥
aEO0me (X, 0ka (4302 0%Ka (3) YKeoKrokK
STV RCF TRV IE dativiay I
ar3l=agri3thr 33K
sl=grll-ard]
aRugrSlker3tardl-ar3lkars
aimarllerdtardlker3-ar3liard
TR §- T2
Ble=l . farl
el {adkaltesI ) kak e Kaltsl
gl ke dialtar 3 ) Kk
pagmpl /el
u=ld(ardkrhostar3)krhos
(Ql s, O - ikand
madmaarl (~al)
wlmalog (24 Cardta2) K rhos) 2702 (ard3-ad YR rns ) Y Aol
grempaalos(l~aeldrhos)
fpem {gI-ae Lk (ardegrdRalk ) ~grdAleaie) kfw:ﬁﬁ”* ;ﬁ*r?J 3
g (b (a2t aIXal a2 1K 0] - 394$ak$mk)~wﬁ«l
Kk {QKard-arIK{(aritardrhos) Y oXrhos/al /e
fipemnem Oy Sk e L st (rese
@y Qhsrdkadbad R (2Rard4Kale-ar X Yeg 2N L~ Ml el s mned
AR {medlardenled )=~ {ar3+2kardRal d fenled k;}ﬂ)
s @/ Qb bar2 L-ral (O, SRanddtardial ) YRyl
sl Cagpeb b b odme b oy )
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Fumetion dersl{tysr) calculstes the liuid dermsily by
golving for the liguid root in the oubic ecuation
analwtically at 8 givern temreratbure ard rressure
function densl(byme)

comelex rlyr2iulrdetsvieryfurnfydyv3vddyrarrh
data Ltroadydyded/0: 3333339 (~0.550,8860254) v (~0,5»~0,.86802354)/
commor /ermn/rdasyrenrgyrsterityreorityrhocswralrharbetarimnw
1 ya@A®)syh(Z)ymbtermsyrrarmyrumbyrtor s rmidl s rmidy
data varshar/4,1888,2,0945/

tstar=t/torit

w=l./tstar

7= ({aF)Rekukndtal7) ) kta (14 Y Xooknta(L3) kn
a9=(({(a(2)X+a (10 )Xta(l8) ) Kut+a (13) )&k

a8= (a1 Y XKook KoKt (LE) YKt a (19) ) K
ard=((a(P)KXta(8))Xta(?7) ) +a8%kw
ard3=((a3(12)Xx+a(ll) )X +a9kw
ard=(a3(4)Ka(3) ) KuXuta7ku

arl=z(20)

ard=a(h) '

fac=r/{ragasXtkrhoc)

divefackarliardtarl
prl=(arStfackisrlised~ard)d)/div
gl=(l+fack{arl~ar3))/div

re~fac/div

sa=(3.kal-r1lXk2) /3,

s (R K L RKI~D K L KQL427 oK) /27 .0

b= (shkk2/4,.+aaXk3/27:)

if{rat.8t.0.0) g0 to 22
theta=arcos(2.59807keh/(saksart(-s8)))

Lh=2, 0ksarb(~58/3.07

th=theta/3.0

rhos=(ttXcos (th)~=1/3,0)

if{rhos.dt.4.0) o to 27

dernsl=rhosXrhoc

return

Lh=thtvar

rhoa= (CbtXeos(bh)-rl/3.0)

AP (ThOs .8t 4007 7hOB.1L40.0) rhins=d.0
dernsl=rhosXrhoc

Tt

ur=aerh (eel)

s@menin/ 240

griam e i 211

AP (et 0.0) o to S50

iflrs.eq.0.0) g0 Lo 30

raz=~gh/2+un
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Function dermsl(tr=) cormbtinuedesees
vier=clog(ra)
rl=cexs(trdkvier)

g0 to 40

r1=0,0

if(eh,.er.0.0) g0 Lo 60
rh==—gi/2-unrn
furnf=clog(rh)

r2=cexre (trdXfurnf)

g0 to 70

r2=0,0

g0 to 70

rl=raXxtrd

it (rh.gdt.0.0) g0 to 80
if(=h.er.0.0) d0 to 77
rim-gih/2=1ur
furmf=clog(rh)

r2=peme (tbradkfunt)

g0 to 70

r2=0,0

g0 to 700N

ra=phiXt rd
ifl{ea/3.4L.0,0) dgo to 20
wl=(rltr2-=Ll/3)Xrhoc
g0 to 15

v3=cfdKr2
wl=(prlt+v3I-wl/3)%Krhoc
dernsl=real (ul)

return

erid
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