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CHAPTER 1

INTRODUCTION

When data, movie, voice, etc. are transmitted between a server and a client, e.g.,

a cell phone receiving live video stream from the Internet, an stream of bits are

transmitted over wired and wireless channels. Communication channels are known to

be contaminated with noise coming from various sources. For instance, white noise

naturally exists in all channels and all electrical components, and interference may

leak from other systems working in close frequency bands.

To compete with the inevitable noise of the channel and protect the transmitted

bits many forward error correction (FEC) codes have been designed. FEC coding

schemes receive series of bits as input and intelligently append redundant bits to

the bit stream such that the incorrectly received bits can be detected and partially

corrected at the receiver. FEC codes are broadly employed in communication systems

such as hard disks, home internet services, cell phone communications, satellite radio,

and almost anywhere information is sent over unreliable channels.

Originally designed FEC codes such as convolutional codes are designed to protect

bits from noise, hence they are referred to by bit-level FEC codes. The bit-level FEC

codes are suitable for lower layers of network, which are responsible with the delivery

of bits over a single hop (point-to-point), namely link layer (LL) and physical layer

(PL). The code rate R = k
n

defines the number of redundancy bits added by FEC

code, where k and n are the number of input bits and encoded bits, respectively.

Since in these codes the number of redundancy bits is fixed by the structure of the

code, they are called fixed-rate codes.
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Recently, with the advent of the Internet and modern digital communications a

new class of application layer (AL) FEC codes, referred to by rateless or fountain

codes, have been proposed [1, 2]. Rateless codes may encode large symbols rather

than bits, where each symbol may contain one to thousands of bits. Therefore, these

codes are referred to as packet-level FEC codes.

When FEC coding is present in the lower layers (LL and PL), AL only observes

success or failure in the delivery its transmitted symbols. Such a channel is modeled

by erasure channel, the term which was first introduced by Peter Elias of MIT in 1954.

In erasure channels, each symbol is either lost (hence its value will be unknown) with

probability ε during the transmission or is delivered correctly with probability 1− ε.

The idea behind rateless coding is that the encoder can potentially generate un-

limited number of output symbols (encoded data) from k input symbols (source data).

The encoder continues until γsucck output symbols are collected at the receiver for

which a full decoding of k input symbols is possible with high probability. Therefore,

a rateless codes can adapt to any erasure channel with varying or unknown ε since

only the number of correctly delivered symbols is important at decoder. γsucc is called

the coding overhead and is slightly larger than 1. Therefore, no coding rate can be

defined for these FEC codes, thus the term rateless is employed.

LT codes [1] were the first practical implementation of rateless codes. Later,

raptor codes [2] complemented LT codes by providing linear time rateless encoding

and decoding algorithms. Ratelessness of these codes makes them very suitable for

multimedia content delivery for wireless devices. Recently, raptor codes have been

standardized for 3GPP Multimedia Broadcast/Multicast Services [3].

Despite the flexibility and advantages of rateless codes, when the received overhead

is less than γsucc, i.e., the transmission is still in progress and the received overhead γ is

γ < γsucc, almost no input symbols may be recovered from the set of already received

output symbols. In other words, rateless codes have weak intermediate performance
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[4]. Therefore, in Chapter 3 we investigate methods that improve the intermediate

performance of rateless codes. First, we assume no information about ε is available

at the encoder and design LT-like rateless codes that are concurrently optimal in

selected overheads in intermediate region 0 ≤ γ ≤ γsucc [5, 6]. Next, we assume an

estimate of the channel erasure rate is available at the encoder. Therefore, the encoder

can generate encoded symbols ahead of transmission and reorder them to improve

the intermediate recovery of the input symbols. We propose a greedy algorithm

that reorders the encoded symbols based on the dependencies of encoded symbols

in decoding procedure [6, 7]. We will see that these two methods greatly improve

the performance of these codes in intermediate region. As a practical application

example, we employ our designed codes to improve the intermediate data delivery in

Delay Tolerant Networks (DTN) [8].

DTNs are sparse ad-hoc networks with mobile nodes that meet opportunistically.

Therefore, regular ad-hoc routing algorithms with routing tables may not be employed

in these networks. The effective routing algorithms in these networks are called store-

carry-and-forward, where nodes receive a packet from the source or intermediate

nodes and carry it until a forwarding opportunity to a node with higher probability of

meeting the destination arises. Since rateless codes can potentially generate unlimited

number of independent output symbols, they are very suitable for data delivery in

DTNs because the decoding can be performed as soon as γsucck output symbols are

collected.

Besides DTNs, rateless codes can improve the performance of data collection in

wireless sensor networks (WSN). In WSNs, small energy constrained sensing devices

are spread in an area to capture an event or to monitor a natural phenomenon.

Conventional rateless codes are designed for point-to-point data delivery and are

extensively employed in WSNs routing algorithms. However, in WSNs the data col-

lection may be distributed, where nodes send their information to the base through
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a relay node. Therefore, conventional point-to-point rateless codes may be subop-

timal in these scenarios. Further, the collected data from various sources may have

unequal importance. Consequently, we investigate the distributed rateless codes with

the capability of providing unequal error protection (UEP) in Chapter 4

We define the construction (encoding and decoding) of these codes and design

distributed UEP-rateless (DU-rateless) codes for two sources [9, 10]. We will analyze

these codes and investigate their successful decoding probability. We will show that

these codes surpass regular LT codes for distritbuted data collection.

Moreover, we investigate the performance of LT codes in the presence of feedback.

The original LT codes only required a single-bit feedback to inform the transmitter

from the reception of γsucck output symbols. However, in many cases a low bandwidth

and weak feedback channel exists, which remains unused when regular LT codes are

employed. Consequently, in Section 5 we design LT codes with smart feedback (LT-

SF codes) that can greatly take advantage of the feedback channel and considerably

decrease γsucc [11].

Rateless codes can easily provide UEP for various parts of k input symbols by

slightly modifying the encoding procedure. The UEP property can extensively im-

prove the data delivery performance when various parts of data have unequal impor-

tance. The best examples of such data are MPEG and H.264 video streams. These

video streams are constructed from I, P , and B frames, where I frames have the high-

est importance and B frames have the lowest importance. Therefore, in Chapter 6

we take advantage of UEP property of rateless codes and investigate how these codes

may improve MPEG video delivery [12]. Next, we show that UEP-rateless codes may

effectively reduce the initial startup delay (the buffering time) in Video-on-Demand

(VOD) services [13].

Although rateless codes may be efficiently employed to design efficient video trans-

mission schemes, PL FEC codes may be also employed to perform the video encoding.

4



Therefore, we investigate an H.264 video transmission scheme with fixed FEC coding

at PL and rateless coding at AL. We investigate the interaction of these two codes

and their optimal setup since both layers are capable of providing UEP. Further, both

FEC codes share the same bandwidth to add their redundancy. Therefore, we need

to investigate the optimal allocation of the available bandwidth to these two codes.

Consequently, in Chapter 7, we study various setups of FEC coding at AL and PL

for efficient video transmission in H.264 video delivery.

Recently, compressive sensing (CS) techniques, which have close connection to

FEC codes, have shown that a compressible signal may be recovered from its un-

dersampled random projections (also called measurements). A signal is said to be

compressible when its coefficients have a form of correlation; hence, the signal may

be represented with a sparse signal in an appropriate transform domain. Recently, CS

algorithms have been employed in data storage algorithms in WSNs. In data storage

algorithms in WSNs, we are interested in increasing the persistency of nodes data by

disseminating them at all nodes such that they all can be recovered by sampling a

small subset of nodes. To store the samples of readings at node both rateless coding

and CS techniques have been employed. The goal of the problem is to minimize the

total number of transmissions to realize the storage.

In Chapter 8, we design a novel data storage algorithms using CS for WSNs with-

out routing tables [14]. We exploit the broadcast property of wireless channels and

employ the well-known probabilistic broadcasting (PB) algorithm to disseminate nodes

readings [14]. We will show that our proposed algorithm based on PB considerably

reduce the total number of transmissions. PB has a parameter, called forwarding

probability, that should be tuned based on network parameters to realize minimum

number of transmissions. Therefore, the performance of PB is affected by network

changes and incorrectly selecting the forwarding probability. Consequently, we de-

sign a parameterless data dissemination algorithm referred to by alternating branches
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(AB). AB automatically adapts to network changes and performs almost equally for

a wide range of network parameters. Further, we will show that the total number of

transmissions will be even further reduced using AB.

Finally, Chapter 9 summarizes the dissertation and describes potential extensions

and future research directions of this work.
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CHAPTER 2

BACKGROUND

In this section, we provide a brief background to original rateless codes and UEP-

rateless codes. Next, we describe the And-Or tree analysis which is a mathematical

tool to analyze asymptotic behavior of rateless decoding. Further, we describe MPEG

video stream structure and describe its need for UEP. Moreover, we provide a brief

introduction to video-on-demand systems, which may also benefit from UEP-rateless

coding as described later.

Since we will investigate a video transmission scheme with PL fixed-rate coding

and AL rateless coding, we provide a brief review on rate-compatible convolutional

codes, which are bit-level fixed-rate codes. Furthermore, we provide a brief overview

on emerging compressive sensing techniques and basics of probabilistic broadcasting.

Next, we briefly review delay tolerant networks. Finally, we describe the basics of

single and multi objective genetic algorithms optimization algorithms.

2.1 Rateless Encoding/Decoding

Rateless codes have a simple encoding and decoding procedures over erasure channels.

In this dissertation, without loss of generality and for simplicity we assume that

the input and output symbols are binary symbols, while they may contain several

thousands of bits.

Rateless encoding: In rateless encoding of k input symbols, first an output

symbol degree, d, is chosen from a degree distribution {Ω1, Ω2, . . . , Ωk}, where Ωi is

the probability that d = i. The probability distribution is also shown by its generator
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x1 x2 xk

y1 y2

x3

Figure 2.1 The rateless encoding of two output symbols.

polynomial Ω(x) =
∑k

i=1 Ωix
i. Next, d input symbols are chosen uniformly at random

from k input symbols and are XORed together to generate an output symbol. We

refer to the d contributing input symbols in forming an output symbol as its neighbors.

We can see that potentially unlimited number of independent output symbols can be

generated in rateless coding.

The input and output symbols of a rateless code can be viewed as vertices of a

bipartite graph T , where the input symbols are the variable nodes and the output

symbols are the check nodes [15, 16]. In Figure 2.1, we have shown the encoding of two

output symbols, where variable nodes (circles) and check nodes (squares) represent

input and output symbols, respectively. We can see that y1 has degree d = 2 and is

formed by XORing x1 and x3, and y2 has degree d = 1 and only contains x3. In this

dissertation, we interchangeably employ the terms input and output symbols with

variable and check nodes, respectively.

The degree distribution Ω(x) is usually finely tuned such that γsucck output

symbols can recover k input symbols with high probability. The degree distribu-

tion employed in LT codes is called the Robust-Soliton (RS) distribution (RS(x) =

∑k
i=1 RSix

i), which is obtained by combining ideal-Soliton (IS) distribution RSI(x)

and distribution RS1(x). RSI(x) and RS1(x) are given by

RSI
i =















1
k

i = 1,

1
i(i−1)

i = 2, . . . , k,
(2.1)

and
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RS1
i =































L
ik

i = 1, . . . , k
L
− 1,

L
k

ln(R
δ
) i = k

L
,

0 i = k
L

+ 1, . . . , k,

respectively, where L = c ln(k
δ
)
√

k, and δ and c are two tuneable parameters [1]. It

is easy to show that the average degree of output symbols with IS distribution is

∑k
i=1 iRSI

i = RS′I(1) = H(k) ≈ ln k [1], where RS′I(x) is the first derivative of RSI(x)

with respect to its variable x, and H(k) is the kth Harmonic number [1]. Finally,

RS(x) degree distribution is obtained by

RSi =
RSI

i + RS1
i

∑k
j=1 RSI

j + RS1
j

, i = 1, . . . , k. (2.2)

The average degree of output symbols generated by RS(x) increases as k increases.

Therefore, the decoding complexity of LT codes is not linear in time [2]. Shokrollahi

[2] proposed raptor codes by concatenating LT codes with a pre-coding phase with

a conventional fixed-rate code with code rate R close to 1. In this way, the average

degree of LT coding phase does not increase with k and the decoding complexity

becomes linear in time (O(1) operations per output symbol). Shokrollahi designed

degree distributions for various k’s in [2]. For instance, the optimal degree distribution

for raptor codes of length k = 65536 is as follows

Ωshok(x) =0.007969x + 0.493570x2 + 0.166220x3 + 0.072646x4 + 0.082558x5

+ 0.056058x8 + 0.037229x9 + 0.055590x19 + 0.025023x65 + 0.003135x66.

(2.3)

Rateless decoding: The decoding procedure of rateless codes is performed iter-

atively. At each iteration, an output symbol is found such that the value of all but one

of its neighboring input symbols is known. The value of the unknown input symbol

is computed by a simple XOR. This step is applied iteratively until no more such

output symbols can be found. Assume y1 and y2 of Figure 2.1 have been correctly
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x1 x2 xk

y1 y2

x3 x1 x2 xk

y1

y2

Figure 2.2 The iterative rateless decoding of two output symbols.

received at the receiver after transmission over an erasure channel. To perform the

encoding, first y2 (and any other degree 1 output symbol) decode the value of their

only neighbor. Next, several output symbols similar to y1, as shown in Figure 2.2,

are reduced to degree d = 1 and become decodable.

It has been shown that when RS(x) is employed for γsucc = 1 the decoding is

asymptotically successful (all k input symbols are decoded) with high probability.

Note that the set of output symbols reduced to degree-one is called the ripple. If

the ripple becomes empty the decoding stops and the decoder needs to wait for new

output symbols to join the ripple to proceed the decoding. In addition, when an

output symbol in the ripple decodes an input symbol, its degree reduces to zero and

is removed from the decoding process.

Although distribution RS(x) is asymptotically capacity achieving, i.e., γsucc → 1

as k → ∞ [1], when k is finite γsucc becomes significantly larger than 1 [1, 17, 18],

which may result in an inefficient FEC coding. As we later show, a feedback channel

can be used to obtain a much smaller γsucc for a finite k.

2.2 Unequal Error Protection Rateless Codes

Most existing FEC codes provided equal error protection (EEP) of the k input sym-

bols. However, in many applications, e.g., multimedia content coding, various parts of

k input symbols have unequal importance; hence, they need non-uniform protection.

In [19, 20], authors showed that rateless codes may easily provide UEP by changing

the source symbol selection from uniform to non-uniform.
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S1 S2 Sr

p1
p2

pr

Figure 2.3 Input node selection with non-uniform probability in UEP-rateless encoding,

where nodes with higher importance are selected with a higher probability.

In UEP-rateless codes, k input symbols are partitioned into r sets, S1, S2, . . . , Sr

of sizes s1k, s2k, . . . , srk, such that
∑r

j=1 sj = 1. Let pi be the probability that an

input symbol from set Si is chosen to form an output symbol as shown in Figure 2.3.

Clearly, pi = 1
k

provides the simple EEP coding. Further, let us define the protection

level of Si as ki = pik, where
∑r

j=1 kjsj = 1, and ki = 1 provides the EEP.

With this setup, if we set ki > 1 for a particular Si, the input symbols from this

section are included in larger number of output symbols. In this way, input symbols

from Si will have a higher probability of being decoded compared to case when ki = 1.

This probability is discussed in detail in the following section.

2.3 And-Or Tree Analysis of Rateless Codes

Let us briefly review And-Or tree analysis technique [21], which has been employed

to analyze iterative rateless decoding on erasure channels for asymptotic cases (large

k). An And-Or tree Tl is a tree of depth 2l with a root at depth 0, and nodes at depth

i have children at depth i + 1. Further, nodes at even and odd depths are OR-nodes

and AND-nodes, respectively, and evaluate logical OR and AND operations on the

value of their children. Note that the OR-nodes at depth 2 in Tl are the roots for

independent And-Or tree Tl−1.

Assume OR-nodes have i children with probability δi, i ∈ {0, 1, . . . , A} and AND-

nodes have j children with probability βj , j ∈ {0, 1, . . . , B}. Each OR-nodes at depth
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2l is independently assigned a value of 0 or 1, with y0 being the probability that it

is 0. Further, OR-nodes and AND-nodes with no children have the values 0 and 1,

respectively. With this setup, yl, the probability that the root node evaluates to 0,

can be obtained from the following lemma [21].

Lemma 2.1 Let yl and yl−1 be the probabilities that the root nodes of And-Or trees

Tl and Tl−1 evaluate to 0, respectively. We have yl = f(yl−1), where

f(x) = δ(1 − β(1 − x)), δ(x) =
A
∑

i=0

δix
i, β(x) =

B
∑

i=0

βix
i. (2.4)

Following [2, 22], we can rephrase the iterative rateless decoding algorithm as

following. At every iteration of the algorithm, messages (0 or 1) are sent along the

edges from check nodes to variable nodes, and then from variable nodes to check

nodes. A variable node sends 0 to an adjacent check node if and only if its value is

not recovered yet. Similarly, a check node sends 0 to an adjacent variable node if

and only if it is not able to recover the value of the variable node. In other words,

a variable node sends 1 to a neighboring check node only if it has received at least

one message with value 1 from its other neighboring check nodes. Also a check node

sends 0 to a neighboring variable node only if it has received at least one message

with value 0 from its other neighboring variable nodes. Therefore, we see that variable

nodes indeed do the logical OR operation, and the check nodes do the logical AND

operation. We can use the results of Lemma 2.1 on a subgraph Tl of T (T being the

rateless encoding graph as shown in Figure 2.1) to find the probability that a variable

node is not recovered after l decoding iterations (its value evaluates to zero). We

choose Tl as following. Choose an edge (v, w) uniformly at random from all edges in

T . Call the variable node v the root of Tl. Subgraph Tl is the graph induced by v

and all neighbors of v within distance 2l after removing the edge (v, w). It can be

shown that Tl is a tree asymptotically [21]. We can map each check node to an AND-
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node and each variable node to an OR-node, and set βi = (i+1)Ωi+1

Ω′(1)
and consequently

β(x) = Ω′(x)
Ω′(1)

and set δ(x) = exp(nΩ′(1)γ(x − 1)) [19, 20]. Recovery of each variable

node can be mapped to evaluating the root of the tree Tl to zero. Thus have

yl = exp(Ω′(1)γβ(1 − yl−1)), l ≥ 1 (2.5)

in which β(x) = Ω′(x)/Ω′(1) and y0 = 1.

Similarly, the And-Or tree can be mapped to UEP-rateless codes [19, 20]. Let yl,j

be the probability that a source symbol in sj is not recovered after l rateless decoding

iterations at the receiver. For j = 1, . . . , r we have [19, 20]

yl,j = δj(1 − β(1 −
r
∑

m=1

pmsmkyl−1,m)), l ≥ 1 (2.6)

where y0,j = 1 and δj(x) = exp(kpjΩ
′(1)γ(x − 1)).

It can be shown that sequences {yl,j}l, ∀j converge to a fixed point yj [19, 20],

where yj is the final decoding error rate of symbols in set j ∈ {1, 2, . . . r} for a UEP-

rateless code with the parameters {Ω(x), γ, S1, S2, . . . , Sr, p1, p2, . . . , pr}.

Let Gl,i,j ,
yl,i

yl,j
= exp(n(pj − pi)Ω

′(1)γβ(1 −
r
∑

m=1
pmsmkyl−1,m)), which compares

the recovery probabilities of nodes in Si and Sj . A larger Gl,i,j maps to higher recovery

probability of the nodes in Sj in comparison to Si. Therefore, for pj > pi we have

Gl,i,j > 1, which confirms that a higher selection probability from a particular set of

input symbols to form output symbols results in higher recovery probability of nodes

in that set. Therefore, desired UEP may be realized using UEP-rateless codes by

appropriately setting pi, i ∈ {1, 2, . . . , r}.

In a simple case of UEP-rateless codes, the source data is divided into two parts

(r = 2) with higher and lower priorities [19, 20]. Let αk with (0 < α < 1) be

the number of more important symbols (MIS), and (1 − α)k be the number of less

important symbols (LIS). We set the importance levels kM = p1k and kL = p2k for

0 < kL < 1 and kM = 1−(1−α)kL

α
. Let yl,M and yl,L denote the decoding error rate of
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MIS and LIS at the lth decoding iteration, respectively. We have [19, 20]

yl,M = exp (−kMΩ′(1)γβ(1 − (1 − α)kLyl−1,L − αkMyl−1,M)), (2.7)

yl,L = exp (−kLΩ′(1)γβ(1 − (1 − α)kLyl−1,L − αkMyl−1,M)), (2.8)

with y0,L = y0,M = 1.

For a given overhead γ, we have yM < yL, where yM and yL are the fixed point for

convergent sequences {yl,M}l and {yl,L}l, respectively. We could also fix the target

decoding error rates of MIS and LIS and compare γMIS and γLIS, which are the

overheads needed for MIS and LIS to reach the target error rate, respectively. We

have γMIS < γLIS. This means that decoding error rate of MIS reaches a target

error rate faster (smaller overhead) than the error rate of LIS. Therefore, the unequal

recovery time (URT) property is also provided by UEP-rateless codes. Later, we take

advantage of URT provided by UEP-rateless codes in video transmission schemes.

2.4 Introduction to MPEG and H.264 Video Format

MPEG video encoders, including MPEG-I, MPEG-II, and H.264 (MPEG-IV) en-

coders, generate three types of frames I, P , and B from the source raw video stream.

The encoded frames are then grouped into batches of frames, called group of pictures

(GOP), which contain one I-frame and several P - and B-frames. The structure of a

GOP is determined by two numbers, M and N . M refers to the distance between

P -frames, which is also the distance between an I-frame and the first P -frame, and N

defines the distance between two I-frames, which is also the length of the GOP. For

instance, the structure of a GOP defined by M = 3 and N = 12 is IBBPBBPBBPBB.

In MPEG video decoders, first the I-frame is recovered independently. Next, P -

frames are recovered using the previous I-frame and P -frames. Finally, the B-frames

are constructed using preceding and succeeding I- or P -frames. The last (M − 1)

B-frames in each GOP are decoded using the previous I-frame and P -frames and
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also the next GOP’s I-frame. The structure of a GOP and frame dependencies are

depicted in Figure 2.4.

B I B B P B B PB

GOP n+1GOP n

Figure 2.4 Different frame types in a GOP of an MPEG video stream. Arrows show frame

dependencies for reconsecration.

One can see that if an error occurs in an I-frame, it propagates throughout the

GOP, and if a P -frame is defected the error propagates until the next I-frame. On

the other hand, a defected B-frame, in the worst case, causes only one frame drop.

Therefore, the I-frames have the highest level of importance, and in contrast, B-

frames have the lowest importance. Therefore, I-frames have the highest importance,

while B-frames have the lowest importance. As we later show, by having more pro-

tection on more important frames the quality of the delivered video will considerably

increase.

The quality of a video stream can be measured with various quality metrics such

as peak signal-to-noise ratio (PSNR), mean opinion score (MOS), symbol delivery

ratio, decodable frame rate (Q), etc. From an error control coding view, we choose

decodable frame rate, Q, to measure the quality of the decoded video. The reason

is that Q can mathematically be formulated, and it closely reflects the behavior of

PSNR [23–29]. The value of Q varies between 0 and 1, where a larger value shows a

higher frame recovery rate. Q is defined as

Q =
E[Number of decoded frames]

Total number of transmitted frames
=

NdecI
+ NdecP

+ NdecB

Ntotal
, (2.9)

where NdecI
, NdecP

, and NdecB
are the expected number of decodable frames of each

type, and Ntotal is the total number of frames in the video.

15



Before the frames can be encoded using rateless codes, they need to be split into

smaller transmittable symbols. Due to error concealment techniques employed in

video source decoding techniques, a frame is decodable when ν fraction of its symbols

is delivered, where ν is called the decodable threshold. For instance, ν = 0.8 means

that the decoder can tolerate 20% symbol loss. ν is determined based on application

and the type of video decoder.

All MPEG streams MPEG-I, MPEG-II, and H.264 videos have the same frame

dependencies as shown in Figure 2.4. To provide more decoding flexibility com-

pared to MPEG-I and MPEG-II video streams, in H.264 AVC (MPEG-IV) each

frames is broken into much smaller square shaped macroblocks. The macroblock are

grouped together and slices are formed, which have fixed sizes. Slices may be de-

coded independently and partially recover a part of frame. Therefore, we will have

micro-dependencies compared to frames. Note that still slices from I-frames have

the highest importance. However, the slices from the same I frames can also have

unequal importance. Therefore, in this case non-uniform protection is more grained

and is defined in slice level.

H.264 slices can be prioritized based on their distortion contribution to the re-

ceived video quality [30–35]. We employ the cumulative mean square error (CMSE)

metric to measure the total distortion caused by loss of a slice, which takes into

consideration the error propagation within the entire GOP [31]. Let the original un-

compressed video frame at time t be f(t), the decoded frame without the slice loss

be f̂(t), and the decoded frame with the slice loss be f̃(t). Assuming that each frame

consists of N ×M pixels, the MSE introduced by the loss of a slice in the video frame

is computed by

1

NM

N
∑

i=1

M
∑

j=1

[

(pixel-valuei,j)f̂(t) − (pixel-valuei,j)f̃(t)

]2
.

The loss of a slice in a reference frame can also introduce error propagation in the

current and subsequent frames until the end of GOP. The CMSE contributed by the
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loss of the slice is thus computed as the sum of MSE over all frames in the GOP.

2.5 Video-On-Demand Broadcasting

In video-on-demand (VOD) broadcasting systems, different clients can choose a video

from a list of videos at different times and they all should be able to watch the video

from the beginning after a short delay. Clearly, transmitting a different video stream

for each client may not be feasible in practice due to huge bandwidth burdens and

high imposed computational complexity. However, by partitioning the video stream

into segments and concurrently transmitting all the segments, viewers may employ

the same streams to watch the video at different time instances at the cost of a short

startup delay.

These algorithms are called periodic broadcasting algorithms [36], which break a

video into segments and broadcast each segment periodically in an individual channel.

Major periodic broadcasting protocols can be grouped in three categories as follows:

1. Increasing segments size and equal transmission bandwidths (e.g, [37–41]),

2. Equal segments size and different transmission bandwidths (e.g, [42–44]), and

3. Unequal segments size and transmission bandwidths (e.g, [45–47]).

Previously, several contributions have employed FEC coding in VOD systems.

Authors in [48] have proposed to employ EEP-rateless codes along existing periodic

broadcasting protocols to implement an efficient and loss resilience VOD broadcasting

protocol.

Author in [49] has proposed to employ Reed-Solomon codes and provide UEP

for frames that are required earlier to provide URT. However, since a large amount

of overhead is assigned to beginning frames, the proposed algorithm may perform

sub-optimally. Further, as described in the previous section, Reed-Solomon cod-

ing/decoding has a higher complexity compared to rateless codes. Authors in [50]
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have proposed to use harmonic broadcasting (which belong second category of periodic

VOD broadcasting protocols) along with EEP-rateless coding. Authors have mostly

concentrated on providing flexible video stream delivery in mobile datacast channels.

Later, we will employ UEP-rateless codes and design a novel VOD algorithm, and

show that it obtains a shorter startup delay compared to exiting algorithms.

2.6 Rate-Compatible Convolutional Codes

Convolutional codes [51] are one the most widely used fixed-rate codes. These codes

receive a stream of bits and perform series of XOR operations using a memory for

previously received bits to generate output bits. The original convolutional codes

had fixed coding rate. Later, it was shown that by removing certain output bits from

the generate encoded bits, which is referred to by puncturing, low rate convolutional

mother code can achieve a wide range of coding rates [52]. These codes are called

rate-compatible convolutional (RCPC) codes.

The RCPC decoder employs a Viterbi decoder. The bit error rate Pb of the Viterbi

decoder is upper bounded by [52]

Pb ≤
1

P

∞
∑

d=df

cdPd, (2.10)

where df is the free distance of the convolutional code, P is the puncturing period,

and cd is the total number of error bits produced by the incorrect paths and is known

as the distance spectrum [52]. Finally, Pd is the probability of selecting a wrong path

in Viterbi decoding with Hamming distance d, which depends on the modulation and

channel characteristics. For an RCPC code with rate R, using the AWGN channel,

BPSK modulation and the symbol to noise power ratio ES

N0
= R Eb

N0
, the value of Pd

(using soft Viterbi decoding) is given by

Pd =
1

2
erfc

√

d
ES

N0

= Q

√

2d
ES

N0

(2.11)

where Q(λ) = 1√
2π

∫∞
λ e−

a2

2 da.
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The decoding bit error rate of RCPC codes for a sample code with R = 1
3

and

memory M = 6 [52] is depicted in Figure 2.5.
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Figure 2.5 The decoding bit error rate of sample RCPC code from [52] versus ES

N0
.

2.7 Compressive Sensing

Emerging compressive sensing (CS) techniques [53, 54] provide means to recover a

compressible signal from its undersampled random projections also called measure-

ments.

Let θ = [θ1θ2 . . . θN ]T be the transform of signal x = [x1x2 . . . xN ]T in transform

domain Ψ ∈ R
N×N , i.e., x = Ψθ. x is said to be compressible in Ψ if θ has only

K significant coefficients (the rest N − K coefficients can be set to zero). Such a

signal is referred to by K-sparse signal. Formally, the signal x is compressible if the

magnitude of its sorted transform coefficients, i.e., |θ|(1) ≥ |θ|(2) ≥ . . . ≥ |θ|(N), decay

faster than C1i
− 1

C2 , where 0 < C2 ≤ 1 and C1 is a constant [53, 55–58]. A larger C2

shows a higher compressibility.

The idea behind CS is that when x is K-sparse in Ψ, only M ≪ N (M ≥

O(K log N)) measurements y = [y1y2 . . . yM ]T of x can reproduce an estimate x̂ using

CS reconstruction with a comparable error to the best approximation error using K

largest transform coefficients [53, 57, 58]. CS is composed of the two following key

components.
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Encoding: The measurements are generated by y = Φx, where Φ is a well-chosen

M × N random matrix called projection matrix.

Decoding: Signal reconstruction can be performed by finding the estimate θ̂ (and

consequently x̂ = Ψθ̂) via solving

θ̂ = argmin‖θ‖1, s.t. y = ΦΨθ, (2.12)

where ‖θ‖1 =
∑N

i=1 |θi|. The problem (2.12) is an underdetermined system of equa-

tions and various techniques have been proposed to obtain θ knowing that it is

sparse. In this thesis, we employ the CS reconstruction algorithms based on linear-

programming referred to by basis pursuit (BP) [59]. There are also numerous iterative

reconstruction algorithms [60, 61] that offer a lower reconstruction complexity at the

cost of lower reconstruction accuracy.

Initially studied Φ’s, were dense matrices where entries of Φ were randomly se-

lected from {−1, +1} or Gaussian distribution [53, 57]. Later, it was shown that when

Ψ is dense and orthonormal, e.g., Fourier transform basis, a sparse Φ with at least

one non-zero placed independently and randomly per row satisfies CS requirements

on Φ [55, 58]. Later, we employ this interesting property of random Φ matrices in a

WSN to reduce the total number of transmissions.

The selection of Ψ depends on the nature of the signal. For instance, temperature

signals are shown to be sparse in discrete cosine transform (DCT) basis [56]. There-

fore, without loss of generality in the rest of this dissertation we assume that Ψ is the

DCT transform basis, while we could chosen have any other dense and orthonormal

basis.

2.8 Probabilistic Broadcasting

Applications of WSNs is becoming more prevalent as their deployment cost decreases

and network nodes provide new functionalities. WSNs are formed by tens or thou-
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sands of power constrained nodes. Therefore, the nodes are unreliable and prone to

failure, which may result in loss of data and topology changes over time. Therefore,

one of the most important design criteria for data dissemination or data collection

algorithms is their ability to perform the desired task with the minimum number

of transmissions. Further, WSN nodes usually have limited computational power;

hence, the data processing load also needs to be minimized on nodes.

When the WSN is small, actual or relative nodes location can be found to form

efficient routing tables. However, these tables need to be updated on regular basis

due to possible topology changes. However, in large scale wireless sensor networks

such routing tables cannot be obtained and maintained since forming and keeping

these tables up-to-date imposes a huge number of transmissions. Therefore, in such

networks stateless routing tables are employed, which may only need local neighbors

information. For instance, in data dissemination using random walks, a piece of data

is forwarded node by node. Each node selects its next neighbor randomly or based on

their number of neighbors [62]. After many steps, the data will travel required number

of nodes. We can see that such a routing algorithm does not need the overall nodes

location information and nodes may perform the routing independently. Therefore,

random walks is scalable and flexible to network changes. Simple Flooding [63] is

also one of the initial stateless algorithms, where all nodes unconditionally broadcast

any piece of information they receive for the first time. The application of Flooding

is limited in WSN since Flooding is known to cause broadcast storm problem [64].

Later, variations of Flooding were proposed to reduce the number of transmission by

avoiding redundant transmissions.

Probabilistic broadcasting (PB) is a form of flooding where nodes perform the

broadcasting with a certain forwarding probability p. It has been shown that PB can

greatly reduce the number of transmissions compared to flooding while almost all

nodes still receive the transmitted data [65]. Consider a WSN with N nodes with
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Figure 2.6 The fraction of nodes receiving a transmission RPB(p) and fraction of nodes

the perform the transmissions TPB(p) versus forwarding probability p in PB.

identical transmission range of rt deployed uniformly and randomly in an area A.

Such a network is asymptotically connected with probability one for

πr2
t

A
=

ln n + ω(n)

n
, (2.13)

if and only if ω(n) → ∞.

Assume node i, ni, has a piece of information xi that needs to disseminate in

the network. Similar to Flooding ni broadcasts xi. Every node in the network that

receives xi for the first time rebroadcasts xi with probability p. The fraction of nodes

that receive a particular transmission RPB(p) and the fraction of nodes that perform

the transmission TPB(p) are depicted in Figure 2.6 for N = 104 and rt = 0.025.

Figure 2.6 shows that at p ≈ 0.24 a large fraction of nodes receive xi. Moreover,

it has been shown that although increasing p beyond p ≈ 0.24 does not improve

the delivery of the reading, it considerably increases the number of transmissions.

Therefore, a well-chosen small forwarding probability p∗ = 0.24 would be sufficient to

ensure that a large fraction of nodes in a network has received a transmission. It has

been shown that p∗ is close to the probability that a giant component appears in the

network pG, where asymptotically pG ≈ 1.44
Nr2

t
[66, 67]. For our given network topology

with N = 104 and rt = 0.025 we have pG = 0.23. Therefore, p∗ can be approximated
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with pG when N is large enough.

Later, we employ PB along with CS to implement an efficient data storage al-

gorithm for WSNs. In our proposed algorithm, the total number of transmission is

reduced compared to existing algorithms. Further, by employing CS the burden of

computational complexity is transferred to the data collector rather than network

nodes, which can further improve the life time of a WSN.

2.9 Delay Tolerant Networks

Delay tolerant networks (DTNs), also called disruptive tolerant networks, are networks

with N intermittently connected mobile nodes, where no routes exist between a source

and destination the receiver at any given time. Therefore, existing DTN routing

algorithms employ carry-and-forward packet forwarding schemes to deliver packets

to a destination. In carry-and-forward algorithms, when a node comes into the vicinity

of the source it receives one packet. The packet is stored in the node’s buffer and

carried around in the network area until the node opportunistically meets the receiver

and delivers the packet.

To cope with the packet loss (due to nodes’ buffer overflow, nodes life-time, lack

of contact with the receiver, etc.) contributions [68–71] have proposed to encode

k source symbols employing FEC codes and transmit the encoded packets instead.

Contributions [70, 71] in particular have proposed to employ the rateless codes as an

efficient and flexible FEC coding schemes. Later, we employed out designed rateless

codes with high ISRR in a DTN and compare its performance with [70].

Another important factor in DTNs is the nodes mobility pattern, which reflects

nodes movements’ characteristic. Mobility patterns can be divided into two groups.

The first group of mobility patterns [72–80] is obtained from real life networks such

as city busses network, walking people network, etc. Because of the inflexibility of

real-life mobility patterns, mobility models [70, 81–87] have been proposed and are
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employed instead of real-life mobility patterns in theoretical simulations (see [88–90]

for more detailed reviews).

Existing DTN routing protocols can be divided into three groups based on the

way they exploit nodes’ meeting history. The packet forwarding algorithms in the

first group [68, 91–93] do not use any meeting history, and they are suitable for

large-scale and random DTNs where no history can be collected. The second group

of protocols [76, 85] requires comprehensive information about the network such as

complete nodes meeting history, buffers status, etc., thus they may not be applicable

in all networks. The third group of algorithms [86, 94–97] requires limited information

from the network such as nodes meeting history; hence their implementation is more

prevalent and divers. We refer interested readers to [93, 98] for more detailed studies

on DTN routing protocols.

2.10 Single Objective Genetic Algorithms Optimization

John Holland’s in [99] shows how the evolutionary process can be applied to solve

a wide variety of problems using a parallel technique that is now called the genetic

algorithms [100]. Non-linear and complicated optimization problems which cannot be

solved employing conventional optimization algorithms such as linear programming

can be effectively solved using genetic algorithms. Let W and w = {w1, w2, . . . , wk}

denote the decision space and k decision variables, respectively. Let F (w) denote the

objective function that we need to optimize (minimize/maximize). In conventional

genetic algorithm methods, each wi was translated to a binary format. The steps to

find the optimum answer are as follows.

1. Generate a random initial population of size i each including k members wj, j =

{1, 2, . . . , k}.

2. Translate the generated population from real numbers to binary format consid-
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ering desired precision.

3. Concatenate the translated version of k decision variables together to generate

i binary population members.

4. Evaluate i fitnesses F (wj, j ∈ {1, 2, . . . , i}) of the current population.

5. Select two parents randomly, assigning higher probability of selection to the

parents with a better fitness value.

6. Perform crossover and mutation [99] on the parents to generate two offsprings.

For crossover, cut two parents from a random location and exchange second

parts to generate offsprings. For mutation, with a small probability flip a ran-

dom bit in the offsprings’ bit streams.

7. Go to 5 until i − 2 offsprings are generated.

8. Keep two parents with the best fitnesses and replace the rest i−2 with the new

offsprings.

9. If maximum iterations is not reached go to 4, otherwise translate the member

of population with the best fitness from binary to real format and report it as

the final answer.

The above algorithm is an overall view of conventional genetic algorithms. How-

ever, many variations have been proposed since genetic algorithms were first intro-

duced. For instance, the translation from real to binary and vice-versa is no more

performed and the algorithm and the crossover and mutation are performed all in

real numbers. More detailed explanation of genetic algorithms is out of the scope

of this dissertation. We refer the interested readers for performance evaluations of

genetic algorithm methods to [100] and the numerous available surveys on genetic

algorithms.
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Figure 2.7 Pareto optimality, pareto front, and domination for a two-objective minimiza-

tion problem with two decision variables, u1 and u2.

2.11 Multi Objective Genetic Algorithms Optimization

Multi objective genetic algorithms are basically different from single objective version.

Let U and u denote the decision space and a decision vector, respectively, of an opti-

mization problem. Let F1(u), F2(u), . . . , Fn(u) denote the conflicting objective func-

tions. The problem is to find decision vectors u that concurrently minimize/maximize

all objective functions. In a simple case with a single objective function, the problem

boils down to a conventional minimization/maximization problem.

For a minimization problem, u1 ∈ U is said to be dominated by u2 ∈ U , or u1 ≺ u2,

if ∀ i ∈ {1, . . . , n}, Fi(u1) ≥ Fi(u2) and for at least one i, Fi(u1) > Fi(u2). A non-

dominated pareto front vector, u∗, is a decision vector that no other decision vector

can dominate. In other words, in a minimization problem no other decision vector

exists such that it would decrease some objective functions without deteriorating at

least one other objective function compared to u∗.

The set of all dominant solution vectors form pareto optimal set. The plot of

objective functions of pareto optimal members in the objective space builds the pareto

front. In Figure 2.7, the pareto optimality and pareto front for a simple problem with

two decision variables u1 and u2, and two-objective functions F1(u1, u2) and F2(u1, u2)

is illustrated.

Figure 2.7 shows that no member can dominate pareto front members, and pareto

front members do not dominate each other. Multi-objective optimization methods
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search to find decision variables that result in pareto front members that are well

spread and equally spaced to cover the whole pareto front. NSGA-II [101] is one

of the many such algorithms with an outstanding performance that we employ in

our design. Note that although genetic-algorithms have very high complexity, the

optimization can be performed in an off-line mode and stored and the appropriate

codes can be later selected based on the system requirements.
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CHAPTER 3

ON THE INTERMEDIATE SYMBOL RECOVERY RATE OF

RATELESS CODES

In this section, we investigate the performance of rateless codes in intermediate range

when the number of received output symbols is less than the required number for full

decoding. We design codes for various problem setups.

3.1 Introduction

Although traditional rateless codes are capacity-achieving, in intermediate range,

0 ≤ γ ≤ γsucc, where the number of received output symbols is less than the minimum

required for full decoding of k input symbols, i.e. γsucck, few input symbols can

be decoded. because most of the received output symbols are buffered for a later

decoding [4, 102–104]. Therefore, designing new rateless codes with high intermediate

symbol recovery rates (ISRR) is of interest for many applications such as multimedia

transmission.

It has been shown that the intermediate range has three regions and the optimal

rateless codes at each region have different characteristics. To design rateless codes

with high ISRR, we select one overhead from each region and design rateless codes

that concurrently have almost optimal ISRR at these three overheads employing

multi-objective genetic algorithms assuming ε is not known to the source [5, 6].

In the next step, we assume that an estimate of ε is available at the source and

propose rateless coded symbol sorting (RCSS), which further improves the ISRR of

the codes we design in the first step. RCSS employs the history of the previously
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transmitted output symbols and their dependencies for decoding to reorder their

transmission such that each transmitted symbol has the highest probability of decod-

ing an input symbol at decoder (if correctly delivered) among the remaining ones.

Next, we discuss the advantages and capabilities of RCSS [6, 7].

Let z ∈ [0, 1] denote the fraction of decoded input symbols at a decoder; hence,

due to low ISRR of rateless codes we have z ≈ 0 in 0 ≤ γ ≤ 1. In [4], author shows

that the intermediate range of rateless codes can be divided into three regions. The

three intermediate regions for 0 ≤ z < 1 are z ∈ [0, 1
2
], z ∈ [1

2
, 2

3
], and z ∈ (2

3
, 1), which

approximately give the equivalent regions of γ ∈ [0, 0.693], γ ∈ [0.693, 0.824], and γ ∈

[0.824, 1]. Further, author designs optimal degree distributions that achieve the upper

bound on ISRR of all rateless codes in these regions. However, the codes designed in

[4] are asymptotically optimal and may not be employed when k is finite. Further,

the proposed degree distributions are only optimal in one intermediate region.

In [102, 104] authors propose to employ feedbacks from the receiver to keep the

encoder aware of z. They propose to gradually increase the degree of output symbols

such that the instantaneous recovery probability of each arriving output symbol is

maximized. The codes designed in [102, 104] require feedbacks, hence their applica-

tion is not always feasible.

Authors in [103] propose to transmit output symbols in the order of their ascend-

ing degree. Although this would increase the ISRR, we will see that RCSS always

outperforms this technique.

In this chapter, We first employ multi-objective genetic algorithms to design degree

distributions that have almost optimal ISRR throughout 0 ≤ γ ≤ 1. We employ the

term “almost optimal” because genetic algorithms are known to find solutions that

are not necessarily global-optimum but are rather very close to the global-optimum

solution. Therefore, throughout our code design process the term optimal implies

almost optimal. In the next step, we assume that an estimate of the channel erasure
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rate ε ∈ [0, 1) is available at the encoder and propose rateless coded symbol sorting

(RCSS), which rearranges the transmission order of output symbols to further improve

the ISRR.

3.2 Rateless Code Design with High ISRR

In this section, we design degree distributions for rateless coding with various k’s

employing multi-objective genetic algorithms.

3.2.1 Intermediate Overhead Selection and Optimization

To obtain high ISRRs in all three intermediate regions, we need to tune the degree

distribution Ω(x) considering all three intermediate regions of 0 ≤ γ ≤ 1. We choose

three overheads γ = 0.5, γ = 0.75, and γ = 1 (one from each intermediate region)

and define the respective value of z at these γ’s as our objective functions. Let

z0.5,Ω(x), z0.75,Ω(x), and z1,Ω(x) denote the value of z at three selected γ’s representing

three objective functions that we aim to concurrently maximize and realize a high

ISRR. With this setup, we have three conflicting objective functions meaning that

improving z at one point may decrease z at one or both other γ’s. As a result, we

employ multi-objective optimization methods to design our desired distributions.

Clearly, in our optimization problem the decision variables are entries of Ω(x).

Codes that are designed to realize a high ISRR have Ω(x)’s with much smaller maxi-

mum degree compared to codes designed for full input symbol recovery [1, 2, 22]. For

instance, codes that optimally perform in the first and second intermediate regions

have maximum degrees of only 1 and 2 [4], respectively. Consequently, we consider

degree distributions with maximum degree of 50. Thus, we have fifty decision vari-

ables {Ω1, Ω2, . . . , Ω50} that take values in [0, 1] such that
∑50

i=1 Ωi = 1. Later, we see

that the optimum Ω(x)’s have much smaller maximum degree than 50.

We need to take different approaches to find zγ,Ω(x) for asymptotic and finite length
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setups. For asymptotic case, the expression providing the rateless decoding error rate

is given by (2.5). On the other hand, the expression for the error rate of rateless

decoding for finite k has been analyzed in [105, 106]. However, the high complex-

ity of these expressions makes their application in genetic-algorithm implementation

almost impossible. Therefore, to find z for finite k we employ Monte-Carlo method

by averaging z for a large enough number of decoding simulation experiments for

k ∈ {102, 103, 104}. Similar to asymptotic case, our objective functions are z0.5,Ω(x),

z0.75,Ω(x), and z1,Ω(x), which in this case are found by numerical simulations.

3.2.2 Optimized Rateless Codes for High ISRR

We employ NSGA-II multi-objective optimization algorithm [101] to find the distribu-

tions that have optimal z at three selected γ’s (see Section 2.11 and refer to [101] for

more information on NSGA-II). The results of our optimizations are four databases

of degree distributions optimized for k ∈ {102, 103, 104,∞}. Due to huge size of the

four databases they may not be reported in the dissertation and are made available

online at [107]. In the next section, we investigate the performance of several designed

distributions.

3.2.3 Performance Evaluation of the Designed Codes

Based on the desired ISRR at each intermediate region an appropriate Ω(x) needs

to be selected among the many optimum degree distributions in our databases. To

facilitate the distribution selection from our databases we propose a weighted function

F (Ω(x)) defined by

F (Ω(x)) = W0.5[Z0.5 − z0.5,Ω(x)] + W0.75[Z0.75 − z0.75,Ω(x)] + W1[Z1 − z1,,Ω(x)], (3.1)

where Zγ is the highest possible z (upper bound on z) at γ for all rateless codes and

Wγ is a tunable weight. From [4], we have Z0.5 = 0.3934, Z0.75 = 0.5828 and Z1 = 1.
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For future references, we define W = (W0.5, W0.75, W1). We can find Ω(x) of interest

by setting the appropriate weights and selecting the Ω(x) that minimizes F (Ω(x)).

However, we emphasize that one may replace (3.1) with any desired linear or non-

linear weighted function. Table 3.1 shows the optimum degree distributions for the

selected arbitrary weights. Note that the degree distributions reported in Table 3.1

are only samples of many degree distributions we have made available at [107].

Table 3.1 Optimum degree distributions for different weights W = (W0.5,W0.75,W1).

k W Optimum degree distribution Ω(y)

102

(1, 1, 1) 0.348y + 0.652y2

(0, 1, 0) 0.1911y + 0.8082y2 + 0.0003y4

(0, 0, 1) 0.116y + 0.467y2 + 0.417y3

(1, 4, 1) 0.346y + 0.652y2

(1, 1, 4) 0.1515y + 0.7903y2 + 0.0581y3

103

(1, 1, 1) 0.3131y + 0.6869y2

(0, 1, 0) 0.0139y + 0.9861y2

(0, 0, 1) 0.0624y + 0.5407y2 + 0.2232y4 + 0.1737y5

(1, 4, 1) 0.1448y + 0.8552y2

(1, 1, 4) 0.0624y + 0.9315y2

104

(1, 1, 1) 0.2474y + 0.7526y2

(0, 1, 0) 0.011y + 0.989y2

(0, 0, 1) 0.0312y + 0.4069y2 + 0.3716y3 + 0.0024y6

+0.0264y7 + 0.1519y10 + 0.0096y14

(1, 4, 1) 0.1452y + 0.8548y2

(1, 1, 4) 0.16y + 0.3524y2 + 0.1318y3 + 0.3553y5

+0.0001y7 + 0.0003y10 + 0.0001y14

∞

(1, 1, 1) 0.29599y + 0.70401y2

(0, 1, 0) 0.00003y + 0.99997y2

(0, 0, 1) 0.00536y + 0.50088y2 + 0.12547y3

+0.17492y4 + 0.03797y5 + 0.00583y6

+0.00011y7 + 0.00013y8 + 0.00001y10

+0.00209y11 + 0.06425y13 + 0.08297y14

(1, 4, 1) 0.12469y + 0.87531y2

(1, 1, 4) 0.11003y + 0.24932y2 + 0.34144y3

+0.14488y4 + 0.02164y5 + 0.00123y6

+0.00014y11 + 0.05257y13 + 0.07862y14

+0.00012y17

All
(1, 0, 0)

y
(4, 1, 1)
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One may choose an optimal distribution based the desired weights from the

databases provided at [107]. From Table 3.1, we can see that the optimal degree

distributions for finite length slightly differ from the distributions proposed in [4].

For instance for W = (0, 1, 0) the distribution is non-zero for Ω1, which allows the

rateless decoding to start. Moreover, from our databases we observe that the max-

imum degree of all designed degree distributions is 19, which is much smaller than

50. Further, we can see that as k decreases, large degrees are also eliminated. We

compare the performance of our designed degree distributions with the upper bound

found in [4] in Figures 3.1 and 3.2.
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Figure 3.1 ISRR of selected designed codes and the ISRR upper bound for asymptotic

setup.

The ISRR of the codes designed for W = (1, 1, 1) as shown in Figures 3.1 and 3.2

are optimal at three selected γ’s. In other words, there is no other degree distribution

that can go closer to the upper bound at one γ without decreasing z for at least

one other γ compared to our designed degree distributions. Moreover, from Figures

3.1 and 3.2 we can see that by setting the desired weights the selected distribution

performs better at the region with the higher weight. Further, we can see that as k

increases the difference of ISRR with the upper bound decreases because the upper

bound is derived for asymptotic setup. In the next section, we show how ISRR of our

designed codes may be increased even more.
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Figure 3.2 ISRR of selected designed codes and the ISRR upper bound for k = 102 and

k = 104.

3.3 RCSS : Rateless Coded Symbol Sorting

In practice an estimate of the channel erasure rate ε may be available at the encoder

[108]. The value of ε may be exploited as a side information to further improve the

ISRR of rateless codes.

3.3.1 RCSS: Rateless Symbol Sorting Algorithm

When the encoder has an estimate of ε, it is aware that in total m = kγsucc

1−ε
output

symbols should be transmitted so that the receiver obtains kγsucc output symbols.

The main idea in designing RCSS is that the encoder can generate m output symbols

ahead of transmission. Therefore, it can rearrange the order of m output symbols such

that each delivered symbol has the highest probability of decoding an input symbol at

the receiver. This results in a considerable improvement of ISRR since fewer output

symbols are buffered for a later decoding at the receiver. We should note that RCSS

is merely implemented at the encoder and the decoder remains intact. Therefore, in

contrast to [102, 103] we assume that the receiver generates no feedback and RCSS

can only employ the information available at the encoder.

The reordering of m output symbols in RCSS is performed as follows. The encoder
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maintains a probability vector ρ = [ρ1ρ2 . . . ρk], in which ρj represents the probability

that xj is still not recovered at the receiver. Clearly, the encoder initializes ρ to

an all-one vector when the transmission has not started yet. At each transmission

the encoder finds an output symbol ci that has the highest probability of recovering

an input symbol at the receiver based on ρ (as described later). Next, the encoder

transmits ci and updates ρj , j ∈ N (ci), where N (ci) ⊂ {1, 2, . . . , k} is a set containing

index of input symbols that are neighboring to ci. The encoder continues until all m

output symbols are transmitted.

From the rateless decoding procedure, we can see that an output symbol ci with

degree d, i.e., |N (ci)| = d, where |.| represents the cardinality of a set, can recover

an input symbol xj iff all xw, w ∈ {N (ci) − j} have already been recovered. Let

pdec
i , i ∈ {1, 2, . . . , m} denote the probability that ci can recover an input symbol at

the receiver.

Since at the beginning of transmission no input symbol is still recovered, we have

pdec
i = 0 if |N (ci)| > 1, i.e., output symbols with degrees larger than one cannot decode

any input symbol at the receiver. Besides, for |N (ci)| = 1 we have pdec
i = (1− ε), i.e.

only degree-one output symbols that are not erased on the channel (with probability

1 − ε) can recover an input symbol. Therefore, at the beginning of transmission

degree-one output symbols have the highest probability of decoding an input symbol

at the receiver. Consequently, the encoder transmits degree-one ci’s with N (ci) = {j}

and updates ρj = ερj,old, where ρj,old is the value of ρj before ci was transmitted.

Next, we consider a degree-two output symbol ci with N (ci) = {j, l}. In this

case, ci can recover xj with probability (1 − ε)(1 − ρl)ρj , which is the probability

that ci is not dropped on channel, xj has not been recovered previously, and xl has

already been recovered. Similarly, ci can recover xl with probability (1− ε)(1− ρj)ρl.

Consequently, pdec
i = (1 − ε)[(1 − ρl)ρj + (1 − ρj)ρl]. Assume ∀w 6= i, pdec

i > pdec
w ,

i.e. ci has the highest probability of decoding an input symbol at the receiver among
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the remaining output symbols. Therefore, the encoder transmits ci next and sets

ρj = ρj,old(1 − (1 − ε)(1 − ρl,old)) and ρl = ρl,old(1 − (1 − ε)(1 − ρj,old)).

Further, we consider an output symbol ci with |N (ci)| = d. Such a ci can decode

an xj , j ∈ |N (ci)| with probability (1 − ε)ρj
∏

v∈N (ci),v 6=j
(1 − ρv). Therefore, pdec

i =

(1−ε)
∑

l∈N (ci)
[ρl

∏

v∈N (ci),v 6=l
(1−ρv)]. If ∀w 6= i, pdec

i > pdec
w , the encoder transmits ci and

updates ρj = ρj,old[1−(1−ε)
∏

v∈N (ci),v 6=j
(1−ρv,old)], j ∈ N (ci). We summarize RCSS in

Algorithm 1. The output of Algorithm 1 is a suitable rearranged transmission order

π of output symbols that substantially improves ISRR.

Algorithm 1 RCSS: proposed output symbol sorting algorithm

Initialize: π = [ ], ρ = [1]1×k

for counter = 1 to m do

for j = 1 to m, j 6∈ π do

pdec
j = (1 − ε)

∑

l∈N (ci)
[ρl

∏

v∈N (ci),v 6=l
(1 − ρv)]

end for

i∗ = argmax
i

(pdec
i )

π = [i∗, π]

for j ∈ N (ci∗) do

ρj = ρj,old[1 − (1 − ε)
∏

v∈N (ci∗ ),v 6=j
(1 − ρv,old)]

end for

end for

Suppose two (or more) output symbols cj and cl have equal probability of decoding

of an input symbol, i.e., pdec
j = pdec

l . In addition, assume this probability is the largest

probability of decoding an input symbol compared to that of other remaining output

symbols. In this case, argmax
i

(pdec
i ) returns the index of cj or cl whichever has a lower

degree.
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3.3.2 RCSS Lower and Upper Performance Bounds

We investigate the upper and the lower bounds on the performance of RCSS in the

following lemmas.

Lemma 3.1 The performance of RCSS is upper bounded by z = γ for ε → 0.

Proof. Clearly, we have

lim
ε→0

pdec
i = lim

ε→0
(1 − ε)

∑

l∈N (ci)

[ρl

∏

v∈N (ci),v 6=l

(1 − ρv)] ∈ {0, 1}, ∀i. (3.2)

This means that since each packet is delivered with high probability the recovery

of input symbols is no longer probabilistic. Therefore, we have

lim
ε→0

ρj = lim
ε→0

ρj,old[1 − (1 − ε)
∏

v∈N (ci),v 6=j

(1 − ρv,old)] ∈ {0, 1}, ∀j, (3.3)

showing that the recovery of each input symbol is similarly deterministic and is exactly

known to the encoder. Therefore, the encoder can determine which output symbols

can decode an input symbol with probability 1 in the next step. Consequently, as long

as output symbols ci with pdec
i = 1 are available z = γ is obtained. However, since

the codes that we designed in Section 3.2 may not be capacity-achieving z = γ is not

necessarily realized. Therefore, the performance of RCSS is indeed upper bounded

by z = γ.

We note that if the employed distribution is capacity achieving, i.e., γsucc = 1,

z = γ can be obtained.

Lemma 3.2 The performance of RCSS is lower bounded by the performance of [103]

(where symbols are only sorted based on their degree) for ε → 1.
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Proof. We have limε→1 pdec
i = 0, ∀i. Further, since initially we set ρ = [1]1×k then

limε→1 ρj = 1, ∀j. In other words, the encoder cannot make a meaningful estimate

about the recovery of input symbols at the receiver. Since for pdec
i = p, ∀i, argmax

i
(pdec

i )

returns the index of output symbols with the lowest degree, for ε → 1 Algorithm 1

boils down to an algorithm that only sorts output symbols based on their degree simi-

lar to [103]. Therefore, the performance of RCSS is lower bounded by the performance

of the scheme proposed in [103].

3.3.3 Complexity and Delay Incurred by RCSS

It is worth noting that in RCSS all output symbols need to be generated and sorted

before the transmission can start in contrast to the conventional rateless coding where

each ci can be independently transmitted upon generation. This would result in some

delays in transmission when RCSS is employed. However, this delay can be easily

eliminated with the following procedure.

Clearly, the order of sorted output symbols is independent of the contents of

input symbols and only depends on N (ci), i ∈ {1, 2, . . . , m}. Therefore, before the

transmission starts, the encoder generates ci’s from a dummy x and obtains and saves

an off-line version of πoff-line and Noff-line(ci). When the actual encoding starts, x of

interest replaces the dummy x, and the encoder generates ci, i ∈ πoff-line by XORing

xj , j ∈ Noff-line(ci). In this way, each ci can be transmitted upon generation and no

delay occurs. However, we need to note that the described procedure to eliminate the

delay increases the memory requirements and necessitates data storage in contrast to

conventional setup.

In addition, when RCSS is employed the overall complexity of rateless coding

increases from O(k) [2] in conventional rateless coding to O(k2) since Algorithm 1

has the complexity of O(m2) = O(k2).
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3.3.4 Performance Evaluation of RCSS

We implement RCSS for the rateless codes we designed for W = (0, 0, 1) with k = 102

with the distribution Ω1(y) = 0.116y + 0.467y2 + 0.417y3 and plot its ISRR along

with its upper and lower bounds (for ε → 1 and ε = 0, respectively) in Figure 3.3.

Figure 3.3 shows that when an estimate of ε is available at the encoder, RCSS can

substantially improve the ISRR of the codes designed in the Section 3.2. For instance

at γ = 0.5 for ε = 0.1, we can see that z has increased from 0.1131 to 0.4003.
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Figure 3.3 ISRR of codes designed for k = 102 with degree distribution Ω1(x).

3.3.5 Employing RCSS with Capacity-Achieving Codes

Since RCSS only reorders the transmission of output symbols, it can be employed

along with capacity-achieving rateless codes such as LT codes [1] while preserving

their capacity-achieving property. We choose an LT code with parameters c = 0.05,

δ = 0.01, and k = 103 (c and δ are LT codes’ distribution parameters [1]) and evaluate

its ISRR improvement by RCSS in Figure 3.4. Figure 3.4 confirms that the ISRR of

the employed LT code has considerably improved while its performance at γsucc = 1.4

has remained intact.
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Figure 3.4 ISRR of LT codes employing RCSS, and the respective upper and lower bounds.

3.3.6 RCSS for Varying ε

Assume that the encoder has generated m output symbols considering ε and has

sorted them employing RCSS. Further, assume that the erasure rate of the chan-

nel changes to εnew when kγc

1−ε
symbols have already been transmitted and k(γsucc−γc)

1−ε

output symbols are still remaining to be transmitted. If εnew > ε, less than kγsucc

output symbols would be collected by the receiver, making the full decoding impos-

sible. In this case, the encoder generates t = ( 1
1−εnew

− 1
1−ε

)k(γsucc − γc) new output

symbols and adds them to the queue of output symbols to be transmitted to ensure

the delivery of kγsucc output symbols to the receiver. Next, the encoder rearranges

all output symbols employing RCSS and continues the transmission. On the other

hand, if εnew < ε then the encoder randomly drops 1 − 1−ε
1−εnew

fraction of remaining

output symbols from the transmission queue. Further, if ε varies multiple times the

same procedures are followed after each change.

Assume that the encoder has generated m output symbols employing distribution

Ω1(x) given in Section 5.3 for γsucc = 1, ε = 0.3, and k = 102. Further, assume that ε

increases to εnew = 0.5 at γc = 0.5. Therefore, the encoder adds t = ⌈0.5714k(γsucc −

γc)⌉ new output symbols and runs RCSS again. The ISRR of this code has been

shown in Figure 3.5 where the jump in εnew occurs at γ = γc = 0.5. Figure 3.5 shows
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that a large jump of 66.6% in the ε is well compensated by RCSS and the same z

is achieved at γsucc = 1. However, due to disturbance in the ordering caused by the

newly added symbols a slight performance loss is observed.
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Figure 3.5 The resulting ISRR employing RCSS for the case where ε increases from 0.3

to 0.5 at γc = 0.5.

3.4 Application Example of Rateless Codes with High ISRR

As discussed earlier, in DTNs the delay in the delivery of data is usually very large,

while the receiver in such a networks may benefit from partial recovery of input

symbols from the incomplete set of output symbols. Previously, rateless codes have

been employed to improve the overall system performance and data delivery flexibility

[70, 71]. We take a step further, and show how rateless codes with high ISRR can

improve the intermediate recovery of DTNs [8].

From the rateless decoding procedure, we can observe that decoding of output

symbols with lower degrees depends on the recovery of a smaller subset of input sym-

bols [103]. Therefore, at the beginning of the transmission where many input symbols

are unrecovered, low degree output symbols have higher probability of decoding an in-

put symbols at the receiver. Consequently, it is of interest to deliver encoded packets

to destination in ascending order of output symbol degree.

41



We adopt a two-hop routing algorithm [109] from the encoder to the receiver.

Assume all nodes including the encoder and the receiver have equal transmission

range rt, and the encoder and the receiver can communicate with nodes in their

transmission range. Further, we assume all nodes, ni, i ∈ {1, 2, . . . , N} have one

buffer space to carry a single ci. In addition, we assume that when a node comes into

the transmission range of the encoder and the receiver the contact duration is long

enough to transfer a single packet. Further, we assume network nodes are moving

based on localized random walk [81] in our simulations. We deploy a network with

the parameters given in table 3.2.

Table 3.2 DTN simulation parameters

Parameter name Value

Network size 200 × 200 [distance unit]

rt 15 [distance unit]

Nodes speed randomly selected from [0.1, 0.5] [distance unit]
[time unit]

Encoder and receiver locations (5, 5) , (195, 195)

If the average aggregate packet loss of the network is ε, the encoder generates

m = kγS rateless coded ci’s employing degree distribution ΩI(x) = 0.348x + 0.652x2

(which is optimized for k = 100 and W = (1, 1, 1)) with γS ≥ γsucc

1−ε
. Next, the encoder

sorts m generated ci’s based on their ascending degrees. When a node ni comes into

the transmission range of the encoder, if it has an empty buffer and has previously

met the receiver, the encoder dispatches an output symbol with lowest degree, and

remove the output symbol from its buffer. While the encoder is giving out packets to

incoming nodes, the receiver obtains packets from nodes coming to its transmission

range with a full buffer.
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We compare the ISRR when ΩI(x) is used versus where distribution RS(x) with

parameters c = 0.05 and δ = 0.01 is employed [70] for γS = 2.2 in Figure 3.6.
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Figure 3.6 ISRR of input symbols at the receiver employing designed degree distribution

ΩI(x) and RS(x) versus T .

Figure 3.6 shows that ΩI(x) results in a considerable improvement in ISRR com-

pared to existing work. For instance at T = 2.22 × 105 we can see that ISRR has

improved from 0.146 for RS(x) to 0.818 for ΩI(x). The receiver in a DTN may greatly

benefit from this high ISRR. However, we can observe that since ΩI(x) is not capacity

approaching ISRR of ΩI(x) never reaches 1 in contrast to ISRR of RS(x) distribu-

tion. Therefore, ΩI(x) may be employed in applications where full recovery of input

symbols is not necessary, such as multimedia content delivery.

3.5 Conclusion

Previously, it was shown that the intermediate range of rateless codes is comprised of

three regions and for each region a rateless coding distribution that achieves optimal

intermediate symbol recovery rate (ISRR) has been designed. In this chapter, we

selected a point from each region and designed degree distributions that have optimal

performance at all three selected points employing multi-objective genetic algorithms.

Next, we assumed that an estimate of the channel erasure rate ε is available at encoder
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and proposed RCSS that exploits ε and rearranges the transmission order of output

symbols to further improve the ISRR of rateless codes. Finally, we employed one

of the designed codes for data delivery in DTNs and showed that the ISRR can be

greatly improved, which may be beneficial to the receiver.
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CHAPTER 4

DISTRIBUTED UNEQUAL-ERROR-PROTECTION RATELESS

CODES OVER ERASURE CHANNELS

In this chapter, we investigate and design rateless codes for distributed data collection.

4.1 Introduction

In distributed rateless coding, multiple disjoint sources need to deliver their rateless

coded output symbols to a common destination via a single relay. For instance, r

nodes within a cluster in a WSN that transmit their rateless coded data to a base

station via a cluster-head form such a distributed data collection. Note that r data

sources may have different data block lengths and different data importance levels.

Conventional LT codes did not target distributed data collection; hence, they may

suboptimally perform in distributed data collection [110]. Consequently, we propose

and design novel distributed UEP-rateless (DU-rateless) codes that can provide UEP

for disjoint sources with unequal data lengths on erasure channels [9, 10].

To design DU-rateless codes, we tune the coding parameters at each source and

propose to smartly combine the encoded symbols at the relay. We analyze DU-rateless

codes employing And-Or tree analysis technique and leverage our analysis to design

several sets of codes for various setups employing multi-objective genetic algorithms.

We evaluate the performance of the designed codes using numerical simulations and

discuss their advantages. As a first step in the design of DU-rateless codes, we consider

r = 2 to design DU-rateless codes for erasure channels. We should note that DU-
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rateless codes are inspired by UEP-rateless codes [19, 20].

In DU-rateless codes, the size of input symbols can be arbitrary from one-bit

(binary) symbol to hundreds or thousands of bits similar to LT codes. The problem

in DU-rateless codes is to tune a degree distribution for each source and to design

relaying parameters to achieve (almost) minimal decoding error rates with a certain

ratio referred to by UEP gain. Similar to LT codes, DU-rateless codes are also

universal [1] meaning that they are simultaneously near optimal for every erasure

channel. We employ And-Or tree analysis technique to study decoding of DU-rateless

codes. Next, we utilize our analytical results to design jointly optimize DU-rateless

codes parameters and obtain several close to optimal DU-rateless codes for various

setups employing NSGA-II [101]. Finally, we report the designed codes and evaluate

their performance. The comparable scheme to DU-rateless codes is employing an

independent LT codes at each source.

Authors in [110] have designed distributed LT (DLT) codes. In DLT coding,

Robust-Soliton distribution is decomposed into r identical distributions to encode

input symbols at r sources. Next, the encoded symbols are selectively combined or

forwarded with certain probabilities to the destination such that the delivered coded

symbols follow Robust-Soliton degree distribution (which is known to be capacity-

achieving).

Authors in [111], considered rateless coding at r sources with an identical degree

distribution. In [111], the number of combined encoded symbols (regardless of their

degree) at the relay is determined by a second independent degree distribution. Au-

thors have analyzed their codes and designed a few distributed rateless codes. In

[112] authors considered a network with two sources r = 2 and designed a simple

forwarding from the relay such that the degree distribution of the delivered symbols

to destination follows a Soliton-like distribution (SLRC). Authors have shown that

SLRC codes outperform DLT codes. Further, SLRC codes reduce to LT codes when
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a source leaves.

Authors in [108] propose an online encoding ensemble of LT codes such that the

ith output symbol is strictly comprised of the first i input symbols. They design their

encoding and relaying scheme such that delivered symbols to destination maintain

Robust-Soliton distribution. The scheme proposed in [108] may not be distributively

implemented in contrast to DU-rateless codes. Authors in [19, 20], proposed UEP

rateless codes. Although codes designed in [19, 20] are capable of providing UEP,

they may not be distributively implemented.

4.2 Distributed Unequal-Error-Protection Rateless Codes

In this section, we describe DU-rateless coding/decoding.

4.2.1 Proposed Coding and Decoding

Consider a distributed data collection with two sources s1 and s2 with data block of

lengths ρk and k input symbols, respectively, where 0 < ρ ≤ 1. Let S1 and S2 denote

the set of s1 and s2 input symbols, respectively. In DU-rateless coding, s1 employs

Ω(x) to encode its data block S1 (in the same way that input symbols are encoded by

Robust-Soliton distribution in LT coding). Similarly, s2 employs ϕ(x) to encode S2.

Next, s1 and s2 transmit their output symbols to a common relay R, which based on

the following two rules generates three types of output symbols and forwards them

to a destination D.

1. With probabilities p1 and p2 it directly forwards s1 and s2’s output symbols to

D, respectively.

2. With probability p3 = 1 − p1 − p2 it forwards the XOR of two incoming coded

symbols to D.
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The decoding process of LT and DU-rateless codes are identical and is performed

iteratively as follows. Find an output symbol such that the value of all but one

neighboring input symbol is known. Recover the value of the unknown input symbol

by bitwise XOR operations. Repeat this process until no such an output symbol

exists. As we later show, iterative decoding of rateless codes is a form of belief

propagation decoding. The DU-rateless decoding succeeds with a high probability

when (1+ ρ)γsucck output symbols are received at D. For a received coding overhead

of 0 ≤ γ ≤ γsucc, the proposed DU-rateless code ensemble is specified by parameters

(ρk, k, Ω(x), ϕ(x), p1, p2, p3, γ).

Let ε1, ε2, and ε3 denote the erasure rates of s1 −R, s2 −R, and R−D channels,

respectively. Further, assume packet transmission at s1 and s2 is not synchronized.

With this setup, we need to set the symbol transmission rates of s1 and s2 such that

no huge symbol buffering or dropping is required at R. It is not hard to show that

s2 needs to generate (1−p1)(1−ε2)
(1−p2)(1−ε1)

output symbols per one output symbol generated

at s1 so that in expectation no symbols are buffered. We should note that due to

random losses of s1 and s2 symbols and their asynchronous transmissions, R may

need to buffer only a few symbols for a short period time. For example, assume R

decides to combine s1 and s2 symbols. However, due to random losses on the channel

several symbols from s1 arrive while no symbols from s2 arrives. In such a case, R

needs to buffer a few symbols from s1 until symbols from s2 arrive. Therefore, the

transmission rate of (1−p1)(1−ε2)
(1−p2)(1−ε1)

symbol at s2 guarantees that R may have to buffer

only a few symbols for a short period of time.

4.2.2 And-Or Tree Analysis of the Proposed Codes

To investigate the recovery probability of an input symbol in DU-rateless decoding

on erasure channels, we extend the And-Or tree analysis [21, 22] technique described

in Section 2.3 to fit the decoding process of DU-rateless codes. In DU-rateless coding,
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Figure 4.1 The bipartite graph T representing the input symbols S1 and S2 and the output

symbols C1, C2, and C3 resulting from a DU-rateless coding with two sources.

the bipartite graph T representing the input and output symbols has two types of

variable nodes (mapped to S1 and S2), and three types of check nodes generated by

R. Let C1 and C2 denote the set of output symbols directly forwarded from R, and

C3 denote the set of combined output symbols as shown in Figure 4.1.

Clearly, C1 symbols are generated based on Ω(x) and are only connected to S1.

Similarly, C2 symbols are generated based on ϕ(x) and are only connected to S2.

Finally, output symbols of C3 are generated using both S1 and S2 with a degree

distribution equal to Ω(x) × ϕ(x) [110]. It is worth noting that the ratio of the

number of symbols in C1, C2, and C3 is equal to p1, p2, and p3, respectively.

Let us choose Tl,1 a subgraph of T as following. Choose an edge (v, w) uniformly

at random from all edges in T with one end among S1 symbols. Call the input symbol

v connected to edge (v, w) the root of Tl,1, which is assumed to be at depth 0. Tl,1

is a graph induced by v and all neighbors of v within distance 2l after removing the

edge (v, w). It can be shown that Tl,1 is a tree asymptotically [19–21]. Similarly, we

define Tl,2 such that the root of Tl,2 resides in S2 symbols.

In addition, in the iterative belief propagation LT decoding process on binary-

erasure-channel (BEC) we can assume that messages (0 or 1) are sent along the edges

from output symbols to input symbols, and then vice-versa [2, 19, 20, 22]. An input

symbol sends 0 to an adjacent output symbol if and only if its value is not recovered

yet. Similarly, an output symbol sends 0 to an adjacent input symbol if and only if it

is not able to recover the value of the input symbol. In other words, an input symbol
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Figure 4.2 Tl,1 And-Or tree with two types of OR-nodes (S1 and S2 input symbols) and

three types of AND-node (C1, C2, and C3), with a root among S1.

sends 1 to a neighboring output symbol if and only if it has received at least one

message with value 1 from other neighboring output symbol, hence it is performing

the logical OR operation. Also an input symbol sends 0 to a neighboring output

symbol if only if it has received at least one message with value 0 from its other

neighboring input symbols, which is a logical AND operation. Therefore, Tl,1 and

Tl,2 are And-Or trees with OR and AND nodes on even and odd depths, respectively.

Note that we denote the symbols at depth i + 1 as the children of symbols at depth

i. Tl,1 and Tl,2 have been shown in Figures 4.2 and 4.3.

Let δi,1, i ∈ {0, . . . , A1} be the probability that an input symbol in S1 has i children

in C1 or C3. Further, let δi,2 be the probability that a S2 symbol has i ∈ {0, . . . , A2}

children in C2 or C3. Moreover, let C1 symbols choose to have i ∈ {0, . . . , B1 − 1}

children from S1 with probability βi,1, and C2 choose to have i ∈ {0, . . . , B2 − 1}

children from S2 with probability βi,2.

Moreover, in Tl,1 C3 symbols choose i ∈ {0, . . . , B1 − 1} and j ∈ {1, . . . , B2}

children from S1 and S2 symbols with probabilities βi,1 and βj,3, respectively. Further,
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in Tl,2, C3 symbols can choose i ∈ {0, . . . , B2 − 1} and j ∈ {1, . . . , B1} children from

S2 and S1 symbols with probabilities βi,2 and βj,4, respectively. The probabilities

that the root input symbol of And-Or trees Tl,1 and Tl,2 evaluate to 0 is given in the

following Theorem.

Theorem 4.1 Let yl,1 and yl,2 be the probabilities that the roots of the And-Or trees

Tl,1 and Tl,2 evaluate to 0, respectively. Then we have

yl,1 = δ1

(

1 − p′1β1(1 − yl−1,1) − p′3

B1+B2−1
∑

i=1

i−1
∑

j=0

[

βj,1(1 − yl−1,1)
jβi−j,3(1 − yl−1,2)

i−j
]

)

,

(4.1)

yl,2 = δ2

(

1 − p′2β2(1 − yl−1,2) − p′4

B1+B2−1
∑

i=1

i−1
∑

j=0

[

βj,2(1 − yl−1,2)
jβi−j,4(1 − yl−1,1)

i−j
]

)

,

(4.2)

51



with y0,1 = y0,2 = 0, δ1(x) =
A1
∑

i=0
δi,1x

i, δ2(x) =
A2
∑

i=0
δi,2x

i, β1(x) =
B1−1
∑

i=0
βi,1x

i, β2(x) =

B2−1
∑

i=0
βi,2x

i, p′1 = p1

1−p2
, p′3 = 1−p1−p2

1−p2
= p3

1−p2
, p′2 = p2

1−p1
and p′4 = 1−p1−p2

1−p1
= p3

1−p1
.

Proof. Consider output symbols of depth 1 in Tl,1 (which are of type C1 and C3). A

C1 symbol has children in S1 symbols of depth 2∗ and evaluates to 1 with probability

∑B1−1
i=0 βi,1(1 − yl−1,1)

i. A C3 symbol may have between 0 to B1 − 1 children from

S1 symbols and between 1 to B2 children from S2 symbols. Hence, the probability

that such an input symbol evaluates to 0 is
∑B1+B2−1

i=1

∑i−1
j=0[βj,1(1 − yl−1,1)

jβi−j,3(1 −

yl−1,2)
i−j].

From the children of the root of Tl,1 at depth 0, p′1 fraction are C1 symbols and

the rest p′3 fraction are C3 symbols. Hence, the probability that an output sym-

bol that is a child of Tl,1’s root evaluates to 0 is
(

1 − p′1
∑B1−1

i=0 βi,1(1 − yl−1,1)
i −

p′3
∑B1+B2−1

i=1

∑i−1
j=0

[

βj,1(1 − yl−1,1)
jβi−j,3(1 − yl−1,2)

i−j
]

)

.

Therefore, the probability that the root of Tl,1 evaluates to 0, yl,1, is given by (4.1).

Note that yl,2 can be analyzed in a similar way to obtain (4.2).

To complete DU-rateless codes analysis, we only need to compute the probabilities

βi,1, βi,2, βi,3, βi,4, and functions δ1(x) =
∑

i δi,1x
i and δ2(x) =

∑

i δi,2x
i. First, we

need to investigate the degree distribution of input symbols in S1 and S2. In the

following lemma, we show that the degree (the number of edges connected to) of

each input symbol in the proposed ensemble of DU-rateless code with parameters

(ρk, k, Ω(x), ϕ(x), p1, p2, p3, γ) is Poisson-distributed asymptotically.

∗Note that S1 and S2 symbols at depth 2 in Tl,1 (as well as in Tl,2) are the roots for independent

And-Or tree Tl−1,1 and Tl−1,2, respectively.
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Lemma 4.1 Consider two sources s1 and s2 employing a (ρk, k, Ω(x), ϕ(x), p1, p2, p3, γ)

DU-rateless code. Asymptotically, for a total received overhead of γ the degree of S1

and S2 input symbols in the corresponding bipartite graph T follow Poisson distribu-

tions with means λ1 = Ω′(1)γ(1−p2)
(1+ρ)

ρ
and λ2 = ϕ′(1)γ(1−p1)(1+ρ), respectively.

Proof. The average degrees of Ω(x) and ϕ(x) are given by
∑

i
iΩi = Ω′(1) and

∑

i
iϕi =

ϕ′(1), respectively. S1 symbols are chosen based on Ω(x) and are included in a fraction

(1 − p2) of (1 + ρ)γk total output symbols. Therefore, Ω′(1)(1 + ρ)γk(1 − p2) edges

are connected uniformly at random to S1 symbols. Consequently, a S1 symbols has

degree d with probability

τd,1 =

(

(1 − p2)Ω
′(1)γk(1 + ρ)

d

)

×
(

1

ρk

)d (

1 − 1

ρk

)(1−p2)Ω′(1)γk(1+ρ)−d

. (4.3)

Similarly, (1 − p1)ϕ
′(1)k(1 + ρ)γ edges are connected uniformly at random to S2

symbols. As a result, a S2 symbol has degree d with probability

τd,2 =

(

(1 − p1)ϕ
′(1)γk(1 + ρ)

d

)

×
(

1

k

)d (

1 − 1

k

)(1−p1)ϕ′(1)γk(1+ρ)−d

. (4.4)

Asymptotically, (4.3) and (4.4) approach to

τd,1 =
e
−(1−p2)Ω′(1)γ

(1+ρ)
ρ

[

Ω′(1)γ(1 − p2)
(1+ρ)

ρ

]d

d!
, (4.5)

and

τd,2 =
e−(1−p1)ϕ′(1)γ(1+ρ) [ϕ′(1)γ(1 − p1)(1 + ρ)]d

d!
, (4.6)
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respectively, which are Poisson distributions with the means λ1 = Ω′(1)γ(1−p2)
(1+ρ)

ρ

and λ2 = ϕ′(1)γ(1 − p1)(1 + ρ).

Next, employing Lemma 4.1 we find βi,1, βi,2, βi,3, βi,4, δ1(x) =
∑

i δi,1x
i, and

δ2(x) =
∑

i δi,2x
i as a function of a DU-rateless code parameters in the following

lemma.

Lemma 4.2 The probabilities βi,1, βi,2, βi,3, βi,4, and functions δ1(x) and δ2(x) for

a (ρk, k, Ω(x), ϕ(x), p1, p2, p3, γ) DU-rateless code are given as

δ1(x) = e(1−p2)Ω′(1)γ
(1+ρ)

ρ
(x−1), δ2(x) = e(1−p1)ϕ′(1)γ(1+ρ)(x−1) ,

βi,1 =
(i + 1)Ωi+1

Ω′(1)
, hence β1(x) =

Ω′(x)

Ω′(1)
,

βi,2 =
(i + 1)ϕi+1

ϕ′(1)
, hence β2(x) =

ϕ′(x)

ϕ′(1)
,

βi,3 = ϕi, and βi,4 = Ωi.

Proof. We have βi,1 is the probability that a randomly chosen edge with one end in

S1 is connected to a C1 or C3 symbol with i children in S1. Therefore, βi,1 is the

probability that a randomly selected edge with one end connected to a S1 symbol

has the other end connected to an output symbol in C1 or C3 with (i + 1) children

in S1. Therefore, we have βi,1 = (i+1)Ωi+1

Ω′(1)
or equivalently β1(x) = Ω′(x)

Ω′(1)
, which is edge

degree distribution from C1 perspective. Similarly, we have βi,2 = (i+1)ϕi+1

ϕ′(1)
, which

gives β2(x) = ϕ′(x)
ϕ′(1)

, which is edge degree distribution from C2 perspective.

Moreover, βi,3 is the probability that a randomly chosen edge with one end in S1

is connected to a C3 symbol with i children in S2. Therefore, βi,3 is the probability
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that a randomly selected edge connected to a S1 symbol in the graph T is connected

to a C3 output symbol with i children in S2. This simply gives βi,3 = ϕi. In the same

way, βi,4 = Ωi.

Further, we have δi,1 is the probability that the input symbol connected to a

randomly selected edge has degree i + 1 given that the input symbol belongs to S1.

Therefore, δi,1 =
(i+1)λi+1,1
∑

i
iλi,1

, where λi,1 is given in Lemma 4.1. Using Lemma 4.1, we

have

δi,1 =
(i + 1)λi+1,1

Ω′(1)γ(1 − p2)
(1+ρ)

ρ

,

=
(i + 1)e−(1−p2)Ω′(1)γ

(1+ρ)
ρ

[

Ω′(1)γ(1 − p2)
(1+ρ)

ρ

]i+1

Ω′(1)γ(1 − p2)
(1+ρ)

ρ (i + 1)!
,

=
e−(1−p2)Ω′(1)γ

(1+ρ)
ρ

[

Ω′(1)γ(1 − p2)
(1+ρ)

ρ

]i

i!
.

After substitution, we have

δ1(x) =
∑

i

δi,1x
i,

=
∑

i

e
−(1−p2)Ω′(1)γ

(1+ρ)
ρ

[

Ω′(1)γ(1 − p2)
(1+ρ)

ρ x
]i

i!
,

= e
(1−p2)Ω′(1)γ

(1+ρ)
ρ

(x−1)
.

Similarly, we have δ2(x) = e(1−p1)ϕ′(1)γ(1+ρ)(x−1).

Similar to [19, Lemma 4], we can show that the sequences {yl,1}l and {yl,2}l are

monotone decreasing and are bounded in [0, 1], and they converge to fixed points.

Let BER1 and BER2 denote the corresponding fixed points. These fixed points are

the probabilities that S1 and S2 symbols are not recovered after l decoding iter-
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ations. In other words, these fixed points are the final decoding error rates of a

(ρk, k, Ω(x), ϕ(x), p1, p2, p3, γ) DU-rateless code. To realize almost minimal BER1 and

BER2, we will design DU-rateless codes with parameters that are jointly optimized

for a given γsucc in the next section.

4.3 Distributed Unequal-Error-Protection Rateless Codes Design

For an ensemble of DU-rateless code with parameters (ρk, k, Ω(x), ϕ(x), p1, p2, p3, γ),

we define the UEP gain η , BER2

BER1
, where BER1 and BER2 can be computed from

(4.1) and (4.2), respectively, for a large enough l. A larger η shows a higher recovery

rate of S1 input symbols at D or equivalently a higher level of protection compared

to S2. It is worth noting that η = 1 corresponds to equal-error-protection (EEP) case

where S1 and S2 are equally protected. The question that arises is that what are

the appropriate parameters Ω(x), ϕ(x), p1, p2, and p3 that would result in a desired

η and minimal BER1 and BER2. It is not hard to show that BER1 and BER2 are

two conflicting objective functions by investigating (4.1) and (4.2) (improving one

may deteriorate the other one). Therefore, we have a multi-objective optimization

problem.

4.3.1 Proposed Codes Design Employing NSGA-II

We fix γsucc = 1.05 and employ NSGA-II [101] (see Section 2.11 and refer to [101]

for more information on NSGA-II) to find the optimum Ω(x), ϕ(x), p1, p2, and p3

that concurrently minimize BER1 and BER2 for various values of η = BER2

BER1
and

ρ ∈ {0.3, 0.5, 1}. In other words, we have a problem including two objective functions

given by (4.1) and (4.2) (BER1 and BER2), with 202 independent decision variables,

i.e. u = {Ω1, Ω2, . . . , Ω102 , ϕ1, ϕ2, . . . , ϕ102 , p1, p2}.

The output of our optimization are 3 databases of close to optimal degree dis-
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tributions for ρ ∈ {0.3, 0.5, 1}, each embracing a large number of DU-rateless codes

parameters that realize various η’s made available online at [107]. We emphasis that

our results are close to optimal since genetic algorithms are known to find solutions

that are not necessarily global-optimal but are rather very close to global-optimal so-

lutions. In addition, confining the largest degree to B1 = B2 = 102 limits the degree

distribution search space and results in the design of the codes that are suboptimal.

Therefore, the performance of our designed DU-rateless codes is close to optimal. We

plot the pareto fronts obtained from our optimizations in Figure 4.4(a). Similarly,

we set γsucc = 1.02 and ρ = 1 and find the set of optimal DU-rateless codes for this

setup with the pareto front illustrated in Figure 4.4(b).

In Figure 4.4 each point corresponds to two degree distributions and three relaying

parameters Ω(x), ϕ(x), p1, p2, and p3. Figure 4.4(a) shows that our designed DU-

rateless codes are well spread with respect to η. One should choose an appropriate

point according to a desired η and employ the corresponding DU-rateless code. From

Figure 4.4(b) we can see that due to much smaller γsucc the minimum achievable error

rates have increased, which shows an interesting trade-off between the achievable

error-floor and the decoding overhead γsucc. However, the UEP gain can be obtained

for a wide range of η’s.

4.4 Performance Evaluation of the Designed Codes

This section report the performance evaluation of our designed codes.

4.4.1 Asymptotic Performance Evaluation of the Designed Codes

From the sets of our optimized DU-rateless codes available at [107], we choose two

DU-rateless codes for η ∈ {10, 102} , ρ = 1, and γsucc = 1.05 and evaluate their

performance in Figure 4.5(a) for k → ∞ given by (4.1) and (4.2). For comparison,
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Figure 4.4 The resulting pareto fronts for various DU-rateless codes setups
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we have also plotted the BER1 and BER2 for EEP case (η = 1). Similarly, we choose

an optimal DU-rateless codes with parameters γsucc = 1.02 and ρ = 1 for η = 10 and

evaluate its performance as shown in Figure 4.5(b).

Figure 4.5(a) shows that the expected UEP gain is fulfilled for γsucc = 1.05 with

the minimal values of BER1 and BER2. In addition, Figure 4.5(b) shows that the

expected UEP gain η = 10 is achieved although the error floors are higher due to

smaller γsucc. The parameters of a DU-rateless code for ρ = 1, η = 10, and γsucc = 1.05

with performance illustrated in Figure 4.5(a) is given as follows.

Ω(x) =0.039x1 + 0.492x2 + 0.094x3 + 0.09x4 + 0.096x5 + 0.002x6

+ 0.055x7 + 0.019x8 + 0.033x9 + 0.014x10 + 0.004x20

+ 0.005x27 + 0.001x28 + 0.004x31 + 0.001x39 + 0.005x43

+ 0.004x78 + 0.001x79 + 0.005x86 + 0.01x95 + 0.004x96

+ 0.001x99 + 0.006x100,

(4.7)

ϕ(x) =0.072x1 + 0.48x2 + 0.055x3 + 0.051x4 + 0.063x5 + 0.059x6

+ 0.037x7 + 0.026x8 + 0.025x9 + 0.036x10 + 0.005x15

+ 0.001x25 + 0.002x28 + 0.005x37 + 0.002x44 + 0.001x67

+ 0.001x70 + 0.001x76 + 0.001x77 + 0.002x83 + 0.001x84

+ 0.001x88 + 0.003x93 + 0.052x95 + 0.002x97,

(4.8)

with p1 = 0.4822, and p2 = 0.1173, which gives p3 = 0.4005. We can see that to

achieve an optimum distributed coding 40.05% of the generated output symbols at

s1 and s2 should be combined at the relay.

4.4.2 Performance Evaluation for Finite-length

Our designed DU-rateless codes are optimized based on our analytical results derived

in Section 4.2 for asymptotic case, i.e., k → ∞. However, in practice k is finite.
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Figure 4.5 Asymptotic performance evaluation of the designed DU-rateless codes
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Therefore, we set the parameters ρ = 1 and η = 10 for two cases of γsucc = 1.05

and γsucc = 1.02 and evaluate the performance of DU-rateless code for k = 104 using

numerical encoding and decoding versus anosmatic setup as shown in Figure 4.6. To

find BER1 and BER2 in the finite length case, we take average over decoding error

rates of 105 numerical decoding iterations. Figure 4.6 shows that the expected UEP

gain (η = 10) and minimal error rates are realized at slightly larger γsucc’s. Therefore,

our designed DU-rateless codes can indeed be employed for finite k cases as well for

a larger γsucc.

4.4.3 Performance Comparison with LT and DLT Codes

In this section, we compare the performance of DU-rateless codes with the case where

s1 and s2 independently employ two LT codes C1 and C2 to generate C1 and C2, and R

directly and intermittently forwards them to D. To perform the comparison, we set

the parameters k = 104, ρ = 1, and η = 10. The DU-rateless code optimized for this

setup has degree distributions given by (4.7) and (4.8) with p1 = 0.4822, p2 = 0.1173,

and p3 = 0.4005, which achieves BER1 ≈ 5× 10−7 and BER2 ≈ 5× 10−6 at γ = 1.15.

This DU-rateless code results in output symbols with average degree of µDU ≈ 11.38.

To perform a fair comparison, we need to have equivalent decoding complexities in

both setups. Since the decoding complexity of LT decoding is determined by the av-

erage output symbols degree [1], we need to maintain the same average coded degree

when two LT codes replace this DU-rateless code. Let C1(c1, ν1) and C2(c2, ν2) de-

note the desired LT codes, where c1, ν1, c2, and ν2 are the respective Robust-Soliton

degree distributions parameters [1]. Further, assume that C1(c1, ν1) and C2(c2, ν2)

have average output symbol degrees of µC1 and µC2 and realize the desired BER’s at

γC1 and γC2 in rateless decoding, respectively. Consequently, to have equal decod-

ing complexities in both setups we need to find C1(c1, ν1) and C2(c2, ν2) such that

γC1
µC1

+γC2
µC1

γC1
+γC2

= µDU . On the other hand, we should select c1, ν1, c2, and ν2 such
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Figure 4.6 The resulting BERs for asymptotic case and finite length case (k = 104) for

DU-rateless codes optimized for γsucc = 1.05 and γsucc = 1.02 with parameters η = 10 and

ρ = 1.
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Figure 4.7 Performance comparison of the employed DU-rateless code and the equivalent

optimal separate LT codes. As shown, the overhead for achieving BER1 = 5×10−7 reduces

from 1.25 to 1.15 if we employ a DU-rateless code instead of two separate LT codes.

that C1(c1, ν1) and C2(c2, ν2) can realize the desired BER’s at minimum possible total

overhead γC1 + γC2 . Therefore, to find C1(c1, ν1) and C2(c2, ν2) we solve the following

minimization problem:

argmin
c1,ν1,c2,ν2

(γC1 + γC2) = [c∗1, ν
∗
1 , c∗2, ν

∗
2 ],

s.t.
γC1µC1 + γC2µC2

γC1 + γC2

= µDU ,

BER1 ≤ 5 × 10−7, and BER2 ≤ 5 × 10−6.

(4.9)

We search the whole decision space of c1, ν1, c2, and ν2 to find the global minimum

of γC1 + γC2 . The optimal C1 has parameters c1 = 0.1, ν1 = 40, γC1 = 1.15, and

µC1 = 10.74. Further, the optimal C2 has parameters c1 = 0.1, ν1 = 15, γC1 = 1.25,

and µC1 = 11.98. We have compared the performance of the setup with two separate

LT codes C1(c1, ν1) and C2(c2, ν2) along with the equivalent DU-rateless code in Figure

4.7.

Figure 4.7 shows that the total amount of required overhead has decreased from

γC1 + γC2 = 2.4 in separate coding setup to (1 + ρ)γsucc = 2.3 in the setup employing
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Figure 4.8 Performance comparison of the DU-rateless codes for designed for ρ = 1, η = 1,

γ = 1.05 and the DLT codes with average output degree of 11.03 for k = 104.

DU-rateless codes. This shows that when DU-rateless codes are employed 103 fewer

symbols need to be delivered to receiver. Therefore, in our example fDU-rateless

codes can make 25% reduction in the number of required redundant received output

symbol for successful decoding compared to two separate LT codes. This improvement

is realized by increasing data block length, which is obtained by combining output

symbols at the relay.

To compare DU-rateless codes with DLT codes [110], we have to select a DU-

rateless code with ρ = 1 and η = 1 since DLT codes can only encode data blocks of

equal size and may only provide EEP. This DU-rateless code results in the generation

of output symbols with average degree of 11.03. Similar to comparison with regular

LT codes, we find a Robust-Soliton distribution for DLT coding with average degree

11.03 and compare its performance to the selected DU-rateless code in Figure 4.8 for

k = 104. Figure 4.8 interestingly shows that for ρ = 1 and η = 1 DLT and DU-rateless

codes have almost the same performance and achieve the same error floor. However,

we should note that DU-rateless codes are capable of providing UEP and also support

sources with unequal block sizes.
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4.5 Conclusion

In this chapter, we proposed DU-rateless codes, which are distributed rateless codes

with unequal-error-protection property for two data sources with unequal data block

lengths over erasure channels. First, we analyzed DU-rateless codes employing And-

Or tree analysis technique, and then we designed several close to optimum sets of DU-

rateless codes using multi-objective genetic algorithms. Performance comparison of

the designed DU-rateless codes showed that they fulfilled the expected UEP property

with almost minimal error rates. We also showed that although DU-rateless codes are

designed for large message lengths, they can be employed for finite message lengths

as well. Finally, we showed that DU-rateless codes surpass the performance of exiting

LT codes in distributed rateless coding.
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CHAPTER 5

LT-SF CODES: LT CODES WITH SMART FEEDBACK

In this section, we design LT codes with smart feedback that improves the performance

of LT codes for short data blocks.

5.1 Introduction

LT codes [1] require only one feedback that is issued by the decoder (receiver) to

inform the encoder (transmitter) of a successful LT decoding. Although requiring

a single feedback is an outstanding advantage of LT codes, the available feedback

channel remains unused during the transmission. In addition, as the data-block length

decreases the performance of LT codes significantly deteriorates [1, 17, 18]. Therefore,

in [102, 113–116] it has been proposed to employ the feedback channel during the

transmission as well to keep the encoder aware of the decoders’s status. In this

way, the performance of LT codes for short data-block lengths considerably increases.

However, we should note that feedback channels are usually resource constrained and

have lower data transmission capability compared to forward channels. Therefore,

the design of a feedback scheme should be cleverly devised to consider these scarce

resources.

In this chapter, we propose LT-SF codes, which are LT codes with smart feedback

[11]. The main idea to design LT-SF codes is that the decoder may issue two types

of feedback according to its needs. The existing LT codes with feedback (as are

extensively explored later) are designed such that the decoder informs the encoder
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with the number of successfully decoded input symbols [102, 113, 114], a suitable

input symbol for decoding [115], or the index of some recovered input symbols [116].

In contrast, in LT-SF codes we do not confine the information content type of

the feedbacks. Hence, the decoder may alternatively issue feedbacks to inform the

encoder with the number of successfully decoded input symbols or request a specific

input symbol that makes the largest progress in the decoding of the data-block.

To generate the latter type of feedback, we propose three novel algorithms (with

a trade-off in their algorithm complexity and performance) that describe how to

analyze the decoder’s status and select suitable input symbols to request. We show

that LT-SF codes considerably surpass existing algorithms in the number of required

output symbols (LT coded packets) for full decoding and the total number of required

feedbacks.

Further, we consider a realistic feedback channel with unknown or varying era-

sure rate εfb ∈ [0, 1) in contrast to previous work [102, 113–116], which assumed

εfb = 0. We design LT-SF codes such that high feedback loss rates does not con-

siderably degrade the recovery error rate of data block at the decoder, and we refer

to this property by having a high resiliency against feedback channel loss. To detect

feedback losses by decoder we propose a novel idea to employ the encoded symbols

of degree one (as fully described later) as ACK to the reception of a feedback at the

encoder. Therefore, all feedback losses will be discovered by decoder and feedback

retransmissions will be performed until the encoder receives the feedback. This novel

capability of LT-SF codes considerably distinguishes them with exiting work on LT

codes with feedback.

Authors in [113] proposed shifted LT (SLT) codes to exploit the available feed-

back channel. They have shown that when n input symbols have been recovered at

the decoder, the degree of each arriving output symbol decreases by an expected k−n
k

fraction (due to earlier recovery of their neighboring input symbol). Therefore, they
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propose to shift the RS distribution (as discussed in Section 2.1) such that its average

degree RS′(1) is increase by k
k−n

, where RS′(x) is the first derivative of RS(x) with

respect to its variable x. With this setup, arriving output symbols at decoder always

maintain an RS degree distribution regardless of the value of n. SLT codes consid-

erably improve the performance of LT codes. Therefore, we make some changes to

the idea of distribution shifting proposed in SLT codes and employ it in the design of

LT-SF codes, while showing that LT-SF codes considerably outperform SLT codes.

In contributions [102] and [114], Growth codes and RT-oblivious codes have been

proposed, respectively, which have basically the same structure. In these algorithms,

as n increases and reaches to certain thresholds a feedback indicating that decoder has

achieved the corresponding threshold is initiated. Therefore, the encoder gradually

increases the degree of output symbols on-the-fly based on the feedbacks such that

the instantaneous decoding probability of each delivered output symbol is maximized.

Since Growth and RT-oblivious codes only consider the instantaneous recovery prob-

ability of each output symbol upon reception, they do not have a good performance

compared to SLT and LT-SF codes.

Authors in [115] propose to employ IS degree distribution RSI(x) for LT coding.

They have proposed to start decoding when an overhead of γ = 1 has been delivered

to the decoder. When the decoding halts during the decoding process and some

input symbols are remaining unrecovered, a randomly selected input symbol that is

a neighbor of an output symbol of degree two is requested from the encoder. This

algorithm is performed iteratively to decoding completion. Despite the advantages of

algorithm proposed in [115], in this scheme many feedbacks are issued back-to-back

as soon as γ exceeds 1. Further, during the iterative request process all degree-two

output symbols may be consumed (decoded), while more input symbols are remaining

uncovered. Therefore, this scheme may results in high error-floors due to remaining

undecoded input symbols.
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5.2 LT-SF Codes

Let Ωk,n(x) denote the degree distribution of LT-SF codes for a data-block of length

k when n input symbols are already recovered at decoder. We adopt the idea of SLT

codes [113], and propose to shift Ωk,n(x) based on n. Therefore, we allow the decoder

to issue the first type of feedback referred to by fb1, which is used to keep the encoder

updated with the current value of n.

Although IS distribution (see Section 2.1) is solely designed for the theoretical

analysis of RS distribution, we slightly modify it and employ it in the encoding phase

of LT-SF codes in combination with two types of feedback. The IS distribution is

tuned for γ = 1 such that at each decoding iteration in expectation exactly one input

symbol is recovered and only one output symbols is reduced to degree 1 and is added

to the ripple. The single output symbol in the ripple with degree-one can decode one

input symbol in the next iteration. Since on average only a single degree-one output

symbol is generated for k output symbols (note that RSI
1 = 1

k
, see Section 2.1), the

IS distribution would realize an optimal coding/decoding, i.e., complete recovery of

k input symbols from k output symbols and γsucc = 1.

However, due to inherent randomness and uncertainties in the output symbol

generation there is a high probability that an output symbol does not reduce to

degree one when an input symbol is recovered. Consequently, the ripple becomes

empty and the decoding stops although undecoded output and unrecovered input

symbols are remaining. Therefore, while the IS distribution shows an ideal behavior

in terms of the expected number of encoding symbols needed to recover the data, it

is quite fragile and in fact so much so that it is useless in practice [1]. Despite this,

we can easily see that if we exploit the feedback channel and request a suitable input

symbol (which is an output symbol of degree 1), the decoding may continue and we

may employ IS distribution. Therefore, we allow the encoder to request desired input

symbols employing the first type of feedback referred to by fb2.
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Moreover, to design Ωk,n(x) we propose to modify the IS distribution such that

the encoder does not generate any degree-one output symbol. With this setup, we

may exploit the degree-one output symbols as acknowledgments from the encoder

to the reception of feedbacks. Therefore, the encoder generates a degree-one output

symbol if and only if it has received a fb1 or fb2. Consequently, the lack of the arrival

of an output symbol at the decoder with degree-one after issuing a fb1 or fb2 clearly

indicates a feedback loss. Consequently, all feedback packet losses are identified by

the decoder and a feedback retransmission is performed.

We should note that a degree-one output symbol contains a randomly selected

input symbol after a fb1 and the requested input symbol after a fb2. In this way, the

decoding recovery rate of LT-SF codes does not considerably degrade at high feedback

channel loss rates εfb ∈ [0, 1) in contrast to existing work [102, 113–116].

Let Ωk,n(x) =
∑k

i=1 Ωk,n,ix
i, where Ωk,n,d is the probability of selecting degree d

to generate an LT-SF output symbol. Since we do not allow the encoder to generate

any degree-one symbol, we set Ωk,n,1 = 0. Further, let RSI
k(x) =

∑k
i=1 RSI

k,ix
i be the

IS distribution for data block of length k. Employing the distribution shifting idea

from [113] we define Ωk,n,d as follows.

Ωk,n,d =















0 d = 1,

k
k−1

RSI
k−n,i d = 2, 3, . . . , k, ⌈ i

1−n
k

⌋ = d,
(5.1)

where ⌈.⌋ returns the closest integer to its argument and k
k−1

is the normalizing factor

to have
∑

d Ωk,n,d = 1.

Lemma 5.1 The average degree of a check node generated employing Ωk,n(x) distri-

bution is

∑

i

iΩ(i) = Ω′
k,n(1) ≈ k2 ln (k − n)

(k − n)(k − 1)
, (5.2)
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where Ω′
k,n(x) is the first derivative of Ωk,n(x) with respect to its variable x.

Proof. The average degree of IS distribution RSI(x) is ln k (see Section 2.1). There-

fore, it is easy to see that Ω′
k,0(1) ≈ k

k−1
ln k, since for n = 0 no shift occurs in IS

distribution and degree-one check nodes are not generated. Generalization for Ω′
k,n(1)

is straightforward. Considering that the average degree of IS degree distribution for

a data-block length of k−n is ln (k − n) and the shift of degree distribution increases

the average degree by a factor of k
k−n

, (5.2) is obtained.

5.2.1 Generating fb1

Obviously, the decoder is not always aware of n unless its knowledge about n is

updated by a fb1. Initially, the encoder assumes n = 0 and employs the degree dis-

tribution Ωk,0(x) to generate output symbols. Let nr denote the most recent reported

value of n employing a fb1. Similar to [113], we propose the encoder to generate a

fb1 when Ω′
k,n(1) − Ω′

k,nr
(1) ≥

√
ln k, i.e., average degree of Ωk,n(x) increases by at

least
√

ln k. Let ni be the threshold that for n ≥ ni the ith fb1 is generated. In the

following lemma we give the expression for ni.

Lemma 5.2 In LT-SF codes with data-block length k, ni the threshold of n for which

ith fb1 is issued is recursively obtained as follows.

n0 = 0

ni =

⌈

k +
W−1 (−Ai(k))

Ai(k)

⌉

, i > 0,

(5.3)

where Ai(k) = 1
k

(

k−1
k

√
ln k + k

k−ni−1
ln (k − ni−1)

)

and Wm(.) is the mth root of Lam-
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bert W-Function (the Lambert W-Function is defined as the inverse function of

f(x) = x exp x [117]).

Proof. Let us first analyze n1 the value of n that initiates the first fb1. Since before

the first fb1 no distribution shifting occurs we have Ω′
k,n0

(1) = Ω′
k,0(1) = k

k−1
ln k.

Therefore, the first fb1 is issued for a value of n1 that Ω′
k,n1

(1) − Ω′
k,0(1) =

√
ln k.

Using Lemma 5.1 we have

k

k − n1

k

k − 1
ln (k − n1) −

k

k − n0

k

k − 1
ln (k − n0) =

√
ln k, (5.4)

which gives

ln (k − n1)

k − n1
=

1

k

(

k − 1

k

√
ln k +

k

k − n0
ln (k − n0)

)

. (5.5)

Next, let Ai(k) = 1
k

(

k−1
k

√
ln k + k

k−ni−1
ln(k − ni−1)

)

. Since Ai(k) > −π, ∀k, i

employing Lambert’s W function, we have

k − n1 = −W−1(−A1(k))

A1(k)
, (5.6)

which gives

n1 =

⌈

k +
W−1(−A1(k))

A1(k)

⌉

. (5.7)

Further, we can easily see that n2 can be obtained from Ω′
k,n2

(1)−Ω′
k,n1

(1) =
√

ln k

that in the same way gives
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n2 =

⌈

k +
W−1(−A2(k))

A2(k)

⌉

. (5.8)

Finally, we have Ω′
k,ni

(1) − Ω′
k,ni−1

(1) =
√

ln k that proves the lemma.

Lemma 5.2 gives the value of n for which fb1’s are generated. In Figure 5.1, we

have depicted ni

k
, i ∈ {1, 2, . . . , 5} versus k. From Figure 5.1, we see can that ni

k

decreases as k increases. As an example, we can see that at k = 102 the first and the

second fb1’s are issued at n ≥ 39 and n ≥ 58, respectively. Further, for k = 104 the

first and the second fb1’s are issued at n ≥ 2740 and n ≥ 4346, respectively.
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Figure 5.1 Values of ni

k , i ∈ {1, 2, . . . , 5} versus k.

5.2.2 Generating fb2

Since in LT-SF coding no degree-one output symbol is generated, no decoding is

performed and we have n = 0 until some degree-one output symbols are requested

employing fb2’s. The idea to generate fb2 is to smartly and greedily choose and

request an input symbol that makes the largest progress toward decoding completion.
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It is well-known that LT codes have all-or-nothing decoding property (also called

waterfall phenomenon) [1], where an abrupt jump in the ratio of decoded input sym-

bols occurs at a γ close to γsucc > 1. Therefore, transmission of fb2’s before γ = 1

does not considerably contribute to decoding progress. Therefore, we propose to gen-

erate fb2’s only when γ surpasses 1. Note that authors in [115] have employed the

same idea to determine the start point of their single type of feedback.

To have uniformly distributed fb2’s and to avoid feedback channel congestion, a

LT-SF decoder issues a fb2 on the reception of every (ln k)th output symbol (starting

from kth received output symbols, or equivalently γ = 1). Therefore, in LT-SF

codes feedbacks start with a fb2 at γ = 1. It is worth mentioning that we have

experimentally found a good distance between two fb2’s equal to ln k; hence, we make

no claim about its optimality. However, from our experiments we have observed that

this distance should not be far from its optimal value. Further, since the selection of

input symbols to request is greedily performed LT-SF codes do not necessarily obtain

the optimal decoding performance when feedback channel is available. However, these

codes significantly improve the performance of existing LT codes with feedback.

Let us consider a bipartite graph G representing the input and output symbols

of LT-SF codes. During data transmission some variable nodes vi, i ∈ {1, . . . k} are

decoded and some check nodes cj , j ∈ {1, 2, . . . , γk} are reduced to degree zero and

are both removed from the decoding graph G. Let us refer to the set of remaining

undecoded variable nodes by Vun and the set of buffered check nodes with a degree

higher than one by Cbuff . We remind that the check nodes with degree 1 are called

the ripple. Figure 5.2 illustrates such a graph G at a decoder at γ = 1 for k = 7.

It is important to note that the design of fb2 is to greedily decode as many

as possible input symbols so that decoding succeeds at a smaller γsucc. However,

as discussed earlier as n increases closer to the end of decoding the average degree

of check nodes should be increased to decrease the probability that they become
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Figure 5.2 The bipartite graph representing the input and the output symbols of a LT-SF

code at the buffer of a decoder.

redundant due to earlier recovery of all their neighboring variable nodes. This is the

rationale to employ the distribution shifting and fb1 along with fb2. In the next

sections, we devise three algorithms to analyze the graph G at decoder and greedily

select a suitable variable nodes to generate fb2’s.

Generating fb2 Based on Variable Node with Maximum Degree (VMD)

One insight in choosing a suitable variable node is requesting the variable node vi ∈

Vun with the maximum degree. Such a selection greedily removes the highest number

of edges in the first step of decoding after the delivery of the respective input symbol.

Based on this idea we propose an algorithm called “Variable Node with Maximum

Degree” (VMD), where the decoder requests the variable node with the highest degree

in its current decoding graph to issue a fb2. For instance, in Figure 5.2 VMD would

choose and request v5. On the arrival of c8 containing only v5, the decoding graph

reduces to the state shown in Figure 5.3, where the dashed nodes and edges are

removed from graph G. We can see that c7 is added to ripple, which recovers v7 in

the next decoding iteration. Note that at this step the ripple becomes empty and

decoding stalls; hence we have Cbuff = {c1, c2, . . . , c6} and Vun = {v1, v2, v3, v4, v6}.

We can see that VMD greedily removes the largest possible number of edges from G

and decreases the degree of many check nodes.

Let us investigate the expected maximum degree of input symbols when the first

fb2 is being generated. Since LT-SF decoding does not occur in γ ∈ (0, 1] (due
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Figure 5.3 The decoding bipartite graph G after the reception of the requested variable

node v5 employing VMD. Dashed nodes and edges have been removed from the decoding

graph G.

to lack of degree-one check nodes), the degree of all check nodes at the receiver

follows distribution Ωk,0(x). Thus, at γ = 1 for the first fb2 there are on average

etot = kΩ′
k,0(1)γ = k2

k−1
ln(k) edges in the decoding graph G. Since etot are connected

to variable nodes uniformly at random the degree of variable nodes for finite values

of k follow binomial distribution with success probability 1
k
.

Let Xi, pXi
and FXi

denote the random variable representing the degree of vi,

probability mass function (pmf) of Xi, and the cumulative density function (cdf)

of Xi, respectively. Clearly, Pr[Xi = j] =
(

etot

j

)

1
k

j
(1 − 1

k
)etot−j. Further, let us

define the random variable X = max (Xi), i ∈ {1, 2, . . . , k} with pmf pX and cdf

FX , which denotes the degree of the variable node with maximum degree. Since

Xi, ∀i ∈ {1, 2, . . . , k} are i.i.d., we have FX = F k
Xi

[118]; hence pX and consequently

dmax = E[X] may be easily obtained from FX . For instance, we can see that for

k = 104 with IS distribution we have dmax = 17.80. This analysis of X is suitable

when k is small.

For asymptotic setup (k → ∞), the degree of variable nodes which has Binomial

distribution can be approximated with Poisson distribution with mean λ = Ω′
k,0(1)γ

[19], i.e., Pr[Xi = j] = e−λλj

j!
. Clearly, we have λ = k

k−1
ln(k) at γ = 1. To find the

distribution of X (for X = max (Xi), i ∈ {1, 2, . . . , k}) in this case we employ the

results of [119]1. The following lemma shows the interesting asymptotic behavior of
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X.

Lemma 5.3 At γ = 1, we asymptotically have Pr(X ∈ (I, I +1)) → 1, where I is an

integer. In other words, X asymptotically takes the value of one of two consecutive

integers I or I + 1 w.h.p. A close estimate of I within one unit is obtain as follows:

I ≈ x0 +
lnλ − λ − ln 2π

2
− 3 ln x0

2

ln x0 − ln λ
, x0 =

ln k

W1

(

ln k
eλ

) , (5.9)

where Wm(.) is defined in Lemma 5.2.

Proof. For proof refer to [119].

Therefore, the maximum degree of variable nodes in G can be obtained from

LT-SF code’s parameters for finite and infinite message lengths.

In regular LT decoding, the number of operations required to decode each check

node is equal to the average check node degree [1], i.e., for k input symbols RS′(1) =

O(ln k). Since the decoding procedure of LT-SF and LT codes are identical the number

of operations required to decode each LT-ST check node at γ = 1 is O( k2

(k−n)(k−1)
ln (k − n)),

which is the average degree of LT-SF degree distribution, i.e., Ωk,0(1)′. Therefore, the

number of operations required to decode each output symbol increases as n decreases

since average degree of check nodes gradually increases in LT-SF codes based on fb1.

Further, for large values of n the number of operations is way higher than O(ln k)

operations required per output symbol for regular LT codes. Due to varying com-

plexity of LT-SF decoding, we postpone the complexity comparison of the overall

coding/decoding to numerical simulations. Although VMD seems näıve, we will later

see that it greatly improves the performance of LT codes with feedback.

1In [119] the distribution of a random variable that is defined as the maximum of several random

variables with the same Poisson distribution has been asymptotically studied.
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Generating fb2 Based on Longest Degree-Two Chain (LDC)

Although VMD’s complexity is suitably low, it aims for the recovery of as many as

possible input symbols by removing the largest number of edges from the decoding

graph only in the first step of iterative decoding. However, removing the largest

number of edges in the first decoding iteration does not guarantee decoding of the

highest number of variable nodes. Therefore, we propose a second algorithm “Longest

Degree-2 Chain” (LDC), that considers the subsequent decoding iterations as well.

From LT-SF distribution, we observe that at γ = 1 no decoding can been per-

formed; hence Cbuff = {c1, c2, . . . , ck} and Vun = {v1, v2, . . . , vk}. In such a decod-

ing graph, on average more than 50% of the check nodes are of degree-two since

Ωk,0(2) = k
2(k−1)

> 0.5. Consider a decoding graph G2, which is formed only by

check nodes of degree-two and their respective neighbors, i.e., G2 = {(vi, cj)
∣

∣

∣cj ∈

Cbuff , |N (cj)| = 2, vi ∈ Vun, vi ∈ N (cj)}. We call G2 the decoding graph induced by

degree-two check nodes.

By investigating the decoding graph G2 we observe that some check nodes along

with nv > 1 variable nodes form structures that the delivery of the any of nv variable

nodes results in the decoding of all other nv−1 variable nodes. We call such a structure

decoding chain of length nv. For instance, a single degree 2 check node forms a chain

of length nv = 2 since knowing the value of either of its neighboring variable node

results in the decoding of the other one. Figure 5.4 shows two chains of length nv = 4

with different structures. The graph G2 obtained from G in Figure 5.2 has a chain

of length nv = 3 including v1, v2, and v3 and a chain of length nv = 2 including v5

and v7. We emphasize that this rule only holds for check nodes of degree-two as we

discuss further in the next section.

We can see that the degree of variable nodes does not affect the length of chains,

and the chains extend as far as the variable nodes are connected to degree-two check

nodes. Based on our discussion, the decoder finds all chains of of degree 2 and ran-
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Figure 5.4 Two decoding chains with nv = 4.

domly selects a variable node from the longest chain. Next, this variable is requested

employing a fb2.

We are interested in the expected value of nv for the longest chain for the first fb2

(at γ = 1). This is the number of variable nodes recovered in G2 on the arrival of the

requested variable node. If we consider the check nodes in G2 as edges connected to

variable nodes as vertices [120], our bipartite graph G2 would be mapped to a random

graph including k vertices and an average number of kγΩ(2) = k
2(k−1)

edges (at γ = 1,

k
2(k−1)

check nodes of degree two are available). Figure 5.5 shows how this mapping

is accomplished for a simple graph.

v3
v2

v1 v4v4v3v2

c1 c2 c3

v1

Figure 5.5 Mapping a bipartite graph with degree-two check nodes to a random graph.

Therefore, we may employ the extensively studied properties of random graphs

on the size of longest chain nv. It has been shown that in a random graph with k

vertices a giant component exist w.h.p. if and only if the average degree of vertices

is larger than 1 [120]. A giant component is a connected set with a size linear in the

number of graph vertices, i.e., O(k) [120]. On the other hand, if the average vertices

degree is less than one the connected vertices in the random graph have the size of

O(log k). As described earlier, the mapping of G2 to a random graph gives k
2(k−1)
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edges, hence variable nodes have average degree of k
k−1

> 1. Therefore, in LDC for

the first fb2 we have nv = O(k). To give an example, for k = 104 and γ = 1 we

empirically find nv ≈ 250. Hence, on average the first fb2 generated employing LDC

decodes 250 variable nodes out of k = 104. Later, we will see that LDC has slightly

a higher complexity compared to VMD while surpassing its performance.

Generating fb2 Based on Full Variable Node Decoding (FVD)

LDC is designed considering the graph induced by degree-two check nodes only. How-

ever, higher degree check nodes are also present in the decoding graph, which may

form more complex decoding chains. When higher degree check nodes are also con-

sidered, the main rule of the decoding chains is violated. That is, if recovery of a

particular variable node vi results in the recovery of a set of variable nodes vj ∈ Vi, the

delivery of any of vj ∈ Vi does not necessarily guarantee the decoding of vi. Therefore,

no decoding chain can be defined in this case. Consequently, for all vi ∈ Vun we need

to find Vi the set of variable nodes that are decoded as a result of vi’s delivery.

In Figure 5.6, we have illustrated a part of a decoding graph of a LT-SF code.

We can observe that the delivery of v2 results in the decoding of v1 and v3, while

delivery of v1 does not decode v2 and v3. This is clearly due to considering c2 that is

a degree-three check node in the decoding chain.

v3v2v1

c1 c2 c3

Figure 5.6 Chain of decoding considering check nodes with degrees higher than two. De-

livery of v1 does not necessarily decode v2 and v3 while delivery of v2 results in decoding of

v1 and v3.
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Therefore, we propose “Full Variable Node Decoding” (FVD) that considers all

check nodes with any degree, and provides the optimal selection of variable nodes to

issue fb2’s. FVD is performed once when a fb2 is to be issued as follows.

1. For all vi ∈ Vun find Vi by running dummy decodings.

2. Find i∗ = argmaxi |Vi| and generate a fb2 containing i∗.

FVD finds the variable node vi∗ for fb2 that results in the highest number of

decodings considering the full graph G. However, we later see that FVD has a much

higher complexity than LDC and VMD.

5.3 Performance Evaluation

In this section, we evaluate the performance of LT-SF codes employing numerical

simulations. Our results are obtained employing Monte-Carlo method by averaging

over the results of at least 107 numerical simulations.

5.3.1 LT-SF Decoding Error Rate and Runtime

Since we are interested to see the performance of LT-SF codes for short data-block

lengths we run our performance evaluations for k = 500 and k = 1000. We plot

the decoding bit-error-rate (BER) (average ratio of unrecovered input symbols to

total number of input symbols 1 − E[n
k
]) and the ratio of successful decodings versus

received overhead γ in Figures 5.7 and 5.8, respectively. Note that we set c = 0.9 and

δ = 0.1 for SLT codes as proposed in [113].

Figures 5.7 and 5.8 show that LT-SF codes significantly surpass SLT codes. We

can see that the required coding overhead γsucc (to achieve BER≤ 10−8) for k = 1000

has decreased by 0.223, 0.189, and 0.175 when LT-SF decoder employs FVD, LDC,

and VMD algorithms, respectively. This is respectively equivalent to 69.7%, 59.1%,

81



1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
10

−8

10
−6

10
−4

10
−2

10
0

γ
B

E
R

 

 

LT-SF + VMD

LT-SF + LDC

LT-SF + FVD

SLT

Regular-LT

(a) Performance comparison for k = 500.
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(b) Performance comparison for k = 1000.

Figure 5.7 The BER of SLT codes and various setups of LT-SF codes versus received

overhead γ for k = 500 and k = 1000.

and 54.7% reduction in the number of required redundant output symbols (codings

overhead) for full decoding compared to SLT codes. More interestingly, we can see

that for SLT codes with k = 500 full decoding is not obtained even for γ = 1.4, while

LT-SF codes can obtain a full decoding at much smaller γ’s.

It is worth mentioning that the straight line at the end of BER curves shows that

we did not observe any decoding error at these overheads in 107 iterations of numerical
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(b) Performance comparison for K = 1000.

Figure 5.8 The ratio of successful decodings for SLT codes and various setups of LT-SF

codes versus received overhead γ .

simulations and all decodings were successful. Therefore, the error rates are indeed

less than 10−8. Next, we have summarized the runtime comparison of LT-SF codes

employing FVD, LDC, and VMD with SLT codes in Table 5.1.

Table 5.1 shows that the complexity of FVD is way higher than the other two

proposed algorithms. However, we can see that LDC and VMD have close complexi-

ties. Therefore, LDC may be the best option that provides a low complexity besides
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Table 5.1 Runtime comparison of LT-SF and SLT codes on the same platform in seconds.

Algorithm N = 500 N = 1000

LT-SF+VMD 0.122 0.683

LT-SF+LDC 0.181 1.050

LT-SF+FVD 11.000 122.270

SLT 0.535 1.550

improved coding performance. Further, we can see that LT-SF codes employing VMD

and LDC have lower complexities compared to SLT codes. The reason for this lower

complexity is that in LT-SF codes for γ < 1 no decoding is performed and no feedback

is generated, and when the decoding starts the full recovery is obtained at a smaller

γ resulting in less number of decoding iterations. Therefore, LT-SF codes employing

VMD and LDC outperform SLT codes both in the number of required output symbols

and complexity.

5.3.2 Number of Feedbacks

In this section, we compare the total number of feedbacks issued by LT-SF codes and

compare it to that of SLT codes for k = 500 and k = 1000. We emphasize that other

proposed LT codes with feedback cannot achieve the performance of SLT and LT-SF

codes. The expected number of feedbacks for LT-SF and SLT codes are summarized

in Table 5.2 for k = 500 and k = 1000. From Table 5.2, we can interestingly observe

that not only LT-SF codes decrease the required coding overhead for a successful

decoding γsucc, but also they need slightly smaller number of feedbacks compared to

SLT codes.
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Table 5.2 The average number of feedbacks issued in LT-SF and SLT codes for full decoding

of data block.

Algorithm

N = 500 N = 1000

fb1 fb2 total fb1 fb2 total

LT-SF+VMD 2.68 7.37 10.05 2.68 9.29 11.97

LT-SF+LDC 3.15 6.49 9.64 3.90 8.00 11.90

LT-SF+FVD 2.75 6.01 8.76 3.58 6.92 10.5

SLT - - 10.43 - - 12.27

5.3.3 Robustness to Erasure in Feedback Channel

We mentioned that LT-SF codes are designed to be resilient to loss in feedback channel

in contrast to all existing work [102, 113–116], and their decoding recovery rate does

not considerably deteriorate for εfb ∈ [0, 1). We evaluate the effect of feedback loss

on the performance of LT-SF codes and SLT codes. Assume that the loss rate of

the feedback channel is εfb = 0.9 (which is not known to encoder and decoder),

hence 90% of the feedbacks are lost in transmission. Note, that in a lossy forward

channel the degree-one acknowledgements may also be dropped while fb1 or fb2 may

have already been delivered. In the case of fb2 loss, the retransmission compensates

this loss. However, in case of fb1 loss, the encoder shifts the degree distribution

accordingly while the decoder remains unaware of this shift. In this case, feedback

retransmission is not even required since the degree distribution shift has already

occurred. Therefore, we consider the worst case in our simulations and assume that

if an acknowledgement is lost the distribution shifting does not occur as well. Figure
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5.9 shows the performance of LT-SF codes and SLT codes for k = 1000 and εfb = 0.9.
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Figure 5.9 Effect of 90% feedback loss on the performance of SLT and LT-SF codes

employing VMD.

Figure 5.9 shows the excellent resilience of LT-SF codes to feedback loss in con-

trast to SLT codes. In practice, the performance of SLT codes approach that of

regular LT codes as the feedback loss ratio increases. To the best of our knowledge

robustness against feedback loss had not been considered in any existing work and

this significantly distinguishes LT-SF codes.

5.4 Conclusion

In this chapter, we proposed LT-SF codes that are LT codes with smart feedback,

which alleviate the low performance of LT codes for short data-block lengths. We

proposed to employ two types of feedbacks according to the status and needs of the

decoder. In LT-SF codes, the decoder may inform the encoder with the total number

of decoded input symbols by the first type of feedback or request a certain input

symbol from the encoder employing second type of feedback. We designed three

algorithms for LT-SF codes that described how to analyze the decoder’s buffer and

request a suitable input symbol. In addition, employing a novel idea we made LT-SF
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code resilient against high loss rates in the feedback channel. We analyzed LT-SF

codes and discussed its advantages.

We showed that our contribution in the design of LT-SF codes compared to ex-

isting work is fourfold. LT-SF codes reduce the coding overhead for a successful

decoding and decrease the total number of feedbacks. Further, we observed that

overall runtime required for a complete LT-SF decoding is lower than that of existing

work. Finally and most importantly, LT-SF codes’ performance does not considerably

degrade at large loss rates in the feedback channel.

87



CHAPTER 6

UNEQUAL ERROR PROTECTION RATELESS CODING IN VIDEO

TRANSMISSION

So far, we have investigated various aspects of rateless codes and their advantages. In

this Chapter, we demonstrate how UEP-rateless codes can be employed to increase

video transmission efficiency compared to the case where conventional EEP-rateless

codes are employed. First, we employ UEP-rateless codes to provide more protection

for more important frames in a video stream, namely I- and P -frames. This increases

the received video quality or equivalently decreases the amount of transmitted data

to reach a certain video quality. Next, we utilize UEP-rateless codes to design a

novel periodic broadcasting video-on-demand protocol with reduced startup delay. We

discuss the advantages of our proposed algorithms and evaluate their performances

employing numerical simulations.

6.1 UEP-Rateless Codes in MPEG Video Transmission

In this section, we propose a coding scheme that employs UEP-rateless codes to pro-

vide more protection for video frames with higher influence on the quality of the

displayed video. Previously, several work have addressed this problem. Authors in

[121–124] propose to employ different Reed-Solomon codes [125] to separately encode

each frame/layer of the video according to its importance. By assigning a larger cod-

ing overhead to more important video frames/layers they have shown that a higher

video quality can be achieved. However, since these algorithms have employed fixed-
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rate Reed-Solomon codes, the transmitter needs to have an estimate of the channel

erasure rate to set the appropriate coding rates to obtain an efficient video transmis-

sion scheme. This information is not always available at transmitter. Further, due to

high complexity of Reed-Solomon codes implementation of these algorithms may not

be feasible in applications with constrained resources.

Authors in [126] propose to have a higher protection on GOP header and motion

vectors instead of I- and P -frames employing LDPC codes [127]. Similar to Reed-

Solomon codes, LDPC codes impose a fixed coding rate, which may not be of interest

in some applications. Authors in [128] propose an MPEG video transmission scheme

which provides more protection for I-frames only by transmitting multiple copies

of I-frames instead of using UEP codes. This video transmission scheme may be

suboptimal since a large amount of redundant packets are transmitted from I-frames

and the higher importance of P -frames compared to B-frames is not considered.

In contrast to previous studies, our proposed algorithm employs UEP-rateless

codes. Thus it does not need to have any knowledge about the channel’s erasure rate.

Further, we propose to encode all frames of one GOP with a single UEP-rateless code

instead of multiple EEP codes. This idea considerably reduces the coding/decoding

overhead and complexity.

6.1.1 Proposed MPEG Video Coding Using UEP-Rateless Codes

To increase the video transmission efficiency, i.e., increasing Q and consequently the

PSNR of the video, we propose to protect frames unequally according to their im-

portance employing UEP-rateless codes. We encode each GOP by applying one in-

dependent UEP-rateless code over the entire GOP. Therefore, the number of input

symbols k denotes the total number of symbols of all frames in one GOP.

There is one I-frame in each GOP with the highest level of importance. Let

the importance level of an I-frame be kI = pIk, where pI shows the probability of
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choosing a source symbol from the I-frame to generate an outgoing encoded symbol.

Furthermore, we have several B-frames with equal and the lowest level of importance

among all frame types. Let us show the importance level of B-frames by kB = pBk.

Finally, according to the length of the GOP, there are nP = N
M

− 1 P -frames in each

GOP. We denote different P -frames with Pj, j ∈ {1, 2, . . . , nP} and their importance

levels by kPj
= pPj

k.

For the sake of simplicity in illustration, we assume that the I-frame is situated

at the beginning of the GOP followed by series of all P -frames, and afterwards B-

frames are transmitted. Let the series αIk, αP1k, αP2k, . . ., αPnP
k, αBk, where

αI + αB +
∑nP

i=1 αPi
= 1, denote the segmentation sizes as shown in Figure 6.1.

The corresponding source symbol selection probabilities for different frames are also

depicted in Figure 6.1. Naturally, I-frames have the largest size due to their lowest

compression level and independency, and B-frames have the smallest frame size.
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k αP2

k αPnP
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Figure 6.1 Input symbol selection probabilities for various sections of a GOP and partitions

with unequal importance and their relative sizes.

The UEP-rateless coding is performed with various protection levels on each GOP.

The rateless encoded symbols are transmitted over a lossy channel and are recov-

ered at the receiver side with different decoding error rates. Let ǫI , ǫB, and ǫPj
,

j ∈ {1, 2, . . . , nP} be the decoding symbol receovry rates of I-, B-, and Pj-frames, re-

spectively. ǫI , ǫB, and ǫPj
can be found from (2.6) by setting the UEP-rateless coding
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parameters to αi = {αI , αP1 , αP2, . . . , αPnP
, αB} and pi = {pI , pP1, pP2, . . . , pPnP

, pB}.

Further, let cI , cP , and cB represent the number of symbols in each type of frame.

To find the analytical expression for Q given by (2.9), we formulate NdecI
, NdecP

, and NdecB
as follows. The I-frame can be decoded independently if fraction ν of cI

symbols are delivered. The number of delivered symbols to destination has binomial

distribution with success probability 1−ǫI . Therefore the probability that an I-frame

is decodable is

λI =
cI
∑

j=νcI

(cI

j

)

(1 − ǫI)
j(ǫI)

cI−j.

Therefore, the expected number of decodable I-frames for all GOPs is given by

NdecI
= λIτ, (6.1)

where τ is the number of GOPs in the video. Therefore, we have Ntotal = τN .

The P -frames are decoded if the preceding I- and P -frames are recovered and a

portion ν out of cP symbols belonging to the corresponding P -frames are received with

no defects. Each P -frame has a different decoding error rate, ǫPj
, j ∈ {1, 2, . . . , nP},

according to its protection level, and a different probability of successful decoding,

λPj
, given by

λP1 = λI

cP
∑

j=νcP

(cP

j

)

(1 − ǫP1)
j(ǫP1)

cP−j,

λP2 = λP1

cP
∑

j=νcP

(cP

j

)

(1 − ǫP2)
j(ǫP2)

cP−j,

...

λPnP
= λPnP −1

cP
∑

j=νcP

(cP

j

)

(1 − ǫPnP
)j(ǫPnP

)cP−j,

Consequently, the expected number of decodable P -frames is given by

NdecP
= τ

nP
∑

q=1

λPq

= τλI

nP
∑

q=1

q
∏

l=1

cP
∑

j=νcP

(

cP

j

)

(1 − ǫPl
)j(ǫPl

)cP−j.

(6.2)
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Finally, each (M − 1) B-frames, enveloped between two consecutive P -frames,

have the same probability of successful decoding. Let Bj denote the jth group of

B-frames, which includes (M − 1) B-frames. It can be easily seen that based on the

structure of a GOP, there are nP +1 groups of (M −1) consecutive B-frames in total.

A B-frame in any group of B-frames (except the last group) are decodable if the

preceding P - and I-frames are decodable and all symbols belonging to this specific

B-frame are correctly received. Any B-frame belonging to the last group of B-frames

can be decoded if the I-frame of the succeeding GOP is also decodable. Consequently,

each group of (M − 1) B-frames has the same decoding probability given by

λB1 = λP1

cB
∑

j=νcB

(cB

j

)

(1 − ǫB)j(ǫB)cB ,

λB2 = λP2

cB
∑

j=νcB

(cB

j

)

(1 − ǫB)j(ǫB)cB ,

...

λBnP
= λPnP

cB
∑

j=νcB

(cB

j

)

(1 − ǫB)j(ǫB)cB ,

λBnP +1 = λIλBnP

Consequently, the expected number of decodable B-frames is given by

NdecB
= τ(M − 1)

nP +1
∑

j=1

λBj (6.3)

Now, we substitute (6.1), (6.2), and (6.3) into (2.9) to find the final expression

for the decoding error rates with UEP-rateless video coding. The values assigned to

protection levels affect the decoding error rates and consequently change the resulting

Q. We can find the maximum Q by optimizing the values assigned to protection levels.

Since the number of P -frames and their protection levels change by varying the length

of the GOP, the optimum protection level values depend on values of M and N .

Similar to UEP-rateless coding, Q is given by (2.9) for EEP-rateless coding. How-

ever, when EEP-rateless codes are employed instead of UEP-rateless codes, all frames

in a GOP are protected equally. Thus they are recovered with equal error rate at
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decoder, i.e., ǫI = ǫB = ǫP1 = . . . = ǫPnP
, which boils (6.1), (6.2), and (6.3) down to

simpler expressions.

Here, we provide two optimization examples for a GOP with M = 3, N = 15 for

two cases of MPEG-I and MPEG-II. This GOP format is a common GOP size used in

practice and is shown by IBBPBBPBBPBBPBB. Table 6.1 summarizes the average

frame sizes and the number of symbols in each frame type, i.e. cI , cP , and cB, when

each transmitted symbol conveys 0.5KB of data.

Table 6.1 Frame sizes and the number of symbols in each frame type for typical MPEG-I

and MPEG-II video streams

I P B cI cP cB

MPEG-I 75KB 25KB 10KB 150 50 20

MPEG-II 200KB 100KB 40KB 400 200 80

Based on the frame sizes provided in Table 6.1, we find the values of {αI , αP1, αP2, αP3, αP4, αB}

as reported in Table 6.2.

Table 6.2 The sizes of each importance portion for MPEG-I and MPEG-II video streams

αI αP1 αP2 αP3 αP4 αPB

MPEG-I 0.2727 0.0909 0.0909 0.0909 0.0909 0.3637

MPEG-II 0.2 0.1 0.1 0.1 0.1 0.4

A GOP with M = 3 and N = 15 has six protection levels shown by kI , kB, kP1,

kP2 , kP3, and kP4. According to [19, 20] we have kIαI +kBαB +
∑4

j=1 kPj
αPj

= 1, which

shows that one of the importance level values is dependant to other protection levels;
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therefore, we have only five independent protection levels to optimize. We remind that

our objective function is Q, which we try to maximize by finding optimum protection

levels. For the sake of simplicity in our simulations, we consider ν = 1, and we

employ the rateless coding degree distribution Ωshok(x) given by (2.3) throughout the

simulations.

By searching the whole decision space, we find the global optimum values of the

protection levels as reported in Table 6.3 for MPEG-I and in Table 6.4 for MPEG-II

for different values of received overhead, γ. As we expected and it is confirmed by

the optimization results given in Tables 6.3 and 6.4, the highest protection levels are

assigned to I-frames, and the lowest protection levels are assigned to B-frames. P -

frames protection levels, which are larger than B-frames protection levels and lower

than I-frames protection levels, are set to decreasing values according to their position

in the GOP. Based on the desired final decoding error rate, one should choose appro-

priate overhead and the corresponding optimum protection level values from Tables

6.3 and 6.4 to acquire the highest performance. In the next section, we evaluate our

proposed scheme’s performance.

6.1.2 Performance Evaluation

We set the protection levels to the optimum values given in Tables 6.3 and 6.4 for γ =

1.2 and find Q based on the derived formulas in this section as our performance metric.

We compare the performance of video coding employing UEP-rateless codes with

the case where video is coded using conventional rateless codes with EEP property.

Simulation results are shown in Figures 6.2(a) and 6.2(b) for MPEG-I and MPEG-II,

respectively

Figure 6.2 can be described in two ways. First, let us assume we have a fixed

amount of data and channel bandwidth. We can see that by using UEP-rateless codes

there is an increase in the number of decoded frames at the receiver, or equivalently,
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Table 6.3 Optimum values of MPEG-I video stream protection levels for different values

of γ.

γ kI kP1 kP2 kP3 kP4 kB

1.1 1.2 1.17 1.13 1.08 1.01 0.75

1.2 1.18 1.15 1.12 1.07 1.01 0.77

1.3 1.17 1.14 1.11 1.07 1 0.79

1.4 1.15 1.13 1.1 1.06 1.01 0.81

1.5 1.14 1.12 1.1 1.06 1.01 0.82

1.6 1.14 1.11 1.09 1.05 1 0.83

Table 6.4 Optimum values of MPEG-II video stream protection levels for different values

of γ.

γ kI kP1 kP2 kP3 kP4 kB

1.1 1.24 1.21 1.16 1.09 0.99 0.76

1.2 1.21 1.18 1.14 1.09 1.01 0.79

1.3 1.19 1.16 1.13 1.08 1.01 0.81

1.4 1.17 1.15 1.12 1.08 1.02 0.82

1.5 1.16 1.14 1.11 1.07 1.02 0.83

1.6 1.15 1.13 1.1 1.07 1.02 0.84
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(a) Q for MPEG-I video stream with UEP- and EEP-

rateless coding.
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(b) Q for MPEG-II video stream with UEP- and EEP-

rateless coding.

Figure 6.2 Decodable frame rate Q for MPEG-I and MPEG-II video streams employing

proposed coding scheme.

the receiver will perceive the video with a higher PSNR. For instance, at γ = 1.3, for

MPEG-II video the number of decoded frames increases from 58% to 74% employing

UEP-rateless codes. Second, for a fixed decodable frame rate Q, UEP-rateless coding

requires a smaller overhead, γ , than EEP-rateless coding. For example, instead of

using EEP-rateless codes with overhead γ = 1.37 for 90% frame recovery in MPEG-

I video, we can encode the video with UEP-rateless codes and transmit only an
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overhead of γ = 1.28.

It should also be noted that since the frames of MPEG-II video have larger sizes

compared to frames of MPEG-I video, they have higher probabilities of being dropped

in transmission. This is the rationale behind the lower Q for MPEG-II video compared

to MPEG-I video. Besides gaining an efficient transmission scheme, an important

advantage of our proposed protocol is having much lower complexity compared to

previous coding schemes. Rateless codes [2] have linear time coding and decoding

complexity of O(k), while Reed-Solomon codes [125] as employed in [121], have coding

complexity of O(k2). As a result, besides having higher efficiency, our proposed

scheme suits wireless applications where the computational power is limited.

Furthermore, as mentioned earlier fixed-rate codes such as Reed-Solomon codes

cannot adapt to varying loss rates. Hence, they may not be employed on wireless links,

which have dynamic characteristics. However, rateless codes are universal erasure

channel error-correction codes that can adapt to any loss rate and can still exhibit

low coding/decoding complexity. Moreover, rateless codes are the perfect coding

choice for multicast video content delivery over wireless channels, since the number

of output symbols can be limitless in contrast to fixed-rate codes.

Our results so far have been based on asymptotic formulas for decoding of UEP-

rateless codes [19, 20], i.e., Equation (2.6), which assumes that k is large. However,

in practice k is limited. Consequently, to evaluate the performance of our proposed

scheme when k is finite, we run real EEP- and UEP-rateless coding/decoding simula-

tions. Figure 6.3 shows the resulting values of Q for an MPEG-II video stream with

the parameters from Tables 6.1 and 6.2, and with GOPs with N = 15 and M = 3.

Note that according to the number of symbols in different frame types, each GOP

would have k = 2000 source symbols in total.

Figure 6.3 shows and confirms that Q has increased considerably employing UEP-

rateless codes for finite number of source symbols.
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Figure 6.3 Comparison of Q for an MPEG-II video stream with EEP- and UEP-rateless

coding for finite length, k = 2000.

6.2 UEP-Rateless Codes for Video-On-Demand

In this section, we propose a new efficient VOD broadcasting protocol employing

UEP-rateless codes. In this section, we propose a new VOD periodic broadcasting

protocol that belongs to the first category of VOD schemes (see Section 2.5). We

exploit the URT property provided by UEP-rateless codes [19, 20], to design a periodic

broadcasting protocol with reduced startup delay compare to [48–50].

6.2.1 VOD Protocol Design Using UEP-Rateless Codes

In periodic broadcasting protocols, a video with playout rate B0 is first divided into

several segments Sj of increasing length and each segment is broadcast on a separate

channel with transmission bandwidth B as depicted in Figure 6.4. In Figure 6.4, the

upper shape demonstrates the video stream that is displayed to client. Further, w is

the startup delay incurred due to time required to buffer the first segment. We can

see that the video has been partitioned into three segments of increasing size, and

each segment is repetitively broadcast on a separate channel.

As can be seen from Figure 6.4, it is necessary to completely deliver each segment
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w

Figure 6.4 Periodic VOD protocols segmentation. The upper video stream shows the

actual displayed video timing for client.

to the client before its playout time so that the video is shown continuously with

no interruptions. Based on this constraint and the type of coding we determine

each segment’s size. Without loss of generality, we consider the first segment of the

partitioned video S1 as the reference segment with playout duration of one unit time.

Therefore, if this segment is transmitted without encoding its download time would

be B0

B
unit times. Clearly, if the transmission bandwidth is equal to video playout

bandwidth, i.e., B = B0, the time required to receive the first segment is one unit

time. However, when the reference segment is encoded employing a rateless code, we

also need to consider the coding overhead, γ, in download time.

First, consider the case that the reference segment is encoded with an EEP-rateless

code. The download time of this segment is γEEP
B0

B
unit times, where γEEP is the

overhead at which the frame loss rate of the decoded segment reduces to 10−31.

.

In our proposed protocol, we partition the reference segment into two parts with

the fraction sizes α and 1 − α, and protect the first part with a higher priority, kM ,

and the rest of the segment with a lower priority kL < kM employing a UEP-rateless

code [19, 20]. The first part (MIS) acquires the error rate of 10−3 at γMIS, and is

2In this section, we assume that video frames are encoded independently as coding symbols.

Further, it has been shown that at frame loss rate of 10−3 clients do not perceive any degradation

in the video quality [129].
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displayed to the client, while more encoded symbols from the same segment are being

received. Meanwhile, the second part (LIS) is also recovered at γLIS. Other segments

are similarly divided into two parts with relative sizes α and 1−α as shown in Figure

6.5.

S1

S2

S3

B

B

B

S1 S2 S3
B0B0

w

α 1 − α

Figure 6.5 Proposed VOD protocol segmentation.

In Figure 6.5, we can see that the first segment can start being displayed to

client before S1 is completely delivered. This actually decreases the start up delay

compared to the simple case displayed in Figure 6.4. With this setup, besides the

on-time recovery of the whole segment, the on-time recovery constraint of the first

and the second part of the segment is added to the requirements. Therefore, we need

to choose the UEP parameters kM , kL, α, and segment sizes to meet these timing

constraints.

The startup delay of the first segment with unit time duration is determined based

on its first and second part’s recovery times, i.e., γMIS
B0

B
and γLIS

B0

B
. According to the

length of these two time durations, two cases may occur. First, when the beginning

part’s recovery time plus the playout time of this portion is greater than the recovery

time of the second part as depicted in Figure 6.6(a). In this case, the startup delay is

dominated and determined by the first part’s recovery time. The video starts playing

upon recovery of the first portion. The second part is recovered on-time, during the

first part’s playout, and before the time it needs to be displayed.

In the second case, the second part is not recovered during the first segment’s
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playout, thus it will not be ready on-time as shown in Figure 6.6(b). In this case we

need to extend the startup delay so that the second part is recovered on-time and the

video can be played without any interruptions. This is equal to decoding and storing

the first portion in a buffer, and starting the video display when we are confident

about second part’s on-time recovery. In this case, the startup delay is controlled by

the second part’s recovery time.

We remind that γMIS and γLIS are determined by plugging the values of kM , kL,

and α into (2.7) and (2.8), and finding the values of γMIS and γLIS for which decoding

error rates of MIS and LIS (yM and yL) are equal to 10−3.

1-w

γMIB
B0

B

γLIB
B0

B

(a) First part (MIS) recovery-time

dominates.

1-w

γMIB
B0

B

γLIB
B0

B

(b) Second part (LIS) recovery-

time dominates.

Figure 6.6 First segment and startup delay, w, which is a function of γMIS, γLIS , B0, B,

and α.

According to Figure 6.6 and the discussion provided, we can formulate the startup

delay of each segment in terms of the recovery overheads of its partitions as

w = max(γMIS
B0

B
, γLIS

B0

B
− α). (6.4)

For the EEP-rateless coding case, α would be equal to zero and (6.4) reduces to

w = γEEP
B0

B
. (6.5)

Our goal is to choose kM and α in (2.7) and (2.8) such that the startup delay of

the VOD protocol w given by (6.4) is minimized. Figure 6.7 depicts w for different
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values of kM and α when B = 3B0. As is shown, w has a global minimum value at

kM = 1.56 and α = 0.1. Table 6.5 summarizes the optimal values of kM , α, and the

corresponding γMIS, γLIS, and minimized startup delays for B = 2B0 to B = 5B0.

We use these optimum values in our simulations and protocol design.
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Figure 6.7 Normalize startup delay, w, vs. kM and α for B = 3B0.

Equivalently, the normalized startup delays for B = 2B0 to B = 5B0, with EEP-

rateless coding are given in Table 6.6. Note that for all the cases we have γEEP =

1.211.

Now, we can formulate the sizes of the segments in our proposed VOD protocol.

We determine the size of segment S2 considering the criteria that the summation of

the startup delay, w, and the duration of the first segment playout time (one unit

time), is the startup delay for the second segment. The division of this time duration

to w, gives the second segment’s length as multiples of the first segment duration.

This rule applies to other segments as well. The general segmentation formula is

given by

Si =



















1 i = 1,

w+
∑i−1

j=1
Sj

w
i ≥ 2,

(6.6)
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Table 6.5 Optimum values of kM , α, and the corresponding γMIS, γLIS , and minimized

startup delays, w, with UEP-rateless coding.

B 2B0 3B0 4B0 5B0

α 0.14 0.10 0.06 0.05

kM 1.43 1.56 1.75 1.83

γMIS 1.032 1.031 1.030 1.030

γLIS 1.296 1.287 1.270 1.264

w 0.516 0.343 0.257 0.206

Table 6.6 Normalized startup delay, w, with EEP-rateless coding.

B 2B0 3B0 4B0 5B0

w 0.605 0.403 0.302 0.242
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where Si is the normalized ith segment size. By equating
∑

i Si to the total duration

of the movie the duration of each segment can be determined. For UEP-rateless

and EEP-rateless coding, w is given by (6.4) and (6.5), respectively. The same two-

priority-level UEP-rateless code is applied on all segments, therefore, all segments

include a portion, which is recovered in advance and is displayed to the client before

the second part of the segment is recovered.

Note that the number of segments NS is chosen according to the system require-

ments and the available system resources. Although a larger NS results in a shorter

startup delay, it requires a higher total video broadcast bandwidth, B×NS , and also

causes heavier computational complexity.

6.2.2 Modified Low-Bandwidth Protocol

In our proposed VOD protocol, we have assumed that server and clients have the

same bandwidth equal to B × NS. However, in some cases clients may have limited

amount of bandwidth due to the technical limitations or the bandwidth cost. Our

proposed protocol can be easily modified such that each client in the worst case has to

receive only two segments in parallel. This reduces clients’ required bandwidth from

B×NS to 2B. However, this leads to a slight increase in the startup delay due to new

video segmentation. We still encode the segments with the same UEP-rateless code,

and compare the resulting startup delay with EEP-rateless encoding. In Figure 6.8,

the segmentation of the modified protocol for lower client bandwidth is illustrated.

The startup delay is still given by (6.4) and (6.5), and the segmentation size of

the modified version of the protocol, which satisfies a continuous playout, is given by

Si =







































1 i = 1,

w+1
w

i = 2,

Si−1+Si−2

w
i ≥ 3.

(6.7)
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Figure 6.8 Segmentation of our modified protocol. Users only need to receive from two

channels in parallel at any time instant.

The segmentation sizes for both proposed protocol schemes, using optimum values

from Table 6.5 and 6.6, with EEP- and UEP-rateless encoding, is depicted in Figure

6.9.

6.2.3 Performance Evaluation of Proposed VOD Protocols

In order to evaluate our proposed VOD protocols, we compare the startup delay of our

scheme with UEP-rateless coding to startup delay of the case where video is encoded

with an EEP-rateless code. We compare the two protocols for different bandwidths

allocated per individual channel, for B = 2B0 to B = 5B0, and when number of

segments varies from 2 to 8 segments. In Figure 6.10 the percentage of the reduction

made in the startup delay of our proposed protocol is illustrated.

From Figure 6.10, we can see a significant improvement in the systems performance

for the same bandwidth. For example, if UEP-rateless codes are used instead of

EEP-rateless codes, when the video is partitioned into six segments and B = 5B0,

the startup delay decreases about 55%. Similarly, we compare the modified VOD

protocol with the segmentation given by (6.7) in two cases of EEP-rateless and UEP-

rateless coding. Figure 6.11 depicts the percentage by which the startup delay declines

for different bandwidths and different number of segments, when a UEP-rateless code

is employed instead of an EEP-rateless code.
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(a) Proposed VOD protocol segment sizes, when the

bandwidth of server and the bandwidth of clients are

equal to B × NS .
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(b) Modified VOD protocol segment sizes, when the

bandwidth of server is equal to B × NS and the

bandwidth of clients is equal to 2B.

Figure 6.9 Segmentation sizes for the proposed VOD protocols.

From Figures 6.10 and 6.11, it can be seen that our proposed VOD protocol and

its modified version that are based on UEP-rateless coding outperform the case where

EEP-rateless coding is employed. We also note that as the transmission bandwidth

B allocated to each stream increases, the efficiency of the proposed protocols also

increases. An increase in the performance can also be observed when the number of

106



2 3 4 5 6 7 8

20

30

40

50

60

70

S
ta

rt
up

 d
el

ay
 r

ed
uc

tio
n 

pe
rc

en
ta

ge
 (

%
)

Number of segments (N
S
)

 

 

B = 2B
0

B = 3B
0

B = 4B
0

B = 5B
0

Figure 6.10 Percentage of reduction made in the startup delay of our original proposed

VOD protocol with UEP-rateless coding compared to the case where EEP-rateless coding

is employed.
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Figure 6.11 Percentage of reduction made in the startup delay of our modified proposed

VOD protocol with UEP-rateless coding compared to the case where EEP-rateless coding

is employed.

segments increases.

6.3 Conclusion

In this chapter, we studied application-layer UEP-rateless codes for two different

important video transmission problems. In our proposed schemes we have exploited
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two properties of video streams and showed that UEP-rateless codes can well be

applied to improve the efficiency of the systems. The first property of a video is that

not all the frames have equal importance. Some frames such as I-frames are more

important than other frames (such as P - and B-frames). The second property is that

video streams, as opposed to bulk data, should be recovered in sequence.

In our first problem, we proposed to protect three types of MPEG video frames,

i.e., I-, P -, and B-frames unequally according to their importance employing UEP-

rateless codes. We derived the analytical expression based on the frames dependencies

and found the optimum values of UEP-rateless codes parameters that results in an

efficient video transmission. Initially, we evaluated the performance of our algorithm

for asymptotic cases (large number of frames), and next we showed that similar gains

can be achieved when the number of frames is limited.

In the second problem, we proposed a novel periodic VOD broadcasting protocol

with unique features of error resiliency and low-startup delay employing UEP-rateless

codes. These features were acquired by dividing the video segments into two parti-

tions, and encoding each segment with a separate UEP-rateless code. We also showed

that our proposed VOD scheme can easily be modified for the case that clients have a

lower bandwidth than the server. Simulation results showed that our VOD broadcast-

ing protocols with UEP-rateless coding can decrease the startup delay considerably

compared to the case where EEP-rateless coding is employed, and it can provide loss

resiliency in contrast to some existing VOD protocols.
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CHAPTER 7

OPTIMIZED CROSS-LAYER FORWARD ERROR CORRECTION

CODING FOR H.264 AVC VIDEO TRANSMISSION

In this section, we investigate the design of UEP-rateless codes when fixed-rate FEC

coding is also present at physical layer.

7.1 Introduction

In video transmission systems, UEP FEC codes may be employed both at the AL and

PL. Recently, some schemes [130–132] have considered the precise tuning of EEP FEC

schemes at AL and PL. However, to the best of our knowledge, exiting schemes have

not investigated the cross-layer design of UEP FEC codes at AL and PL for prioritized

video transmission. Employing FEC codes at both layers introduces two interesting

tradeoffs that we investigate in this chapter. First, both FEC codes share a common

channel bandwidth to add their redundancy and the optimal ratio of overhead added

by each needs to be determined for a given channel SNR and bandwidth. Second,

since UEP can be provided at both layers, we need to find the optimal UEP/EEP

FEC setup to maximize the video PSNR. To tackle these tradeoffs we concurrently

tune the parameters of two FEC codes at both layers.

We use UEP-rateless codes [19, 20] at AL and rate-compatible punctured convo-

lutional (RCPC) codes [52] at PL. Next, we carry out a cross-layer optimization to

find the optimal parameters of both FEC codes by considering the relative priorities

of video packets. For known channel SNR (i.e., Es

N0
), we address the problem of as-
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signing optimal FEC code rate at the AL and PL layers to the individual priority

slices within the channel bit-rate limitations. The information about the channel

conditions can be obtained from the receiver in the form of channel side information

(CSI) [130, 133–136].

The scheme provides higher transmission reliability to the high priority slices at

the expense of the higher loss rates for low priority slices, and whenever necessary also

discards some low priority slices to meet the channel bit-rate limitations. We show

that adapting the FEC code rates to the slice priority reduces the overall expected

video distortion at the receiver. Our scheme does not assume retransmission of lost

slices.

LT codes have recently become popular in video transmission schemes due to

their low complexity [1]. Kushwaha et al. [137] used LT codes to encode group-

of-pictures (GOP) of each layer of H.264 SVC video for transmission over cognitive

radio wireless networks. Ahmad et al. [135] took advantage of the ratelessness of LT

codes and proposed an adaptive FEC scheme for video transmission over Internet by

employing feedback from receivers in the form of acknowledgement. Cataldi et al.

[136] proposed a novel LT code, called sliding-window raptor codes, with a higher

efficiency than regular LT codes. They used these codes to provide UEP for a two-

layer H.264 SVC scalable video. LT codes were also used in [138–143] to design the

streaming schemes with lower complexity.

Stockhammer et al. [130] defined the protocol stack, including the FEC coding at

AL and PL, for the multimedia broadcast multicast service (MBMS) download and

streaming in UMTS. In [130], a raptor code [2] is used at AL and the turbo code at

PL. Gomez and Bria [131] suggested employing the raptor codes as AL FEC in DVB-

H systems for mobile terminals and demonstrated its advantages over conventional

multi-protocol encapsulation (MPE) FEC. Conventional MPE FEC employs the Reed-

Solomon codes to encode the video stream; hence, it lacks the flexibility of LT coding
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at AL. Courtade and Wesel [132] considered a setup with LT coding at AL and FEC

coding at PL, and showed that the available channel bandwidth should be optimally

split between AL and PL FEC codes to improve the system performance.

7.2 Cross-Layer FEC Coding for H.264 Video Bitstream

In this section, we discuss a priority assignment scheme for H.264 AVC video slices,

design of LT and RCPC codes, and our proposed cross-layer FEC scheme. We consider

a unicast video transmission from a source node (at the transmitter) to a destination

node (at the receiver) in a single hop wireless network, and ignore the intermediate

network layers, i.e., transport layer (TL), network layer (NL), and link layer (LL).

This allows our algorithm to be employed with different exiting network protocols

stacks.

7.2.1 Priority Assignment for H.264 Video Slices

In H.264 AVC, the video frames are grouped into GOPs and each GOP is encoded as a

unit. For the sake of simplicity, we use a GOP length of 30 frames which corresponds

to a duration of one second. We encode each GOP independently by employing FEC

codes. We have used a fixed slice size configuration where macroblocks of a frame

are aggregated to form a fixed slice size. Let Ns be the average number of slices in

one second of the video. More details of the video encoding parameters are given in

Section 7.4.

We use the CMSE metric to determine the slice priority. All slices in a GOP

are distributed into r = 4 priority classes of equal size based on their CMSE value.

The priority 1 slices induce the highest distortion whereas the priority 4 slices induce

the least distortion to received video quality. Note that using more than four slice

priorities would result in a more accurate and flexible UEP coding at the cost of
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much higher complexity due to a larger number of design parameters. In fact, using

Ns priority levels would achieve the best performance where each slice is separately

protected based on its CMSE. On the other hand, using fewer than four priority levels

would limit the flexibility of our scheme and hence decrease its performance.

Let CMSEi denote the average CMSE of all slices in a priority class i. Therefore,

we have CMSE1 > CMSE2 > CMSE3 > CMSE4. Since CMSEi may vary consider-

ably for various videos depending on their content, we use the normalized CMSEi,

CMSEi = CMSEi
∑4

j=1
CMSEj

to represent the relative importance of a priority class. We

show CMSEi for six H.264 test video sequences in Table 7.1. These video sequences

have widely different spatial and temporal content.

Table 7.1 Normalized CMSE, CMSEi, for slices in different priorities of sample videos

Sequence CMSE1 CMSE2 CMSE3 CMSE4

Coastguard 0.61 0.22 0.12 0.05

Foreman 0.63 0.21 0.11 0.05

Bus 0.64 0.21 0.10 0.04

Football 0.65 0.21 0.10 0.04

Silent 0.68 0.2 0.09 0.03

Akiyo 0.85 0.12 0.03 0.01

Table 7.1 shows that the first five videos, which have very different characteristics

(such as slow, moderate, and high motion), have almost similar CMSEi values. We

also observed similar CMSEi values for other video sequences, such as Table Tennis

and Mother Daughter. However, Akiyo, which is a static sequence, has different
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CMSEi values than other sequences. The CMSEi values changed only slightly when

these videos were encoded at different bit rates (i.e., 512Kbps and 1Mbps) and slices

sizes (150bytes to 900bytes). When these videos are encoded at 840Kbps with 150byte

slices, we get Ns ≈ 700.

We choose the CMSEi values of Bus, which are similar to most other videos

discussed above, to tune our proposed cross-layer scheme for all videos in Section

V. Since the CMSEi values of Akiyo are different, we also study the performance of

the proposed cross-layer FEC scheme for Akiyo by using its own CMSEi values, and

compare it to the performance of the scheme designed using the CMSEi values of Bus

in Section VI.

7.2.2 Design of LT Codes at AL

The video slices may be either directly passed to PL or encoded using an EEP/UEP

LT code before passing to PL. Therefore, the AL-frames contain either uncoded or

LT coded video slices. When no LT coding is performed at AL, each video slice forms

an AL frame and the Ns AL-frames are given to the lower network layers. When the

LT coding is performed at AL, γtNs AL-frames, containing LT coded output symbols,

are generated from Ns video slices, where γt ≥ 1 denotes the LT coding overhead at

transmitter. Note that the size of each LT coded AL-frame is still 150bytes, i.e., same

as input video slice size, whereas the number of AL-frames increases to γtNs from Ns.

We emphasize that the transmitted LT overhead γt should not be confused with the

received LT coding overhead γr. Generally, γr 6= γt since some AL-frames may not

be correctly delivered to the receiver due to channel induced losses.

The parameters of the UEP LT code at AL are ki, i ∈ {1, . . . , 4} and γt, which

need to be optimized while considering the FEC at PL in the cross-layer setup. Since

all r = 4 priority levels have equal size, we have τ1 = τ2 = τ3 = τ4 = 1
4

(see Section

2.2). For EEP/UEP LT coding, we use the standard degree distribution Ωshok(x).

113



The γtNs LT coded symbols are randomly and uniformly generated; thus, they

are statistically independent and have equal importance. Therefore, only the EEP

FEC coding can be performed at PL when AL FEC coding is performed. On the

other hand, when video slices are passed to the lower layers without AL FEC coding,

the UEP FEC coding can be performed at PL based on the slices priority.

7.2.3 Design of RCPC Codes at PL

At PL, the cyclic redundancy check (CRC) bits are added to each AL-frame to detect

any RCPC decoding errors. We use the industry-standard CRC-8 defined by the

polynomial 1 + x2 + x4 + x6 + x7 + x8 [144]. Next, each AL-frame is encoded using

a UEP/EEP RCPC code. As mentioned earlier, we employ an RCPC code designed

in [52] with the mother code rate of R = 1
3

and memory M = 6. Based on the AL-

frame priority level, the RCPC codes may be punctured to get appropriate higher

rates. For four priority groups of AL-frames, we have R1 ≤ R2 ≤ R3 ≤ R4 and

Ri ∈
{

8
8
, 8

9
, 8

10
, 8

12
, 8

14
, 8

16
, 8

18
, 8

20
, 8

22
, 8

24

}

, where Ri represents the RCPC code rate of

priority i AL-frames. Therefore, the parameters that need to be tuned at PL are R1

through R4. For EEP RCPC codes, we have R1 = R2 = R3 = R4. We refer to a

frame encoded by the RCPC code as a PL-frame.

For the sake of simplicity and without the loss of generality, we assume that each

transmitted packet contains one PL-frame. Note that the number of PL-frames in a

packet does not affect the optimal cross-layer setup of FEC codes in our scheme. We

have used a conventional BPSK modulation and a simple AWGN channel. Our model

can be easily extended to the more complex channel models by using an appropriate

Pd in (2.11) from [52].
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7.2.4 System Model at Transmitter

Based on our discussions so far, we can use four combinations of cross-layer FEC

coding schemes at AL and PL (summarized in Table 7.2). Note that the FEC coding

is necessary at PL but optional at AL. We illustrate the layout of cross-layer FEC

schemes in Figure 7.1(a) for S-I and S-II schemes and in Figure 7.1(b) for S-III and

S-IV schemes. The cross-layer optimization of these FEC-schemes is discussed in

Section 7.3.

Table 7.2 Various combinations of cross-layer FEC coding schemes

Model S-I S-II S-III S-IV

AL FEC No FEC No FEC EEP UEP

PL FEC EEP UEP EEP EEP

In S-I and S-II, the FEC coding is applied only at PL. In S-I, the equal protection

(i.e., EEP RCPC coding) is provided to all frames regardless of their importance.

In S-II, the video slices are protected at PL with various protection levels based on

their priority by using the UEP RCPC coding. We expect this scheme to have a

considerably improved performance compared to S-I. Note that the priority of each

AL-frame is conveyed to PL by using the cross-layer communication. This setup

represents the schemes proposed in [34, 122, 123, 145–149].

In S-III and S-IV, FEC coding is applied at both AL and PL in a cross-layer

fashion. In S-III scheme, we add the FEC coding at AL by using regular EEP LT

codes to the base S-I setup. As we will see later, S-III cannot outperform S-I for

all channel conditions since LT codes require extra coding overhead. However, this

scheme has the ratelessness property, meaning that it can tolerate loss of the AL-

frames and still recover the original video slices after LT decoding. This is in contrast
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to S-I and S-II where the corrupted frames are considered lost. This setup represents

the cross-layer FEC schemes proposed in [130–132, 150–155].

In the proposed S-IV scheme, we apply the UEP LT codes where different slices

are protected according to their priority. This scheme benefits both from ratelessness

and UEP property. We expect this scheme to achieve the best performance. When LT

coding is applied at AL, the rateless coded symbols are uniformly generated and all

the encoded AL-frames have equal importance. As a result, using UEP FEC coding

at PL would not be beneficial. This is why we have used EEP FEC coding at PL in

the cross-layer S-III and S-IV schemes.

7.2.5 Decoding at Receiver

Let PERi denote the packet error rate of AL-frames of priority i at the receiver after

RCPC decoding and before LT decoding at AL. PERi can be computed using (2.10).

In S-I and S-II schemes, each AL-frame consists of an uncoded video slice (i.e., LT

coding is not performed at AL). Therefore, the video slice loss rate (VSLR) of slices

in priority i is VSLRi = PERi. In S-III and S-IV schemes, on the other hand, the LT

decoding should also be performed and the decoding error rate of LT codes should

be considered in VSLRi. In S-III and S-IV schemes, the EEP RCPC code is used

at PL, hence we have PER1=PER2=PER3=PER4=PER. In this case, we employ

(2.6) with γr = γtNs(1 − PER), degree distribution Ωshok(x) (2.3), and a given set

of ki, i ∈ {1, . . . , 4} to find the final LT decoding symbol error rates yi, i ∈ {1, . . . , 4}

for each priority at the receiver (see Section 2.2). If the symbol decoding error rate

of priority i is yi, then VSLRi = yi.
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(a) The proposed S-I and S-II cross-layer FEC

schemes. In these schemes, the video slices are priori-

tized at AL and UEP/EEP FEC coding is performed

only at PL. In S-I we have R1 = R2 = R3 = R4. Here,

TL, NL, and LL represent the transport, network, and

link layers, respectively.

Video 
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Priority 1 Priority 2 Priority 4Priority 3
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coding

NL, TL, and LL
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L

RCPC (R
1
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CRC calculation
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LEEP RCPC coding 

Modulation and transmission

(b) The proposed S-III and S-IV cross-layer FEC

schemes. In these schemes, the video slices are pri-

oritized at AL and two layers of FEC coding at AL

and PL are performed. We perform UEP/EEP LT

coding at AL and EEP RCPC coding at PL. In S-III,

we have k1 = k2 = k3 = k4 = 1 for EEP LT coding.

Figure 7.1 Setups of four cross-layer FEC schemes.

7.3 Cross-Layer Optimization of the Proposed FEC Schemes

In our cross-layer FEC schemes, we consider the following issues. First, the AL

and PL FEC codes share the same available channel bandwidth to add their coding
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redundancy. As the channel Es

N0
increases, the RCPC code rate at PL can be decreased.

Thus, more channel bandwidth becomes available for improving the LT coding at

AL. For low values of Es

N0
, assigning a higher portion of the available redundancy to

LT codes at AL may not improve the delivered video quality since almost all PL-

frames would be corrupted during transmission. Therefore, a stronger RCPC code

rate should be used at PL. This consumes a larger portion of the channel bandwidth

allowing only a weaker LT code at AL. Second, UEP FEC may be used either at AL

or PL. We study how using UEP relates to varying Es

N0
and the bandwidth portions

assigned to each FEC code. Third, the optimal FEC code rates for one scheme in

Table 7.2 may be substantially different from another scheme.

To find the optimal parameters for both the FEC schemes and the portion of

channel bandwidth they share, we discuss below the cross-layer optimization for the

four schemes given in Table 7.2.

7.3.1 Formulation of Optimization Problem

The goal of cross-layer optimization in our scheme is to deliver a video with the

highest possible PSNR for a given channel bandwidth C and SNR. Since computing

the video PSNR requires decoding the video at the receiver, it is not feasible to use

PSNR directly as the optimization metric due to its heavy computational complexity.

Therefore, we use a substitute function F to mathematically capture the behavior of

PSNR.

The PSNR of a video stream depends on the percentage of lost slices and their

CMSE values [31, 33]. However, the slice loss may not be linearly correlated to the

decrease in PSNR. Therefore, we define a function “normalized F”, denoted by F ,

to capture the behavior of PSNR based on the slice loss rates and their CMSE as
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follows:

F =
r
∑

i=1

CMSE
α
i VSLRi. (7.1)

In (7.1) we use a parameter α ≥ 0 that needs to be tuned so that F can correctly

capture the behavior of PSNR. Here, α adjusts the weight assigned to slices of each

priority level such that minimizing F results in maximizing the PSNR. Selecting the

optimal α is discussed in the next section.

To minimize F , we tune the parameters of the FEC codes at AL and PL. In S-I

scheme, the optimization function finds the optimal RCPC code rate R for a given

channel data rate C as

argmin
{R}

F = {R∗}

s.t. Ns(S + 1)R−1 ≤ C,

(7.2)

where S + 1 is the slice size S = 150bytes plus one byte CRC.

In S-II, the optimization parameters are R1 through R4, such that R1 ≤ R2 ≤

R3 ≤ R4. For this scheme, the optimization function can be written as

argmin
{R1,R2,R3,R4}

F = {R∗
1, R

∗
2, R

∗
3, R

∗
4}

s.t. Ns(S + 1)
4
∑

i=1

R−1
i

4
≤ C.

(7.3)

The optimization parameters for S-III are γt and R. In S-III, we have k1 = k2 =

k3 = k4 = 1 since EEP LT coding is used at AL. The channel data rate is shared

among the two FEC codes and needs to be tuned by selecting an appropriate γt. The

optimization function is

argmin
{γt,R}

F = {γ∗
t , R

∗}

s.t. γtNs(S + 1)R−1 ≤ C.

(7.4)

In S-IV, the UEP LT codes are used and optimization parameters are k1 through

k3, along with γt and R. Here, the value of k4 can be determined based on k1 through
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k3 since
∑r

j=1 kjτj = 1 (see Section 2.2). As a result, the optimization function is

argmin
{k1,k2,k3,γt,R}

F = {k∗
1, k

∗
2, k

∗
3, γ

∗
t , R

∗}

s.t. γtNs(S + 1)R−1 ≤ C.

(7.5)

The optimization of LT code’s parameters involves employing equation (2.6) for

various priority levels. Since (2.6) has a recursive form, it may not be represented

by a linear function. Furthermore, the concatenation of two FEC codes presents a

nonlinear optimization problem, which cannot be solved using linear programming

techniques. Therefore, we use the genetic algorithms (GA) to perform optimizations

[99, 100]. Although GA are computationally complex, they can give solutions which

are close to the global optimum [99, 100, 156]. There are numerous implementations

of GA. We used the GA toolbox available in Matlab [157]. For performance evaluation

of GA methods, we refer the interested readers to [100, 101].

7.3.2 Optimal Value of α

In Table 7.1, the normalized CMSE values (CMSEi) of the video sequences, except

Akiyo, were similar. Therefore, the optimal parameters computed for Bus video would

be almost optimal for the other four video sequences generated by the same encoding

parameters. We therefore use the CMSEi of the Bus video with data rate of 840Kbps

to perform our optimizations, followed by the Akiyo sequence. We implement our

cross-layer FEC setup including LT coding at AL and RCPC coding at PL for S-I

through S-IV (see Table 7.2) in Matlab environment.

In the first step, we find the optimal value of α such that minimizing F maximizes

PSNR of the decoded video. For this, we perform the optimization to minimize F for

various values of α and also compute the corresponding video PSNR. Note that the

value of α has no effect on a cross-layer scheme with EEP FEC code since all VSLRi’s

are equal in this case. Therefore, we perform our optimization for S-II, which is the
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simplest UEP FEC scheme. Note that using UEP LT coding at AL (in S-IV) does

not affect the optimal α. Table 7.3 reports the PSNR of the Bus video for various

values of α and ES

N0
for C = 1.4Mbps when F is minimized in S-II.

Table 7.3 PSNR of Bus video sequence for various values of α with optimized F for S-II.

ES

N0
1dB 2dB 3dB 4dB

α 1, 2 3 1, 2 3 1 2, 3 1 2, 3

PSNR 18.2 16.85 22.3 19.8 25.8 20.6 29.69 29

The value of α that concurrently maximizes the PSNR of the video for all values

of ES

N0
is α = 1. Although not shown in Table 7.3, the non-integer values of α and

α < 1 were also considered in optimization. α = 1 also gave the best results for

Akiyo.

7.3.3 Discussion of Cross-Layer Optimization Results

We report the cross-layer optimization results, including the FEC parameters (e.g.,

Ri, γt, and ki), V SLRi, normalized F , and non-normalized F for the CMSEi values of

Bus video. Note that F is calculated by replacing the CMSEi by the actual average

CMSEi for the video sequence under consideration. The results of all four FEC

schemes for three video sequences (Bus, Foreman and Coastguard) are reported in

Tables 7.4 through 7.7 for channel bit rate C = 1.4Mbps, and in Tables 7.8 through

7.11 for channel bit rate C = 1.8Mbps. The results for Akiyo are discussed in Section

7.4.

From Tables 7.4 and 7.5 (for 1.4Mbps channel bit rate), we observe that the use

of UEP RCPC coding at PL in S-II scheme achieves much better performance (i.e.,

lower FBus) than the EEP RCPC coding in S-I scheme. Both schemes do not use
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Table 7.4 Optimal cross-layer parameters for S-I scheme with C = 1.4Mbps

Es/N0 1dB 1.25dB 1.5dB 1.75dB 2dB 2.25dB 2.5dB 2.75dB 3dB 4dB 5dB

F 0.998 0.988 0.949 0.852 0.694 0.503 0.328 0.197 0.11 0.008 0

FBus 443.4 438.9 421.6 378.5 307.9 223.5 145.7 87.5 48.9 3.1 0

FF orem. 214.7 212.5 204.1 183.3 149.1 108.2 70.6 42.4 23.7 1.5 0

FCoast. 179.8 178.0 171.0 153.5 124.9 90.6 59.1 35.5 19.8 1.3 0

R 8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

VSLRi,∀i 0.998 0.988 0.949 0.852 0.693 0.503 0.328 0.197 0.11 0.007 0

FEC coding at AL. Similar performance is also observed in Tables 7.8 and 7.9 for

1.8Mbps channel bit rate.

Since the RCPC code rate of 8
12

at PL is not strong enough for Es
No

≤ 2dB, the

value of FBus in S-I scheme is high (FBus > 300 in Table 7.4) because many packet are

corrupted due to high channel errors. For a successful decoding in LT, the number

of error-free packets received should be above a threshold. As a result, S-III scheme

(which also uses RCPC with the same code rate as in S-I) achieves a lower performance

(higher value of FBus) than S-I for Es
No

≤ 2dB (see Tables 7.4 and 7.6). However, S-

III scheme achieves much better performance (FBus < 10) than S-I for Es
No

≥ 2.5dB

because fewer packets are now corrupted at PL and the LT coding becomes effective.

Table 7.10 shows a similar behavior at Es
No

≥ 1dB for channel bit rate of C = 1.8Mbps.

From Tables 7.6 and 7.7, we observe that the proposed S-IV scheme achieves much

lower values of FBus than S-III at all values of Es
No

for C = 1.4Mbps channel bit rate. A

similar behavior is also observed from Tables 7.10 and 7.11 for C = 1.8Mbps channel

bit rate. This demonstrates that using UEP LT codes at AL along with EEP RCPC

codes at PL gives a far superior performance than using the EEP codes at both layers.

From Table 7.7 for S-IV scheme, we observe an interesting tradeoff between the

code rates assigned to FEC codes at AL and PL. For lower values of Es
No

, a larger

122



Table 7.5 Optimal cross-layer parameters for S-II scheme with C = 1.4Mbps

Es/N0 1dB 1.25dB 1.5dB 1.75dB 2dB 2.25dB 2.5dB 2.75dB 3dB 4dB 5dB

F 0.172 0.163 0.158 0.111 0.077 0.059 0.05 0.046 0.041 0.003 0

FBus 76.1 72.2 70.1 49.3 34.0 25.9 22.1 20.4 17.9 1.1 0

FF orem. 30.2 28.4 27.4 21.8 14.3 10.3 8.4 7.6 7.7 0.5 0

FCoast. 30.7 29.1 28.2 20.5 14.3 11.1 9.5 8.8 7.4 0.5 0

R1
8
18

8
18

8
18

8
14

8
14

8
14

8
14

8
14

8
14

8
14

8
14

R2
8
16

8
16

8
16

8
14

8
14

8
14

8
14

8
14

8
12

8
12

8
12

R3
8
9

8
9

8
9

8
14

8
14

8
14

8
14

8
14

8
12

8
12

8
12

R4 1 1 1 1 1 1 1 1 8
12

8
12

8
12

VSLR1 0.007 0.003 0.001 0.072 0.036 0.017 0.008 0.004 0.001 0 0

VSLR2 0.063 0.033 0.0162 0.072 0.036 0.017 0.008 0.004 0.11 0.007 0

VSLR3 1 1 1 0.072 0.036 0.017 0.008 0.004 0.11 0.007 0

VSLR4 1 1 1 1 1 1 1 1 0.11 0.007 0

portion of the bit budget is assigned to RCPC codes at PL rather than LT codes

at AL because the LT coding cannot be effective when large number of packets are

corrupted due to channel errors. Furthermore, a stronger UEP (i.e., higher value of ki

to higher priority video slices) is provided at AL. For higher values of Es
No

, the RCPC

code rate is relatively high and more protection is provided to LT codes at AL. Also,

the UEP (i.e., value of ki) at AL is relatively less strong now. We observe a similar

behavior from Table 7.11 for C = 1.8Mbps channel bit rate.

Overall, the proposed S-IV scheme achieves the best performance at different

channel SNRs, followed by S-II scheme for Es
No

≤ 2.5dB (for C = 1.4Mbps) and

1dB (for C = 1.8Mbps). S-III outperforms S-II for other higher channel SNRs.

We observe similar results for Foreman and Coastguard videos. Therefore, we can

generally conclude that it is optimal to provide UEP at AL and EEP at PL using a

cross-layer design.
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Table 7.6 Optimal cross-layer parameters for S-III scheme with C = 1.4Mbps

Es/N0 1.75dB 2dB 2.25dB 2.5dB 2.75dB 3dB 4dB 5dB

F 1 0.972 0.268 0.022 0.021 0.017 0.007 0.006

FBus 444.3 431.9 119.2 9.8 9.3 5.3 2.1 0.8

FF orem. 215.1 209.1 57.7 4.7 4.5 2.6 1.0 0.4

FCoast. 180.2 175.2 48.3 4.0 3.8 2.1 0.8 0.3

R 8
12

8
12

8
12

8
12

8
12

8
10

8
10

8
9

γt 1.05 1.05 1.05 1.05 1.05 1.25 1.25 1.4

VSLRi,∀i 1 0.972 0.268 0.022 0.021 0.012 0.005 0.002

Note that the optimization is performed only once for a given set of CMSEi values,

a GOP structure, and a set of channel SNRs, and need not be run separately for each

GOP. The same set of optimized parameters can be used for any video stream with

similar properties.

7.4 Performance Evaluation of FEC Schemes For Test Videos

In this section, we evaluate the performance of our optimized cross-layer FEC schemes

for four CIF (352×288 pixels) video sequences, Bus, Foreman, Coastguard, and Akiyo.

These sequences were encoded using H.264/AVC JM 14.2 reference software [158] at

840Kbps and 150bytes slice size, for a GOP length of 30 frames with GOP structure

IDR B P B . . . P B at 30 frames/sec. The slices were formed using dispersed mode

FMO with two slice groups per frame. Two reference frames were used for predicting

the P and B frames, with error concealment enabled using temporal concealment and

spatial interpolation. We have used two channel transmission rates of C = 1.4 and

C = 1.8Mbps to study the performance over AWGN channels.

We used the slice loss rates reported in Tables 7.4 through 7.7 to evaluate the

average PSNR of three video sequences (Bus, Foreman, and Coastguard) in Figures
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Table 7.7 Optimal cross-layer parameters for S-IV with schemes C = 1.4Mbps

Es/N0 1dB 1.25dB 1.5dB 1.75dB 2dB 2.25dB 2.5dB 2.75dB 3dB 4dB 5dB

F 0.157 0.058 0.047 0.045 0.044 0.026 0.017 0.016 0.013 0.005 0.004

FBus 69.7 25.6 20.9 19.9 19.6 11.4 7.6 7.2 5.8 2.1 2.0

FF orem. 27.3 10.1 7.8 7.3 7.2 5.1 3.4 3.2 2.6 0.9 0.9

FCoast. 28.0 10.9 9.0 8.6 8.5 4.7 3.1 2.9 2.4 0.9 0.8

R 8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
10

8
10

8
10

γt 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.2 1.2 1.2

k1 2 1.4 1.4 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2

k2 2 1.3 1.3 1.3 1.3 1.1 1 1 1 1 1

k3 0 1.3 1.3 1.3 1.3 0.9 0.9 0.9 0.9 1 1

k4 0 0 0 0 0 0.8 0.9 0.9 0.9 0.8 0.8

VSLR1 0.004 0.014 0.004 0.002 0.002 0.015 0.008 0.008 0.006 0.002 0.002

VSLR2 0.004 0.021 0.007 0.004 0.003 0.024 0.025 0.024 0.019 0.007 0.007

VSLR3 1 0.021 0.007 0.004 0.003 0.064 0.043 0.041 0.034 0.007 0.007

VSLR4 1 1 1 1 1 0.107 0.043 0.041 0.034 0.028 0.026

7.2 through 7.4 for C = 1.4Mbps channel bit rate. Similarly, the slice loss rates

reported in Tables 7.8 through 7.11 were used to evaluate the average PSNR of these

video sequences in Figures 7.5 through 7.7 for C = 1.8Mbps channel bit rate. Figures

7.2 through 7.7 confirm that our proposed cross-layer S-IV scheme, with UEP FEC

coding at AL and EEP FEC coding at PL, achieves considerable improvement in

average video PSNR, especially at low values of Es

N0
. It outperforms S-II scheme, which

uses UEP RCPC code at PL, by about 2 ∼ 7dB for Es

N0
≤ 3.5dB (at C = 1.4Mbps)

and Es

N0
≤ 1.5dB (at C = 1.8Mbps). Only S-III has a comparable performance at

Es

N0
≥ 2.5dB for C = 1.4Mbps and 1dB for C = 1.8Mbps. However, at low values of

Es

N0
the S-IV scheme considerably outperforms S-III.

Although our cross-layer FEC parameters were optimized for Bus sequences, the
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Table 7.8 Optimal cross-layer parameters for S-I scheme with C = 1.8Mbps

Es/N0 0dB 0.25dB 0.5dB 0.75dB 1dB 1.25dB 1.5dB 1.75dB 2dB 2.25dB 2.5dB

F 0.514 0.343 0.211 0.119 0.064 0.033 0.016 0.008 0.003 0.002 0.001

FBus 228.4 152.4 93.7 52.9 28.4 14.7 7.1 3.6 1.3 0.9 0.4

FF orem. 110.6 73.8 45.4 25.6 13.8 7.1 3.4 1.7 0.6 0.4 0.2

FCoast. 92.6 61.8 38.0 21.4 11.5 5.9 2.9 1.4 0.5 0.4 0.2

R 8
16

8
16

8
16

8
16

8
16

8
16

8
16

8
16

8
16

8
16

8
16

VSLRi,∀i 0.514 0.343 0.211 0.119 0.064 0.033 0.016 0.008 0.003 0.002 0.001
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Figure 7.2 Average PSNR of Bus video for different channel SNRs at C = 1.4Mbps. The

PSNR for error free channel is 30.26dB.

average PSNR performance is similar for the other two test video sequences, i.e.,

Foreman and Coastguard. As mentioned earlier, both these sequences have different

characteristics than the Bus sequence.

Since Akiyo has considerably different values of CMSEi, the proposed S-IV scheme

designed by using Bus video’s CMSEi values would be suboptimal for Akiyo. In order

to study the effect of these CMSE variations, we also designed the S-IV scheme by

using the CMSEi values of Akiyo and compare its performance with its suboptimal

version. The optimization results are reported in Table 7.12 for C = 1.4Mbps. In

this table, we also included the suboptimal values of Fsub and PSNRsub, which were
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Figure 7.3 Average PSNR of Foreman video for different channel SNRs at C = 1.4Mbps.

The PSNR for error free channel is 36.9dB.
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Figure 7.4 Average PSNR of Coastguard video for different channel SNRs at C = 1.4Mbps.

The PSNR for error free channel is 32.1dB.
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Figure 7.5 Average PSNR of Bus video for different channel SNRs at C = 1.8Mbps. The

PSNR for error free channel is 30.26dB.
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Figure 7.6 Average PSNR of Foreman video for different channel SNRs at C = 1.8Mbps.

The PSNR for error free channel is 36.9dB.
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Figure 7.7 Average PSNR of Coastguard video for different channel SNRs at C = 1.8Mbps.

The PSNR for error free channel is 32.1dB.
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Table 7.9 Optimal cross-layer parameters for S-II scheme with C = 1.8Mbps

Es/N0 0dB 0.25dB 0.5dB 0.75dB 1dB 1.25dB 1.5dB 1.75dB 2dB 2.25dB 2.5dB

F 0.099 0.071 0.057 0.049 0.041 0.023 0.012 0.006 0.003 0.001 0.001

FBus 43.9 31.2 25.4 21.7 18.4 10.0 5.1 2.8 1.1 0.6 0.3

FF orem. 18.5 12.5 9.8 8.1 7.6 4.1 2.1 1.1 0.4 0.2 0.1

FCoast. 18.4 13.2 10.9 9.4 7.7 4.2 2.2 1.2 0.5 0.3 0.1

R1
8
20

8
20

8
20

8
20

8
18

8
18

8
18

8
18

8
18

8
18

8
18

R2
8
18

8
18

8
18

8
18

8
16

8
16

8
16

8
16

8
16

8
16

8
16

R3
8
18

8
18

8
18

8
18

8
16

8
16

8
16

8
16

8
16

8
16

8
16

R4
8
9

8
9

8
9

8
9

8
14

8
14

8
14

8
14

8
14

8
14

8
14

VSLR1 0.03 0.013 0.007 0.003 0.007 0.003 0.001 0.001 0 0 0

VSLR2 0.118 0.062 0.033 0.015 0.064 0.033 0.016 0.008 0.003 0.002 0.001

VSLR3 0.118 0.062 0.033 0.015 0.064 0.033 0.016 0.008 0.003 0.002 0.001

VSLR4 1 1 1 1 0.393 0.241 0.136 0.072 0.036 0.017 0.008

obtained by using the optimized parameters of Bus video from Table 7.7. The values

of PSNRopt and PSNRsub are also shown in Figure 7.8.

In Table 7.12 (for optimal schemes) and Table 7.7 (for suboptimal scheme), the LT

code overhead (i.e., γt) and RCPC code strength (R) are the same for both schemes,

whereas the values of LT code protection level ki for each priority class vary slightly

(e.g., k1 is higher for optimal scheme compared to the suboptimal scheme). Similarly,

the values of VSLRi for higher priority slices (which have the most impact on F and

PSNR) are similar in both tables, except for channel SNRs of 2.25, 2.5dB and 2.75dB

in the decreasing order of the difference in values. The maximum PSNR degradation

of the suboptimal scheme compared to the optimal scheme is 1.7dB at the channel

SNR of 2.25, with only about 0.1 to 0.3dB PSNR degradation at other channel SNRs.

We can, therefore, conclude that the performance of the proposed cross-layer FEC
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Table 7.10 Optimal cross-layer parameters for S-III scheme with C = 1.8Mbps

Es/N0 0.5dB 0.75dB 1dB 1.25dB 1.5dB 1.75dB 2dB 2.25dB 2.5dB

F 1 0.961 0.016 0.012 0.01 0.01 0.009 0.007 0.007

FBus 444.3 427.0 7.1 5.3 4.4 4.0 4.0 3.1 3.1

FF orem. 215.1 206.7 3.4 2.6 2.2 1.9 1.9 1.5 1.5

FCoast. 180.2 173.2 2.9 2.2 1.8 1.6 1.6 1.3 1.3

R 8
16

8
14

8
14

8
14

8
14

8
14

8
12

8
12

8
12

γt 1 1.15 1.15 1.15 1.15 1.15 1.2 1.2 1.2

VSLRi,∀i 1 0.961 0.016 0.012 0.01 0.009 0.009 0.007 0.007
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Figure 7.8 Average PSNR performance of the optimal and sub-optimal cross-layer FEC

scheme for the Akiyo video sequence.

scheme is not very sensitive to the precise values of normalized CMSE.

7.5 Conclusion

Previously, EEP and UEP FEC coding schemes have been used for video transmission

over lossy channels. However, the joint optimization of cross-layer UEP FEC codes

at the AL and PL for robust video transmission has never been considered. In this

chapter, we used the UEP LT coding at AL and RCPC coding at PL for robust H.264

video transmission over wireless channels. H.264 video slices were prioritized based
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Table 7.11 Optimal cross-layer parameters for S-IV scheme with C = 1.8Mbps

Es/N0 0dB 0.25dB 0.5dB 0.75dB 1dB 1.25dB 1.5dB 1.75dB 2dB 2.25dB 2.5dB

F 0.048 0.046 0.045 0.044 0.012 0.009 0.007 0.007 0.006 0.005 0.005

FBus 21.4 20.3 19.8 19.7 5.1 4.0 3.2 3.1 2.8 2.2 2.1

FF orem. 8.0 7.5 7.3 7.2 2.3 1.8 1.4 1.4 1.2 1.0 0.9

FCoast. 9.2 8.8 8.6 8.5 2.1 1.6 1.3 1.3 1.1 0.9 0.9

R 8
16

8
16

8
16

8
14

8
14

8
14

8
14

8
14

8
12

8
12

8
12

γt 1 1 1 1.15 1.15 1.15 1.15 1.15 1.2 1.2 1.2

k1 1.4 1.4 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2

k2 1.3 1.3 1.3 1.3 1 1 1 1 1 1 1

k3 1.3 1.3 1.3 1.3 0.9 0.9 1 1 1 1 1

k4 0 0 0 0 0.9 0.9 0.8 0.8 0.8 0.8 0.8

VSLR1 0.005 0.003 0.002 0.002 0.005 0.004 0.003 0.003 0.003 0.002 0.002

VSLR2 0.009 0.005 0.004 0.003 0.017 0.013 0.011 0.011 0.009 0.008 0.007

VSLR3 0.009 0.005 0.004 0.003 0.031 0.024 0.011 0.011 0.009 0.008 0.007

VSLR4 1 1 1 1 0.031 0.024 0.04 0.037 0.034 0.029 0.028

on their contribution to video quality. We performed the cross-layer optimization

to concurrently tune the FEC code parameters at both layers, to minimize the video

distortion and maximize the peak signal-to-noise ratio (PSNR). We observed that our

cross-layer FEC scheme outperformed other FEC schemes that either use the UEP

coding at PL alone or EEP FEC schemes at AL as well as PL. Further, we showed

that our optimization works well for different H.264 encoded video sequences, which

have widely different characteristics.
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Table 7.12 Optimal cross-layer parameters for S-IV at C = 1.4Mbps for Akiyo video

sequence

Es/N0 1dB 1.25dB 1.5dB 1.75dB 2dB 2.25dB 2.5dB 2.75dB 3dB 4dB 5dB

Fopt 1.111 0.600 0.287 0.243 0.229 0.223 0.221 0.219 0.215 0.066 0.062

Fsub 1.141 0.600 0.317 0.259 0.239 0.494 0.325 0.306 0.240 0.079 0.074

PSNRopt 29.78 38.36 40.39 40.6 41.0 41.12 41.15 41.15 41.23 45.62 45.96

PSNRsub 29.62 38.20 40.2 40.3 40.8 39.42 41.04 41.05 41.15 45.49 45.85

R 8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
10

8
10

8
10

γt 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.2 1.2 1.2

k1 2.3 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.3

k2 1.7 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1 1

k3 0 1.3 1 1 1 1 1 1 1 0.9 0.9

k4 0 0 0 0 0 0 0 0 0 0.8 0.8

VSLR1 0.001 0.014 0.001 0 0 0 0 0 0 0.001 0.001

VSLR2 0.012 0.021 0.014 0.008 0.006 0.005 0.005 0.004 0.004 0.008 0.007

VSLR3 1 0.021 0.039 0.024 0.018 0.016 0.015 0.015 0.013 0.015 0.014

VSLR4 1 1 1 1 1 1 1 1 1 0.028 0.027
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CHAPTER 8

DECENTRALIZED COMPRESSIVE DATA STORAGE IN WIRELESS

SENSOR NETWORKS

To increase the data persistence in wireless sensor networks (WSNs) with N nodes,

distributed data storage algorithms have been proposed to disseminate sensors read-

ings throughout the network so that a data collector can query an arbitrary small

subset of nodes to obtain all N readings [159, 160].

Recently, compressive sensing (CS) techniques [53, 57] have shown that a com-

pressible signal with length N can be reconstructed from only M ≪ N random

projections of the signal (also called measurements or compressed samples). Since

natural signals are known to be compressible due to strong spatial correlation of

sensor readings [56, 161, 162], CS can be exploited to design efficient data storage

algorithms.

Consequently, we design a decentralized compressive data storage algorithm (CStor-

age) that exploits the spatial correlation of the nodes reading and CS to considerably

reduce the total number of required transmissions for data storage. In CStorage, we

propose to form a CS measurement at each node by disseminating enough number of

readings throughout the network.

To disseminate the network readings, we take advantage of the broadcast property

of wireless channels to reduce the required number of transmissions. First, we employ

the well-known probabilistic broadcasting (PB) for data dissemination and propose

CStorage-P. In PB, no neighbor information or routing table is required for data
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dissemination. Nevertheless, PB has a parameter called forwarding probability that

needs to be optimized as the network changes and nodes need to be informed. In

a different approach for data dissemination, we assume nodes can obtain two-hop

neighbor information and design a parameterless and efficient data dissemination

algorithm referred to by alternating branching (AB), and design CStorage-B. Since

AB has no parameter to tune, CStorage-B is fully scalable and can automatically

adapt to drastic network topology changes. We will show both CStorage-P and

CStorage-B reduce the total number of transmissions compared to existing algorithms

for data storage in WSNs, while CStorage-B surpasses CStorage-P in the number of

transmissions.

To evaluate our proposed algorithms, we employ actual readings from a real WSN

[163] to evaluate the performance of our proposed schemes. Moreover, we investigate

how real readings should be vectorized (ordered) based on their spatial correlation

to obtain a compressible signal. We will show that vectorization problem based on

spatial correlation is equivalent to solving the well-known traveling salesman problem

(TSP).

Previously, Wang et. al. in [58] showed that sparse Φ matrices can satisfy CS

requirements and designed a data storage algorithm based on sparse Φ matrices. In

their work, some random nodes send their readings to randomly selected destinations

(Alg. I) or request readings from randomly selected sources (Alg. II) to form mea-

surements at network nodes. Authors in [56, 162, 164–167] proposed centralized data

collection algorithms where measurements are formed enroute and are collected at

a sink. These algorithms require routing tables and full topology knowledge, which

may not be always feasible in practical cases.

Further, Rabbat et. al. in [168] proposed to employ gossiping to disseminate all

the reading in the network. In gossiping, each node iteratively exchanges the value

they are maintaining with a random neighbor. After many iterations all network
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nodes would obtain the value of the reading and a measurements is formed at nodes.

Finally, authors in [62, 160, 169] proposed data storage algorithms for sensor

networks based on error correction codes. Although these algorithms are efficiently

designed, they have not exploited the compressibility of the signals in a sensor network

to reduce the number of transmissions.

8.1 Compressive Data Storage in WSNs Employing PB

In CStorage node nj , j ∈ {1, 2, . . . , N}, maintains a CS measurement yj, where yj =

φjx and φj is an N-dimensional row vector and x = [x1x2 . . . xN ]T is sensors readings.

Let Φtot = [φT
1 φT

2 . . . φT
N ]T and y

tot
= [y1y2 . . . yN ]T . Further, let ϕj,i be the element at

the jth row and the ith column of Φtot. The matrix Φtot is formed when nodes receive

various readings employing an underlying data dissemination algorithm. We will

propose two dissemination algorithms for this purpose. We first employ probabilistic

broadcasting and refer to the compressed storage scheme as CStorage-P. We also

propose another dissemination scheme called alternating branching, and refer to the

corresponding compressed storage scheme as CStorage-B.

When the transmissions are over, Φtot is formed distributively (as described in de-

tail later) in the network. The data collector queries M nodes for their measurements

yj and the corresponding φj maintained at each node, and forms y and Φ ∈ R
M×N .

Next, the data collector obtains x̂ an estimate of x employing basis pursuit by solving

(2.12).

8.1.1 CStorage-P Design

The CStorage-P algorithm is described in the following:

1. All nodes choose ϕj,j from N(0, 1) and initialize their measurement to yj =

ϕj,jxj , where N(0, 1) is the zero mean and unit variance Gaussian distribution.
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2. Ns nodes randomly select themselves as a source node and broadcast their

reading to their neighbors.

3. Upon reception of xi for the first time by node l, nl, performs the following:

(a) Chooses ϕl,i from N(0, 1) and adds ϕl,ixi to yl.

(b) Broadcasts xi with probability p (PB).

Based on this scheme, Φtot will be formed. We note that column j of Φtot corre-

sponds to dissemination of xj , sensor reading of node j, and row i of Φtot corresponds

to the measurements formed at node i.

To describe CStorage-P, let us consider a small network with N = 5 nodes as

shown in Figure 8.1 and investigate one PB of CStorage-P. At the beginning, we

have ϕi,j = 0 for all i 6= j, i, j ∈ {1, . . . , 5}. Assume n1 broadcasts x1. Since n2

and n3 are in the transmission range of n1, they would receive x1. Nodes n2 and n3

multiply x1 by ϕ2,1 and ϕ3,1 and add them to y2 and y3, respectively. Next, n2 and

n3 independently decide whether to broadcast x1 with probability p or not. Assume

that n2 decides to broadcast x1. Node n4 would receive x1 and adds ϕ4,1x1 to y4.

However, we assume that n3 and n4 decide not to rebroadcast x1. Thus, the PB of x1

is over and the matrix Φtot obtains the form of (8.1). As we can also read from Φtot,

x1 (corresponds to the 1th column of Φtot) contributes to CS measurements y1, y2, y3,

and y4. Note that in Figure 8.1, we have shown the transmitting nodes with a dark

color, while the rest of the nodes are shown by white color. The same procedure is

performed for Ns source nodes selected uniformly at random to form Φtot.

136



Φtot =









































ϕ1,1 0 0 0 0

ϕ2,1 ϕ2,2 0 0 0

ϕ3,1 0 ϕ3,3 0 0

ϕ4,1 0 0 ϕ4,4 0

0 0 0 0 ϕ5,5









































(8.1)
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4

x1

x1
x1

Figure 8.1 Network with N = 5 and n1 transmitting x1 employing PB.

8.1.2 Suitable Values of Ns and p

As shown in [55, 58], if a sparse Φ matrix has at least one non-zero placed randomly

in each row and independently from other rows then reconstruction of a signal x with

Ψ of DCT requires the same order of number of measurements as a dense ideal Φ. In

other words, the matrix Φ should be full rank (it should have M linearly independent

rows). We need to find the suitable values of Ns and p such that the collected M

rows of Φtot form a sparse Φ with the aforementioned properties while Ntot, the total

number of transmissions for the Ns disseminations, is minimized. If TPB(p) denote the

fraction of network nodes that perform the retransmission in a PB with forwarding

probability p (see section 2.8), each PB transmission requires TPB(p)N transmissions.

Therefore, we have Ntot = TPB(p)NNs.

Since Ns nodes select themselves uniformly at random, the placement of non-zeros

in each row is also random. Therefore, we need to investigate the independence of

non-zeros in rows of Φ. The entries ϕj,j (representing sensors own readings) are not

independent across rows since their location depends on where the data collector
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gathers the M measurements. For instance, if the data collector queries M nodes

with close proximity, nj through nj+M , we know exactly that ϕ1,j to ϕM,j+M are non-

zero. Therefore, these entries cannot satisfy the required placement independence of

non-zeros in the rows of ϕ. As a result, let us assume each node does not add its

own reading to its measurements unless it is a source node, and let the Φ′ denote

the resulting collected measurement matrix. Therefore, in Φ′ the Ns disseminated

readings (resulting in Ns almost dense columns) should assure that there are M

independent rows in Φ′. Note that Φ has always greater or equal number independent

rows than Φ′ due to having non-zero entries for sensors own readings. Therefore, if

Φ′ satisfies the required condition of sparse measurement matrices, Φ indeed meets

these criteria. In the following theorem we investigate the number of independent

rows in Φ′ as a function of Ns and p.

Theorem 8.1 Let an M × N matrix Φ′ be the measurement matrix obtained from

Φtot in CStorage-P when sensors do not add their own reading to their measurement

unless they are a source. Further, let RPB(p) be the fraction of nodes that receive

a transmission using PB with forwarding probability p (see Section 2.8). r(j), the

expected number of independent rows of Φ′ after the jth transmission (out of Ns

transmissions), is given by the following:

r(0) = 0,

r(j) = 1 − (1 − RPB(p))M−r(j−1)

+ r(j − 1), j ∈ {1, 2, . . . , Ns},

(8.2)

Proof. Clearly, if the network nodes receive a reading using PB uniformly then RPB(p)

would also be the probability that a particular node receives the reading. However,
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generally the dissemination is not uniform, e.g., nodes on the border and corners

of network receive fewer readings. Let RNs
(p) denote the probability that a node

receives all Ns transmissions. Clearly, in a uniform distribution RNs
(p) = RPB(p)Ns.

In [66, 67], authors have shown that for non-uniform dissemination we have

RPB(p)Ns ≤ RNs
(p) ≤ RPB(p),

which shows that it is more probable that a node receives all Ns transmissions when

disseminations is non-uniform. Therefore, we can assume all nodes uniformly receive

each PB with probability RPB(p).

Let t(j) denote the probability that at least one independent row is added to Φ′

after jth PB of CStorage-P. Further, let r(j) be the expected number of independent

rows in Φ′. At the beginning, Φ′ has no independent row; hence, we have r(0) = 0.

When the first broadcast is performed, if at least one node out of M nodes of interest

receives this broadcast one independent row is added to Φ′. Therefore, we have

t(1) = 1 − (1 − RPB(p))M ; hence, r(1) = 1 × t(1) = t(1). If at least one node has

received the first transmission, the next broadcast should be received by one node out

of M −1 nodes so that the number of independent rows increases to 2. Consequently,

the second transmission should be received by at least one of the M − r(1) nodes

in expectation so that a new independent row is added to Φ′. As a result, we have

t(2) = 1− (1−RPB(p))M−r(1) and r(2) = r(1)+1× t(2). Similarly, r(j) can be found

recursively as r(j) = r(j − 1) + 1 × t(j) with t(j) = 1 − (1 − RPB(p))M−r(j−1).
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As an example, we set N = 104 and M = 700 and employ Theorem 8.1 along

with the values of RPB(p) given in Figure 2.6 to find the number of independent rows

of Φ′ versus p and Ns as shown in Figure 8.2. Note that the expected number of

independent rows in Φ′ is a lower bound on the number of independent rows in Φ.

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0.98

0.985

0.99

0.995

1

r
(N

s
)/

M

 

 

Forwarding probability, p

Ns = 690

Ns = 695

Ns = 700

Ns = 701

Ns = 702

Ns = 720

Figure 8.2 Normalized number of independent rows, r(Ns)
M , versus p and Ns.

Figure 8.2 shows that for Ns ≥ M the number of independent rows of Φ′ ap-

proaches M for a large enough p and Φ′ becomes full rank. More importantly, it

shows that as Ns increases a suitable matrix can be generate with a smaller value

of p. Consequently, we see an interesting trade-off since increasing Ns increases

Ntot = TPB(p)NNs, while it reduces the required p and consequently TPB(p).

Using the results reported in Figure 8.2, we find Ntot for all values of p and Ns such

that r(Ns)
M

≥ 0.9999 as shown in Figure 8.3 (we have plotted Ntot versus Ns − M + 1

to have a better view on the values close to Ns = M on a log-scale axis). Note that

we have not fixed p to obtain the curve in Figure 8.3, but have rather relaxed the

value of p and searched for the minimum Ntot.

The aforementioned trade-off between Ns and Ntot can be observed in Figure 8.3,

and we can see that the number of transmissions is minimized when Ns is slightly

larger than M . Figure 8.3 shows that Ntot is minimized for Ns = 702, which is

obtained for p = 0.24 = p∗.
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Figure 8.3 The total number of transmissions Ntot required to generate a suitable Φ′ with

r(Ns)
M ≥ 0.9999 versus Ns − M + 1.

8.2 Compressive Data Storage in WSNs Employing CStorage-B

In this section, we propose a novel data dissemination algorithm referred to by alter-

nating branching (AB) that is independent of network topology (has no parameter

to tune). We will then employ AB for data dissemination in CStorage an propose

CStorage-B in Section 8.2.6.

8.2.1 Issues with PB Algorithm

Consider the nodes in Figure 8.4, where nt is about to rebroadcast a reading xi

(for instance using PB). Let nt,p be the parent of nt, from which nt has received xi.

Clearly, all nodes in N (nt,p) have received xi, where N (nt,p) denotes the set of one-

hop neighbors of nt,p. When nt performs the transmission, nodes in the gray shaded

area receive xi.

Clearly, to greedily minimize the total number of transmissions, the distance of

nt to nt,p (hence the size of gray area) should be maximized [170]. However, since in

PB nt blindly makes the forwarding decision regardless of its distance to nt,p, it may

be positioned close to nt,p and its transmission may be redundant. This is the first

issue in PB that results in redundant transmissions.
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nt,p

nt

nt,1

Figure 8.4 Structure of AB algorithm, where the current transmitter, nt, selects one next

transmitter, nt,1.

Authors in [170] proposed to employ the location of nodes obtained by GPS to

find a node nt that has the maximum distance with nt,p. However, GPS may be un-

available in many WSNs, while two hop-neighbor information can be easily obtained

at nodes. Therefore, we design alternating branching dissemination algorithm that

takes advantage of the two-hop neighbor information to find nodes that are possibly

the farthest from the current transmitter exploiting their neighbor information. This

resolves the first issue of PB.

The second issue with PB is that the local density of neighbors is not included

in the calculation of p. Therefore, nodes in network corners, close to borders, and in

sparse regions of network receive less number of transmissions. Although, there have

been several work that propose to locally tune p, they still have a parameter that needs

tuning based on network wide information. Authors in [171] propose SmartGossip,

which has several parameters (γ, T, µ1, µ2, σ, and δ) that are tuned based on network

parameters [171].

Authors in [172] proposed Smart Gossip, where nodes start forwarding dissemi-

nations with flooding (forwarding probability p = 1). As the time passes, each node

computes the forwarding probability of its parents based on the number of its re-

ceptions. Next, all nodes inform they parents by suggested forwarding probability.

Next, each node sets its forwarding probability as the maximum value suggested by
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its children. Such an algorithm, needs several disseminations from a single source so

that the forwarding probabilities are correctly tuned, while in CStorage each node

disseminates its reading only once. Further, nodes in Smart Gossip [172] need to be

aware of network diameter, which is varying and not always known to nodes.

Authors in [173] propose each parent to calculate the forwarding probability of

its children based on the number of their parents obtained from two-hop neighbor

information at nodes. When a node computes the forwarding probability of each one

of its children, it requires the network diameter, which again is network dependent

and not always known.

In [174], authors propose to locally select the number of next transmitters c.

They shows that there is an an optimal value of c∗ for which the dissemination

becomes reliable (identical to p∗ in PB). Therefore, scheme propose in [175] also has

a parameter that needs to be tuned and is network dependent similar to p∗.

Therefore, these algorithms require a network wide information to locally tune

the forwarding probability, which is not always possible. Consequently, we propose

each transmitter to select a fixed number of next transmitter(s) (regardless of any

network parameter) in AB To have a uniform dissemination throughout the network.

This ensures that there are enough number of transmitters even in sparse areas of

network, and results in uniform dissemination of xi regardless of the density of nodes

as we later see.

8.2.2 The Alternating Branching Design

Although, in large scale WSNs global routing tables may not be obtained, retrieving

one-hop and two-hop neighbor information is simple and requires a small number of

transmissions. If all nodes broadcast a hello message, every node obtains one-hop

neighbor information. If all nodes broadcast the list of their neighbors following all

hello messages of the first round, every node obtains two-hop neighbor information.
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Clearly, this results in 2N transmissions in total.

Based on our discussions, in AB we propose a node nt that is retransmitting xi to

be responsible to choose the next transmitter(s). Thus, nt has been selected to be a

transmitter by nt,p. Assume only one next transmitter nt,1 is chosen by nt. Because

all nodes in N (nt,p) have already received xi, the next transmitter of nt is selected

from N (nt)\N (nt,p) (nodes in the gray area of Figure 8.4).

The question here is how nt can find the (possibly) farthest node using only two-

hop neighbor information. Clearly, a neighbor of nt that has the minimum number

of common neighbors with nt,p is probably (and not necessarily) farthest node whose

transmission results potentially in the largest new covered area. We emphasize that

this is the best nt can do to find the farthest node when only two-hop neighbor

information is available. Consequently, nt chooses the next transmitter nt,1 such that

nt,1 = argmin
nt,l

|N (nt,l)
⋂

N (nt,p)|, (8.3)

where \ and
⋂

denote the subtraction and intersection of two sets. We note that 8.3

greedily maximizes the distance of nt with nt,1 using the only available information

at nt, which is two-hop neighbor information. Therefore, there may be other nodes in

the gray area of Figure 8.4 that have larger distance to nt compared to nt,1. However,

nt,1 is the farthest node nt could find using the information available to it.

Ideally, nt,1 is placed on the transmission border of nt and on the straight line

connecting nt and nt,p. Further in ideal case nt,1 has only one common neighbor with

nt,p, which is nt. We emphasize that we have shown the ideal setup for the sake of

simplicity and in our actual implementation next hop is not necessarily on the edge of

transmission range nor is on a straight line with nt,p (it is selected based on Equation

(8.3)).

Consider a source node ni that initiates the broadcast of xi and assume all its

neighbors rebroadcast xi. If we allow these nodes to choose only one next transmitter,
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and those transmitters to choose one transmitter again an so on, they will (ideally)

form straight lines of transmitters that emanate from ni and travel toward borders.

Clearly, such a dissemination will be incomplete in the network. Therefore, some

nodes should choose more than one next transmitter so that the transmitters branch

and multiply (as the branches of a tree multiply) and xi is well disseminated by an

increase in the number of transmitters.

Consider selecting two next transmitters by the current transmitter n′
t, as depicted

in Figure 8.5. We can see that as the number of next transmitters increases, the

overlapping area of their coverage also increases, hence their transmissions becomes

less efficient. Consequently, we propose to choose only two next transmitters when

branching occurs. Let n′
t,1, n

′
t,2 ∈ N (n′

t)\N (nt,p) denote the two next transmitters.

Similar to choosing one next transmitter nt,1, we can possibly provide the largest new

covered area by the transmission of n′
t,1, n′

t,2 when they have minimum number of

common neighbors with each other and with nt,p. Therefore, n′
t,1, n′

t,2 are selected

such that

n′
t,1, n

′
t,2 = argmin

nt,1,nt,2

|N (nt,1)
⋂

N (nt,2)
⋂

N (nt,p)|, (8.4)

as shown in Figure 8.5. Note that using (8.4), n′
t chooses two neighbors that are

potentially far, while they are not guaranteed to have the maximum distance to n′
t.

Again, this is the best n′
t can do employing two-hop neighbor information to select

the farthest nodes.

As discussed in Section 2.8, we have rt = O( log N
N

); hence, a node has O(log N)

neighbors from which the next transmitter(s) are selected. Therefore, finding a single

next transmitter based on (8.3) is finding the maximum entry among O(log N) entries,

which has complexity of O(log N). However, when (8.4) is employed to find two next

transmitters, each node searches among O(log2 N) combinations of its neighbors.

Finding common neighbors between three particualr nodes each having O(log N)
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neighbors, requires O(log2 N) operations. Therefore, selection of the next transmit-

ters based on (8.4) has the total complexity of O(log4 N). Consequently, AB has the

total complexity of O(log4 N). We emphasize that the processing complexity is usu-

ally not a concern in WSN nodes since the processing unit power consumption is much

smaller than power consumption by radio transceivers and actuators [176]. Therefore,

the main goal in designing CStorage is reducing the total number of transmissions.

n′
t,p

n′
t

n′
t,1

n′
t,2

Figure 8.5 Structure of AB algorithm, where the current transmitter, nt, selects two next

transmitters, nt,1 and nt,2.

The branching should occur frequently in random networks to ensure enough new

branches are produced to explore new uncovered areas especially when nodes are

sparse. Therefore, we propose to branch at every other transmitter. To control the

branching, we propose to include a single-bit binary counter as branching flag along

with xi. When nt wants to broadcast, it first checks the branching flag. If the flag

is 0, nt chooses one next transmitter and two otherwise. Next, it flips the flag, and

rebroadcasts xi along with the ID of the next transmitter(s) and the branching flag.

Clearly, if a node is selected as the next transmitter of xi but it has received it before,

the branch has been chosen from an area where xi has already been disseminated.

Therefore, this transmission is redundant and is ignored.

In Figure 8.4, nt receives xi with flag 0, and chooses nt,1. nt flips the flag to 1 and

performs the transmission. Hence, nt,1 now becomes the new transmitter n′
t. Since

the flag is 1, it performs the branching and chooses two next transmitters n′
t,1 and
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n′
t,2. n′

t flips the flag back to 0 and rebroadcasts xi along with the ID’s of n′
t,1 and

n′
t,2. Since the branching flag is 0 now, n′

t,1 and n′
t,2 choose only one next transmitter

and so on. Therefore, we refer to our algorithm by alternating branching (AB). ni

initiates the broadcast of xi with branching flag of 0. In Figure 8.6, we have shown

the dissemination of one reading using AB with the source node located in the center

of a A = 1 × 1 network with N = 104 nodes at four different progressive time snaps

until AB is completed.

In Figure 8.6, we can see that branches emanate from the source and are spread

towards borders. However, due to random placement of nodes the may not move

straightly toward edges. Further, we can see that branches may arrive at the same

node after a few steps and terminate. Further, we can see that the nodes that have

not received the transmission are well distributed throughout the network. In the

next section, we provide analysis of AB on a grid network and evaluate the fraction

of nodes that perform the transmission and receive the transmission.

8.2.3 Analysis of AB on Grids

Let us first investigate AB in an ideal grid setup. If we repeat the ideal pattern of

transmitting nodes shown in Figures 8.4 and 8.5, they form an isometric grid net-

work shown in Figure 8.7. We should note that isometric grids have been previously

considered in WSNs [177]. It is easy to see that the transmitters form hexagon cells.

Let rg ∈ {1, 2, . . .} denote the transmission range of nodes on the isometric grid

as multiples of grid-size (in Figure 8.7, we have rg = 1 and rg = 2 on left and right,

respectively). Following the solid black nodes in Figure 8.7, we can see that two

branches arrive at the same node (shown by a cross) after several steps and they

merge into one branch. Further, the nodes that have been shown by hollow circles

receive the reading but are not selected as next hop forwarders. Finally, the center

nodes that have been shown by squares do not receive the transmission from any
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Figure 8.6 Dissemination of a reading from the source node at the center (shown by a

star) using AB. The dark colored nodes are the transmitters forming branches, the light

colored nodes are the nodes that receive the reading, the white areas are the nodes that do

not receive the transmission. Figures belong to the same dissemination in progressive snap

times from left to right and up to down, until the dissemination is complete.
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Figure 8.7 Ideal implementation of AB that results in isometric grid. The transmitters are

shown with filled black circles, nodes that receive the transmission but do not retransmit

are shown by hollow circle, the nodes that do not receive the transmission are shown by gray

square (in the center of hexagons formed by transmitters), and arrows show the progress

direction of the branch. Clearly, transmitters form hexagon shaped cells. The left and the

right figures show the grid when the transmission range is one and two grid size, respectively.

node.

We may simply formulate the fraction of receivers and transmitters in ideal AB

on isometric grid. Since the whole network has the same hexagon shaped cells, the

fraction of nodes that transmit and receive are equal for a cell and the whole network.

The transmitters around a hexagon also belong to its neighboring hexagons too, while

the nodes inside a hexagon only belong to one cell. Using Figure 8.7 and the discussion

provided, the number of nodes that solely belong to one hexagon NH and the number

of nodes that do not receive a transmission in one hexagon NNR are given by

NH = 1 − 6rg + 6
2rg
∑

i=1

i and NNR = 1 + 6
rg−1
∑

i=1

i. (8.5)

Using (8.5), we find the fraction of nodes that receive a transmission, Rg, and the

fraction of nodes that perform the transmission, Tg, in a grid network in the following

lemma.

Lemma 8.1 In ideal AB on an isometric grid, for transmission range rg ∈ {1, 2, . . .},

the fraction of nodes that receive the transmission, Rg, and the fraction of nodes that
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perform the transmission, Tg, is the same for one hexagon and the whole network.

Therefore, we have

Rg =
NH − NR

NH
and Tg =

6

NH
. (8.6)

We also employ Monte-Carlo numerical simulations to find the average fraction

of receivers, Rr, and transmitters, Tr, when the deployment of nodes is random with

N = 104. Further, to perform a comparison with existing work, we assume nodes

in the random network are equipped with GPS [170], and also propose a second

implementation of alternating branching algorithm referred to by ABGPS. In ABGPS,

when the flag is 0 one next transmitter is selected from N (nt)\N (nt,p) such that it

is the farthest node to nt,p. Moreover, when the flag is 1 two next transmitters from

N (nt)\N (nt,p) are selected such that the total pairwise distance of nt,1, nt,2, and nt,p

is maximized. Such a selection also formes the structures shown in Figures 8.4 and

8.5. We denote the average fraction of receivers and transmitters in ABGPS by RGPS

and TGPS, respectively.

We increase the transmission range rt from its minimum value 12, i.e., threshold

of rt for which network becomes disconnected (as discussed in Section 2.8), to large

values where nodes are densely connected. The number of neighbors in isometric

grid cannot take all values in contrast to random networks and is given by 6
∑rg

i=1 i ∈

{6, 18, 36, . . .}. Figure 8.8, compares Rr, Rg, Tr, and Tg. Rr and Tr are plotted versus

the average number of neighbors since AB has no parameter to tune.

Figure 8.8 shows that AB provides almost constant fraction of receivers and trans-

mitters despite drastic changes in network topology. Therefore, if the network changes

over time AB automatically adapts to changes. This is in contrast to PB where RPB

and TPB are greatly affected by p. In addition, from Figure 8.8 we can observe that

although AB performs very close to ABGPS (ideal setup), while it eliminates the need

for GPS information.
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Figure 8.8 The average fraction of nodes receiving and transmitting in a dissemination for

AB. Rr, Rg, and RGPS denote the fraction of receivers in AB, AB on isometric grid, and

ABGPS , respectively. Further, Tr, Tg, and TGPS denote the fraction of transmitters in AB,

AB on isometric grid, and ABGPS , respectively.

We can also observe that as the transmission range increases, AB becomes more

efficient and Tr reduces while Rr increases, and its performance approaches that of

ABGPS. However, in ideal grid network the fraction of receivers drops as the networks

becomes dense. In addition, Figure 8.8 shows that isometric grid analysis of AB can

provide close estimates for Rr and Tr. This shows that AB performs close to grid

model on random networks although the neat hexagon shaped cells may not appear

due to random placement of nodes.

8.2.4 Distance Between Transmitters in Random Networks

In the grid model of AB, we considered next hops to be placed on the border of

transmission range of nt, which is not the case in random networks. We are interested

in the expected distance of nt with the next hops in random networks. Let d̄ denote

the expected distance between nt and the next forwarders, which we are interested

to be the farthest neighbor. Clearly, we are interested in having d̄ = rt, i.e., next

transmitter is as far as possible and located on the border of transmission.
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As mentioned earlier, authors in [170] employ the exact location of all neighbors

to select the farthest node as next transmitter using GPS. However, AB only uses the

two-hop neighbor information (which is a very limited information compared to exact

Euclidian location obtained from GPS) to perform a similar task. We are interested

to know how close AB performs to the ideal case where full nodes Euclidian location is

available. Therefore, in Figure 8.9 we compare d̄ in AB and the ideal case employing

extensive numerical simulations.
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Figure 8.9 The expected farthest node distance d̄ to nt in AB and ideal case using full

GPS information, shown along with the transmission range rt.

Figure 8.9 confirms that AB can perform very close to ideal case with full nodes

location knowledge. Therefore, we may assume AB is maximizing the distance of the

next transmitter to nt. Using this result, we can analytically find d̄. For the sake of

simplicity, let us assume the transmission range of nt is unit, i.e., rt = 1, and find d̄.

Let Xi be a random variable indicating the Euclidian distance of nt with a neighbor

in N (nt). The pdf and cdf of Xi are given by fXi
(d) = 2d, 0 ≤ d ≤ 1 and FXi

(d) = d2

[170]. The following lemma gives the pdf of a random variable defined as maximum

of several random variables.

Lemma 8.2 Let Xi, i = {1, 2, . . . , k} be i.i.d. random variables with the same cdf

FX(d), and let the random variable Xmax = max{X1, . . . , Xk}. FXmax
(d) the cdf of
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Xmax is FXmax
(d) = F k

X(d).

Proof. FXmax
(d) = P (Xmax ≤ d) = P (X1 ≤ d, . . . , Xk ≤ d) = P (X1 ≤ d) . . . P (Xk ≤

d) = F k
X(d).

Node nt maximizes the distance of the next forwarders from the set N (nt)\N (nt,p)

located in the gray area in Figure 8.4. The size of the shaded region is Asel =

d̄
2

√
4 − d̄2 + 2 arcsin d̄

2
[170].

The number of nodes in the shaded area is given by Nsel = N
A

Asel = ρAsel,

where ρ = N
A

is the density of nodes. Let Xmax = max{X1, . . . , Xk} be the random

variable denoting the distance of next transmitters to nt. Using Lemma 8.2, we

have FXmax
(d) ≈ d2Nsel . Consequently, the expected distance d̄ is simply obtained

by d̄ = E[Xmax], where E[.] denotes the expected value of a random variable. The

expected value of a random variable Z can be calculated from its cdf FZ(x) by E[Z] =

∫∞
0 (1 − FZ(x))dx − ∫ 0

−∞ FZ(x)dx. This gives

d̄ = E[Xmax] =
∫ 1

0
(1 − z2Nsel)dz,

= 1 − 1

2Nsel + 1

= 1 − 1

2ρ
[

d̄
2

√
4 − d̄2 + 2 arcsin d̄

2

]

+ 1

After a few simple mathematical operations, we obtain

ρ =
d̄

(1 − d̄)(d̄
√

4 − d̄2 + 4 arcsin d̄
2
)
. (8.7)

The value of d̄ may be obtained from (8.7) for any ρ. For instance, at average

number of neighbors equal to 22 we have d̄ = 0.963, and in the worst case for almost

disconnected network (average neighbor number of 12), we have d̄ = 0.93. Therefore,

the assumption that next forwarders are placed on the transmission range border of
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nt in grid networks is not far from reality in random networks. Therefore, Rg and Tg

may provide close estimates of Rr and Tr as shown in 8.8.

8.2.5 Dissemination Uniformity

As mentioned earlier, one of the main shortcomings of PB is that nodes that are close

to border and especially nodes located in the corners do not receive disseminations

as uniformly as nodes located in the center of the network due to having less number

of neighbors. This results in nonuniform data dissemination in PB. However, as we

observed in Figure 8.8, in AB the fraction of receivers and transmitter remains almost

constant independently from the number of neighbors.

First, assume the data collector queries the M nodes located in the center of the

network to obtain M measurements. These nodes will experience the best dissemina-

tions due to their centrality in the network. Let Rcen denote the average fraction of

these M nodes that receive a particular transmission. Next, assume the data collector

gathers M measurements from M nodes in a network corner, and let Rcor denote the

fraction of these M nodes that receive the same transmission.

To evaluate the dissemination uniformity of AB and PB, let us define dissemina-

tion uniformity µ = E[Rcen − Rcor]. Clearly, we are interested in a uniform dissem-

ination, which results in µ ≈ 0, i.e., nodes in the corner receive the disseminations

with the same probability as the nodes in the center of the network. We find µ for

PB and AB using extensive numerical simulations in Figure 8.10 for a network with

N = 104 nodes and M = 700. We increase the transmission range from the rt = 0.020

(almost disconnected) to rt = 0.034 (heavily connected) and find the average number

of neighbors. In PB, for each transmission range we set p = p∗ for RPB ≈ 0.7, i.e.,

70% of the network node receive the transmission. The values of p∗ for various rt’s in

PB are given in Table 8.1. To perform a comparison between these two algorithms,

we have also depicted Tr and TPB, the fraction of nodes that perform the transmission
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in AB and PB, respectively.

Table 8.1 Transmission range rt, and the corresponding average number of neighbors and

p∗.

rt 0.021 0.022 0.024 0.026 0.027 0.029 0.031 0.033 0.034

No of neigh. 13 16 18 21 24 27 30 33 37

p∗ 0.38 0.32 0.28 0.25 0.22 0.19 0.17 0.16 0.14
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Figure 8.10 Dissemination uniformity, µ, and the fraction of nodes that transmit in PB,

TPB , and in AB, Tr, versus rt and average number of neighbors in a random network.

Figure 8.10 confirm that the dissemination of AB is well uniform and almost the

same at the corners compared to the center of the network. In contrast, PB may not

provide a uniform dissemination at the corners. We can see that a uniform dissemi-

nation is obtained only for very large values of p where the number of transmission is

too high. The initial increase in µ for PB is due to lack of dissemination of readings

where readings are neither disseminated in corners nor in the center. However, as

analyzed earlier we expect PB to disseminate readings effectively for p ≈ p∗ where
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µ is too large compared to AB. The higher dissemination uniformity along with in-

dependence from network parameters as shown in Figure 8.8, makes AB a suitable

dissemination algorithms in WSNs not limited to CStorage.

8.2.6 CStorage-B Design

Similar to CStorage-P, in CStorage-B node nj , j ∈ {1, 2, . . . , N}, maintains a CS

measurement yj and after dissemination ΦN×N
tot is formed in the network, except that

AB replaces PB for data dissemination purpose. Consequently, the steps of CStorage-

B are as follows.

1. All nodes choose ϕj,j from N(0, 1) and initialize their measurement to yj =

ϕj,jxj .

2. Ns nodes randomly select themselves as a source node and broadcast their

reading to their neighbors with the single-bit flag set to 0.

3. Upon the reception of xi for the first time by node l, nl, it performs the following:

(a) Chooses ϕl,i from N(0, 1) and adds ϕl,ixi to yl.

(b) Checks to see if it has been selected as a next forwarder or is a direct

neighbor of source node, ni. If either of aforementioned conditions are

met, it checks xi’s single-bit flag. If the flag is 0, it chooses one next

transmitter using (8.3), or otherwise chooses two next transmitters using

(8.4). Finally, it flips the single-bit flag and rebroadcasts xi along with the

flag and the ID of the next forwarder(s) (AB).

After the transmissions are finished, Ns readings will be disseminated throughout

the network. Similar to CStorage-P, a data collector queries M measurements y and

the corresponding φj’s from an arbitrary set of M nodes and obtains the measurement

matrix Φ (which is subset of Φtot) and obtains x̂. We may rewrite Theorem 8.1 for
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CStorage-B to find the expected number of independent rows in Theorem 8.2 for Ns

disseminations. Similar to CStorage-P, let Φ′ be the measurement matrix formed in

CStorage-B when nodes add their own reading if and only if they are a source.

Theorem 8.2 .

Let an M×N matrix Φ′ be the measurement matrix obtained from Φtot in CStorage-

B when sensors do not add their own reading to their measurement unless they are a

source. Further, let Rr be the fraction of nodes that receive a transmission using AB

on a random network. r(j), the expected number of independent rows of Φ′ after the

jth transmission (out of Ns transmissions), is given by the following:

r(0) = 0,

r(j) = 1 − (1 − Rr)
M−r(j−1)

+ r(j − 1), j ∈ {1, 2, . . . , Ns},

(8.8)

Proof. Proof is similar to proof of Theorem 8.1, except that the fraction of nodes that

receive a dissemination is given by Rr.

Employing Theorem 8.2 along with Rr values reported in Figure 8.8 we plot the

normalized number of independent rows after Ns disseminations ( r(Ns)
M

) in Figure

8.11. Figure 8.11, shows that (similar to CStorage-P) Ns needs to be slightly larger

than M to form a measurement matrix Φ with M independent rows (becomes full

rank).

In the following section, we evaluate the performance of CStorage-P CStorage-B,

and compare them with existing schemes.
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Figure 8.11 Normalized number of independent rows, r(Ns)
M , in CStorage-B versus Ns and

the average number of neighbors.

8.3 Performance Evaluation

In this section, first we discuss the signal coefficients reordering to form a compressible

signal. Next, we evaluate the performance of CStorage-P and CStorage-B using

simulations and show that they can both reduce the total number of transmissions

for data storage compared to existing algorithms.

To perform the numerical simulations we employ the real temperature readings

data sets from EPFL’s SensorScope project, LUCE deployment [163]. We capture a

snapshot of the network temperature on 5/1/2007 at 12:1 as shown in Figure 8.12.

We will have N = 104 nodes randomly deployed A = 1× 1. In PB, we set rt = 0.025,

and in AB we vary rt from 0.02 (almost disconnected) to 0.038 (heavily connected).

We employ the normalized reconstruction error defined by e = ‖x−x̂‖2

‖x̂‖2
to evalu-

ate the reconstruction accuracy, where ‖.‖2 denotes the norm 2 of the signal. The

selection of M depends on the target reconstruction error of the signal x. Clearly,

e = 0 denotes perfect recovery. Without loss of generality, we set the target error to

et = 0.09 (while any other target e may be chosen). Employing dense Φ matrices,

we observe that M = 2 × 103 results in average reconstruction error of e ≈ 0.085.

Therefore, we fix the number of measurements to M = 2 × 103. Clearly, a smaller et

158



Figure 8.12 The captured snapshot of sensors temperature readings in EPFL’s SensorScope

project, LUCE deployment [163] on 5/1/2007 at 12:1.

necessitates choosing a larger M .

8.3.1 Signal Reordering

In most of the practical settings, N sensor nodes are deployed randomly in an area

A, e.g., they are thrown from an airplane. Hence, the nodes ID will be irrelevant to

their location. For instance, node n1 may be located close to nN . Clearly, the coeffi-

cients of a signal obtained by putting these readings together according to the ID of

their collecting node is a random signal and is not compressible due to lack of spatial

correlation between coefficients. Clearly, to take advantage of spatial correlation of

nodes reading, the coefficients that are placed together in x, should also represent

the readings from nodes that are located in close physical proximity in the network.

Despite its high importance in WSNs data collection, only few existing work have

addressed this issue and most work have assumed that the obtained signal is previ-

ously reordered and compressible. Note that signal reordering is basically finding a

mapping from N nodes’ ID to N signal coefficient indices.

Authors in [178] proposed to take advantage of the spatial correlation of readings

so that the readings of a node over time can be reconstructed using fewer measure-

ments exploiting neighboring nodes readings. This scheme considers the temporal
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correlation rather than spatial correlation; hence, it may not be applied to signal

obtained at a certain time instance.

Authors in [179], proposed a reordering algorithm referred to by SOPerm that

finds a permutation of a given signal coefficients such that it has a sparse representa-

tion in desired sparsifying basis Ψ. Authors propose a greedy algorithm to perform

the reordering. In SOPerm, signal x is assumed to be known, while in CStorage

measurements are known and the signal x is to be found.

The näıve method that one would come up with first is splitting the network area

into very narrow strips of the same width as proposed in [167] (and is referred to

by Horz-diff ). The strips contain nodes that have correlated readings when looked

along the strip. All the strips are put back to back and the two dimensional area A

is transformed into a one dimensional signal [167]. However, in this algorithm the

width of the strips needs to be tuned based on signal properties and the density of

nodes. For example, if the readings of the nodes in A are very slowly varying, wide

strips may be the best choice. Clearly, such a reordering scheme requires the signal

information, which is unknown to data collector.

As mentioned earlier, a signal x = [x1x2 . . . xN ]T becomes more compressible if

coefficients that are placed together in the signal are captured from nodes that are

also physically placed in close proximity so that the coefficients have high spatial

correlation [167]. In other words, the readings from nodes with close physical location

should have as close as possible coefficient indices number.

The simplest solution to this problem is to start from a random node and itera-

tively add the index of the next closest node that has not been previously included in

x. However, when many nodes have been greedily added, the reminding nodes may

be far apart in the network; hence, the last coefficients will not be correlated. This

results in a less compressive signal. To solve this problem, we need an intelligent algo-

rithm that avoids the far nodes to be added together and at the same time consecutive
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coefficients are selected so that their respective nodes are in close proximity.

A closer look at this problem reveals that this is a well-known problem in graph

theory called traveling salesman problem (TSP), where a salesman needs to travel

through N cities starting from a random one such that each city is visited once, close

cities are visited together, and the total distance traveled is minimized. Therefore,

there is a one-to-one mapping from our reordering problem to TSP, where cities

are network nodes and the selected route is the suitable reordering of the signal

coefficients. The reordering of a WSN reading based on TSP will be independent of

Ψ and will be only based on spatial correlation of readings.

Therefore, we may employ TSP solvers to find a suitable reordering by map-

ping N nodes to N cities. Finding the optimal solution of TSP is an NP-complete

problem [180]. However, there are numerous heuristics and greedy algorithms that

approximately solve TSP problem in linear time. We will employ Lin-Kernighan (LK)

heuristic [181] that finds close to optimal routes for TSP and offers a low complexity.

The complexity of LK heuristic has been shown to be O(N2.2) [182]. It is important

to note that this algorithm need to run only once at the data collector when the

network topology changes; hence, no computational burdens is imposed on network

nodes.

We pictorially compare Horz-diff [167], greedy ordering, and ordering based on

TSP using LK heuristic for a small random network with N = 100 nodes in Figure

8.13. We divide the area into 10 strips in Horz-diff. Figure 8.13, shows that LK can

find a better reordering so that reading of nodes with close proximity are mapped

to closer coefficients in x, and we can see huge jumps in the greedy algorithm that

results in less compressible signal. Note that in all these algorithms the data collector

should be aware of nodes location to perform the reordering and achieve a spatially

correlated signal. We emphasize that knowledge of nodes’ location of nodes is the

basic assumption in CStorage since otherwise it is purposeless to obtain a readings
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of an unknown location.

 

 

 

 

 

 

Horz-diff Greedy TSP

Figure 8.13 Various signal reordering algorithms to realize spatially correlated signals.

From left to right, Horz-diff, greedy ordering, and TSP ordering using LK heuristic [181].

The dashed line shows the order of nodes in the signal x.

To compare the efficiency of these reordering algorithms, we employ them to

reorder the real signal from LUCE Deployment with N = 104. We employ a dense

ΦM×N measurements matrix with M = 2 × 103. Among the reordering algorithms,

Horz-diff is the only one that has a parameter, number of strips, to tune. Therefore,

we plot e for all algorithms versus number of strips in Figure 8.14.
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Figure 8.14 The reconstruction error of various reordering algorithms, Horz-diff, greedy

ordering, and TSP ordering using LK heuristic [181]. The dashed line shows e when no

reordering is performed and coefficients are sorted based on their respective node ID.

Figure 8.14 shows that Horz-diff can achieve the best reconstruction accuracy,
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which shows a better reordering of the signal. However, as mentioned earlier the

optimal number of strips is signal and area dependent and is cannot be globally

optimized for all signal and fields. Nevertheless, it may represent the lower bound on

reconstruction error of our signal, e, based on its spatial correlation. In addition, we

can observe that the reordering of our signal based on TSP and LK heuristic provides

the next best reconstruction, which is close to the minimum achievable e using Horz-

diff. We remind that sorting based on TSP is independent from signal characteristics

and only depends on nodes location. Therefore, reordering of the signal based on

TSP using LK heuristic is an efficient reordering algorithm that is independent of the

signal properties. Hence, we employ TSP to perform the reordering of the signal in

our simulations in the next section.

8.3.2 Performance Evaluation of CStorage-P and CStorage-B

Based on our design for CStorage-P and CStorage-B, we should emphasis that the

dissemination phase (employing PB and AB) forms non-zero entries in the columns

of Φ corresponding to the Ns source nodes. Therefore the properties of the Φ matrix

is determined by the dissemination phase. In CStorage-P, the forwarding probability

p determines the fraction of nodes that receive a reading and determines the total

number of transmissions. Based on our discussion in Section 2.8, p should be accu-

rately tuned so that a high ratio of nodes receive the transmission while the minimum

number of transmissions is incurred. In our simulations, we set p = p∗ and investigate

CStorage-P in a randomly deployed network to see the suitable value of Ns for which

the desired Φ is constructed and et is achieved.

Similarly, in CStorage-B the columns of Φ are formed by disseminating the Ns

readings using AB. We will investigate CStorage-B in the same random network as

CStorage-P to find the appropriate value of Ns for which the desired Φ is constructed.

As Ns increases, the number of columns containing non-zeros (other than the diagonal
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entry) increases; hence, Ns = N results in generating a dense Φ. Nevertheless, such

a density is not required as discussed earlier and shown by our simulations.

We implement CStorage-P and CStorage-B, and find the reconstruction error, e,

by running a large number of iterations of data dissemination on randomly deployed

networks. We also run these algorithms on various random network deployments;

thus, we perform signal reordering based on TSP when the network changes. To run

the simulations for CStorage-P, first we set rt = 0.025 and plot e and Ntot versus

various values of p as shown in Figures 8.15 and 8.16. Next, we vary rt and set p = p∗

based on Table 8.1 and plot e and Ntot versus average number of neighbors and rt in

Figures 8.17 and 8.18. Similarly, Figures 8.19 and 8.20 show e and Ntot in CStorage-

B versus average number of neighbors. Throughout the simulations, we consider the

worst case and assume that the data collector is collecting the M readings from one

of the corners in the field.
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Figure 8.15 The reconstruction error e versus p in CStorage-P.

Figure 8.15 confirms that with Ns slightly larger than M = 2×103, the desired et

is achieved. Increasing Ns further does not improve the signal reconstruction accuracy

while it considerably increases the number of transmission as shown in Figure 8.16.

Further, Figure 8.15 shows that regardless of the value of Ns full reconstruction

is impossible for p < 0.24 ≈ pG. This shows that for p < 0.24 readings are not

disseminated in the network. Figure 8.18, shows that if the value of p is set to p∗ for
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Figure 8.16 The total number of transmissions Ntot versus versus p in CStorage-P.
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Figure 8.17 The reconstruction error e versus average number of neighbors and rt in

CStorage-P.

each network setup, CStorage-P can achieve the desired et for various network setups.

Similarly in Figure 8.19, we can see that for Ns = 2100 target reconstruction error

et = 0.09 has been achieved. Clearly, similar to CStorage-P increasing Ns further

does not contribute to the reconstruction quality of the signal. This figure confirms

that AB is a general and parameterless dissemination algorithm and its performance

is independent of the network parameters. This confirms our theoretical results from

Theorems 8.1 and 8.2 that for Ns slightly larger than M a suitable measurement

matrix Φ in both CStorage-P and CStorage-B.

We can see that in CStorage-P with Ns = 2100 and M = 2 × 103, for average
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Figure 8.18 The total number of transmissions Ntot versus average number of neighbors

and rt in CStorage-P.
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Figure 8.19 The reconstruction error e average number of neighbors and rt in CStorage-B.

number of neighbor of 13 (minimum number for connectivity) and 37 (densely con-

nected), we have Ntot = 5.31 × 106 and Ntot = 2.1 × 106, respectively, to achieve the

desired et. For the same network structures CStorage-B requires Ntot = 4.68×106 and

Ntot = 1.19× 106, respectively. AB requires 2N = 2× 104 transmission for hello mes-

sages to obtain two-hop neighbor information. This increases Ntot to Ntot = 4.7×106

and Ntot = 1.21× 106. Therefore, CStorage-B decreases Ntot by at least 11.8%, while

it can automatically match to network changes.
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Figure 8.20 The total number of transmissions Ntot versus average number of neighbors

and rt in CStorage-B.

8.3.3 Comparison with Existing Algorithms

CStorage-P and CStorage-B may be compared to existing algorithms that do not need

routing tables and are distributed. To the best of our knowledge, there are three such

stateless data dissemination algorithms for large scale WSNs simple Flooding [63],

dissemination using random walks [160], and dissemination using gossiping [168]. We

compare the performance of these algorithms in Table 8.2 for N = 104, M = 2× 103,

rt = 0.025, and et = 0.09 with Flooding and defer the comparison with Gossiping

and dissemination with random walks to future.

The simplest dissemination algorithm is the simple Flooding [63], which results in

Ntot = NsN = 2.1× 107 transmissions when used along with CS. Clearly, if CS is not

employed all N readings must be stored in all N nodes resulting in Ntot = N2 = 108

transmissions. Therefore, employing CS reduces the number of transmissions from

108 to 2.1 × 107, and CStorage-P and CStorage-B further reduces Ntot to 3.27 × 106

and 2.83 × 106, respectively.
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Table 8.2 Comparison of Ntot in CStorage with existing algorithms for et = 0.09.

Protocol Ntot Notes

CStorage-P 3.27 × 106

CStorage-B 2.81 × 106

Flooding w. CS 2.1 × 107 Ntot = NsN

Flooding w.o. CS 108 Ntot = N2

8.4 Conclusion

In this chapter, we proposed two distributed data storage algorithms using compres-

sive sensing (CS) referred to by CStorage-P and CStorage-B. These algorithms are

distributed and are suitable for WSNs where no routing tables may be obtained.

In CStorage-P, the readings of randomly selected network nodes are disseminated

throughout the networks using probabilistic broadcasting (PB) to form CS measure-

ments at nodes. After the dissemination phase, a data collector may query a small

arbitrary set of nodes to recover all readings.

CStorage-P has a parameter that needs to be tuned based on network parameters.

Hence, it may not be scalable and flexible to network changes. Therefore, we designed

a novel parameterless data dissemination algorithms referred to by alternating branch-

ing (AB) that requires two-hop neighbor information at nodes. AB can automatically

tune to network changes and requires less number of transmissions compared to PB.

We discussed the advantages of CStorage-P and CStorage-B and showed that they

can greatly decrease the total number of transmission for data storage compared to

Flooding.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this dissertation, we investigated the theory and applications of the novel class

of FEC codes called rateless or fountain codes in video transmission and wireless

sensor networks (WSN). We designed rateless codes for distributed data collection

[9, 10], rateless codes for high intermediate data delivery [5–7], and rateless codes

with feedback [11]. Next, we investigate the applications of unequal error protection

(UEP) rateless codes in video transmission systems. Further, we investigated the

properties of UEP-rateless codes when conventional FEC codes are considered in

physical layer (PL) in a video transmission system [12, 13]. Moreover, we reviewed

the emerging compressive sensing (CS) techniques that have close connections to FEC

coding theory, and designed an efficient data storage algorithm for WSNs employing

CS [14]. We summarize our contributions and our suggested future research in what

follows.

9.1 On The Intermediate Symbol Recovery Rate Of Rateless Codes

Although rateless codes are capacity achieving over erasure channels, in intermediate

range where the number of received output symbols is less than the minimum required

for full decoding of input symbols, few input symbols can be decoded. Previously, it

has been shown that the intermediate range of rateless codes is comprised of three

regions and for each region a rateless coding distribution that achieves optimal in-

termediate symbol recovery rate (ISRR) has been designed. However, the previously
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designed codes are optimal only in one region only.

Therefore, to design rateless codes with high ISRR in all three regions, we se-

lected one overhead from each region and designed rateless codes degree distributions

that have optimal ISRR at these three overheads employing multi-objective genetic

algorithms assuming channel erasure rate ε is not known to the encoder [5, 6]. We

designed numerous codes with (almost) optimal ISRR in all regions, by covering a

three dimensional pareto front (see Chapter 2.11).

Next, we assumed that an estimate of ε is available at the source and proposed

rateless coded symbol sorting (RCSS), which further improves the ISRR of the codes

we designed in the first step [6, 7]. RCSS employs the history of the previously trans-

mitted output symbols and their dependencies for decoding to reorder their trans-

mission such that each transmitted symbol has the highest probability of decoding an

input symbol at decoder (if correctly delivered) among the remaining ones. Further,

we modified RCSS to support varying ε and found the lower and upper bound on the

ISRR. Finally, we employed one of the designed codes for data delivery in DTNs and

showed that the ISRR can be greatly improved [8].

9.2 Distributed Unequal-Error-Protection Rateless Codes Over Erasure

Channels

We considered a distributed data collection using rateless codes for two sources where

disjoint sources need to deliver their rateless coded output symbols to a common

destination through a single relay. Data from sources may have different data block

lengths and different data importance levels. Consequently, we designed distributed

UEP-rateless (DU-rateless) codes that can provide UEP with unequal data lengths

[9, 10].

In DU-rateless codes, we optimized the coding parameters at each source and
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proposed to smartly combine the encoded symbols at the relay. The problem in DU-

rateless codes is to tune a degree distribution for each source and to design relaying

parameters to achieve (almost) minimal decoding error rates with a certain ratio

referred to by UEP gain. Similar to LT codes, DU-rateless codes are also universal

meaning that they are simultaneously near optimal for every erasure channel.

We employed And-Or tree analysis technique to study decoding of DU-rateless

codes. Next, we utilized our analytical results to design jointly optimize DU-rateless

codes parameters and obtained several close to optimal DU-rateless codes for various

setups. Performance comparison of the designed DU-rateless codes showed that they

fulfilled the expected UEP property with almost minimal error rates. We also showed

that although DU-rateless codes are designed for large message lengths, they can

be employed for finite message lengths as well. Finally, we showed that DU-rateless

codes surpass the performance of exiting LT codes in distributed rateless coding.

9.3 LT-SF Codes: LT Codes With Smart Feedback

We proposed LT-SF codes that are LT codes with smart feedback, which alleviate the

low performance of LT codes for short data-block lengths [11]. LT codes require only

a single feedback from decoder to inform the encoder (transmitter) of a successful

LT decoding. Although requiring a single feedback is an outstanding advantage of

LT codes, the available feedback channel remains unused during the transmission.

Therefore, we proposed to smartly employ the resource constrained and weak (low

data rate) feedback channel to inform the encoder from the status of decoder to

considerably increases the performance of LT codes for short data-block lengths.

In LT-S codes, the decoder may alternatively issue two types of feedback to inform

the encoder with the number of successfully decoded input symbols or request a

specific input symbol that makes the largest progress in the decoding of the data-

block. To generate the latter type of feedback, we proposed three novel algorithms
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(with a trade-off in their algorithm complexity and performance) that describe how to

analyze the decoder’s status and select suitable input symbols to request. We showed

that LT-SF codes considerably surpass existing algorithms in the number of required

output symbols (LT coded packets) for full decoding and the total number of required

feedbacks. Further, in contrast to previous work we considered a realistic feedback

channel with unknown or varying erasure rate and designed LT-SF codes with high

resiliency against feedback channel loss.

9.4 Unequal Error Protection Rateless Coding In Video Coding

We proposed to employ UEP-rateless codes to provide a higher perceived video qual-

ity for MEPG video transmission by providing more protection for video frames with

higher influence on the quality of the displayed video [12]. Namely, we provided the

highest and the lowest protection for I-frames and B-frames respectively. P -frames

receive decreasingly protection (lower than I-frames and higher than B-frames) ac-

cording to the frames dependencies in MPEG video stream structure. We derived the

analytical expression based on the frames dependencies and found the optimum val-

ues of UEP-rateless codes parameters that results in an efficient video transmission.

Initially, we evaluated the performance of our algorithm for asymptotic cases (large

number of frames), and next we showed that similar gains can be achieved when the

number of frames is limited.

Next, we proposed a novel periodic video-on-demand (VOD) broadcasting protocol

with unique features of error resiliency and low-startup delay employing UEP-rateless

codes [13]. These features were acquired by dividing the video segments into two

partitions, and encoding each segment with a separate UEP-rateless code. We also

showed that our proposed VOD scheme can easily be modified for the case that

clients have a lower bandwidth than the server. Simulation results showed that our

VOD broadcasting protocols with UEP-rateless coding can decrease the startup delay
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considerably compared to the case where EEP rateless coding is employed.

9.5 Optimized Cross-Layer Forward Error Correction Coding For H.264

Avc Video Transmission

In video transmission systems, UEP FEC codes may be employed both at the AL

and PL, while the cross-layer design of UEP FEC codes at AL and PL has not been

investigated. The two FEC codes (rateless codes at AL and RCPC codes at PL)

share a common channel bandwidth to add their redundancy and the optimal ratio

of overhead added by each needs to be determined for a given channel SNR and

bandwidth. Further, since UEP can be provided at both layers, we need to find the

optimal UEP/EEP FEC setup to maximize the video PSNR.

Therefore, investigate the cross-layer design of two codes and concurrently tuned

their parameters. We showed that our optimized schemes provide adapting the FEC

code rates to the slice priority reduces the overall expected video distortion at the

receiver. In our scheme, we provided higher transmission reliability to the high pri-

ority slices at the expense of the higher loss rates for low priority slices. We observed

that our cross-layer FEC scheme outperformed other FEC schemes that either use

the UEP coding at PL alone or EEP FEC schemes at AL as well as PL. Further, we

showed that our optimization works well for different H.264 encoded video sequences,

which have widely different characteristics.

9.6 Decentralized Compressive Data Storage In Wireless Sensor

Networks

We investigated the data persistence problem in WSNs and designed a new distributed

data storage algorithm referred to by CStorage, where nodes reading are disseminated

in the network nodes such that data collector can query an arbitrary small subset of
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nodes to obtain all readings [14]. We showed that compressive sensing (CS) can

be employed in CStorage since natural signals are compressible, and proposed to

form a CS measurements at each node by disseminating enough number of readings

throughout the network.

To disseminate the network readings, we employed the well-known probabilistic

broadcasting (PB) for data dissemination and proposed CStorage-P. In PB, no neigh-

bor information or routing table is required for data dissemination; nevertheless, PB

has a parameter called forwarding probability that needs to be optimized as the net-

work changes and nodes need to be informed. Therefore, we assume nodes can obtain

two-hop neighbor information and design a parameterless and efficient data dissem-

ination algorithm referred to by alternating branches (AB), and design CStorage-B.

Since AB has no parameter to tune, CStorage-B is fully scalable and can automati-

cally adapt to drastic network topology changes. We showed both CStorage-P and

CStorage-B reduce the total number of transmissions compared to case Flooding is

employed for data storage in WSNs.

9.7 Suggestion for Future Research

In this dissertation, we investigated several new research areas in rateless coding and

its connections with compressive sensing, wireless sensor networks, and multimedia

content transmission. In the following, we provide potential future research directions.

• To design rateless codes with high ISRR, we chose three overheads, one from

each intermediate region. Our selection is heuristic and the designed codes are

only guaranteed to optimally perform in the selected overheads. First, it should

be investigates if such a selection can also guarantee optimality throughout

the intermediate range. Further, as a next step the number and location of

optimization overheads should be studied.
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• The DU-rateless codes have been designed for two distributed sources for asymp-

totic setup. Extension of these codes for multiple distributed sources and their

design for finite length scenario are two interesting future research suggestions.

• Although LT-SF codes considerably improve the performance of LT codes in

finite length, they are not capacity achieving and are not necessarily optimal.

Therefore, optimal LT codes with feedback can be potentially studied and in-

vestigate.

• UEP-rateless codes have interesting application in audio and data transmission

schemes especially over the Internet, which needs to be further investigated.

• CStorage was designed for static WSNs. However, it may be simply extended

to mobile ad-hoc networks and DTNs as a next step.
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