
A PARALLEL ALGORITHM FOR FINDING ALL  

MINIMAL MAXIMUM SUBSEQUENCES VIA 

RANDOM-WALK THEORY 

 

 

   By 

      ZHU WANG 

   Bachelor of Science in Industrial Foreign Trade  

   University of Electronic Science and Technology 

   Chengdu, China 

   1993 

 

   Master of Science in Information Systems  

   Dakota State University 

   Madison, SD 

   2005 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   DOCTOR OF PHILOSOPHY 

   July, 2015  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215227145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 
 

A PARALLEL ALGORITHM FOR FINDING ALL  

MINIMAL MAXIMUM SUBSEQUENCES VIA 

RANDOM-WALK THEORY 

 

 

   Dissertation Approved: 

 

   Dr. H. K. Dai 

  Dissertation Adviser 

   Dr. Douglas R. Heisterkamp 

 

   Dr. M. H. Samadzadeh 

 

   Dr. Guoliang Fan 



iii 
Acknowledgements reflect the views of the author and are not endorsed by committee 

members or Oklahoma State University. 

ACKNOWLEDGEMENTS  

 

 

I would like to express my sincere appreciation to my advisor, Dr. H. K. Dai, for his 

inspiring guidance, continuous encouragement, and valuable critiques throughout my 

program of study at Oklahoma State University.  

I would also like to thank my committee members, Dr. Douglas R. Heisterkamp, Dr. M. 

H. Samadzadeh, and Dr. Guoliang Fan for their friendly guidance and helpful suggestion. 

Lastly, I would like to thank my parents, my wife, and my son for their support and 

encouragement.



iv 
 

Name: Zhu Wang   

 

Date of Degree: JULY, 2015 

  

Title of Study: A PARALLEL ALGORITHM FOR FINDING ALL MINIMAL 

MAXIMUM SUBSEQUENCES VIA RANDOM-WALK THEORY 

 

Major Field: Computer Science 

 

Abstract: A maximum contiguous subsequence of a real-valued sequence is a contiguous 

subsequence with the maximum cumulative sum. A minimal maximum contiguous 

subsequence is a minimal contiguous subsequence among all maximum ones of the 

sequence. Time- and space-efficient algorithms for finding the single or multiple 

contiguous subsequences of a real-valued sequence with large cumulative sums, in 

addition to its combinatorial appeal, have major applications such as in bioinformatics, 

pattern matching, and data mining. We have designed and implemented a domain-

decomposed parallel algorithm on cluster systems with Message Passing Interface that 

finds all minimal maximum subsequences of a random sample sequence from a normal 

distribution with negative mean. We find the structural decomposition of the sequence 

with overlapping common subsequences for adjacent processors that allow hosting 

processors to compute the minimal maximum subsequences of the sequence 

independently. Our study employs the theory of random walk to derive an approximate 

probabilistic length bound for common subsequences in an appropriate probabilistic 

setting, which is incorporated in the algorithm to facilitate the concurrent computation of 

all minimal maximum subsequences in hosting processors. We also present an empirical 

study of the speedup and efficiency achieved by the parallel algorithm with synthetic 

random data. 

 



v 
 

TABLE OF CONTENTS 

 

Chapter           Page 

 

1. INTRODUCTION .....................................................................................................1 

 

 1.1 All Minimal Maximum Subsequences Problem ................................................1 

 1.2 Applications .......................................................................................................5 

 

II. PRELIMINARIES ....................................................................................................8 

  

 2.1 Basic Definitions ................................................................................................8 

 2.2 Kadane’s Algorithm ...........................................................................................9 

 2.3 Smith’s Algorithm ...........................................................................................10 

 2.4 Parallel Algorithm to find Minimal Maximum Subsequence ..........................12 

 2.5 Ruzzo and Tompa’s Algorithm ........................................................................12 

 

III. STRUCTURAL DECOMPOSITIONS OF A SEQUENCE..................................16 

 

 3.1 Characterization of Monotonicity ....................................................................16 

 3.2 Maximal Monotone Subsequence with Starting Positive Term ......................17 

 3.3 PRAM Algorithm to Compute All Minimal Maximum Subsequences ...........19 

 3.4 Domain Decomposition of Input Sequence .....................................................22 

 3.5 Domain Decomposition of Input Sequence with Common Subsequences ......28 

 

IV. PROBABILISTIC ANALYSIS OF THE LOCALITY CONDITION VIA 

RANDOM WALK .................................................................................................37 

 

 4.1 Introduction to Random Walk .........................................................................38 

 4.2 Conditional Weak Descending Ladder Epoch .................................................39 

 4.3 Relations between Conditional and Unconditional First Weak Descending 

Ladder Epochs .......................................................................................................42 

 4.4 The Bounds on Expectations of Conditional and Unconditional First Weak 

Descending Ladder Epochs....................................................................................45 

 4.5 The Bounds on Variances of Conditional and Unconditional First Weak 

Descending Ladder Epochs....................................................................................52 

 

 



vi 
 

 

 

Chapter           Page 

 

V.  PARALLEL ALGORITHM ON CLUSTER SYSTEMS FOR COMPUTING MAX

................................................................................................................................62 

 

 5.1 Linear-Time Sequential Algorithm to Compute MAX ....................................62 

 5.2 All Nearest Smaller Values Sequential Algorithm  .........................................66 

 5.3 Range Minima Query .......................................................................................70 

 5.4 Parallel Algorithm to Find MAX on Cluster Systems .....................................73 

 5.5 Experiments .....................................................................................................75 

 

VI.  CONCLUSIONS ..................................................................................................84 

 

 5.1 Conclusions ......................................................................................................84 

 5.2 Future Work .....................................................................................................85 

 

REFERENCES ............................................................................................................89 

 



vii 
 

LIST OF TABLES 

 

 

Table            Page 

 

   5.1 Mean statistics for 5M data with N(-0.25,1) and 𝛿 = 3 .....................................77 

   5.2 Mean statistics for 5M data with N(-0.25,1) and 𝛿 = 4 .....................................79 

   5.3 Mean statistics for 5M data with N(-0.125,1) and 𝛿 = 3 ...................................80 

   5.4 Mean statistics for 5M data with N(-0.125,1) and 𝛿 = 4 ...................................80 
 



viii 
 

LIST OF FIGURES 

 

Figure            Page 

 

   1.1  Cumulative sums of prefixes ...............................................................................1 

   2.1  Example of Ruzzo and Tampa’s algorithm .......................................................15 

   3.1  Example of rm𝑋(𝑖) ............................................................................................23 

   3.2  Example of lm𝑋(𝑖) .............................................................................................23 

   3.3  Partition satisfies rm-closure condition .............................................................27 

   3.4  Partitioning 𝑋𝑖,𝑖+1 into 𝑋𝑖,𝑖+1
′ 𝑋𝑖,𝑖+1

′′  ....................................................................30 

   4.1  Ladder epochs ....................................................................................................39 

   4.2  The first weak descending ladder epochs ..........................................................40 

   5.1  An example input of MAX_Sequential .............................................................65 

   5.2  Speedup for 5M data with N(-0.25,1) and 𝛿 = 3 ...............................................77 

   5.3  Efficiency for 5M data with N(-0.25,1) and 𝛿 = 3 ............................................78 

   5.4  Unconditional speedups for data with N(-0.25,1) and 𝛿 = 3 ............................79 

   5.5  Conditional speedups for 5M data .....................................................................82 

   5.6  Unconditional speedups for 5M data .................................................................82 

   5.7  Conditional speedups for 10M data ...................................................................83 

   5.8  Unconditional speedups for 10M data ...............................................................83 

   5.9  Conditional speedups for 20M data ...................................................................84 

   5.10  Unconditional speedups for 20M data .............................................................84 

   5.11  Unconditional efficiencies for 5M data ...........................................................85 

   5.12  Unconditional efficiencies for 10M data .........................................................85 

   5.13  Unconditional efficiencies for 20M data .........................................................86 

 
 



1 
 

CHAPTER I 
 

INTRODUCTION 

 

1.1. All Minimal Maximum Subsequences Problem 

For a given sequence of real numbers, the maximum subsequence problem is the task to find the 

contiguous subsequence that has the maximum cumulative sum. The maximum subsequence 

problem has many applications in pattern matching, data mining, biomolecular sequence analysis, 

and other areas. 

According to Jon Bently in Programming Pearls [Ben00], the maximum subsequence problem 

was proposed by Ulf Grenander at Brown University in the two-dimensional form when he was 

developing a pattern-matching procedure for the digitized pictures. He needed to find the 

rectangular subarray with the maximum sum that could be used as the maximum likelihood 

estimator of a certain kind of pattern in the picture. The two-dimensional problem is often called 

maximum subarray problem. The initial algorithm by Grenander to solve the maximum subarray 

problem ran in 𝑂(𝑛6) time, so he simplified it to the one-dimensional form to obtain the insight 

into its structure.  

Given a sequence 𝑋 = (𝑥𝜂)𝜂=1
𝑛

 of n real-valued terms, the cumulative sum of a non-empty 

contiguous subsequence (𝑥𝜂)𝜂=𝑖
𝑗

 is ∑ 𝑥𝜂
𝑗
𝜂=𝑖 , where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, and the cumulative sum of the 

empty subsequence is 0. All subsequences addressed in our study are contiguous, so the terms  
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“subsequence” and “supersequence” will hereafter abbreviate “contiguous subsequence” and 

“contiguous supersequence”, respectively. The subsequence S with the maximum cumulative sum 

is the maximum subsequence of X. All nonempty prefixes and suffixes of S must have non-

negative cumulative sums, otherwise we can find a subsequence of S with higher cumulative sum 

by removing its prefix or suffix having the negative cumulative sum. A minimal maximum 

subsequence of 𝑋  is the minimal one with respect to subsequential containment among all 

maximum subsequences of X. The minimal constraint does not allow non-empty prefix or suffix 

that has non-positive cumulative sum. According to the above definition, all non-empty prefix or 

suffix of the minimal maximum subsequence must have positive cumulative sums. It is easy to 

see that 𝑋 contains no positive term if and only if the empty subsequence is the unique minimal 

maximum subsequence of 𝑋. In our study, empty minimal maximum subsequence is not allowed. 

For example, consider the sequence 

𝑋 = (−1, 4, −3,−1, 5,−4, 2, 3,−2, 1),  

the cumulative sums of the prefixes are plotted in Figure 1.1. 

The sequence X has two maximum subsequences: (4, −3,−1, 5, −4, 2, 3) and (5, −4, 2, 3), and 

the minimal maximum subsequence is (5, −4, 2, 3). The other maximum subsequence has a non-

empty prefix with zero cumulative sum, so it is not minimal. 

Grenander’s initial algorithm to solve the minimal maximum subsequence problem was in cubic 

time, then Michael Shamos designed an 𝑂(𝑛 log 𝑛) algorithm. After Shamos described the 

problem and its history to statistician Jay Kadane, he gave a linear time algorithm [Ben00]. The 

similar descriptions of the algorithm were also given by Bates and Constable [BC85] and Manber 

[Man89]. Smith also designed a recursive algorithm that ran in linear time based on divide-and-

conquer strategy [Smi87]. 
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Figure 1.1: Cumulative sums of prefixes 

Like many other maximum problems, it is worth finding the 2nd , 3rd , . . . , 𝑘th  minimal 

maximum subsequence of X. But what is exactly the 2nd minimal maximum subsequence? In the 

above example, the cumulative sum of the minimal maximum subsequence S1 is 6. Subsequence 

(5) has the 2nd largest cumulative sum among all the subsequences of X. However subsequence 

(5) overlaps S1, so it is hard to know how much independent information it can provide. Instead, 

subsequence (4) is the 2nd minimal maximum subsequence which is disjoint from S1. Very often 

in practical applications it is required to find many or all pairwise disjoint subsequences having 

cumulative sums above a prescribed threshold. Intuitively, we define the sequence of all 

successive minimal maximum subsequences (𝑆1, 𝑆2,  .  .  .  , 𝑆𝑖) of 𝑋 inductively as follows: 

1. The sequence 𝑆1 is a (non-empty) minimal maximum subsequence of 𝑋, and 

2. Assume that the sequence (𝑆1, 𝑆2,  .  .  .  , 𝑆𝑖) of non-empty subsequences of X, where 

𝑖 ≥  1 , has been constructed, the subsequence 𝑆𝑖+1  is a (non-empty) minimal 

subsequence (with respect to subsequential containment) among all non-empty maximum 
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subsequences (with respect to cumulative sum) that are disjoint from each of 

{𝑆1, 𝑆2,  .  .  .  , 𝑆𝑖}. 

As in the definition of minimal maximum subsequence, the minimality constraint on the 

maximum cumulative sums of 𝑆1 , 𝑆2 ,  . . .  is equivalent to the nonexistence of non-empty 

prefixes nor suffixes with non-positive cumulative sums. For the above example, the sequence of 

all successive minimal maximum subsequences of 𝑋  are 𝑆1 = (5,−4, 2, 3) , 𝑆2 = (4) , and 

𝑆3 = (1).  

If the order is not important, we can define all minimal maximum subsequences problem to be the 

task that finds the set of all successive minimal maximum subsequences. Ruzzo and Tompa 

proposed a linear time sequential algorithm for this problem [RT99]. If the 𝑘th  minimal 

maximum subsequence is to be selected, then sorting algorithms can be applied after Ruzzo and 

Tompa’s algorithm. 

The single or all minimal maximum subsequences can be solved sequentially in linear time, 

parallel algorithms are the only ways to speed up. Alk and Guenther developed a parallel 

algorithm on the parallel random access machine (PRAM) to solve minimal maximum 

subsequence problem in 𝑂(log 𝑛) time using a total of 𝑂(𝑛) operations [AG91]. Similar 𝑂(log 𝑛) 

time parallel algorithms were also developed on the PRAM model in [Wen95], [PD95], [QA99]. 

Alves, Caceres, and Song presented a parallel algorithm on the bulk synchronous parallel/coarse 

grained multicomputer (BSP/CGM) model that runs in 𝑂(𝑛/𝑝) parallel time with p processors 

[ACS03].  

For the all minimal maximum subsequences problem, Dai and Su presented a parallel algorithm 

in 𝑂(log 𝑛) time and 𝑂(𝑛) operations on the PRAM model [DS06]. Alves, Caceres, and Song 
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[ACS13] developed a parallel algorithm on the BSP/CGM model of p processors in 𝑂(𝑛/𝑝) 

computation time and 𝑂(1) communication rounds.  

The detailed background and researches for maximum subarray problem in two-dimensional form 

were described in Bae’s dissertation [Bae07]. Our studies only focus on maximum subsequences 

in one-dimensional form.  

1.2. Applications  

The original application of maximum subarray problem was for the pattern matching in digitized 

pictures which are consists of the two-dimensional array of pixels. After assign different scoring 

schemes, then some pattern matching problems can be converted into maximum subarray 

problem. For example, the brightness of a pixel can be measured with selected relative luminance 

formula. Then to find the brightest area of the picture is actually to find the maximum subarray. 

But the best algorithm so far runs in near cubic time [TT98], so applications in computer vision 

based on maximum subarray problem are still a big challenge. 

Efficient algorithms for computing the sequence of all successive minimal maximum 

subsequences of a given sequence are essential for statistical inference in large-scale biological 

sequence analysis. In biomolecular sequences, high (sub)sequence similarity usually implies 

significant structural or functional similarity (the first fact of biological sequence analysis in 

[Gus97]). When incorporating good scoring schemes, this provides a powerful statistical 

paradigm for identifying biologically significant functional regions in biomolecular sequences 

([KA90], [KD92], [KA93], and [RT99]), such as transmembrane regions [BBN
+
92], DNA 

binding domains [KB92], and regions of high charges [KBB91], [KB92] in protein analyses. 

A common approach is to employ an application-dependent scoring scheme that assigns a score 

to each single constituent of an examined biomolecular sequence, and then find all successive 
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minimal maximum subsequences of the underlying score sequence having large cumulative sums 

above a prescribed threshold. For example, transmembrane regions are rich in hydrophobic 

residues, so Kyte and Doolittle [KD92] designed hydropathy index for 20 amino acids ranging 

from -4.5 (least hydrophobic) to +4.5 (most hydrophobic). Then the transmembrane regions can 

be observed for the maximal subsequences. Karlin and Brendel [KB92] used the hydropathy 

index ranging from -5 to +3 to the human 𝛽2–adrenergic receptor sequence, and observed the 

maximal subsequences are corresponding to the known transmembrane regions.  

A theory of logarithmic odds ratios, developed in [KA90], yields an effective logarithmic 

likelihood-ratio scoring function in this context. The non-positivity of the expected score of a 

random single constituent tends to delimit unrealistic long runs of contiguous positive scores. 

Karlin and Brendal assigned the log likelihood ratio to each residue of the human 𝛽2-adrenergic 

receptor sequence, and they found that the maximum subsequences were similar to the ones 

obtained using hydropathy index, but were more pronounced. Karlin and Altschul [KA93] used 

the same scoring function in other protein sequences, tried to find multiple disjoint maximum 

subsequences, and the problem can be solved with Ruzzo and Tompa’s algorithm. 

Pasternack and Roth [PR09] applied maximum subsequence problem in extracting article text 

from HTML pages. To extract the article from the original HTML document is not easy because 

the large amount of less informative or unrelated elements such as navigation menus, forms, 

visual styles, images, advertisements, and etc. are also mixed in the same document. Pasternack 

and Roth tokenized the page into tags, words, and symbols, and each token is assigned a value by 

the token classifier. For example tags will have negative values, while words and symbols have 

positive values. Then the maximum subsequence of the page token sequence is corresponding to 

the text block.  



7 
 

The maximum subsequence problem can also be applied in data mining [TVP05], [Bae07]. Here 

is a trivial example. The sequence 𝑋 is (0, 1, 2, 0, 0, 0), where the 𝑖th term for 1 ≤ 𝑖 ≤ 6 of X is 

the number of customers whose age is within [10𝑖, 10(𝑖 +  1)) , and bought “ham”. After 

subtract 1/2 from each term, then the maximum subsequence of 𝑋 suggests that the corresponding 

age group from 20 to 39 is more likely to buy ham. 

1.3. Dissertation Outlines 

In chapter II, we review the sequential and parallel algorithms that solve minimal maximum 

subsequence problem and all minimal maximum subsequences problem.  

In chapter III, we study the structural decompositions of sequence 𝑋. The different structural 

decompositions of 𝑋  lead to different parallel algorithms to find all minimal maximum 

subsequences. We find a decomposition scheme that can decrease the communications among 

different processors. The basic idea is to introduce an overlapping common subsequence for two 

adjacent processors. 

In chapter IV, we analyze the bound on the length of common subsequences probabilistically for 

random sequences of normally-distributed terms via the theory of random walk.  

In Chapter V, we give a parallel algorithm on cluster systems to compute all minimal maximum 

subsequences based on previous structural decomposition with common subsequences. We 

implement the algorithm with Message Passing Interface (MPI) on the cluster at Oklahoma State 

University. The empirical study of the speedup and efficiency achieved by the parallel algorithm 

with synthetic random data is included. 

In Chapter VI, we provide the general conclusions and future work.  
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CHAPTER II 
 

PRELIMINARIES 

In this chapter we review the algorithms that find the single minimal maximum sequence and all 

minimal maximum sequences for the input sequence 𝑋.  

2.1. Basic Definitions 

For the input sequence 𝑋 = (𝑥𝜂)𝜂=1
𝑛

 of n real-valued terms, let 𝑝𝑠𝑖(𝑋)  and 𝑠𝑠𝑖(𝑋) denote the 

prefix sum and suffix sum of 𝑋, that is 𝑝𝑠𝑖(𝑋) = ∑ 𝑥𝜂
𝑖
𝜂=1 , 𝑠𝑠𝑖(𝑋) = ∑ 𝑥𝜂

𝑛
𝜂=𝑖  for 𝑖 ∈ [1, 𝑛], and 

𝑝𝑠0(𝑋) = 0. Also let 𝑠𝑚𝑖(𝑋)  denote the suffix maxima of 𝑋, i.e., for all 𝑖 ∈ [1, 𝑛], 𝑠𝑚𝑖(𝑋) =

𝑚𝑎𝑥{𝑝𝑠𝜂 | 𝜂 ∈ [𝑖, 𝑛]} . The maximum cumulative sum for the subsequence with starting index 𝑖, 

denote by 𝑚𝑖(𝑋) , can be calculated by 𝑚𝑖(𝑋) = 𝑠𝑚𝑖(𝑋) − 𝑝𝑠𝑖(𝑋) + 𝑥𝑖 , for each 𝑖 ∈ [1, 𝑛] . 

When the context is clear, we abbreviate the above notations to 𝑝𝑠𝑖 , 𝑠𝑠𝑖 , 𝑠𝑚𝑖 , and 𝑚𝑖  for 𝑖 ∈

[1, 𝑛]. Hence the maximum cumulative sum m of the minimal maximum subsequence of 𝑋 is 

given by 𝑚 = 𝑚𝑎𝑥{𝑚𝜂| 𝜂 ∈ [1, 𝑛]}.  

For a subsequence 𝑌 of 𝑋, let 𝛼(𝑌), 𝛽(𝑌), and 𝛾(𝑌) denote its starting index, ending index, and 

index subrange [𝛼(𝑌), 𝛽(𝑌)] in the context of 𝑋 respectively. If 𝑌 is empty, then 𝛾(𝑌) = ∅. Also 

let 𝛾+(𝑌) denote the set of all indices in 𝛾(𝑌) yielding positive terms of Y. In our discussions, the 

indices are always in the context of 𝑋 for both its subsequence 𝑌 and itself. 

 



9 
 

2.2. Kadane’s Algorithm 

Kadane’s algorithm sequentially scans the input sequence 𝑋 from left end to right end to find the 

minimal maximal subsequence of 𝑋. It is described in the following Algorithm 1. 

Algorithm 1: Kadane’s Algorithm 

Input: sequence 𝑋 = (𝑥𝜂)𝜂=1
𝑛

 

Output: the maximum cumulative sum 𝑚 , starting index 𝛼  and ending index 𝛽  of the first 

minimal maximum subsequence with the maximum cumulative sum 𝑚. 

Begin 

1. 𝑚 ∶= 0, 𝛼 ∶= 0, 𝛽 ∶= 0; 

2. 𝑐𝑠𝑢𝑚 ∶= 0, 𝑐𝛼 ∶= 1; 

3. for 𝑖 ∶= 1 to 𝑛 

if 𝑐𝑠𝑢𝑚 + 𝑥𝑖 ≤ 0 then 

 𝑐𝑠𝑢𝑚 ∶= 0, 𝑐𝛼 ∶= 𝑖 + 1; 

else  

 𝑐𝑠𝑢𝑚 ∶= 𝑐𝑠𝑢𝑚 + 𝑥𝑖; 

end if 

if 𝑚 < 𝑐𝑠𝑢𝑚 then 

 𝑚 ∶= 𝑐𝑠𝑢𝑚, 𝛼 ∶= 𝑐𝛼, 𝛽 ∶= 𝑖; 

end if 

 end for 

End 

Kadane’s algorithm follows the divide-and-conquer strategy. If we have found the maximum 

cumulative sum for the subsequence (𝑥𝜂)𝜂=1
𝑖−1

, then how do we find the maximum cumulative 

sum for the subsequence (𝑥𝜂)𝜂=1
𝑖

? The answer is to find the larger one between the maximum 

cumulative sum for the first 𝑖 − 1 terms and the current cumulative sum with ending index i, 
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which is done by the second if-statement inside the for-loop. The first if-statement is to find the 

starting index of the next possible minimal maximum subsequence. If the cumulative sum of a 

subsequence is less than or equal to 0, then it cannot be the prefix of a minimal maximum 

subsequence. It is easy to see that the run time is linear. 

Kadane’s algorithm is the first linear algorithm to solve the minimal maximum subsequence that 

is simple and fast.  

2.3. Smith’s Algorithm 

Smith’s recursive algorithm also runs in linear time to solve the minimal maximum subsequence 

problem.  

Algorithm 2: Smith’s Algorithm 

Input: sequence 𝑋 = (𝑥𝜂)𝜂=1
𝑛

 

Output: the maximum cumulative sum 𝑚 of the minimal maximum subsequence. 

Begin 

1. (𝑙𝑒𝑓𝑡, 𝑏𝑒𝑠𝑡, 𝑠𝑢𝑚, 𝑟𝑖𝑔ℎ𝑡) ∶= MaxSum (1, 𝑛); 

2. 𝑚 ∶= 𝑏𝑒𝑠𝑡; 

End 

 

Function MaxSum (𝑖, 𝑗) 

Input: subsequence (𝑥𝜂)𝜂=𝑖
𝑗

 

Output: tuple (𝑙𝑒𝑓𝑡, 𝑏𝑒𝑠𝑡, 𝑠𝑢𝑚, 𝑟𝑖𝑔ℎ𝑡), where 𝑙𝑒𝑓𝑡 = 𝑚𝑎𝑥{∑ 𝑥𝜂
𝑘
𝜂=𝑖 |𝑘 ∈ [𝑖, 𝑗]}, 𝑟𝑖𝑔ℎ𝑡 =

𝑚𝑎𝑥{∑ 𝑥𝜂
𝑗
𝜂=𝑘 |𝑘 ∈ [𝑖, 𝑗]}, 𝑠𝑢𝑚 = ∑ 𝑥𝜂

𝑗
𝜂=𝑖 , and 𝑏𝑒𝑠𝑡 is the maximum cumulative sum 𝑚 of the 

minimal maximum subsequence of the input. 
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Begin 

1. if 𝑖 == 𝑗 then 

return (𝑥𝑖, 𝑥𝑖, 𝑥𝑖, 𝑥𝑖); 

end if 

2. (𝑙𝑒𝑓𝑡1, 𝑏𝑒𝑠𝑡1, 𝑠𝑢𝑚1, 𝑟𝑖𝑔ℎ𝑡1) ∶= MaxSum (𝑖, (𝑖 + 𝑗)/2); 

3. (𝑙𝑒𝑓𝑡2, 𝑏𝑒𝑠𝑡2, 𝑠𝑢𝑚2, 𝑟𝑖𝑔ℎ𝑡2) ∶= MaxSum ((𝑖 + 𝑗)/2 + 1, 𝑗); 

4. return (max(𝑙𝑒𝑓𝑡1, 𝑠𝑢𝑚1 + 𝑙𝑒𝑓𝑡2), max(𝑏𝑒𝑠𝑡1, 𝑏𝑒𝑠𝑡2, 𝑟𝑖𝑔ℎ𝑡1 + 𝑙𝑒𝑓𝑡2), 

𝑠𝑢𝑚1 + sum2,max (𝑟𝑖𝑔ℎ𝑡2, 𝑟𝑖𝑔ℎ𝑡1 + 𝑠𝑢𝑚2)) ;  

   

End 

Smith’s algorithm is also based on divide-and-conquer strategy [Smi87]. Kadane’s algorithm 

splits the input sequence 𝑋 into (𝑥𝜂)𝜂=1
𝑛−1

 and 𝑥𝑛 , while Smith’s algorithm splits 𝑋 into halves. 

The maximum cumulative sum m of Smith’s algorithm can be searched recursively in the left half 

𝑋1, the right half 𝑋2, or the center of 𝑋. If the minimal maximum subsequence is in the center of 

𝑋, then maximum cumulative sum m is the sum of 𝑟𝑖𝑔ℎ𝑡1 (the maximum suffix sum of 𝑋1) and 

𝑙𝑒𝑓𝑡2 (the maximum prefix sum of 𝑋2). It can be proven by contradiction. For example, if the 

suffix sum of 𝑋1 is not the maximum one, then a larger suffix sum can be found which yields a 

larger cumulative sum of 𝑋 than the maximum cumulative sum m, which is impossible. 

Bentley created a similar recursive algorithm that searches the maximum cumulative sum among 

the three maxima in the center, the left half, and the right half respectively [Ben00]. The task to 

find the cumulative sum in the center will take 𝑂(𝑛) time which will in turn search the maximum 

suffix sum in the left half and the maximum prefix sum in the right half. Therefore the total time 

of his algorithm is 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑂(𝑛) , and solution is 𝑇(𝑛) = 𝑂(𝑛 log 𝑛) . Smith’s 

algorithm can avoid the linear search of maximum suffix sum and maximum prefix sum by 

adding the total cumulative sum of the subsequence to the output. For example in Step 4, 
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𝑙𝑒𝑓𝑡 ∶=  max (𝑙𝑒𝑓𝑡1, 𝑠𝑢𝑚1 + 𝑙𝑒𝑓𝑡2), which runs in constant time. The total time of Smith’s 

algorithm is 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑂(1), and solution is 𝑇(𝑛) = 𝑂(𝑛). 

2.4. Parallel Algorithm to find Minimal Maximum Subsequence 

Akl and Guenther’s parallel algorithm [AG91] on the PRAM model solves the single maximum 

subsequence problem in 𝑂(log 𝑛) parallel time using a total of 𝑂(𝑛) operations (work-optimal). 

For the sequence 𝑋 = (𝑥𝜂)𝜂=1
𝑛

, the maximum cumulative sum with starting index 𝑖  can be 

calculated by 𝑚𝑖(𝑋) = 𝑠𝑚𝑖(𝑋) − 𝑝𝑠𝑖(𝑋) + 𝑥𝑖, for 𝑖 ∈ [1, 𝑛], and the maximum cumulative sum 

of 𝑋 is 𝑚 = 𝑚𝑎𝑥{𝑚𝜂| 𝜂 ∈ [1, 𝑛]}.  Prefix-sums algorithm can be used to compute the sequence 

of prefix sum (𝑝𝑠𝜂)𝜂=1
𝑛

, suffix maxima (𝑠𝑚𝜂)𝜂=1
𝑛

, maximum cumulative sum (𝑚𝜂)𝜂=1
𝑛

 with 

starting index 𝜂, and the maximum cumulative sum m of X. With balanced binary tree method, 

prefix-sums can be solved in 𝑂(log 𝑛) time on exclusive read exclusive write (EREW) PRAM 

model [JáJ92].  

Wen implements Smith’s algorithm on EREW PRAM model, and it can also run in 𝑂(log 𝑛) time 

using ⌈𝑛/ log 𝑛⌉ processors [Wen95]. 

2.5. Ruzzo and Tompa’s Algorithm 

For the problem of finding all minimal maximum subsequences sequentially of 𝑋 = (𝑥𝜂)𝜂=1
𝑛

, the 

above linear-time sequential Kadane’s algorithm can be applied recursively by divide-and-

conquer strategy. The pairwise disjointness of all the minimal maximum subsequences suggests 

that we can first compute a minimal maximum subsequence, remove it, then search recursively in 

the remaining subsequences. The algorithm has a worst-case time complexity of Θ(𝑛2) . 

Empirical analyses of the algorithm [RT99] on synthetic data sets (sequences of independent and 
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identically distributed uniform random terms with negative mean) and score sequences of 

genomic data indicate that the running time grows at Θ(𝑛 log 𝑛). 

In order to circumvent the iterative dependency in computing the sequence of all minimal 

maximum subsequences, Ruzzo and Tompa [RT99] prove a structural characterization of the 

sequence as follows. Denote by MAX(𝑋) the set of all minimal maximum subsequences or their 

corresponding index subranges (when the context is clear) of a real-valued sequence 𝑋. 

Theorem 1 [RT99] For a non-empty real-valued sequence 𝑋, a non-empty subsequence 𝑆 of 𝑋 

is in MAX(𝑋) if and only if: 

1. [Monotonicity] The subsequence 𝑆 is monotone: every proper subsequence of 𝑆 has its 

cumulative sum less than that of 𝑆, and  

2. [Maximality of Monotonicity] The subsequence 𝑆  is maximal in 𝑋  with respect to 

monotonicity, that is, every proper supersequence of S contained in 𝑋 is not monotone.  

Hence, we also term MAX(𝑋) as the set of all maximal monotone subsequences of 𝑋. This gives a 

structural decomposition of 𝑋 into MAX(𝑋): 

1. Every non-empty monotone subsequence of 𝑋  is contained in a maximal monotone 

subsequence in MAX(𝑋); in particular, every positive term of 𝑋 is contained in a maximal 

monotone subsequence in MAX(𝑋), and  

2. The set MAX(𝑋) is a pairwise disjoint collection of all maximal monotone subsequences 

of 𝑋. 

Based on the structural characterization of MAX(𝑋), they presented a sequential algorithm that 

computes MAX(𝑋)  in 𝑂(𝑛)  optimal sequential time. The algorithm generalizes the above 

Kadane’s algorithm in a similar inductive and on-line fashion. It scans sequence 𝑋 from left to 
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right, and for each successive prefix 𝑃𝑖 = (𝑥𝜂)𝜂=1
𝑖

 of 𝑋  for 𝑖 ∈ [1, 𝑛 − 1] , the algorithm 

maintains the prefix sum 𝑝𝑠𝑖 and a complete list of 𝑘(𝑖) pairwise disjoint subsequences of 𝑃𝑖 in 

MAX(𝑃𝑖 ) : 𝑆1, 𝑆2,  .  .  .  , 𝑆𝑘(𝑖) . The sufficient statistics for each 𝑆 ∈ MAX(𝑃𝑖 )  are its index 

subrange [𝛼(𝑆), 𝛽(𝑆)] , starting prefix sum 𝐿(𝑆) = 𝑝𝑠𝛼(𝑆)−1  and ending prefix sum 𝑅(𝑆) =

𝑝𝑠𝛽(𝑆). The algorithm will find the next subsequence 𝑆𝑘(𝑖)+1 which contains the next positive 

term to the right of 𝑥𝑖. Then 𝑆𝑘(𝑖)+1 will be integrated with the list in the following process: 

1. The list is searched from right to left for the first 𝑆𝑗 satisfying 𝐿(𝑆𝑗) < 𝐿(𝑆𝑘(𝑖)+1).  

2. If there is no such 𝑆𝑗, then add 𝑆𝑘(𝑖)+1 to the end of the list. 

3. If there is such a 𝑆𝑗, and 𝑅(𝑆𝑗) ≥ 𝑅(𝑆𝑘(𝑖)+1), then add 𝑆𝑘(𝑖)+1 to the end of the list. 

4.  Otherwise (i.e., there is such a 𝑆𝑗, but 𝑅(𝑆𝑗) < 𝑅(𝑆𝑘(𝑖)+1) ), let 𝛽(𝑆𝑗) =  𝛽(𝑆𝑘(𝑖)+1), and 

remove 𝑆𝑗+1,  .  .  .  , 𝑆𝑘(𝑖) from the list (none of them is maximal) and reconsider the newly 

extended subsequence 𝑆𝑗 as in Step 1. 

For example, if input sequence 𝑋 = (−1, 4, −3,−1, 5, −4, 2, −2, 5,−2, 1) , and after read 

(−1, 4, −3,−1, 5, −4, 2, −2) , the list of disjoint subsequences is 𝑆1 = (4) , 𝑆2 = (5) , and 

𝑆3 = (2). The next subsequence is 𝑆4 = (5). The cumulative sums of the prefixes are plotted in 

following Figure 2.1. Since 𝐿(𝑆2) < 𝐿(𝑆4) and 𝑅(𝑆2) < 𝑅(𝑆4), according to Step 4, 𝑆2 will be 

augmented to include 𝑆4, then list will become to 𝑆1 = (4) and 𝑆2 = (5,−4, 2, −2, 5). 

A correct implementation of Steps 2 and 3 is needed to achieve the linear run time. In Step 2, if 

no 𝑆𝑗 exists, then all subsequences 𝑆1, 𝑆2,  .  .  .  , 𝑆𝑘(𝑖) are in MAX(𝑋), and they can be removed 

from the list. Also if Step 3 appended a subsequence 𝑆𝑘(𝑖)+1 to the end of list, then the discovered 

𝑆𝑗 should be preserved, thus we can avoid the redundant searching in Step 1 of the next iteration. 
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For example, a list of left smaller match of the starting prefix sum can be created for all the 

subsequences with the nearest smaller value algorithm [HH01]. 

 

Figure 2.1: Example of Ruzzo and Tampa’s algorithm. Bold lines are the 

subsequences in the current list, and the dotted line is the subsequence to be 

processed. 

In the next chapter, we introduce other structural decompositions of a sequence 𝑋 that lead to 

computing MAX(𝑋) with: (1) a parallel algorithm on the PRAM model [DS06] in logarithmic 

parallel time and optimal linear work, and (2) a domain-decomposed parallel algorithm 

implemented on cluster systems with MPI. 
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CHAPTER III 
 

STRUCTURAL DECOMPOSITIONS OF A SEQUENCE 

 

3.1 Characterization of Monotonicity 

Theorem 1 in Chapter II shows that every minimal maximal subsequence 𝑆 of 𝑋 is monotone: 

every proper subsequence of S has less cumulative sum than that of S, and S is a maximal 

monotone subsequence of 𝑋 . The algorithm to find the minimal maximal subsequences is 

equivalent to find those maximal monotone subsequences of 𝑋. The following characterization of 

monotonicity [DS06] yields an effective computation of the index subrange of a non-trivial 

monotone subsequence containing a given term of 𝑋. 

Lemma 2 Let 𝑋 be a non-empty real-valued sequence and 𝑌 be a non-empty subsequence of 

𝑋 (with index subrange [𝛼(𝑌), 𝛽(𝑌)]). The following statements are equivalent: 

1. 𝑌 is monotone in 𝑋.  

2. The starting prefix sum 𝑝𝑠𝛼(𝑌)−1(𝑋) of 𝑌 is the unique minimum and the ending prefix 

sum 𝑝𝑠𝛽(𝑌)(𝑋) of 𝑌 is the unique maximum of all 𝑝𝑠𝑖(X) for all 𝑖 ∈ [𝛼(𝑌), 𝛽(𝑌)]. 

3. All non-empty prefixes and non-empty suffixes of 𝑌 have positive cumulative sums. 
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The monotonicity constraint applies only to the starting and ending indices of a monotone 

subsequence, but not to the entire index subrange. The monotone subsequence can contain zero or 

negative terms, but those terms cannot be the either end of the monotone subsequence. For the 

subsequence 𝑋 = (−1, 4, −3,−1, 5, −4, 2, −2, 5, −2, 1) in Figure 2.1, the family of all monotone 

subsequences are (4), (5), (2), (5), (5, −4, 2,−2, 5), and (1).  

3.2 Maximal Monotone Subsequence with Starting Positive Term 

The parallel algorithm of Alk and Guenther [AG91] to find a single maximum subsequence 

focuses on computing the maximum cumulative sum concurrently with each possible starting 

index, but it disregards the monotonicity condition of all such subsequences. More work is 

required in order to reveal the structural decomposition of 𝑋 into MAX(𝑋).  

The key to the parallel implementation of finding MAX(𝑋) for sequence 𝑋 = (𝑥𝜂)𝜂=1
𝑛

 lies in the 

concurrent computation of the ending index of the maximal monotone subsequence constrained 

with the starting index 𝑖 ∈ [1, 𝑛]. According to Lemma 2, we only need to consider the positive 

terms of 𝑋 for the desired computation.  

Let 𝜖 ∶ 𝛾+(𝑋) → 𝛾(𝑋) be the function such that 𝜖(𝑖) denotes the ending index of the maximal 

monotone subsequence of 𝑋 constrained with the starting index 𝑖. The function 𝜖 is composed of 

the following two functions: 

1. The function 𝜖′ ∶ 𝛾+(𝑋) → [2, 𝑛 + 1] defined by: 

𝜖′ = {
min{ 𝜂 ∈ [𝑖 + 1, 𝑛]|𝑝𝑠𝑖−1 ≥ 𝑝𝑠𝜂} if the minimum exists,

𝑛 + 1 otherwise,
 

locates the least index 𝜂 ∈ [𝑖 + 1, 𝑛] such that 𝑝𝑠𝑖−1 ≥ 𝑝𝑠𝜂 if it exists.  

2. The function 𝜖′′ ∶ {𝜂 ∈ [1, 𝑛]2| 𝑖 ≤ 𝑗} → [1, 𝑛] defined by: 



18 
 

𝜖′′(𝑖, 𝑗)  =  min argmax{𝑝𝑠𝜂 | 𝜂 ∈ [𝑖, 𝑗]} , 

locates the least index 𝜂 ∈ [𝑖, 𝑗] such that 𝑝𝑠𝜂 is the maximum prefix sum of those of 𝑋 

over the index subrange [𝑖, 𝑗]. 

The following lemma shows that the function 𝜖 is the composition of 𝜖′ and 𝜖′′. 

Lemma 3 For the functions 𝜖 , 𝜖′ , and 𝜖′′  defined above, 𝜖(𝑖) = 𝜖′′(𝑖, 𝜖′(𝑖) − 1 )  for all 

𝑖 ∈ [1, 𝑛]. 

According to the definition, 𝜖′′(𝑖, 𝜖′(𝑖) − 1 ) is the index of the unique maximum prefix sum on 

[𝑖, 𝜖′(𝑖) − 1]. At the index 𝜖′(𝑖), prefix sum decreased, so it cannot be 𝜖(𝑖). Assume 𝜖(𝑖) is larger 

than 𝜖′(𝑖) , then the cumulative sum on index subrange  [𝑖, 𝜖(𝑖)]  must be larger than the 

cumulative sum on [𝜖′(𝑖) + 1, 𝜖(𝑖)], i.e., 𝑝𝑠𝜖(𝑖) − 𝑝𝑠𝑖−1 > 𝑝𝑠𝜖(𝑖) − 𝑝𝑠 𝜖′(𝑖) . This is impossible 

according to the definition of the function 𝜖′, so 𝜖(𝑖) must be equal to 𝜖′′(𝑖, 𝜖′(𝑖) − 1 ).  

For the above input subsequence 𝑋 = (−1, 4,−3,−1, 5, −4, 2, −2, 5, −2, 1)  in Figure 2.1,      

 𝜖(2) =  𝜖′′(2,  𝜖′(2) − 1 ) = 𝜖′′(2, 3) = 2 , 𝜖(5) = 𝜖′′(5, 11) = 9 , 𝜖(7) = 𝜖′′(7, 7) = 7 , 

𝜖(9) = 𝜖′′(9, 11) = 9, and 𝜖(11) = 𝜖′′(11, 11) = 11.  

The concurrent computation of 𝜖  for all the positive terms 𝑥𝜂  in X, generates the statistics 

MON(𝑋)  = {[𝑖, 𝜖(𝑖)] | 𝑖 ∈ 𝛾+(𝑋)}  which is the set of all index subranges of all maximal 

monotone subsequences of 𝑋  constrained with given positive starting terms. The following 

theorem [DS06] reveals the structural decomposition of 𝑋 into MON(𝑋), which refines MAX(𝑋)  

and provides a basis for a parallel computation of MAX(𝑋)  from MON(𝑋). 

Theorem 4 For a real-valued sequence 𝑋 , MON(𝑋)  satisfies the following parenthesis 

structure: 
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 Every positive term of 𝑋 has its index as the starting index of a unique index subrange in 1.

𝑀𝑂𝑁(𝑋),  

 For every pair of index subranges in 𝑀𝑂𝑁(𝑋), either they are disjoint or one is a 2.

subrange of the other, and  

 For every maximal monotone subsequence of 𝑋 in 𝑀𝐴𝑋(𝑋), its index subrange is in 3.

𝑀𝑂𝑁(𝑋).  

For the above example, there are three minimal maximal subsequences: (4), (5, −4, 2, −2, 5), 

and (1), and their index subranges are [2, 𝜖(2)] = [2, 2], [5, 𝜖(5)] = [5, 9], and [11, 𝜖(11)] =

[11, 11]  respectively. Index subranges [7, 𝜖(7)] = [7, 7]  and [9, 𝜖(9)] = [9, 9]  are also in 

MON(𝑋), but they are not the index subranges of the maximal subsequences in MAX(𝑋), instead 

they are contained by [5, 9].  

3.3 PRAM Algorithm to Compute 𝐌𝐀𝐗(𝑿) 

For two index subranges [𝑖1, 𝑗1] and [𝑖2, 𝑗2], if they are either disjoint or one is contained in the 

other, then we can define the range-composition function ∘ to select the rightmost or outmost 

index subrange from them:  

[𝑖1, 𝑗1]  ∘ [𝑖2, 𝑗2] =

{
 

 
[𝑖2, 𝑗2] if  𝑗1 < 𝑖2 ([𝑖1, 𝑗1] ∩ [𝑖2, 𝑗2] = ∅)  
[𝑖1, 𝑗1] if  𝑗2 < 𝑖1 ([𝑖1, 𝑗1] ∩ [𝑖2, 𝑗2] = ∅)  
[𝑖2, 𝑗2] if [𝑖1, 𝑗1] ⊆ [𝑖2, 𝑗2]

[𝑖1, 𝑗1] if [𝑖1, 𝑗1] ⊇ [𝑖2, 𝑗2]

  

Dai and Su designed the following PRAM algorithm to compute MON(𝑋), and compute MAX(𝑋) 

from MON(𝑋) using the range-composition function ∘. 
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Algorithm 3: Compute_MAX 

Input: Input sequence 𝑋 in an array of n real values 𝑥[1. . 𝑛]. 

Output: The sequence of all minimal maximum subsequences (that is, all maximal monotone 

subsequences) of 𝑋 occupying the low-order subarray of an array 𝑀[1. . ⌈𝑛/2⌉]  

Begin 

1. Compute the prefix sums of 𝑋  in an array s[1..n] such that 𝑠[𝑖] = ∑ 𝑥[𝜂]𝑖
𝜂=1  for all 

𝑖 ∈ [1, 𝑛]; 

2. Compute the function 𝜖 in an array 𝜖[1. . 𝑛] such that 𝜖[𝑖] denotes the ending index of 

the maximal monotone subsequence of 𝑋  constrained with the starting index 𝑖  as 

follows: 

2.1. Compute the function 𝜖′  in an array 𝜖′[1. . 𝑛], in which 𝜖′[𝑖] is the least index 

𝜂 ∈ [𝑖 + 1, 𝑛] such that 𝑠[𝑖 − 1]  ≥  𝑠[𝜂] if it exists, and 𝑛 + 1 otherwise; 

2.2. Compute the function 𝜖′′ in an array 𝜖′′[1. . 𝑛, 1. . 𝑛], in which 𝜖′′[𝑖, 𝑗] is the least 

index  𝜂 ∈ [𝑖, 𝑗]  such that 𝑠[𝜂] = max{𝑠[𝑘] | 𝑘 ∈ [𝑖, 𝑗]}; 

2.3. Compose 𝜖 from 𝜖′ and 𝜖′′ as follows: 

for all 𝑖 ∈ [1, 𝑛] in parallel do 

𝜖[𝑖] = 𝜖′′[𝑖, 𝜖′[𝑖] − 1]; 

end for; 

3. Compute MON(𝑋)  =  {[𝑖, 𝜖[𝑖]] | 𝑖 ∈ [1, 𝑛] with 𝑥[𝑖]  >  0}  (ordered according to the 

starting index) and pack all the index subranges of MON(X) in the low-order subarray of 

the array [1. . ⌈𝑛/2⌉] (|MAX(𝑋)|  ≤  ⌈𝑛/2⌉). 

4. Compute MAX(X) in the array 𝑀[1. . ⌈𝑛/2⌉] as follows: 

4.1. Compute the prefix sums of the (non-trivial) low-order subarray of 𝑀[1. . ⌈𝑛/2⌉] 

using the range-composition function ◦ for the prefix computation; 
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4.2. Pack all the distinct elements (pairwise disjoint index subranges) in the (non-

trivial) low-order subarray of 𝑀[1. . ⌈𝑛/2⌉]  in place, while maintaining their 

relative order (according to the starting index); 

End 

Step 1 is implemented by the prefix-sums algorithm [LF80] that runs in 𝑂(log 𝑛) time, using 

𝑂(𝑛) operations on the EREW PRAM. 

Step 2.1, the computation of 𝜖′, is reduced to the problem of all nearest smaller values of the 

sequence, which can be solved by an algorithm ([BBG
+
89], [Che95]) that runs in 𝑂(log 𝑛) time, 

using 𝑂(𝑛) operations on the EREW PRAM.  

Step 2.2, the computation of 𝜖′′, is reduced to the problem of range-minima, which can be solved 

by an algorithm [JáJ92] that runs in 𝑂(log 𝑛) time, using 𝑂(𝑛) operations on the EREW PRAM. 

Step 2.3, the computation of 𝜖, is executed in 𝑂(1) time, using 𝑂(𝑛) operations on the EREW 

PRAM. 

Step 3 is reduced to the problem of array packing, which can be solved by the prefix-sums 

algorithm.  

As for Step 4, Step 4.1 is a direct application of the prefix-sums algorithm, and Step 4.2 is 

reduced to array packing as in Step 3. 

Therefore for a length-n real-valued sequence X, the algorithm Compute_MAX computes the set 

MAX(𝑋) of all minimal maximum subsequences (that is, all maximal monotone subsequences) of 

𝑋 in 𝑂(log 𝑛) time using 𝑂(𝑛) operations (work-optimal) on the EREW PRAM model. 
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3.4 Domain Decomposition of 𝑿  

One of our initial research tasks was to adapt the logarithmic-time optimal-work parallel 

algorithm on practical parallel systems. However, in view of the efficient linear-time sequential 

algorithm [RT99], we devise and implement a domain-decomposed parallel algorithm computing 

MAX(𝑋) that employs the optimal sequential algorithm in subsequence-hosting processors. 

An ideal domain decomposition of a sequence 𝑋 is a partition of 𝑋 into a pairwise disjoint family 

𝒳 of non-empty subsequences of 𝑋 that are length-balanced and MAX-independent: MAX(𝑋) =

⋃ MAX(𝑌)𝑌∈𝒳  (𝑌 as a sequence in its own right). We first find a sufficient condition for the 

MAX-independence that MAX(𝑌) can be computed locally in subsequence-hosting processors.  

Lemma 3 shows that the ending index of the minimal maximum subsequence constrained with 

the starting index 𝑖 can be found in [𝑖 + 1, 𝜖′(𝑖) − 1], where 𝑝𝑠𝑖−1 ≥ 𝑝𝑠𝜖′(𝑖). The function 𝜖′ is 

equivalent to the following function rm𝑋 : γ+(𝑋) → [𝛼(𝑋) + 1, 𝛽(𝑋)] ∪ {𝛽(𝑋) + 1} (=

[2, 𝑛 + 1]) that is the nearest-smaller-or-equal right-match of 𝑝𝑠𝑖−1 of 𝑋 : 

 rm𝑋(𝑖) = {
min{𝜂 ∈ [𝑖 + 1, 𝛽(𝑋)] | 𝑝𝑠𝑖−1 ≥ 𝑝𝑠𝜂} if the minimum exists,

𝛽(𝑋) + 1 (= 𝑛 + 1) otherwise.
 

Similarly let function lm𝑋  : γ+(𝑋) → [𝛼(𝑋), 𝛽(𝑋) − 1] ∪ {𝛼(𝑋) − 1} (= [0, 𝑛 − 1]) denote the 

nearest-smaller left-match of 𝑝𝑠𝑖−1 of 𝑋 : 

 lm𝑋(𝑖) = {
max{𝜂 ∈ [𝛼(𝑋), 𝑖 − 1] | 𝑝𝑠𝑖−1 > 𝑝𝑠𝜂−1} if the maxmum exists,

𝛼(𝑋) − 1 (= 0) otherwise.
 

For the above input subsequence 𝑋 = (−1, 4,−3,−1, 5, −4, 2, −2, 5, −2, 1), Figure 3.1 and 

Figure 3.2 illustrate the computation of the two functions lmX and rmX.  
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Figure 3.1: Example of rm𝑋(𝑖). Dotted lines connected  𝑝𝑠𝑖−1 and 

 𝑝𝑠𝑟𝑚𝑋(𝑖) if rm𝑋(𝑖) exists. 

 

Figure 3.2: Example of lm𝑋(𝑖). Dotted lines connected  𝑝𝑠𝑖−1 and 

 𝑝𝑠lm𝑋(𝑖)−1 if lm𝑋(𝑖) exists. 
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From the definitions of lmX  and rmX , we note that both {[ lmX(𝑖), 𝑖] | 𝑖 ∈ γ+(𝑋)}  and 

{[ 𝑖, rmX(𝑖)] | 𝑖 ∈ γ+(𝑋)}  satisfy the parenthesis structure similar to that of MON — but 

permitting abutting index subranges (at subrange ends). The functions lmX and rmX help locate 

the starting index and ending index respectively of a maximal monotone subsequence of 𝑋 

containing the positive term 𝑥𝑖. In Ruzzo and Tompa’s algorithm, lmX is used to determine if 

multiple maximal monotone subsequences covering the index subrange [lm𝑋(𝑖),   𝑖]  should be 

merged. In Compute_MAX algorithm, rm𝑋  is used to search the ending index of a maximal 

monotone subsequence with given starting index  𝑖 in the index subrange [𝑖, rm𝑋(𝑖) − 1].  

Consider a sequential partition of a sequence 𝑋 into m consecutive subsequences 𝑋1, 𝑋2, . . . , 𝑋𝑚 

with which α𝑖
+ ∈ γ(𝑋𝑖) denotes the index of the first positive term of 𝑋𝑖 (if exists) for 𝑖 ∈ [1,𝑚] . 

Our goal is to find a sequential partition which is MAX-independent such that for each 

subsequence X𝑖, its hosting processor can find MAX(X𝑖) independently, and MAX(𝑋) is the union 

of all MAX(X𝑖). If such a sequential partition exists, then subsequences 𝑋1, 𝑋2, . . . , 𝑋𝑚 can be 

hosted by m processors and each processor will run optimal sequential algorithm to find MAX(X𝑖) 

independently. If the sequential partition that is MAX-independent, then the communication time 

among the processors can be minimized. 

When running Compute_MAX algorithm sequentially on a single processor, we can obtain the 

partition 𝑃0(𝑋)  =  (𝑋1, 𝑋2, . . . , 𝑋𝑚), where the index subrange of 𝑋1 is [𝛼(𝑋), rm𝑋1(𝛼1
+)], and 

index subrange of 𝑋𝑖  is [rm𝑋𝑖−1
(𝛼𝑖−1

+ ) + 1, rm𝑋𝑖(𝛼𝑖
+)] for 𝑖 ∈ [2,𝑚] . Notice that MAX(𝑋1) ⊆

MAX(𝑋) , because for any 𝑗 ∈ γ+(𝑋1) , the cumulative sum of (𝑥𝜂)𝜂=𝑗
rm𝑋1(𝛼1

+)
= 𝑝𝑠rm𝑋1(𝛼1

+) −

𝑝𝑠𝑗−1 ≤ 𝑝𝑠rm𝑋1(𝛼1
+) − 𝑝𝑠𝛼1+−1 ≤ 0 , so the maximal monotone subsequences of 𝑋1  must be 

maximal monotone in 𝑋 according to Theorem 1. Because of the pairwise disjoint property of 

MAX(𝑋), after excluding MAX(𝑋𝑖−1) from MAX(𝑋), we can recursively obtain that MAX(𝑋𝑖) ⊆
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MAX(𝑋) for 𝑖 ∈ [2,𝑚]. On the other hand, for any maximal monotone subsequence in MAX(𝑋), 

we can find a maximal monotone subsequence with the same starting index in one of the 𝑋𝑖, and 

they must have the same ending index using the same reasoning above. Therefore the partition 

𝑃0(𝑋)  is MAX-independent. From partition 𝑃0(𝑋)  we can also obtain other partitions by 

concatenating multiple consecutive subsequences of 𝑃0(𝑋) into a longer subsequence. Generally 

we have the following two lemmas. 

Lemma 5 Let (𝑋𝜂)𝜂=1
𝑚

 be a sequential partition of a real-valued sequence 𝑋 with 𝑋𝜂 , for 

𝜂 ∈ [1,𝑚], represented as a sequence in its own right over its index range 𝛾(𝑋𝜂). If the partition 

satisfies the rm-closure condition: for all 𝑖 ∈ [1,𝑚 − 1]  and all 𝑗 ∈ 𝛾+(𝑋𝑖) , rm𝑋𝑖
(𝑗) ∈

[𝑗 + 1, 𝛽(𝑋𝑖)], then the partition is MAX-independent: MAX(𝑋) = ⋃ MAX(𝑋𝜂)
𝑚
𝜂=1 . 

Proof. Let 𝑌 ∈ MAX(𝑋𝑖)  for some 𝑖 ∈ [1,𝑚]  be arbitrary, so 𝑌  is monotone (in 𝑋𝑖  and 𝑋 ). 

Consider a supersequence 𝑍  of 𝑌  with 𝑍 ∈ MAX(𝑋) . We show that γ(𝑍) ⊆ γ(𝑋𝑖) , and the 

maximality of the monotonicity of 𝑌 in 𝑋𝑖 and the monotonicity of 𝑍 give that 𝑌 = 𝑍 ∈ MAX(𝑋).  

Let 𝛼(𝑍) ∈ γ(𝑋𝑗) , for some 𝑗 ∈ [1,  𝑖] . If 𝑗 (= 𝑖) = 𝑚 , we have γ(𝑌) ⊆ γ(𝑍)(⊆ γ(𝑋𝑚))  as 

desired in subsequence 𝑋𝑚 . Otherwise, if 𝑗 ≤ 𝑚 − 1 , note that  𝛼(𝑍) ∈ γ+(𝑋𝑗)  and the 

assumption of rm𝑋𝑗 gives the instance for  𝛼(𝑍): rm𝑋𝑗
(𝛼(𝑍) ) ∈ [𝛼(𝑍) + 1, 𝛽(𝑋𝑗)], which says 

that for all 𝜂 ∈ [𝛼(𝑍) + 1, rm𝑋𝑗(𝛼(Z)) − 1],  

𝑝𝑠𝛼(𝑍)−1  <  𝑝𝑠𝜂, but 𝑝𝑠𝛼(𝑍)−1  ≥  𝑝𝑠rm𝑋𝑗
(𝛼(𝑍)).  

Because rm𝑋𝑗
(𝛼(𝑍)) ≤ 𝛽(𝑋𝑗), nearest-smaller right-match of 𝑝𝑠𝛼(𝑍)−1 exists, so in the context 

of rm𝑋 the above inequalities are equivalent to: 

𝑝𝑠𝛼(𝑍)−1  <  𝑝𝑠𝜂, but 𝑝𝑠𝛼(𝑍)−1  ≥  𝑝𝑠𝑟𝑚𝑋(𝛼(𝑍))
; 
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that is, rm𝑋(𝛼(𝑍)) = rm𝑋𝑗(𝛼(𝑍)) ∈ [𝛼(𝑍) + 1, 𝛽(𝑋𝑗)] as expected. Now applying Lemma 2 to 

the monotone subsequence 𝑍  in 𝑋 that 𝑝𝑠𝛼(𝑍)−1  is the unique minimum of all 𝑝𝑠𝜂  for all 𝜂 ∈

[𝛼(𝑍) − 1, 𝛽(𝑍)] , we must have rm𝑋(𝛼(𝑍)) > 𝛽(𝑍) , i.e., 𝛽(𝑍) ∈ [𝛼(𝑍), rm𝑋(𝛼(𝑍)) − 1] ⊆

γ(𝑋𝑗). Since γ(𝑌) ⊆ γ(𝑍), 𝛽(𝑍) ≥ 𝛽(𝑌) ∈ γ(𝑋𝑖), we have 𝑗 = 𝑖  and γ(𝑍) ⊆ γ(𝑋𝑗) = γ(𝑋𝑖) as 

desired. 

To see the reverse containment, let 𝑌 ∈ MAX(𝑋)  be arbitrary with 𝛼(𝑌) ⊆ γ(𝑋𝑖)  for some 

𝑖 ∈ [1,𝑚]. Applying an analogous argument using the assumption of rm𝑋𝑖  as above (for the 

maximal monotone subsequence 𝑍  of 𝑋  that γ(𝑍) ⊆ γ(𝑋𝑖)  to 𝑌  results that γ(𝑌) ⊆ γ(𝑋𝑖)  and 

𝑌 ∈ MAX(𝑋𝑖). ∎ 

Lemma 6 For a non-empty subsequence 𝑌  of real-valued sequence 𝑋 , the right-match 

function  𝑟𝑚𝑌: 𝛾+(𝑌) → [𝛼(𝑌) + 1, 𝛽(𝑌)] ∪ {𝛽(𝑌) + 1}, satisfies the rm-closure condition stated 

in Lemma 5 (for all 𝑗 ∈ 𝛾+(𝑌), 𝑟𝑚𝑌(𝑗) ∈ [𝑗 + 1, 𝛽(𝑌)],) if and only if the sequence 𝑌 satisfies the 

minimum prefix-sum condition: the ending prefix sum of 𝑌, 𝑝𝑠𝛽(𝑌), is a global minimum of all 𝑝𝑠𝑖 

for all 𝑖 ∈ [𝛼(𝑌) − 1, 𝛽(𝑌)]. 

Proof. For the “only if”-part, assume that 𝑌 satisfies the rm-closure condition. If γ+(𝑌) = ∅, i.e., 

all the terms 𝑌  are non-positive, then clearly 𝑝𝑠𝛼(𝑌)−1 ≥ 𝑝𝑠𝛼(𝑌) ≥  .  .  .  ≥ 𝑝𝑠𝛽(𝑌) . Otherwise, 

select the least index 𝑖1 ∈ γ+(𝑌), and note that 𝑝𝑠𝛼(𝑌)−1 ≥ 𝑝𝑠𝛼(𝑌) ≥  .  .  .  ≥ 𝑝𝑠𝑖1−1 . The rm-

closure condition, when applying to the index 𝑖1 , yields that rm𝑌(𝑖1) ∈ [𝑖1 + 1, 𝛽(𝑌)]  with 

𝑝𝑠rm𝑌(𝑖1) = min{𝑝𝑠𝜂 | 𝜂 ∈ [𝑖1 − 1, rm𝑌(𝑖1)]}. Then select the least index 𝑖2 ∈ γ+(𝑌) such that 

𝑖2 > 𝑖1, and apply the rm-closure condition to it. Continuing this process results in the following 

lower-envelope sequence of increasing indices: 

𝛼(𝑌) ≤ 𝑖1 < rm𝑌(𝑖1) < 𝑖2 < rm𝑌(𝑖2) <  .  .  .  < 𝑖𝑗 < rm𝑌(𝑖𝑗) ≤ 𝛽(𝑌) 
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for some positive integer 𝑗 such that: (1) 𝑖1, 𝑖2,  .  .  .  , 𝑖𝑗 ∈ γ+(𝑌) where 𝑖1 is the least indices in 

γ+(𝑌) , and for any 𝑘 ∈ γ+(𝑌) , 𝑘 ∈ ⋃ [𝑖𝜂 , rm𝑌(𝑖𝜂) − 1 ]
𝑗
𝜂=1 , (2) the prefix sum 𝑝𝑠𝜂  is a 

decreasing function of 𝜂 over [𝛼(𝑌) − 1, 𝑖1 − 1]⋃(⋃ [rm𝑌(𝑖𝑘), 𝑖𝑘+1 − 1]
𝑗−1
𝑘=1 )⋃[rm𝑌(𝑖𝑗), 𝛽(𝑌)], 

and (3) for all 𝜂 ∈ [1, 𝑗], 𝑝𝑠rm𝑌(𝑖𝜂)
= min{𝑝𝑠𝑘 | 𝑘 ∈ [𝑖𝜂 − 1, rm𝑌(𝑖𝜂)]}. Combining (2) and (3) 

above, we have 𝑝𝑠𝛽(𝑌) = min{𝑝𝑠𝜂 | 𝜂 ∈ [𝛼(𝑌) − 1, 𝛽(𝑌)]}. 

For the “if”-part, assume that the sequence 𝑌  satisfies the minimum prefix-sum condition: 

𝑝𝑠𝛽(𝑌) = min{𝑝𝑠𝑘 | 𝑘 ∈ [𝛼(𝑌) − 1, 𝛽(𝑌)]}. For every 𝑗 ∈ γ+(𝑌), 𝑝𝑠𝑗−1 ≥ 𝑝𝑠rm𝑌(𝑗) ≥ 𝑝𝑠𝛽(𝑌), we 

have rm𝑌(𝑗) ∈ [𝑗 + 1, 𝛽(𝑌)]. ∎ 

Figure 3.3 illustrates a partition satisfying rm-closure condition. 

 

Figure 3.3: Partition satisfies rm-closure condition. For all 𝑖 ∈ [1,𝑚 − 1] and all 𝑗 ∈ 𝛾+(𝑋𝑖), 
𝑟𝑚𝑋𝑖

(𝑗) ∈ [𝑗 + 1, 𝛽(𝑋𝑖)]. 

 

The minimum prefix-sum condition, equivalent to the rm-closure condition as shown in Lemma 6, 

exposes a stringent sufficiency for MAX-independence of a priori sequential partition of a 

sequence X: for all 𝑖 ∈ [1,𝑚 − 1], the ending prefix sum 𝑝𝑠𝛽(𝑋𝑖)  is a global minimum of all 
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prefix sums 𝑝𝑠𝜂  of 𝑋𝑖  for 𝜂 ∈ [𝛼(𝑋𝑖  ) − 1, 𝛽(𝑋𝑖 )] . For a sequential partition, 𝛽(𝑋𝑖 ) =

𝛼(𝑋𝑖+1 ) − 1 , therefore 𝑝𝑠𝛽(𝑋1) ≥ 𝑝𝑠𝛽(𝑋2) ≥  .  .  .  ≥ 𝑝𝑠𝛽(𝑋𝑚−1)  is required if the partition 

satisfies rm-closure condition. We incorporate the minimum prefix-sum condition into 

constructing a posteriori sequential partition of 𝑋 that forms the basis in designing a domain-

decomposed parallel algorithm in computing MAX(X). 

3.5 Domain Decomposition of 𝑿 with Common Subsequences 

The rm-closure partition (𝑋1 , 𝑋2 , . . . , 𝑋𝑚)  of input sequence 𝑋  allows each partition 𝑋𝑖  for 

𝑖 ∈ [1,𝑚] to calculate MAX(𝑋𝑖) ⊆ MAX(𝑋) independently, but the partition is not necessarily 

length-balanced. On the other hand, if the sequence 𝑋 is partitioned onto m processors with equal 

lengths, the subsequence 𝑋𝑖 on 𝑖th processor for 𝑖 ∈ [1,𝑚] may not satisfy minimum prefix-sum 

condition. To create a length-balanced rm-closure partition is crucial for our parallel algorithm. 

If the terms of input sequence 𝑋 are random variables, we have pointed out that the expected 

value of a single term 𝑥𝑖 of sequence 𝑋 is negative in some applications of the minimal maximal 

subsequence problem [KA90], [KA93] in Chapter I. If the expected value of 𝑥𝑖 is positive, then 

the minimal maximal subsequence would likely contain most terms of sequence 𝑋, which may 

not provide useful information to the applications. If the expected value of 𝑥𝑖 is negative, then the 

prefix sums of sequence 𝑋 tend to be decreasing from the starting index to the ending index of 𝑋. 

For a subsequence 𝑌 of sequence 𝑋 with negative expected value of 𝑥𝑖, if the ending prefix sum 

𝑝𝑠𝛽(𝑌) is not the minimal prefix sum 𝑝𝑠𝜂 (𝜂 < 𝛽(𝑌)) for all prefix sums of 𝑌, then it is likely to 

find a prefix sum 𝑝𝑠𝑗 ≤ 𝑝𝑠𝜂 with 𝑗 > 𝛽(𝑌) in the supersequence of 𝑌. The partition we are going 

to introduce is based on the intuition that the supersequence of 𝑌 has larger probability to satisfy 

rm-closure condition if the prefix sums tend to decrease. 



29 
 

For two sequences 𝑋 and 𝑌, denote the concatenation of 𝑋 and 𝑌 by the juxtaposition 𝑋𝑌. Let 𝑋 

be a nonempty real-valued sequence with a sequential partition: 

𝒫(𝑋) = (𝑋1, 𝑋1,2, 𝑋2, 𝑋2,3, 𝑋3,  .  .  .  , 𝑋𝑚−1, 𝑋𝑚−1,𝑚, 𝑋𝑚).  

For notational simplicity, let 𝑋0,1 = ∅, and 𝑋𝑚,𝑚+1 = ∅. 

For every 𝑖 ∈ [1,𝑚 − 1], denote by 𝛽𝑖
∗ the maximum or right-most index 𝜂 ∈ γ+(𝑋𝑖−1,𝑖𝑋𝑖), if 

non-empty, such that 𝑝𝑠𝜂−1 is the minimum prefix sum of those of 𝑋𝑖−1,𝑖𝑋𝑖 over γ+(𝑋𝑖−1,𝑖𝑋𝑖), 

that is, 

𝛽𝑖
∗ = max argmin{𝑝𝑠𝜂−1 | 𝜂 ∈ γ+(𝑋𝑖−1,𝑖𝑋𝑖) , γ+(𝑋𝑖−1,𝑖𝑋𝑖) ≠ ∅}. 

The partition 𝒫(𝑋) satisfies the rm-locality condition if for every 𝑖 ∈ [1,𝑚 − 1] with non-empty 

γ+(𝑋𝑖−1,𝑖𝑋𝑖), rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗) ∈ [𝛽𝑖
∗ + 1,𝛽(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1)]. For every 𝑖 ∈ [1,𝑚 − 1], and for 

every 𝑗 ∈ γ+(𝑋𝑖−1,𝑖𝑋𝑖) , rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝑗) ∈ [𝑗 + 1, 𝛽(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1)] , and according to the 

definition of rm𝑋 , for every positive term 𝑥𝜂 , 𝜂 ∈ [𝛽(𝑋𝑖−1,𝑖𝑋𝑖) + 1, rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗)] , 

rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝜂) ≤ rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

(𝛽𝑖
∗). Thus the concatenation of 𝑋𝑖−1,𝑖𝑋𝑖  and the prefix of 

𝑋𝑖,𝑖+1 with ending index rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗) satisfies rm-closure condition by Lemma 5. 

From the rm-localized sequential partition 𝒫(𝑋) , we derive a MAX-independent sequential 

partition 𝒫̃(𝑋) = (𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ )
𝑖=1

𝑚
 where 𝑋𝑖−1,𝑖

′′
 and 𝑋𝑖,𝑖+1

′
 are respectively the suffix of 𝑋𝑖−1,𝑖 

and prefix of 𝑋𝑖,𝑖+1 that are determined by rm-computation as follows. Recall that 𝑋0,1 = ∅ and 

𝑋𝑚,𝑚+1 = ∅  for notational simplicity, let 𝑋0,1
′′ = ∅  and 𝑋𝑚,𝑚+1

′ = ∅  accordingly. For every 

𝑖 ∈ [1,𝑚 − 1], define: 
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𝑋𝑖,𝑖+1
′ =

{
  
 

  
 
∅ if γ+(𝑋𝑖−1,𝑖𝑋𝑖) = ∅,

∅ if γ+(𝑋𝑖−1,𝑖𝑋𝑖) ≠ ∅,  and 

rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗) ∈ [𝛽𝑖
∗ + 1, 𝛽(𝑋𝑖−1,𝑖𝑋𝑖)],

 

[𝛼(𝑋𝑖,𝑖+1), rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗)] otherwise (i. e. ,  γ+(𝑋𝑖−1,𝑖𝑋𝑖) ≠ ∅,  and 

rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗) ∈ γ(𝑋𝑖,𝑖+1),

 

 

and 𝑋𝑖,𝑖+1
′′

 to be the (remaining) suffix of 𝑋𝑖,𝑖+1 such that 𝑋𝑖,𝑖+1
′ 𝑋′𝑖,𝑖+1

′ = 𝑋𝑖,𝑖+1. Observe that the 

first two cases in defining 𝑋𝑖,𝑖+1
′

 may be absorbed into the third case. Figure 3.4 gives an example 

partition of 𝑋𝑖,𝑖+1. 

Xi −1,i Xi Xi,i+1

P
re

fi
x
 s

u
m

Index. . . . . . . . .

. . .. . .

βi
*

X’i,i+1 X’’i,i+1

rmXi −1,iXiXi,i+1(βi
*)

 

 Figure 3.4: Partitioning 𝑋𝑖,𝑖+1 into 𝑋𝑖,𝑖+1
′ 𝑋𝑖,𝑖+1

′′ .  

The definition of 𝛽𝑖
∗ = max argmin{𝑝𝑠𝜂−1 | 𝜂 ∈ γ+(𝑋𝑖−1,𝑖𝑋𝑖) , γ+(𝑋𝑖−1,𝑖𝑋𝑖) ≠ ∅} is to search 𝛽𝑖

∗ 

over γ+(𝑋𝑖−1,𝑖𝑋𝑖)  for 𝑖 ∈ [1,𝑚 − 1] , and the calculation of rm𝑋𝑖−,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗)  is over [𝛽𝑖
∗ +

1, 𝛽(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1)]. This creates a domain-decomposition of input 𝑋 that 𝑋 will be separated 

onto m processors with the 𝑖th  processor hosting the subsequence 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1  for 𝑖 ∈

[1,𝑚 − 1]. The common subsequence 𝑋𝑖,𝑖+1 is hosted on successive 𝑖th and (𝑖 + 1)th processors. 
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However the subsequence 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′  of the sequential partition 𝒫̃(𝑋) only requires the suffix 

𝑋𝑖−1,𝑖
′′  of 𝑋𝑖−1,𝑖  for 𝑖 ∈ [2,𝑚] . Therefore one might have constructed an rm-localized MAX-

independent sequential partition inductively on 𝑖 as follows: 

 For 𝑖 = 1, let 𝛽1
∗ = max argmin{𝑝𝑠𝜂−1 | 𝜂 ∈ γ+(𝑋1) , γ+(𝑋1) ≠ ∅}, and define the prefix 𝑋1,2

′  

and suffix 𝑋1,2
′′

 of 𝑋1,2 similar to the former version based on the calculation of rm𝑋1𝑋1,2
(𝛽1

∗). For 

𝑖 = 2, 3,  .  .  .   , 𝑚 − 1 , 𝛽𝑖
∗ = max argmin{𝑝𝑠𝜂−1 | 𝜂 ∈ γ+(𝑋𝑖−1,𝑖

′′ 𝑋𝑖) , γ+(𝑋𝑖−1,𝑖
′′ 𝑋𝑖) ≠ ∅} , and 

define the prefix 𝑋𝑖,𝑖+1
′  and suffix 𝑋𝑖,𝑖+1

′′
 of 𝑋𝑖,𝑖+1  similar to the former version based on the 

calculation of rm𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

(𝛽𝑖
∗). In this way, input sequence 𝑋  can be decomposed into m 

disjoint subsequences 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′  for 𝑖 ∈ [1,𝑚]. But for 𝑖 ∈ [2,𝑚], the determination of 𝑋𝑖−1,𝑖
′′  

for subsequence 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′  depends on the calculation of 𝑋𝑖−1,𝑖
′  from the last subsequence 

𝑋𝑖−2,𝑖−1
′′ 𝑋𝑖−1𝑋𝑖−1,𝑖 . The partition is naturally suitable for the implementation of sequential 

algorithm, not the parallel one. 

In order to circumvent the iterative dependency for developing a domain-decomposed parallel 

algorithm for computing MAX(𝑋) , the former definition of 𝛽𝑖
∗ = max argmin{𝑝𝑠𝜂−1 | 𝜂 ∈

γ+(𝑋𝑖−1,𝑖𝑋𝑖) , γ+(𝑋𝑖−1,𝑖𝑋𝑖) ≠ ∅}  permits the computation of 𝛽𝑖
∗

 for all 𝑖 ∈ [1,𝑚 − 1] 

independently and in parallel by all subsequence-hosting processors. Also the calculation of 

𝑋𝑖,𝑖+1
′  can be done in parallel by the 𝑖th  processor hosting subsequence 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1  for all 

𝑖 ∈ [1,𝑚 − 1], then in turn MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) can be done in parallel by the 𝑖th processor for 

all 𝑖 ∈ [1,𝑚]. Note that MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) contains maximal monotone subsequences with the 

starting indices in prefixes 𝑋𝑖−1,𝑖
′  for all 𝑖 ∈ [2,𝑚], which should be eventually discarded after the 

𝑖th processor obtains 𝛽(𝑋𝑖−1,𝑖
′ ) from the (𝑖 − 1)th processor.  
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Theorem 7 Let 𝑋  be a non-empty real-valued sequence with an rm-localized sequential 

partition 𝒫(𝑋) = (𝑋1, 𝑋1,2, 𝑋2, 𝑋2,3, 𝑋3,  .  .  .  , 𝑋𝑚−1, 𝑋𝑚−1,𝑚, 𝑋𝑚)  and its derived sequential 

partition 𝒫̃(𝑋) = (𝑋𝜂−1,𝜂
′′ 𝑋𝜂𝑋𝜂,𝜂+1

′ )
𝜂=1

𝑚
. Then: 

1. The partition 𝒫̃(𝑋) is MAX-independent: 𝑀𝐴𝑋(𝑋) = ⋃ 𝑀𝐴𝑋(𝑋𝜂−1,𝜂
′′ 𝑋𝜂𝑋𝜂,𝜂+1

′ )𝑚
𝜂=1 , and 

2. For all 𝑖 ∈ {1, 2,  .  .  .   , 𝑚}, 

MAX(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ ) 

= MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) − {𝑌 ∈ MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

′ ) | 𝛼(𝑌) ∈ 𝛾(𝑋𝑖−1,𝑖
′ )} 

Hence, 

𝑀𝐴𝑋(𝑋) = ⋃ 𝑀𝐴𝑋(𝑋𝜂−1,𝜂
′′ 𝑋𝜂𝑋𝜂,𝜂+1

′ )𝑚
𝜂=1

=⋃ (𝑀𝐴𝑋(𝑋𝜂−1,𝜂𝑋𝜂𝑋𝜂,𝜂+1
′ ) − {𝑌 ∈ 𝑀𝐴𝑋(𝑋𝜂−1,𝜂𝑋𝜂𝑋𝜂,𝜂+1

′ ) | 𝛼(𝑌) ∈ 𝛾(𝑋𝜂−1,𝜂
′ )})𝑚

𝜂=1 . 

Proof. For part 1, in order to apply Lemma 5 to prove the MAX-independence of 𝒫̃(𝑋), it 

suffices, via the equivalence in Lemma 6, to show that for all i ∈ {1, 2,  .  .  .   , m − 1} , the 

subsequence 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′
 satisfies the minimum prefix-sum condition (at the ending index), that 

is, 

𝑝𝑠𝛽(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ ) = min{𝑝𝑠𝜂 |𝜂 ∈ [𝛼(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ ) − 1, 𝛽(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ )]}. 

For 𝑖 = 1 , we have 𝑋0,1
′′ = ∅  and 𝑋𝑖−1,𝑖

′′ 𝑋𝑖𝑋𝑖,𝑖+1
′ = 𝑋1𝑋1,2

′ . Consider the emptiness of 

γ+(𝑋𝑖−1,𝑖𝑋𝑖) = γ+(𝑋1)  for the existence of 𝛽𝑖
∗ = 𝛽1

∗  and determining 𝑋𝑖,𝑖+1
′ = 𝑋1,2

′  via 

rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗) = rm𝑋1𝑋1,2
(𝛽1

∗). 



33 
 

Case when γ+(𝑋1) = ∅: We have 𝑋1,2
′ = ∅, and 𝑋𝑖−1,𝑖

′′ 𝑋𝑖𝑋𝑖,𝑖+1
′ = 𝑋1. Note that, as γ+(𝑋1) = ∅, 

𝑝𝑠𝛼(𝑋1)−1 ≥ 𝑝𝑠𝛼(𝑋1) ≥  .  .  .  ≥ 𝑝𝑠𝛽(𝑋1) , and the subsequence 𝑋0,1
′′ 𝑋1𝑋1,2

′ = 𝑋1  satisfies the 

minimum prefix-sum condition. 

Case when γ+(𝑋1) ≠ ∅ and 𝛽1
∗
 exists in γ+(𝑋1): The proof of lemma 6 shows the existence of the 

following finite lower-envelope sequence of increasing indices in γ(𝑋1) : 𝛼(𝑋1) ≤ 𝑖1 <

rm𝑋1
(𝑖1) < 𝑖2 < rm𝑋1

(𝑖2) <  .  .  .  < 𝑖𝑗 = 𝛽1
∗ ≤ 𝛽(𝑋1) for some positive integer 𝑗 such that: (1) 

𝑖1, 𝑖2,  .  .  .  , 𝑖𝑗 ∈ γ+(𝑋1) where 𝑖1 is the least indices in γ+(𝑋1), and 𝑖𝑗 = 𝛽1
∗, (2) the prefix sum 

𝑝𝑠𝜂 is a decreasing function of 𝜂 over [𝛼(𝑋1) − 1, 𝑖1 − 1]⋃(⋃ [rm𝑋1
(𝑖𝑘), 𝑖𝑘+1 − 1]

𝑗−1
𝑘=1 ), and (3) 

for all 𝜂 ∈ [1, 𝑗], 𝑝𝑠rm𝑋1(𝑖𝜂)
= min{𝑝𝑠𝑘 | 𝑘 ∈ [𝑖𝜂 − 1, rm𝑋1(𝑖𝜂)]}. Combining (1), (2) and (3) 

above, we have 𝑝𝑠𝛽1∗−1 = 𝑝𝑠𝑖𝑗−1 = min{𝑝𝑠𝜂 | 𝜂 ∈ [𝛼(𝑋1) − 1, 𝛽1
∗ − 1]}  which satisfies the 

definition of 𝛽1
∗. 

We now consider the candidate index position of rm𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ (𝛽1
∗) = rm𝑋1𝑋1,2

(𝛽1
∗). 

Subcase when rm𝑋1𝑋1,2
(𝛽1

∗) ∈ [𝛽1
∗ + 1, 𝛽(𝑋1)]: We have 𝑋1,2

′ = ∅. As in the proof of Lemma 6, 

we continue to extend the lower-envelope sequence above for this case (𝑖 = 1 with γ+(𝑋1) ≠ ∅):  

𝛼(𝑋1) ≤ 𝑖1 < rm𝑋1
(𝑖1) < 𝑖2 < rm𝑋1

(𝑖2) <  .  .  .  < 𝑖𝑗 = 𝛽1
∗ 

< rm𝑋1
(𝛽1

∗) = rm𝑋1𝑋1,2
(𝛽1

∗) ≤ 𝛽(𝑋1),  

and the prefix sum 𝑝𝑠𝜂 is a decreasing function of η over  

[𝛼(𝑋1) − 1, 𝑖1 − 1]⋃(⋃ [rm𝑋1
(𝑖𝑘), 𝑖𝑘+1 − 1]

𝑗−1
𝑘=1 )⋃[rm𝑋1

(𝛽1
∗), 𝛽(𝑋1)] ,  

and 𝑝𝑠rm𝑋1
(𝛽1

∗) = min{𝑝𝑠𝑘|𝑘 ∈ [𝛽1
∗ − 1, rm𝑋1

(𝛽1
∗)]} . Thus the subsequence 𝑋0,1

′′ 𝑋1𝑋1,2
′ = 𝑋1 

satisfies the minimum prefix-sum condition: 𝑝𝑠𝛽(𝑋1) = min{𝑝𝑠𝜂 | 𝜂 ∈ [𝛼(𝑋1) − 1, 𝛽(𝑋1)]}. 
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Subcase when rm𝑋1𝑋1,2
(𝛽1

∗) ∈ γ(𝑋1,2): We have 𝑋1,2
′

 to be the prefix of 𝑋1,2  with the index 

subrange [𝛼(𝑋1,2), rm𝑋1𝑋1,2
(𝛽1

∗)]. Translate the lower-envelope sequence above for this subcase 

in the context of the subsequence 𝑋0,1
′′ 𝑋1𝑋1,2

′ = 𝑋1𝑋1,2
′  and continue to extend to cover 𝑋1,2

′ : 

𝛼(𝑋1𝑋1,2
′ ) ≤ 𝑖1 < rm𝑋1𝑋1,2

′
1
(𝑖1) < 𝑖2 < rm𝑋1𝑋1,2

′ (𝑖2) <  .  .  .  < 𝑖𝑗 = 𝛽1
∗ 

≤ 𝛽(𝑋1) < rm𝑋1𝑋1,2
′ (𝛽1

∗) = 𝛽(𝑋1𝑋1,2
′ ),  

and the prefix sum prefix sum 𝑝𝑠𝜂 is a decreasing function of η over  

[𝛼(𝑋1𝑋1,2
′ ) − 1, 𝑖1 − 1]⋃(⋃ [rm𝑋1𝑋1,2

′ (𝑖𝑘), 𝑖𝑘+1 − 1]
𝑗−1
𝑘=1 ) ,  

and 𝑝𝑠rm
𝑋1𝑋1,2

′ (𝛽1
∗) = min {𝑝𝑠𝑘|𝑘 ∈ [𝛽1

∗ − 1, rm𝑋1𝑋1,2
′ (𝛽1

∗)]}. Thus the subsequence 𝑋0,1
′′ 𝑋1𝑋1,2

′ =

𝑋1𝑋1,2
′  satisfies the minimum prefix-sum condition: 𝑝𝑠𝛽(𝑋1𝑋1,2′ ) = 𝑝𝑠rm𝑋1𝑋1,2

′ (𝛽1
∗) = min{𝑝𝑠𝜂 | 𝜂 ∈

[𝛼(𝑋1𝑋1,2
′ ) − 1, 𝛽(𝑋1𝑋1,2

′ )]}. 

For 𝑖 ∈ {2, 3,  .  .  .   , 𝑚 − 1}, we establish the global minimum prefix-sum condition at the ending 

index for the subsequence 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ , and therefore deduce that for its suffix 𝑋𝑖−1,𝑖

′′ 𝑋𝑖𝑋𝑖,𝑖+1
′ . 

Applying analogous arguments as for the cases when 𝑖 = 1 with 𝑋0,1
′′ 𝑋1𝑋1,2

′ = 𝑋1𝑋1,2
′  yields the 

desired condition for 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ . 

For part 2, when 𝑖 = 1, we have 𝑋𝑖−1,𝑖 = 𝑋0,1 = ∅, 𝑋0,1
′′ = ∅, and 𝛾(𝑋𝑖−1,𝑖

′ ) = 𝛾(𝑋0,1
′ ) = ∅. Now, 

MAX(𝑋0,1𝑋1𝑋1,2
′ ) − {𝑌 ∈ MAX(𝑋0,1𝑋1𝑋1,2

′ ) | 𝛼(𝑌) ∈ 𝛾(𝑋0,1
′ ) = ∅} 

= MAX(𝑋0,1𝑋1𝑋1,2
′ ) = MAX(𝑋1𝑋1,2

′ ) = MAX(𝑋0,1
′′ 𝑋1𝑋1,2

′ ), 

as desired in the MAX-set equality. 
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For 𝑖 ∈ {2, 3,  .  .  .   , 𝑚}, we consider the emptiness of 𝑋𝑖−1,𝑖
′ . If 𝑋𝑖−1,𝑖

′ = ∅, then 𝛾(𝑋𝑖−1,𝑖
′ ) = ∅ 

and 𝑋𝑖−1,𝑖
′′ = 𝑋𝑖−1,𝑖, and the MAX-set equality is satisfied: 

MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) − {𝑌 ∈ MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

′ ) | 𝛼(𝑌) ∈ 𝛾(𝑋𝑖−1,𝑖
′ ) = ∅} 

= MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) = MAX(𝑋𝑖−1,𝑖

′′ 𝑋𝑖𝑋𝑖,𝑖+1
′ ) 

Assume now that 𝑋𝑖−1,𝑖
′ ≠ ∅, we have 𝛽𝑖−1

∗ = max argmin{𝑝𝑠𝜂−1 | 𝜂 ∈ γ+(𝑋𝑖−2,𝑖−1𝑋𝑖−1) } and 

rm𝑋𝑖−2,𝑖−1𝑋𝑖−1
(𝛽𝑖−1

∗ ) = 𝛽(𝑋𝑖−1,𝑖
′ ) ∈ 𝛾(𝑋𝑖−1,𝑖). An immediate consequence of the non-emptiness 

of 𝑋𝑖−1,𝑖
′

 is the encapsulation of 𝑋𝑖−1,𝑖
′ -originating monotone subsequences within 𝑋𝑖−1,𝑖

′ . We first 

prove the following Claim. 

Claim   For every monotone subsequence 𝑌  of X, if 𝛼(𝑌) ∈ 𝛾+(𝑋𝑖−1,𝑖
′ ) , then 𝛽(𝑌) ∈

𝛾+(𝑋𝑖−1,𝑖
′ ) also. 

Proof. To see the claim, let 𝑌 be a monotone subsequence of 𝑋 with 𝛼(𝑌) ∈ 𝛾+(𝑋𝑖−1,𝑖
′ ). Note that 

since every non-empty prefix or suffix of 𝑌 has a positive cumulative sum, in particular, both 

terms 𝑥𝛼(𝑌)  and 𝑥𝛽(𝑌)  are positive. The definition of rm𝑋  function gives that 

𝑥rm𝑋𝑖−2,𝑖−1𝑋𝑖−1𝑋𝑖−1,𝑖
(𝛽𝑖−1

∗ ) < 0. Thus, we have: 

𝛼(𝑋𝑖−2,𝑖−1𝑋𝑖−1) ≤ 𝛽𝑖−1
∗ ≤ 𝛽(𝑋𝑖−2,𝑖−1𝑋𝑖−1) = 𝛼(𝑋𝑖−1,𝑖

′ ) − 1 < 𝛼(𝑋𝑖−1,𝑖
′ ) 

≤ 𝛼(𝑌) < rm𝑋𝑖−2,𝑖−1𝑋𝑖−1𝑋𝑖−1,𝑖
(𝛽𝑖−1

∗ ) = 𝛽(𝑋𝑖−1,𝑖
′ ),  

The definition of rm𝑋  function implies that 𝑝𝑠𝛼(𝑌)−1 > 𝑝𝑠𝛽𝑖−1
∗ −1 ≥ 𝑝𝑠rm𝑋𝑖−2,𝑖−1𝑋𝑖−1𝑋𝑖−1,𝑖

(𝛽𝑖−1
∗ ) . 

This, together with an application of Lemma 2 to the monotonicity of 𝑌 in 𝑋 that 𝑝𝑠𝛼(𝑌)−1 is the 

unique minimum of all 𝑝𝑠𝜂  for all 𝜂 ∈ [𝛼(𝑌) − 1, 𝛽(𝑌)] , we must have 

𝛽(𝑌) < rm𝑋𝑖−2,𝑖−1𝑋𝑖−1𝑋𝑖−1,𝑖
(𝛽𝑖−1

∗ ) = 𝛽(𝑋𝑖−1,𝑖
′ ), and 𝛽(𝑌)) ∈ γ+(𝑋𝑖−1,𝑖

′ ). This completes the proof 

of the claim. ∎ 
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Now we first show that: 

MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) − {𝑌 ∈ MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

′ ) | 𝛼(𝑌) ∈ 𝛾(𝑋𝑖−1,𝑖
′ )} 

⊆ MAX(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ ). 

Let 𝑍 ∈ MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) − {𝑌 ∈ MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

′ ) | 𝛼(𝑌) ∈ 𝛾(𝑋𝑖−1,𝑖
′ )} be arbitrary; 𝑍  is 

maximal monotone in 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ , and since  𝛼(𝑍) ∉ 𝛾(𝑋𝑖−1,𝑖

′ ), 𝑍 is a monotone subsequence 

of 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ . Need to show that 𝑍  is maximal monotone in 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ . Because 𝑍  is 

monotone in 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ , there must exists an arbitrary supersequence 𝑊 ⊇ 𝑍  with 𝑊 ∈

MAX(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ ) . Since 𝑊  is monotone in 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ , it must also be monotone in 

𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ . The maximality of the monotonicity of 𝑍  in 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

′  indicates that every 

proper supersequence of 𝑍  in 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′  is not monotone. Then the monotonicity of 𝑊  in 

𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′  imply that 𝑍 = 𝑊 = MAX(𝑋𝑖−1,𝑖

′′ 𝑋𝑖𝑋𝑖,𝑖+1
′ ), as desired. 

For the reverse containment, consider an arbitrary 𝑍 ∈ MAX(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ ) ; clearly 𝛼(𝑍) ∉

𝛾(𝑋𝑖−1,𝑖
′ ). Need to show that 𝑍 is maximal monotone in 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

′ . Since 𝑍 is monotone in 

𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ , so it is monotone in 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′  also. Then there must exists an arbitrary 

supersequence 𝑊 ⊇ 𝑍 with 𝑊 ∈ MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) and the candidate index position of 𝛼(𝑊). 

If 𝛼(𝑊) ∈ γ+(𝑋𝑖−1,𝑖
′ ), then the claim above gives that 𝛽(𝑊) ∈ γ+(𝑋𝑖−1,𝑖

′ ), and this contradicts to 

the containment of 𝑍  by 𝑊 . Therefore, 𝑊  is a monotone subsequence in 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ . The 

maximality of the monotonicity of 𝑍 in 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′  indicates that every proper supersequence 

of 𝑍 in 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′  is not monotone. Then the monotonicity of 𝑊 in 𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′  imply that 

𝑍 = 𝑊 = MAX(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
′ ) and 𝛼(𝑍) = 𝛼(𝑊) ∉ γ+(𝑋𝑖−1,𝑖

′ ), as desired. ∎ 
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CHAPTER IV 
 

PROBABILISTIC ANALYSIS OF THE LOCALITY CONDITION 

 VIA RANDOM WALK 

 

The structural decomposition of a non-empty real-valued sequence 𝑋 in Theorem 7 suggests a 

basis for an ideal rm-localized decomposition of 𝑋 with length-balance and MAX-independence. 

While the derived MAX-independent decomposition 𝒫̃(𝑋)  is the sequential partition 

(𝑋𝜂−1,𝜂
′′ 𝑋𝜂𝑋𝜂,𝜂+1

′ )
𝜂=1

𝑚
 in m pairwise disjoint subsequences, our domain-decomposed parallel 

algorithm computing MAX(X) will employ m processors with the 𝑖th  processor hosting the 

subsequence 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1  for i ∈ {1, 2,  .  .  .   , m} . The subsequences 𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1  and 

𝑋𝑖,𝑖+1𝑋𝑖+1𝑋𝑖+1,𝑖+2 hosted in successive 𝑖th  and (𝑖 + 1)th  processors have the common 

subsequence 𝑋𝑖,𝑖+1 which is a buffer to capture the rm-locality originated from 𝑋𝑖−1,𝑖𝑋𝑖  and a 

floating separation between the two successive MAX-sets: MAX(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ )  and 

MAX(𝑋𝑖,𝑖+1
′′ 𝑋𝑖+1𝑋𝑖+1,𝑖+2

′ ). A longer common subsequence facilitates the satisfiability of the rm-

locality of the preceding subsequence while a shorter one avoids redundant computation among 

successive processors. 

In this chapter we analyze the length bound of the common subsequences probabilistically for 

random sequences of normally-distributed terms — via the theory of random walk. 



38 
 

4.1 Introduction to Random Walk 

The basic introduction to random walks can be found in Chapter XII of Feller [Fel71]. Let 𝑋1, 

𝑋2, . . . be a sequence of independent and identically distributed random variables with common 

distribution function. Denote by (𝑆𝜂)η=0
∞

 the sequence of prefix-sum random variables with 

𝑆0 = 0 and 𝑆𝑖 = ∑ 𝑋𝜂
𝑖
𝜂=1  for 𝑖 ≥ 1, which corresponds to a general random walk for which 𝑆𝑖  

gives the position at epoch/index 𝑖.  

A record value occurs at (random) epoch 𝑖 ≥ 1 corresponds to the probabilistic event {𝑆𝑖 > 𝑆𝜂 for 

each 𝜂 ∈  [0, 𝑖 − 1]}. For every positive integer 𝑗, the 𝑗th strict ascending ladder epoch random 

variable is the index of the 𝑗th  occurrence of the probabilistic event above. The first strict 

ascending ladder epoch 𝑇+ is define by 

{𝑇+ = 𝑖} = {𝑆1 ≤ 0,  .  .  .  , 𝑆𝑖−1 ≤ 0, 𝑆𝑖 > 0}. 

We define analogously the notions of: (1) strict descending ladder epochs by reversing the 

defining inequality from “>” to “<”, and (2) weak ascending and weak descending epochs by 

replacing the defining inequalities by “≥” and “≤”, respectively. For example the first weak 

descending ladder epoch 𝑇1
−̅̅ ̅̅  is define by 

{𝑇1
−̅̅ ̅̅ = 𝑖} = {𝑆1 > 0,  .  .  .  , 𝑆𝑖−1 > 0, 𝑆𝑖 ≤ 0}. 

The first strict ascending ladder epoch is the random index of the first entry into (0, +∞), and the 

continuation of the random walk beyond this epoch is a probabilistic replica of the entire random 

walk. Other variants of (strict/weak, ascending/descending) ladder epoch yield similar behavior, 

therefore the important conclusions concerning the random walks can be derived from a study of 

the first ladder epoch and its corresponding value of 𝑆𝑖  (ladder height). Figure 4.1 depicts a 

random walk with its strict ascending epochs and weak descending ladder epochs. 
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Figure 4.1: Ladder epochs. The black dots correspond to strict ascending 

ladder epochs and ladder heights, and white dots to weak descending ladder 

epochs and ladder heights. The first strict ascending ladder epoch occurs at 

𝑛 = 1, and the first weak descending ladder epoch occurs at 𝑛 = 3. 

 

4.2 Conditional Weak Descending Ladder Epoch 

Viewing the input sequence 𝑋 in the MAX-computation in a probabilistic context, the nearest 

right match function can be described using a variant of the first weak descending ladder epoch.  

For a sequence of pairwise independent and identically distributed random variables (𝑋𝜂)𝜂=1
∞

, if 

the 𝑗th  weak descending ladder epoch occurs at epoch 𝑖𝑗 > 0 , then for the (𝑗 + 1)th  weak 

descending ladder epoch at 𝑖𝑗+1 > 𝑖𝑗, we have 𝑆𝑖𝑗 < 𝑆𝑖𝑗+1, . . . , 𝑆𝑖𝑗 < 𝑆 𝑆𝑖𝑗+1−1
,  𝑆𝑖𝑗 ≥ 𝑆𝑖𝑗+1. The 

descending behavior between the 𝑗th and the (𝑗 + 1)th weak descending ladder epochs is similar 

to find the nearest-smaller-or-equal right-match value of ladder height 𝑆𝑖𝑗 . Then the expected 

value of the first weak descending ladder epoch indicates the average length of epoch to find the 

next smaller or equal ladder heights.  
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The first weak descending ladder epoch 𝑇1
−̅̅ ̅̅  is the epoch of the first entry into [0, −∞) of ladder 

height. There are two different paths that lead to the first weak descending ladder epoch. One path 

is under the condition that random variable 𝑋1 > 0, and the other with 𝑋1 ≤ 0. The following 

Figure 4.2 illustrates the two different paths. 

 

Figure 4.2: The first weak descending ladder epochs. The dot corresponds to 

the first weak descending ladder epoch with 𝑋1 > 0, and the square to the first 

weak descending ladder epoch with 𝑋1 ≤ 0. 

 

Recall that the rm𝑋(𝑖) function is to find the nearest smaller or equal value of 𝑝𝑠𝑖−1 for positive 

term 𝑥𝑖 > 0  of real-valued sequence 𝑋 . We assume that 𝑋  is the sequence of mutually 

independent and identically distributed random variables (𝑋𝜂)𝜂=1
∞

, then for arbitrary 𝑋𝑖 > 0, to 

find the smallest 𝑗 > 𝑖 such that  𝑆𝑗 ≤ 𝑆𝑖−1 is equivalent to find the first weak descending ladder 

epoch under the condition that 𝑋1 > 0. Denote by T the conditional first weak descending ladder 

epoch, 𝑇 = 𝑇1
−̅̅ ̅̅  | 𝑋1 > 0. Therefore the average index-difference between (𝑖 − 1) and rm𝑋(𝑖) can 

be measured by the expected value of 𝑇. 
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The construction of the MAX-independent sequential partition 𝒫̃(𝑋)  from an rm-localized 

sequential partition 𝒫(𝑋) requires that for every 𝑖 ∈ [1,𝑚 − 1] with non-empty γ+(𝑋𝑖−1,𝑖𝑋𝑖) , 

rm𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗) ∈ [𝛽𝑖
∗ + 1, 𝛽(𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1)]. We produce a probabilistic upper bound on the 

length of the common subsequences in 𝒫̃(𝑋) via the mean and variance of T. 

Remark 8 Ideally in 𝒫̃(𝑋), we desire that: 

|𝑋𝑖,𝑖+1| = |[𝛼(𝑋𝑖,𝑖+1), 𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗)]|  

≤ |[𝛽𝑖
∗, 𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

(𝛽𝑖
∗)]| =  𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1

(𝛽𝑖
∗) − 𝛽𝑖

∗ + 1. 

Thus, if we select the common subsequence 𝑋𝑖,𝑖+1 such that |𝑋𝑖,𝑖+1| ≥ ⌈𝐸(𝑇) + 𝛿√𝑉𝑎𝑟(𝑇)⌉ for 

some positive real 𝛿, then we have the following chain of probabilistic events: 

{𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝛽𝑖

∗) − 𝛽𝑖
∗ + 1 ≥ |𝑋𝑖,𝑖+1|} 

= {𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝑗) − 𝑗 + 1 ≥ |𝑋𝑖,𝑖+1|} ∩ {𝑗 = 𝛽𝑖

∗} 

⊆ {𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝑗) − 𝑗 + 1 ≥ |𝑋𝑖,𝑖+1|} 

⊆ {𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝑗) − 𝑗 + 1 − 𝐸(𝑇) ≥ 𝛿√𝑉𝑎𝑟(𝑇)}, 

where 𝑗 is a random index, and in accordance with Chebyshev’s inequality, 

𝑝𝑟𝑜𝑏 (𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑑𝑒𝑥–𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝑗) − 𝑗 + 1 ≥ |𝑋𝑖,𝑖+1|) 

≤  𝑝𝑟𝑜𝑏 (𝑇 − 𝐸(𝑇)  ≥ 𝛿√𝑉𝑎𝑟(𝑇)) ≤  𝑝𝑟𝑜𝑏 (|𝑇 −  𝐸(𝑇)| ≥ 𝛿√𝑉𝑎𝑟(𝑇)) ≤
1

𝛿2
 , 

or, equivalently, 

𝑝𝑟𝑜𝑏 (𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑑𝑒𝑥–𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑚𝑋𝑖−1,𝑖𝑋𝑖𝑋𝑖,𝑖+1
(𝑗) − 𝑗 + 1 < |𝑋𝑖,𝑖+1|) 

≥ 𝑝𝑟𝑜𝑏 (|𝑇 −  𝐸(𝑇)| < 𝛿√𝑉𝑎𝑟(𝑇)) ≥ 1 −
1

𝛿2
 . 
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These will be applied to bound the likelihood of (non-)satisfiability of the rm-locality condition 

for 𝒫(𝑋). 

4.3 Relations between Conditional and Unconditional First Weak Descending Ladder 

Epochs  

We now relate the conditional first weak descending ladder epoch 𝑇 to the unconditional one 𝑇1
−̅̅ ̅̅  

and then, in an appropriate probabilistic setting, the means and variances of the two random 

variables. 

For a sequence of pairwise independent and identically distributed random variables 𝑋1 , 

𝑋2 , . . . and its associated random-walk sequence (𝑆𝜂)𝜂=0
∞

 of prefix-sum random variables, 

assume hereinafter that (𝑋𝜂)𝜂=1
∞

 follows a common random variable 𝑋1 with prob(𝑋1 > 0) ≥ 0. 

For notational simplicity, denote by 𝑝>0 and 𝑝≤0 (= 1 − 𝑝>0) the probabilities prob(𝑋1 > 0) and 

prob(𝑋1 ≤ 0), respectively. 

The unconditional and conditional ladder epochs 𝑇1
−̅̅ ̅̅   and 𝑇 (= 𝑇1

−̅̅ ̅̅   | 𝑋1 > 0) have sample spaces 

of {1, 2,  .  .  .  . } and {2, 3,  .  .  .  }, respectively, and for every 𝑡 ∈ {2, 3,  .  .  .  }, 

prob (𝑇 = 𝑡) 

=  prob(𝑇1
−̅̅ ̅̅ = 𝑡| 𝑋1 > 0)  

=
prob (𝑇1

−̅̅ ̅̅ = 𝑡 ⋂𝑋1 > 0)

prob (𝑋1 > 0)
 

=
1

𝑝>0
prob ( 𝑇1

−̅̅ ̅̅ = 𝑡). 

Line four of the above equation is due to the subset-containment of the probabilistic events: 

{𝑇1
−̅̅ ̅̅ = 𝑡 , 𝑡 ≥ 2} ⊆ {𝑋1 > 0}, i.e., if  𝑇1

−̅̅ ̅̅ ≥ 2, then  𝑋1 > 0. 
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Lemma 9 Assume that the mean and the variance of the unconditional weak descending 

ladder epoch 𝑇1
−̅̅ ̅̅  exist. The means and variances of the unconditional and conditional ladder 

epochs 𝑇1
−̅̅ ̅̅  and 𝑇 = 𝑇1

−̅̅ ̅̅  | 𝑋1 > 0 are related as follows: 

  1. 𝐸(𝑇) =
1

𝑝>0
𝐸( 𝑇1

−̅̅ ̅̅ ) −
𝑝≤0
𝑝>0

 

  2. 𝑉𝑎𝑟(𝑇) =
1

𝑝>0
𝑉𝑎𝑟(𝑇1

−̅̅ ̅̅ ) − 𝑝≤0 (
1

𝑝>0
(𝐸( 𝑇1

−̅̅ ̅̅ ) − 1))

2

 

Proof. For the mean-relationship, consider: 

E(𝑇) =∑𝑡prob(𝑇 = 𝑡)

𝑡≥2

=∑𝑡
1

𝑝>0
prob ( 𝑇1

−̅̅ ̅̅ = 𝑡)

𝑡≥2

 

=
1

𝑝>0
∑𝑡 prob ( 𝑇1

−̅̅ ̅̅ = 𝑡) −
1

𝑝>0
prob ( 𝑇1

−̅̅ ̅̅ = 1)

𝑡≥1

 

=
1

𝑝>0
E( 𝑇1

−̅̅ ̅̅ ) −
1

𝑝>0
prob ( 𝑋1 ≤ 0) 

=
1

𝑝>0
E( 𝑇1

−̅̅ ̅̅ ) −
𝑝≤0
𝑝>0

 

For the variance-relationship, we first note that the variance of T is the conditional variance of 𝑇1
−̅̅ ̅̅  

on the event {𝑋1 > 0}, and when exists: 

Var(𝑇) = Var(𝑇1
−̅̅ ̅̅  | 𝑋1 > 0) =  E (𝑇1

−̅̅ ̅̅ 2|𝑋1 > 0) − (E(𝑇1
−̅̅ ̅̅  | 𝑋1 > 0))

2
 

= E(𝑇2) − (E(𝑇))
2
 

Consider: 

E(𝑇2) =∑𝑡2prob(𝑇 = 𝑡)

𝑡≥2

=∑𝑡2
1

𝑝>0
prob ( 𝑇1

−̅̅ ̅̅ = 𝑡)

𝑡≥2
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=
1

𝑝>0
∑𝑡2prob ( 𝑇1

−̅̅ ̅̅ = 𝑡) −
1

𝑝>0
prob ( 𝑇1

−̅̅ ̅̅ = 1)

𝑡≥1

 

=
1

𝑝>0
E ( 𝑇1

−̅̅ ̅̅ 2) −
1

𝑝>0
prob ( 𝑋1 ≤ 0) 

=
1

𝑝>0
E ( 𝑇1

−̅̅ ̅̅ 2) −
𝑝≤0
𝑝>0

, 

and  

Var(𝑇) = E(𝑇2) − (E(𝑇))
2

 

= (
1

𝑝>0
E ( 𝑇1

−̅̅ ̅̅ 2) −
𝑝≤0
𝑝>0

) − (
1

𝑝>0
E( 𝑇1

−̅̅ ̅̅ ) −
𝑝≤0
𝑝>0

)
2

 

=
1

𝑝>0
E ( 𝑇1

−̅̅ ̅̅ 2) −
1

𝑝>0
2 (E( 𝑇1

−̅̅ ̅̅ ))
2
+ 2

𝑝≤0

𝑝>0
2 E( 𝑇1

−̅̅ ̅̅ ) − (
𝑝≤0
𝑝>0

)
2

−
𝑝≤0
𝑝>0

 

=
E ( 𝑇1

−̅̅ ̅̅ 2) − (E( 𝑇1
−̅̅ ̅̅ ))

2

𝑝>0
− (

1 − 𝑝>0

𝑝>0
2 ) (E( 𝑇1

−̅̅ ̅̅ ))
2
+ 2

𝑝≤0

𝑝>0
2 E( 𝑇1

−̅̅ ̅̅ ) −
𝑝≤0
2 + 𝑝≤0𝑝>0

𝑝>0
2  

=
1

𝑝>0
Var(𝑇1

−̅̅ ̅̅ ) −
𝑝≤0

𝑝>0
2 (E( 𝑇1

−̅̅ ̅̅ ))
2
+ 2

𝑝≤0

𝑝>0
2 E( 𝑇1

−̅̅ ̅̅ ) −
𝑝≤0

𝑝>0
2  

=
1

𝑝>0
Var(𝑇1

−̅̅ ̅̅ ) − 𝑝≤0 (
1

p>0
(𝐸( 𝑇1

−̅̅ ̅̅ ) − 1))

2

. 

∎ 

Remark 10 Remark 8 and Lemma 9 suggest to seek lower and upper bounds on 𝐸( 𝑇1
−̅̅ ̅̅ ) and an 

upper bound on 𝑉𝑎𝑟(𝑇1
−̅̅ ̅̅ ) to obtain non-trivial bounds on 𝐸(𝑇) and 𝑉𝑎𝑟(𝑇). Note that, by the 

assumption of 𝑝𝑟𝑜𝑏(𝑋1 > 0), we have 𝐸( 𝑇1
−̅̅ ̅̅ ) > 1. 

For our MAX-computing problem, we assume hereinafter (unless explicitly stated otherwise) that 

the sequence 𝑋 = (𝑥𝜂)𝜂=1
𝑛

 is a random sample from a normal distribution with mean −𝑎 and 

variance 𝑏2 for some positive reals 𝑎 and 𝑏. That is, a sequence of pairwise independent and 
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identically distributed random variables 𝑋1 , 𝑋2 , . . . with a common normal distribution with 

mean −𝑎 and variance 𝑏2 gives rise to the observed values 𝑥1, 𝑥2, . . .. 

The negativity of the mean −𝑎 of the underlying normal distribution is desired in order to avoid 

yielding unrealistically long minimal maximum subsequences for viable applications. Formally 

for the induced random-walk sequence (𝑆𝜂)𝜂=0
∞

 of (𝑋𝜂)𝜂=1
∞

, since E(𝑋1) is finite and negative, 

the first weak descending ladder epoch 𝑇1
−̅̅ ̅̅  has a proper probability distribution with finite mean 

and the random walk drafts to −∞ ([Fel71] Section XII.2). 

For notational simplicity, denote by 𝜆 the “mean to standard deviation” ratio 
E(𝑋1)

√Var(𝑋1)
; λ =

−𝑎

𝑏
 for 

a common normal distribution 𝑋1 with mean −𝑎 and standard deviation b.  

4.4 The Bounds on Expectations of Conditional and Unconditional First Weak 

Descending Ladder Epochs 

We first produce upper and lower bounds of E(𝑇1
−̅̅ ̅̅ ) and E(𝑇). 

Theorem 11 For a sequence of pairwise independent and identically distributed random 

variables (𝑋𝜂)𝜂=1
∞

 with a negative common finite mean E(𝑋1) and a positive probability 𝑝>0 =

prob(𝑋1 > 0), the unconditional and conditional first weak descending epochs, 𝑇1
−̅̅ ̅̅  and 𝑇 =

𝑇1
−̅̅ ̅̅  | 𝑋1 > 0 respectively, satisfy the followings: 

  1. 𝐸(𝑇1
−̅̅ ̅̅ ) = 𝑒𝑥𝑝 (∑

𝑝𝑟𝑜𝑏(𝑆𝜂 > 0)

𝜂

∞

𝜂=1
)  𝑎𝑛𝑑  

 𝐸(𝑇) =
1

𝑝>0
𝑒𝑥𝑝 (∑

𝑝𝑟𝑜𝑏(𝑆𝜂 > 0)

𝜂

∞

𝜂=1
) −

𝑝≤0
𝑝>0

 

  For a common normal distribution of (𝑋𝜂)𝜂=1
∞

  with mean −a and variance 𝑏2 for some 2.

positive reals a and b and for every positive integer l: 
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1 < (∏(1 − exp(
−𝜆2

2sin2 (
𝜂𝜋
2𝑙
)
))

𝑙−1

𝜂=1

)

−
1
2𝑙

≤ E(𝑇1
−̅̅ ̅̅ ) 

≤ (∏(1 − exp(
−𝜆2

2sin2 (
𝜂𝜋
2𝑙
)
))

𝑙

𝜂=1

)

−
1
2𝑙

, 

and  

1

𝑝>0
(∏(1− 𝑒𝑥𝑝(

−𝜆2

2𝑠𝑖𝑛2 (
𝜂𝜋
2𝑙
)
))

𝑙−1

𝜂=1

)

−
1
2𝑙

−
𝑝≤0
𝑝>0

≤ 𝐸(𝑇) 

≤
1

𝑝>0
(∏(1− 𝑒𝑥𝑝(

−𝜆2

2𝑠𝑖𝑛2 (
𝜂𝜋
2𝑙
)
))

𝑙

𝜂=1

)

−
1
2𝑙

−
𝑝≤0
𝑝>0

. 

Proof. For part 1, we follow the development of the distribution of ladder epochs in [Fel71] 

Chapter XII. For each epoch 𝑖 = 1, 2,  .  .  .  , let 𝑡𝑖 = prob(𝑆1 > 0, 𝑆2 > 0,  .  .  .  , 𝑆𝑖−1 > 0, 𝑆𝑖 ≤ 0), 

that is, the probability of the first entrance of the induced random walk into (−∞, 0] at epoch i. 

Denote by 𝑡(𝑠) = ∑ 𝑡𝜂𝑠
𝜂∞

η=1 , where s ∈ [0, 1], the generating function of (𝑡η)η=1
∞

. Then we have 

the following equation (([Fel71] Section XII.7):  

log
1

1 − 𝑡(𝑠)
=∑

𝑠𝜂

𝜂
prob(𝑆𝜂 ≤ 0).

∞

𝜂=1
 

Therefore, for 𝑠 ∈ (0, 1), 

log
1 − 𝑡(𝑠)

1 − 𝑠
= log

1

1 − 𝑠
− log

1

1 − 𝑡(𝑠)
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=∑
𝑠𝜂

𝜂

∞

η=1
−∑

𝑠𝜂

𝜂
prob(𝑆𝜂 ≤ 0)

∞

η=1
 

= ∑
𝑠𝜂

𝜂
prob(𝑆𝜂 > 0)

∞

η=1
 

Note that 𝑡𝑖 is the distribution of the first weak ladder epoch 𝑇1
−̅̅ ̅̅ , thus E(𝑇1

−̅̅ ̅̅ ) = 𝑡′(1−), and we 

have: 

log E(𝑇1
−̅̅ ̅̅ ) = log ( lim

𝑠→1−

1 − 𝑡(𝑠)

1 − 𝑠
) = lim

𝑠→1−
(log

1 − 𝑡(𝑠)

1 − 𝑠
) =∑

prob(𝑆𝜂 > 0)

𝜂

∞

𝜂=1
, 

E(T1
−̅̅ ̅̅ ) = exp (∑

prob(𝑆𝜂 > 0)

𝜂

∞

𝜂=1
). 

The ladder epoch 𝑇1
−̅̅ ̅̅  has a finite mean if and only if the random walk drifts to −∞. Hence, 

E(𝑇) =
1

𝑝>0
E( 𝑇1

−̅̅ ̅̅ ) −
p≤0
p>0

 

=
1

𝑝>0
exp(∑

prob(𝑆𝜂 > 0)

𝜂

∞

𝜂=1
) −

𝑝≤0
𝑝>0

. 

For part 2, it suffices to establish lower and upper bounds for E( 𝑇1
−̅̅ ̅̅ ). We first observe that, for 

each 𝑖 = 1, 2,  .  .  .  , 𝑆𝑖 is a normal distribution with mean 𝑖(−𝑎) and variance 𝑖𝑏2, and through 

the standard normal distribution 𝑍 with cumulative distributive function 𝐹𝑍: 

prob(S𝑖 > 0) = prob(
S𝑖 − 𝑖(−𝑎)

√𝑖𝑏2
>
0 − 𝑖(−𝑎)

√𝑖𝑏2
) 

= prob (𝑍 > √𝑖|𝜆|) 

=
1

2𝜋
∫ exp(−

𝑡2

2
)

∞

√𝑖|𝜆|

d𝑡 

= 1 − 𝐹𝑍(√𝑖|𝜆|). 
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The tail-probability of the standard normal distribution 𝑍  can be expressed in terms of the 

complementary error function (erfc: ℝ → ℝ, defined by erfc(𝑥) =
2

√𝜋
∫ exp(−𝑡2)
∞

𝑥
d𝑡 for 𝑥 ∈ ℝ) 

as follows: 1 − 𝐹𝑍(𝑥) =
1

2
erfc (

𝑥

√2
) for all 𝑥 ∈ ℝ. Thus, we have: 

E(𝑇1
−̅̅ ̅̅ ) = exp(∑

prob(𝑆𝜂 > 0)

𝜂

∞

𝜂=1
) 

= exp(∑
1− 𝐹𝑍(√𝜂|𝜆|)

𝜂

∞

𝜂=1
) 

= exp(
1

2
∑

1

𝜂
erfc (√

𝜂

2
|𝜆|)

∞

𝜂=1
). 

We will develop lower and upper bounds for erfc(𝑥) for all nonnegative reals x, which yield the 

bounds for E(𝑇1
−̅̅ ̅̅ ). 

The function erfc can be represented in an alternative integral form in [Cra91]: for all 

nonnegative reals x, 

erfc(𝑥) =
2

𝜋
∫ exp(−

𝑥2

sin2𝜃
)

𝜋
2

0

d𝜃. 

For every nonnegative real x, exp (−
𝑥2

sin2𝜃
) is a strictly increasing function of θ over [0,

𝜋

2
]. Let l 

be an arbitrary positive integer. The lower and upper Riemann sums of exp (−
𝑥2

sin2𝜃
) 

corresponding to any size-l partition of [0,
𝜋

2
]: 0 = 𝜃0 ≤ 𝜃1 ≤  .  .  .  ≤ 𝜃𝑙 = 

𝜋

2
 gives rise to the 

lower and upper bounds on erfc(x), respectively, as follows: for all nonnegative reals x, 

∑ exp(−
𝑥2

sin2𝜃𝜂−1
)

𝑙

𝜂=1
(𝜃𝜂 − 𝜃𝜂−1) ≤ ∫ exp(−

𝑥2

sin2𝜃
)

𝜋
2

0

d𝜃, 
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∫ exp(−
𝑥2

sin2𝜃
)

𝜋
2

0

d𝜃 ≤∑ exp(−
𝑥2

sin2𝜃𝜂
)

𝑙

𝜂=1
(𝜃𝜂 − 𝜃𝜂−1), 

where exp (−
𝑥2

sin2𝜃0
) assumes the limiting value lim𝜃→0+ exp (−

𝑥2

sin2𝜃
) = 0 (see [CD02] for a 

similar upper bound). 

When considering a size-l equipartition of [0,
𝜋

2
]: 𝜃𝑖 = 𝜃0 + 𝑖

𝜋

2𝑙
= 𝑖

𝜋

2𝑙
 for 𝑖 = 1, 2,  .  .  .  , 𝑙 , the 

bounds above translate to: 

𝜋

2𝑙
∑ exp(−

𝑥2

sin2 (
𝜂𝜋
2𝑙
)
)

𝑙−1

𝜂=1
≤ ∫ exp(−

𝑥2

sin2𝜃
)

𝜋
2

0

d𝜃 ≤
𝜋

2𝑙
∑ exp(−

𝑥2

sin2 (
𝜂𝜋
2𝑙
)
)

𝑙

𝜂=1
. 

We now have: 

E(𝑇1
−̅̅ ̅̅ ) = exp(

1

2
∑

1

𝜂
erfc (√

𝜂

2
|𝜆|)

∞

𝜂=1
) 

= exp(
1

𝜋
∑

1

𝜂
∫ exp (−

𝜂𝜆2

2sin2𝜃
)

𝜋
2

0

d𝜃
∞

𝜂=1
). 

Lower-bounding E(𝑇1
−̅̅ ̅̅ ): 

E(𝑇1
−̅̅ ̅̅ ) = exp(

1

𝜋
∑

1

𝜂
∫ exp (−

𝜂𝜆2

2sin2𝜃
)

𝜋
2

0

d𝜃
∞

𝜂=1
) 

≥ exp(
1

2𝑙
∑ (

1

𝜂
∑ exp(−

𝜂𝜆2

2sin2 (
𝑘𝜋
2𝑙
)
)

𝑙−1

𝑘=1
)

∞

𝜂=1
) 

= exp(
1

2𝑙
∑ (∑

1

𝜂
exp(−

𝜂𝜆2

2sin2 (
𝑘𝜋
2𝑙
)
)

∞

𝜂=1
)

𝑙−1

𝑘=1
). 
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Because 0 < exp(−
𝜂𝜆2

2sin2(
𝑘𝜋

2𝑙
)
) < 1 for 𝑘 = 1,2,  .  .  .  , 𝑙 − 1, thus: 

∑
1

𝜂
exp(−

𝜂𝜆2

2sin2 (
𝑘𝜋
2𝑙
)
)

∞

𝜂=1
= −ln

(

 1 − exp(−
𝜆2

2sin2 (
𝑘𝜋
2𝑙
)
)

)

 . 

Therefore: 

E(𝑇1
−̅̅ ̅̅ ) ≥ exp

(

 
 1

2𝑙
∑

(

 
 
−ln

(

 1 − exp(−
𝜆2

2sin2 (
𝑘𝜋
2𝑙
)
)

)

 

)

 
 𝑙−1

𝑘=1

)

 
 

 

= (∏(1− exp(
−𝜆2

2sin2 (
𝜂𝜋
2𝑙
)
))

𝑙−1

𝜂=1

)

−
1
2𝑙

> 1. 

Upper-bounding E(𝑇1
−̅̅ ̅̅ ) via an analogous derivation: 

E(𝑇1
−̅̅ ̅̅ ) = exp(

1

𝜋
∑

1

𝜂
∫ exp (−

𝜂𝜆2

2sin2𝜃
)

𝜋
2

0

d𝜃
∞

𝜂=1
) 

≤ exp(
1

2𝑙
∑ (

1

𝜂
∑ exp(−

𝜂𝜆2

2sin2 (
𝑘𝜋
2𝑙
)
)

𝑙

𝑘=1
)

∞

𝜂=1
) 

= exp(
1

2𝑙
∑ (∑

1

𝜂
exp(−

𝜂𝜆2

2sin2 (
𝑘𝜋
2𝑙
)
)

∞

𝜂=1
)

𝑙

𝑘=1
) 

= exp

(

 
 1

2𝑙
∑

(

 
 
−ln

(

 1 − exp(−
𝜆2

2sin2 (
𝑘𝜋
2𝑙
)
)

)

 

)

 
 𝑙

𝑘=1

)
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= (∏(1− exp(
−𝜆2

2sin2 (
𝜂𝜋
2𝑙
)
))

𝑙

𝜂=1

)

−
1
2𝑙

. 

Thus, we have: 

1 < (∏(1 − exp(
−𝜆2

2sin2 (
𝜂𝜋
2𝑙
)
))

𝑙−1

𝜂=1

)

−
1
2𝑙

≤ E(𝑇1
−̅̅ ̅̅ ) 

≤ (∏(1 − exp(
−𝜆2

2sin2 (
𝜂𝜋
2𝑙
)
))

𝑙

𝜂=1

)

−
1
2𝑙

, 

and  

1

𝑝>0
(∏(1− 𝑒𝑥𝑝(

−𝜆2

2𝑠𝑖𝑛2 (
𝜂𝜋
2𝑙
)
))

𝑙−1

𝜂=1

)

−
1
2𝑙

−
𝑝≤0
𝑝>0

≤ 𝐸(𝑇) 

≤
1

𝑝>0
(∏(1− 𝑒𝑥𝑝(

−𝜆2

2𝑠𝑖𝑛2 (
𝜂𝜋
2𝑙
)
))

𝑙

𝜂=1

)

−
1
2𝑙

−
𝑝≤0
𝑝>0

. 

∎ 

For our purpose in this study, we consider 𝑙 = 6, and denote by 𝑚1
−̅̅ ̅̅  and 𝑚2

−̅̅ ̅̅  the lower and upper 

bounds on the mean E(𝑇1
−̅̅ ̅̅ ) obtained in Theorem 11: 

𝑚1
−̅̅ ̅̅ = (∏(1− exp(

−𝜆2

2sin2 (
𝜂𝜋
12)

))

5

𝜂=1

)

−
1
12
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and  

𝑚2
−̅̅ ̅̅ = (∏(1− exp(

−𝜆2

2sin2 (
𝜂𝜋
12
)
))

6

𝜂=1

)

−
1
12

. 

4.5 The Bounds on Variances of Conditional and Unconditional First Weak Descending 

Ladder Epochs 

The range-constraint on E(𝑇1
−̅̅ ̅̅ ): E(𝑇1

−̅̅ ̅̅ ) ∈ [𝑚1
−̅̅ ̅̅  ,𝑚2

−̅̅ ̅̅ ]  induces an upper bound on Var(𝑇1
−̅̅ ̅̅ ) via the 

first-order and second-order moments of the first weak descending ladder epoch 𝑇1
−̅̅ ̅̅  , its associate 

(first weak descending) ladder height 𝑆𝑇1−̅̅ ̅̅ , and the common distribution 𝑋1. 

Remark 12 Consider the following scenario that will appear in upper-bounding 𝑉𝑎𝑟(𝑇1
−̅̅ ̅̅ ) and 

𝑉𝑎𝑟(𝑇): a quadratic polynomial p with negative leading coefficient and two real roots 𝑠1 and 𝑠2 

(𝑠1 ≤ 𝑠2) serves as an upper bound on a nonnegative quantity v such as a variance (0 ≤ 𝑣 ≤

𝑝(𝑠), where s is a real-valued statistics), and possibly, additional knowledge on s provides a 

range-constraint: 𝑠 ∈ [𝑐1 , 𝑐2] with [𝑐1 , 𝑐2] ∩ [𝑠1 , 𝑠2] ≠ ∅: 

 Without any range-constraint on s, the nonnegativity of v, which is upper-bounded by 1.

𝑝(𝑠), gives the range-constraint for admissible values of s: 𝑠 ∈ [𝑠1 , 𝑠2], and 𝑣 ≤ 𝑝(𝑠) ≤

𝑚𝑎𝑥{𝑝(𝑠) | 𝑠 ∈ ℝ} = 𝑚𝑎𝑥{𝑝(𝑠) | 𝑠 ∈ [𝑠1 , 𝑠2]} = 𝑝 (
1

2
(𝑠1 + 𝑠2)). 

 The additional range-constraint on s: 𝑠 ∈ [𝑐1 , 𝑐2]  yields a tighter range-constraint: 2.

𝑠 ∈ [𝑐1 , 𝑐2] ∩ [𝑠1 , 𝑠2] ≠ ∅, i.e., 𝑠 ∈ [𝑚𝑎𝑥{𝑐1, 𝑠1} ,𝑚𝑖𝑛 {𝑐2, 𝑠2}], and  
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𝑣 ≤ 𝑝(𝑠) ≤ 𝑚𝑎𝑥 {𝑝(𝑠) | 𝑠 ∈ ℝ} ≤

{
  
 

  
 𝑝(𝑐2) 𝑖𝑓 𝑐2 ≤

1

2
(𝑠1 + 𝑠2),

𝑝 (
1

2
(𝑠1 + 𝑠2)) 𝑖𝑓 𝑐1 ≤

1

2
(𝑠1 + 𝑠2) ≤ 𝑐2,

𝑝(𝑐1) 𝑖𝑓 
1

2
(𝑠1 + 𝑠2) ≤ 𝑐1.

 

Denote by 𝑞−̅̅̅̅  and q the two quadratic polynomial forms that represent upper bounds on Var(𝑇1
−̅̅ ̅̅ ) 

and Var(𝑇), respectively, in Theorem 13 below: 

1. 𝑞−̅̅̅̅ (𝑡) = 2 (−𝑡2 + (1 +
2

𝜆2
) 𝑡)  with two distinct real roots 𝑟1

−̅̅ ̅  and 𝑟2
−̅̅ ̅  ( 𝑟1

−̅̅ ̅ ≤ 𝑟2
−̅̅ ̅ ): 

𝑟1
−̅̅ ̅ = 0 and 𝑟2

−̅̅ ̅ = 1 +
2

𝜆2
 and  

2. 𝑞(𝑡) = −
1

𝑝>0
(2 +

𝑝≤0

𝑝>0
) 𝑡2 +

2

𝑝>0
(1 +

2

𝜆2
+
𝑝≤0

𝑝>0
) 𝑡 −

𝑝≤0

𝑝>0
2  with its discriminant: 

Δ =
4

𝑝>0
2 (1 +

2

𝜆2
+
𝑝≤0
𝑝>0

)
2

−
4

𝑝>0
(2 +

𝑝≤0
𝑝>0

)
𝑝≤0

𝑝>0
2  

=
4

𝑝>0
2 (1 +

4

𝜆2
+
4

𝜆4
+
4𝑝≤0
𝜆2𝑝>0

) > 0, 

and two distinct real roots 𝑟1 and 𝑟2 (𝑟1 ≤ 𝑟2): 

𝑟1 =

2
𝑝>0

(1 +
2
𝜆2
+
𝑝≤0
𝑝>0

) − √Δ

2
𝑝>0

(2 +
𝑝≤0
𝑝>0

)
,  

𝑟2 =

2
𝑝>0

(1 +
2
𝜆2
+
𝑝≤0
𝑝>0

) + √Δ

2
𝑝>0

(2 +
𝑝≤0
𝑝>0

)
.  

Note that 𝑟1 > 𝑟1
−̅̅ ̅ = 0. From the form of the discriminant: 

0 < Δ =
4

𝑝>0
2 (1 +

2

𝜆2
+
𝑝≤0
𝑝>0

)
2

−
4

𝑝>0
(2 +

𝑝≤0
𝑝>0

)
𝑝≤0

𝑝>0
2  
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<
4

𝑝>0
2 (1 +

2

𝜆2
+
𝑝≤0
𝑝>0

)
2

, 

therefore 𝑟1 > 𝑟1
−̅̅ ̅ = 0. Similarly we have 𝑟2 < 𝑟2

−̅̅ ̅ = 1 +
2

𝜆2
. 

Theorem 13 For a sequence of pairwise independent and identically distributed random 

variables (𝑋𝜂)𝜂=1
∞

 with a negative common finite mean E(𝑋1) , a finite common third-order 

absolute moment E(|𝑋1|
3), and a positive probability 𝑝>0 = prob(𝑋1 > 0), the unconditional 

and conditional first weak descending epochs, 𝑇1
−̅̅ ̅̅  and 𝑇 = 𝑇1

−̅̅ ̅̅  | 𝑋1 > 0 respectively, satisfy the 

followings: 

 For 𝑇1
−̅̅ ̅̅ : 𝑟1 ≤ 𝐸(𝑇1

−̅̅ ̅̅ ) ≤ 𝑟2 and 1.

𝑉𝑎𝑟(𝑇1
−̅̅ ̅̅ ) < 𝑞−̅̅̅̅ (𝐸(𝑇1

−̅̅ ̅̅ )) ≤

{
  
 

  
 𝑞−̅̅̅̅ (𝑟2) 𝑖𝑓 𝑟2 ≤

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅),

𝑞−̅̅̅̅ (
1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅)) 𝑖𝑓 𝑟1 ≤
1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅) ≤ 𝑟2,

𝑞−̅̅̅̅ (𝑟1) 𝑖𝑓 
1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅) ≤ 𝑟1.

 

and for T: 
1

𝑝>0
𝑟1 −

𝑝≤0

𝑝>0
≤ 𝐸(𝑇) ≤

1

𝑝>0
𝑟2 −

𝑝≤0

𝑝>0
 and 

Var(𝑇) < 𝑞(E(𝑇1
−̅̅ ̅̅ )) ≤ 𝑞 (

1

2
(𝑟1 + 𝑟2)). 

 With a common normal distribution of (𝑋𝜂)𝜂=1
∞

 with mean −a and variance 𝑏2 for some 2.

positive reals 𝑎 and 𝑏: 

For 𝑇1
−̅̅ ̅̅ : 𝑚1

−̅̅ ̅̅ ≤ 𝐸(𝑇1
−̅̅ ̅̅ ) ≤  𝑚2

−̅̅ ̅̅  and 
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𝑉𝑎𝑟(𝑇1
−̅̅ ̅̅ ) < 𝑞−̅̅̅̅ (𝐸(𝑇1

−̅̅ ̅̅ )) ≤

{
  
 

  
 𝑞−̅̅̅̅ (𝑚2

−̅̅ ̅̅ ) 𝑖𝑓 𝑚2
−̅̅ ̅̅ ≤

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅),

𝑞−̅̅̅̅ (
1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅)) 𝑖𝑓  𝑚1
−̅̅ ̅̅ ≤

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅) ≤ 𝑚2
−̅̅ ̅̅ ,

𝑞−̅̅̅̅ ( 𝑚1
−̅̅ ̅̅ ) 𝑖𝑓 

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅) ≤  𝑚1
−̅̅ ̅̅ .

 

and for T: 
1

𝑝>0
𝑚1
−̅̅ ̅̅ −

𝑝≤0

𝑝>0
≤ 𝐸(𝑇) ≤

1

𝑝>0
𝑚2
−̅̅ ̅̅ −

𝑝≤0

𝑝>0
 and  

𝑉𝑎𝑟(𝑇) < 𝑞(𝐸(𝑇1
−̅̅ ̅̅ )) ≤

{
  
 

  
 𝑞(𝑚2

−̅̅ ̅̅ ) 𝑖𝑓 𝑚2
−̅̅ ̅̅ ≤

1

2
(𝑟1 + 𝑟2),

𝑞 (
1

2
(𝑟1 + 𝑟2)) 𝑖𝑓  𝑚1

−̅̅ ̅̅ ≤
1

2
(𝑟1 + 𝑟2) ≤ 𝑚2

−̅̅ ̅̅ ,

𝑞( 𝑚1
−̅̅ ̅̅ ) 𝑖𝑓 

1

2
(𝑟1 + 𝑟2) ≤  𝑚1

−̅̅ ̅̅ .

 

Proof. For part 1, we first introduce the following identities and equality that relate the moments 

of the ladder epoch 𝑇1
−̅̅ ̅̅ , its associated ladder height 𝑆𝑇1−̅̅ ̅̅ , and the common distribution 𝑋1: 

1. Applying Wald’s lemma ([Asm03] Appendix A10): 

E(𝑆𝑇1−̅̅ ̅̅ ) = E(𝑋1)E(𝑇1
−̅̅ ̅̅  ). 

2. Applying Wald’s second-moment identity ([Asm03] Appendix A10): 

E ((𝑆𝑇1−̅̅ ̅̅ − E(𝑋1)𝑇1
−̅̅ ̅̅  )

2
) = Var(𝑋1)E(𝑇1

−̅̅ ̅̅  ). 

3. Applying [Ale06] Theorem 3: 

E (𝑆𝑇1−̅̅ ̅̅
2 ) = E(𝑋1

2)E(𝑇1
−̅̅ ̅̅  ) + 2E(𝑋1)E(𝑇1

−̅̅ ̅̅ )∑
1

𝜂
∫ 𝑥d𝐹𝑆𝜂(𝑥)
∞

0+
,

∞

𝜂=1
 

where 𝐹𝑆𝜂  denotes the cumulative distribution function of 𝑆𝜂  for 𝜂 = 1, 2,  .  .  .  . Since 

E(𝑋1) < 0 and ∫ 𝑥d𝐹𝑆𝜂(𝑥)
∞

0+
> 0 for 𝜂 = 1, 2,  .  .  .  , we have: 
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E (𝑆𝑇1−̅̅ ̅̅
2 ) < E(𝑋1

2)E(𝑇1
−̅̅ ̅̅  ). 

We relate Var(𝑇1
−̅̅ ̅̅ ) to E(𝑇1

−̅̅ ̅̅  ) via the moments of 𝑆𝑇1−̅̅ ̅̅  and 𝑋1 as follows: 

Var(𝑇1
−̅̅ ̅̅ ) = E ((𝑇1

−̅̅ ̅̅ −  E(𝑇1
−̅̅ ̅̅  ))

2
) =

1

(E(𝑋1))
2 E ((E(𝑋1)𝑇1

−̅̅ ̅̅ −  E(𝑋1)E(𝑇1
−̅̅ ̅̅  ))

2
) 

=
1

(E(𝑋1))
2 E(((𝑆𝑇1−̅̅ ̅̅ − E(𝑋1)E(𝑇1

−̅̅ ̅̅  )) − (𝑆𝑇1−̅̅ ̅̅ − E(𝑋1)𝑇1
−̅̅ ̅̅ ))

2

) 

=
1

(E(𝑋1))
2 E(((𝑆𝑇1−̅̅ ̅̅ − E(𝑆𝑇1−̅̅ ̅̅ )) − (𝑆𝑇1−̅̅ ̅̅ − E(𝑋1)𝑇1

−̅̅ ̅̅ ))
2

) 

≤
2

(E(𝑋1))
2 (E((𝑆𝑇1−̅̅ ̅̅ − E(𝑆𝑇1−̅̅ ̅̅ ))

2
) + E ((𝑆𝑇1−̅̅ ̅̅ − E(𝑋1)𝑇1

−̅̅ ̅̅ )
2
)) 

=
2

(E(𝑋1))
2 ((E (𝑆𝑇1−̅̅ ̅̅

2 ) − (E(𝑆𝑇1−̅̅ ̅̅ ))
2
) + E ((𝑆𝑇1−̅̅ ̅̅ − E(𝑋1)𝑇1

−̅̅ ̅̅ )
2
)) 

=
2

(E(𝑋1))
2 (E (𝑆𝑇1−̅̅ ̅̅

2 ) − (E(𝑋1)E(𝑇1
−̅̅ ̅̅  ))

2
+ E((𝑆𝑇1−̅̅ ̅̅ − E(𝑋1)𝑇1

−̅̅ ̅̅ )
2
)) 

=
2

(E(𝑋1))
2 (E (𝑆𝑇1−̅̅ ̅̅

2 ) − (E(𝑋1))
2
(E(𝑇1

−̅̅ ̅̅  ))
2
+ Var(𝑋1)E(𝑇1

−̅̅ ̅̅  )) 

<
2

(E(𝑋1))
2 (E(𝑋1

2)E(𝑇1
−̅̅ ̅̅  ) − (E(𝑋1))

2
(E(𝑇1

−̅̅ ̅̅  ))
2
+ Var(𝑋1)E(𝑇1

−̅̅ ̅̅  )) 

=
2 ((Var(𝑋1)+(E(𝑋1))

2
) E(𝑇1

−̅̅ ̅̅  ) − (E(𝑋1))
2
(E(𝑇1

−̅̅ ̅̅  ))
2
+ Var(𝑋1)E(𝑇1

−̅̅ ̅̅  ))

(E(𝑋1))
2  

=
2 (−(E(𝑋1))

2
(E(𝑇1

−̅̅ ̅̅  ))
2
+ (2Var(𝑋1)+(E(𝑋1))

2
)E(𝑇1

−̅̅ ̅̅  ))

(E(𝑋1))
2  

= 2(−(E(𝑇1
−̅̅ ̅̅  ))

2
+ (1 +

2

𝜆2
)E(𝑇1

−̅̅ ̅̅  )) 

= 𝑞−̅̅̅̅ (E(𝑇1
−̅̅ ̅̅ )) 
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Applying Remark 12: part 1 to the upper bound: Var(𝑇1
−̅̅ ̅̅ ) < 𝑞−̅̅̅̅ (E(𝑇1

−̅̅ ̅̅ )), we obtain for 𝑇1
−̅̅ ̅̅  that: 

𝑟1
−̅̅ ̅ ≤ E(T1

−̅̅ ̅̅ ) ≤ 𝑟2
−̅̅ ̅, and Var(𝑇1

−̅̅ ̅̅ ) < 𝑞−̅̅̅̅ (E(𝑇1
−̅̅ ̅̅ )) ≤ q−̅̅̅̅ (

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅)). 

From Lemma 9: part 2, we have: 

Var(𝑇) =
1

𝑝>0
Var(𝑇1

−̅̅ ̅̅ ) − 𝑝≤0 (
1

p>0
(E( 𝑇1

−̅̅ ̅̅ ) − 1))

2

 

<
2

𝑝>0
(−(E(𝑇1

−̅̅ ̅̅  ))
2
+ (1 +

2

𝜆2
)E(𝑇1

−̅̅ ̅̅  )) − 𝑝≤0 (
1

p>0
(E( 𝑇1

−̅̅ ̅̅ ) − 1))

2

 

= −
1

𝑝>0
(2 +

𝑝≤0
𝑝>0

) (E(𝑇1
−̅̅ ̅̅  ))

2
+

2

𝑝>0
(1 +

2

𝜆2
+
𝑝≤0
𝑝>0

)E(𝑇1
−̅̅ ̅̅  ) −

𝑝≤0

𝑝>0
2  

= 𝑞(E(𝑇1
−̅̅ ̅̅ )). 

Similar to the above case of Var(𝑇1
−̅̅ ̅̅ ) < 𝑞−̅̅̅̅ (E(𝑇1

−̅̅ ̅̅ )), we apply Remark 12: part 1 to the upper 

bound: Var(𝑇) < 𝑞(E(𝑇1
−̅̅ ̅̅ )), and obtain for T that: 

𝑟1 ≤ E(T1
−̅̅ ̅̅ ) ≤  𝑟2 and Var(𝑇) < 𝑞(E(𝑇1

−̅̅ ̅̅ )) ≤ 𝑞 (
1

2
(𝑟1 + 𝑟2)). 

Clearly, [𝑟1,  𝑟2] ⊆ [𝑟1
−̅̅ ̅,  𝑟2

−̅̅ ̅]. Applying Remark 12: part 2 to the upper bounds on Var(𝑇1
−̅̅ ̅̅ ) and 

Var(𝑇) and Lemma 9: part 1 to E(𝑇1
−̅̅ ̅̅ ), we have: 

For 𝑇1
−̅̅ ̅̅ : 𝑟1 ≤ 𝐸(𝑇1

−̅̅ ̅̅ ) ≤ 𝑟2 and 

𝑉𝑎𝑟(𝑇1
−̅̅ ̅̅ ) < 𝑞−̅̅̅̅ (𝐸(𝑇1

−̅̅ ̅̅ )) ≤

{
  
 

  
 𝑞−̅̅̅̅ (𝑟2) 𝑖𝑓 𝑟2 ≤

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅),

𝑞−̅̅̅̅ (
1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅)) 𝑖𝑓 𝑟1 ≤
1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅) ≤ 𝑟2,

𝑞−̅̅̅̅ (𝑟1) 𝑖𝑓 
1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅) ≤ 𝑟1;
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and for T: 
1

𝑝>0
𝑟1 −

𝑝≤0

𝑝>0
≤ 𝐸(𝑇) ≤

1

𝑝>0
𝑟2 −

𝑝≤0

𝑝>0
 and 

Var(𝑇) < 𝑞(E(𝑇1
−̅̅ ̅̅ )) ≤ 𝑞 (

1

2
(r1 + r2)). 

For part 2 with a common normal distribution of (𝑋𝜂)𝜂=1
∞

 with mean −a and variance b2  for 

some positive reals a and b, Theorem 11: part 2 gives that  

𝑚1
−̅̅ ̅̅ ≤ E(𝑇1

−̅̅ ̅̅ ) ≤  𝑚2
−̅̅ ̅̅  and 

1

𝑝>0
𝑚1
−̅̅ ̅̅ −

𝑝≤0

𝑝>0
≤ E(𝑇) ≤

1

𝑝>0
𝑚2
−̅̅ ̅̅ −

𝑝≤0

𝑝>0
. 

Applying Remark 12: part 2 to the range-constraint E(𝑇1
−̅̅ ̅̅ ) ∈ [𝑟1

−̅̅ ̅,  𝑟2
−̅̅ ̅] and the upper bounds 

Var(T1
−̅̅ ̅̅ ) < 𝑞−̅̅̅̅ (E(T1

−̅̅ ̅̅ )) and Var(𝑇) < 𝑞(E(T1
−̅̅ ̅̅ )) results in, respectively:.  

Var(𝑇1
−̅̅ ̅̅ ) < 𝑞−̅̅̅̅ (E(𝑇1

−̅̅ ̅̅ )) ≤

{
  
 

  
 𝑞−̅̅̅̅ (𝑚2

−̅̅ ̅̅ ) if 𝑚2
−̅̅ ̅̅ ≤

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅),

𝑞−̅̅̅̅ (
1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅)) if  𝑚1
−̅̅ ̅̅ ≤

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅) ≤ 𝑚2
−̅̅ ̅̅ ,

𝑞−̅̅̅̅ ( 𝑚1
−̅̅ ̅̅ ) if 

1

2
(𝑟1
−̅̅ ̅ + 𝑟2

−̅̅ ̅) ≤  𝑚1
−̅̅ ̅̅ ,

 

and  

Var(𝑇) < 𝑞(E(𝑇1
−̅̅ ̅̅ )) ≤

{
  
 

  
 𝑞(𝑚2

−̅̅ ̅̅ ) if  𝑚2
−̅̅ ̅̅ ≤

1

2
(𝑟1 + 𝑟2),

𝑞 (
1

2
(𝑟1 + 𝑟2)) if  𝑚1

−̅̅ ̅̅ ≤
1

2
(𝑟1 + 𝑟2) ≤ 𝑚2

−̅̅ ̅̅ ,

𝑞( 𝑚1
−̅̅ ̅̅ ) if 

1

2
(𝑟1 + 𝑟2) ≤  𝑚1

−̅̅ ̅̅ .

 

∎ 

Theorem 14 For a sequence of pairwise independent and identically distributed random 

variables (𝑋𝜂)𝜂=1
∞

 with a common normal distribution with mean a and variance b2  for some 
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positive reals a and b, a finite common third-order absolute moment E(|𝑋1|
3), the variance of the 

unconditional first ascending epoch 𝑇1̅ satisfies the following: 

Var(𝑇1̅) ≤ 2 (1 +
2

𝜆2
)E(𝑇1̅ ) 

≤
2

𝑎2
(
4

3

E((𝑋1
+)3)

𝑎
+ 𝑏2E(𝑇1̅ )) 

<
2

𝑎2
(
16

3

E((𝑋1
+)3)

𝑎
+ 2(E((𝑋1)

2) + 𝑎2)E(𝑇1̅ )), 

where 𝑋1
+ = 𝑋1 if 𝑋1 ≥ 0 else 𝑋1

+ = 0. 

Proof. Applying [Sug07] Theorem 3.1: 

Var(𝑇1̅) <
2

(E(𝑋1))
2 (
16

3

E((𝑋1
+)3)

E(𝑋1)
+ 2(E((𝑋1)

2) + 𝑎2)E(𝑇1̅ )) 

Applying [Sug07] equation (12): 

E ((𝑆𝑇1̅̅ ̅)
2
) ≤

4

3

E((𝑋1
+)3)

E(𝑋1)
 

Following the same procedure in the proof of Theorem 13, we have  

Var(𝑇1̅) ≤
2

(E(𝑋1))
2 (E((𝑆𝑇1̅̅ ̅ − E(𝑆𝑇1̅̅ ̅))

2
) + E ((𝑆𝑇1̅̅ ̅ − E(𝑋1)𝑇1̅)

2
)) 

≤
2

(E(𝑋1))
2 (E((𝑆𝑇1̅̅ ̅)

2
) − (E(𝑆𝑇1̅̅ ̅))

2
+ E((𝑆𝑇1̅̅ ̅ − E(𝑋1)𝑇1̅)

2
)) 

≤
2

(E(𝑋1))
2 (E ((𝑆𝑇1̅̅ ̅)

2
) + E ((𝑆𝑇1̅̅ ̅ − E(𝑋1)𝑇1̅)

2
)) 

=
2

(E(𝑋1))
2 (E ((𝑆𝑇1̅̅ ̅)

2
) + Var(𝑋1)E(𝑆𝑇1̅̅ ̅)) 



60 
 

≤
2

𝑎2
(
4

3

E((𝑋1
+)3)

𝑎
+ 𝑏2E(𝑆𝑇1̅̅ ̅)) 

<
2

𝑎2
(
16

3

E((𝑋1
+)3)

𝑎
+ 2(E((𝑋1)

2) + 𝑎2)E(𝑇1̅ )). 

Applying [Ale06] Theorem 2, we have: 

E ((𝑆𝑇1̅̅ ̅)
2
) < E((𝑋1)

2)E(𝑆𝑇1̅̅ ̅) 

From above: 

Var(𝑇1̅) ≤
2

(E(𝑋1))
2 (E((𝑆𝑇1̅̅ ̅)

2
) − (E(𝑆𝑇1̅̅ ̅))

2
+ E((𝑆𝑇1̅̅ ̅ − E(𝑋1)𝑇1̅)

2
)) 

=
2

(E(𝑋1))
2 (E((𝑆𝑇1̅̅ ̅)

2
) − (E(𝑆𝑇1̅̅ ̅))

2
+ Var(𝑋1)E(𝑇1̅ )) 

<
2

(E(𝑋1))
2 (E((𝑋1)

2)E(𝑇1̅ ) − (E(𝑆𝑇1̅̅ ̅))
2
+ Var(𝑋1)E(𝑇1̅ )) 

≤
2

(E(𝑋1))
2 ((Var(𝑋1) + (E(𝑋1))

2
)E(𝑇1̅ ) + Var(𝑋1)E(𝑇1̅ )) 

=
2

𝑎2
((2𝑏2 + 𝑎2)E(𝑇1̅ )) 

= 2 (1 +
2

𝜆2
)E(𝑇1̅ ). 

For the normal distribution: 

E((𝑋1
+)3) =

𝑏(2𝑏2 + 𝑎2)

√2𝜋
exp (−

𝑎2

2𝑏2
) +

𝑎(3𝑏2 + 𝑎2)

2
(1 + erf (

𝑎

√2𝑏
)), 

where erf (
𝑎

√2𝑏
) = 1 − erfc (

𝑎

√2𝑏
). 
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Inequality 2 (1 +
2

𝜆2
) E(𝑇1̅ )  ≤

2

𝑎2
(
4

3

E((𝑋1
+)
3
)

𝑎
+ 𝑏2E(𝑇1̅ )) is equivalent to: 

E(𝑇1̅ )  ≤
4

3

E((𝑋1
+)3)

𝑎(𝑏2 + 𝑎2)
 

=
4

3

(2 + 𝜆2)

√2𝜋𝜆(1 + 𝜆2)
exp(−

𝜆2

2
) +

2(3 + 𝜆2)

3(1 + 𝜆2)
(1 + erf (

𝜆

√2
)) 

First we show that for 0 ≤ 𝜆 ≤
1

2
,  

E(𝑇1̅ ) ≤ (∏(1− exp(
−𝜆2

2sin2 (
𝜂𝜋
12)

))

6

𝜂=1

)

−
1
12

 

≤ (1 + 𝜆2)
1
2 

≤
4

3

(2 + 𝜆2)

√2𝜋𝜆(1 + 𝜆2)
exp(−

𝜆2

2
) +

2

3
(1 +

2

1 + 𝜆2
) 

≤
4

3

(2 + 𝜆2)

√2𝜋𝜆(1 + 𝜆2)
exp(−

𝜆2

2
) +

2(3 + 𝜆2)

3(1 + 𝜆2)
(1 + erf (

𝜆

√2
)). 

Second we show that for 𝜆 ≥
1

2
,  

E(𝑇1̅ ) ≤ (∏(1− exp(
−𝜆2

2sin2 (
𝜂𝜋
12)

))

6

𝜂=1

)

−
1
12

 

≤
4

3

(2 + 𝜆2)

√2𝜋𝜆(1 + 𝜆2)
exp(−

𝜆2

2
) +

2(3 + 𝜆2)

3(1 + 𝜆2)
(1 + erf (

𝜆

√2
)). 

The proof is trivial, and we will not list the procedures. ∎ 
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CHAPTER V 
 

PARALLEL ALGORITHM ON CLUSTER SYSTEMS FOR COMPUTING MAX 

 

In this chapter we present the overall parallel algorithm implemented on cluster systems with 

subsequence-hosting processors employing the linear-time sequential algorithm computing MAX 

[RT99]. Experiments are performed on the cluster of High Performance Computing Center at 

Oklahoma State University. 

5.1 Linear-Time Sequential Algorithm to Compute MAX 

The following MAX_Sequential implements the linear-time sequential algorithm by Ruzzo and 

Tompa.  

Algorithm 4: MAX_Sequential 

Input: A length-n real-valued sequence 𝑋. 

Output: The sequence of all successive minimal maximum subsequences (that is, all maximal 

monotone subsequences) of 𝑋 occupying the low-order subarray of an array 𝑀[1. . ⌈𝑛/2⌉]. 

Data Structures: On consumed input 𝑋′ (prefix of X): 

1. Array 𝑀[1. . (𝑖 − 1)]: the canonical list (𝑌1, 𝑌2 , .  .  . , 𝑌𝑖−1) of MAX(𝑋′); 

2. Stack St: the longest sublist (𝑌(1), 𝑌(2) , .  .  . ) (which is not necessarily contiguous) of 

MAX(X′) such that  
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min{𝑝𝑠𝜂−1(𝑋
′)|𝜂 ∈ 𝛾+(𝑋

′)} = 𝑝𝑠𝛼(𝑌(1))−1(𝑋
′) <  𝑝𝑠𝛼(𝑌(2))−1(𝑋

′) <  .  .  .  ,  and 

max{𝑝𝑠𝜂(𝑋
′)|𝜂 ∈ 𝛾+(𝑋

′)} = 𝑝𝑠𝛽(𝑌(1))(𝑋
′) ≥  𝑝𝑠𝛽(𝑌(2))(𝑋

′) ≥  .  .  .  ; 

3. Subsequence 𝑌𝑖 : the incremental input of the longest (contiguous) subsequence of 

positive terms of 𝑋 immediately succeeding 𝑋′. 

Begin 

1. Initialize: 

M[0] ∶= ∅; 𝛼(𝑌(0)) ∶= 0; 𝛽(𝑌(0)) ∶= 0; 𝑆𝑡 ∶= ∅; 𝑖 ∶= 1; 

2. Compute 𝛾(𝑌𝑖), if non-empty:  

𝛼(𝑌𝑖) ∶= min{𝜂 ∈ 𝛾+(𝑋
′) | 𝜂 > 𝛽(𝑌𝑖−1)};  

𝛽(𝑌𝑖) ∶= min{𝜂 ∈ 𝛾+(𝑋
′) | 𝜂 > 𝛽(𝑌𝑖−1) and 𝜂 + 1 ∉ 𝛾+(𝑋

′)}; 

if 𝛼(𝑌𝑖) does not exist, then  

Output 𝑀[1. . (𝑖 − 1)]; 

Stop; 

end if; 

3. Absorb 𝑌𝑖, and, if necessary, update 𝑖, 𝑀[1. . (𝑖 − 1)], and St:  

3.1. while 𝑖 > 1 and 𝑆𝑡 ≠ ∅ 

𝑗 ∶= Top(St); 

if 𝑝𝑠𝛼(𝑌𝑗)−1 ≥ 𝑝𝑠𝛼(𝑌𝑖)−1 then Pop(St); 

else if 𝑝𝑠𝛽(𝑌𝑗) < 𝑝𝑠𝛽(𝑌𝑖) then  

Pop(St); 𝛽(𝑌𝑗) = 𝛽(𝑌𝑖); 𝑖 ∶=  𝑗;  

else goto Step 3.2; 

end if;  
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end while; 

3.2. Push 𝑖 to St; 𝑀[𝑖] ∶= 𝑌𝑖; 𝑖: = 𝑖 + 1; goto Step 2;  

End 

Algorithm MAX_Sequential has been optimized from the original one described in section 2.5: 

1. The contiguous subsequence of positive terms of 𝑋 is monotone, and it can be used to 

check the maximality directly. In section 2.5, each positive term is treated as a 

subsequence.  

2. A stack is used to preserve the relative positions of the monotone subsequences, and it 

can avoid the redundant comparisons of prefix sums.  

Figure 5.1 illustrate an example input for the algorithm MAX_Sequential. Subsequence 𝑌1  is 

monotone, the index 1 is pushed on top of St. In the second iteration, 𝑌2  is found, and it is 

compared to the subsequence 𝑌1 corresponding to index 1 at the top of St. Because 𝑝𝑠𝛼(𝑌1)−1 ≥

𝑝𝑠𝛼(𝑌2)−1, index 1 is popped off from St. The stack St is empty now, which indicates that 𝑌1 is the 

maximal monotone subsequence. Index 2 is pushed on top of St. In the third iteration, 𝑌3 is found. 

Because 𝑝𝑠𝛼(𝑌2)−1 < 𝑝𝑠𝛼(𝑌3)−1
 and 𝑝𝑠𝛽(𝑌2) > 𝑝𝑠𝛽(𝑌3), index 3 is pushed on top of St. Now St 

contains index 2 and 3. In the fourth iteration, 𝑌4  is found. 𝑝𝑠𝛼(𝑌3)−1 ≥ 𝑝𝑠𝛼(𝑌4)−1, index 3 is 

popped off from St. The stack St is not empty yet, so 𝑌3  could be maximal monotone or be 

merged into a maximal monotone subsequence. Then 𝑌4  will compare with 𝑌2  that is 

corresponding to index 2 at the top of St. Because 𝑝𝑠𝛼(𝑌2)−1 < 𝑝𝑠𝛼(𝑌4)−1 and 𝑝𝑠𝛽(𝑌2) < 𝑝𝑠𝛽(𝑌4), 

𝑌2, 𝑌3, and 𝑌4 are merged into 𝑌2. 
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Figure 5.1: An example input of MAX_Sequential, where  𝑌1, 𝑌2, and 𝑌3 are in 

MAX(𝑋′), the next 𝑌4 will be merged with 𝑌2, and 𝑌3. 

 

Step 2 is linear. In Step 3, we see that for each 𝑌𝑖 , there are at most one Push and one Pop 

operation associated with it, so the algorithm MAX_Sequential runs in 𝑂(𝑛) time. 

When sequence 𝑋 is partitioned into (𝑋1, 𝑋2,  .  .  .  , 𝑋𝑚) on m processors, each processor can run 

MAX_Sequential independently to compute MAX(𝑋) = ⋃ MAX(𝑋𝜂)
𝑚
𝜂=1  if the partition satisfies 

rm-closure condition. If the partition does not satisfy rm-closure condition, then we implement 

the PRAM-algorithm in [DS06] with MPI. The PRAM-algorithm will call the parallel algorithm 

for all nearest smaller values (ANSV) developed in [HH01]. But it is not necessary to find the 

nearest right match or left match for all the indices in order to compute MAX(𝑋). We only need to 

solve the right match or left match for the starting index of every monotone subsequence. In the 

following section we create the optimized ANSV sequential algorithm to minimize the 

computations in the parallel ANSV algorithm. 
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5.2 All Nearest Smaller Values Sequential Algorithm 

In Chapter 3, we defined the rm𝑋(𝑖) and lm𝑋(𝑖) respectively for the positive terms 𝑥𝑖, 𝑖 ∈ 𝛾+(𝑋) 

of input sequence 𝑋 = (𝑥𝜂)𝜂=1
𝑛

: 

rm𝑋(𝑖) = {
min{𝜂 ∈ [𝑖 + 1, 𝛽(𝑋)] | 𝑝𝑠𝑖−1 ≥ 𝑝𝑠𝜂} if the minimum exists,

𝛽(𝑋) + 1 (= 𝑛 + 1) otherwise;
 

and , 

lm𝑋(𝑖) = {
max{𝜂 ∈ [𝛼(𝑋), 𝑖 − 1] | 𝑝𝑠𝑖−1 > 𝑝𝑠𝜂−1} if the maxmum exists,

𝛼(𝑋) − 1 (= 0) otherwise.
 

Every positive term of 𝑋 is contained in a unique maximal monotone subsequence, thus between 

two contiguous maximal monotone subsequences 𝑌𝑖 and 𝑌𝑖+1 (𝛼(𝑌𝑖+1) > 𝛽(𝑌𝑖)) is a subsequence 

𝑌𝑖,𝑖+1  with index subrange [𝛽(𝑌𝑖) + 1, 𝛼(𝑌𝑖+1) − 1] . Subsequence 𝑌𝑖,𝑖+1  only contains non-

positive terms. If we replace every 𝑌𝑖,𝑖+1 with a single non-positive term 𝑥𝑖,𝑖+1 = 𝑝𝑠𝛼(𝑌𝑖+1)−1 −

𝑝𝑠𝛽(𝑌𝑖) to transform 𝑋 into 𝑋′, the MAX(X) should be equal to MAX(𝑋′) (simple task can be 

applied to each maximal monotone subsequence of MAX(𝑋′) to translate its index subrange in 

the context of X). If we assume rm𝑋(𝛼(𝑌𝑖)) ∈ [𝛽(𝑌𝑗−1) + 1, 𝛼(𝑌𝑗) − 1] , where 𝑗 > 𝑖 , then 

rm𝑋′(𝛼(𝑌𝑖)) = 𝛼(𝑌𝑗) − 1. Notice that the first term of 𝑌𝑗  must be positive, therefore, we can 

redefine rm𝑋 to be: 

rm𝑋(𝑖) = {

min{𝜂 ∈ 𝛾+(𝑋)| 𝜂 ≥ 𝑖 + 1,  𝑝𝑠𝑖−1 ≥ 𝑝𝑠𝜂−1} if the minimum exists,

𝛽(𝑋) else if 𝑝𝑠𝑖−1 ≥ 𝑝𝑠𝛽(𝑋),

𝛽(𝑋) + 1 (= 𝑛 + 1) otherwise.

 

Similarly we denote 𝑥0 = 0, and redefine lm𝑋 to be: 

lm𝑋(𝑖) = {
max{𝜂 ∈ 𝛾+(𝑋)| 𝜂 < 𝑖,  𝑥𝜂−1 ≤ 0,  𝑝𝑠𝜂−1 < 𝑝𝑠𝑖−1} if the minimum exists,

𝛼(𝑋) − 1 (= 0) otherwise.
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The above definitions allow us only to compute right match or left match among the starting 

indexes of the monotone subsequences. Algorithm MAX_Sequential actually implements the 

above left match function. We use the redefined rm𝑋  to implement the PRAM-algorithm in 

[DS06].  

We can find rm𝑋(𝑖) for a single 𝑖 ∈ 𝛾+(𝑋) in linear time. But the brute force implementation to 

find all rm𝑋(𝑖) for every 𝑖 ∈ 𝛾+(𝑋) may take 𝑂(𝑛2) time. There is a linear time algorithm to find 

all the right matches for each 𝑖 ∈ 𝛾+(𝑋) using a stack. Similar approach can find all the left 

matches for each 𝑖 ∈ 𝛾+(𝑋). Actually the algorithm to find all right matches and left matches for 

the starting indexes of maximal monotone subsequences can be combined with algorithm 

MAX_Sequential to re-use the same stack. The following algorithm is the modification of 

algorithm MAX_Sequential: 

Algorithm 5: MAX_ANSV_Sequential 

Input: A length-n real-valued sequence X. 

Output: The sequence of all successive minimal maximum subsequences (that is, all maximal 

monotone subsequences) of 𝑋 occupying the low-order subarray of an array 𝑀[1. . ⌈𝑛/2⌉], and the 

related right match and left match for the starting index of each maximal monotone subsequence. 

Data Structures: On consumed input 𝑋′ (prefix of X): 

1. Array 𝑀[1. . (𝑖 − 1)]: the canonical list (𝑌1, 𝑌2 , .  .  . , 𝑌𝑖−1) of MAX(𝑋′); 

2. Array rm[1. . (𝑖 − 1)]: the right matches rm𝑋′(𝛼(𝑌1)), rm𝑋′(𝛼(𝑌2)), . . . , 

rm𝑋′(𝛼(𝑌𝑖−1)); 

3. Array lm[1. . (𝑖 − 1)]: the left matches lm𝑋′(𝛼(𝑌1)), lm𝑋′(𝛼(𝑌2)), . . . , lm𝑋′(𝛼(𝑌𝑖−1)); 

4. Stack St: the longest sublist (𝑌(1), 𝑌(2) , .  .  . ) (which is not necessarily contiguous) of 

MAX(X′) such that  



68 
 

min{𝑝𝑠𝜂−1(𝑋
′)|𝜂 ∈ 𝛾+(𝑋

′)} = 𝑝𝑠𝛼(𝑌(1))−1(𝑋
′) <  𝑝𝑠𝛼(𝑌(2))−1(𝑋

′) <  .  .  .  ,  and 

max{𝑝𝑠𝜂(𝑋
′)|𝜂 ∈ 𝛾+(𝑋

′)} = 𝑝𝑠𝛽(𝑌(1))(𝑋
′) ≥ 𝑝𝑠𝛽(𝑌(2))(𝑋

′) ≥.  .  .  ; 

5. Subsequence 𝑌𝑖 : the incremental input of the longest (contiguous) subsequence of 

positive terms of 𝑋 immediately succeeding 𝑋′. 

Begin 

1. Initialize: 

M[0] ∶= ∅; 𝛼(𝑌(0)) ∶= 0; 𝛽(𝑌(0)) ∶= 0; 𝑆𝑡 ∶= ∅; 𝑖 ∶= 1; rm[𝑖]: = 𝑛 + 1; lm[𝑖] ≔ 0; 

2. Compute 𝛾(𝑌𝑖), if non-empty:  

𝛼(𝑌𝑖) ∶= min{𝜂 ∈ 𝛾+(𝑋
′) | 𝜂 > 𝛽(𝑌𝑖−1)};  

𝛽(𝑌𝑖) ∶= min{𝜂 ∈ 𝛾+(𝑋
′) | 𝜂 > 𝛽(𝑌𝑖−1) and 𝜂 + 1 ∉ 𝛾+(𝑋

′)}; 

if 𝛼(𝑌𝑖) does not exist, then  

Output 𝑀[1. . (𝑖 − 1)]; 

while 𝑆𝑡 ≠ ∅ 

𝑗 ∶= Top(St); 

if 𝑝𝑠𝛼(𝑌𝑗)−1 ≥ 𝑝𝑠𝛽(𝑋) then  

rm[𝑗] ∶= 𝛽(𝑋); 

Pop(St); 

end if; 

end while; 

Stop; 

end if; 

3. Absorb 𝑌𝑖, update rm[1. . (𝑖 − 1)], lm[1. . 𝑖], and, if necessary, update 𝑖, 𝑀[1. . (𝑖 − 1)], 

and St:  



69 
 

3.1. while 𝑖 > 1 and 𝑆𝑡 ≠ ∅ 

𝑗 ∶= Top(St); 

if 𝑝𝑠𝛼(𝑌𝑗)−1 ≥ 𝑝𝑠𝛼(𝑌𝑖)−1 then  

rm[𝑗] ∶= 𝛼(𝑌𝑖); 

Pop(St); 

else if 𝑝𝑠𝛽(𝑌𝑗) < 𝑝𝑠𝛽(𝑌𝑖) then  

Pop(St); 𝛽(𝑌𝑗) = 𝛽(𝑌𝑖); 𝑖 ∶= 𝑗;  

else  

lm[𝑖]:= 𝛼(𝑌𝑗); 

goto Step 3.2; 

end if;  

end while; 

3.2. Push 𝑖 to St; 𝑀[𝑖] ∶= 𝑌𝑖; 𝑖: = 𝑖 + 1; rm[𝑖]:= 𝑛 + 1; lm[𝑖] ≔ 0; goto Step 2;  

End 

The stack St is used to store the 𝑌𝑖 that its right match is not found yet. In step 2, when the end of 

the sequence 𝑋 is reached, the algorithm checks if the right match can be obtained at the end of 𝑋 

for 𝑌𝑖 on the stack. This is to verify if sequence 𝑋 satisfies rm-closure condition.  

The algorithm MAX_ANSV_Sequential processes input sequence 𝑋 sequentially to find maximal 

subsequence 𝑌𝑖, and for each 𝑌𝑖, there are at most one Push and one Pop operation associated with 

it, so the algorithm MAX_ANSV_Sequential runs in 𝑂(𝑛) time. 
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5.3 Range Minima Query 

Lemma 3 of chapter 2 shows that the ending index of the maximal monotone subsequence of 𝑋 

constrained with the starting index 𝑖 ∈ 𝛾+(𝑋) is the index of the unique maximum prefix sum on 

[𝑖, rm𝑋(𝑖) − 1]. Assume sequence 𝑋 is partitioned into (𝑋1, 𝑋2,  .  .  .  , 𝑋𝑚) on m processors, if a 

partition 𝑋𝑗  for 1 ≤ 𝑗 < 𝑚 is not rm_localized, then there is at least one index 𝑖 ∈ 𝛾+(𝑋𝑗) that 

rm𝑋(𝑖)  cannot be found on hosting processor 𝑃𝑗 . We assume rm𝑋(𝑖)  exists on some other 

processor 𝑃𝑘 , where 1 ≤ 𝑗 < 𝑘 ≤ 𝑚 , we need to find the index of the maximum prefix sum 

efficiently on [𝑖, rm𝑋(𝑖) − 1]. Notice that it is the largest one among three index subranges: 

[𝑗, 𝛽(𝑋𝑗)], [𝛼(𝑋𝑗+1), 𝛽(𝑋𝑘−1)], and [𝛼(𝑋𝑘), rm𝑋(𝑖) − 1].  

First for index subrange [𝑗, 𝛽(𝑋𝑗)]: Notice that rm𝑋(𝑖) is on a different processor, i.e., rm𝑋𝑗
(𝑖) =

𝛽(𝑋𝑗) + 1, so the maximum prefix sum on [𝑖, 𝛽(𝑋𝑗)] is the one at the ending index of the 

maximal monotone subsequence in MAX(𝑋𝑗) with starting index 𝑖.  

Second for index subrange [𝛼(𝑋𝑘), rm𝑋(𝑖) − 1]: We can use an array to store the maximum 

prefix sum between [𝛼(𝑋𝑘), 𝜂] for any 𝜂 ∈ [𝛼(𝑋𝑘), 𝛽(𝑋𝑘)]. The creation of the array is in linear 

time, and the time to find the maximum prefix sum between [𝛼(𝑋𝑘), 𝜂] is the constant time to 

query the array. 

Third for [𝛼(𝑋𝑗+1), 𝛽(𝑋𝑘−1)]: This can be reduced to range minima query (RMQ) problem. 

Given an array 𝑀𝑎𝑥𝑃[1. . 𝑚] of the maximum prefix sum of each partition 𝑋𝜂  for 𝜂 ∈ [1,𝑚], 

processor index 𝑗  and 𝑘  for 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑚 , RMQ(𝑗, 𝑘)  outputs the maximum prefix sum in 

subarray 𝑀𝑎𝑥𝑃[𝑗. . 𝑘]. Since the algorithm of RMQ will be invoked by every maximal monotone 

subsequence that could not find the right match of its starting index locally on the hosting 

processor, we expect the constant query time of the algorithm.  
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RMQ has a native solution in 𝑂(𝑚2) time to build a table storing answers to all of the 𝑚2 

possible queries. We can improve the time complexity by using dynamic programming. The 

following algorithm Build_ST and algorithm Query_ST implement the sparse table algorithm in 

Bender’s paper [BF00].  

Algorithm 7: Build_ST 

Input: An array 𝑀𝑎𝑥𝑃[1. .𝑚] containing the maximum prefix sums of m partitions of the input 

sequence X. 

Output: An sparse table 𝑆𝑇[1. .𝑚][1. . ⌊log2𝑚⌋]. For 𝑖 ∈ [1. .𝑚] and 𝑗 ∈ [1. . ⌊log2𝑚⌋], 𝑆𝑇[𝑖][𝑗] 

find the maximum element in the subarray 𝑀𝑎𝑥𝑃[𝑖. . 𝑖 + 2𝑗 − 1] if 𝑖 + 2𝑗 − 1 ≤ 𝑚. The query of 

subarray 𝑀𝑎𝑥𝑃[𝑖. . 𝑖 + 2𝑗 − 1] is to be solved by finding the larger one between two recursive 

small queries on the two halves of the subarray.  

Begin 

1. Initialize ST starting at 𝑖 ∈ [1. .𝑚] with length 1: 

for 𝑖: = 1 to m 

𝑆𝑇[𝑖][0] ≔ 𝑖; 

end for; 

2. Create ST table by using dynamic programming. The maximum element in subarray 

𝑀𝑎𝑥𝑃[𝑖. . 𝑖 + 2𝑗 − 1] is the larger one between two maxima of subarray 𝑀𝑎𝑥𝑃[𝑖. . 𝑖 +

2𝑗−1 − 1] and 𝑀𝑎𝑥𝑃[𝑖 + 2𝑗−1. . 𝑖 + 2𝑗 − 1]. 

for 𝑗: = 1 to ⌊log2𝑚⌋ 

for 𝑖: = 1 to 𝑚 − 2𝑗 + 1 

if 𝑀𝑎𝑥𝑃[𝑆𝑇[𝑖][𝑗 − 1]] ≥ 𝑀𝑎𝑥𝑃 [𝑆𝑇[𝑖 + 2𝑗−1][𝑗 − 1]] then 

𝑆𝑇[𝑖][𝑗] ≔ 𝑆𝑇[𝑖][𝑗 − 1]; 

else 
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𝑆𝑇[𝑖][𝑗] ≔ 𝑆𝑇[𝑖 + 2𝑗−1][𝑗 − 1]; 

end if; 

end for; 

end for; 

End 

Algorithm 8: Query_ST 

Input: An array 𝑀𝑎𝑥𝑃[1. .𝑚] containing the maximum prefix sums of m partitions of the input 

sequence X, index 𝑖 and 𝑗 such that 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚. A sparse table 𝑆𝑇[1. .𝑚][1. . ⌊log2𝑚⌋] built 

by algorithm Build_ST. 

Output: The index of the maximum element in subarray 𝑀𝑎𝑥𝑃[𝑖. . 𝑗].  

Begin 

1. Query subarray with length 1: 

if 𝑖 == 𝑗 then  

return i; 

end if; 

2. Select two overlapping subarrays that cover the subarray 𝑀𝑎𝑥𝑃[𝑖. . 𝑗]. The maximum 

elements of the two subarrays can be queried from ST table. 

k: = ⌊log2(𝑗 − 𝑖)⌋; 

if 𝑀𝑎𝑥𝑃[𝑆𝑇[𝑖][𝑘]] ≥ 𝑀𝑎𝑥𝑃 [𝑆𝑇[𝑗 − 2𝑘 + 1][𝑘]] then 

return 𝑆𝑇[𝑖][𝑘]; 

else 

return 𝑆𝑇[𝑗 − 2𝑘 + 1][𝑘]; 

end if; 
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End 

The algorithm Build_ST runs in 𝑂(𝑚 log𝑚) time, and Query_ST runs in constant time. The 

algorithms are appropriate if 𝑚 log𝑚 is much less than the size of the partition of input sequence 

𝑋. Otherwise the algorithm that builds the Cartesian Tree of 𝑀𝑎𝑥𝑃 in linear time and queries in 

constant time [BF00] should be used. 

5.4 Parallel Algorithm to Find MAX on Cluster Systems 

Based on the above stated sequential algorithms, we build the parallel algorithm to find MAX on 

cluster systems with MPI. 

Algorithm 9: MAX_Parallel 

Input: A length-n real-valued sequence 𝑋 (which is a random sample satisfying the assumptions 

in Theorem 13: part 2) and a prescribed probability threshold 𝛿  (Remark 8: Chebyshev’s 

inequality). 

Output: The sequence of all successive minimal maximum subsequences (that is, all maximal 

monotone subsequences) of X. 

Begin 

1. Construct sequential partition 𝒫(𝑋) = (𝑋1, 𝑋1,2, 𝑋2, 𝑋2,3, 𝑋3,  .  .  .  , 𝑋𝑚−1, 𝑋𝑚−1,𝑚, 𝑋𝑚) 

of 𝑋  such that: (1) for all 𝑖 ∈ {1, 2, . . . , 𝑚} , processor 𝑃𝑖  hosts the subsequence 

𝑋𝑖,𝑖−1𝑋𝑖𝑋𝑖,𝑖+1 in length-balanced manner except possibly for the last processor 𝑃𝑚, and 

(2) for all 𝑖 ∈ {1, 2, . . . , 𝑚}, |𝑋𝑖,𝑖+1|is the least upper bound of ⌈E(𝑇)  +  𝛿√Var(𝑇)⌉ 

computed via to Theorem 13: part 2; 

2. Decide if 𝒫(𝑋) is an rm-localized partition: 

2.1. for all 𝑖 ∈ {1, 2, . . . , 𝑚 − 1}, processor 𝑃𝑖 computes: 

𝑖𝑠_rm𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑𝑖 ≔ (γ+(𝑋𝑖,𝑖−1𝑋𝑖) == ∅) ∨ 

(rm𝑋𝑖,𝑖−1𝑋𝑖𝑋𝑖,𝑖+1(𝛽𝑖
∗) ∈ [𝛽𝑖

∗ + 1, 𝛽(𝑋𝑖,𝑖−1𝑋𝑖𝑋𝑖,𝑖+1)]); 

end for; 

processor 𝑃𝑚 computes:𝑖𝑠_rm𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑𝑚 ≔ true; 
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2.2. Compute 𝑖𝑠_rm𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑 ≔∧𝜂=1
𝑚 𝑖𝑠_rm𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑𝜂 using MPI Allreduce (prefix 

sum) function; 

2.3. for all 𝑖 ∈ {1, 2, . . . , 𝑚 − 1} processor 𝑃𝑖 updates: 

𝑖𝑠_rm𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑𝑖 ≔ 𝑖𝑠_rm𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑; 

end for; 

3. If 𝒫(𝑋) is rm-localized, then compute MAX(X) via Theorem 7: determine 𝑋𝑖,𝑖+1
′  for all 

𝑖 ∈ {1, 2, . . . , 𝑚 − 1} and compute MAX(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ for all 𝑖 ∈ {1, 2, . . . , 𝑚}: 

for all 𝑖 ∈ {1, 2, . . . , 𝑚} processor 𝑃𝑖  decides: 

if 𝑖𝑠_rm𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑𝑖 then  

if 𝑖 < 𝑚 then 

processor 𝑃𝑖  sends rm𝑋𝑖,𝑖−1𝑋𝑖𝑋𝑖,𝑖+1(𝛽𝑖
∗) to processor 𝑃𝑖+1; 

processor 𝑃𝑖+1 receives rm𝑋𝑖,𝑖−1𝑋𝑖𝑋𝑖,𝑖+1(𝛽𝑖
∗); 

end if; 

Invokes MAX_ANSV_Sequential to compute MAX(𝑋𝑖−1,𝑖
′′ 𝑋𝑖𝑋𝑖,𝑖+1

′ ); 

else 

goto Step 4; 

end if; 

end for; 

4. Let |𝑋𝑖,𝑖+1| = 0 for 𝑖 ∈ [1,𝑚 − 1]. Invoke a parallel algorithm adapted from the MAX-

computing PRAM-algorithm [DS06] in which two embedded problems are solved by 

the parallel algorithm for “all nearest smaller values” [HH01] and RMQ algorithm; 

4.1. for all 𝑖 ∈ {1, 2, . . . , 𝑚} processor 𝑃𝑖   

Invokes MAX_ANSV_Sequential to compute MAX(𝑋𝑖); 

end for; 
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4.2. for all 𝑖 ∈ {1, 2, . . . , 𝑚} processor 𝑃𝑖   

Create array 𝑀𝑎𝑥𝑃[1. .𝑚] to store the maximum prefix sum of each processor 

by MPI Allgather; 

Invokes Create_ST; 

end for; 

4.3. for all 𝑖 ∈ {1, 2, . . . , 𝑚} processor 𝑃𝑖   

Invokes parallel algorithm to locate all the right matches in 𝑋 for every starting 

index 𝜂 such that 𝑟𝑚𝑋𝑖(𝜂) = 𝛽(𝑋𝑖) + 1 of the subsequences in MAX(𝑋𝑖 ) in 

4.1; 

Find the index of the maximum prefix sum between above index 𝜂  and 

𝑟𝑚𝑋(𝜂) − 1; 

end for 

End; 

The parallel ANSV algorithm in [HH01] runs in 𝑂(𝑛/𝑚 +𝑚). The RMQ algorithm runs in 

𝑂(𝑚 log𝑚). The complexity of MPI Allreduce is 𝑂(log𝑚), while that of Allgather is 𝑂(𝑚 +

log𝑚). Therefore the algorithm MAX_Parallel runs in 𝑂(𝑛/𝑚 +𝑚 log𝑚). 

5.5 Experiments 

We implement the MAX_Parallel algorithm on the Cowboy cluster of High Performance 

Computing Center at Oklahoma State University. The cluster has 252 standard compute nodes, 

each with dual Intel Xeon E5-2620 “Sandy Bridge” hex core 2.0 GHz CPUs. The implementation 

is in C language with OpenMPI 1.4. 

The experiments are designed with the following objectives: 

1. Verify the speedup and efficiency of the algorithm with different number of processors. 

2. Verify the bound of the common subsequence is appropriate.  

3. Verify the time complexity of the algorithm with different size of data. 
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4. Study the behaviors between different mean values of the common probability 

distribution. 

5. Study the effects of the different bound sizes with different 𝛿 values. 

We first test the base case of 5M random data from a normal distribution with mean −0.25 and 

variance 1.0, and 𝛿 = 3. The size of the common subsequence is the upper bound on 𝐸(𝑇) +

𝛿√Var(𝑇)  where T is the conditional first weak descending epoch. The independent and 

identically distributed random sample data with the common normal distribution are generated 

through Box-Muller transformation [BM58]. We use the following approximate formula by Bryc 

[Brc00] to calculate the tail probability: 

prob(𝑍 >  𝑧) =
𝑧2 +  5.575192695𝑧 +  12.77436324

√2𝜋𝑧3 + 14.38718147𝑧2 + 31.53531977𝑧 + 2 ∗ 12.77436324
𝑒−

𝑧2

2  . 

The base case has been run with 𝑁 = 100 trial-sequences, and each one has 5M data and from 

the same normal distribution with mean −0.25 and variance 1.0. The performance measures in 

(absolute) speedup and efficiency of MAX_Parallel algorithm are collected in two sets of mean-

statistics:  

1. The set of conditional mean-statistics on “success” scenario (satisfiability of the rm-

locality condition for the first (𝑚 − 1) processors) from N trial-sequences and the MAX-

computing by (local) MAX_Sequential in Steps 1 – 3 of MAX_Parallel. 

2. The set of unconditional ones for MAX_Parallel with all steps. 

Based on the optimal sequential-time algorithm [RT99], the mean optimal sequential time for 

MAX-computation of a length-n sequence, 𝑇∗(𝑛), is approximately 0.155881 sec for the 5M 

synthetic random data (when averaged over 𝑁 = 100 sequences). 
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Table 5.1 summarizes the above-stated two sets of mean-statistics of the running time 𝑇𝑚(𝑛), 

speedup 𝑆𝑚(𝑛) =
𝑇∗(𝑛) 

𝑇𝑚(𝑛)
, and efficiency 𝐸𝑚(𝑛) =

𝑇1(𝑛) 

𝑚𝑇𝑚(𝑛)
 of MAX_Parallel for 𝛿 = 3  and m 

processors with 𝑚 ∈ {1, 2, 4, 8, 16, 32, 64,128} . Figure 5.2 illustrates the conditional and 

unconditional speedups, and Figure 5.3 illustrates the conditional and unconditional efficiencies. 

 

Table 5.1: Mean statistics for 5M data with N(-0.25,1) and 𝛿 = 3 

 

Figure 5.2: Speedup for 5M data with N(-0.25,1) and 𝛿 = 3 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0 16 32 48 64 80 96 112 128 144

Conditional Speedup Unconditional Speedup

  

 

  

Conditional 

mean-statistics over observed-Ns 

Unconditional 

mean-statistics over N 

m Ns Observed Ns Tm(n) Sm(n) Em(n) Tm(n) Sm(n) Em(n) 

1 100 100 0.159702 0.991785 1.000000 0.159704 0.991772 1.000000 

2 88.88889 100 0.079643 1.988750 1.002612 0.079650 1.988575 1.002536 

4 70.2332 97 0.041431 3.822983 0.963662 0.041747 3.794045 0.956380 

8 43.84624 91 0.020898 7.579194 0.955247 0.021475 7.375553 0.929593 

16 17.08882 88 0.010599 14.943863 0.941728 0.011089 14.283524 0.900126 

32 2.595803 78 0.006784 23.347583 0.735656 0.007769 20.387437 0.642393 

64 0.059895 67 0.002665 59.433396 0.936339 0.003670 43.158038 0.679939 

128 3.19E-05 41 0.001864 84.973176 0.669352 0.005376 29.462426 0.232085 
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Figure 5.3: Efficiency for 5M data with N(-0.25,1) and 𝛿 = 3 

Since probability Prob(satisfiability of rm-locality for single processor)≥ 1 −
1

𝛿2
, the expected 
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𝑁𝑠 ≥ 𝑁(1 −
1

𝛿2
)
𝑚−1

. 

The empirical and statistical results tabulated in the two columns: (expected) 𝑁𝑠 and observed-𝑁𝑠  

show that the constraints on E(𝑇) and Var(𝑇) in bounding 𝐸(𝑇) + 3√Var(𝑇) serves as a good 

lower-bound predictor for 𝑁𝑠. 

The calculated upper bounds on E(𝑇) and √Var(𝑇) are 7.981282 and 22.891637 respectively, 

thus the size of the common subsequence is 76. The average weak descending epoch is 3.270820, 

and the average conditional weak descending epoch is 6.658881. The upper bound on E(𝑇) 

matches the observation.  
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For the conditional statistics on “success” scenario, the speedup and efficiency are close to their 

theoretical bounds of m and 1 respectively, except for 𝑚 = 128. For the unconditional ones, even 

for a small 𝛿 = 3, the speedup and efficiency are about 2/3 of their theoretical bounds, except for 

𝑚 = 128. The conditional speedup and efficiency for 𝑚 = 128 is quite off. The main reason is 

because the computation time is so small that the communication time and system overhead play 

bigger roles. We expect better speedup and efficiency at 𝑚 = 128 for larger data size. 

Second, we run the base case with 5M, 10M, and 20M data respectively on m processors with 

𝑚 ∈ {1, 2, 4, 8, 16, 32, 64,128}. The common normal distribution and 𝛿 = 3 are kept the same. 

The following Figure 5.4 shows that for larger data size, the unconditional speedup is better. The 

same improvement can also be found for unconditional efficiency. For example, the efficiencies 

for 128 processors are 0.232085, 0.430357, and 0.569211 respectively for 5M, 10M, and 20M 

data. 

 

Figure 5.4: Unconditional speedups for data with N(-0.25,1) and 𝛿 = 3 
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  mean-statistics over observed-Ns mean-statistics over N 

m Ns 

observed-

Ns Tm(n) Sm(n) Em(n) Tm(n) Sm(n) Em(n) 

1 100 100 0.158392 0.9906372 1 0.158392 0.990637 1 

2 93.75 99 0.080535 1.948333 0.983374 0.08073 1.943627 0.980998 

4 82.39746 99 0.041374 3.7924542 0.957074 0.041468 3.783857 0.954905 

8 63.65008 95 0.020995 7.4736366 0.943034 0.021292 7.369388 0.92988 

16 37.98124 93 0.010616 14.780426 0.932508 0.010946 14.33483 0.904394 

32 13.52414 94 0.005095 30.796663 0.971492 0.006581 23.84273 0.752127 

64 1.714709 89 0.002878 54.520153 0.859929 0.003997 39.25669 0.619183 

128 0.027565 75 0.002009 78.103036 0.615947 0.005283 29.70074 0.23423 

Table 5.2: Mean statistics for 5M data with N(-0.25,1) and 𝛿 = 4 

  

 

  mean-statistics over observed-Ns mean-statistics over N 

M Ns 

observed-

Ns Tm(n) Sm(n) Em(n) Tm(n) Sm(n) Em(n) 

1 100 100 0.180848 0.9550009 1 0.18085 0.95499 1 

2 88.88889 100 0.08944 1.9310152 1.011002 0.089447 1.930864 1.010934 

4 70.2332 95 0.045532 3.7931565 0.992972 0.046066 3.749186 0.981472 

8 43.84624 84 0.023394 7.3826622 0.966316 0.024304 7.106238 0.930145 

16 17.08882 61 0.011933 14.473309 0.947205 0.013276 13.00919 0.851395 

32 2.595803 51 0.005866 29.44255 0.963433 0.007274 23.74347 0.776954 

64 0.059895 19 0.002904 59.47314 0.973054 0.004905 35.21101 0.576102 

128 3.19E-05 8 0.001485 116.30303 0.951431 0.006665 25.91298 0.211987 

Table 5.3: Mean statistics for 5M data with N(-0.125,1) and 𝛿 = 3 

  

 

  mean-statistics over observed-Ns mean-statistics over N 

M Ns 

observed-

Ns Tm(n) Sm(n) Em(n) Tm(n) Sm(n) Em(n) 

1 100 100 0.17962 0.960383 1 0.179622 0.960372 1 

2 93.75 99 0.091237 1.8907242 0.984359 0.09141 1.887146 0.982507 

4 82.39746 97 0.045639 3.7797498 0.983917 0.045954 3.753841 0.977184 

8 63.65008 95 0.0235 7.3405957 0.955426 0.023988 7.191262 0.935999 

16 37.98124 91 0.011923 14.468171 0.941563 0.012352 13.96567 0.908871 

32 13.52414 69 0.00644 26.786335 0.871603 0.007541 22.87548 0.744356 

64 1.714709 52 0.002943 58.615019 0.95364 0.004177 41.29854 0.671916 

128 0.027565 32 0.001483 116.32097 0.946245 0.00507 34.02446 0.276784 

Table 5.4: Mean statistics for 5M data with N(-0.125,1) and 𝛿 = 4 
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Then, we run 5M random data with mean −0.25 and −0.125, also 𝛿 = 3 and 4 respectively. The 

results are listed in above Table 5.1, 5.2, 5.3 and 5.4 respectively. 

Figure 5.5 and 5.6 show the conditional speedup and unconditional speedup respectively for 5M 

data. For 5M data, the runtime and speedups change slightly when 𝛿 changes from 3 to 4, which 

may indicate that 𝛿 = 3 is large enough to generate a good upper bounds on the size of the 

common subsequence. Notice that the observed-𝑁𝑠  is increasing when using larger 𝛿 , so the 

unconditional average run time should improve also. But on the other hand, larger 𝛿 means longer 

common subsequence, so the computation time may increase slightly.  

Also there are not much changes for runtime and speedups when the mean of common normal 

distribution changes from −0.25 to −0.125 for 5M data. We also notice that the calculated bound 

on E(𝑇) changes accordingly. For the case of 𝛿 = 3, the calculated upper bound changes from 

7.981282 to 15.281384, and the observed average conditional weak descending epoch changes 

from 6.658881 to 12.296764. The calculated bound on E(𝑇) is appropriate. 

Similar speedup results are found for 10M and 20M data when changing the 𝛿 and the mean of 

common normal distribution. Figure 5.7 and 5.8 are conditional and unconditional speedups for 

10M data, while Figure 5.9 and 5.10 are those for 20M data. From the charts we notice the better 

speedups for larger data sets. 

Except for 5M random data with mean −0.25 (𝛿 = 3 and 4), conditional efficiencies are over 0.9 

for all other cases. The following Figure 5.11, 5.12, and 5.13 are unconditional efficiencies for 

5M, 10M, and 20M data respectively. We only observed small changes of efficiencies between 

𝛿 = 3 and 𝛿 = 4, or between mean −0.25 and −0.125 if other parameters are the same. The 

better efficiencies are displayed for larger data sets. 
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Figure 5.5: Conditional speedups for 5M data 

 

Figure 5.6: Unconditional speedups for 5M data 
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Figure 5.7: Conditional speedups for 10M data 

 

Figure 5.8: Unconditional speedups for 10M data 
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Figure 5.9: Conditional speedups for 20M data 

 
Figure 5.10: Unconditional speedups for 20M data 
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Figure 5.11: Unconditional efficiencies for 5M data 

 

Figure 5.12: Unconditional efficiencies for 10M data 
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Figure 5.13: Unconditional efficiencies for 20M data 
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CHAPTER VI 
 

CONCLUSIONS 

 

6.1. Conclusions 

The problem of computing the set of all minimal maximum subsequences of a real-valued 

sequence has major applications such as in bioinformatics, pattern matching, and data mining. 

The MAX-computation has real practical importance as it appears as a subroutine in biological 

sequence analysis. Hence there is a natural need for computing MAX in parallel and its 

implementation on practical parallel systems.  

Ruzzo and Tompa presented linear-time sequential algorithm for computing MAX [RT99]. The 

main purpose of our research is to develop the parallel algorithm on cluster systems with 

subsequence-hosting processors employing the optimal sequential algorithm computing MAX. 

We prove that if the structural decomposition of a non-empty real-valued sequence satisfies the 

rm-locality condition, then the decomposition is MAX-independent. We propose a length-

balanced and MAX-independent sequential partition into multiple processors on cluster systems 

with the common subsequence hosted by every two successive processors. 

We analyze the length bound of the common subsequences probabilistically for random 

sequences of independent and identically distributed random variables with common normal 
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distribution via the theory of random walk. The upper bounds on the expectation and variance of 

the conditional first weak descending ladder epoch are derived, which produces the upper bound 

on the length of the common subsequence in accordance with Chebyshev’s inequality. 

We design and implement the domain-decomposed parallel algorithm to find MAX on the cluster 

with MPI. Depends on if the partition is rm-localized or not, linear-time sequential algorithm or 

parallel algorithm adapted from PRAM MAX-computing algorithm [DS06] will be invoked. 

Several optimizations have been applied to our parallel algorithm to minimize the local 

computations and the communications among processors.  

We have done an empirical study of the speedup and efficiency achieved by the parallel 

algorithm with synthetic random data on the cluster at Oklahoma State University. Multiple data 

sets are created from independent and identically distributed random variables with common 

normal distribution. The test results from different numbers of processors, different data sizes, 

different mean values of normal distribution, and different 𝛿  values show the good overall 

runtime speedup and efficiency. 

6.2. Future Work 

There are two directions for general theoretical developments. First, the length bound of the 

common subsequences (to capture the rm-locality) is achieved via explicit bounds on the mean 

and variance of the first ladder epoch in the underlying random walk with normal distribution. 

This leads to a deserving study for general probability distribution. Second, there are other 

notions of (minimal) maximality for ranking subsequences of a real-valued sequence [BH06], 

developing efficient parallel algorithms for their computation is interesting. 

 



89 
 

REFERENCES 

[ACS03] C. E. R. Alves, E. N. Caceres, and S. W. Song, “Computing Maximum 

Subsequence in Parallel,” in Proceedings II Brazilian Workshop on Bioinformatics 

- WOB 2003, Macaé, RJ, Brazil, Dec. 3-5, 2003, pp. 80-87, 2003. 

[ACS13] C. E. R. Alves, E. N. Caceres, S. W. Song, “Finding All Maximal Contiguous 

Subsequences of a Sequence of Numbers in 𝑂(1) Communication Rounds,” IEEE 

Transactions on Parallel .& Distributed Systems, vol. 24, no. 4, pp. 724-733, April 

2013. 

[AG91] S. G. Akl and G. R. Guenther, “Application of broadcasting with selective 

reduction to the maximal sum subsegment problem,” International Journal of High 

Speed Computing, vol. 3, no. 2, pp. 107-119, 1991. 

[Ale06] A. K. Aleškevičienė. “On Calculation of Moments of Ladder Heights,” Lithuanian 

Mathematical Journal, vol. 46, no. 2, pp.12-145, 2006.  

[Asm03] S. Asmussen. Applied Probability and Queues, Second Edition, New York, 

Springer, 2003. 

[Bae07] S. E. Bae, “Sequential and parallel algorithms for the generalized maximum 

subarray problem,” Ph.D. Dissertation, University of Canterbury, 2007.  

 

http://home.imf.au.dk/asmus/books/apqcorr.pdf


90 
 

[BC06] J. L. Bates and R. L. Constable, “Proofs as programs,” ACM Transactions on 

Programming Languages and Systems, vol. 7, no. 1, pp. 113-136, January 1985. 

[BF00] M. A. Bender and M. Farach-Colton, “The LCA problem revisited,” in LATIN 

2000: Theoretical Informatics, pp. 88-94, Springer Berlin Heidelberg, 2000. 

[BBG
+
89] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin, “Highly 

parallelizable problems,” in Proceedings of the 21st Annual ACM Symposium on 

Theory of Computing, pp. 309–319, Association for Computing Machinery, 1989. 

[BBN
+
92] V. Brendel, P. Bucher, I. R. Nourbakhsh, B. E. Blaisdell, and S. Karlin, “Methods 

and algorithms for statistical analysis of protein sequences,” in Proceedings of the 

National Academy of Sciences of USA, vol. 89, no. 6, pp. 2002-2006, 1992. 

[Ben00] J. Bentley, Programming Pearls, Second Edition. Addison-Wesley, 2000. 

[BH06] T. Bernholt and T. Hofmeister, “An algorithm for a generalized maximum 

subsequence problem,” in LATIN 2006: the 7th Latin American Theoretical 

Informatics Symposium, Valdivia, Chile, March 20-24, 2006, pp. 178–189, 

Springer-Verlag, Berlin Heidelberg, 2006. 

[BM58] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random Normal 

Deviates,” Ann. Math. Stat. no. 29, pp. 610-611, 1958.  

[Brc02] W. Bryc, “A uniform approximation to the right normal tail integral,” Applied 

mathematics and computation, vol. 127, no. 2, pp. 365-374, 2002 

[CD02] M. Chiani and D. Dardari, “Improved exponential bounds and approximation for 

the Q-function with application to average error probability computation,” Global 

Telecommunications Conference, vol. 2, pp. 1399-1402, 2002.  

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28chiani%20%20m.%3CIN%3Eau%29&valnm=Chiani%2C+M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20dardari%20%20d.%3CIN%3Eau%29&valnm=+Dardari%2C+D.&reqloc%20=others&history=yes


91 
 

[Che96] D. Z. Chen, “Efficient geometric algorithms on the EREW PRAM,” IEEE 

Transactions on Parallel and Distributed Systems,” vol. 6, no. 1, pp. 41–47, 1995. 

[Cra91] J. W. Craig, “A new, simple, and exact result for calculating the probability of error 

for two-dimensional signal constellations,” In Proceedings of the 1991 IEEE 

Military Communications Conference, vol. 2, pp. 571–575. IEEE, October 1991. 

[DS06] H. K. Dai and H. C. Su, “A parallel algorithm for finding all successive minimal 

maximum subsequences,” in LATIN 2006: the 7th Latin American Theoretical 

Informatics Symposium, Valdivia, Chile, March 20-24, 2006, pp. 337-348, 

Springer-Verlag, Berlin Heidelberg, 2006. 

[Fel71] W. Feller, An Introduction to Probability Theory and its Application, Vol. II; 

Second Edition, Wiley Series in Probability and Mathematical Statistics, John 

Wiley & Sons, 1971. 

[Gus97] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and 

Computational Biology, Cambridge University Press, New York, 1997. 

[HH01] X. He and C. H. Huang, “Communication efficient BSP algorithm for all nearest 

smaller values problem,” Journal of Parallel and Distributed Computing, vol. , no. 

61, pp. 1425-1438, 2001. 

[JáJ92] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, 1992. 

[KA90] S. Karlin and S. F. Altschul, “Methods for assessing the statistical significance of 

molecular sequence features by using general scoring schemes,” in Proceedings of 

the National Academy of Sciences U. S. A., vol. 87, no. 6, pp. 2264-2268, 1990. 

http://www.sciencedirect.com/science/journal/07437315


92 
 

[KA93] S. Karlin and S. F. Altschul, “Applications and statistics for multiple high-scoring 

segments in molecular sequences,” in Proceedings of the National Academy of 

Sciences U. S. A., vol. 90, no. 12, pp. 5873-5877, 1993. 

[KBB91] S. Karlin, P. Bucher, V. Brendel. and S. F. Altschul, “Statistical-methods and 

insights for protein and DNA-sequences,” Annual Review of Biophysics and 

Biophysical Chemistry, vol. 20, no. 1, pp. 175–203, 1991. 

[KB92] S. Karlin and V. Brendel, “Chance and statistical significance in protein and DNA 

sequence analysis,” Science, vol. 257, no. 5066, pp.39–49, 1992. 

[KD92] S. Karlin and A. Dembo, “Limit distributions of maximal segmental score among 

Markov-dependent partial sums,” Advances in Applied Probability, vol. 24, no. 1, 

pp. 113–140, 1992. 

[LF80] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal of the 

Association for Computing Machinery, vol. 27, no. 4, pp. 831–838, 1980. 

[Man89] U. Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley, 

1989. 

[PD95] K. Perumalla and N. Deo, “Parallel algorithms for maximum subsequence and 

maximum subarray,” Parallel Processing Letters, vol. 5, no. 3, pp. 367–373, 1995. 

[PR09] J. Pasternack and D. Roth, “Extracting article text from the web with maximum 

subsequence segmentation,” in Proceedings of the 18th international conference on 

World Wide Web, pp. 971-980, ACM, 2009. 



93 
 

[QA99] K. Qiu and S. Akl, Parallel maximum sum algorithms on interconnection networks, 

Tech. Rep., pp. 99–431, Queen’s University, Department of Computer and 

Information Science, 1999. 

[RT99] W. L. Ruzzo and M. Tompa, “A linear time algorithm for finding all maximal 

scoring subsequences,” in Proceedings of the Seventh International Conference on 

Intelligent Systems for Molecular Biology, pp. 234-241, International Society for 

Computational Biology, 1990. 

[Smi87] D. R. Smith, “Applications of a strategy for designing divide-and-conquer 

algorithms,” Sci. Comput. Program, vol. 8, no. 3, pp. 213-229, 1987. 

[Sug07] O. V. Sugakova, “The counting process and summation of a random number of 

random variables,” Theory of Probability and Mathematical Statistics, vol. 74, pp. 

181-189, 2007. 

[TT98] H. Tamaki, and T. Tokuyama, “Algorithms for the maximum subarray problem 

based on matrix multiplication,” In Proceedings of the Ninth Annual ACM-SIAM 

Symposium on Discrete Algorithms, pp. 446–452, SIAM, 1998. 

[TVP05] T. Takaoka, K. Voges, and N. Pope, “Algorithms for data mining,” in Business 

Applications and Computational Intelligence, ed. K. Voges and N. Pope, pp. 291–

315, Idea Group Publishing, 2005. 

[Wen95] Z. Wen, “Fast parallel algorithms for the maximum sum problem,” Parallel 

Computing, vol. 21, vol. 3, pp. 461-466, 1995. 

 

 



 

VITA 

 

Zhu Wang 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

Thesis: A PARALLEL ALGORITHM FOR FINDING ALL MINIMAL MAXIMUM 

SUBSEQUENCES VIA RANDOM-WALK THEORY 

 

Major Field:  Computer Science 

 

Biographical: 

 

Education: 

 

Completed the requirements for the Doctor of Philosophy in Computer Science 

at Oklahoma State University, Stillwater, Oklahoma in July, 2015. 

 

Completed the requirements for the Master of Science in Information Systems 

at Dakota State University, Madison, South Dakota in May, 2004. 

  

Completed the requirements for the Bachelor of Science in Industrial Foreign 

Trade at University of Electronic Science and Technology of China, Chengdu, 

Sichuan, China in July, 1993. 

 

Experience:   

 

Senior Software Engineer, Weatherford Inc., Katy, Texas, from 2008 - 2015. 

 

Teaching Assistant, Computer Science Department, Oklahoma State University, 

2005 - 2008. 

 

 

 

 
 


