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ABSTRACT

Hongping Li (Ph.D. Computer Science)

Fast and Precise Power Prediction for Combinational Circuits Considering 
Glitching Effects

Directed by Dr. John K. Antonio, Director and Professor, The School of 
Computer Science, University of Oklahoma

The power consumed by a combinational circuit is dictated by the switching 

activities of all signals associated with the circuit. Analytical approaches, named 

MCP and MCPG algorithms, are proposed for calculating signal activities for 

combinational circuits, and the later considers glitching effects. Both approaches 

are based on a Markov chain signal model, and directly account for correlations 

present among the signals. The accuracy of the approaches is verified by 

comparing signal activity values calculated using the proposed approaches with 

corresponding values produced through simulation studies. Another approach 

(called the MMCP algorithm) is also proposed to calculate the total transition 

activities including glitching, and can be more accurate than the proposed MCPG 

algorithm. It is also demonstrated that the proposed approaches are 

computationally efficient.
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CHAPTER 1 

INTRODUCTION

Power consumption of integrated circuits (ICs) is of growing concern as more 

electronic devices are being deployed in mobile and portable applications, e.g., 

PDAs, mobile telephones, and other battery-powered electronic devices. As the 

functionality of such devices increases, so does the complexity and sophistication 

of the underlying circuits. More complexity and faster clock rates generally 

translate into higher power consumption for a given hardware implementation 

technology. Because battery technology has not improved at the same rate as IC 

technology, there is strong motivation to design circuits that are as power 

efficient as possible to extend battery life for portable devices.

Improvements in IC technologies (e.g., reduction in feature size) can reduce 

power requirements of a given circuit design. However, functionality and 

complexity of commercial devices generally increase from one generation to the 

next. So, the next generation device implemented with the next generation IC 

technology will generally have more functionality and complexity than the 

previous generation. Thus, the issue of architectural design of the underlying 

circuits to be power efficient remains important. Predicting and optimizing the 

power consumption during the design phase is critical for low power designs.



Power consumption in a CMOS circuit is primarily due to three types of 

current flow: switching current, leakage current, and short circuit current [11]. 

The first type of current flow is switching current for charging and discharging

load capacitance due to switching activities. The short-circuit current within 

CMOS gates is caused by a brief short circuit that can occur when the state of the

complimentary gates changes from on-to-off and off-to-on. This short circuit 

occurs when the complimentary MOSFETs are concurrently "on" for a brief 

transient period of time. The leakage current is associated with the imperfection 

of field effect transistors (FETs) that are used in CMOS devices.

The total power dissipation of a CMOS circuit is the sum of the three types of 

power consumption, i.e., switching current power dissipation, short-circuit 

current power consumption and leakage current power consumption. Because 

the dynamic power dissipation is by far the dominant component, almost all 

methods used to calculate power consumption in CMOS circuits are focused on 

estimation of dynamic power consumption [14,15].

Because the power estimation is calculated at the gate level, assuming both the 

supply voltage and the capacitance are known, the power consumption can be 

estimated by calculating the switching activity for each circuit node.

Power dissipation is strongly dependent on the applied input signals to the 

circuit. Each applied input propagates through the circuit causing the internal 

nodes to perform transitions according the functionality and the interconnection 

of the circuit gates. The same circuit under different input scenarios may have



totally different switching activities of the internal nodes, which will have 

different power dissipation. Thus the applied input must be taken into account.

The power estimation methodologies at the logic gate level can be divided 

into two general classes: the statistical-based and probabilistic-based

methodologies. The statistical-based power estimation approaches use a large 

number of input vectors to simulate the circuit in order to achieve near real 

results and such simulations are highly dependent on the primary input vectors. 

This often makes statistical-based approaches impractical for large circuits and 

long input sequences. Several methods have been developed to overcome this 

drawback and the Monte-Carlo, the Advanced Sampling and the Vector 

Compaction methods are the most representative approaches [12,14,15].

Compared to the statistical-based approaches, probabilistic-based approaches 

compute switching activities in one run, which may result in much less 

computation time, but the accuracy may not be as good as statistical-based 

approaches. The goal of the research in this dissertation is to develop a signal 

model for a probabilistic-based approach that can achieve near statistical-based 

approaches' accuracy with much less time complexity.

Signals in a combinational logic circuit can be treated in a probabilistic sense, 

i.e., for signal x, the probability that x has logic value "1" is defined by 

F(x) = F(x = 1). Let x(t), t e ( -o o ,+ o o ) , be a stochastic process that takes the values 

of logical "0" or logical "1", transitioning from one to the other at random  times. 

Generally, a stochastic process is said to be strict-sense stationary (SSS) if its



statistical properties are invariable to a shift of time origin. Based on the 

assumption of a SSS 0-1 mean-ergodic process, the probability of a signal x{t) can 

be defined as the average fraction of time that the signal is high, and the activity 

can be defined as the average number of transitions in a time interval.

Several probabilistic-based approaches used to calculate signal probabilities, 

i.e. P{x), of all signals in a circuit are developed in [2, 6, 7]. Although this 

probability calculation is not directly used in calculating a circuit's power 

consumption, it is a necessary component for signal models common to the 

activity approaches, which utilize both signal probability and signal activity 

parameters [3,4].

The approaches of [2], [3], and [4] can have high computational complexities 

because the number of terms in the underlying equations/transformations can 

grow exponentially with the number of primary inputs to the circuit. In [7], a 

trade-off between computational complexity and resulting accuracy is illustrated 

in the context of the underlying equations/transformations introduced in [2]. In 

particular, an approximate approach is defined in [7] in which the 

transformations of [2] are applied in a "gate-by-gate" fashion. Thus, instead of 

deriving the transformation for a signal's probability parameter in terms of the 

circuit's primary inputs, it is derived in terms of the immediate inputs to the 

logic gate associated with the signal. This approach greatly reduces the 

computational complexity, but introduces error in the calculated probability 

parameters for circuits with re-convergent fan-out.
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Similar trade-offs between computational complexity and accuracy are

possible relative to the evaluation of activities associated with [3] and [4], 

respectively. Instead of deriving a signal's logic function in terms of the circuit's 

primary inputs, the parameters to the immediate inputs of the signal's logic gate 

can be used. Again, this type of "gate-by-gate" technique will generally 

introduce error because it does not account for correlations present among the 

internal signals that drive the gates within the circuit. The approach of [6] is a 

fast and accurate "gate-by-gate" technique for calculating a signal's probability 

parameter. It introduces the concept of a correlation factor to account for and 

appropriately adjust the transformation for correlated inputs to a gate.

Signals can be modeled by a Markov-Chain, having two states; state 0 and 

state 1, associated with two transition events; the transition event from state 0 to 

state 1 and the transition event from state 1 to state 0. It is shown that the 

proposed Markov chain model is equivalent to the two-parameter 

probability/ activity signal model of [3] and [4]. The advantage of modeling 

signals w ith Markov chains is that it makes it possible to compute correlations 

between signals related to both probability and activity. Based on this Markov- 

chain signal modeling, we can develop a more efficient and more accurate 

algorithm (named MCP algorithm) by propagating signal parameters and 

correlation cofactors from the primary inputs through a "gate-by-gate" fashion. 

This MCP algorithm can achieve a very good accuracy and an 0{M?) time 

complexity where M is the number of signals in the circuit.

5



Because the MCP algorithm assumes zero propagation delay through each 

gate, it will generate errors in real applications. In reality, gates have non-zero 

delays, which results in "signal glitching." In non-zero delay model, glitches will 

cause errors in general power consumption estimation algorithms and tools that 

assume a zero-delay model. So a MCPG algorithm is developed expanded jErom 

the MCP algorithm to take account of glitching effects. Compared to MCP 

algorithm, MCPG algorithm computes the glitching transitions caused by the 

associated input delays and propagates these glitching transitions to the next 

stage. Because it is assumed that the target circuit can be run ideally at infinite 

speed, every glitch may cause new glitches in the next stage, which gives us an 

upper bound of the activity of each node in the circuit.

Because circuits cannot run at an infinite frequency, MCPG algorithm will not 

generally give us an accurate result in real applications. To deal w ith this 

situation, another algorithm, named MMCP algorithm, is developed. It is shown 

that MCPG algorithm gives us a good prediction of the maximum activity of 

each node, which is an upper bound of the activity of each node, and the MMCP 

algorithm produces a closer prediction of activities of all signals in the circuit.

This thesis is organized as follows: In Chapter 2, three sources of power 

consumption will be discussed in detail and methodologies of estimation of 

power consumptions in CMOS circuits are also reviewed. Because we are 

focused on probabilistic approaches, we will briefly overview those past 

probabilistic-based approaches in Chapter 3. In Chapter 4, a Markov-Chain

6



signal model is developed and based on this signal model, the MCP algorithm is 

proposed and analyzed in detail. In Chapter 5, the MCPG algorithm expanded 

from the MCP algorithm is developed to deal with glitching power consumption. 

To investigate the accuracy and efficiency of algorithms we developed, 

experimental setup and results are listed in Chapter 6. A more accurate glitching 

power consumption prediction algorithm is also introduced in Chapter 6, which 

is named MMCP algorithm. The final summary and future work is in Chapter 7.



CHAPTER!

SOURCES OF POWER CONSUMPTIONS IN CM O S CIRCUITS

2.1 INTRODUCTION

In this chapter, three sources of power consumption will be addressed first. Then 

the estimation of power consumption problem is stated, followed by an 

overview of past methodologies for estimation of CMOS power consumption.

2.2 THREE SOURCES OF POWER CONSUMPTION

2.2.1 BRIEF OVERVIEW

Power consumption in a CMOS circuit is primarily due to three types of current 

flow: switching current, short circuit current and leakage current [11], which are 

summarized in the following equation:

p -  p  p + p (7
avg  switching  '  ^ sh o r t-c ir c u it  le a ka g e '

The first type of current flow, switching current, is due to charging and 

discharging of load capacitance associated with signal switching activities. The 

short-circuit current within CMOS gates is caused by a brief short circuit that can 

occur when the state of the complimentary gates changes from on-to-off and off-



to-on. This short circuit occurs when the complimentary MOSFETs are 

concurrently "on" for a brief transient period of time. The leakage current is 

associated with the imperfection of field effect transistors (FETs) that are used in 

CMOS devices. These three components of power consumption are described in 

detail below.

2.2.2 SWITCHING CURRENT POWER DISSIPATION

The switching current power consumption (also called dynamic power 

dissipation), PsimtcUng, is caused by the charging and discharging of capacitances 

in the circuit. To illustrate the computation of dynamic power dissipation in a 

CMOS circuit, we use an example of a CMOS inverter driving a load capacitor 

Cl, as shown in Figure 2-la.

Vdd
V

I N

dd Vdd

O U T  ^ I N R V,O U T  ^ I N

ip(t)
'  O U T

C,

(a) (b) (c )

Figure 2-1. Operation of a CMOS inverter driving a load capacitor Cv- 
(a) inverter circuit model, (b) discharging phase, (c) charging phase.



As shown in Figure 2-1, the dynamic power consumption of an inverter is 

associated with power dissipated in charging and discharging of the load 

capacitor. To simplify the analysis, assume the input signal, Vin, is a square wave 

having a period T and that the rising and fall time of Vin is much less than the 

period T. The rise time and fall time of a signal are depicted in Figure 2-2 as Tr 

and Tf, respectively. Assume the circuit is initially in a steady state with input 

having a logic value "0" and thus the output has a logic value "1". In this state 

the output capacitor is charged and the output voltage is Vm- When the input 

waveform undergoes a rising transition, the nMOS transistor conducts (ON) and 

the pMOS transistor turns OFF as shown in Figure 2-lb. Current is draw n from 

capacitor Ci, and the capacitor is discharged, resulting in an output voltage of 

zero. During this discharging process the average power dissipated can be 

expressed as

d̂iscWgmg -  ^  , (2.2)
T ,

where in{t) is the current flowing from the capacitor through the nMOS to the 

ground as shown in Figure 2-lb.

As the input waveform goes from "1" to "0" (having a falling transition), the 

pMOS transistor will be ON and the nMOS will be OFF as shown in Figure 2-lc. 

In this charging phase, the current will flow from the power supply Vdd through 

the pMOS to the capacitor, and the average power consumed due to charging 

can be expressed as

1 0



j -  K .  ( ')X '. (2.3)

Using the assumptions that ẑ (f) = = ^L(0) = )^ ,

F^(T /2) = 0 , and P ^(r) = K^, the total power dissipation during charging and

discharging can be expressed as^

r
p  = P + P = (2  4')

swUching charging discharging T  s ' /

Assume /  represents the frequency (switching frequency) of the input signal, 

a n d /=  1/T, then the above equation can be rewritten as

' (^'^)

The dynamic power dissipation is the dominant factor compared with the 

other components of power dissipation in CMOS circuits. For current 

technologies, the dynamic power dissipation is about 80% of a circuit's total 

dissipation [14,15]. Consequently, the majority of existing low power design and 

power estimation techniques focus on this dynamic component of dissipation.

Equation 2.5 shows that the dynamic power consumption in a CMOS circuit is 

proportional to the switching frequency, load capacitance and the square of the 

supply voltage. Based on this observation, the power reduction can be achieved 

by these methods:

1 The Vaut (T/2) = 0 and Vaut (I) = Vdd are based on the assumption that the RC time constant for 

the circuit satisfies RC «  T.

11



□ Reduction of output capacitance. C l

□ Reduction of power supply voltage, Vdd

□ Reduction of the average switching frequency, f

Generally, power reduction can be achieved by the combination of one or 

more aforementioned methods. A very popular low power strategy aims at the 

reduction of the product of the load capacitance and the switching frequency, 

i.e.. Cl/ ,  which sometimes is called effective capacitance. It is noted here that a 

signal waveform is generally not a periodic regular signal like the "clock" signal 

assumed in this analysis. In general, f  represents the "average" frequency of a 

signal, and determines this value for all signals in a circuit is the focus of this 

dissertation.

Another main low power reduction strategy, which is one of the most 

aggressive techniques, is the reduction of supply voltage because the power 

savings are significant due to the quadratic dependence of Vdd (as shown in 

Equation 2.5). The disadvantage of this technique is that it might decrease the 

performance of the circuits, specifically, the reduction of the power supply 

voltage leads to an increase to the delay propagation. Thus, reducing supply 

voltage leads to a trade-off between the power consumption and the circuit's 

speed.

12



2.2.3 SHORT-CfRCUrr POWER DfSSIPATTON

The short-circuit power consumption, Pshort-circuit, is caused by the current flow 

directly from the power supply to the ground during the transition phase. 

Consider again the CMOS inverter shown in Figure 2-1. Assume initially that Vi„ 

= 0 and then starts to increase from zero to Vdd- When Vm > Vtu where V m  is the 

threshold of the nMOS, the nMOS starts to come out of cutoff and enters in 

conducting state. The load capacitor starts to discharge through nMOS and Vont 

begins to decrease. At this time because pMOS is not totally cutoff, there exists a 

conducting path for current to flow directly from the Vdd to the ground. This 

current flow directly from the power supply to the ground is called the short- 

circuit current. When Vm increases to the point of Vdd -  Vm < | Vtp | , where Vjp is 

the threshold of the pMOS, the pMOS is totally cutoff. This process for Vm 

changing from Vdd to zero follows a similar sequence of events.

Figure 2-2 shows the short-circuit current behavior in an inverter. Exact 

analysis of the power dissipation due to short-circuit is complex. Here we give a 

simplified analysis which will give an upper bound of the power consumption 

due to short-circuit current in an inverter [12].

To simplify, consider a symmetric inverter (i.e., Vth = Vxp) with a symmetric 

input signal Vm as shown in Figure 2-2. The rise and fall time of Vin are denoted 

by Tr and Tf. The time-averaged short-circuit current drawn from the power 

supply and the power dissipated due to this current of the symmetric inverter 

can be approximated by [12]

13



^ sh o r l-c ircu il ~~ ^ i ^ d d  ^ t )  '

(2 .6)

(2.7)

max

t
tg t ,

Figure 2-2. Short-circuit current in an inverter.

respectively, where k is a constant that depends on transistor sizes as well as 

technology, V t is threshold voltage of the nMOS and pMOS transistors, Tr is the 

rise (or fall time) of the symmetric input signal, a n d /is  the switching frequency.

Reduction in the short-circuit power dissipation can be achieved in different 

ways. From Equation 2.7, the power is proportional to the rising (or falling time) 

of the input signal and the switching frequency and therefore, reducing these 

input transition times decrease the short-circuit current. In addition, new 

technology will help to reduce the constant k value and the power supply voltage

14



as a result to reduce the power dissipation due to short-circuit current in CMOS 

circuits.

2.2.4 LEAKAGE CURRENT POtVER DfSStPATtON

The power dissipation due to leakage current (also called static power 

dissipation) is caused by the imperfection of the MOSFET devices. Consider the 

same inverter as shown in Figure 2-1, when the input signal is Vm -  0, the pMOS 

is ON and nMOS is in cutoff, and vise visa, when Vm =  Vdd, the pMOS will be 

cutoff and the nMOS is ON. Hence, ideally, whenever the input Vin stays in "0" 

or Vdd, no current flows from the power supply to the ground. A very small 

amount of power dissipation, though, does take place. This small amount of 

power dissipation is due to the leakage currents flow from the power supply to 

the ground, which is also called static power consumption.

The static power dissipation can be expressed by [13].

Compared to the other two types of power consumption in CMOS circuits, static 

power consumption is the smallest part and is often ignored in power 

consumption estimation. In our research, we mainly focus on power dissipation 

due to switching current to approximate the total power consumption by using

P m -g  ^  P.sw ilching  =  ^ l Y d d f  ■ ( 2 . 8 )

If the parameters are given, such as Ci and Vjj are known, then by estimation of 

the signal switching frequency /, we can use Equation 2.8 to approximately 

calculate the average power consumption of CMOS circuits.
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2.3 METHODOLOGIES OF ESTIMAHON OF POWER CONSUMPHON

2 .3 .1  B r i e f  O v e r v i e w

The total power dissipation of a CMOS circuit is the sum of the three types of 

power consumption, i.e., dynamic power dissipation, short-circuit current power 

consumption and static power consumption. Because the dynamic power 

dissipation is by far the dominant component, almost all methods used to 

calculation power consumption in CMOS circuits are focused on estimation of 

dynamic power consumption. Considering that the power estimation is 

calculated at the gate level (as shown in dynamic power calculation in the 

previous section), the power consumption can be estimated by calculating the 

switching activity for each circuit node assuming the supply voltage and 

capacitance are specified.

In addition, power dissipation is strongly dependent on the characteristics of 

the applied input signals to the circuit. Each applied input propagates through 

the circuit causing the internal nodes to perform transitions according the 

functionality and the interconnection of the circuit gates. The same circuit under 

different input scenarios may have totally different switching activities of the 

internal nodes, which may result in different power dissipation. Thus the applied 

input must be taken into account.

Power consumption estimation means calculation of the average an d /o r worst 

case power consumption. Furthermore we assume that the time between two
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successive input vectors is enough to allow the circuit to reach in a steady state. 

Based on these assumptions, we state the problem of power estimation at the 

gate level as follows;

Power Estimation Problem: "Given a gate netlist of a synchronous static CMOS  

circuit and provided with an associated input vector sequence, estimate the average 

power dissipation of the circuit by calculating the average switching activity of each 

circMif Modg.''

Therefore, the problem of estimation of the average power consumption of a 

given CMOS circuit is transferred into a problem of calculating the switching 

activity of each node in the circuit.

The power estimation methodologies at the logic gate level can be divided 

into two general classes: statistical-based and probability-based methodologies 

[5]. Figure 2-3 provides a general overview of these two methodologies [5]. The 

statistical-base methods (the upper flow) achieve power estimation by simulating 

the circuit with a large number of input vectors and averaging the large number 

of each internal signal waveform to get the average power consumption of the 

circuit. The probabilistic-based methods (the lower flow in Figure 2-3) first 

average the large number of input patterns to get probabilistic properties of 

input signals, then some analysis tools an d /o r techniques are used to predict the 

power consumption of the circuit.
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Figure 2-3. Two methodologies used to estimate the power 
consumption in CMOS circuits.

2.3.2 STATTSTfCAl-BASED POPVER ESTfMAnON

Because the simulation result is highly dependent on the primary input vectors, 

the statistical-based power estimation approach needs to use a large number of 

input vectors to simulate the circuit in order to achieve an accurate estimate of 

the circuit's behavior. This often makes this approach impractical for large 

circuits and long input sequences. Several methods have been developed to 

overcome this drawback; the Monte-Carlo, the Advanced Sampling and the 

Vector Compaction methods are the most representative methods [12]. Only the
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Monte-Carlo approach will be described in this chapter, which is the most 

commonly used technique in statistical-based power estimation.

The block diagram in Figure 2-4 gives an overall view of this technique. The 

basic idea of Monte Carlo statistical technique is as follows [1]:

Statistical Properties }

I Sample Generation }4-

S im u la tio n

Criterion Calculation

No
Converges? 

Yes

Figure 2-4. The block diagram of the Monte-Carlo method.

1. Input patterns are generated based on given input sequence statistical 

properties;
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2. The number of transitions at each node is counted during a given 

period of duration, the power value (activity value) at the end of each 

simulation run is noted;

3. Decide whether to stop the process or to do another run. The decision is 

made based on the mean and standard deviation of the power values 

observed at the end of a number of successive iterations;

4. This process is repeated until it converges to the true result.

The main issue of this method is when to stop the simulation, which means a 

stopping criterion needs to be found. If the input patterns are independently 

generated as shown in step 1 in Monte-Carlo method, a large number of 

independent samples, represented as n independent samples, will be obtained by 

this measurement and the average will approach the desired average power for 

large n. In order to stop the simulation, the value of n needs to be found such that 

the average power is close enough to the true power, and this number of n is 

called the stopping criterion. This can be done by follows:

When we use a sample mean a to estimate the mean a of a population, there

always exists an error and for large », ^  is a value of a random variable
a N n

having approximately the standard normal distribution, where cr is sample's 

standard deviation. We can assert with a probability of 1 -  a  that

Cl — Cl

cr/y» (T/y»
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w h e re  z^ / 2  is su c h  th a t  th e  n o rm a l d is tr ib u tio n  cu rv e  a re a  to  its  r ig h t eq u a ls

a  12. Using E = a - a  , we have

(2.10)

Equation 2.10 shows that if we estimate mean value by means of a random  

sample of size n, we can assert with a probability of 1 -  «  th a t  the error, E, is less

th a n  z^ / 2  , a t  le as t fo r la rg e  u.

Solving for n in 2.10, we have

(2.11)

So by given error E, standard deviation cr, and probability a , we can use 

Equation 2.11 to decide how many samples need to be generated in Monte-Carlo 

statistic simulation^.

2.3.3 PROBABtUSTlC-BASED POWER ESTTMATTON

Compared to the statistical-based approaches, probabilistic-based approaches 

estimate the switching activities in one run, which may result in much less 

computation time. Figure 2-5 is a block diagram that shows how probabilistic- 

based approaches compute the switching activities in CMOS circuits.

2 For detailed information of Monte-Carlo approaches, refer to [1].

21



Average Power

Delay Model

Signal Correlations

Structural
Dependencies

Probabilities and 
Activities of Primary 

Inputs

Propagation and 
computation 

algorithm

Signal Model

Figure 2-5. The typical diagram flow of probabilistic-based power
estimation approaches.

According to the type of a circuit, probabilistic-based approach can be 

categorized into methods for combinational and sequential circuits. For 

combinational circuits, it can be further classified into zero-delay and non-zero- 

delay model. The detailed analysis of probabilistic-based approaches and their 

associated algorithms are provided in Chapter 3.

2.4 SUMMARY

There are three sources of power consumption in CMOS circuits: dynamic 

power dissipation, short-circuit power dissipation and static power dissipation. 

In these three power consumption components, dynamic power dissipation due 

to switching signal activities is dominant. Therefore, the problem of estimation of 

the average power consumption of a given CMOS circuit is transferred into a 

problem of calculating the switching activity of each node in the circuit.
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Two general classes, the statistical-based and the probabilistic-based 

methodologies, exist in the power estimation methodologies at the logic gate 

level. The statistical-based approach, often represented by the Monte-Carlo 

approach, can provide accurate results, but generally, longer simulation time 

compared to probabilistic-based approaches.

A taxonomy of techniques used to estimate switching activities in CMOS 

circuits is shown in Figure 2-6. All colored blocks will be analyzed in this 

dissertation. Approaches represented by pink colored blocks represent our 

research contributions, which provide a solution with comparable accuracy to 

statistic-based simulation, but havmg probabilistic-based time complexity, will 

be introduced in followed chapters.
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CHAPTERS 

PROBABILISTIC-BASED POWER ESTIMATION

3.1 In tro d u c tio n

Probabilistic-based approaches have the potential advantage of performing the 

switching activity computation in less time than competing statistical-based 

approaches. Therefore, more efficient, accurate and more practical algorithms 

have become a major concern in power estimation research. In this chapter, we 

first introduce a general signal model. Then based on this signal model, several 

probabilistic-based algorithms used to calculate signal probabilities will be 

reviewed, followed by algorithms for calculating signal activities. Finally, the 

detailed analysis of these algorithms including complexity and accuracy will be 

discussed.

3.2 M o d elin g  of Sign als

Signals in a combinational logic circuit can be treated in a probabilistic sense [1],

i.e., for signal x, the probability that x has logic value “V  is defined by 

P(x) -  P{x = 1). Let x(f), 1 6 (-o o ,+ o o ), be a stochastic process that takes the values

of logical "0" or logical "1", transitioning from one to the other at random  times.
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Generally, a stochastic process is said to be strict-sense stationary (SSS) if its 

statistical properties are invariable to a shift of time origin. Based on the 

assumptions of a SSS 0-1 mean-ergodic process x(t), the following definitions are 

derived from [3].

Definition 3.1 (Signal Probability) The probability of a logic signal x(f) is the 

average fraction of time that the signal is high and is given by

+T

T

Definition 3.2 (Signal Activity): The signal activity of a logic signal x(t) is the 

average number of transitions, i.e., n(T), in a time interval T and is given by

. »(T)
« (x )  = lim  — —

The analytical expressions of signal probability for some basic logic gates are 

defined in [2] and results are stated in Table 3-1.

Table 3-1. The output probability expression of some basic logic gates.
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dearly the input signals in Table 3-1 are assumed to be independent. But in 

general, signals might be correlated and can be separated into three types:

□ Temporally correlated: a signal's value depends on the values that the 

signal has taken in the past

□ Spatially correlated: a signal's value depends on the values of other 

signals

□ Spatiotemporal correlated: a signal's value depends both on its own 

and other signal's value

The impact of the above three kind of correlations is critical in the probabilities 

and switching activities calculation. Figure 3-1 shows the impact on the results 

with different input vectors.

As shown in Figure 3-1 with zero delay assumption, three different input 

vector sequences, Vi, V2 and I/3 are applied to the three primary inputs %, y  and z. 

The input vector of sequence V\ is generated by a random  number generator, 

which means that the three primary inputs x, y  and z are mutually independent 

in Vi. The signals of sequence I/2 is formed in such a way that the spatiotemporal 

correlations in input signals x, y  and z are strong. In contrast to sequence Vz, the 

signals of sequence V3 has a weak spatiotemporal correlations in inputs x, y  and 

z. The number of transitions of each node corresponding to different input vector 

sequences is also listed in Figure 3-1. It illustrates that the number of transitions 

is affected by the correlations of the primary input signals.
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Figure 3-1. The impact on the number of transitions w ith different 
input vectors with different correlations derived from [13].

Besides correlations among the primary inputs, the structure of the circuit 

may cause additional dependency between signals, which is introduced due to 

reconvergent fanouts. Even if the primary inputs x, y  and z are mutually 

independent in Figure 3-1, signal z fans out into two signals, this kind of 

correlation will also impact the resulting calculation. The detailed effect of this 

correlation and methods dealing with this kind of correlation in switching 

activity calculation will be described later in this chapter.

3.3 Sig n a l  P robability C a lcu la tio n

Signal probability calculation is used for accurately estimating signal activity, 

which is necessary for power consumption estimation. Thus it is essential to 

estimate signal probability correctly for further use in signal activity calculation.
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3.3.] EARLY ALGORITHM

In [2], the concept of using probabilistic signal modeling for analysis of 

combinational circuits was first introduced. In this work, each signal is modeled 

with a single probabilistic parameter, P(x), defining the probability of a signal 

having a logical value of one. The purpose is to calculate the probability 

parameter for all signals, given the probability parameters of the circuit's 

primary inputs. The motivation for this work originated from the area of 

pseudorandom testing, in which fault coverage and identification is achieved 

without resorting to exhaustive testing. Instead, by subjecting a circuit to a large 

number of randomly generated input signal vectors, one can deduce faults in the 

circuit by measuring the fraction of time that any given signal has logic value 

one. If any of the measured signal probabilities do not match calculated signal 

probabilities, then the possibility of a fault is present.

As mentioned above, signals in a combinational logic circuit are treated in a 

probabilistic sense in [2]. For signal x, the probability that x has logic value "1" is 

defined by P(x) = P(x = 1). Two algorithms for calculating signal probabilities 

are introduced in [2] with an upper bound complexity of order 2" where n is the 

number of circuit inputs. The second with less complexity is given below:

Early Algorithm: Compute signal probability of each signal in a circuit.

Input: Signal probabilities of all primary inputs to the circuit.

Output: Signal probabilities of all signals in the circuit.

1. For each input and gate output in the circuit, assign a unique variable;
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2. Starting at the inputs and proceeding to the outputs, write the 

expression for the output of each gate as a function of its input 

expressions (using expressions in Table 3-1);

3. Suppress all exponents in a given expression to obtain the probability 

expression for that signal.

In this algorithm, the primary inputs are assumed to be mutually 

independent, and a Boolean function expression associated with each signal can 

be derived in terms of the primary inputs. However, the internal nodes of a 

circuit may be correlated due to reconvergent fan-out which can produce 

expressions having exponents greater than 1. Hence, Step 3 is used to handle 

signal correlations by suppressing exponents of variables in the Boolean function 

expressions.

To illustrate how to use this algorithm to calculate signal probabilities of a 

circuit, consider a simple circuit as shown in Figure 3-2.

X i

X2

y4

Figure 3-2. An example combinational circuit used to illustrate signal 
probability calculations (derived from [7]).

B y  using this Early Algorithm, the internal signal y i  and signal \j2 can be 

expressed as
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JXl =

_y2 — 1̂ + JKi "■ = Xj + XjXj — X] Xj

Suppressing exponent of x\, we have

>>2 = Xj + XjXj -  XjXj = Xj .

Similarly,

3̂3 ~ ^ 2  ^ y\ ~ 2̂3̂ 1 ~ ^ 2  XjX2 — — X2 + X]X2 ~ X̂ Xj — X2

3̂4 ~ 3̂13̂2 ~ 1̂̂ 2

3.3.2 GENERAL ALGORITHM

The Early Algorithm can solve the probabilities of all nodes in the circuit exactly 

when all primary inputs are assumed mutually independent. It results in 

exponential time complexity, though, due to simplification of Boolean functions 

associated with each node into Boolean functions expressed by primary inputs 

only. To reduce the time complexity, a computationally efficient algorithm for 

calculating signal probabilities is introduced in [6], named "General Algorithm," 

which operates by propagating probability values through the gates of circuit, 

thereby drastically reducing the size of the Boolean functions that m ust be 

evaluated. Specifically, the probability of the output of a gate is expressed in 

terms of the probability values for the inputs to that gate (instead of the primary 

inputs of the entire circuit, as required by the approach in [2]). This algorithm is 

an extension of the above Early Algorithm and is given below:

General Algori thm: Compute signal probability of each signal in a circuit.
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Input: Signal probabilities of all primary inputs to the circuit.

Output: Signal probabilities of all nodes in the circuit.

1. For each input and gate output in the circuit, assign a unique variable;

2. Starting at the inputs and proceeding to the outputs, calculate the value 

of the output of each gate using expressions of Table 3-1.

This algorithm is simple and fast -  it has a linear complexity in the number of 

gates -  but is not accurate for all classes of circuits.

To illustrate the inaccuracies of General Algorithm, assume in Figure 3-2 that 

the probabilities of primary inputs xi and X2 are both 0.5. By applying General 

Algorithm, the computed probabilities of the circuit's signals can be calculated 

and the results are provided in Table 3-2.

Table 3-2. Comparison of actual signal probabilities and those 
calculated using General Algorithm for the circuit of Figure 3-2 with

P( Xl )  =  P{X2)  = 1/2.

P(yi) P # P W
Actual 1 / 4 1 / 2 1/2 1 /4

General Algorithm 1 / 4 5 / 8 5/8 25/64

The problem with the accuracy of the General Algorithm arises in circuits in

which re-convergent fan-out signals are present. Re-convergent fan-out

introduces functional dependencies and statistical correlations among the

signals; however, the General Algorithm assumes statistical independence

among the inputs to each gate. For example, signals y 2 and y3 in Figure 3-2 both

depend on signal xi due to re-convergent fan-out. Thus, applying the algorithm
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to calculate P{y^) under the assumption that signals 1/2 and 1/3 are independent 

results in an error in the value calculated for P(i/4), as shown in Table 3-2. 

Similarly, the values calculated for P(y2) and P(i/3) are also in error.

3.3.3 CCMALGORjTHM

A method for accounting for signal probability correlations was developed in [6] 

named the correlation coefficient method (CCM). By defining the correlation 

coefficient of two events A  and B as C a ,b where

-
P (d^) P (.d /a) P(B/v4)

P(v4)P(P) P(v4) P(^)

probabilities of output signals can be calculated by using these main rules as 

shown in Table 3-3 [6 ].

Table 3-3. Set of basic rules used to calculate the probability of output 
signals and correlation coefficients by given input signals' probability

and correlation coefficients.

Rules Probability Probability Correlation 
Factors

Independent rule

2 -f-

j - t

I

m
Same as input

Fan-out rule

1

m
Same as input

P(0

AND rule P(0 = P(/)P(;)Q
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OR rule
7 m  -

1 —

NOT rule

?(///» ) l - f ( ; ) q
Im -

By using this approach, the probability of the output of a two-input gate can 

be more accurately calculated, given the probabilities of the two inputs and an 

associated correlation factor associated with the two signals. In this algorithm, 

the correlation factor can also be calculated analytically by means of a set of basic 

propagation rules (as shown in Table 3-3). CCM algorithm is given as follows: 

CCM algorithm: Compute signal probability of each signal in a circuit.

Input: Probabilities and correlation coefficients of primary input signals. 

Output: Probabilities and correlation coefficients of all signals.

1. Compile the network transforming possible multiple inputs gates into a 

cascade of two input ones organizing the circuit into levels;

2. Initialize the correlation coefficients and the probabilities at primary 

inputs. Generally the probabilities of primary inputs are assumed to be
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0.5 and are considered to be independent, thus the values for all

correlation coefficients for the primary inputs are 1;

3. Calculate the node probabilities and signal correlation coefficients at each 

level by successively applying the rules, check that the calculated 

coefficients are within the bounds. If not, assign them the nearest bound 

values.

By applying this CCM algorithm to the circuit shown in Figure 3-2, the values 

of P(i/i), P{yi), P(j/3), and P(i/4) are properly calculated and correspond to the 

actual values shown in Table 3-2. The time complexity of the CCM algorithm is 

0{N^)iox  a circuit with N gates.̂

3.3.4 BDD ALGORTTHM

Signal probabilities of any arbitrary Boolean expression can also be calculated 

using Binary Decision Diagrams (BDDs) [16, 17]. In general, each node of a 

circuit can be represented by a logic function and the functionality of a logic 

function can be graphically represented by Binary decision diagrams. Let us 

consider a Boolean function , where variables

correspond to primary inputs. Function /  can be represented using Shannon's

expression [17] as follows:

3 Sharper time complexity results can be obtained; for example, it can be shown drat a circuit widr -JN levels has , 

complexity of )
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f  — Xj • y (X j,...,X j_ j,l;-^ /+ lv5-^n) “I” )^ i-l ' ( ^ '^ )

The cofactors of Boolean function f  with respect to %, and x,. respectively are 

defined as

fx, “  y ( -^ lv 5 -^ ,- l  îh^z+l V 3 ^ „ )  ^3 2 )

f ~  — y(xj,...,x^._j,0,x,.^j ,...,x„).

Thus functions and / -  are obtained by replacing variable %, with logic 1

and logic 0, respectively. Each node of the BDD represents an input x, and the 

edges coming out of node Xi represent the value of input x, either logic 1 or logic 

0. By traversing the BDD from its root, one can determine the value of the 

function/by  sequentially examining the values of the inputs.

As an example to illustrate the BDD representation, consider the Boolean 

function f  = x, • Xj + X j, which can be represented by the BDD shown in Figure 3-

3. The leaf nodes represent the value of function /. For example, if one traverses 

the path of the graph by edges xi = 1, xz = 0, and xs = 1, then the function equals 

logic "1". The tree rooted to the left of x\ represents function / - ,  while the tree

rooted to the right of xi represents function /  . We can see that the ordering of 

the nodes of the BDD has direct implications on the complexity of BDD.
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\

Figure 3-3. A BDD representation of Boolean function /  = Xj • Xj + x
3  •

In general, let y  = /(x ,,X 2,...,x^) be Boolean function. If the primary inputs 

Xj,X2,...,x„ are mutually independent, then the signal probability of y  can be 

obtained in linear time (in the size of its BDD representation) as follows (using 

Equations 3.1 and 3.2):

p(}") = p (x , + X, - / ^ )

= ) ' .p( A  ) + .P(:̂ 1 ) ' X A ) .

(3 3)

The probability of y  is stored in node xi as shown in Figure 3-3, and the 

probability of the cofactors are stored in node xi and xs, respectively. The 

probability of the cofactors can now be represented in terms of its cofactors and
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so on. A depth-first traversal of BDD, with a post order evaluation of p(.) at every 

node is required for evaluation of p(y). This can be implemented using the "scan" 

function of the BDD package [5].

Another algorithm is proposed in [7] called the Weighted Averaging 

Algorithm (WAA), which generally achieves better accuracy than does the 

General Algorithm and has a comparable time complexity. However, the WAA 

still does not always produce correct values.

3xlSK3NAL/k=TNTrYCLWU:ULATK%y

The average number of transitions per unit of time of a signal is defined as signal 

activity. The above-described approaches of [2], [6], and [7] are concerned with 

determining the probabilities of signal values, not the probabilities of signal 

transitions, i.e., activities, which are necessary for estimating power 

consumption. In general, there are two approaches for activity analysis, which 

are called the relative Boolean difference approach and the generalized Boolean 

difference approach. In this subsection, we will focus on the analysis of these two 

approaches.

3.4.1 RELATIVE BOOLEAN DIFFERENCE APPROACH

An early approach for estimating signal activities was developed in [3], in which 

signals of a circuit are modeled to be mutually independent strict-sense-
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stationary (SSS) mean-ergodic 0-1 processes. Under these assumptions, the

activity of a signal y  from a circuit with n-primary inputs can be expressed as

/=i
«(%,) (3.4)

where is the Boolean difference of function y with respect to x,: and is defined 
dr,

by

dr, (3.5)
= I' L,.] G}" L,=o = JK(X;, - " , ,1, :K,+i, " -, X J

®y(:^i, ' - -,x„).

Intuitively, the Boolean difference —  defines whether a transition of signal Xi
dr,.

will cause a transition in output signal y. Specifically, if the Boolean difference 

function evaluates to one, then a transition of signal x, causes a transition in y; if 

the Boolean difference function evaluates to zero, then a transition of signal x, 

does not cause a transition in y. So, the probability of the Boolean difference

function, f , defines the probability that a change in y will occur given that

there is a change in x,:. As an example of how to evaluate Equation 3.4, consider a 

simple case of a three-input AND function in which y = x^x^x .̂

(=1

a(x,) (3.6)

dr̂
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and similarly

It'"'*
Thus,

a(y) = )«(%;) + f  + f(x,X2)(^(^3) -

Because xi, x%, and xs are mutually independent, we can further simplify the 

probability terms as follows:

« W  = )a(%i ) + f  )f(%3 )ar(x2 )
+ f(x jf(x2)a(x3)

The above expression is readily evaluated using the values of f  (x, ) and 

a(x ,), which are the known probabilities and activities of the primary input 

signals.

Although the calculation of the probability of the Boolean difference terms.

i.e., f , for the above example was relatively straightforward, this

calculation can be complicated for large and complex circuits. In [3], the 

calculation of these terms is accomplished by first representing the nodes of the 

circuit with a binary decision diagram (BDD) [3, 5]. In practice, the BDD 

approach often achieves linear or near linear time complexity; however, in the 

worst case the complexity can grow exponentially with the number of gates.
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3.4.2 GENERALIZED BOOLEAN DIFFERENCE APPROACH

It is noted in [4] that Equation 3.4, i.e., the approach described in [3], fails to 

consider the effect of simultaneous switching of gate inputs. Figure 3-4 shows an 

example of how simultaneous switching of inputs to a logic gate affects the 

activity of the output node. As shown in the figure, if the two input signals 

always switch simultaneously, then the output signal of the XOR gate will have 

an activity of zero, even though the probability and activity terms in Equation 3.4 

are nonzero [4]. This example is an extreme case, but is given to illustrate the 

importance of considering simultaneous switching.

Figure 3-4. An example to illustrate the effect of simultaneous 
switching (derived from [4]).

Each Boolean difference term associated with Equation 3.4 describes an input- 

switching event in which exactly one of the inputs makes a transition. Thus, 

Equation 3.4 does not account for events involving simultaneous switching of 

two or more of the input signals. The concept of the generalized Boolean 

difference was introduced in [4] to account for simultaneous switching, and is 

denoted as follows:
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where k is a positive integer, , y = 1,2 ,...,A:, are distinct mutually independent

primary inputs of y, and 6, are binary values of "0" or "1". Note that if the 

generalized Boolean difference evaluates to one, then the simultaneous 

transitions of signals from (6, ,6^,...,6,^) to ) or from

(6, ,6, ,...,6,̂  ) to {b̂  ̂ ) will cause a transition at y.

Theorem 3.1 [11]: Assume that the primary inputs are mutually independent, and 

the logical signals can be modeled as SSS mean ergodic 0-1 discrete-time 

stochastic processes with logic modules having zero-delays. Also assume 

that signals can only transition at the leading edge of the clock cycle. Then 

the activity of a Boolean expression y  with three primary inputs xi, X2 and 

X3 (assumed mutually independent), i.e., a(y), can be expressed as

;=1

1
2

i V

Y.
1 < ! < , ; < 3

Pc
y

+ - Fc d'y 1000

Yï[l-u(x,)]
;e{lA3Hu)

+ Pc looi
“i j

lOlO

'3 / 1=1

where

(3.9)

P c A . P c
dr,

d'y 00 d'y Ion
3 7
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are conditional probabilities under the condition that only the indicated 

primary inputs switch at the leading edge of the clock cycle and the rest 

do not.

Prop/i

Because we assume that the module under consideration has zero delay and 

the primary inputs can switch only at the leading edge of the clock signal, the 

output signal will switch only at the leading edge of the clock signal. At any time 

t in which switching is possible, there will be only four kinds of events 

happening: none of the three inputs switching; one of the three inputs switching; 

two of the three inputs switching or all of the switching. The union of these four 

events is the sample space. To simplify the representation, assume Xi is the 

primary input, i = 1, 2, 3. Let event Bo be the event with none of the three inputs 

switch. Let B, be the event that only Xi switches. Let B,j, i = 1, 2, 3, j  = 1, 2, 3, 

andl < i < j  < 3 ,  he the events that only signal i and signal j  switch at time t but 

the other signal does not switch. Finally let 61,2,3 be the event that all three input 

signals switch at the same time. Based on the above definition, all the events are 

mutually exclusive; therefore, they form a partition of the sample space. Because 

signal xi, xi  and X3 are mutually independent,

^ (^ 0  ) = [l-a(:(i )Il -  a(%2 )Il -  «(%3 )]

Similarly,

P(B, ) = a(x, )[l -  «(X;)!! -  a (%3 )]
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)[l -  )Il -  )]

f(^3 ) = a(%3 )[l -  a(%i )Il -  a(%2 )]

= a(ar,)ar(% )̂[l - =  1,2,3; _/ = 1,2,3;A: = 1,2,3; z ^ y A:

and

^ ( ^ 1 . 2 , 3  )  =  ) o ^ ( : : 3  )

Because the probability of the union of a set of disjoint events is the sum of the 

probabilities of the individual events, and assuming event A  represents the event 

that y  is switching at time t, this leads to

P( a ) = P ( A I B , ) P ( B „ )  + Y^P{ AI B, )P( B, )
“ 1 (3.10)

+ Y . P i A !  ) P{ B , j )  + /> (.!/ 5 , ,„  )P (Ü „ J  )

We know that if none of the primary inputs switches at time t ,  the output

signal y  will not switch at time t, then P(A/Bo) = 0. If there is only one signal

switching at time t, i.e., signal Xi is switching, then the conditional probability can 

be expressed as

P ( A / B , }  = P ^ ( %  (3.11)
dr,

When there are two signals switching at time t, i.e., signals z, and xj switch 

simultaneously, there are four possible cases; signals Xi and Xj both transition 

from low to high; both switch from high to low; Xi switches from low to high and 

Xj switches from high to low; or signal x, switch from high to low and Xj switches 

from low to high. Because a rising transition at any node is always followed by a
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falling transition and vice versa, the conditional probability P(A/Bÿ) can be

expressed as [4]

Pc
a '} , I

y
+ Fc (3.12)

Similarly,

Pc + Pc

+ Pc

3 y

y -i3 I A
^  y  Ion

+ Pc
3 y

3 y

ou
\^dr;dr2dr3 y

(3.13)

Q.E.D.

The conditional probability Pc(x) can be calculated as follows: Assume signal x 

only switches at the leading edge of the clock signal, and t is some leading edge 

of the clock and T is the clock period. From the definition of generalized Boolean 

difference as shown in Equation 3.8, it is noted that x is actually an expression of 

primary input signals except those signals simultaneously switching at time t. To 

simplify the expression, we use x{t -  T)x(t) = 1 and x{t -  T)x{t) = 1 to represent 

that signal x does not switch at time t, i.e., from "1 " to "1 " and from "0 " to "0 " 

respectively. Similarly x(t -  T)x(t) = 1 and x(t -  T)x(t) = 1 represent that signal x 

does switch from "1" to "0" and from "0" to "1" respectively. Also assume that 

the probability and activity of signal x are P(x) and a(x)  respectively. Then we 

have

P(x is not switching at time t) = P(x(t -  T)x(t) + x(t -  T)x(t)) = 1 -  a{x)
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P(x is switching at time t) = P{x(t -  T)x(t) + x(t -  T)x{t)) = a{x)

Because we assume the signal is a SSS 0-1 process and mean-ergodic, the 

following equations hold:

f  (x(t -  T);c(o+ -  r)^(O) = f  (x(f -  r )x(O)+ -  T)x(O)

-  r)%(0) = f  (%(t -  T)I(O)+ f  (%(t -  T)%(f)) 

f ( # - T )  = f(x(0) = f W  

f ( # - T ) )  = ? ( # ) )  = !-?(% )

Since every transition from "1" to "0" will always be followed by a transition 

from "0 " to "1 " and verse visa, then we have

f  (%(t -  T)^(0) = f  (^(t -  r)%(0) = (3.14)

(315)

In fact, x(t) = x{t)x(t - T )  + x{t)x(t -  T) , then

f(%(t)) = f (% (0 # -T )+ % (t) ;( f - r ) )  

= f  (%(r);c(f -  T)) + f(x(0%(f -  T)) = f(%)

Solving Equation 3.15 using Equation 3.14, results in

f(x(r-r)% (r)) = f (x ) - la (% )

So the conditional probability of signal x being "1" while it does not switch at 

time t can be expressed as:

Pc{x) = P{x{t) = 11X does not switching at time t)

Using the definition of conditional probability [8] that for two events A and B, 

the conditional probability P{A/B) is defined as
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f (5 )

Then

Pc{x) -
P(x(t) = \8cx  does not switch at time t ) 

P{x does not switch at time t)

P{x{t)[x{t -  T)x{t) + x{x -  T)x(Q] ^ 1) 
-  T)%(t) + %(% -  T)x(0] = 1)

1 -  tz(x) 1 -  a{x)

So the conditional probability of signal x being "1" under the condition that x 

does not switch at time t is given by

fc(%) = (3.16)

Equation 3-9 can be generalized to n-inputs and the proof is similar to that of 

the 3-input. Assume y is a Boolean expression and x,,z = l,2,...,n, are mutually 

independent primary inputs of y, the activity of y can be expressed as [11]

dr j*!

Pc + Pc • +  .

+  -

Pc "̂Tloo...o + Pc

Pc

a"Tloo..,

/=1

(3.17)
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where f^ , Pc 00 , ... , Pc
a%]&T2 - âĉ

are conditional probabilities of

the generalized Boolean differences under the condition that only the indicated 

inputs simultaneously switch, and the rest do not.

We can see that the result obtained by considering the simultaneous switching 

activity is different with the result obtained by ignoring the simultaneous 

switching activity. Compare the results as shown in Equation 3.6, it is apparent 

that if the effect of simultaneous switching is neglected, Pc{dy tcbcj = P{ôyIdx^),

and is equal to o(%:) and the above expression becomes

identical to Equation 3.6.

Let's use an example to show how to apply Equation 3.9. Consider a simple 

logic expression as y = XjXjXj, with x,.,/ -  1,2,3 input signals w ith probability and

activity p, and <%, respectively. Then we have

dy — —
—  = (X2X3)@0 = X2X3

dr.

(X;X3)@0 = X;X3

= 0 © XjXj = XjXj

—  1 —  

_  __ f(X2X3)--a(X;X3)
Pc ( ^ )  ^ Pc{x^ X3 ) = - - = -

dr, l-a(x2X ))
(3.18)

P À ~ )  = Pc(x ,x ,)^
dr

—  1 —  f(X;X3)--a(XiX3)

1 -  a(x^ Xg )
(3.19)
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and

1

Pc ( - — )  =  P c ( X ] X 2  )  =  - -  -  ( 3 . 2 0 )
8X3 l-a(X;X 2)

^  = ^ © 0  = ̂

loi
dx^dx;

0 6 0  =  0

P , ( £ ! 2 i k ) , p , ( £ ! z k ) = ! 2 ! ^ d f ^
dx^dx; dx^dx; l-or(x3)

^JdoG .=oeo = o
dx;dxg

^ ^ ^  = 0 6 x , =%2
dx̂ dxg

dx̂ dx; dx̂ dx̂  l -a (x2)

.̂ ^Uoo_ = o@0 = 0
dx̂ dx;

^ ^  = 0@x,=x,  
dx̂ dXa '

dx̂ dxg dx̂ dxg l - a ( x j

It is also the case that
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=0©1=1

To calculate the conditional probability as shown in Equation 3.18, a (x 2 Xj ) 

needs to be calculated first. This can be done by deriving the activity calculation 

of the 2-input, based on the same conditional probability calculation. The 

method used to solve Equations 3.19 and 3.20 is similar to that for Equation 3.18 

and the results are shown as following:

—  1 
«(%; ) = (1 -  Pg )or2 (1 -  Og ) + ^2^3 (1 -  a  J  + -  «2^3 ,

( l-ag ) + (1 -  u j  + ,

The final symbolic analytical result is very complicated. To compare the result 

of using Equation 3.4 (without considering simultaneous switching effect) with 

the result by using Equation 3.9 (considering simultaneous switching effect), we 

assume values for probabilities and activities as pi = 0.88, pz = 0.29, p3 = 0.69, oi = 

0.1, 0 2  = 0.17, and os = 0.27, then the activity of y of expression y  = XjXjXj is u(y) = 

0.124 by using Equation 3.4 and a(y) = 0.09345 by using Equation 3.9.
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Observe that the result obtained by considering the simultaneous switching

activity is different than the result obtained by ignoring the simultaneous 

switching activity (the difference for the example considered is about 33%). The 

difference arises due to the generalized Boolean difference that accounts for 

simultaneous switching. In general, the approach of Equation 3.9 yields more 

accurate results than Equation 3.4. However, the overall complexity associated 

with evaluating Eq. 3.9 is generally much larger than that of Equation 3.4. This 

high complexity is due to a potentially large number of terms (exponential in the 

number of inputs) and the complexity associated with evaluating the conditional 

probabilities.

3 .5  SUMMARY

The signal model for the three approaches overviewed in this chapter is based on 

a single probability parameter [2, 6, 7]. Although this probability parameter is 

not directly used in calculating a circuit's power consumption, it is a necessary 

component for signal models common to the activity approaches which utilize 

both signal probability and signal activity parameters [3,4].

The approaches of [2], [3], and [4] can have high computational complexities 

because the number of terms in the underlying equations/  transformations can 

grow exponentially with the number of primary inputs to the circuit. In [7], a 

trade-off between computational complexity and resulting accuracy is illustrated 

in the context of the underlying equations/ transformations introduced in [2]. In
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particular, an approximate approach is defined in [7] in which the 

transformations of [2] are applied in a "gate-by-gate" fashion. Thus, instead of 

deriving the transformation for a signal's probability parameter in terms of the 

circuit's primary inputs, it is derived in terms of the immediate inputs to the 

logic gate associated with the signal. This approach greatly reduces the 

computational complexity, but introduces error in the calculated probability 

parameters for circuits with re-convergent fan-out.

Similar trade-offs between computational complexity and accuracy are 

possible relative to the evaluation of Equation 3.4 and Equation 3.9 (associated 

w ith [3] and [4], respectively). Instead of deriving a signal's logic function in 

terms of the circuit's primary inputs, the parameters to the immediate inputs the 

signal's logic gate can be used. Again, this type of "gate-by-gate" technique will 

generally introduce error because it does not account for correlations present 

among the internal signals that drive the gates within the circuit.

The approach of [6] is a fast and accurate "gate-by-gate" technique for 

calculating a signal's probability parameter. It introduces the concept of a 

correlation factor to account for and appropriately adjust the transformation for 

correlated inputs to a gate.
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CHAPTER4

MARKOV-CHAIN SIGNAL MODEL AND M C P ALGORITHM

4.1 INTRODUCTION

In Chapter 3, signals are modeled as strict-sense stationary (SSS) 0-1 process and 

are assumed to be mean-ergodic. Based on this signal modeling, the probability 

of a logic signal x{t) is defined as the average fraction of time that the signal is 

high, and the signal activity of a logic signal x(f) is the average number of 

transitions, i.e., n(T), in a time interval of length T. By defining a relative Boolean 

difference, signal activities can be derived by sum of products of activities of all 

primary inputs (assumed mutually independent) and the probabilities of their 

Boolean difference [3]. In this approach, simultaneous switching is ignored, thus 

introducing errors. Further more, the computational complexity is not efficient 

because the probabilities of the relative Boolean difference'^ m ust be calculated. In 

another approach, the generalized Boolean difference was introduced to account 

for simultaneous switching, and the activities of signals can be achieved by

* OBDD [5] can be used to calculate the probabilities of the Boolean difference, but construction 

the BDD diagram might result in an exponential time in worst case.
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computing the sum of products of the activities of all primary inputs (also

assumed to be mutually independent) and the conditional probabilities of 

enumeration of all possible generalized Boolean differences [4], This approach 

gives us a more accurate solution but an exponential time complexity due to 

calculation of the conditional probabilities of the generalized Boolean difference 

that is impractical for large and complicated circuits.

In this chapter, we introduce a more efficient and more accurate algorithm 

(named MCP algorithm) based on Markov-chain signal modeling. By 

propagating signal parameters and correlation cofactors from the primary inputs 

through the circuit in a "gate-by-gate" fashion, our MCP algorithm can achieve a 

very good accuracy and an 0{NP) time complexity where M is the number of 

signals in the circuit. The signal model we introduced here is based on a Markov 

chain having two event parameters. It is shown that the proposed Markov chain 

model is equivalent to the two-parameter probability/ activity signal model of [3] 

and [4]. The advantage of modeling signals with Markov chains is that it makes it 

possible to compute correlations between signals related to both probability and 

activity.

The approach derived here can be viewed as a generalization of the approach 

in [6]. Instead of tracking a correlation factor for the single probability parameter 

model, transformations for correlation factors associated with the two 

parameters of the Markov model are derived. This ultimately leads to a fast and
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accurate "gate-by-gate" algorithm for calculating signal probabilities and

activities.

4.2 MARKOV CHAIN SIGNAL MODEL

4.2.1 PRELIMINARIES

Assume a Markov chain consists of a set of states denoted as U={si,sz...,Sn,...}, 

then two elements Si and Sj are said to be in the same equivalence class if they can 

communicate to each other. The minimal elements (i.e., terminals) of the partial 

ordering of equivalence classes are called ergodic sets, the remaining elements are 

called transient sets; and the elements of an ergodic set are called ergodic states. A  

chain consisting of a single ergodic set is called an ergodic chain.

Let signal A(t) be strict-sense stationary (SSS) 0-1 process and mean-ergodic. 

Under the zero-delay model, signal A(t) can be modeled as a Markov chain 

process over the state set Q = {O, l} with the transition matrix

state 0 1
0 1 -P (4 )  P(AJ
1 P(AJ 1-P (A J

(4.1)

where P(Ai) and P(Az) denote the transition probability corresponding to 

probability of transition from state 0 to state 1 (i.e., event Ai) and probability of 

transition from state 1 to 0 (i.e., event Az) respectively.
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As illustrated in Figure 4-1, the proposed Markov chain signal model has two

event parameters for the signal A. Events A\  and A i  are used to represent the 

events that there is a transition from state 0 to 1 and from state 1 to 0, 

respectively. There is no transient set because it is possible to go from any state to 

any other state. Hence there is a single ergodic set, and this Markov chain is an 

ergodic chain with one cyclic class.

Figure 4-1. Proposed Markov chain signal model.

Hence, based on this Markov-chain model, signal probability and activity can 

be defined as:

Definition 4.1 (Signal Probability): The probability of a logic signal A, denoted 

by P(A), is the probability of signal A  being in state 1.

P(A) = P(A = 1). (4.2)

Definition 4.2 (Signal Activity): The signal activity of a logic signal A  is the 

sum of transition probability transition from state 1 to state 0 and transition from 

state 0 to state 1, and can be expressed as

a(A) = f  (A = 0)P(^, ) + f  (A = 1)P(^ ). (4.3)
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Applying balance equations of Markov chain (flow-in equals to flow-out for 

state 1), we have

fW  = f  (v4 = 1)(1 -  )) = f  (v4 = 1). (4.4)

Solving Equation 4.4 results in

Replacing P(A) using Equation 4.5, Equation 4.3 becomes

Thus, if the values of both the transition parameters associated w ith the 

proposed Markov model of a signal are known (i.e., P(Ai) and P(A2)), then the 

probability and the activity of the signal are completely determined by using 

Equation 4.5 and Equation 4.6. Likewise, knowing the probability and activity 

values of the signal fully determines the two transition parameters of the Markov 

chain model of the signal and can be expressed as

4.2.2 DEftNmON Of CORREEATYON COfACTORS

In order to define correlations between two signals modeled with Markov chains, 

some basic definitions are needed. Let A and B denote two events and let P(AB) 

denote the probability of both A and B occurring. From basic probability theory

57



[8], P(AB) = P(A/B)P(B), where P(A/B) represents the probability of A given B.

Also, the correlation coefficient of two events A and B is defined as

P ab f

where is the covariance and and cr̂  are the positive square roots of the 

variances of A and B. It can be shown [8] that

F ( A B ) - F ( A ) F ( B )

“  4 F ( A X I - F ( A ) ) ^ F ( B ) { \ - F { B ) )

In order to simplify later derivations, it is convenient to define the correlation 

factor Cab of two events A and B as

C . r(AB) ^ F ^ ^ P j B l A
P(A)P(B) P(^) P(B)  ̂ ^

By applying Eq. 4.9 to Eq. 4.10, the following relationship can be derived;

'  V^(A)(1-P(,4)) ^P(B)(1-P(B))

Thus, Cab is related to pab through scaling and shifting. The value of pab, by 

definition [8], is a real number in the interval [-1,1]; therefore, according to Eq. 

4.11, Cab takes on real non-negative values. Also, pab = 0 corresponds to Cab =1, 

and indicates that the events A and B are mutually independent. Similarly, pAs < 

0 (i.e., A and B are negatively correlated) corresponds to 0 < < 1, and > 0

(i.e., A and B are positively correlated) corresponds to Cab > 1.
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4.3 MARKOV CHAIN MODEL FOR BASIC LOGIC GATES

The focus in this subsection is on deriving the Markov chain model for the 

output of a basic logic gate in which the Markov chain models of the input 

signals are known. The simple case of a NOT gate is considered first followed by 

the analysis of two-input basic logic gates.

For a NOT gate with input A,  the Boolean output function is given hy Y = A.  

From Figure 4-1, it is clear that the Markov model for Y  is given by

= = (4.12)

Consider now the case of a two-input basic logic gate, as shown in Figure 4-2. 

Assuming the Markov chain models of A  and B are known, the objective is to 

derive the Markov chain model for output signal Y.

A
Two-Input
Logic Gate

B

Y

Figure 4-2. Generic two-input logic gate.

A key to deriving the Markov chain model for signal Y  of Figure 4-2 is to 

represent the state transition diagram associated with the gate's two inputs, as 

shown in Figure 4-3. The four states in the figure correspond to the four input 

combinations for the two inputs. The first digit of each state label corresponds to 

the value of A, and the second to the value of B, e.g., the state labeled "01"
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corresponds to A = 0 and B = 1. Although not labeled on the hgure, the directed

edges represent transition events. To illustrate the notation to label transition 

events, "00-^10" will be used to represent the event that input signal A  

transitions from 0 to 1 and signal B stays in state 0.

Figure 4-3. State transition diagram for inputs A  and B of Figure 4-2.

The known parameters of the Markov chain models for signals A  and B are 

given by P(Ai), P(A2), P(Bi), and P(B2). Also assumed to be known are the 

correlation factors for pairs of events associated with the Markov chain models 

for the inputs.^ From Eq. 4.10 note that P(AB) = P ( A ) P ( B ) C ab , where C ab  is the 

correlation factor associated with events A and B. Similarly, the correlation factor 

enables the calculation of P(AiB2) using the fact that

P(A^B^) = . Recall from Eq. 4.11 that independent events

correspond to a correlation factor of unity.

5 Deriving transformations to determine correlations factors associated with pairs of signals will 

be discussed in next section; for purposes of the present section they are assumed to be known.
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Given the Markov chain models for signals A and B (and the corresponding

correlation factors) it is possible to derive the probability associated with every 

event shown in the state transition diagram of Figure 4-3. To illustrate, consider

the probability of event 00->01:

f  (00 -4 .01) = f  (4 B J  

= f ( 4 /B ,) f ( B J  
= [ l - f ( 4 / B j ] f ( B J

= f (B ,) - f (4 ) f (B ,)C ^ ^

Expressions for the probabilities of all events associated with the state

transition diagram of Figure 4-3 can be derived similarly; a complete tabulation

of these expressions are given in Table 4-1. For notational convenience and

clarity, we will denote the value of P(A) as pA (for the value of the probability of

signal A) and the value of the activity «(A) as «a (for the value of the activity of

signal A) throughout the rest of the dissertation.

Table 4-1. Probability expressions of 16 transition edges associated
with Figure 4-3.

Event Probability

00^00 P(00 -4 00) -1
2 ( l - p J  2 ( l - p J  2 ( l - p J 2 ( l - p J

00-^01 P (00^ 01)=
2 ( l - p J

 ̂ a  11 r
 ̂ 2(1- p j

00->ll

00-^10 P (00^ 10)=
2(1- p j

r  «  ^1 ® r  
I 2 ( l - p ,)
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01^00 f  (01 -> 00)
2(1

- C Â i

01 ">01 f  (01 01) 1 .
a .

2 f a  :% i- ;^ )

01^10 f(0 1 ^ 1 0 )  =
2(1-;;^) 2pa

/ta.

01 ">11 f(O l-^ ll)
2(l-;;,j)  2;,B

10->00 f(lO^OO) _ 1 CCji

2(1- l 'a )
-c

10->01 f(lO-^Ol)  ^
217̂  2(1-17g)

C 4a,

10-»10 f(lO ^ lO ) =1— ^
CXjz

2l'x 2(1-;7g) 2^^2(l-;?g )
C

10->11 f (1 0 -» ll) ^a Q 
2(1- l 'a )  2;,^ C^a,)

11-^00 f ( l  1-^00) =

11->01 f ( ll-> 0 1 ) _ «X
2l)x

1 - - ^ C
2p AjBj

B )

11->10 f ( l l^ lO ) : CXo

2l'a
1 - ^ C

2l'/

114>11 f ( l l ^ l l )  = l - ^a j_ Q
2l?x 2/7g 2;?  ̂ 2;;^ 4a,

After the sixteen transition edges have been derived, the 4-by-4 transition 

matrix is determined, then the probabilities of the four states as shown in Figure

4-3 can be derived as follows (based on the balance equations of the Markov 

chain):

F(00) = F(01)f (01 ^  00) 4- F(10)f (10 -4- 00) + f  (1 l ) f  (11 -4- 00) -t f  (00)f (00 ^  00) 

f  (01) = f  (01)f (01 - 4  01) + F(10)F(10 -4- 01) + f  (1 l ) f  (11^01) + f  (OO)f(OO ->01)
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f  (10) = f  (01)f (01 -4.10) + f  (10)f (10 -410) + f  (1 l ) f  (11 -410) + f  (00)f (00 -410) 

f  (11) = f  (01)f (01 -411) + f  (10)f (10 -411) + f  (1 l ) f  (11^11) + f  (00)f (00 -411) 

and

f  (00) + f  (10) + f  (01) + f  (11) = 1.

Solving the above five equations (one balance equation is redundant) and 

using the results listed in Table 4.1, we can derive the solutions of the 

probabilities of the four states, i.e., P(00), P(01), P(10) and P(ll). Because the 

probability expressions for these four states are very complicated, we introduce 

correlation cofactor of signal probabilities, denoted as Cab, to simplify those 

expressions. Cab is only used for simplification purpose, and it can be derived 

and expressed by P(Ai), P(Aa), P(Bi), P(B2) and their correlations. Let

be the correlation cofactor, the probabilities of these four states can be simply 

expressed as

P(00) = 1 - (4.14)

^(01) = P a-p^P gC ^ (4.15)

(4.16)

(4.17)

63



Deriving a Markov chain model (or Y of Figure 4-2 depends on the particular

function of the gate. To illustrate how to determine the Markov chain model for 

Y, consider the specific example of an AND gate, i.e., Y  = AB. For an AND gate, 

the output takes on logic value "1" if and only if both inputs are “1". Thus,

f(T ) = f ( l l )  = p ,p ,C ^ . (4.18)

The event Y\ is associated with three events from Figure 4-3, namely: 00-4-11, 

01-4-11, and 10^11. Thus, equality can be established as follows:

f  (T )f (TJ = f  (OO)F(OO -411) + f  (Ol)F(OO -4 1̂1) ^
+ ? (01 )f(00 -4 ll)

Solving Eq. 4.19 for and using Eqs. 4.7 and 4.8 result in the following 

expression:

(4.20)
^  ) /(I "  )

“ ^  B̂̂ Â Bi ~ ~ PaP b^AB )

where = - —EÆâë. ^  - 1—Es^41.  and À =  -— ~ E^P b̂ ab _

Derivation for P(Y2) follows in a similar fashion and can be expressed as

^A . ^B ^ A ^B

To use only two events associated with signal A and signal B, i.e., P(Ai), P(Az),

P(Bi), P(Ba), Equation 4.20 and Equation 4.21 can also be derived as follows. The 

event Yi is associated with two events from Figure 4-3, namely: 11->00,11-401, 

and 11-410. Thus, equality can also be established as:
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= f  (11 ^  10) + f  (11 -4.00) + f  (11 ^  01)
= l - f ( l l ^ l l )

Solving Equation 4.22 for P{Y  ̂) and using Table 4-1 results in the following 

expression:

f  (1  ̂) = f  f  K  ) f  . (4.23)

Using the fact that each signal's transition from "1" to "0" will always be 

followed by a transition from "0" to "1", means number of transitions from "1" 

to "0" is equal to the number of transitions from "0" to "1" in a long time period. 

Based on this fact, the following equation holds,

f(T )f(i^ )  = f(T )f(y ;).

So derivation for P(Yi) can be obtained as

p(y)p_(Y. )  ^ p ( y ) p ( Y . )
P(Y)  \ ~ P ( Y )

Using Equation 4.18 and Equation 4.23 results in

p , y . ^  P i A ) P { B , ) C „ ( P ( A M P { B , ) - P ( A , ) P ( B , )

P ( A , ) P ( B , )  + P ( A , ) P ( B , )  + P { A , ) P ( B , )  ■ '  ' '

Having the probabilities of the two events associated w ith signal Y, the 

probability and activity of output signal Y can be derived and expressed as 

a(Y) = 2P(Y)P(Y,) = 2P (Y iP(A ,)  + P ( B , } -  P(A, )P (B , )C ,^ J
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Or by using activities and probabilities of inputs A  and B:

Oc(Y) — Pb^ a^ ab P a^ b^ ab 2 ^ a^ b^ ab Â2B2 (4.28)

f  ( n  = . (4.29)

Derivations of P(Y), P(Yi), and P(Y2) for two-input OR and XOR gates, i.e.

Y=A+B and Y -  A ®  B respectively, are similar to the above derivation for the 

AND gate and the results are shown in Table 4-2. To reduce the notational 

burden, the formulas in Table 4-2 are expressed in terms of signal probabilities 

and activities instead of the Markov chain parameters (i.e., Eqs. 4.7 and 4.8 were 

applied).

Table 4-2. Formulas for computing Markov chain parameters for the
output of basic gates.

Gate P(Yi) P(Y2)
NOT
T = 2 P (4 ) P(A )

AND 2 1-pxPgC^
1 i^ A ^ A ,B 2  ~̂ B̂̂ A2Bi ~ '^ ^ A iB , ) ^ A ^ B

cX j  ̂ oCÿ Ç2 

2Px 2pg 2p^ 2pg

OR
y = v4 + P

«g (^"Px -Pa +PxPgG^)

2(1- p j  2(1- p j 4(1 -  Px )(1 -  Px )(Px + P̂  -  PxP̂ Cxa ) 
«X (1 -  Pa ) + (1 -  Px )«a -  «x«aC.44

X -------------------------------------------------------- ----------------------- -------------------------------------i-A:
2 ( l - p J 2 ( l - p , ) 2(l-PxXl-PaXPx +Pa -PxPgC^aj
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XOR
Y -  A ®  B

1 À -  pj^À + p g C
-a,

1 AjB-)

<z.

1 1

+ (Xg
xa

+ '^a^x^a, )

;)x + fa -2 ;)^ ;'a C -(Zx«^

^ A B  —
f ^ fa C x ,a ,( l - f x - f .)  + f,(fx , - f x . f .  Cx,.J + fx(^a. -^ x ^ f.^x ,..)

4̂i + -̂ 2 +'^B, +-̂ Bj "^ ^ i^ X ia ; ~ Pâ Pb/̂ Â B̂  ~ Bâ Pb Ĉ b̂̂

^X =

Al Aj B]

 ̂~ P a^ ab

i - ; ) x
Jl —  ̂ P b '̂ab Ji —  ̂ P^ P b '^PaP rP'ab

1-;)^ (l-^^xX l-^ 'a)

Applying Eqs. 4.7 and 4.8, and using the parameter results listed in Table 4-2,

the probability and activity values of the output signal Y  of these two-input

AND, OR and XOR gates and the NOT gate can be derived and the results are

shown in Table 4-3.

Table 4-3. Probability and activity values of output signals of basic
gates.

Gate P y (Zy
NOT 
T = ]4 1-Px «X

AND
P aP b P'ab P b^aP 'A B  P a^bP 'A B  ~ A ^  bP'AbP'a^b^

OR
Y — A + B Px + Pa-PxPaCx3 (1 -  Pj,)A(z^ + (I-  p^M(Zg -
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XOR
Px + Pa -  2pxPaCxa

(^a + P a (^ x  -^a))(^x  +(^^x + P x (^ a  "^x))'^a

''x^a

Cxa =
^^(-x ^a , 0  Pa ^ ) + -fg(^1 PaiPb̂ ^ P a P̂bi Pâ Pb̂ ^â b̂ )

P,  +Pi  +P d + P b ~ P j Pb C^

/i. 1 - P x C xa

B\ B2 -^1 B’y A]

1-Pa(^xa

P ,P .C _  -P .P .C ^

1 -P x
À  g —

1 -P a
À-

A2 Bĵ -̂ 2̂1 -̂1 1̂ -̂l-̂l
1 - P x  -  Pa + P xP a^ xa  

0 - P x X l-P a )

4.4 C a l c u l a t i o n  o f  C o r r e l a t i o n  F a c t o r s

The purpose of this section is to provide methods for calculating/ propagating 

correlation factors through basic elements of a circuit. For two signals A and B, 

there are two kinds of correlations that need to be established: probability 

correlation factor denoted as (corresponding to correlation factor between 

signal A and signal B which is used to simplify the expressions of probabilities of 

the four states as shown in Figure 4-3) and transition correlation donated as

(corresponding to correlation factor between event Ai and event Bj), where 

i , j  e  {1,2} and A, and Bj  are transition events corresponding to signal A and signal 

B respectively as shown in Figure 4-1. For three events A, B and C, the 

correlations among these events are very complicated and are difficult to derive. 

Let's first denote correlation cofactor between event Af ] B ,  denoted as event A
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and B, and event C as ^. Using the definition of correlation cofactor as shown 

in Equation 4.10,  ̂ can be expressed as

. (4.30)

Replacing P(AB) by using Equation 4.10,

then we have

_ f(d ^ C )

Similarly, a n d d e n o t e  correlation cofactors of event ^IflC and event 

B, event BQC and event A, respectively, then the following equation holds,

C^.cCa.  = = C „  ,C ,, . (4.31)

The exact analytical expressions of and are difficult to

derive. Assume the correlation of correlation of two events to the third one can 

be neglected, then ^ g  and can be expressed as

^xa,c -  (4.32)

^xc.a -  ("xa^ac (4.33)

B̂C,A ~ ^AB^AC ■ (4.34)

In general, this assumption is incorrect and will cause errors. To illustrate, 

consider an example as shown in Figure 4-4. Assume the primary inputs xi, X2, xs
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and %4 are mutually independent, signals A, B and C are the three inputs to the

AND gate that generates the output signal Y. From Figure 4-4, we get

A =

B =

XI
X2

X 3

X 4

C — XjX̂ ,

A

6 y

Figure 4-4. An Example to show the calculation of correlations among
three signals.

and signal A, B and C are correlated. Using the definition of correlation factor as 

shown in Equation 4.10, the correlation cofactor of two signals can be derived as

-
1

1f w o  ___________^____
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_  f  (^C) _
^BC ~

The output signal Y  can also be expressed as

T =

Using Equation 4.30 and suppressing the exponent, we have

f(viBC) _ 1

So we can see that

= r . .p  ^  ("Xg,c - (4.35)

To account for the above inequality (i.e., error), new concepts of conditional 

independence and signal isotropy were introduced in [13]. Two signals A, B are 

conditionally independent with respect to C when the following condition holds;

f  (^B / C) = f  (d / C )f (^  / C ). (4.36)

Under this condition, the problem of handling correlations among three signals 

can be reduced to the problem of handling correlations of pairwise signals. If two 

of the three events are assumed to be conditionally independent, then we have 

the exact expression of ^ ^  and as given in the following theorem. 

Theorem 4-1 : Given three events A, B and C,

^As then c 

^  AC ~ 1 then j ;

^  ^Bc ~ I then Cjjfj.A ~ ^ ab^ ac ■
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Proof:

Given three events A, B and Q if = 1, which means events A and B are

mutually independent, then we have

thus

? ( (  AB) /  C) = B(A /  C )B (B  /  C)

B(AB)C^_c =B(A)C^c^(B)C^

So

(4.37)

Similarly, we can prove expressions for Ĉ .̂ g and .

Q.E.D.

However, because the problem of finding a variable x such that the rest 

signals are conditionally independent is an NP-complete problem [13], the 

concepts of almost conditional independence and almost isotropy were proposed 

in [13]. A set of n signals {%,}, 1 < i < n , is called s  -isotropic if there exists some s  

(g  ̂0) such that

Y \ n x j \ x , )
< s  for any i = 1,2, (4.38)

The usefulness of the above result is twofold. First the small number e is an

upper bound of the relative error of the calculated correlation cofactor; and
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second, it is proved that it is not profitable to express a node with signals beyond

some L predecessor levels, based on isotropy.

Neglecting the correlation of correlation of two events to a third one, 

correlation propagation rules can be established as follows:

The first rule to be established is the fan-out rule associated with the circuit 

diagram in Figure 4-5.

2- ■I

-jn

Figure 4-5. The circuit diagram associated with the fan-out rule. 

Because signal I is the same signal as m,

P(lm) = P(l / m)P{m) and P( l / m)  = l

. _  1 _  1• ■ *-/fH “ f ( /)  f(i)

. c  _ _ 1

a,

Similarly,
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Qm =0

The second rule is named AND rule and is associated with the circuit diagram 

in Figure 4-6.

1-

j -
k -

-1

~m

Figure 4-6. The circuit diagram associated with the AND rule.

Given correlation factors between input signals i, j  and k, the correlation 

factors between output signals I and m can be derived by follows:

Because P(lm) -  P(l I m)P(m) and using the results in Table 4-2,

P(11 m ) -  P(i / m)P{ j  / m)Ĉ j

so

- f(A)
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f  (Z)f (/] ) = f  (00)f (00 -^11) + f  (01)f (01 -^11) + f  (10)f (10 11)

= f ( ? ÿ ) f (v \)+ f (ô ) f (A D + f (V ) f (V ^
= (l-P (0-P (j)+ i> (i)i’O')C„>>(i,)f(y,)C,,,, (4.39)
+ ( P ( j )  -  P{ i )PO)C, ,  l P( i ,  ) -  P(i,  )P(,H )C,,,. ) 
+ (P(i) -  P { i ) P ( j ) C ,  X m , ) -  P ( h  ) P i h  )C ,. j  )

P ( l ) P( h  /  in, ) = (l -  P(0 -  P( J )  + P ( i ) P U ) C „  )P(h /  IK, )P<J, /  m, )C,„,
+ (P(J)  -  P & P ( j ) C , X^('i/ « , ) - f ( ' , )C,,_)
+  ( P ( 0  -  P ( i ) P ( j ) C f  Xp (J\ / m , ) - P ( i , l m ,  ) P ( j ,  /  )

= (l -  P ( i )  -  P( J )  + P ( i ) P( j ) C„  )P(i, P U Ù C „ , C , ,

+ (PU) -  P(0P(J)C,,Xf('))C,„„ -  P(i,)C,,, P(A)C,.., C,„.) (4.40) 
+ (p(,)-p(i)PU)c,Xp(À)c,.„ -P (4)C,„„P(A)C,.,C,_J

So

Solving Eq. 4.41 by applying Eqs. 4.39 and 4.40,

C
(z(Z)

1 /.
a,

other correlation factors (i.e., , and ) can be obtained similarly:
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f  (/,//» ,) ? (/)? (/,/m j
f(A)

(JC ! C l I

1 / \a ,a ,

f  ( / J  = f  (11 -> 00) + f  (11 ^  01) + f  (11 -4-10)
= l - f ( l l ^ l l )
= f ( f j  + f (y ,) - ? ( / , )f(;,)C ^^

/'»i) = / /»! ) + f  (A / /Ml ) -  f (4  / m, ) f  Oz / /Ml )C,̂ ^

= +^0'2)C,,^

f(4 //» i)

+f(A)Cy^«. -f(/2)Q ^/(Â )C ;.« ,C y,

1
hh

1
;/g«x+;/xa^2,

f(Z J

f(/2 )c ,^  +f(;'2)CA«: -^(4)c,«,^(;2)CA«,Cw, 
f(/2) + f0 2 )-f( /2 )f0 '2 )C y ,

j .

2
1

;/a/]̂ x +;/xG:a -  2

Derivations of correlation factors for OR and XOR gates follow in a similar 

fashion.
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J -
k -

-1

-m

Figure 4-7. The circuit diagram associated with the OR rule.

Figure 4-7 shows the circuit diagram associated with the OR rule, and the 

correlation cofactors of the OR rule can be derived as follows:

?(/,/»!) = = ?(/, //Ml)?(/»!)

so

^  _  R ( Z i / / M i )

/m

R(A) = R(00 01) + R(00 -> !!) + R(00 10)
= 1 -  R(00 00)
= f(/,) + R(yi)-R(/i)R(;i)C,^^ 

f  (Z, /  /M l)  =  R (Z i  /  /M l)  -H R O i  /  /M l)  -  R ( / i  / / M i ) f  ( ) i  / / M i ) C ^

_ R(Zi//Mi) 
f ( / l )

_ f O J q ,  -R ( /i)C ,,R ( ;,)C ,,q ,
f ( 0  + f(Â )-f(4 )R (Â )Q

hJ\

1
hJi
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c , —/m

(1 -  + (1 -  A "  ï  ^U.

f  ( F ) f  ()^ ) = f  (0 1 )f  (01 00) + f  (1 0 )f  (10 -4- 00) + f  (1 l ) f  (11 ->  00)

= f ( 0 i ) f ( ÿ ,) + f ( i0 ) f ( / ,ÿ [ ) + f ( i i ) f ( z ,y j  
= f(0 1 )f(y j-f(0 1 )f(i,)f( ;,)C ,^ ^

+ f ( io ) f ( z , ) - f ( io ) f ( f j f ( y jq ,^

+ f(ll)f(z ,)f(;JC ,^ ^

= (P; — -(;^v -  AP;Cj,)
f  \

2(1- A )  2;7yyc , .

iPj
«/

\^2(l-p^)2p, yc , .

1

f ( / ) f ( / / m J  = f(01)f(;,/7»,)-f(01)f(z\/m ,)f(;,/7»,)C ,^^
+ f(10)f(;ym ,)-f(10)f(;2 //» i)f(;\//» ;)C ,^^

+ f ( l  l)f(;\ / 7»! ) f  (;\ / m, )C,̂ ^

= f(oi)f(;\)c,^^^ - f ( o i ) f ( 4 ) q . / ( A ) c , , „ c , , ,  
+ f( io )f (z jc ,^ , - f ( io ) f (4 )c , . / (y jc , ,» ,c ,^ ^  
+ f(ll)f(z,)C ,^f(;,)C ,^_C,^.^

^ V: ^VA ^/A ̂ vAi
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-

+  -  (1 -

-  — (/I, + Ay Cŷ .̂  Cŷ ^̂  "  Q  Cŷŷ  Cŷ ^̂  Cŷ ^̂  )«y OTy

a,

«,(1 -  /)y )Ay Cŷ^̂  —  + (1 "  /̂ y )AyCy.
(Z;

a Jl̂ \ a,

a,
a, ĥ l (Z,

- i ( ^ ,c ,„  c ,,  c , . .  +
(ZyCK

(Z

Figure 4-8 shows the Circuit diagram associated with the XOR rule, followed 

by the derivation of the correlation factors.

Figure 4-8. The circuit diagram associated with the XOR rule.

m = f ( 0 + f ( y ) - 2 f ( 0 f ( y ) c ,y

R(Z / /») = R(f / m) -t R(; / 7M) -  2R(i / /»)?(; / /»)C^

= m e , . .  + ? ( ] ) € , . - 2 P ( i ) C „ P ( j ) C j , C , j
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A.

f(z) + f (y ) -2 f ( z ) f ( ; )Q  
f (0 Q + f(;)C ,* -2 f(Q C ^ f(y )C ,,C , 

f ( 0  + f ( ; ) - 2 f ( 0 f ( ; ) Q

= f  (0 0 ) f  (00 ^  01) + f  (0 0 ) f  (00 ->  10) + f  (1 l ) f  (11 10) + f  (1 l ) f  (1 1 ^ 0 1 )  

= f(00)(f(^;,) + f ( , j )+ f ( l l ) ( f ( ÿ ^ y j  + f(z,ÿ^)

1
" 2 ^ '

f  ( i) f  (/, / ̂ i)  = l ( ( i  -  p,);ic,^^ + X + K

_ ?(/,//» ,)

■̂ ((1 “  + PjC,jCî ,„̂  )a. + —((1 - Pj)ÀCĵ „̂  ̂ + ^Xj

^ 2 ^ '̂2"!
Î
— Qj 
2 '

-  (O -  f  ) - ^ +((1 -  )
Ui

-  (/ICy  ̂ + Q  )

a, ' ' " ' a ,
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_ fCA/TMz)
h«h

or
-  ((1  P J  +  P j^ ij^ H k ^  )  +  ( o  P i  '*' P i ^ i J ^ h h  )'

l _

X -.  - , - " " a ,

vor,(ẑ

= f  (01)f (01 -> 00) + f  (01)f (01 -4-11) + f  (10)f (10 -+ 00) + f  (10)f (10 -+11)

= f(o i)(f(0 2 )+ fO ,Â ))+ f(iO )(f(4 l)+ f(û ,))

—  CX]

^1 1,. n  1
^2 ^  2 ;

1

1
2 ^ '

-  + (1 -  ;)y )Â C,̂ jt, ) ; r  + + (̂  "  )a,

"  Uz ̂ 'A ̂ A*1 "*" '̂2*1 )"!:

or, or,

kOr.or̂
or,

C,2m, -  (p;A(^<A + (1 -  f  J )̂ ;(̂ <2*2 )";r + )̂ '̂ J2;̂ 2 )a,
I \or,

-  (̂ y(̂ V̂2 ̂ 'A ̂ AA " ;̂̂ '2A '̂2*2 ̂ vA
\or,or̂

or,

Finally, Figure 4-9 is the Circuit diagram associated w ith the NOT rule, 

followed by the correlation factor derivation.
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1 1

k r m

Figure 4-9. The circuit diagram associated with the NOT rule.

f(A) = f (h )  
f  (A//»%) = //»i) =
r — r — r

ĥ'r‘2

r  - C .

%

The results of these basic rules used to propagate correlation factors from the 

inputs to the output are listed in Table 4-4. These basic rules along w ith the 

transformations for determining the Markov chain parameters for the output of a 

logic function (Table 4-2) are the foundational components for the algorithm 

developed in the next section.

Table 4-4. Set of basic rules used to calculate the output correlation
factors.

Rules
Probability 

Correlation Factors
Transition 

Correlation Factors
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Independent rule

hJ\

Fan-out rule Lm,

AND rule
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— c c , c , , c ,

OR rule
:.C

- C C . , C _ C
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NOT rule

1

r

1
c

m
lm

C/,m,

c
/z™!

c
'm =  C,z*,

ch"hz= C

XOR rule
1

T

k

1

m  + f U ) - 2 W 0 ) 0 ,
m

+

kL

\
a

)Cl,

c h'H + /),CyC,.
(Z.

V ' y
//I _ \ 1 /-< \

+ J

( Z y C K y

a,

C ,4'«i

+
a ,
a.

+

+ (l-;;^)A^.C,^t.

+ ( ! - ; '/ )  AC;,*,

^+ AC(,;, C,̂ *, Ĉ ,t, J «; 

'/'vAC,,*,

+ (l-y)JAC;,*,

(Z,

(Z,6Zy

C,,m, -
(Z,

(Z,

«,/
(Z,

(Z,(Ẑ
a,
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4.5 MARKOV CHAIN PROPAGATION ALGORITHM

This section describes a proposed Markov Chain Propagation (MCP) algorithm 

[20] for determining the Markov chain models for all signals of a given 

combinational circuit. The Markov chain signal model proposed in the previous 

section is employed, and it is assumed that the parameters of the model are 

known for the circuit's primary inputs. The overall approach is to propagate 

signal information associated with the Markov chain model through the circuit in 

a "gate-by-gate" fashion. Recall that once the Markov chain model is determined 

for all signals, the signal activities and circuit power estimate are determined. It 

is assumed that the given circuit is specified at the level of basic logic gates.

M CP A lgorithm : Compute signal probability and activity of every signal in a 

combinational logic circuit.

Input: Signal probabilities, activities and correlation cofactors of all primary 

inputs to the circuit.

Output: Signal probabilities, activities and correlation cofactors of all nodes in 

the circuit.

1. Represent the given combinational circuit as a directed acyclic graph 

(DAG);

Vertices of the DAG correspond to basic gates and edges represent signals. Tivo 

extra vertices (a source and a sink) are included in the DAG to accommodate the
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primary inputs and outputs of the circuit. An example of how to represent a 

circuit with the DAG model is illustrated by Figures 4-10(a) and 4-10(b).

2. Perform a topological sort [10] on the DAG to obtain an ordering of the 

gates;

See figwre 4-10(c).

3. Transformation to two-input basic logic gates;

As shown in Figure 4-10(d), replace all basic gates having more than two inputs 

with an equivalent sequence of two-input basic gates.

4 .  Partition the circuit into levels;

As shown in Figure 4-10(e), levels are defined at the input and output of each 

basic gate. Note that there is at most one gate between any two consecutive levels.

5. Successively apply propagation rules at each level.

Apply Oie propaggfioM mles yrom Tables 4-2 and 4-4 calcalafiMg llie 

parameters tbe Marker model )ôr fbe basic gale owfpwls and Ibe associated 

correlation factors.
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(c)

6,1
6.2

Li L2 L3 L4 Lj Le Ly

(d)

L g  L 9  L i o  L i i  L 12 Ll4

(e)

Figure 4-10. Illustration of the basic steps of the MCP Algorithm.
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In deriving the time complexity of the MCP algorithm, let N  denote the 

number of basic gates, M be the number of signals, and S the number of fan-out

signals. Fan-out is associated with a signal that is broadcast (i.e., duplicated). To 

illustrate, for the circuit of Figure 4-10(a), N=6, M=16, 5=7. Because two levels are

associated with each gate (one is placed before the gate and the other after), there 

are less than 2M levels for a circuit with M total number of signals, which is 14 

levels for the example shown in Figure 4-10(e).

Constructing the DAG (Step 1) from the given circuit requires 0(N+M) 

operations and it is shown in [10] that topological sort (Step 2) also requires 

0 { N + M )  operations. Step 3 can be finished with no more than M operations and 

at most 2M operations are needed for Step 4.

For Step 5, there are two cases: from level U  to level Li+i and from level L,+i to 

level Lî+2,where i = 1, 3, ..., 2A4-1. For the first case, because there is only one gate 

(e.g., gate 1 when i = 5 as shown in Figure 4-10(e)) between level Li and level L,:+i, 

the calculation needed is to propagate the inputs of the single gate to the output 

of that gate. As shown in Figure 4-10(e), when i = 5, the three parameters of the 

output signal of gate 1 can be obtained in a constant number of operations, 

denoted by Ci. The correlation factors between this output signal and other 

signals need to be calculated and inserted to the correlation factor table during 

this step. Because of the following three facts, it follows that the number of 

operations needed for this case of Step 5 can be expressed as C, + IMC^ :
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(i) only those signals having correlations with the input signals of the gate 

will have correlations with the output signal of the gate need to be 

calculated;

(ii) the maximum length of the correlation table of every entry is no more 

than M; and

(iii) the correlation factors between two signals can be done in a constant 

number of operations (assumed to be C2) using basic rules shown in 

Table W .

For the other case there isn't a gate between level L,+i to level Ly+a (e.g., as 

shown in Figure 4-10(e), when i = 5, this corresponds to Le to L7). The only 

calculation needed in this case is to calculate the correlation factors due to 

recovergent fan-outs. Assume there are ki fan-outs from level Ly+i to level Ly+a. 

The needed number of operations is bounded by hCi.

So the total number of operations in Step 5 is therefore

2M
+ Q  + 2M CJ = ZAfC; + 2MQ + = 0(M ")

Combining the derived complexity results of Step 1 to Step 5, the time 

complexity of this MCP Algorithm is 0(M^).

4.6 SUMMARY

Signals can be modeled by a Marcov-chain having two event parameters. It is 

shown that the proposed Markov chain model is equivalent to the two-
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parameter probability/ activity signal model of [3] and [4], The advantage of 

modeling signals with Markov chains is that it makes it possible to compute 

correlations between signals related to both probability and activity. Based on 

this Markov-chain signal modeling, a more efficient and more accurate algorithm 

(named MCP algorithm) is developed. By propagating signal parameters and 

correlation cofactors from the primary inputs through the circuit in a "gate-by- 

gate" fashion, this MCP algorithm can achieve a very good accuracy and an 

0{M?) time complexity where M is the number of signals in the circuit. 

Simulation studies related to the accuracy of the MCP algorithm are provided in 

Chapter 6.
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CHAPTERS

GLPTCHING POWER CONSUMPTION ESTIMATION

5.1 In tro d u c tio n

In Chapter 3, signals are modeled as strict-sense stationary (SSS) 0-1 process and

mean-ergodic. Based on this signal model, signal activities can be calculated by

two algorithms, which are proposed in [3] and [4] by using relative Boolean

difference and generalized Boolean difference, respectively. In Chapter 4 ,  we

proposed a signal model using a Markov-chain process and the probabilities and

activities of all signals in a circuit are calculated by the proposed MCP

Algorithm. Both of these signal models and their associated algorithms assume

zero propagation delay through each gate. In reality, gates have non-zero delays,

which results in "signal glitching."

To illustrate how non-zero delays cause glitches, consider an example circuit

as shown in Figure 5-1 (a). Under the assumption of zero delay, the sample input

signals xi, X2 and X3 result in the output signals yi and y2 shown in Figure 5-1 (b).

Notice that output signal y i experiences no transitions. For non-zero delays

(assume the delay of each gate is d) the output signal y i for the same inputs is

derived and shown in Figure 5-1 (c), which has several "glitching" transitions.
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Power consumption is impacted by these signal glitches; thus, it is necessary to 

consider the effect of glitches due to non-zero propagation delays to achieve a 

better power estimation of a circuit for real applications.

Xi

7Z

yi

yz

7Z

Xl

%2

yz

(a)

Time

(b)
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%1

%2

%3

yi

Time

(c)

Figure 5-1. An example used to show how non-zero delays cause
glitches.

The power consumption due to glitching can be significant in some extreme 

cases, such as the example shown above. Hence, techniques used to estimate 

total power consumption in circuits need to take into account glitching power 

consumption. Currently, only statistical-based power estimation approaches are 

used to estimate glitching activities. The general ideal of statistical-based 

approaches is as follows; By using a logic or timing simulator, the estimator can 

efficiently estimate power dissipation due to both functional and spurious 

transitions. The technique in [19] gives an upper bound of glitches that can 

possibly occur, and a Monte-Carlo-based technique that can efficiently estimate 

glitches under different non-zero delay model is given in [11,12]. In this chapter.
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we will propose a new probabilistic-based technique to calculate signal activities 

including glitches caused by gate delays.

5.2 P robabilistic G l itc h in g  M odel

Under the zero-delay model assumption, the probability and activity of the 

output signal of a generic two-input logic gate can be calculated and the results 

are listed in Table 4-3. Assume that (T) denotes the activity of signal Y

under zero-delay model, and denotes the transition activity of signal

Y due to glitching only under non zero-delay model. Because (Y) has no

contributions to (Y), and also assume that (T) has no contributions

to , the total activity of the output signal can be epressed as the sum

of these two components, which is represented as

«(0,0, (^) = (^) + ( n  . (5.1)

Assume there are two input signals A  and B, with signal A  is ahead of signal B 

by d time units and the output signal is Y with a Boolean function of Y = f{A,B). 

Because the activity under zero-delay model, denoted as a^,^*^(Y)as shown in 

Equation 5.1, can be calculated by using MCP algorithm, we will focus on the 

activity derivation of the glitching part, denoted as ag,^^^(Y)in Equation 5.1. 

Because three basic logical gates, i.e., AND gate, OR gate and XOR gate, are
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mainly used in CMOS circuits, we will focus on the derivation of

expression for these three basic logic gates.

The first is the AND gate, Y=AB. As shown in Figure 5-2, the glitching of 

output signal Y  may happen only when signal A  has a transition from state 0 to 

state 1 and signal B has a transition from state 1 to state 0 with d unit time lag. 

Table 5-1 shows those conditions for having a glitching at output signal Y.

Glitching

Figure 5-2. The d unit time delay causes glitching in an AND gate
(Y=AB).

Table 5-1. The cases that cause glitching in an AND gate (Y=AB).

A B Glitching at Y

1^ 0 1-^0 No
0^1 No

0-^1 1-^0 Yes
0^1 No

From Table 5-1, we can see that there is only one case that can cause glitching: 

signal A  switches from state 0 to state 1 and signal B switches from state 1 to state
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0, which can be represented by event 01^10. Hence the probability of the event 

01->10, causing a glitch in signal Y, can be expressed as (using the results listed

in Table 4-1)

Using the fact that each glitch has two transitions, i.e., from state 0 to state 1 

followed by from state 1 to state 0, and vice versa, therefore, the probability of 

glitching can be calculated by

( r )  = 2i>(01)P(01 10) = 2 ( p , - P , P , C „ )
P a ) ^ P b (5.3)

2(1-P x )

The activity for output signal Y (without glitching) for an AND gate, as shown 

in Table 4-3, is expressed as

1
^ z e r o - d d a y  ( ^ )  ~  P b ^ A ^ A B  "** P a ^ B ^ A B  ~  A ^ A B ^ A ^ B ^  '  ( 5  4 )

So combining these two Equations 5.3 and 5.4 together, and applying Equation 

5.1, the total activity (considering glitching) of output signal Y can be derived 

and expressed as

t̂otai 0^) ~ P b^A^AB '^Pa^B^AB ~ ^Â B̂ AB̂ Â B̂  ATI ~T^A^B^AtB2

r . (5.5)

For the case of Y=A+B that is an OR gate, as shown in Figure 5-3, the glitching 

of output signal Y may happen only when signal A has a transition from state 1
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to state 0 and signal B has a transition from state 0 to state 1 with a d unit time

lag. Table 5-2 shows the condition for having a glitch at output signal Y  for an 

OR gate.

Glitching

Figure 5-3. The d unit time delay causes glitching in an OR gate
(Y=A+B).

Table 5-2. The cases that cause glitching for OR gate (Y=A+B).

A B Glitching at Y

1^ 0 1^ 0 No
0->l Yes

0-^1 1-^0 No
0^1 No

So as shown in Table 5-2, the only case for causing glitching is at event 10->01. 

By using the results in Table 4-1, the probability of event 10->01 can be expressed 

as

2(1 -Pa)
C
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hence the probability of causing glitching can be expressed as

« g , . c / u . , ( n  = 2f(10)f(10->01)

2(1

From Table 4-3, the activity of output signal Y for the zero-delay model is

1
(13 = (1 -  + (1 -  (5.7)

Therefore, combining Equations 5.6 and 5.7 together, the total activity of the 

output signal for an OR gate can be expressed as,

^total (1^) ~  ^glitching ^zero-delay

+ (1 -  + (1 -  (5.8)

1 1 = — +( l -Pg) , l a^+( l - p^) , l o; g

= (l-.Pa)^<3r^ +(l-.P.4M(^a +

When Y = A ®  B that is XOR gate, it will cause a glitch whenever there is a 

transition as shown in Figure 5-4 and Table 5-3. It should be noted that glitches 

are caused due to both transitions of signals A  and B, not only signal A or B. So 

using the similar techniques as derived for gates AND and OR, the glitching 

activity of output signal Y  can be derived and expressed as:
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I i

G l i t c h i n g

Figure 5-4. The d unit time delay causes glitching in a XOR gate 

Table 5-3. The cases that cause glitching for XOR gate (7  = A ®  B ).

A B Glitching at Y

1-^0 1^ 0 Yes
0^1 Yes

0->l 1-^0 Yes
0^1 Yes

_ 1 R(11)R(11 00) + f  (lO)R(lO ^ 0 1 ) ^
-  i ^ f ( o i ) f (01 ^  10) + R(00)f(00 -4.11)1

a  g

+ 2Cpj,

+  ^ ( P x  P aP b ^ a b )
Q

2.Px 2(1-j7g)

r
2(1-P x )  2p

(5.9)
B

+ 2(1 -  Px ~  P b  P a P b ^ a b )  r r :  ^ ^ — ~ C2 ( l - j ? J 2 ( l - ; , J
1 1 1 1

W ithout considering glitching effects in a combinational circuit, using the 

results listed in Table 4.3, the activity of output signal Y is

100



zero-delay P s i ^ A  ^ b ) ) ^  A P ^ a ) ) ^ B  5̂10)

Combining Equations 5.9 and 5.10 together and applying Equation 5.1, the 

total activity of output signal Y  can be calculated as

^total (^ )  ~  ^glitching (^ ) ^zero-delay (^ )

1 1 1 1
~  A ^ A B ^ A 2 B2 ~ ^^^B ^A ^B ^A 2 B , '^ '^ ^ A ^ A ^ B ^A ,B 2  B^A^Bi

+ + vP/i +(̂ .̂4 +jPyi(^a (5dl)
= (/lg +  P b  ( Â l j  — /lg ) ) ( ^ A  i ^ A  P a  ( ^ b  ~  ' ^ a  ) ) ^ b

-  — a^ûîg (/l̂ Ĉ ĝ̂  +/lgĈ ^g  ̂ —CjbĈ B̂j - â Cj b̂,)-

To show how glitching affects total activity of the output signal, consider an 

example Y = A ®  B . Let the probability and activity values of inputs be

-  0.5 , Pb -  0.5 , = 0.2 and -  0.2 respectively. And assume the input 

signals are mutually independent, then the activity of output signal Y  due to 

glitching is

^glitching (^) ~ ^ ^ A ^ B  = 2 X 0.2 X 0.2 = 0.08 .

And the activity without glitching can be calculated as

(^) = «/j + %  -  2«x«a = 0.32.

The total activity of signal Y  is

= 0.08+ 0.32 = 0.4.

We can see that the glitching activity is around 20% of the total activity. An 

interesting fact is that the total output signal activity expression for two input 

signals (considering glitching) is the same as that shown in Chapter 3 using

101



Equation 3.4 without considering simultaneous switching if the input signals are

assumed as mutually independent and have non-zero delay*’. It is true because

the simultaneous switching will not cause any glitching (no delay, no glitching).

But Equation 3.4 is only suited for inputs with delays and assumed to be

mutually independent. In general, this is not true because signals may be

correlated and delays may or may not exist in signals.

If the primary inputs of a circuit are assumed to be mutually independent, by

using the propagation rules listed in Table 4-4, the activities of the three basic

gates can be listed in Table 5-4 as below:

Table 5-4. The activity calculation results for three basic gates, AND,
OR and XOR, by given the probabilities, activities, correlation factors 
and delay times in the assumption that signal B has d unit time delay

than signal A.

F  =  / ( v 4 , ^ )

P b^ a^ ab Pa^ b^ ab

- a  a ^ C  C P a^ ab Q 1

~'^^AiBj )^A^B

y  =  x 0 j B

( T g  +  Pg (Âj  —  T g  ))(X̂

"  ( ' ^ X ^ X i B ;  + ’^ g ( - X ; 4  ^ ( " X a ^ - X a g ;  "  " ^ 4 4  )

® For multi-input gates, if each input signal has delay to each other signal, then Eq. 3.4 still gives 

us a correct answer, otherwise it does not.
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5.3 MARKOV CHAIN PROPAGATION WITH GLITCHING ALGORITHM

In real applications, delay exists for every gate in a CMOS circuit. This delay can 

cause glitching and the activities of some signals in the circuit will increase. In 

this section, we will modify the MCP algorithm proposed in Chapter 4 to 

calculate probabilities and activities including glitching effects for all signals in 

the circuit, which is named as MCFG algorithm. It is assumed that all parameters 

of primary inputs and delays associated with each gate are known. The overall 

approach is similar to MCP algorithm, by propagating signal information 

associated with the Markov chain model through the circuit in a "gate-by-gate" 

fashion considering glitching activity. Recall that once the Markov chain model is 

determined for all signals, the signal activities and circuit power estimation are 

determined, and vice versa. It is also assumed that the given circuit is specified at 

the level of basic logic gates running in an ideal environment with no frequency 

limit.

M CP G A lgorithm : Compute signal probability and activity of each signal in a

circuit considering the glitching activity.

Input: Signal probabilities, activities, correlation cofactors, and time relations 

(time delay, general, it is assumed to be zero for primary inputs) of all 

primary inputs to the circuit. Also delay times for every gate in the 

circuit (to simplify, all assumed to be the same such as d unit times).
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Owfpwf: Signal probabilities, activities and correlation cofactors of all nodes in

the circuit.

1. Represent the given combinational circuit as a directed acyclic graph 

(DAG);

Vertices of the DAG correspond to basic gates and edges represent signals. Two 

extra vertices (a source and a sink) are included in the DAG to accommodate the 

primary inputs and outputs of the circuit. An example of how to represent a 

circuit with the DAG model is illustrated by Figures 5-5(a) and 5-5(b).

2. Perform a topological sort [10] on the DAG to obtain an ordering of the 

gates;

See Figure 5-5 (c).

3. Partition the circuit into levels and assign a delay value to each signal;

As shown in Figure 4-10(e), levels are defined at the input and output of each 

basic gate. Note that there is at most one gate between any two consecutive levels. 

Based on the given inputs delay values, assign a delay value to each signal, the 

output signal delay value equals to the maximum delay value of the inputs 

associated to this gate plus the delay value corresponding to this gate.

4. Transformation to two-input basic logic gates;

As shown in Figure 5-5(d), replace all basic gates having more than two inputs 

with an equivalent sequence of two-input basic gates. In this step, the created 

intermediate two-input basic gate(s) will not have delay values, and the created
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signals will assign delay values as the maximum delay of the associated two 

inputs only.

5. Successively apply propagation rules at each level.

Apply the propagation rules from Tables 4-2, Table 5-4 and Table 4-4 for 

calculating the parameters of the Markov model for the basic gate outputs and the 

associated correlation factors based on the given delay times corresponding to the 

tivo-input of the gate.

(b)

(c)
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6.1
6.2
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Figure 5-5. Illustration diagrams for basic steps of the MCPG
Algorithm.

5.4 SUMMARY

In real applications, delay exists in logic gates that causes glitches. The power 

consumption due to glitching is significant in some extreme cases. The total
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activity for an output signal in a circuit is represented into two parts: the activity 

under zero-delay model and the activity caused by glitches. To calculate the 

activity part due to glitching, analytical expressions for three basic logic gates are 

developed. Based on these analytical expressions, a MCPG algorithm is also 

developed by expanding the MCP algorithm, which has the same time 

complexity.
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CHAPTER 6 

EXPEREHENTAL SETUP AND RESULTS

6.1 In t r o d u c t io n

After investigating the accuracy and efficiency of different approaches in 

previous chapters theoretically, experimental analysis should be carried out to 

support our theoretical analysis. Therefore, in this chapter, we will introduce 

some experiments implemented using the PSpice® simulator and our MCP 

simulator. The results obtained from simulations are compared to those from 

different approaches. In addition, we present here a new idea of using MCP 

algorithm to estimate power consumption considering glitching effects (named 

MMCP). It is shown that this new MMCP algorithm can gives us a more practical 

and more accurate solution for estimation power consumption in CMOS circuits.

6.2 Experim ental  Setu p

The experimental setup diagram is shown in Figure 6-1. It contains five 

components: Signal Generator, Circuit Description File, MCP Algorithm 

Simulator, PSpice Simulator, and Filter. The functionality and details of these five 

components are given below.
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Filter

Figure 6-1. Components of experimental setup to test the accuracy and 
efficiency of different approaches.

6.2.1 SfGNAi GENERATOR

Signals that are primary inputs to PSpice simulator are generated based on given 

probabilities and activities. In Chapter 4, we model a signal A by a Markov 

chain w ith two transition states, i.e., state 0 and state 1, w ith two transition 

events, i.e., transition from state 0 to state 1 denoted as Ai and transition from 

state 1 to state 0 denoted as A j as shown in Figure 6-2. Therefore, given 

probability and activity values of signal A, i.e., and , respectively, the 

probabilities of these two events can be calculated using Equations 6.1 and 6.2, 

which are the same as those equations shown in Chapter 4 (Equations 4.7 and 

4.8).

= (6.1)
2(1- P j  
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(6.2)

Figure 6-2. Signal A with two transition states 0 and 1, and two 
transition events Ai and Ai.

For example, if the probability and activity of one primary input signal A are 

given to be = 0.6 and -  0.2, then the probability value of event A t can be 

calculated using Equation 6.1 and results in = 0.25 . Similarly, the probability 

value for event Az is p ,  = 0.167. Hence the probabilities for the signal to stay at

state 0 and stay at state 1 are 0.75 and 0.833, respectively. Based on this result, the 

signal A can be generated as follows: each value is generated at the leading edge 

of the given clock (the frequency of the clock is assumed to be given); by using a 

random  number generator that generates a value between "0" to "1", the first 

signal value is set to be "0" or "1" depends on the value generated by the 

random  number generator. For the above example, if the output value of the 

random  generator is less than 0.6, then the first value is set to be "0", otherwise it 

is set to be "1"; the next value is depend on the current signal value and the new 

data that the random  number generator generated. For the above example, if the 

new output of the random number generator is larger than or equal to 0.25, and
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the current signal value is "0", then the signal value at this clock edge is set to be

"1" (means that the signal transitions from state 0 to state 1). So by following the 

procedure illustrated above, mutually independent signals w ith given 

probabilities and activities can be generated. The pseudo-code for our signal 

generator is shown below:

input: PROB, ACTIVITY, SIZE;
/SIZE=number of clock cycles needed 

compute: S[1:SIZE+1]
calculate PAl, PA2; /using Eqs.6.1 and 6.2 
r=rand();
if (r <= PROB ) then S[l]=l else S[1]=0 endif 
for 1=1 to SIZE+1 

r=rand(); 
if (S[I] == 0)

if (r<=PAl) then S[I+1]=0 else S [1+1]=1 endif 
elseif (S[I] == 1)

if (r<=PA2) then S[I+1]=1 else S[I+1]=0 endif 
endif 
1= 1+ 1; 

endfor

6.2.2 CiRCLZIT DESCRIPTION FORMAT

Circuits to be tested in our experiments are first transferred into predefined 

circuit description files as inputs to MCP Algorithm Simulator. This circuit 

description file is using ISCAS85 [21] netlist format. Below is an example of 

netlist format (ISCAS85 format) of the circuit cl 7̂  with its diagram shown in 

Figure 6-3.

 ̂a six-NAND-gate circuit used to show netlist format for ISCAS85 benchmark.
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2

3

6

7

Figure 6-3. An example circuit named C l 7 used to illustrate the netlist
format (1SCAS85 format).

The netlist of cl7 is described as follows;

*cl7 iscas example 
*____________________________________________________________
*
*
* total number of lines in the netlist ..........
* simplistically reduced equivalent fault set size =
* lines from primary input gates ......   5
* lines from primary output gates ......  2
* lines from interior gate outputs .....  4
* lines from ** 3 * *  fanout stems ... 6
*

17
22

avg_fanin = 2.00,
avg fanout = 2.00,

max_fanin = 2
max fanout = 2

1 Igat inpt 1 0 >sal
2 2gat inpt 1 0 >sal
3 3gat inpt 2 0 >sa0 >sal
4 4 fan from 3gat >sal
5 5fan from 3gat >sal
6 6gat inpt 1 0 >sal
7 7gat inpt 1 0 >sal
8 8gat nand 1 2 >sal
1 4
9 9gat nand 2 2 >saO >sal
5 6

10 lOfan from 9gat >sal
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11
12

2
13 

11
14

llfan from 
12gat nand
10
ISgat nand 

7
14gat nand 
12 13

9gat >sal
1 2 >saO >sal

1 2 >sal

0 3 >aaO >sal

In the above description^ the line which begins with'*' is a comment line and

is ignored during processing. Each line represents a line specification or the input 

lists of a gate. There are up to seven columns for each line:

1st column: Line number.

column: The name of the line which is used for the connections.

3^ column: The type of the line or gate which can be "inpt" or "from"

or one of logic functions such as "and", "nand", "or",

"xor", or "not". The "inpt" is a primary input of the 

circuit. The "from" is a fanout branch which is connected 

to a fanout stem specialized in the next column, 

column: The number of fanout branches except for the fanout

branch line.

5* column: The number of inputs (fanin) of the gate except for the

fanout branch line. It is 0 for a primary input gate. If the 

type of the line is a logic function, the next row specifies 

the line numbers of the inputs of the gate.

6* column: If ">SAO" is present, a stuck-at zero fault should be

injected on the line.
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7* column: If ">SA1" is present, a stuck-at one fault should be

injected on the line.

Because the primary purpose of this circuit netlist description is for the area of 

pseudorandom testing, in which fault coverage and identification is achieved, 

fault information of the line is present in it, and it should be noted that in the last 

two columns, some of the entries are null indicating that those faults are 

equivalent to some other faults and need not be considered. Probabilistic 

properties of signals are mainly concerned in our research, hence, the 6* and 7* 

are ignored in our MCP simulator.

6.2.3 PSPtCE SfAAlLATOR

PSpice circuit simulation software is a product of OrCAD, Inc. Circuits to be 

tested are designed in this simulator and the generated signals are saved as the 

input files for the tested circuit. The detailed information of PSpice can be found 

at: WWW.orcadpcb.com.

6.2.4 FILTER

The PSpice simulator simulates the tested circuit under realistic condition, which 

means it is impossible for the simulator to give us a zero-delay output results. 

Hence, a filter is used to filter out those transitions caused by glitching (delay in 

input signals to a gate will generate glitches in the output, and delays might be 

caused by gate delays). To identify those glitches, the clock for input signals are
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set to be very slow when they are generated, and a program was developed

named Glitching Eliminator that is used to find the results for the zero-delay 

model.

6.2.5 MCP ALGORZTHM SIMULATOR

MCP algorithm simulator is a program developed using VC++6.0 under 

Microsoft Visio studio development environment. Microsoft Fundamental 

Classes (MFCs) are used for menu, I /O  interface, documentation and message 

processing. This simulator takes the ISCAS85 netlist format (circuits description 

format) as inputs, and probabilities, activities and correlations between primary 

inputs are also accepted as support inputs to our MCP Algorithm simulator. The 

output is a text file containing the probability and activity of every signal in the 

circuit.

6 .3  E x p e r i m e n t a l  R e s u l t s

6.3.1 MCP A LG O R ITH M  VS O TH ER  ALGORITHM S

To illustrate more efficiency and more accuracy of our MCP algorithm compared 

to other approaches, consider a two-input multiplier as shown in Figure 6-3 as 

the first test case. Assume = Pg = Pc = 0.5 and = «g = «c = 0.2 for all three 

mutually independent primary inputs, and also assume the circuit running in a 

zero-delay model. Designed in PSpice Capture® and took a logical simulation run
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in PSpice, the results are compared to those taken from different approaches and

is listed in Table 6-1.

A
C

B

Figure 6-4. A two-input multiplexer for the first test case.

Table 6-1. Results of output signal Y of a two-input multiplexer using
different algorithms.

^-xA lgorithm s 
Output 
signal Y

Najm etc. 
Algorithm

[3]

Roy etc. 
Algorithm

[4]

MCP
Algorithm

[20]

PSpice
Simulator

Activity 0.3 0.28 0.236 0.235
Probability 0.475 0.475 0.5 0.498
Error (%) 28% 19% 1% NA

From Table 6-1, we can see that the MCP algorithm gives us a very close result 

compared to PSpice simulation. The results for the other two algorithms are not 

as accurate as the MCP algorithm due to correlations between internal signals. It 

should be noted that it takes much longer time to obtain the results for Roy's 

algorithm than that used by MCP and Najm's Algorithm.

6.3.2 MCP A LG O R ITH M  (Z E R O -D E L A Y M O D E L )

To test the accuracy and efficiency of the MCP algorithm in zero-delay model, 

several circuits are used including one ISCAS85 benchmark circuit [21] called
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C4328, in which has the most correlation effects. We use the same two-input

multiplier as shown in Figure 6-4 for the first test case. Assuming the input 

values are p = 0.5 and a  = 0.2 for all three primary inputs, MCP simulator gives 

-piy) = 0.5 and a(y) = 0.236. The results from the PSpice logic simulation run, 

showing the correct convergent behavior at the output y, are shown in Figure 6-5. 

The horizontal axis in Figure 6-5 is the number of clocks elapsed during the 

simulation run, and the vertical axis is the corresponding activity and probability 

values of the output node y. The two horizontal dashed lines are the values of 

activity and probability computed by MCP simulator. From Figure 6-5 we can 

see that 4000 clock cycles are long enough to obtain a correct convergent result 

for output signal y. It might not true for some other internal nodes, though. To 

obtain better results, several test cases should be taken including some internal 

nodes and output nodes in every logic simulation runs. Even then, it is 

practically impossible to examine the activity plot for every node to determine 

whether the run is long enough for it to converge. Based on several test circuits, 

however, it is found that an average of 4000 clock cycles per input node seems to 

be enough to approximate most node activities. Such logic simulation runs were 

performed on all tested circuits in our experiments.

' C432 is a 27-charmel interrupt controller with 36 inputs, 7 outputs and 160 gates.
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Figure 6-5. Activity and probability convergence plot at output node y.

Our second test case is a ISCAS85 circuit called C17, which is shown in Figure 

6-2. We use values p = 0.5 and a  = 0.2 for all primary inputs and test the 

probabilities and activities for all internal and output nodes. Also all primary 

inputs are assumed to be mutually independent. The comparison between 

probability and activity values produced by the MCP Algorithm and those 

produced through PSpice simulation are provided in Table 6-2. From Table 6-2 

we can see that the results obtained from our simulator is almost the same as the 

results obtained from PSpice simulation.
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Table 6-2. Results obtained from C l7 circuit.

node
MCP Algorithm Pspice Simulation
Probability Activity Probability Activity

8 0.750 0.180 0.749 0.178
9 0.750 0.180 0.747 0.182
12 0.625 0.222 0.626 0.224
15 0.625 0.222 0.630 0.223
16 0.563 0.247 0.556 0.249
17 0.563 0.254 0.560 0.255

The MCP Algorithm was also evaluated using a circuit named C432 from the 

ISCAS-85 Benchmark Set. For this circuit there are a total of 145 distinct signals, 

not including the primary inputs. (Note that there are a total of 432 physical 

signals, which includes fan-out signals.) Table 6-3 shows the distribution of 

absolute differences between activity values computed by the MCP Algorithm 

and those derived through simulation. These results indicate that the MCP 

Algorithm produces very accurate predictions of signal activities.

Table 6-3. Results from MCP Algorithm and Simulation Studies for 
Circuit C432 from the ISCAS-85 Benchmark Set.

Absolute Diff. Number
Range of Signals
[0,0.01] 70

(0.01,0.02] 35
(0.02,0.03] 19
(0.03,0.04] 10
(0.04,0.05] 10
(0.05,0.06] 1

(0.06,1] 0

Relative Error Number of
R ange(%) Signals

[0/1] 43
d /2 ] 41
(2/5] 31
(5/10] 25
(10,20] 3
(20,50] 2

>50 0
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6.3.3 GUTCHZNG POWER PREDfCTTON

Power consumption due to glitches may play a critical role in power 

consumption prediction algorithms and tools. Figure 6-6 is a special example in 

which glitching is an extreme factor. In this example, the activity for the output 

signal, named 015 in Figure 6-6, is extraordinarily different when considering 

glitches to that when no gitching is taken into account. Allowing for glitching, 

the activity of the output signal is around 2.5 compared to around 0.5220 when 

no glitching is allowed in PSpice simulation (under the same simulation 

conditions when all primary inputs are assumed to be mutually independent and 

the probabilities and activities are all set to be p  = 0.5, a  = 0.2, respectively).

Table 6-4. The activity values for output signals for Figure 6-6 
considering glitching and without considering glitching.

Signal Name
MCPG

Algorithm
Simulation

PSpice Simulation 
(nonzero-delay)

PSice Simulation 
(zero-delay)

o i 0.4 0.3348 0.3348
0 2 0.6 0.4990 0.4030
0 3 0.8 0.6700 0.4348
0 4 1.0 0.8168 0.4523
0 5 1.2 0.9900 0.4763
0 6 1.4 1.1500 0.4798
0 7 1.6 1.3020 0.4940
0 8 1.8 1.4500 0.5050
0 9 2.0 1.6068 0.4990

OlO 2.2 1.7700 0.4970
O il 2.4 1.9165 0.5010
012 2.6 2.0600 0.4970
013 2.8 2.2080 0.5030
014 3.0 2.3600 0.5140
015 3.2 2.500 0.5220
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Figure 6-6. A special example to show the large difference of the 
activity of the output signal 015 between considering glitching and 

without considering glitching.

This example implies that glitching may produce much more power 

consumption in VLSI CMOS circuits, which is very important and should be 

taken into account in our power consumption prediction algorithms and tools. 

The MCPG algorithm introduced in Chapter 5 is for this purpose. Table 6-4
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shows some results obtained by implementing MCPG algorithm to the circuit 

shown in Figure 6-6.

From Table 6-4 we can see that the results obtained from MCPG algorithm are 

much better compared to the PSpice results without considering glitching. 

However, the errors are still very large. The reason for the large errors is that 

MCPG algorithm simulates an ideal running environment for the logic circuit 

based on the assumption that the circuit can run as fast as possible. PSpice 

simulation, however, mimics a real logic running environment that has a limited 

clock frequency. Hence for the MCPG case, glitches caused in the previous stage 

will generate new glitches in current stage whenever there are delays between 

the input signals at this stage, and these new generated glitches will cause new 

glitches in the next stage, which will propagate through all gates in the circuit. 

For PSpice simulation, it mimics the real logic run environment that has limited 

circuit speed. Due to this speed limitation, some glitches caused in previous 

stage might not generate any new glitches in the next stage. Figure 6-7 is one of 

the results from PSpice logic simulation run of the circuit shown in Figure 6-6. It 

shows that some glitches will generate some new glitches in the next stage but 

some do not cause any new glitches in the next stage.

An interesting feature of the result shown in Figure 6-7 is the glitch w idth that 

determines whether this glitch will cause new glitches or not in the future stages. 

If the glitch w idth is equal or less than the w idth of the shortest clock frequency 

(corresponding to the speed limit of the test circuit), then no further glitches are
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generated by this glitch. In other words, not all transitions of the signal w ill cause

new transitions if the circuit doesn't have enough time to respond to this 

transition. It illustrates the point that no signals can run faster than the circuit 

speed limit. This leads us to a new idea of how to calculate glitch activities by 

using MCP algorithm (we call this new algorithm as MMCP algorithm).

Glitches

TLTLJ" 
JT_rU 
i_n_rw-
 n_n J ru

16.800US 17.200US 17.600US

Time

18.000US 18.400US 18.601US

Figure 6-7. A result from PSpice simulation run of the circuit in Figure 
6-6, which illustrates glitches effect the next stage.

Assume we know that the highest frequency of the circuit to be tested is no 

more than F  max (the circuit can not run faster than F  max)- By normalizing the 

activities of primary input signals of the circuit with this frequency Fmax, the 

activity value of each primary input becomes I I  Fmax of the original value. By 

doing this, we can mimic the running environment of the circuit to a running 

environment with frequency Fmax- It results that no glitches will be generated in 

the simulation run, and this new running environment satisfies the requirements 

of MCP algorithm.
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This idea can be illustrated by using Figure 6-6 as an example. Suppose the 

circuit runs in a frequency of lOMHz, and the maximum frequency (maximum 

speed) the circuit can afford is lOOMHz. Assume the activities and probabilities 

of the three primary inputs are all assigned to be 0.2 and 0.5, respectively, and 

the input signals are assumed to be mutually independent. Also suppose that 

every gate in the circuit has the same delay time. First, normalizing all input 

signals in lOOMHz frequency to mimic a new running environment. Hence, by 

normalizing 0.2 into 0.2 x 10/100 = 0.02, the MCP algorithm will take the activity 

input values of 0.02 for all primary inputs. Second, run MCP algorithm and then 

the activities of all signals normalized by frequency Fmax can be produced. For 

instance, it will produce the activity value of 0.1772 for the output signal 08. The 

final result for signal 0 8  is 1.772 by normalizing it back to original running 

frequency, which is lOMHz, by normalizing 0.1772 into 0.1772 x 100/10 = 1.772.

Because we couldn't determine the exact speed limit of the PSpice simulator, 

we run the MMCP simulation for the circuit in Figure 6-6 by setting the speed 

limit to different values and the results are shown in Figure 6-8. In Figure 6-8, the 

red line w ith up-triangle symbols is the data obtained from MCPG simulation in 

which infinite circuit speed is assumed. The pink line w ith down-triangle 

symbols is the result from MCP simulation with zero-delay model assumed. The 

blue line w ith circle symbols is the results from PSpice simulation considering 

glitching effects that is the actual activities for the output signals. Let F be the 

ratio of the possible fastest frequency PSpice could afford to the original running
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frequency in the tested circuit, the other three lines are the results from the 

MMCP simulator by setting F = 100, F = 10 and F = 5, respectively. It is shown 

from Figure 6-8 that F = 10 is a reasonable value that gives us a very close result 

to the actual activities.

3.5
F is the ratio of the fastest frequency 
to the runing frequency

k- MCPG 
MCP 
Actual

Î  F=100
- F=10 

F- F=5
^  2 .0 -

0.5 -

0.0
o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14 o15

Output Signal Name

Figure 6-8. Results produced by MMCP algorithm running under
different F values.

We also tested the C432 circuit using MMCP algorithm by setting the 

frequency ration F to be 10. The average error of all signals for frequency ratio 10 

is about 9%, and the maximum relative error is about 48%, which shows that our 

MMCP algorithm can handle glitching effects very well. Table 6-5 shows the 

results for some significant (i.e. largest) error signals in circuit C432.

125



Table 6-5. Results of some most significant (i.e., largest) error signals in
circuit C432.

Signal Name MMCP 
(F = 10)

PSpice
(Actual)

MCP
(zero-delay)

136 0.1980 0.2000 0.1800
164 0.1693 0.1330 0.1050
183 0.3606 0.2815 0.2460
219 0.1980 0.1900 0.1900
229 0.1435 0.1480 0.1300
256 0.6895 0.4660 0.3360
275 0.8132 0.6320 0.3900
293 0.1980 0.1860 0.1860
302 0.1257 0.1670 0.1000
311 0.8180 0.8300 0.3500
322 0.2613 0.2570 0.2280
336 0.4357 0.4100 0.2600
340 0.4578 0.4770 0.2200
349 0.3409 0.2690 0.1600
384 0.7356 0.6060 0.3600
387 0.3312 0.2710 0.1500
391 0.3164 0.2440 0.1200
392 0.7362 0.6810 0.3600
396 0.2960 0.2440 0.1200
397 0.7616 0.6330 0.3600
399 0.8564 0.6690 0.3650
400 0.8564 0.6690 0.3650
401 0.7537 0.6220 0.3600
402 0.7874 0.6670 0.2700
403 0.8196 0.6870 0.3000
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CHAPTER?

SUMMARY

The total power dissipation of a CMOS circuit is the sum of the three types of 

power consumption, i.e., dynamic power dissipation, short-circuit current power 

consumption and static power consumption. Because the dynamic power 

dissipation is by far the dominant component, thus almost all methods used to 

calculate power consumption in CMOS circuits are focused on estimation of 

dynamic power consumption in CMOS circuits. Considering that the power 

estimation is calculated in the gate level, and both the supply voltage and the 

capacitance have already been determined at design steps, the power 

consumption in gate level can be estimated by calculating the switching activity 

for each circuit node.

The power estimation methodologies at the logic gate level can be divided

into two general classes: statistical-based and probabilistic-based methodologies.

Because the simulation result is highly dependent on the primary input vectors,

the statistical-based power estimation, represented by the Monte-Carlo

approach, needs to use a large number of input vectors to simulate the circuit in

order to achieve a near real result of the circuit. This makes it impractical for

large circuits and long input sequences. Compared to the statistical-based
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approach, probabilistic-based approaches compute the switching activities in one 

run, which can result in much less time. According to the type of the circuit, 

probabilistic-based approach can be categorized into methods for combinational 

and sequential circuits. Combinational circuits can be further classified into zero- 

delay and non-zero-delay model.

Several probability estimation approaches are overviewed, which are based on 

a single probability parameter signal model. Although this probability parameter 

is not directly used in calculating a circuit's power consumption, it is a necessary 

component for signal models common to the activity approaches that utilize both 

signal probability and signal activity parameters.

The approaches of [2], [3], and [4] can have high computational complexities 

because the number of terms in the underlying equations /  transformations can 

grow exponentially with the number of primary inputs to the circuit. In [7], a 

trade-off between computational complexity and resulting accuracy is illustrated 

in the context of the underlying equations/ transformations introduced in [2]. In 

particular, an approximate approach is defined in [7] in which the 

transformations of [2] are applied in a "gate-by-gate" fashion. Thus, instead of 

deriving the transformation for a signal's probability parameter in terms of the 

circuit's primary inputs, it is derived in terms of the immediate inputs to the 

logic gate associated with the signal. This approach greatly reduces the 

computational complexity, but introduces error in the calculated probability 

parameters for circuits with re-convergent fan-out.
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Similar trade-offs between computational complexity and accuracy are

possible relative to the evaluation of Equation 3.4 and Equation 3.9 (associated 

with [3] and [4], respectively). Instead of deriving a signal's logic function in 

terms of the circuit's primary inputs, the parameters to the immediate inputs the 

signal's logic gate can be used. Again, this type of "gate-by-gate" technique will 

generally introduce error because it does not account tor correlations present 

among the internal signals that drive the gates within the circuit.

The approach of [6] is a fast and accurate "gate-by-gate" technique tor 

calculating a signal's probability parameter. It introduces the concept of a 

correlation factor to account tor and appropriately adjust the transformation tor 

correlated inputs to a gate.

A Markov-chain model can also be used to model signals. It is shown that the 

proposed Markov chain model is equivalent to the two-parameter 

probability/activity signal model. A more efficient and more accurate algorithm 

(named MCP algorithm) based on Markov-chain signal modeling is present. By 

propagating signal parameters and correlation cotactors from the primary inputs 

through the circuit in a "gate-by-gate" fashion, this MCP algorithm can achieve a 

very good accuracy and an 0{NP) time complexity where A4 is the number of 

signals in the circuit. The advantage of modeling signals w ith Markov chains is 

that it makes it possible to compute correlations between signals related to both 

probability and activity.
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In non-zero delay model, glitches will cause large errors in general power

consumption estimation algorithms and tools. Thus a MCPG algorithm is 

developed that is expanded from the MCP algorithm to take account of glitching 

effects. Compared to MCP algorithm, MCPG algorithm computes the glitching 

transitions caused by the associated delays and propagates this glitching 

transitions to the next stage. Because it is assumed that the target circuit can run 

in ideally infinite speed, every glitch may cause new glitches in the next stage. 

Thus the MCPG algorithm gives us an upper bound of the activity of each node 

in the circuit. Another new idea named MMCP algorithm is also developed, 

which deals with the real situation of a circuit's fastest response. Based on the 

assumption that the highest speed of the target circuit can run  is given, activities 

of the primary inputs are normalized in this highest speed frequency and feed 

into MCP algorithm to calculate activities of every node. The final results are set 

back by renormalizing them into the original frequency.

An MCP algorithm (running in MCP, MCPG and MMCP algorithms) is 

developed using VC++6.0 under Microsoft Visio studio development 

environment. Microsoft Fundamental Classes (MFCs) are used for menu, I/O  

interface, documentation and message processing. This simulator takes the 

ISCAS85 netlist format (circuit description format) as inputs, and probabilities, 

activities and correlations between primary inputs are also accepted as support 

inputs to our MCP Algorithm. The output is a text file containing the probability 

and activity of every signal in the circuit. To investigate the accuracy and
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efficiency of the results produced by the MCP algorithm, PSpice® circuit

simulations are performed on several test circuits. In the simulation studies, 

time-series realizations from the assumed Markov chain model for each primary 

input are used to drive the circuit simulation. Estimates of signal probabilities 

were derived from the simulations by counting the fraction of time each signal 

took on a value of unity. Estimates of signal activities are derived from the 

simulations by counting signal transitions. It is shown that the MCP algorithm 

will give us a very close result compared to other approaches in a zero-delay 

model. For non-zero-delay model, our simulation shows that the MCPG 

algorithm gives us a good prediction of the activity of each node, which is an 

upper bound of the activity of each node, and the MMCP algorithm produces a 

closer prediction of activities of all signals in the circuit, provided that the proper 

scaling frequency is determines.

The above techniques do not apply directly to sequential circuits. Future work 

includes extending the MCP algorithm to simulate circuits with feedbacks, such 

as sequential circuits.
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