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Abstract 

This dissertation is a collection of three essays that analyze the impact of economic 

uncertainty on financial market activities and evaluate alternative quantitative models for 

economic uncertainty based on financial asset prices. Chapter 1 is motivated by the fact 

that major economic and political shocks, such as the Cuban missile crisis, the 9/11 

terrorist attacks, and the 2008 financial crisis, trigger spikes in market-wide uncertainty. 

It develops a dynamic trading model to analyze the impacts of these uncertainty shocks 

on the behaviors of market liquidity and shows how such impacts differ from those caused 

by shocks to economic conditions. According to my model, an uncertainty shock triggers 

a temporary decline in market liquidity, because an uncertainty shock introduces 

ambiguity and learning can resolve this ambiguity. Meanwhile, incorporating the notion 

of time-varying uncertainty aversion, my model implies that a shock to economic 

condition generates a persistent decline in market liquidity, since learning does not affect 

uncertainty aversion. My VAR estimations using monthly US data for 1962--2013 lend 

support to my model implications. An uncertainty shock generates a rapid drop and 

rebound in overall stock market liquidity for around five months on average, while a 

shock to economic condition leads to a persistent decline in market liquidity for up to a 

year. 

Chapter 2 examines the ability of five basis alternative option pricing models to price the 

early exercise premium (EEP) in American put prices: Black-Scholes model, Heston 

(1993) stochastic volatility model, and three jump pricing models – Merton (1976), 

Madan et al. (1998), and Carr and Wu (2003). After duly accounting for the market 

implied value of the Fleming and Whaley (1993) wild card option, we find that jump 



x 

models perform best in pricing observed EEP. Importantly, all models consistently and 

significantly underprice observed EEP, where this underpricing is more pronounced for 

short term in-the-money EEP. We argue and empirically demonstrate that trading costs 

in the option market generate a significant EEP by incentivizing and rewarding early 

exercise of American options that would alternatively have been “sold” in the market. 

Chapter 3 examines the frequency and character of price jumps in front month oil and 

natural gas futures prices, where prices are sampled every five seconds over the period 

2006-2014. We find that an infinite activity jump diffusion process describes crude oil 

and natural gas futures returns combined with a process involving much larger but less 

frequent jumps. We further find that jumps account for respectively 36 and 41 percent of 

the realized variances of the crude oil and the natural gas returns. 
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Chapter 1: 

Learning Under Ambiguity and Market Liquidity 

 

I.  Introduction 

Market-wide uncertainty fluctuates over time and appears to increase dramatically 

after major economic and political shocks, such as the Cuban missile crisis, the 9/11 

terrorist attacks, and the 2008 financial crisis. These uncertainty shocks (second-moment 

shocks) adversely impact economic activities and are major concerns of policy makers.1 

These shocks by nature can make market participants question whether the economy will 

stay on the same track and further consider multiple possible trajectories of the future 

economy. Equivalently, these shocks introduce ambiguity or Knightian uncertainty in the 

economy and in the financial market. If market participants are ambiguity averse, as 

suggested by the Ellsberg Paradox (Ellsberg (1961)), these uncertainty shocks will cause 

drastic declines in market liquidity. This idea has sparked a strand of studies that attribute 

the disappearing market liquidity in the recent global financial crisis as originating from 

the ambiguity being introduced and market participants’ ambiguity aversion.2 However 

there is an important question remains unanswered: How to analyze the impact of these 

uncertainty shocks and that of those economic condition shocks (first-moment shocks) 

on the dynamics of market liquidity? Which shocks, uncertainty shocks or economic 

                                                 
1  Bloom (2009) demonstrates the adverse impact of such uncertainty shocks on investments and 

unemployment and highlights a distinction in their impacts between these uncertainty shocks (second-

moment shocks) and level shocks (first-moment shocks). 
2 Notable examples include Routledge and Zin (2009) and Easley and O’Hara (2010b), among others. 
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conditions shocks, have more persistent impacts on market liquidity? Moreover, what do 

we actually observe?  

To address this question, I first focus on the informational nature of ambiguity 

and the role of learning in resolving ambiguity (Epstein and Schneider (2007, 2008); 

Klibanoff, Marinacci, and Mukerji (2009)). Ambiguity, by nature, results from agents’ 

lack of relevant information to be confident in a specific probabilistic model for a random 

variable, such as asset payoffs. This is particularly prevalent after the onset of an 

uncertainty shock. In subsequent periods, more relevant information starts to accumulate. 

By updating their beliefs, agents become more confident in a specific model, and their 

perceptions of ambiguity gradually decline. Consequently, we should expect in general 

that the effect of ambiguity is relatively short-run due to learning.  

Second, I consider the notion of “time-varying risk aversion” (Campbell and 

Cochrane (1999); Barberis, Huang, and Santos (2001)) to analyze the impact of declining 

economic conditions. This notion relates to the insight that market participants are more 

averse to uncertainty (risk and ambiguity) in economic downturns. Since learning only 

affects agents’ perception of uncertainty but not their aversions to uncertainty, we should 

expect in general that the impact of a change in uncertainty aversion is more persistent. 

Note that although it is common to see that economic uncertainty can elevate in economic 

downturns, it is reasonable to examine both in separate channels, as noted in Bloom 

(2009) that shocks to economic conditions can leave economic uncertainty intact and vice 

versa.   

Building upon these two foundations of thoughts, I consider a multi-period market 

setting in which the preference of a representative market maker over his ambiguous 
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terminal wealth is portrayed by the smooth ambiguity model (SAM) of Klibanoff, 

Marinacci, and Mukerji (2005). Although ambiguity is also modeled as a multiple-prior 

belief in SAM, the same as that in the maxmin preference of Gilboa and Schmeidler 

(1989), the SAM allows the explicit modeling of the degree of ambiguity aversion, which 

is infinite in the maxmin preference, according to Klibanoff, Marinacci, and Mukerji 

(2005). Within the general SAM framework, I employ the ambiguity robust Arrow-Pratt 

preference (ARAP) introduced by Maccheroni, Marinacci, and Ruffino (2013). This 

ARAP preference approximates the SAM in the same way as the classic Arrow-Pratt 

preference approximates the expected utility model and offers flexibilities in modeling 

ambiguity aversion as well as analytical tractability. 

To model the information structure, I assume the representative market maker 

receives a noisy signal about the (ambiguous) future liquidation value of the asset whose 

liquidity is supplied by him in each period. In this case, the information structure evolves 

consistently with the insights in Epstein and Schneider (2007, 2008) and Klibanoff, 

Marinacci, and Mukerji (2009) that learning affects agents’ beliefs about the ambiguous 

future value by affecting agents’ beliefs about the validity of alternative models. In 

another word, agents initially consider the ambiguous future value as depicted by a range 

of alternative models and assign a prior weights to the models. After incorporating more 

relevant information, their beliefs will converge to a particular model (the “right” model), 

and this is the exact nature of how learning resolves ambiguity.3 

Supported by these pillars, my model predicts distinct behaviors of market 

liquidity (price impact in specific) in subsequent periods after an uncertainty shock and 

                                                 
3 Klibanoff, Marinacci, and Mukerji (2009) prove that this convergence will occur if the dimension of the 

parameter space is finite. The setting being considered here satisfy the convergence condition. 
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after an economic condition shock. To be compatible with the unified theoretical 

framework of market liquidity being analyzed in Vayanos and Wang (2012), I consider 

price impact, reflecting the impact of a one-unit trade on transaction price. According to 

my model, price impact will increase temporarily after a pure uncertainty shock that 

introduces ambiguity. When ambiguity increases initially, a one-unit trade will have a 

larger impact on transaction price, reflecting a higher required compensation for the 

market maker to supply liquidity. Due to learning, the market maker’s perception of 

ambiguity declines gradually, translating into a lower required compensation hence lower 

price impact. In this sense, my model features a market liquidity cycle caused by 

uncertainty shocks. At the onset of an uncertainty shock, market liquidity dries up due to 

the spike in ambiguity. In subsequent periods, market liquidity increases and converges 

to a steady-state level, subject only to ongoing fluctuations (risk), until another 

uncertainty shock. 

In contrast, price impact will increase persistently after a pure economic condition 

shock, which increases market makers’ uncertainty aversion. When the market maker 

becomes more averse to uncertainty, he will require a higher compensation for supplying 

liquidity even facing the same level of risk or ambiguity. Because learning does not affect 

his uncertainty aversion, an increase in the market maker's uncertainty aversion will have 

a longer-term impact on price impact.     

Although learning is the key to understanding the distinction in the behaviors of 

market liquidity in subsequent periods following an uncertainty shock and an economic 

condition shock, my model based on learning under ambiguity is free from a common 

concern faced by models based on learning under pure risk. Models with learning under 
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pure risk can indeed generate a convergence result (e.g., Vives (1995)). However, they 

feature a type of long-run equilibria with no uncertainty and perfect liquidity, which is 

too ideal to observe in reality. In my model, the convergence to the steady-state 

equilibrium can be viewed as a process of resolving the impact of model uncertainty. In 

the short run, market liquidity is affected by both the uncertainty about the “correct” 

model and the uncertainty within each possibly “correct” model. In the long run, market 

liquidity is only affect by the uncertainty within the correct model. 

To empirically assess my model implications, I estimate a range of vector 

autoregressions (VAR) using detrended monthly US data from 1962--2013. The main 

response variable is overall stock market liquidity.4 In particular, I construct the Amihud 

(2002) measure at a monthly frequency, using daily stock return and volume data from 

the CRSP. I employ the Amihud measure because my theoretical model features price 

impact, and Goyenko, Holden, and Trzcinka (2009) demonstrate that the Amihud 

measure is the best measure for price impact based on low-frequency data. I aggregate 

the constructed market liquidity series for individual stocks to get the overall market 

liquidity series (e.g., Naes, Skjeltorp, and Odegaard (2011)). 

The impulse variables are classified into two categories: economic condition 

series and economic uncertainty shock series. I consider the S&P 500 index level and the 

Federal Funds Rates (FFR) as proxies for economic conditions. The economic uncertainty 

shock series is a 0/1 indicator series, constructed following Bloom (2009), who 

demonstrates that using this indicator series yields better identifications of the uncertainty 

                                                 
4 I study overall stock market liquidity because individual stock liquidity is subject to idiosyncratic factors, 

which are not the focus of my theoretical model and the effects of which are diluted at the aggregate level. 
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impacts. For robustness purposes, I also consider alternative strategies to construct this 

indicator series.  

My empirical findings lend support to my model predictions that overall stock 

market liquidity declines temporarily after an uncertainty shock and persistently after an 

economic condition shock. For example, during the entire sample period, an uncertainty 

shock triggers a rapid drop in market liquidity for up to three months and a subsequent 

rebound till month five. In contrast, overall stock market liquidity will exhibit a persistent 

decline for up to one year after a one-standard-deviation decrease in the detrended S&P 

500 index level and even longer for a one-standard-deviation increase in the FFR. These 

results are robust to alternative estimation strategies. 

 The present study contributes to both the theoretical and empirical literature on 

market microstructure. My model contributes to the growing literature on ambiguity and 

market microstructure that is highlighted by Easley and O’Hara (2010b), who focus on 

market designs and show that exchanges can enhance market quality by reducing 

ambiguity. Ozsoylev and Werner (2011) analyze how adverse selection and ambiguity 

jointly affect liquidity. Easley and O’Hara (2010a) illustrate how ambiguity and 

heterogeneous beliefs can result in an equilibrium where no one is willing to trade.5 

Routeledge and Zin (2009) focus on the bid-ask spread to show how ambiguity can reduce 

liquidity, especially the liquidity of derivatives. My model differs from the above-

mentioned models in two important ways. First, the above-mentioned models are all 

based on the maxmin preference introduced by Gilboa and Schmeidler (2009). Under the 

maxmin preference, decision makers have an infinite degree of ambiguity aversion, 

                                                 
5 In addition, Easley and O’Hara (2010a) adopts a different approach to model decisions under uncertainty, 

the Bewley (2002) approach. 
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according to Klibanoff, Marinacci, and Mukerji (2005). Based on the ARAP preference, 

my model allows explicit identifications of both the level of ambiguity and the degree of 

ambiguity aversion. This identification feature allows one to treat the degree of ambiguity 

aversion similarly to that of risk aversion, in which case market participants can display 

time-varying risk aversions as well as time-varying ambiguity aversions. Second, my 

model highlights the role of learning in resolving ambiguity and explaining the distinct 

behaviors of market liquidity following uncertainty shocks and economic conditions 

shocks. In comparison, learning is not considered in the above-mentioned models, hence 

ambiguity is more persistent in the above-mentioned models.  

 My empirical findings generate new insights into the existing literature on 

determinants of overall stock market liquidity. Chordia, Roll, and Subrahmanyam (2000) 

show that market liquidity of individual stocks moves together with each other over time. 

Accordingly, they introduce the notion of “market liquidity.” Hameed, Kang, and 

Viswanathan (2010) show that market liquidity decreases after large declines in the stock 

market level. Chung and Chuwonganant (2014) find that market liquidity decreases in 

stock market volatility. However, these two studies do not address the question about 

which, stock market condition or uncertainty, has a longer-run impact on stock market 

liquidity.  

 

II. Learning Under Ambiguity and Market Liquidity 

I examine a finite horizon model with final period 𝑇 + 1. There are two types of 

assets: a risk-free asset, whose price is normalized to unity, and an ambiguous asset, 

whose final payoff 𝐷  is a random variable and is realized at 𝑇 + 1. Specifically, the 
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ambiguity about final payoff is modeled as a multiple-prior belief about its stochastic 

nature. Asset payoffs are defined on a probability space (Ω,𝐹, 𝑃), and under 𝑃 the payoff 

𝐷 ∼ 𝑁(𝜇𝐴, 𝜎0
2). In this case, agents can determine with high precision the variance of the 

asset value, 𝜎0
2, but not the mean 𝜇𝐴. They believe 𝜇𝐴 can be any real value; each possible 

value 𝜇𝐴,𝑖  corresponds to a model 𝑚 ( 𝜇𝐴,𝑖) = 𝑁(𝜇𝐴,𝑖, 𝜎0
2) , and collectively 𝑀 =

{𝑚(𝜇𝐴,𝑖)|𝑖 ∈ 𝐼}  is the set of plausible models. Following the setting of the smooth 

ambiguity model of Klibanoff, Marinacci, and Mukerji (2005), I assume that agents 

assign a (subjective) prior probability measure 𝑄 for alternative models to be true. Since 

alternative models only differ in their mean parameters𝜇𝐴,𝑖 , I can simply describe 𝑄 

as𝜇𝐴 ∼ 𝑁(𝜇0, 𝜎𝐴
2). Note that if there is a single prior or 𝑄 is a Dirac delta measure, my 

model degenerates to the standard learning setting. In my current setting, the level of 

ambiguity is measured by𝜎𝐴
2, the dispersion of agents’ prior beliefs. 

To highlight the impact of ambiguity on market liquidity, I study a simple trading 

model with two kinds of agents: “market makers” and “investors”. Market makers are 

competitive; there exists a representative market maker whose preference over 

ambiguous final wealth 𝑊 follows the ambiguity robust Arrow-Pratt (ARAP) preference 

introduced by Maccheroni, Marinacci, and Ruffino (2013): 

(1.1)  𝑉(𝑊) = 𝐸𝑚𝐵
[𝑊] −

𝜌

2
𝑉𝑎𝑟𝑚𝐵

[𝑊] −
𝜃

2
𝑉𝑎𝑟𝑄[𝐸𝑃[𝑊]].   

  

Two observations are worth discussing in equation (1.1). First, 𝜌 and 𝜃 refer to the risk 

aversion parameter and ambiguity aversion parameter, respectively. Second, the 

probability measure 𝑚𝐵  is a special element in the family of multiple priors 𝑀 . 

According to Maccheroni, Marinacci, and Ruffino (2013), the probability measure 𝑚𝐵is 
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called the reduction of 𝑄, the probability measure for priors, on the probability space for 

the asset payoff Ω. Specifically, 𝑚𝐵 is defined 

(1.2)  𝑚𝐵(𝐴|𝜇0, 𝜎𝐴
2) = ∫ 𝑚(𝐴|𝜇𝐴,𝑖)𝑑𝑄 (𝑚(𝜇𝐴,𝑖|𝜇0, 𝜎𝐴

2)) , ∀𝐴 ∈ 𝐹
{𝜇 𝐴,𝑖|𝑖∈𝐼}

. 

With the above setting, the following lemma shows the representation of 𝑚𝐵. 

Lemma 1.1. Let 𝑀 = {𝑚(𝜇𝐴,𝑖, 𝜎0
2)|𝑖 ∈ 𝐼}  be the set of alternative models, 𝑄  be the 

probability measure over𝑀, and 𝑄 is represented by a normal distribution 𝑁(𝜇0 , 𝜎𝐴
2). 

The measure 𝑚𝐵 in equation (1.1) is represented with a normal distribution 𝑁(𝜇0 , 𝜎0
2 +

𝜎𝐴
2). 

The above lemma can be interpreted as collapsing model uncertainty onto the 

uncertainty about final payoff. If 𝜃 = 0, the agent is ambiguity neutral and the ARAP 

preference degenerates to the classic Arrow-Pratt preference. The Ellsberg (1961) 

paradox suggests that agents display ambiguity aversion, hence 𝜃 should be positive in 

general. 

The ARAP preference states that the certainty equivalent is the expected value 

under the collapsed model 𝐸𝑚𝐵
[𝑊] minus a risk discount 

𝜌

2
𝑉𝑎𝑟𝑚𝐵

[𝑊] and an ambiguity 

discount 
𝜃

2
𝑉𝑎𝑟𝑄[𝐸𝑃[𝑊]] , where the ambiguity discount increases in the level of 

ambiguity about the mean. According to Maccheroni, Marinacci, and Ruffino (2013), the 

ARAP preference approximates the smooth ambiguity model of Klibanoff, Marinacci, 

and Mukerji (2005) in the same way as the standard Arrow-Pratt preference approximates 

the expected utility model. The main merits of the ARAP preference are its analytical 

tractability and its inheritance of the flexibility in explicitly modeling the level of 

ambiguity aversion. In general, the smooth ambiguity model nests the maxmin preference 
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model of Gilboa and Schmeidler (1989), shown by Klibanoff, Marinacci, and Mukerji 

(2005). The maxmin preference model is obtained in the smooth ambiguity model when 

the level of ambiguity aversion approaches infinity. 

I further assume that at each date 𝑡, the market maker sets a market clearing price 

𝑝𝑡 after observing the exogenous aggregate trading order 𝑞𝑡. Hence, the market maker’s 

final wealth is 

(1.3)  𝑊𝑇 = ∑ (𝑝𝑡+1 − 𝑝𝑡
𝑇
𝑡=0 )𝑥𝑡 = ∑ −(𝑝𝑡+1 − 𝑝𝑡

𝑇
𝑡=0 )𝑞𝑡, 𝑤𝑖𝑡ℎ 𝑝𝑇+1 = 𝐷, 

where 𝑥𝑡 is the demand of the market maker, and the second equality is based on the 

market clearing condition that𝑥𝑡 + 𝑞𝑡 = 0. Note that this assumption of inelastic investor 

demand is made for notational simplicity only, and does not qualitatively affect the results 

I derive below. The key to my liquidity model is the idea that one can “invert prices from 

quantities”. That is one can determine the equilibrium prices consistent with the 

representative market maker’s optimization behavior. My focus is to determine how price 

impact depends on the level of ambiguity 𝜎𝐴
2 as well as on the degrees of ambiguity 

aversion 𝜃 and risk aversion 𝜌. As a result, all that matters is that investors have demand 

curves that result in market makers choosing to hold, at the market prices, a position of 

𝑥𝑡 = −𝑞𝑡 that we observe in the data. In another word, I abstract away the motivation 

behind each trade. Investors may trade for pure liquidity purposes or for superior 

information. Nevertheless, at the aggregate level, these idiosyncratic reasons play lessor 

roles, leaving economic condition and economic uncertainty as the dominating factors. 

To better illustrate how ambiguity affects price impact, I consider a static model 

first. In this case, 𝑇 = 0 , and the market maker chooses the optimal demand 𝑥  by 
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maximizing the ARAP preference of the ambiguous wealth at time 1. The equilibrium 

price is determined from the market clearing condition. 

Proposition 1.1. The market maker chooses the trading quantity 𝑥  to maximize his 

ARAP preference of terminal wealth: 

(1.4) 𝑉∗(𝑊) = max
𝑥

𝐸𝑚𝐵
[(𝐷 − 𝑝)𝑥] −

𝜌

2
𝑉𝑎𝑟𝑚𝐵

[(𝐷 − 𝑝)𝑥] −
𝜃

2
𝑉𝑎𝑟𝑄[𝐸𝑃[(𝐷 − 𝑝)𝑥]].  

His trading quantity 𝑥 in accordance is 

(1.5)  𝑥∗ =
𝜇0−𝑝

𝜌(𝜎0
2+𝜎𝐴

2)+𝜃𝜎𝐴
2. 

The equilibrium price 𝑝 is  

(1.6)  𝑝 = 𝜇0 + 𝜆𝑞, 𝑤ℎ𝑒𝑟𝑒 𝜆 = 𝜌(𝜎0
2 + 𝜎𝐴

2) + 𝜃𝜎𝐴
2. 

The parameter 𝜆, which measures price impact or inverse market depth, is an important 

aspect of market illiquidity. 𝜆 shows the change in transaction price 𝑝 in response to a 

trade quantity of 𝑞 and a liquid market is defined with a low price impact. Based on 

equation (1.6), 𝜆 will increase if the level of risk or ambiguity increases, or if the degree 

of risk aversion or ambiguity aversion increases. These comparative statics reflect the fact 

that price impact depends on the market maker's required compensation for trading the 

uncertain asset. Interestingly, even if the market maker is ambiguity neutral 𝜃 = 0, as 

long as there is ambiguity 𝜎𝐴
2 > 0, a one unit trade will move the transaction price by 𝜌𝜎𝐴

2 

more than the pure risk case. Generally, if the market maker is ambiguity averse, price 

impact will be further increased by the required compensation for ambiguity 𝜃𝜎𝐴
2. As a 

result, we can see in this simple case that an increase in either the level of ambiguity 𝜎𝐴
2 

or the degree of ambiguity aversion 𝜃  will increase price impact or decrease market 

liquidity. 
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This static model generates insights regarding how price impact depends on risk, 

ambiguity, risk aversion, and ambiguity aversion, however, it is silent on whether 

uncertainty and uncertainty aversion affect price impact in the same way or in different 

ways. This static model only implies correlations between price impact and its four 

determinants, and we are still not able to differential between the impacts of ambiguity 

and that of uncertainty aversion on price impact. Hence, we must examine a dynamic 

model. 

Nevertheless the capability to separately identify the impacts of risk, risk attitude, 

ambiguity, and ambiguity attitude on price impact is the novel feature of my model. 

Although my result is not the first one that analyzes the impact of ambiguity on price 

impact, previous results in general are silent on the differential impacts of ambiguity and 

ambiguity attitude. For example, Easley and O’Hara (2010b) and Ozsoylev and Werner 

(2011) both examine the impact of ambiguity on price impact. However, ambiguity 

attitude is not explicitly featured in their results because of their choices of the maxmin 

preference. As discussed before that the maxmin preference is a special case of the smooth 

ambiguity model being utilized here, compared to my model, their models can be 

interpreted as a description of price impact in a scenario when investors are extremely 

ambiguity averse. Since ambiguity attitude, like risk attitude, features a specific 

dimension of agents’ general attitudes towards uncertainty, it is reasonable to believe that 

individuals can display different attitudes toward ambiguity. Meanwhile, it is also 

reasonable to believe that individuals’ ambiguity attitudes can change through time. In 

this sense, an explicit accounting for the ambiguity attitude can lead to richer predictions 
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and generate better understandings of the reality. More importantly, this explicit modeling 

of ambiguity aversion is valuable for calibration exercises. 

Because differentiating the impacts of uncertainty shocks and that of economic 

condition shocks is not viable in a static model, I develop a dynamic model. The defining 

feature of my dynamic model is the market maker's learning under ambiguity. Intuitively, 

ambiguity can arise due to a lack of relevant information to pin down the exact model. 

This is possible after an uncertainty shock. However, as agents gather more information 

through time, ambiguity can decrease gradually as a result of updating, until some new 

shock introduces a high level of ambiguity again. 

I assume agents receive a noisy signal 𝑠𝑡 = 𝐷 + 𝜖𝑡 at each trading date from 𝑡 =

1 to 𝑡 = 𝑇 . Here 𝜖𝑡  is the noise of the signal and assumed to be i.i.d. 𝑁(0, 𝜎𝑠
2) and 

independent of 𝐷. These noisy signals can be interpreted as relevant public information 

about the ambiguous fundamental value of the asset. I do not consider the case that the 

variance of the signal noise 𝜎𝑠
2  is ambiguous such as Epstein and Schneider (2008). 

Allowing 𝜎𝑠
2  to be ambiguous only adds another dimension of ambiguity without 

qualitatively change any result under my current choice of the smooth ambiguity model. 

As a benchmark, let’s consider the standard Bayesian setting first. When the prior 

probability measure for alternative models 𝑄0 is a Dirac delta measure 𝛿𝜇0
, there will be 

a single prior model for 𝐷: 𝑚(𝜇0) = 𝑁(𝜇0, 𝜎0
2). As a result, at any time 𝑡, the conditional 

distribution for 𝐷 on a series of signals up to time 𝑡 {𝑠𝑖}𝑖=1
𝑡  has the following standard 

form 

(1.7)  𝐷|{𝑠𝑖}𝑖=1
𝑡 ∼ 𝑁 (

𝜏𝑠 𝑠�̅�𝑡+𝜏0𝜇0

𝜏0+𝜏𝑠𝑡  
, (𝜏0 + 𝑡𝜏𝑠)−1), 
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where 𝑠�̅�  denotes the average of {𝑠𝑖}𝑖=1
𝑡 , and 𝜏𝑠 = 𝜎𝑠

−2  and 𝜏0 = 𝜎0
−2  are noted as the 

precisions of the signal 𝑠𝑖 and of the asset value 𝐷. 

In my interested setting, there is a multiple-prior belief for 𝐷, characterized by a 

set of alternative models (𝑀0 = {m(μ𝐴,𝑖)|i ∈ I}) and a normal prior (𝑄0) for alternative 

models to be true, indexed by the ambiguous mean parameter 𝜇𝐴. To model learning 

under this ambiguous setting, I follow the general structure introduced by Epstein and 

Schneider (2007, 2008) and Klibanoff, Marinacci, and Mukerji (2009), among others. In 

this case, signals {𝑠𝑖}𝑖=1
𝑡  affect the market maker’s belief of 𝐷, 𝑀𝑡, by affecting his belief 

of alternative models, 𝑄𝑡, which can be represented by a posterior distribution for the 

ambiguous mean parameter 𝜇𝐴
(𝑡)

 

(1.8)  𝜇𝐴
(𝑡)

|{𝑠𝑖}𝑖=1
𝑡 ∼ 𝑁 (

𝜏𝑠 𝑠�̅�𝑡+𝜏𝐴𝜇0

𝜏𝐴+𝜏𝑠𝑡  
, (𝜏𝐴 + 𝑡𝜏𝑠)−1), 

where 𝜏𝐴 = 𝜎𝐴
−2 . In this case, the market maker will have a refined belief 𝑄𝑡  for𝑀𝑡 . 

Specifically, the market maker will find it more likely for the mean of 𝜇𝐴
(𝑡)

|{𝑠𝑖}𝑖=1
𝑡  to 

approach the average of all the signals 𝑠�̅�  as time 𝑡 increases, based on equation (8). 

Interestingly, in the limit, 𝑄𝑡 will converge to a Dirac delta measure 𝛿𝑠�̅�
, when ambiguity 

is completely learned away. This feature that ambiguity can be learned away is consistent 

with the insight of Epstein and Schneider (2007) and particularly the one of Klibanoff, 

Marinacci, and Mukerji (2009), who proved that as long as the parameter space is finite, 

learning will resolve all the ambiguity. 

This dynamic behavior of the posterior 𝑄𝑡 for the ambiguous parameter 𝜇𝐴 will 

directly affect the ARAP preference based on the posterior 𝑀𝑡 for the final payoff 𝐷. 

Recall in equation (1.1) there are three probability measures: 𝑚𝐵, the collapsed model, 
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𝑄𝑡, the measure for alternative models, and 𝑃𝑡, the measure for payoff 𝐷. In this case, if 

𝑄𝑡 is updated as equation (1.8), the collapsed model 𝑚𝐵 will have the following form 

(1.9)  𝑚𝐵
(𝑡)

|{𝑠𝑖}𝑖=1
𝑡 ∼ 𝑁 (

𝜏𝑠 𝑠�̅�𝑡+𝜏𝐴𝜇0

𝜏𝐴+𝜏𝑠𝑡  
, (𝜏𝐴 + 𝑡𝜏𝑠)−1 + 𝜎0

2). 

This updating of the collapsed model 𝑚𝐵 directly affects 𝐸𝑚
𝐵 [𝑊] and 𝑉𝑎𝑟𝑚

𝐵[𝑊], the first 

two terms in the ARAP preference illustrated in equation (1.1). In addition, although 

under 𝑃𝑡  the conditional mean of 𝐷 is still 𝜇𝐴, the updating changes the distributional 

belief for 𝜇𝐴  from the prior 𝑄0 =  𝑁(𝜇0, 𝜎𝐴
2)  to the posterior 𝑄𝑡  defined by equation 

(1.8). Consequently, 𝑉𝑎𝑟𝑄[𝐸𝑃[𝑊]] , the third term in the ARAP preference, will be 

affected. 

Equation (1.9) suggests that the market maker will view the conditional mean of 

𝐷 as approaching the average of all the signals 𝑠�̅� and the conditional variance of 𝐷 as 

approaching the unconditional variance or risk of 𝐷, when 𝑡 goes to infinity. Once again, 

this result reveals a key feature of a dynamic model that learning can gradually resolve 

ambiguity. Ambiguity can have important implications in the short run, but in the long 

run only risk matters because investors become more confident about the correct model 

as they learn more information. 

After I illustrate how beliefs are updated, the dynamic trading model with learning 

can be directly derived. The general settings are similar to those in pure risk based models, 

such as the ones in Kyle (1985) and Vives (1995) among others. Dynamic models of this 

sort are solved via backward induction. To see how learning under ambiguity can differ 

from learning under risk, I start with the benchmark result under risk, the standard 

Bayesian setting. 
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Proposition 1.2. Suppose there is a single prior 𝑁(𝜇0, 𝜎0
2) for the terminal payoff 𝐷, and 

the market maker receives a signal 𝑠𝑡 = 𝐷 + 𝜖𝑡 at each date 𝑡. Then his trading quantity 

at time 𝑡, 𝑥𝑡, is 

(1.10)  𝑥𝑡
∗ =

𝜏𝑠 𝑠�̅�𝑡+𝜏0𝜇0
𝜏0+𝜏𝑠𝑡  

−𝑝𝑡

𝜆𝑡
. 

The equilibrium price 𝑝𝑡 is  

(1.11)  𝑝𝑡 =
𝜏𝑠 𝑠�̅�𝑡+𝜏0𝜇0

𝜏0+𝜏𝑠𝑡  
+ 𝜆𝑡𝑞𝑡, 𝑤ℎ𝑒𝑟𝑒 𝜆𝑡 = 𝜌(𝜏0 + 𝑡𝜏𝑠)−1. 

This proposition is similar to the result in Vives (1995) and can be proved in a 

similar fashion. The parameter of interest is still 𝜆𝑡, the price impact parameter at time 𝑡. 

We can see that 𝜆𝑡 decreases in time, indicating that the market becomes more and more 

liquid through time as a result of the market maker’s updated belief of 𝐷. 

This proposition highlights a testable empirical prediction: a change in the asset 

risk level will cause a temporary increase in price impact. This is true because 𝜆𝑡  is 

dominated by the term 𝑡𝜏𝑠, which increases through time. Consequently, the shock effect 

of 𝜏0 on 𝜆𝑡 dissipates as time goes by. 

This proposition highlights the role of learning in distinguishing dynamic trading 

models from static trading models. In static models, one can only predict the correlation 

between market liquidity and a particular variable, such as the risk level. In dynamics 

models, one can further predict the time series behavior of market liquidity in relation to 

a change in the risk level.  

One limitation of the Bayesian benchmark is that both risk and price impact will 

approach zero as trading horizon increases. This is true if we let the trading horizon 

approaches infinity. The idea that there is no risk and no illiquidity in the long run may 



17 

seem to be too ideal, especially if one tries to connect the model with actual data. The 

following proposition will show that this concern is completely mitigated in my model of 

learning under ambiguity. 

Proposition 1.3. Suppose there is a multiple-prior belief 𝑀0 = {𝑚(𝜇𝐴,𝑖)|𝑖 ∈ 𝐼} for the 

terminal payoff 𝐷 and a normal prior 𝑄0 for alternative models to be true, and the market 

maker receives a signal 𝑠𝑡 = 𝐷 + 𝜖𝑡 at each date 𝑡. Then his trading quantity at time 𝑡, 

𝑥𝑡, is  

(1.12)  𝑥𝑡
∗ =

𝜏𝑠 𝑠�̅�𝑡+𝜏𝐴𝜇0
𝜏𝐴+𝜏𝑠𝑡  

−𝑝𝑡

𝜆𝑡
. 

The equilibrium price 𝑝𝑡 is  

(1.13) 𝑝𝑡 =
𝜏𝑠 𝑠�̅�𝑡+𝜏𝐴𝜇0

𝜏𝐴+𝜏𝑠𝑡  
+ 𝜆𝑡𝑞𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝜆𝑡 = 𝜌((𝜏0 + 𝑡𝜏𝑠)−1 + 𝜎0

2) + 𝜃(𝜏𝐴 + 𝑡𝜏𝑠)−1. 

This proposition can be proved in a similar way to Proposition 1.2. The distinction 

between learning under ambiguity and the standard Bayesian learning can be observed 

by comparing equations (1.11) and (1.13). In equation (1.13), 𝜆𝑡 converges to 𝜌𝜎0
2, when 

the trading horizon approaches infinity and to 0 in equation (1.11). This result indicates 

that in a long horizon ambiguity will be completely learned away and market liquidity is 

only affected by risk. In another word, ambiguity only matters in a short horizon, while 

risk matters both in the short and long horizons. 

To better illustrate the empirical implications of my model, I first conduct a set of 

numerical examples. Specifically, I generate a time series of 𝜆𝑡 based on equation (1.13) 

for a range of ambiguity levels, measured by 𝜎𝐴
2. Here I let 𝜎𝐴

2 take values of 2, 4, and 6. 

In all three cases, the common parameters are 𝜎0
2 = 2, 𝜎𝑠

2 = 1, 𝜌 = 2, and 𝜃 = 8. Since 

there is no consensus for 𝜌 and 𝜃, I select those two in reference to Ju and Miao (2012). 
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Figure 1.1 shows how ambiguity and learning jointly determine the dynamics of 

price impact. If we consider 𝜎𝐴
2 = 4 as a benchmark, we can see that an increase in 

ambiguity (𝜎𝐴
2 = 6) will lead to a sharp increase in price impact in the first few periods. 

However, the difference between the price impact curve for 𝜎𝐴
2 = 4 and the one for 𝜎𝐴

2 =

6 decreases as 𝑡 increases. For a relatively long horizon, the difference is almost zero. 

The same is true for the opposite case 𝜎𝐴
2 = 2. Collectively, these results demonstrate that 

ambiguity affects market liquidity primarily over short horizons, as in long horizons 

ambiguity is resolved by learning, and market liquidity converges to the benchmark under 

pure risk. 

[Place Figure 1.1 about here] 

As mentioned in the introduction that it is widely acknowledged that an 

uncertainty shock introduces ambiguity, my model implies that market liquidity declines 

temporarily after an uncertainty shock. This implication can be directly related to Figure 

1 and interpreted as the effect of learning. In the next empirical section, I will formally 

test this implication. 

In addition, my model implies that observed stock return variance can be 

decomposed into a predictable component, driven by risk, and an unpredictable 

component, driven by ambiguity, introduced by unpredictable uncertainty shocks. While 

the former implication requires formal empirical estimation, this implication is intuitive. 

For example, the ARCH/GARCH literature indicates that stock return variance can be 

estimated with relatively high accuracy, and abnormal high-variance regimes are short-

lived. This observation is consistent with the implication discussed here in that otherwise 

we would have observed long-lived high variance regimes. 
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To analyze how changes in economic conditions affect price impact dynamics, I 

conduct a set of numerical examples based on various degrees of uncertainty aversion 

(risk aversion and ambiguity aversion). Specifically, I generate a time series of 𝜆𝑡 based 

on equation (1.13) for a range of risk aversion coefficients 𝜌 and a range of ambiguity 

aversion coefficients 𝜃. First, to see the effect of risk aversion, I let 𝜌 take values of 2, 3, 

and 4, holding 𝜃 = 8. Second, to see the effect of ambiguity aversion, I let 𝜃 take values 

of 7, 9, and 11, holding 𝜌 = 2. In both cases, the fixed parameters are 𝜎0
2 = 2, 𝜎𝑠

2 = 1, 

and 𝜎𝐴
2 = 4. In this case, I am examining the effects of risk aversion and ambiguity 

aversion on market liquidity dynamics separately. 

Figure 1.2 indicates that an increase in uncertainty aversion causes market 

liquidity to decline persistently. In the upper panel, I show the dynamics of price impact 

for different degrees of risk aversion; in the lower panel, I plot the same for different 

degrees of ambiguity aversion. First, focusing on the upper panel, we can see that an 

increase in risk aversion (from 𝜌 = 3 to 𝜌 = 4) leads to a sharp and persistent increase in 

price impact, and the same is true for the opposite case 𝜌 = 2. This finding reiterates the 

idea that learning only changes the perception of uncertainty but not the attitudes toward 

it. Second, looking at the lower panel, we can see that an increase in ambiguity aversion 

(from 𝜃 = 9 to 𝜃 = 10) leads to a significant increase in price impact for the first few 

periods nevertheless this increases decays through time. This decaying effect is driven 

primarily by the diminishing level of ambiguity, because it is the product of ambiguity 

and ambiguity aversion that affects price impact. 

[Place Figure1. 2 about here] 
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This set of results suggest that a shock to economic condition will lead to a 

persistent decline in market liquidity. This is true based on the notion of time-varying risk 

aversion. Market participants become more averse to uncertainty in economic downturns, 

and this elevated uncertainty aversion leads to a persistent decline in market liquidity.   

III. Empirical Findings 

The empirical design is motivated by Bloom (2009). One focus here is on the 

impacts of uncertainty shocks on stock market liquidity. Given the infrequent nature of 

these shocks, I select a sample period as long as possible. In this sense, to construct a 

monthly stock market liquidity series, I obtain daily stock price, holding period return, 

and trading volume data from CRSP for 1962--2013. I select common stocks (share code 

of 11) traded on the NYSE to make the sample as homogeneous as possible. Next, I 

construct a monthly stock market volatility series using the VXO index for post-1986 

periods and the actual stock market volatility for the time before 1986.6 In addition, I 

obtain the Federal Funds Rate (FFR) time series from the Federal Reserve Board of 

Governors (H15). 

[Place Figure 1.3 about here]   

To define volatility shocks, I follow the method introduced in Bloom (2009). 

Specifically, this monthly indicator series takes the value of 1 for each of the 18 shock 

events in Table 1, and 0 otherwise. These 18 shocks are identified when stock market 

volatility in a particular month exceeds the threshold of 1.65 standard deviation above the 

Hodrick-Prescott detrended (lambda = 129, 600) mean. In this way, this indicator series 

ensures that identification comes only from these large, and arguably exogenous, 

                                                 
6 The VXO index is not available before 1986. 
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volatility shocks rather than from the smaller ongoing fluctuations. As a result, it is 

reasonable to believe that this indicator series captures periods when ambiguity matters 

most. Note that some shocks span multiple months, leaving the exact timing as a choice. 

I follow the scheme in Bloom (2009) to allocate each event from two alternative 

approaches. The primary approach is to label the month when the volatility obtains its 

local maximum while the alternative is to select the first month in which the volatility 

moves above the 2-standard-deviation threshold. Further, as suggested in Bloom (2009), 

shock events differ in their nature. To address this issue, I categorize events into terror, 

war, oil, or economic shocks. Since it is possible that economic shocks may not be 

completely exogenous in relation to financial market activities, in the robustness section, 

I construct an alternative volatility shock indicator series using only the arguably most 

exogenous terms of terror, war, and oil shocks. 

Table 1.1 shows the 18 identified shock events, their dates under each timing 

scheme, and their classifications. The first 17 shocks are consistent with those in Bloom 

(2009) and the 18th occurs in September 2011 at the onset of the sovereign debt crisis, 

after the point where the Bloom sample ends. At first glance, one may wonder whether 

stock market levels would decrease during these volatility shocks since each appears to 

be adverse. Fortunately, such a concern is ameliorated. Bloom (2009) shows that the log 

detrended stock-market level has a correlation of -0.192 with the main 0/1 volatility shock 

indicator, a correlation of -0.136 with the 0/1 oil, terror, and war shock indicator, and a -

0.340 correlation with the log detrended volatility index itself. This feature is not 

surprising. For example, events including the Cuban missile crisis raise volatility, leaving 

stock market levels intact, and other events including hurricane Katrina affect stock 
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market levels without raising volatility. Hence, focusing on these large volatility shock 

events would better suit the purpose of examining the effect of ambiguity. 

[Place Table 1.1 about here] 

I focus on market liquidity for an important reason. First, individual stock 

liquidity is subject to idiosyncratic factors, such as adverse selection (Kyle (1985)). Since 

I am interested in economy-wide factors, studying market liquidity is the best choice.  

To be consistent with my model, I construct the Amihud (2002) measure at a 

monthly frequency using daily stock return and volume data to measure price impact. In 

the literature, there are two broad types of price impact measures based on the frequency 

of the data being used. The first class of measures is constructed using intraday data, e.g., 

the TAQ database. The second class is based on data with lower frequencies, like the 

CRSP data. The choice of a specific measure depends on the scope of the study. Normally, 

if one wants to study a longer time horizon, one would construct low frequency data based 

measures since the TAQ database starts from the 1990s while the CRPS data can be traced 

back to 1960s. Since my focus is on the effect of volatility shocks on market liquidity, I 

believe choosing a time horizon as long as possible can lead to the best inference possible, 

especially considering the rare nature of these volatility shocks. The choice of the Amihud 

measure is based on Goyenko, Holden, and Trzcinka (2009). They show that the Amihud 

measure best captures price impact through a comprehensive study. Since the Amihud 

measure is constructed for individual stocks, to create a monthly time series for the market 

wide price impact measure, I follow previous literature (e.g., Naes, Skjeltorp, and 

Odegaard (2011)) by using the equally weighted average of the Amihud measure across 

all stocks.   
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Figure 1.4 plots the time series of the market liquidity measure with 18 reference 

lines added indicating volatility shock events. Unlike the volatility series in Figure 1.3, 

market liquidity exhibits both a downward trend and a decreased variability. Note that 

the Amihud measure captures the price impact dimension and lower price impact is 

equivalent to higher liquidity. This observation is intuitive and can be interpreted as the 

consequence of the advancements in information technologies as well as improvements 

in market quality.  

[Place Figure 1.4 about here]  

I estimate a range of VARs using the constructed monthly time series from June 

1962 to December 2013. The baseline estimation ordering is log(S&P 500 stock market 

index), the stock market volatility shock indicator series, Federal Funds Rates (FFR), and 

the market liquidity series. This ordering is based on the discussion in Bloom (2009) that 

shocks instantaneously affect stock markets (levels and volatility), then interest rates, and 

market characteristics. In the robustness session, I also examine a battery of alternative 

orderings. All variables are detrended with the Hodrick-Prescott(HP) filter 

(lambda=129,600) in the baseline estimation. 

Table 1.2 provides descriptive statistics for the VAR system (Stock and Watson 

(2001)). Panel A presents the P-values from bivariate Granger causality tests. The null of 

these tests is that the cause variable does not Granger cause the effect variable. Both 

volatility and FFRs Granger cause market liquidity, indicating that innovations in the 

volatility and FFRs contain information about future market liquidity movements. Panel 

B shows the percentage decomposition of a variable’s forecast variance into contributions 

of other variables based on forecast horizons. All three determinants of market liquidity 
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explain substantial proportions of the total forecast variance in innovations of liquidity. 

For example, at a 12 month forecast horizon, around 40 percent of the forecast variance 

of liquidity is explained by the three determinants. Collectively, estimates in Table 1.2 

point out a set of strong interdependent relations between market liquidity and the three 

determinants. 

[Place Table 1.2 about here]  

Figure 1.5 plots the impulse response function of market liquidity to shocks in 

volatility for the whole sample period. We can see that market liquidity displays a sharp 

decline of around 1% within 2 months and a subsequent recovery to the pre-shock level 

at around month 5. The 2-standard-error bands (dashed lines) are plotted to show the 

significance of the result. This result is qualitatively consistent with the finding in 

Chordia, Sarkar, and Subrahmanyam (2005) and Chung and Chuwonganant (2014) that 

uncertainty adversely affects market liquidity. In addition, this result reveals a new 

property of the uncertainty impact on liquidity: such an impact is transitory. 

[Place Figure 1.5 about here]   

Next, I examine whether the ambiguity effect would differ in different time 

periods. A key motivation for this exercise is that the spread of information is much faster 

in more recent periods due to the advancements in information technology. In Figure 1.6, 

I plot the impulse response functions of market liquidity to shocks in volatility for periods 

1962--1989 and 1990--2013 separately. We can see sharp differences in the magnitudes 

of impact and the speeds of rebound from the upper and lower figures. In the first period, 

a volatility shock generates a decline in liquidity up to 3% and the shock impact 

diminishes at around month 5. In contrast, a volatility shock only generates a decline in 
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liquidity up to 0.4%, and the speed of rebound is much faster: the shock impact disappears 

at around month 3. 

[Place Figure 1.6 about here]  

Figure 1.7 plots the impulse response function of market liquidity to changes in 

the stock price level and the FFR for the whole sample period. Compared with Figure 1.5, 

Figure 1.7 suggests fundamentally different responses of market liquidity. For example, 

a one-standard-deviation decrease in the stock price level is associated with a persistent 

drop in market liquidity up to 2% for around a year. This finding is in line with Hameed, 

Kang, and Viswanathan (2010), who demonstrate that stock market declines have a 

persistent adverse impact on market liquidity. In addition, a one-standard-deviation 

increase in the FFR is accompanied by a much more persistent drop in market liquidity 

up to 2.5%, and this effect lasts for over a year. 

[Place Figure 1.7 about here]   

Next, I examine whether the impact of uncertainty aversion would change in 

different time periods. In Figure 1.8, I plot the impulse response functions of market 

liquidity to shocks in the stock price level and the FFR for periods 1962--1989 and 1990-

-2013 separately. We can see the degree of persistence in the impact of uncertainty 

aversion is less in the latter period. In the former period, changes to either the stock price 

level or the FFR lead to a persistent response in liquidity for around a year, while in the 

second period such response persists for only six months. This difference suggests that 

market liquidity has improved significantly through time. 

[Place Figure 1.8 about here]  
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I establish the robustness of my empirical findings through a battery of robustness 

analyses. The first set of robustness analyses aims to demonstrate that my findings are 

robust to alternative methods of constructing the shock indicators series. In addition, since 

the impulse-response analysis depends on VAR orderings, my second set of robustness 

analyses show that my results do not depend on a particular way of ordering.  

In Figure 1.9, I show that my VAR result is robust to alternative measures of 

volatility shocks. In the first figure of the upper panel, I use the actual volatility series 

instead of the indicator series. In the next figure of the upper panel, I scale each 0/1 

indicator by the actual detrended volatility to reflect the idea that shocks’ effects may 

depend on shock magnitudes. In the first figure of the lower panel, I identify shocks using 

the first month instead of the month with the local maximum volatility. In the second 

figure of the lower panel, I exclude economic shocks to mitigate the concern that 

economic shocks may be interrelated to financial market activities. Findings from the 

three graphs strengthen the conclusion that an uncertainty shock triggers a temporary 

decline in market liquidity. 

[Place Figure 1.9 about here]  

In Figure 1.10, the impulse response functions of market liquidity to volatility 

shocks are presented for three alternative orderings of the orthogonal VAR. In the first 

figure of the upper panel, the VAR ordering is (stock market volatility shocks indicator, 

log(stock market return), Federal Funds Rates, market liquidity). In the second figure of 

the upper panel, the ordering is (stock market volatility shocks indicator, market 

liquidity). In the picture of the lower panel, the ordering is (market liquidity, FFR, 

log(stock market return), stock market volatility shocks indicator). It is evident that the 
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response of market liquidity to volatility shocks is irrelevant to actual ordering of the 

VAR. Collectively, these findings lend further support to my conclusion. 

[Place Figure 1.10 about here]  

IV. Conclusions 

Major economic and political shocks, such as the Cuban missile crisis, the 9/11 

terrorist attacks, and the 2008 financial crisis trigger spikes in uncertainty. If investors are 

ambiguity averse, these uncertainty shocks will cause drastic market reactions, driving 

the dynamics of overall stock market liquidity. The present paper develops a dynamic 

trading model with learning under ambiguity to analyze the distinction in the impacts of 

these uncertainty shocks from that of economic condition shocks on the price impact 

aspect of market liquidity. First, I consider the idea that an uncertainty shock introduces 

ambiguity and learning can resolve ambiguity, as suggested by Epstein and Schneider 

(2007, 2008), and Klibanoff, Marinacci, and Mukerji (2009). Second, to analyze the 

impact of economic condition shocks, I incorporate the notion of time-varying risk 

aversion, introduced by Campbell and Cochrane (1999) and Barberis, Huang, and Santos 

(2001). My model implies that an increase in ambiguity leads to a temporary spike in 

price impact, while an increase in either risk aversion or ambiguity aversion results in a 

persistent increase in price impact. This distinction in the behaviors of price impact 

highlights the role of learning in resolving ambiguity that is introduced by uncertainty 

shocks. 

My empirical analyses lend support to my model implications. Market illiquidity, 

measured by price impact and constructed monthly using the Amihud (2002) measure, 

declines on average up to 1.5% and rebounds within the next five months after an 



28 

uncertainty shock. In contrast, market liquidity declines persistently for up to a year after 

a shock to economic conditions. 
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Chapter 2: 

 

The Early Exercise Premium in American Put Prices7 

 

I. Introduction 

Most exchanged-traded options have the American exercise style, and this early 

exercise feature contributes significantly to the value of the options.8 Since the seminal 

study of Bakshi et al. (1997), researchers have devoted substantial efforts on empirically 

testing alternative option pricing models’ performances to explain European option 

prices.9 At this point, however, we still know little about how well these models can 

match the magnitude of and the variation in empirically observed EEP. In this paper, we 

focus on put EEP and exploit a unique fact that the S&P 100 index trades both American 

options (OEX) and European options (XEO), allowing direct measurements of EEP, to 

address two important questions. First, how well can alternative option pricing models 

explain the cross section of put EEP? Second, do alternative models systematically 

overprice or underprice put EEP? If so, how can we reconcile that? 

In the principle of parsimony, we compare the Black and Scholes (1973) model 

and its four extensions for pricing American puts and EEP. The extensions include the 

Merton (1976) jump diffusion model, the variance gamma model of Madan et al. (1998), 

the finite moment log stable model of Carr and Wu (2003), and the stochastic volatility 

model of Heston (1993). Accordingly, they increase the dimension of the Black and 

                                                 
7 This chapter is based on collaborative work with Louis Ederington and Pradeep Yadav. The computing 

for this project was done at the Oklahoma University Supercomputing Center for Education & Research 

(OSCER). 
8 Examples include options on equity, currency, index futures, etc.  
9 Earlier studies in this direction are surveyed by Bates (2003).  
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Scholes model by three, two, one and four, and they can serve as the foundation for more 

sophisticated models.10 For the sake of brevity, henceforth we refer to these models as 

the BS, MJ, VG, FMLS, and SV models, respectively. 

Studying these models’ performances in pricing put EEP can generate new 

insights about the implied early exercise boundaries of these models. Classic theories 

including Carr et al. (1992) based on arbitrage-free arguments show analytically that put 

EEP is the present value of the interests earned on the strike price net of the foregone 

dividends, when the underlying price is in the exercise region. This exercise region is 

defined by a model specific early exercise boundary, which is an optimal threshold for 

the underlying price to fall from above such that an early exercise is triggered. This early 

exercise boundary is the key to price EEP and to distinguish alternative models. It is not 

analytically tractable, and neither is its connection with the shape of the implied volatility 

surface. Hence, in contrast to previous empirical studies that focus on European option 

prices and assess alternative option pricing models based on their abilities to match the 

implied volatility surface, our study offers new insights about the relevance of alternative 

models based on the early exercise boundary.  

We empirically measure market EEP by pairing quotes of an OEX option and an 

XEO option on the S&P 100 index with identical strike and maturity, if the two quotes 

                                                 
10 For example, one can combine the Merton jump with the SV to get the SVJ model of Bates (1996) or 

further randomize the jump activity rate to arrive at the model studied in Bates (2000), and possibly add a 

jump in the volatility as well to get the SVJJ model studied in Duffie et al. (2000) and Pan (2002). 

Furthermore, one can introduce a particular dependence structure in the occurrences of jumps in the return 

equation and in the variance equation, as in the SVCJ model studied in Eraker et al. (2003) and Eraker 

(2004). In addition, one can use the variance gamma process or the 𝛼-stable process to model jumps instead 

of the compound Poisson process, and such generalizations are featured in Huang and Wu (2004) and Li et 

al. (2008). Alternatively, one can divert from the above-mentioned affine generalizations and resort to the 

time changed Levy process models, e.g., subordinating the variance gamma model by a Feller “clock” as 

in Carr et al. (2003) and Carr and Wu (2004). 
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are posted within 60 seconds. Our sample consists of high frequency quotes data on S&P 

100 index options for the calendar period 2005.05—2007.12. We choose this period 

because short-term interest rates have been close to zero for a long time after the financial 

crisis in 2008, while the dividend yield on the S&P 100 index has been stable (around 2 

percent). This makes the early exercise of OEX puts unattractive in the long period after 

2008, because the interests earned can hardly exceed the forgone dividends. In contrast, 

the short-term interest rates are around 4 percent in our sample period, much larger than 

dividend yields. In this case, the early exercise of OEX puts can be optimal in general.  

  When implementing each model to determine its predicted EEP, we first back 

out the set of risk neutral parameters for each day using out-of-the-money (OTM) 

European option prices by minimizing the root mean squared pricing errors (RMSE). 

Next, we use their weekly averages as inputs to the Least Squares Monte Carlo (LSM) 

American option-pricing algorithm developed in Longstaff and Schwartz (2001). We 

choose the LSM algorithm based on its wide applicability for all types of models and for 

the convenience it offers in adjusting for discrete cash dividends (Harvey and Whaley 

(1992a, 1992b)) relative to alternative methods, including the spectral methods developed 

in Fang and Oosterlee (2009) and Ruijter and Oosterlee (2012) and the asymptotic 

expansion method in Medvedev and Scaillet (2010).11  Our approach of estimating the 

                                                 
11 The LSM algorithm falls within the general framework of recursively solving an optimal stopping 

problem by comparing the continuation value and the immediate stopping proceeds at each step going 

backwards. The LSM algorithm relies on simulated sample paths to approximate the continuation value 

through a least squares exercise, while spectral methods rely on an orthogonal basis to approximate the 

transition density of the underlying, and hence the continuation value at each time. Aside from such a 

recursive method of solving the optimal stopping problem, finite differencing the PDE or partial integro-

differential equation (PIDE) implied by the variational inequality subject to a set of initial and boundary 

conditions is also popular in the literature. We acknowledge the better convergence of the solution 

generated by finite difference methods, and we opt not to use them simply due to the fact that one may need 

to make ad hoc adjustments for each model to meet the stability conditions. 
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parameters each day follows the approach used widely in the literature for the purpose of 

pricing the cross section of European options – for example, Bakshi et al (1997), Carr et 

al. (2002), Carr and Wu (2003), and Carr et al. (2007). We estimate the parameters daily 

even though model parameters are theoretically constant overtime. The reason is 

highlighted by Carr et al. (2007): the parameters estimated each day from models that 

adequately fit the daily cross section of option prices vary significantly from day to day, 

and restricting the parameters to be constant across different days delivers sub-optimal 

pricing performance.12  

When assessing the performances of alternative models in predicting EEP, we 

rank them based on their prediction RMSE, in accordance with Christoffersen and Jacobs 

(2004). They show that the choice of the loss function in the prediction step must be 

consistent with that in the estimation step, because otherwise the statistical distributions 

for pricing errors in the two steps are inconsistent, causing the inferences invalid. Since 

we minimize the RMSE when estimating model parameters, to make valid inferences, we 

must compare alternative models’ predicting powers using the same metric. 

It is also important to account for the value of a “wild card option” embedded in 

OEX contracts, when one is constructing the RMSE.13 We determine the value of this 

wild card option based on the Fleming and Whaley (1994) approach, which requires the 

knowledge of the volatility parameter of the underlying during the wild card window. 

This parameter is not directly observable, because the stock market is closed during the 

                                                 
12 Since our goal is to examine the pricing performance, it is necessary for us to estimate these parameters 

daily. This approach could not have been used if our purpose had been to form dynamic arbitrage portfolios 

or to estimate factor risk premia, like the variance or jump risk premia. 
13 Holders of the American style OEX contract can continue to exercise the option after 3:00 pm (when the 

stock market closes) till 3:20 pm, based on the closing cash index level at 3:00 pm. This flexibility has been 

termed as the wild card option, e.g., by Fleming and Whaley (1994). Also note that the wild card option 

does not exist for equity options. 
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wild card window. To circumvent this problem, we back out the wild card period 

volatility parameter from call EEP, because OEX calls should not be exercised early in 

our sample period for the high interest rates, leaving the wild card option the only sensible 

reason for early exercises. 

We find that jump models are superior at matching the cross-sectional variation 

and magnitudes of market EEP. Since EEP depend directly on the model implied early 

exercise boundaries, this finding suggests that investors consider jumps as the first-order 

concern when valuing American options’ flexibility to exercise early for earning interests 

purposes, as in classic theories (Carr et al. (1992)). This finding also generates new 

insights about jump models. Conventional wisdom suggests that jump models are 

essential to explain why market overprices OTM European puts relative to the BS model, 

while our results in contrast demonstrate that jump models are essential to explain why 

market overprices ITM put EEP relative to the BS model. In another word, we lend 

support to jump models from a completely different angle.  

 We in addition document that all models underprice market EEP and this 

underpricing is more pronounced for short term ITM puts. We provide an explanation 

based on the unique feature of American options, the flexibility to exercise early, which 

generates a transaction cost saving option. When the half spread of an American option 

exceeds its time value, an investor can exercise the option early as a more profitable 

alternative to selling it. Following this idea, we augment the Longstaff-Schwartz 

algorithm to quantitatively determine the value of this transaction cost saving option for 

each option series in our sample. Based on its explanatory power and the empirical 

regularity that the highest proportion of short term ITM OEX puts exhibit larger half 
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spreads than time values, we find that this transaction cost saving option is the reason 

why market EEP are larger than the combination of model predicted EEP and wild card 

premia.   

This study contributes to several strands of literature. First, our study contributes 

to the literature on model specification by uncovering new properties of jump models. 

Prior studies focus on alternative models’ performances in pricing the cross section of 

European options. They find that jump models are essential for explaining the high 

implicit negative skewness, observed in the implied volatility smirk for short-term 

options, while the importance of modeling jumps seems to diminish for longer horizons. 

Notably, studies in this category include Bakshi et al. (1997), Pan (2002), Eraker (2004), 

Huang and Wu (2004), and, Carr and Wu (2007). Here we find that jump models are 

essential for matching the magnitudes of EEP regardless of the maturity dimension. This 

finding suggests that modeling jumps is the key to match the implied early exercise 

boundaries from put EEP. 

Second, it contributes to the empirical literature on the EEP. Jorion and Stoughton 

(1989) perform an early study that focuses on the Black-Scholes model only and use daily 

currency option data that is potentially suffering from significant synchronization errors, 

which they duly acknowledge. Harvey and Whaley (1992a, 1992b), Fleming and Whaley 

(1994), and Broadie et al. (2000) focus on the relative contributions of dividends and 

stochastic volatility in the call EEP. However, the market value of EEP in these studies 

is not directly observable. None of these studies focus on American puts nor do they 

undertake a comprehensive empirical assessment of alternative models, as we do.  
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II. Option Pricing Theories 

In this section, we outline the theoretical foundation for our analysis: the risk 

neutral pricing framework. First, we describe the European option-pricing problem. 

Second, we discuss the American option-pricing problem and the theoretical properties 

of the EEP. Third, we illustrate model specifications for the underlying dynamics. 

Given a complete filtered probability space (𝛺, ℱ, ℚ , {ℱ𝑡}) , the price of a 

European call on a non-dividend paying asset under the risk neutral probability measure 

ℚ can be described as 

(2.1)   𝐶𝑎𝑙𝑙(𝑡, 𝑇, 𝐾|𝑆(𝑡)) = 𝑒−𝑟(𝑇−𝑡)𝐸ℚ [max{𝑆(𝑇) − 𝐾}| ℱ𝑡], 

where 𝑆(𝑡) stands for the stock price at time 𝑡, 𝐾 is the strike price, 𝑟 is the risk-free rate, 

and 𝑇 refers to time to maturity. If the underlying asset pays dividends, we need to adjust 

the 𝑆(𝑡) with the sum of the present values of the cash dividends paid during the life of 

the option. As shown, e.g., by Bakshi et al. (1997) and Carr and Madan (1999), equation 

(2.1) can be rewritten as 

(2.2)   𝐶𝑎𝑙𝑙(𝑡, 𝑇, 𝐾|𝑆(𝑡)) = 𝑆𝑡𝛱1 − 𝑒−𝑟(𝑇−𝑡)𝐾𝛱2, 

where  𝛱1 = Pr
𝕡

{𝑆𝑇 > 𝐾}, the physical probability of the call finishing in the money, and 

𝛱2 = Pr
ℚ

{𝑆𝑇 > 𝐾}, the risk-neutral probability of the call finishing in the money. Their 

expressions are given by the following: 

(2.3)   𝛱1 =
1

2
+

1

𝜋
∫ 𝑅𝑒[

𝑒−𝑖𝑢𝑙𝑛𝐾𝜙𝑇(𝑢−𝑖)

𝑖𝑢𝜙𝑇(−𝑖)
]

∞

0
𝑑𝑢, 

and 

(2.4)   𝛱2 =
1

2
+

1

𝜋
∫ 𝑅𝑒[

𝑒−𝑖𝑢𝑙𝑛𝐾𝜙𝑇(𝑢)

𝑖𝑢
]

∞

0
𝑑𝑢, 

where 𝜙𝑇(𝑢) = 𝐸ℚ[𝑒𝑖𝑢𝑙𝑛𝑆𝑇], is the characteristic function of 𝑙𝑛𝑆𝑇. 
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Although we only explicitly describe the European call-pricing problem above, 

European put prices can be easily determined through put-call-parity:  

(2.5)   𝑃𝑢𝑡𝑡 = 𝐶𝑎𝑙𝑙𝑡 − 𝑆𝑡 + 𝑒−𝑟(𝑇−𝑡)𝐾. 

Same as above, if the underlying asset pays dividends, one needs to adjust for the present 

value of cash dividends paid during the life of the option. 

The American option-pricing problem is more complicated than its European 

counterpart due to its path dependent nature. We begin with the simplest case being the 

pricing of American options on non-dividend paying assets, which is formally analyzed 

in Carr et al. (1992). We then move to a more general case where the underlying asset 

pays dividends and the underlying asset dynamics is driven by a discontinuous jump 

process, which is formally analyzed in Gukhal (2001). 

In the case of a non-dividend paying asset, an American call option with a finite 

maturity should never be exercised prior to maturity; while an American put option can 

be optimally exercised early. Hence, the American put commands a premium over its 

European counterpart. 

Mathematically, the problem of pricing a finite maturity American put option can 

be expressed as the following optimal stopping problem 

(2.6)   𝑃𝑢𝑡𝐴𝑚(𝑡, 𝑇, 𝐾|𝑆(𝑡)) = sup
𝑡<𝜏≤𝑇

𝑒−𝑟(𝜏−𝑡)𝐸[max{𝐾 − 𝑆(𝜏)}|ℱ𝑡] 

where 𝜏 is a stopping time with respect to the filtration {ℱ𝑡}. The solution to (2.6) is 

attained at 𝜏∗ = inf {𝑡|𝑆𝑡 ≥ 𝑆∗(𝑡)}, and 𝑆∗(𝑡) is called the early exercise boundary. The 

literal meaning of (6) is that the price of an American put is the discounted cash flow at 

a random time 𝜏∗ when the stock price first reaches the optimal early exercise boundary 

𝑆∗(𝑡). To elaborate, the holder of an American put on a non-dividend paying underlying 



37 

should exercise early only if the underlying’s price at time 𝑡 (𝑆(𝑡)) falls from above to a 

time dependent critical value 𝑆∗(𝑡) . When 𝑆(𝑡)  is above 𝑆∗(𝑡) , the holder should 

continue to hold the American option, hence the region {𝑆(𝑡)|𝑆(𝑡) > 𝑆∗(𝑡)} is called the 

continuation region. In the continuation region, the value of an American option equals 

that of a European option. On the contrary, when 𝑆(𝑡) hits the 𝑆∗(𝑡) for the first time, the 

holder should exercise the option and as a result receives payoff 𝐾 − 𝑆∗(𝑡), where 𝐾 is 

the strike price. In this way, the region {𝑆(𝑡)|𝑆(𝑡) ≤ 𝑆∗(𝑡)} is called the exercise region, 

and specifically, the curve {𝑆(𝑡)|𝑆(𝑡) = 𝑆∗(𝑡)} is called the early exercise boundary. 

Even in the simplest case where 𝑆(𝑡) is modeled as a geometric Brownian motion, 

equation (2.6) has no analytical solution. Carr et al. (1992) provide an alternative 

characterization for the solution of (2.6) as 

(2.7)   𝑃𝑢𝑡𝐴𝑚(𝑡, 𝑇, 𝐾|𝑆(𝑡))  =  𝑃𝑢𝑡𝐸𝑢(𝑡, 𝑇, 𝐾|𝑆(𝑡)) +

𝐸𝐸𝑃(𝑡, 𝑇, 𝐾|𝑆(𝑡)). 

The above expression says that the price of an American put equals the sum of the price 

of its European counterpart and an EEP. In addition, they illustrate an approach to 

construct a portfolio that replicates the cash flow from holding an American put. To do 

so, an investor should go long in the put in the continuation region, and exercise the put 

when the underlying hits the early exercise boundary and enters the exercise region 

receiving the payoff of 𝐾 − 𝑆∗(𝑡). When the underlying’s price is in the exercise region, 

the investor should invest 𝐾 in risk-free bonds and short one unit of the underlying. As 

long as the underlying’s price stays in the exercise region, the investor earns interest. If 

the underlying’s price trajectory is continuous as modeled by a diffusion process, the 

underlying’s price transition from the exercise region to the continuation region is 
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smooth. The investor can buy the option at the early exercise boundary at price 𝐾 −

𝑆∗(𝑡), and spend 𝑆∗(𝑡) to close the short position in the underlying. With this strategy, 

the investor’s payoff at maturity is the same as that of a European put, but the investor 

collects interest along the way, that would otherwise be impossible while holding a 

European put. Thus, the EEP is the interest earned when the underlying’s price is in the 

exercise region. 

 Alternatively, if the underlying asset pays dividends, then American calls can be 

exercised early and command premia over their European counterparts. In this way, the 

call EEP is the dividends received in the exercise region net of the interest expense paid 

on the strike, while the put EEP in this case is the interest earned on the strike net of the 

foregone dividend in the exercise region. These statements follow a similar argument as 

that in the above dividend free case. 

Gukhal (2001) generalizes equation (2.7) by studying the case when the trajectory 

of the underlying dynamics is discontinuous and modeled as a jump diffusion process. 

He shows that the put EEP in this case equals the present value of interest earned on the 

strike price in the exercise region minus the rebalancing cost due to jumps from the 

exercise region into the continuation region. The main distinction is that when the 

underlying price jumps upward from the exercise region into the continuation region in a 

discontinuous way, the investor has to pay a price higher than the exercise payoff to buy 

back the American put. Recall our previous discussion of the continuous case that, to 

replicate the cash flow of an American put, an investor needs to buy back the option when 

the underlying price hits the early exercise boundary from below at the price of the option 

payoff. But if the underlying price jumps upward directly into the exercise region, 
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bypassing the early exercise boundary, the investor will not be able to buy the option at 

the price of the option payoff since the American option price is greater than its payoff in 

the continuation region. On the other hand, when the underlying price jumps downward 

from the continuation region into the exercise region, the investor does not need to pay 

the additional rebalancing cost, since the price of an American put equals the exercise 

payoff in the exercise region. 

To summarize, the put EEP is the present value of interest earned on the strike net 

of foregone dividends in the exercise region when the underlying trajectory is continuous. 

Additional rebalancing costs due to jumps from the exercise region into the continuation 

region need to be subtracted when the underlying trajectory is discontinuous. Similarly, 

the call EEP is the present value of dividends received net of interest paid on the strike in 

the exercise region, and rebalancing costs due to jumps need to be adjusted. Nevertheless, 

this statement does not necessarily imply that the put EEP or call EEP under a continuous 

model of the underlying should be greater than that under a jump discontinuous model. 

The optimal exercise decision as well as the replicating strategy depends on the first 

passage probability of a specific model and the associated early exercise boundary. There 

is no analytically tractable way to compare the first passage probability and the early 

exercise boundary of different models.   

Motivated by the above theoretical insights, we begin with the Black and Scholes 

(1973) model as a benchmark where the underlying is modeled as a geometric Brownian 

motion. The risk neutral dynamics of the BS model reads 

(2.8)  𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡, 
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where 𝑊𝑡  is a standard Brownian motion, 𝑟  is the risk free rate, 𝜎  is the volatility 

parameter.  

However, extensive empirical evidence has emerged that undermines the 

assumption of lognormal returns in the Black-Scholes model. The first contradicting 

feature is the “volatility smirk”. For a given option maturity, the Black-Scholes implied 

volatilities for out-of-the-money (OTM) options are much higher than those of call 

options that are equally OTM. Second, as documented by Carr and Wu (2003), the 

implied volatility smirk does not flatten out but steepens slightly as maturity increases, 

for up to two years. 

Widely acknowledged, the implied volatility smirk indicates that the risk-neutral 

distribution of the underlying index return is negatively skewed and fat-tailed. 

Specifically, extreme downward movements in the underlying return occur with larger 

probabilities and magnitudes than otherwise predicted by a normal distribution. Previous 

studies either introduce jumps in the underlying return or allow the instantaneous variance 

to be stochastic to generate the implied volatility smirk. 

On the other hand, the maturity pattern, that the smirk persists as maturity 

increases, is inconsistent with the central limit theorem in which we expect the smirk to 

flatten out through the maturity horizon. To capture the persistent smirk pattern, 

researchers either resort to models with both jumps in return and stochastic volatility or 

jump models with infinite variation. In the former case, the jump component can generate 

short-term high negative skewness in the return distribution, and the stochastic volatility 

component slows down the convergence of the return distribution to normal for increased 
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maturities. In the latter case, the required condition for the central limit theorem to hold 

is violated, allowing the smirk arising from jumps to persist as maturity increases. 

Generalizations of the Black-Scholes models all aim to incorporate at least one 

aspect of the abovementioned empirical regularities. Given the complexity of the 

American option pricing problem and the gap in the literature, we opt to proceed from a 

set of the most parsimonious generalizations. These include the jump-diffusion model 

first introduced by Merton (1976), the variance gamma model of Madan and Seneta 

(1990), Madan et al. (1998), the finite moment log stable model of Carr and Wu (2003), 

and the stochastic volatility model of Heston (1993).  

The Merton jump diffusion model (MJ) is a four-parameter model with finite 

jump intensity and is constructed by introducing a compound Poisson process in the BS 

model to generate infrequent jumps. The risk neutral dynamics of the underlying level 

follows 

(2.9)  𝑑𝑆𝑡 = (𝑟 − 𝜆𝜇𝐽)𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 + 𝐽𝑡𝑆𝑡𝑑𝑁𝑡, 

where 𝑁𝑡 is a Poisson counting process with intensity 𝜆, and 𝐽𝑡 is the random jump size, 

distributed as ln(1 + 𝐽𝑡) ∼ 𝑁(ln(1 + 𝜇𝐽) −
𝜎𝐽

2

2
, 𝜎𝐽

2)  ( 𝑁( , )  refers to the normal 

distribution). Note that if 𝜆 is restricted to zero (meaning no jumps will occur), the MJ 

model will degenerate to the BS model. Based on the model construction, we can see that 

jumps are discrete events, and in a finite time interval ([0, 𝑇]), the model is expected to 

jump a finite number of times, 𝜆𝑇. Furthermore, the mean jump size 𝜇𝐽  controls the 

skewness of the return distribution, a negative 𝜇𝐽 indicating a negatively skewed return 

distribution. 
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 The variance gamma model (VG) is a three-parameter pure jump model with 

infinite jump intensity and finite variation in its sample path. It is constructed by 

substituting the Brownian motion component in the BS model with a variance gamma 

process, a process constructed by subordinating the Brownian motion with a gamma 

process. Following the original notation in Madan et al. (1998), we write the VG model 

under the risk neutral measure as 

(2.10)  𝑆(𝑡) = 𝑆(0)exp (𝑟𝑡 + 𝑋(𝑡; 𝜎, 𝜈, 𝜃) + 𝜔𝑡), 

where 𝑋(𝑡; 𝜎, 𝜈, 𝜃)  denotes the VG process, and 𝜔 =
1

𝜈
ln (1 − 𝜃𝜈 −

𝜎2𝜈

2
)  is the 

martingale correction term. The VG process can be obtained by evaluating a Brownian 

motion with drift at a random time given by a gamma process. Specifically, if  

(2.11)  𝑏(𝑡; 𝜃, 𝜎) = 𝜃𝑡 + 𝜎𝑊(𝑡), 

then the VG process 𝑋(𝑡; 𝜎, 𝜈, 𝜃) is defined as 

(2.12)  𝑋(𝑡; 𝜎, 𝜈, 𝜃) = 𝑏(𝛾(𝑡; 1, 𝜈); 𝜃, 𝜎), 

where 𝛾(𝑡; 1, 𝜈) refers to the gamma process with unit mean rate, and variance rate 𝜈. 

The VG model is a three-parameter model: (1) 𝜎 the volatility of the Brownian motion, 

(2) 𝜈 the variance rate of the gamma time change and (3) 𝜃 the drift in the Brownian 

motion with drift. The VG process provides additional control over the shape of the 

distribution beyond the volatility or standard deviation. One not only controls the 

skewness via parameter 𝜃 but also the kurtosis with parameter 𝜈. For example a negative 

𝜃  indicates a negatively skewed distribution, and a positive 𝜈  leads to a fat-tailed 

distribution. Different from the MJ model, the VG model exhibits infinitely many small 

jumps for the Levy measure of the VG process, and is singular at zero jump size. 
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However, the sample paths of the VG process display finite variation (Huang and Wu 

(2004)). 

 The finite moment log stable model (FMLS) is a two-parameter pure jump model 

with infinite jump intensity and infinite return variation but finite moments for the 

underlying level. Following the original notation in Carr and Wu (2003), we write the 

risk-neutral dynamics of the FMLS model as 

(2.13)  
𝑑𝑆𝑡

𝑆𝑡
= 𝑟𝑑𝑡 + 𝜎𝑑𝐿𝑡

𝛼,−1
, 𝑡 ∈ [𝑜, 𝒯], 𝛼 ∈ (1,2), 𝜎 > 0, 

where the increment 𝑑𝐿𝛼,−1 has an 𝛼-stable distribution with zero drift, dispersion of 

𝑑𝑡1/𝛼 , and a skew parameter -1: 𝐿𝛼(0, 𝑑𝑡
1

𝛼
  , −1) , and 𝒯  is some arbitrary distant 

horizon. The FMLS model has two parameters, namely 𝜎 and 𝛼. The one of particular 

interest is the parameter 𝛼, which governs the thickness of the tail. A special case is for 

𝛼 = 2, in which case the FMLS model degenerates to the BS model; hence in general 𝛼 

is required to be less than 2. Under such parameter specification, Carr and Wu (2003) 

show that the left tail of the increment is fat (decaying based on a power law) and the 

right tail is thin (decaying exponentially). In this case, both the jump intensity and the 

return variance become infinite. The infinite return variance renders the relevance of the 

central limit theorem (CLT), since for the CLT to hold a random variable should have 

finite variance. Finally, although the log return exhibits infinite variance, such infinite 

variation stems only from the left tail not the right tail, as a result, the stock price level 

remains finite, hence the option price.  

 The Heston (1993) stochastic volatility model (SV) is a five-parameter two-

dimensional model with continuous sample paths that allows the instantaneous return 
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volatility (standard deviation)  of the BS model to come from a Feller process. The SV 

model takes the following form 

(2.14)  𝑑𝑆𝑡 = 𝑟𝑆𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
(𝑆)

, 

where 𝑉𝑡 is the instantaneous variance and is governed by the following Feller process 

(2.15)  𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎𝑣√𝑉𝑡𝑑𝑊𝑡
𝑉, 

where 𝜅 is the mean reverting speed parameter, 𝜃 refers to the long-run variance, 𝜎𝑣 is 

the volatility of the variance process, and the two standard Brownian motions have a 

correlation coefficient 𝜌. Furthermore, for the variance process to remain positive, the 

Feller condition has to be satisfied: 2𝜅𝜃 − 𝜎𝑣
2 > 0. The SV model can generate a slow 

decaying volatility smirk at the maturity dimension. However, it suffers from its 

limitation to generate the extremely high level of implicit skewness normally observed in 

index option data. For example, the short-term implied volatility curve of the SV model 

is “too flat” compared to that of either jump models or to real data.  

 

III. Data and Market EEP 

We obtain intraday trades and quotes for American and European puts and calls 

on the S&P 100 index (symbols: OEX and XEO) across different strikes and maturities 

from Tick Data Corporation for period 2005.05.02—2007.12.31. This is the best period 

to study the EEP in OEX puts, because the extremely low interest rates in later periods 

diminish the incentive to exercise American puts early in general.14 We collect the daily 

cash dividend series of the S&P 100 index from Bloomberg. We select daily interest rate 

                                                 
14 The data is unavailable from Tick Data for period before 2005.05. 
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series of the Treasury bills for corresponding maturities from the Federal Reserve Board 

of Governors (H15) and linearly interpolate when necessary. 

Several filters for the option sample are applied. We require that the bid price 

should be strictly positive, and the ask price should be no less than the bid price. We pair 

a European option and an American option with the same strike and time to maturity, if 

their quotes are posted within 60 seconds. In this way, we use the option quote midpoint 

as the fundamental value of the option, and the EEP is the difference between the quote 

midpoint of the American option and that of its European counterpart. We require the 

option maturity to be no less than 6 days and no greater than 180 days and the moneyness 

(𝐾/𝑆) to be in the range of [0.8, 1.2], since options otherwise tend to be too illiquid to 

contain valuable information (Huang and Wu (2004)). After we apply these filters, our 

sample consists of 91,083 puts and 88,424 calls. 

To describe our sample, we show in Figure 2.1 the moneyness and maturity 

distributions and in Table 2.1 the summary statistics. We can see from Figure 2.1 that 

there are more OTM puts than ITM puts and more ITM calls than OTM calls. This 

character has been documented in the SPX market as well and is interpreted as an 

institutional feature (e.g., Huang and Wu (2004)). When dealing with option values, we 

normalize them by the S&P 100 index level and multiply them by 104. Two observations 

emerge from Table 2.1. First, market EEP are economically significant. For example, the 

average EEP/XEO for long term ITM puts is around 8.2 percent, which means that for an 

XEO put with market price of 100 dollars the OEX put with identical strike and maturity 

has a market price of roughly 108 dollars. Second, the absolute magnitudes of put EEP 

(EEP/S0) are significantly large and display substantial variations across moneyness and 
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maturity categories. For example, the full sample average EEP/S0 is 16 basis points with 

a standard deviation of 26 basis points. Looking at the subsamples, we can see that the 

category mean of EEP/S0 can be as large as 63 basis points.  

[Insert Table 2.1 about here] 

[Insert Figure 2.1 about here] 

 Before we evaluate alternative models’ performances in pricing the EEP, it is 

informative to examine some empirical properties of market EEP. Table 2.2 and Figure 

2.2 shows the comparative statics of market EEP. In Table 2.2, we regress market EEP 

on moneyness (K/S0), moneyness-squared, maturity, interest rates, and dividend yields. 

In the regressions, we standardize all explanatory variables to aid interpretations. In 

Figure 2.2, we plot market EEP against moneyness and maturity. 

The estimates reported in Table 2.2 the patterns shown in Figure 2.2 are consistent 

with the usual analysis of EEP, especially the analysis of the relations between EEP and 

interest rates/dividend yields. The estimates worth mentioning are the coefficients of 

interest rates and dividend yields, in addition to the coefficients of moneyness and 

maturity. For example, if the interest rate increases by one standard deviation, the average 

put EEP/S0 will increase by around 3 basis points, where the average is 16.4 basis points 

(Table 2.1). The same increase for dividend yield will decrease the average EEP/S0 by 

around 1 basis point. In addition, it is evident that market EEP display significant 

variation across moneyness and maturity. These findings point to the fact that put EEP in 

this period are informative about the theory of American option pricing hence model 

specification that are outlined previously. 

[Insert Table 2.2 about here] 
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[Insert Figure 2.2 about here] 

 

IV. Empirical Methodology 

To price the EEP contained in the American option price, we first need to estimate 

the vector of model parameters, Θ. We adopt a well-established approach in the literature 

(Bakshi et al. (1997); Carr et al. (2002); Carr and Wu (2003); Carr et al. (2007)) by 

estimating each model on a daily basis, using the cross-section of European options on 

both the moneyness and the maturity dimensions. Specifically, at day 𝑡, we minimize the 

square root of the mean-squared pricing error (RMSE), 

(2.16)  Θt ≡ arg min
Θt

√𝑚𝑠𝑒𝑡. 

The mean squared pricing error (MSE) is defined as 

(2.17)  𝑚𝑠𝑒𝑡 =
1

𝑁𝑡
∑ ∑ 𝑒𝑖𝑗

2𝑛𝑡,𝑘
𝑗=1

𝑛𝑡,𝜏
𝑖=1 , 

where 𝑛𝑡,𝜏  and 𝑛𝑡,𝑘  denote, respectively, the number of maturities and the number of 

moneyness levels per each maturity at date 𝑡 , and 𝑒𝑖𝑗  represents the pricing error at 

maturity 𝑖 and moneyness 𝑗. 

 The Pricing error matrix 𝑒 = {𝑒𝑖𝑗} is constructed as 

(2.18)  𝑒 = {
𝑂(Θ) − 𝑂(𝑝𝑢𝑡),   𝑖𝑓 𝐾 < 𝑆,

𝑂(Θ) − 𝑂(𝑐𝑎𝑙𝑙), 𝑖𝑓 𝐾 > 𝑆,
   

where 𝑂(Θ) denotes model predicted option prices as a function of the parameter vector 

Θ, and 𝑂(𝑝𝑢𝑡) and 𝑂(𝑐𝑎𝑙𝑙) are the market prices of puts and calls. Note that we are using 

OTM puts and calls to construct the pricing error. Such a construction is standard in the 

literature, e.g., Carr and Wu (2003), Huang and Wu (2004) and others. Specifically, as 

discussed in Carr and Wu (2003) and Huang and Wu (2004), ITM options are less 
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sensitive to model specifications for their positive intrinsic values, and their prices are 

much larger than their OTM counterparts; hence, using them to construct the pricing error 

tends to cause parameters to disproportionately favor the information contained in them. 

They also note that OTM options tend to be more liquid in general, which makes them 

more reliable when there is an inconsistency between their quotes and their ITM 

counterparts. 

After we estimate the model, we move on to price American options and EEP 

using the least square Monte-Carlo (LSM) method, developed by Longstaff and Schwartz 

(2001). The finite maturity American option pricing problem can only be solved 

numerically even for the simplest BS model. Hence, the choice of a specific numerical 

method really depends on the actual problem at hand. The LSM method, like any other 

recursive method for dynamic programming problems, starts from discretizing the time 

domain, e.g., 𝑇  exercise steps per year where 𝑇  stands for the number of days to 

maturity.15 The value of the option, 𝑉(𝑇, 𝑆(𝑇)), at the final step is the exercise payoff, 

𝐸𝑥𝑒(𝑇, 𝑆(𝑇), 𝐾) (𝑆(𝑇) − 𝐾 for calls and 𝐾 − 𝑆(𝑇) for puts). Then moving backwards, at 

each step 𝑡 between 𝑇 and 1, the value of the option at step 𝑡, 𝑉(𝑡, 𝑆(𝑡)) is given by 

(2.19) 𝑉(𝑡, 𝑆(𝑡)) = max{𝑒−𝑟Δ𝑡𝐸ℚ[𝑉(𝑡 + 1, 𝑆(𝑡 + 1)|𝑆(𝑡)], 𝐸𝑥𝑒(𝑡, 𝑆(𝑡), 𝐾)}, 

where the first term in the maximum operator represents the continuation value and the 

second term represents the immediate exercise payoff. Thus, the value of the American 

option today is obtained by repeating this procedure until step 1. The LSM algorithm 

starts from simulating a 𝑁 × 𝑇 matrix of sample paths, where 𝑁 is the number of paths, 

                                                 
15 Obviously here we are valuing the American option approximately as a Bermuda option that allows for 

exercise each day during its life. 
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and 𝑇 is the number of exercise steps. Then at each time step, 𝑡, we select those paths 

where the option with strike 𝐾  is in the money in those paths {𝑆(𝑡)}𝐼𝑇𝑀 =

{𝑆𝑖(𝑡)|𝐸𝑥𝑒(𝑡, 𝑆(𝑡), 𝐾) > 0}, and use all values in {𝑆(𝑡)}𝐼𝑇𝑀to approximate the time 𝑡 

conditional expectation of the option value at time 𝑡 + 1, the first term in the maximum 

operator of equation (18).16 To implement the LSM algorithm, we generate 2 × 106 

(106plus 106 antithetic) sample paths, adjust cash dividends along the paths, and use a 

10-degree polynomial of {𝑆𝐼𝑇𝑀(𝑡)} to approximate the conditional expectation. 

 There are two primary reasons to choose the LSM method over its alternatives. 

First, as documented, it is inappropriate to apply a constant dividend yield to the dividend 

series of the S&P 100 index, thus the method should allow adjusting discrete dividends 

along the exercise steps without causing numerical instabilities. Second, the LSM method 

is easy and convenient to implement, only requiring one to simulate the underlying 

dynamics. Although if one considers all available numerical methods for pricing 

American options, the LSM method is not among the most accurate methods due to its 

slow convergence (𝑂 (
1

√𝑁
)) where 𝑁 refers to the number of simulated paths). However, 

since this problem is shared by all Monte-Carlo simulation based methods, and we are 

applying the same method to different models, it should not cause any systematic bias in 

the pricing result. 

 When implementing the LSM method to price the cross-section of options in a 

given day, for both calls and puts, and for both sample periods, we opt to use the weekly 

average of the daily estimated parameters, instead of directly using the set of parameters 

                                                 
16 For more information about the mechanics of the LSM algorithm, one can refer to Longstaff and 

Schwartz (2001). 
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estimated from European options in the day. An insight from Carr et al. (2007) is that, in 

general, option-pricing models are not able to achieve both quality cross-sectional pricing 

performance and time series consistency. That is, if one implements this daily estimation 

routine by minimizing the daily root mean squared pricing error, then there will be 

inevitable variations (sometimes large) in the daily parameter series. On the other hand, 

if one restricts the set of structural parameters to be the same over the entire sample 

period, then the pricing performance may not be adequate. This observation suggests a 

trade-off between pricing performance and time series consistency in estimating model 

parameters. As a result, we use the weekly average of the parameters estimated daily as 

a compromise to this trade-off. In addition, using the weekly average may partially 

immunize us from the possibility that model parameters may experience structural breaks 

or display regime-switching behavior, a possible scenario that should not be ignored.  

 For the OEX contract, there is another institutional specific determinant of its 

value, in addition to the flexibility to exercise early, the defining feature of American 

options. The CBOE grants holders of the OEX contract a “wild card option”, allowing 

them to exercise the option until 3:20 pm (i.e., up to twenty minutes after 3:00 pm when 

the stock market closes) based on the 3:00 pm level of the S&P 100 index. Consequently, 

this institutional feature should be accounted for when evaluating alternative models’ 

performances in pricing the EEP.  

This wild card option can be another reason to exercise an OEX option early and 

adds value to the option. Despite the fact that the actual S&P 100 index level remains 

constant during this twenty minutes window, investors can still find it optimal to exercise 

the OEX contract based on their perception of the fundamental value of the index during 
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this time. For example, a holder of an OEX put may exercise the option at 3:20 pm, if she 

believes the fundamental value of the index has experienced a significant increase during 

this time window. In this case, the immediate exercise proceeds become the difference 

between the strike price and the 3:00 pm close price: here the expected discounted 

continuation value is the conditional expectation of the discounted optimal exercise 

proceeds in the future conditional on the 3:20 pm unobserved (increased) fundamental 

value. An exercise decision would be made, if the exercise payoff exceeds the expected 

discounted continuation value. Thus, defined as the price difference between an OEX 

contract and an XEO contract with identical strike and maturity, the market EEP observed 

here also contains the fair value of this wild card option.  

We implement the Fleming and Whaley (1994) method to determine the value of 

this wild card option in the OEX contract. The basic idea of the Fleming and Whaley 

algorithm is to first set up a binomial tree, where each step corresponds to the end of the 

wild card period, i.e., 3:20 pm. Second, at each node j of step t, value the wild card option 

and add it to the expected discounted future option value. Third, conditional on the 

underlying value at the node, assuming a log normal distribution for the underlying value, 

one can value the wild card option at note j of step t as the conditional expectation of the 

option “beginning ITM”: i.e., the conditional expectation of the underlying being in the 

money at 3:00 pm when knowing its value at 3:20 pm.17 In this case, the value of the 

American option at node j of step t is the maximum of the proceeds from immediate 

exercising and the continuation value plus the wild card option value. 

                                                 
17 Note that the Fleming and Whaley algorithm is limited to the case where the underlying follows a log-

normal distribution as the algorithm is based on a binomial tree, which implicitly assumes that the 

underlying is modeled as a geometric Brownian motion.  
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A practical difficulty of implementing the Fleming and Whaley (1994) method 

lies in choosing the right value of the standard deviation parameter of the log normal 

distribution for the underlying value during the wild card period. A natural response is to 

use the same standard deviation value implied from the cross section of European option 

prices that is used to determine the BS model EEP. However, as pointed out by Fleming 

and Whaley (1994), the realized standard deviation of the wild card period return may be 

higher than the realized standard deviation calculated using the 24 hour return window,18 

and clearly the European option implied standard deviation corresponds to a 24 hour 

window. One may scale the European option implied standard deviation by the ratio of 

the standard deviation of the realized return of the S&P 500 futures during the wild card 

period to that of the realized return of the S&P 500 futures over a 24 hour window. 

However, this still uses historical estimates to calculate an ex ante estimate of future 

volatility over the wild card period, and exposes one to a difficult problem, to convert the 

ratio based on the S&P 500 futures to the right one for the S&P 100 index.  

To circumvent this problem, we invert the wild card period standard deviation 

parameter daily from the EEP in the cross section of OEX calls. This approach is justified 

by the fact that dividend yields are much smaller than interest rates in our sample period, 

and it is in general not optimal to exercise OEX calls early for interests/dividends 

purposes. Hence, to the best of our knowledge, the early exercises of OEX calls are 

predominantly motivated by the wild card option.19 Operationally, we perform a daily 

RMSE minimization routine, similar to the one characterized by equations (16) to (18). 

                                                 
18 In Fleming and Whaley (1994), they use the prices of the S&P 500 futures to reach this conclusion. 
19  For robustness purposes, we in addition exclude short-term ITM OEX calls for a market friction 

determinant of American option value, as inspired by Battalio et al. (2014). 
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The only difference here is that the pricing error is constructed by subtracting the Fleming 

and Whaley wild card option value with the OEX call EEP, where the former is a function 

of the implicit wild card period standard deviation. 

 

V. Model Performance Analysis 

 Table 2.3 shows the estimation results. In Panel A, we report the results from 

estimating the five selected models, the Black-Scholes (BS), the Merton jump (MJ), the 

variance gamma (VG), the finite moment log stable model (FMLS), and the Heston 

stochastic volatility (SV). We implement the procedure mentioned by equations (2.16)—

(2.18), where we choose the daily optimal set of parameters, Θ𝑡,𝑗
∗ , by minimizing the 

square root of daily mean squared pricing errors, 𝑀𝑆𝐸𝑡,𝑗, for each model. In this way, the 

direct output from this estimation is a series of optimal parameters and a series of daily 

root mean squared pricing errors for each model and each day. In Panel B, we report the 

estimation results for the wild card period volatility parameter, based on the procedure 

outlined in Section IV. This exercise gives us a daily series of the volatility parameter for 

the risk neutral dynamics of the S&P 100 index during the wild card period.   

[Insert Table 2.3 about here] 

Estimated parameters in Table 2.3 are comparable with previous studies. For 

model parameters, we compare our estimates with previous studies using the S&P 500 

index option (SPX). For example, in the BS model, the constant volatility parameter, 𝜎𝑤, 

has a mean of around 13%, a value close to the time series average of the VXO index for 

the same period. In the MJ model, the mean jump intensity parameter, 𝜆, is close to 0.66, 

meaning that on average investors expect 0.66 jump per year. The mean jump size 
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parameter 𝜇𝐽 is negative, indicating that jumps are on average downward. In addition, a 

negative 𝜇𝐽 also indicates a negatively skewed risk-neutral underlying distribution, which 

is consistent with the risk-neutral distributional properties of the S&P 500 index. Next, in 

the VG model, the 𝜈 parameter that controls for the kurtosis of the risk neutral return 

distribution is positive, indicating excess kurtosis. The 𝜃 parameter, controlling for the 

skewness of the risk neutral return distribution, is negative, suggesting that the return 

distribution is negatively skewed. Next, in the FMLS model, the parameter governing the 

thickness of the tail, 𝛼, has an average estimate of 1.65, a value larger than one, similar 

to the estimate of 1.56 reported in Carr and Wu (2003). This observation suggests that the 

left tail of the S&P 100 index risk-neutral distribution is slightly thinner than that of the 

S&P 500 index, which is no surprise since the S&P 100 index is composed of large-cap 

stocks. In the SV model, the average mean reverting coefficient, 𝜅, is around 7.9, close 

to the value found in previous studies. The correlation parameter 𝜌 has a value close to -

0.5. This correlation parameter is negative in most studies that are based on the S&P 500 

index options, meaning that volatility and return are negatively related (the leverage 

effect). This correlation parameter controls the skewness of the underlying distribution: 

where the distribution becomes more negatively skewed if 𝜌 gets closer to -1. Lastly, for 

the wild card period volatility parameter 𝜎𝑤𝑐, our mean estimate is 0.131, larger than the 

mean estimate of 0.125 for the BS volatility parameter 𝜎𝑊. This finding is consistent with 

the one documented in Fleming and Whaley (1994) that the wild card period volatility is 

higher than the volatility over a 24-hour window.  

In terms of the in-sample fit, measured by a model’s mean RMSE, we observe 

that jump models perform significantly better than diffusion models. In terms of the in-
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sample fit, it should not be surprising to see all generalizations of the BS model perform 

better. However, it is surprising to see the best performance from the FMLS model in that 

the FMLS model only has two parameters. Based on the principle of parsimony, we argue 

that the FMLS model should be the best one in this regard. Such a distinguishing 

performance of the FMLS model is consistent with its distributional properties. On one 

hand, it features a slow decaying left tail, which captures the high implicit negative 

skewness observed in the index return risk-neutral distribution. Moreover, its infinite 

return variation property frees it from the rule of the central limit theorem, allowing the 

negative skewness to persist through the maturity dimension. Combining these two 

features, one can say that the extremely parsimonious FMLS model shares properties of 

both the other two jump models and the SV (if not others), and should perhaps be the 

default building block for more sophisticated models. 

 Having estimated all the models, we proceed to compare alternative models’ 

performances in pricing the cross section of put EEP. In this exercise, choosing the correct 

pricing error metric is an important issue. According to Christoffersen and Jacobs (2004), 

one should be consistent in the in-sample estimation exercise and the out-of-sample 

prediction exercise, because otherwise the inference based on the out-of-sample 

prediction would be biased.20 In this spirit, we rank alternative models based on the 

RMSE metric, which was the same metric in our in-sample estimation exercise.  

 Table 2.4 shows our out-of-sample prediction analysis results. Based on the 

estimated parameters for each model for the underlying process, we obtain the model 

predicted American option prices from the LSM algorithm, outlined in Section IV, and 

                                                 
20 For example, one should not use the RMSE in the in-sample estimation exercise but use a different metric 

such as the mean pricing error (MPE) in the out-of-sample prediction exercise.  
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we also obtain the model predicted European option prices from the Monte-Carlo 

simulation exercise, to be consistent.21 Hence, the difference is the model predicted EEP. 

Note that the model predicted EEP cannot be compared with the market EEP directly, 

and the same applies to model predicted American put prices, because the market EEP 

also contains the wild card premium. Consequently, the pricing error for EEP in this case 

is defined as 

(2.20)   𝑒𝑟𝑟𝑀𝑜𝑑𝑒𝑙 =
𝐸𝐸𝑃𝑀𝑜𝑑𝑒𝑙+𝐸𝐸𝑃𝑊𝑖𝑙𝑑 𝐶𝑎𝑟𝑑−𝐸𝐸𝑃𝑀𝑎𝑟𝑘𝑒𝑡

𝑆0
× 1000, 

where we normalize the error by the underlying level 𝑆0 and scale it by 104 like before. 

We report the RMSE summary for the overall sample in Panel A to rank the overall 

performances of alternative models. In addition, we also report conditional summaries in 

Panels B and C based on moneyness and maturity. The main reason is that since the early 

exercise decision is mostly relevant for ITM options, especially long term ITM options, 

it is crucial to examine how alternative models perform in pricing the EEP of these 

options. In addition, since alternative models are originally introduced to correct the 

moneyness-maturity associated biases in the cross section European option prices, this 

group based comparison allows one to better relate our findings to the existing literature.  

 [Insert Table 2.4 about here] 

 Results in Table 2.4 indicate that jump models, especially the FMLS model, are 

superior at pricing the cross section of EEP. For example, the RMSE of the FMLS model 

is around 9 basis points; based on a paired t-test, it is significantly better than that, around 

                                                 
21 In the LSM algorithm, one starts with simulating a large number of sample paths for the underlying. The 

American option price is obtained by applying the Longstaff and Schwartz (2001) method on the simulated 

sample paths, while the European option price is obtained by computing the expected discounted terminal 

payoff using the same simulated sample paths. 
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10 basis points, of the second best model, the MJ model. The RMSE of the two diffusion 

models are significantly larger than that of the worst performing jump model, the VG 

model. Next, based on our group based comparisons, we can see that jump models 

continue dominating diffusion models. For example, looking at the three ITM categories 

in Panel B, where early exercises are most relevant, the FMLS model significantly 

outperform all other models. Once again, according to Christoffersen and Jacobs (2004), 

our inference regarding model performances based on this RMSE metric is statistically 

consistent. 

  In addition, the MPE summary reported in Panel C suggests that jump models are 

essential to explain the actual magnitudes of market EEP. For example, the average EEP 

for long term ITM puts is 64 basis points (Table 2.1), while the average MPE is 8 basis 

points for our best performing model, the FMLS model. Similarly, the average EEP for 

intermediate term and short term ITM puts are 38 and 18 basis points, and the average 

MPE are 7 and 6 basis points for the FMLS model. In sharp contrast, the average MPE 

for the BS model is several times larger than that of the FMLS mode. For example, the 

average MPE for long term ITM EEP is 29 basis points for the BS model.   

 The results reported in Table 2.4 reveal new insights about jump models. Existing 

empirical studies based on the cross section of European option prices as highlighted by 

Carr and Wu (2003) conclude that jumps are the reason why the prices of OTM puts, 

especially those of short term OTM puts, are much more expensive than that predicted 

by the BS model. The rationale of such a conclusion follows the distributional properties 

of jump models. In contrast, our findings lead to the conclusion that the actual magnitudes 

of market EEP, especially ITM market EEP, are much larger than that predicted by the 



58 

BS model, and jump models are essential for closing the gap between market EEP and 

that the EEP predicted by the BS model. Since EEP are outcomes of investors’ optimal 

timing behaviors, our findings also reveal the fact that investors consider jumps in the 

underlying returns as a first-order concern when making optimal exercise decisions.  

 The results reported in Table 2.4 also reveal a puzzle that market EEP are 

overpriced, and this overpricing is more pronounced for short term ITM puts. In another 

word, market EEP are much larger than the combination of model predicted EEP and the 

wild card premia, even in the case of our best performing model, the FMLS model. 

Nevertheless, the degree of this overpricing is not uniform. For example, the average of 

the unexplained market EEP amounts to 33 percent for short term ITM EEP, while that 

decreases to 13 percent for long term ITM EEP. Hence, in the section to follow, we 

formally examine the driver for this overpriced market EEP. 

 

VI. Does Transaction Cost in the Option Market Explain the Overpricing of 

Market EEP? 

 In the previous section, we uncover a new property of jump models: jump models 

are essential to explain why ITM EEP are more expensive than that predicted by the BS 

model. Nevertheless we find that market EEP are larger than the combination of model 

predicted EEP and the wild card premia, and this overpricing is more pronounced for 

short term ITM EEP. The objective of this section is to uncover the underlying reason for 

this overpriced market EEP. Since the theoretical models being considered previously all 

feature perfect market, here we relax that assumption and consider the role of transaction 

cost in the option market. 
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 Our investigation is motivated by the idea that the presence of transactions in the 

market for American options can make early exercise a more profitable alternative to 

selling an option, provided its time value being less than the half spread. In this case, 

when driving by liquidity needs, an investor can exercise the option other than selling it 

at the bid price to save transaction cost that equals the half spread minus the time value. 

In this regard, the flexibility to exercise an American option early can be viewed as an 

option that saves transaction cost, and this flexibility should add value to American 

options. Hence, market EEP should contain a component arising from this “transaction 

cost saving option”. 

In Figure 2.3, we show and describe the prevalence of this transaction cost saving 

option in the market for OEX puts. We can see that this transaction cost saving option is 

present in many cases and most relevant to shorter-term ITM OEX puts. For instance, we 

can see it in the left figure that many cases for ITM OEX puts are present, where the time 

value is less than the half spread. Meanwhile, the right figure shows that this happens for 

OEX puts with relatively short maturity. Collectively, these two observations are 

consistent with our finding that the overpricing of market EEP is more pronounced for 

short term ITM puts and provide foundations for our hypothesis that this transaction cost 

saving option is the reason why market EEP are larger than the sum of model predicted 

EEP and the wild card premia.   

To demonstrate that this transaction cost saving option is indeed the reason why 

market EEP are overpriced, we augment the Longstaff-Schwartz algorithm to 

quantitatively determine the value of this transaction cost saving option embedded in each 

OEX put in our sample. The main complication here is to distinguish between optimal 
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exercise and liquidity driven selling and exercise. In our computation, we acknowledge 

that investors will optimally exercise OEX puts whenever possible; when selling an OEX 

put prior to a model implied optimal exercise time, they will compare the time value of 

the put with its half spread. Further note that once investors optimally exercise the put, 

this transaction cost saving option is no longer relevant, since the option position is closed 

by the optimal early exercise. To implement this idea, we utilize the optimal exercise 

matrix 𝑀𝑁×𝑇, an intermediate product of the Longstaff-Schwartz algorithm. Discussed in 

detail in Section IV, this optimal exercise matrix shows the time for optimal early exercise 

within each sample path. Based on this optimal early exercise matrix, we model liquidity 

driven selling with a probability 𝑝, which is the expected probability that an option is 

exercised each day.22 Hence, the value of this transaction cost saving option in sample 

path 𝑖  is the expected present value of the saved transaction cost on each day going 

forward until the optimal exercise time as indicated by the 𝑖𝑡ℎ row of 𝑀𝑁×𝑇, where the 

expectation is under the measure induced by this probability 𝑝. Consequently, the value 

of this transaction cost saving option is the cross sample path average of these determined 

values.  

  Before we compare the remaining pricing errors with our predicted values of the 

transaction cost saving option based on our augmented Longstaff-Schwartz algorithm, it 

is informative to examine the properties of such values. For this purpose, we investigate 

how this transaction cost saving option value depends on model specification, moneyness, 

maturity, the bid-ask spread, and the liquidation probability 𝑝.  

                                                 
22 Note that if 𝑝 = 0, rational investor will never exercise OEX puts before the model determined optimal 

exercise time. 
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 In Table 2.6, we provide the results of our numerical experiments. For model 

parameters, we use their mean estimates that are summarized in Table 2.3 to ensure all 

models are matched to the same set of data. In all four panels, we choose the following 

benchmark environmental parameters: S0=100, K = 105, T = 60, spread = 0.9 (bid = 

option value*spread), and p = 0.25. In each panel, we alter one particular environmental 

parameter while setting others to the benchmark values. For example, in Panel A, we let 

K vary from 90 to 110 and fix other parameters. In all four panels, we choose r=0.04 and 

assume no dividends, where the latter choice is to ensure that our estimates are only 

affected by transaction costs.23 When reporting the results, we include both the mean 

estimates and their standard errors across all sample paths in our augmented Longstaff-

Schwartz algorithm, scale them by the underlying level (S0=100), and multiply them by 

104. In this case, these estimates have the same scale (basis points) as our pricing errors.  

 Results from Table 2.6 reveal several insights regarding the transaction cost 

saving option value in American puts. First of all, this option value is larger for ITM puts. 

For example, in Panel A, this option value is around 25 basis points for K/S0=1.1 while 

almost 0 for K/S0=0.9, across all five models. Besides, all three jump models predict 

larger values for OTM puts, consistent with the finding in Table 4 that all three jump 

models predict larger intermediate term OTM put EEP. Since this option value is more 

relevant to ITM American puts, we focus on ITM puts in the next three panels. Secondly, 

this option value displays an inverted U shape with respect to maturity. For example, in 

the BS model, this option value attains its maximum of 27 basis points in T=60 days, yet 

                                                 
23 In our empirical analysis later, we use the actual dividend series like that in our other pricing analyses, 

nevertheless it is clear that the presence of non-zero dividends will decrease the value of this transaction 

cost saving option. 
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this optimal maturity differs across models. Thirdly, from Panel C, we can see that this 

option value declines monotonically with the spread. This observation is consistent with 

the idea that this transaction cost option value will become larger if the transaction cost 

is higher. From Panel D, we can see that this option value increases monotonically with 

the probability of liquidation 𝑝. This observation indicates that a higher need to sell the 

option will make this transaction cost saving option more valuable. In addition, the results 

from all four panels show that no model dominates others in pricing this transaction cost 

saving option. For example, the BS model generates the highest values in Panel C but the 

three jump models generate the highest values in Panel D. This observation implies that 

this transaction cost saving option value not only depends on model implied optimal 

exercising rule but also on model predicted option values.  

Having established several properties for the transaction cost saving option value, 

we now proceed to determine the actual value of this option utilizing our sample 

information. The complication of this analysis is the unobservable expected liquidation 

probability 𝑝. To find the best possible proxy for it, we use the realized selling intensity 

(𝑝𝑡,𝐾,�̂�) of an option series on a given day defined as 𝑝𝑡,𝐾,�̂� =
𝑠𝑒𝑙𝑙𝑡,𝐾,𝑇

𝑜𝑝𝑒𝑛 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑡,𝐾,𝑇
 in analogous 

to the “expectation hypothesis”. Note that the quantity 𝑠𝑒𝑙𝑙𝑡,𝐾,𝑇 is the number of contracts 

sold, identified with the Lee and Ready (1991) algorithm, and the subscript 𝑡, 𝐾, 𝑇 refer 

to the option series with strike 𝐾 maturity 𝑇 on trading date 𝑡. Further note that not all 

options are traded in a given day nor have positive open interest, making this probability 

undefined in many cases. Instead of assigning each option series a probability each day, 

we construct a moneyness-maturity group based probability on a daily basis, since 

theoretically options in the same moneyness-maturity group should have the same 
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probability of liquidation. To be consistent with our previous analyses, we use the same 

nine moneyness-maturity groups as that in Table 2.4. 

 [Insert Table 2.6 about here] 

 In Table 2.6, we report the power of this transaction cost saving option in 

explaining the remaining pricing errors that are summarized in Table 2.4. Guided by the 

same principle, we compare alternative models based on the RMSE metric, where we 

construct the pricing error for each option series at each day by subtracting from the 

market EEP the model predicted EEP, the wild card option value, and the estimated 

transaction cost saving option value, and we scale this difference by the underlying level 

and multiply it by 104. We report the mean and its standard error for the RMSE time 

series. Next, to assess their actual magnitudes, we also construct a MPE metric for these 

pricing errors. In this case, we can examine how well these determined transaction cost 

saving option values can match the magnitudes of the remaining pricing errors. In 

addition, we regress the remaining pricing errors excluding our model determined 

transaction cost saving option values on transaction cost saving option values. Based on 

this exercise, we can further evaluate how well these transaction cost saving option values 

can match the cross-sectional variation in the remaining pricing errors.  

 The estimates in Table 2.6 provide evidence that the presence of this transaction 

cost saving option in OEX options is the reason why market EEP are overpriced. First, 

results in Panel A lead to the consistent conclusion that the FMLS model is the best model 

for the risk-neutral underlying process. This statement is supported by the fact that the 

minimum RMSE, 5 basis points, appears in the column for the FMLS model. In addition, 

recall that the RMSE for the FMLS model was 9 basis points in Table 2.4, where we did 
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not account for the transaction cost saving option values. This comparison indicates that 

accounting for the transaction cost saving option values results in significantly improved 

overall fit of market EEP. Second, results in Panel B suggest that the model determined 

transaction cost saving option values can match the magnitudes of the remaining pricing 

errors well. For example, the MPE of the FMLS model, the best model, is 0.9 basis points, 

which amounts to 5 percent of the mean market EEP. In this sense, it suggests that with 

a 5 percent confidence level market EEP can be completely explained by the sum of 

model determined EEP, wild card premia, and transaction cost saving option values. 

Next, results in Panel C show that the model determined transaction cost saving option 

values can match the cross-sectional variation in the remaining pricing errors (Market 

EEP-Model EEP-Wild Card Premia). The coefficients of the transaction cost saving 

option value are positively significant across all models. Note that none of the coefficients 

are close to one, which should be in the ideal case. Nevertheless this observation is not 

surprising because the presence of measurement errors in the explanatory variables will 

bias the coefficients towards zero, where such measurement errors originate from our 

choice of the realized probability of liquidation instead of the expected probability of 

liquidation. 

 

VII. Robustness 

 In the previous sections, we reach two conclusions. First, based on the RMSE 

metric, we conclude that jump models, especially the FMLS model, perform best in 

pricing the cross section of market put EEP. Second, after incorporating the model 

predicted transaction cost saving option values, we find the overpricing of market EEP is 
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resolved based on the results for the FMLS model. To demonstrate that our conclusions 

are not driven by our chosen empirical methodology, we resort to another test, the 

orthogonality test, that is popular in the in the empirical European option pricing literature 

(e.g., Madan et al. (1998); Bates (2000)).   

The underlying idea of this orthogonality test follows the fact that generalized 

option pricing models, such as jump models, stochastic volatility models, or their affine 

combinations, are introduced to correct the biases associated with the BS model in 

matching the implied volatility surface (IVS). Hence, if a generalized model is successful 

in matching the IVS, then the remaining pricing errors should exhibit little dependence 

on moneyness and maturity. We acknowledge that the cross section of EEP is driven 

primarily by the early exercise boundaries and the associated first-passage probabilities, 

whose relation with the IVS is not clear. Yet we still believe this test can be informative 

about the performances of alternative models. 

 In Table 2.7, we report our results for the orthogonality test. The dependent 

variable is the remaining pricing error, constructed by subtracting model EEP, wild card 

premia, and the transaction cost saving option values from market EEP. The independent 

variables are moneyness, moneyness-squared, maturity, interest rates, and dividend 

yields, where moneyness-squared is included to account for any nonlinearity associated 

with moneyness. To better interpret the regression estimates, we standardize all the 

explanatory variables. 

[Insert Table 2.7 about here] 

  The results in Table 2.7 reinforces our conclusion that jump models, especially 

the FMLS model, perform best in pricing the cross section of put EEP. Recall in Table 



66 

2.2 that the R-squared is 0.737 in the regression of market put EEP on this set of 

explanatory variables, however the R-squared here decreases sharply for each model. In 

particular, the R-squared for the FMLS model is only 0.078. This result indicates that the 

FMLS model is able to explain the majority of the cross-sectional variations in market 

EEP, leaving the explanatory power of option characteristics small.  

VIII. Conclusions 

The S&P 100 index has both European (XEO) and American style (OEX) options 

traded on it, which makes the market early exercise premium directly observable. We 

focus on the EEP in American put prices for period 2005.05—2007.12, when short-term 

interest rates are much larger than the dividend yields on the S&P 100 index such that the 

early exercise for American puts can be optimal. We use high quality transactions data to 

provide, for the first time, a comprehensive empirical study on the relative merits of 

alternative generalizations of the BS model for improving the pricing quality of EEP. 

Specifically, we study four parsimonious generalizations of the BS model, namely the 

Merton jump diffusion model, the variance gamma model, the finite moment log stable 

model, and the Heston stochastic volatility model, motivated by the distinct sample path 

properties. 

With our carefully designed tests and our acknowledgement of the wild card 

option embedded in OEX options, we generate unique insights regarding market EEP as 

well as alternative models, when all models are estimated using European option prices. 

We find that jump models are superior at matching the cross-sectional variation and 

magnitudes of market EEP. Since EEP depend directly on the model implied early 

exercise boundaries, this finding suggests that investors consider jumps as the first-order 



67 

concern when valuing American options’ flexibility to exercise early for earning interests 

purposes, as in classic theories (Carr et al. (1992)). This finding also generates new 

insights about jump models. Conventional wisdom suggests that jump models are 

essential to explain why market overprices OTM European puts relative to the BS model, 

while our results in contrast demonstrate that jump models are essential to explain why 

market overprices ITM put EEP relative to the BS model. 

We in addition document that all models underprice market EEP and this 

underpricing is more pronounced for short term ITM puts. We provide an explanation 

based on the unique feature of American options, the flexibility to exercise early, which 

generates a transaction cost saving option. When the half spread of an American option 

exceeds its time value, an investor can exercise the option early as a more profitable 

alternative to selling it. Following this idea, we augment the Longstaff-Schwartz 

algorithm to quantitatively determine the value of this transaction cost saving option for 

each option series in our sample. Based on its explanatory power and the empirical 

regularity that the highest proportion of short term ITM OEX puts exhibit larger half 

spreads than time values, we find that this transaction cost saving option is the reason 

why market EEP are larger than the combination of model predicted EEP and wild card 

premia. 
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Chapter 3: 

Infinite versus Finite Jump Processes in Commodity Futures Returns: 

Crude Oil and Natural Gas24 

 

I. Introduction 

Commodity futures serve both as an important investment vehicle for gaining 

exposure to physical commodities as well as a crucial centerpiece of the risk management 

strategies employed by both investors and businesses seeking to hedge commodity price 

exposure. Crude oil and natural gas futures are widely used for risk management but in 

recent years have also come to be appreciated as pure investment vehicles, a good 

example being the advent of the United States Oil Fund that follows a strategy of holding 

long positions in the nearby NYMEX crude oil contract (Gorton et al. 2012). For instance 

average daily open interest in exchange traded oil futures contracts increased 227% 

between 2000 and 2015 (from 515 x 103 contracts in 2000 to 1,686 x 103 contracts in 

2015 (U.S. EIA, https://www.eia.gov/finance/markets/financial_markets.cfm). However 

this actually understates the economic importance of the oil derivatives market as the vast 

majority of positions are in the form of the less transparent over-the-counter (OTC) 

forwards and swaps. 

The behavior of oil and natural gas futures returns have in recent years exhibited 

volatility far in excess of financial futures, such as stock index futures and treasury 

futures.25 Plots of the absolute values of log price changes shown in Figures 3.1 and 3.2 

                                                 
24 This chapter is based on collaborative work with Scott Guernsey and Scott Linn. 
25 We follow general convention and for convenience often will refer to log price changes in futures prices 

as returns. 

https://www.eia.gov/finance/markets/financial_markets.cfm
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suggest jumps are potentially an important driving factor. This has not gone unnoticed by 

both policy makers, hedges and speculators as well as investors. For instance, Timothy 

Massad, chairman of the U.S. Commodity Futures Trading Commission has remarked 

that “hourly flash events” in recent times have occurred predominantly in the crude oil 

futures market and less so in other futures markets, including the markets for the E-mini 

futures and 30 Year Treasury futures.26 Large price changes of this sort are important 

because they directly impact investors’ and hedgers’ marked-to-market trading positions. 

As Bakshi and Panayotov (2010) have noted, exposure to potential margin calls increases 

substantially when the values of asset holdings exhibit jumps.  

  Given the expansion of these markets over the last decade and the practical 

significance of jumps in oil and natural gas futures prices a clear characterization of those 

jumps will both help refine our understanding of the underlying processes as well as sow 

the seeds for analysis of the implications for derivative valuation as well as risk 

management practices. The existing pool of research emphasizes the behavior of 

stochastic convenience yields and unspanned stochastic volatility when modeling the 

term structure of oil and gas futures returns. Notable examples include Schwartz (1997) 

and Trolle and Schwartz (2009). 

The aim of the present study is to formally test for the existence of jumps and to 

characterize the nature of jumps in oil and natural gas futures returns. This inquiry is of 

importance since it addresses a fundamental question about model specification. In 

                                                 
26  Source: “Remarks of Chairman Timothy Massad before the Conference on the Evolving Structure of the U.S. Treasury Market”, October 21, 

2015. Hourly flash events are defined as episodes in which the price of a contract moved at least 200 basis 

points within a trading hour-but returned to within 75 basis points of the original or starting price within 

the same hour. 
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addition, correctly specified models are crucial for investment and risk management 

purposes.  

We utilize recent developments and tests that are ‘model free’ to address four 

specific questions regarding the behavior of oil and natural gas futures prices. 27  (1) 

Whether jumps are present; (2) whether infinitely many small jumps in contrast to few 

but large jumps are present; (3) whether a smooth Brownian motion component is present 

in the general semi-martingale process; and (4) the contribution of jumps to total return 

variation. We take an agnostic view about the true nature of the return dynamics, yet we 

do require that the returns follow a general Ito semi-martingale process that may consist 

of a drift term, Brownian motion, and jump terms. We make only mild assumptions about 

the drift and the instantaneous volatility of the Brownian motion terms, assuming only 

that both can be described by general stochastic processes.28 This allows us to focus our 

attention on the jump term, which can be decomposed into the sum of finitely many large 

jumps and a large number (infinitely) many small jumps. Large jumps are rare and are 

commonly associated with economy-wide news or events (Barro (2006)). In contrast, 

small jumps are generally attributed to market microstructure factors impacting prices at 

the intraday level. The merit of the model free method is its freedom from imposing a 

restrictive parametric form, allowing a more flexible and robust diagnosis of the data 

generating process.  

The data we examine include front month contract prices recorded every 5-

seconds for the period 2006-2014 for the crude oil and natural gas futures traded on 

                                                 
27 See Ait-Sahalia and Jacod (2012) for a systematic overview of such model free tests, and Ait-Sahalia and 

Jacod (2009, 2010, 2011) for a formal treatment. 
28 In this sense, the structure may include mean reversion as well as smoothly time varying volatility. 
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NYMEX. Theoretically, jumps take place instantaneously, and in an ideal setting of 

continuous sampling it would be possible to exactly identify them. In practice, because 

of discrete sampling, we must make inferences based upon statistical tests. Since the 

asymptotic limits of the selected tests are based on a sampling interval that approaches 

zero, we work with prices observed at a high frequency (5 second interval here). In 

addition, guided by the insight and results in Bajgrowicz et al. (2015), we compute a 

statistic for each test based on the entire sample instead of each trading day to avoid the 

issue of multiple testing.29 However, we do also present results after disaggregating the 

sample into calendar years. 

We find that an infinite activity jump diffusion process describes crude oil and 

natural gas futures returns. We reject the null hypothesis that jumps are not present in 

either return series and further reject the null hypothesis that jumps in either return series 

only exist in large finite form. However, we also find that we cannot reject the hypothesis 

that Brownian motion is present in both return series, despite the presence of infinitely 

many small jumps. We end by exploring the contributions to overall variability of jumps 

in the two series. In the crude oil return series, jumps in total account for around 36 

percent of the total return variation and large jumps contribute nearly 3 times more than 

small jumps. Jumps collectively account for around 41 percent of the total return variation 

in the natural gas return series, while large jumps also contribute almost three times the 

amount of small jumps.30 

                                                 
29 Bajgrowicz et al. (2015) show that constructing the test statistic on a daily basis may lead to biased 

inferences regarding the presence of jumps. 
30 In contrast, Huang and Tauchen (2005) find the contribution of jumps to be around 7 percent based on 5 

minute S&P 500 index series. 



72 

While several authors have explored the presence of jumps in oil and natural gas 

prices observed at the  daily, weekly and monthly frequencies (Askari and Krichene, 

(2008); Lee, Hu and Chiou (2010); Gronwald (2012);  Nomikos and Andriosopoulos 

(2012); Trolle (2014)) those studies do not address the question of whether infinite jump 

activity is present.  Our study contributes to this literature but asking and answering the 

question of whether infinite jump activity is present and the extent to which infinite as 

well as finite jump activity drive overall price change variability.   

Closest in spirit to our study is a study that examines daily data by Askari and 

Krichene (2008). Those authors estimate a set of parametric jump diffusion models that 

feature both finite jump activity and infinite jump activity and find the parameters of the 

jump component to be significant. Our paper is fundamentally different from these 

empirical studies, because we take a model free approach implemented on high frequency 

data. Conclusions based on model free approaches are more robust than those based on 

parametric models, and the examination of high frequency data allows us to cleanly 

distinguish between infinite versus finite jump process activity, which is hindered by data 

measured over longer time horizons. 

 

II. Data 

We study high frequency price data for crude oil and natural gas front month 

futures contract prices sourced from Tick Data, Inc. The sampling frequency is 5 seconds 

and spans 2006-2014. We study log price changes observed during trading days, 
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excluding overnight returns. 31 There are 8,932,703 data points for each return series. 

Table 3.1 provides annual and full sample descriptive statistics for the final sample of 

log-returns for both series. 

[Insert Table 3.1 about here] 

Table 3.1 emphasizes those measures that would be most reflective of the 

influence of jumps, the standard deviation, skewness and kurtosis. The full crude oil 

sample standard deviation is 0.3652.32 The distribution is positively skewed (15.9) and 

kurtosis equals 10.6130 for the 2006--2014 period, clearly indicating that the sample is 

non-normal. The mean 5-second log-return for the natural gas sample equals -0.1102 with 

a daily full sample mean estimate of -436.5108. The minimum 5-second log-return for 

the same period is -0.2 while the maximum is 0.24. The sample standard deviation equals 

0.5101. The natural gas data are positively skewed (24.1) and fat-tailed (15.8580) non-

normal distribution. Generally the natural gas data exhibit greater volatility. 

Figures 3.1 and 3.2 present a time-series plots of the absolute values of log price 

changes for each of the commodities’ front month contract prices. The natural gas series 

(Figure 3.2) exhibits marginally higher volatility. Moreover, both series exhibit numerous 

sharp increases in volatility throughout the sample period. The crude oil log-return series 

exhibits its most pronounced turbulence during 2008-2009, however spikes in volatility 

occur throughout the sample period. We also see high turbulence in the natural gas log-

returns during 2008-2009 but again spikes in volatility occur throughout. A histogram of 

the log-returns is shown in Figure 3.3. Note that the tails of the distributions are not 

                                                 
31 In the infrequent event that either the crude oil or natural gas price series does not trade at a given 5-

second interval we linearly interpolate when computing missing value to ensure an evenly-spaced sample. 
32 Standard deviation, skewness and kurtosis reported in Table 1 are the 5 second sample estimates times 

103, while the minimum and maximum values are the sample values x 106 
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indicative of a normal distribution, which is consistent with our conclusions from the 

descriptive statistics. Our full samples are positively skewed and display overwhelming 

evidence of fatter tails. Hence, the preliminary diagnostics for both the crude oil and 

natural gas samples are consistent with the presence of jump activity. 

[Insert Figure 3.1 about here] 

[Insert Figure 3.2 about here] 

[Insert Figure 3.3 about here] 

 

III. Modeling Oil and Natural Gas Futures Price Changes 

We do not make any explicit assumption about the parametric family of models 

for the log price series. We require only a modest structural assumption: Let 𝑋𝑡 = 𝑙𝑛𝑆𝑡 

denote the log price series and assume 𝑋𝑡 follows a general Ito semi-martingale described 

by the following 

(3.1)  𝑋𝑡 = 𝑋0 + ∫ 𝑏𝑠𝑑𝑠 + ∫ 𝜎𝑠𝑑𝑊𝑠 + 𝐽𝑢𝑚𝑝𝑠
𝑡

0

𝑡

0
 

(3.2)  𝐽𝑢𝑚𝑝𝑠 =  ∫ ∫ 𝑥(𝜇 − 𝜈)(𝑑𝑠, 𝑑𝑥) +
{|𝑋|≤𝜖}

𝑡

0
∫ ∫ 𝑥𝜇(𝑑𝑠, 𝑑𝑥)

{|𝑋|>𝜖}

𝑡

0
 

where 𝑊𝑡 denotes a standard Brownian motion term, 𝜇 is the jump measure of 𝑋𝑡, and its 

predictable compensator is the Levy measure 𝜈.33  

The first term in equation (3.2) represents innovations from “small” jumps, those 

with size less than a fixed arbitrary cutoff level 𝜖, and the second term corresponds to 

“large” jumps, innovations with size larger than 𝜖. For instance, large jumps could arise 

from rare economic events (Barro (2006)) at a frequency of daily or greater; small jumps 

                                                 
33 For a formal treatment of the assumptions and conditions underlying the process, please refer to Ait-

Sahalia and Jacod (2009). 



75 

may be driven by market microstructure effects occurring intraday. Mathematically, a 

semi-martingale process will always generate a finite number of large jumps on a finite 

time interval ([0, 𝑇]), as pointed out by Ait-Sahalia and Jacod (2011). Depending on the 

jump size behavior near the origin, we can classify a semi-martingale process as 

exhibiting finite or infinite jump activity. Notable examples of finite activity jump models 

include the models developed in Merton (1976) and Kou (2002). On the other hand, 

infinite activity jump models include the variance gamma (VG) model of Madan (1990) 

and Madan et al. (1998), the normal inverse Gaussian (NIG) of Barndorff-Nielson (1997), 

the CGMY model of Carr et al. (2002), and the finite moment log stable (FMLS) model 

of Carr and Wu (2003).  

 The baseline specification described in equation (3.1) accommodates both jumps 

as well as other sources of variability. In (3.1) both the instantaneous drift (𝑏𝑡 ) and 

volatility (𝜎𝑡) can follow very general processes. For instance, the drift term can reflect a 

stochastic interest rate or convenience yield, as in the model of Schwartz (1997), and the 

volatility term can admit unspanned stochastic volatility, as in Trolle and Schwartz 

(2009). Generally, as pointed out by Ait-Sahalia and Jacod (2009), the volatility (𝜎𝑡) can 

follow an Ito semimartingale, which can exhibit jumps. 

The distinction between jumps and continuous innovations comes from a 

discontinuity in the sample path of the variable of interest. Large changes can however 

arise when the sample path is continuous. Consider for example a constant volatility 

model, in which case the probability of extreme movements in the sample path is tiny 

regardless of the specification of the drift component. When the instantaneous volatility 

is however allowed to be stochastic, the probability of extreme movements is increased 



76 

significantly, nevertheless if this was the only driving force the sample path would still 

be continuous. In contrast jumps introduce discontinuities. The identification of jumps is 

therefore equivalent to identifying discontinuous movements in the sample path of a 

stochastic process.  

 

IV. Do Oil and Natural Gas Returns Exhibit Jumps? 

Based on the general framework outlined in Section III, consider a series {𝑋𝑖}𝑖=1
𝑁  

within a time window [0, 𝑇] at a discrete sampling frequency of Δ𝑛 and 𝑁 = [𝑇/Δ𝑛], 

denotes the integer part of the ratio. We construct the increment Δ𝑖
𝑁𝑋 = 𝑋𝑖Δ𝑛

−

𝑋(𝑖−1)Δ𝑛
 as the empirical approximation of its theoretical limit Δ𝑠𝑋 = 𝑋𝑠 − 𝑋𝑠−. If 𝑋 

displays a discontinuous movement at 𝑡0  in [0, 𝑇] , then Δ𝑡0
𝑋  will be nonzero. In 

contrast, Δ𝑡0
𝑋 would be zero if 𝑋 is continuous in [0, 𝑇]. Empirically, since Δ𝑛 cannot 

go to the limiting case, one may observe movements that appear to be jumps but are not. 

Any statistical test must have power to distinguish jumps from continuous path changes. 

At the same time the test should allow for a general specification of the continuous drivers 

of the process. The asymptotic model-free jump test developed in Ait-Sahalia and Jacod 

(2009) is our test statistic choice. 

 The essence of the jump test is to examine the ratio of power variations of the 

returns at two different sampling frequencies, which can cause different values of the 

ratio depending on whether jumps are present. Here the power variation of return 

measures the variability of return and is defined generally as 

(3.3)  𝐵(𝑝, 𝛼,Δ𝑛) = ∑ |Δ𝑖
𝑁𝑋|

𝑝
1

{|Δ𝑖
𝑛𝑋|≤𝛼𝜎𝑐Δ𝑛

�̅�}
𝑁
𝑖=1 , 
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where 𝑝 is the power, 𝜎𝑐 indicates the standard deviation of the Brownian component of 

𝑋, Δ𝑛 is the sampling interval (e.g., 5 seconds), �̅� ∈ (0,
1

2
), and 𝛼 is a scaling parameter 

for the cutoff level.34 As shown by Ait-Sahalia and Jacod (2009), 𝐵(𝑝, ∞,Δ𝑛) displays 

different asymptotic limits (as Δ𝑛 goes to zero) for 𝑝 > 2, 𝑝 = 2, and 𝑝 < 2, and for 

cases where 𝑋 displays jumps or not. Specifically, if 𝑋 displays jumps, the asymptotic 

limit of 𝐵(𝑝, ∞,Δ𝑛)  will not depend on the sampling frequency Δ𝑛 for 𝑝 > 2 . In 

contrast, if 𝑋 is a continuous process, the asymptotic limit of 𝐵(𝑝, ∞,Δ𝑛) will depend 

on the sampling frequency Δ𝑛for 𝑝 > 2.  

This sharp contrast of the behavior of 𝐵(𝑝, ∞,Δ𝑛) leads to the construction of 

the following test statistic 𝑆𝐽, defined as 

(3.4)  𝑆𝐽 =
𝐵(𝑝,∞,𝑘Δ𝑛)

𝐵(𝑝,∞, Δ𝑛)
, 

where 𝑘 > 1 is a scaling coefficient for sampling frequency. The test statistic 𝑆𝐽  will 

converge asymptotically (Δ𝑛 → 0) to 1 under the null hypothesis that a jump process is 

present or to 𝑘
𝑝

2
−1

 under the null of no jump process (Ait-Sahalia and Jacod, 2009). The 

intuition for the property of 𝑆𝐽 follows the behavior of 𝐵(𝑝,∞, 𝑘Δ𝑛). When 𝑋 jumps, 

the asymptotic limit of 𝐵(𝑝,∞, Δ𝑛) does not depend on Δ𝑛, meaning 𝐵(𝑝,∞, Δ𝑛) 

and 𝐵(𝑝,∞, kΔ𝑛) will have the same limit, thus 𝑆𝐽 goes to 1 in the limit. When 𝑋 is 

continuous, the asymptotic limit of 𝐵(𝑝,∞, Δ𝑛)  depends on Δ𝑛 , meaning 𝐵(𝑝,∞

, Δ𝑛) and 𝐵(𝑝,∞, kΔ𝑛) will not have the same limit, thus 𝑆𝐽 goes to 𝑘
𝑝

2
−1

 in the limit. 

For instance, if 𝑘 = 2 and 𝑝 = 4, 𝑆𝐽 will converge to 2 under the null of no jumps. Hence, 

                                                 
34 We introduce the freedom for truncation here albeit we are not truncating, i.e., 𝛼 = +∞. We introduce 

the truncated power variation to maintain consistency with subsequent analyses, where we will examine 

cases for different 𝛼 values. 
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if the computed 𝑆𝐽  is less than 𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 = 2 − 𝑧95√𝑉𝐽

𝐶 , where 𝑍95  represents the 95 

percent normal quantile (1.67), and 𝑉𝐽
𝐶  is the asymptotic variance of the test statistic 

under the null of no jump process, we can reject the null of no jump process at the 95 

percent level of confidence. Note that the choice of 𝑘 and 𝑝 here is arbitrary, as long as 

they satisfy the condition that 𝑘 > 1 and 𝑝 > 3. When testing under the null that a jump 

process is present, one can choose any pair of 𝑘 and 𝑝, and with a given choice one will 

have the corresponding test statistics 𝑆𝐽 and a critical value for the test statistics in order 

to reject the null. Ait-Sahalia and Jacod (2009) recommend the choice of 𝑝 = 4 and 𝑘 =

2 and validate the recommendation with simulation analysis.  

When testing hypothesis based on the asymptotic test derived from the central 

limit theorem, one needs an estimate of the variance (𝑉𝐽
𝐶) of the test statistics under the 

null of no jump. Ait-Sahalia and Jacod (2009) show that the variance is given by 

(3.5)  𝑉𝐽
𝐶 =

Δ𝑛𝑀(𝑝,𝑘)𝐴(2𝑝,α,Δ𝑛)
𝑡

𝐴(𝑝,𝛼,Δ𝑛)𝑡
2 , 

where 𝐴(𝑝, 𝛼,Δ𝑛) is defined as 

(3.6)  𝐴(𝑝, 𝛼,Δ𝑛) =
Δ𝑛

1−
𝑝
2

𝑚𝑝
𝐵(𝑝, 𝛼,Δ𝑛). 

Note that in (3.5) and (3.6), both the two scaling coefficients, 𝑀(𝑝, 𝑘) and 𝑚𝑝, and the 

variance 𝑉𝐽
𝐶 depend on 𝛼, the parameter that controls the cutoff level. According to Ait-

Sahalia and Jacod (2009), the actual value of 𝛼 is irrelevant asymptotically; however, in 

finite sample studies one can choose 𝛼 to be larger than 3, meaning to sum 𝑝𝑡ℎ powers of 

return increments with magnitudes more than 4 standard deviations away. In our analysis, 
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we determine the variance and the associated rejection region for a range of 𝛼s, for 

robustness purpose. 

In Table 3.2 we present the test results for the presence of jumps. The table reports 

the test statistics 𝑆𝐽 and the 95 percent critical value, 𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙, in order to determine a 

rejection decision for the null of no jumps based on a range of cutoff levels 𝛼𝜎𝑐, where 

𝜎𝑐 denotes the estimated standard deviation of the continuous component.35 We choose 

𝑝 = 4 and 𝑘 = 2 as suggested by Ait-Sahalia and Jacod (2009). Such values correspond 

to comparing the 4𝑡ℎ  power variations at Δ𝑛 = 5 seconds and 2Δ𝑛 = 10 seconds. In 

Panel A, we report the results for the crude oil sample, and Panel B reports the results for 

the natural gas sample. 

 [Insert Table 3.2 about here] 

The results presented in Table 3.2 indicate that we can reject the null of no jumps 

in both the crude oil and natural gas samples. In Panel A, the 𝑆𝐽 values should equal 2 

under the null of no jumps and 1 under the alternative hypothesis of jumps. The 

asymptotic variances for 𝑆𝐽 are computed based on a range of 𝛼 values from 4 to 10. The 

rejection thresholds are increasing in 𝛼  yet the empirical 𝑆𝐽  are still less than the 

minimum of the thresholds at 𝛼 = 10. This suggests that even under the extreme case 

(increments with size larger than 10 times the standard deviation of the continuous 

component) we still reject the null of no jumps. The result is similar in Panel B for the 

natural gas sample. Taken together, the null hypothesis of no jumps is rejected for both 

crude oil and natural gas futures return series. 

                                                 
35 Here we follow Ait-Sahalia and Jacod (2009) and construct a truncated quadratic variation estimator for 

the 𝜎𝑐 parameter. 
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V. Are There Infinitely Many Jumps in Oil and Natural Gas Returns? 

 Having rejected the null of no jumps, we next turn to the question of whether the 

series are characterized by finite or infinite jump activity. The test statistic 𝑆𝐹  is 

calculated for this purpose and is defined as  

(3.7)  𝑆𝐹 =
𝐵(𝑝,𝛼,𝑘Δ𝑛)

𝐵(𝑝,𝛼,Δ𝑛)
, 

where 𝐵(𝑝, 𝛼,Δ𝑛)  is given by equation (3.3) and 𝑝 > 2  (see Ait-Sahalia and Jacod 

(2011)). 𝑆𝐹 is the ratio of truncated 𝑝𝑡ℎ power variations computed at different sampling 

frequencies, 𝑘Δ𝑛 and Δ𝑛. 

 The test statistic 𝑆𝐹converges asymptotically (Δ𝑛 → 0) to 1 under the null of 

infinite activity and to 𝑘
𝑝

2
−1

 under the null of finite activity (Ait-Sahalia and Jacod 

(2011)). For instance, if 𝑘 = 2 and 𝑝 = 4, then 𝑆𝐹 will converge to 2 under the null of 

finite activity. Hence, if the computed 𝑆𝐹 is less than 𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 = 2 − 𝑧95√𝑉𝐹, where 𝑍95 

represents the 95 percent normal quantile (1.67), and 𝑉𝐹 is the asymptotic variance of the 

test statistic under the null of finite activity, then we can reject the null of finite activity 

at a 95 percent level of confidence. 

 The intuition for the behavior of 𝑆𝐹 is as follows. Under the null of finite jump 

activity, meaning the number of jumps is finite within a finite time window, the truncation 

eliminates these jumps at some point along the asymptotic limit. The truncated power 

variation behaves close to the continuous part of the semi-martingale in this case. Thus 

in the limit the test statistics 𝑆𝐹 under the null of finite activity converges to the same 

limit as 𝑆𝐽 under the null of no jump. Under the alternative hypothesis of infinite jump 

activity, the truncation would never be able to fully eliminate jumps. With 𝑝 > 2 the 
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power variation is dominated by jump increments, and for a sample size large enough the 

sampling frequency would not affect the value of the power variation. Thus 𝑆𝐹 converges 

to 1 under the alternative hypothesis of infinite activity. 

 The test of the null of finite activity is an asymptotic test derived from the central 

limit theorem. The variance (𝑉𝐹) of the test statistics under the null is given by 

(3.8)  𝑉𝐹 =
𝑁(𝑝,𝑘)𝐵(2𝑝,𝛼,Δ𝑛)

(𝐵(𝑝,𝛼,Δ𝑛))
2 . 

 Table 3.3 shows the results of tests of the null of finite jump activity for both the 

crude oil (Panel A) and natural gas (Panel B) price series. We compute the test statistics 

𝑆𝐹  for 𝑝 = 4  and 𝑘 = 2 , as recommended by Ait-Sahalia and Jacod (2011). For 

robustness, we also consider a range of 𝛼, from 4 to 10. 

 [Insert Table 3.3 about here] 

 The results reported in Table 3.3 indicate that we can reject the null of finite 

activity in both the crude oil and natural gas samples. In Panel A, 𝑆𝐹 should equal 2 under 

the null of finite activity and 1 under the alternative hypothesis of infinite activity. The 

rejection thresholds are increasing in 𝛼 , yet the empirical 𝑆𝐹  are still less than the 

rejection threshold in all cases. This observation suggests that even under the extreme 

case where increments with sizes larger than 10 standard deviations of the continuous 

component are considered as coming from large jumps, we still reject the null of finite 

jump activity. The result is similar in Panel B for the natural gas sample. Taken together, 

the results indicate that both return series exhibit infinite jump activity. 
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VI. Is Brownian Motion Present? 

 Thus far we have shown that the crude oil and natural gas returns series both 

exhibit infinite jump activity. One natural question remains: Should we take it for granted 

that a Brownian motion component is also present in the return series? For example, Carr 

et al. (2002) in an examination of a set of equity and equity index options conclude that 

pure infinite jump processes are adequate to model risk neutral stock index dynamics. We 

examine the question of whether a Brownian motion component is present in our sample 

data, given that the dynamics exhibit infinitely many small jumps. Note that the term 

“Brownian motion” here is not restricted to the standard Brownian motion. It also admits 

the case of stochastic volatility, where the instantaneous variance of the Brownian motion 

term is stochastic. 

The test statistics 𝑆𝑊 is defined as 

(3.9)  𝑆𝑊 =
𝐵(𝑝,𝛼,Δ𝑛)

𝐵(𝑝,𝛼,𝑘Δ𝑛)
, 

where 𝑝 ∈ (0, 2), according to Ait-Sahalia and Jacod (2010), who prove that under the 

null when Brownian motion is present, 𝑆𝑊  converges asymptotically (Δ𝑛 → 0)  to 

𝑘1−𝑝/2 for some 𝑝 ∈ (1,2) and 𝑘 ≥ 2. For instance, if 𝑘 = 2 and 𝑝 = 1.5, then 𝑆𝑊 will 

converge to 20.25 = 1.189 under the null that Brownian motion is present. Hence, if the 

computed 𝑆𝐹  is less than 𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 = 1.189 − 𝑧95√𝑉𝑊 , where 𝑍95  represents the 95 

percent normal quantile (1.67), and 𝑉𝑊 is the asymptotic variance of the test statistic 

under the null that Brownian motion is present, we can reject the null at a 95 percent level 

of confidence. 

To clarify the test, suppose that 𝑋 contains a Brownian motion component, then 

the test statistics 𝑆𝑤  converges to 𝑘
𝑝

2
−1

. This happens because lower powers magnify 
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continuous increments; then for 𝑝 ∈ (0, 2) , 𝐵(𝑝, 𝛼,Δ𝑛) is dominated by continuous 

increments instead of jumps. For the sample size to be large enough, a property of 

Brownian motion suggests that 𝐵(𝑝, 𝛼,Δ𝑛) will depend on the sampling interval Δ𝑛, 

and 𝐵(𝑝, 𝛼,Δ𝑛) will not be the same when computed under Δ𝑛 and 𝑘Δ𝑛. Hence, as 

shown by Ait-Sahalia and Jacod (2010), 𝑆𝑤 converges to 𝑘
𝑝

2
−1

.  

 To reject the null that Brownian motion is present, we also rely on the asymptotic 

test derived from the central limit theorem. Similarly, the variance (𝑉𝑊 ) of the test 

statistics under the null is given by 

(3.10)  𝑉𝑊 =
𝑁𝑊(𝑝,𝑘)𝐵(2𝑝,𝛼,Δ𝑛)

(𝐵(𝑝,𝛼,Δ𝑛))
2 . 

 Table 3.4 shows the results for testing the null that Brownian motion is present 

for both the crude oil (Panel A) and natural gas (Panel B) data. Note the key distinction 

in calculating 𝑆𝑊 is that we are using 𝑝 = 1.5 < 2 instead of 4 when calculating 𝑆𝐽 and 

𝑆𝐹. 

[Insert Table 3.4 about here]  

 The results reported in Table 3.4 indicate that we cannot reject the null that a 

Brownian component is present in both the crude oil and natural gas samples. In Panel A, 

the 𝑆𝑊  should equal 20.25 (≈ 1.19) under the null. The asymptotic variance for 𝑆𝑊  is 

computed based on a range of 𝛼  from 4 to 10, and the implied 95 percent rejection 

thresholds are reported. The test statistic 𝑆𝑤  is larger than the 95 percent rejection 

thresholds regardless of the 𝛼 value. Thus, we cannot reject the null of the presence of a 

Brownian component regardless of how we construct the test statistic. The result is 

similar in Panel B for the natural gas sample. Collectively, we cannot reject the null that 

a Brownian component is present in both return series. 
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VII. The Contribution of Jumps to Total Return Variations 

To what extent do jumps contribute to total return variation is a natural question 

that emerges from the conclusions that both series exhibit infinite jump activity as well 

as Brownian motion. We define total return variation as the quadratic variation (QV) or 

the untruncated second order variation 𝐵(2,∞,Δ𝑛). As discussed before, jumps and 

continuous increments contribute equally to 𝐵(𝑝,∞,Δ𝑛), when 𝑝 = 2. In this sense, the 

QV is the best metric to examine the relative contributions of jumps and continuous 

increments.  

The QV can be decomposed as  

(3.11)  {

𝐵(2,𝛼,Δn)

𝐵(2,∞,Δ𝑛)
    % 𝑄𝑉 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

1 −
𝐵(2,𝛼,Δn)

𝐵(2,∞,Δ𝑛)
  % 𝑄𝑉 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑗𝑢𝑚𝑝 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

 

Note that the numerator is the truncated second order power variation 𝐵(2, 𝛼,Δ𝑛), which 

is affected by the cutoff level 𝛼. Choosing 𝛼 is equivalent to counting the increments with 

magnitudes less than 𝛼  standard deviations of the continuous component. Given the 

conditional normality of the continuous component, an 𝛼 with a value no less than 3 

indicates extreme movements. We report our results based on a range of 𝛼s.  

 One can further decompose the QV due to jumps into the following 

(3.12)  {

𝑈(2,𝜖,Δn)

𝐵(2,∞,Δ𝑛)
    % 𝑄𝑉 𝑑𝑢𝑒 𝑡𝑜 𝑙𝑎𝑟𝑔𝑒 𝑗𝑢𝑚𝑝𝑠

1 −
𝐵(2,𝛼,Δn)+𝑈(2,𝜖,Δ𝑛)

𝐵(2,∞,Δ𝑛)
  % 𝑄𝑉 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑚𝑎𝑙𝑙 𝑗𝑢𝑚𝑝𝑠

 

where 𝑈(2, 𝜖,Δ𝑛) = 𝐵(2, ∞,Δ𝑛) − 𝐵(2, 𝜖,Δn) , meaning truncation from below, 

defined for an arbitrary 𝜖. Note that the upper truncated power variation 𝑈(2, 𝜖,Δ𝑛) can 

be considered as the dual of the lower truncated power variation B(2, 𝜖,Δ𝑛), where the 

former focuses on large increments and the latter focus on small increments. We choose 
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3 < 𝛼 < 𝜖, indicating that we define increments with magnitudes within (𝛼𝜎𝑐, 𝜖𝜎𝑐] as 

coming from small jumps and increments with magnitudes within(𝜖𝜎𝑐, ∞) as coming 

from large jumps, where 𝜎𝑐 is for the standard deviation of the continuous component. 

We report the results based on a range of 𝜖. 

  In Table 3.5 we present the results of decomposing the return QV into 

contributions from large jumps, small jumps, and the Brownian component. Figures 3.4, 

3.5 and 3.6 present plots of the relative contributions by year. The results are reported for 

a range of cutoff levels 𝛼 at the first level to separate the QV due to jumps from those due 

to the Brownian component. After we decompose the QV into the relative contributions 

from jumps and the Brownian component, we further decompose the jump contribution 

into contributions from large jumps and small jumps by selecting three different values 

of 𝜖, 1.5 × 𝛼, 3 × 𝛼, and 4.5 × 𝛼. We find the results are not sensitive to the choice of 𝜖. 

[Insert Table 3.5 about here]  

 The results reported in Table 3.5 reveal that jumps contribute significantly to the 

QV of both the crude oil and natural gas return series. In panel A, the crude oil sample, 

the contribution of the jump component ranges from 38.71% to 34.12% for 𝛼 ranging 

from 4 to 10 with an average of 36.10%. In panel B, the natural gas sample, the 

contribution of the jump component ranges from 44.05% to 38.23% for 𝛼 ranging from 

4 to 10 with an average of 40.62%. Note that the contribution of the jump component is 

decreasing in 𝛼, as expected, since selecting a larger value of 𝛼 is equivalent to treating 

variations with larger magnitudes as coming from the continuous component. Recall that 

we are conservative in our analysis here in terms of the large 𝛼 values being considered. 
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Since the continuous component is conditionally normal, increments larger than 3 

standard deviations (𝛼 > 3) are considered rare. 

 In addition, the results indicate that the contribution of large jumps exceeds that 

of small jumps in both the crude oil and natural gas return series. In Panel A, the crude 

oil sample, the average (in 𝜖) contribution of large jumps ranges from 32.67% to 21.87% 

for 𝛼 ranging from 4 to 10 with an average of 26.94%, while the average contribution (in 

𝜖) of small jumps ranges from 6.04% to 12.25% with an average of 9.16%. In Panel B, 

the natural gas sample, the average (in 𝜖) contribution of large jumps ranges from 36.51% 

to 24.70% for 𝛼 ranging from 4 to 10 with an average of 30.12%, while the average 

contribution (in 𝜖) of small jumps ranges from 7.54% to 13.54% with an average of 

10.50%. Collectively, these results highlight that the crude oil and natural gas returns 

series exhibit large jumps and small jumps, and both types of jumps make significant 

contributions to total variability.  

 Figure 3.4 shows a plot of the overall jump contribution to total return variation 

during the 2006-2014 period in Figure 3.4. We see that in 2006 the total realized variance 

attributable to jumps for crude oil was 24.11% whereas for natural gas it was 63.25%. 

There was a dramatic increase in the total jump component contribution for crude oil to 

50.69% in 2009, a 110.24% increase from 2006. The natural gas total variation 

attributable to jumps declines from 2006 to 2009 by 13.39% to 54.78%. The maximum 

5-second natural gas log-return is obtained in 2006 whereas the minimum is calculated in 

2014 where we estimate a total jump realized variance of 65.4%. We conclude that the 

extrema log-return estimates do in fact occur when the total realized variance attributable 

to jumps is the highest for each respective energy futures’ series. Another interesting 
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observation that points to the validity of our estimates is that the largest skewness 

estimates for the log-return distributions correspond to the years with the largest 

contribution of jumps to total return variation. Table 3.1 reports that when the crude oil 

obtains its min/max values and has an overall jump contribution of 50.69%, the skewness 

of the log-return distribution is estimated at 37.4. The natural gas log-return distribution 

has an estimated skewness of 40.2 in 2006 and -87.6 in 2014 which corresponds to the 

highest total jump contribution of 63.25% and 65.4%, respectively. 

[Insert Figure 3.4 about here]  

 Figures 3.5 and 3.6 present plots by year of the finite activity jump contribution 

and infinite activity jump contribution to realized variance for each log-return series. In 

2006 the large finite jumps contribute 11.7% for crude oil total return variation and 12.4% 

is attributed to infinite activity jumps. The natural gas finite jump component contributes 

39.77% in 20006 whereas small infinite activity jumps supplies 23.48% of the realized 

variance. However, moving ahead to 2009 we observe that the finite jump component 

from crude oil increases by 266.84% to 42.92% while the infinite activity contribution 

decreases by 37.39% to 7.77%. During our sample period the extreme log-returns for 

crude oil are primarily captured by a dramatic increase in finite activity jumps in 2009. 

Similarly, the natural gas finite activity jump contribution increases from 2006 to 2009 

by 15.21% to 45.82% whereas the infinite jump activity drops by 61.84% to 8.96%. We 

also observe for the natural gas log-returns that that the large jump component increase 

from 2009 to 2014 by 30.58% to 59.83% while the small infinite jumps contribution to 

realized variance declines by 37.83% to 5.57%. Hence, again the most extreme 5-second 



88 

natural gas log-returns occur when the finite jump activity is largest and the infinite 

activity is least pronounced. 

[Insert Figure 3.5 about here] 

[Insert Figure 3.6 about here]  

  

VIII. Conclusions 

Employing a model-free approach developed by Ait-Sahalia and Jacod (2009, 

2010, 2011), we find that both high frequency oil and natural gas futures returns series 

exhibit jumps. Further we find that both series display infinite, small, jump activity, as 

well less frequent large jump activity, as well a continuous variation component.   

Approximately 36 percent of the total return variation of crude oil futures returns can be 

attributed to jumps and this proportion is 41 percent for natural gas. In addition infrequent 

large jumps contribute almost three times as much to crude oil futures return variability 

as do small and infinite jumps, while a similar relative contribution is also observed for 

the natural gas sample. Since the infrequent large jumps are normally associated with 

economy wide shocks while the small jumps are commonly interpreted as originating 

from market microstructure factors, the finding that large jumps contribute more to return 

variation than small jumps suggests that crude oil and natural gas returns are sensitive to 

economy wide shocks. 

The finding that crude oil and natural gas returns exhibit jumps has important 

implications for derivatives pricing and risk management. It is widely acknowledged that 

incorporating jumps into the risk neutral dynamics of the underlying is necessary to 

explain the high level of skewness implicit in the cross-section of equity index option 
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prices (Carr and Wu (2003)).  By implication, although we leave this for future research, 

jumps in the underlying futures prices for the prices of options on futures for oil and 

natural gas can have important risk management consequences. In addition, the demand 

for funding liquidity will be higher for speculators who trade crude oil or natural gas 

futures with a mark-to-market account, if the commodity returns jump (Bakshi and 

Panayotov (2010)). 
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Appendix: Figures and Tables 

Figure 1.1: The Effect of Ambiguity on Price Impact 

 
In this figure, I present a numerical example based on my trading model with learning under 

ambiguity. Specifically, I plot three time series for 𝜆𝑡 defined by equation (13) for the level of 

ambiguity 𝜎𝐴
2 taking values of 2, 4, and 6. In all three time series, the payoff variance 𝜎0

2 = 2, 

and the signal noise 𝜎𝑠
2 = 1. In addition, I choose the risk aversion parameter 𝜌 = 2 and the 

ambiguity aversion parameter 𝜃 = 8 based on Ju and Miao (2012). 
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Figure 1.2: The Effects of Risk Aversion and Ambiguity Aversion on Price Impact 

 
In this figure, I present two numerical examples based on my trading model with learning under 

ambiguity. In each panels, I plot three time series for 𝜆𝑡 defined by equation (13) for different 

parameter of interest. In both panels, the payoff variance 𝜎0
2 = 2, the level of ambiguity 𝜎𝐴

2 = 4, 

and the signal noise 𝜎𝑠
2 = 1. In the upper panel, I let the risk aversion coefficient 𝜌 take values of 

2, 3, and 4, while fixing the ambiguity aversion parameter 𝜃 = 8. In the lower panel, I let the 

ambiguity aversion coefficient 𝜃  take values of 7, 9, and 11, while fixing the risk aversion 

coefficient is 𝜌 = 2. 
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Figure 1.3: Monthly U.S. Stock Market Volatility 

 
The VXO index is used for period after 1986, when the index becomes available. Monthly 

standard deviation of the daily S&P 500 index is used to construct the return volatility before 

1986. The 18 dotted vertical lines refer to the volatility shocks identified following Bloom (2009) 

and are described in Table 1.1. A month is labeled as a shock in volatility if the HP detrended 

(𝜆 = 129600) volatility in that month exceeds 1.96 times the standard deviation of the entire HP 

detrended volatility series. 
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Figure 1.4: Stock Market Illiquidity 

 
This figure shows the monthly time series plot of stock market illiquidity. I focus on the price 

impact aspect of market illiquidity. I select stocks traded on the NYSE to maintain homogeneity. 

For each stock, I use daily returns and volumes to construct the Amihud (2002) measure at a 

monthly frequency. The monthly market wide price impact measure is hence obtained by 

averaging the measure across individual stocks. The solid line is the original series, and the dashed 

line is the HP detrended (𝜆 = 129600) series. The 18 dotted vertical lines refer to the volatility 

shocks identified following Bloom (2009) and are described in Table 1.1. 
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Figure 1.5: Response of Market Liquidity to Volatility Shocks 
 

In this figure, I plot the response of market liquidity to shocks from volatility, from estimating 

the recursive VAR: (log(stock market return), stock market volatility shocks indicator, Federal 

Funds Rates, market liquidity). All variables are detrended. Dashed lines are 95% confidence 

interval bands around the response based on bootstrapped standard errors (100 runs). The four 

time series are at the monthly frequency starting from 1962.10 till 2013.12. 
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Figure 1.6: Response of Market Liquidity to Volatility Shocks for 1962--1989 and 

1990--2013 
 

In this figure, I split the sample period into 1962--1989, and 1990--2013. The upper figure is for 

the first periods and shows the response of market liquidity to shocks from volatility from 

estimating the recursive VAR: (log(stock market return), stock market volatility shocks indicator, 

Federal Funds Rates, market liquidity). All variables are detrended. Dashed lines are 95% 

confidence interval bands around the response based on bootstrapped standard errors (100 runs). 

The four time series are at the monthly frequency starting from 1962.10 till 2013.12. 
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Figure 1.7: Response of Market Liquidity to Changes in Stock Price Level and 

FFR 
 

In this figure, I plot the response of market liquidity to changes in stock price leve and FFR from 

estimating the recursive VAR: (log(stock market return), stock market volatility shocks indicator, 

Federal Funds Rates, market liquidity). Dashed lines are 95% confidence interval bands around 

the response based on bootstrapped standard errors (100 runs). The four time series are at the 

monthly frequency starting from 1962.10 till 2013.12. 
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Figure 1.8: Response of Market Liquidity to Changes in Stock Price Level and 

FFR for 1962--1989 and 1990—2013 
 

In this figure, I plot the response of market liquidity to shocks from volatility, stock return, and 

FFR from estimating the recursive VAR: (log(stock market return), stock market volatility shocks 

indicator, Federal Funds Rates, market liquidity). Dashed lines are 95% confidence interval bands 

around the response based on bootstrapped standard errors (100 runs). The four time series are at 

the monthly frequency starting from 1962.10 till 2013.12. 
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Figure 1.8 (continued) 
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Figure 1.9: VAR Estimation of Volatility Shocks Impacts on Market Liquidity 

(Alternative Measures for Uncertainty Shocks) 
 

In this figure, I present the response of market liquidity to shocks from volatility based on 

alternative measures for uncertainty shocks. In the first figure of the upper panel, I use the 0/1 

indicator but each indicator is scaled by the actual volatility. In the second figure of the upper 

panel, I identify shocks using the first month instead of the month with the local maximum 

volatility. In the first figure of the lower panel, I exclude economic shocks. The VAR orderings 

are the same as the benchmark result in Figure 3. Dashed lines are 95% confidence interval bands 

around the response based on bootstrapped standard errors (100 runs). The four time series are at 

the monthly frequency starting from 1962.10 till 2013.12. 
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Figure 1.9 (continued) 
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Figure 1.10: VAR Estimation of Volatility Shocks Impacts on Market Liquidity 

(Alternative Orderings) 
 

In this figure, I present the response of market liquidity to shocks from volatility based on 

alternative VAR orderings. In the first figure of the upper panel, the VAR ordering is (stock 

market volatility shocks indicator, log(stock market return), Federal Funds Rates, market 

liquidity). In the second figure of the upper panel, the ordering is (stock market volatility shocks 

indicator, market liquidity). In the first figure of the lower panel, the ordering is (market liquidity, 

FFR, log(stock market return), stock market volatility shocks indicator). Dashed lines are 95% 

confidence interval bands around the response based on bootstrapped standard errors (100 runs). 

The four time series are at the monthly frequency starting from 1962.10 till 2013.12. 
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Figure 1.10 (continued) 
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Table 1.1: Major Stock Market Volatility Shocks 

 
This table shows the 18 identified shocks in the monthly stock market volatility series. The VXO 

index is used for the period after 1986, when the index becomes available. Monthly standard 

deviation of the daily S&P 500 index is used to construct the return volatility before 1986. A 

month is labeled as a shock in volatility if the HP detrended (lambda=129600) volatility in that 

month exceeds 1.96 times the standard deviation of the entire HP detrended volatility series. 
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Table 1.2: VAR Descriptive Statistics for (Stock, Volatility, FFR, Illiquidity) 

 
The entries in Panel A show the p-values for pair-wise F-tests based on the null that variables in 

the cause column does not Granger cause effect variables. The results are computed from a VAR 

with 12 lags and a constant term over the 1962.07 to 2013.12 period. Variable “stock” refers to 

the detrended log price of S&P 500, “volatility” uses monthly VXO series after 1986 and stock 

market volatility before, “FFR” stands for Federal Funds rate, and “illiquidity” stands for market 

illiquidity based on the Amihud (2002) measure. 
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Figure 2.1: Moneyness and Maturity Distributions 

 
This figure shows the frequency distributions for moneyness (K/S0) and maturity (T, days), for 

both our matched put and call samples for period 2005.05.02--2007.12.31. The underlying asset 

is the S&P 100 index. We pair an OEX option with an XEO option with the same strike and 

maturity, if their quotes are posted within 60 seconds. We show the results for the put sample in 

the upper two panels and that for the call sample in the lower two panels. We show the results for 

moneyness in the first column and that for maturity in the second column. 

 

 
  



112 

Figure 2.2: Market EEP Plotted Against Moneyness and Maturity 

 
This figure plots EEP/S0 (%) against moneyness (K/S0, first three pictures) and maturity (T, days, 

last three pictures) for our matched put sample for period 2005.05.02--2007.12.31. The 

underlying asset is the S&P 100 index. We pair an OEX put with an XEO put with the same strike 

and maturity, if their quotes are posted within 60 seconds. 
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Figure 2.3: Time Value minus Spread for OEX Puts for 2005--2007 
 

This figure shows the relations between time value minus the bid-ask spread and moneyness (left) 

and maturity (right) for OEX puts for 2005.05—2007.12. Time value is the difference between 

the market price of an OEX put and its intrinsic value. The vertical axes in both figures are in 

dollars. 
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Table 2.2: Comparative Statics of Market EEP 
 

This table reports the linear regression estimates for market EEP (EEP/S0*100) on option 

characteristics, including moneyness, moneyness-squared, and maturity (years), as well as 

interest rates (R*100), and dividend yields (q*100). The estimations are based on our matched 

put and call samples for 2005.05.02 to 2007.12.31. The underlying asset is the S&P 100 index. 

We pair an American option with a European option with the same strike and maturity, if their 

quotes are posted within 60 seconds. All explanatory variables are standardized. Robust t statistics 

clustered by trading dates are reported in parenthesis. *** indicates 𝑝 < 0.01, ∗∗ indicates 𝑝 <
0.5, and ∗ indicates 𝑝 < 0.1. 

 

 (1) 

 Put 

VARIABLES EEP/S0*100 

K/S0 -1.636*** 

 (-9.355) 

(K/S0)2 1.808*** 

 (9.983) 

T/360 0.049*** 

 (6.009) 

R*100 0.031*** 

 (3.688) 

q*100 -0.014*** 

 (-5.112) 

Constant 0.158*** 

 (33.409) 

Observations 91,083 

Adjusted R-squared 0.737 
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Table 2.3: Parameter Estimates 
 

In Panel A, we present parameters estimates for the set of models studied in this paper, including 

the Black-Scholes (BS), the Heston stochastic volatility model (SV), the Merton jump (MJ), the 

variance gamma (VG), and the finite moment log stable (FMLS). The estimation is based on 

minimizing root mean squared pricing errors (RMSE) constructed with OTM European calls and 

puts on a daily basis. The sample period is 2005.05.02 to 2007.12.31. The underlying is the S&P 

100 index. In Panel B, we provide the estimated wild card period volatility, where the wild card 

value is determined according to Fleming and Whaley (1994). We assume market call EEP in our 

sample period is driven entirely by the wild card option; the wild card volatility is thus the 

parameter inverted from the cross section of call EEP. We report the mean and standard error 

(s.e.) of each parameter time series. We also report that of the RMSE time series for each model, 

scaled by the underlying level. 

 

Panel A: Model Parameters 

   Mean s.e. 

BS 𝜎𝑤 0.125 0.003 

  RMSE (Basis Points) 48.721 0.610 

SV 𝜅 7.867 0.399 

 𝜃 0.032 0.001 

 𝜎𝑉 0.486 0.016 

 𝜌 -0.5 0.017 

 𝑉0 0.031 0.002 

  RMSE (Basis Points) 25.143 0.342 

MJ 𝜎𝑤 0.081 0.002 

 𝜆 0.66 0.025 

 𝛿𝐽 0.082 0.001 

 𝜇𝐽 -0.131 0.001 

  RMSE (Basis Points) 22.249 0.221 

VG 𝜎𝑤 0.117 0.002 

 𝜈 0.374 0.007 

 𝜃 -0.157 0.011 

  RMSE (Basis Points) 23.142 0. 233 

FMLS 𝜎𝑤 0.082 0.002 

 𝛼 1.65 0.003 

  RMSE (Basis Points) 22.357 0.220 

Panel B: Wild Card Period Volatility 

   Mean s.e. 

FW model 𝜎𝑤𝑐 0.131 0.002 

  RMSE (Basis Points) 42.309 0. 834 
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Table 2.5: Transaction Cost Saving Option Values --- A Numerical Experiment 
 

This table shows the mean and its standard error (s.e.) of the value of the transaction cost saving 

option embedded in American puts through a set of numerical experiments based on our 

augmented Longstaff-Schwartz algorithm. All reported values are scaled by the underlying level 

(100). All model parameters are based on the mean estimates in Table 2.3. The benchmark 

environmental parameters are S0=100, K = 105, T = 60, spread = 0.9 (bid = option value*spread), 

and p = 0.25. In each panel, we alter one of the environmental parameters while setting others to 

be the benchmark values. In all panels, we assume r=0.04 and no dividends. 

 

Panel A: The Effect of Moneyness (S0=100, T=60, spread = 0.9, p=0.25) 

K/S0  0.9 0.95 1 1.05 1.1 

BS mean 0.00 0.00 0.20 28.60 25.28 

 s.e. 0.00 0.00 0.00 0.01 0.00 

SV mean 0.00 0.01 0.27 16.24 25.46 

 s.e. 0.00 0.00 0.00 0.02 0.00 

MJ mean 0.04 0.08 0.15 18.56 25.46 

 s.e. 0.00 0.00 0.00 0.01 0.00 

VG mean 0.04 0.13 0.39 13.15 25.37 

 s.e. 0.00 0.00 0.00 0.01 0.00 

FMLS mean 0.04 0.08 0.36 24.71 25.30 

 s.e. 0.00 0.00 0.00 0.01 0.00 

Panel B: The Effect of Maturity (S0=100, K=105, spread = 0.9, p=0.25) 

T  30 60 90 120 150 

BS mean 18.28 26.91 22.51 16.37 12.73 

 s.e. 0.01 0.01 0.01 0.01 0.01 

SV mean 27.26 17.95 8.44 4.65 2.89 

 s.e. 0.01 0.02 0.01 0.01 0.01 

MJ mean 12.77 20.58 27.22 21.94 19.18 

 s.e. 0.00 0.01 0.01 0.01 0.01 

VG mean 13.02 13.24 13.05 24.42 2.48 

 s.e. 0.00 0.01 0.00 0.01 0.01 

FMLS mean 12.76 21.48 27.31 19.07 9.91 

 s.e. 0.00 0.01 0.01 0.01 0.01 
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Table 2.5 (continued) 

Panel C: The Effect of (Percentage) Bid-Ask Spread (S0=100, K=105, T=60, p=0.25) 

Spread  0.8 0.85 0.9 0.95 1 

BS mean 70.05 48.62 27.94 9.29 0.00 

 s.e. 0.02 0.02 0.01 0.01 0.00 

SV mean 59.73 35.00 16.83 3.95 0.00 

 s.e. 0.04 0.03 0.02 0.01 0.00 

MJ mean 44.13 32.57 15.55 9.19 0.13 

 s.e. 0.02 0.02 0.01 0.00 0.00 

VG mean 25.91 18.93 12.94 6.51 0.20 

 s.e. 0.01 0.00 0.00 0.00 0.00 

FMLS mean 41.20 35.01 24.26 9.84 0.02 

 s.e. 0.02 0.02 0.01 0.00 0.00 

Panel D: The Effect of Liquidation Probability (S0=100, K=105, T=60, spread=0.9) 

p  0 0.25 0.5 0.75 1 

BS mean 0.00 28.39 32.66 36.83 35.82 

 s.e. 0.00 0.01 0.01 0.01 0.01 

SV mean 0.00 16.64 13.72 11.98 11.33 

 s.e. 0.00 0.02 0.02 0.01 0.01 

MJ mean 0.00 16.79 31.73 39.56 47.66 

 s.e. 0.00 0.01 0.01 0.01 0.01 

VG mean 0.00 12.86 25.55 38.21 50.86 

 s.e. 0.00 0.00 0.00 0.00 0.01 

FMLS mean 0.00 20.29 33.57 38.21 50.84 

 s.e. 0.00 0.01 0.01 0.00 0.00 
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Table 2.6: The Value of the Transaction Cost Saving Option in OEX Puts 

 

This table shows the pricing results for the transaction cost saving option values in OEX puts for 

2005.05-2007.12. The values are determined based on our augmented Longstaff-Schwartz 

algorithm. The probability of liquidation 𝑝 used here is the ratio of sell quantity (identified with 

the Lee and Ready (1991) algorithm) over open interest and is constructed daily based on the 

same 9 moneyness-maturity groups as that in Table 4. In Panels A and B, we construct the pricing 

error for each option series as 𝑒𝑟𝑟𝑀𝑜𝑑𝑒𝑙 =
𝐸𝐸𝑃𝑀𝑎𝑟𝑘𝑒𝑡−𝐸𝐸𝑃𝑀𝑜𝑑𝑒𝑙−𝐸𝐸𝑃𝑊𝑖𝑙𝑑 𝐶𝑎𝑟𝑑−𝐶𝑜𝑠𝑡𝑉𝑎𝑙𝑢𝑒

𝑆0
× 10000. 

Based on this pricing error, we construct RMSE and MPE daily and report their time series means 

and stand errors in Panels A and B. We report in Panel C the estimates for the regression of pricing 

errors (excluding the transaction cost option value) on the transaction cost option value. Robust t 

statistics clustered by trading dates are reported in parenthesis. *** indicates 𝑝 < 0.01 , ∗∗ 

indicates 𝑝 < 0.5, and ∗ indicates 𝑝 < 0.1. 

 

Panel A: RMSE 

 BS SV MJ VG FMLS 

mean 8.942 10.513 5.972 6.612 4.711 

std.err 0.13 0.16 0.08 0.09 0.07 

Panel B: MPE 

 BS SV MJ VG FMLS 

mean 3.871 6.419 2.613 2.724 0.941 

std.err 0.14 0.17 0.12 0.13 0.11 

Panel C: Regressing Pricing Errors on The Transaction Cost Saving Option Values 

 (1) (2) (3) (4) (5) 

VARIABLES errBS errSV errMJ errVG errFMLS 

Cost Value 0.312*** 0.304*** 0.339*** 0.327*** 0.362*** 

 (22.581) (21.711) (23.556) (23.016) (24.552) 

Constant 5.048*** 6.943*** 3.180*** 3.883*** 1.519*** 

 (22.724) (30.762) (17.365) (19.415) (9.305) 

Observations 91,083 91,083 91,083 91,083 91,083 

Adjusted R-squared 0.254 0.203 0.291 0.287 0.313 
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Table 2.7: Orthogonality Test 
 

This table shows the remaining explanatory power of option characteristics on pricing errors, 

defined as 𝑒𝑟𝑟𝑀𝑜𝑑𝑒𝑙 =
𝐸𝐸𝑃𝑀𝑎𝑟𝑘𝑒𝑡−𝐸𝐸𝑃𝑀𝑜𝑑𝑒𝑙−𝐸𝐸𝑃𝑊𝑖𝑙𝑑 𝐶𝑎𝑟𝑑−𝐶𝑜𝑠𝑡 𝑉𝑎𝑙𝑢𝑒

𝑆0
× 10000 . The sample 

consists of both European puts and American puts on the S&P 100 index for the period 

2005.05.02--2007.12.31. Option characteristics include moneyness (K/S0), moneyness squared 

(K/S0)2, maturity (T/360), interest rate (R), and dividend yield (q). All explanatory variables are 

standardized. Robust t statistics clustered by trading dates are reported in parenthesis. *** 

indicates 𝑝 < 0.01, ∗∗ indicates 𝑝 < 0.5, and ∗ indicates 𝑝 < 0.1. 

 

 (1) (2) (3) (4) (5) 

VARIABLES errBS errSV errMJ errVG errFMLS 

K/S0 -32.430*** -48.156*** -23.612*** -24.821*** -24.499*** 

 (-9.297) (-6.860) (-9.698) (-10.245) (-5.669) 

(K/S0)2 35.655*** 55.880*** 27.361*** 30.907*** 26.621*** 

 (9.877) (7.435) (10.188) (10.812) (5.870) 

T/360 1.808*** 2.689*** 1.051*** 1.258*** 0.409 

 (6.218) (5.883) (3.518) (4.515) (0.861) 

R 0.548*** 1.219*** 0.026 0.047 0.011 

 (3.294) (6.864) (0.242) (0.672) (0.104) 

q -0.460*** -0.634*** -0.252** -0.334** -0.147 

 (-3.589) (-3.600) (-2.176) (2.507) (-1.391) 

Constant 3.871*** 6.419*** 2.613*** 2.724*** 0.941*** 

 (27.651) (31.759) (21.775) (20.954) (8.554) 

      

Observations 91,083 91,083 91,083 91,083 91,083 

Adjusted R-squared 0.336 0.417 0.217 0.267 0.078 
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Figure 3.3: Tail-ends of the Crude Oil and Natural Gas Log Returns’ Distribution 

 
This figure plots the tail-ends of a 5-second log-return distribution for crude oil and natural gas. 

The log-returns were calculated from front month contract prices sampled every 5-seconds for 

the entire period of 2006-2014; overnight returns are discarded. The crude oil log-return sample 

is depicted in the top plot, while the natural gas is shown below. 

 

 

 
  

-5 0 5

x 10
-3

0

2

4

6

8

10

12

14

16

18

x 10
4

Crude Oil Log Returns

-6 -4 -2 0 2 4 6 8

x 10
-3

0

0.5

1

1.5

2

x 10
5

Natural Gas Log Returns



126 

Figure 3.4: Jump Contribution to the Realized Variances of the Crude Oil and 

Natural Gas Log Returns’ Distribution 

 
This figure plots the jump component contribution to the realized variances for the 5-second log-

returns for crude oil and natural gas. The log-returns were calculated from front month contract 

prices sampled every 5-seconds for the entire period of 2006-2014; overnight returns are 

discarded. The reported estimates are the mean values of 𝑄𝑉𝐿𝐽 + 𝑄𝑉𝑆𝐽 averaged over the range 

of ∝∈ [4,10], ∝∈ ℤ  and 1.5휀, 3휀 and 4.5휀  for each year in our sample. The crude oil jump 

contribution to realized variances is depicted in blue while the natural gas is shown in red. 
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Figure 3.5: Finite Large Jump Contribution to the Realized Variances of the 

Crude Oil and Natural Gas Log Returns’ Distribution 

 
This figure plots the finite, large jump component contribution to the realized variances for the 5-

second log-returns for crude oil and natural gas. The log-returns were calculated from front month 

contract prices sampled every 5-seconds for the entire period of 2006-2014; overnight returns are 

discarded. The reported estimates are the mean values of 𝑄𝑉𝐿𝐽 averaged over the range of ∝∈
[4,10], ∝∈ ℤ and 1.5휀, 3휀 and 4.5휀 for each year in our sample. The crude oil finite activity, large 

jump contribution to realized variances is depicted in blue while the natural gas is shown in red. 
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Figure 3.6: Infinite Small Jump Contribution to the Realized Variances of the 

Crude Oil and Natural Gas Log Returns’ Distribution 

 
This figure plots the infinite activity, small jump component contribution to the realized variances 

for the 5-second log-returns for crude oil and natural gas. The log-returns were calculated from 

front month contract prices sampled every 5-seconds for the entire period of 2006-2014; overnight 

returns are discarded. The reported estimates are the mean values of 𝑄𝑉𝑆𝐽 averaged over the range 

of ∝∈ [4,10], ∝∈ ℤ and 1.5휀, 3휀 and 4.5휀  for each year in our sample. The crude oil infinite 

activity, small jump contribution to realized variances is depicted in blue, while the natural gas is 

shown in red. 
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Table 3.1: Descriptive Statistics 

 
This table describes the data sample. We use front month contract prices, sampled at 5 second 

intervals for all of 2006-2014, for crude oil (panel A) and natural gas (panel B) to calculate log-

returns. We describe the log-returns per year and for the full sample and provide the minimum, 

mean and maximum values. We also include skewness and kurtosis to assess the normality of the 

sample. Stdev and Skew equal the 5 second return sample values× 103, Kurt equals the 5 second 

sample return estimate × 10 and Min and Max equal the respective minimum and maximum 

returns × 106. 

 

Panel A: The Crude Oil Sample 

 Stdev Skew Kurt Min Max 

2006 0.3715 2.2529 0.3230 -0.0205 0.0372 

2007 0.2955 1.9098 1.0981 -0.0251 0.0447 

2008 0.5373 2.7950 3.2791 -0.0735 0.0884 

2009 0.5626 37.4286 12.6030 -0.0611 0.1759 

2010 0.3035 3.2304 4.3364 -0.0432 0.0684 

2011 0.3446 -8.5513 2.9341 -0.0552 0.0379 

2012 0.2531 -2.3796 4.3691 -0.0405 0.0515 

2013 0.1981 -8.2468 2.1346 -0.0238 0.0242 

2014 0.2267 -11.4922 2.3992 -0.0344 0.0266 

𝐹𝑢𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 0.3652 15.8792 10.6130 -0.0735 0.1759 

Panel B: The Natural Gas Sample 

 Stdev Skew Kurt Min Max 

2006 0.7603 40.1795 12.4470 -0.0494 0.2388 

2007 0.4820 12.9553 6.0704 -0.0869 0.1075 

2008 0.4704 5.0064 1.4749 -0.0482 0.0626 

2009 0.7076 49.6684 13.9520 -0.0458 0.2267 

2010 0.4435 18.1808 5.2586e -0.0369 0.1151 

2011 0.3540 1.8909 1.3112 -0.0296 0.0519 

2012 0.4884 4.5726 2.6315 -0.0549 0.0860 

2013 0.3160 3.4707 1.5864 -0.0358 0.0332 

2014 0.4534 -87.6051 42.9520 -0.2028 0.0589 

𝐹𝑢𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 0.5101 24.1141 15.8580 -0.2028 0.2388 
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Table 3.2: Test for Jumps in General 

 
This table shows the results for testing the null of no jump. The test statistic 𝑆𝐽 = 𝐵(4,∞

, 2Δ𝑛)/𝐵(4,∞,Δ𝑛) converges to 2 under the null of no jumps, where Δ𝑛 denotes the sampling 

frequency (5 seconds). We calculate the asymptotic variance for 𝑆𝐽  under the null and the 

associated 95 percent critical threshold 𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 for a range of 𝛼. The null is rejected if 𝑆𝐽 <

𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙. We use both the crude oil and the natural gas samples for the entire period of 2006-

2014. The series is sampled every 5 seconds.  

   

Panel A: The Crude Oil Sample 

𝑆𝐽 1.004       

𝛼 4 5 6 7 8 9 10 

𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 1.982 1.975 1.967 1.958 1.947 1.935 1.924 

Panel B: The Natural Gas Sample 

𝑆𝐽 0.994       

𝛼 4 5 6 7 8 9 10 

𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 1.985 1.980 1.975 1.969 1.961 1.954 1.945 
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Table 3.3: Tests for Finite Activity or Infinite Activity Jumps 

 
This table shows the results for testing the null of finite activity. The test statistic 𝑆𝐹 =
𝐵(4, 𝛼, 2Δ𝑛)/𝐵(4, 𝛼,Δ𝑛) converges to 2 under the null of no jumps, where Δ𝑛 denotes the 

sampling frequency (5 seconds). We calculate the test statistics and its asymptotic variance for 

under the null and the associated 95 percent critical threshold 𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 for a range of 𝛼. The null 

is rejected if 𝑆𝐽 < 𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙. We use both the crude oil and the natural gas samples for the period 

of 2006-2014. The series is sampled every 5 seconds. 

  

Panel A: The Crude Oil Sample 

𝛼 4 5 6 7 8 9 10 

𝑆𝐹 1.213 1.241 1.283 1.267 1.263 1.250 1.242 

𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 1.937 1.913 1.887 1.855 1.819 1.779 1.741 

Panel B: The Natural Gas Sample 

𝛼 4 5 6 7 8 9 10 

𝑆𝐹 1.156 1.163 1.165 1.146 1.125 1.123 1.106 

𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 1.949 1.933 1.915 1.893 1.868 1.843 1.813 
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Table 3.4: Tests for the Presence of Brownian Motion 

 
This table shows the results for testing the null of presence of Brownian motion. The test statistic 

𝑆𝑊 = 𝐵(1.5, 𝛼,Δ𝑛)/𝐵(1.5, 𝛼, 2Δ𝑛) converges to 20.25 = 1.189 under the null of presence of 

Brownian motion, where Δ𝑛 denotes the sampling frequency (5 seconds). We calculate the test 

statistic and its asymptotic variance under the null and the associated 95 percent critical threshold 

𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 for a range of 𝛼. The null is rejected if 𝑆𝑊 < 𝐶95

𝑁𝑜𝑟𝑚𝑎𝑙. We use both the crude oil and 

the natural gas samples for the entire period of 2006-2014. The series is sampled every 5 seconds. 

 

Panel A: The Crude Oil Sample 

𝛼 4 5 6 7 8 9 10 

𝑆𝑊 1.244 1.237 1.232 1.230 1.228 1.227 1.226 

𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 1.189 1.189 1.189 1.189 1.189 1.189 1.189 

Panel B: The Natural Gas Sample 

𝛼 4 5 6 7 8 9 10 

𝑆𝑊 1.202 1.195 1.191 1.190 1.188 1.187 1.186 

𝐶95
𝑁𝑜𝑟𝑚𝑎𝑙 1.189 1.189 1.189 1.189 1.189 1.189 1.189 
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Table 3.5: Percentage of Total Return Variation from Jumps 

 
This table shows the results for decomposing the total return variation, the quadratic variation 

( 𝑄𝑉 = 𝐵(2,∞,Δn) ), into percentages generated by the continuous component ( 𝑄𝑉𝑐 =
𝐵(2, 𝛼,Δ𝑛)/𝑄𝑉), the large jump component (𝑄𝑉𝐿𝐽 = 𝑈(2, 𝜖,Δ𝑛)/𝑄𝑉), and the small jump 

component (𝑄𝑉𝑆𝐽 = 1 − 𝑄𝑉𝐶 − 𝑄𝑉𝐿𝐽). In the second column, we report the range of 𝜖, and the 

range of 𝛼 is reported as usual. In the last column, we report the average QV in terms of various 

𝛼. The row “mean” report the average QV in terms of different 𝜖. We use both the crude oil and 

the natural gas samples for the entire period of 2006-2014. The series is sampled every 5 seconds. 

 

Panel A: The Crude Oil Sample 

 𝜖/𝛼 4 5 6 7 8 9 10 mean 

𝑄𝑉𝐶  61.29% 62.57% 63.41% 64.11% 64.73% 65.33% 65.88% 63.90% 

𝑄𝑉𝐿𝐽 1.5𝛼 36.59% 35.56% 34.67% 33.81% 32.89% 31.94% 30.86% 33.76% 

 3𝛼 32.89% 30.86% 28.53% 26.91% 24.37% 22.40% 20.11% 26.58% 

 4.5𝛼 28.53% 25.36% 22.40% 19.37% 17.14% 15.87% 14.65% 20.47% 

mean  32.67% 30.59% 28.54% 26.70% 24.80% 23.40% 21.87% 26.94% 

𝑄𝑉𝑆𝐽 1.5𝛼 2.12% 1.87% 1.91% 2.08% 2.37% 2.74% 3.26% 2.34% 

 3𝛼  5.82% 6.57% 8.06% 8.98% 10.90% 12.27% 14.01% 9.51% 

 4.5𝛼 10.18% 12.07% 14.19% 16.53% 18.12% 18.81% 19.47% 15.62% 

mean  6.04% 6.84% 8.05% 9.20% 10.47% 11.27% 12.25% 9.16% 

Panel B: The Natural Gas Sample 

 𝜖/𝛼 4 5 6 7 8 9 10 mean 

𝑄𝑉𝐶  55.95% 57.73% 58.87% 59.73% 60.50% 61.09% 61.77% 59.38% 

𝑄𝑉𝐿𝐽 1.5𝛼 41.13% 39.84% 38.91% 37.87% 36.59% 35.41% 34.24% 37.71% 

 3𝛼 36.59% 34.24% 31.82% 29.29% 27.09% 24.92% 23.20% 29.59% 

 4.5𝛼 31.82% 28.25% 24.92% 22.16% 19.89% 17.68% 16.65% 23.05% 

mean  36.51% 34.11% 31.88% 29.78% 27.86% 26.01% 24.70% 30.12% 

𝑄𝑉𝑆𝐽 1.5𝛼 2.92% 2.43% 2.22% 2.40% 2.91% 3.50% 3.99% 2.91% 

 3𝛼  7.46% 8.03% 9.30% 10.98% 12.41% 13.99% 15.03% 11.03% 

 4.5𝛼 12.23% 14.02% 16.20% 18.11% 19.61% 21.23% 21.58% 17.57% 

mean  7.54% 8.16% 9.24% 10.50% 11.64% 12.90% 13.54% 10.50% 

  

 


