
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

PARALLEL PROCESSING OF TOP-K TRAJECTORY SIMILARITY QUERIES ON

BIG DATA USING GPUS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

ELEAZAR ENRIQUE LEAL GONZALEZ
Norman, Oklahoma

2017

PARALLEL PROCESSING OF TOP-K TRAJECTORY SIMILARITY QUERIES ON
BIG DATA USING GPUS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Le Gruenwald, Chair

Dr. Sudarshan Dhall

Dr. Changwook Kim

Dr. S. Lakshmivarahan

Dr. Scott Moses

© Copyright by ELEAZAR ENRIQUE LEAL GONZALEZ 2017

All Rights Reserved.

 iv

TABLE OF CONTENTS
LIST OF FIGURES ... viii	
LIST OF TABLES .. x	
ABSTRACT .. xi	
CHAPTER I INTRODUCTION ... 1	

1	 Objective .. 1	
2	 Background ... 1	

2.1	 Notation .. 2	
2.2	 Geometric Background .. 3	
2.3	 Trajectory Similarity Background ... 7	
2.4	 GPU Background ... 10	

2.4.1	 What are GPUs? .. 10	
2.4.2	 Why and when to use GPUs? .. 11	
2.4.3	 GPU Programming Model ... 12	
2.4.4	 GPU Issues ... 14	

2.4.4.1	 Low global memory bandwidth relative to the number of threads 14	
2.4.4.2	 Low PCIe memory bandwidth .. 16	
2.4.4.3	 Efficient use of shared memory banks .. 17	
2.4.4.4	 Thread divergence ... 17	
2.4.4.5	 Load balancing .. 18	

3	 General Issues of Top-K Trajectory Similarity Query Processing Techniques 19	
3.1	 Different trajectory sizes .. 19	
3.2	 Local time shifts ... 20	
3.3	 Measurement uncertainty ... 22	
3.4	 Model uncertainty .. 23	
3.5	 Triangular inequality .. 25	
3.6	 Inter-trajectory sampling rate variation .. 26	
3.7	 Intra-trajectory sampling rate variation .. 28	
3.8	 Sampling phase variation ... 30	
3.9	 Dimensionality of the manually-tuned parameter space .. 31	
3.10	 Large Databases and Large Trajectory Sizes ... 32	

4	 Contribution .. 33	
5	 Organization .. 36	

CHAPTER II LITERATURE REVIEW .. 38	
1	 Literature Review of Top-K Trajectory Similarity Query Processing Techniques 38	

1.1	 Geometry-based techniques ... 38	
1.1.1	 Euclidean Distance Technique .. 38	
1.1.2	 Hausdorff Distance Technique .. 41	
1.1.3	 w-constrained Discrete Fréchet Distance (wDF) ... 44	
1.1.4	 DISSIM .. 48	

1.2	 Edit distance-based Techniques ... 52	
1.2.1	 Dynamic Time Warping (DTW) ... 52	
1.2.2	 Longest Common Subsequence (LCSS) ... 55	
1.2.3	 Edit Distance on Real Sequence (EDR) .. 57	
1.2.4	 Edit Distance with Real Penalty (ERP) ... 60	
1.2.5	 Edit Distance With Projection (EDwP) ... 62	

 v

1.2.6	 MA ... 64	
1.3	 Probability-based techniques ... 67	

1.3.1	 KSQ ... 67	
1.4	 Feature Comparison of Top-K Trajectory Similarity Query Processing Techniques
 71	

2	 Literature Review of Techniques for Estimating Uncertain Trajectories 75	
2.1	 Techniques that do not exploit a database of trajectories 75	

2.1.1	 Mean and Median Filter ... 76	
2.1.2	 Kalman Filter ... 77	
2.1.3	 Particle Filter ... 79	

2.2	 Techniques that exploit a database of trajectories ... 81	
2.2.1	 HRIS .. 81	
2.2.2	 Chazal et al.’s Algorithm ... 84	

2.3	 Feature Comparison of Techniques for Estimating Uncertain Trajectories 86	
CHAPTER III	 PROPOSED SYSTEM AND TECHNIQUES 89	

1	 Overview of the proposed system and techniques .. 89	
2	 TKSimGPU: A GPU technique for Top-K Trajectory Similarity Query Processing
 92	

2.1	 Motivation of TKSimGPU ... 92	
2.2	 Overview of TKSimGPU ... 93	
2.3	 The TKSimGPU Algorithm ... 94	
2.4	 Parallel query execution of top-K trajectory similarity queries on GPUs 99	

3	 The Top-KaBT Algorithm: A GPU Technique for Pruning Candidate Sets that
Arise when Processing Top-K Trajectory Queries ... 103	

3.1	 Motivation of Top-KaBT ... 103	
3.2	 Overview of Top-KaBT ... 104	
3.3	 Theoretical Foundations of Top-KaBT’s Pruning Strategy 105	
3.4	 Description of Top-KaBT’s Pruning Strategy ... 110	

4	 The TrajEstU Algorithm: A GPU Technique for Reducing Trajectory Uncertainty
when Processing Top-K Trajectory Queries ... 118	

4.1	 Motivation of TrajEstU .. 118	
4.2	 Overview of TrajEstU .. 118	
4.3	 Description of TrajEstU ... 119	

4.3.1	 Pre-processing stage .. 119	
4.3.2	 Model-Fitting Stage ... 120	

4.3.2.1	 Constant Acceleration Model ... 121	
4.3.2.2	 Incorporation of Trajectory Patterns ... 123	
4.3.2.3	 Selecting the Best Constant Acceleration Model 125	
4.3.2.4	 Variable Acceleration Model .. 126	
4.3.2.5	 Model Coupling Function ... 127	

4.3.3	 Trajectory Estimation Stage .. 128	
4.4	 Details of TrajEstU .. 129	

4.4.1	 Pre-processing Stage .. 129	
4.4.2	 Model-Fitting Stage ... 129	
4.4.3	 Trajectory Estimation Stage .. 130	

5	 TraclusGPU: A parallel GPU technique for local clustering of trajectories 133	
5.1	 Motivation of TraclusGPU ... 133	
5.2	 Overview of TraclusGPU ... 135	
5.3	 Description of TraclusGPU .. 136	

5.3.1	 Partitioning Stage ... 136	

 vi

5.3.2	 Local Trajectory Clustering Stage ... 137	
5.3.3	 Representative Trajectory Finding Stage ... 139	

CHAPTER IV PERFORMANCE ANALYSIS .. 141	
1	 Theoretical Analysis ... 141	

1.1	 Complexity Analysis for TKSimGPU ... 141	
1.2	 Complexity Analysis for Top-KaBT .. 144	
1.3	 Complexity Analysis for TrajEstU .. 146	
1.4	 Complexity Analysis for TraclusGPU ... 147	

2	 Experimental Analysis .. 149	
2.1	 Experimental Analysis of TKSimGPU .. 149	

2.1.1	 Experimental Setup .. 149	
2.1.1.1	 Hardware and Software Description ... 149	
2.1.1.2	 Datasets and experiment setup .. 149	
2.1.1.3	 Competing Algorithms .. 150	
2.1.1.4	 Experimental Parameters .. 151	
2.1.1.5	 Performance Metrics ... 152	

2.1.2	 Experimental Results ... 152	
2.1.2.1	 Impact of the query set size .. 152	
2.1.2.2	 Impact of the database size ... 153	
2.1.2.3	 Impact of K ... 155	
2.1.2.4	 Conclusions of TKSimGPU’s Experimental Results 156	

2.2	 Experimental Analysis of Top-KaBT .. 157	
2.2.1	 Experimental Setup .. 157	

2.2.1.1	 Hardware and Software Description ... 157	
2.2.1.2	 Datasets and experiment setup .. 157	
2.2.1.3	 Competing Algorithms .. 157	
2.2.1.4	 Performance Metrics ... 158	
2.2.1.5	 Experimental Parameters .. 158	

2.2.2	 Experimental Results ... 159	
2.2.2.1	 Impact of the query set size (|P|) ... 159	
2.2.2.2	 Impact of the database size (|Q|) ... 162	
2.2.2.3	 Impact of K ... 165	
2.2.2.4	 Conclusions of Top-KaBT’s Experimental Results 168	

2.3	 Experimental Analysis of TrajEstU ... 169	
2.3.1	 Experimental Setup .. 169	

2.3.1.1	 Hardware and Software Description ... 169	
2.3.1.2	 Datasets and Experiment Setup .. 170	
2.3.1.3	 Competing Algorithms .. 171	
2.3.1.4	 Experimental Parameters .. 171	
2.3.1.5	 Performance Metrics ... 173	

2.3.2	 Experimental Results ... 174	
2.3.2.1	 Impact of the Sampling Rate ... 174	
2.3.2.2	 Impact of the Query Length .. 179	
2.3.2.3	 Impact of the Standard Deviation of the Noise 183	
2.3.2.4	 Impact of the Acceleration Tolerance ... 187	
2.3.2.5	 Impact of the Dataset Size .. 188	
2.3.2.6	 Conclusions of TrajEstU’s Experimental Results 189	

2.4	 Experimental Analysis of TraclusGPU .. 191	
2.4.1	 Experimental Setup .. 191	

2.4.1.1	 Hardware and Software Description ... 191	

 vii

2.4.1.2	 Datasets and Experiment Setup .. 191	
2.4.1.3	 Competing Algorithms .. 191	
2.4.1.4	 Experimental Parameters .. 191	
2.4.1.5	 Performance Metrics ... 192	

2.4.2	 Experimental Results ... 192	
2.4.2.1	 Impact of the Dataset Size .. 192	
2.4.2.2	 Conclusions of TraclusGPU’s experiment results 193	

CHAPTER V CONCLUSIONS AND FUTURE WORK 195	
1	 Summary of the Performance Results .. 196	

1.1	 Summary of the Results of TKSimGPU .. 196	
1.2	 Summary of the Results of Top-KaBT .. 199	
1.3	 Summary of the Results of TrajEstU ... 201	
1.4	 Summary of the results of TraclusGPU ... 203	

2	 Future Research .. 205	
REFERENCES .. 209	

 viii

LIST OF FIGURES

Figure 1. Examples of MBRs .. 3	
Figure 2. Examples of eMBRs .. 4	
Figure 3. Example of a trajectory ... 5	
Figure 4. Example of trajectory similarity .. 7	
Figure 5. Example of top-K trajectory similarity query ... 9	
Figure 6. GPU description .. 11	
Figure 7. GPU memory space ... 14	
Figure 8. GPU memory coalescing ... 16	
Figure 9. Thread divergence ... 18	
Figure 10. Different trajectory sizes ... 20	
Figure 11. Local time shifts .. 21	
Figure 12. Measurement/instrumentation uncertainty .. 23	
Figure 13. Model uncertainty .. 24	
Figure 14. Inter-trajectory sampling rate variation ... 27	
Figure 15. Intra-trajectory sampling rate variation ... 29	
Figure 16. Sampling phase variation .. 30	
Figure 17. Workflow of our proposed system .. 91	
Figure 18. Overall algorithm ... 91	
Figure 19. TKSimGPU algorithm ... 95	
Figure 20. Relationship between Top-KaBT and top-K trajectory similarity query

processing algorithms ... 105	
Figure 21. Example of K-cut point ... 108	
Figure 22. Sort pruning algorithm of Top-KaBT .. 111	
Figure 23. Example run of the sort pruning algorithm of Top-KaBT (Steps 1 and 2) . 112	
Figure 24. Example run of the sort pruning algorithm of Top-KaBT (Steps 3 and 4) . 114	
Figure 25. Example run of the sort pruning algorithm of Top-KaBT (Step 5) 115	
Figure 26. Example run of the sort pruning algorithm of Top-KaBT (Step 6) 117	
Figure 27. Finding representative trajectories .. 124	
Figure 28. Timestamp calculation for a set of cluster points .. 125	
Figure 29. Model coupling function ... 127	
Figure 30. TrajEstU pseudocode ... 132	
Figure 31. Pseudocode of the TraclusGPU algorithm .. 140	
Figure 32. Query set size vs. execution time (TKSimGPU) ... 153	
Figure 33. K vs. execution time (TKSimGPU) ... 154	
Figure 34. Database size vs. execution time (TKSimGPU) .. 154	
Figure 35. Query set size vs. execution time (Top-KaBT) ... 159	
Figure 36. Query set size vs. % candidate pairs explored (Top-KaBT) 160	
Figure 37. Query set size vs. execution time of Top-KaBT alone 161	
Figure 38. Database size vs. query execution time ... 162	
Figure 39. Database size vs. % candidate pairs explored ... 163	
Figure 40. Database size vs. execution time of Top-KaBT alone 164	
Figure 41. K vs. query execution time .. 165	
Figure 42. K vs. % candidate pairs explored .. 166	

 ix

Figure 43. K vs. execution time of Top-KaBT alone ... 167	
Figure 44. Sampling rate vs. accuracy (deer dataset) ... 175	
Figure 45. Sampling rate vs. execution time (deer dataset) .. 176	
Figure 46. Sampling rate vs. accuracy (hurricane dataset) ... 177	
Figure 47. Sampling rate vs. execution time (hurricane dataset) 178	
Figure 48. Sampling rate vs. accuracy (synthetic dataset) .. 179	
Figure 49. Sampling rate vs. execution time (synthetic dataset) 179	
Figure 50. Query length vs. accuracy (deer dataset) ... 180	
Figure 51. Query length vs. execution time (deer dataset) ... 181	
Figure 52. Query length vs. accuracy (hurricane dataset) .. 181	
Figure 53. Query length vs. execution time (hurricane dataset) 182	
Figure 54. Query length vs. accuracy (synthetic dataset) ... 182	
Figure 55. Query length vs. execution time (synthetic dataset) 183	
Figure 56. Standard deviation of the measurement noise vs. accuracy (deer dataset) .. 184	
Figure 57. Standard deviation of the measurement noise vs. execution time (deer

dataset) .. 185	
Figure 58. Standard deviation of the measurement noise vs. accuracy (hurricane dataset)

... 185	
Figure 59. Standard deviation of the measurement noise vs. execution time (hurricane

dataset) .. 186	
Figure 60. Standard deviation of the measurement noise vs. accuracy (synthetic dataset)

... 186	
Figure 61. Standard deviation of the measurement noise vs. execution time (synthetic

dataset) .. 187	
Figure 62.Acceleration tolerance vs. accuracy (deer dataset) 187	
Figure 63. Acceleration tolerance vs. accuracy (hurricane dataset) 188	
Figure 64. Acceleration tolerance vs. accuracy (synthetic dataset) 189	
Figure 65. Number of segments vs. execution time (synthetic dataset) 193	

 x

LIST OF TABLES

Table 1. Notation .. 3	
Table 2. Feature comparison of top-K trajectory similarity query processing techniques

... 74	
Table 3. Experimental parameters of TKSimGPU and Top-KaBT 152	
Table 4. Experimental parameters of TrajEstU .. 173	
Table 5. Experimental parameters of TraclusGPU ... 192	

 xi

ABSTRACT

Through the use of location-sensing devices, it has been possible to collect very large

datasets of trajectories. These datasets make it possible to issue spatio-temporal queries

with which users can gather information about the characteristics of the movements of

objects, derive patterns from that information, and understand the objects themselves.

Among such spatio-temporal queries that can be issued is the top-K trajectory similarity

query. This query finds many applications, such as bird migration analysis in ecology

and trajectory sharing in social networks. However, the large volumes of the trajectory

query sets and databases, along with their associated uncertainty, pose significant

computational challenges. One way to address these challenges is through the use of

parallel architectures like GPUs, and through the use of models that can produce

accurate trajectory estimates. Nevertheless, not much research has been done to design

efficient and scalable techniques to process this type of query on parallel architectures.

In this dissertation, we propose a novel system to process top-K trajectory similarity

queries in parallel on Big Data using GPUs that is capable of handling both certain and

uncertain trajectory data. The system consists of four novel algorithms: TKSimGPU to

process top-K trajectory similarity queries; Top-KaBT to reduce the size of the

candidate set generated by top-K trajectory similarity query algorithms; TrajEstU to

estimate the true trajectory when data uncertainty exists; and TraclusGPU to perform

local trajectory clustering to aid in the preprocessing stage of TrajEstU. TKSimGPU

works by iteratively processing near-join similarity queries, while Top-KaBT calculates

the lower and upper bounds of the Hausdorff distance between candidate pairs, and then

 xii

uses these bounds to remove spurious candidates. Top-KaBT exploits GPUs to improve

TKSimGPU by ensuring load balancing across the threads, ensuring memory

coalescing, and using special pruning techniques that reduce the size of the candidate

set. TrajEstU splits the lifetime of an object’s trajectory into time intervals where the

object’s acceleration is nearly constant. Then TrajEstU uses the local trajectory clusters

to obtain the movement patterns that are prevalent in the areas where trajectories have

low-sampling rates, and uses linear regression to fit a constant acceleration model to the

observed positions of the moving object. Finally, TraclusGPU helps TrajEstU scalably

find those local trajectory clusters that are used in the construction of trajectory models.

Extensive theoretical and experimental evaluations performed on our proposed

techniques showed that each of them has better performance in terms of accuracy and

execution time than state-of-the-art techniques when applied to large real-life and

synthetic trajectory datasets for Big Data applications.

 1

CHAPTER I
INTRODUCTION

1 Objective

The objective of this research is to develop a novel system to process top-K trajectory

similarity queries in parallel on Big Data using GPUs that is capable of handling both

certain and uncertain trajectory data that addresses the following characteristics:

o Support for trajectories of different sizes

o Support for intra-trajectory sampling rate variation

o Measurement uncertainty

o Model uncertainty

o Triangular inequality

o Scalability through parallel processing on GPUs

The remainder of this chapter is organized as follows. Section 2 presents the

background material on trajectories, top-K trajectory similarity queries, and Graphics

Processing Units (GPUs). Then Section 3 discusses the issues and challenges that arise

when designing parallel top-K trajectory similarity query processing techniques.

2 Background

In this section we discuss the background concepts that are necessary in order to follow

the ideas introduced in this dissertation. This section consists of four subsections:

Section 2.1 describes the notation used in this work; Section 2.2 presents the geometric

background concepts; Section 2.3 presents the concept of trajectory similarity; and

 2

finally, Section 2.4 provides an introduction to GPUs, their programming model, and

their issues.

2.1 Notation

We now present in Table 1 a summary of the notation used in this dissertation.

Notation Meaning
p,	q,	r,	s,	pi,	qi		
	

Trajectories

([*]	 The i-th-point of trajectory p, where i is a positive integer.

([*]. -	 The x-component of the i-th-point of trajectory p

([*]. .	 The y-component of the i-th-point of trajectory p

([*]. /	 The timestamp of the i-th-point of trajectory p

|p|	 The number of points in trajectory p

p[I]	 The set of points of trajectory p whose timestamps fall within the time
interval I=[t0,tf]

P The set of query trajectories

Q The set of database trajectories

K The K parameter of top-K queries

2(-, .) The Euclidean distance between points x and y

MBR(p) The minimum bounding rectangle of trajectory p
EMBR(p,5)	 The 5-extended minimum bounding rectangle of trajectory p	
	67,8 The min-distance between the MBR of p and the MBR of trajectory q.

In other words, 	67,8 = min<∈>?@ 7 ,A∈>?@ 8 2 -, . .
	B7,8 The max-distance between the MBR of p and the MBR of trajectory q.

In other words, 	B7,8 = max<∈>?@ 7 ,A∈>?@(8)	 2(-, .).
ℎFGH2((, I) The Hausdorff distance between trajectory p and trajectory q

C The set of candidate pairs, as generated by a technique like
TKSimGPU, that is a subset of J×L

 3

Cp The subset of C consisting of all pairs that have p as its left
component. In other words:	M7 = (, I ∈ M	 	I ∈ L}.

B[*, O]	 The element of the i-th-row and j-th column of matrix M

B[*, :]	 The i-th-row of matrix M

c.repr	 The representative trajectory of the trajectory cluster c

5e3,	7e6	 This is the scientific e notation and in these cases it denotes the values
5×10Z	F[2	7×10\

Table 1. Notation

2.2 Geometric Background

2.2.1 Definition (Minimum Bounding Rectangle): Given any set of points in the

plane, its minimum bounding rectangle (MBR) is the smallest rectangle that contains

(bounds) such set. Figure 1 illustrates the concept of MBRs. In the left part of the figure

there is a set points, and in the right part, there is another set of points (that form a

trajectory). From the figure it is easy to see that their MBRs are the smallest rectangles

containing each of the sets.

2.2.2 Definition (]-extended Minimum Bounding Rectangle): Given a real number

5 > 0, and any set of points, its 5-extended minimum bounding rectangle (eMBR) is a

Figure 1. Examples of MBRs

 4

rectangle that results from extending each side of the MBR of the set of points by 5. So,

if the MBR of a given set of points has upper left corner coordinates (ux, uy) and lower

left corner coordinates (lx, ly), then the eMBR has upper left corner coordinates (ux-	5,

uy+	5) and lower left corner coordinates (lx+	5, ly-	5). Figure 2 illustrates the concept of

eMBRs. In the left part of the figure, there is a planar figure with its associated MBR,

and in the right part, there is another set of points (that form a trajectory) with its

associated MBR. In this figure we see that each of the MBRs has been extended in all

directions by an amount 5.

2.2.3 Definition (Trajectory): Informally, a trajectory is a polygonal line consisting

of the points that a moving object occupies in space as time goes by. One way of

constructing these polygonal lines is by periodically sampling the positions of the

objects being tracked through the use of location sensors like GPS. More formally,

given a set -_, ._, /_ /_ ≤ 	 /_ab, 1	 ≤ 	*	 < 	[} of points in ℝZ sampled from the

movement of an object with a location sensor, a trajectory over S is a continuous

Figure 2. Examples of eMBRs

 5

function e ∶ 	 [1, [] 	→ 	ℝZ

	

where e(*) 	= 	 -_, ._, /_ 	for all integers * ∈ [1, . . . , [] and

such that τ(x), with - ∈ [/_, /_ + 1), is the interpolated value between τ(i) and τ(i + 1)

[CW06]. Figure 3 shows an example trajectory with 5 points. At each point we use the

notation p1 = (10, 2) @ 9:01:56 am to denote that the x coordinate of p1 is 10, its y

coordinate is 2, and its associated timestamp is 9:01:56 am.

2.2.4 Definition (Sub-trajectory): Given a trajectory (= -_, ._, /_ /_ ≤ 	 /_ab, 1	 ≤

	*	 < 	[}, we define the sub-trajectory of p during the interval [a,b], denoted by

traj[a,b], with a < b, as the set of all points of the trajectory p with timestamps

between a and b. More formally, it is the subset { -_, ._, /_ |	F ≤ /_ 	≤ 	 /_ + 1	 ≤ j, 1	 ≤

	*	 < 	[}.

2.2.4 Definition (Size of a Trajectory): Given a trajectory (= -_, ._, /_ /_ ≤

	/_ab, 1	 ≤ 	*	 < 	[}, its size is the total number of points that belong to the trajectory.

For example, the trajectory in Figure 3 has 5 points and is said to have size 5.

Figure 3. Example of a trajectory

 6

2.2.5 Definition (Length of a Trajectory): Given a trajectory (= -_, ._, /_ /_ ≤

	/_ab, 1	 ≤ 	*	 < 	[}, its length is the summation of the distances between consecutive

points in the trajectory. More formally,

kl[m/ℎ (= 2((* , ([* + 1])
nob

_pb

For example, the trajectory in Figure 3 has length d(p1, p2) + d(p2, p3) + d(p3, p4) +

d(p4, p5).

2.2.6 Definition (Lifetime of a Trajectory): Given a trajectory (= -_, ._, /_ /_ ≤

	/_ab, 1	 ≤ 	*	 < 	[}, its lifetime is [t0,tn-1], i.e., the smallest closed time interval

containing the projections of the points in p into the time domain. For example, the

trajectory in Figure 3 has lifetime [9:01:56 am, 9:02:17 am].

2.2.7 Definition (Average Trajectory Sampling Rate): Given a trajectory (=

-_, ._, /_ /_ ≤ 	 /_ab, 1	 ≤ 	*	 < 	[}, its sampling rate is the average time elapsed

between consecutive points in the trajectory. More formally,

qF/l (=
/_abo/_nob

_pb
[− 1

For example, the trajectory in Figure 3 has an average trajectory sampling rate of (5s +

5s + 5s + 6s) / 4 = 21/4 s = 5.25s.

 7

2.2.8 Definition (Low Sampling Rate Trajectory): Given a trajectory, it is said to be

a low-sampling rate trajectory if the average time span between any two of its

consecutive points is greater than a predefined threshold. A trajectory that is not a low-

sampling rate trajectory is said to be a high-sampling rate trajectory.

2.3 Trajectory Similarity Background

2.3.1 Definition (Trajectory Similarity): The informal notion of trajectory similarity

is as follows. Any two trajectories p and q are said to be similar if their projections onto

their movement space are close to each other throughout their lifetimes. This implies

that the shape of the trajectories has no impact on the result set; so two trajectories with

the same shape but that are very far away from each other will be more dissimilar than

two trajectories that are very close to each other, but with wildly different shapes.

This informal notion of trajectory similarity is illustrated in Figure 4, which presents

Figure 4. Example of trajectory similarity

 8

three trajectories p, q, and r. Trajectories p and r have exactly the same shape, but are

very far apart, while trajectories p and q have very different shapes, but are close to

each other. Therefore, since trajectories p and q are closer to each other, the most

similar trajectory to p is trajectory q.

2.3.2 Definition (Top-K trajectory similarity query): Given a positive integer K >

0, two finite non-empty sets of trajectories, P (the query set) and Q (the database), and a

similarity measure σ: S × S → R, a top-K trajectory similarity query returns for every

(∈ 	J a set Rp satisfying that |Rp| = K and for every I	 ∈ 	q7 and Is/ℎlt

	

∈ 	L	–	q7

	

it

is the case that σ(qother , p) ≤ σ(q, p) [DTS08]. Figure 5 contains an example of a top-K

trajectory similarity query, where the query set P consists of trajectories p1 and p2, and

the database consists of trajectories q3, q4 and q5, and K=2. As can be seen from this

figure, the most similar database trajectories to p1 are trajectories q3, and q5 because

they are the closest to p1. Similarly, the most similar database trajectories to p2 are

trajectories q4, and q5. For this reason, we say that the result set of this top-2 trajectory

similarity query is {(p1, q3), (p1, q5), {(p2, q4), (p2, q5)}. Notice that the actual shapes of

the trajectories have no impact on the result set, just their relative proximity.

2.3.3 Applications of top-K trajectory similarity queries: Top-K trajectory

similarity queries have many applications. We now discuss several of them.

• Ecology: Ecologists are interested in understanding how diseases are transmitted

among birds, and how bird species make use of resources like space [VGK02]

[HGKL07][CBPB10][RDTD+15]. Top-K trajectory similarity queries can help

 9

these applications because they can help to find the birds with the K most similar

trajectories, and this indicates birds that may come into contact with each other.

• Social Networking: These queries also have applications in online social

networking sites [ZXM10] that allow sharing of travel trajectories [ML13]. For

example, an individual might want to meet other people with the most similar

travel trajectories to his own trajectories.

• Bioimaging: Biologists are interested in detecting spatio-temporal patterns in

particle migrations during cellular mitosis [VS98][VHK06]. In particular, they

are interested in finding patterns like “Type A of particles tend to seek or avoid

type B particles.” A top-K trajectory similarity query can help in the process of

finding these patterns because if type B particles avoid type A particles, then the

trajectories of both particles will be more dissimilar, thus less likely to be among

each other’s’ top-K most similar trajectories.

Figure 5. Example of top-K trajectory similarity query

 10

• Meteorology: Meteorologists want to be able to predict the path of a developing

hurricane. Since hurricanes have the tendency to take similar paths,

meteorologists can use past hurricane trajectories that are similar to the one

currently developing in order to help improve their predictions of its future track

[BDS14][PKKF+11].

• Sports: Coaches and sports researchers are interested in knowing the movement

patterns of players [COO05][BDS14] obtained from video footage of GPS

sensors. For example, they are interested in deducing the common plays

performed by a given team.

These applications involve big trajectory data where data are long trajectories with

many locations, and the number of trajectories is large due to the high number of

moving objects. In this dissertation, we refer to these applications as Big Trajectory

Data applications.

2.4 GPU Background

In this section we introduce GPUs, explain why and when to use them, and describe

their programming model.

2.4.1 What are GPUs?

Graphics Processing Units (GPUs) are co-processors in charge of carrying out the

necessary calculations to render graphical models, i.e., they are the graphics cards that

are installed in desktop computers, workstations, mobile devices, etc., for displaying

 11

graphics in a computer. As such, almost any computing device is equipped with a GPU.

In most cases, GPUs are separate cards directly connected to the Peripheral Component

Interconnect express (PCI express) bus, but they can also be integrated into the CPU

chip or the motherboard itself.

While performing this job of rendering graphics, GPUs are required to execute the same

piece of code (called shader) over millions of vertices under tight time-constraints

[GK10]. For this reason, GPUs were designed as a parallel architecture capable of

simultaneously performing many floating operations. However, nowadays, GPUs not

only are designed for rendering graphics, but also can be used for general purpose

parallel programming.

2.4.2 Why and when to use GPUs?

Among the many advantages of GPUs are that they are present in many kinds of

computers, from mobile devices to supercomputers; on certain algorithms that exhibit

lots of parallelism, they can achieve up to an order of magnitude of higher floating point

instruction throughput than multicore CPUs [LKCD+10]; and they are very energy

Figure 6. GPU description

 12

efficient [LM13]. Another advantage of GPUs is that there are works [LLZC15] that

allow GPU processing from within the popular Spark parallel computing framework

[ZCFS+10], so that the high instruction throughput of GPUs can be combined with the

scalability, ease of use and fault-tolerance of the Spark framework. All these advantages

of GPUs make them excellent tools for tackling the computational challenges associated

with processing top-K trajectory similarity queries.

2.4.3 GPU Programming Model

We now discuss the programming model of GPUs [GK10] using the vocabulary of

CUDA [W13], which is one of the GPU programming models. GPUs follow a

parallelism model that is very similar to SIMD (Single Instruction Multiple Data)

[HP12], where different threads perform the same instruction in parallel over different

data. To accomplish this, the programmer must specify the total number of threads that

will run in the GPU. Once this is done, during runtime, the system will assign a unique

identification number to every thread; it is in this manner that different threads can

perform the same instruction and work on different data, similar to what MPI (Message

Passing Interface) does [P11]. GPUs are designed to run portions of code called kernels,

which look like regular C-language functions and are called from within the CPU

execution flow. However, there is one inconvenience with GPUs, which is that these

cards have a separate memory address space from the host computer’s main memory. So

before kernels are launched, the CPU must call a special function to transfer the data

from the host computer’s main memory to the device’s memory space. In a similar

fashion, once the kernel finishes its execution, the CPU must call another special

 13

function to transfer the results from the device’s memory space back to the host’s main

memory.

GPUs can be thought of as a highly parallel architecture where execution threads form

the most essential part of the execution hierarchy. At the top of this hierarchy is the grid,

which is composed of all threads launched with the kernel. All the threads in the grid can

access the GPU’s global memory, which is a memory space that is big (in the order of

gigabytes) and has high latency. All the threads in a grid are grouped at the time that the

kernel is launched into thread blocks, each of which is a collection of threads that can

communicate through shared memory. This is illustrated in Figure 7 which shows three

thread blocks with three threads each (each GPU thread block has a number of threads

which is a multiple of 32), and also shows the shared memory corresponding to every

thread block. Shared memory is a memory space private to each thread block that is both

smaller (in the order of tens of kilobytes) and faster (around 10 times) than global

memory [W13]. The threads within a thread block are grouped into sets of 32 threads

called warps, each of which is a collection of threads that execute the same instruction

(maybe with different operands) in lockstep.

This hierarchy determines not only which threads can communicate, but also how

threads can synchronize. Only the threads within a block can use barrier synchronization,

and the only way to run barrier synchronization among threads belonging to different

blocks is to exit the current kernel and launch a new one. The reason for this is that not

all thread blocks run simultaneously.

 14

2.4.4 GPU Issues

There are a number of challenges that need to be addressed when designing a scalable

algorithm for GPUs. Among them are the five major issues: low global memory

bandwidth relative to the number of threads, low PCI-express memory bandwidth,

efficient use of shared memory banks, thread divergence, and load balancing. We now

discuss each of these issues.

2.4.4.1 Low global memory bandwidth relative to the number of threads

In GPUs there are often thousands of threads contending for access to the (slow) global

memory. This implies that every time there is a global memory read instruction,

thousands of memory transactions need to be performed (one per thread). To deal with

this problem, GPUs (just like regular CPUs) are equipped with caches that can exploit

the spatial locality of global memory accesses in order to reduce the traffic through the

Figure 7. GPU memory space

 15

memory controller. However, in order to take advantage of such caches, threads in a

GPU need to access global memory following patterns that respect the spatial locality.

When threads access global memory respecting this spatial locality, then the cache can

reduce the contention for memory bandwidth, in which case it is said that the GPU has

coalesced global memory accesses.

More precisely, a coalesced memory access occurs when threads in a warp

simultaneously access adjacent locations in the GPU’s global memory (for example,

threads t32,t33,...,t63 access locations a, a + 1, ..., a + 31, assuming that location a is a

multiple of the size of the type located at those addresses), only a single global memory

transaction is performed to access all the locations (instead of 32 separate transactions);

therefore, all those potentially separate accesses to memory are coalesced into a single

one. This has the advantage of reducing the demand for memory bandwidth, which in

the case of GPUs constitutes one of the dominating factors for performance [KH13].

Hence, ideally, all global memory accesses within a warp should be to adjacent

locations.

Figure 8 illustrates the idea of memory coalescing. In the left part of the figure we see a

group of coalesced global memory accesses are coalesced because the first warp

(threads 0 to 31) accesses a continuous block of memory starting at address n, which is

aligned at 128 bytes. In the right part of this figure, the global memory accesses are

uncoalesced because thread 31 causes the warp to accesses memory locations across

two separate cache blocks.

 16

2.4.4.2 Low PCIe memory bandwidth

The GPU is connected to the host computer through the PCI express (PCIe) bus, which

has a theoretical bandwidth of 31GB/s (using PCIe v4.0 x16). On the other hand, the

GPU’s global memory has a theoretical bandwidth of 480 GB/s (in a Tesla K80 GPU

[Nvidia17]), while the host computer’s main memory has a theoretical bandwidth of

85GB/s (with a 24 core Intel E7 8894 v4 chip) [Intel17]. The problem is then that

transmitting data to and from the GPU is expensive because of the relatively low PCIe

memory bandwidth. Therefore, GPUs should be programmed so as to maximize the

amount of work performed on each data batch received through the PCIe bus, instead of

communicating back and forth with the host’s main memory. This problem is

compounded with the fact that GPUs in general have a small global memory space

(12GB ~ 24GB [Nvidia17]) so that when dealing with large volumes of data, this can

generate large amounts of (slow) PCIe communication, reducing the performance of the

GPU algorithm.

Figure 8. GPU memory coalescing

 17

2.4.4.3 Efficient use of shared memory banks

To improve the performance in GPUs, the shared memory address space is divided into

interleaved sub-blocks that can simultaneously and independently process transactions

to this type of memory. Consequently, it is desirable that when threads in a warp make

transactions to shared memory, they do not all access the same bank; instead, threads in

a warp should each try to access a different shared memory bank, and in this way all

these accesses can be processed independently and in parallel. To accomplish this, it is

important to be aware that it is usually the case, and GPUs are not an exception in this

regard, that the addresses corresponding to different banks are interleaved in a way such

that, if there are 32 banks, the address x in the shared memory corresponds to the bank

(x mod 32). Knowing this, it is possible to strive to equally distribute shared memory

accesses among all banks.

2.4.4.4 Thread divergence

A warp is said to have thread divergence during execution if when a warp finds a

conditional (or an iterative) statement, there is at least one pair of threads tx, ty such that

the boolean condition of the conditional (or iterative) statement is true for tx but false for

ty; therefore, the threads take separate paths through an if statement: one takes the if

branch, and the other takes the else branch. This situation is illustrated in Figure 9,

which shows a conditional statement (in the left part of the figure) that forces threads

with even indexes to execute just code A, while the threads with odd indexes are forced

to execute just code B. The problem with thread divergence is that it entails a

 18

performance penalty because, since warps execute in lock-step, the hardware needs to

make all threads in the warp run both branches in a serial fashion [HP12]. Ideally, code

in a kernel should have no thread divergence.

2.4.4.5 Load balancing

Load balancing refers to striving to evenly divide the computational tasks among

computing units in a way such that each GPU thread performs a similar amount of

work. This issue impacts the performance of any parallel GPU algorithm because the

time spent by the computational unit that receives the most time-consuming subtask will

dominate the algorithm’s overall execution time. Ideally all tasks submitted to the GPU

should be evenly balanced among the computational units in order to ensure that no

processor in the GPU is idle while others are working and, thus, no single computing

unit is responsible for dominating the execution of the parallel algorithm.

Figure 9. Thread divergence

 19

3 General Issues of Top-K Trajectory Similarity Query Processing

Techniques

In this section we discuss issues that should be addressed by top-K trajectory similarity

query processing techniques. These issues are the different trajectory sizes in the

database, local time shifts, measurement uncertainty, model uncertainty, triangular

inequality, inter-trajectory sampling rate variation, intra-trajectory sampling rate

variation, sampling phase variation, and the size of the parameter space.

3.1 Different trajectory sizes

Some techniques for computing top-K trajectory similarity queries like the Euclidean

Distance (or the Lp distances in general) require that all trajectories in the dataset have

the same number of points in order to be able to compute the Euclidean distance

between any two trajectories [FRM94]. However, in most datasets, the trajectories have

different sizes (e.g., [ZXM10]), so techniques based on Lp distances cannot compute the

similarity scores between trajectories. For this reason, a top-K trajectory similarity

query processing technique must use a similarity measure that can handle trajectories

with different numbers of points. This situation is illustrated in Figure 10, where we see

two trajectories, p with 5 points and q with 3 points. If a top-K trajectory similarity

query processing technique were to use a similarity measure like the Euclidean distance,

then it would not be clear which points to choose from each trajectory in order to

compute the distance between them.

 20

Requirement 1. A top-K trajectory similarity query processing technique should be able

to handle databases containing trajectories with different sizes.

3.2 Local time shifts

Two trajectories p and q are said to have a local time shift if they have approximately

the same average sampling rate, but for a portion of the lifetime of p(q) this p(q) moves

faster than q(p), and for the remaining portion of the lifetime of p(q), q(p) moves faster

than p(q). The problem with local time shifts is that since both trajectories have the

same sampling rate, then the average time elapsed between consecutive points in each

of the trajectories is the same. Then, since for the initial portion of the lifetime of p(q)

this trajectory moves faster, that means that during this initial portion, the distance

between consecutive points of p(q) is larger than the distance between consecutive

points of q(p) in the same interval. Figure 11 shows an example of local time shifts. To

the left of the figure, we see two trajectories p and q with the same sampling rate but

moving at different speeds. Trajectory p initially moves fast, and then moves slowly.

Trajectory q, on the other hand, moves slowly at the beginning, and then moves fast.

Figure 10. Different trajectory sizes

 21

The issue in this case is that if we choose to compare points in p with their

corresponding points in q (respecting the order of the points in each trajectory), then the

distances between the corresponding points become artificially big as seen in the left

part of the figure, because the connecting segments between the corresponding points

are “slanted.” However, if a top-K trajectory similarity query processing technique is

able to interpolate trajectories (interpolated points are shown as small circles over the

trajectories on the right part of the figure), then it is possible to compute the “non-

slanted” distances that better capture the true similarity between trajectories p and q.

We see then that techniques that match a point in one trajectory to at most one point in

the other trajectory are not suitable for finding the similarity between trajectories with

local time shifts. In practice, it is not possible to enforce that raw trajectories (i.e.,

trajectories without pre-processing) do not have local time shifts because the presence

or absence of local time shifts depends on the relative speeds of the objects. For this

Figure 11. Local time shifts

 22

reason, a technique for top-K trajectory similarity query processing must address the

issue of local time shifts.

Requirement 2. A top-K trajectory similarity query processing technique should be able

to handle databases containing trajectories that have local time shifts.

3.3 Measurement uncertainty

Trajectory uncertainty can come from different sources that can be classified into two

major classes: the sources related to the measurement / instrumentation process, and the

ones related to the model dynamics. One of the noise sources related to the measurement

process is the noise inherent to GPS device measurements [CBPB10][MLSC13]. This

noise arises because no measurement is perfectly accurate, but also arises from the

environmental conditions surrounding the sensor at the moment when the measurement

is made. For example, in the ecology application (see Section I.2.3), the GPS

measurement errors can be greater if there are overcast skies in the place where the

animals are, or if the animals have tampered with their GPS collars, etc. This type of

noise is illustrated in Figure 12, where the trajectories of three objects, q, r and s, are

captured. Here we see that around each position (trajectory point) sampled, qi, ri, and si,

for each of the three corresponding trajectories, q, r and s, there is an “area of

uncertainty.” If we ignore the measurement uncertainty, the most similar trajectory to q

is trajectory r. However, if we consider the measurement to be noisy, then there is a high

probability that trajectory s is the most similar trajectory to q because the points of s have

low uncertainty and are almost as close to q as the points in r. On the other hand, the

 23

points on r have large uncertainty, so there is a non-zero probability that the points r0 and

r2 are farther away from q than s0 and s2, respectively. Hence, since many trajectory

datasets are collected through the use of sensors, there is an inherent error associated to

their measurements, and therefore, a top-K trajectory similarity query processing

technique should be able to address measurement uncertainty.

Requirement 3. A top-K trajectory similarity query processing technique should be able

to extract the signal from the noise associated with the location measurements, and to

estimate the degree of uncertainty associated.

3.4 Model uncertainty

One of the sources of uncertainty related to the model dynamics is the interaction

between the linear interpolation model for trajectories and the inconsistencies in the

sampling rate. If the time interval between two consecutive sampled points in a

Figure 12. Measurement/instrumentation uncertainty

 24

trajectory is very long, i.e., the trajectory has a low sampling-rate, and the object moves

at a high speed with a non-constant velocity and/or acceleration during that time

interval, then the linear interpolation model underlying trajectories may not be a good

approximation to the object’s movement. Figure 13 shows an example illustrating this

situation. The dotted lines correspond to the actual path taken by the moving objects,

while the straight lines connect consecutive sampled points. If we ignore model

uncertainty, then trajectory r is the most similar to trajectory q because its points are all

closer to q than the points in s. However, if we consider the actual true paths, we see

that s is the object with the most similar path to q. The uncertainty arises because the

sampling rate was too low. This source of uncertainty is present in our animal ecology

example because scientists want to maximize the lifetime of the expensive telemetry

devices that they attach to animals, which makes these devices subject to energy

utilization constraints. Therefore, to save energy, geolocators cannot work continuously,

Figure 13. Model uncertainty

 25

so animal trajectories cannot have high sampling rates [CBPB10]. As a consequence of

this, there is great uncertainty in the trajectory that an animal takes between the sampled

points. Another source of uncertainty in the animal ecology application relates to the

fact that frequently there are missing data in the trajectories because of failed attempts

at geolocation, in which the GPS device cannot successfully determine the animal’s

position [CBPB10]. Hence, we see that there is a concern about the impact of trajectory

model uncertainty in their studies.

Requirement 4. A top-K trajectory similarity query processing technique should be able

to estimate the true path of the object’s trajectory when trajectories have low sampling

rates.

3.5 Triangular inequality

Some top-K trajectory similarity query processing techniques [COO05][DTS08] exploit

the fact that the underlying trajectory similarity measure satisfies the triangular

inequality, in order to reduce the amount of work devoted to process the query.

However, if the query processing technique does not use a similarity measure that

satisfies the triangular inequality, then many existing techniques like R-trees, for which

there already are parallel algorithms that work on GPUs [ZYG13], cannot be easily

modified to be used with spatial data structures. This in turn entails that these latter

similarity query processing techniques require ad-hoc algorithms and data structures

that are far less studied than data structures like R-trees [Gutt84][BKSS90], TB-trees

[PJT00] and their corresponding query processing algorithms.

 26

Requirement 5. A top-K trajectory similarity query processing technique should ideally

be able to use a similarity measure that satisfies the triangular inequality so that the

knowledge of existing spatio-temporal data structures can be leveraged in order to

reduce the amount of work needed to process the query.

3.6 Inter-trajectory sampling rate variation

This issue refers to the case when two different trajectories (whose similarity is to be

computed) have very different sampling rates. In taxi trajectory datasets, cab drivers

modify the GPS sensors in their taxis to reduce energy consumption

[WZP12][RDTD+15]. Cab drivers that leave their GPS sensors in their default

configurations have associated trajectories with a higher sampling rate than the

trajectories corresponding to cab drivers that alter their GPS sensors. An example

illustrating the scope of this issue when processing top-K trajectory similarity queries is

the following. Suppose we are given a trajectory p of length n with a sampling rate of

15 seconds, and a trajectory q of length m with a sampling rate of 5 seconds, both

moving at the same velocity. Also assume that the true paths corresponding to p and q

have exactly the same shape, except that q is displaced by a fixed constant vector. We

say that p and q have inter-trajectory sampling rate variation if they have different

sampling rates. Now, when computing the similarity between p and q, every point pi in

p with timestamp ti is likely to be matched to points qj-1, qj, qj+1 with timestamps ti-5, ti,

and ti+5, respectively (because the true paths of one of the trajectories is a translation,

in a geometric sense, of the other). However, the matching between pi and qj-1, and

 27

between pi and qj+1 are both “slanted”, unlike the matching between pi and qj. Therefore,

these matches suggest that the distance (similarity) between p and q is larger than what

it truly is. This is because the trajectory p is missing points with timestamps ti-5 and

ti+5, which, if matched with qj-1, qj+1, respectively, would produce “horizontal” matches

that better reflect the distance or similarity between p and q.

In the left-hand part of Figure 14, there is an example of inter-trajectory sampling rate

variation. In this figure we see trajectories p and q that move at the same velocity, but

trajectory p has a low sampling rate, while trajectory q has a high sampling rate. If a

top-K trajectory similarity query is only allowed to compute the distances between pairs

of existing points in both trajectories, then some points in p are forced to be matched to

more than one point in q, and this can lead to “slanted” connecting segments that

introduce artificially long distances in the computation of the similarity between p and

Figure 14. Inter-trajectory sampling rate variation

 28

q. On the contrary, if a trajectory similarity query processing technique is allowed to

interpolate trajectories, then it can compute distances between points in p and in q that

are connected by “non-slanted” segments, leading to a more accurate trajectory

similarity computation, as shown in the right-hand part of Figure 14.

Since in practical applications it is hard to enforce that all trajectories have the same

sampling rate (because GPS sensors may fail, or may be running out of power), then a

technique for top-K trajectory similarity query should deal with this issue.

Requirement 6. A top-K trajectory similarity query processing technique should be able

to handle trajectories with different sampling rates.

3.7 Intra-trajectory sampling rate variation

This issue refers to the case when the sampling rate changes within a given trajectory.

For example, given trajectory p of length n, if the time elapsed between points p0 and p1

is 5 seconds, and then between p1 and p2 is also 5 seconds, but then between p2 and p3 is

10 seconds, we say that since the time elapsed between consecutive points has changed

within the same trajectory p, then p has intra-trajectory sampling rate variation.

Intra-trajectory sampling rate variation is an issue when processing top-K trajectory

similarity queries because if the similarity between two trajectories p and q needs to be

computed, and trajectory p and trajectory q both have intra-trajectory sampling rate

variation, then it may be the case that initially trajectory p and trajectory q are very

 29

similar, but after a certain point, they significantly diverge and the sampling rate

becomes really low. Figure 15 illustrates the situation. In this figure we see that initially

both trajectories have a low sampling rate, but then the sampling rate increases. Now,

since the sampling rate is very low when p and q diverge, then there are very few points

in both p and q that indicate this divergent behavior of the trajectories. Therefore, in the

overall computation of the similarity of p and q, the divergent behavior section has few

representing points, so the similarity measure will be biased towards those sections of p

and q that have more points (where both are very similar) indicating that the trajectories

are very similar, despite the fact that they strongly diverge after a certain point (which is

an indication that they are not similar because, informally, for trajectories to be similar

they must be close to each other through most of their lifetimes).

Requirement 7. A top-K trajectory similarity query processing technique should be able

to handle the pairs of trajectories that have different sampling rates from each other.

Figure 15. Intra-trajectory sampling rate variation

 30

3.8 Sampling phase variation

Assume we are given two different trajectories, p and q. They are said to have sampling

phase variation if their corresponding true paths are approximately similar, but one is a

translation (in a geometric sense) of the other. In other words, p and q have sampling

phase variation if the underlying true paths satisfy that truepath(p)[t] =

truepath(q)[t+∆] for ∆>0 (the phase) and any t>0. The left hand side of Figure 16

presents an illustration of this situation, where we see two trajectories p and q that are

identical, except that one is a displacement of the other through a “rigid movement.”

The issue is that the true paths could be almost exactly the same, but since the true paths

are sampled in an “out of phase” fashion, then this forces point pt = truepath(p)[t] to be

matched with point qt= truepath(q)[t+∆], which could be very far away, but still on the

Figure 16. Sampling phase variation

 31

sample true path. We see this in Figure 16, where the distances between the

corresponding points are measured over “slanted” segments, which lead to artificially

long distances. So despite the fact that the true paths are the same, since the paths are

sampled differently, the matched points artificially increase the distance or similarity

between the trajectories. This situation can be easily observed in datasets like the taxi

trajectory dataset because it is difficult to enforce that cab drivers turn their GPS on at

the same point along the trajectory path. Therefore, a top-K trajectory similarity query

processing technique should address this issue.

Requirement 8. A top-K trajectory similarity query processing technique should be able

to accurately compute the similarity between trajectories that share a very similar true

path, but that are sampled out of phase.

3.9 Dimensionality of the manually-tuned parameter space

The space of parameters is the set of all possible values of all the parameters that govern

the behavior of the top-K trajectory similarity query processing technique. For example,

the EDR technique [COO05] depends, among other parameters, of the value of 5, which

is a positive real number used by EDR to determine if two points, each belonging to a

separate trajectory, are neighbors. In general, the parameters pose a difficulty for the

implementation of query processing techniques in a database system because the

database administrator may need to periodically and manually tune those parameters to

ensure the best performance. This tuning job becomes increasingly difficult as the size

of the space parameters increases and even more so if the parameters may influence one

 32

another. Hence, a top-k trajectory similarity query processing technique should address

the issue of the dimensionality of the space of parameters that need to be tuned

manually by striving to reduce its size.

Requirement 9. A top-K trajectory similarity query processing technique should ideally

have a space of manual parameters of low dimensionality.

3.10 Large Databases and Large Trajectory Sizes

In the worst case, processing top-K trajectory similarity queries can require having to

compute the similarity between every query trajectory and every trajectory in the

database. This problem is aggravated by the fact that in many applications (e.g., the

social networking applications described in Section 2.3) there are large databases

involved, which leads to big computational challenges. In addition to this, it is often the

case that the trajectories themselves can have large sizes (i.e., trajectories can have

many points), so that computing the similarity between trajectories is very expensive. In

other words, computing a top-K trajectory similarity query is expensive because the

databases are large, and because the trajectories themselves are big. One way of

tackling this size issue is through the use of parallel computing architectures like GPUs,

multicore CPUs, etc. However, to efficiently run algorithms on parallel architectures

requires algorithms to be specifically designed to exploit their idiosyncrasies and issues

(see Section 2.4.4). Therefore, a top-K trajectory similarity query processing technique

should address the issue of large databases and trajectory sizes by being carefully

designed to exploit parallel architectures.

 33

Requirement 10. A top-K trajectory similarity query processing technique should be

designed to exploit the idiosyncrasies of parallel architectures like GPUs in order to

cope with the large databases and large trajectory sizes involved in processing this type

of query.

4 Contribution

Top-K trajectory similarity queries are spatial queries of great significance because they

have a wide variety of applications in many fields such as in the study of bird migration

in ecology [LHW07], in the study of the movement of galaxies in astronomy

[GC14][GC16], in helping identify friends with similar trajectories in social networks

[ZXM10], in doing urban planning [YZXS13][WZX14], etc. On the other hand, due to

the fact that trajectories can potentially have a large number of points, and that

trajectory datasets can be very large, these queries pose significant computational

challenges. Additionally, all trajectories have an uncertain nature because of the

measurement and model errors associated with the location sensing devices used to

collect the trajectories. So, despite their many applications, there exist very few works

devoted to dealing with the Big Data component of trajectory query processing

[ZYG12][GC14][GC16]. Out of these works dealing with Big Trajectory data, none of

them is devoted to the study of top-K trajectory similarity queries; instead, these works

address a very different type of trajectory similarity query called a near-join similarity

query, which presents different challenges to those of the top-K trajectory similarity

query, and has different applications to those mentioned above.

 34

In this dissertation, we propose a system for processing top-K similarity queries on Big

Trajectory Data using GPUs. The system consists of four techniques designed to

accomplish several of the different tasks required for processing this type of query. The

four techniques are TKSimGPU [LGZY15], Top-KaBT [LGZY16], TrajEstU [LGZ16]

and TraclusGPU.

The first algorithm introduced in this work, called TKSimGPU [LGZY15], is a GPU

technique for processing top-K trajectory similarity queries that is specifically designed

to take advantage of the architecture of GPUs. This algorithm was conceived with the

goal of ensuring load balance across the thread blocks, and providing efficient memory

access patterns to help ensure memory coalescing.

The second algorithm, called Top-KaBT [LGZY16], is a parallel GPU pruning

technique to reduce the number of spurious candidate trajectory pairs generated when

processing top-K trajectory similarity queries for Big Trajectory Data applications on

GPUs. This reduction is necessary because in Big Trajectory Data applications the

number of spurious candidate pairs is typically very large, so it has an associated

unnecessary large computational overhead. Top-KaBT works by using only the lower

and upper bounds of the similarity measure to remove the candidate pairs that surely

cannot belong to the query result set. This reduces the negative impact arising from the

small size of the GPU’s global memory. In addition, the technique achieves load

balancing and memory coalescing by having threads perform the same amount of work,

 35

and by having threads with consecutive indices access consecutive memory locations.

An advantage of Top-KaBT is that its ideas can be applied to any top-K trajectory

similarity query processing algorithm that uses a similarity measure satisfying the

triangular inequality, like ERP [CN04] and wDF [DTS08], to further reduce the amount

of work necessary to process the query.

The third algorithm, called TrajEstU [LGZ16], is a technique for estimating the true

path of moving objects in unconstrained spaces that takes into account both

measurement and model uncertainty. TrajEstU works by splitting the lifetime of an

object’s trajectory into time intervals where the object’s acceleration is nearly constant.

Then TrajEstU uses the local trajectory clusters (found in an off-line preprocessing

stage, so that it is done only once per database and not run each time we want to obtain

a true path estimate) to obtain the movement patterns that are prevalent in the areas

where trajectories have low-sampling rates, and linear regression to fit a kinematic

constant acceleration model to the observed positions of the moving object. By using a

linear regression model, TrajEstU reduces the uncertainty arising from the GPS

measurements and the low-sampling rate of trajectories.

The fourth algorithm, called TraclusGPU, is a technique for performing local trajectory

clustering on a hybrid GPU and multicore CPU architecture. This technique is based on

the serial Traclus Algorithm [LLHW07]. It was designed because in our experiments

we observed that TrajEstU’s off-line preprocessing stage, which consists of finding

these trajectory clusters, did not scale well with the size of the dataset. In fact, it took

 36

weeks to run this serial algorithm on datasets of the size used in our experiments in

Section IV.2.3. So, in order to make Traclus practical for Big Trajectory data, it is

essential that all of its stages scale well with the size of the dataset, including the off-

line preprocessing stage. The idea behind TraclusGPU consists in arranging the

trajectory data in contiguous arrays, so as to allow for efficient memory accesses.

To the best of our knowledge, there does not exist a parallel GPU technique for

addressing top-K trajectory similarity queries, nor a general GPU pruning technique for

top-K trajectory similarity queries, nor a system that integrates uncertainty estimation,

query pruning and processing on GPUs, nor a parallel GPU technique for local

trajectory clustering. Our proposed techniques fill these gaps.

For performance studies, we provide analyses of the worst-case time and spatial

complexities of the proposed techniques, and present extensive experimental studies of

their performance in comparison with state of the art techniques. In almost all cases, our

four algorithms outperform existing techniques.

5 Organization

The remaining of this dissertation is organized as follows: Chapter II presents a

literature review of top-K trajectory similarity query processing techniques, and of

techniques to estimate uncertain trajectories. Chapter III presents our proposed system

and implementation. Chapter IV contains the theoretical and experimental analyses of

our proposed approaches. Finally, Chapter V provides conclusions and future research

 37

directions.

 38

CHAPTER II
LITERATURE REVIEW

In this chapter we present in Section 1 a survey of some of the top-K trajectory

similarity query processing techniques, and in Section 2 a survey of some of the

techniques for estimating uncertain trajectories.

1 Literature Review of Top-K Trajectory Similarity Query Processing

Techniques

In this section we present a survey of some of the top-K trajectory similarity query

processing techniques. This survey is organized around the issues identified in Section 3

of Chapter I. Using these issues, we classified the surveyed techniques into three

categories: geometry-based techniques, edit distance-based techniques and

probabilistic-based techniques. The existing techniques are then classified according to

the manner that they address/not address the issues and challenges identified.

1.1 Geometry-based techniques

Geometry-based techniques use similarity measures that are inspired on geometrical

considerations. In many cases these geometry-based similarity measures satisfy the

triangle inequality, which allows for efficient pruning of many results that for sure

cannot form part of the query result set.

1.1.1 Euclidean Distance Technique

 39

The simplest trajectory similarity query processing technique is the Euclidean distance

top-K trajectory similarity query processing technique [FRM94]. This technique

assumes that the input trajectories have the same number of points, and then computes

the distance between each point in p and its corresponding point in q. After computing

all these distances, it adds them all up.

The Euclidean Distance between two trajectories p and q of length n is defined as

kv (, I = 	 (w. - − Iw. - v +	 (w. . − Iw. . vn
wpb .

Since the Euclidean distance satisfies the triangular inequality, then this inequality can

be used to help avoid an exhaustive search over the whole database, when processing

top-K trajectory similarity queries. One way of doing this is by computing a lower and

an upper bound for the Euclidean distance is using the triangular inequality: 2 (, I ≥

2 (, t − 2 t, I = yszlt{sG[2((, I), for a lower bound, and 2 (, I ≤ 2 (, t +

2 t, I = 	G((lt{sG[2 (, I , for an upper bound.

To process top-K trajectory similarity queries, the Euclidean distance algorithm

receives as inputs a query trajectory p, a database of trajectories Q, and a non-negative

integer K and proceeds as follows:

1. For every trajectory p in the query set, iterate through the first k trajectories q in

the database computing upperBound(p,q), and adding those k trajectories to the

candidate set.

 40

2. For every other trajectory q in the database, compute lowerBound(p,q). If

6F- G((lt{sG[2 (, | ≤ yszlt{sG[2((, I) for every trajectory c in the

candidate set, then trajectory q is discarded. Otherwise, it is added to the

candidate set of p.

3. Then, for every query trajectory p, compute euclideanDistance(p,c) for every c

in the candidate set of p, and return the trajectories with the shortest

euclideanDistance.

Advantages:

• This technique uses a metric to compute the similarities between trajectories, so

the standard spatial data indexes (e.g., R-tree [Gutt84][BKSS90], k-d trees

[Bentley75], etc.) can be used.

• This technique uses a metric that can be efficiently computed in worst-case time

complexity linear in the number of points of the trajectories. This is particularly

advantageous for Big Trajectory data because computing the similarities

between trajectories is an expensive operation that is compounded by the facts

that trajectories have large sizes, and that trajectory databases have large

numbers of elements.

Disadvantages:

• The Euclidean distance is very susceptible to outlier points because an outlier

point that is far away from its true position will significantly distort the final

 41

result of the similarity. Therefore, this technique does not properly address the

issue of measurement uncertainty.

• The Euclidean distance cannot cope with local time shifting since the matchings

between trajectories are one-to-one and are done respecting the temporal order

in each trajectory; therefore, the segments connecting corresponding points can

be slanted, thereby artificially increasing the distance between the trajectories.

• The Euclidean distance can only be computed between trajectories that have the

same number of points. Therefore, the Euclidean distance does not address the

issue of trajectories having different sizes.

• The Euclidean distance technique was designed for serial architectures;

therefore, to efficiently run in parallel architectures like GPUs, the technique

would need substantial modifications.

1.1.2 Hausdorff Distance Technique

Given two trajectories, p and q, the hausdorff distance hausd(p,q) between them is

defined as follows:

ℎFGH2 (, I = 	6F- 6F-7}∈76*[8~∈82 (_, I� ,6F-8~∈86*[7}∈72((_, I�)

In other words, the Hausdorff distance between trajectories is the maximum possible

distance between a point in one trajectory to its nearest point in the other trajectory.

Therefore, this trajectory similarity measure arises naturally from certain problems like

the bus route comparison problem, in which a transportation authority wants to replace

 42

one bus route by another, and the goal is to minimize the worst-case walking distance

from a stop in the old route to its nearest stop in the new route [NJS11].

The Hausdorff distance is a commonly used trajectory similarity measure that has the

advantage that it can be easily extended to mitigate the impact of noisy measurements.

Nonetheless, since the Hausdorff distance considers a trajectory as a set of points (as

opposed to a time-parametrized sequence of points), it cannot take into account the

dynamics of the trajectories when measuring similarities.

The Hausdorff distance between any two trajectories p and q can be bounded above by

the maximum of the Euclidean distances between points in p and points in q, which we

call upperBound(p,q), and bounded below by the minimum of such distances, which we

call lowerBound(p,q). To process top-K trajectory similarity queries, the Hausdorff

technique receives as inputs a query trajectory p, a database of trajectories Q, and a non-

negative integer K and proceeds as follows:

1. For every trajectory p in the query set, visit the first K trajectories q in the

database computing upperBound(p,q), and adding those K trajectories to the

candidate set.

2. For every other trajectory q in the database, compute lowerBound(p,q). If

6F- G((lt{sG[2 (, | ≤ yszlt{sG[2((, I) for every trajectory c in the

candidate set, then trajectory q is discarded. Otherwise, it is added to the

candidate set of p.

 43

3. Then, for every query trajectory p, compute hausd(p,c) for every c in the

candidate set of p and return the trajectories with the shortest wDF.

Advantages:

• The first advantage of the Hausdorff distance technique is that it uses the

Hausdorff similarity measure, which can deal with trajectories of different sizes.

• Another advantage of the Hausdorff distance technique is that it is parameter-

free, so there is no need to search in a parameter space for the right parameter

values.

• A third advantage of the Hausdorff distance technique is that it is a metric, so it

satisfies the triangular inequality. Hence, it can be used with well-studied spatial

data indexes like R-trees, k-d trees [Bentley75], etc.

Disadvantages:

• One of the main disadvantages of the Hausdorff distance technique is that, since

it uses the Hausdorff distance to compute the similarity between trajectories, it

does not take the dynamics or the relative order of the points in a trajectory into

account to compute its similarity with another trajectory.

• Another disadvantage of this technique is that it does not address the issues of

measurement and model uncertainty. However, when compared against the

Euclidean distance technique, it is more robust against outliers. This is because a

single outlier point can introduce significant errors in the Euclidean distance

 44

technique; however, in the Hausdorff technique, a single outlier may not

necessarily affect the overall similarity.

1.1.3 w-constrained Discrete Fréchet Distance (wDF)

Ding, Trajcevski, and Scheuermann proposed in [DTS08] a top-K trajectory similarity

query processing algorithm based on two key ideas. The first key idea is using a

modification of the discrete Fréchet distance, called the w-constrained discrete Fréchet

distance, as a way to efficiently measure the similarity between trajectories, which helps

overcome the problem with the Hausdorff distance, which ignores the dynamics of the

trajectories involved. The second key idea consists in proposing upper and lower

bounds for the Fréchet distance, and using those two bounds to avoid an exhaustive

search when answering top-K trajectory similarity queries. We will now comment on

these two key ideas.

The first key idea introduced in the work [DTS08] is the w-constrained discrete Fréchet

distance. However, since the w-constrained discrete Fréchet distance builds up on the

continuous Fréchet distance and its discrete version, we first present these last two

similarity metrics. Given two continuous curves in the plane Ä: [Fb, jb] 	→

ℝn, m: [Fv, jv] 	→ ℝn, the Fréchet distance between them is defined as Ä2 Ä, m =

inf
Ç,É

max
Ñ∈[Ö,b]

Ä(Ü /) − m(á /) , where Ü and á are continuous and monotonous

functions Ü: Fb, jb → 0,1 , á: Fv, jv → [0,1] called parametrizations.

 45

To intuitively explain the Fréchet distance, we can consider one of the objects to be a

person, and the other object as a dog. We also assume that neither the person nor the

dog backtrack or go backwards along the trajectories they describe (this is the intuition

behind a monotonous parametrization), and that they can change their velocity (the

parametrizations can be considered as changes in the velocity of the objects). Then, the

Fréchet distance between the curves they describe is the length of the shortest leash

necessary to perform the walk (this is the reason why the formal definition takes the

infimum). We see then that this is how the Fréchet distance takes the dynamics of the

trajectories into account.

The disadvantage of the continuous Fréchet distance, when applied to trajectories, is

that trajectories are discrete objects. Second, computing the Fréchet distance between

two trajectories would require solving an optimization problem over the space of all

possible parametrizations Ü and á. To address these issues, the work [EM94]

introduced a discretized version of the Fréchet distance that can be applied to

trajectories. This distance, just like the continuous Fréchet distance, computes the

similarities between trajectories by pairing a point in one trajectory with a point in the

other. Nonetheless, these pairings ignore the temporal distances and that can lead to

distortions in the similarity between the trajectories [DTS08]. To address this issue,

Ding Trajcevski and Scheuermann proposed the w-constrained discrete Fréchet

distance.

 46

Given two trajectories p and q, their w-constrained Discrete Fréchet distance is defined

as: zàâ (, I = min 	 Mä : Mä	is	a		coupling	between	p	and	q	s.t.	if		((ì}, Iî} ∈

Mä ⇒ (ì}. /−	Iî}. / < z}, where a w-constrained coupling between p and q is a

sequence { (ìñ, Iîñ , (ìó, Iîó , … , (ìô, Iîô } with (ì} ∈ (,	and Iî} ∈ I, and such that

Fb = jb = 1, Fw = jw = (= I = [, and for all i: F_ab = F_ or F_ab = F_ + 1, and

j_ab = j_ or j_ab = j_ + 1 (the matchings are monotonic non-decreasing), and the

length of a constrained coupling is Mä = max 2 (ì}, Iî} .

The intuition behind trajectory couplings is that each pair in a coupling represents the

state of the leash during any time window of length less than w. On the other hand, the

length of a coupling is, by definition, the largest distance between any pair of points in

the coupling. Then, it is easily seen that minimizing the length of the coupling is a

discretization of the Fréchet distance because the parametrizations correspond to the

couplings, and the infimum over all parametrizations corresponds to the minimum

length coupling.

The second key idea proposed in the work in [DTS08] is the introduction of both a

lower and an upper bound to the wDF between two trajectories, which are much

cheaper to compute than the actual wDF. The lower bound is based on the idea that for

any trajectory one can obtain a sequence of MBRs that contain the trajectory at disjoint

time intervals. To find a lower bound to the wDF distance between two trajectories p

and q, [DTS08] proposes finding a sequence of MBRs for each trajectory. A w-

constrained lower (upper) bound coupling LBwDF [UBwDF] is a monotonous coupling

 47

between the MBRs of p and q (instead of between the points of p and q), where the link

is defined as minDistance[or maxDistance] between MBRs. The w-constrained lower

bound distance between p and q is the minimum length of all possible w-constrained

lower bound couplings. An advantage of this lower bound is that it can be computed

using the same algorithm for computing the wDF distance, but only changing the link.

A similar idea is used for the upper bounds.

To process top-K trajectory similarity queries, [DTS08] receives as inputs a query

trajectory p, a trajectory database db and a non-negative integer K, and proceeds as

follows:

1. For every trajectory p in the query set, iterate through the first K trajectories q in

the database computing LBwDF(p,q), and adding those K trajectories to the

candidate set.

2. For every other trajectory q in the database, compute LBwDF(p,q). If

6F- ö{zàâ (, | ≤ k{zàâ((, I) for every trajectory c in the candidate set,

then trajectory q is discarded. Otherwise, it is added to the candidate set of p.

3. Then, for every query trajectory p, compute wDF(p,c) for every c in the

candidate set of p and return the trajectories with the shortest wDF.

Advantages:

• The wDF top-K trajectory query processing algorithm addresses the issue of

trajectories having different sizes.

 48

• A second advantage of this query processing algorithm is that it uses the Fréchet

distance as a similarity measure. The Fréchet distance is a pseudo-metric, so it

satisfies the triangular inequality. Therefore, this technique can also be used

with well-known spatial data structures like R-trees.

Disadvantages:

• The wDF top-K trajectory similarity query processing technique does not

address the issues of local time shifting.

• A second disadvantage of the wDF technique is that it does not address the

issues of measurement uncertainty and of model uncertainty.

• A third disadvantage is that the wDF top-K trajectory similarity query

processing algorithm takes an input parameter w (the temporal constraint for the

couplings), so it is not a parameter-free algorithm. Therefore, to use this query

processing algorithm, there is a need to search the value of w that yields the best

performance.

• Finally, the wDF algorithm is a serial algorithm, so it requires significant

changes in order to run in parallel architectures like GPUs.

1.1.4 DISSIM

Frentzos, Gratsias and Theodoridis introduced in [FGT07] the first top-K trajectory

similarity query processing algorithm, called DISSIM, that addresses the issue of inter-

trajectory sampling rate variations by using linear interpolation, so that it can avoid

computing the distance between points that lead to artificial increases in the distance

 49

between trajectories. Another peculiarity of the DISSIM trajectory query processing

algorithm is that it computes trajectory similarities by taking the temporal dimension

into consideration, that is, two trajectories are similar if they are closer to each other in

both time and space and not just in space alone.

DISSIM uses the following (dis)similarity measure between two trajectories, p and q:

àõúúõB (, I = 	 à7,8 / 	2/
Ñôùñ
Ñô

nob
wpb , where /w|1 ≤ û < [is the set of timestamps

of both p and q, and à7,8 / is the Euclidean distance between trajectory p and

trajectory q at time t. As we have discussed, unlike many of the techniques proposed in

this area, DISSIM computes the (dis)similarity between trajectories by taking the time

component into consideration. This is because the DISSIM measure is a function of the

time instants when the points in the trajectories were sampled. Therefore, DISSIM can

tell if the true paths corresponding to two trajectories are close to each other at a

specific time interval, unlike most of the techniques proposed in this area, which can

only tell if the true paths of the trajectories are close ignoring time.

To avoid an exhaustive search algorithm, Frentzos, Gratsias and Theodoridis proposed

in [FGT07] a lower bound, called OPTDISSIM, to the DISSIM dissimilarity that is

cheaper to compute than DISSIM, and an upper bound, called PESDISSIM, to DISSIM

that is also cheaper to compute than DISSIM. This lower bound is used in their

algorithm to remove trajectory candidates that for sure cannot be part of the query result

set. The idea of using this lower bound OPTDISSIM is that if for a trajectory not seen

so far, its OPTDISSIM is greater than the DISSIM of K trajectories seen so far, then

 50

since OPTDISSIM is a lower bound to DISSIM, the DISSIM of this unseen trajectory

cannot be smaller than that of the K trajectories seen so far. Therefore, the unseen

trajectory can be pruned away.

To process top-K trajectory similarity queries, DISSIM receives as inputs a query

trajectory p, a trajectory database db and a non-negative integer K, and proceeds as

follows:

1) Insert all the segments of all trajectories in the database into an R-tree.

2) Visit the R-tree in best-first mode using the MINDIST between the query

trajectory q and the Nodes and Leaves as heuristic. This means that the nodes

and leaves are visited in increasing order of MINDIST.

3) If the algorithm encounters a leaf node, then for every entry of that leaf node if

that entry belongs to a trajectory that has been pruned away, then that entry is

ignored. Otherwise, the algorithm retrieves the object o (trajectory)

corresponding to that entry and if the temporal extent of q and the temporal

extent of the entry intersect, the algorithm adds that intersecting time interval to

a list LO of time intervals associated with the entry’s object O.

4) If LO contains all intervals spanned by the temporal extent of o, then o is added

to a list Completed whose elements are all those objects, and then the algorithm

computes do = DISSIM(p,o). If do is greater than the DISSIM of the K most

similar objects to q seen so far, then o is discarded. Otherwise, it and the K most

similar objects to q seen so far are recomputed. If Lo does not contain all

intervals spanned by the temporal extent of o, the algorithm computes the

 51

PESDISSIM between q and o and proceeds analogously. If PESDISSIM is

smaller than the similarity of the K most similar objects to q seen so far, it is

stored in that list of similar objects.

5) When all the entries in the R-tree have been visited, the algorithm outputs the K

most similar objects to q.

Advantages:

• The DISSIM top-K trajectory similarity query processing technique does not

depend on any tuning parameter so that the dimensionality of the space of

manually-tuned parameters is 0, so it is easy to use this technique to process

trajectory similarity queries without having to search for a good parameter value

in a large parameter space.

• A second advantage of DISSIM is that it addresses the issue of inter-trajectory

sampling rate variation because this technique does interpolation in the

trajectory with lower sampling rate. This way, the “slanted matchings”

(mentioned in Section I.3) are avoided and the computed score between

trajectories better reflects the similarity between trajectories.

• Unlike many techniques to process top-K trajectory similarity queries, which

use ad-hoc data structures, DISSIM uses an R-tree [Gutt84][BKSS90], a well-

known technique, as the main data structure to store and retrieve the trajectories

in the database. Among other things, using an R-tree has the advantage that

DISSIM could potentially be implemented in parallel [ZYG13].

Disadvantages:

 52

• DISSIM computes the (dis)similarity between two trajectories by considering

one-to-one matches. This means that DISSIM cannot deal with local time shifts

(like DTW, which addresses local time shifts by allowing points in one

trajectory to match with multiple points in the other trajectory).

• Another disadvantage of DISSIM is related to the way it deals with the inter-

trajectory sampling rate issue. Since DISSIM performs interpolation in the low

sampling rate trajectories to find a better point to match against the other

trajectory, if the sampling rate is low enough and the true path of the object is

sinuous enough, then the trajectory interpolation model will severely deviate

from the true path, so that the similarity score will not truly reflect how similar

the two trajectories are. This problem with the trajectory interpolation model has

been explained in more detail in Section I.3.

• A third disadvantage of DISSIM is that it is a serial algorithm, so it requires

substantial changes for it to work efficiently on parallel architectures like GPUs.

1.2 Edit distance-based Techniques

Edit distance-based techniques use variations of the edit distance of strings [CLRS09] to

measure the similarity between two trajectories. In general, these techniques address the

issues of local time shifts and sampling phase variation, but do not satisfy the triangular

inequality, so they usually require ad-hoc indexing data structures to avoid exhaustive

searches when processing top-K trajectory similarity queries.

1.2.1 Dynamic Time Warping (DTW)

 53

Dynamic Time Warping (DTW) is a top-K trajectory similarity query processing

technique introduced in [BK94][KP00]. It computes the similarity between trajectories

in the following way. Assume two trajectories p, of length m, and q, of length n, are

given. The intuition behind the DTW similarity measure can be seen in terms of an

optimization problem. A match M between p and q is a relation over the set	[1,6]	×

	[1, [] that satisfies the following properties: (i) There are no crossings, i.e., if the pair

(*, O) belongs to M, then all other pairs in M of the form (û, y) with û ≥ *	satisfy that y ≥

O. Also, all other pairs of the form (û, y) with y ≥ O	satisfy û ≥ *. (ii) For every

integer	* ∈ 	 [1,6] there exists a pair of the form *, O ∈ B, for some O ∈ 	 1, [. (iii) For

every integer O ∈ 	 [1, [] there exists a pair of the form *, O ∈ B for some * ∈ 	 1,6 .

Every match M on p and q has an associated cost that is computed by adding up the

costs of each individual pair contained in M. The cost of the pair *, O ∈ B is given

by	2(([*], I[O]). Therefore, the cost of a match M is given by the expression

2(([*], I[O])_,� ∈> .

The optimization problem behind DTW is to find the least-cost matching on p and q. It

turns out that this optimization problem can be solved with dynamic programming.

Let’s see why: Suppose, again, that we are given two trajectories p, of length m, and q,

of length n, and that neither m nor n is zero. Also assume that àü† 6, [is the cost of

the least-cost matching on p and q. Then as a consequence of the three properties

mentioned above, an optimum match for p and q must contain the pair (m,n). Therefore,

àü† 6, [must be equal to 2(([6], I[[]) 	+ 	s/ℎlt	|sH/. According to the three

properties explained before, there are three mutually exclusive cases for this optimum

 54

match. Either this match contains a pair (m-1,n), in which case àü†(6, [) 	=

	2(([6], I[[]) 	+ 	àü†(6 − 1, [); or the match contains the pair (m,n-1), in which

case àü†(6, [) 	= 	2(([6], I[[]) 	+ 	àü†(6, [− 1); or the match contains neither

(m-1,n) nor (m,n-1), so that àü†(6, [) 	= 	2(([6], I[[]) 	+ 	àü†(6 − 1, [− 1).

Since these three cases are exhaustive, we have that àü†(6, [) 	= 	2(([6], I[[]) 		+

	6*[{àü†(6 − 1, [), àü†(6, [− 1), àü†(6 − 1, [− 1)}.

The DTW similarity measure can be computed in worst-case time complexity °(6	×

	[), and with worst-case space complexity °(6	×	[) (if we want to retrieve the

matching). Now, to process a top-K trajectory similarity query using the DTW

similarity measure, there are pruning techniques [YJF98][KR05] based on lower and

upper bounding the DTW of any two trajectories. These lower and upper bounds can be

used to help process top-K trajectory similarity queries more efficiently. We now

explain how this is done. DTW receives as inputs a query trajectory p, a database of

trajectories Q, and a non-negative integer K and proceeds as follows:

1. For every trajectory p in the query set, visit the first K trajectories q in the

database computing upperBound(p,q), and adding those K trajectories to the

candidate set.

2. For every other trajectory q in the database, compute lowerBound(p,q). If

6F- G((lt{sG[2 (, | ≤ yszlt{sG[2((, I) for every trajectory c in the

candidate set, then trajectory q is discarded. Otherwise, it is added to the

candidate set of p.

 55

3. Then, for every query trajectory p, compute DTW(p,c) for every c in the

candidate set of p and return the trajectories with the shortest DTW.

Advantages:

• A first advantage of this top-K trajectory similarity query processing technique

is that it addresses the issue of trajectories with different sizes (number of

points).

• Another advantage of DTW is that, compared to Euclidean distance-based

techniques, it is significantly less sensitive to outliers [WMDT+13].

Disadvantages:

• The DTW does not satisfy the triangular inequality, so it is not a metric.

Therefore, standard spatial indexes like the R-tree and the TB-tree cannot be

used.

• The DTW similarity measure forces all points to participate in the optimum

match, even outliers.

1.2.2 Longest Common Subsequence (LCSS)

The Longest Common Subsequence (LCSS) top-K trajectory similarity query

processing algorithm was proposed in [VKG02] to improve upon the Euclidean distance

and the DTW similarity measures to better handle measurement noise. LCSS measures

the similarity between two trajectories p and q by counting the number of points shared

in common between them, where a point in p and a point in q are shared in common by

 56

p and q if they are sufficiently close to one another. Therefore, it is seen that one

immediate advantage of this measure is that not all points of both trajectories have to be

matched. This similarity measure is a generalization of the Longest Common

Subsequence of Strings, where the idea is to find a sequence (not necessarily made up

of characters that appear consecutively in any of the strings) of maximum length that is

contained in both input strings.

Before proceeding to explain how LCSS computes the similarity between two

trajectories, we first define what it means when two points match with respect to a

positive real number. Given a number 	¢	 > 0, and two points (b	 and (v, these points

are said to match with respect to ¢ if |(b. -	–	(v. -| 	< ¢ and |(b. .	–	(v. .| 	< ¢. With

this definition, we now proceed to explain the intuition behind the similarity measure.

Suppose, again, that we are given ¢	 > 0, and two trajectories p, of length m, and q, of

length n, and that neither m nor n is zero. Also assume that kMúú 6, [, ¢ 	is the length

of the least common subsequence of p and q for ¢. If ([6 − 1] matches I [− 1 	with

respect to ¢, then we know that the LCSS of p and q for ¢ contains ([6 − 1] (and

I[[− 1]), so that the LCSS of p and q is equal to the LCSS of ([6 − 1]	and I[[− 1]

and then appending ([6 − 1] (or I[[− 1]). Otherwise, the LCSS of p and q is equal to

the kMúú((, I[[− 2]) or to kMúú(([6 − 2], I). We see then that the LCSS similarity

measure between any two trajectories of lengths m and n can be computed with a

dynamic programming in worst-case time complexity °(6	×	[), and with worst-case

space complexity °(6	×	[), if we want to retrieve the matching sub-sequence, or

°(6F-(6, [)) if we do not.

 57

Advantages:

• One advantage of the LCSS query processing algorithm is that it addresses the

issue of different trajectory sizes.

• The LCSS addresses the issue of local time shifting.

• The LCSS addresses the issue of measurement uncertainty.

Disadvantages:

• The first disadvantage of the LCSS top-K trajectory similarity query processing

algorithm is that it does not satisfy the triangular inequality; therefore, standard

indexes like the R-tree, k-d tree [Bentley75], etc. cannot be used with it.

• A second disadvantage of this top-K trajectory similarity query processing

algorithm is that it does not address the issue of model uncertainty, so that in

trajectories with low-sampling rates it may produce inaccurate query results.

• Another disadvantage of LCSS is that it is a serial algorithm with °(6	×	[)

worst-case space and time complexity; therefore, it does not scale for Big

Trajectory Data. Moreover, it requires substantial modifications in order to run

efficiently on parallel architectures like GPUs and multicore CPUs.

1.2.3 Edit Distance on Real Sequence (EDR)

The Edit Distance on Real Sequence (EDR) [COO05] is a serial top-K trajectory

similarity query processing algorithm designed to address the problem of local time

shifts, and noise sensitivity when computing the similarity between trajectories. This

technique represents an improvement upon ERP, DTW and LCSS because it is less

 58

sensitive to outliers than these three latter techniques. It is also an improvement upon

the Euclidean distance because of this same reason, and because it does not require

trajectories to all have the same length.

The idea behind this similarity measure is to compute the minimum number of

modifications (insertions, deletions) that need to be performed on one trajectory to

transform it into the other trajectory. As such, this similarity measure is based on the

edit distance of strings. The difference is that instead of comparing strings character by

character (where two characters match if and only if they are the same), EDR compares

trajectories point by point, where two points match if one of them is within an ¢ > 0

Euclidean distance of the other.

The worst-case time complexity of computing the EDR similarity between two

trajectories p and q of lengths m and n, respectively, is °(6	×[). Therefore, computing

a top-K trajectory similarity query on a large database is infeasible for large databases

containing trajectories with many points. This is the reason why the EDR technique

requires additional pruning techniques. To solve this problem, [COO05] introduced

three EDR-specific pruning techniques: pruning by near triangle inequality, pruning by

mean value q-gram, and pruning by histograms.

Now, we explain the rationale behind pruning by near triangle inequality. It has been

proved in [COO05] that the EDR similarity satisfies the following inequality:

§àq I, H + 	§àq H, t +	 H ≥ §àq(I, t), for any trajectories q, r and s. To prune

 59

using the Near Triangle Inequality, the technique selects a subset X of trajectories in the

database db, and computes and stores the exact EDR distance §àq(I, -) for every x in

X. After this, it sorts these trajectories x in X in ascending order of their EDR distance to

q. Then, the algorithm iterates through every trajectory s in the db, and finds the

following lower bound to §àq(I, H), called maxPruneDist, using the near triangle

inequality. If maxPruneDist (the lower bound to §àq(I, H)) is greater than the K-th

smallest EDR distance in §àq(I, -) for x in X, then we know that s cannot form part of

the result set, so it is discarded without having to compute §àq(I, H). Otherwise, we

compute §àq(I, H) and insert it into the subset X in ascending order of EDR distance to

q.

Pruning by mean value-q gram and pruning histograms work in a similar way as

pruning by near-triangle inequality in that they consist of obtaining lower and upper

bounds (which are much cheaper to compute than the EDR similarity) for the EDR

similarity between two trajectories, and then using these bounds to quickly remove

candidates that cannot form part of the query result set.

Advantages:

• One advantage of EDR is that it addresses the issue of trajectories having

different lengths.

• This technique also addresses the issue of local time shifts in trajectories and is

more robust than the Euclidean distance and the ERP distance in terms of

measurement noise.

 60

Disadvantages:

• One disadvantage of the EDR distance is that it is not a metric; hence, regular

and well-studied spatial indexes like TB-trees, R-trees, M-tree [CPZ97] cannot

be used to reduce the number of spurious candidate pairs.

• One consequence of this matching between points in the trajectories is that the

EDR similarity measure does not satisfy the triangular inequality. Therefore,

traditional pruning techniques like TB-trees, kd-trees [Bentley75] and R-trees

cannot be used to avoid computing the EDR similarity between the query

trajectory and every trajectory in the database.

• Another disadvantage of EDR is that it is a serial algorithm and requires

substantial modifications to efficiently run in parallel architectures like GPUs.

1.2.4 Edit Distance with Real Penalty (ERP)

The Edit distance with Real Penalty is a serial top-K trajectory similarity query

processing technique proposed in [CN04] to improve upon DTW and LCSS by being

more robust in circumstances where trajectories have measurement uncertainty, and to

improve upon EDR by satisfying the triangular inequality.

The key idea behind the ERP top-K trajectory similarity query processing technique is,

just like in the case of the EDR trajectory similarity query processing technique,

borrowed from the edit distance of strings. In fact, ERP and EDR are very similar to

each other, the difference between them is the distance between a point in a trajectory p

 61

and another in a trajectory q is not discretized with values 1 or 0 (like in EDR), but

instead their Euclidean distances are computed. Since the matchings between points are

not discretized, but instead their true distances are computed, ERP can be shown to

satisfy the triangular inequality.

The triangular inequality, which the ERP distance satisfies, can be used to prune

candidates of top-K similarity trajectories. If q is a query trajectory, and s and r are

database trajectories, then the triangular inequality states that §qJ I, H ≥

§qJ(I, t)	– 	§qJ(t, H). This inequality is used by ERP as follows. The algorithm first

computes §qJ(t_, H) for every t_ belonging to a subset R of the trajectory database, and

then computes §qJ(I, t_). Once this is done, the algorithm sorts these trajectories in R

in increasing order of ERP distance to q. Then to process a top-K trajectory similarity

query, the algorithm performs a linear scan visiting every trajectory s in the database,

computing 6F- §qJ I, t_ − §qJ t_, H ≤ §qJ(I, H). If the left-hand side of this

inequality is greater than the K-th smallest ERP distance found so far, then s can be

discarded. Otherwise, s could be in the result set of the query, so the distance §qJ(I, H)

is computed, and stored in the set of ERP distances found.

One problem with the previous technique is that it performs a linear scan through the

database. By using a spatial tree index, it could be possible to avoid having to linearly

explore all database trajectories. However, such spatial tree index would need to be

two-dimensional. The work by [CN04] proposed another pruning technique to avoid

having to use a two-dimensional spatial structure. Instead, they proposed a new lower

 62

bound for the ERP distance:	àk{ I, H = 	 HG6 I – 	HG6 H ≤ §qJ(I, H). This

technique uses a B+-tree [Bayer71] to index all the trajectories in the database by their

sum(s). Then, it performs a range search in the B+-tree using HG6(I) to retrieve the K

trajectories and compute their ERP distances to q.

Advantages:

• This technique addresses the issue of trajectories having different sizes (number

of points in a trajectory).

• Another advantage of ERP is that it is a metric, so it satisfies the triangular

inequality. This property enables triangular inequality pruning and the use of

well-known spatial data indexes like R-trees and k-d trees [Bentley75].

Disadvantages:

• One of the disadvantages of the ERP distance is that it is still sensitive to

measurement noise in the trajectories. This is because the ERP distance formula

explicitly computes the Euclidean distance between points, as opposed to the

EDR distance, that increments the distance between trajectories if the points

match (are within a region).

• Another disadvantage is that it is a serial algorithm that requires significant

modifications in order to take advantage of parallel architectures like GPUs.

1.2.5 Edit Distance With Projection (EDwP)

The Edit Distance with Projections (EDwP) was proposed in [RDTD+15] as a new

trajectory similarity measure that, unlike all of the existing top-K trajectory query

 63

processing techniques, specifically addresses the issue of inconsistent sampling rates.

This technique can be considered as a generalization of the Edit Distance on Real

Strings because it is based on the same idea of finding the least-cost set of editions that

transform one trajectory into the other. The difference between EDwP and EDR is the

nature of the allowed editions. The allowed editions in EDwP are: replacements and

insertions. A replacement operation behaves like a matching operation, but instead of

counting the cost of this operation as “1” (as EDR would do), this matching operation

computes the area between the corresponding segments. An insertion, on the other

hand, corresponds to projecting a point in one trajectory into the other, so in a sense this

insertion would correspond to dynamically interpolating points in the trajectories.

Therefore, thanks to this insertion operation, EDwP is able to address the issue of inter-

trajectory sampling variations, and thanks to the insertion operation EDwP is able to

address the issue of intra-trajectory sampling variations.

EDwP, just like with many other trajectory similarity measures based on editions, can

be computed using dynamic programming. Moreover, the worst-case time complexity

of computing the EDwP between two trajectories is O(|p||q|), and the worst-case space

complexity is O(|p||q|).

To process top-K trajectory similarity queries, the work [RDTD+15] proposes an ad hoc

indexing structure called the TrajTree, that exploits the idea of Lipschitz embedding

[Bourgain85] and bounding boxes [Gutt84] to reduce the search space.

 64

Advantages:

• The first advantage of EDwP is that it can deal with trajectories of different

sizes.

• Another advantage of the EDwP technique is that it addresses the issues of local

time shifting. It also addresses the issues of inter-trajectory sampling variation,

intra-trajectory sampling variation and sampling phase variations.

• A final advantage of this technique is that it does not require any parameters.

Hence, to implement it there is no need to perform a search in a large parameter

space for an optimum parameter value.

Disadvantages:

• One disadvantage of the EDwP top-K trajectory similarity query processing

technique is that it is not a distance measure, because it does not satisfy the

triangular inequality. Therefore, it needs ad hoc pruning techniques and ad hoc

indexing data structures to avoid implementing top-K similarity searches with an

exhaustive search.

• The EDwP does not address the issue of measurement uncertainty.

• Another disadvantage of EDwP is that it does not address the issue of model

uncertainty.

• This is a serial technique, so it needs substantial modifications to fully take

advantage of parallel architectures like GPUs.

1.2.6 MA

 65

Sankararaman et al. introduced in [SAMP+13] the first top-K trajectory similarity query

processing algorithm, called the MA algorithm, that addresses the issue of sampling

phase variations. Given two trajectories p and q, the MA algorithm finds the similarity

between those two trajectories by finding a maximum score monotone assignment (also

called an asymmetric monotone matching) between p and q. An assignment between

two trajectories p and q is a pair of functions Ü: (⟶ I ∪ {⊥} and á: I ⟶ (∪ {⊥}. A

point (_ (I�) in p (q) is said to be a gap point if Ü (_ =⊥ (á I� =⊥). A gap is a

maximal sequence of gap points. A monotone assignment is a pair of functions Ü and á

such that if Ü (_ = I�, then for all *® > * it is the case that Ü (_® = I�® with O® > O.

The function á satisfies the same property.

Sankararaman et al. proposed the following function to compute the similarity score

between two trajectories p and q, where © > 0, ™ > 0, ´ < 0 are chosen parameters,

and ¨(Ü, á) is the set of gaps between p and q given Ü, á.

≠ (, I; Ü, á =
1

™ + (_ − Ü (_ v +	
7}∈7,Ç 7} Ø∞

1

™ + I� − á I�
v

8~∈8,É(8~)Ø∞

+	 (´ + ©|m|)	
±∈≤ Ç,É

The intuition behind this formula is that points (_ in p that are close to their assignments

Ü (_ contribute very much to the score. It is a similar case with the points I� in q that

are close to their assignments á I� . Additionally, the greater the number of gaps, the

larger the similarity score.

 66

The MA algorithm is similar to both DTW and Sequence Alignment [DEKM98]. The

differences are the following: 1) the assignment is not necessarily symmetrical, i.e. in

the associated directed matching graph, if pi is matched to qj, then not necessarily is qj

matched to pi.

The MA algorithm can be computed in a way similar to the sequence alignment

[DEKM98] using a dynamic programming algorithm in O(mn) worst-case time

complexity, and in O(mn) worst-case space complexity. Unlike the sequence alignment

algorithm, Sankararaman et al.’s algorithm uses an asymmetric matching, which forces

the latter algorithm to use auxiliary recursive functions.

The authors in [SAMP+13] do not present a new pruning strategy to reduce the amount

of work necessary to process top-K trajectory similarity queries. Therefore, the MA

algorithm, to process top-K trajectory similarity queries, receives as inputs a query

trajectory p, a trajectory database db and a non-negative integer K, and proceeds with an

exhaustive search employing the MA-similarity measure.

Advantages:

• The MA algorithm can distinguish outliers from true trajectory deviations in

virtue of its use of the gap model.

 67

• Because the MA algorithm allows several points in one trajectory to match to a

single point in the other, the MA algorithm can handle the issue of different

inter-trajectory sampling rates.

Disadvantages:

• Because DTW tries to match all points in both trajectories, then when one of

those trajectories exhibits strong deviations with respect to the other, the results

cease being meaningful [DEKM98].

• So far, there are no pruning techniques to avoid an exhaustive search when

processing top-K trajectory similarity queries, so certainly the MA-algorithm, at

this time, cannot scale for Big Trajectory Data.

1.3 Probability-based techniques

Probability-based techniques are top-K trajectory similarity measures based on

probability concepts to measure the similarity between trajectories. These techniques

usually address the issues of trajectory uncertainty when processing this type of query.

1.3.1 KSQ

Ma and Lu proposed KSQ [MLSC13], which is a technique to process top-K trajectory

similarity queries on uncertain trajectories. Their technique introduces a new similarity

measure that specifically addresses measurement uncertainty.

 68

To use this uncertain trajectory similarity measure it is assumed that trajectories are

represented in terms of the following data model. It is assumed that each trajectory q in

the database db has at each time instant t when the trajectory’s movement was sampled

an associated probability mass function (or probability density function). Then, in the

time instants between consecutive sampling instants, this data model assumes a linear

interpolation model. This function which dictates the probability that trajectory q at

time t is located at any point p in the native space. Using this data model, it is then

possible to define the instant p-distance of a point, the instant p-distance of a trajectory,

and the interval p-distance of a trajectory.

The instant p-distance of a point is defined as follows. Given a trajectory database db

and a query trajectory q, the instant p-distance of a point x=q[t] (the position of q at

time t), denoted by à7 I, -, . 	is defined as

à7 I, -, / = J(L, - ≻ ., /)
A∈	¥î

where J(L, - ≻ ., /) is defined as

J I, - ≻ ., / = ´ L, -, .[*] ∙ .. (2Ä . * 	2*

and

´ I, -, . = 1, *Ä	2 -, I > 2(., I)
0,																	otherwise	

The intuition behind this definition is that the instant p-distance from x to q[t] (q at time

t) is the summation of the probabilities that all other trajectories in the database have of

being closer to q than x at time t. Therefore, the instant p-distance of a point is always

less than or equal to |db|.

 69

With the definition of instant p-distance of a point, then the instant p-distance of a

trajectory can be defined. Given a trajectory database db and a query trajectory q, the

instant p-distance of a trajectory x in db at time t, denoted as à7(I, -, /), is defined as

à7 I, -, / = à7 I, - * , / ∙ -. (2Ä - * 	2*

The intuition behind this definition is that the instant p-distance of trajectory x to q[t] is

the expected value (or average) of the point p-distances from xi to q[t], where xi are all

those points that x might occupy (with non-zero probability) at time t. Just as in the case

with the instant p-distance of a point, the instant p-distance of a trajectory is always less

than or equal to |db|.

Finally, [MLSC13] proposed the interval p-distance of a trajectory. This dissimilarity

measure is defined as follows. Given a query trajectory q, the interval p-distance of a

trajectory x, denoted as à L, ∑ Ñ∏
Ñπ, where [/∫, /ª]	is q’s lifespan is defined as

à7(I, -)Ñ∏
Ñπ =

1
/ª − /∫

à7 I, -, / 	2/
Ñπ

Ñ∏

The intuition behind this definition is that the interval p-distance is the average of the

instant p-distances from x to q. As in the other cases, it is always less than or equal to

|db|. Ma and Lu [MLSC13] have proved that one way of thinking of the interval p-

distance of a trajectory is as the expected rank of the trajectory if the trajectories in the

database are sorted in decreasing order of similarity from q, where the highest ranked

trajectory is the least similar trajectory to q.

 70

Ma and Lu propose in [MLSC13] a trajectory index to process top-K trajectory

similarity queries. This index consists of a uniform spatial grid placed in the spatial

dimension of trajectories. If a trajectory in the database intersects multiple grid cells,

then that trajectory is split at the grid cell boundaries and the resulting sub-trajectories

or segments are “inserted” into their corresponding grid cells. In each grid cell there is

an R-tree to index (according to the temporal dimension) the segments in that grid cell.

To process a top-K trajectory similarity query, KSQ associates with each grid cell a

lower bound and an upper bound to the KSQ scores of the trajectories that are wholly

contained in each grid cell. KSQ uses a min-heap in which it inserts all the grid cells

that are close to the query trajectory q, and the key for this min-heap is the lower bound

to the KSQ scores of trajectories contained within that cell. Once KSQ has inserted

these cells in the min-heap, it enters a while loop in which it takes the top cell at the

min-heap. If this cell has a lower bound that is greater than the K-th smallest upper

bound of the KSQ scores seen so far, then it knows that all the trajectories that intersect

that cell are pruned. This is because, by definition, we have seen K trajectories that have

better scores than any of the trajectories intersecting the cell in question. Otherwise,

KSQ updates the lower and upper bounds of the KSQ scores of the segments contained

in that cell. If the trajectories associated with those segments have a lower bound that is

greater than the K-th smallest upper bound of the KSQ scores seen so far, then that

trajectory can be pruned. When the while loop ends, KSQ obtains a set of candidate

trajectories, which contains the true result set. Then, KSQ must compute the exact KSQ

 71

scores for all the candidate trajectories, then sort them in increasing order of KSQ

scores, and then return the set of trajectories with the smallest KSQ scores.

Advantages:

• By considering a probability mass function at each sample point of each

trajectory, and by incorporating that information into the trajectory similarity

measure, the KSQ top-K trajectory similarity query processing technique

addresses the issue of measurement uncertainty.

Disadvantages:

• The KSQ top-K trajectory similarity query processing technique does not

address the issue of model uncertainty. This is because the trajectories are still

sampled at discrete time intervals, and thus still relies on the interpolation model

of trajectories.

• This technique is a serial technique, so it requires a significant research effort to

ensure that it works efficiently on parallel architectures like GPUs.

1.4 Feature Comparison of Top-K Trajectory Similarity Query Processing

Techniques

We have presented in Section 1 a discussion of state-of-the-art techniques for top-K

trajectory similarity query processing techniques. None of those techniques addresses

the all the issues identified in Section 3. In particular, none of those techniques provides

 72

support for different trajectory sizes, measurement uncertainty, model uncertainty,

triangular inequality, and support for Big Trajectory Data. To fill this gap, we introduce

a novel system to process top-K trajectory similarity queries in parallel on Big Data

using GPUs that is capable of handling both certain and uncertain trajectory data. Our

system addresses the issue of support of different trajectory sizes due to its similarity

measure, the Hausdorff distance, which can compute the similarity between two

trajectories of different sizes. Our proposed system addresses the issues of measurement

and model uncertainty thanks to its construction of trajectory data models that are then

used to estimate the true path of the trajectories. This system also addresses the issue of

support for parallel processing because it is designed to run on GPUs and multicore

CPUs by addressing the GPU issues discussed in Section 2.4.4.

Our proposed system consists of four novel algorithms: TKSimGPU to process top-K

trajectory similarity queries; Top-KaBT to reduce the size of the candidate set generated

by top-K trajectory similarity query algorithms; TrajEstU to estimate the true trajectory

when data uncertainty exists; and TraclusGPU to perform local trajectory clustering to

aid in the preprocessing stage of TrajEstU. TKSimGPU works by iteratively processing

near-join similarity queries, while Top-KaBT calculates the lower and upper bounds of

the Hausdorff distance between candidate pairs, and then uses these bounds to remove

spurious candidates. Top-KaBT exploits GPUs to improve TKSimGPU by ensuring

load balancing across the threads, ensuring memory coalescing, and using special

pruning techniques that reduce the size of the candidate set. TrajEstU splits the lifetime

of an object’s trajectory into time intervals where the object’s acceleration is nearly

 73

constant. Then TrajEstU uses the local trajectory clusters to obtain the movement

patterns that are prevalent in the areas where trajectories have low-sampling rates, and

uses linear regression to fit a constant acceleration model to the observed positions of

the moving object. Finally, TraclusGPU helps TrajEstU scalably find those local

trajectory clusters that are used in the construction of trajectory models.

Table 2 presents a feature comparison of the top-K trajectory similarity query

processing algorithms reviewed in Section 1. If a cell contains the word “Yes,” that

indicates that the technique referred to in that row addresses the issue listed at the top of

that column. On the other hand, if a cell contains the word “No,” that indicates that the

corresponding issue is not addressed by that technique.

 74

Table 2. Feature comparison of top-K trajectory similarity query processing techniques

Local
time
shifts

Different
trajectory

Sizes

Sampling rate variations Dimension of
the space of
parameters

Uncertainty Parallel
processing Inter-

trajectory
Intra-

trajectory Phase Measurement
uncertainty

Model
uncertainty

Euclidean
[FRM94] No No No No No No No No No

Hausdorff
[NJS11] No Yes Yes No No Yes No No No

DTW [BK94] Yes Yes No No No Yes No No No
LCSS

[VKG02] Yes Yes No No No No No No No

ERP [CN04] Yes Yes No No No No No No No
EDR

[COO05] Yes Yes No No No No No No No

DISSIM
[FGT07] Yes Yes No No No Yes No No No

wDF
[DTS08] Yes Yes No No No No No No No

MA
[SAMP+13] No Yes No No Yes No No No No

KSQ
[MLSC13] No No No No No Yes Yes No No

EDwP
[RDTD+15] Yes Yes Yes Yes Yes Yes No No No

TKSimGPU
+Top-KaBT No Yes Yes No No No No No Yes

TKSimGPU
+Top-KaBT
+ TrajEstU

No Yes Yes No No No Yes Yes Yes

74

 75

2 Literature Review of Techniques for Estimating Uncertain Trajectories

As we have seen in Chapter I, when discussing the issues that need to be addressed by

top-K trajectory similarity query processing techniques, if a moving object is equipped

with a location sensor, such as a GPS, the it is possible to periodically sample the

movement of the object and store the resulting sequence of locations occupied by the

object as a trajectory. However, all sensors, including GPS [GPS17], have an inherent

measurement or observation error. In addition to this measurement error, there is the

fact that if we model the movement of an object as a trajectory, then the model itself

would likely incur a model error because the trajectory could need to be sampled at an

infinite rate to perfectly describe the movement of an object. As has been discussed in

Chapter I, a new scalable and accurate top-K trajectory similarity query processing

technique should address these two issues (measurement and model uncertainty).

Since our proposed techniques involve reducing the uncertainty of trajectories, this

chapter presents a survey of techniques designed to address the problem of estimating

the true path of the moving object (which is a dynamical system) at every time instant

using a sequence of uncertain measurements (the points making up the trajectory). The

existing techniques are then classified according to whether they make use of an

underlying trajectory database or not.

2.1 Techniques that do not exploit a database of trajectories

The following techniques do not make use of a database of trajectories in order to

improve the quality of their estimates.

 76

2.1.1 Mean and Median Filter

The mean and the median filters are techniques that use measurements !"	about a system

to estimate its true internal state $%	at time k, when the measurements are noisy. The

idea behind the mean filter is to store the previous measurements in a window of size n

and, even if the measurements of the system are noisy, we can average all these

measurements in this window to produce a less noisy estimation of the internal state.

So, the mean filter works by computing $% = 1/) !*%
*+%,-./ as an estimator for $%.

The disadvantage of the mean filter is that it is very sensitive to outliers. To address this

problem, the median filter works similarly as the mean filter in keeping a window of

size n to store the previous measurements of the system, but instead of computing the

average of the window measurements it computes its median to produce an estimator

$% = 12345) !%,-./, … , !% .

Advantages:

• One of the biggest advantages of both the mean and the median filter are their

simplicity.

Disadvantages:

• The mean filter is very sensitive to outliers because even a single outlier can

perturb the true path estimate for a trajectory.

• This technique does not produce an estimate of the uncertainty of its predictions.

 77

2.1.2 Kalman Filter

Kalman proposed in [K60] a technique, that today is known as the Kalman Filter, that

can estimate the true internal state $%	at time k of a linear dynamical system using a

sequence of uncertain observations {!"|4 ≥ 0}. Kalman Filters can be applied to the

estimation of the true path of a moving object (moving in unconstrained space) if we

consider the system to be the moving object itself, and if we consider the sequence of

points of its associated trajectory as the set of (uncertain) observations of the state of the

system.

The classical Kalman Filter requires that we have two models: a linear model describing

how the system moves from one state to another in time (how the object moves as a

function of time), called the state transition model, and a model describing how the

system observations (which in our trajectory application correspond to the points of a

trajectory) relate to the internal state of the system (that is how the GPS model reports

the positions given the true state of the moving object). The Kalman Filter’s state

transition model is of the form: $% = =%$%,/ + ?%, where $% ∈ ℝ- is the state of the

system at time k (i.e. the true position of the moving object at time k), =% ∈ ℝ-×- is the

state transition matrix at time k indicating how the object moves from state $%,/	to state

$%, ?% ∈ ℝ- is the process noise; this noise arises because the state transition matrix

may not be able to accurately capture the exact nature of the behavior of the system, so

that noise accounts for this uncertainty. Besides the state transition model, there is an

observation model that relates the internal state of the system $% ∈ ℝ- at time k with the

actual observations made. This observation model is of the form: !% = C%$% + D%,

 78

where !% ∈ ℝE is the observation at time k (i.e., the GPS measurement of the position

of the object at that time),	C% ∈ ℝE×- is the observation matrix, and D% ∈ ℝE is the

observation noise; this observation noise is introduced because the observation matrix

may not be able to accurately capture the exact nature of the relationship between of the

observations and the true state of the system, so that this noise accounts for the

uncertainty.

The algorithm for the Kalman Filter [LLD06] receives as inputs F($H) ∈ ℝ- (the

expected value of the internal state of the system), J ∈ ℝE×E is the covariance matrix

of the model error, KH ∈ ℝ-×- is the covariance matrix of initial state, and the output is

an estimator $% ∈ ℝ-	of the state of the system at time k. The Kalman filter then

proceeds as follows:

1. Give an estimation $H	for the initial state of the system at time 0: $H = F($H),

and an estimation for the covariance of the estimator at time 0: KH = KH.

2. Model Forecast step: Use the estimation of the system state at time k-1:	$%,/

and the state transition model to obtain a model forecast $%
L = =%	$%,/, and

compute its associated forecast covariance K%
L.

3. Data assimilation step: Use the observation !%	of the system at time k to improve

upon the model forecast $%
L obtained in the previous step, by obtaining the

estimation 	$%	and its associated covariance matrix 	K%. Then go back to step 2 to

proceed to obtain estimates for future timestamps.

Advantages:

 79

• The Kalman Filter is a linear minimum variance estimator [LLD06]. This means

that the Kalman Filter is optimum in the sense that among all linear estimators

for the true path of the query object, no other estimator has smaller variance.

• The Kalman Filter provides an estimation of the uncertainty associated with the

prediction of the true path of the object. This advantage makes Kalman filters

particularly special because they do not only estimate the true path of the object,

but they also inform about the uncertainty of such estimate.

Disadvantages:

• One of the disadvantages of the Kalman Filter is that since each moving object

is different, then so are the associated dynamical models. This means that to

estimate the true path of a very large number of objects, then that would require

fitting a very large number of models (at least one per object).

2.1.3 Particle Filter

The particle filter [Gor94] is another technique used to estimate the internal state of a

system based on observations of such system. The difference between the classical

Kalman filter and the particle filter is that the latter relaxes the condition that the

dynamics of the moving object has to linear (just as there are non-linear Kalman filters,

which are extensions of the classical Kalman filter); thus, the particle filter can

accommodate more general movement dynamics, at the expense of a higher time

complexity algorithm.

 80

The algorithm for the particle filter receives as inputs a probability distribution M(!"|$"),

which indicates the probability of observing !" if the true state of the system is $"	for

every possible observation value and every possible state, then, the Particle filter

proceeds as follows:

1. Generate a random set of particles $%.

2. (Model forecast) Use the dynamic model $"
L = M($"|$",/) to simulate how the

particles move. This is the analog of the model forecast step in the Kalman filter.

3. (Importance weights computation) Compute the importance weight of each

particle $"
L = M(!"|$"

L), and normalize these weights to 1. The weight of a

particle says how likely it is to observe what has been observed, given that the

particle is the true state of the system. Therefore, particles with larger weights

are more consistent with the observations.

4. Select a new set of particles at random from the set of particles already created.

The probability of selecting a given particle is proportional to its weight.

5. Go back to step 2 and repeat until producing the estimations for the desired time.

Advantage:

• The particle filter can be made to work on network roads and paths (constrained

spaces). This is an advantage of particular significance because some techniques

work only on network roads (e.g., HRIS [ZZXZ12]).

Disadvantages:

• The particle filter in general takes a significantly longer computation time than

the classical Kalman filter [ZZ11] in order to produce its estimates.

 81

• To estimate the true paths of each trajectory in a large database, the particle

filter requires constructing a different model for each object because objects

may very likely follow different dynamics.

2.2 Techniques that exploit a database of trajectories

The techniques that we now describe have all in common that they take advantage of a

database of trajectories in order to improve the accuracy of their estimates. However,

these techniques make the tacit assumption that the input trajectory follows the same

dynamical model of most of the trajectories in the database, which may not be the case.

2.2.1 HRIS

Zheng et al. [ZZXZ12] address the problem of reducing the uncertainty of low-

sampling rate trajectories, i.e., trajectories such that the average interval between

consecutive points is over 2 mins, in road networks (constrained space). To accomplish

this, they propose an algorithm, called HRIS, that fills the low-sampling rate sections of

a trajectory by searching for other nearby trajectories (called reference trajectories) in

the database that satisfy certain network constraints, like velocity constraints. After

performing this search, their algorithm finds a set of associated road network paths

corresponding to those reference trajectories that maximize an objective function based

on popularity and uniformity of the traffic through that road network path. This work,

unlike our work, assumes that objects move in a constrained space, so it exploits the

knowledge provided by a road network to reduce the uncertainty in the low-sampling

rate trajectories. Therefore, it is not applicable in the scenario of objects moving in

 82

unconstrained space (like hurricanes and animal trajectories), where objects do not

move on road networks, or where there is no road network available.

The HRIS algorithm receives as inputs a low-sampling rate trajectory q whose true path

across a road network is to be estimated, a road network RN, and a database DB of

trajectories moving. The output is a path on the road network that accurately describes

the true path of the object. The HRIS algorithm works as follows:

1. For every consecutive pair of points qi and qi+1 in q, it searches for a set of

reference trajectories RT(i,q). Reference trajectories are trajectories in DB that

are close to both points, qi and qi+1, that do not exceed the maximum speed

allowed in the road network.

2. (Local Route Inference) In this step, HRIS seeks to infer what are the possible

routes in the road network RN that the moving object associated with q could

have taken when moving from point qi and qi+1. Therefore, this step is run for

every pair of consecutive points of q. For this pair of points qi and qi+1, HRIS

builds a directed graph called the traverse graph, whose nodes are the edges of

the road network RN such that there exists at least one trajectory in RT(i,q) that

travels close enough (HRIS requires a tolerance parameter to determine this) to

such edge in the road network. These edges in the road network that are close to

trajectories in RT(i,q) are called traverse edges. Now, there is an edge from node

n1 to node n2 in the traverse graph if the road network edge n2 is within N hops

from the road network edge n1 (N > 0 is another parameter). Once the traverse

graph for qi and qi+1 is built, HRIS runs a top-K shortest paths algorithm

 83

[Yen71] (K is an input parameter to HRIS) on the traverse graph starting from

the node on the traverse graph that corresponds to the closest road network edge

to qi to the node on the traverse graph that corresponds to the closest road

network edge to qi+1. The resulting set of top-K shortest paths is the set of

possible routes that q could have taken from qi to qi+1.

3. (Global Route Inference). In this step, HRIS seeks to infer the most likely routes

that q could have taken at all points. To do this, HRIS has already for every pair

of consecutive points qi and qi+1 an associated set of K possible road network

paths, and needs to connect these paths together to obtain a global possible road

network path that q could have likely taken. HRIS assigns to every possible road

network path of every pair of q a weight proportional to the number of reference

trajectories that traverse that path. The higher the weight, the more popular the

route; hence, the more likely, according to HRIS, that route is.

If Ra is a local route obtained from Step 2, that q could likely have taken when

moving from point qi to qi+1, and Rb is also a local route but q could have likely

taken it when moving from point qi+1 to qi+2, then the strength of the connection

between Ra and Rb is proportional to the number of reference trajectories that

travel both on Ra and Rb. To perform global route inference, HRIS solves an

optimization problem wherein it searches for the road network path with the

highest score, and the score of a global route R=(R1,R2,…,Rn), with the Ri being

local routes, is computed as PQRS2 T = U T/ ∙ W(T/, TX) ∙ U TX ∙ ⋯U(TE),

where U T" is the score of the local route T" and W(T", T"./) is the score of the

connection between T" and T"./. This optimization problem is solved through

 84

dynamic programming.

Advantages:

• One of the advantages of HRIS is that it exploits the knowledge contained in a

database of trajectories in order to estimate the true path of an input trajectory.

This is particularly advantageous when the input trajectory obeys the same

dynamical model followed by many of the trajectories in the database.

Disadvantages:

• A disadvantage of this technique is that it can only be applied for objects

moving in constrained networks. Therefore, for trajectory applications like

finding birds with similar migration patterns to a given bird species, or finding

similar hurricane trajectories this technique is not applicable because neither

birds nor hurricanes have constrained movements.

• Another disadvantage of HRIS is that when performing local route inference, it

needs to run the top-K shortest paths algorithm on the traverse graph. However,

the complexity of this algorithm is Z [∙ \ ∙ F + \ ∙ log \ , which

does not scale well for large graphs.

2.2.2 Chazal et al.’s Algorithm

Chazal et al. present in [CCGJ+11] a trajectory smoothing technique to reduce the noise

in a trajectory and this help estimate the true path of the object. This technique receives

as input a database D of trajectories, an uncertain trajectory q whose true path we want

 85

to estimate, and a positive integer K > 0. The technique then proceeds to use the

knowledge in the database to help estimate the true path of the object. To do so, the

technique proceeds as follows:

1. Embed the input trajectory q and each trajectory in the database D into a

2×(2) + 1)-dimensional space (where n is the dimension of the space where

each point of each trajectory lies. Usually n=2) by assigning trajectory p= (ha,

ha+1,..., ha+m) (such that each of its points lies in n-dimensional space) to the

trajectory p’ = (hi-n
(x), hi-n

(y), hi-n+1
(x), hi-n+1

(y), hi+n
(x), hi+n

(y)) for i in

{a,a+1,...,a+m} (such that each of its points lies in 2×(2) + 1)-dimensional

space). If we choose n=1, then the sequence s = ((1,1), (2,2), ... (k,k)) is mapped

to ((1,1,2,2,3,3), (2,2,3,3,4,4),..., (k-2, k-2, k-1,k-1,k,k)). Let us call the set of all

points in 2×(2) + 1)-dimensional space resulting from embedding the

trajectories in D as the set of high-dimensional points.

2. For every point qi’ in the embedded trajectory q’, find its k nearest neighbor

points belonging to the set of high-dimensional points, and move qi’ to the

average of its k nearest neighbor points.

3. For every trajectory p’ that resulted after steps 1 (embedding) and 2 (moving

each point toward the average of its nearest neighbors), we recover a trajectory

in the original n-dimensional space by taking the middle n-coordinates of each

of its points. For example, if p’ has points ((1,1,2,2,3,3), (2,2,3,3,4,4)) living in

the embedded high-dimensional space, we can recover from this trajectory a

corresponding trajectory, called estimated trajectory, in the original n-

 86

dimensional space by taking the middle n-coordinates: ((1,1,2,2,3,3),

(2,2,3,3,4,4)) à ((2,2),(3,3)).

4. The final true path estimation for q is the estimated trajectory obtained in step 3.

Advantages:

• One of the main advantages of the Chazal et al.’s algorithm is its simplicity.

Disadvantages:

• One disadvantage of this technique is that computing the k nearest neighbors of

every point of the query trajectory in a space with 2×(2) + 1) dimensions has

worst-case time complexity Z |4)MabcS5d2QbRSe|	×	 fg .	

• Another disadvantage is that if we store in memory the higher-dimensional

embedding of the database, then the worst-case space complexity increases by a

factor of 2) + 1. However, if the trajectories in the DB are stored un-embedded,

then that increases the time complexity of the algorithm.

2.3 Feature Comparison of Techniques for Estimating Uncertain Trajectories

We have presented in Section 2 a discussion of state-of-the-art techniques for estimating

uncertain trajectories. In the previous discussion we presented a group of techniques,

consisting of the mean/median filter, Kalman filter, and particle filter, that does not

make use of a database of trajectories to produce estimates for an input trajectory with

uncertainty. This is a disadvantage of these techniques because it is often the case that

an input trajectory has similar dynamics and behavior to that of other trajectories in a

 87

database. For example, if the database contains bird migration trajectories, and the input

trajectory corresponds to another bird of the same species, then it is very likely that the

input trajectory will behave similarly to the trajectories in the database. Therefore, it is

possible to exploit this knowledge to improve the accuracy of the true path estimation of

the input trajectory. In this previous discussion we also presented another group of

techniques, consisting of HRIS and Chazal et al.’s algorithm, that do make use of a

database of trajectories to improve the quality of their estimates. However, HRIS works

only in constrained spaces, so it is not applicable for unconstrained spaces. Chazal et

al.’s algorithm works for unconstrained spaces (therefore, it also works in constrained

spaces), but it has the disadvantage that when estimating the true path of an input

trajectory, it requires expensive k-nearest neighbor searches in a high-dimensional

space for every single point of the input trajectory. In addition to this, Chazal et al.’s

algorithm is by design a serial technique, so it requires substantial modifications in

order to run on parallel architectures like GPUs.

As a conclusion of our above discussion, we see that none of the presented techniques

satisfies all of the following desirable properties: support for both constrained and

unconstrained spaces, exploitation of a database of trajectories, and support for parallel

processing. To address this gap, we proposed an innovative algorithm called TrajEstU,

(one of the algorithms that make up our proposed system), which does satisfy all these

desirable properties. TrajEstU works by locally clustering the trajectories in a database

to obtain the local behavior patterns around the input trajectory. This clustering phase is

performed off-line and only once per database. After this is done, TrajEstU splits the

 88

input trajectory into near-constant acceleration intervals. At each of these near-constant

acceleration intervals, TrajEstU fits a linear regression models that takes into

consideration the local behavior patterns found in the trajectory database. Unlike Chazal

et al.’s algorithm, TrajEstU does not require expensive k-nearest neighbor searches in a

high-dimensional space for every single point of the trajectory, which can lead to

expensive performance penalties when dealing with Big Trajectory Data. Moreover,

TrajEstU has support for parallel processing because its most computationally

expensive phase (the local trajectory clustering) is designed for running on GPUs.

 89

CHAPTER III
PROPOSED SYSTEM AND TECHNIQUES

This chapter first presents an overview of our proposed system and techniques, and then

an in-depth discussion about them. Our proposed techniques are the following:

TKSimGPU for processing top-K trajectory similarity queries on GPUs; Top-KaBT for

pruning the candidate of top-K trajectory similarity queries on GPUs; TrajEstU for

estimating the true path of uncertain trajectories; and TraclusGPU for local trajectory

clustering on GPUs.

1 Overview of the proposed system and techniques

In this dissertation we propose a novel system to process top-K trajectory similarity

queries in parallel on Big Data using GPUs. The system is capable of handling both

certain and uncertain trajectory data. The system consists of four novel techniques.

The first one, TKSimGPU, is a top-K trajectory similarity query processing algorithm

for GPUs. TKSimGPU is a trajectory query processing algorithm based on the filter-

and-refine approach, which consists of an initial filter stage (which is cheap in terms of

execution time) in which a candidate set of trajectory pairs is generated, and a later

refine stage (a more expensive stage), in which this candidate set is examined more

thoroughly in order to find the true query result set.

The second proposed technique Top-KaBT, is a parallel GPU pruning technique to

reduce the number of spurious candidate pairs (p,q) generated by top-K trajectory

similarity query techniques using similarity measures that satisfy the triangular

inequality. Top-KaBT was proposed because even though TKSimGPU represented an

 90

efficient and scalable algorithm, it still could potentially generate a large number of

spurious candidate pairs in its filter stage, which led to a large amount of unnecessary

computations in its refine stage. The purpose of Top-KaBT is then to remove these

spurious candidate pairs, thereby reducing the associated performance penalty. To

accomplish this, Top-KaBT is run in between TKSimGPU’s filter and refine stages. We

call this resulting algorithm TKSimGPU + Top-KaBT.

So far we have mentioned that the TKSimGPU + Top-KaBT can deal with top-K

trajectory similarity queries. However, trajectories can be uncertain, and this can have

negative impacts on the accuracy of the queries. For this reason, we proposed a third

technique, called TrajEstU, to reduce the negative impacts of uncertainty on the

accuracy of trajectory similarity queries. TrajEstU has two phases: a pre-processing

stage (more expensive in terms of execution time), and an online stage (very cheap in

terms of execution time). The idea is that TrajEstU’s pre-processing stage is run on the

trajectory database (Q) before any query processing takes place. Then, when the top-K

trajectory similarity queries arrive, TrajEstU’s online stage is run on each query before

passing the resulting trajectory

In our experimental evaluation we noticed that TrajEstU’s online stage had a negligible

execution time (even on serial processors); however, its pre-processing stage was too

expensive in terms of computational time, which could affect TrajEstU’s practicality

when dealing with Big Trajectory Data. For this reason, we proposed a fourth

technique, called TraclusGPU, which performs TrajEstU’s pre-processing stage

 91

(consisting of local trajectory clustering) on a GPU. In Figure 17 we present a diagram

representing the relationships between our proposed techniques. Figure 18 contains the

pseudocode of the overall system.

Figure 17. Workflow of our proposed system

Figure 18. Overall algorithm

 92

2 TKSimGPU: A GPU technique for Top-K Trajectory Similarity Query

Processing

In this section we present a parallel algorithm, called TKSimGPU, for top-K trajectory

similarity queries, and discuss how to implement it on a GPU.

2.1 Motivation of TKSimGPU

As we have mentioned in Section I.2.3, top-K trajectory similarity query processing

techniques have a wide range of applications stemming from biology, bioimaging, to

social networks, etc. However, processing this type of queries poses significant

computational challenges stemming from the sizes of the datasets, the sizes of the

trajectories, and the computational complexity of the trajectory similarity measure itself.

One strategy that can be used to tackle these challenges is the use of parallel computer

architectures such as GPUs.

GPUs are co-processors installed on most computers (mobile devices, desktops,

workstations, supercomputers, etc.) to render graphics, but that can also be used for

general purpose parallel programming. Besides being widely available, GPUs are very

energy efficient, and on certain kinds of algorithms they can perform up to an order of

magnitude of higher single-precision floating point instruction throughput than the best

multicore chips available. All these reasons make GPUs an ideal architecture with

which to tackle the computational issues of top-K trajectory similarity query processing

algorithms.

 93

For these reasons, we have proposed a parallel GPU algorithm to scalably process top-K

trajectory similarity queries that addresses all the issues of GPUs, low global memory

bandwidth relative to the number of threads (global memory coalescing), low PCIe

bandwidth, efficient use of shared memory banks, thread divergence, and load

balancing, which were discussed in Chapter I.

2.2 Overview of TKSimGPU

As described in Section I.2.3, the top-K trajectory similarity query takes a positive

integer K and two sets P and Q of trajectories, and finds for every trajectory M ∈ K the

set of K Q-trajectories most similar to p. Our proposed parallel GPU algorithm for top-K

trajectory similarity queries uses the filter-and-refine processing scheme [JS07], which

consists of two steps: the filter and the refine steps. The filter step selects for every M ∈ K

a candidate set hi ⊆ J with |hi| ≥ [, such that the K Q-trajectories most similar to p

belong to hi. The refine step takes hi and then computes the actual similarities between

p and every candidate in hi and returns the K most similar trajectories. The idea behind

this scheme is to avoid exhaustively finding the similarities for every pair (M, k) ∈ K×J.

This is accomplished by having the filter step cheaply prune away many trajectories that

surely will not form part of the result set, and then having the refine step actually

compute the exact similarity measures between p and every element in hi.

 94

2.3 The TKSimGPU Algorithm

The idea behind TKSimGPU is that a top-K trajectory similarity query can be answered

by performing successive filtering steps of the near-join trajectory similarity query with

decreasing ε-range values (the near-join trajectory similarity query finds all those

trajectories with a similarity at least ε) until every trajectory M ∈ K has at least K most

similar trajectories in Q. An example of this is the following. If we want to find the K Q-

trajectories most similar to M ∈ K we first perform a filter step of the near-join similarity

query with an initial range value of ε > 0. This step will return a subset hi ⊆ J such that

the Hausdorff distance from p to every k	 ∈ hi is not greater than ε. If |hi| < [, we

need to repeat, or restart, the filter step with a larger ε, and we proceed in this manner

until |hi| ≥ [. Once we are certain that every M ∈ K	has at least K most similar

trajectories in Q, we can select the K Q-trajectories most similar to p. This idea is similar

to one of the strategies used to answer kNN queries on point data by doing successive

range queries with different radii [BCG02]. The issue when using this strategy is to try to

choose a large enough ε > 0 for the near-join trajectory similarity, with the intention of

reducing the total number of restarts that need to be performed, and at the same time

choosing this ε small enough so as to avoid a situation where the set hi is almost Q, for

any M ∈ K.

Figure 19 presents a pseudo-code description of our algorithm. In Line 29 we obtain,

without replacement, a random sample Q_sample of size Q_sample_size of trajectory

identifiers from Q.

 95

Figure 19. TKSimGPU algorithm

 96

For example, if P = {1,4}, Q = {6,7,9}, K = 2, sample_size = 2, then Q_sample = {7,9}

is a random trajectory identifier sample.

Lines 31 through 40 implement the filtering step mentioned before. Using the two sets of

trajectory identifier samples we can find for every M ∈ K_P51Mn2 the Hausdorff distance

to the K-th closest trajectory to p, and use the average, over all M ∈ K_P51Mn2, of these

values as an initial estimate for ε. Continuing our example above, suppose that

hausd(1,7) = 1.2, hausd(1,9) = 2.1, hausd(4,7) = 3.1 and hausd(4,9) = 3.0, then the 2nd

closest Q-trajectory (K = 2) to 1 is 9, and the 2nd closest Q-trajectory to 4 is 7; and our

initial estimate for ε will be ε = (hausd(1,9) + hausd(4,7)) / 2. Once we have the value of

ε we perform a near-join filter in Line 33, after which we obtain a set PQ_candidates

consisting of all those pairs of identifiers (M, k) ∈ K×J indicating that q could form part

of the K Q-trajectories most similar to p. In Line 34 we count, for every M ∈ K, the

number of candidates (which are Q trajectories) found for p. For example, if after the

near-join filter we obtain PQ_candidates = {(1,7), (1,9), (3,7)}, then after Line 34 we

would obtain the set D = {(1,2), (3,1), (4,0)}, indicating that trajectory 1 has two pairs,

trajectory 3 has 1 pair and trajectory 4 has no pair in PQ_candidates. Once we know

how many candidates have been found for every M ∈ K, we are interested in those M ∈ K

for which we have found fewer than K candidates; these will be the elements forming

part of the set Incomplete. In our example, Incomplete = {3} because 3 does not have 2

candidates. The set Incomplete will be used in the next iteration, in Line 32, to estimate a

larger new ε.

 97

Lines 6 through 17 contain the details of how to select ε values that will be used for the

near-join similarity filters. The idea is that with P_sample and Q_sample we can

compute, for every M ∈ K_P51Mn2, at what distance 3i is the K-th most similar

Q_sample-trajectory of p. Later in Line 13 we average all the 3ivalues. The idea is that

the average of the 3i should be an estimate of the average distance at which the K-th

most similar Q-trajectory is from every M ∈ K. Now, since we may be taking different

samples P_sample and Q_sample at every iteration of the do-while in Line 31, it could

be the case that the sequence of ε values that we obtain at each iteration is not strictly

increasing, in which case the algorithm may not finish executing. Therefore, in Line 14

we check if the new ε is smaller than the previous one, and if it is, we multiply the

previous ε by a value o > 1	and return that value as the new ε.

Lines 18 through 26 present the near-join trajectory filter algorithm pseudo-code. In

Lines 19 and 20 we rasterize the P and the Q trajectories by placing a uniform grid G

over the space in which the trajectories move. This is done by splitting every M ∈ K into

a set of sub-trajectories or tracks called Tracks(p), and every k ∈ J into a subset of sub-

trajectories called Tracks(q). Let’s call cS5QpP K ≔ 	∪i∈s cS5QpP(M) and

cS5QpP J ≔	∪t∈u cS5QpP k . For each track in Tracks(P) we consider its extended

Minimum Bounded Rectangle (eMBR), which is a regular MBR that has been expanded

by ε in the horizontal (both to the east and west) and vertical (both to the north and

south) directions. Similarly, for every track in Tracks(Q) we consider its regular MBR

(which is an eMBR with ε = 0). The reason why we choose ε = 0 for the eMBRs of the Q

trajectory set is because we make the assumption that the database (Q) is larger than the

 98

query set (P), so that by keeping the eMBRs of Q trajectories small we can ensure that

the arrays generated in Line 21 (Figure 19) will be small. Then, we generate a pair

(Mv, Q) for every grid cell Q ∈ w that trajectory track Mv’s eMBR intersects, and a pair

(kv, Q) for every grid cell Q ∈ w that trajectory track	kv’s MBR intersects. Then, in Line

21 we generate the set of all pairs of tracks 	(Mv, kv) such that the eMBR of Mv and the

MBR of 	kv both intersect the same cell. For example, assume for now that P = {1}, Q =

{7,9}, that a grid G is given and, without loss of generality, that each trajectory in P and

Q only has a single track. Also assume that trajectory 1’s track M/has an eMBR(ε)

intersecting grid cells Q/ and QX, and trajectory 7’s track Mx has an eMBR(0) intersecting

grid cell QX and Qy, and trajectory 9’s track Mz has an MBR intersecting grid cell Q{.

Then, NEAR-JOIN FILTER(P,Q,0.1,G) will return {(1,7)} because the eMBRs of both

trajectories 1 and 7 intersect with a grid cell in G.

In Line 23 the algorithm finds for all pairs of tracks (Mv, kv) the identifiers of both Mv and

kv. In the end of the near-join trajectory filter algorithm, we obtain for every M ∈ K a set

of pairs	hi ⊆ {(M, k) ∈ K×J}, such that for every (M, k) ∈ hi it is the case that q is a

candidate trajectory that may be within the top K Q-trajectories most similar to p

(according to the Hausdorff distance).

Lines 43 through 51 describe the refine stage of our proposed algorithm. In Line 45 we

find the set hi of all the candidate pairs (p,q) associated with trajectory p, and calculate

the exact Hausdorff distance between p and q. Then we sort all the elements of (M, k) ∈

hi by increasing the Hausdorff distance between p and q, and take the first K elements

 99

corresponding to the closest Q-trajectories to p. For example, if K = 1, P = {1,3,4}, Q =

{6,7,9} and C1 = {((1,6,1.7), (1,7,1.2), (1,9,2.1))}, then we sort C1 according to the third

component of the pairs inside C1 and obtain C1 = {((1,7,1.2), (1,6,1.7), (1,9,2.1))}. Then,

since K = 1, we take the first element from C1 as the result. We will follow this

procedure for every 4 ∈ K.

2.4 Parallel query execution of top-K trajectory similarity queries on GPUs

In this section we explain how we store trajectories and how we implement each of the

functions in our algorithm, shown in Figure 19, on a GPU.

To store the trajectories we follow U2STRA’s approach [ZYG12], which we now

describe. Each trajectory is divided into disjoint sub-trajectories called tracks. Each track

consists of a time-consecutive set of points. We keep three arrays in global memory: the

track index array (TKI), the point index array (PTI), and the array of points. Each entry

in the TKI array contains information for a single trajectory, so that TKI[j] is the index in

the PTI array of the first trajectory track belonging to the jth trajectory. Each entry in the

PTI array contains information for a single trajectory track, so that PTI[k] is the index in

the array of points of the Kth trajectory. This approach has the advantage that the points

belonging to any track are arranged in consecutive memory locations, which facilitates

coalesced global memory accesses when loading points of tracks into the thread blocks.

For implementing the function ESTIMATE_ε on a GPU, we assign a thread block gi for

every p ∈ P_sample. Each thread in a given thread block gi is then in charge of

 100

computing hausd(p,q) for a single k ∈ J. This helps with load balancing because all

threads process the same number of trajectories, and all trajectories have approximately

the same length. Then, for every thread block gi, the threads inside gi will collaborate

in sorting the list Çi (see Line 10) in increasing order of Hausdorff distance. Once this is

done, a single thread inside each thread block gi will take the Kth smallest element in

the sorted list Çi	and write it to array KNearest, which resides in global memory. This

operation introduces thread divergence, but only within a single warp, so the

performance penalty is not big. Then, by performing a parallel prefix sum (see [Ble90],

[HSO07]) we can add all the elements in kNearest and then divide the sum by |P_sample|

. In this way, we obtain the average Hausdorff to the K-th nearest Q-trajectory.

For implementing the function TOP-K TRAJECTORY SIMILARITY (Figure 19) on a GPU,

we find, in Line 31, the set f = M, Q)b 	 	M ∈ K, Q)b = | M, k ∈

KJ_Q5)3435b2P k ∈ J}|} as follows. First, we take the set PQ_candidates⊆P×Q and

sort it in parallel using the first component (the P component) as key. Then we perform a

run-length encoding (RLE), which can be efficiently parallelized on GPUs [FHL10], and

whose output is the list D. In Line 35, to find the set Incomplete consisting of all those

trajectories which do not have at least K candidates, we assign to the ith element

M, QRa)b " ∈ f a thread b", and this thread will output isIncomplete[i] if count < K, or a

0 if not. Once we have the isIncomplete array, we can perform a parallel exclusive sum

over isIncomplete and obtain an offsets array. This achieves load balancing because all

threads in all blocks perform the same amount of work. Then, thread b" takes the

 101

isIncomplete[i], the offsets[i] and the D array entries, and performs the instruction

Incomplete[offsets[i]]←D[i] if isIncomplete[i] = 1.

For implementing the function REFINE_TKSIMGPU (Figure 19) on a GPU, in Line 44

we assign an element p to every thread block gi, so that gi will be in charge of the

subset hi = M, k ∈ KJ_Q5)3435b2P 	associated with p. Here there is the potential

that there might be some load imbalance because different hi′P might have different

cardinalities. However, with our epsilon estimation algorithm (based on sampling) we

can expect that the cardinalities of different hi′P	will have a small variance and the load

imbalance will be tolerable. To find hi for every p we perform a run-length encoding on

the array KJ_Q5)3435b2Ps 	(the projection on the left component of the tuples in

PQ_candidates) and we obtain two arrays unique and counts. Then, by doing an

exclusive parallel sum over the counts array we can obtain the offsets on the

PQ_candidates array at which the blocks need to start reading their assigned elements.

After this, each thread t inside thread block gi will be in charge of finding the Hausdorff

distance between a different pair M, kv ∈ hi. Once this is done, the threads inside

thread block gi will sort their assigned elements, in parallel, in increasing order of their

Hausdorff distances, and then the smallest K elements (T2Panbi) are written to the global

memory.

The GPU implementation of the function NEAR_JOIN_FILTER (Figure 19) follows

[ZYG12], and is now explained. In this discussion, we assume that every track in

cS5QpP(K) ∪ cS5QpP(J) has a unique identifier. We generate four arrays of integers:

 102

VQQ, VQC, VPP, and VPC. These arrays satisfy the following properties. Both VQQ and

VQC have the same length, and both VPP and VPC have the same length, which may be

different from the length of VQQ. If the eMBR of a track with identifier j belonging to a

trajectory in P intersects with grid cell k, then there will be a non-negative integer m such

that VQQ[m] = j and VQC[m] = k. In a similar way, if the eMBR of a track with

identifier j belonging to a trajectory in Q intersects with grid cell k, then there exists a

non-negative integer n such that VPP[n] = j and VPC[n] = k. Once these four arrays have

been constructed, the technique will sort the arrays VQQ and VQC using VQC as keys,

so that many consecutive entries in the VQQ arrays correspond to the same grid cell. The

idea is now to generate a candidate set of pairs of trajectory tracks h ⊆ cS5QpP(K)×

cS5QpP(J), such that \JJ p , \KK n ∈	C if and only if VPC[k] = VQC[l]. In other

words, if the eMBRs of two trajectory tracks intersect the same cell, then the pair

consisting of those two tracks will belong to the candidate set. This set is found by

assigning to every entry VPP[k] a thread, and this thread will then perform a binary

search on the array VQC to find the smallest integer l such that VQC[l] = VPC[k] and the

largest integer m such that VQC[m] = VPC[k]. When processing top-K trajectory queries

with our TKSimGPU algorithm, we observe, based on our experiments, that the best

performance is not achieved with larger grid sizes (grids larger than 512×512). The

reason for this is that with those large grid sizes, the function NEAR_JOIN_FILTER tends

to generate very large arrays in Line 21 of Figure 19 because any given trajectory will

then intersect many of these small grid cells. This is particularly problematic on GPUs

because of their small global memory size, and because we also need to keep the

database of trajectories in main memory. To solve this issue one can pick a smaller grid

 103

size (in our experiments we chose the grid size 128×128). Another approach one could

take to address the memory issue is to split the query set size (P) into subsets, and make

separate calls to TKSimGPU.

3 The Top-KaBT Algorithm: A GPU Technique for Pruning Candidate Sets

that Arise when Processing Top-K Trajectory Queries

3.1 Motivation of Top-KaBT

A key issue when processing top-K trajectory similarity queries on Big Trajectory Data

is to avoid unnecessary computations of the similarity measure on trajectory pairs (p,q).

This is because most similarity measures have quadratic time complexity on the number

of points of p and q, so it is a very expensive operation when the numbers of the

trajectories in the query set (P) and in the database (Q) are very large, as it is the case in

Big Trajectory Data applications. Additionally, top-K trajectory similarity queries have

result sets that have a fixed size [×|K| ≪ K×J , so perfoming an exhaustive search to

answer this query requires many unnecessary calculations of the similarity measure on

spurious pairs. Therefore, for scalably processing this type of query, it is desirable to

reduce the size of the candidate sets involved.

Although TKSimGPU has been shown to work well with small data sets, it still

generates many spurious candidate trajectory pairs that carry an associated performance

penalty. For this reason, we introduced Top-KaBT, a GPU technique to reduce the

number of spurious candidate trajectory pairs generated by Top-K trajectory similarity

query algorithms for Big Trajectory Data applications, and help diminish the negative

 104

impacts that spurious candidate trajectory pairs have on the overall performance of top-

K trajectory similarity query processing algorithms.

3.2 Overview of Top-KaBT

Top-KaBT is a parallel GPU algorithm for reducing the number of spurious candidate

trajectory pairs M, k ∈ K×J	generated by top-K trajectory similarity query GPU

algorithms that follow the filter-and-refine schema and use a trajectory similarity that

satisfies the properties of a metric. An example of such a parallel algorithm is

TKSimGPU [LGZY15]. The relationship between Top-KaBT and the underlying

trajectory similarity query algorithm is illustrated in Figure 20. This figure shows that

the similarity query processing algorithm’s filter stage generates a set of pairs (p,q) that

is cheaply pruned by Top-KaBT, and then the output of Top-KaBT is fed back into the

similarity query processing algorithm’s refine stage in order to produce the query result.

To accomplish its goal, Top-KaBT calculates lower and upper bounds of the Hausdorff

distance between p and q for every candidate pair M, k ∈ K×J.	These calculations are

much cheaper than the calculations of the Hausdorff distances (as shown in Figure 20),

a fact that will be proved in Section III.3.3. After this, Top-KaBT sorts the pairs

according to their lower bounds of the Hausdorff distance, and uses these bounds to

remove spurious candidate pairs. By removing spurious candidate pairs, this technique

lessens the negative impact of the small size of the GPU’s memory, and reduces the

time wasted computing the similarity for these spurious pairs. Additionally, the

technique addresses load balancing and memory coalescing by having threads within a

thread block perform the same amount of work, and by having threads with consecutive

indices access adjacent memory locations.

 105

Figure 20. Relationship between Top-KaBT and top-K trajectory similarity query processing

algorithms

3.3 Theoretical Foundations of Top-KaBT’s Pruning Strategy

In this section we present the definitions and theorems on which this pruning technique

rests. The main result is Theorem 3.9, which states that if we have a trajectory p with

candidate pairs hi = { M, kH , M, kX ,⋯ , (M, k-ç,/)} sorted by the lower bounds to

their respective Hausdorff distances, then if we find an integer Dé	such that 0 ≤ Dé ≤

)i − 1, and	Dé	meets certain conditions explained later, we will know that the K most

similar trajectories to p will be among hi = { M, kH , M, kX ,⋯ , (M, këí)}, and we can

prune the remaining elements hi = {(M, këí./), (M, këí.X),⋯ , (M, k-ç,/)}.		

 106

In the remainder of this section, we use 1i,tì

	

to refer to the value

minî∈ïñó i ,ò∈ïñó t 3 $, e , where M, k" ∈ K×J,	and 3 $, e 	is the Euclidean

distance between points x and y. Similarly, we use the notation 	ôi,tì to refer to

maxî∈ïñó i ,ò∈ïñó t 3 $, e .

Lemma 3.3.1. For any M, k 	∈ K×J,		it is true that 1i,t ≤ ℎ5aP3(M, k) ≤ ôi,t.

Proof: Let a and b be points such that 5 ∈ ôgT M , ú	 ∈ ôgT(k),	and ℎ5aP3(M, k) =

3 5, ú .	By definition of mp,q we have that 1i,t = 	minî∈ïñó i ,ò∈ïñó t 3 $, e ≤

3 5, ú = 	ℎ5aP3 M, k .	 The proof of ℎ5aP3 M, k ≤ ôi,t is analogous.

Definition 3.3.2 (Cut point set). Given the candidate set hi =

{(M, kH), (M, k/), (M, kX), (M, ky)} satisfying 	1i,tì ≤ 1i,tìùû	for 0 ≤ 4 <)i − 1, the cut-

point set of hi is defined as hKi = 4 ∈ ℤ	 		ôi,tì ≤ 1i,tìùû}. The elements of the cut-

point set are called cut-points.

Example 3.3.3. If we have the following set of candidate pairs hi =

{(M, kH), (M, k/), (M, kX), (M, ky)} such that 	1i,t† = 2.2, 	1i,tû = 2.3, 	1i,t¢ =

3.3, 	1i,t£ = 4.1, and 	ôi,t† = 2.4, 	ôi,tû = 2.7, 	ôi,t¢ = 4.0, 	ôi,t£ = 4.2, then hKi =

1,2 	because ôi,tû = 2.7	 ≤ 3.3 = 	 	1i,t¢,	 and 	ôi,t¢ = 4.0	 ≤ 4.1 = 	 	1i,t£.

Definition 3.3.4 (Min-cut point). Given the candidate set hi = {(M, kH), (M, k/),

⋯ , (M, k-ç,/)} satisfying	1i,tì ≤ 1i,tìùû	 for 0 ≤ 4 <)i-1, with cut-point set hKi ≠

∅, the min-cut point of hi is defined to be 14) hKi.

 107

Example 3.3.5. In Example 3.3.3 the min-cut point is 14) hKi = 1.

Definition 3.3.6 (Min-K-Cut point). Given the candidate set hi = {(M, kH), (M, k/),

⋯ , (M, k-ç,/)} with	1i,tì ≤ 1i,tìùû	 for 0 ≤ 4 <)i − 1 with cut-point set hi ≠ ∅, the

min-K-cut point of	hi is defined to be the K-th smallest element in hKi.

Example 3.3.7. In Example 3.3.3 the min-K-cut point for [= 	2	is 2.

Theorem 3.3.8. If v is a cut point of the following candidate set hi = {(M, kH), (M, k/),

⋯ , (M, k-ç,/)} with	1i,tì ≤ 1i,tìùû	for 0 ≤ 4 <)i − 1, then the 1-nearest neighbor to

trajectory p is a		k" with 0 ≤ 4 ≤ D.

Proof: Assume that v is a cut point of hi. Then, 	ôi,t® ≤ 1i,t®ùû is true, and since

1i,t®ùû is a lower-bound of ℎ5aP3 M, kë./ , and 	ôi,t®ùû is an upper bound of

ℎ5aP3 M, kë./ , then the following inequality holds ℎ5aP3 M, kë 	≤ 		 	ôi,t® ≤

ℎ5aP3 M, kë./ . By induction, we can easily prove that ℎ5aP3 M, kë 	≤ 	ℎ5aP3(M, k*)

for D ≤ d <)i. Therefore, the 1-nearest neighbor to p must be a		k" with 0 ≤ 4 ≤ D,

which is what we wanted to prove.

Theorem 3.3.9. If Dé	is a min-K-cut point of the candidate set hi = {(M, kH), (M, k/),

⋯ , (M, k-ç,/)}, with	1i,tì ≤ 1i,tìùû	for 0 ≤ 4 <)i − 1, then the top-K nearest

neighbors of trajectory p lie among the k"	with 0 ≤ 4 ≤ Dé.

 108

Proof: We proceed by induction on K. The base case with K = 1 has already been

proved in the previous theorem. Assume k > 1 and that the theorem holds for K = k.

Let's verify that the theorem holds for K = k+1. Let D%	and D%./	be the min-k-cut and

the min (k +1)-cut points of hi, respectively. By inductive hypothesis, we know that the

k nearest neighbors of p are contained in the set 	 k" 1 ≤ 4 ≤ D%}. We also know that,

by the definition of min-K cut point, D% ≤ D%./, and also that ℎ5aP3 M, k%./ ≤

ℎ5aP3(M, k*) for p + 1 ≤ d <)i. This implies that the k+1 nearest neighbors of p are

in the set k"	 0 ≤ 4 ≤ D%./}, which is what we wanted to prove.

Example 3.3.10. Continuing with Example 3.3.3 and using Theorem 3.3.9, we know

that the top-2 nearest neighbors of trajectory p are contained in the set hi =

{ M, kH , M, k/ , M, kX }. This theorem allows us to discard the candidate pair M, ky .

Example 3.3.11. In Figure 21 we have an object p and five objects q0, q1, q2, q3, and q4

located in a single-dimensional space generated by the vector X. All objects are shown

as circles. For each object qi we have a lower bound for the distance from p to qi,

denoted by LowerBound[i] in the figure. Similarly, for each object qi we have an upper

Figure 21. Example of K-cut point

 109

bound for the distance from p to qi, denoted by UpperBound[i] in the figure. It can be

seen that the array of objects [q0, q1, q2, q3, q4] satisfies that LowerBound[i] ≤

LowerBound[i+1], so that the antecedent of Theorem 3.3.9 holds in this case.

Additionally, it can be seen that UpperBound[1] ≤ LowerBound[2], so that, by

definition, 1 is a cut-point of the candidate set in the figure. This means that the farthest

that q1 could possibly be from p is smaller than the closest that q2 could be to p.

Therefore, we know for sure that objects q2, q3, and q4 must be farther away from p than

q0 and q1, without explicitly computing the distances from p to all the qi’s. So,

according to Theorem 3.3.9, if we are searching for the K=1 nearest neighbor to p, we

only need to search in the set {q0, q1}.

Analogously, we have that UpperBound[3] ≤ LowerBound[4], which means that 3 is a

2-cut point of the candidate set in the figure. Therefore, according to Theorem 3.3.9, if

we seek for the K=2 nearest neighbor to p, we only need to search in the set {q0, q1, q2,

q3} because, for sure, we know that q4 is going to be farther away from p than q0, q1, q2,

and q3.

Observation 3.3.12. The minimum Euclidean distance between two MBRs R with the

lower-left corner (rx,ry) and the upper left corner (r’x, r’y), and S with the lower-left

corner (sx,sy) and the upper left corner (s’x, s’y), can be computed in constant time

complexity using the mindist formula of [RRS00]): 14)34Pb T, Ç = 3îX + 3òX, where

di = ri – pi if pi < ri, di = pi- r’i if r’i < pi, and di = 0 otherwise, for 4 ∈ $, e . Similarly,

the maximum Euclidean distance between R and S can be found using

 110

15$34Pb T, Ç = QîX + QòX, where ci = r’i – pi if pi < (ri + r’i)/2, and ci = pi - r’i

otherwise.

Observation 3.3.13. Given a candidate set hi = {(M, kH), (M, k/), ⋯ , (M, k-ç,/)},			

Observation 3.3.12 can be used to efficiently compute 	1i,tì and 	ôi,tì because these

two represent the minimum and maximum Euclidean distances between the MBRs of

trajectories p and qi, for any M, k" ∈ hi.

3.4 Description of Top-KaBT’s Pruning Strategy

In this subsection we describe our proposed parallel GPU technique to prune the

candidate set of the top-K trajectory similarity query processing algorithm, which is

based on Theorem 3.3.9. The pseudocode algorithm for this technique is in Figure 22,

while Figure 23, Figure 24, Figure 25, and Figure 26 provide an illustrated example.

The main function is called SORT_PRUNING and is presented in Line 1 of Figure 22. This

function is in charge of further pruning the set of (p,q) candidate pairs, by removing

pairs that cannot form part of the result set, as assured by Theorem 3.3.9. This function

takes the integer K and a list of (p,q) pairs candidates as input and returns as output a

sub-list of candidates. In Line 3 we consider Qp the set of all q trajectories that up to

this point have been identified as possible candidates for being the most similar Q-

trajectories to p. Then Line 4 calculates the lower and upper bounds (lowp and upp,

respectively) of the trajectory similarity between p and q, using Observation 3.3.13.

 111

Figure 22. Sort pruning algorithm of Top-KaBT

 112

This is illustrated in Step 1 in Figure 23, where we can see that different thread blocks

are assigned to different p query trajectories, and every thread in a thread block is in

charge of a different (p,q) trajectory pair. The first thread block is in charge of finding

the lower and upper bounds of the Hausdorff distance for each of the pairs (p3, q3), (p3,

q1) and (p3, q7). Line 5 sorts the arrays Qp, lowp, and upp, using the entries in lowp as

keys; in this way we ensure that the premise of Theorem 3.3.9 is satisfied. An example

of this is shown in Step 2 in Figure 23, where we see that the pairs corresponding to the

first thread block have been sorted according to their lower bounds so that (p3,q3) has

smaller lower bound (whose value is 1.3) than (p3, q7), which has 2.7 as a lower bound,

Figure 23. Example run of the sort pruning algorithm of Top-KaBT (Steps 1 and 2)

 113

and (p3, q7) in turn has a smaller lower bound than (p3, q7), which has a lower bound of

3.7. In Line 6 of Figure 22, lowp is shifted 1 entry to the left for memory coalescing in

line 23. The reason for this is that, according to Theorem 3.3.9, we test if 	ôi,tì ≤

1i,tìùû for every p and qi, so the value lowp[0] corresponding to mp,q0 is never used.

Figure 25 shows the left-shifting of the lower bounds array in Step 3. Notice how the

first value (1.3) of the lower bounds array disappeared, and we added a 0.0 to the right

of the same array. Because of Theorem 3.3.9, this last value we added to the right is

never used. Line 7 finds the cut point associated with every p query trajectory using the

lower and upper bounds of the trajectory similarity measure. This corresponds to Steps

4 and 5 in Figure 24 and Figure 25, respectively.

The function HAUSDORFF_BOUNDS in Line 15, shown in Step 1 in Figure 22, receives a

trajectory p, and a list Qp with the associated q trajectory candidates, and finds lowp and

upp that satisfy: lowp ≤ hausd(p,q) ≤ upp. In Lines 17 to 20 lowp and upp are computed in

parallel for every q in Qp using Observation 3.3.13. This function exploits the memory

coalescing unit when writing the bounds of the MBRs back to the global memory

because threads with consecutive identifiers write the MBR bounds of trajectories with

consecutive indexes. This function also achieves load balancing within thread blocks

because the complexity of computing the MBRs does not depend on the trajectories

themselves; therefore, all threads perform the same amount of work.

The function FIND_CUT_POINT in Line 23 in Figure 22 receives as input parameters a p in

P, an integer K, and the two arrays lowp and upp of the lower and upper bounds,

 114

respectively, and is in charge of finding the smallest K-cut point using Theorem 3.3.9.

After the parallel loop in Lines 24 through 30, an array cut_ptp is obtained, which is

shown in Step 4 in Figure 24. There we see that the cut_ptp boolean array has the value 1

at position i if the corresponding pair has an index that is a cut point, and 0 otherwise.

For example, in the pairs associated with the second thread block, the cut_ptp entry

associated with the pair (p6, q11) is 0 because 0.6 < 8.0. To find the smallest K-cut point

for p, a parallel inclusive prefix sum [HSO07] over cut_ptp (which is the portion of the

cut_pt array corresponding to p) is performed to obtain the array Pfx_cut_pt of Line 31;

this is shown in Step 4 in Figure 24 where the second thread block obtained the array

[1,2,3,4,4]. After this, every thread block finds the smallest index i such that

Figure 24. Example run of the sort pruning algorithm of Top-KaBT (Steps 3 and 4)

 115

Pfx_cut_ptp[i] ≥ K. In the case of the second thread block, the first i that satisfies this

condition is i = 1 because there is a 2 in the Pfx_cut_pt portion of the second thread

block at position 1. This function does memory coalescing because threads with

consecutive indexes access adjacent memory locations in the cut_ptp array. Also, all

threads perform the same amount of work.

The function REMOVE in Line 35 in Figure 22 receives as input parameters the array

candidates with the candidate trajectory pairs (p,q), and an array cut_pts of length

|Πi(Q5)3435b2P)| (where	Πi(Q5)3435b2P) is the projection on the left component (P)

of the tuples in Q5)3435b2P). This last array satisfies that cut_pts[i] is the cut point

Figure 25. Example run of the sort pruning algorithm of Top-KaBT (Step 5)

 116

associated with the i-th p trajectory in Πi(Q5)3435b2P). Lines 37 through 43 create an

array B that contains the elements of cut_pts + offset + 1 in its even-indexed entries,

and the elements of |{(M*, k) ∈ Q5)3435b2P|M* < M"}| in its odd-indexed entries. In

Figure 25 we see in Step 5 that the elements of cut_pts + offset + 1 are B[1] = 2, B[3]

= 5 and B[5] = 10. The idea behind creating B is to count how many pairs (p,q) are

going to be preserved for every p. In these same Lines 37 to 43, we create another array

Alter_1s0s with 1s in its even entries and 0s in its odd entries. This array is used for run-

length decoding [FHL10]. Then Line 44 performs a parallel reduction to compute the

array Counts satisfying that Counts[i] = B[2i+1]-B[2i]. Counts[2*i+1] is the number

of q candidates associated with pi that can be pruned away, while Counts[2*i] indicates

the number of q candidates associated with pi that cannot be pruned away. In Figure 25

we see that in Step 5 Counts[0] = 2 because B[1] – B[0] = 2-0 = 2, and Counts[1] = 1

because B[2] – B[1] = 3-2 = 1. This means that 2 pairs associated with p3 (which is the

0-th p candidate) cannot be pruned away, but 1 pair can be pruned away. Line 45

performs a run-length decoding over Counts (containing the counts of how many times

the elements will occur in the final result of the run-length decoding) and Alter_1s0s

(containing the elements that will be in the result of the run-length decoding); this is to

obtain the array Stencil of length |Πi(Q5)3435b2P)|, which has a 1 at position i if and

only if candidates[i] cannot be pruned, and a 0 at position i if candidates[i] can be

safely pruned according to Theorem 3.3.9.

 117

We then create a new array Pruned of length equal to the sum of all the elements in

Stencil. Lines 47 to 51 prune the spurious candidate pairs from candidates by writing

into Pruned only those elements of candidates located at positions i such that Stencil[i]

= 1. In Step 6 in Figure 26 we see that the candidates (p3, q1), (p6, q9), (p6, q10) and (p6,

q11) had associated Stencil values of 0; therefore, they were pruned.

Figure 26. Example run of the sort pruning algorithm of Top-KaBT (Step 6)

 118

4 The TrajEstU Algorithm: A GPU Technique for Reducing Trajectory

Uncertainty when Processing Top-K Trajectory Queries

4.1 Motivation of TrajEstU

As we have mentioned before in Section I.3, trajectories have an associated error

stemming from the noise of location sensors (measurement error), and from the fact that

trajectories are approximations to the true paths of the objects (model error). These

errors can introduce significant deviations in the results of top-K trajectory similarity

queries. To address this problem, we have proposed an algorithm called TrajEstU,

which estimates the true path of the objects, and then generates a new estimated

trajectory. The idea is then to run TrajEstU as a preprocessing step (i.e. before running

TKSimGPU + Top-KaBT) over the database of trajectories (Q), and also run it on the

query set (P) of the top-K trajectory similarity queries; thereby reducing the negative

impacts of both kinds of errors when processing this type of trajectory queries.

4.2 Overview of TrajEstU

TrajEstU receives as input a trajectory database db and an uncertain input trajectory p.

To estimate the true path of the trajectory p of a moving object in an unconstrained

space when there is uncertainty due to measurement errors and/or low sampling rates,

TrajEstU goes through three stages: (i) a pre-processing stage, (ii) a model fitting stage,

and (iii) a trajectory generation stage.

In the first stage, the pre-processing stage, TrajEstU performs local segment clustering

of the trajectories in db [LHW07] with the intention of finding the spatial patterns that

the trajectories in the database exhibit. The output of this local segment clustering

 119

algorithm is a set of segment clusters, each of which has an associated representative

trajectory describing the behavior of its cluster. Once the database trajectories have

been locally clustered, TrajEstU builds an R-tree clusterTree containing the

representative trajectories of each of the segment clusters found.

In the second stage, the model fitting stage, TrajEstU identifies the time intervals where

p has a near-constant acceleration. Then, for each one of these time intervals I, the

algorithm finds the extended Minimum Bounding Rectangle (eMBR) containing the

points of p with timestamps contained in I (this set of points is denoted by p[I]) and

uses this eMBR to perform a range search over clusterTree. The output of this range

search is a set of representative trajectories called clustersI. Then, for each

representative trajectory r in clustersI, TrajEstU builds a separate linear constant

acceleration model for p[I]� r. The result of this operation is one candidate constant

acceleration model for p[I] per representative trajectory r. Out of all these models for

p[I], TrajEstU chooses the one with the highest goodness of fit. The collection of

constant acceleration models for all intervals I makes up the kinematic model for p, and

allows us to predict the true path of the object at any given time.

In the final stage, given the kinematic model found in the second stage, TrajEstU

generates a new trajectory with uniform sampling rate, called the estimated trajectory,

whose points are the ones predicted by the kinematic model.

4.3 Description of TrajEstU

4.3.1 Pre-processing stage

 120

In this section we explain the first phase of TrajEstU, which consists of the

preprocessing operations that need to be performed only once. Then, as more query

trajectories arrive, these operations need not be performed again. In this stage, the idea

is to identify the local patterns displayed by the set of moving objects in db. To this end,

we perform local trajectory clustering [LLKH10] of the trajectories in the database, and

find the representative trajectory associated with each cluster. It is in these local cluster

trajectory representatives that the movement patterns are condensed.

Our proposed algorithm uses local trajectory clustering to find local trajectory patterns.

Lee et al. [LHW07][LLLH10] introduced the idea of first partitioning a set of

trajectories into segments and then clustering the resulting segments, instead of

clustering the trajectories as a whole. This serves our objectives because by clustering

trajectories into segments, we can obtain the movement patterns in a given small area,

instead of globally clustering the trajectories, which would not be able to discover

patterns at a local scale.

4.3.2 Model-Fitting Stage

In this section we explain TrajEstU’s second phase, the model-fitting stage. We

describe the kinematic trajectory model used and how to estimate its parameters. The

model is based on kinematics. First, we identify the time intervals of the object’s

trajectory where it has constant acceleration, and build a constant acceleration model for

each of these intervals. The collection of these constant acceleration models makes up

the kinematic trajectory model. Then, the constant acceleration models for any two

 121

consecutive time intervals [t0, t1] and [t1, t2] need to be smoothly connected in order for

them to be consistent around t1.

4.3.2.1 Constant Acceleration Model

It is known that if an object o with initial position x0 and initial velocity v0 moves with

constant acceleration a during a time interval [bH, bH 	+	∆v], ∆v> 0, we can then

accurately determine the position of o at any time t0 + t, with 0 < b < ∆v using x(t) =

x0 + v0 ∙ t + a ∙ tX/2. This is the time-linear dynamic trajectory model that we will use

for our trajectories, and its parameters are x0, v0 and a.

In the case of an uncertain trajectory, the problem is that it consists of a sequence of

only uncertain positions (called sampled points or observations), so the velocity and

acceleration, if computed straightforwardly from the observed positions, are also

uncertain quantities. To address this problem, we find the best linear constant

acceleration trajectory model that fits the observed positions by using a standard linear

regression model [LLD06]. The form of the linear model is Æ = CØ, where Z is the

observation vector, H is the model matrix, and X is the parameter vector. As is the case

in standard linear regression, we seek to find the parameter vector X that minimizes the

sum of the squares of the errors Æ − CØ ∞(Æ − CØ). We now explain with an example

how Z, H and X are found.

Suppose for example that we are given the sequence of) = 3	points {(x0,y0,t0),

(x1,y1,t1), (x2,y2,t2)=(xn-1,yn-1,tn-1)} belonging to an uncertain trajectory. To find the best

 122

linear constant acceleration trajectory model fitting these data, we compute ±b" = 	 b" −

b",/ for 1 ≤ 4 <) = 3, and then build the model matrix H of size (2))×6 = 6×6 as

follows:

C =

1 0 0
1 ±b/ ±b/X

1 ±bX ±bXX

	0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
1 ±b/ ±b/X

1 ±bX ±bXX

and the observation vector Z of size 2) ×1 = 6×1 as follows:

Æ = 	 $H $/ $X eH e/ eX ∞

Then, we use the standard formula Ø = C∞C ,/C∞Æ to compute the parameter vector

corresponding to the linear constant acceleration trajectory model that minimizes the

sum of the squares of the residuals Æ − CØ ∞(Æ − CØ):

Ø = (C∞C),/C∞Æ = $H DH
(î) 1

2
5(î) eH DH

(ò) 1
2
5(ò)

∞

,

where the vector ($H, eH) is the initial position of the object during the interval [t0, t1],

DH = (DH
(î), DH

(ò)) is the initial velocity, and 5 = (5(î), 5(ò)) is the constant acceleration

during that interval. This means that the fitted model during the interval [t0, t1] has x-

component 1 î (b) = $H + DH
î b + 0.55 î bX, and y-component 1 ò (b) = eH +

DH
ò b + 0.55 ò bX.

One key assumption made when building the above linear model, besides that the

acceleration is constant, is that the trajectory has a high-sampling rate during the time

interval corresponding to the observed data, which means that there are enough data

from which to discover the parameters of the model. However, when building a linear

 123

model for low-sampling rate trajectories, there may not be enough data to build an

accurate model. To solve this problem, we can exploit the knowledge provided by the

database of trajectories by mining the movement patterns described by the trajectories

in the database around the spatial area where our given trajectory query has a low-

sampling rate. To discover these movement patterns we use a trajectory clustering

algorithm. However, algorithms for clustering trajectories may not be appropriate for

discovering the movement patterns around a particular area of interest (where the given

trajectory has a low-sampling rate) because regular trajectory clustering algorithms

cluster trajectories globally. Instead, we propose using an algorithm that performs local

clustering of trajectory segments [LHW07] because it first splits trajectories into

smaller segments and then clusters the segments. To each cluster, the clustering

algorithm assigns a representative trajectory that captures the behavior of the segments

in the corresponding cluster. By incorporating the knowledge of these representative

trajectories into the constant acceleration model, we can overcome the difficulty of

building a linear model for low-sampling rate sections of trajectories.

4.3.2.2 Incorporation of Trajectory Patterns

Once the database trajectories have been locally clustered, we have the knowledge of

the spatial patterns that the trajectories in db exhibit in space. To exploit this

knowledge, during the generation of a constant acceleration model in the time interval

I=[t0, t1] with t0 < t1, we do the following. We first construct an extended minimum

bounding rectangle eMBR(ε) with ε > 0 surrounding the sampled points of the

trajectory with times in the range I = [t0, t1]. Then, we locate the set of clusters that

 124

intersect with this eMBR. This is illustrated in Figure 27, where we see the input

trajectory p. In that figure we have that t0 = p[2].t and t1 = p[3].t. There we see that the

intersection of the eMBR(ε) of M M[2]. b, M[3]. b (the set of points of trajectory p with

timestamps within the interval M[2]. b, M[3]. b) with Clusters is the list ClusterI =

{Cluster1, Cluster2, Cluster3}. We will consider each of these clusters individually, and

for each one, we will build a constant acceleration model using the points in the set

M bH, b/ ∪ hnaPb2SP≥[4], where hnaPb2SP≥[4], denotes the ith cluster in the list ClustersI.

However, one obstacle here is that the points in hnaPb2SP≥[4], unlike the points in

M bH, b/ , do not have timestamps; therefore, we cannot directly build the matrix H,

which depends on the timestamps of the points.

Figure 27. Finding representative trajectories

To solve this problem, we assign times to these points using the closest trajectory

points. To this end, we associate an empty list Lk with every point p[k] in the trajectory

p. Then for every point cj in Clusters[i].repr (the representative trajectory associated

with the i-th cluster in the list Clusters) we find the closest consecutive pair of trajectory

points p[m], p[m+1] and insert cj into Lm. This is illustrated in Figure 28 where we see

 125

that the points c0, c1 and c2 in Cluster3 have the consecutive pair of trajectory points p2

and p3 as the closest one; so L2=[c0, c1, c2]. Then we consider the list of points [p[2], c0,

c1, c2, p[3]] and use this list to linearly interpolate the timestamps for c0, c1 and c2,

assuming a uniform sampling rate. Therefore, the timestamp of c1 will be

X
¥
M[3]. b– 	M[2]. b ,	and the timestamp for p[2] will be y

¥
M[3]. b– 	M[2]. b . Once every

point cj in ClustersI[i] has been assigned a timestamp, we can proceed with the fitting of

a candidate constant acceleration model for the set of points M bH, b/ ∪ hnaPb2SP≥[4].

4.3.2.3 Selecting the Best Constant Acceleration Model

In Subsection III.4.3.2.2 we examined how we can build a constant acceleration model

for a trajectory p during the time interval [t0, t1] with t0 < t1, using a single segment

cluster in the database found by intersecting the eMBR(ε) surrounding the points of

M bH, b/ 	with the set of segment clusters Clusters. However, the result of this

Figure 28. Timestamp calculation for a set of cluster points

 126

intersection could yield more than one intersecting segment cluster, which would imply

that we have one candidate constant acceleration model per intersecting cluster. Out of

all these possible constant acceleration models for M bH, b/ , we pick the model that

maximizes the goodness of fit, i.e., the one that best explains the variance of the data,

using the standard formula for the coefficient of determination.

4.3.2.4 Variable Acceleration Model

A moving object could, however, change its acceleration throughout the extent of its

movement, rendering the above constant acceleration model incapable of accurately

predicting the movement of the object. Hence, we identify the time instants at which the

moving object changes its acceleration. To accomplish this, we use a real positive

number tol > 0 as a constant parameter, and keep an integer startInterval with the initial

value 0, and scan the query trajectory q from the beginning to the end, and computing

the average acceleration at each point with an index i, starting from 0. If the absolute

value of the difference between the acceleration at p[startInterval] and at p[i] exceeds

the fixed parameter tol, then we consider that [p[startInterval].t, p[i].t] is a constant

acceleration interval. Then we assign i to startInterval and then keep scanning the

trajectory in search for the next interval.

The average acceleration is, by virtue of being computed from the observed positions of

an uncertain trajectory, an uncertain quantity. By using the tol parameter as a threshold

to identify the time intervals where the trajectory has constant acceleration, we are able

to address this uncertainty problem.

 127

4.3.2.5 Model Coupling Function

As discussed in Sections III.4.3.2.1 to III.4.3.2.4, to model the movement of an object,

we identify the time intervals where the object’s acceleration does not vary beyond a

pre-specified tolerance tol > 0, and then fit a constant acceleration model for each of

these intervals. However, at the time instant that lies at the boundary between two

consecutive time intervals, for example, if two intervals of near-constant acceleration

are [t0,t1] and [t1,t2], with t0 < t1 < t2, then at time t1 we have two estimates for the

position of the object: one estimate arises from the constant acceleration model during

[t0,t1], and the other from the model during [t1,t3], and these two estimates could

potentially differ. To overcome these difficulties we smooth the trajectory model by

smoothly connecting, or coupling [GM14], the constant acceleration model during

[t0,t1] with the constant acceleration model during [t1,t2]. This is illustrated in Figure 29

where we see two constant acceleration models: Model p[0].t to p[2].t, and Model

p[2].t to p[4].t, shown as the pointed and dashed lines, respectively. These models

disagree in their estimations around p2, but when we incorporate the model coupling

function, then both models are smoothly connected.

Figure 29. Model coupling function

 128

Assume we have a constant acceleration model m1 during [t0,t1] with 1/
î b 	and

1/
ò (b) as the x and y-components, respectively, and another constant acceleration

model during [t1,t2] with 1X
î (b) and 1X

î (b) as its x and y-components, respectively.

To smoothly connect the two models, we can use the hyperbolic tangent, which is a

function that is known to be suitable for this purpose [GM14]. The model coupling

function Q 1/,1X
(î) b smoothly connects both models and has an x-component

given by Q 1/,1X
(î) b = 	1/

î b + ∂∑∏π v,vû ./
X

(1X
î b − 1/

î b), and the y-

component is identical, but replacing x by y. This function smoothly connects both

models because tanh converges to 1 as t goes to infinity, and to -1 as t goes to minus

infinity. Therefore, for large t, Q 1/,1X
(î) b converges to 1X

î b , and for t values

less than t1, it converges to 1/
î b .

4.3.3 Trajectory Estimation Stage

In this section we explain the final stage of TrajEstU. The purpose of this stage is to

generate a trajectory, called the estimated trajectory, using the kinematic model found

during the model-fitting stage presented in the previous Section 4.3.2. This kinematic

model is a collection of constant acceleration models {(modelI, I) | I is a constant

acceleration interval of p}. Each modelI can be used to estimate the true trajectory of

the moving object during the time interval I. Given a number of points numPoints, and

the lifetime Inter = [startTime, endTime] of p, we can generate a uniform sampling rate

trajectory by querying the kinematic model at time instants {startTime, startTime + Δt,

startTime + 2Δt,…}, thereby obtaining the estimated trajectory.

 129

4.4 Details of TrajEstU

In this section we explain the details of TrajEstU, the pseudocode of which is presented

in Figure 30. TrajEstU consists of a preprocessing stage where the spatial trajectory

patterns of the database are mined, a model-fitting stage where we build a trajectory

model, and then a trajectory estimation stage where we use such model to produce an

estimated trajectory.

4.4.1 Pre-processing Stage

First, the algorithm invokes the function cluster_segments implementing the local

clustering algorithm [LHW07] to get the set of segment clusters for all trajectories in

the database db (Line 44). Once this is done, the algorithm constructs an R-tree [Gutt84]

containing the representative trajectories of each local segment cluster (Line 45). If

there are multiple query trajectories, then this stage is to be executed only once off-line,

so it does not to be run with each query.

4.4.2 Model-Fitting Stage

Once the pre-processing stage has finished, TrajEstU proceeds to fit a model for every

query trajectory by calling function FILLDATA (Line 46). The function FILLDATA receives

as input arguments a query trajectory p, a database of trajectories db, an R-tree

clusterTree with the representative trajectories of the clusters, and a set of clusters

clusters, and is in charge of fitting a kinematic trajectory model for p. It first computes

the set intervals of time intervals where p has near-constant acceleration (Line 3). It

 130

then builds for each constant acceleration interval I of p a separate model describing the

behavior of p during I (Lines 4 – 15). It achieves this by constructing an extended

Minimum Bounding Rectangle eMBR(ε) enclosing the portion of p during I to account

for the uncertainty of q during I (Line 5). Then, it performs a range search over the R-

tree clusterTree using the eMBR as input to determine the set clustersI of all trajectory

segment clusters located near p during I (Line 6). It then finds a candidate constant

acceleration model for each trajectory segment cluster in clustersI by calling the

function CONSTACCMODEL and computes the goodness of fit for each model (Lines 7 –

10). Finally, it selects the model with the greatest goodness of fit (Lines 11 – 12).

The function CONSTACCMODEL in Line 16 takes a set of trajectory points points as its

input argument, and finds a linear regression model that fits the trajectory points in

points following the approach explained in Section III.4.3.2. By using this linear

regression approach to fit a constant acceleration trajectory model, we are able to

address the issue of measurement uncertainty because linear regression does not force

the resulting model to agree with every single sampled point. By considering the

representative trajectories of the segment clusters, we are able to address the problem

that may arise when trying to fit a model with very few data points available.

4.4.3 Trajectory Estimation Stage

After the model-fitting stage is completed, TrajEstU proceeds to compute the lifetime

Inter of the query trajectory p (Line 47) and then invokes the function

ESTIMATETRAJECTORY to estimate the true trajectory of p (Line 48). The function

 131

ESTIMATETRAJECTORY, shown in Line 30 of Figure 30, receives as input parameter a

kinematic model models that is a set of pairs of the form (modelI, I), where every modelI

is a constant acceleration model valid during the time interval I. This function also

receives as an input parameter the number of points (numPoints) of the final trajectory

estimate, and an interval Inter=[startTime, endTime] that is the lifetime of the estimated

trajectory. This function first creates an empty trajectory (Line 31) that will eventually

be the estimated trajectory, and then computes the time span between consecutive

points, assuming uniform sampling (Line 32). The function then computes the points of

the estimated trajectory one by one (Lines 33 – 41). To do so, it finds the model

(modelI, I) in models that is valid at time τi (Line 34 – 37), and computes the estimated

position at time τi using scalar products (Lines 38 – 39). Finally, it adds the estimated

position to the estimated trajectory (Line 40).

 132

Figure 30. TrajEstU pseudocode

 133

5 TraclusGPU: A parallel GPU technique for local clustering of trajectories

5.1 Motivation of TraclusGPU

As we have discussed in Section I.3, among the issues of top-K trajectory similarity

query processing are the measurement and the model uncertainties. This is because

noisy trajectories can significantly affect the accuracy of top-K trajectory similarity

queries. To address these issues, we proposed an algorithm called TrajEstU, which was

discussed in Section III.4. The idea underlying TrajEstU is that we can estimate the true

path of an uncertain trajectory (called the input trajectory) by building linear regression

models that assume near-constant acceleration, and that also take into account the

patterns followed by trajectories that are located close to the input trajectory. These

local trajectory patterns are gathered through the clustering of a database of trajectories,

which is done in TrajEstU’s off-line pre-processing stage. So, in order for TrajEstU to

estimate the true path of an input trajectory, it needs to run an off-line preprocessing

stage (this stage is run at most once per database, and should not be run with every input

trajectory) that locally clusters the database trajectories using the Traclus Algorithm

[LHW07]. Then, after this off-line preprocessing stage is done, TrajEstU can use these

clusters to build models with which it can estimate the input trajectory.

The set of experiments performed on TrajEstU, shown in Section IV.2.3, show that the

execution time performance of the online component of this algorithm is negligible, and

scales well in terms of the length of the query trajectory, and the number of trajectories

in the database, among other parameters. However, the off-line pre-processing stage of

TrajEstU (which is performed just once per database, and should not be run with each

 134

trajectory), which consists of locally clustering the database trajectories with the serial

version of the Traclus algorithm, does not scale with the number of trajectories in the

database. Moreover, for the database sizes used in our experiments (see Section IV.2.3),

the serial version of the Traclus algorithm took weeks to finish its execution. Therefore,

in order for TrajEstU to have practical application for dealing with Big Trajectory Data,

it is essential that its offline trajectory clustering stage scales with the large size of the

databases, so that this stage produces results in a reasonable amount of time.

As always, one way of dealing with the large volume of Big Trajectory Data is to make

use of parallel computing. In particular, GPUs, as has been discussed in Section I.2.4,

are a parallel architecture that possesses many advantages. Among these advantages are:

GPUs are available in most computers, including mobile devices, desktops,

workstations and supercomputers; GPUs are very energy efficient [LM13]; and, GPUs,

for certain tasks, can have up to an order of magnitude of higher floating point

throughput than the best multicore chip CPUs available [LKCD+10]. All these

advantages of GPUs make them a good candidate architecture in which to develop a

parallel algorithm for locally clustering trajectories.

Nonetheless, to the best of our knowledge, there does not exist a parallel GPU algorithm

for clustering trajectories locally. The only work related to our proposed algorithm

TraclusGPU is G-DBSCAN [ARMS+13], which is a parallel algorithm for DBSCAN

clustering [EKSX96][TSK05]. This work differs from TraclusGPU in that G-DBSCAN

is designed for density-based clustering of trajectories, while TraclusGPU performs

 135

local clustering of trajectories (i.e., TraclusGPU does not cluster the trajectories as

whole, but instead it partitions them into segments and clusters these segments). In

other words, both algorithms cluster objects of a different nature.

5.2 Overview of TraclusGPU

TraclusGPU is a parallel GPU algorithm for performing local trajectory clustering, and

is based on the ideas of the Traclus algorithm, which is a serial algorithm for local

trajectory clustering. TraclusGPU receives as input parameters a set S of trajectories, a

positive integer minPts, and a positive real number ∫ > 0, which are the same three

parameters of the Traclus algorithm.

TraclusGPU, just like Traclus, consists of three stages: the partitioning stage, the

trajectory clustering stage, and the representative trajectory search stage. In the

partitioning stage, TraclusGPU uses the Minimum Description Length Principle (MDL)

to sub-divide (partition) the trajectories into segments [TSK05]. In the trajectory

clustering stage, TraclusGPU clusters the resulting segments using a segment distance

[LLHW07]. Finally, in the representative trajectory stage, TraclusGPU constructs a

trajectory representative for each cluster.

The key idea behind TraclusGPU arises from the observation that the most time

consuming stage of the serial Traclus algorithm is the segment clustering stage. For this

reason, the main contribution of TraclusGPU consists in adapting the GPU

parallelization ideas for the DBSCAN algorithm [ARMS+13] (which is also based in

the BFS algorithm presented in [HN07]) to segments by arranging the segment data in a

 136

linear fashion, so as to ensure global memory coalescing. Also part of the modifications

on the work [ARMS+13] consists in being able to classify the segments into border,

core and noise points [EKSX96].

5.3 Description of TraclusGPU

In this section we explain the details of TraclusGPU. Its pseudocode is presented in

Figure 31. TraclusGPU consists of a partitioning stage, a local trajectory clustering

stage and a representative trajectory finding stage. As can be seen in Figure 31,

TraclusGPU receives as inputs a set of trajectories S, a positive integer minPts, and a

positive real number ª.

5.3.1 Partitioning Stage

To partition the trajectories, TraclusGPU follows the same theoretical ideas first

presented in [LLHW07], which consist of partitioning the trajectories according to the

Minimum Description Length Principle. This is done by calling the function

Approximate Trajectory Partitioning, described in [LLHW07], in parallel on a

multicore CPU (Lines 2 – 4 in Figure 31). The reason for running Approximate

Trajectory Partitioning on a multicore CPU is that this function exhibits thread

divergence on a GPU (see Section I.2.4 which describes this GPU phenomenon), which

entails a significant performance penalty. There is, however, no performance penalty

when running it on a multicore CPU.

 137

After partitioning trajectories into segments, segments are stored in four arrays:

beginPointX, beginPointY, endPointX, and endPointY. These arrays satisfy that the i-th

segment starts at the point (beginPointX[i], beginPointY[i]) and ends with the point

(endPointX[i], endPointY[i]). In this manner, global memory access to the segments

can be done in a coalesced manner.

Now, because we perform coarse-grained parallelism at the function call level, there are

no modifications to the internal section of the Approximate Trajectory Partitioning

function, which already exists in the literature. This trajectory approximate trajectory

partitioning algorithm was first introduced in [LLHW07], and is based on the Minimum

Description Length (MDL) optimization principle. This algorithm consists in splitting

the input trajectory into segments, such that the resulting segments is as close as

possible to the input trajectory (this is called preciseness [LLHW07]), and such that the

total number of resulting segments is as small as possible (called conciseness

[LLHW07]).

5.3.2 Local Trajectory Clustering Stage

TraclusGPU calls the function CLUSTERSEGMENTSGPU (Line 5 in Figure 31), which is

in charge of locally clustering the segments that resulted from Stage 1 of the algorithm.

The first goal in this function is to generate a graph w = (\, F) such that V consists of

all the segments obtained in the partitioning stage, and (D, ?) belongs to E if and only if

segments v and w are within an ª segment distance. To represent this graph in the GPU

we use the Compressed Sparse Row (CSR) format [BFGM+09] because it is a concise

 138

representation for sparse graphs (as opposed to an adjacency matrix), and because it

arranges its elements in arrays, which helps memory coalescing on a GPU. This

function assigns a GPU thread for every pair of segments (i,j) and computes their

segment distance in parallel. If this distance is less than the ª value, the corresponding

segments are considered neighbors (Lines 12—18). Then, the algorithm computes the

degree of each node (segment) in the graph by counting the number of neighbors (Lines

19—21). This operation can be done efficiently on the GPU with a sum reduction. After

this, by performing an exclusive parallel prefix sum of the degrees of all nodes (Line

22) we can obtain the offsets in the adjacency list (in CSR form) for every node in the

graph. Then, the algorithm fills in the adjacency list part of the CSR format (Lines 23—

29).

After constructing the CSR representation of the segment adjacency graph, the

algorithm proceeds to do a series of BFS traversals on the graph, until every node has

been visited (Line 30 and Line 32). This is done with the MODIFIEDBFSGPU function,

which first allocates two arrays class and isSource each of length equal to the number of

nodes in the graph (number of segments). The class array is initialized with the value

‘Noise,’ indicating that so far all points are classified as noise points. The isSource array

is initialized with false values except the first entry. This indicates that the algorithm

will start exploring the immediate neighbors of its node 0. The remainder of this

function somewhat resembles a BFS or a DFS graph traversal. Then the algorithm starts

assigning a GPU thread for every node i such that isSource[i] is true (called the source

nodes) (Line 37), and checks all the nodes adjacent to those source nodes (Line 38).

 139

Each of these adjacent nodes is marked as visited (Line 40) and marked as a source

node for the next iteration of the outermost while loop. If these adjacent nodes have a

degree higher than minPts (Line 41) they are classified as core, otherwise, if the source

node was classified as border or core, then the adjacent node (being adjacent to a border

or core node) is classified as border (Lines 44–46). Finally, the algorithm takes the

arrays class and cluster and builds a list of clusters C by grouping together all the nodes

that belong to the same BFS/DFS tree. This is because nodes belonging to the same

BFS/DFS tree are all reachable from each other, and therefore belong to the same

cluster.

5.3.3 Representative Trajectory Finding Stage

Once TraclusGPU has locally clustered all the segments, it calls the function

Representative Trajectory Generation in parallel (on a multicore CPU) for every

cluster. This function was first introduced in [LLHW07], and since our parallelism is

coarse-grained we do not introduce any changes. This algorithm works by sweeping a

vertical line through all the segments in a cluster, and then averaging the intersection

points between the segments encountered and the vertical line [LLHW07].

 140

Figure 31. Pseudocode of the TraclusGPU algorithm

 141

CHAPTER IV
PERFORMANCE ANALYSIS

In this chapter we present the analyses of the worst-case work and space complexities of

the proposed techniques, and also present extensive experimental studies of their

performance in comparison with state of the art techniques.

1 Theoretical Analysis

1.1 Complexity Analysis for TKSimGPU

We now discuss the worst-case work and space complexity of the TKSimGPU

algorithm given in Figure 19 in Chapter III by studying the worst-case complexity of

each one of its functions.

We now estimate the total amount of work performed by the function ESTIMATE_ ε.

This function computes the Hausdorff distance between every trajectory p in P_sample

and every trajectory q in Q_sample, and then for every p in P_sample it sorts the

associated list Lp. Since the worst-case work complexity of computing the Hausdorff

distance between any two trajectories p and q is Z(|M| 	 ∙ |k|), then computing the

Hausdorff distance for every (M, k)	in	K_P51Mn2	×	J_P51Mn2 has worst-case work

complexity Z K_P51Mn2 ∙ J_P51Mn2 ∙ M ∙ k = Z(K_P51Mn2 ∙ J_P51Mn2),

where M and k are upper bounds to the sizes of the trajectories in P_sample and

Q_sample, respectively. Then, the total amount of work done to sort one of the lists Lp

is Z J_P51Mn2 ∙ log J_P51Mn2 , so to sort all lists Lp for every p	in	K_P51Mn2 the

work complexity is Z |K_P51Mn2	| ∙ J_P51Mn2 ∙ log J_P51Mn2 . Therefore, the

worst-case work complexity of Lines 8 to 12 of the algorithm in Figure 19 is

 142

Z |K_P51Mn2	| ∙ J_P51Mn2 ∙ log J_P51Mn2 +	 K_P51Mn2 ∙ J_P51Mn2 =

Z(|K_P51Mn2	| ∙ J_P51Mn2 ∙ nRW	(J_P51Mn2)). Then in Line 13 the algorithm finds

the average Hausdorff distance between each p in P_sample and the closest K

trajectories in Q_sample, which has worst-case work complexity O(K_P51Mn2 ∙ [).

Therefore, the total amount of work performed by the function ESTIMATE_ ε has worst-

case time complexity Z K_P51Mn2 ∙ |J_P51Mn2| ∙ log	(|J_P51Mn2|) + K_P51Mn2 ∙

[= Z(K_P51Mn2 ∙ (|J_P51Mn2| ∙ log	(|J_P51Mn2|) 	+ [)). The worst-case space

complexity of the function ESTIMATE_ ε is Z(K_P51Mn2 ∙ J_P51Mn2).

Next, we examine the total amount of work performed by the function NEAR-JOIN

FILTER in Line 18 of Figure 19. To find the eMBR of a trajectory p the worst-case work

complexity is O(|p|), since we need to visit all points of p to determine its MBR. Then,

to compute the eMBRs of all trajectories in P and in Q, we perform an amount of work

of	Z(|K| ∙ |J| ∙ M ∙ k). Here, since we are studying the worst-case work complexity, we

assume that trajectories visit each grid cell (this assumption could hold in real-life,

depending on the spatio-temporal distribution of the trajectories and how coarse the grid

is). Therefore, Lines 19 and 20 of Figure 19 together have a combined worst-case work

complexity of Z(|w|), where |G| is the number of grid cells. Line 21 of Figure 19 has a

worst-case work complexity of Z(w X ∙ |K| ∙ |J|). Then, to remove duplicates, the

worst-case work complexity is	Z w X ∙ K ∙ J if the array of candidate pairs is sorted

in lexicographical order. Therefore, the total worst-case work complexity of the

function NEAR-JOIN FILTER is Z K ∙ J ∙ M ∙ k + w +	 w X ∙ K ∙ J =

Z K ∙ J ∙ M ∙ k + w X ∙ K ∙ J = Z K ∙ J ∙ (M ∙ k +	 w X) . The worst-case

 143

space complexity of the function NEAR-JOIN FILTER is Z K ∙ w + J ∙ w + K ∙ J =

Z(K ∙ J), if we assume that |G| is constant.

Next, we examine the total amount of work performed by the function

REFINE_TKSIMGPU. It sorts the candidates for every p in P, which has a worst case

work complexity of Z(|K| ∙ |J| ∙ log	(|J|) if we assume that every trajectory in P

retrieves all trajectories in Q as candidates. Then, REFINE_TKSIMGPU takes the most

similar K trajectories for every p in P, and this has a worst-case work complexity of

Z(|K| ∙ [). Then, the total complexity of this function is Z K ∙ J ∙ log J + K ∙

[= Z K ∙ J ∙ log J if we assume that [< |J|. The worst-case space

complexity of the function REFINE_TKSIMGPU is Z |K| ∙ |J| .

Finally, we turn our attention to the total amount of work performed by the function

TOP-K TRAJECTORY SIMILARITY in Line 1 of Figure 19 in Chapter III. This function

initially calls FILTER_TKSIMGPU, which computes a P_sample and a Q_sample, then at

each iteration it calls the ESTIMATE_ ε and NEAR-JOIN FILTER functions. As we have

analyzed earlier, this is an amount of work of order Z K_P51Mn2 ∙ (|J_P51Mn2| ∙

log	(|J_P51Mn2|) 	+ 	[) + K ∙ J ∙ (M ∙ k +	 w X . Since K_P51Mn2 and J_P51Mn2

are much smaller than K and |J|, we have that Z K_P51Mn2 ∙ (|J_P51Mn2| ∙

log	(|J_P51Mn2|) 	+ [) + K ∙ J ∙ (M ∙ k +	 w X = Z([+ K ∙ J ∙ (M ∙ k +

w X)). Then, each iteration first counts the number of candidates for every p in

P_sample, an operation which has worst-case work complexity O(K ∙ J) if all

possible candidates are retrieved, and then it finds all those trajectories in P without K

 144

candidates, which has worst-case work complexity O(|P|). Finally, the function TOP-K

TRAJECTORY SIMILARITY calls REFINE_TKSIMGPU. Hence, the total work complexity

of this function is Z(º([+ K ∙ J ∙ M ∙ k +	 w X)+	 K ∙ J + K + K ∙ J ∙

log J) = Z º ∙ K ∙ J ∙ M ∙ k +	 w X + K ∙ J ∙ log J , where I is the

number of iterations. If we assume that |G| is constant, as are M and k, then the worst-

case work complexity of TKSimGPU is Z(K ∙ J ∙ log	(|J|)), which is the same

worst-case work complexity that we would obtain if we generate all pairs in K×J, then

compute the Hausdorff distance for each pair, then sort for each p in P in increasing

order of Hausdorff distance, and then take the first K candidates for every p in P, as in

the naïveGPU algorithm. Overall, the worst-case space complexity of the TKSimGPU

algorithm is Z K ∙ J ,	 which is the same as naïveGPU’s worst-case space complexity.

1.2 Complexity Analysis for Top-KaBT

In this subsection we discuss the worst-case work and space complexity of the Top-

KaBT pruning algorithm.

We first estimate the total amount of work performed by Top-KaBT in the function

HAUSDORFF_BOUNDS in Line 15 in Figure 22 in Chapter III. Because this function

computes the lower and upper bounds of the Hausdorff distance between p and q for

every (p,q) candidate pair in C, and since we know that, according to Observation

III.3.12, the calculation of these lower and upper bounds has worst-case constant time

complexity; therefore, the total amount of work done by the HAUSDORFF_BOUNDS

function has worst-case time complexity O(|C|) and worst-case space complexity

 145

O(|C|). Because the function FIND_CUT_POINT in Line 23 visits each candidate pair in C

once, and in each visit it performs a constant amount of work, then the work complexity

is O(|C|) to find all the 1-cut points in Lines 24 to 30, and O(|C|) amount of work to

perform both the parallel prefix sum in Line 31 and to find the minimum in Line 32. So

the total amount of work performed in the function FIND_CUT_POINT is O(|C|). The

space complexity of this function is O(|C|).

Inside the function REMOVE_CANDIDATES, we see that in Lines 37 to 43 of Figure 22

the total amount of work is again O(|C|) because the algorithm performs multiple passes

over the array of candidates, doing constant work at each entry of this array. Then, in

Lines 44 to 46, the total amount of work is O(|C|) because the parallel algorithms to

find the adjacent differences, to perform run-length decoding, and to perform prefix

sum have O(|C|) worst-case work complexity. In a similar fashion, Lines 47 to 51 have

O(|C|) worst-case work complexity because the instructions at these lines simply

require writing a 1 or a 0 for every candidate pair in C.

We now turn our attention to the function SORT_PRUNING. Let hi be an upper bound to

the size of hi for every p in P. We see that SORT_PRUNING requires sorting Cp for every

p in the query set P. Therefore, this requires Z(|K| 	 ∙ |hi| ∙ nRW(hi)) amount of work to

sort all the candidate sets Cp. SORT_PRUNING then eventually calls the functions

HAUSDORFF_BOUNDS, FIND_CUT_POINT, and REMOVE_CANDIDATES, whose total

amounts of work have already been calculated. We conclude then that the overall worst-

 146

case work complexity of Top-KaBT is	Z(h +	 |K| 	 ∙ |hi| ∙ nRW(hi)), and the worst-

case space complexity is also O(|C|).

1.3 Complexity Analysis for TrajEstU

We now discuss the worst-case work and space complexity of the TrajEstU algorithm.

We shall first estimate the total amount of work performed by the function

CONSTACCMODEL in Line 16 of Figure 30. This function first sorts the set points, with a

worst-case work complexity of MR4)bP ∙ log(|MR4)bP|) . Then, it fits a constant

acceleration model to a set points. Lines 21 to 27 of Figure 30 fill-in the entries of a

matrix of size 2 ∙ MR4)bP ×6 and a vector of size 2 ∙ MR4)bP ×1, which

corresponds to a total amount of work of O(|points|). Then, in Line 28, the algorithm

performs linear regression, which corresponds to a worst-case work complexity of

O(|points|). Therefore, the worst-case work complexity of the function

CONSTACCMODEL is

Z MR4)bP ∙ log	(MR4)bP) + MR4)bP = Z(|MR4)bP| ∙ log	(|MR4)bP)).

The worst-case space complexity of the function CONSTACCMODEL is O(|points|)

because both the matrix H and the vector Z use O(|points|) space.

We compute now the total amount of work performed by the function

ESTIMATETRAJECTORY in Line 30 of Figure 30. This function obtains an estimated true

path out of a model. Its worst-case work complexity is O(numPoints), where numPoints

is the size of the trajectory estimation that we wish to obtain. This assumes that Line 35

 147

takes O(1). The function ESTIMATETRAJECTORY uses O(|numPoints|) space, where

numPoints is the desired number of points of the estimation.

We now proceed to compute the total amount of work performed by the function

FILLDATA in Line 1 of Figure 30. For every constant acceleration interval in Line 4, the

worst-case complexity is O(|clusterTree|) for the range search in an R-tree

[Gutt84][BKSS90] (however, the average-case complexity for a range search is

O(log(|clusterTree)) [BKSS90]), and then Z(|QnaPb2SP≥| ∙ Ω), where L is an upper

bound to the size of all trajectories. Therefore, the worst-case work complexity of the

online portion of the FILLDATA algorithm is	Z |QnaPb2SP≥| ∙ Ω ∙ |4)b2SD5nP| , where

|intervals| is an upper bound to the number of constant acceleration intervals that

trajectories have.

We know that the worst-case space complexity for computing the MBR of any

trajectory is O(L). The worst-case complexity for inserting a trajectory MBR into an R-

tree is O(NumTrajs), where NumTrajs is the number of elements in the tree. Therefore,

before calling FILLDATA, we perform the worst-case amount of work which is

Z æa1cS5dP ∙ Ω .

1.4 Complexity Analysis for TraclusGPU

The function CLUSTERSEGMENTSGPU first computes the distances between all pairs of

segments (Lines 12—18 of Figure 31), which has worst-case work complexity

Z(P2WP X). Then, this function performs a set of additions (Lines 19—21) of

 148

complexity Z(P2WP), and a reduction (Line 22). Finally, this function outputs the

adjacency list, which has a work complexity of Z P2WP X . Therefore, the function

CLUSTERSEGMENTSGPU has an overall worst-case complexity of Z P2WP X . Also,

since this function has worst-case space complexity Z P2WP X 	(if the graph is dense).

The function MODIFIEDBFSGPU is similar to the work proposed in [HN07] but, unlike

that work, our function MODIFIEDBFSGPU traverses the whole graph (while [HN07]

only traverses the subgraph reachable from a single node) and also classifies points as

core, border and noise. This function has a worst-case work complexity of Z |\| ∙ |Ω| +

|F| ,	where V is the set of vertices of the graph, E is its set of edges, and L is the number

of levels (the number of iterations of the outer-most while loop) [LWH10]. In the worst

case, Ω = Z |\| , so that the worst-case work complexity of this function is Z \ X =

Z(P2WP X).	The worst-case space complexity of this function is Z(|P2WP|) because it

stores three arrays of length |P2WP| to store the output, and to keep track of the state of

the algorithm.

The overall worst-case work complexity of TraclusGPU is then Z P2WP X + Ç ∙ N +

h ∙ ø , where S is the input trajectory set to TraclusGPU,		N is an upper bound to the

size of all trajectories in S, h is the resulting number of clusters, and ø is the cost of

finding a representative trajectory for a cluster. The overall worst-case space complexity

of TraclusGPU is then Z P2WP X .

 149

2 Experimental Analysis

Note that in the following section we use scientific e notation, the same used in

scientific calculators and programming languages, to represent large quantities.

Examples of scientific e notation are 3e6, to denote 3×10¿, and 1.1e3, to denote

1.1×10y.

2.1 Experimental Analysis of TKSimGPU

In this section we describe the experiments performed on our proposed TKSimGPU

algorithm for processing top-K trajectory similarity queries on GPUs.

2.1.1 Experimental Setup

2.1.1.1 Hardware and Software Description

Our multicore CPU algorithm was implemented in C using OpenMP. Our GPU

algorithm was implemented in C, using CUDA 6.5, Thrust 1.8 [HB10] and CUB 1.4.1

[Mer11], and our experiments were performed in a Ubuntu 14.04 workstation equipped

with two six-core Intel Xeon E5 2620v2 chips running at 2.1GHz, 64GB of DDR3

RAM and an Nvidia Quadro K5000 GPU with 4GB of RAM.

2.1.1.2 Datasets and experiment setup

For our experiments we use the GeoLife dataset [ZXM10] of real trajectories. The

GeoLife dataset contains 17,621 trajectories whose lengths add up to 1,251,654

kilometers, and span an interval of 48,203 hours. The total number of points (x,y,t) in

the trajectories of the GeoLife data set is 23,667,828. These trajectories were collected

with the use of GPS phones and GPS loggers by Microsoft Research Asia.

 150

For our experiments we have selected the subset of all these trajectories that are labeled

with the keyword “walk.” The reason for this is that these trajectories are shorter and

hence there is less dead space (the empty area inside an MBR) within the MBRs of the

trajectories. From these trajectories we have also removed all those trajectories that

consist of only a single point (and have MBR with area 0) because those are not

interesting trajectories. We have segmented each one of the trajectories of the original

trajectory set by splitting a trajectory if the object describing the trajectory is stationary

for more than 30 minutes (similar to what is done in the literature [RDTD+15]). We

also split the original trajectories to ensure that no resulting trajectory has more than

256 points. The reason for this is that, since we are using MBRs for filtering, a very

long trajectory could potentially span the whole space and its corresponding MBR

would be the size of the whole space and would not help during the filtering stage. We

end up with a total of 18,000,000 tuples (x,y,t) belonging to 86,648 trajectories, which

we keep in the GPU’s global memory.

2.1.1.3 Competing Algorithms

In these experiments we compare an implementation of TKSimGPU on a GPU and an

implementation of a naïve exhaustive search on GPU, which we call naïveGPU. The

naïve exhaustive search algorithm for processing top-K trajectory similarity queries

finds the Hausdorff distances between all pairs of (M, k) ∈ K×J, and then sorts those

distances to select for every M ∈ K	the top K most similar trajectories in Q using the

function REFINE_TKSIMGPU (see Line 43 in Figure 19).

 151

Both the GPU implementation of TKSimGPU and the GPU implementation of the naïve

exhaustive search algorithm run with 512 threads per thread block.

2.1.1.4 Experimental Parameters

We now describe the types of parameters of the following set of experiments. These

parameters are divided into two classes: static parameters and dynamic parameters. The

static parameters are not changed in all experiments. The dynamic parameters, on the

other hand, may have their values changed in an experiment. The way this is done is

follows. In each experiment one dynamic parameter is chosen as the study parameter,

and then we study the impact of that parameter on the performance of the algorithms.

This study parameter will then assume different values in a given interval, while all the

other dynamic parameters are kept constant at their default values. We will now

describe the parameters of our experiments, which are summarized in Table 3.

One of the dynamic parameters is the size of the query trajectory set (|P|), which

assumes values in the range from 20 to 100 trajectories, and whose default value is 60,

which is the mean of that interval. Then there is the size of the database (|Q|), assuming

values in the range from 28,000 to 56,000 trajectories, and that has a default value of

40,000, which is close to the mean of that interval. The last dynamic parameter is the

value of K, which lies in the interval from 10 to 160, with a default value of 70.

 152

The static parameters of this set of experiments are the size of the grid and the size of

the sample used by TKSimGPU. In both cases, we used the values that yielded the best

performance.

Parameter Name Geolife Data
Range of Values Default Value

Size of the query
trajectory set |P|

20 – 100 Trajectories 60 Trajectories

Size of the database
trajectory |Q|

28,000 –
56,000 Trajectories

40,000
Trajectories

K 10 – 160 70
Grid Size 128×128 128×128

Sample Size 512 512
Table 3. Experimental parameters of TKSimGPU and Top-KaBT

2.1.1.5 Performance Metrics

The performance metric used is average query execution time (ET). We measure the

time it takes our algorithms to process a query from the instant when it is issued, until

the instant when the query finishes executing.

2.1.2 Experimental Results

2.1.2.1 Impact of the query set size

In this experiment we use a database (Q) of size 40,000 trajectories (containing

10,330,000 data points), and K = 70. Figure 32 shows the experiment results. The labels

in the horizontal axis are given in the format x(y), where x is the number of trajectories

in the query set (P) and y is the total number of points contained in P. For example, the

label “100 Tr (17e3 Pt)” indicates that the size of P is 100 trajectories, and if we sum up

all the points contained in those trajectories we have 17,000 points. We observe that

TKSimGPU is 3.37x faster than the GPU naïve exhaustive search algorithm. The reason

 153

for this is that TKSimGPU’s filtering stage is able to produce a candidate result set that

has a size equal to 29.7% the size of the set K×J	on average. On the other hand, the

naïve GPU algorithm has to exhaustively find all the Hausdorff distances for all pairs in

K×J. From Figure 2 we can also observe that the query execution time of our GPU

TKSimGPU implementation is approximately linear in the size of the query set (P), and

we can also verify the fact that the naïve GPU implementation must be linear in the size

of the query set (P) if the database size is fixed.

Figure 32. Query set size vs. execution time (TKSimGPU)

2.1.2.2 Impact of the database size

In this experiment we use a query set (P) of size 60 trajectories and choose K = 70.

Figure 34 shows the results of this experiment. The labels in the horizontal axis are given

in the format x(y), where x is the number of trajectories in the database (Q) and y is the

total number of points contained in Q. For example, the label “36e3 Tr (7.7e6 Pt)”

indicates that the size of Q is 36,000 trajectories, and if we sum up all the points

contained in those trajectories we have 7,700,000 points. In this figure we observe that

 154

our GPU implementation is 1.72x faster than the naïve GPU algorithm. The reason why

this speedup is smaller than the one in the previous experiment (where TKSimGPU is

3.37x faster than the naïve GPU) is because in this experiment the size of the sample is

kept fixed at 512, but at the same time the database set is increasing with 4,000 elements

Figure 34. Database size vs. execution time (TKSimGPU)

Figure 33. K vs. execution time (TKSimGPU)

 155

at a time. The consequence of this is that, as the size of the database grows, the sample

trajectory set drawn is less representative of the set Q, and this leads to a poorer (larger)

epsilon, which in turn leads to candidate sets that are larger than they need to be. Again,

we confirm that the naïve GPU algorithm has a linear complexity on the size of the

database because the query set is kept fixed.

2.1.2.3 Impact of K

In this experiment we use a query set (P) of size 60 trajectories, a database of size 40,000

trajectories (10,330,000 data points) and vary K from 10 to 160. Figure 33 shows the

results of this experiment. In this figure we observe that TKSimGPU is 1.42x faster than

the naïve GPU algorithm on average. The experiment also shows that the query

execution time of the naïve GPU algorithm remains practically constant if we increase

the value of K. The reason for this behavior is that the most time-consuming tasks of the

naïve implementation, which are writing K×J	to global memory, then finding the

Hausdorff distance between every pair in K×J, and then sorting this set, do not depend

on K at all. The only stage of naïveGPU that does depend on K is the function

REFINE_TKSIMGPU (see Line 43 in Figure 19), which is basically a parallel copy

between two global memory arrays and is very inexpensive, as the above results show.

On the other hand, in Figure 33 we observe that the query execution time of our GPU

implementation of TKSimGPU does depend on K because the choosing of the epsilon

value for performing the near-join filter uses K as a parameter. A larger value of K will

lead to a larger epsilon value, and that is the reason why TKSimGPU exhibits this

behavior. However, we also observe that, as we increase K, the query processing time

increases rather slowly, and this is because the size of the database (Q) is kept fixed, so

 156

having a fixed size for the trajectory database samples under a constant size of Q will not

degrade how representative the samples are of Q’s spatial distribution, and hence, how

good our epsilons are.

2.1.2.4 Conclusions of TKSimGPU’s Experimental Results

Our conclusions from the experimental evaluation of TKSimGPU are the following:

• Existing parallel GPU trajectory similarity query processing algorithms like

Gowanlock and Casanova’s [GC14][GC16] and U2STRA[ZYG12] are not

applicable for processing top-K trajectory similarity queries. Therefore, there

does not exist a parallel GPU algorithm for processing top-K trajectory

similarity queries.

• TKSimGPU is the first parallel GPU algorithm for processing top-K trajectory

similarity queries.

• TKSimGPU performed significantly better (3.37x faster execution time) than the

existing naïveGPU implementation on GPUs using a real-world large-scale

dataset.

• Our experiments on a real-world large-scale dataset showed that the size of the

trajectory query set is linear in the overall query execution time.

• The size of the database has an almost linear impact in the overall query

execution time when running TKSimGPU on a real-world large-scale dataset.

• Our experiments on the Geolife dataset show that K has a sub-linear impact on

the execution time. This is evidenced in the fact that the rate of increase of the

 157

query execution time decreases as K grows larger. This means that TKSimGPU

scales well with K.

2.2 Experimental Analysis of Top-KaBT

In this section we describe the dataset, the hardware and software environment, and the

experiments used to compare the state of the art top-K trajectory similarity query

processing algorithm on GPU, TKSimGPU [LGZY15], when combined with Top-KaBT

to reduce candidate sets against TKSimGPU itself and against a naïve exhaustive GPU

search algorithm. The naïve exhaustive search algorithm finds the Hausdorff distances

between all pairs of (p,q)	⊆P×Q, and then sorts those distances to select the top K most

similar trajectories in Q for every p	∈	P.

2.2.1 Experimental Setup

2.2.1.1 Hardware and Software Description

For our experimental evaluation of Top-KaBT, we use the same hardware and software

environment described in Section 2.1.1.2.

2.2.1.2 Datasets and experiment setup

For our experimental evaluation of Top-KaBT, we use the same Geolife dataset

described in Section 2.1.1.2.

2.2.1.3 Competing Algorithms

 158

In these experiments we compare our proposed candidate trajectory pair pruning

technique, Top-KaBT, combined with TKSimGPU against TKSimGPU alone (with no

pruning help from Top-KaBT) and against a naïve exhaustive search GPU algorithm

called naïveGPU. NaïveGPU is a parallel GPU algorithm that works by computing the

Hausdorff distance between p and q for every (p,q) in P×Q, then sorting the pairs inside

each set Cp in increasing order of Hausdorff distance, finally taking for every Cp, the K

pairs with smallest Hausdorff distance.

2.2.1.4 Performance Metrics

For these experiments we use the following performance metrics: average query

execution time (measured in milliseconds) and the percentage of candidate trajectory

pairs (p,q) in the set P×Q whose similarity is computed by each algorithm. To illustrate

this concept of the percentage of candidate pairs explored, notice that naïveGPU always

explores (computes the Hausdorff distance between) 100% of the candidate pairs in

P×Q because by its own nature, naïveGPU performs an exhaustive search on all

possible candidate pairs. Therefore, the lower this percentage, the more efficient the

pruning technique is since it computes the similarity measure on a smaller subset of

P×Q.

2.2.1.5 Experimental Parameters

For this experiment we have used the exact same parameters of the experimental

evaluation of TKSimGPU, presented in Section 2.1.1.4. We avoid repeating them here

in this section.

 159

2.2.2 Experimental Results

2.2.2.1 Impact of the query set size (|P|)

In this experiment we use a database size (Q) of 40,000 trajectories (whose points add up

to 10,330,000), and K = 70. We vary the query set size from 20 to 100 trajectories (up to

17,000 points (x,y,t)).

Figure 35. Query set size vs. execution time (Top-KaBT)

In Figure 35 we see that the average query execution times of all three techniques seems

linear. This is because the average query execution time is dominated by the average

number of (p,q) candidates that remain before running the refinement stage, and this

number of candidate pairs grows, in the case of our three techniques, linearly with the

size of the query set. This behavior was expected for the naïve implementation because

its final candidate set is P×Q, and if Q is fixed, the cardinality of this candidate set is a

linear function of the size of P.

 160

Figure 36. Query set size vs. % candidate pairs explored (Top-KaBT)

In Figure 35 we see that if the database size is fixed, and the query set size increases

linearly, then the average query execution time in TKSimGPU+Top-KaBT is on

average 4.72 times faster than in TKSimGPU This is because, as we can see in Figure

36, the candidate set size of TKSimGPU+Top-KaBT is on average 4 times smaller than

the one that TKSimGPU alone generates. TKSimGPU is also 11 times faster than

naïveGPU because its candidate set size is 15 times smaller than the naïveGPU’s.

Figure 36 shows the impact of the size of the query set (|P|) on the percentage of pairs

P×Q explored (i.e., the percentage of pairs that have their Hausdorff distances

computed). In this figure we observe that naïveGPU always explores 100% of the pairs

in P×Q, as expected. In Figure 36 we also observe that for all three algorithms the

percentage of (p,q) candidate pairs in P×Q pruned does not seem to depend on the size

of the query set. In particular, TKSimGPU+Top-KaBT does not show a strong

dependency on the size of the query set P. The reason for this is that each query

trajectory p in P has an approximately equal number of (p,q) candidate pairs pruned;

 161

therefore, by increasing the size of the query set P by a factor of n times leads to an n

time increase of the number of candidate pairs in P×Q, but the number of candidate

pairs pruned also increases by n (because Theorem III.3.9 prunes the same number of

pairs for every p in P), which implies that the percentage of candidate pairs pruned is

nearly constant, which is what we observe in Figure 36.

The previous observation is also consistent with Figure 35, in which we saw a linear

relationship between |P| and the average query execution time. This is because the

percentage of candidates pruned remains constant as the query set size increases, so the

amount of non-pruned pairs (which is proportional to the average query processing

time) must also increase linearly with |P|.

In Figure 37 we observe the impact of the size of the query set (|P|) on the average

Figure 37. Query set size vs. execution time of Top-KaBT alone

 162

execution time of the pruning algorithm Top-KaBT alone (without counting the

execution time of TKSimGPU). We observe that as the size of the query set increases,

the average execution time for this pruning algorithm increases. However, comparing

the execution times in Figure 35 and Figure 37 we observe that the average query

execution time of just the Top-KaBT portion of TKSimGPU + Top-KaBT represents

around 2.5% of the total average execution time of TKSimGPU + TopKaBT. This

implies that the overhead of adding the Top-KaBT pruning on top of TKSimGPU is

small in comparison with the execution time of TKSimGPU alone.

2.2.2.2 Impact of the database size (|Q|)

 In this experiment we use a query set size of 60 trajectories, a value K = 70. The

database size varies linearly in the range from 28,000 to 56,000 trajectories (from

5,000,000 points up to 12,000,000 points (x,y,t)).

Figure 38. Database size vs. query execution time

 163

In Figure 38 we observe that the average query execution time for the three techniques

seems to be a linear function of the database size when the query set size and K are kept

constant. The reason for this is that the time complexity is dominated by the average

number of candidate pairs remaining after pruning, which is linear in |Q|. In Figure 38

we observe that TKSimGPU + Top-KaBT is on average 6.44 times faster than

TKSimGPU because the final number of candidate pairs produced by TKSimGPU +

Top-KaBT is 11 times smaller than the number of candidate pairs produced by

TKSimGPU. In this figure we observe also that TKSimGPU is 13 times faster than

naïveGPU because naïveGPU computes P×Q, while TKSimGPU performs pruning and

thus reduces the size of the candidate pairs set.

Figure 39 shows the impact of the database size (|Q|) on the percentage of candidate

pairs in P×Q that are exhaustively searched in the refine stage. We also see that the

percentage of candidate pairs pruned by Top-KaBT initially decreases with the size of

Figure 39. Database size vs. % candidate pairs explored

 164

the database. This behavior is expected of Top-KaBT because increasing the size of the

database can either decrease or increase the value of K-cut points. To see this, assume

K=1, a fixed query trajectory p, a fixed database Q, and such that the candidate pairs

associated with p are q0, q1, q2 with lower bounds (for their respective Hausdorff

distances to p) 1, 2 and 3, respectively, and with upper bounds (for their respective

Hausdorff distances to p) 3, 2, and 4, respectively. Then, according to the definition of a

cut point, 1 is a cut point associated with the candidate set of p. Now, consider another

trajectory q4 in the database with lower bound 2.5 and upper bound 4. If q4 is added to

the set of candidate pairs of p, then this would increase the cut point to 3, so no

candidate pairs are pruned. However, if a trajectory q5 with lower bound (for its

distance to p) 0.5 and upper bound 0.75 is added to the set of candidate pairs of p

instead of q4, then the cut point associated would decrease to 0, which would increase

the percentage of candidate pairs pruned. Therefore, the way that increases in the

database size would impact the percentage of candidate pairs pruned depends on the

spatial distribution of the dataset.

Figure 40. Database size vs. execution time of Top-KaBT alone

 165

In Figure 40 we observe a similar behavior to the one in Figure 37, where the average

execution time of the Top-KaBT pruning portion increases with the size of the database.

Again, we confirm that the execution time of the Top-KaBT portion represents, on

average, only 2.5% of the total execution time of TKSimGPU + Top-KaBT, so Top-

KaBT adds very little overhead to the execution time of TKSimGPU.

2.2.2.3 Impact of K

In this experiment we use a query set size of 60 trajectories, a database size of 40,000

trajectories (10,330,000 points (x,y,t)), and vary K from 10 to 160.

In Figure 41 we observe that the average query execution time of the naïveGPU

algorithm remains constant, even though it does increase but almost imperceptibly at

the scale of the plot, as K increases. The reason for this is that the bulk of the operations

of the exhaustive search algorithm consists in calculating P×Q, which is independent of

Figure 41. K vs. query execution time

 166

K. Also, the time complexity of TKSimGPU and TKSimGPU + Top-KaBT has a

similar shape, where the average query processing time increases quickly for small K,

and then the speed of increase stabilizes. Finally, in Figure 41 we observe that

TKSimGPU + Top-KaBT outperforms TKSimGPU in terms of average query

processing time, and TKSimGPU outperforms naïveGPU. This is because, again, the

average query processing time is dominated by the size of the candidate pairs set.

Figure 42. K vs. % candidate pairs explored

In Figure 42 we see the impact of K on the percentage of candidate pairs pruned by each

of the techniques compared. In particular, this figure shows that the percentage of

candidate pairs in P×Q explored by TKSimGPU + Top-KaBT increases with K. This is

because the set of all possible candidate pairs P×Q is fixed, so for a given query

trajectory p in P, a linear increase in K forces Top-KaBT to find K-cut points further

along to the end of the array of candidates, which means that more candidate pairs are

produced as a result of this. From this figure we can also observe that the size of the

candidate pair set of TKSimGPU + Top-KaBT is on average 5 times smaller than the

 167

size of the candidate pair set of TKSimGPU, which in turn is 4 times smaller than that

of naïveGPU.

In Figure 43 we observe that the average execution time of Top-KaBT exhibits an

overall tendency to increase as K grows. However, its behavior looks less like a straight

line than in the case of Figure 37 and Figure 40. The reason for this is that when

changing the value of K and leaving the sizes of the query set and the database constant,

much of the work performed by Top-KaBT remains the same. For example, the

calculation of the lower and upper bounds to the Hausdorff distances (Line 4 of Figure

22 in Chapter III), the sorting of Qp (Line 5 of Figure 22), the left shifting of the array

(Line 6 of Figure 22), and the finding of the cut-points (Line 7 of Figure 22), etc.

require the same amount of work if the query set and the database sizes are kept

invariant. The only difference in the amount of work that is introduced by changing K

comes at Lines 47 to 51 in Figure 22 when the spurious candidate pairs are removed.

Figure 43. K vs. execution time of Top-KaBT alone

 168

Since larger values of K usually lead to a lower percentage of candidate pairs pruned,

larger values of K require more write operations in Line 49, which leads to slightly

longer execution times, as can be seen in Figure 43.

2.2.2.4 Conclusions of Top-KaBT’s Experimental Results

Our conclusions from the experimental evaluation of Top-KaBT are the following:

• Top-KaBT is a pruning technique to help reduce the size of the candidate sets

generated by top-K trajectory similarity query processing algorithms, and is

applicable for any such query processing algorithm that uses a similarity

measure based on the triangular inequality.

• The execution time of Top-KaBT alone, i.e., the execution time of running only

the pruning algorithm and not running the entire top-K trajectory query

processing algorithm, is negligible for a real-world large-scale dataset like

Geolife.

• When dealing with any real-world large-scale dataset, such as Geolife, the

pruning performance of Top-KaBT (a measure of how much work Top-KaBT

saves) shows very little impact as the size of the trajectory query set increases.

Hence, Top-KaBT can be used in applications where it is desirable to retrieve

similarities for a large number of query trajectories.

• The pruning performance of Top-KaBT in the Geolife dataset scales well in

terms of the database size. However, this pruning performance in terms of the

database size is, unlike the case of the performance for the trajectory query set

size, depends on the spatial distribution of the dataset.

 169

• Similarly, the pruning performance of Top-KaBT in the Geolife dataset scales

well in terms of K. This means that Top-KaBT can be used in applications

where the users want to retrieve large amounts of similar trajectories for every

query trajectory.

• The execution time of Top-KaBT scales well as the size of the trajectory query

set increases. For this reason, Top-KaBT can be used in applications where users

desire to obtain similar trajectories for a large number of query trajectories.

• The execution time of Top-KaBT scales well as the value of K increases.

Therefore, Top-KaBT can be used for a wide variety of applications that

demand large values of K.

• Top-KaBT does not require any user-defined parameters. Hence, a Top-KaBT

user does not need to search in a large parameter space for the parameter values

that yield the best performance for Top-KaBT. For this reason, Top-KaBT can

be easily applied as an auxiliary pruning tool for any top-K trajectory similarity

query processing algorithm that uses a metric satisfying the triangular

inequality.

2.3 Experimental Analysis of TrajEstU

2.3.1 Experimental Setup

2.3.1.1 Hardware and Software Description

The algorithms used in these experiments were implemented in Java 8, and were run on

a workstation equipped with an Intel Xeon E5 and 64GB of RAM.

 170

2.3.1.2 Datasets and Experiment Setup

For our experiments, we use two real datasets and one synthetic dataset. The first real

dataset used is the deer dataset collected by the Starkey project [LHW07] consisting of

the trajectories of deer from 1993 to 1996, and obtained through radio-telemetry. This

dataset has 32 trajectories and 20,000+ points. The second real dataset is the hurricane

dataset [LHW07] consisting of the trajectories of Atlantic Hurricanes occurring during

the period from 1950 to 2004. This dataset contains 608 trajectories and 19,000+ points.

Since the real life datasets are small, we generated a larger synthetic dataset to test the

scalability of our technique. This synthetic dataset consists of 100,000 trajectories

whose points sum up to 10,000,000, and was generated using moveHMM [MLP16],

which simulates animal trajectories. These trajectories correspond to movements in

unconstrained spaces.

To obtain the ground truth data, we assume that all the trajectories in the database are

the ground truth data, i.e., the trajectories in the database are considered correct with no

uncertainty.

Now we discuss how we generate the input trajectories whose true paths we wish to

estimate. Input trajectories are trajectories with uncertainty for which we want to

compute estimates for its positions. To generate our input trajectories, we randomly

remove high sampling rate trajectories from the database and then add Gaussian noise

with distribution N(0, σ2) to every one of its sample points, in order to simulate

measurement uncertainty. Then, to simulate the model uncertainty, a subset of the

 171

sample points is removed from these trajectories to ensure a low-sampling rate. We

artificially add timestamps to all the points of all trajectories, and that timestamp added

to each point is its index in its corresponding trajectory. Therefore, this scheme assumes

that the trajectories in the datasets have a uniform sampling rate. For example, to

generate an input trajectory with half the sampling rate of a given ground truth

trajectory, we remove every other point from the latter. The resulting input trajectory is

then said to have a sampling rate of 0.5 because its sampling rate is half of that of the

ground truth.

2.3.1.3 Competing Algorithms

In these experiments we compare our proposed technique, TrajEstU, against Chazal et

al.’s technique [CCGJ+11], described in Section III.2.2.2. This technique, like

TrajEstU, is a data-driven technique that exploits the underlying database in order to

reduce the model and measurement uncertainty in a trajectory. It does so by embedding

the noisy input trajectory and the non-noisy database trajectories into a higher-

dimensional space. Once this is done, the technique moves each point of the input

trajectory towards the nearest embedded database points, and then brings all the

resulting points back into the native space of the trajectory.

2.3.1.4 Experimental Parameters

The dynamic and static parameters of the following experiments are given in Table 4.

One of the dynamic parameters is the sampling rate. We measure the sampling rate as a

real number in the interval [0,1] for all datasets, where a value of 0.5, for example,

 172

expresses that the input trajectory was obtained from the ground truth trajectory by

removing every other point; hence, the resulting input trajectory has half the number of

points of the ground truth trajectory. A value of 0.3 for the sampling rate of the input

trajectory expresses that this trajectory was generated from the ground truth trajectory

by keeping one point, then removing the next two points, then keeping the next one,

then removing the next two, and so on. Therefore, a value of 1 for the sampling rate of

the input trajectory expresses that the input trajectory has the same points as the ground

truth. For this dynamic parameter we chose 0.5 as the default value for all datasets

because it lies in the middle of the range of values. Another dynamic parameter in this

set of experiments is the length of the input trajectory (the summation of the distances

between consecutive points in a trajectory). The range of values of this parameter

naturally depends on the dataset. However, in all cases we chose a default value equal

to the average of the lengths of all trajectories in each dataset. So, for example, for the

deer dataset, we chose a default value of 10,000 because that is the average of the

lengths of all trajectories in that dataset. A third dynamic parameter for our experiments

is the standard deviation of the measurement noise. For all datasets, we chose a range of

values between 0m and 30m because we assume that the trajectory points are collected

through GPS sensors, and these sensors have errors less than 20m in 99% of the cases,

and errors less than 6m in 96% of the cases [GPS17]. This is also the reason why we

chose 6m as the default value for this parameter. Our final dynamic parameter for our

experiments is the acceleration tolerance, which is used by TrajEstU to split an input

trajectory into near-constant acceleration intervals. For this parameter we have chosen

the value that produced the highest accuracy for TrajEstU.

 173

Besides the dynamic parameters, we have a static one, belonging to TrajEstU, whose

value is kept constant in all experiments. This is the epsilon eMBR, which delimits the

size of the area used by TrajEstU to search for clusters that are close to a given input

trajectory. For this parameter, we have chosen the values that produced the highest

accuracy for the technique. There are also two static parameters belonging to Chazal et

al.’s algorithm, which are the number of nearest neighbors in the embedded space that

are averaged (K), and the number of adjacent trajectory points that are combined into

one tuple in order to embed points into a higher-dimensional space (n). For these

parameters we have chosen the values that yielded the highest accuracy for this

algorithm.

Parameter
Name

Deer Dataset Hurricane Dataset Synthetic Dataset
Range of
Values

Default
Value

Range of
Values

Default
Value

Range of
Values

Default
Value

Sampling
Rate

0.1 – 1.0 0.5 0.1 – 1.0 0.5 0.1 – 1.0 0.5

Input
Trajectory

Length

3,000 –
15,000

10,000 100-600 300 100 – 500 300

Standard
deviation of

the
measuremen

t noise

0 – 30 6 0 – 30 6 0 – 30 6

Epsilon
eMBR

20 20 20 20 20 20

Acceleration
tolerance

0.1 – 100 1.1 0.1 – 100 1.1 0.1 – 100 1.1

K 5 5 5 5 5 5
n 1 1 1 1 1 1

Table 4. Experimental parameters of TrajEstU

2.3.1.5 Performance Metrics

 174

To measure the estimation accuracy we use the EDR trajectory similarity measure

[COO05] to determine the similarity between the trajectory suggested by our algorithm

and the ground truth. The EDR trajectory similarity between two trajectories q1 and q2

is similar to the edit distance on strings in that it computes the minimum number of

points that have to be modified in order to transform one of the input trajectories into

the other. The key difference between EDR and the edit distance lies in the matching

function: in EDR two points match if they are within a distance of δ, where δ is a fixed

positive real number. For calculating the EDR distance, we use δ = 20m. We see then

that the larger the distance, the more dissimilar q1 and q2 are. Therefore, the maximum

possible distance is max(|q1|, |q2|) where |qi| is the number of points in the trajectory qi.

Using this, we define the EDR match percentage between q1 and q2 as (1 – EDR(q1, q2))

/ max(|q1|, |q2|). Hence, the EDR match percentage is a number from 0 to 1, and the

higher the EDR match percentage, the more similar q1 and q2 are.

Our second evaluation metric is the average query execution time (ET), where we

measure the time from the moment when the query starts executing until it finishes. The

average execution time is taken over 30 runs of the same query.

2.3.2 Experimental Results

2.3.2.1 Impact of the Sampling Rate

We study the effects of the model uncertainty by studying the impact of the sampling

rate of the points in the input trajectory. This is because the lower the sampling rate, the

higher the model uncertainty is. In these experiments pertaining to the impact of the

 175

sampling rate, the x-axis denotes the sampling rate multiplier. To simulate different

sampling rates, we choose a set of input trajectories, called the original set of input

trajectories, and then remove points from them to obtain other input trajectories with

lower sampling rates. The value 1 of the sampling rate multiplier refers to the case

where we use the original set of input trajectories, the value 1/2 refers to the case where

we use the input trajectory set resulting from removing every other point from the

original input trajectories, and the value 1/3 refers to the case where we use the input

trajectory set resulting from removing every other three points from the original input

trajectories, and so on. Therefore, the higher the value of the sampling rate multiplier,

the higher the sampling rate.

Figure 44 shows the impact of the sampling rate on the accuracy of both algorithms for

the deer dataset. The figure shows that the lower the sample rate, the lower the accuracy

Figure 44. Sampling rate vs. accuracy (deer dataset)

 176

is. This is because a lower sampling rate implies higher model uncertainty, which in

turn leads to more difficulty in accurately predicting the true path of the moving object.

We observe that TrajEstU’s accuracy is consistently higher than Chazal et al.’s

algorithm. We also observe that TrajEstU’s accuracy seems to increase exponentially,

which can be explained because the number of points of the query trajectories also

increases exponentially.

Figure 45 shows the impact of the sampling rate on the execution time of both

algorithms for the deer dataset. In this figure we observe that the execution time

increases with a larger sampling rate because the bulk of the work done by the online

phase of TrajEstU is proportional to the number of sampled points considered when

building the linear regression models. For this dataset, the execution time of both

algorithms exhibit a similar (sort of linear) behavior as the sampling rate changes, and

also the average execution times for both algorithms are fairly close to each other, with

TrajEstU running slightly faster (although the difference is negligible).

Figure 45. Sampling rate vs. execution time (deer dataset)

 177

Figure 46 shows the impact of the sampling rate on TrajEstU’s accuracy for the

hurricane dataset. This figure also shows that the lower the sample rate, the lower the

accuracy is, which is an expected behavior. In this figure we also observe that both

algorithms have identical behaviors to those exhibited in the deer dataset: TrajEstU has

a consistently higher accuracy, and as the sampling rate increases, the accuracy

increases in a non-linear fashion because the number of points in the input trajectory

varies also in a non-linear manner.

Figure 46. Sampling rate vs. accuracy (hurricane dataset)

Figure 47 shows the impact of the sampling rate on the average execution time of both

competing techniques for the hurricane dataset. In this experiment we see that both

algorithms exhibit comparable execution times (the differences in their ETs is in the

order of few milliseconds, which is not substantial), with TrajEstU being only slightly

faster.

 178

Figure 47. Sampling rate vs. execution time (hurricane dataset)

Moreover, in Figure 45 and Figure 47 we observe that for the deer and hurricane

datasets the execution time of Chazal et al.’s algorithm is shorter than that of TrajEstU;

however, in the synthetic dataset the opposite happens and TrajEstU is the faster

executing algorithm. When studying the impact of the sampling rate on the execution

time of both algorithms (Figure 45, Figure 47 and Figure 49), we cannot conclude that

either algorithm is consistently faster than the other. The reason for why sometimes

TrajEstU is faster and sometimes slower than Chazal et al.’s algorithm is that the ETs of

algorithms depend on the spatial distribution of the dataset. In the case of TrajEstU, this

is because the execution time is proportional to the number of clusters found in a

region; and in the case of Chazal et al.’s algorithm this is because the execution time

depends on how expensive it is to find the k nearest neighbors for every embedded

point of the input trajectory. Nonetheless, in all three datasets both algorithms are

competitive in terms of execution time since the execution times are in the order of

milliseconds. In other words, the differences in their execution times are negligible.

 179

Figure 48. Sampling rate vs. accuracy (synthetic dataset)

Figure 49. Sampling rate vs. execution time (synthetic dataset)

2.3.2.2 Impact of the Query Length

Figure 50, Figure 52 and Figure 54 show that the length of the input trajectory does not

have a significant impact on the accuracy of either technique. This is expected because

TrajEstU works by splitting the trajectory into intervals where the acceleration does not

 180

change significantly, and the number and duration of these constant-acceleration

intervals is not a function of the length of the input trajectory. The same is true for

Chazal et al.’s algorithm, which does not take the length or the size of the trajectory as

an input parameter.

As we can see in Figure 51, Figure 53 and Figure 55, the execution time does, however,

increase with the length of the input trajectory because, under a constant acceleration

tolerance, the longer the trajectory, the greater the number of points and the greater the

number of near-constant acceleration models that need to be fitted. The same is true for

Chazal et al.’s algorithm because the work performed is proportional to the size of the

trajectories, which is correlated with the length of the trajectory. In those figures we

also observe that in some cases, like with the deer and synthetic datasets, Chazal et al.’s

algorithm has shorter ET, while in other cases, like with the hurricane dataset, TrajEstU

Figure 50. Query length vs. accuracy (deer dataset)

 181

has shorter ET. However, in all three datasets, we observe that both algorithms have

extremely short execution times that are competitive with each other.

Figure 51. Query length vs. execution time (deer dataset)

Figure 52. Query length vs. accuracy (hurricane dataset)

 182

Figure 53. Query length vs. execution time (hurricane dataset)

Figure 54. Query length vs. accuracy (synthetic dataset)

 183

Figure 55. Query length vs. execution time (synthetic dataset)

2.3.2.3 Impact of the Standard Deviation of the Noise

In this experiment we study the impact of the magnitude of the variance of the Gaussian

noise that was artificially added to every point in the query trajectories in order to

simulate measurement uncertainty. Figure 56, Figure 58 and Figure 60 show that the

greater the standard deviation of the measurement noise, the lower the accuracy is. This

is expected because it becomes harder to accurately predict the true path of the moving

object when the measurement/instrumentation uncertainty is higher.

In Figure 56 it can be seen that the accuracy of TrajEstU is up to 1.7X greater than that

of the embedding algorithm, but the gap progressively narrows as the standard deviation

of the noise increases, so that when the standard deviation is 30m, both algorithms

exhibit the same accuracy. However, in practice, the standard deviation of the

measurement error of GPS devices does not exceed 20m [GPS17], which means that in

GPS applications TrajEstU would have better accuracy than the competing algorithm. A

 184

similar behavior is also observed in the hurricane dataset, only that with this dataset

TrajEstU exhibits up to 3.2X the accuracy of Chazal et al.’s algorithm, and, despite the

fact that the gap also narrows as the noise increases, TrajEstU has consistently higher

accuracy than the competing algorithm.

Figure 57, Figure 59, and Figure 61 show that the execution time is not impacted by the

standard deviation of the measurement noise because when building the linear

regression models, the amount of work performed by the technique is the same

independently of this standard deviation of the measurement noise. Also, in Figure 57,

Figure 59 and Figure 61 we observe that for all three datasets, the execution time of

Chazal et al.’s algorithm shows no sensitivity towards the variation of the measurement

noise. This is to be expected because the magnitude of the error does not play any role

in the algorithm. We also observe that just like in all previous experiments, the

execution times of both techniques are competitive with each other.

Figure 56. Standard deviation of the measurement noise vs. accuracy (deer dataset)

 185

Figure 57. Standard deviation of the measurement noise vs. execution time (deer dataset)

Figure 58. Standard deviation of the measurement noise vs. accuracy (hurricane dataset)

 186

Figure 59. Standard deviation of the measurement noise vs. execution time (hurricane dataset)

Figure 60. Standard deviation of the measurement noise vs. accuracy (synthetic dataset)

 187

Figure 61. Standard deviation of the measurement noise vs. execution time (synthetic dataset)

2.3.2.4 Impact of the Acceleration Tolerance

The acceleration tolerance is used to split a trajectory into near-constant acceleration

intervals. Figure 62, Figure 63, and Figure 64 show that as the acceleration tolerance

increases, the accuracy decreases. This is because as the acceleration tolerance is larger,

Figure 62.Acceleration tolerance vs. accuracy (deer dataset)

 188

then within each near-constant acceleration interval, the acceleration varies more

markedly so that our linear regression model, which assumes constant acceleration,

cannot adequately fit the data.

2.3.2.5 Impact of the Dataset Size

Despite the fact that the synthetic dataset is significantly larger than the real life ones,

we observe that the average query execution time for any given experiment did not

change significantly between the datasets. This is because the dataset size only impacts

the pre-processing stage where we cluster the trajectories, and this stage is performed

off-line. The impact of the dataset size could then only influence the average query

execution time through the number of resulting trajectory clusters that need to be

considered in Line 7 of Figure 30 in Chapter III. In our three datasets, we observe that

with the clustering parameters recommended by [LLLH10], the cluster density is the

Figure 63. Acceleration tolerance vs. accuracy (hurricane dataset)

 189

same so that our algorithm considers a similar amount of clusters. From the figures in

Section IV.2.3.2 that evaluate the impacts on the accuracy of TrajEstU we also observe

that the accuracy did not vary much among datasets. This is expected in the deer and

synthetic datasets because the latter dataset was generated using an animal movement

simulator, and because the acceleration tolerance chosen led to constant acceleration

intervals of about the same size; therefore, the linear regression models fitted sets of

points with similar movement patterns and with about the same number of points.

2.3.2.6 Conclusions of TrajEstU’s Experimental Results

Our conclusions from the experimental evaluation of TrajEstU are the following:

• TrajEstU is a pruning technique to help reduce the size of the candidate sets

generated by top-K trajectory similarity.

Figure 64. Acceleration tolerance vs. accuracy (synthetic dataset)

 190

• TrajEstU achieves higher accuracy estimates than the state-of-the-art trajectory

estimation techniques in unconstrained spaces.

• TrajEstU achieves a competitive execution time with existing trajectory

estimation techniques on unconstrained spaces.

• TrajEstU’s average execution time (for its online component) per input

trajectory is negligible. Therefore, it can be used as a scalable pre-processing

technique for trajectory estimation without any concerns that it will impose an

execution time penalty.

• The most time-consuming portion of TrajEstU is the pre-processing stage,

where trajectories are locally clustered according to Traclus [LHW07].

However, our experiments show that this algorithm can be efficiently

parallelized with GPUs, which help diminish the pre-processing execution time.

• The accuracy advantage that TrajEstU holds against the competing technique

narrows as the standard deviation of the measurement noise increases up to 20m.

However, in real applications involving GPS sensors, the standard deviation of

the noise is much smaller than 20m [GPS17], so this decrease in the accuracy

advantage of TrajEstU is less significant in real-world applications.

• TrajEstU shows no accuracy impact as the size of the input trajectories

increases. Therefore, TrajEstU can be used to estimate trajectories with large

lengths without any concerns for decreases in the accuracy of the estimations.

• The execution time of TrajEstU scales well with the length of the input

trajectories.

 191

• TrajEstU shows no significant impact in accuracy in terms of the epsilon eMBR,

nor in terms of the acceleration tolerance. Therefore, there should not be a big

concern in finding the values for these parameters in order for TrajEstU to

achieve its best performance.

2.4 Experimental Analysis of TraclusGPU

2.4.1 Experimental Setup

2.4.1.1 Hardware and Software Description

The algorithms described in this set of experiments were implemented in Java 8, on a

workstation running Ubuntu 14.04, with two Intel Xeon E5 chips with six cores, 64GB

of RAM, and an nVidia Quadro K5000 with 4GB of RAM.

2.4.1.2 Datasets and Experiment Setup

For our experiments, we use two a synthetic dataset consisting of 100,000 trajectories

whose points sum up to 10,000,000, and that was generated using moveHMM

[MLP16], which simulates animal trajectories.

2.4.1.3 Competing Algorithms

In this set of experiments we compare our proposed technique, TraclusGPU, against a

serial implementation of the Traclus technique [LHW07].

2.4.1.4 Experimental Parameters

 192

For our experiments we will see the impacts on the performance of TraclusGPU when

we vary the values of the size of the set of trajectories that we wish to cluster, which we

also refer to here as the size of the dataset. One reason for choosing this experimental

parameter is that the main motivation for TraclusGPU was to solve the scalability

problem posed by the serial Traclus technique, which took weeks to run on our dataset.

Despite that TraclusGPU is a clustering algorithm, we do not study the quality of the

clusters because TraclusGPU is a parallel version of Traclus, so the quality of the

cluster it produces is the same as that of those produced by Traclus. Our static

parameters in this experiment are ∫ and MinPts, which denote the size of the

neighborhoods and the minimum number of segments in each cluster, respectively, in

both Traclus and DBSCAN. Table 5 presents a summary of our experiment parameters.

Parameter Name Synthetic Data
Range of Values Default Value

Size of the trajectory set 10,000 – 70,000 35,000
¡ 2 2

MinPts 7 7
Table 5. Experimental parameters of TraclusGPU

2.4.1.5 Performance Metrics

Our evaluation metric is the average query execution time (ET), where we measure the

time from the moment when the clustering algorithm starts executing until it finishes.

The average execution time is taken over 30 runs of the same query.

2.4.2 Experimental Results

2.4.2.1 Impact of the Dataset Size

 193

In this experiment we study the impact of the dataset size on the performance of both

TraclusGPU and the serial Traclus algorithm. In Figure 65 we observe that there is a

significant performance difference between TraclusGPU and the serial Traclus

algorithm, where TraclusGPU is able to cluster a database with 4,000,000 segments

(about 400,000 trajectories) in around 3 hours, while the serial Traclus does the same in

sixteen hours. We see then that the performance increase in terms of execution time is

around 5X.

Figure 65. Number of segments vs. execution time (synthetic dataset)

2.4.2.2 Conclusions of TraclusGPU’s experiment results

Our conclusions from the experimental analysis performed on TraclusGPU are the

following:

• The total execution time of TraclusGPU significantly improves upon the

execution time of the serial Traclus algorithm. In particular, TraclusGPU offered

reasonable execution times of around 4 hours to cluster our large-scale dataset,

as opposed to the serial Traclus algorithm, which took two weeks to run on the

 194

same dataset. This shows the difference between a practical algorithm for Big

Trajectory Data (TraclusGPU) and an impractical algorithm (Traclus).

• We observe that TraclusGPU has a comparable execution time to the serial

Traclus algorithm when the total number of segments in the database is around

100,000 (around 10,000 trajectories) and that only when the number of segments

grows beyond 2,000,0000 (around 200,000 trajectories) is that the execution

time advantage of TraclusGPU really shows.

 195

CHAPTER V
CONCLUSIONS AND FUTURE WORK

In this dissertation we have proposed a system for processing top-K trajectory similarity

queries on Big Data using GPUs. This system consists of four components:

TKSimGPU, the query processing engine, Top-KaBT, the parallel pruning technique

that helps reduce the amount of work performed by the query processing engine,

TrajEstU, the trajectory estimation technique to address the issue of uncertainty in

trajectories, and TraclusGPU, the local trajectory clustering technique used to assist

TrajEstU in addressing the uncertainty of trajectories.

The first component, TKSimGPU, is a parallel top-K trajectory similarity query

processing technique on Big Data using GPUs. There are many applications for this

type of query such as for social media trajectory sharing applications [ZXM10], where

users are interested in finding potential friends with similar travel trajectories, ecology

applications where scientists want to study the migration patterns of birds to help

understand how diseases are transmitted between these animals [HGKL07], and in

astronomy [GC14][GC16] where astronomers want to study the movements of galaxies.

The second component is Top-KaBT, which is our parallel pruning technique that is

designed to help TKSimGPU better cope with the large volume of Big Trajectory data

by removing spurious candidate trajectory pairs and their associated performance

overhead.

 196

The third component, TrajEstU, is our trajectory estimation technique, which was

designed to help TKSimGPU deal with model and measurement uncertainty by building

models for trajectories, out of which better trajectory estimates can be obtained.

The fourth component, TraclusGPU, is our local trajectory clustering technique, which

is based on the ideas of the serial Traclus algorithm. TraclusGPU was designed to help

address the scalability issue of the offline clustering technique, Traclus, used in

TrajEstU when dealing with large datasets. This makes TrajEstU a suitable technique to

cope with Big Trajectory data.

We conducted complexity analyses for all our proposed algorithms: TKSimGPU, Top-

KaBT, TrajEstU and TraclusGPU. In addition to this, we performed experimental

evaluations to compare TKSimGPU against an exhaustive search GPU algorithm,

naïveGPU, in terms of query execution time. Then, we compared TKSimGPU against a

combined approach TKSimGPU + Top-KaBT in terms of execution time, percentage of

candidate trajectory pairs pruned. Finally, we compared our trajectory estimation

technique TrajEstU against an existing state-of-the-art trajectory estimation algorithm,

called Chazal et al.’s algorithm, in terms of accuracy and execution time.

1 Summary of the Performance Results

1.1 Summary of the Results of TKSimGPU

Processing top-K trajectory similarity queries poses many computational challenges.

One of these challenges is the volume of the data. This is because in Big Trajectory

 197

Data applications trajectories have many points, and the databases on which the search

is performed have very large sizes. In addition to the large sizes of the trajectories and

trajectory databases involved, there is the difficulty that computing the similarity

between trajectories usually has a quadratic time complexity on the sizes of the

trajectories, which makes processing top-K trajectory similarity queries an even harder

problem.

In this dissertation we have proposed a parallel top-K trajectory similarity query

processing algorithm for GPUs, called TKSimGPU. This algorithm is based on the idea

that we can sample the trajectory query set and the trajectory database to help estimate

the average trajectory similarity and then use this estimate to perform a series of near-

join trajectory similarity queries until the query result set is complete. TKSimGPU was

designed to deal with the volume characteristic of Big Trajectory Data through the use

of parallelism. We now summarize the TKSimGPU as follows:

• To the best of our knowledge, TKSimGPU is the first parallel top-K trajectory

similarity query processing algorithm on Big Data using GPUs.

• TKSimGPU is designed to deal with the volume characteristic of Big Trajectory

data through the use of GPU parallelism. It assumes that trajectories have no

uncertainty.

• TKSimGPU avoids an exhaustive search on the trajectory query set and the

database by extracting random samples from both these sets, and then

computing the average similarity between the samples. Then with this similarity

 198

estimate, TKSimGPU performs a sequence of near-join trajectory similarity

queries to obtain the final query result set.

• The linear data structures used by TKSimGPU were designed with the goal that

memory accesses follow patterns that help ensure memory coalescing, thus

guaranteeing good performance.

• TKSimGPU was designed with the goal of ensuring load balance across the

thread blocks.

• The worst-case work complexity of TKSimGPU is Z(K ∙ J ∙ log	(|J|)),

where P and Q are the trajectory query set and the database set, respectively.

This is the same complexity that most of the existing top-K trajectory similarity

query techniques have (e.g., ERP [CN04], EDR [COO05]).

• The worst-case space complexity of TKSimGPU is O(K ∙ J).

• TKSimGPU performed significantly better than the existing naïveGPU

implementation on GPUs using a real-world large-scale dataset.

• Our experiments on a real-world large-scale dataset showed that size of the

trajectory query set is linear in the overall query execution time.

• Our experiments on a real-world large-scale dataset show that, despite the fact

that the worst-case time complexity of TKSimGPU is Z(K ∙ J ∙ log	(|J|))|)),

where P and Q are the trajectory query set an the database set, respectively, the

size of the database had an almost linear impact in the overall query execution

time.

• Our experiments show that K seems to have a sub-linear impact on the execution

time. This is evidenced in the fact that the rate of increase of the query execution

 199

time decreases as K grows larger. This means that TKSimGPU scales well with

K.

1.2 Summary of the Results of Top-KaBT

As we have mentioned, one of the issues of Big Trajectory data is the volume. This

volume arises because of the large sizes of both the query trajectory sets and the

trajectory database, and also because of the large number of points contained within the

trajectories themselves. Our proposed top-K trajectory query processing algorithm,

TKSimGPU, was designed to efficiently use GPUs in order to tackle the volume

challenge. This algorithm, however, can still generate a large number of spurious

candidate trajectory pairs that cannot form part of the result set, which leads to

additional and unnecessary computational overhead. To help TKSimGPU better cope

with the volume of Big Trajectory data, we proposed a GPU pruning technique, called

Top-KaBT. Top-KaBT is a parallel technique to reduce the number of spurious

candidate trajectory pairs generated when processing top-K trajectory similarity queries

for Big Trajectory Data applications on GPUs. Top-KaBT works by using only the

lower and upper bounds of the similarity measure to remove candidate pairs that cannot

belong to the query result set. This reduces the negative impact arising from the small

size of the GPU’s global memory. In addition, the technique achieves load balancing

and memory coalescing by having threads perform the same amount of work, and by

having threads with consecutive indices access consecutive memory locations.

We now summarize Top-KaBT as follows:

 200

• To the best of our knowledge, Top-KaBT is the first GPU technique for pruning

the candidate sets generated by top-K trajectory similarity query processing

algorithms.

• Top-KaBT proved to be an effective and efficient pruning technique for

removing spurious candidate trajectory pairs generated by top-K trajectory

similarity query processing algorithms.

• One of the key ideas behind Top-KaBT is to compute a lower and an upper

bound for the similarity measure for every candidate trajectory pair. It then uses

these bounds to remove spurious candidate pairs that cannot form part of the

query result set. By doing this, Top-KaBT performs a tradeoff: instead of

computing the expensive similarity measure between all candidate trajectory

pairs, it computes these much cheaper lower and upper bounds for all candidate

pairs, and then computes the expensive similarity measure but on a reduced

candidate trajectory set.

• One of the advantages of Top-KaBT is that it only makes the assumption that

the underlying trajectory similarity query processing engine uses a similarity

metric. Therefore, the ideas behind Top-KaBT can be applied not only for

TKSimGPU, but also for other top-K trajectory similarity query processing

algorithms.

• Another advantage of Top-KaBT is that it has no user-defined parameters.

Therefore, when adding Top-KaBT as a pruning technique to a top-K trajectory

similarity query processing engine, there is no need to search in a large

 201

parameter space for the parameter values that yield the best performance results

with Top-KaBT.

• The experiments performed on a real-world large-scale dataset showed that the

execution time of Top-KaBT was negligible. Therefore, Top-KaBT has the

advantage that it can be used with query processing engines without any

concerns for execution time performance penalties.

• The worst-case work complexity of Top-KaBT is Z(h +	|K| 	 ∙ |hi| ∙ nRW(hi)),

where h is the size of the candidate set generated by the query processing

engine, |K| is the size of the trajectory query set, and hi| is an upper bound to

the size of the candidate trajectory sets of a single query trajectory p.

• The worst-case space complexity of Top-KaBT is	Z(h), which is the size of

the candidate set generated by the query processing engine.

• Our experiments show that both the pruning performance (i.e. the percentage of

candidate pairs explored) and the execution time scale well in terms of the K

parameter.

• Our experiments show that both the pruning performance (i.e. the percentage of

candidate pairs explored) and the execution time scale well in terms of P the size

of the query trajectory set.

1.3 Summary of the Results of TrajEstU

On top of the difficulty posed by the large volume of Big Trajectory data, trajectories

can also be uncertain, which has a significant impact on the accuracy of the query

results. In this dissertation we proposed a technique, called TrajEstU, for addressing the

 202

issue of model and measurement uncertainty for trajectories moving in unconstrained

outdoor space when processing top-K trajectory similarity queries on GPUs. TrajEstU

works by splitting the lifetime of an object’s trajectory into time intervals where the

object’s acceleration is nearly constant. Then TrajEstU uses the local trajectory clusters

to obtain the movement patterns that are prevalent in the areas where trajectories have

low-sampling rates, and linear regression to fit a constant acceleration model to the

observed positions of the moving object. By using a linear regression model, TrajEstU

reduces the uncertainty arising from the GPS measurements and the low-sampling rate

of trajectories.

We now summarize TrajEstU as follows:

• TrajEstU is a technique for estimating the true paths of a trajectory considering

model and measurement uncertainty.

• The experiments we performed on real and synthetic datasets show that the

execution time of the online component of TrajEstU is negligible. Therefore,

TrajEstU can be used without concerns for performance penalties.

• TrajEstU relies on an off-line pre-processing stage in which local trajectory

clustering is done through the use of the Traclus algorithm [LHW07]. The

reason why TrajEstU uses local trajectory clustering instead of regular trajectory

clustering [Zheng15] is that we seek to estimate a trajectory around specific

localities. If we perform regular trajectory clustering that would only result in

the global or overall behavior of trajectories, which could be very different from

that of the input trajectory that we wish to estimate.

 203

• Our experiments also suggest that the offline component of TrajEstU can be

efficiently implemented with the use of a hybrid multicore/GPU algorithm.

• TrajEstU performs better than the state-of-the-art trajectory estimation

algorithms for both real and synthetic datasets, and for also small and large-scale

datasets.

• TrajEstU not only possesses better accuracy than its competing algorithms, but it

also has a comparable online execution time.

• The accuracy of TrajEstU decreases as the magnitude of standard deviation of

the measurement noise increases.

• The accuracy of TrajEstU is an increasing function of the sampling rate, i.e., the

higher the sampling rate, the higher the accuracy.

• Both the acceleration tolerance and the epsilon MBR parameters have little

impact on the performance of TrajEstU. Therefore, there is not a big concern for

searching for the parameter values that yield the best performance out of

TrajEstU.

• The accuracy of TrajEstU is not sensitive to the length of the query trajectories.

Therefore, TrajEstU can be used to accurately estimate Big Trajectory Data.

• The execution time of TrajEstU scales linearly with the length of the query

trajectories, which helps confirm that TrajEstU can be used to efficiently and

accurately estimate Big Trajectory Data.

1.4 Summary of the results of TraclusGPU

TrajEstU is our proposed technique to help our top-K trajectory similarity query

processing technique deal with the issue of measurement and model uncertainty. The

 204

online component of TrajEstU consists of building a set of linear near-constant

regression models to help estimate the true path of an input trajectory. These linear

regression models are built from the input trajectory points, as well as from the local

behavior of trajectories that are located close to the input trajectory. To find this local

behavior of trajectories, TrajEstU employs the serial Traclus algorithm [LLHW07] to

locally cluster the trajectories in an off-line fashion. Nonetheless, our experiments on

TrajEstU show that despite the fact that its on-line stages scale very well for Big

Trajectory Data, its off-line stage (which is run just once for each trajectory database)

that clusters the trajectory database using the existing serial trajectory clustering

algorithm, Traclus, takes a considerable amount of time. For this reason, and in order to

make TrajEstU practical for it to be applied to Big Trajectory Data applications, we

proposed a parallel GPU algorithm to perform local trajectory clustering, called

TraclusGPU, based on Traclus.

We now summarize TraclusGPU as follows:

• TraclusGPU is a parallel GPU algorithm for performing local trajectory

clustering based on the ideas of Traclus serial technique.

• The total execution time of TraclusGPU significantly improves upon the

execution time of the serial Traclus algorithm. In particular, TraclusGPU offered

reasonable execution times of around 4 hours to cluster our large-scale dataset,

as opposed to the serial Traclus algorithm, which took weeks to run on the same

dataset. This shows the difference between a practical algorithm for Big

Trajectory Data and an impractical algorithm.

 205

• Our TraclusGPU algorithm scaled almost linearly with the number of processors

used.

2 Future Research

In this section we discuss the future research directions related to the processing of

trajectory similarity queries on Big Data using GPUs. We first discuss the future

research directions related with each one of our proposed techniques: TKSimGPU, Top-

KaBT, TrajEstU and TraclusGPU.

As our experiments suggest, TKSimGPU is an effective parallel algorithm for

processing top-K trajectory similarity queries on GPUs, but it makes the assumption

that both the trajectory query set and the database set fit in the GPU’s global memory

space. Nonetheless, with the large volume of Big Trajectory Data, this assumption does

not hold. In the future, we would like to extend TKSimGPU to allow it to handle

datasets that do not fit in the GPU’s global memory space.

Another possible future research direction relates to TKSimGPU’s similarity measure.

TKSimGPU uses the Hausdorff distance as its trajectory similarity measure, which has

many applications like urban planning [NJS11]. However, the Hausdorff distance does

not take the temporal dimension into consideration when computing the similarity

between trajectories. Taking the temporal dimension into account is useful for online

travel trajectory sharing applications because trajectories of two users could be spatially

similar, but very dissimilar in the temporal dimension. For example, if one user usually

travels in the spring and the other one in the summer. However, the Hausdorff distance

 206

would not be able to distinguish trajectories that are very dissimilar in the temporal

dimension. For this reason, we plan to design a parallel technique that uses a trajectory

similarity measure that, unlike Hausdorff’s, takes the temporal dimension into

consideration.

Now, we comment on the future research directions concerning Top-KaBT. Although

our experiments have shown that this is an efficient and scalable parallel pruning

technique to reduce the size of the candidate sets of a top-K trajectory similarity query

processing algorithm, it makes the assumption that its input candidate set resides in the

device’s global memory. Ideally, Top-KaBT would be integrated into the top-K

trajectory query processing engine so that if a candidate trajectory pair is spurious, then

it is never instantiated in memory. In this way, the spurious candidate pairs do not

contend for the GPU’s limited global memory space. In the future, we would like to

extend Top-KaBT so as to avoid instantiating spurious candidate pairs in the GPU’s

global memory.

A second possible research avenue relates to the fact that Top-KaBT only makes the

assumption that the underlying top-K trajectory similarity query processing engine uses

any similarity metric. However, our experiments have not explored how Top-KaBT

behaves using other trajectory similarity measures. For this reason, for our future work

we would like to study how Top-KaBT behaves when using other trajectory similarity

measures.

 207

Although our experiments have shown that TraclusGPU significantly improves upon

the serial Traclus algorithm in terms of execution time, there is still room for

improvement. The reason for this is that the ET of TraclusGPU still grows rather

quickly as the number of segments in the database increases, and because with

7,000,000 segments in the database, the ET of the algorithm is still non-negligible.

Therefore, a future research direction related to TraclusGPU consists in improving the

scalability of the algorithm to try to reduce its computational complexity.

So far, we have made the assumption that trajectories are constant and fixed at the

beginning of query processing. However, trajectories are objects that grow in size

(number of points) with time. Therefore, another possible future research direction is to

extend our proposed system and techniques to deal with streaming trajectories, i.e.,

trajectories that are currently growing in size (number of points) as the query is being

processed. An example of this query is “find the 2 birds that are currently flying with

the most similar trajectories to a given bird in flight,” and has applications when

tracking objects in real time. Designing a technique to deal with these online queries is

challenging for GPUs because to maximize the PCI-express bus throughput, one would

ideally buffer the trajectory updates in the host’s main memory before sending them

through the PCI-express bus. This can lead to delays that could have an impact on the

accuracy of the results.

 208

Another research direction relates to designing parallel GPU techniques for trajectory

outlier detection, i.e. finding trajectories in a database whose behavior markedly

deviates from that of other trajectories in the database.

 209

REFERENCES

[ARMS+13] Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Ferreira, R., Rocha,

L. G-DBSCAN: A GPU Accelerated Algorithm for Density-based Clustering. In
Proceedings of the International Conference on Computational Science (ICCS),
2013.

[Bayer71] Bayer, R. Binary B-Trees for Virtual Memory. In Proceedings of the ACM-

SIGFIDET Workshop on Data Description, Access and Control, 1971.

[Bentley75] Bentley, J. L. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9), 1975.

[BC94] Berndt, D., Clifford, J. Using dynamic time warping to find patterns in time

series. In KDD workshop, pp. 359–370, 1994.

[Ble90] Blelloch, G.E. Prefix Sums and Their Applications. In John H. Reif (Ed.),

Synthesis of Parallel Algorithms, Morgan Kaufmann, 1990.

[Bourgain85] Bourgain, J. On lipschitz embedding of finite metric spaces in hilbert

space. Israel Journal of Mathematics, vol. 52, pp. 46–52, 1985.

[BCG02] Bruno, N., Chaudhuri, S., Gravano, L. Top-k Selection Queries over

Relational Databases: Mapping Strategies and Performance Evaluation. ACM
Transactions on Database Systems, 27(2), pp. 153–187, 2002.

[BDS14] Buchin, M., Dodge, S., Speckmann, B. Similarity of Trajectories taking into

account geographic context. Journal of Spatial Information Science, 2014.

[BFJM+09] Buluç, A., Fineman, J. T., Frigo, M. Gilbert, J. R., Leiserson, C. E. Parallel

sparse matrix-vector and matrix-transpose-vector multiplication using compressed
sparse blocks (PDF). In Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 233—244, 2009.

[BKSS90] Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B. The R*-tree: an

efficient and robust access method for points and rectangles. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, 1990.

[CBPB10] Cagnacci, F., Boitani, L., Powell, R. A., Boyce, M. S. Animal ecology

meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges.
Philosophical Transactions of the Royal Society B, 2010.

[CCGJ+11] Chazal, F., Chen, D., Guibas, L., Jiang, X., Sommer, C. Data-driven

trajectory smoothing. In Proceedings of the ACM International Conference in
Geographical Information Systems (ACM GIS), 2011.

 210

[CLRS09] Cormen, T., Leiserson, C., Rivest, R., Stein, C. Introduction to Algorithms.

The MIT Press, Third edition, 2009.

[COO05] Chen, L., Özsu, M. T., Oria, V. Robust and Fast Similarity Search for

Moving Object Trajectories. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 491–502, 2005.�

[CN04] Chen, L., Ng, R. On the Marriage of Lp-norms and Edit Distance. In

Proceedings of the International Conference on Very Large Databases (VLDB
’04), pp. 792–803, 2010.

[CPZ97] Ciaccia, P., Patella, M., Zezula, P. M-tree An Efficient Access Method for

Similarity Search in Metric Spaces. In Proceedings of the International
Conference on Very Large Databases (VLDB), 1997.

[CW06] Cao, H., Wolfson, O., Trajcevski, G. Spatio-temporal data reduction with

deterministic error bounds. The VLDB Journal, vol. 15, no. 3, pp. 211–228, Sep.
2006.

[DTS08] Ding, H., Trajcevski, G., Scheuermann, P. Efficient similarity join of large

sets of moving object trajectories. In TIME ’08, pp. 79–87, 2008.

[DEKM98] Durbin, R., Eddy, S.R., Krogh, A., Mitchinson, G. Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, 1998.

[EM94] Eiter, T., Mannila, H. Computing discrete fréchet distance. In Technical

Report CD-TR 94/64, Technische Universität Wien, 1994.�

[EKSX96] Ester, M., Kriegel, H., Sander, J., Xu, X. A density-based algorithm for

discovering clusters in large spatial databases with noise. In Proceedings of the
International Conference on Knowledge Discovery and Data Mining (KDD), pp.
226–231, 1996.

[FHL10] Fang, W., He, B., Luo, Q. Database Compression on Graphics Processors. In

Proceedings of the VLDB Endowment, 3(1-2), pp. 670–680, 2010.

[FGT07] Frentzos, E., Gratsias, K., Theodoridis, Y. Index-based Most Similar

Trajectory Search. In Proceedings of the International Conference on Data
Engineering (ICDE), pp. 816–825, 2007.

[FRM94] Faloutsos, C., Ranganathan, M., Manolopoulos, Y. Fast subsequence

matching in time-series databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), 1994.

 211

[GK10] Garland, M., Kirk, D. Understanding Throughput-oriented Architectures.
Communications of the ACM, 53(11), pp. 58–66, 2010.

[Gor94] Gordon, N. Bayesian Methods for Tracking. Imperial College, University of

London, London, 1994.

[GC14] Gowanlock, M., Casanova, H. Distance threshold similarity searches on

spatiotemporal trajectories using GPGPUs. In Proceedings of High Performance
Computing (HiPC). DOI: 10.1109 / HiPC.2014. 7116913, 2014.

[GC16] Gowanlock, M., Casanova, H. Distance threshold similarity searches: Efficient

Trajectory Indexing on the GPU. In IEEE Transactions on Parallel and Distributed
Systems (TPDS), 27(9), pp. 2533–2545, 2016.

[GM14] Gupta, S., Manchanda, R. TANH Spline Interpolation for Analytical

Modelling of BK Ion Channels in Smooth Muscle. Asia Modelling Symposium,
2014.

[GPS17] National Coordination Office for Space-Based Positioning, Navigation, and

Timing. GPS Accuracy. Retrieved on April 2, 2017 from the gps.gov website:
http://www.gps.gov/systems/gps/performance/accuracy/

[Gutt84] Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searching. In

Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD), 1984.

[HB10] Hoberock, J., Bell, N. Thrust: A Parallel Template Library,

http://thrust.github.io/, 2010.

[HGKL07] J. S. Horne, E. O. Garton, S. M. Krone, J. S. Lewis. Analyzing animal

movements using brownian bridges. Ecology, vol. 88, no. 9, pp. 2354–2363, 2007.
�

[HP12] Hennessy, J. L., Patterson, D. A. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th
edition, 2012.

[HSO07] Harris, M., Sengupta, S., Owens, J. D. Parallel prefix sum (scan) with

CUDA. In H. Nguyen (ed.), GPU Gems 3, Addison-Wesley, 2007.

[HN07] Harish, P., Narayanan, P.J. Accelerating large graph algorithms on the GPU

using CUDA. In IEEE High Performance Computing, pp. 197-208, 2007.

[Intel17] Product Specs of the Intel E7 8894 v4. Retrieved on April 2, 2017 from the

Intel website: http://ark.intel.com/products/96900/Intel-Xeon-Processor-E7-8894-
v4-60M-Cache-2_40-GHz.

 212

[JS07] Jacox, E.H., Samet, H. Spatial join techniques. ACM Transactions Database
Systems, 32, 2007.

[K60] Kalman, R. E. A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering.,82:35, 1960.

[KP00] Keogh, E., Pazzani, M. Scaling up dynamic time warping for datamining

applications. In Proceedings of the ACM International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 285–289, 2000.

[KR05] Keogh, E., Ratanamahatana, C. Exact indexing of dynamic time warping. In

Knowledge and Information Systems, 7(3), pp. 358–386, 2005.

[KH13] Kirk, D. B, Hwu, W. Programming Massively Parallel Processors: A Hands-

on Approach. Morgan Kauffman, San Francisco, 2013.

[LGZY15] Leal, E., Gruenwald, L., Zhang, J., You, S. TkSimGPU: A Parallel Top-K

Trajectory Similarity Query Processing Algorithm for GPGPUs. In Proceedings of
the IEEE International Conference on Big Data (IEEE Big Data), pp. 461–469,
2015.

[LGZY16] Leal, E., Gruenwald, L., Zhang, J., You, S. Towards an Efficient Top-K

Trajectory Similarity Query Processing Algorithm for Big Trajectory Data on
GPGPUs. In Proceedings of the IEEE BigData Congress, 2016.

[LGZ16] Leal, E., Gruenwald, L., Zhang, J. Handling Uncertainty in Trajectories of

Moving Objects in Unconstrained Outdoor Spaces. In Proceedings of the IEEE
International Conference on Big Data (IEEE Big Data), 2016.

[LHW07] Lee, J., Han, J., Whang, K. Trajectory Clustering: A Partition-and- Group

Framework. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2007.

[LKCD+10] Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D.,

Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R.,
Dubey, P. Debunking the 100x gpu vs. cpu myth: An evaluation of throughput
computing on cpu and gpu. SIGARCH Comput. Archit. News, 38(3), pp. 451–
460, 2010.

[LLD06] Lewis, M., Lakshmivarahan, S., Dhall, S.K. Dynamic Data Assimilation: A

least squares approach. Cambridge University Press, 2006.

[LLLH10] Z. Li, J. Lee, X. Li, J. Han. Incremental Clustering for Trajectories. In

Proceedings of the International Conference on Database Systems for Advanced
Applications (DASFAA), 2010.

 213

[LM13] Lustig, D., Martonosi, M. Reducing GPU Offload Latency via Fine-grained
CPU-GPU Synchronization. In Proceedings of the IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), pp. 354–365,
2013.

[LWH10] Luo, L., Wong, M., Hwu, W. An Effective GPU Implementation of Breadth-

First Search. In Proceedings of the Design Automation Conference, 2010.

[MLSC13] Ma, C., Lu, H., Shou, L., Chen, G. KSQ: Top-K Similarity Query on

Uncertain Trajectories. In Proceedings of the IEEE Transactions on Knowledge
and Data Engineering (TKDE), 25(9), pp. 2049–2062, 2013.

[Mer11] Merrill, D. Cuda Unbound (CUB), http://nvlabs.github.io/cub/, 2011.

[MLP16] Michelot, T., Langrock, R., Patterson, T.A. moveHMM: an R package for the

statistical modelling of animal movement data using hidden markov models.
Methods in Ecology and Evolution, 2016.

[NJS11] Nutanong, S., Jacox, E.H., Samet, H. An incremental Hausdorff distance

calculation algorithm. In Proceedings of the VLDB Endowment, vol. 4., no. 8, pp.
506–517, 2010.

[Nvidia17] Product Specs of the Tesla K80. Retrieved on April 2, 2017 from the

Nvidia website: http://www.nvidia.com/object/tesla-k80.html.

[P11] Pacheco, P.S. An Introduction to Parallel Programming. Morgan Kaufmann, 1st

edition, 2011.

[PJT00] Pfoser, D., Jensen, C.S., Theodoridis, Y. Novel Approaches in Query

Processing for Moving Object Trajectories. In Proceedings of the International
Conference on Very Large Databases (VLDB), pp. 395–406, 2000.

[PKKF+11] Pelekis, N., Kopanakis, I., Kotsifakos, E. E., Frentzos, E., Theodoridis, Y.

Clustering uncertain trajectories. Knowledge and Information Systems, 28(1), pp.
117—147, 2011.

[RDTD+15] Ranu, S., Deepak, P., Telang, A.D., Deshpande, P., Raghavan, S.

Indexing and matching trajectories under inconsistent sampling rates. In
Proceedings of the International Conference on Data Engineering (ICDE), pp.
999–1010, 2015.

[RRS00] Ramaswamy, S., Rastogi, R., Shim, K. Efficient Algorithms for Mining

Outliers from Large Data Sets. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 427–438, 2000.

[SAMP+13] Sankararaman, S., Agarwal, P.K., Mølhave, T., Pan, J., Boedihardjo, A. P.

 214

Model-driven matching and segmentation of trajectories. In SIGSPATIAL, pp.
234–243, 2013.

[TSK05] Tan, P., Steinbach, M., Kumar, V. Introduction to Data Mining. Pearson

Prentice Hall, 1st edition, 2005.

[VGK02] Vlachos, M., Gunopoulos, D., Kollios, G. Discovering similar

multidimensional trajectories. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), 2002.

[VHK06] Vlachos, M. Hadjieleftheriou, M., Keogh, E. Indexing Multi-dimensional

Time-Series with Support for Multiple Distance Measures. The VLDB Journal,
2006.

[VS98] Valdes-Perez, R., Stone, C. Systematic detection of subtle spatio-temporal

patterns in time-lapse imaging: II. Particle migrations. Bioimaging, 6, 1998.

[WMDT+13] Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P.,

Keogh, E. Experimental comparison of representation methods and distance
measures for time series data. In Data Mining and Knowledge Discovery, 2013.

[WZX14] Y. Wang, Y. Zheng, Y. Xue. Travel time estimation of a path using sparse

trajectories. In Proceedings of the ACM International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 25–34, 2014.

[WZP12] Wei, L.Y., Zheng, Y., Peng, W.C. Constructing popular routes from

uncertain trajectories. In Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 195–203, 2012.

[W13] Wilt, N. The CUDA Handbook: A Comprehensive Guide to GPU

Programming. Addison-Wesley, 2013.

[Yen71] Yen, J. Finding the k shortest loopless paths in a network. Management

Science, vol. 17, no. 11, pp. 712–716, 1971.

[YJF98] Yi, B-K., Jagadish, H., Faloutsos, C. Efficient retrieval of similar time

sequences under time warping. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), 1998.

[YZXS13] J. Yuan, Y. Zheng, X. Xie, and G. Sun. 2013a. T-Drive: Enhancing driving

directions with taxi drivers. In Proceedings of the IEEE Transactions on
Knowledge and Data Engineering (TKDE), 25(1), pp. 220–232, 2013.

[ZCFS+10] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., Stoica, I. Spark:

Cluster computing with working sets. In Hot Cloud, 2010.

 215

[ZYG12] Zhang, J., You, S., Gruenwald, L. U2STRA: High-performance Data
Management of Ubiquitous Urban Sensing Trajectories on GPGPUs. In
Proceedings of the ACM Workshop on City Data Management Workshop,
(CDMW), pp. 5–12, 2012.

[ZYG13] Zhang, J., You, S., Gruenwald, L. GPU-based Spatial Indexing and Query

Processing Using R-Trees. In ACM SIGSPATIAL Special, 6(3), pp. 23–31, 2013.

[Zheng15] Zheng, Y. Trajectory Data Mining: An Overview. ACM Transactions in

Intelligent Systems and Technology (TIST), 6(3), 2015.

[ZXM10] Zheng, Y., Xie, X., Ma, W.-Y. Geolife: A collaborative social networking

service among user, location and trajectory. IEEE Database Engineering Bulletin,
2010.

[ZZXZ12] Zheng, K., Zheng, Y., Xie, X., Zhou, X. Reducing Uncertainty of Low-

Sampling Rate Trajectories. In Proceedings of the International Conference on
Data Engineering (ICDE), 2012.

[ZZ11] Zheng, Y., Zhou, X (Eds). Computing with Spatial Trajectories. Springer,

2011.

