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ABSTRACT 
 

Through the use of location-sensing devices, it has been possible to collect very large 

datasets of trajectories. These datasets make it possible to issue spatio-temporal queries 

with which users can gather information about the characteristics of the movements of 

objects, derive patterns from that information, and understand the objects themselves. 

Among such spatio-temporal queries that can be issued is the top-K trajectory similarity 

query. This query finds many applications, such as bird migration analysis in ecology 

and trajectory sharing in social networks. However, the large volumes of the trajectory 

query sets and databases, along with their associated uncertainty, pose significant 

computational challenges. One way to address these challenges is through the use of 

parallel architectures like GPUs, and through the use of models that can produce 

accurate trajectory estimates. Nevertheless, not much research has been done to design 

efficient and scalable techniques to process this type of query on parallel architectures. 

 

In this dissertation, we propose a novel system to process top-K trajectory similarity 

queries in parallel on Big Data using GPUs that is capable of handling both certain and 

uncertain trajectory data. The system consists of four novel algorithms: TKSimGPU to 

process top-K trajectory similarity queries; Top-KaBT to reduce the size of the 

candidate set generated by top-K trajectory similarity query algorithms; TrajEstU to 

estimate the true trajectory when data uncertainty exists; and TraclusGPU to perform 

local trajectory clustering to aid in the preprocessing stage of TrajEstU. TKSimGPU 

works by iteratively processing near-join similarity queries, while Top-KaBT calculates 

the lower and upper bounds of the Hausdorff distance between candidate pairs, and then 



 xii 

uses these bounds to remove spurious candidates. Top-KaBT exploits GPUs to improve 

TKSimGPU by ensuring load balancing across the threads, ensuring memory 

coalescing, and using special pruning techniques that reduce the size of the candidate 

set. TrajEstU splits the lifetime of an object’s trajectory into time intervals where the 

object’s acceleration is nearly constant. Then TrajEstU uses the local trajectory clusters 

to obtain the movement patterns that are prevalent in the areas where trajectories have 

low-sampling rates, and uses linear regression to fit a constant acceleration model to the 

observed positions of the moving object. Finally, TraclusGPU helps TrajEstU scalably 

find those local trajectory clusters that are used in the construction of trajectory models. 

 

Extensive theoretical and experimental evaluations performed on our proposed 

techniques showed that each of them has better performance in terms of accuracy and 

execution time than state-of-the-art techniques when applied to large real-life and 

synthetic trajectory datasets for Big Data applications. 
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CHAPTER I  
INTRODUCTION 

 

1 Objective 

The objective of this research is to develop a novel system to process top-K trajectory 

similarity queries in parallel on Big Data using GPUs that is capable of handling both 

certain and uncertain trajectory data  that addresses the following characteristics: 

o Support for trajectories of different sizes 

o Support for intra-trajectory sampling rate variation 

o Measurement uncertainty 

o Model uncertainty 

o Triangular inequality 

o Scalability through parallel processing on GPUs 

 

The remainder of this chapter is organized as follows. Section 2 presents the 

background material on trajectories, top-K trajectory similarity queries, and Graphics 

Processing Units (GPUs). Then Section 3 discusses the issues and challenges that arise 

when designing parallel top-K trajectory similarity query processing techniques.  

 

2 Background  

In this section we discuss the background concepts that are necessary in order to follow 

the ideas introduced in this dissertation. This section consists of four subsections: 

Section 2.1 describes  the notation used in this work; Section 2.2  presents the geometric 

background concepts; Section 2.3 presents the concept of trajectory similarity; and 
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finally, Section 2.4 provides an introduction to GPUs, their programming model, and 

their issues. 

 

2.1 Notation 

We now present in Table 1 a summary of the notation used in this dissertation. 

 
Notation Meaning 
p,	q,	r,	s,	pi,	qi		
	

Trajectories  

([*]	 The i-th-point of trajectory p, where i is a positive integer. 

([*]. -	 The x-component of the i-th-point of trajectory p 

([*]. .	 The y-component of the i-th-point of trajectory p 

([*]. /	 The timestamp of the i-th-point of trajectory p 

|p|	 The number of points in trajectory p 

p[I]	 The set of points of trajectory p whose timestamps fall within the time 
interval I=[t0,tf] 

P The set of query trajectories 

Q The set of database trajectories 

K The K parameter of top-K queries 

2(-, .) The Euclidean distance between points x and y 

MBR(p) The minimum bounding rectangle of trajectory p 
EMBR(p,5)	 The 5-extended minimum bounding rectangle of trajectory p	
	67,8 The min-distance between the MBR of p and the MBR of trajectory q. 

In other words, 	67,8 = min<∈>?@ 7 ,A∈>?@ 8 2 -, . .  
	B7,8 The max-distance between the MBR of p and the MBR of trajectory q. 

In other words, 	B7,8 = max<∈>?@ 7 ,A∈>?@(8)	 2(-, .). 
ℎFGH2((, I) The Hausdorff distance between trajectory p and trajectory q 

C The set of candidate pairs, as generated by a technique like 
TKSimGPU, that is a subset of J×L 
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Cp The subset of C consisting of all pairs that have p as its left 
component. In other words:	M7 = (, I ∈ M	 	I ∈ L}. 

B[*, O]	 The element of the i-th-row and j-th column of matrix M 

B[*, : ]	 The i-th-row of matrix M 

c.repr	 The representative trajectory of the trajectory cluster c 

5e3,	7e6	 This is the scientific e notation and in these cases it denotes the values 
5×10Z	F[2	7×10\ 

Table 1. Notation 

2.2 Geometric Background 

2.2.1 Definition (Minimum Bounding Rectangle): Given any set of points in the 

plane, its minimum bounding rectangle (MBR) is the smallest rectangle that contains 

(bounds) such set. Figure 1 illustrates the concept of MBRs. In the left part of the figure 

there is a set points, and in the right part, there is another set of points (that form a 

trajectory). From the figure it is easy to see that their MBRs are the smallest rectangles 

containing each of the sets.  

 

2.2.2 Definition (]-extended Minimum Bounding Rectangle): Given a real number 

5 > 0, and any set of points, its 5-extended minimum bounding rectangle (eMBR) is a 

 

Figure 1. Examples of MBRs 
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rectangle that results from extending each side of the MBR of the set of points by 5. So, 

if the MBR of a given set of points has upper left corner coordinates (ux, uy) and lower 

left corner coordinates (lx, ly), then the eMBR has upper left corner coordinates (ux-	5, 

uy+	5) and lower left corner coordinates (lx+	5, ly-	5). Figure 2 illustrates the concept of 

eMBRs. In the left part of the figure, there is a planar figure with its associated MBR, 

and in the right part, there is another set of points (that form a trajectory) with its 

associated MBR. In this figure we see that each of the MBRs has been extended in all 

directions by an amount 5. 

 

2.2.3 Definition (Trajectory): Informally, a trajectory is a polygonal line consisting 

of the points that a moving object occupies in space as time goes by. One way of 

constructing these polygonal lines is by periodically sampling the positions of the 

objects being tracked through the use of location sensors like GPS. More formally, 

given a set -_, ._, /_ /_ ≤ 	 /_ab, 1	 ≤ 	*	 < 	[} of points in ℝZ sampled from the 

movement of an object with a location sensor, a trajectory over S is a continuous 

 

Figure 2. Examples of eMBRs 
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function e ∶ 	 [1, [] 	→ 	ℝZ

	

where e(*) 	= 	 -_, ._, /_ 	for all integers * ∈ [1, . . . , [] and 

such that τ(x), with - ∈ [/_, /_ + 1), is the interpolated value between τ(i) and τ(i + 1) 

[CW06]. Figure 3 shows an example trajectory with 5 points. At each point we use the 

notation p1 = (10, 2) @ 9:01:56 am to denote that the x coordinate of p1 is 10, its y 

coordinate is 2, and its associated timestamp is 9:01:56 am. 

 

2.2.4 Definition (Sub-trajectory): Given a trajectory ( = -_, ._, /_ /_ ≤ 	 /_ab, 1	 ≤

	*	 < 	[}, we define the sub-trajectory of p during the interval [a,b], denoted by 

traj[a,b], with a < b, as the set of all  points of the trajectory p with timestamps 

between a and b. More formally, it is the subset { -_, ._, /_ |	F ≤ /_ 	≤ 	 /_ + 1	 ≤ j, 1	 ≤

	*	 < 	[}. 

  

2.2.4 Definition (Size of a Trajectory): Given a trajectory ( = -_, ._, /_ /_ ≤

	/_ab, 1	 ≤ 	*	 < 	[}, its size is the total number of points that belong to the trajectory. 

For example, the trajectory in Figure 3 has 5 points and is said to have size 5. 

 

Figure 3. Example of a trajectory 
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2.2.5 Definition (Length of a Trajectory): Given a trajectory ( = -_, ._, /_ /_ ≤

	/_ab, 1	 ≤ 	*	 < 	[}, its length is the summation of the distances between consecutive 

points in the trajectory. More formally, 

kl[m/ℎ ( = 2(( * , ([* + 1])
nob

_pb

 

 

For example, the trajectory in Figure 3 has length d(p1, p2) + d(p2, p3) + d(p3, p4) + 

d(p4, p5). 

 

2.2.6 Definition (Lifetime of a Trajectory): Given a trajectory ( = -_, ._, /_ /_ ≤

	/_ab, 1	 ≤ 	*	 < 	[}, its lifetime is [t0,tn-1], i.e., the smallest closed time interval 

containing the projections of the points in p into the time domain. For example, the 

trajectory in Figure 3 has lifetime [9:01:56 am, 9:02:17 am]. 

 

2.2.7 Definition (Average Trajectory Sampling Rate): Given a trajectory ( =

-_, ._, /_ /_ ≤ 	 /_ab, 1	 ≤ 	*	 < 	[}, its sampling rate is the average time elapsed 

between consecutive points in the trajectory. More formally,  

qF/l ( =
/_abo/_nob

_pb
[ − 1  

 

For example, the trajectory in Figure 3 has an average trajectory sampling rate of (5s + 

5s + 5s + 6s) / 4 = 21/4 s = 5.25s. 
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2.2.8 Definition (Low Sampling Rate Trajectory): Given a trajectory, it is said to be 

a low-sampling rate trajectory if the average time span between any two of its 

consecutive points is greater than a predefined threshold. A trajectory that is not a low-

sampling rate trajectory is said to be a high-sampling rate trajectory. 

 

2.3 Trajectory Similarity Background 

2.3.1 Definition (Trajectory Similarity): The informal notion of trajectory similarity 

is as follows. Any two trajectories p and q are said to be similar if their projections onto 

their movement space are close to each other throughout their lifetimes. This implies 

that the shape of the trajectories has no impact on the result set; so two trajectories with 

the same shape but that are very far away from each other will be more dissimilar than 

two trajectories that are very close to each other, but with wildly different shapes.  

 

This informal notion of trajectory similarity is illustrated in Figure 4, which presents 

 

Figure 4. Example of trajectory similarity 
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three trajectories p, q, and r. Trajectories p and r have exactly the same shape, but are 

very far apart, while trajectories p and q have very different shapes, but are close to 

each other. Therefore, since trajectories p and q are closer to each other, the most 

similar trajectory to p is trajectory q. 

 

2.3.2 Definition (Top-K trajectory similarity query): Given a positive integer K > 

0, two finite non-empty sets of trajectories, P (the query set) and Q (the database), and a 

similarity measure σ: S × S → R, a top-K trajectory similarity query returns for every 

(	 ∈ 	J a set Rp satisfying that |Rp| = K and for every I	 ∈ 	q7 and Is/ℎlt

	

∈ 	L	–	q7

	

it 

is the case that σ(qother , p) ≤ σ(q, p) [DTS08]. Figure 5 contains an example of a top-K 

trajectory similarity query, where the query set P consists of trajectories p1 and p2, and 

the database consists of trajectories q3, q4 and q5, and K=2. As can be seen from this 

figure, the most similar database trajectories to p1 are trajectories q3, and q5 because 

they are the closest to p1. Similarly, the most similar database trajectories to p2 are 

trajectories q4, and q5. For this reason, we say that the result set of this top-2 trajectory 

similarity query is {(p1, q3), (p1, q5), {(p2, q4), (p2, q5)}. Notice that the actual shapes of 

the trajectories have no impact on the result set, just their relative proximity. 

 

2.3.3 Applications of top-K trajectory similarity queries: Top-K trajectory 

similarity queries have many applications. We now discuss several of them. 

• Ecology: Ecologists are interested in understanding how diseases are transmitted 

among birds, and how bird species make use of resources like space [VGK02] 

[HGKL07][CBPB10][RDTD+15]. Top-K trajectory similarity queries can help 
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these applications because they can help to find the birds with the K most similar 

trajectories, and this indicates birds that may come into contact with each other. 

• Social Networking: These queries also have applications in online social 

networking sites [ZXM10] that allow sharing of travel trajectories [ML13]. For 

example, an individual might want to meet other people with the most similar 

travel trajectories to his own trajectories.  

• Bioimaging: Biologists are interested in detecting spatio-temporal patterns in 

particle migrations during cellular mitosis [VS98][VHK06]. In particular, they 

are interested in finding patterns like “Type A of particles tend to seek or avoid 

type B particles.” A top-K trajectory similarity query can help in the process of 

finding these patterns because if type B particles avoid type A particles, then the 

trajectories of both particles will be more dissimilar, thus less likely to be among 

each other’s’ top-K most similar trajectories. 

 

Figure 5. Example of top-K trajectory similarity query 
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• Meteorology: Meteorologists want to be able to predict the path of a developing 

hurricane. Since hurricanes have the tendency to take similar paths, 

meteorologists can use past hurricane trajectories that are similar to the one 

currently developing in order to help improve their predictions of its future track 

[BDS14][PKKF+11]. 

• Sports: Coaches and sports researchers are interested in knowing the movement 

patterns of players [COO05][BDS14] obtained from video footage of GPS 

sensors. For example, they are interested in deducing the common plays 

performed by a given team.  

 

These applications involve big trajectory data where data are long trajectories with 

many locations, and the number of trajectories is large due to the high number of 

moving objects. In this dissertation, we refer to these applications as Big Trajectory 

Data applications.  

 

2.4 GPU Background 

In this section we introduce GPUs, explain why and when to use them, and describe 

their programming model. 

 

2.4.1 What are GPUs? 

Graphics Processing Units (GPUs) are co-processors in charge of carrying out the 

necessary calculations to render graphical models, i.e., they are the graphics cards that 

are installed in desktop computers, workstations, mobile devices, etc., for displaying 
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graphics in a computer. As such, almost any computing device is equipped with a GPU. 

In most cases, GPUs are separate cards directly connected to the Peripheral Component 

Interconnect express (PCI express) bus, but they can also be integrated into the CPU 

chip or the motherboard itself. 

 

While performing this job of rendering graphics, GPUs are required to execute the same 

piece of code (called shader) over millions of vertices under tight time-constraints 

[GK10]. For this reason, GPUs were designed as a parallel architecture capable of 

simultaneously performing many floating operations. However, nowadays, GPUs not 

only are designed for rendering graphics, but also can be used for general purpose 

parallel programming. 

 

2.4.2 Why and when to use GPUs? 

Among the many advantages of GPUs are that they are present in many kinds of 

computers, from mobile devices to supercomputers; on certain algorithms that exhibit 

lots of parallelism, they can achieve up to an order of magnitude of higher floating point 

instruction throughput than multicore CPUs [LKCD+10]; and they are very energy 

 

Figure 6. GPU description 
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efficient [LM13]. Another advantage of GPUs is that there are works [LLZC15] that 

allow GPU processing from within the popular Spark parallel computing framework 

[ZCFS+10], so that the high instruction throughput of GPUs can be combined with the 

scalability, ease of use and fault-tolerance of the Spark framework. All these advantages 

of GPUs make them excellent tools for tackling the computational challenges associated 

with processing top-K trajectory similarity queries. 

 

2.4.3 GPU Programming Model 

We now discuss the programming model of GPUs [GK10] using the vocabulary of 

CUDA [W13], which is one of the GPU programming models. GPUs follow a 

parallelism model that is very similar to SIMD (Single Instruction Multiple Data) 

[HP12], where different threads perform the same instruction in parallel over different 

data. To accomplish this, the programmer must specify the total number of threads that 

will run in the GPU. Once this is done, during runtime, the system will assign a unique 

identification number to every thread; it is in this manner that different threads can 

perform the same instruction and work on different data, similar to what MPI (Message 

Passing Interface) does [P11]. GPUs are designed to run portions of code called kernels, 

which look like regular C-language functions and are called from within the CPU 

execution flow. However, there is one inconvenience with GPUs, which is that these 

cards have a separate memory address space from the host computer’s main memory. So 

before kernels are launched, the CPU must call a special function to transfer the data 

from the host computer’s main memory to the device’s memory space. In a similar 

fashion, once the kernel finishes its execution, the CPU must call another special 
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function to transfer the results from the device’s memory space back to the host’s main 

memory. 

 

GPUs can be thought of as a highly parallel architecture where execution threads form 

the most essential part of the execution hierarchy. At the top of this hierarchy is the grid, 

which is composed of all threads launched with the kernel. All the threads in the grid can 

access the GPU’s global memory, which is a memory space that is big (in the order of 

gigabytes) and has high latency. All the threads in a grid are grouped at the time that the 

kernel is launched into thread blocks, each of which is a collection of threads that can 

communicate through shared memory. This is illustrated in Figure 7 which shows three 

thread blocks with three threads each (each GPU thread block has a number of threads 

which is a multiple of 32), and also shows the shared memory corresponding to every 

thread block. Shared memory is a memory space private to each thread block that is both 

smaller (in the order of tens of kilobytes) and faster (around 10 times) than global 

memory [W13]. The threads within a thread block are grouped into sets of 32 threads 

called warps, each of which is a collection of threads that execute the same instruction 

(maybe with different operands) in lockstep. 

 

This hierarchy determines not only which threads can communicate, but also how 

threads can synchronize. Only the threads within a block can use barrier synchronization, 

and the only way to run barrier synchronization among threads belonging to different 

blocks is to exit the current kernel and launch a new one. The reason for this is that not 

all thread blocks run simultaneously. 
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2.4.4 GPU Issues 

There are a number of challenges that need to be addressed when designing a scalable 

algorithm for GPUs. Among them are the five major issues: low global memory 

bandwidth relative to the number of threads, low PCI-express memory bandwidth, 

efficient use of shared memory banks, thread divergence, and load balancing. We now 

discuss each of these issues. 

 

2.4.4.1 Low global memory bandwidth relative to the number of threads 

In GPUs there are often thousands of threads contending for access to the (slow) global 

memory. This implies that every time there is a global memory read instruction, 

thousands of memory transactions need to be performed (one per thread). To deal with 

this problem, GPUs (just like regular CPUs) are equipped with caches that can exploit 

the spatial locality of global memory accesses in order to reduce the traffic through the 

 

Figure 7. GPU memory space 
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memory controller. However, in order to take advantage of such caches, threads in a 

GPU need to access global memory following patterns that respect the spatial locality. 

When threads access global memory respecting this spatial locality, then the cache can 

reduce the contention for memory bandwidth, in which case it is said that the GPU has 

coalesced global memory accesses. 

 

More precisely, a coalesced memory access occurs when threads in a warp 

simultaneously access adjacent locations in the GPU’s global memory (for example, 

threads t32,t33,...,t63 access locations a, a + 1, ..., a + 31, assuming that location a is a 

multiple of the size of the type located at those addresses), only a single global memory 

transaction is performed to access all the locations (instead of 32 separate transactions); 

therefore, all those potentially separate accesses to memory are coalesced into a single 

one. This has the advantage of reducing the demand for memory bandwidth, which in 

the case of GPUs constitutes one of the dominating factors for performance [KH13]. 

Hence, ideally, all global memory accesses within a warp should be to adjacent 

locations. 

 

Figure 8 illustrates the idea of memory coalescing. In the left part of the figure we see a 

group of coalesced global memory accesses are coalesced because the first warp 

(threads 0 to 31) accesses a continuous block of memory starting at address n, which is 

aligned at 128 bytes. In the right part of this figure, the global memory accesses are 

uncoalesced because thread 31 causes the warp to accesses memory locations across 

two separate cache blocks. 
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2.4.4.2 Low PCIe memory bandwidth 

The GPU is connected to the host computer through the PCI express (PCIe) bus, which 

has a theoretical bandwidth of 31GB/s (using PCIe v4.0 x16). On the other hand, the 

GPU’s global memory has a theoretical bandwidth of 480 GB/s (in a Tesla K80 GPU 

[Nvidia17]), while the host computer’s main memory has a theoretical bandwidth of 

85GB/s (with a 24 core Intel E7 8894 v4 chip) [Intel17]. The problem is then that 

transmitting data to and from the GPU is expensive because of the relatively low PCIe 

memory bandwidth. Therefore, GPUs should be programmed so as to maximize the 

amount of work performed on each data batch received through the PCIe bus, instead of 

communicating back and forth with the host’s main memory. This problem is 

compounded with the fact that GPUs in general have a small global memory space 

(12GB ~ 24GB [Nvidia17]) so that when dealing with large volumes of data, this can 

generate large amounts of (slow) PCIe communication, reducing the performance of the 

GPU algorithm. 

 

Figure 8. GPU memory coalescing 

 



 17 

 

2.4.4.3 Efficient use of shared memory banks  

To improve the performance in GPUs, the shared memory address space is divided into 

interleaved sub-blocks that can simultaneously and independently process transactions 

to this type of memory. Consequently, it is desirable that when threads in a warp make 

transactions to shared memory, they do not all access the same bank; instead, threads in 

a warp should each try to access a different shared memory bank, and in this way all 

these accesses can be processed independently and in parallel. To accomplish this, it is 

important to be aware that it is usually the case, and GPUs are not an exception in this 

regard, that the addresses corresponding to different banks are interleaved in a way such 

that, if there are 32 banks, the address x in the shared memory corresponds to the bank 

(x mod 32). Knowing this, it is possible to strive to equally distribute shared memory 

accesses among all banks. 

 

2.4.4.4 Thread divergence 

A warp is said to have thread divergence during execution if when a warp finds a 

conditional (or an iterative) statement, there is at least one pair of threads tx, ty such that 

the boolean condition of the conditional (or iterative) statement is true for tx but false for 

ty; therefore, the threads take separate paths through an if statement: one takes the if 

branch, and the other takes the else branch. This situation is illustrated in Figure 9, 

which shows a conditional statement (in the left part of the figure) that forces threads 

with even indexes to execute just code A, while the threads with odd indexes are forced 

to execute just code B. The problem with thread divergence is that it entails a 
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performance penalty because, since warps execute in lock-step, the hardware needs to 

make all threads in the warp run both branches in a serial fashion [HP12]. Ideally, code 

in a kernel should have no thread divergence. 

2.4.4.5 Load balancing 

Load balancing refers to striving to evenly divide the computational tasks among 

computing units in a way such that each GPU thread performs a similar amount of 

work. This issue impacts the performance of any parallel GPU algorithm because the 

time spent by the computational unit that receives the most time-consuming subtask will 

dominate the algorithm’s overall execution time. Ideally all tasks submitted to the GPU 

should be evenly balanced among the computational units in order to ensure that no 

processor in the GPU is idle while others are working and, thus, no single computing 

unit is responsible for dominating the execution of the parallel algorithm. 

 

 

Figure 9. Thread divergence 
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3 General Issues of Top-K Trajectory Similarity Query Processing 

Techniques 

In this section we discuss issues that should be addressed by top-K trajectory similarity 

query processing techniques. These issues are the different trajectory sizes in the 

database, local time shifts, measurement uncertainty, model uncertainty, triangular 

inequality, inter-trajectory sampling rate variation, intra-trajectory sampling rate 

variation, sampling phase variation, and the size of the parameter space. 

 

3.1 Different trajectory sizes 

Some techniques for computing top-K trajectory similarity queries like the Euclidean 

Distance (or the Lp distances in general) require that all trajectories in the dataset have 

the same number of points in order to be able to compute the Euclidean distance 

between any two trajectories [FRM94]. However, in most datasets, the trajectories have 

different sizes (e.g., [ZXM10]), so techniques based on Lp distances cannot compute the 

similarity scores between trajectories. For this reason, a top-K trajectory similarity 

query processing technique must use a similarity measure that can handle trajectories 

with different numbers of points. This situation is illustrated in Figure 10, where we see 

two trajectories, p with 5 points and q with 3 points. If a top-K trajectory similarity 

query processing technique were to use a similarity measure like the Euclidean distance, 

then it would not be clear which points to choose from each trajectory in order to 

compute the distance between them. 
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Requirement 1. A top-K trajectory similarity query processing technique should be able 

to handle databases containing trajectories with different sizes.  

 

3.2 Local time shifts 

Two trajectories p and q are said to have a local time shift if they have approximately 

the same average sampling rate, but for a portion of the lifetime of p(q) this p(q) moves 

faster than q(p), and for the remaining portion of the lifetime of p(q), q(p) moves faster 

than p(q). The problem with local time shifts is that since both trajectories have the 

same sampling rate, then the average time elapsed between consecutive points in each 

of the trajectories is the same. Then, since for the initial portion of the lifetime of p(q) 

this trajectory moves faster, that means that during this initial portion, the distance 

between consecutive points of p(q) is larger than the distance between consecutive 

points of q(p) in the same interval. Figure 11 shows an example of local time shifts. To 

the left of the figure, we see two trajectories p and q with the same sampling rate but 

moving at different speeds. Trajectory p initially moves fast, and then moves slowly. 

Trajectory q, on the other hand, moves slowly at the beginning, and then moves fast. 

 

Figure 10. Different trajectory sizes 
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The issue in this case is that if we choose to compare points in p with their 

corresponding points in q (respecting the order of the points in each trajectory), then the 

distances between the corresponding points become artificially big as seen in the left 

part of the figure, because the connecting segments between the corresponding points 

are “slanted.” However, if a top-K trajectory similarity query processing technique is 

able to interpolate trajectories (interpolated points are shown as small circles over the 

trajectories on the right part of the figure), then it is possible to compute the “non-

slanted” distances that better capture the true similarity between trajectories p and q. 

We see then that techniques that match a point in one trajectory to at most one point in 

the other trajectory are not suitable for finding the similarity between trajectories with 

local time shifts. In practice, it is not possible to enforce that raw trajectories (i.e., 

trajectories without pre-processing) do not have local time shifts because the presence 

or absence of local time shifts depends on the relative speeds of the objects. For this 

 

Figure 11. Local time shifts 
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reason, a technique for top-K trajectory similarity query processing must address the 

issue of local time shifts. 

 

Requirement 2. A top-K trajectory similarity query processing technique should be able 

to handle databases containing trajectories that have local time shifts.  

 

3.3 Measurement uncertainty 

Trajectory uncertainty can come from different sources that can be classified into two 

major classes: the sources related to the measurement / instrumentation process, and the 

ones related to the model dynamics. One of the noise sources related to the measurement 

process is the noise inherent to GPS device measurements [CBPB10][MLSC13]. This 

noise arises because no measurement is perfectly accurate, but also arises from the 

environmental conditions surrounding the sensor at the moment when the measurement 

is made. For example, in the ecology application (see Section I.2.3), the GPS 

measurement errors can be greater if there are overcast skies in the place where the 

animals are, or if the animals have tampered with their GPS collars, etc. This type of 

noise is illustrated in Figure 12, where the trajectories of three objects, q, r and s, are 

captured.  Here we see that around each position (trajectory point) sampled, qi, ri, and si, 

for each of the three corresponding trajectories, q, r and s, there is an “area of 

uncertainty.” If we ignore the measurement uncertainty, the most similar trajectory to q 

is trajectory r. However, if we consider the measurement to be noisy, then there is a high 

probability that trajectory s is the most similar trajectory to q because the points of s have 

low uncertainty and are almost as close to q as the points in r. On the other hand, the 
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points on r have large uncertainty, so there is a non-zero probability that the points r0 and 

r2 are farther away from q than s0 and s2, respectively. Hence, since many trajectory 

datasets are collected through the use of sensors, there is an inherent error associated to 

their measurements, and therefore, a top-K trajectory similarity query processing 

technique should be able to address measurement uncertainty. 

Requirement 3. A top-K trajectory similarity query processing technique should be able 

to extract the signal from the noise associated with the location measurements, and to 

estimate the degree of uncertainty associated. 

 

3.4 Model uncertainty 

One of the sources of uncertainty related to the model dynamics is the interaction 

between the linear interpolation model for trajectories and the inconsistencies in the 

sampling rate. If the time interval between two consecutive sampled points in a 

 

Figure 12. Measurement/instrumentation uncertainty 
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trajectory is very long, i.e., the trajectory has a low sampling-rate, and the object moves 

at a high speed with a non-constant velocity and/or acceleration during that time 

interval, then the linear interpolation model underlying trajectories may not be a good 

approximation to the object’s movement. Figure 13 shows an example illustrating this 

situation. The dotted lines correspond to the actual path taken by the moving objects, 

while the straight lines connect consecutive sampled points. If we ignore model 

uncertainty, then trajectory r is the most similar to trajectory q because its points are all 

closer to q than the points in s. However, if we consider the actual true paths, we see 

that s is the object with the most similar path to q. The uncertainty arises because the 

sampling rate was too low. This source of uncertainty is present in our animal ecology 

example because scientists want to maximize the lifetime of the expensive telemetry 

devices that they attach to animals, which makes these devices subject to energy 

utilization constraints. Therefore, to save energy, geolocators cannot work continuously, 

 

Figure 13. Model uncertainty 
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so animal trajectories cannot have high sampling rates [CBPB10]. As a consequence of 

this, there is great uncertainty in the trajectory that an animal takes between the sampled 

points. Another source of uncertainty in the animal ecology application relates to the 

fact that frequently there are missing data in the trajectories because of failed attempts 

at geolocation, in which the GPS device cannot successfully determine the animal’s 

position [CBPB10]. Hence, we see that there is a concern about the impact of trajectory 

model uncertainty in their studies.  

 

Requirement 4. A top-K trajectory similarity query processing technique should be able 

to estimate the true path of the object’s trajectory when trajectories have low sampling 

rates. 

 

3.5 Triangular inequality 

Some top-K trajectory similarity query processing techniques [COO05][DTS08] exploit 

the fact that the underlying trajectory similarity measure satisfies the triangular 

inequality, in order to reduce the amount of work devoted to process the query. 

However, if the query processing technique does not use a similarity measure that 

satisfies the triangular inequality, then many existing techniques like R-trees, for which 

there already are parallel algorithms that work on GPUs [ZYG13], cannot be easily 

modified to be used with spatial data structures. This in turn entails that these latter 

similarity query processing techniques require ad-hoc algorithms and data structures 

that are far less studied than data structures like R-trees [Gutt84][BKSS90], TB-trees 

[PJT00] and their corresponding query processing algorithms. 
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Requirement 5. A top-K trajectory similarity query processing technique should ideally 

be able to use a similarity measure that satisfies the triangular inequality so that the 

knowledge of existing spatio-temporal data structures can be leveraged in order to 

reduce the amount of work needed to process the query. 

 

3.6 Inter-trajectory sampling rate variation 

This issue refers to the case when two different trajectories (whose similarity is to be 

computed) have very different sampling rates. In taxi trajectory datasets, cab drivers 

modify the GPS sensors in their taxis to reduce energy consumption 

[WZP12][RDTD+15]. Cab drivers that leave their GPS sensors in their default 

configurations have associated trajectories with a higher sampling rate than the 

trajectories corresponding to cab drivers that alter their GPS sensors. An example 

illustrating the scope of this issue when processing top-K trajectory similarity queries is 

the following. Suppose we are given a trajectory p of length n with a sampling rate of 

15 seconds, and a trajectory q of length m with a sampling rate of 5 seconds, both 

moving at the same velocity. Also assume that the true paths corresponding to p and q 

have exactly the same shape, except that q is displaced by a fixed constant vector. We 

say that p and q have inter-trajectory sampling rate variation if they have different 

sampling rates. Now, when computing the similarity between p and q, every point pi in 

p with timestamp ti is likely to be matched to points qj-1, qj, qj+1 with timestamps ti-5, ti, 

and ti+5, respectively (because the true paths of one of the trajectories is a translation, 

in a geometric sense, of the other). However, the matching between pi and qj-1, and 
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between pi and qj+1 are both “slanted”, unlike the matching between pi and qj. Therefore, 

these matches suggest that the distance (similarity) between p and q is larger than what 

it truly is. This is because the trajectory p is missing points with timestamps ti-5 and 

ti+5, which, if matched with qj-1, qj+1, respectively, would produce “horizontal” matches 

that better reflect the distance or similarity between p and q.  

 

In the left-hand part of Figure 14, there is an example of inter-trajectory sampling rate 

variation. In this figure we see trajectories p and q that move at the same velocity, but 

trajectory p has a low sampling rate, while trajectory q has a high sampling rate. If a 

top-K trajectory similarity query is only allowed to compute the distances between pairs 

of existing points in both trajectories, then some points in p are forced to be matched to 

more than one point in q, and this can lead to “slanted” connecting segments that 

introduce artificially long distances in the computation of the similarity between p and 

 

Figure 14. Inter-trajectory sampling rate variation 
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q. On the contrary, if a trajectory similarity query processing technique is allowed to 

interpolate trajectories, then it can compute distances between points in p and in q that 

are connected by “non-slanted” segments, leading to a more accurate trajectory 

similarity computation, as shown in the right-hand part of Figure 14. 

 

Since in practical applications it is hard to enforce that all trajectories have the same 

sampling rate (because GPS sensors may fail, or may be running out of power), then a 

technique for top-K trajectory similarity query should deal with this issue. 

 

Requirement 6. A top-K trajectory similarity query processing technique should be able 

to handle trajectories with different sampling rates.  

 

3.7 Intra-trajectory sampling rate variation 

This issue refers to the case when the sampling rate changes within a given trajectory. 

For example, given trajectory p of length n, if the time elapsed between points p0 and p1 

is 5 seconds, and then between p1 and p2 is also 5 seconds, but then between p2 and p3 is 

10 seconds, we say that since the time elapsed between consecutive points has changed 

within the same trajectory p, then p has intra-trajectory sampling rate variation.  

 

Intra-trajectory sampling rate variation is an issue when processing top-K trajectory 

similarity queries because if the similarity between two trajectories p and q needs to be 

computed, and trajectory p and trajectory q both have intra-trajectory sampling rate 

variation, then it may be the case that initially trajectory p and trajectory q are very 
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similar, but after a certain point, they significantly diverge and the sampling rate 

becomes really low. Figure 15 illustrates the situation. In this figure we see that initially 

both trajectories have a low sampling rate, but then the sampling rate increases. Now, 

since the sampling rate is very low when p and q diverge, then there are very few points 

in both p and q that indicate this divergent behavior of the trajectories. Therefore, in the 

overall computation of the similarity of p and q, the divergent behavior section has few 

representing points, so the similarity measure will be biased towards those sections of p 

and q that have more points (where both are very similar) indicating that the trajectories 

are very similar, despite the fact that they strongly diverge after a certain point (which is 

an indication that they are not similar because, informally, for trajectories to be similar 

they must be close to each other through most of their lifetimes).  

 

Requirement 7. A top-K trajectory similarity query processing technique should be able 

to handle the pairs of trajectories that have different sampling rates from each other.  

 

Figure 15. Intra-trajectory sampling rate variation 
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3.8 Sampling phase variation 

Assume we are given two different trajectories, p and q. They are said to have sampling 

phase variation if their corresponding true paths are approximately similar, but one is a 

translation (in a geometric sense) of the other. In other words, p and q have sampling 

phase variation if the underlying true paths satisfy that truepath(p)[t] = 

truepath(q)[t+∆] for ∆>0 (the phase) and any t>0. The left hand side of Figure 16 

presents an illustration of this situation, where we see two trajectories p and q that are 

identical, except that one is a displacement of the other through a “rigid movement.”  

The issue is that the true paths could be almost exactly the same, but since the true paths 

are sampled in an “out of phase” fashion, then this forces point pt = truepath(p)[t] to be 

matched with point qt= truepath(q)[t+∆], which could be very far away, but still on the 

 

Figure 16. Sampling phase variation 
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sample true path. We see this in Figure 16, where the distances between the 

corresponding points are measured over “slanted” segments, which lead to artificially 

long distances. So despite the fact that the true paths are the same, since the paths are 

sampled differently, the matched points artificially increase the distance or similarity 

between the trajectories. This situation can be easily observed in datasets like the taxi 

trajectory dataset because it is difficult to enforce that cab drivers turn their GPS on at 

the same point along the trajectory path. Therefore, a top-K trajectory similarity query 

processing technique should address this issue. 

 

Requirement 8. A top-K trajectory similarity query processing technique should be able 

to accurately compute the similarity between trajectories that share a very similar true 

path, but that are sampled out of phase.  

 

3.9 Dimensionality of the manually-tuned parameter space 

The space of parameters is the set of all possible values of all the parameters that govern 

the behavior of the top-K trajectory similarity query processing technique. For example, 

the EDR technique [COO05] depends, among other parameters, of the value of 5, which 

is a positive real number used by EDR to determine if two points, each belonging to a 

separate trajectory, are neighbors. In general, the parameters pose a difficulty for the 

implementation of query processing techniques in a database system because the 

database administrator may need to periodically and manually tune those parameters to 

ensure the best performance. This tuning job becomes increasingly difficult as the size 

of the space parameters increases and even more so if the parameters may influence one 
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another. Hence, a top-k trajectory similarity query processing technique should address 

the issue of the dimensionality of the space of parameters that need to be tuned 

manually by striving to reduce its size. 

 

Requirement 9. A top-K trajectory similarity query processing technique should ideally 

have a space of manual parameters of low dimensionality. 

 

3.10 Large Databases and Large Trajectory Sizes 

In the worst case, processing top-K trajectory similarity queries can require having to 

compute the similarity between every query trajectory and every trajectory in the 

database. This problem is aggravated by the fact that in many applications (e.g., the 

social networking applications described in Section 2.3) there are large databases 

involved, which leads to big computational challenges. In addition to this, it is often the 

case that the trajectories themselves can have large sizes (i.e., trajectories can have 

many points), so that computing the similarity between trajectories is very expensive. In 

other words, computing a top-K trajectory similarity query is expensive because the 

databases are large, and because the trajectories themselves are big. One way of 

tackling this size issue is through the use of parallel computing architectures like GPUs, 

multicore CPUs, etc. However, to efficiently run algorithms on parallel architectures 

requires algorithms to be specifically designed to exploit their idiosyncrasies and issues 

(see Section 2.4.4). Therefore, a top-K trajectory similarity query processing technique 

should address the issue of large databases and trajectory sizes by being carefully 

designed to exploit parallel architectures.  
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Requirement 10. A top-K trajectory similarity query processing technique should be 

designed to exploit the idiosyncrasies of parallel architectures like GPUs in order to 

cope with the large databases and large trajectory sizes involved in processing this type 

of query. 

 

4 Contribution 

Top-K trajectory similarity queries are spatial queries of great significance because they 

have a wide variety of applications in many fields such as in the study of bird migration 

in ecology [LHW07], in the study of the movement of galaxies in astronomy 

[GC14][GC16], in helping identify friends with similar trajectories in social networks 

[ZXM10], in doing urban planning [YZXS13][WZX14], etc. On the other hand, due to 

the fact that trajectories can potentially have a large number of points, and that 

trajectory datasets can be very large, these queries pose significant computational 

challenges. Additionally, all trajectories have an uncertain nature because of the 

measurement and model errors associated with the location sensing devices used to 

collect the trajectories. So, despite their many applications, there exist very few works 

devoted to dealing with the Big Data component of trajectory query processing 

[ZYG12][GC14][GC16]. Out of these works dealing with Big Trajectory data, none of 

them is devoted to the study of top-K trajectory similarity queries; instead, these works 

address a very different type of trajectory similarity query called a near-join similarity 

query, which presents different challenges to those of the top-K trajectory similarity 

query, and has different applications to those mentioned above.  
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In this dissertation, we propose a system for processing top-K similarity queries on Big 

Trajectory Data using GPUs. The system consists of four techniques designed to 

accomplish several of the different tasks required for processing this type of query. The 

four techniques are TKSimGPU [LGZY15], Top-KaBT [LGZY16], TrajEstU [LGZ16] 

and TraclusGPU. 

 

The first algorithm introduced in this work, called TKSimGPU [LGZY15], is a GPU 

technique for processing top-K trajectory similarity queries that is specifically designed 

to take advantage of the architecture of GPUs. This algorithm was conceived with the 

goal of ensuring load balance across the thread blocks, and providing efficient memory 

access patterns to help ensure memory coalescing. 

 

The second algorithm, called Top-KaBT [LGZY16], is a parallel GPU pruning 

technique to reduce the number of spurious candidate trajectory pairs generated when 

processing top-K trajectory similarity queries for Big Trajectory Data applications on 

GPUs. This reduction is necessary because in Big Trajectory Data applications the 

number of spurious candidate pairs is typically very large, so it has an associated 

unnecessary large computational overhead. Top-KaBT works by using only the lower 

and upper bounds of the similarity measure to remove the candidate pairs that surely 

cannot belong to the query result set. This reduces the negative impact arising from the 

small size of the GPU’s global memory. In addition, the technique achieves load 

balancing and memory coalescing by having threads perform the same amount of work, 
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and by having threads with consecutive indices access consecutive memory locations. 

An advantage of Top-KaBT is that its ideas can be applied to any top-K trajectory 

similarity query processing algorithm that uses a similarity measure satisfying the 

triangular inequality, like ERP [CN04] and wDF [DTS08], to further reduce the amount 

of work necessary to process the query. 

 

The third algorithm, called TrajEstU [LGZ16], is a technique for estimating the true 

path of moving objects in unconstrained spaces that takes into account both 

measurement and model uncertainty. TrajEstU works by splitting the lifetime of an 

object’s trajectory into time intervals where the object’s acceleration is nearly constant. 

Then TrajEstU uses the local trajectory clusters (found in an off-line preprocessing 

stage, so that it is done only once per database and not run each time we want to obtain 

a true path estimate) to obtain the movement patterns that are prevalent in the areas 

where trajectories have low-sampling rates, and linear regression to fit a kinematic 

constant acceleration model to the observed positions of the moving object. By using a 

linear regression model, TrajEstU reduces the uncertainty arising from the GPS 

measurements and the low-sampling rate of trajectories. 

 

The fourth algorithm, called TraclusGPU, is a technique for performing local trajectory 

clustering on a hybrid GPU and multicore CPU architecture. This technique is based on 

the serial Traclus Algorithm [LLHW07]. It was designed because in our experiments 

we observed that TrajEstU’s off-line preprocessing stage, which consists of finding 

these trajectory clusters, did not scale well with the size of the dataset. In fact, it took 



 36 

weeks to run this serial algorithm on datasets of the size used in our experiments in 

Section IV.2.3. So, in order to make Traclus practical for Big Trajectory data, it is 

essential that all of its stages scale well with the size of the dataset, including the off-

line preprocessing stage. The idea behind TraclusGPU consists in arranging the 

trajectory data in contiguous arrays, so as to allow for efficient memory accesses.  

 

To the best of our knowledge, there does not exist a parallel GPU technique for 

addressing top-K trajectory similarity queries, nor a general GPU pruning technique for 

top-K trajectory similarity queries, nor a system that integrates uncertainty estimation, 

query pruning and processing on GPUs, nor a parallel GPU technique for local 

trajectory clustering.  Our proposed techniques fill these gaps. 

 

For performance studies, we provide analyses of the worst-case time and spatial 

complexities of the proposed techniques, and present extensive experimental studies of 

their performance in comparison with state of the art techniques. In almost all cases, our 

four algorithms outperform existing techniques. 

 

5 Organization 

The remaining of this dissertation is organized as follows: Chapter II presents a 

literature review of top-K trajectory similarity query processing techniques, and of 

techniques to estimate uncertain trajectories. Chapter III presents our proposed system 

and implementation. Chapter IV contains the theoretical and experimental analyses of 

our proposed approaches. Finally, Chapter V provides conclusions and future research 
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directions.  
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CHAPTER II  
LITERATURE REVIEW 

 
In this chapter we present in Section 1 a survey of some of the top-K trajectory 

similarity query processing techniques, and in Section 2 a survey of some of the 

techniques for estimating uncertain trajectories. 

 

1 Literature Review of Top-K Trajectory Similarity Query Processing 

Techniques 

In this section we present a survey of some of the top-K trajectory similarity query 

processing techniques. This survey is organized around the issues identified in Section 3 

of Chapter I. Using these issues, we classified the surveyed techniques into three 

categories: geometry-based techniques, edit distance-based techniques and 

probabilistic-based techniques. The existing techniques are then classified according to 

the manner that they address/not address the issues and challenges identified. 

 

1.1 Geometry-based techniques  

Geometry-based techniques use similarity measures that are inspired on geometrical 

considerations. In many cases these geometry-based similarity measures satisfy the 

triangle inequality, which allows for efficient pruning of many results that for sure 

cannot form part of the query result set.  

 

1.1.1 Euclidean Distance Technique 
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The simplest trajectory similarity query processing technique is the Euclidean distance 

top-K trajectory similarity query processing technique [FRM94]. This technique 

assumes that the input trajectories have the same number of points, and then computes 

the distance between each point in p and its corresponding point in q. After computing 

all these distances, it adds them all up. 

 

The Euclidean Distance between two trajectories p and q of length n is defined as 

kv (, I = 	 (w. - − Iw. - v +	 (w. . − Iw. . vn
wpb . 

 

Since the Euclidean distance satisfies the triangular inequality, then this inequality can 

be used to help avoid an exhaustive search over the whole database, when processing 

top-K trajectory similarity queries. One way of doing this is by computing a lower and 

an upper bound for the Euclidean distance is using the triangular inequality: 2 (, I ≥

2 (, t − 2 t, I = yszlt{sG[2((, I), for a lower bound, and 2 (, I ≤ 2 (, t +

2 t, I = 	G((lt{sG[2 (, I , for an upper bound. 

 

To process top-K trajectory similarity queries, the Euclidean distance algorithm 

receives as inputs a query trajectory p, a database of trajectories Q, and a non-negative 

integer K and proceeds as follows: 

1. For every trajectory p in the query set, iterate through the first k trajectories q in 

the database computing upperBound(p,q), and adding those k trajectories to the 

candidate set. 
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2. For every other trajectory q in the database, compute lowerBound(p,q). If 

6F- G((lt{sG[2 (, | ≤ yszlt{sG[2((, I) for every trajectory c in the 

candidate set, then trajectory q is discarded. Otherwise, it is added to the 

candidate set of p. 

3. Then, for every query trajectory p, compute euclideanDistance(p,c) for every c 

in the candidate set of p, and return the trajectories with the shortest 

euclideanDistance. 

 

Advantages: 

• This technique uses a metric to compute the similarities between trajectories, so 

the standard spatial data indexes (e.g., R-tree [Gutt84][BKSS90], k-d trees 

[Bentley75], etc.) can be used. 

• This technique uses a metric that can be efficiently computed in worst-case time 

complexity linear in the number of points of the trajectories. This is particularly 

advantageous for Big Trajectory data because computing the similarities 

between trajectories is an expensive operation that is compounded by the facts 

that trajectories have large sizes, and that trajectory databases have large 

numbers of elements. 

 

Disadvantages: 

• The Euclidean distance is very susceptible to outlier points because an outlier 

point that is far away from its true position will significantly distort the final 
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result of the similarity. Therefore, this technique does not properly address the 

issue of measurement uncertainty. 

• The Euclidean distance cannot cope with local time shifting since the matchings 

between trajectories are one-to-one and are done respecting the temporal order 

in each trajectory; therefore, the segments connecting corresponding points can 

be slanted, thereby artificially increasing the distance between the trajectories. 

• The Euclidean distance can only be computed between trajectories that have the 

same number of points. Therefore, the Euclidean distance does not address the 

issue of trajectories having different sizes. 

• The Euclidean distance technique was designed for serial architectures; 

therefore, to efficiently run in parallel architectures like GPUs, the technique 

would need substantial modifications. 

 

1.1.2 Hausdorff Distance Technique 

Given two trajectories, p and q, the hausdorff distance hausd(p,q) between them is 

defined as follows: 

ℎFGH2 (, I = 	6F- 6F-7}∈76*[8~∈82 (_, I� ,6F-8~∈86*[7}∈72((_, I�)  

 

In other words, the Hausdorff distance between trajectories is the maximum possible 

distance between a point in one trajectory to its nearest point in the other trajectory. 

Therefore, this trajectory similarity measure arises naturally from certain problems like 

the bus route comparison problem, in which a transportation authority wants to replace 
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one bus route by another, and the goal is to minimize the worst-case walking distance 

from a stop in the old route to its nearest stop in the new route [NJS11].   

 

The Hausdorff distance is a commonly used trajectory similarity measure that has the 

advantage that it can be easily extended to mitigate the impact of noisy measurements. 

Nonetheless, since the Hausdorff distance considers a trajectory as a set of points (as 

opposed to a time-parametrized sequence of points), it cannot take into account the 

dynamics of the trajectories when measuring similarities.  

 

The Hausdorff distance between any two trajectories p and q can be bounded above by 

the maximum of the Euclidean distances between points in p and points in q, which we 

call upperBound(p,q), and bounded below by the minimum of such distances, which we 

call lowerBound(p,q). To process top-K trajectory similarity queries, the Hausdorff 

technique receives as inputs a query trajectory p, a database of trajectories Q, and a non-

negative integer K and proceeds as follows: 

1. For every trajectory p in the query set, visit the first K trajectories q in the 

database computing upperBound(p,q), and adding those K trajectories to the 

candidate set. 

2. For every other trajectory q in the database, compute lowerBound(p,q). If 

6F- G((lt{sG[2 (, | ≤ yszlt{sG[2((, I) for every trajectory c in the 

candidate set, then trajectory q is discarded. Otherwise, it is added to the 

candidate set of p. 
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3. Then, for every query trajectory p, compute hausd(p,c) for every c in the 

candidate set of p and return the trajectories with the shortest wDF. 

 

Advantages: 

• The first advantage of the Hausdorff distance technique is that it uses the 

Hausdorff similarity measure, which can deal with trajectories of different sizes. 

• Another advantage of the Hausdorff distance technique is that it is parameter-

free, so there is no need to search in a parameter space for the right parameter 

values. 

• A third advantage of the Hausdorff distance technique is that it is a metric, so it 

satisfies the triangular inequality. Hence, it can be used with well-studied spatial 

data indexes like R-trees, k-d trees [Bentley75], etc. 

 

Disadvantages: 

• One of the main disadvantages of the Hausdorff distance technique is that, since 

it uses the Hausdorff distance to compute the similarity between trajectories, it 

does not take the dynamics or the relative order of the points in a trajectory into 

account to compute its similarity with another trajectory. 

• Another disadvantage of this technique is that it does not address the issues of 

measurement and model uncertainty. However, when compared against the 

Euclidean distance technique, it is more robust against outliers. This is because a 

single outlier point can introduce significant errors in the Euclidean distance 
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technique; however, in the Hausdorff technique, a single outlier may not 

necessarily affect the overall similarity. 

 

1.1.3 w-constrained Discrete Fréchet Distance (wDF)  

Ding, Trajcevski, and Scheuermann proposed in [DTS08] a top-K trajectory similarity 

query processing algorithm based on two key ideas. The first key idea is using a 

modification of the discrete Fréchet distance, called the w-constrained discrete Fréchet 

distance, as a way to efficiently measure the similarity between trajectories, which helps 

overcome the problem with the Hausdorff distance, which ignores the dynamics of the 

trajectories involved. The second key idea consists in proposing upper and lower 

bounds for the Fréchet distance, and using those two bounds to avoid an exhaustive 

search when answering top-K trajectory similarity queries. We will now comment on 

these two key ideas. 

 

The first key idea introduced in the work [DTS08] is the w-constrained discrete Fréchet 

distance. However, since the w-constrained discrete Fréchet distance builds up on the 

continuous Fréchet distance and its discrete version, we first present these last two 

similarity metrics. Given two continuous curves in the plane Ä: [Fb, jb] 	→

ℝn, m: [Fv, jv] 	→ ℝn, the Fréchet distance between them is defined as Ä2 Ä, m =

inf
Ç,É

max
Ñ∈[Ö,b]

Ä(Ü / ) − m(á / ) , where Ü and á are continuous and monotonous 

functions Ü: Fb, jb → 0,1 , á: Fv, jv → [0,1] called parametrizations.  
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To intuitively explain the Fréchet distance, we can consider one of the objects to be a 

person, and the other object as a dog. We also assume that neither the person nor the 

dog backtrack or go backwards along the trajectories they describe (this is the intuition 

behind a monotonous parametrization), and that they can change their velocity (the 

parametrizations can be considered as changes in the velocity of the objects). Then, the 

Fréchet distance between the curves they describe is the length of the shortest leash 

necessary to perform the walk (this is the reason why the formal definition takes the 

infimum). We see then that this is how the Fréchet distance takes the dynamics of the 

trajectories into account. 

 

The disadvantage of the continuous Fréchet distance, when applied to trajectories, is 

that trajectories are discrete objects. Second, computing the Fréchet distance between 

two trajectories would require solving an optimization problem over the space of all 

possible parametrizations Ü and á. To address these issues, the work [EM94] 

introduced a discretized version of the Fréchet distance that can be applied to 

trajectories. This distance, just like the continuous Fréchet distance, computes the 

similarities between trajectories by pairing a point in one trajectory with a point in the 

other. Nonetheless, these pairings ignore the temporal distances and that can lead to 

distortions in the similarity between the trajectories [DTS08]. To address this issue, 

Ding Trajcevski and Scheuermann proposed the w-constrained discrete Fréchet 

distance. 
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Given two trajectories p and q, their w-constrained Discrete Fréchet distance is defined 

as: zàâ (, I = min 	 Mä : Mä	is	a		coupling	between	p	and	q	s.t.	if		((ì}, Iî} ∈

Mä ⇒ (ì}. /−	Iî}. / < z}, where a w-constrained coupling between p and q is a 

sequence { (ìñ, Iîñ , (ìó, Iîó , … , (ìô, Iîô } with (ì} ∈ (,	and Iî} ∈ I, and such that 

Fb = jb = 1, Fw = jw = ( = I = [, and for all i: F_ab = F_ or F_ab = F_ + 1, and 

j_ab = j_ or j_ab = j_ + 1 (the matchings are monotonic non-decreasing), and the 

length of a constrained coupling is Mä = max 2 (ì}, Iî} .  

 

The intuition behind trajectory couplings is that each pair in a coupling represents the 

state of the leash during any time window of length less than w. On the other hand, the 

length of a coupling is, by definition, the largest distance between any pair of points in 

the coupling. Then, it is easily seen that minimizing the length of the coupling is a 

discretization of the Fréchet distance because the parametrizations correspond to the 

couplings, and the infimum over all parametrizations corresponds to the minimum 

length coupling. 

 

The second key idea proposed in the work in [DTS08] is the introduction of both a 

lower and an upper bound to the wDF between two trajectories, which are much 

cheaper to compute than the actual wDF. The lower bound is based on the idea that for 

any trajectory one can obtain a sequence of MBRs that contain the trajectory at disjoint 

time intervals. To find a lower bound to the wDF distance between two trajectories p 

and q, [DTS08] proposes finding a sequence of MBRs for each trajectory. A w-

constrained lower (upper) bound coupling LBwDF [UBwDF] is a monotonous coupling 
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between the MBRs of p and q (instead of between the points of p and q), where the link 

is defined as minDistance[or maxDistance] between MBRs. The w-constrained lower 

bound distance between p and q is the minimum length of all possible w-constrained 

lower bound couplings. An advantage of this lower bound is that it can be computed 

using the same algorithm for computing the wDF distance, but only changing the link. 

A similar idea is used for the upper bounds. 

 

To process top-K trajectory similarity queries, [DTS08] receives as inputs a query 

trajectory p, a trajectory database db and a non-negative integer K, and proceeds as 

follows: 

1. For every trajectory p in the query set, iterate through the first K trajectories q in 

the database computing LBwDF(p,q), and adding those K trajectories to the 

candidate set. 

2. For every other trajectory q in the database, compute LBwDF(p,q). If 

6F- ö{zàâ (, | ≤ k{zàâ((, I) for every trajectory c in the candidate set, 

then trajectory q is discarded. Otherwise, it is added to the candidate set of p. 

3. Then, for every query trajectory p, compute wDF(p,c) for every c in the 

candidate set of p and return the trajectories with the shortest wDF. 

 

Advantages: 

• The wDF top-K trajectory query processing algorithm addresses the issue of 

trajectories having different sizes. 
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• A second advantage of this query processing algorithm is that it uses the Fréchet 

distance as a similarity measure. The Fréchet distance is a pseudo-metric, so it 

satisfies the triangular inequality. Therefore, this technique can also be used 

with well-known spatial data structures like R-trees. 

 

Disadvantages: 

• The wDF top-K trajectory similarity query processing technique does not 

address the issues of local time shifting. 

• A second disadvantage of the wDF technique is that it does not address the 

issues of measurement uncertainty and of model uncertainty. 

• A third disadvantage is that the wDF top-K trajectory similarity query 

processing algorithm takes an input parameter w (the temporal constraint for the 

couplings), so it is not a parameter-free algorithm. Therefore, to use this query 

processing algorithm, there is a need to search the value of w that yields the best 

performance. 

• Finally, the wDF algorithm is a serial algorithm, so it requires significant 

changes in order to run in parallel architectures like GPUs. 

 

1.1.4 DISSIM 

Frentzos, Gratsias and Theodoridis introduced in [FGT07] the first top-K trajectory 

similarity query processing algorithm, called DISSIM, that addresses the issue of inter-

trajectory sampling rate variations by using linear interpolation, so that it can avoid 

computing the distance between points that lead to artificial increases in the distance 
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between trajectories. Another peculiarity of the DISSIM trajectory query processing 

algorithm is that it computes trajectory similarities by taking the temporal dimension 

into consideration, that is, two trajectories are similar if they are closer to each other in 

both time and space and not just in space alone. 

 

DISSIM uses the following (dis)similarity measure between two trajectories, p and q: 

àõúúõB (, I = 	 à7,8 / 	2/
Ñôùñ
Ñô

nob
wpb , where /w|1 ≤ û < [  is the set of timestamps 

of both p and q, and à7,8 /  is the Euclidean distance between trajectory p and 

trajectory q at time t. As we have discussed, unlike many of the techniques proposed in 

this area, DISSIM computes the (dis)similarity between trajectories by taking the time 

component into consideration. This is because the DISSIM measure is a function of the 

time instants when the points in the trajectories were sampled. Therefore, DISSIM can 

tell if the true paths corresponding to two trajectories are close to each other at a 

specific time interval, unlike most of the techniques proposed in this area, which can 

only tell if the true paths of the trajectories are close ignoring time. 

 

To avoid an exhaustive search algorithm, Frentzos, Gratsias and Theodoridis proposed 

in [FGT07] a lower bound, called OPTDISSIM, to the DISSIM dissimilarity that is 

cheaper to compute than DISSIM, and an upper bound, called PESDISSIM, to DISSIM 

that is also cheaper to compute than DISSIM. This lower bound is used in their 

algorithm to remove trajectory candidates that for sure cannot be part of the query result 

set. The idea of using this lower bound OPTDISSIM is that if for a trajectory not seen 

so far, its OPTDISSIM is greater than the DISSIM of K trajectories seen so far, then 
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since OPTDISSIM is a lower bound to DISSIM, the DISSIM of this unseen trajectory 

cannot be smaller than that of the K trajectories seen so far. Therefore, the unseen 

trajectory can be pruned away.  

 

To process top-K trajectory similarity queries, DISSIM receives as inputs a query 

trajectory p, a trajectory database db and a non-negative integer K, and proceeds as 

follows: 

1) Insert all the segments of all trajectories in the database into an R-tree. 

2) Visit the R-tree in best-first mode using the MINDIST between the query 

trajectory q and the Nodes and Leaves as heuristic. This means that the nodes 

and leaves are visited in increasing order of MINDIST. 

3) If the algorithm encounters a leaf node, then for every entry of that leaf node if 

that entry belongs to a trajectory that has been pruned away, then that entry is 

ignored. Otherwise, the algorithm retrieves the object o (trajectory) 

corresponding to that entry and if the temporal extent of q and the temporal 

extent of the entry intersect, the algorithm adds that intersecting time interval to 

a list LO of time intervals associated with the entry’s object O. 

4) If LO contains all intervals spanned by the temporal extent of o, then o is added 

to a list Completed whose elements are all those objects, and then the algorithm 

computes do = DISSIM(p,o). If do is greater than the DISSIM of the K most 

similar objects to q seen so far, then o is discarded. Otherwise, it and the K most 

similar objects to q seen so far are recomputed. If Lo does not contain all 

intervals spanned by the temporal extent of o, the algorithm computes the 
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PESDISSIM between q and o and proceeds analogously. If PESDISSIM is 

smaller than the similarity of the K most similar objects to q seen so far, it is 

stored in that list of similar objects. 

5) When all the entries in the R-tree have been visited, the algorithm outputs the K 

most similar objects to q. 

 

Advantages: 

• The DISSIM top-K trajectory similarity query processing technique does not 

depend on any tuning parameter so that the dimensionality of the space of 

manually-tuned parameters is 0, so it is easy to use this technique to process 

trajectory similarity queries without having to search for a good parameter value 

in a large parameter space. 

• A second advantage of DISSIM is that it addresses the issue of inter-trajectory 

sampling rate variation because this technique does interpolation in the 

trajectory with lower sampling rate. This way, the “slanted matchings” 

(mentioned in Section I.3) are avoided and the computed score between 

trajectories better reflects the similarity between trajectories. 

• Unlike many techniques to process top-K trajectory similarity queries, which 

use ad-hoc data structures, DISSIM uses an R-tree [Gutt84][BKSS90], a well-

known technique, as the main data structure to store and retrieve the trajectories 

in the database. Among other things, using an R-tree has the advantage that 

DISSIM could potentially be implemented in parallel [ZYG13]. 

Disadvantages: 
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• DISSIM computes the (dis)similarity between two trajectories by considering 

one-to-one matches. This means that DISSIM cannot deal with local time shifts 

(like DTW, which addresses local time shifts by allowing points in one 

trajectory to match with multiple points in the other trajectory). 

• Another disadvantage of DISSIM is related to the way it deals with the inter-

trajectory sampling rate issue. Since DISSIM performs interpolation in the low 

sampling rate trajectories to find a better point to match against the other 

trajectory, if the sampling rate is low enough and the true path of the object is 

sinuous enough, then the trajectory interpolation model will severely deviate 

from the true path, so that the similarity score will not truly reflect how similar 

the two trajectories are. This problem with the trajectory interpolation model has 

been explained in more detail in Section I.3. 

• A third disadvantage of DISSIM is that it is a serial algorithm, so it requires 

substantial changes for it to work efficiently on parallel architectures like GPUs. 

 

1.2 Edit distance-based Techniques  

Edit distance-based techniques use variations of the edit distance of strings [CLRS09] to 

measure the similarity between two trajectories. In general, these techniques address the 

issues of local time shifts and sampling phase variation, but do not satisfy the triangular 

inequality, so they usually require ad-hoc indexing data structures to avoid exhaustive 

searches when processing top-K trajectory similarity queries. 

 

1.2.1 Dynamic Time Warping (DTW)  
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Dynamic Time Warping (DTW) is a top-K trajectory similarity query processing 

technique introduced in [BK94][KP00]. It computes the similarity between trajectories 

in the following way. Assume two trajectories p, of length m, and q, of length n, are 

given. The intuition behind the DTW similarity measure can be seen in terms of an 

optimization problem. A match M between p and q is a relation over the set	[1,6]	×

	[1, [] that satisfies the following properties: (i) There are no crossings, i.e., if the pair 

(*, O) belongs to M, then all other pairs in M of the form (û, y) with û ≥ *	satisfy that y ≥

O. Also, all other pairs of the form (û, y) with y ≥ O	satisfy û ≥ *. (ii) For every 

integer	* ∈ 	 [1,6] there exists a pair of the form *, O ∈ B, for some O ∈ 	 1, [ . (iii) For 

every integer O ∈ 	 [1, [] there exists a pair of the form *, O ∈ B for some * ∈ 	 1,6 . 

Every match M on p and q has an associated cost that is computed by adding up the 

costs of each individual pair contained in M. The cost of the pair *, O ∈ B is given 

by	2(([*], I[O]). Therefore, the cost of a match M is given by the expression 

2(([*], I[O])_,� ∈> . 

 

The optimization problem behind DTW is to find the least-cost matching on p and q. It 

turns out that this optimization problem can be solved with dynamic programming. 

Let’s see why: Suppose, again, that we are given two trajectories p, of length m, and q, 

of length n, and that neither m nor n is zero. Also assume that àü† 6, [ 	is the cost of 

the least-cost matching on p and q. Then as a consequence of the three properties 

mentioned above, an optimum match for p and q must contain the pair (m,n). Therefore, 

àü† 6, [ 	must be equal to 2(([6], I[[]) 	+ 	s/ℎlt	|sH/. According to the three 

properties explained before, there are three mutually exclusive cases for this optimum 
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match. Either this match contains a pair (m-1,n), in which case àü†(6, [) 	=

	2(([6], I[[]) 	+ 	àü†(6 − 1, [); or the match contains the pair (m,n-1), in which 

case àü†(6, [) 	= 	2(([6], I[[]) 	+ 	àü†(6, [ − 1); or the match contains neither 

(m-1,n) nor (m,n-1), so that àü†(6, [) 	= 	2(([6], I[[]) 	+ 	àü†(6 − 1, [ − 1). 

Since these three cases are exhaustive, we have that àü†(6, [) 	= 	2(([6], I[[]) 		+

	6*[{àü†(6 − 1, [), àü†(6, [ − 1), àü†(6 − 1, [ − 1)}. 

 

The DTW similarity measure can be computed in worst-case time complexity °(6	×

	[), and with worst-case space complexity °(6	×	[) (if we want to retrieve the 

matching). Now, to process a top-K trajectory similarity query using the DTW 

similarity measure, there are pruning techniques [YJF98][KR05] based on lower and 

upper bounding the DTW of any two trajectories. These lower and upper bounds can be 

used to help process top-K trajectory similarity queries more efficiently. We now 

explain how this is done. DTW receives as inputs a query trajectory p, a database of 

trajectories Q, and a non-negative integer K and proceeds as follows: 

1. For every trajectory p in the query set, visit the first K trajectories q in the 

database computing upperBound(p,q), and adding those K trajectories to the 

candidate set. 

2. For every other trajectory q in the database, compute lowerBound(p,q). If 

6F- G((lt{sG[2 (, | ≤ yszlt{sG[2((, I) for every trajectory c in the 

candidate set, then trajectory q is discarded. Otherwise, it is added to the 

candidate set of p. 
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3. Then, for every query trajectory p, compute DTW(p,c) for every c in the 

candidate set of p and return the trajectories with the shortest DTW. 

 

Advantages: 

• A first advantage of this top-K trajectory similarity query processing technique 

is that it addresses the issue of trajectories with different sizes (number of 

points).  

• Another advantage of DTW is that, compared to Euclidean distance-based 

techniques, it is significantly less sensitive to outliers [WMDT+13]. 

 

Disadvantages: 

• The DTW does not satisfy the triangular inequality, so it is not a metric. 

Therefore, standard spatial indexes like the R-tree and the TB-tree cannot be 

used. 

• The DTW similarity measure forces all points to participate in the optimum 

match, even outliers. 

 

1.2.2 Longest Common Subsequence (LCSS)  

The Longest Common Subsequence (LCSS) top-K trajectory similarity query 

processing algorithm was proposed in [VKG02] to improve upon the Euclidean distance 

and the DTW similarity measures to better handle measurement noise. LCSS measures 

the similarity between two trajectories p and q by counting the number of points shared 

in common between them, where a point in p and a point in q are shared in common by 
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p and q if they are sufficiently close to one another. Therefore, it is seen that one 

immediate advantage of this measure is that not all points of both trajectories have to be 

matched. This similarity measure is a generalization of the Longest Common 

Subsequence of Strings, where the idea is to find a sequence (not necessarily made up 

of characters that appear consecutively in any of the strings) of maximum length that is 

contained in both input strings. 

 

Before proceeding to explain how LCSS computes the similarity between two 

trajectories, we first define what it means when two points match with respect to a 

positive real number. Given a number 	¢	 > 0, and two points (b	 and (v, these points 

are said to match with respect to ¢ if |(b. -	–	(v. -| 	< ¢ and |(b. .	–	(v. .| 	< ¢. With 

this definition, we now proceed to explain the intuition behind the similarity measure. 

Suppose, again, that we are given ¢	 > 0, and two trajectories p, of length m, and q, of 

length n, and that neither m nor n is zero. Also assume that kMúú 6, [, ¢ 	is the length 

of the least common subsequence of p and q for ¢. If ([6 − 1] matches I [ − 1 	with 

respect to ¢, then we know that the LCSS of p and q for ¢ contains ([6 − 1] (and 

I[[ − 1]), so that the LCSS of p and q is equal to the LCSS of ([6 − 1]	and I[[ − 1] 

and then appending ([6 − 1] (or I[[ − 1]). Otherwise, the LCSS of p and q is equal to 

the kMúú((, I[[ − 2]) or to kMúú(([6 − 2], I). We see then that the LCSS similarity 

measure between any two trajectories of lengths m and n can be computed with a 

dynamic programming in worst-case time complexity °(6	×	[), and with worst-case 

space complexity °(6	×	[), if we want to retrieve the matching sub-sequence, or 

°(6F-(6, [)) if we do not. 
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Advantages: 

• One advantage of the LCSS query processing algorithm is that it addresses the 

issue of different trajectory sizes. 

• The LCSS addresses the issue of local time shifting. 

• The LCSS addresses the issue of measurement uncertainty. 

Disadvantages: 

• The first disadvantage of the LCSS top-K trajectory similarity query processing 

algorithm is that it does not satisfy the triangular inequality; therefore, standard 

indexes like the R-tree, k-d tree [Bentley75], etc. cannot be used with it. 

• A second disadvantage of this top-K trajectory similarity query processing 

algorithm is that it does not address the issue of model uncertainty, so that in 

trajectories with low-sampling rates it may produce inaccurate query results. 

• Another disadvantage of LCSS is that it is a serial algorithm with °(6	×	[) 

worst-case space and time complexity; therefore, it does not scale for Big 

Trajectory Data. Moreover, it requires substantial modifications in order to run 

efficiently on parallel architectures like GPUs and multicore CPUs. 

 

1.2.3 Edit Distance on Real Sequence (EDR)  

The Edit Distance on Real Sequence (EDR) [COO05] is a serial top-K trajectory 

similarity query processing algorithm designed to address the problem of local time 

shifts, and noise sensitivity when computing the similarity between trajectories. This 

technique represents an improvement upon ERP, DTW and LCSS because it is less 
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sensitive to outliers than these three latter techniques. It is also an improvement upon 

the Euclidean distance because of this same reason, and because it does not require 

trajectories to all have the same length. 

 

The idea behind this similarity measure is to compute the minimum number of 

modifications (insertions, deletions) that need to be performed on one trajectory to 

transform it into the other trajectory. As such, this similarity measure is based on the 

edit distance of strings. The difference is that instead of comparing strings character by 

character (where two characters match if and only if they are the same), EDR compares 

trajectories point by point, where two points match if one of them is within an ¢ > 0 

Euclidean distance of the other. 

 

The worst-case time complexity of computing the EDR similarity between two 

trajectories p and q of lengths m and n, respectively, is °(6	×[). Therefore, computing 

a top-K trajectory similarity query on a large database is infeasible for large databases 

containing trajectories with many points. This is the reason why the EDR technique 

requires additional pruning techniques. To solve this problem, [COO05] introduced 

three EDR-specific pruning techniques: pruning by near triangle inequality, pruning by 

mean value q-gram, and pruning by histograms.  

 

Now, we explain the rationale behind pruning by near triangle inequality. It has been 

proved in [COO05] that the EDR similarity satisfies the following inequality: 

§àq I, H + 	§àq H, t +	 H ≥ §àq(I, t), for any trajectories q, r and s. To prune 
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using the Near Triangle Inequality, the technique selects a subset X of trajectories in the 

database db, and computes and stores the exact EDR distance §àq(I, -) for every x in 

X. After this, it sorts these trajectories x in X in ascending order of their EDR distance to 

q. Then, the algorithm iterates through every trajectory s in the db, and finds the 

following lower bound to §àq(I, H), called maxPruneDist, using the near triangle 

inequality. If maxPruneDist (the lower bound to §àq(I, H)) is greater than the K-th 

smallest EDR distance in §àq(I, -) for x in X, then we know that s cannot form part of 

the result set, so it is discarded without having to compute §àq(I, H). Otherwise, we 

compute §àq(I, H) and insert it into the subset X in ascending order of EDR distance to 

q. 

 

Pruning by mean value-q gram and pruning histograms work in a similar way as 

pruning by near-triangle inequality in that they consist of obtaining lower and upper 

bounds (which are much cheaper to compute than the EDR similarity) for the EDR 

similarity between two trajectories, and then using these bounds to quickly remove 

candidates that cannot form part of the query result set. 

 

Advantages: 

• One advantage of EDR is that it addresses the issue of trajectories having 

different lengths. 

• This technique also addresses the issue of local time shifts in trajectories and is 

more robust than the Euclidean distance and the ERP distance in terms of 

measurement noise.  



 60 

 

Disadvantages: 

• One disadvantage of the EDR distance is that it is not a metric; hence, regular 

and well-studied spatial indexes like TB-trees, R-trees, M-tree [CPZ97] cannot 

be used to reduce the number of spurious candidate pairs.  

• One consequence of this matching between points in the trajectories is that the 

EDR similarity measure does not satisfy the triangular inequality. Therefore, 

traditional pruning techniques like TB-trees, kd-trees [Bentley75] and R-trees 

cannot be used to avoid computing the EDR similarity between the query 

trajectory and every trajectory in the database. 

• Another disadvantage of EDR is that it is a serial algorithm and requires 

substantial modifications to efficiently run in parallel architectures like GPUs. 

 

1.2.4 Edit Distance with Real Penalty (ERP)  

The Edit distance with Real Penalty is a serial top-K trajectory similarity query 

processing technique proposed in [CN04] to improve upon DTW and LCSS by being 

more robust in circumstances where trajectories have measurement uncertainty, and to 

improve upon EDR by satisfying the triangular inequality. 

 

The key idea behind the ERP top-K trajectory similarity query processing technique is, 

just like in the case of the EDR trajectory similarity query processing technique, 

borrowed from the edit distance of strings. In fact, ERP and EDR are very similar to 

each other, the difference between them is the distance between a point in a trajectory p 
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and another in a trajectory q is not discretized with values 1 or 0 (like in EDR), but 

instead their Euclidean distances are computed. Since the matchings between points are 

not discretized, but instead their true distances are computed, ERP can be shown to 

satisfy the triangular inequality. 

 

The triangular inequality, which the ERP distance satisfies, can be used to prune 

candidates of top-K similarity trajectories. If q is a query trajectory, and s and r are 

database trajectories, then the triangular inequality states that §qJ I, H ≥

§qJ(I, t)	– 	§qJ(t, H). This inequality is used by ERP as follows. The algorithm first 

computes §qJ(t_, H) for every t_ belonging to a subset R of the trajectory database, and 

then computes §qJ(I, t_). Once this is done, the algorithm sorts these trajectories in R 

in increasing order of ERP distance to q. Then to process a top-K trajectory similarity 

query, the algorithm performs a linear scan visiting every trajectory s in the database, 

computing 6F- §qJ I, t_ − §qJ t_, H ≤ §qJ(I, H). If the left-hand side of this 

inequality is greater than the K-th smallest ERP distance found so far, then s can be 

discarded. Otherwise, s could be in the result set of the query, so the distance §qJ(I, H) 

is computed, and stored in the set of ERP distances found. 

 

One problem with the previous technique is that it performs a linear scan through the 

database. By using a spatial tree index, it could be possible to avoid having to linearly 

explore all database trajectories. However, such spatial tree index would need to be 

two-dimensional. The work by [CN04] proposed another pruning technique to avoid 

having to use a two-dimensional spatial structure. Instead, they proposed a new lower 
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bound for the ERP distance:	àk{ I, H = 	 HG6 I – 	HG6 H ≤ §qJ(I, H). This 

technique uses a B+-tree [Bayer71] to index all the trajectories in the database by their 

sum(s). Then, it performs a range search in the B+-tree using HG6(I) to retrieve the K 

trajectories and compute their ERP distances to q. 

 

Advantages: 

• This technique addresses the issue of trajectories having different sizes (number 

of points in a trajectory). 

• Another advantage of ERP is that it is a metric, so it satisfies the triangular 

inequality. This property enables triangular inequality pruning and the use of 

well-known spatial data indexes like R-trees and k-d trees [Bentley75]. 

Disadvantages: 

• One of the disadvantages of the ERP distance is that it is still sensitive to 

measurement noise in the trajectories. This is because the ERP distance formula 

explicitly computes the Euclidean distance between points, as opposed to the 

EDR distance, that increments the distance between trajectories if the points 

match (are within a region). 

• Another disadvantage is that it is a serial algorithm that requires significant 

modifications in order to take advantage of parallel architectures like GPUs. 

 

1.2.5 Edit Distance With Projection (EDwP)  

The Edit Distance with Projections (EDwP) was proposed in [RDTD+15] as a new 

trajectory similarity measure that, unlike all of the existing top-K trajectory query 
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processing techniques, specifically addresses the issue of inconsistent sampling rates.  

This technique can be considered as a generalization of the Edit Distance on Real 

Strings because it is based on the same idea of finding the least-cost set of editions that 

transform one trajectory into the other. The difference between EDwP and EDR is the 

nature of the allowed editions. The allowed editions in EDwP are: replacements and 

insertions. A replacement operation behaves like a matching operation, but instead of 

counting the cost of this operation as “1” (as EDR would do), this matching operation 

computes the area between the corresponding segments. An insertion, on the other 

hand, corresponds to projecting a point in one trajectory into the other, so in a sense this 

insertion would correspond to dynamically interpolating points in the trajectories. 

Therefore, thanks to this insertion operation, EDwP is able to address the issue of inter-

trajectory sampling variations, and thanks to the insertion operation EDwP is able to 

address the issue of intra-trajectory sampling variations. 

 

EDwP, just like with many other trajectory similarity measures based on editions, can 

be computed using dynamic programming. Moreover, the worst-case time complexity 

of computing the EDwP between two trajectories is O(|p||q|), and the worst-case space 

complexity is O(|p||q|). 

 

To process top-K trajectory similarity queries, the work [RDTD+15] proposes an ad hoc 

indexing structure called the TrajTree, that exploits the idea of Lipschitz embedding 

[Bourgain85] and bounding boxes [Gutt84] to reduce the search space.  
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Advantages: 

• The first advantage of EDwP is that it can deal with trajectories of different 

sizes. 

• Another advantage of the EDwP technique is that it addresses the issues of local 

time shifting. It also addresses the issues of inter-trajectory sampling variation, 

intra-trajectory sampling variation and sampling phase variations. 

• A final advantage of this technique is that it does not require any parameters. 

Hence, to implement it there is no need to perform a search in a large parameter 

space for an optimum parameter value. 

 

Disadvantages: 

• One disadvantage of the EDwP top-K trajectory similarity query processing 

technique is that it is not a distance measure, because it does not satisfy the 

triangular inequality. Therefore, it needs ad hoc pruning techniques and ad hoc 

indexing data structures to avoid implementing top-K similarity searches with an 

exhaustive search. 

• The EDwP does not address the issue of measurement uncertainty. 

• Another disadvantage of EDwP is that it does not address the issue of model 

uncertainty.  

• This is a serial technique, so it needs substantial modifications to fully take 

advantage of parallel architectures like GPUs. 

 

1.2.6 MA 
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Sankararaman et al. introduced in [SAMP+13] the first top-K trajectory similarity query 

processing algorithm, called the MA algorithm, that addresses the issue of sampling 

phase variations. Given two trajectories p and q, the MA algorithm finds the similarity 

between those two trajectories by finding a maximum score monotone assignment (also 

called an asymmetric monotone matching) between p and q. An assignment between 

two trajectories p and q is a pair of functions Ü: ( ⟶ I ∪ {⊥} and á: I ⟶ ( ∪ {⊥}. A 

point (_ (I�) in p (q) is said to be a gap point if Ü (_ =⊥  (á I� =⊥). A gap is a 

maximal sequence of gap points. A monotone assignment is a pair of functions Ü and á 

such that if Ü (_ = I�, then for all *® > * it is the case that Ü (_® = I�® with O® > O. 

The function á satisfies the same property. 

 

Sankararaman et al. proposed the following function to compute the similarity score 

between two trajectories p and q, where © > 0, ™ > 0, ´ < 0 are chosen parameters, 

and ¨(Ü, á) is the set of gaps between p and q given Ü, á. 

≠ (, I; Ü, á =
1

™ + (_ − Ü (_ v +	
7}∈7,Ç 7} Ø∞

1

™ + I� − á I�
v

8~∈8,É(8~)Ø∞

+	 (´ + ©|m|)	
±∈≤ Ç,É

 

 

The intuition behind this formula is that points (_  in p that are close to their assignments 

Ü (_  contribute very much to the score. It is a similar case with the points I�  in q that 

are close to their assignments á I� . Additionally, the greater the number of gaps, the 

larger the similarity score. 
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The MA algorithm is similar to both DTW and Sequence Alignment [DEKM98]. The 

differences are the following: 1) the assignment is not necessarily symmetrical, i.e. in 

the associated directed matching graph, if pi is matched to qj, then not necessarily is qj 

matched to pi. 

 

The MA algorithm can be computed in a way similar to the sequence alignment 

[DEKM98] using a dynamic programming algorithm in O(mn) worst-case time 

complexity, and in O(mn) worst-case space complexity. Unlike the sequence alignment 

algorithm, Sankararaman et al.’s algorithm uses an asymmetric matching, which forces 

the latter algorithm to use auxiliary recursive functions. 

 

The authors in [SAMP+13] do not present a new pruning strategy to reduce the amount 

of work necessary to process top-K trajectory similarity queries. Therefore, the MA 

algorithm, to process top-K trajectory similarity queries, receives as inputs a query 

trajectory p, a trajectory database db and a non-negative integer K, and proceeds with an 

exhaustive search employing the MA-similarity measure. 

 

Advantages: 

• The MA algorithm can distinguish outliers from true trajectory deviations in 

virtue of its use of the gap model. 
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• Because the MA algorithm allows several points in one trajectory to match to a 

single point in the other, the MA algorithm can handle the issue of different 

inter-trajectory sampling rates. 

 

Disadvantages:  

• Because DTW tries to match all points in both trajectories, then when one of 

those trajectories exhibits strong deviations with respect to the other, the results 

cease being meaningful [DEKM98]. 

• So far, there are no pruning techniques to avoid an exhaustive search when 

processing top-K trajectory similarity queries, so certainly the MA-algorithm, at 

this time, cannot scale for Big Trajectory Data. 

 

1.3 Probability-based techniques 

Probability-based techniques are top-K trajectory similarity measures based on 

probability concepts to measure the similarity between trajectories. These techniques 

usually address the issues of trajectory uncertainty when processing this type of query. 

 

1.3.1 KSQ  

Ma and Lu proposed KSQ [MLSC13], which is a technique to process top-K trajectory 

similarity queries on uncertain trajectories. Their technique introduces a new similarity 

measure that specifically addresses measurement uncertainty.  
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To use this uncertain trajectory similarity measure it is assumed that trajectories are 

represented in terms of the following data model. It is assumed that each trajectory q in 

the database db has at each time instant t when the trajectory’s movement was sampled 

an associated probability mass function (or probability density function). Then, in the 

time instants between consecutive sampling instants, this data model assumes a linear 

interpolation model. This function which dictates the probability that trajectory q at 

time t is located at any point p in the native space. Using this data model, it is then 

possible to define the instant p-distance of a point, the instant p-distance of a trajectory, 

and the interval p-distance of a trajectory. 

 

The instant p-distance of a point is defined as follows. Given a trajectory database db 

and a query trajectory q, the instant p-distance of a point x=q[t] (the position of q at 

time t), denoted by à7 I, -, . 	is defined as 

à7 I, -, / = J(L, - ≻ ., /)
A∈	¥î

 

where J(L, - ≻ ., /) is defined as 

J I, - ≻ ., / = ´ L, -, .[*] ∙ .. (2Ä . * 	2* 

and 

´ I, -, . = 1, *Ä	2 -, I > 2(., I)
0,																	otherwise	  

The intuition behind this definition is that the instant p-distance from x to q[t] (q at time 

t) is the summation of the probabilities that all other trajectories in the database have of 

being closer to q than x at time t. Therefore, the instant p-distance of a point is always 

less than or equal to |db|. 
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With the definition of instant p-distance of a point, then the instant p-distance of a 

trajectory can be defined. Given a trajectory database db and a query trajectory q, the 

instant p-distance of a trajectory x in db at time t, denoted as à7(I, -, /), is defined as 

à7 I, -, / = à7 I, - * , / ∙ -. (2Ä - * 	2* 

The intuition behind this definition is that the instant p-distance of trajectory x to q[t] is 

the expected value (or average) of the point p-distances from xi to q[t], where xi are all 

those points that x might occupy (with non-zero probability) at time t. Just as in the case 

with the instant p-distance of a point, the instant p-distance of a trajectory is always less 

than or equal to |db|. 

 

Finally, [MLSC13] proposed the interval p-distance of a trajectory. This dissimilarity 

measure is defined as follows. Given a query trajectory q, the interval p-distance of a 

trajectory x, denoted as à L, ∑ Ñ∏
Ñπ, where [/∫, /ª]	is q’s lifespan is defined as 

à7(I, -)Ñ∏
Ñπ =

1
/ª − /∫

à7 I, -, / 	2/
Ñπ

Ñ∏
 

The intuition behind this definition is that the interval p-distance is the average of the 

instant p-distances from x to q. As in the other cases, it is always less than or equal to 

|db|. Ma and Lu [MLSC13] have proved that one way of thinking of the interval p-

distance of a trajectory is as the expected rank of the trajectory if the trajectories in the 

database are sorted in decreasing order of similarity from q, where the highest ranked 

trajectory is the least similar trajectory to q. 
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Ma and Lu propose in [MLSC13] a trajectory index to process top-K trajectory 

similarity queries. This index consists of a uniform spatial grid placed in the spatial 

dimension of trajectories. If a trajectory in the database intersects multiple grid cells, 

then that trajectory is split at the grid cell boundaries and the resulting sub-trajectories 

or segments are “inserted” into their corresponding grid cells. In each grid cell there is 

an R-tree to index (according to the temporal dimension) the segments in that grid cell.  

 

To process a top-K trajectory similarity query, KSQ associates with each grid cell a 

lower bound and an upper bound to the KSQ scores of the trajectories that are wholly 

contained in each grid cell. KSQ uses a min-heap in which it inserts all the grid cells 

that are close to the query trajectory q, and the key for this min-heap is the lower bound 

to the KSQ scores of trajectories contained within that cell. Once KSQ has inserted 

these cells in the min-heap, it enters a while loop in which it takes the top cell at the 

min-heap. If this cell has a lower bound that is greater than the K-th smallest upper 

bound of the KSQ scores seen so far, then it knows that all the trajectories that intersect 

that cell are pruned. This is because, by definition, we have seen K trajectories that have 

better scores than any of the trajectories intersecting the cell in question. Otherwise, 

KSQ updates the lower and upper bounds of the KSQ scores of the segments contained 

in that cell. If the trajectories associated with those segments have a lower bound that is 

greater than the K-th smallest upper bound of the KSQ scores seen so far, then that 

trajectory can be pruned. When the while loop ends, KSQ obtains a set of candidate 

trajectories, which contains the true result set. Then, KSQ must compute the exact KSQ 
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scores for all the candidate trajectories, then sort them in increasing order of KSQ 

scores, and then return the set of trajectories with the smallest KSQ scores. 

 

Advantages: 

• By considering a probability mass function at each sample point of each 

trajectory, and by incorporating that information into the trajectory similarity 

measure, the KSQ top-K trajectory similarity query processing technique 

addresses the issue of measurement uncertainty. 

 

Disadvantages: 

• The KSQ top-K trajectory similarity query processing technique does not 

address the issue of model uncertainty. This is because the trajectories are still 

sampled at discrete time intervals, and thus still relies on the interpolation model 

of trajectories.  

• This technique is a serial technique, so it requires a significant research effort to 

ensure that it works efficiently on parallel architectures like GPUs. 

 

 

1.4 Feature Comparison of Top-K Trajectory Similarity Query Processing 

Techniques 

We have presented in Section 1 a discussion of state-of-the-art techniques for top-K 

trajectory similarity query processing techniques. None of those techniques addresses 

the all the issues identified in Section 3. In particular, none of those techniques provides 
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support for different trajectory sizes, measurement uncertainty, model uncertainty, 

triangular inequality, and support for Big Trajectory Data. To fill this gap, we introduce 

a novel system to process top-K trajectory similarity queries in parallel on Big Data 

using GPUs that is capable of handling both certain and uncertain trajectory data. Our 

system addresses the issue of support of different trajectory sizes due to its similarity 

measure, the Hausdorff distance, which can compute the similarity between two 

trajectories of different sizes. Our proposed system addresses the issues of measurement 

and model uncertainty thanks to its construction of trajectory data models that are then 

used to estimate the true path of the trajectories. This system also addresses the issue of 

support for parallel processing because it is designed to run on GPUs and multicore 

CPUs by addressing the GPU issues discussed in Section 2.4.4. 

 

Our proposed system consists of four novel algorithms: TKSimGPU to process top-K 

trajectory similarity queries; Top-KaBT to reduce the size of the candidate set generated 

by top-K trajectory similarity query algorithms; TrajEstU to estimate the true trajectory 

when data uncertainty exists; and TraclusGPU to perform local trajectory clustering to 

aid in the preprocessing stage of TrajEstU. TKSimGPU works by iteratively processing 

near-join similarity queries, while Top-KaBT calculates the lower and upper bounds of 

the Hausdorff distance between candidate pairs, and then uses these bounds to remove 

spurious candidates. Top-KaBT exploits GPUs to improve TKSimGPU by ensuring 

load balancing across the threads, ensuring memory coalescing, and using special 

pruning techniques that reduce the size of the candidate set. TrajEstU splits the lifetime 

of an object’s trajectory into time intervals where the object’s acceleration is nearly 
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constant. Then TrajEstU uses the local trajectory clusters to obtain the movement 

patterns that are prevalent in the areas where trajectories have low-sampling rates, and 

uses linear regression to fit a constant acceleration model to the observed positions of 

the moving object. Finally, TraclusGPU helps TrajEstU scalably find those local 

trajectory clusters that are used in the construction of trajectory models. 

 

Table 2 presents a feature comparison of the top-K trajectory similarity query 

processing algorithms reviewed in Section 1. If a cell contains the word “Yes,” that 

indicates that the technique referred to in that row addresses the issue listed at the top of 

that column. On the other hand, if a cell contains the word “No,” that indicates that the 

corresponding issue is not addressed by that technique. 
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Table 2. Feature comparison of top-K trajectory similarity query processing techniques 

 

 

Local 
time 
shifts 

Different 
trajectory 

Sizes 

Sampling rate variations Dimension of 
the space of 
parameters 

Uncertainty Parallel 
processing Inter-

trajectory 
Intra-

trajectory Phase Measurement 
uncertainty 

Model 
uncertainty 

Euclidean 
[FRM94] No No No No No No No No No 

Hausdorff 
[NJS11] No Yes Yes No No Yes No No No 

DTW [BK94] Yes Yes No No No Yes No No No 
LCSS 

[VKG02] Yes Yes No No No No No No No 

ERP [CN04] Yes Yes No No No No No No No 
EDR 

[COO05] Yes Yes No No No No No No No 

DISSIM 
[FGT07] Yes Yes No No No Yes No No No 

wDF 
[DTS08] Yes Yes No No No No No No No 

MA 
[SAMP+13] No Yes No No Yes No No No No 

KSQ 
[MLSC13] No No No No No Yes Yes No No 

EDwP 
[RDTD+15] Yes Yes Yes Yes Yes Yes No No No 

TKSimGPU 
+Top-KaBT No Yes Yes No No No No No Yes 

TKSimGPU 
+Top-KaBT 
+ TrajEstU 

No Yes Yes No No No Yes Yes Yes 
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2 Literature Review of Techniques for Estimating Uncertain Trajectories 

As we have seen in Chapter I, when discussing the issues that need to be addressed by 

top-K trajectory similarity query processing techniques, if a moving object is equipped 

with a location sensor, such as a GPS, the it is possible to periodically sample the 

movement of the object and store the resulting sequence of locations occupied by the 

object as a trajectory. However, all sensors, including GPS [GPS17], have an inherent 

measurement or observation error. In addition to this measurement error, there is the 

fact that if we model the movement of an object as a trajectory, then the model itself 

would likely incur a model error because the trajectory could need to be sampled at an 

infinite rate to perfectly describe the movement of an object. As has been discussed in 

Chapter I, a new scalable and accurate top-K trajectory similarity query processing 

technique should address these two issues (measurement and model uncertainty).  

 

Since our proposed techniques involve reducing the uncertainty of trajectories, this 

chapter presents a survey of techniques designed to address the problem of estimating 

the true path of the moving object (which is a dynamical system) at every time instant 

using a sequence of uncertain measurements (the points making up the trajectory). The 

existing techniques are then classified according to whether they make use of an 

underlying trajectory database or not. 

 

2.1 Techniques that do not exploit a database of trajectories  

The following techniques do not make use of a database of trajectories in order to 

improve the quality of their estimates.  
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2.1.1 Mean and Median Filter 

The mean and the median filters are techniques that use measurements !"	about a system 

to estimate its true internal state $%	at time k, when the measurements are noisy. The 

idea behind the mean filter is to store the previous measurements in a window of size n 

and, even if the measurements of the system are noisy, we can average all these 

measurements in this window to produce a less noisy estimation of the internal state. 

So, the mean filter works by computing $% = 1/) !*%
*+%,-./  as an estimator for $%. 

The disadvantage of the mean filter is that it is very sensitive to outliers. To address this 

problem, the median filter works similarly as the mean filter in keeping a window of 

size n to store the previous measurements of the system, but instead of computing the 

average of the window measurements it computes its median to produce an estimator 

$% = 12345) !%,-./, … , !% . 

 

Advantages: 

• One of the biggest advantages of both the mean and the median filter are their 

simplicity. 

 

Disadvantages: 

• The mean filter is very sensitive to outliers because even a single outlier can 

perturb the true path estimate for a trajectory. 

• This technique does not produce an estimate of the uncertainty of its predictions. 
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2.1.2 Kalman Filter 

Kalman proposed in [K60] a technique, that today is known as the Kalman Filter, that 

can estimate the true internal state $%	at time k of a linear dynamical system using a 

sequence of uncertain observations {!"|4 ≥ 0}. Kalman Filters can be applied to the 

estimation of the true path of a moving object (moving in unconstrained space) if we 

consider the system to be the moving object itself, and if we consider the sequence of 

points of its associated trajectory as the set of (uncertain) observations of the state of the 

system.  

 

The classical Kalman Filter requires that we have two models: a linear model describing 

how the system moves from one state to another in time (how the object moves as a 

function of time), called the state transition model, and a model describing how the 

system observations (which in our trajectory application correspond to the points of a 

trajectory) relate to the internal state of the system (that is how the GPS model reports 

the positions given the true state of the moving object). The Kalman Filter’s state 

transition model is of the form: $% = =%$%,/ + ?%, where $% ∈ ℝ- is the state of the 

system at time k (i.e. the true position of the moving object at time k), =% ∈ ℝ-×- is the 

state transition matrix at time k indicating how the object moves from state $%,/	to state 

$%, ?% ∈ ℝ- is the process noise; this noise arises because the state transition matrix 

may not be able to accurately capture the exact nature of the behavior of the system, so 

that noise accounts for this uncertainty. Besides the state transition model, there is an 

observation model that relates the internal state of the system $% ∈ ℝ- at time k with the 

actual observations made. This observation model is of the form: !% = C%$% + D%, 
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where !% ∈ ℝE is the observation at time k (i.e., the GPS measurement of the position 

of the object at that time),	C% ∈ ℝE×- is the observation matrix, and D% ∈ ℝE is the 

observation noise; this observation noise is introduced because the observation matrix 

may not be able to accurately capture the exact nature of the relationship between of the 

observations and the true state of the system, so that this noise accounts for the 

uncertainty. 

 

The algorithm for the Kalman Filter [LLD06] receives as inputs F($H) ∈ ℝ- (the 

expected value of the internal state of the system), J ∈ ℝE×E is the covariance matrix 

of the model error, KH ∈ ℝ-×- is the covariance matrix of initial state, and the output is 

an estimator $% ∈ ℝ-	of the state of the system at time k. The Kalman filter then 

proceeds as follows: 

1. Give an estimation $H	for the initial state of the system at time 0: $H = F($H), 

and an estimation for the covariance of the estimator at time 0: KH = KH. 

2. Model Forecast step: Use the estimation of the system state at time k-1:	$%,/ 

and the state transition model to obtain a model forecast $%
L = =%	$%,/, and 

compute its associated forecast covariance K%
L. 

3. Data assimilation step: Use the observation !%	of the system at time k to improve 

upon the model forecast $%
L obtained in the previous step, by obtaining the 

estimation 	$%	and its associated covariance matrix 	K%. Then go back to step 2 to 

proceed to obtain estimates for future timestamps. 

 

Advantages: 
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• The Kalman Filter is a linear minimum variance estimator [LLD06]. This means 

that the Kalman Filter is optimum in the sense that among all linear estimators 

for the true path of the query object, no other estimator has smaller variance. 

• The Kalman Filter provides an estimation of the uncertainty associated with the 

prediction of the true path of the object. This advantage makes Kalman filters 

particularly special because they do not only estimate the true path of the object, 

but they also inform about the uncertainty of such estimate. 

 

Disadvantages: 

• One of the disadvantages of the Kalman Filter is that since each moving object 

is different, then so are the associated dynamical models. This means that to 

estimate the true path of a very large number of objects, then that would require 

fitting a very large number of models (at least one per object). 

 

2.1.3 Particle Filter 

The particle filter [Gor94] is another technique used to estimate the internal state of a 

system based on observations of such system. The difference between the classical 

Kalman filter and the particle filter is that the latter relaxes the condition that the 

dynamics of the moving object has to linear (just as there are non-linear Kalman filters, 

which are extensions of the classical Kalman filter); thus, the particle filter can 

accommodate more general movement dynamics, at the expense of a higher time 

complexity algorithm. 
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The algorithm for the particle filter receives as inputs a probability distribution M(!"|$"), 

which indicates the probability of observing !" if the true state of the system is $"	for 

every possible observation value and every possible state, then, the Particle filter 

proceeds as follows: 

1. Generate a random set of particles $%. 

2. (Model forecast) Use the dynamic model $"
L = M($"|$",/) to simulate how the 

particles move. This is the analog of the model forecast step in the Kalman filter. 

3. (Importance weights computation) Compute the importance weight of each 

particle $"
L = M(!"|$"

L), and normalize these weights to 1. The weight of a 

particle says how likely it is to observe what has been observed, given that the 

particle is the true state of the system. Therefore, particles with larger weights 

are more consistent with the observations.  

4. Select a new set of particles at random from the set of particles already created. 

The probability of selecting a given particle is proportional to its weight. 

5. Go back to step 2 and repeat until producing the estimations for the desired time. 

 

Advantage: 

• The particle filter can be made to work on network roads and paths (constrained 

spaces). This is an advantage of particular significance because some techniques 

work only on network roads (e.g., HRIS [ZZXZ12]). 

Disadvantages: 

• The particle filter in general takes a significantly longer computation time than 

the classical Kalman filter [ZZ11] in order to produce its estimates. 
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• To estimate the true paths of each trajectory in a large database, the particle 

filter requires constructing a different model for each object because objects 

may very likely follow different dynamics. 

 

2.2 Techniques that exploit a database of trajectories  

The techniques that we now describe have all in common that they take advantage of a 

database of trajectories in order to improve the accuracy of their estimates. However, 

these techniques make the tacit assumption that the input trajectory follows the same 

dynamical model of most of the trajectories in the database, which may not be the case. 

 

2.2.1 HRIS 

Zheng et al. [ZZXZ12] address the problem of reducing the uncertainty of low-

sampling rate trajectories, i.e., trajectories such that the average interval between 

consecutive points is over 2 mins, in road networks (constrained space). To accomplish 

this, they propose an algorithm, called HRIS, that fills the low-sampling rate sections of 

a trajectory by searching for other nearby trajectories (called reference trajectories) in 

the database that satisfy certain network constraints, like velocity constraints. After 

performing this search, their algorithm finds a set of associated road network paths 

corresponding to those reference trajectories that maximize an objective function based 

on popularity and uniformity of the traffic through that road network path. This work, 

unlike our work, assumes that objects move in a constrained space, so it exploits the 

knowledge provided by a road network to reduce the uncertainty in the low-sampling 

rate trajectories. Therefore, it is not applicable in the scenario of objects moving in 
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unconstrained space (like hurricanes and animal trajectories), where objects do not 

move on road networks, or where there is no road network available.  

 

The HRIS algorithm receives as inputs a low-sampling rate trajectory q whose true path 

across a road network is to be estimated, a road network RN, and a database DB of 

trajectories moving. The output is a path on the road network that accurately describes 

the true path of the object. The HRIS algorithm works as follows: 

1. For every consecutive pair of points qi and qi+1 in q, it searches for a set of 

reference trajectories RT(i,q). Reference trajectories are trajectories in DB that 

are close to both points, qi and qi+1, that do not exceed the maximum speed 

allowed in the road network. 

2. (Local Route Inference) In this step, HRIS seeks to infer what are the possible 

routes in the road network RN that the moving object associated with q could 

have taken when moving from point qi and qi+1. Therefore, this step is run for 

every pair of consecutive points of q. For this pair of points qi and qi+1, HRIS 

builds a directed graph called the traverse graph, whose nodes are the edges of 

the road network RN such that there exists at least one trajectory in RT(i,q) that 

travels close enough (HRIS requires a tolerance parameter to determine this) to 

such edge in the road network. These edges in the road network that are close to 

trajectories in RT(i,q) are called traverse edges. Now, there is an edge from node 

n1 to node n2 in the traverse graph if the road network edge n2 is within N hops 

from the road network edge n1 (N > 0 is another parameter). Once the traverse 

graph for qi and qi+1 is built, HRIS runs a top-K shortest paths algorithm 
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[Yen71] (K is an input parameter to HRIS) on the traverse graph starting from 

the node on the traverse graph that corresponds to the closest road network edge 

to qi to the node on the traverse graph that corresponds to the closest road 

network edge to qi+1. The resulting set of top-K shortest paths is the set of 

possible routes that q could have taken from qi to qi+1. 

3. (Global Route Inference). In this step, HRIS seeks to infer the most likely routes 

that q could have taken at all points. To do this, HRIS has already for every pair 

of consecutive points qi and qi+1 an associated set of K possible road network 

paths, and needs to connect these paths together to obtain a global possible road 

network path that q could have likely taken. HRIS assigns to every possible road 

network path of every pair of q a weight proportional to the number of reference 

trajectories that traverse that path. The higher the weight, the more popular the 

route; hence, the more likely, according to HRIS, that route is. 

If Ra is a local route obtained from Step 2, that q could likely have taken when 

moving from point qi to qi+1, and Rb is also a local route but q could have likely 

taken it when moving from point qi+1 to qi+2, then the strength of the connection 

between Ra and Rb is proportional to the number of reference trajectories that 

travel both on Ra and Rb. To perform global route inference, HRIS solves an 

optimization problem wherein it searches for the road network path with the 

highest score, and the score of a global route R=(R1,R2,…,Rn), with the Ri being 

local routes, is computed as PQRS2 T = U T/ ∙ W(T/, TX) ∙ U TX ∙ ⋯U(TE), 

where U T"  is the score of the local route T" and W(T", T"./) is the score of the 

connection between T" and T"./. This optimization problem is solved through 
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dynamic programming. 

 

Advantages: 

• One of the advantages of HRIS is that it exploits the knowledge contained in a 

database of trajectories in order to estimate the true path of an input trajectory. 

This is particularly advantageous when the input trajectory obeys the same 

dynamical model followed by many of the trajectories in the database.  

 

Disadvantages: 

• A disadvantage of this technique is that it can only be applied for objects 

moving in constrained networks. Therefore, for trajectory applications like 

finding birds with similar migration patterns to a given bird species, or finding 

similar hurricane trajectories this technique is not applicable because neither 

birds nor hurricanes have constrained movements. 

• Another disadvantage of HRIS is that when performing local route inference, it 

needs to run the top-K shortest paths algorithm on the traverse graph. However, 

the complexity of this algorithm is Z [ ∙ \ ∙ F + \ ∙ log \ , which 

does not scale well for large graphs. 

 

2.2.2 Chazal et al.’s Algorithm 

Chazal et al. present in [CCGJ+11] a trajectory smoothing technique to reduce the noise 

in a trajectory and this help estimate the true path of the object. This technique receives 

as input a database D of trajectories, an uncertain trajectory q whose true path we want 



 85 

to estimate, and a positive integer K > 0. The technique then proceeds to use the 

knowledge in the database to help estimate the true path of the object. To do so, the 

technique proceeds as follows: 

1. Embed the input trajectory q and each trajectory in the database D into a 

2×(2) + 1)-dimensional space (where n is the dimension of the space where 

each point of each trajectory lies. Usually n=2) by assigning trajectory p= (ha, 

ha+1,..., ha+m) (such that each of its points lies in n-dimensional space) to the 

trajectory p’ = (hi-n
(x), hi-n

(y), hi-n+1
(x), hi-n+1

(y), hi+n
(x), hi+n

(y)) for i in 

{a,a+1,...,a+m} (such that each of its points lies in 2×(2) + 1)-dimensional 

space). If we choose n=1, then the sequence s = ((1,1), (2,2), ... (k,k)) is  mapped 

to ((1,1,2,2,3,3), (2,2,3,3,4,4),..., (k-2, k-2, k-1,k-1,k,k)). Let us call the set of all 

points in 2×(2) + 1)-dimensional space resulting from embedding the 

trajectories in D as the set of high-dimensional points. 

2. For every point qi’ in the embedded trajectory q’, find its k nearest neighbor 

points belonging to the set of high-dimensional points, and move qi’ to the 

average of its k nearest neighbor points. 

3. For every trajectory p’ that resulted after steps 1 (embedding) and 2 (moving 

each point toward the average of its nearest neighbors), we recover a trajectory 

in the original n-dimensional space by taking the middle n-coordinates of each 

of its points. For example, if p’ has points ((1,1,2,2,3,3), (2,2,3,3,4,4)) living in 

the embedded high-dimensional space, we can recover from this trajectory a 

corresponding trajectory, called estimated trajectory, in the original n-
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dimensional space by taking the middle n-coordinates: ((1,1,2,2,3,3), 

(2,2,3,3,4,4)) à ((2,2),(3,3)).  

4. The final true path estimation for q is the estimated trajectory obtained in step 3. 

 

Advantages: 

• One of the main advantages of the Chazal et al.’s algorithm is its simplicity. 

 

Disadvantages: 

• One disadvantage of this technique is that computing the k nearest neighbors of 

every point of the query trajectory in a space with 2×(2) + 1) dimensions has 

worst-case time complexity Z |4)MabcS5d2QbRSe|	×	 fg .	

• Another disadvantage is that if we store in memory the higher-dimensional 

embedding of the database, then the worst-case space complexity increases by a 

factor of 2) + 1. However, if the trajectories in the DB are stored un-embedded, 

then that increases the time complexity of the algorithm. 

 

2.3 Feature Comparison of Techniques for Estimating Uncertain Trajectories 

We have presented in Section 2 a discussion of state-of-the-art techniques for estimating 

uncertain trajectories. In the previous discussion we presented a group of techniques, 

consisting of the mean/median filter, Kalman filter, and particle filter, that does not 

make use of a database of trajectories to produce estimates for an input trajectory with 

uncertainty. This is a disadvantage of these techniques because it is often the case that 

an input trajectory has similar dynamics and behavior to that of other trajectories in a 
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database. For example, if the database contains bird migration trajectories, and the input 

trajectory corresponds to another bird of the same species, then it is very likely that the 

input trajectory will behave similarly to the trajectories in the database. Therefore, it is 

possible to exploit this knowledge to improve the accuracy of the true path estimation of 

the input trajectory. In this previous discussion we also presented another group of 

techniques, consisting of HRIS and Chazal et al.’s algorithm, that do make use of a 

database of trajectories to improve the quality of their estimates. However, HRIS works 

only in constrained spaces, so it is not applicable for unconstrained spaces. Chazal et 

al.’s algorithm works for unconstrained spaces (therefore, it also works in constrained 

spaces), but it has the disadvantage that when estimating the true path of an input 

trajectory, it requires expensive k-nearest neighbor searches in a high-dimensional 

space for every single point of the input trajectory. In addition to this, Chazal et al.’s 

algorithm is by design a serial technique, so it requires substantial modifications in 

order to run on parallel architectures like GPUs. 

 

As a conclusion of our above discussion, we see that none of the presented techniques 

satisfies all of the following desirable properties: support for both constrained and 

unconstrained spaces, exploitation of a database of trajectories, and support for parallel 

processing. To address this gap, we proposed an innovative algorithm called TrajEstU, 

(one of the algorithms that make up our proposed system), which does satisfy all these 

desirable properties. TrajEstU works by locally clustering the trajectories in a database 

to obtain the local behavior patterns around the input trajectory. This clustering phase is 

performed off-line and only once per database. After this is done, TrajEstU splits the 
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input trajectory into near-constant acceleration intervals. At each of these near-constant 

acceleration intervals, TrajEstU fits a linear regression models that takes into 

consideration the local behavior patterns found in the trajectory database. Unlike Chazal 

et al.’s algorithm, TrajEstU does not require expensive k-nearest neighbor searches in a 

high-dimensional space for every single point of the trajectory, which can lead to 

expensive performance penalties when dealing with Big Trajectory Data. Moreover, 

TrajEstU has support for parallel processing because its most computationally 

expensive phase (the local trajectory clustering) is designed for running on GPUs. 
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CHAPTER III  
PROPOSED SYSTEM AND TECHNIQUES 

 
This chapter first presents an overview of our proposed system and techniques, and then 

an in-depth discussion about them. Our proposed techniques are the following: 

TKSimGPU for processing top-K trajectory similarity queries on GPUs; Top-KaBT for 

pruning the candidate of top-K trajectory similarity queries on GPUs; TrajEstU for 

estimating the true path of uncertain trajectories; and TraclusGPU for local trajectory 

clustering on GPUs. 

1 Overview of the proposed system and  techniques 

In this dissertation we propose a novel system to process top-K trajectory similarity 

queries in parallel on Big Data using GPUs. The system is capable of handling both 

certain and uncertain trajectory data.  The system consists of four novel techniques.  

The first one, TKSimGPU, is a top-K trajectory similarity query processing algorithm 

for GPUs. TKSimGPU is a trajectory query processing algorithm based on the filter-

and-refine approach, which consists of an initial filter stage (which is cheap in terms of 

execution time) in which a candidate set of trajectory pairs is generated, and a later 

refine stage (a more expensive stage), in which this candidate set is examined more 

thoroughly in order to find the true query result set. 

 

The second proposed technique Top-KaBT, is a parallel GPU pruning technique to 

reduce the number of spurious candidate pairs (p,q) generated by top-K trajectory 

similarity query techniques using similarity measures that satisfy the triangular 

inequality. Top-KaBT was proposed because even though TKSimGPU represented an 
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efficient and scalable algorithm, it still could potentially generate a large number of 

spurious candidate pairs in its filter stage, which led to a large amount of unnecessary 

computations in its refine stage.  The purpose of Top-KaBT is then to remove these 

spurious candidate pairs, thereby reducing the associated performance penalty. To 

accomplish this, Top-KaBT is run in between TKSimGPU’s filter and refine stages. We 

call this resulting algorithm TKSimGPU + Top-KaBT. 

 

So far we have mentioned that the TKSimGPU + Top-KaBT can deal with top-K 

trajectory similarity queries. However, trajectories can be uncertain, and this can have 

negative impacts on the accuracy of the queries. For this reason, we proposed a third 

technique, called TrajEstU, to reduce the negative impacts of uncertainty on the 

accuracy of trajectory similarity queries. TrajEstU has two phases: a pre-processing 

stage (more expensive in terms of execution time), and an online stage (very cheap in 

terms of execution time). The idea is that TrajEstU’s pre-processing stage is run on the 

trajectory database (Q) before any query processing takes place. Then, when the top-K 

trajectory similarity queries arrive, TrajEstU’s online stage is run on each query before 

passing the resulting trajectory  

 

In our experimental evaluation we noticed that TrajEstU’s online stage had a negligible 

execution time (even on serial processors); however, its pre-processing stage was too 

expensive in terms of computational time, which could affect TrajEstU’s practicality 

when dealing with Big Trajectory Data. For this reason, we proposed a fourth 

technique, called TraclusGPU, which performs TrajEstU’s pre-processing stage 
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(consisting of local trajectory clustering) on a GPU. In Figure 17 we present a diagram 

representing the relationships between our proposed techniques. Figure 18 contains the 

pseudocode of the overall system. 

 

 

Figure 17. Workflow of our proposed system 

 

Figure 18. Overall algorithm 
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2 TKSimGPU: A GPU technique for Top-K Trajectory Similarity Query 

Processing 

In this section we present a parallel algorithm, called TKSimGPU, for top-K trajectory 

similarity queries, and discuss how to implement it on a GPU. 

2.1 Motivation of TKSimGPU 

As we have mentioned in Section I.2.3, top-K trajectory similarity query processing 

techniques have a wide range of applications stemming from biology, bioimaging, to 

social networks, etc. However, processing this type of queries poses significant 

computational challenges stemming from the sizes of the datasets, the sizes of the 

trajectories, and the computational complexity of the trajectory similarity measure itself. 

One strategy that can be used to tackle these challenges is the use of parallel computer 

architectures such as GPUs. 

 

GPUs are co-processors installed on most computers (mobile devices, desktops, 

workstations, supercomputers, etc.) to render graphics, but that can also be used for 

general purpose parallel programming. Besides being widely available, GPUs are very 

energy efficient, and on certain kinds of algorithms they can perform up to an order of 

magnitude of higher single-precision floating point instruction throughput than the best 

multicore chips available. All these reasons make GPUs an ideal architecture with 

which to tackle the computational issues of top-K trajectory similarity query processing 

algorithms. 
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For these reasons, we have proposed a parallel GPU algorithm to scalably process top-K 

trajectory similarity queries that addresses all the issues of GPUs, low global memory 

bandwidth relative to the number of threads (global memory coalescing), low PCIe 

bandwidth, efficient use of shared memory banks, thread divergence, and load 

balancing, which were discussed in Chapter I. 

 

2.2 Overview of TKSimGPU 

As described in Section I.2.3, the top-K trajectory similarity query takes a positive 

integer K and two sets P and Q of trajectories, and finds for every trajectory M ∈ K the 

set of K Q-trajectories most similar to p. Our proposed parallel GPU algorithm for top-K 

trajectory similarity queries uses the filter-and-refine processing scheme [JS07], which 

consists of two steps: the filter and the refine steps. The filter step selects for every M ∈ K 

a candidate set hi ⊆ J with |hi| ≥ [, such that the K Q-trajectories most similar to p 

belong to hi. The refine step takes hi and then computes the actual similarities between 

p and every candidate in hi and returns the K most similar trajectories. The idea behind 

this scheme is to avoid exhaustively finding the similarities for every pair (M, k) ∈ K×J. 

This is accomplished by having the filter step cheaply prune away many trajectories that 

surely will not form part of the result set, and then having the refine step actually 

compute the exact similarity measures between p and every element in hi. 
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2.3 The TKSimGPU Algorithm 

The idea behind TKSimGPU is that a top-K trajectory similarity query can be answered 

by performing successive filtering steps of the near-join trajectory similarity query with 

decreasing ε-range values (the near-join trajectory similarity query finds all those 

trajectories with a similarity at least ε) until every trajectory M ∈ K has at least K most 

similar trajectories in Q. An example of this is the following. If we want to find the K Q-

trajectories most similar to M ∈ K we first perform a filter step of the near-join similarity 

query with an initial range value of ε > 0. This step will return a subset hi ⊆ J such that 

the Hausdorff distance from p to every k	 ∈ hi is not greater than ε. If |hi| < [, we 

need to repeat, or restart, the filter step with a larger ε, and we proceed in this manner 

until |hi| ≥ [. Once we are certain that every M ∈ K	has at least K most similar 

trajectories in Q, we can select the K Q-trajectories most similar to p. This idea is similar 

to one of the strategies used to answer kNN queries on point data by doing successive 

range queries with different radii [BCG02]. The issue when using this strategy is to try to 

choose a large enough ε > 0 for the near-join trajectory similarity, with the intention of 

reducing the total number of restarts that need to be performed, and at the same time 

choosing this ε small enough so as to avoid a situation where the set hi is almost Q, for 

any M ∈ K.  

 

Figure 19 presents a pseudo-code description of our algorithm. In Line 29 we obtain, 

without replacement, a random sample Q_sample of size Q_sample_size of trajectory 

identifiers from Q.  
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Figure 19. TKSimGPU algorithm 
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For example, if P = {1,4}, Q = {6,7,9}, K = 2, sample_size = 2, then Q_sample = {7,9} 

is a random trajectory identifier sample. 

 

Lines 31 through 40 implement the filtering step mentioned before. Using the two sets of 

trajectory identifier samples we can find for every M ∈ K_P51Mn2 the Hausdorff distance 

to the K-th closest trajectory to p, and use the average, over all M ∈ K_P51Mn2, of these 

values as an initial estimate for ε. Continuing our example above, suppose that 

hausd(1,7) = 1.2, hausd(1,9) = 2.1, hausd(4,7) = 3.1 and hausd(4,9) = 3.0, then the 2nd 

closest Q-trajectory (K = 2) to 1 is 9, and the 2nd closest Q-trajectory to 4 is 7; and our 

initial estimate for ε will be ε = (hausd(1,9) + hausd(4,7)) / 2. Once we have the value of 

ε we perform a near-join filter in Line 33, after which we obtain a set PQ_candidates 

consisting of all those pairs of identifiers (M, k) ∈ K×J indicating that q could form part 

of the K Q-trajectories most similar to p. In Line 34 we count, for every M ∈ K, the 

number of candidates (which are Q trajectories) found for p. For example, if after the 

near-join filter we obtain PQ_candidates = {(1,7), (1,9), (3,7)}, then after Line 34 we 

would obtain the set D = {(1,2), (3,1), (4,0)}, indicating that trajectory 1 has two pairs, 

trajectory 3 has 1 pair and trajectory 4 has no pair in PQ_candidates. Once we know 

how many candidates have been found for every M ∈ K, we are interested in those M ∈ K 

for which we have found fewer than K candidates; these will be the elements forming 

part of the set Incomplete. In our example, Incomplete = {3} because 3 does not have 2 

candidates. The set Incomplete will be used in the next iteration, in Line 32, to estimate a 

larger new ε. 
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Lines 6 through 17 contain the details of how to select ε values that will be used for the 

near-join similarity filters. The idea is that with P_sample and Q_sample we can 

compute, for every M ∈ K_P51Mn2, at what distance 3i is the K-th most similar 

Q_sample-trajectory of p. Later in Line 13 we average all the 3ivalues. The idea is that 

the average of the 3i should be an estimate of the average distance at which the K-th 

most similar Q-trajectory is from every M ∈ K. Now, since we may be taking different 

samples P_sample and Q_sample at every iteration of the do-while in Line 31, it could 

be the case that the sequence of ε values that we obtain at each iteration is not strictly 

increasing, in which case the algorithm may not finish executing. Therefore, in Line 14 

we check if the new ε is smaller than the previous one, and if it is, we multiply the 

previous ε by a value o > 1	and return that value as the new ε. 

 

Lines 18 through 26 present the near-join trajectory filter algorithm pseudo-code. In 

Lines 19 and 20 we rasterize the P and the Q trajectories by placing a uniform grid G 

over the space in which the trajectories move. This is done by splitting every M ∈ K into 

a set of sub-trajectories or tracks called Tracks(p), and every k ∈ J into a subset of sub-

trajectories called Tracks(q). Let’s call cS5QpP K ≔ 	∪i∈s cS5QpP(M) and 

cS5QpP J ≔	∪t∈u cS5QpP k . For each track in Tracks(P) we consider its extended 

Minimum Bounded Rectangle (eMBR), which is a regular MBR that has been expanded 

by ε in the horizontal (both to the east and west) and vertical (both to the north and 

south) directions. Similarly, for every track in Tracks(Q) we consider its regular MBR 

(which is an eMBR with ε = 0). The reason why we choose ε = 0 for the eMBRs of the Q 

trajectory set is because we make the assumption that the database (Q) is larger than the 
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query set (P), so that by keeping the eMBRs of Q trajectories small we can ensure that 

the arrays generated in Line 21 (Figure 19) will be small. Then, we generate a pair 

(Mv, Q) for every grid cell Q ∈ w that trajectory track Mv’s eMBR intersects, and a pair 

(kv, Q) for every grid cell Q ∈ w that trajectory track	kv’s MBR intersects. Then, in Line 

21 we generate the set of all pairs of tracks 	(Mv, kv) such that the eMBR of Mv and the 

MBR of 	kv both intersect the same cell. For example, assume for now that P = {1}, Q = 

{7,9}, that a grid G is given and, without loss of generality, that each trajectory in P and 

Q only has a single track. Also assume that trajectory 1’s track M/has an eMBR(ε) 

intersecting grid cells Q/ and QX, and trajectory 7’s track Mx has an eMBR(0) intersecting 

grid cell QX and Qy, and trajectory 9’s track Mz has an MBR intersecting grid cell Q{. 

Then, NEAR-JOIN FILTER(P,Q,0.1,G) will return {(1,7)} because the eMBRs of both 

trajectories 1 and 7 intersect with a grid cell in G. 

 

In Line 23 the algorithm finds for all pairs of tracks (Mv, kv) the identifiers of both Mv and 

kv. In the end of the near-join trajectory filter algorithm, we obtain for every M ∈ K a set 

of pairs	hi ⊆ {(M, k) ∈ K×J}, such that for every (M, k) ∈ hi it is the case that q is a 

candidate trajectory that may be within the top K Q-trajectories most similar to p 

(according to the Hausdorff distance). 

 

Lines 43 through 51 describe the refine stage of our proposed algorithm. In Line 45 we 

find the set hi of all the candidate pairs (p,q) associated with trajectory p, and calculate 

the exact Hausdorff distance between p and q. Then we sort all the elements of (M, k) ∈

hi by increasing the Hausdorff distance between p and q, and take the first K elements 
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corresponding to the closest Q-trajectories to p. For example, if K = 1, P = {1,3,4}, Q = 

{6,7,9} and C1 = {((1,6,1.7), (1,7,1.2), (1,9,2.1))}, then we sort C1 according to the third 

component of the pairs inside C1 and obtain C1 = {((1,7,1.2), (1,6,1.7), (1,9,2.1))}. Then, 

since K = 1, we take the first element from C1 as the result. We will follow this 

procedure for every 4 ∈ K.  

 

2.4 Parallel query execution of top-K trajectory similarity queries on GPUs 

In this section we explain how we store trajectories and how we implement each of the 

functions in our algorithm, shown in Figure 19, on a GPU. 

 

To store the trajectories we follow U2STRA’s approach [ZYG12], which we now 

describe. Each trajectory is divided into disjoint sub-trajectories called tracks. Each track 

consists of a time-consecutive set of points. We keep three arrays in global memory: the 

track index array (TKI), the point index array (PTI), and the array of points. Each entry 

in the TKI array contains information for a single trajectory, so that TKI[j] is the index in 

the PTI array of the first trajectory track belonging to the jth trajectory. Each entry in the 

PTI array contains information for a single trajectory track, so that PTI[k] is the index in 

the array of points of the Kth trajectory. This approach has the advantage that the points 

belonging to any track are arranged in consecutive memory locations, which facilitates 

coalesced global memory accesses when loading points of tracks into the thread blocks. 

 

For implementing the function ESTIMATE_ε on a GPU, we assign a thread block gi for 

every p ∈ P_sample. Each thread in a given thread block gi is then in charge of 
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computing hausd(p,q) for a single k ∈ J. This helps with load balancing because all 

threads process the same number of trajectories, and all trajectories have approximately 

the same length. Then, for every thread block gi, the threads inside gi will collaborate 

in sorting the list Çi (see Line 10) in increasing order of Hausdorff distance. Once this is 

done, a single thread inside each thread block gi will take the Kth smallest element in 

the sorted list Çi	and write it to array KNearest, which resides in global memory. This 

operation introduces thread divergence, but only within a single warp, so the 

performance penalty is not big. Then, by performing a parallel prefix sum (see [Ble90], 

[HSO07]) we can add all the elements in kNearest and then divide the sum by |P_sample|

. In this way, we obtain the average Hausdorff to the K-th nearest Q-trajectory. 

 

For implementing the function TOP-K TRAJECTORY SIMILARITY (Figure 19) on a GPU, 

we find, in Line 31, the set f = M, Q)b 	 	M ∈ K, Q)b = | M, k ∈

KJ_Q5)3435b2P k ∈ J}|} as follows. First, we take the set PQ_candidates⊆P×Q and 

sort it in parallel using the first component (the P component) as key. Then we perform a 

run-length encoding (RLE), which can be efficiently parallelized on GPUs [FHL10], and 

whose output is the list D. In Line 35, to find the set Incomplete consisting of all those 

trajectories which do not have at least K candidates, we assign to the ith element 

M, QRa)b " ∈ f a thread b", and this thread will output isIncomplete[i] if count < K, or a 

0 if not. Once we have the isIncomplete array, we can perform a parallel exclusive sum 

over isIncomplete and obtain an offsets array. This achieves load balancing because all 

threads in all blocks perform the same amount of work. Then, thread b" takes the 
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isIncomplete[i], the offsets[i] and the D array entries, and performs the instruction 

Incomplete[offsets[i]]←D[i] if isIncomplete[i] = 1. 

 

For implementing the function REFINE_TKSIMGPU (Figure 19) on a GPU, in Line 44 

we assign an element p to every thread block gi, so that gi will be in charge of the 

subset hi = M, k ∈ KJ_Q5)3435b2P 	associated with p. Here there is the potential 

that there might be some load imbalance because different hi′P might have different 

cardinalities. However, with our epsilon estimation algorithm (based on sampling) we 

can expect that the cardinalities of different hi′P	will have a small variance and the load 

imbalance will be tolerable. To find hi for every p we perform a run-length encoding on 

the array KJ_Q5)3435b2Ps 	(the projection on the left component of the tuples in 

PQ_candidates) and we obtain two arrays unique and counts. Then, by doing an 

exclusive parallel sum over the counts array we can obtain the offsets on the 

PQ_candidates array at which the blocks need to start reading their assigned elements. 

After this, each thread t inside thread block gi will be in charge of finding the Hausdorff 

distance between a different pair M, kv ∈ hi. Once this is done, the threads inside 

thread block gi will sort their assigned elements, in parallel, in increasing order of their 

Hausdorff distances, and then the smallest K elements (T2Panbi) are written to the global 

memory. 

 

The GPU implementation of the function NEAR_JOIN_FILTER (Figure 19) follows 

[ZYG12], and is now explained. In this discussion, we assume that every track in 

cS5QpP(K) ∪ cS5QpP(J) has a unique identifier. We generate four arrays of integers: 
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VQQ, VQC, VPP, and VPC. These arrays satisfy the following properties. Both VQQ and 

VQC have the same length, and both VPP and VPC have the same length, which may be 

different from the length of VQQ. If the eMBR of a track with identifier j belonging to a 

trajectory in P intersects with grid cell k, then there will be a non-negative integer m such 

that VQQ[m] = j and VQC[m] = k. In a similar way, if the eMBR of a track with 

identifier j belonging to a trajectory in Q intersects with grid cell k, then there exists a 

non-negative integer n such that VPP[n] = j and VPC[n] = k. Once these four arrays have 

been constructed, the technique will sort the arrays VQQ and VQC using VQC as keys, 

so that many consecutive entries in the VQQ arrays correspond to the same grid cell. The 

idea is now to generate a candidate set of pairs of trajectory tracks h ⊆ cS5QpP(K)×

cS5QpP(J), such that \JJ p , \KK n ∈	C if and only if VPC[k] = VQC[l]. In other 

words, if the eMBRs of two trajectory tracks intersect the same cell, then the pair 

consisting of those two tracks will belong to the candidate set. This set is found by 

assigning to every entry VPP[k] a thread, and this thread will then perform a binary 

search on the array VQC to find the smallest integer l such that VQC[l] = VPC[k] and the 

largest integer m such that VQC[m] = VPC[k]. When processing top-K trajectory queries 

with our TKSimGPU algorithm, we observe, based on our experiments, that the best 

performance is not achieved with larger grid sizes (grids larger than 512×512). The 

reason for this is that with those large grid sizes, the function NEAR_JOIN_FILTER tends 

to generate very large arrays in Line 21 of Figure 19 because any given trajectory will 

then intersect many of these small grid cells. This is particularly problematic on GPUs 

because of their small global memory size, and because we also need to keep the 

database of trajectories in main memory. To solve this issue one can pick a smaller grid 
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size (in our experiments we chose the grid size 128×128). Another approach one could 

take to address the memory issue is to split the query set size (P) into subsets, and make 

separate calls to TKSimGPU. 

 

3 The Top-KaBT Algorithm: A GPU Technique for Pruning Candidate Sets 

that Arise when Processing Top-K Trajectory Queries 

3.1 Motivation of Top-KaBT 

A key issue when  processing top-K trajectory similarity queries on Big Trajectory Data 

is to avoid unnecessary computations of the similarity measure on trajectory pairs (p,q). 

This is because most similarity measures have quadratic time complexity on the number 

of points of p and q, so it is a very expensive operation when the numbers of the 

trajectories in the query set (P) and in the database (Q) are very large, as it is the case in 

Big Trajectory Data applications. Additionally, top-K trajectory similarity queries have 

result sets that have a fixed size [×|K| ≪ K×J , so perfoming an exhaustive search to 

answer this query requires many unnecessary calculations of the similarity measure on 

spurious pairs. Therefore, for scalably processing this type of query, it is desirable to 

reduce the size of the candidate sets involved.  

 

Although TKSimGPU has been shown to work well with small data sets, it still 

generates many spurious candidate trajectory pairs that carry an associated performance 

penalty. For this reason, we introduced Top-KaBT, a GPU technique to reduce the 

number of spurious candidate trajectory pairs generated by Top-K trajectory similarity 

query algorithms for Big Trajectory Data applications, and help diminish the negative 
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impacts that spurious candidate trajectory pairs have on the overall performance of top-

K trajectory similarity query processing algorithms. 

3.2 Overview of Top-KaBT 

Top-KaBT is a parallel GPU algorithm for reducing the number of spurious candidate 

trajectory pairs M, k ∈ K×J	generated by top-K trajectory similarity query GPU 

algorithms that follow the filter-and-refine schema and use a trajectory similarity that 

satisfies the properties of a metric. An example of such a parallel algorithm is 

TKSimGPU [LGZY15]. The relationship between Top-KaBT and the underlying 

trajectory similarity query algorithm is illustrated in Figure 20. This figure shows that 

the similarity query processing algorithm’s filter stage generates a set of pairs (p,q) that 

is cheaply pruned by Top-KaBT, and then the output of Top-KaBT is fed back into the 

similarity query processing algorithm’s refine stage in order to produce the query result. 

To accomplish its goal, Top-KaBT calculates lower and upper bounds of the Hausdorff 

distance between p and q for every candidate pair M, k ∈ K×J.	These calculations are 

much cheaper than the calculations of the Hausdorff distances (as shown in Figure 20), 

a fact that will be proved in Section III.3.3. After this, Top-KaBT sorts the pairs 

according to their lower bounds of the Hausdorff distance, and uses these bounds to 

remove spurious candidate pairs. By removing spurious candidate pairs, this technique 

lessens the negative impact of the small size of the GPU’s memory, and reduces the 

time wasted computing the similarity for these spurious pairs. Additionally, the 

technique addresses load balancing and memory coalescing by having threads within a 

thread block perform the same amount of work, and by having threads with consecutive 

indices access adjacent memory locations. 
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Figure 20. Relationship between Top-KaBT and top-K trajectory similarity query processing 

algorithms 

3.3 Theoretical Foundations of Top-KaBT’s Pruning Strategy 

In this section we present the definitions and theorems on which this pruning technique 

rests. The main result is Theorem 3.9, which states that if we have a trajectory p with 

candidate pairs hi = { M, kH , M, kX ,⋯ , (M, k-ç,/)} sorted by the lower bounds to 

their respective Hausdorff distances, then if we find an integer Dé	such that 0 ≤ Dé ≤

)i − 1, and	Dé	meets certain conditions explained later, we will know that the K most 

similar trajectories to p will be among hi = { M, kH , M, kX ,⋯ , (M, këí)}, and we can 

prune the remaining elements hi = {(M, këí./), (M, këí.X),⋯ , (M, k-ç,/)}.		 
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In the remainder of this section, we use  1i,tì

	

to refer to the value 

minî∈ïñó i ,ò∈ïñó t 3 $, e , where M, k" ∈ K×J,	and 3 $, e 	is the Euclidean 

distance between points x and y. Similarly, we use the notation 	ôi,tì to refer to 

maxî∈ïñó i ,ò∈ïñó t 3 $, e .  

 

Lemma 3.3.1. For any M, k 	∈ K×J,		it is true that 1i,t ≤ ℎ5aP3(M, k) ≤ ôi,t. 

Proof: Let a and b be points such that 5 ∈ ôgT M , ú	 ∈ ôgT(k),	and ℎ5aP3(M, k) =

3 5, ú .	By definition of mp,q we have that 1i,t = 	minî∈ïñó i ,ò∈ïñó t 3 $, e ≤

3 5, ú = 	ℎ5aP3 M, k .	 The proof of ℎ5aP3 M, k ≤ ôi,t is analogous. 

Definition 3.3.2 (Cut point set).  Given the candidate set hi =

{(M, kH), (M, k/), (M, kX), (M, ky)} satisfying 	1i,tì ≤ 1i,tìùû	for 0 ≤ 4 < )i − 1, the cut-

point set of hi is defined as hKi = 4 ∈ ℤ	 		ôi,tì ≤ 1i,tìùû}. The elements of the cut-

point set are called cut-points.  

Example 3.3.3. If we have the following set of candidate pairs hi =

{(M, kH), (M, k/), (M, kX), (M, ky)} such that 	1i,t† = 2.2, 	1i,tû = 2.3, 	1i,t¢ =

3.3, 	1i,t£ = 4.1, and 	ôi,t† = 2.4, 	ôi,tû = 2.7, 	ôi,t¢ = 4.0, 	ôi,t£ = 4.2, then hKi =

1,2 	because ôi,tû = 2.7	 ≤ 3.3 = 	 	1i,t¢,	 and 	ôi,t¢ = 4.0	 ≤ 4.1 = 	 	1i,t£. 

 

Definition 3.3.4 (Min-cut point).  Given the candidate set hi = {(M, kH), (M, k/),

⋯ , (M, k-ç,/)} satisfying	1i,tì ≤ 1i,tìùû	 for 0 ≤ 4 < )i-1,  with cut-point set hKi ≠

∅, the min-cut point of hi is defined to be 14) hKi.  
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Example 3.3.5. In Example 3.3.3 the min-cut point is 14) hKi = 1. 

 

Definition 3.3.6 (Min-K-Cut point).  Given the candidate set hi = {(M, kH), (M, k/),

⋯ , (M, k-ç,/)} with	1i,tì ≤ 1i,tìùû	  for 0 ≤ 4 < )i − 1 with cut-point set hi ≠ ∅, the 

min-K-cut point of	hi is defined to be the K-th smallest element in hKi. 

 

Example 3.3.7. In Example 3.3.3 the min-K-cut point for [ = 	2	is 2. 

 

Theorem 3.3.8. If v is a cut point of the following candidate set hi = {(M, kH), (M, k/),

⋯ , (M, k-ç,/)} with	1i,tì ≤ 1i,tìùû	for 0 ≤ 4 < )i − 1, then the 1-nearest neighbor to 

trajectory p is a		k" with 0 ≤ 4 ≤ D. 

Proof: Assume that v is a cut point of hi. Then, 	ôi,t® ≤ 1i,t®ùû is true, and since 

1i,t®ùû is a lower-bound of ℎ5aP3 M, kë./ , and 	ôi,t®ùû is an upper bound of 

ℎ5aP3 M, kë./ , then the following inequality holds ℎ5aP3 M, kë 	≤ 		 	ôi,t® ≤

ℎ5aP3 M, kë./ . By induction, we can easily prove that ℎ5aP3 M, kë 	≤ 	ℎ5aP3(M, k*) 

for D ≤ d < )i. Therefore, the 1-nearest neighbor to p must be a		k" with 0 ≤ 4 ≤ D, 

which is what we wanted to prove. 

 

Theorem 3.3.9. If  Dé	is a min-K-cut point of the candidate set hi = {(M, kH), (M, k/),

⋯ , (M, k-ç,/)}, with	1i,tì ≤ 1i,tìùû	for 0 ≤ 4 < )i − 1, then the top-K nearest 

neighbors of trajectory p lie among the k"	with 0 ≤ 4 ≤ Dé.  
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Proof: We proceed by induction on K. The base case with K = 1 has already been 

proved in the previous theorem. Assume k > 1 and that the theorem holds for K = k. 

Let's verify that the theorem holds for K = k+1. Let D%	and D%./	be the min-k-cut and 

the min (k +1)-cut points of hi, respectively. By inductive hypothesis, we know that the 

k nearest neighbors of p are contained in the set 	 k" 1 ≤ 4 ≤ D%}. We also know that, 

by the definition of min-K cut point, D% ≤ D%./, and also that ℎ5aP3 M, k%./ ≤

ℎ5aP3(M, k*) for p + 1 ≤ d < )i. This implies that the k+1 nearest neighbors of p are 

in the set k"	 0 ≤ 4 ≤ D%./}, which is what we wanted to prove. 

 

Example 3.3.10. Continuing with Example 3.3.3 and using Theorem 3.3.9, we know 

that the top-2 nearest neighbors of trajectory p are contained in the set hi =

{ M, kH , M, k/ , M, kX }. This theorem allows us to discard the candidate pair M, ky . 

Example 3.3.11. In Figure 21 we have an object p and five objects q0, q1, q2, q3, and q4 

located in a single-dimensional space generated by the vector X. All objects are shown 

as circles. For each object qi we have a lower bound for the distance from p to qi, 

denoted by LowerBound[i] in the figure. Similarly, for each object qi we have an upper 

 

Figure 21. Example of K-cut point 
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bound for the distance from p to qi, denoted by UpperBound[i] in the figure. It can be 

seen that the array of objects [q0, q1, q2, q3, q4] satisfies that LowerBound[i] ≤ 

LowerBound[i+1], so that the antecedent of Theorem 3.3.9 holds in this case. 

Additionally, it can be seen that UpperBound[1] ≤ LowerBound[2], so that, by 

definition,  1 is a cut-point of the candidate set in the figure. This means that the farthest 

that q1 could possibly be from p is smaller than the closest that q2 could be to p. 

Therefore, we know for sure that objects q2, q3, and q4 must be farther away from p than 

q0 and q1, without explicitly computing the distances from p to all the qi’s. So, 

according to Theorem 3.3.9, if we are searching for the K=1 nearest neighbor to p, we 

only need to search in the set {q0, q1}. 

 

Analogously, we have that UpperBound[3] ≤ LowerBound[4], which means that 3 is a 

2-cut point of the candidate set in the figure.  Therefore, according to Theorem 3.3.9, if 

we seek for the K=2 nearest neighbor to p, we only need to search in the set {q0, q1, q2, 

q3} because, for sure, we know that q4 is going to be farther away from p than q0, q1, q2, 

and q3. 

 

Observation 3.3.12. The minimum Euclidean distance between two MBRs R with the 

lower-left corner (rx,ry) and the upper left corner (r’x, r’y), and S with the lower-left 

corner (sx,sy) and the upper left corner (s’x, s’y), can be computed in constant time 

complexity  using the mindist formula of [RRS00]): 14)34Pb T, Ç = 3îX + 3òX, where 

di = ri – pi if pi < ri, di = pi- r’i if r’i < pi, and di = 0 otherwise, for 4 ∈ $, e . Similarly, 

the maximum Euclidean distance between R and S can be found using 
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15$34Pb T, Ç = QîX + QòX, where ci = r’i – pi  if pi < (ri + r’i)/2, and ci = pi  - r’i 

otherwise. 

 

Observation 3.3.13. Given a candidate set hi = {(M, kH), (M, k/), ⋯ , (M, k-ç,/)},			 

Observation 3.3.12 can be used to efficiently compute 	1i,tì and 	ôi,tì because these 

two represent the minimum and maximum Euclidean distances between the MBRs of 

trajectories p and qi, for any M, k" ∈ hi. 

 

3.4 Description of Top-KaBT’s Pruning Strategy  

In this subsection we describe our proposed parallel GPU technique to prune the 

candidate set of the top-K trajectory similarity query processing algorithm, which is 

based on Theorem 3.3.9. The pseudocode algorithm for this technique is in Figure 22, 

while  Figure 23, Figure 24,  Figure 25, and Figure 26 provide an illustrated example. 

 

The main function is called SORT_PRUNING and is presented in Line 1 of Figure 22. This 

function is in charge of further pruning the set of (p,q) candidate pairs, by removing 

pairs that cannot form part of the result set, as assured by Theorem 3.3.9. This function 

takes the integer K and a list of (p,q) pairs candidates as input and returns as output a 

sub-list of candidates. In Line 3 we consider Qp the set of all q trajectories that up to 

this point have been identified as possible candidates for being the most similar Q-

trajectories to p. Then Line 4 calculates the lower and upper bounds (lowp and upp, 

respectively) of the trajectory similarity between p and q, using Observation 3.3.13. 
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Figure 22. Sort pruning algorithm of Top-KaBT 
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This is illustrated in Step 1 in Figure 23, where we can see that different thread blocks 

are assigned to different p query trajectories, and every thread in a thread block is in 

charge of a different (p,q) trajectory pair. The first thread block is in charge of finding 

the lower and upper bounds of the Hausdorff distance for each of the pairs (p3, q3), (p3, 

q1) and (p3, q7). Line 5 sorts the arrays Qp, lowp, and upp, using the entries in lowp as 

keys; in this way we ensure that the premise of Theorem 3.3.9 is satisfied. An example 

of this is shown in Step 2 in Figure 23, where we see that the pairs corresponding to the 

first thread block have been sorted according to their lower bounds so that (p3,q3) has 

smaller lower bound (whose value is 1.3) than (p3, q7), which has 2.7 as a lower bound, 

 

Figure 23. Example run of the sort pruning algorithm of Top-KaBT (Steps 1 and 2) 
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and (p3, q7) in turn has a smaller lower bound than (p3, q7), which has a lower bound of 

3.7.  In Line 6 of Figure 22, lowp is shifted 1 entry to the left for memory coalescing in 

line 23. The reason for this is that, according to Theorem 3.3.9, we test if 	ôi,tì ≤

1i,tìùû for every p and qi, so the value lowp[0] corresponding to mp,q0 is never used. 

Figure 25 shows the left-shifting of the lower bounds array in Step 3. Notice how the 

first value (1.3) of the lower bounds array disappeared, and we added a 0.0 to the right 

of the same array. Because of Theorem 3.3.9, this last value we added to the right is 

never used. Line 7 finds the cut point associated with every p query trajectory using the 

lower and upper bounds of the trajectory similarity measure. This corresponds to Steps 

4 and 5 in Figure 24 and Figure 25, respectively.  

 

The function HAUSDORFF_BOUNDS in Line 15, shown in Step 1 in Figure 22, receives a 

trajectory p, and a list Qp with the associated q trajectory candidates, and finds lowp and 

upp that satisfy: lowp ≤ hausd(p,q) ≤ upp. In Lines 17 to 20 lowp and upp are computed in 

parallel for every q in Qp using Observation 3.3.13. This function exploits the memory 

coalescing unit when writing the bounds of the MBRs back to the global memory 

because threads with consecutive identifiers write the MBR bounds of trajectories with 

consecutive indexes. This function also achieves load balancing within thread blocks 

because the complexity of computing the MBRs does not depend on the trajectories 

themselves; therefore, all threads perform the same amount of work. 

 

The function FIND_CUT_POINT in Line 23 in Figure 22 receives as input parameters a p in 

P, an integer K, and the two arrays lowp and upp of the lower and upper bounds, 
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respectively, and is in charge of finding the smallest K-cut point using Theorem 3.3.9. 

After the parallel loop in Lines 24 through 30, an array cut_ptp is obtained, which is 

shown in Step 4 in Figure 24. There we see that the cut_ptp boolean array has the value 1 

at position i if the corresponding pair has an index that is a cut point, and 0 otherwise. 

For example, in the pairs associated with the second thread block, the cut_ptp entry 

associated with the pair (p6, q11) is 0 because 0.6 < 8.0. To find the smallest K-cut point 

for p, a parallel inclusive prefix sum [HSO07] over cut_ptp (which is the portion of the 

cut_pt array corresponding to p) is performed to obtain the array Pfx_cut_pt of Line 31; 

this is shown in Step 4 in Figure 24 where the second thread block obtained the array 

[1,2,3,4,4]. After this, every thread block finds the smallest index i such that 

 

Figure 24. Example run of the sort pruning algorithm of Top-KaBT (Steps 3 and 4) 
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Pfx_cut_ptp[i] ≥ K. In the case of the second thread block, the first i that satisfies this 

condition is i = 1 because there is a 2 in the Pfx_cut_pt portion of the second thread 

block at position 1. This function does memory coalescing because threads with 

consecutive indexes access adjacent memory locations in the cut_ptp array. Also, all 

threads perform the same amount of work.  

The function REMOVE in Line 35 in Figure 22 receives as input parameters the array 

candidates with the candidate trajectory pairs (p,q), and an array cut_pts of length 

|Πi(Q5)3435b2P)| (where	Πi(Q5)3435b2P) is the projection on the left component (P) 

of the tuples in Q5)3435b2P). This last array satisfies that cut_pts[i] is the cut point 

 

Figure 25. Example run of the sort pruning algorithm of Top-KaBT (Step 5) 
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associated with the i-th p trajectory in Πi(Q5)3435b2P). Lines 37 through 43 create an 

array B that contains the elements of cut_pts + offset + 1 in its even-indexed entries, 

and the elements of |{(M*, k) ∈ Q5)3435b2P|M* < M"}| in its odd-indexed entries. In 

Figure 25 we see in Step 5 that the elements of cut_pts + offset + 1 are B[1] = 2, B[3] 

= 5 and B[5] = 10. The idea behind creating B is to count how many pairs (p,q) are 

going to be preserved for every p. In these same Lines 37 to 43, we create another array 

Alter_1s0s with 1s in its even entries and 0s in its odd entries. This array is used for run-

length decoding [FHL10]. Then Line 44 performs a parallel reduction to compute the 

array Counts satisfying that Counts[i] = B[2i+1]-B[2i]. Counts[2*i+1] is the number 

of q candidates associated with pi that can be pruned away, while Counts[2*i] indicates 

the number of q candidates associated with pi that cannot be pruned away. In Figure 25 

we see that in Step 5 Counts[0] = 2 because B[1] – B[0] = 2-0 = 2, and Counts[1] = 1 

because B[2] – B[1] = 3-2 = 1. This means that 2 pairs associated with p3 (which is the 

0-th p candidate) cannot be pruned away, but 1 pair can be pruned away. Line 45 

performs a run-length decoding over Counts (containing the counts of how many times 

the elements will occur in the final result of the run-length decoding) and Alter_1s0s 

(containing the elements that will be in the result of the run-length decoding); this is to 

obtain the array Stencil of length |Πi(Q5)3435b2P)|, which has a 1 at position i if and 

only if candidates[i] cannot be pruned, and a 0 at position i if candidates[i] can be 

safely pruned according to Theorem 3.3.9. 
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We then create a new array Pruned of length equal to the sum of all the elements in 

Stencil. Lines 47 to 51 prune the spurious candidate pairs from candidates by writing 

into Pruned only those elements of candidates located at positions i such that Stencil[i] 

= 1. In Step 6 in Figure 26 we see that the candidates (p3, q1), (p6, q9), (p6, q10) and (p6, 

q11) had associated Stencil values of 0; therefore, they were pruned.   

  

 

Figure 26. Example run of the sort pruning algorithm of Top-KaBT (Step 6) 
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4 The TrajEstU Algorithm: A GPU Technique for Reducing Trajectory 

Uncertainty when Processing Top-K Trajectory Queries 

4.1 Motivation of TrajEstU 

As we have mentioned before in Section I.3, trajectories have an associated error 

stemming from the noise of location sensors (measurement error), and from the fact that 

trajectories are approximations to the true paths of the objects (model error). These 

errors can introduce significant deviations in the results of top-K trajectory similarity 

queries. To address this problem, we have proposed an algorithm called TrajEstU, 

which estimates the true path of the objects, and then generates a new estimated 

trajectory. The idea is then to run TrajEstU as a preprocessing step (i.e. before running 

TKSimGPU + Top-KaBT) over the database of trajectories (Q), and also run it on the 

query set (P) of the top-K trajectory similarity queries; thereby reducing the negative 

impacts of both kinds of errors when processing this type of trajectory queries. 

4.2 Overview of TrajEstU 

TrajEstU receives as input a trajectory database db and an uncertain input trajectory p. 

To estimate the true path of the trajectory p of a moving object in an unconstrained 

space when there is uncertainty due to measurement errors and/or low sampling rates, 

TrajEstU goes through three stages: (i) a pre-processing stage, (ii) a model fitting stage, 

and (iii) a trajectory generation stage. 

 

In the first stage, the pre-processing stage, TrajEstU performs local segment clustering 

of the trajectories in db [LHW07] with the intention of finding the spatial patterns that 

the trajectories in the database exhibit. The output of this local segment clustering 
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algorithm is a set of segment clusters, each of which has an associated representative 

trajectory describing the behavior of its cluster. Once the database trajectories have 

been locally clustered, TrajEstU builds an R-tree clusterTree containing the 

representative trajectories of each of the segment clusters found.  

 

In the second stage, the model fitting stage, TrajEstU identifies the time intervals where 

p has a near-constant acceleration. Then, for each one of these time intervals I, the 

algorithm finds the extended Minimum Bounding Rectangle (eMBR) containing the 

points of p with timestamps contained in I (this set of points is denoted by p[I]) and 

uses this eMBR to perform a range search over clusterTree. The output of this range 

search is a set of representative trajectories called clustersI. Then, for each 

representative trajectory r in clustersI, TrajEstU builds a separate linear constant 

acceleration model for p[I]� r. The result of this operation is one candidate constant 

acceleration model for p[I] per representative trajectory r. Out of all these models for 

p[I], TrajEstU chooses the one with the highest goodness of fit. The collection of 

constant acceleration models for all intervals I makes up the kinematic model for p, and 

allows us to predict the true path of the object at any given time. 

 

In the final stage, given the kinematic model found in the second stage, TrajEstU 

generates a new trajectory with uniform sampling rate, called the estimated trajectory, 

whose points are the ones predicted by the kinematic model. 

4.3 Description of TrajEstU 

4.3.1 Pre-processing stage 



 120 

In this section we explain the first phase of TrajEstU, which consists of the 

preprocessing operations that need to be performed only once. Then, as more query 

trajectories arrive, these operations need not be performed again. In this stage, the idea 

is to identify the local patterns displayed by the set of moving objects in db. To this end, 

we perform local trajectory clustering [LLKH10] of the trajectories in the database, and 

find the representative trajectory associated with each cluster. It is in these local cluster 

trajectory representatives that the movement patterns are condensed.  

 

Our proposed algorithm uses local trajectory clustering to find local trajectory patterns. 

Lee et al. [LHW07][LLLH10] introduced the idea of first partitioning a set of 

trajectories into segments and then clustering the resulting segments, instead of 

clustering the trajectories as a whole. This serves our objectives because by clustering 

trajectories into segments, we can obtain the movement patterns in a given small area, 

instead of globally clustering the trajectories, which would not be able to discover 

patterns at a local scale. 

 

4.3.2 Model-Fitting Stage 

In this section we explain TrajEstU’s second phase, the model-fitting stage. We 

describe the kinematic trajectory model used and how to estimate its parameters. The 

model is based on kinematics. First, we identify the time intervals of the object’s 

trajectory where it has constant acceleration, and build a constant acceleration model for 

each of these intervals. The collection of these constant acceleration models makes up 

the kinematic trajectory model. Then, the constant acceleration models for any two 
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consecutive time intervals [t0, t1] and [t1, t2] need to be smoothly connected in order for 

them to be consistent around t1. 

 

4.3.2.1 Constant Acceleration Model 

It is known that if an object o with initial position x0 and initial velocity v0 moves with 

constant acceleration a during a time interval [bH, bH 	+	∆v], ∆v> 0, we can then 

accurately determine the position of o at any time t0 + t, with 0 < b < ∆v using x(t) =

x0 + v0 ∙ t + a ∙ tX/2. This is the time-linear dynamic trajectory model that we will use 

for our trajectories, and its parameters are x0, v0 and a. 

 

In the case of an uncertain trajectory, the problem is that it consists of a sequence of 

only uncertain positions (called sampled points or observations), so the velocity and 

acceleration, if computed straightforwardly from the observed positions, are also 

uncertain quantities. To address this problem, we find the best linear constant 

acceleration trajectory model that fits the observed positions by using a standard linear 

regression model [LLD06]. The form of the linear model is Æ = CØ, where Z is the 

observation vector, H is the model matrix, and X is the parameter vector. As is the case 

in standard linear regression, we seek to find the parameter vector X that minimizes the 

sum of the squares of the errors Æ − CØ ∞(Æ − CØ). We now explain with an example 

how Z, H and X are found. 

 

Suppose for example that we are given the sequence of ) = 3	points {(x0,y0,t0), 

(x1,y1,t1), (x2,y2,t2)=(xn-1,yn-1,tn-1)} belonging to an uncertain trajectory. To find the best 
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linear constant acceleration trajectory model fitting these data, we compute ±b" = 	 b" −

b",/ for 1 ≤ 4 < ) = 3, and then build the model matrix H of size (2))×6 = 6×6 as 

follows: 

C =

1 0 0
1 ±b/ ±b/X

1 ±bX ±bXX

	0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
1 ±b/ ±b/X

1 ±bX ±bXX

 

and the observation vector Z of size 2) ×1 = 6×1 as follows:  

Æ = 	 $H $/ $X eH e/ eX ∞ 

Then, we use the standard formula Ø = C∞C ,/C∞Æ to compute the parameter vector 

corresponding to the linear constant acceleration trajectory model that minimizes the 

sum of the squares of the residuals Æ − CØ ∞(Æ − CØ): 

Ø = (C∞C),/C∞Æ = $H DH
(î) 1

2
5(î) eH DH

(ò) 1
2
5(ò)

∞

, 

where the vector ($H, eH) is the initial position of the object during the interval [t0, t1], 

DH = (DH
(î), DH

(ò)) is the initial velocity, and 5 = (5(î), 5(ò)) is the constant acceleration 

during that interval. This means that the fitted model during the interval [t0, t1] has x-

component 1 î (b) = $H + DH
î b + 0.55 î bX, and y-component 1 ò (b) = eH +

DH
ò b + 0.55 ò bX. 

 

One key assumption made when building the above linear model, besides that the 

acceleration is constant, is that the trajectory has a high-sampling rate during the time 

interval corresponding to the observed data, which means that there are enough data 

from which to discover the parameters of the model. However, when building a linear 
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model for low-sampling rate trajectories, there may not be enough data to build an 

accurate model. To solve this problem, we can exploit the knowledge provided by the 

database of trajectories by mining the movement patterns described by the trajectories 

in the database around the spatial area where our given trajectory query has a low-

sampling rate. To discover these movement patterns we use a trajectory clustering 

algorithm. However, algorithms for clustering trajectories may not be appropriate for 

discovering the movement patterns around a particular area of interest (where the given 

trajectory has a low-sampling rate) because regular trajectory clustering algorithms 

cluster trajectories globally. Instead, we propose using an algorithm that performs local 

clustering of trajectory segments [LHW07] because it first splits trajectories into 

smaller segments and then clusters the segments. To each cluster, the clustering 

algorithm assigns a representative trajectory that captures the behavior of the segments 

in the corresponding cluster. By incorporating the knowledge of these representative 

trajectories into the constant acceleration model, we can overcome the difficulty of 

building a linear model for low-sampling rate sections of trajectories. 

 

4.3.2.2 Incorporation of Trajectory Patterns 

Once the database trajectories have been locally clustered, we have the knowledge of 

the spatial patterns that the trajectories in db exhibit in space. To exploit this 

knowledge, during the generation of a constant acceleration model in the time interval 

I=[t0, t1] with t0 < t1, we do the following. We first construct an extended minimum 

bounding rectangle eMBR(ε) with ε > 0 surrounding the sampled points of the 

trajectory with times in the range I = [t0, t1]. Then, we locate the set of clusters that 
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intersect with this eMBR. This is illustrated in Figure 27, where we see the input 

trajectory p. In that figure we have that t0 = p[2].t and t1 = p[3].t. There we see that the 

intersection of the eMBR(ε) of M M[2]. b, M[3]. b  (the set of points of trajectory p with 

timestamps within the interval M[2]. b, M[3]. b ) with Clusters is the list ClusterI = 

{Cluster1, Cluster2, Cluster3}. We will consider each of these clusters individually, and 

for each one, we will build a constant acceleration model using the points in the set 

M bH, b/ ∪ hnaPb2SP≥[4], where hnaPb2SP≥[4], denotes the ith cluster in the list ClustersI. 

However, one obstacle here is that the points in hnaPb2SP≥[4], unlike the points in 

M bH, b/ , do not have timestamps; therefore, we cannot directly build the matrix H, 

which depends on the timestamps of the points. 

 

Figure 27. Finding representative trajectories 

To solve this problem, we assign times to these points using the closest trajectory 

points. To this end, we associate an empty list Lk with every point p[k] in the trajectory 

p. Then for every point cj in Clusters[i].repr (the representative trajectory associated 

with the i-th cluster in the list Clusters) we find the closest consecutive pair of trajectory 

points p[m], p[m+1] and insert cj into Lm. This is illustrated in Figure 28 where we see 
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that the points c0, c1 and c2 in Cluster3 have the consecutive pair of trajectory points p2 

and p3 as the closest one; so L2=[c0, c1, c2]. Then we consider the list of points [p[2], c0, 

c1, c2, p[3]] and use this list to linearly interpolate the timestamps for c0, c1 and c2, 

assuming a uniform sampling rate. Therefore, the timestamp of c1 will be 

X
¥
M[3]. b– 	M[2]. b ,	and the timestamp for p[2] will be y

¥
M[3]. b– 	M[2]. b . Once every 

point cj in ClustersI[i] has been assigned a timestamp, we can proceed with the fitting of 

a candidate constant acceleration model for the set of points M bH, b/ ∪ hnaPb2SP≥[4]. 

 

4.3.2.3 Selecting the Best Constant Acceleration Model 

In Subsection III.4.3.2.2 we examined how we can build a constant acceleration model 

for a trajectory p during the time interval [t0, t1] with t0 < t1, using a single segment 

cluster in the database found by intersecting the eMBR(ε) surrounding the points of 

M bH, b/ 	with the set of segment clusters Clusters. However, the result of this 

 

Figure 28. Timestamp calculation for a set of cluster points 
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intersection could yield more than one intersecting segment cluster, which would imply 

that we have one candidate constant acceleration model per intersecting cluster. Out of 

all these possible constant acceleration models for M bH, b/ , we pick the model that 

maximizes the goodness of fit, i.e., the one that best explains the variance of the data, 

using the standard formula for the coefficient of determination. 

4.3.2.4 Variable Acceleration Model 

A moving object could, however, change its acceleration throughout the extent of its 

movement, rendering the above constant acceleration model incapable of accurately 

predicting the movement of the object. Hence, we identify the time instants at which the 

moving object changes its acceleration. To accomplish this, we use a real positive 

number tol > 0 as a constant parameter, and keep an integer startInterval with the initial 

value 0, and scan the query trajectory q from the beginning to the end, and computing 

the average acceleration at each point with an index i, starting from 0. If the absolute 

value of the difference between the acceleration at p[startInterval] and at p[i] exceeds 

the fixed parameter tol, then we consider that [p[startInterval].t, p[i].t] is a constant 

acceleration interval. Then we assign i to startInterval and then keep scanning the 

trajectory in search for the next interval.  

 

The average acceleration is, by virtue of being computed from the observed positions of 

an uncertain trajectory, an uncertain quantity. By using the tol parameter as a threshold 

to identify the time intervals where the trajectory has constant acceleration, we are able 

to address this uncertainty problem.  
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4.3.2.5 Model Coupling Function 

As discussed in Sections III.4.3.2.1 to III.4.3.2.4, to model the movement of an object, 

we identify the time intervals where the object’s acceleration does not vary beyond a 

pre-specified tolerance tol > 0, and then fit a constant acceleration model for each of 

these intervals. However, at the time instant that lies at the boundary between two 

consecutive time intervals, for example, if two intervals of near-constant acceleration 

are [t0,t1] and [t1,t2], with t0 < t1 < t2, then at time t1 we have two estimates for the 

position of the object: one estimate arises from the constant acceleration model during 

[t0,t1], and the other from the model during [t1,t3], and these two estimates could 

potentially differ. To overcome these difficulties we smooth the trajectory model by 

smoothly connecting, or coupling [GM14], the constant acceleration model during 

[t0,t1] with the constant acceleration model during [t1,t2]. This is illustrated in Figure 29 

where we see two constant acceleration models: Model p[0].t to p[2].t, and Model 

p[2].t to p[4].t, shown as the pointed and dashed lines, respectively. These models 

disagree in their estimations around p2, but when we incorporate the model coupling 

function, then both models are smoothly connected. 

 

Figure 29. Model coupling function 
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Assume we have a constant acceleration model m1 during [t0,t1] with 1/
î b 	and 

1/
ò (b) as the x and y-components, respectively, and another constant acceleration 

model during [t1,t2] with 1X
î (b) and 1X

î (b) as its x and y-components, respectively. 

To smoothly connect the two models, we can use the hyperbolic tangent, which is a 

function that is known to be suitable for this purpose [GM14]. The model coupling 

function Q 1/,1X
(î) b  smoothly connects both models and has an x-component 

given by Q 1/,1X
(î) b = 	1/

î b + ∂∑∏π v,vû ./
X

(1X
î b − 1/

î b ), and the y-

component is identical, but replacing x by y. This function smoothly connects both 

models because tanh converges to 1 as t goes to infinity, and to -1 as t goes to minus 

infinity. Therefore, for large t, Q 1/,1X
(î) b  converges to 1X

î b , and for t values 

less than t1, it converges to 1/
î b . 

 

4.3.3 Trajectory Estimation Stage 

In this section we explain the final stage of TrajEstU. The purpose of this stage is to 

generate a trajectory, called the estimated trajectory, using the kinematic model found 

during the model-fitting stage presented in the previous Section 4.3.2. This kinematic 

model is a collection of constant acceleration models {(modelI, I) | I is a constant 

acceleration interval of p}. Each modelI can be used to estimate the true trajectory of 

the moving object during the time interval I.  Given a number of points numPoints, and 

the lifetime Inter = [startTime, endTime] of p, we can generate a uniform sampling rate 

trajectory by querying the kinematic model at time instants {startTime, startTime + Δt, 

startTime + 2Δt,…}, thereby obtaining the estimated trajectory. 
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4.4 Details of TrajEstU 

In this section we explain the details of TrajEstU, the pseudocode of which is presented 

in Figure 30. TrajEstU consists of a preprocessing stage where the spatial trajectory 

patterns of the database are mined, a model-fitting stage where we build a trajectory 

model, and then a trajectory estimation stage where we use such model to produce an 

estimated trajectory. 

 

4.4.1 Pre-processing Stage 

First, the algorithm invokes the function cluster_segments implementing the local 

clustering algorithm [LHW07] to get the set of segment clusters for all trajectories in 

the database db (Line 44). Once this is done, the algorithm constructs an R-tree [Gutt84] 

containing the representative trajectories of each local segment cluster (Line 45). If 

there are multiple query trajectories, then this stage is to be executed only once off-line, 

so it does not to be run with each query. 

 

4.4.2 Model-Fitting Stage 

Once the pre-processing stage has finished, TrajEstU proceeds to fit a model for every 

query trajectory by calling function FILLDATA (Line 46). The function FILLDATA receives 

as input arguments a query trajectory p, a database of trajectories db, an R-tree 

clusterTree with the representative trajectories of the clusters, and a set of clusters 

clusters, and is in charge of fitting a kinematic trajectory model for p. It first computes 

the set intervals of time intervals where p has near-constant acceleration (Line 3). It 
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then builds for each constant acceleration interval I of p a separate model describing the 

behavior of p during I (Lines 4 – 15). It achieves this by constructing an extended 

Minimum Bounding Rectangle eMBR(ε) enclosing the portion of p during I to account 

for the uncertainty of q during I (Line 5). Then, it performs a range search over the R-

tree clusterTree using the eMBR as input to determine the set clustersI of all trajectory 

segment clusters located near p during I (Line 6). It then finds a candidate constant 

acceleration model for each trajectory segment cluster in clustersI by calling the 

function CONSTACCMODEL and computes the goodness of fit for each model (Lines 7 – 

10). Finally, it selects the model with the greatest goodness of fit (Lines 11 – 12). 

 

The function CONSTACCMODEL in Line 16 takes a set of trajectory points points as its 

input argument, and finds a linear regression model that fits the trajectory points in 

points following the approach explained in Section III.4.3.2. By using this linear 

regression approach to fit a constant acceleration trajectory model, we are able to 

address the issue of measurement uncertainty because linear regression does not force 

the resulting model to agree with every single sampled point. By considering the 

representative trajectories of the segment clusters, we are able to address the problem 

that may arise when trying to fit a model with very few data points available. 

 

4.4.3 Trajectory Estimation Stage 

After the model-fitting stage is completed, TrajEstU proceeds to compute the lifetime 

Inter of the query trajectory p (Line 47) and then invokes the function 

ESTIMATETRAJECTORY to estimate the true trajectory of p (Line 48). The function 
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ESTIMATETRAJECTORY, shown in Line 30 of Figure 30, receives as input parameter a 

kinematic model models that is a set of pairs of the form (modelI, I), where every modelI 

is a constant acceleration model valid during the time interval I. This function also 

receives as an input parameter the number of points (numPoints) of the final trajectory 

estimate, and an interval Inter=[startTime, endTime] that is the lifetime of the estimated 

trajectory. This function first creates an empty trajectory (Line 31) that will eventually 

be the estimated trajectory, and then computes the time span between consecutive 

points, assuming uniform sampling (Line 32). The function then computes the points of 

the estimated trajectory one by one (Lines 33 – 41). To do so, it finds the model 

(modelI, I) in models that is valid at time τi (Line 34 – 37), and computes the estimated 

position at time τi using scalar products (Lines 38 – 39). Finally, it adds the estimated 

position to the estimated trajectory (Line 40). 
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Figure 30. TrajEstU pseudocode  
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5 TraclusGPU: A parallel GPU technique for local clustering of trajectories 

5.1 Motivation of TraclusGPU 

As we have discussed in Section I.3, among the issues of top-K trajectory similarity 

query processing are the measurement and the model uncertainties. This is because 

noisy trajectories can significantly affect the accuracy of top-K trajectory similarity 

queries. To address these issues, we proposed an algorithm called TrajEstU, which was 

discussed in Section III.4. The idea underlying TrajEstU is that we can estimate the true 

path of an uncertain trajectory (called the input trajectory) by building linear regression 

models that assume near-constant acceleration, and that also take into account the 

patterns followed by trajectories that are located close to the input trajectory. These 

local trajectory patterns are gathered through the clustering of a database of trajectories, 

which is done in TrajEstU’s off-line pre-processing stage. So, in order for TrajEstU to 

estimate the true path of an input trajectory, it needs to run an off-line preprocessing 

stage (this stage is run at most once per database, and should not be run with every input 

trajectory) that locally clusters the database trajectories using the Traclus Algorithm 

[LHW07]. Then, after this off-line preprocessing stage is done, TrajEstU can use these 

clusters to build models with which it can estimate the input trajectory. 

 

The set of experiments performed on TrajEstU, shown in Section IV.2.3, show that the 

execution time performance of the online component of this algorithm is negligible, and 

scales well in terms of the length of the query trajectory, and the number of trajectories 

in the database, among other parameters. However, the off-line pre-processing stage of 

TrajEstU (which is performed just once per database, and should not be run with each 
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trajectory), which consists of locally clustering the database trajectories with the serial 

version of the Traclus algorithm, does not scale with the number of trajectories in the 

database. Moreover, for the database sizes used in our experiments (see Section IV.2.3), 

the serial version of the Traclus algorithm took weeks to finish its execution. Therefore, 

in order for TrajEstU to have practical application for dealing with Big Trajectory Data, 

it is essential that its offline trajectory clustering stage scales with the large size of the 

databases, so that this stage produces results in a reasonable amount of time. 

 

As always, one way of dealing with the large volume of Big Trajectory Data is to make 

use of parallel computing. In particular, GPUs, as has been discussed in Section I.2.4, 

are a parallel architecture that possesses many advantages. Among these advantages are: 

GPUs are available in most computers, including mobile devices, desktops, 

workstations and supercomputers; GPUs are very energy efficient [LM13]; and, GPUs, 

for certain tasks, can have up to an order of magnitude of higher floating point 

throughput than the best multicore chip CPUs available [LKCD+10]. All these 

advantages of GPUs make them a good candidate architecture in which to develop a 

parallel algorithm for locally clustering trajectories. 

 

Nonetheless, to the best of our knowledge, there does not exist a parallel GPU algorithm 

for clustering trajectories locally. The only work related to our proposed algorithm 

TraclusGPU is G-DBSCAN [ARMS+13], which is a parallel algorithm for DBSCAN 

clustering [EKSX96][TSK05]. This work differs from TraclusGPU in that G-DBSCAN 

is designed for density-based clustering of trajectories, while TraclusGPU performs 
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local clustering of trajectories (i.e., TraclusGPU does not cluster the trajectories as 

whole, but instead it partitions them into segments and clusters these segments). In 

other words, both algorithms cluster objects of a different nature. 

5.2 Overview of TraclusGPU 

TraclusGPU is a parallel GPU algorithm for performing local trajectory clustering, and 

is based on the ideas of the Traclus algorithm, which is a serial algorithm for local 

trajectory clustering. TraclusGPU receives as input parameters a set S of trajectories, a 

positive integer minPts, and a positive real number ∫ > 0, which are the same three 

parameters of the Traclus algorithm. 

 

TraclusGPU, just like Traclus, consists of three stages: the partitioning stage, the 

trajectory clustering stage, and the representative trajectory search stage. In the 

partitioning stage, TraclusGPU uses the Minimum Description Length Principle (MDL) 

to sub-divide (partition) the trajectories into segments [TSK05]. In the trajectory 

clustering stage, TraclusGPU clusters the resulting segments using a segment distance 

[LLHW07]. Finally, in the representative trajectory stage, TraclusGPU constructs a 

trajectory representative for each cluster. 

 

The key idea behind TraclusGPU arises from the observation that the most time 

consuming stage of the serial Traclus algorithm is the segment clustering stage. For this 

reason, the main contribution of TraclusGPU consists in adapting the GPU 

parallelization ideas for the DBSCAN algorithm [ARMS+13] (which is also based in 

the BFS algorithm presented in [HN07]) to segments by arranging the segment data in a 
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linear fashion, so as to ensure global memory coalescing. Also part of the modifications 

on the work [ARMS+13] consists in being able to classify the segments into border, 

core and noise points [EKSX96]. 

 

5.3 Description of TraclusGPU 

In this section we explain the details of TraclusGPU. Its pseudocode is presented in 

Figure 31. TraclusGPU consists of a partitioning stage, a local trajectory clustering 

stage and a representative trajectory finding stage. As can be seen in Figure 31, 

TraclusGPU receives as inputs a set of trajectories S, a positive integer minPts, and a 

positive real number ª. 

 

5.3.1 Partitioning Stage 

To partition the trajectories, TraclusGPU follows the same theoretical ideas first 

presented in [LLHW07], which consist of partitioning the trajectories according to the 

Minimum Description Length Principle. This is done by calling the function 

Approximate Trajectory Partitioning, described in [LLHW07], in parallel on a 

multicore CPU (Lines 2 – 4 in Figure 31). The reason for running Approximate 

Trajectory Partitioning on a multicore CPU is that this function exhibits thread 

divergence on a GPU (see Section I.2.4 which describes this GPU phenomenon), which 

entails a significant performance penalty. There is, however, no performance penalty 

when running it on a multicore CPU.  
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After partitioning trajectories into segments, segments are stored in four arrays: 

beginPointX, beginPointY, endPointX, and endPointY. These arrays satisfy that the i-th 

segment starts at the point (beginPointX[i], beginPointY[i]) and ends with the point 

(endPointX[i], endPointY[i]). In this manner, global memory access to the segments 

can be done in a coalesced manner. 

 

Now, because we perform coarse-grained parallelism at the function call level, there are 

no modifications to the internal section of the Approximate Trajectory Partitioning 

function, which already exists in the literature. This trajectory approximate trajectory 

partitioning algorithm was first introduced in [LLHW07], and is based on the Minimum 

Description Length (MDL) optimization principle.  This algorithm consists in splitting 

the input trajectory into segments, such that the resulting segments is as close as 

possible to the input trajectory (this is called preciseness [LLHW07]), and such that the 

total number of resulting segments is as small as possible (called conciseness 

[LLHW07]).  

 

5.3.2 Local Trajectory Clustering Stage 

TraclusGPU calls the function CLUSTERSEGMENTSGPU (Line 5 in Figure 31), which is 

in charge of locally clustering the segments that resulted from Stage 1 of the algorithm. 

The first goal in this function is to generate a graph w = (\, F) such that V consists of 

all the segments obtained in the partitioning stage, and (D, ?) belongs to E if and only if 

segments v and w are within an ª segment distance. To represent this graph in the GPU 

we use the Compressed Sparse Row (CSR) format [BFGM+09] because it is a concise 
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representation for sparse graphs (as opposed to an adjacency matrix), and because it 

arranges its elements in arrays, which helps memory coalescing on a GPU. This 

function assigns a GPU thread for every pair of segments (i,j) and computes their 

segment distance in parallel. If this distance is less than the ª value, the corresponding 

segments are considered neighbors (Lines 12—18). Then, the algorithm computes the 

degree of each node (segment) in the graph by counting the number of neighbors (Lines 

19—21). This operation can be done efficiently on the GPU with a sum reduction. After 

this, by performing an exclusive parallel prefix sum of the degrees of all nodes (Line 

22) we can obtain the offsets in the adjacency list (in CSR form) for every node in the 

graph. Then, the algorithm fills in the adjacency list part of the CSR format (Lines 23—

29). 

 

After constructing the CSR representation of the segment adjacency graph, the 

algorithm proceeds to do a series of BFS traversals on the graph, until every node has 

been visited (Line 30 and Line 32). This is done with the MODIFIEDBFSGPU function, 

which first allocates two arrays class and isSource each of length equal to the number of 

nodes in the graph (number of segments). The class array is initialized with the value 

‘Noise,’ indicating that so far all points are classified as noise points. The isSource array 

is initialized with false values except the first entry. This indicates that the algorithm 

will start exploring the immediate neighbors of its node 0. The remainder of this 

function somewhat resembles a BFS or a DFS graph traversal. Then the algorithm starts 

assigning a GPU thread for every node i such that isSource[i] is true (called the source 

nodes) (Line 37), and checks all the nodes adjacent to those source nodes (Line 38). 
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Each of these adjacent nodes is marked as visited (Line 40) and marked as a source 

node for the next iteration of the outermost while loop. If these adjacent nodes have a 

degree higher than minPts (Line 41) they are classified as core, otherwise, if the source 

node was classified as border or core, then the adjacent node (being adjacent to a border 

or core node) is classified as border (Lines 44–46). Finally, the algorithm takes the 

arrays class and cluster and builds a list of clusters C by grouping together all the nodes 

that belong to the same BFS/DFS tree. This is because nodes belonging to the same 

BFS/DFS tree are all reachable from each other, and therefore belong to the same 

cluster. 

 

5.3.3 Representative Trajectory Finding Stage 

Once TraclusGPU has locally clustered all the segments, it calls the function 

Representative Trajectory Generation in parallel (on a multicore CPU) for every 

cluster. This function was first introduced in [LLHW07], and since our parallelism is 

coarse-grained we do not introduce any changes. This algorithm works by sweeping a 

vertical line through all the segments in a cluster, and then averaging the intersection 

points between the segments encountered and the vertical line [LLHW07].  
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Figure 31. Pseudocode of the TraclusGPU algorithm
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CHAPTER IV  
PERFORMANCE ANALYSIS 

 
In this chapter we present the analyses of the worst-case work and space complexities of 

the proposed techniques, and also present extensive experimental studies of their 

performance in comparison with state of the art techniques. 

1 Theoretical Analysis 

1.1 Complexity Analysis for TKSimGPU 

We now discuss the worst-case work and space complexity of the TKSimGPU 

algorithm given in Figure 19 in Chapter III by studying the worst-case complexity of 

each one of its functions. 

 

We now estimate the total amount of work performed by the function ESTIMATE_ ε. 

This function computes the Hausdorff distance between every trajectory p in P_sample 

and every trajectory q in Q_sample, and then for every p in P_sample it sorts the 

associated list Lp. Since the worst-case work complexity of computing the Hausdorff 

distance between any two trajectories p and q is Z(|M| 	 ∙ |k|), then computing the 

Hausdorff distance for every (M, k)	in	K_P51Mn2	×	J_P51Mn2 has worst-case work 

complexity Z K_P51Mn2 ∙ J_P51Mn2 ∙ M ∙ k = Z( K_P51Mn2 ∙ J_P51Mn2 ), 

where M and k are upper bounds to the sizes of the trajectories in P_sample and 

Q_sample, respectively. Then, the total amount of work done to sort one of the lists Lp 

is Z J_P51Mn2 ∙ log J_P51Mn2 , so to sort all lists Lp for every p	in	K_P51Mn2 the 

work complexity is Z |K_P51Mn2	| ∙ J_P51Mn2 ∙ log J_P51Mn2 . Therefore, the 

worst-case work complexity of Lines 8 to 12 of the algorithm in Figure 19 is 



 142 

Z |K_P51Mn2	| ∙ J_P51Mn2 ∙ log J_P51Mn2 +	 K_P51Mn2 ∙ J_P51Mn2 =

Z(|K_P51Mn2	| ∙ J_P51Mn2 ∙ nRW	(J_P51Mn2)). Then in Line 13 the algorithm finds 

the average Hausdorff distance between each p in P_sample and the closest K 

trajectories in Q_sample, which has worst-case work complexity O( K_P51Mn2 ∙ [). 

Therefore, the total amount of work performed by the function ESTIMATE_ ε has worst-

case time complexity Z K_P51Mn2 ∙ |J_P51Mn2| ∙ log	(|J_P51Mn2|) + K_P51Mn2 ∙

[	 = Z(K_P51Mn2 ∙ (|J_P51Mn2| ∙ log	(|J_P51Mn2|) 	+ [)). The worst-case space 

complexity of the function ESTIMATE_ ε is Z(K_P51Mn2 ∙ J_P51Mn2). 

 

Next, we examine the total amount of work performed by the function NEAR-JOIN 

FILTER in Line 18 of Figure 19. To find the eMBR of a trajectory p the worst-case work 

complexity is O(|p|), since we need to visit all points of p to determine its MBR. Then, 

to compute the eMBRs of all trajectories in P and in Q, we perform an amount of work 

of	Z(|K| ∙ |J| ∙ M ∙ k). Here, since we are studying the worst-case work complexity, we 

assume that trajectories visit each grid cell (this assumption could hold in real-life, 

depending on the spatio-temporal distribution of the trajectories and how coarse the grid 

is). Therefore, Lines 19 and 20 of Figure 19 together have a combined worst-case work 

complexity of Z(|w|), where |G| is the number of grid cells. Line 21 of Figure 19 has a 

worst-case work complexity of Z( w X ∙ |K| ∙ |J|). Then, to remove duplicates, the 

worst-case work complexity is	Z w X ∙ K ∙ J  if the array of candidate pairs is sorted 

in lexicographical order. Therefore, the total worst-case work complexity of the 

function NEAR-JOIN FILTER is Z K ∙ J ∙ M ∙ k + w +	 w X ∙ K ∙ J =

Z K ∙ J ∙ M ∙ k + w X ∙ K ∙ J = Z K ∙ J ∙ (M ∙ k +	 w X) . The worst-case 
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space complexity of the function NEAR-JOIN FILTER is Z K ∙ w + J ∙ w + K ∙ J =

Z(K ∙ J), if we assume that |G| is constant. 

 

Next, we examine the total amount of work performed by the function 

REFINE_TKSIMGPU. It sorts the candidates for every p in P, which has a worst case 

work complexity of Z(|K| ∙ |J| ∙ log	(|J|) if we assume that every trajectory in P 

retrieves all trajectories in Q as candidates. Then, REFINE_TKSIMGPU takes the most 

similar K trajectories for every p in P, and this has a worst-case work complexity of 

Z(|K| ∙ [). Then, the total complexity of this function is Z K ∙ J ∙ log J + K ∙

[ = Z K ∙ J ∙ log J  if we assume that [ < |J|. The worst-case space 

complexity of the function REFINE_TKSIMGPU is Z |K| ∙ |J| . 

 

Finally, we turn our attention to the total amount of work performed by the function 

TOP-K TRAJECTORY SIMILARITY in Line 1 of Figure 19 in Chapter III. This function 

initially calls FILTER_TKSIMGPU, which computes a P_sample and a Q_sample, then at 

each iteration it calls the ESTIMATE_ ε and NEAR-JOIN FILTER functions. As we have 

analyzed earlier, this is an amount of work of order Z K_P51Mn2 ∙ (|J_P51Mn2| ∙

log	(|J_P51Mn2|) 	+ 	[) + K ∙ J ∙ (M ∙ k +	 w X . Since K_P51Mn2 and J_P51Mn2 

are much smaller than K  and |J|, we have that Z K_P51Mn2 ∙ (|J_P51Mn2| ∙

log	(|J_P51Mn2|) 	+ [) + K ∙ J ∙ (M ∙ k +	 w X = Z([ + K ∙ J ∙ (M ∙ k +

w X)). Then, each iteration first counts the number of candidates for every p in 

P_sample, an operation which has worst-case work complexity O( K ∙ J ) if all 

possible candidates are retrieved, and then it finds all those trajectories in P without K 



 144 

candidates, which has worst-case work complexity O(|P|). Finally, the function TOP-K 

TRAJECTORY SIMILARITY calls REFINE_TKSIMGPU. Hence, the total work complexity 

of this function is Z(º([ + K ∙ J ∙ M ∙ k +	 w X )+	 K ∙ J + K + K ∙ J ∙

log J ) = Z º ∙ K ∙ J ∙ M ∙ k +	 w X + K ∙ J ∙ log J , where I is the 

number of iterations. If we assume that |G| is constant, as are  M and k, then the worst-

case work complexity of TKSimGPU is Z( K ∙ J ∙ log	(|J|)), which is the same 

worst-case work complexity that we would obtain if we generate all pairs in K×J, then 

compute the Hausdorff distance for each pair, then sort for each p in P in increasing 

order of Hausdorff distance, and then take the first K candidates for every p in P, as in 

the naïveGPU algorithm. Overall, the worst-case space complexity of the TKSimGPU 

algorithm is Z K ∙ J ,	 which is the same as naïveGPU’s worst-case space complexity. 

 

1.2 Complexity Analysis for Top-KaBT 

In this subsection we discuss the worst-case work and space complexity of the Top-

KaBT pruning algorithm.  

 

We first estimate the total amount of work performed by Top-KaBT in the function 

HAUSDORFF_BOUNDS in Line 15 in Figure 22 in Chapter III. Because this function 

computes the lower and upper bounds of the Hausdorff distance between p and q for 

every (p,q) candidate pair in C, and since we know that, according to Observation 

III.3.12, the calculation of these lower and upper bounds has worst-case constant time 

complexity; therefore, the total amount of work done by the HAUSDORFF_BOUNDS 

function has worst-case time complexity O(|C|) and worst-case space complexity 
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O(|C|). Because the function FIND_CUT_POINT in Line 23 visits each candidate pair in C 

once, and in each visit it performs a constant amount of work, then the work complexity 

is O(|C|) to find all the 1-cut points in Lines 24 to 30, and O(|C|) amount of work to 

perform both the parallel prefix sum in Line 31 and to find the minimum in Line 32. So 

the total amount of work performed in the function FIND_CUT_POINT is O(|C|). The 

space complexity of this function is O(|C|). 

 

Inside the function REMOVE_CANDIDATES, we see that in Lines 37 to 43 of Figure 22 

the total amount of work is again O(|C|) because the algorithm performs multiple passes 

over the array of candidates, doing constant work at each entry of this array.  Then, in 

Lines 44 to 46, the total amount of work is O(|C|) because the parallel algorithms to 

find the adjacent differences, to perform run-length decoding, and to perform prefix 

sum have O(|C|) worst-case work complexity. In a similar fashion, Lines 47 to 51 have 

O(|C|) worst-case work complexity because the instructions at these lines simply 

require writing a 1 or a 0 for every candidate pair in C.  

 

We now turn our attention to the function SORT_PRUNING. Let hi be an upper bound to 

the size of hi for every p in P. We see that SORT_PRUNING requires sorting Cp for every 

p in the query set P. Therefore, this requires Z(|K| 	 ∙ |hi| ∙ nRW(hi)) amount of work  to 

sort all the candidate sets Cp. SORT_PRUNING then eventually calls the functions 

HAUSDORFF_BOUNDS, FIND_CUT_POINT, and REMOVE_CANDIDATES, whose total 

amounts of work have already been calculated. We conclude then that the overall worst-
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case work complexity of Top-KaBT is	Z( h +	 |K| 	 ∙ |hi| ∙ nRW(hi)), and the worst-

case space complexity is also O(|C|). 

 

1.3 Complexity Analysis for TrajEstU 

We now discuss the worst-case work and space complexity of the TrajEstU algorithm. 

We shall first estimate the total amount of work performed by the function 

CONSTACCMODEL in Line 16 of Figure 30. This function first sorts the set points, with a 

worst-case work complexity of MR4)bP ∙ log(|MR4)bP|) . Then, it fits a constant 

acceleration model to a set points. Lines 21 to 27 of Figure 30 fill-in the entries of a 

matrix of size 2 ∙ MR4)bP ×6 and a vector of size 2 ∙ MR4)bP ×1, which 

corresponds to a total amount of work of O(|points|). Then, in Line 28, the algorithm 

performs linear regression, which corresponds to a worst-case work complexity of 

O(|points|). Therefore, the worst-case work complexity of the function 

CONSTACCMODEL is  

Z MR4)bP ∙ log	( MR4)bP ) + MR4)bP = Z(|MR4)bP| ∙ log	(|MR4)bP)). 

 

The worst-case space complexity of the function CONSTACCMODEL is O(|points|) 

because both the matrix H and the vector Z use O(|points|) space. 

 

We compute now the total amount of work performed by the function 

ESTIMATETRAJECTORY in Line 30 of Figure 30. This function obtains an estimated true 

path out of a model. Its worst-case work complexity is O(numPoints), where numPoints 

is the size of the trajectory estimation that we wish to obtain. This assumes that Line 35 
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takes O(1). The function ESTIMATETRAJECTORY uses O(|numPoints|) space, where 

numPoints is the desired number of points of the estimation. 

 

We now proceed to compute the total amount of work performed by the function 

FILLDATA in Line 1 of Figure 30. For every constant acceleration interval in Line 4, the 

worst-case complexity is O(|clusterTree|) for the range search in an R-tree 

[Gutt84][BKSS90] (however, the average-case complexity for a range search is 

O(log(|clusterTree)) [BKSS90]), and then Z(|QnaPb2SP≥| ∙ Ω), where L is an upper 

bound to the size of all trajectories. Therefore, the worst-case work complexity of the 

online portion of the FILLDATA algorithm is	Z |QnaPb2SP≥| ∙ Ω ∙ |4)b2SD5nP| , where 

|intervals| is an upper bound to the number of constant acceleration intervals that 

trajectories have. 

 

We know that the worst-case space complexity for computing the MBR of any 

trajectory is O(L). The worst-case complexity for inserting a trajectory MBR into an R-

tree is O(NumTrajs), where NumTrajs is the number of elements in the tree. Therefore, 

before calling FILLDATA, we perform the worst-case amount of work which is 

Z æa1cS5dP ∙ Ω . 

 

1.4 Complexity Analysis for TraclusGPU 

The function CLUSTERSEGMENTSGPU first computes the distances between all pairs of 

segments (Lines 12—18 of Figure 31), which has worst-case work complexity 

Z( P2WP X). Then, this function performs a set of additions (Lines 19—21) of 
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complexity Z( P2WP ), and a reduction (Line 22). Finally, this function outputs the 

adjacency list, which has a work complexity of Z P2WP X . Therefore, the function 

CLUSTERSEGMENTSGPU has an overall worst-case complexity of Z P2WP X . Also, 

since this function has worst-case space complexity Z P2WP X 	(if the graph is dense). 

 

The function MODIFIEDBFSGPU is similar to the work proposed in [HN07] but, unlike 

that work, our function MODIFIEDBFSGPU traverses the whole graph (while [HN07] 

only traverses the subgraph reachable from a single node) and also classifies points as 

core, border and noise. This function has a worst-case work complexity of Z |\| ∙ |Ω| +

|F| ,	where V is the set of vertices of the graph, E is its set of edges, and L is the number 

of levels (the number of iterations of the outer-most while loop) [LWH10]. In the worst 

case, Ω = Z |\| , so that the worst-case work complexity of this function is Z \ X =

Z( P2WP X).	The worst-case space complexity of this function is Z(|P2WP|) because it 

stores three arrays of length |P2WP| to store the output, and to keep track of the state of 

the algorithm. 

 

The overall worst-case work complexity of TraclusGPU is then Z P2WP X + Ç ∙ N +

h ∙ ø , where S is the input trajectory set to TraclusGPU,		N is an upper bound to the 

size of all trajectories in S, h is the resulting number of clusters, and ø is the cost of 

finding a representative trajectory for a cluster. The overall worst-case space complexity 

of TraclusGPU is then Z P2WP X . 
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2 Experimental Analysis 

Note that in the following section we use scientific e notation, the same used in 

scientific calculators and programming languages, to represent large quantities. 

Examples of scientific e notation are 3e6, to denote 3×10¿, and 1.1e3, to denote 

1.1×10y.  

2.1 Experimental Analysis of TKSimGPU 

In this section we describe the experiments performed on our proposed TKSimGPU 

algorithm for processing top-K trajectory similarity queries on GPUs. 

 

2.1.1 Experimental Setup 

2.1.1.1 Hardware and Software Description 

Our multicore CPU algorithm was implemented in C using OpenMP. Our GPU 

algorithm was implemented in C, using CUDA 6.5, Thrust 1.8 [HB10] and CUB 1.4.1 

[Mer11], and our experiments were performed in a Ubuntu 14.04 workstation equipped 

with two six-core Intel Xeon E5 2620v2 chips running at 2.1GHz, 64GB of DDR3 

RAM and an Nvidia Quadro K5000 GPU with 4GB of RAM. 

 

2.1.1.2 Datasets and experiment setup 

For our experiments we use the GeoLife dataset [ZXM10] of real trajectories. The 

GeoLife dataset contains 17,621 trajectories whose lengths add up to 1,251,654 

kilometers, and span an interval of 48,203 hours. The total number of points (x,y,t) in 

the trajectories of the GeoLife data set is 23,667,828. These trajectories were collected 

with the use of GPS phones and GPS loggers by Microsoft Research Asia. 
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For our experiments we have selected the subset of all these trajectories that are labeled 

with the keyword “walk.” The reason for this is that these trajectories are shorter and 

hence there is less dead space (the empty area inside an MBR) within the MBRs of the 

trajectories. From these trajectories we have also removed all those trajectories that 

consist of only a single point (and have MBR with area 0) because those are not 

interesting trajectories. We have segmented each one of the trajectories of the original 

trajectory set by splitting a trajectory if the object describing the trajectory is stationary 

for more than 30 minutes (similar to what is done in the literature [RDTD+15]). We 

also split the original trajectories to ensure that no resulting trajectory has more than 

256 points. The reason for this is that, since we are using MBRs for filtering, a very 

long trajectory could potentially span the whole space and its corresponding MBR 

would be the size of the whole space and would not help during the filtering stage. We 

end up with a total of 18,000,000 tuples (x,y,t) belonging to 86,648 trajectories, which 

we keep in the GPU’s global memory. 

 

2.1.1.3 Competing Algorithms 

In these experiments we compare an implementation of TKSimGPU on a GPU and an 

implementation of a naïve exhaustive search on GPU, which we call naïveGPU. The 

naïve exhaustive search algorithm for processing top-K trajectory similarity queries 

finds the Hausdorff distances between all pairs of (M, k) ∈ K×J, and then sorts those 

distances to select for every M ∈ K	the top K most similar trajectories in Q using the 

function REFINE_TKSIMGPU (see Line 43 in Figure 19).  
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Both the GPU implementation of TKSimGPU and the GPU implementation of the naïve 

exhaustive search algorithm run with 512 threads per thread block.  

 

2.1.1.4 Experimental Parameters 

We now describe the types of parameters of the following set of experiments. These 

parameters are divided into two classes: static parameters and dynamic parameters. The 

static parameters are not changed in all experiments. The dynamic parameters, on the 

other hand, may have their values changed in an experiment. The way this is done is 

follows. In each experiment one dynamic parameter is chosen as the study parameter, 

and then we study the impact of that parameter on the performance of the algorithms. 

This study parameter will then assume different values in a given interval, while all the 

other dynamic parameters are kept constant at their default values. We will now 

describe the parameters of our experiments, which are summarized in Table 3. 

 

One of the dynamic parameters is the size of the query trajectory set (|P|), which 

assumes values in the range from 20 to 100 trajectories, and whose default value is 60, 

which is the mean of that interval. Then there is the size of the database (|Q|), assuming 

values in the range from 28,000 to 56,000 trajectories, and that has a default value of 

40,000, which is close to the mean of that interval. The last dynamic parameter is the 

value of K, which lies in the interval from 10 to 160, with a default value of 70. 
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The static parameters of this set of experiments are the size of the grid and the size of 

the sample used by TKSimGPU. In both cases, we used the values that yielded the best 

performance. 

  

Parameter Name Geolife Data 
Range of Values Default Value 

Size of the query 
trajectory set |P| 

20 – 100 Trajectories 60 Trajectories 

Size of the database 
trajectory |Q| 

28,000 – 
56,000 Trajectories 

40,000 
Trajectories 

K 10 – 160  70 
Grid Size 128×128 128×128 

Sample Size 512 512 
Table 3. Experimental parameters of TKSimGPU and Top-KaBT 

2.1.1.5 Performance Metrics 

The performance metric used is average query execution time (ET). We measure the 

time it takes our algorithms to process a query from the instant when it is issued, until 

the instant when the query finishes executing. 

 

2.1.2 Experimental Results 

2.1.2.1 Impact of the query set size  

In this experiment we use a database (Q) of size 40,000 trajectories (containing 

10,330,000 data points), and K = 70. Figure 32 shows the experiment results. The labels 

in the horizontal axis are given in the format x(y), where x is the number of trajectories 

in the query set (P) and y is the total number of points contained in P. For example, the 

label “100 Tr (17e3 Pt)” indicates that the size of P is 100 trajectories, and if we sum up 

all the points contained in those trajectories we have 17,000 points. We observe that 

TKSimGPU is 3.37x faster than the GPU naïve exhaustive search algorithm. The reason 
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for this is that TKSimGPU’s filtering stage is able to produce a candidate result set that 

has a size equal to 29.7% the size of the set K×J	on average. On the other hand, the 

naïve GPU algorithm has to exhaustively find all the Hausdorff distances for all pairs in 

K×J. From Figure 2 we can also observe that the query execution time of our GPU 

TKSimGPU implementation is approximately linear in the size of the query set (P), and 

we can also verify the fact that the naïve GPU implementation must be linear in the size 

of the query set (P) if the database size is fixed.  

 

Figure 32. Query set size vs. execution time (TKSimGPU) 

2.1.2.2 Impact of the database size  

In this experiment we use a query set (P) of size 60 trajectories and choose K = 70. 

Figure 34 shows the results of this experiment. The labels in the horizontal axis are given 

in the format x(y), where x is the number of trajectories in the database (Q) and y is the 

total number of points contained in Q. For example, the label “36e3 Tr (7.7e6 Pt)” 

indicates that the size of Q is 36,000 trajectories, and if we sum up all the points 

contained in those trajectories we have 7,700,000 points. In this figure we observe that 
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our GPU implementation is 1.72x faster than the naïve GPU algorithm. The reason why 

this speedup is smaller than the one in the previous experiment (where TKSimGPU is 

3.37x faster than the naïve GPU) is because in this experiment the size of the sample is 

kept fixed at 512, but at the same time the database set is increasing with 4,000 elements 

 

Figure 34. Database size vs. execution time (TKSimGPU) 

 

Figure 33. K vs. execution time (TKSimGPU) 
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at a time. The consequence of this is that, as the size of the database grows, the sample 

trajectory set drawn is less representative of the set Q, and this leads to a poorer (larger) 

epsilon, which in turn leads to candidate sets that are larger than they need to be. Again, 

we confirm that the naïve GPU algorithm has a linear complexity on the size of the 

database because the query set is kept fixed. 

2.1.2.3 Impact of K 

In this experiment we use a query set (P) of size 60 trajectories, a database of size 40,000 

trajectories (10,330,000 data points) and vary K from 10 to 160. Figure 33 shows the 

results of this experiment. In this figure we observe that TKSimGPU is 1.42x faster than 

the naïve GPU algorithm on average. The experiment also shows that the query 

execution time of the naïve GPU algorithm remains practically constant if we increase 

the value of K. The reason for this behavior is that the most time-consuming tasks of the 

naïve implementation, which are writing K×J	to global memory, then finding the 

Hausdorff distance between every pair in K×J, and then sorting this set, do not depend 

on K at all. The only stage of naïveGPU that does depend on K is the function 

REFINE_TKSIMGPU (see Line 43 in Figure 19), which is basically a parallel copy 

between two global memory arrays and is very inexpensive, as the above results show. 

On the other hand, in Figure 33 we observe that the query execution time of our GPU 

implementation of TKSimGPU does depend on K because the choosing of the epsilon 

value for performing the near-join filter uses K as a parameter. A larger value of K will 

lead to a larger epsilon value, and that is the reason why TKSimGPU exhibits this 

behavior. However, we also observe that, as we increase K, the query processing time 

increases rather slowly, and this is because the size of the database (Q) is kept fixed, so 
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having a fixed size for the trajectory database samples under a constant size of Q will not 

degrade how representative the samples are of Q’s spatial distribution, and hence, how 

good our epsilons are. 

 

2.1.2.4 Conclusions of TKSimGPU’s Experimental Results  

Our conclusions from the experimental evaluation of TKSimGPU are the following: 

• Existing parallel GPU trajectory similarity query processing algorithms like 

Gowanlock and Casanova’s [GC14][GC16] and U2STRA[ZYG12] are not 

applicable for processing top-K trajectory similarity queries. Therefore, there 

does not exist a parallel GPU algorithm for processing top-K trajectory 

similarity queries.  

• TKSimGPU is the first parallel GPU algorithm for processing top-K trajectory 

similarity queries. 

• TKSimGPU performed significantly better (3.37x faster execution time) than the 

existing naïveGPU implementation on GPUs using a real-world large-scale 

dataset. 

• Our experiments on a real-world large-scale dataset showed that the size of the 

trajectory query set is linear in the overall query execution time. 

• The size of the database has an almost linear impact in the overall query 

execution time when running TKSimGPU on a real-world large-scale dataset. 

• Our experiments on the Geolife dataset show that K has a sub-linear impact on 

the execution time. This is evidenced in the fact that the rate of increase of the 
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query execution time decreases as K grows larger. This means that TKSimGPU 

scales well with K. 

 

2.2 Experimental Analysis of Top-KaBT 

In this section we describe the dataset, the hardware and software environment, and the 

experiments used to compare the state of the art top-K trajectory similarity query 

processing algorithm on GPU, TKSimGPU [LGZY15], when combined with Top-KaBT 

to reduce candidate sets against TKSimGPU itself and against a naïve exhaustive GPU 

search algorithm. The naïve exhaustive search algorithm finds the Hausdorff distances 

between all pairs of (p,q)	⊆P×Q, and then sorts those distances to select the top K most 

similar trajectories in Q for every p	∈	P. 

 

2.2.1 Experimental Setup 

2.2.1.1 Hardware and Software Description 

For our experimental evaluation of Top-KaBT, we use the same hardware and software 

environment described in Section 2.1.1.2. 

 

2.2.1.2 Datasets and experiment setup 

For our experimental evaluation of Top-KaBT, we use the same Geolife dataset 

described in Section 2.1.1.2. 

 

2.2.1.3 Competing Algorithms 



 158 

In these experiments we compare our proposed candidate trajectory pair pruning 

technique, Top-KaBT, combined with TKSimGPU against TKSimGPU alone (with no 

pruning help from Top-KaBT) and against a naïve exhaustive search GPU algorithm 

called naïveGPU. NaïveGPU is a parallel GPU algorithm that works by computing the 

Hausdorff distance between p and q for every (p,q) in P×Q, then sorting the pairs inside 

each set Cp in increasing order of Hausdorff distance, finally taking for every Cp, the K 

pairs with smallest Hausdorff distance. 

 

2.2.1.4 Performance Metrics 

For these experiments we use the following performance metrics: average query 

execution time (measured in milliseconds) and the percentage of candidate trajectory 

pairs (p,q) in the set P×Q whose similarity is computed by each algorithm. To illustrate 

this concept of the percentage of candidate pairs explored, notice that naïveGPU always 

explores (computes the Hausdorff distance between) 100% of the candidate pairs in 

P×Q because by its own nature, naïveGPU performs an exhaustive search on all 

possible candidate pairs. Therefore, the lower this percentage, the more efficient the 

pruning technique is since it computes the similarity measure on a smaller subset of 

P×Q. 

 

2.2.1.5 Experimental Parameters 

For this experiment we have used the exact same parameters of the experimental 

evaluation of TKSimGPU, presented in Section 2.1.1.4. We avoid repeating them here 

in this section. 
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2.2.2 Experimental Results 

2.2.2.1 Impact of the query set size (|P|) 

In this experiment we use a database size (Q) of 40,000 trajectories (whose points add up 

to 10,330,000), and K = 70. We vary the query set size from 20 to 100 trajectories (up to 

17,000 points (x,y,t)).  

 

Figure 35. Query set size vs. execution time (Top-KaBT) 

In Figure 35 we see that the average query execution times of all three techniques seems 

linear. This is because the average query execution time is dominated by the average 

number of (p,q) candidates that remain before running the refinement stage, and this 

number of candidate pairs grows, in the case of our three techniques, linearly with the 

size of the query set. This behavior was expected for the naïve implementation because 

its final candidate set is P×Q, and if Q is fixed, the cardinality of this candidate set is a 

linear function of the size of P. 
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Figure 36. Query set size vs. % candidate pairs explored (Top-KaBT) 

In Figure 35 we see that if the database size is fixed, and the query set size increases 

linearly, then the average query execution time in TKSimGPU+Top-KaBT is on 

average 4.72 times faster than in TKSimGPU This is because, as we can see in Figure 

36, the candidate set size of TKSimGPU+Top-KaBT is on average 4 times smaller than 

the one that TKSimGPU alone generates. TKSimGPU is also 11 times faster than 

naïveGPU because its candidate set size is 15 times smaller than the naïveGPU’s.  

Figure 36 shows the impact of the size of the query set (|P|) on the percentage of pairs 

P×Q explored (i.e., the percentage of pairs that have their Hausdorff distances 

computed). In this figure we observe that naïveGPU always explores 100% of the pairs 

in P×Q, as expected. In Figure 36 we also observe that for all three algorithms the 

percentage of (p,q) candidate pairs in P×Q pruned does not seem to depend on the size 

of the query set. In particular, TKSimGPU+Top-KaBT does not show a strong 

dependency on the size of the query set P. The reason for this is that each query 

trajectory p in P has an approximately equal number of (p,q) candidate pairs pruned; 
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therefore, by increasing the size of the query set P by a factor of n times leads to an n 

time increase of the number of candidate pairs in P×Q, but the number of candidate 

pairs pruned also increases by n (because Theorem III.3.9 prunes the same number of 

pairs for every p in P), which implies that the percentage of candidate pairs pruned is 

nearly constant, which is what we observe in Figure 36. 

 

The previous observation is also consistent with Figure 35, in which we saw a linear 

relationship between |P| and the average query execution time. This is because the 

percentage of candidates pruned remains constant as the query set size increases, so the 

amount of non-pruned pairs (which is proportional to the average query processing 

time) must also increase linearly with |P|.  

 

In Figure 37 we observe the impact of the size of the query set (|P|) on the average 

 

Figure 37. Query set size vs. execution time of Top-KaBT alone 
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execution time of the pruning algorithm Top-KaBT alone (without counting the 

execution time of TKSimGPU). We observe that as the size of the query set increases, 

the average execution time for this pruning algorithm increases. However, comparing 

the execution times in Figure 35 and Figure 37 we observe that the average query 

execution time of just the Top-KaBT portion of TKSimGPU + Top-KaBT represents 

around 2.5% of the total average execution time of TKSimGPU + TopKaBT. This 

implies that the overhead of adding the Top-KaBT pruning on top of TKSimGPU is 

small in comparison with the execution time of TKSimGPU alone. 

 

2.2.2.2 Impact of the database size (|Q|) 

 In this experiment we use a query set size of 60 trajectories, a value K = 70. The 

database size varies linearly in the range from 28,000 to 56,000 trajectories (from 

5,000,000 points up to 12,000,000 points (x,y,t)). 

 

Figure 38. Database size vs. query execution time 
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In Figure 38 we observe that the average query execution time for the three techniques 

seems to be a linear function of the database size when the query set size and K are kept 

constant. The reason for this is that the time complexity is dominated by the average 

number of candidate pairs remaining after pruning, which is linear in |Q|. In Figure 38 

we observe that TKSimGPU + Top-KaBT is on average 6.44 times faster than 

TKSimGPU because the final number of candidate pairs produced by TKSimGPU + 

Top-KaBT is 11 times smaller than the number of candidate pairs produced by 

TKSimGPU. In this figure we observe also that TKSimGPU is 13 times faster than 

naïveGPU because naïveGPU computes P×Q, while TKSimGPU performs pruning and 

thus reduces the size of the candidate pairs set. 

Figure 39 shows the impact of the database size (|Q|) on the percentage of candidate 

pairs in P×Q that are exhaustively searched in the refine stage. We also see that the 

percentage of candidate pairs pruned by Top-KaBT initially decreases with the size of 

 

Figure 39. Database size vs. % candidate pairs explored 
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the database. This behavior is expected of Top-KaBT because increasing the size of the 

database can either decrease or increase the value of K-cut points. To see this, assume 

K=1, a fixed query trajectory p, a fixed database Q, and such that the candidate pairs 

associated with p are q0, q1, q2 with lower bounds (for their respective Hausdorff 

distances to p) 1, 2 and 3, respectively, and with upper bounds (for their respective 

Hausdorff distances to p) 3, 2, and 4, respectively. Then, according to the definition of a 

cut point, 1 is a cut point associated with the candidate set of p. Now, consider another 

trajectory q4 in the database with lower bound 2.5 and upper bound 4. If q4 is added to 

the set of candidate pairs of p, then this would increase the cut point to 3, so no 

candidate pairs are pruned. However, if a trajectory q5 with lower bound (for its 

distance to p) 0.5 and upper bound 0.75 is added to the set of candidate pairs of p 

instead of q4, then the cut point associated would decrease to 0, which would increase 

the percentage of candidate pairs pruned. Therefore, the way that increases in the 

database size would impact the percentage of candidate pairs pruned depends on the 

spatial distribution of the dataset. 

 

Figure 40. Database size vs. execution time of Top-KaBT alone 
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In Figure 40 we observe a similar behavior to the one in Figure 37, where the average 

execution time of the Top-KaBT pruning portion increases with the size of the database. 

Again, we confirm that the execution time of the Top-KaBT portion represents, on 

average, only 2.5% of the total execution time of TKSimGPU + Top-KaBT, so Top-

KaBT adds very little overhead to the execution time of TKSimGPU. 

 

2.2.2.3 Impact of K 

In this experiment we use a query set size of 60 trajectories, a database size of 40,000 

trajectories (10,330,000 points (x,y,t)), and vary K from 10 to 160. 

 

In Figure 41 we observe that the average query execution time of the naïveGPU 

algorithm remains constant, even though it does increase but almost imperceptibly at 

the scale of the plot, as K increases. The reason for this is that the bulk of the operations 

of the exhaustive search algorithm consists in calculating P×Q, which is independent of 

 

Figure 41. K vs. query execution time 
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K. Also, the time complexity of TKSimGPU and TKSimGPU + Top-KaBT has a 

similar shape, where the average query processing time increases quickly for small K, 

and then the speed of increase stabilizes. Finally, in Figure 41 we observe that 

TKSimGPU + Top-KaBT outperforms TKSimGPU in terms of average query 

processing time, and TKSimGPU outperforms naïveGPU. This is because, again, the 

average query processing time is dominated by the size of the candidate pairs set.  

 

Figure 42. K vs. % candidate pairs explored 

In Figure 42 we see the impact of K on the percentage of candidate pairs pruned by each 

of the techniques compared. In particular, this figure shows that the percentage of 

candidate pairs in P×Q explored by TKSimGPU + Top-KaBT increases with K. This is 

because the set of all possible candidate pairs P×Q is fixed, so for a given query 

trajectory p in P, a linear increase in K forces Top-KaBT to find K-cut points further 

along to the end of the array of candidates, which means that more candidate pairs are 

produced as a result of this. From this figure we can also observe that the size of the 

candidate pair set of TKSimGPU + Top-KaBT is on average 5 times smaller than the 
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size of the candidate pair set of TKSimGPU, which in turn is 4 times smaller than that 

of naïveGPU.  

 

In Figure 43 we observe that the average execution time of Top-KaBT exhibits an 

overall tendency to increase as K grows. However, its behavior looks less like a straight 

line than in the case of Figure 37 and Figure 40. The reason for this is that when 

changing the value of K and leaving the sizes of the query set and the database constant, 

much of the work performed by Top-KaBT remains the same. For example, the 

calculation of the lower and upper bounds to the Hausdorff distances (Line 4 of Figure 

22 in Chapter III), the sorting of Qp (Line 5 of Figure 22), the left shifting of the array 

(Line 6 of Figure 22), and the finding of the cut-points (Line 7 of Figure 22), etc. 

require the same amount of work if the query set and the database sizes are kept 

invariant. The only difference in the amount of work that is introduced by changing K 

comes at Lines 47 to 51 in Figure 22 when the spurious candidate pairs are removed. 

 

Figure 43. K vs. execution time of Top-KaBT alone 
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Since larger values of K usually lead to a lower percentage of candidate pairs pruned, 

larger values of K require more write operations in Line 49, which leads to slightly 

longer execution times, as can be seen in Figure 43. 

2.2.2.4 Conclusions of Top-KaBT’s Experimental Results  

Our conclusions from the experimental evaluation of Top-KaBT are the following: 

• Top-KaBT is a pruning technique to help reduce the size of the candidate sets 

generated by top-K trajectory similarity query processing algorithms, and is 

applicable for any such query processing algorithm that uses a similarity 

measure based on the triangular inequality.  

• The execution time of Top-KaBT alone, i.e., the execution time of running only 

the pruning algorithm and not running the entire top-K trajectory query 

processing algorithm, is negligible for a real-world large-scale dataset like 

Geolife.  

• When dealing with any real-world large-scale dataset, such as Geolife, the 

pruning performance of Top-KaBT (a measure of how much work Top-KaBT 

saves) shows very little impact as the size of the trajectory query set increases. 

Hence, Top-KaBT can be used in applications where it is desirable to retrieve 

similarities for a large number of query trajectories. 

• The pruning performance of Top-KaBT in the Geolife dataset scales well in 

terms of the database size. However, this pruning performance in terms of the 

database size is, unlike the case of the performance for the trajectory query set 

size, depends on the spatial distribution of the dataset. 
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• Similarly, the pruning performance of Top-KaBT in the Geolife dataset scales 

well in terms of K. This means that Top-KaBT can be used in applications 

where the users want to retrieve large amounts of similar trajectories for every 

query trajectory. 

• The execution time of Top-KaBT scales well as the size of the trajectory query 

set increases. For this reason, Top-KaBT can be used in applications where users 

desire to obtain similar trajectories for a large number of query trajectories. 

• The execution time of Top-KaBT scales well as the value of K increases. 

Therefore, Top-KaBT can be used for a wide variety of applications that 

demand large values of K. 

• Top-KaBT does not require any user-defined parameters. Hence, a Top-KaBT 

user does not need to search in a large parameter space for the parameter values 

that yield the best performance for Top-KaBT. For this reason, Top-KaBT can 

be easily applied as an auxiliary pruning tool for any top-K trajectory similarity 

query processing algorithm that uses a metric satisfying the triangular 

inequality. 

 

2.3 Experimental Analysis of TrajEstU 

2.3.1 Experimental Setup 

2.3.1.1 Hardware and Software Description 

The algorithms used in these experiments were implemented in Java 8, and were run on 

a workstation equipped with an Intel Xeon E5 and 64GB of RAM. 
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2.3.1.2 Datasets and Experiment Setup 

For our experiments, we use two real datasets and one synthetic dataset. The first real 

dataset used is the deer dataset collected by the Starkey project [LHW07] consisting of 

the trajectories of deer from 1993 to 1996, and obtained through radio-telemetry. This 

dataset has 32 trajectories and 20,000+ points. The second real dataset is the hurricane 

dataset [LHW07] consisting of the trajectories of Atlantic Hurricanes occurring during 

the period from 1950 to 2004. This dataset contains 608 trajectories and 19,000+ points. 

Since the real life datasets are small, we generated a larger synthetic dataset to test the 

scalability of our technique. This synthetic dataset consists of 100,000 trajectories 

whose points sum up to 10,000,000, and was generated using moveHMM [MLP16], 

which simulates animal trajectories. These trajectories correspond to movements in 

unconstrained spaces. 

 

To obtain the ground truth data, we assume that all the trajectories in the database are 

the ground truth data, i.e., the trajectories in the database are considered correct with no 

uncertainty. 

 

Now we discuss how we generate the input trajectories whose true paths we wish to 

estimate. Input trajectories are trajectories with uncertainty for which we want to 

compute estimates for its positions. To generate our input trajectories, we randomly 

remove high sampling rate trajectories from the database and then add Gaussian noise 

with distribution N(0, σ2) to every one of its sample points, in order to simulate 

measurement uncertainty. Then, to simulate the model uncertainty, a subset of the 
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sample points is removed from these trajectories to ensure a low-sampling rate. We 

artificially add timestamps to all the points of all trajectories, and that timestamp added 

to each point is its index in its corresponding trajectory. Therefore, this scheme assumes 

that the trajectories in the datasets have a uniform sampling rate. For example, to 

generate an input trajectory with half the sampling rate of a given ground truth 

trajectory, we remove every other point from the latter. The resulting input trajectory is 

then said to have a sampling rate of 0.5 because its sampling rate is half of that of the 

ground truth. 

 

2.3.1.3 Competing Algorithms 

In these experiments we compare our proposed technique, TrajEstU, against Chazal et 

al.’s technique [CCGJ+11], described in Section III.2.2.2. This technique, like 

TrajEstU, is a data-driven technique that exploits the underlying database in order to 

reduce the model and measurement uncertainty in a trajectory. It does so by embedding 

the noisy input trajectory and the non-noisy database trajectories into a higher-

dimensional space. Once this is done, the technique moves each point of the input 

trajectory towards the nearest embedded database points, and then brings all the 

resulting points back into the native space of the trajectory.  

 

2.3.1.4 Experimental Parameters 

The dynamic and static parameters of the following experiments are given in Table 4. 

One of the dynamic parameters is the sampling rate. We measure the sampling rate as a 

real number in the interval [0,1] for all datasets, where a value of 0.5, for example, 
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expresses that the input trajectory was obtained from the ground truth trajectory by 

removing every other point; hence, the resulting input trajectory has half the number of 

points of the ground truth trajectory. A value of 0.3 for the sampling rate of the input 

trajectory expresses that this trajectory was generated from the ground truth trajectory 

by keeping one point, then removing the next two points, then keeping the next one, 

then removing the next two, and so on. Therefore, a value of 1 for the sampling rate of 

the input trajectory expresses that the input trajectory has the same points as the ground 

truth. For this dynamic parameter we chose 0.5 as the default value for all datasets 

because it lies in the middle of the range of values. Another dynamic parameter in this 

set of experiments is the length of the input trajectory (the summation of the distances 

between consecutive points in a trajectory). The range of values of this parameter 

naturally depends on the dataset. However, in all cases we chose a default value equal 

to the average of the lengths of all trajectories in each dataset. So, for example, for the 

deer dataset, we chose a default value of 10,000 because that is the average of the 

lengths of all trajectories in that dataset. A third dynamic parameter for our experiments 

is the standard deviation of the measurement noise. For all datasets, we chose a range of 

values between 0m and 30m because we assume that the trajectory points are collected 

through GPS sensors, and these sensors have errors less than 20m in 99% of the cases, 

and errors less than 6m in 96% of the cases [GPS17]. This is also the reason why we 

chose 6m as the default value for this parameter. Our final dynamic parameter for our 

experiments is the acceleration tolerance, which is used by TrajEstU to split an input 

trajectory into near-constant acceleration intervals. For this parameter we have chosen 

the value that produced the highest accuracy for TrajEstU. 
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Besides the dynamic parameters, we have a static one, belonging to TrajEstU, whose 

value is kept constant in all experiments. This is the epsilon eMBR, which delimits the 

size of the area used by TrajEstU to search for clusters that are close to a given input 

trajectory. For this parameter, we have chosen the values that produced the highest 

accuracy for the technique. There are also two static parameters belonging to Chazal et 

al.’s algorithm, which are the number of nearest neighbors in the embedded space that 

are averaged (K), and the number of adjacent trajectory points that are combined into 

one tuple in order to embed points into a higher-dimensional space (n). For these 

parameters we have chosen the values that yielded the highest accuracy for this 

algorithm. 

 

Parameter 
Name 

Deer Dataset Hurricane Dataset Synthetic Dataset 
Range of 
Values 

Default 
Value 

Range of 
Values 

Default 
Value 

Range of 
Values 

Default 
Value 

Sampling 
Rate 

0.1 – 1.0 0.5 0.1 – 1.0 0.5 0.1 – 1.0 0.5 

Input 
Trajectory 

Length 

3,000 – 
15,000 

10,000 100-600 300 100 – 500 300 

Standard 
deviation of 

the 
measuremen

t noise 

0 – 30 6 0 – 30 6 0 – 30 6 

Epsilon 
eMBR 

20 20 20 20 20 20 

Acceleration 
tolerance 

0.1 – 100  1.1  0.1 – 100 1.1  0.1 – 100 1.1  

K 5 5 5 5 5 5 
n 1 1 1 1 1 1 

Table 4. Experimental parameters of TrajEstU 

2.3.1.5 Performance Metrics 
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To measure the estimation accuracy we use the EDR trajectory similarity measure 

[COO05] to determine the similarity between the trajectory suggested by our algorithm 

and the ground truth. The EDR trajectory similarity between two trajectories q1 and q2 

is similar to the edit distance on strings in that it computes the minimum number of 

points that have to be modified in order to transform one of the input trajectories into 

the other. The key difference between EDR and the edit distance lies in the matching 

function: in EDR two points match if they are within a distance of δ, where δ is a fixed 

positive real number.  For calculating the EDR distance, we use δ = 20m. We see then 

that the larger the distance, the more dissimilar q1 and q2 are. Therefore, the maximum 

possible distance is max(|q1|, |q2|)  where |qi| is the number of points in the trajectory qi. 

Using this, we define the EDR match percentage between q1 and q2 as (1 – EDR(q1, q2)) 

/ max(|q1|, |q2|). Hence, the EDR match percentage is a number from 0 to 1, and the 

higher the EDR match percentage, the more similar q1 and q2 are.  

 

Our second evaluation metric is the average query execution time (ET), where we 

measure the time from the moment when the query starts executing until it finishes. The 

average execution time is taken over 30 runs of the same query. 

 

2.3.2 Experimental Results 

2.3.2.1 Impact of the Sampling Rate 

We study the effects of the model uncertainty by studying the impact of the sampling 

rate of the points in the input trajectory. This is because the lower the sampling rate, the 

higher the model uncertainty is. In these experiments pertaining to the impact of the 
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sampling rate, the x-axis denotes the sampling rate multiplier. To simulate different 

sampling rates, we choose a set of input trajectories, called the original set of input 

trajectories, and then remove points from them to obtain other input trajectories with 

lower sampling rates.  The value 1 of the sampling rate multiplier refers to the case 

where we use the original set of input trajectories, the value 1/2 refers to the case where 

we use the input trajectory set resulting from removing every other point from the 

original input trajectories, and the value 1/3 refers to the case where we use the input 

trajectory set resulting from removing every other three points from the original input 

trajectories, and so on. Therefore, the higher the value of the sampling rate multiplier, 

the higher the sampling rate. 

 

Figure 44 shows the impact of the sampling rate on the accuracy of both algorithms for 

the deer dataset. The figure shows that the lower the sample rate, the lower the accuracy 

 

Figure 44. Sampling rate vs. accuracy (deer dataset) 
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is. This is because a lower sampling rate implies higher model uncertainty, which in 

turn leads to more difficulty in accurately predicting the true path of the moving object. 

We observe that TrajEstU’s accuracy is consistently higher than Chazal et al.’s 

algorithm. We also observe that TrajEstU’s accuracy seems to increase exponentially, 

which can be explained because the number of points of the query trajectories also 

increases exponentially.  

Figure 45 shows the impact of the sampling rate on the execution time of both 

algorithms for the deer dataset. In this figure we observe that the execution time 

increases with a larger sampling rate because the bulk of the work done by the online 

phase of TrajEstU is proportional to the number of sampled points considered when 

building the linear regression models. For this dataset, the execution time of both 

algorithms exhibit a similar (sort of linear) behavior as the sampling rate changes, and 

also the average execution times for both algorithms are fairly close to each other, with 

TrajEstU running slightly faster (although the difference is negligible). 

 

Figure 45. Sampling rate vs. execution time (deer dataset) 
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Figure 46 shows the impact of the sampling rate on TrajEstU’s accuracy for the 

hurricane dataset. This figure also shows that the lower the sample rate, the lower the 

accuracy is, which is an expected behavior. In this figure we also observe that both 

algorithms have identical behaviors to those exhibited in the deer dataset: TrajEstU has 

a consistently higher accuracy, and as the sampling rate increases, the accuracy 

increases in a non-linear fashion because the number of points in the input trajectory 

varies also in a non-linear manner.  

 

Figure 46. Sampling rate vs. accuracy (hurricane dataset) 

Figure 47 shows the impact of the sampling rate on the average execution time of both 

competing techniques for the hurricane dataset. In this experiment we see that both 

algorithms exhibit comparable execution times (the differences in their ETs is in the 

order of few milliseconds, which is not substantial), with TrajEstU being only slightly 

faster. 
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Figure 47. Sampling rate vs. execution time (hurricane dataset) 

Moreover, in Figure 45 and Figure 47 we observe that for the deer and hurricane 

datasets the execution time of Chazal et al.’s algorithm is shorter than that of TrajEstU; 

however, in the synthetic dataset the opposite happens and TrajEstU is the faster 

executing algorithm. When studying the impact of the sampling rate on the execution 

time of both algorithms (Figure 45, Figure 47 and Figure 49), we cannot conclude that 

either algorithm is consistently faster than the other. The reason for why sometimes 

TrajEstU is faster and sometimes slower than Chazal et al.’s algorithm is that the ETs of 

algorithms depend on the spatial distribution of the dataset. In the case of TrajEstU, this 

is because the execution time is proportional to the number of clusters found in a 

region; and in the case of Chazal et al.’s algorithm this is because the execution time 

depends on how expensive it is to find the k nearest neighbors for every embedded 

point of the input trajectory. Nonetheless, in all three datasets both algorithms are 

competitive in terms of execution time since the execution times are in the order of 

milliseconds. In other words, the differences in their execution times are negligible. 
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Figure 48. Sampling rate vs. accuracy (synthetic dataset) 

 

Figure 49. Sampling rate vs. execution time (synthetic dataset) 

2.3.2.2 Impact of the Query Length 

Figure 50, Figure 52 and Figure 54 show that the length of the input trajectory does not 

have a significant impact on the accuracy of either technique. This is expected because 

TrajEstU works by splitting the trajectory into intervals where the acceleration does not 
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change significantly, and the number and duration of these constant-acceleration 

intervals is not a function of the length of the input trajectory. The same is true for 

Chazal et al.’s algorithm, which does not take the length or the size of the trajectory as 

an input parameter. 

 

As we can see in Figure 51, Figure 53 and Figure 55, the execution time does, however, 

increase with the length of the input trajectory because, under a constant acceleration 

tolerance, the longer the trajectory, the greater the number of points and the greater the 

number of near-constant acceleration models that need to be fitted. The same is true for 

Chazal et al.’s algorithm because the work performed is proportional to the size of the 

trajectories, which is correlated with the length of the trajectory. In those figures we 

also observe that in some cases, like with the deer and synthetic datasets, Chazal et al.’s 

algorithm has shorter ET, while in other cases, like with the hurricane dataset, TrajEstU 

 

Figure 50. Query length vs. accuracy (deer dataset) 
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has shorter ET. However, in all three datasets, we observe that both algorithms have 

extremely short execution times that are competitive with each other. 

 

Figure 51. Query length vs. execution time (deer dataset) 

 

Figure 52. Query length vs. accuracy (hurricane dataset) 
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Figure 53. Query length vs. execution time (hurricane dataset) 

 

 

Figure 54. Query length vs. accuracy (synthetic dataset) 
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Figure 55. Query length vs. execution time (synthetic dataset) 

2.3.2.3 Impact of the Standard Deviation of the Noise 

In this experiment we study the impact of the magnitude of the variance of the Gaussian 

noise that was artificially added to every point in the query trajectories in order to 

simulate measurement uncertainty. Figure 56, Figure 58 and Figure 60 show that the 

greater the standard deviation of the measurement noise, the lower the accuracy is. This 

is expected because it becomes harder to accurately predict the true path of the moving 

object when the measurement/instrumentation uncertainty is higher.  

 

In Figure 56 it can be seen that the accuracy of TrajEstU is up to 1.7X greater than that 

of the embedding algorithm, but the gap progressively narrows as the standard deviation 

of the noise increases, so that when the standard deviation is 30m, both algorithms 

exhibit the same accuracy. However, in practice, the standard deviation of the 

measurement error of GPS devices does not exceed 20m [GPS17], which means that in 

GPS applications TrajEstU would have better accuracy than the competing algorithm. A 
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similar behavior is also observed in the hurricane dataset, only that with this dataset 

TrajEstU exhibits up to 3.2X the accuracy of Chazal et al.’s algorithm, and, despite the 

fact that the gap also narrows as the noise increases, TrajEstU has consistently higher 

accuracy than the competing algorithm. 

 

Figure 57, Figure 59, and Figure 61 show that the execution time is not impacted by the 

standard deviation of the measurement noise because when building the linear 

regression models, the amount of work performed by the technique is the same 

independently of this standard deviation of the measurement noise. Also, in Figure 57, 

Figure 59 and Figure 61 we observe that for all three datasets, the execution time of 

Chazal et al.’s algorithm shows no sensitivity towards the variation of the measurement 

noise. This is to be expected because the magnitude of the error does not play any role 

in the algorithm. We also observe that just like in all previous experiments, the 

execution times of both techniques are competitive with each other. 

 

Figure 56. Standard deviation of the measurement noise vs. accuracy (deer dataset) 
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Figure 57. Standard deviation of the measurement noise vs. execution time (deer dataset) 

 

Figure 58. Standard deviation of the measurement noise vs. accuracy (hurricane dataset) 
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Figure 59. Standard deviation of the measurement noise vs. execution time (hurricane dataset) 

 

Figure 60. Standard deviation of the measurement noise vs. accuracy (synthetic dataset) 
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Figure 61. Standard deviation of the measurement noise vs. execution time (synthetic dataset) 

2.3.2.4 Impact of the Acceleration Tolerance 

The acceleration tolerance is used to split a trajectory into near-constant acceleration 

intervals. Figure 62, Figure 63, and Figure 64 show that as the acceleration tolerance 

increases, the accuracy decreases. This is because as the acceleration tolerance is larger, 

 

Figure 62.Acceleration tolerance vs. accuracy (deer dataset) 
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then within each near-constant acceleration interval, the acceleration varies more 

markedly so that our linear regression model, which assumes constant acceleration, 

cannot adequately fit the data.  

 

2.3.2.5 Impact of the Dataset Size 

Despite the fact that the synthetic dataset is significantly larger than the real life ones, 

we observe that the average query execution time for any given experiment did not 

change significantly between the datasets. This is because the dataset size only impacts 

the pre-processing stage where we cluster the trajectories, and this stage is performed 

off-line. The impact of the dataset size could then only influence the average query 

execution time through the number of resulting trajectory clusters that need to be 

considered in Line 7 of Figure 30 in Chapter III. In our three datasets, we observe that 

with the clustering parameters recommended by [LLLH10], the cluster density is the 

 

Figure 63. Acceleration tolerance vs.  accuracy (hurricane dataset) 
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same so that our algorithm considers a similar amount of clusters. From the figures in 

Section IV.2.3.2 that evaluate the impacts on the accuracy of TrajEstU we also observe 

that the accuracy did not vary much among datasets. This is expected in the deer and 

synthetic datasets because the latter dataset was generated using an animal movement 

simulator, and because the acceleration tolerance chosen led to constant acceleration 

intervals of about the same size; therefore, the linear regression models fitted sets of 

points with similar movement patterns and with about the same number of points.  

 

2.3.2.6 Conclusions of TrajEstU’s Experimental Results 

Our conclusions from the experimental evaluation of TrajEstU are the following: 

• TrajEstU is a pruning technique to help reduce the size of the candidate sets 

generated by top-K trajectory similarity. 

 

Figure 64. Acceleration tolerance vs. accuracy (synthetic dataset) 
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• TrajEstU achieves higher accuracy estimates than the state-of-the-art trajectory 

estimation techniques in unconstrained spaces. 

• TrajEstU achieves a competitive execution time with existing trajectory 

estimation techniques on unconstrained spaces. 

• TrajEstU’s average execution time (for its online component) per input 

trajectory is negligible. Therefore, it can be used as a scalable pre-processing 

technique for trajectory estimation without any concerns that it will impose an 

execution time penalty. 

• The most time-consuming portion of TrajEstU is the pre-processing stage, 

where trajectories are locally clustered according to Traclus [LHW07]. 

However, our experiments show that this algorithm can be efficiently 

parallelized with GPUs, which help diminish the pre-processing execution time. 

• The accuracy advantage that TrajEstU holds against the competing technique 

narrows as the standard deviation of the measurement noise increases up to 20m. 

However, in real applications involving GPS sensors, the standard deviation of 

the noise is much smaller than 20m [GPS17], so this decrease in the accuracy 

advantage of TrajEstU is less significant in real-world applications. 

• TrajEstU shows no accuracy impact as the size of the input trajectories 

increases. Therefore, TrajEstU can be used to estimate trajectories with large 

lengths without any concerns for decreases in the accuracy of the estimations. 

• The execution time of TrajEstU scales well with the length of the input 

trajectories. 
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• TrajEstU shows no significant impact in accuracy in terms of the epsilon eMBR, 

nor in terms of the acceleration tolerance. Therefore, there should not be a big 

concern in finding the values for these parameters in order for TrajEstU to 

achieve its best performance. 

 

2.4 Experimental Analysis of TraclusGPU 

2.4.1 Experimental Setup 

2.4.1.1 Hardware and Software Description 

The algorithms described in this set of experiments were implemented in Java 8, on a 

workstation running Ubuntu 14.04, with two Intel Xeon E5 chips with six cores, 64GB 

of RAM, and an nVidia Quadro K5000 with 4GB of RAM. 

 

2.4.1.2 Datasets and Experiment Setup 

For our experiments, we use two a synthetic dataset consisting of 100,000 trajectories 

whose points sum up to 10,000,000, and that was generated using moveHMM 

[MLP16], which simulates animal trajectories.  

 

2.4.1.3 Competing Algorithms 

In this set of experiments we compare our proposed technique, TraclusGPU, against a 

serial implementation of the Traclus technique [LHW07].  

 

2.4.1.4 Experimental Parameters 
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For our experiments we will see the impacts on the performance of TraclusGPU when 

we vary the values of the size of the set of trajectories that we wish to cluster, which we 

also refer to here as the size of the dataset. One reason for choosing this experimental 

parameter is that the main motivation for TraclusGPU was to solve the scalability 

problem posed by the serial Traclus technique, which took weeks to run on our dataset. 

Despite that TraclusGPU is a clustering algorithm, we do not study the quality of the 

clusters because TraclusGPU is a parallel version of Traclus, so the quality of the 

cluster it produces is the same as that of those produced by Traclus. Our static 

parameters in this experiment are ∫ and MinPts, which denote the size of the 

neighborhoods and the minimum number of segments in each cluster, respectively, in 

both Traclus and DBSCAN. Table 5 presents a summary of our experiment parameters. 

 

Parameter Name Synthetic Data 
Range of Values Default Value 

Size of the trajectory set 10,000 – 70,000 35,000 
¡ 2 2 

MinPts 7 7 
Table 5. Experimental parameters of TraclusGPU 

2.4.1.5 Performance Metrics 

Our evaluation metric is the average query execution time (ET), where we measure the 

time from the moment when the clustering algorithm starts executing until it finishes. 

The average execution time is taken over 30 runs of the same query. 

 

2.4.2 Experimental Results 

2.4.2.1 Impact of the Dataset Size 
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In this experiment we study the impact of the dataset size on the performance of both 

TraclusGPU and the serial Traclus algorithm. In Figure 65 we observe that there is a 

significant performance difference between TraclusGPU and the serial Traclus 

algorithm, where TraclusGPU is able to cluster a database with 4,000,000 segments 

(about 400,000 trajectories) in around 3 hours, while the serial Traclus does the same in 

sixteen hours. We see then that the performance increase in terms of execution time is 

around 5X. 

 

Figure 65. Number of segments vs. execution time (synthetic dataset) 

2.4.2.2 Conclusions of TraclusGPU’s experiment results 

Our conclusions from the experimental analysis performed on TraclusGPU are the 

following: 

• The total execution time of TraclusGPU significantly improves upon the 

execution time of the serial Traclus algorithm. In particular, TraclusGPU offered 

reasonable execution times of around 4 hours to cluster our large-scale dataset, 

as opposed to the serial Traclus algorithm, which took two weeks to run on the 
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same dataset. This shows the difference between a practical algorithm for Big 

Trajectory Data (TraclusGPU) and an impractical algorithm (Traclus). 

• We observe that TraclusGPU has a comparable execution time to the serial 

Traclus algorithm when the total number of segments in the database is around 

100,000 (around 10,000 trajectories) and that only when the number of segments 

grows beyond 2,000,0000 (around 200,000 trajectories) is that the execution 

time advantage of TraclusGPU really shows. 
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CHAPTER V  
CONCLUSIONS AND FUTURE WORK 

 
In this dissertation we have proposed a system for processing top-K trajectory similarity 

queries on Big Data using GPUs. This system consists of four components: 

TKSimGPU, the query processing engine, Top-KaBT, the parallel pruning technique 

that helps reduce the amount of work performed by the query processing engine, 

TrajEstU, the trajectory estimation technique to address the issue of uncertainty in 

trajectories, and TraclusGPU, the local trajectory clustering technique used to assist 

TrajEstU in addressing the uncertainty of trajectories. 

 

The first component, TKSimGPU, is a parallel top-K trajectory similarity query 

processing technique on Big Data using GPUs. There are many applications for this 

type of query such as for social media trajectory sharing applications [ZXM10], where 

users are interested in finding potential friends with similar travel trajectories, ecology 

applications where scientists want to study the migration patterns of birds to help 

understand how diseases are transmitted between these animals [HGKL07], and in 

astronomy [GC14][GC16] where astronomers want to study the movements of galaxies. 

 

The second component is Top-KaBT, which is our parallel pruning technique that is 

designed to help TKSimGPU better cope with the large volume of Big Trajectory data 

by removing spurious candidate trajectory pairs and their associated performance 

overhead. 
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The third component, TrajEstU, is our trajectory estimation technique, which was 

designed to help TKSimGPU deal with model and measurement uncertainty by building 

models for trajectories, out of which better trajectory estimates can be obtained. 

 

The fourth component, TraclusGPU, is our local trajectory clustering technique, which 

is based on the ideas of the serial Traclus algorithm. TraclusGPU was designed to help 

address the scalability issue of the offline clustering technique, Traclus, used in 

TrajEstU when dealing with large datasets. This makes TrajEstU a suitable technique to 

cope with Big Trajectory data. 

 

We conducted complexity analyses for all our proposed algorithms: TKSimGPU, Top-

KaBT, TrajEstU and TraclusGPU. In addition to this, we performed experimental 

evaluations to compare TKSimGPU against an exhaustive search GPU algorithm, 

naïveGPU, in terms of query execution time. Then, we compared TKSimGPU against a 

combined approach TKSimGPU + Top-KaBT in terms of execution time, percentage of 

candidate trajectory pairs pruned. Finally, we compared our trajectory estimation 

technique TrajEstU against an existing state-of-the-art trajectory estimation algorithm, 

called Chazal et al.’s algorithm, in terms of accuracy and execution time. 

 

1 Summary of the Performance Results 

1.1 Summary of the Results of TKSimGPU 

Processing top-K trajectory similarity queries poses many computational challenges. 

One of these challenges is the volume of the data. This is because in Big Trajectory 
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Data applications trajectories have many points, and the databases on which the search 

is performed have very large sizes. In addition to the large sizes of the trajectories and 

trajectory databases involved, there is the difficulty that computing the similarity 

between trajectories usually has a quadratic time complexity on the sizes of the 

trajectories, which makes processing top-K trajectory similarity queries an even harder 

problem.  

 

In this dissertation we have proposed a parallel top-K trajectory similarity query 

processing algorithm for GPUs, called TKSimGPU. This algorithm is based on the idea 

that we can sample the trajectory query set and the trajectory database to help estimate 

the average trajectory similarity and then use this estimate to perform a series of near-

join trajectory similarity queries until the query result set is complete. TKSimGPU was 

designed to deal with the volume characteristic of Big Trajectory Data through the use 

of parallelism. We now summarize the TKSimGPU as follows: 

 

• To the best of our knowledge, TKSimGPU is the first parallel top-K trajectory 

similarity query processing algorithm on Big Data using GPUs.  

• TKSimGPU is designed to deal with the volume characteristic of Big Trajectory 

data through the use of GPU parallelism. It assumes that trajectories have no 

uncertainty. 

• TKSimGPU avoids an exhaustive search on the trajectory query set and the 

database by extracting random samples from both these sets, and then 

computing the average similarity between the samples. Then with this similarity 
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estimate, TKSimGPU performs a sequence of near-join trajectory similarity 

queries to obtain the final query result set. 

• The linear data structures used by TKSimGPU were designed with the goal that 

memory accesses follow patterns that help ensure memory coalescing, thus 

guaranteeing good performance. 

• TKSimGPU was designed with the goal of ensuring load balance across the 

thread blocks.  

• The worst-case work complexity of TKSimGPU is Z( K ∙ J ∙ log	(|J|)), 

where P and Q are the trajectory query set and the database set, respectively. 

This is the same complexity that most of the existing top-K trajectory similarity 

query techniques have (e.g., ERP [CN04], EDR [COO05]). 

• The worst-case space complexity of TKSimGPU is O( K ∙ J ). 

• TKSimGPU performed significantly better than the existing naïveGPU 

implementation on GPUs using a real-world large-scale dataset. 

• Our experiments on a real-world large-scale dataset showed that size of the 

trajectory query set is linear in the overall query execution time. 

• Our experiments on a real-world large-scale dataset show that, despite the fact 

that the worst-case time complexity of TKSimGPU is Z( K ∙ J ∙ log	(|J|))|)), 

where P and Q are the trajectory query set an the database set, respectively, the 

size of the database had an almost linear impact in the overall query execution 

time. 

• Our experiments show that K seems to have a sub-linear impact on the execution 

time. This is evidenced in the fact that the rate of increase of the query execution 
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time decreases as K grows larger. This means that TKSimGPU scales well with 

K. 

1.2 Summary of the Results of Top-KaBT 

As we have mentioned, one of the issues of Big Trajectory data is the volume. This 

volume arises because of the large sizes of both the query trajectory sets and the 

trajectory database, and also because of the large number of points contained within the 

trajectories themselves. Our proposed top-K trajectory query processing algorithm, 

TKSimGPU, was designed to efficiently use GPUs in order to tackle the volume 

challenge. This algorithm, however, can still generate a large number of spurious 

candidate trajectory pairs that cannot form part of the result set, which leads to 

additional and unnecessary computational overhead. To help TKSimGPU better cope 

with the volume of Big Trajectory data, we proposed a GPU pruning technique, called 

Top-KaBT. Top-KaBT is a parallel technique to reduce the number of spurious 

candidate trajectory pairs generated when processing top-K trajectory similarity queries 

for Big Trajectory Data applications on GPUs. Top-KaBT works by using only the 

lower and upper bounds of the similarity measure to remove candidate pairs that cannot 

belong to the query result set. This reduces the negative impact arising from the small 

size of the GPU’s global memory. In addition, the technique achieves load balancing 

and memory coalescing by having threads perform the same amount of work, and by 

having threads with consecutive indices access consecutive memory locations. 

 

We now summarize Top-KaBT as follows: 
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• To the best of our knowledge, Top-KaBT is the first GPU technique for pruning 

the candidate sets generated by top-K trajectory similarity query processing 

algorithms. 

• Top-KaBT proved to be an effective and efficient pruning technique for 

removing spurious candidate trajectory pairs generated by top-K trajectory 

similarity query processing algorithms. 

• One of the key ideas behind Top-KaBT is to compute a lower and an upper 

bound for the similarity measure for every candidate trajectory pair. It then uses 

these bounds to remove spurious candidate pairs that cannot form part of the 

query result set. By doing this, Top-KaBT performs a tradeoff: instead of 

computing the expensive similarity measure between all candidate trajectory 

pairs, it computes these much cheaper lower and upper bounds for all candidate 

pairs, and then computes the expensive similarity measure but on a reduced 

candidate trajectory set. 

• One of the advantages of Top-KaBT is that it only makes the assumption that 

the underlying trajectory similarity query processing engine uses a similarity 

metric. Therefore, the ideas behind Top-KaBT can be applied not only for 

TKSimGPU, but also for other top-K trajectory similarity query processing 

algorithms. 

• Another advantage of Top-KaBT is that it has no user-defined parameters. 

Therefore, when adding Top-KaBT as a pruning technique to a top-K trajectory 

similarity query processing engine, there is no need to search in a large 



 201 

parameter space for the parameter values that yield the best performance results 

with Top-KaBT. 

• The experiments performed on a real-world large-scale dataset showed that the 

execution time of Top-KaBT was negligible. Therefore, Top-KaBT has the 

advantage that it can be used with query processing engines without any 

concerns for execution time performance penalties. 

• The worst-case work complexity of Top-KaBT is Z( h +	|K| 	 ∙ |hi| ∙ nRW(hi)), 

where h  is the size of the candidate set generated by the query processing 

engine, |K| is the size of the trajectory query set, and hi| is an upper bound to 

the size of the candidate trajectory sets of a single query trajectory p. 

• The worst-case space complexity of Top-KaBT is	Z( h ), which is the size of 

the candidate set generated by the query processing engine. 

• Our experiments show that both the pruning performance (i.e. the percentage of 

candidate pairs explored) and the execution time scale well in terms of the K 

parameter. 

• Our experiments show that both the pruning performance (i.e. the percentage of 

candidate pairs explored) and the execution time scale well in terms of P the size 

of the query trajectory set. 

 

1.3 Summary of the Results of TrajEstU 

On top of the difficulty posed by the large volume of Big Trajectory data, trajectories 

can also be uncertain, which has a significant impact on the accuracy of the query 

results. In this dissertation we proposed a technique, called TrajEstU, for addressing the 
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issue of model and measurement uncertainty for trajectories moving in unconstrained 

outdoor space when processing top-K trajectory similarity queries on GPUs. TrajEstU 

works by splitting the lifetime of an object’s trajectory into time intervals where the 

object’s acceleration is nearly constant. Then TrajEstU uses the local trajectory clusters 

to obtain the movement patterns that are prevalent in the areas where trajectories have 

low-sampling rates, and linear regression to fit a constant acceleration model to the 

observed positions of the moving object. By using a linear regression model, TrajEstU 

reduces the uncertainty arising from the GPS measurements and the low-sampling rate 

of trajectories. 

 

We now summarize TrajEstU as follows: 

• TrajEstU is a technique for estimating the true paths of a trajectory considering 

model and measurement uncertainty. 

• The experiments we performed on real and synthetic datasets show that the 

execution time of the online component of TrajEstU is negligible. Therefore, 

TrajEstU can be used without concerns for performance penalties. 

• TrajEstU relies on an off-line pre-processing stage in which local trajectory 

clustering is done through the use of the Traclus algorithm [LHW07]. The 

reason why TrajEstU uses local trajectory clustering instead of regular trajectory 

clustering [Zheng15] is that we seek to estimate a trajectory around specific 

localities. If we perform regular trajectory clustering that would only result in 

the global or overall behavior of trajectories, which could be very different from 

that of the input trajectory that we wish to estimate. 
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• Our experiments also suggest that the offline component of TrajEstU can be 

efficiently implemented with the use of a hybrid multicore/GPU algorithm.  

• TrajEstU performs better than the state-of-the-art trajectory estimation 

algorithms for both real and synthetic datasets, and for also small and large-scale 

datasets. 

• TrajEstU not only possesses better accuracy than its competing algorithms, but it 

also has a comparable online execution time. 

• The accuracy of TrajEstU decreases as the magnitude of standard deviation of 

the measurement noise increases. 

• The accuracy of TrajEstU is an increasing function of the sampling rate, i.e., the 

higher the sampling rate, the higher the accuracy. 

• Both the acceleration tolerance and the epsilon MBR parameters have little 

impact on the performance of TrajEstU. Therefore, there is not a big concern for 

searching for the parameter values that yield the best performance out of 

TrajEstU. 

• The accuracy of TrajEstU is not sensitive to the length of the query trajectories. 

Therefore, TrajEstU can be used to accurately estimate Big Trajectory Data. 

• The execution time of TrajEstU scales linearly with the length of the query 

trajectories, which helps confirm that TrajEstU can be used to efficiently and 

accurately estimate Big Trajectory Data. 

1.4 Summary of the results of TraclusGPU 

TrajEstU is our proposed technique to help our top-K trajectory similarity query 

processing technique deal with the issue of measurement and model uncertainty. The 
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online component of TrajEstU consists of building a set of linear near-constant 

regression models to help estimate the true path of an input trajectory. These linear 

regression models are built from the input trajectory points, as well as from the local 

behavior of trajectories that are located close to the input trajectory. To find this local 

behavior of trajectories, TrajEstU employs the serial Traclus algorithm [LLHW07] to 

locally cluster the trajectories in an off-line fashion. Nonetheless, our experiments on 

TrajEstU show that despite the fact that its on-line stages scale very well for Big 

Trajectory Data, its off-line stage (which is run just once for each trajectory database) 

that clusters the trajectory database using the existing serial trajectory clustering 

algorithm, Traclus, takes a considerable amount of time. For this reason, and in order to 

make TrajEstU practical for it to be applied to Big Trajectory Data applications, we 

proposed a parallel GPU algorithm to perform local trajectory clustering, called 

TraclusGPU, based on Traclus. 

 

We now summarize TraclusGPU as follows: 

• TraclusGPU is a parallel GPU algorithm for performing local trajectory 

clustering based on the ideas of Traclus serial technique. 

• The total execution time of TraclusGPU significantly improves upon the 

execution time of the serial Traclus algorithm. In particular, TraclusGPU offered 

reasonable execution times of around 4 hours to cluster our large-scale dataset, 

as opposed to the serial Traclus algorithm, which took weeks to run on the same 

dataset. This shows the difference between a practical algorithm for Big 

Trajectory Data and an impractical algorithm. 
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• Our TraclusGPU algorithm scaled almost linearly with the number of processors 

used. 

2 Future Research 

In this section we discuss the future research directions related to the processing of 

trajectory similarity queries on Big Data using GPUs. We first discuss the future 

research directions related with each one of our proposed techniques: TKSimGPU, Top-

KaBT, TrajEstU and TraclusGPU. 

 

As our experiments suggest, TKSimGPU is an effective parallel algorithm for 

processing top-K trajectory similarity queries on GPUs, but it makes the assumption 

that both the trajectory query set and the database set fit in the GPU’s global memory 

space. Nonetheless, with the large volume of Big Trajectory Data, this assumption does 

not hold. In the future, we would like to extend TKSimGPU to allow it to handle 

datasets that do not fit in the GPU’s global memory space. 

 

Another possible future research direction relates to TKSimGPU’s similarity measure. 

TKSimGPU uses the Hausdorff distance as its trajectory similarity measure, which has 

many applications like urban planning [NJS11]. However, the Hausdorff distance does 

not take the temporal dimension into consideration when computing the similarity 

between trajectories. Taking the temporal dimension into account is useful for online 

travel trajectory sharing applications because trajectories of two users could be spatially 

similar, but very dissimilar in the temporal dimension. For example, if one user usually 

travels in the spring and the other one in the summer. However, the Hausdorff distance 
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would not be able to distinguish trajectories that are very dissimilar in the temporal 

dimension. For this reason, we plan to design a parallel technique that uses a trajectory 

similarity measure that, unlike Hausdorff’s, takes the temporal dimension into 

consideration.  

 

Now, we comment on the future research directions concerning Top-KaBT. Although 

our experiments have shown that this is an efficient and scalable parallel pruning 

technique to reduce the size of the candidate sets of a top-K trajectory similarity query 

processing algorithm, it makes the assumption that its input candidate set resides in the 

device’s global memory. Ideally, Top-KaBT would be integrated into the top-K 

trajectory query processing engine so that if a candidate trajectory pair is spurious, then 

it is never instantiated in memory. In this way, the spurious candidate pairs do not 

contend for the GPU’s limited global memory space. In the future, we would like to 

extend Top-KaBT so as to avoid instantiating spurious candidate pairs in the GPU’s 

global memory. 

 

A second possible research avenue relates to the fact that Top-KaBT only makes the 

assumption that the underlying top-K trajectory similarity query processing engine uses 

any similarity metric. However, our experiments have not explored how Top-KaBT 

behaves using other trajectory similarity measures. For this reason, for our future work 

we would like to study how Top-KaBT behaves when using other trajectory similarity 

measures.  
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Although our experiments have shown that TraclusGPU significantly improves upon 

the serial Traclus algorithm in terms of execution time, there is still room for 

improvement. The reason for this is that the ET of TraclusGPU still grows rather 

quickly as the number of segments in the database increases, and because with 

7,000,000 segments in the database, the ET of the algorithm is still non-negligible. 

Therefore, a future research direction related to TraclusGPU consists in improving the 

scalability of the algorithm to try to reduce its computational complexity. 

 

So far, we have made the assumption that trajectories are constant and fixed at the 

beginning of query processing. However, trajectories are objects that grow in size 

(number of points) with time. Therefore, another possible future research direction is to 

extend our proposed system and techniques to deal with streaming trajectories, i.e., 

trajectories that are currently growing in size (number of points) as the query is being 

processed. An example of this query is “find the 2 birds that are currently flying with 

the most similar trajectories to a given bird in flight,” and has applications when 

tracking objects in real time. Designing a technique to deal with these online queries is 

challenging for GPUs because to maximize the PCI-express bus throughput, one would 

ideally buffer the trajectory updates in the host’s main memory before sending them 

through the PCI-express bus. This can lead to delays that could have an impact on the 

accuracy of the results. 
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Another research direction relates to designing parallel GPU techniques for trajectory 

outlier detection, i.e. finding trajectories in a database whose behavior markedly 

deviates from that of other trajectories in the database. 
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