

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

NEW METHODS AND NEW PARADIGM TO DESIGN SENSOR NETWORKS FOR

PROCESS PLANTS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

DUY QUANG NGUYEN THANH
Norman, Oklahoma

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215226987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NEW METHODS AND NEW PARADIGM TO DESIGN SENSOR NETWORKS FOR
PROCESS PLANTS

A DISSERTATION APPROVED FOR THE
SCHOOL OF CHEMICAL, BIOLOGICAL AND MATERIALS ENGINEERING

BY

 Dr. Miguel J. Bagajewicz, Chair

 Dr. Mohammed Atiquzzaman

 Dr. Dimitrios V. Papavassiliou

 Dr. Lance L. Lobban

 Dr. Alberto Striolo

© Copyright by DUY QUANG NGUYEN THANH 2009
All Rights Reserved.

DEDICATION

I dedicate this dissertation to my parents, whose unconditional love and support

carry me this far

iv

ACKNOWLEDGEMENTS

I am grateful for the financial support from National Science Foundation for

making my studying here possible. Travel financial support from University of

Oklahoma is also gratefully acknowledged. I also thank OU Supercomputing Center for

Education and Research (OSCER) staff for providing resources (OSCER super

computers) and helpful suggestions for my research.

I would like to thank my research advisor Dr. Miguel J. Bagajewicz for his

guidance throughout the course of this work.

I would like to thank my friends, my classmates and officemates in Chemical

Engineering department, with whom I had useful discussions on lectures and research.

Finally, I would like to express my deepest gratitude to my parents who always

stand by and encourage me. My academic achievement is dedicated to them.

v

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1. Background ... 2

1.1.1. Data reconciliation ... 2

1.1.2. Gross error detection .. 3

1.1.3. Redundancy and Observability ... 4

1.2. Sensor network design problem ... 5

1.2.1. Model formulation ... 5

1.2.2. Residual precision .. 6

1.2.3. Error detectability .. 6

1.2.4. Resilience... 7

1.2.5. Illustrated SNDP example .. 7

1.3. An overview of different approaches and methods to solve SNDP 10

1.4. Literature review ... 11

1.5. References... 16

2. EQUATION-BASED TREE SEARCH METHOD FOR SOLVING NONLINEAR
SENSOR NETWORK DESIGN PROBLEM... 20

2.1. Overview .. 20

2.2. Cutsets-based tree search methods ... 21

2.3. Use of cutsets in the nonlinear case ... 23

2.4. Automatic generation of all equations.. 29

2.5. Equation-based tree search algorithm .. 34

2.6. Inverted tree strategy ... 37

2.7. Illustrated examples... 40

2.7.1. Example 2.1: CSTR process ... 41

2.7.2. Example 2.2: Mineral flotation process .. 49

2.7.3. Example 2.3: The Tennessee Eastman process ... 56

2.8. Choice of strategy ... 64

2.9. Conclusions ... 66

2.10. Nomenclature .. 66

2.11. References ... 68

3. NEW EFFICIENT METHODOLOGY FOR NONLINEAR SENSOR NETWORK
DESIGN PROBLEMS .. 70

3.1. Overview .. 70

vi

3.2. Tree search methods .. 72

3.3. Level traversal search .. 75

3.4. Level-by-level search .. 80

3.5. Hybrid vertical and “level-by-level” search ... 82

3.6. Illustrated example – Level traversal methods ... 85

3.7. Approximate method ... 90

3.8. Illustrated example – Approximate method ... 93

3.9. Conclusions ... 99

3.10. References ... 100

4. VALUE-PARADIGM SENSOR NETWORK DESIGN 101

4.1. Overview .. 101

4.2. Software accuracy ... 102

4.3. Economic value of accuracy .. 103

4.4. Computational methods to evaluate software accuracy and economic value of
accuracy .. 105

4.5. Dependence of software accuracy and the associated economic value on sensor
network ... 107

4.6. Accuracy and value-optimal SNDP ... 111

4.6.1. Accuracy-constrained SNDP .. 111

4.6.2. Value-optimal SNDP.. 112

4.7. Illustrated example of accuracy-constrained SNDP and value-optimal SNDP 114

4.7.1. Example 4.1 ... 114

4.8. Genetic Algorithm ... 118

4.9. Cutset-based tree search method .. 121

4.10. Parallelized cutset-based tree search method .. 132

4.10.1. Overview of parallel computing .. 132

4.10.2. Automatic parallelization of loops .. 136

4.10.3. Message Passing Interface (MPI) .. 137

4.10.4. Parallelized cutset-based method – SIMD approach 139

4.10.5. Parallelized cutset-based method – MISD approach 142

4.10.6. Parallelized cutset-based method – MIMD approach 150

4.11. Example 4.2 – Madron problem ... 153

4.11.1. Exhaustive tree search using individual measurements........................ 156

4.11.2. Genetic Algorithm .. 157

4.11.3. Cutset-based tree search method ... 159

vii

4.11.4. Parallelized cutset-based method – parallelization of loops 161

4.11.5. Performance of parallelization method – SIMD approach 162

4.11.6. Performance of parallelization method – MISD approach 166

4.11.7. Performance of parallelization method – MIMD approach 172

4.12. Example 4.3 – CDU example ... 181

4.13. Conclusions ... 184

4.14. References ... 185

5. CONCLUSIONS AND FUTURE WORKS ... 186

viii

LIST OF TABLES

Table 1.1- Data for example 1.1 .. 8
Table 1.2 - Results for example 1.1 ... 8
Table 2.1. Summary of proposed tree search methods .. 40
Table 2.2 - Nominal operating condition for the CSTR example 42
Table 2.3 - New equations for the CSTR example obtained from the combination of 43
Table 2.4 - Design case studies for the CSTR example .. 46
Table 2.5 - Results for the CSTR example ... 47
Table 2.6 - Nominal operation condition for mineral flotation process 50
Table 2.7 - Sensor costs for mineral flotation process example 51
Table 2.8 - Design case studies for the mineral flotation process example 52
Table 2.9 - Results for mineral flotation process example .. 53
Table 2.10 - Data for the Tennessee Eastman Problem... 58
Table 2.11 - Design case studies for the TE process example ... 60
Table 2.12 - Results for the TE process example ... 61
Table 2.13 - Results used for selecting the right tree search strategy 65
Table 3.1 - Most suitable method for solving sensor network design problem 74
Table 3.2 - Design case studies for the mineral flotation process example 85
Table 3.3 - Performance of level traversal tree search methods, mineral flotation process
example ... 86
Table 3.4 - Design case studies for the TE process example ... 94
Table 3.5 - Performance of the approximate method, TE process example 96
Table 3.6 - Most suitable method for solving sensor network design problem 99
Table 4.1- Data for example 4.1 .. 115
Table 4.2- Results for example 4.1, accuracy-constrained SNDP 115
Table 4.3- Results for example 4.1, value-based SNDP ... 117
Table 4.4- Estimate of pathways (built on cutsets) to reach a specific set of measurements
 .. 128
Table 4.5- Parallel computing vs. Serial computing ... 132
Table 4.6- Data for Madron problem ... 154
Table 4.7- Results for Madron problem ... 155
Table 4.8- Performance of GA method .. 158
Table 4.9- Performance of cutset-based method ... 159
Table 4.10- Performance of cutset-based method with parallelization of loops............. 161
Table 4.11- Performance of parallelized program – SIMD approach (Nc = 1) 163
Table 4.12- Performance of parallelized program – SIMD approach (Nc = 2) 163
Table 4.13- Performance of MISD approach – With branching criterion 166
Table 4.14- Decomposition option ... 167
Table 4.15- Performance of MISD approach with decomposition and branching criterion
 .. 168
Table 4.16- Performance of MISD approach with decomposition, no branching criterion
 .. 170
Table 4.17- Performance of MISD vs. number of CPUs .. 171
Table 4.18- Performance of MIMD parallelization method .. 172

ix

Table 4.19- Performance of MIMD parallelization at varied number of managing nodes
 .. 175
Table 4.20- Performance of MIMD parallelization with decomposition technique 176
Table 4.21- Data for CDU Example ... 182
Table 4.22- Results for CDU Example... 183

x

LIST OF FIGURES

Figure 1.1 - Example process... 7
Figure 2.1 - Process digraph and bipartite graph. ... 24
Figure 2.2 - Example of nonlinear systems .. 25
Figure 2.3 - Bipartite graph of the nonlinear process example .. 26
Figure 2.4 - Process digraph and ring sum operation on cutsets of the linear system 27
Figure 2.5 - Bipartite graph and ring sum operation on cutsets of the linear system 27
Figure 2.6 - Ring sum operation on cutsets of bipartite graph .. 28
Figure 2.7 - The CSTR problem .. 41
Figure 2.8 - Bipartite graph of the CSTR example with decomposition (common
variables are shown in thicker circles) ... 45
Figure 2.9 - The mineral flotation process.. 49
Figure 2.10 - The Tennessee Eastman Process (following Downs and Vogel, 1993) 58
Figure 3.1 - Tree search method .. 73
Figure 3.2 - Families of nodes ... 76
Figure 3.3 - Stopping criterion ... 79
Figure 3.4 - Searched space in horizontal search .. 80
Figure 3.5 - Level-by-level Search ... 82
Figure 3.6 - Hybrid Vertical and Level-by-level Search ... 84
Figure 3.7 - Approximate (heuristic local search) method .. 93
Figure 4.1 - Different regions when two gross errors are present in the system 106
Figure 4.2 – Illustrated example .. 108
Figure 4.3 – Illustration of biases equivalency ... 109
Figure 4.4 – Accuracy and financial loss as function of number of sensors 110
Figure 4.5 – Objective function vs. dependent variables (q) ... 113
Figure 4.6 – Example process .. 114
Figure 4.7 – Differentiation of regions using ∆D & ∆C .. 124
Figure 4.8 – Use of ∆D & ∆C in stopping criterion .. 125
Figure 4.9 – Illustration of missing optimal solution because of stopping criterion 126
Figure 4.10 – Differeent pathways built on cutsets ... 129
Figure 4.11 – Illustration of cutsets ... 130
Figure 4.12 – Illustration of serial computing .. 133
Figure 4.13 – Illustration of single instruction multiple data (SIMD) palallel program 134
Figure 4.14 – Illustration of multiple instruction single data (MISD) palallel program 134
Figure 4.15 – Parallel tree search method .. 135
Figure 4.16 – Parallelization of loop .. 136
Figure 4.17 – Communication between nodes in parallel tree search method 138
Figure 4.18 – Calculation procedure for parallel computing – SIMD approach 141
Figure 4.19 – Calculation procedure for parallel computing – MISD approach 144
Figure 4.20 – Comparisons of computational times of two steps in the MISD 146
Figure 4.21 – Ideal situation for MISD parallel program .. 147
Figure 4.22 – Illustration of MIMD parallelization .. 152
Figure 4.23 – Flowsheet of Madron problem ... 153
Figure 4.24 – Analysis of performance of parallelization method 178

xi

Figure 4.25 –Performance of parallelization method - with MIMD and/or decomposition
 .. 180
Figure 4.26 –Process flowsheet – CDU example ... 181

xii

ABSTRACT

Due to economic reason, not every process variable can be measured by a sensor.

In the context that data treatment techniques like data reconciliation and gross errors

detection are used, the location of measured points (i.e. location of sensors) has direct

effect on the accuracy of estimators of variables of interest (key variables), which in turn

effect process plant performance. The problem of optimum selection of sensor location is

referred to as sensor network design problem (SNDP). More details on the problem and

research works up to year 2000 can be found in Bagajewicz (2000).

Being a combinatorial optimization problem, the SNDP poses significant

computational challenges for researchers, especially for large scale problems. The

methods to solve the SNDP can be divided into two three classes: mathematical

programming, graph-theoretic methods and stochastic methods (e.g. genetic algorithm)

The SNDP problem itself can be divided into two big classes: designing sensor

network intended for process monitoring purpose (to obtain accurate process data) and

designing sensor network for process fault diagnosis and resolution. The former can be

solved by many methods while the latter is usually solved by graph-theoretic methods

Although extensive researches have been done on this problem, efficient methods

to design sensor networks for large scale nonlinear problems have not yet been found.

Moreover, all the published models are developed from technical point of view, which

requires knowledge / expertise of the users to use appropriate constraints / specifications

in the model. A model that bases solely on an economic viewpoint has not yet been

proposed.

xiii

Addressing the mentioned drawbacks is the objective of this work. More

specifically, in this work:

i) Efficient computational methods to solve SNDP for large scale

nonlinear problems are proposed.

ii) A value-optimal SNDP is proposed and solved by using appropriate

methods.

1

1. INTRODUCTION

The first chapter aims to give a general overview of different approaches

and methods used to solve the sensor network design problem (SNDP).

Additionally, the objectives of this work are presented.

Improved process monitoring via data reconciliation and appropriate gross error

detection is achieved and/or improved by proper systematic location of sensors in a

process plant. In all cases, the notion was to take advantage of the process relations,

presented in the form of a mathematical model, to obtain accurate estimate for certain

variables (called key variables) using available measurements. Considering the fact that,

in reality, only a fraction of process variables are measured by sensors, the precision of

the estimators depends on the location of the sensors and the precision of the sensors

themselves. Hence the problem of systematically locating sensors that meets pre-

specified criteria arises naturally, formally known as the sensor network design/retrofit

problem.

This chapter is organized as follows: firstly some background on data treatment

technique and overview of SNDP are introduced, then a brief summary of different

approaches and different methods to solve SNDP is presented, followed by a literature

review on SNDP. Finally an overview of the main content of this dissertation is given.

2

1.1. Background

1.1.1. Data reconciliation

In a modern chemical plant, process measurements are used in a variety of

activities such as planning, process control, optimization, and performance evaluation.

The presence of random and nonrandom errors (gross errors) in “raw” measurement data,

can easily lead to deterioration in plant performance. The problem of improving the

accuracy of process data so that they are consistent with material and energy balances of

the system is known as data reconciliation. Process data after being treated by data

reconciliation technique is called reconciled data or the estimators. Thus, data

reconciliation is the technique to improve the accuracy of process data by making use of

process constraints (typically material and energy balances).

The essence of data reconciliation is that given the process measurements y from

the plant, we want to estimate the process state x, which satisfies the process constraints.

We denote these reconciled values of process data as)x .)x is obtained by solving the

following problem:

T -1

x
() (-)Min

st. = 0

y - x S y x

Ax
 (1-1)

where S is the variance-covariance matrix of measurements (and usually is a

diagonal matrix) and A is incidence matrix (i.e. Ax = 0 is the process balance equations

like material balances)

3

Assuming all process variables are measured, the variance of the estimators)x is

given by (Bagajewicz, 2000):

1ˆ ()−= − T TS S SA ASA AS (1-2)

The variance Ŝ is used in the SNDP as precision of the estimators, which needs

to be compared against the threshold values.

If not all variables are measured (as is usually the case), it has been shown that an

unmeasured variable can be modeled in data reconciliation formulation using a fake

sensor with very high variance (Chmielewski et al., 2002). This approach greatly

facilitates the SNDP because it eliminates the need to solve the data reconciliation

problem for partly measured systems.

1.1.2. Gross error detection

Gross errors are systematic errors that can exist in measurements (measurement

biases) and process model (process leaks). Measurement bias relates to malfunction of

instruments and is the more prevalent form of gross error. Even when only one gross

error exists, it deteriorates accuracy of all measurements in the process system through

“smearing effect” of data reconciliation. The reason is that a large deviation from true

value in one measurement (i.e. gross error) will cause a series of small “corrections”

made to other measurements through data reconciliation treatment. Thus it is crucial that

gross errors are detected, identified and eliminated.

The maximum power measurement test (MPMT) is probably the most popular

technique to detect biases. The measurement test (MT) is based on the vector of

measurement adjustments m:

4

1ˆ ()−= − = T Tm y x SA ASA Ay (1-3)

The maximum power measurement test (MPMT) proposed by Mah and Tamhane

(1982) is based on vector d, which is obtained by premultiplying m by S-1 (d = S-1m). The

test statistics, given by Eq. (1-4), have been shown to possess maximum power if S is a

nondiagonal matrix (Mah and Tamhane, 1982):

,
jMP

d j
jj

d
Z =

W
 (1-4)

where ,
MP
d jZ is the maximum power measurement test statistic for measurement j; dj and

Wjj are elements of vector d and matrix W, W is given by W = SAT(ASAT)-1AS. If the

test statistic ,
MP
d jZ is larger than the threshold values Zcrit (equal to 1.96 at level of

confidence of 95%), then measurement j is declared to contain gross error.

The expected value of ,
MP
d jZ is given by Eq. (1-5) (Bagajewicz, 2005):

,[]
ji i

iMP
d j

jj

W
E Z

W

δ
=

∑
 (1-5)

where iδ is actual bias in measurement i

1.1.3. Redundancy and Observability

Observability and redundancy are defined as follows (Narasimhan and Jordache,

2000):

5

Observability: a variable is said to be observable if it can be estimated by using

the measurements and steady-state process constraints.

Redundancy: a measured variable is said to be redundant if it is observable even

when its measurement is removed.

From the above definition of observability, it is obvious that a measured variable

is observable, since its measurement provides an estimate of the variable. However, an

unmeasured variable is observable if it can be indirectly estimated by exploiting process

constraint relationships and measurements in other variables. Measured variables are

redundant if they can also be estimated indirectly through other measurements and

constraints even when their measured values are eliminated.

1.2. Sensor network design problem

1.2.1. Model formulation

The popular cost optimal sensor network for process monitoring is formulated as

follows (Bagajewicz, 1997)

iq
Miq

ts

qcMin

i

Sii

i
ii

∀=
∈∀≤

∑
∀

1,0
*)(

..
σσ

 (1-6)

6

where qi is the vector of binary variable indicating that a sensor is located in variable i, ci

is the cost of such a sensor and Ms represents the set of variables where a certain

specification is required (desired level of precision / residual precision or error

delectability, etc.), ()i qσ is the value of the property under consideration (e.g.

precision). A brief description of network properties other than precision is given next

1.2.2. Residual precision

Residual precision is the ability of the network to guarantee a certain level of

precision in key variables where the measurements are eliminated because the sensors

either fail or are found to contain biases (Bagajewicz, 1997). Formally, a variable has a

residual precision of order k, when the specified value of residual precision is maintained

even after k measurements, regardless of their position in the network, are eliminated

(Bagajewicz, 1997).

1.2.3. Error detectability

The ability of the network to detect k gross errors of a certain dimensionless size Dκ or

larger is called error detectability of order k (Bagajewicz 1997). More specifically, when

measurements follow a normal distribution, the objective function of data reconciliation

follows a central chi-square distribution with m degree of freedom. Using these concepts

(which was developed by Madron, 1985; 1992), Bagajewicz (1997) provided an

inequality that relates Dκ to the noncentrality parameter and the variances of the

measurements and the estimator, respectively.

7

() 2/122
,

,

imi

miD
i

σσ

σ
ωκ

−
≥ (1.7)

This inequality needs to hold for gross error detectability of order k=1. No inequalities

were developed for higher order.

1.2.4. Resilience

If a gross error of a certain magnitude occurs in some variable and is not detected,

a certain corruption of data will take place when data reconciliation is performed. The

ability of the network to limit the smearing effect of k undetected gross errors of a certain

adimensional size or lower is called gross error resiliency of order k (Bagajewicz, 1997).

1.2.5. Illustrated SNDP example

Example 1.1. Consider the following process example, which is shown in Figure 1.1

Figure 1.1 - Example process

Flowrate, precision and cost of sensors for example 1.1 are shown in Table 1.1

 S1

S2 S3

S4

S5

S6

S7

8

Table 1.1- Data for example 1.1

Stream Flow rates Sensor precision (%) Sensor cost
S1 100 2 55
S2 140 2 40
S3 140 2 60
S4 20 2 50
S5 120 2 45
S6 20 2 55
S7 100 2 60

The design specification and the obtained optimal solutions for four design cases are

shown in the first six rows of table 1.2. The last two rows show the optimal solution

(optimal measurements location and optimal cost)

Table 1.2 - Results for example 1.1

Case Study 1.1a 1.1b 1.1c 1.1d

Key variables S1 & S5 S1 & S5 S1 & S5 S1 & S5

Requirement Observability Redundancy
Redundancy

& error
detectability

Redundancy &
error

detectability &
resilience

Precision
thresholds 1.5% 1.5% 1.5% 1.5%
Residual
precision
thresholds

 4% 4% 4%

Error
dectectability

thresholds
 4 4

Error
resilience
threshold

 3

Measured

variables S1, S6, S7 S1, S5, S6, S7 S1, S5, S6, S7 S1, S2, S4, S5, S6

Sensors cost 170 215 215 245

9

Notes

- For design case 1.1c: in addition to redundancy requirement, it is required that

biases whose magnitude is greater than four times the standard deviation be

detected

- For design case 1.1d: in addition to the specifications used in design 1.1c, it is

required that the induced biases in key variables causes by any biases in the

systems be less than three times the standard deviation

A few observations can be withdrawn from the above results:

- For observability problems (key variables are required to be observable only),

the solution of directly measuring all the key variables is usually not the

optimal one. Moreover, if the required precision thresholds are smaller than

the standard deviation of sensors, then the number of measurements is usually

larger than (or at least equal to) the number of key variables (because more

measurements are needed to improve the precision of the estimators). These

are evidenced in design case 1.1a (directly measuring S1 & S5 makes S1 & S5

observable but the precision of the estimators of S1 & S5 are above the

threshold values).

- As one increases the level of specifications (e.g. more requirements to be

satisfied), the obtained (feasible) solution would contain more sensors.

10

1.3. An overview of different approaches and methods to solve SNDP

The SNDP can be divided into two classes:

- Class one: designing sensor network for process monitoring purpose. More

specifically, the sensor networks are designed to provide accurate estimators

(measured or estimated value) for the process variables of interest (key

variables). The most popular model formulation is to find cost-optimal sensor

network satisfying a certain number of pre-specified requirements (e.g.

observability & redundancy of key variables). The problems of data

reconciliation and gross error detection of partly measured systems are

inherent parts of the process monitoring-focused SNDP.

- Class two: designing sensor network for process fault detection and isolation

purpose. This problem is based on the principle that a process fault

(malfunction / failure in an instrument in a process) at one point in the system

will propagate to other locations in the system, which would eventually be

detected by the sensors-based monitoring system. The sensor network will be

able to detect the fault if it can detect the symptoms of the fault. The two

different faults can be differentiated from each other if their symptoms (as

shown up in the monitoring system) are different. The problem of detecting

and identifying faults (using various well-established techniques) is an

inherent part of the problem.

11

Computational methods to solve SNDP can be divided into three classes:

- Mathematical programming: the problems are transformed into well-established

optimization models such as mixed integer linear programming MILP (usually solved

by using GAMS, a commercial software for solving optimization problem) or solved

as an integer programming problem (usually solved by using branch and bound

method). These methods guarantee optimality but they suffer from scaling problem,

that is, the computational time for large scale problems are usually unacceptably long.

- Graph-theoretic methods: the methods are based on the many principles and operators

of graph theory. The SNDP for fault diagnosis purpose is usually solved by using

graph-theoretic methods.

- Stochastic methods: genetic algorithms are usually used to solve multi-objective

SNDP

1.4. Literature review

After the seminal work of Vaclavek and Loucka (1976) several papers were

published: Kretsovalis and Mah (1987) minimized a weighted sum of estimation error

and measurement cost using a combinatorial search algorithm. Madron and Veverka

(1992) used multiple Gauss Jordan elimination to achieve observability of all key

variables at minimum sensor cost. Meyer et al. (1994) used graph oriented approach for

cost-optimal sensor network design with requirement on observability of key variables.

Luong et al. (1994) considered several requirements in the design of sensor network:

observability of variables required for process control, required degrees of redundancy

12

for some variables, reliability of the measurement system and minimum sensor cost;

computational method is based on the analysis of cycles of process graph.

Bagajewicz (1997) was the first to formulate the sensor network problem as a

mixed-integer programming (MINLP) model using binary variables to indicate whether a

variable/stream is measured or not, sought to obtain minimum sensor cost. He also

introduced new concepts regarding performance specifications: residual precision, gross

errors resilience and error detectability. The problem was solved using a tree search

algorithm, which guarantees global optimality but its computation requirement inhibits its

use in large scale problems. A generalized model for grass root sensor network design,

instrumentation upgrade as well as resource allocation were presented by Bagajewicz and

Sanchez (2000). Finally, all literature review up to the year 2000 can be found in the

book by Bagajewicz (2000).

Chmielewski et al. (2002) showed that an unmeasured variable can be modeled in

data reconciliation formulation using a fake sensor with very high variance and used

branch and bound method with linear matrix inequalities (LMI) transformation to obtain

solution. The idea of using a fake sensor with very high variance for unmeasured

variable enabled one to state certain types of performance constraints explicitly in

analytical form. It also greatly facilitates the solving of the data reconciliation of partly

measured systems, which is an inherent part of the SNDP. The idea was used by

Bagajewicz and Cabrera (2002), who presented a MILP formulation, and many other

researchers (Carnero et al., 2001, 2005; Muske and Georgakis, 2003; Gala and

Bagajewicz, 2006a, 2006b).

13

 Recently, multiobjective sensor network design became attractive and many

researches have been reported. Bagajewicz and Cabrera (2001) addressed multiobjective

sensor network design using pareto optimal solutions visualization techniques. Muske

and Georgakis (2003) discussed the trade-off between measurement cost and process

information that is used for control purpose and formulated a Pareto optimization

problem for finding solutions. Sen et al. (1998) and Carnero et al. (2001, 2005) used

genetic algorithms.

Gala and Bagajewicz (2006a, 2006b) presented an alternative tree enumeration

method where at each node combinations of process graph cutsets are used. This method

has been proven to be remarkably faster, especially after a decomposition technique is

used. Most recently, Kelly and Zyngier (2008) presented a MILP model based on the

Schur complements theorem to design sensor network for process monitoring purpose.

The authors showed that the model can quickly find “good” solutions but locating global

optimum solution is too time-consuming.

Departing from process monitoring criteria, Ali & Narasimhan (1993) introduced

the concept of system reliability and proposed a method that maximizes system

reliability. Raghuraj et al. (1999), Bhushan and Rengaswamy (2000, 2002a & 2002b)

presented sensor network design formulation based on fault diagnosis criteria. Musulin

et al. (2004) used genetic algorithm in the design of sensor network for principal

components analysis monitoring. Bagajewicz et al. (2004) designed sensor network for

simultaneous process monitoring and fault detection / resolution purpose using a MILP

formulation. Bhushan et al. (2008) presented a framework for designing robust sensor

network for reliable process fault diagnosis; the problem was then solved by using

14

constraint programming (Kotecha et al., 2007, 2008). Chen and Chang (2008) used

graph-theoretic method to design sensor network for process fault identification.

Most of the aforementioned work was applied to linear systems, that is, when

flowrates between units in process plants are to be estimated. Few researchers have

published work on sensor network design for nonlinear processes, that is, when the

underlying process model includes other balances like component and energy balances as

well as other features like VLE relations or reactions in reactors. One such effort was

presented by Ali and Narasimhan (1996) who developed a sensor network design

program specifically for bilinear systems but maximizing system reliability instead of

cost. Bhushan and Rengaswamy (2002a, 2002b) presented a general framework based on

graph theory for finding a reliable sensor network from a fault diagnosis perspective.

Heyen et al. (2002) used genetic algorithm to design cost-optimal sensor network that

renders required precision of key variables; the computation algorithm can be applied to

nonlinear systems by linearization of process constraints at the nominal operating

conditions, assuming steady state. Singh and Hahn (2005, 2006) and Brewer et al. (2007)

located sensors for state and parameter estimation of stable nonlinear systems.

All the mentioned works on SNDP is the cost-paradigm approach in which

minimum sensor cost is the objective and the performance targets (the requirements) need

to be selected by the plant engineers. However, practical engineers may find it hard to

comprehend and determine what desired levels of targets are needed. It is well known

that there is a trade-off between technical requirements and the economical requirement

(minimum sensors cost), that is, if one increases the technical requirements (add more

constraints or increase the desired levels in the constraints), in most of the cases the

15

optimum sensors cost is increased (more sensors are needed to satisfy all the constraints).

However, there are situations that one relaxes the performance requirements (e.g. lower

the desired levels or use less constraints) inconsiderably but obtains a significant

reduction in sensors cost, or increases significantly the specifications but the extra cost

incurred is small. Therefore, the right strategy to find optimum sensor network is to

simultaneously optimize performance of the sensor network and the sensors cost. If the

performance of sensor network can be translated into economic value or profit, then one

can disregard the performance constraints and use economic value of performance of

sensor network as a term in a composite objective function, which is value minus cost.

The resulting sensor network design problem is an unconstrained optimization problem

maximizing value minus cost of sensor network. This approach is value-paradigm SNDP

in contrary to the conventional cost-paradigm SNDP. The approach has been

conceptually discussed in the seminal paper by Bagajewicz, Chmielewski and

Rengaswamy (2004). The work by Narasimhan and Rengaswamy (2007) is the only

published work that discusses the value (as a performance measure) of a sensor network

(from fault diagnosis perspective). Designing sensor network (for process monitoring

purpose) maximizing value of sensor network is not yet addressed.

The two mentioned shortcomings will be addressed in our work. In summary, the

objectives of this work are:

i. Developing efficient computational methods for the design of cost-optimal

sensor network for process monitoring purpose of nonlinear systems.

16

ii. Studying the problem of sensor network design (from process monitoring

perspective) that is based on the value of sensor network. Efficient

computational methods to solve the problem are also proposed.

Three different methods for solving nonlinear SNDP are presented in this work:

equation-based tree search method (chapter two), “level-by-level” tree search and

approximate method (chapter three). Chapter four presents our study on the value-

based SNDP for process monitoring purpose. Chapter five concludes this dissertation

with summary of findings and discussions of future works.

1.5. References

Ali, Y., and Narasimhan, S. Sensor Network Design for Maximizing Reliability of
Linear Processes. AIChe J. 1993, 39(5), 820-828.

Ali, Y., and Narasimhan, S. Sensor Network Design for Maximizing Reliability of

Bilinear Processes. AIChe J. 1996, 42(9), 2563-2575.

Bagajewicz, M., Design and Retrofit of Sensors Networks in Process Plants. AIChe J.

1997, 43(9), 2300-2306.

Bagajewicz, M. Design and Upgrade of Process Plant Instrumentation. Technomic

Publishers, Lancaster, PA, 2000.

Bagajewicz M. On the Definition of Software Accuracy in Redundant Measurement

Systems. AiChE J. 2005, 51(4), pp. 1201-1206.

Bagajewicz, M. and Cabrera, E. A New MILP Formulation for Instrumentation

Network Design and Upgrade. AIChe J. 2001, 48(10), 2271-2282.

Bagajewicz, M. and Cabrera, E. Pareto Optimal Solutions Visualization Techniques

for Multiobjective Design and Upgrade of Instrumentation Networks. Ind. Eng. Chem.
Res. 2003, 42, 5195-5203.

17

Bagajewicz, M., Chmielewski, D and Rengaswamy, R. Integrated Process Sensor
Network Design. Proceedings of the AiChe annual meeting, 2004, Austin, Texas.

Bagajewicz, M., Fuxman, A. and Uribe, A. Instrumentation Network Design and

Upgrade for Process Monitoring and Fault Detection. AIChE J. 2004; 50(8), 1870-1880.

Bagajewicz, M. and Sanchez, M. Reallocation and Upgrade of Instrumentation in

Process Plants. Comput. Chem. Eng. 2000, 24, 1945-1959.

Bhushan M. and R. Rengaswamy. Design of Sensor Network Based on the Signed

Directed Graph of the Process for Efficient Fault Diagnosis. Ind. Eng. Chem. Res. 2000,
39, 999-1019.

Bhushan M. and R. Rengaswamy. Comprehensive Design of Sensor Networks for

Chemical Plants Based on Various Diagnosability and Reliabilty Criteria. I. Framework.
Ind. Eng. Chem. Res. 2002a, 41, 1826-1839.

Bhushan M. and R. Rengaswamy. Comprehensive Design of Sensor Networks for

Chemical Plants Based on Various Diagnosability and Reliabilty Criteria. II.
Applications. Ind. Eng. Chem. Res. 2002b, 41, 1840-1860.

Bhushan M., S. Narasimhan and R. Rengaswamy. Robust sensor network design for

fault diagnosis. Comp. Chem. Eng. 2008, Vol. 32, 1067–1084.

Brewer J., Z. Huang, A.K. Singh, M. Misra and J. Hahn. Sensor Network Design via

Observability Analysis and Principal Component Analysis. Ind. Eng. Chem. Res. 2007,
Vol. 46, 8026-8032

Chen J.Y. and C.T Chang. Development of an Optimal Sensor Placement Procedure

Based on Fault Evolution Sequences. Ind. Eng. Chem. Res. 2008, Vol. 47, 7335–7346

Chmielewski, D.,Palmer, T.,Manousiouthakis, V. On the Theory of Optimal Sensor

Placement. AIChe J. 2002, 48(5), 1001-1012.

Carnero, M., Hernandez J., Sanchez, M. and Bandoni, A. An Evolutionary Approach

for the Design of Nonredundant Sensor Networks. Ind. Eng. Chem. Res. 2001, 40, 5578-
5584.

Carnero, M., Hernandez J., Sanchez, M. and Bandoni, A. On the Solution of the

Instrumentation Selection Problem. Ind. Eng. Chem. Res. 2005, 44, 358-367

Gala, M. and Bagajewicz, M. J. Rigorous Methodology for the Design and Upgrade of

Sensor Networks Using Cutsets. Ind. Eng. Chem. Res. 2006a, 45(20), 6687-6697.

Gala, M. and Bagajewicz, M. J. Efficient Procedure for the Design and Upgrade of

Sensor Networks Using Cutsets and Rigorous Decomposition. Ind. Eng. Chem. Res.
2006b; 45(20), 6679-6686.

18

Heyen, G., Dumont, M. and Kalitventzeff, B. Computer-aided design of redundant

sensor networks, in: J. Grievink, J. van Schijndel (Eds.), Proceeding of 12th European
Symposium on Computer-aided Process Engineering, Elsevier Science, Amsterdam,
2002, pp. 685–690.

Kelly J. D and Zyngier D. A New and Improved MILP Formulation to Optimize

Observability, Redundancy and Precision for Sensor Network Problems. AIChe J. 2008,
54(5), 1282-1291.

Kotecha P. R., Bhushan M., and R.D. Gudi. Constraint Programming Based Robust

Sensor Network Design. Ind. Eng. Chem. Res. 2007, Vol. 46, 5985-5999.

Kotecha P. R., Bhushan M., and R.D. Gudi. Design of robust, reliable sensor networks

using constraint programming. Comp. Chem. Eng. 2008, Vol. 32, 2030–2049.

Kretsovalis, A. and R. S. H. Mah, Effect of Redundancy on Estimation Accuracy in

Process Data Reconciliation. Chem. Eng. Sc. 1987, 42, 2115.

Luong, M.; Maquin, D.; Huynh, C. and Ragot, J. Observability, Redundancy,

Reliability and Integrated Design of Measurement Systems. Proceeding of 2nd IFAC
Symposium on Intelligent Components and Instrument Control Applications, Budapest,
Hungary, Jun 8-10, 1994

Madron, F., and V. Veverka, Optimal Selection of Measuring Points in Complex

Plants by Linear Models, AIChe J. 1992, 38(2), 227.

Mah, R.S.H. and Tamhane, A.C. Detection of Gross Errors in Process Data. AIChE J.

1982, Vol. 28, 828-830.

Meyer M.; Le Lann, J.; Koehret, B. and Enjalbert, M. Optimal Selection of Sensor

Location on a Complex Plant Using a Graph Oriented Approach. Comput. Chem. Eng.
1994, 18 (Suppl), S535-S540.

Muske, K. R. and Georgakis, K. Optimal Measurement System Design for Chemical

Processes. AIChe J. 2003, 49(6), 1488-1494.

Narasimhan S. and Jordache C. Data Reconciliation & Gross Error Detection: An

Intelligent Use of Process Data. Gulf Publishing, Houston, Texas, USA, 2000

Narasimhan S. and R. Rengaswamy. Quantification of Performance of Sensor

Networks for Fault Diagnosis. AIChe J. 2007, 53(4), 902-917.

Raghuraj, R., Bhushan, M. and Rengaswamy, R. Locating Sensors in Complex

Chemical Plants Based on Fault Diagnostic Observability Criteria. AIChe J. 1999, 45(2),
310-322.

19

Sen, S., Narasimhan, S. and Deb, K. Sensor Network Design of Linear Processes

Using Genetic Algorithms. Comput. Chem. Eng. 1998, 22, 385-390.

Singh, A. K. and Hahn, J. Determining Optimal Sensor Locations for State and

Parameter Estimation for Stable Nonlinear Systems. Ind. Eng. Chem. Res. 2005, 44,
5645-5659

Singh, A. K. and Hahn, J. Sensor Location for Stable Nonlinear Dynamic Systems:

Multiple Sensor Case. Ind. Eng. Chem. Res. 2006, 45, 3615-3623

Vaclavek V. and M. Loucka. Selection of Measurements Necessary to Achieve

Multicomponent Mass Balances in Chemical Plant, Chem. Eng. Sc. 1976, 31, 1199.

20

2. EQUATION-BASED TREE SEARCH METHOD FOR SOLVING

NONLINEAR SENSOR NETWORK DESIGN PROBLEM

Nonlinear SNDP pose significant computational challenge for researchers

because of the high level of interaction between units in the system. Large

scale nonlinear SNDP have not yet efficiently solved. In this work the

cutsets-based methods (that were previously developed for linear systems)

were extended and generalized to solve nonlinear problems. An

alternative tree search method developed specifically for problems with

high level of specifications is also presented.

2.1. Overview

As mentioned in chapter one, most of the published works on SNDP were

developed for linear systems only. Few researchers have published work on nonlinear

SNDP: Ali and Narasimhan (1996) developed a sensor network design program

specifically for bilinear systems but maximizing system reliability instead of cost.

Bhushan and Rengaswamy (2002a, 2002b) designed a general SNDP from a fault

diagnosis perspective that is applicable to nonlinear systems. Heyen et al. (2002)

designed sensor network for general systems including nonlinear systems using genetic

algorithm. Only the work of Heyen et al (2002) is closely related to our work because of

the same perspective/objective, which is designing cost-optimal sensor network for

process monitoring purpose, but their GA-based procedure does not guarantee optimality,

neither local nor global. Thus, the nonlinear SNDP from the process monitoring

21

perspective with requirements on observability and redundancy has not yet been

successfully tackled.

In this chapter, a branch and bound procedure similar to the one presented by

Gala and Bagajewicz (2006a, 2006b) is presented. The algorithm is equation-based

rather than cutset-based for reasons that are explained below. A specific strategy tailored

for problems with high level of specifications is also presented. Three illustrated

examples are provided.

2.2. Cutsets-based tree search methods

The optimization model to design minimum-cost sensor network as presented by

Bagajewicz (1997) is (in its simplest form) as follows:

iq
Miq

ts

qcMin

i

Sii

i
ii

∀=
∈∀≤

∑
∀

1,0
*)(

..
σσ

 (2-1)

where qi , an element of vector q, is a binary variable indicating that a sensor is used to

measured variable i, ci is the cost of such a sensor and Ms represents the set of variables

where a performance specification is required (variables of interest or “key” variables).

Realizing that there is no general explicit analytical expression for)(qiσ ,

Bagajewicz (1997) proposed a tree enumeration algorithm using the vector q as a basis

(thus enumerating combinations of individual sensors). This algorithm guarantees

optimum solution, however, for large scale problems, the computation requirement is so

22

intensive that the use of this algorithm becomes impractical. While the method of

transforming the problem into a LMI-based convex MINLP (Chmielewski et al., 2002)

allows the use of the classical branch and bound methods, this can only be applied to

precision constraints, but not others and the method still suffers from scaling problem.

Gala and Bagajewicz (2006a) realized that instead of exploring single

measurements, specific (and meaningful) subsets could be used. These subsets are called

cutsets (taken from graph theory) and as Kretsovalis and Mah (1987) pointed out, they

correspond to a set of variables with which a material balance can be written. Gala and

Bagajewicz (2006a) proved that by using the union of cutsets in a tree enumeration

scheme, one can guarantee optimal solutions and, most importantly, reduce the

computational time considerably. The virtue of this algorithm is that only meaningful

measurements that contribute to the redundancy or observability of variables of interest

(key variables) are added through the use of cutsets. Moreover, when adding a cutset,

several measurements may be added at the time instead of only one as in tree

enumeration using single measurement. These two properties help cutsets-based tree

search methods find feasible nodes in a branch much more rapidly than tree enumeration

using single measurement does, especially for middle and large scale problems.

Although tree enumeration using cutsets is suitable for middle scale problem

(number of streams ≥ 20), it still has one limitation, which is, for large scale problems

(number of streams ≥ 40); the number of cutsets may be too large that the number of

nodes in the tree that needs to be explored is prohibitively large, hence computation task

is too intensive and computation time can take as long as several days. To overcome this

limitation, Gala and Bagajewicz (2006b) proposed the “decomposition of process graph

23

network” algorithm to reduce computation time. The algorithm still made use of cutsets.

However, the process graph is decomposed into sub-graphs so as to reduce the number of

cutsets in the candidate lists, hence reducing the size of the tree. There are some

“missing” cutsets (these are cutsets spanning over sub-graphs) in the candidate cutsets list

when compared with the cutsets list of original process graph. Fortunately, these

“missing” cutsets can be found while exploring down the tree using ring-sum operation

on cutsets. The tree search procedure is almost the same as the procedure without

decomposition except that:

i. The branching and stopping criterion are modified

ii. In each node, ring-sum operations between active cutsets are performed to

find the mentioned “missing” cutsets.

The cusets-based tree search coupled with decomposition technique has been

shown to be a very efficient method for solving linear large scale problems (Gala and

Bagajewicz, 2006b).

We now explore the possibilities and difficulties of using cutsets and tree

enumeration with non-linear problems.

2.3. Use of cutsets in the nonlinear case

For linear systems where usually total flowrates are variables of interest, a stream

(for which the flowrate is the variable) is connected to not more than two nodes: it is

either an input to a unit, an output from a unit or both an input to one unit and an output

from another. As a result, a flowrate variable can always be represented by a stream in

24

process flowsheet and the proper representation of a linear system is the process digraph

(Mah, 1990). Hence, for linear systems, the process constraint matrix that represents the

overall material balance equations of the process is also the same as the incidence matrix

that represents the connectivity of edges (streams) and vertices (nodes). This is not the

case for nonlinear systems where a variable may occur in more than two equations and

therefore a digraph cannot be used to represent the system. A bipartite graph is, instead,

the appropriate structural representation for nonlinear systems (Mah, 1990). The digraph

looks the same as the process flowsheet, the nodes are identified with equations and the

edges are the flows. In a bipartite graph, two rows of nodes are made, one for the

variables and the other for the equations. This is illustrated for the linear system in figure

2.1

Figure 2.1 - Process digraph and bipartite graph.

Consider a nonlinear process (figure 2.2) consisting of an adiabatic reactor and an

adiabatic flash drum. The nature of the balance equations will determine the nonlinearity

of the system. When only total flowrates (Fi) are variables of interest, the system is

linear; when the variables concentration (Ci) and temperature (Ti) also need to be

estimated, the system is nonlinear.

F5

F6

F4

F3

F2

F1
U4 U1

U2

U3

F1 F2 F3 F4

U1 U2 U3

Figure 2.1a. Process digraph Figure 2.1b. Corresponding bipartite

graph

F5 F6

U4

25

Figure 2.2 - Example of nonlinear systems

The corresponding equations are:

/
1 1 2 3 1 2 3 1 1 2 2 3 3 2(, , , , , ,)= () 0rE RT

R A A A A r A A A A o Ag F F F c c c T F c F c F c k e c Vαδ −− + + = (2-2)

1 1 2 3 1 2 3 2 1 1 2 2 3 3 2(, , , , , , ,)= () 0r

E
RT

R B B B B A r B B B B o Ag F F F c c c c T F c F c F c k e c Vαδ
−

− + + = (2-3)

2 2 3 4 2 3 4 2 2 3 3 4 4(, , , , ,) 0R A A A A A A Ag F F F c c c F c F c F c= − − = (2-4)

2 2 3 4 2 3 4 2 2 3 3 4 4(, , , , ,) 0R B B B B B B Bg F F F c c c F c F c F c= − − = (2-5)

1 1 2 3 1 1 2 2 3 3 1 1 1 1 1 1 2 2 2 2

/
3 3 3 3 2

(, , , , , , , , , , ,) (, ,) (, ,)

(, ,) (()) 0r

H A B A B A B r f A B A B r

E RT
A B f rxn r o A

g F F F c c c c c c T T T F h c c T F h c c T

F h c c T H T k e c Vα−

= −

+ + −∆ =
 (2-6)

2 2 3 4 2 2 3 3 4 4 2 2 2 2

3 3 3 3 4 4 4 4

(, , , , , , , , , ,) (, ,)

(, ,) (, ,) 0
H A B A B A B r f A B r

A B f A B f vap

g F F F c c c c c c T T F h c c T

F h c c T F h c c T Q

=

− − − =
 (2-7)

1 3 4 4 3 3 4 4 4 4(, , , ,) / (, ,) /SA A A B f A i i A B f A i
i i

g F c c c T c c K c c T c c= =∑ ∑ (2-8)

 Reactor

 Flash
 Drum

(F1, c1i, T1)

 (F2, c2i, Tr)

 (F3, c3i, Tf)

 (F4, c4i, Tf)

26

1 3 4 4 3 3 4 4 4 4(, , , ,) / (, ,) /SB A A B f B i i A B f A i
i i

g F c c c T c c K c c T c c= =∑ ∑ (2-9)

Equations (2-2) to (2-5) are component balance equations (we assume that the

system contains two components: A and B). Equations (2-6) and (2-7) are energy

balance equations in which h(•) are enthalpies. In these equations, we assume that the

reactor is adiabatic and that a fixed known amount of heat (Qvap) is removed in the flash.

Finally, equations (2-8) and (2-9) represent the vapor liquid equilibrium relationship. The

term /
2

rE RT
o Ak e cα− corresponds to reaction rate rA (we assume only one irreversible

reaction involving one reactant A). The corresponding bipartite graph is shown in figure

2.3

Figure 2.3 - Bipartite graph of the nonlinear process example

Cutsets of digraphs have been used by Gala and Bagajewicz (2006a, 2006b) to

design sensor networks for linear systems because: i) each cutset represents a material

balance equation involving its elements (streams or variables), which is in turn directly

connected to observability or redundancy of variables (Kretsovalis and Mah, 1987), ii)

the properties of cutsets and procedures to enumerate all cutsets for linear systems are

F1 F2 F3 c1 c2T1 Tr F4 c4A

gR1A gH,1 gR2A

c2A c3

gH,2

Tf c1 c3B c4

gR1 gR2B gS,A gS,B

27

well-known. This procedure is illustrated in Figure 2.4 for a linear case and in Figure 2.5

for the corresponding ring sum operation in the context of bipartite graphs.

Figure 2.4 - Process digraph and ring sum operation on cutsets of the linear system

Figure 2.5 - Bipartite graph and ring sum operation on cutsets of the linear system

The ring sum operation does not always apply properly to nonlinear cases.

Indeed, consider equations gR1A and gR2A, which share two terms: 2 2 AF c and 3 3AF c or four

variables (2 2, AF c , 3F and 3Ac). Substitution of 4 4 2 2 3 3A A AF c F c F c= − obtained from gR2A

into gR1A renders the following equation:

/
1 1 4 4 2() 0rE RT

A A A o AF c F c k e c Vαδ −− + = (2-10)

Figure 2.5a Figure 2.5b

Ring sum
operation

F1 F2 F3 F4

U1 U2

F1 F4

U1U2

F1 F2 F3 F4

U1 U2

Figure 2.5c

Figure 2.4a

F1

F2

F3

F4

F1

F2

F3

F4

C1

C2

C3

Figure 2.4b

Ring sum
operation

U1

U2

U1

U2

28

The ring sum operation results in these four variables being eliminated as seen in

Figure 2-6.

Figure 2.6 - Ring sum operation on cutsets of bipartite graph

It can be seen that the ring sum of these two cutsets leads to the elimination of all

four variables that are in the intersection, including c2A.. But, unless the reaction is zero

order, c2A. is still present in the merged equation (2-10). Thus, the variable substitution

operation generates in this case a result that is different from the ring sum operation. It is

assumed here that one variable can be explicitly expressed as a function of others in one

equation and formally substituted in a second equation, thus variable substitution can take

place.

Thus, for nonlinear systems one needs to depart from using ring sum of cutsets

strictly and look for an equivalent procedure. Such procedure would be equivalent of

finding an alternative operation to the ring sum. Indeed, as stated above, cutsets are

equations in the linear case, and since the ring sum is equivalent to taking two equations

and generating a third, thus eliminating one (or more) variables.

F1 F2 F3 c1A Tr F4 c4A

gR1A gR2A

c2A c3A F1 C1A Tr F4 c4A

gR1A ⊕ gR2A

Ring sum
operation

29

The method proposed in this work is based on the same concept, but linearized

equations are used instead of cutsets

2.4. Automatic generation of all equations

We now prove that the generation of new equations can be done automatically

using Gaussian elimination on the linearized equations. We do this by proving the

following claims first

Claim 1 (Necessary condition):

Consider two nonlinear equations

f1(x1, x2, … xk, xk+1,.. xm)=0 (2-11)

f2(xk, xk+1,.. xm,xm+1,.. xn)=0 (2-12)

If equation merging or variable substitution is performed targeting variable xk, and

a set of other variables , namely xk+1, … xm , which are considered consecutive without

loss of generality, are also eliminated, then:

 a) The partial derivatives with respect to these eliminated variables in

both equations are equal, that is:

 mkt
x
f

x
f

tt

,....,121 +=∀
∂
∂

=
∂
∂ (2-

13)

30

 b) Variable substitution in the linearized system also eliminates the same

variables.

Proof:

Assume first (without loss of generality) that f1 and f2 can be expressed in terms

of xk as follows:

f1(x1, x2, … xk, xk+1,.. xm)= Σi r1i(x1, x2, … xk-1, xk+1,.. xm)+ xk=0 (2-14)

f2(x1, x2, … xk-1, xk+1,.. xm) =Σi r2i(x1, x2, … xk-1, xk+1,.. xm) + xk = 0 (2-15)

In other words, xk can be isolated. Then, substitution of xk in equation f2 renders:

f12(x1, x2, … xk-1, xk+1,.. xm, xm+1,.. xn)=

=Σi r1i(x1, x2, … xk-1, xk+1,.. xm)- Σi r2i(x1, x2, … xk-1, xk+1,.. xm)=0 (2-16)

For variables to be eliminated, then pairs of r1i and r2i need to be exactly the same

expressions with the same combinations of variables so that they cancel. Without loss of

generality, assume now these variables are in both equations in the terms r11 and r21 only,

that is

r11(x1, x2, … xk-1, xk+1,.. xm)=r21(x1, x2, … xk-1, xk+1,.. xm)=0 (2-17)

31

Because (and only because) these terms disappear from the final version of (2-16), we

can say that they ARE the same expression, which in turn, allows us to say the

derivatives are also formally the same expression. This proves part a)

Proving part b) is now easy. Indeed, linearizing f1 and f2 , one obtains:

 01 =+∑
≠

kjj
kj

xxa (2-18)

02 =+∑
≠

kjj
kj

xxa (2-19)

where
i

k
i

ki x

r
a

∂

∂

=
∑

. Substituting xk obtained from (2-18) into (2-19), one obtains.

0)(12 =−∑
≠

jjj
kj

xaa (2-20)

Thus, if any variable is to be eliminated, say xk+1, then 2 1 1 1k ka a+ += , which is the

same as (2-13)

Q.E.D.

Claim 2 (Sufficient condition):

Consider the linearized equations (2-18) and (2-19). If Gaussian elimination is

performed between these two equations, and aside from variable xk, the set of other

variables, namely xk+1 , … xm ,are also eliminated, then, the same variables will be

32

eliminated if equation merging or variable substitution is performed on equations (2-14)

and (2-15), provided that equation (2-13) holds symbolically (i.e. they are the same

symbolic expression), not only numerically.

Proof:

The proof is straightforward: If a variable is eliminated, say xk+1, then 2 1 1 1k ka a+ += , which

is the same as (2-13) numerically. We only need to make sure that (17) holds, and this is

true only if (2-13) or (2-17) hold true symbolically.

Q.E.D.

Corollary: Both claims are valid if explicit expressions in terms of xk cannot be obtained.

Proof:

In this case, we would have

f1(x1, x2, … xk, xk+1,.. xm)=0 à Σi r1i(x1, x2, … xk-1, xk+1,.. xm)

+ z(x1, x2, … xk,, xk-1, xk+1,.. xm) =0 (2-21)

Thus, if xk is to be formally eliminated from both equations then the term z(x1, x2, … xk,, xk-

1, xk+1,.. xm), needs to exactly appear in both equations. With this the proof can be

continued exactly as before.

Q.E.D.

We can now present the procedure to find and enumerate all equations of the problem:

i. Linearize the process model to arrive at the linearized model written in the

matrix form Ax = b, where A is the process constraint matrix.

33

ii. For all pairs of equations, perform the Gaussian elimination operation to find

new equations and put them at the end of the list of equations. If any pair of

equations has more than one common variable, all possible new equations

are to be found by choosing different variables to eliminate. Note that only

combinations of equations with at least one common variable are performed.

iii. If a resulting new equation is the same as any equation already in the list,

disregard that equation.

Because all combinations of original equations are considered, this procedure

guarantees that all possible new equations are found. Combinations between a new

equation and an original equation or between a new equation and another new equation

are not necessary because they can be obtained by combining original equations.

There are two steps in the design procedure that call for the linearization of the

nonlinear equations around nominal operating condition:

i. Finding new equations from pairs of “original” equations using the variable

substitution or equivalently the Gaussian elimination operation

ii. Solving the associated data reconciliation problem, where an analytical

solution is obtainable only when the model is linear or linearized, in order to

check whether the candidate sensor network satisfies the design

specifications.

Changing operating conditions would not cause any effect in the equations

generating step (the resulting equations are unchanged, only the coefficients in the

equations change); but it may have an effect in the step of checking design specifications:

for example, a feasible solution can become infeasible if the operating windows moves to

34

another region. As a result, different regions of operating conditions may lead to different

optimal solutions and the obtained optimal solution is guaranteed to be valid only within

the current operating windows. Designing optimal sensor network that is valid for a wide

range of operating conditions requires a new problem formulation and a tailored

computational method, which is beyond the scope of this work. However, in the

examples section, a brief discussion of the sensitivity of the solution as the process

variables fluctuate around their nominal values is provided.

2.5. Equation-based tree search algorithm

The tree enumeration algorithm using equations for the design of nonlinear sensor

networks is the same as the one used by Gala and Bagajewicz (2006a), except that instead

of using cutsets, we use equations. The procedure is briefly described below:

1. Find all the equations of the problem using the procedure described above.

2. Pick up only the equations containing key variables (called candidate

equations) because other equations (not containing key variables) do not

contribute to the observability or redundancy of key variables.

3. Sort these candidate equations in ascending order of their cost (the cost of an

equation is equal to sum of the costs of the sensors used to measure variables

contained in that equation).

4. Start with the root node with no equation being added i.e. e = {0, 0, 0…),

trivially infeasible.

35

5. Using the branch first rule, develop each branch by making one element of

‘e’ active and adding one candidate equation at a time which is chosen from

the remaining equations using a branching criterion.

6. While performing the branching criteria, if any set of equations has already

been evaluated in previous nodes, that node is not continued. This occurs

frequently because one set of measurements can be a result of the union of

different combinations of equations.

7. This is continued until the stopping criterion is met. In such case, the

algorithm backs up two levels and develops the next branch.

Branching Criterion

While exploring the tree from one node to the other, either going down the tree or

exploring the sister node, the newly added equation is chosen in such a way that the cost

obtained by its union with the existing active equations is minimal.

Stopping Criterion

Because adding an equation always increases the cost, whenever a feasible node

is found (one that satisfies all the constraints of the problem), the tree is not explored

further down nor any sister branch.

To overcome the computational limitations of the above procedure, Gala and

Bagajewicz (2006b) proposed the “decomposition of process graph network” algorithm

to reduce computation time. The algorithm still makes use of cutsets to find the optimum

sensor network but the process graph is decomposed into sub-graphs so as to reduce the

36

number of original cutsets, hence reducing the size of the tree. While exploring the tree, if

cutsets from different subgraphs are used in a node of the tree, the ring sum operation on

those cutsets is performed to generate all the cutsets that are missing and then the union

operation among the resulting cutsets plus the originals is performed. These are briefly

described below:

 Operations in a node: suppose that the current node contain cutsets from three

different sub-graphs CA1, CB1 and CC1, then:

- All the possible combinations of ring sum and union operation of cutsets are

found: CA1 × CB1 U CC1; CA1 x CC1 U CB1; CA1 U CB1 × CC1; CA1 ×

CB1 × CC1 where U: union operation; x: ring sum operation

- Checking the feasibility of all the resulting solutions.

Stopping criterion : stop if

(Current feasible node cost – Connecting streams cost in this node

+ Min Instrument cost) ≥ Best feasible node cost found

For nonlinear systems, the same technique as described in Gala and Bagajewicz

(2006b) is used with some modifications (the same branching and stopping criterion are

used). These modifications are:

i. The ring sum operation on cutsets is replaced by our variable elimination

operation on equations

37

ii. The decomposition is performed on the bipartite graph of the nonlinear system

instead of the process digraph of linear system.

2.6. Inverted tree strategy

If a large number of key variables (those whose values are of interest) and/or good

level of precision and residual precision is required, a large number of sensors needs to be

used to meet the requirements. This is accentuated if error detectability and resilience

requirements are added. In such design cases, the “forward” tree search methods (the

Equation-based method presented above as well as the as the tree search methods

presented in Bagajewicz (1997) and Gala and Bagajewicz (2006a, 2006b)) exhibit the

following problems:

i. The number of active elements in feasible nodes is large, that is, the search

procedure needs to explore deeper down into the tree before it finds a

feasible solution

ii. The number of nodes explored is large and the computational time is long.

Moreover, for the equation-based tree search methods, a large number of key

variables leads to a large number of equations that contain at least one key

variable (i.e. large tree size)

iii. The number of feasible nodes is low and they are all located deep in the tree

towards the end of it.

To ameliorate this shortcoming (having to explore the tree very deep), an inverted

tree search method is proposed. The idea behind this method is to explore the tree in the

38

reverse direction, that is, it to start with a root node containing all sensors and continue

removing sensors when going up the tree until an infeasible node is found (stopping

criterion). Because the level of the feasible nodes explored by the tree search is low, the

number of nodes explored is reduced, which results in a shorter computation time. The

same thing is also argued if equations are used instead of sensors (measurements).

There are two “forward” tree search methods as discussed above: one uses list of

equations / cutsets and the other uses list of measurements. We investigate the reverse

versions of these two tree search methods. The inverted tree search using list of

measurements is described next:

- Start tree search with the root node containing all sensors, an automatically

feasible node.

- Removing sensors out of root node by using the tree enumeration algorithm and a

branching criterion, which is to remove the most expensive sensor among all

sensors in the current node so that the sensors cost is minimized.

- Always start developing branches with feasible nodes containing large number of

sensors. The number of sensors in nodes decreases and cost is reduced when

going up the tree.

- Stop going up (stop removing sensors) when the current node becomes infeasible

(Stopping Criterion). If keeping going up, the cost is reduced but the node is

infeasible.

39

An inverted tree search using equations (root node containing all equations and

continue removing equations when going up the tree) is much less efficient, in principle,

because of two problems that lead to longer computation time:

(i) The number of equations is large (much larger than the number of variables),

hence the tree depth is larger

(ii) The search needs to explore further up into the tree before it finds an infeasible

node and stop. The reason for this is that the union of only a small number of

equations can result in the sensor network containing all sensors. Thus, if only a

small number of equations is removed out of the root node, the resulting sensor

network (obtained as union of equations in current node) usually still contains all

sensors. As a result, a significant number of equations needs to be removed before

the number of sensors in resulting sensor network is reduced and the node

becomes infeasible.

In summary, three methods are proposed to solve the nonlinear sensor network

design problem: the inverted tree search using list of measurements (referred to by the

short name of “Inverted All Variables” method) and the “forward” equations-based tree

search methods that has two versions: i) without decomposition (referred to as “All

Equations” method), ii) with decomposition (referred to as “Decomposed Equations”

method). The characteristics of these three methods together with the forward tree search

method using list of measurements (Bagajewicz, 1997 referred to as “All Variables”

method), which is used to validate the optimality of obtained solutions, are summarized

in Table 2.1:

40

Table 2.1. Summary of proposed tree search methods

Method Search Strategy Base unit Decomposed
All Variables Forward Measurements No
All Equations Forward Equations No
Decomposed Equations Forward Equations Yes
Inverted All Variables Reverse Measurements No

2.7. Illustrated examples

The proposed Equations-based methods and the “Inverted All Variables” method

guarantee optimality; their computational efficiency is tested using the following

examples. The “All Variables” method (Bagajewicz, 1997) is used to validate the

optimality of the solutions obtained by the proposed methods. The proposed algorithms

were implemented in a Fortran program running on a 2.8 GHz Intel Pentium, 1028 MB

RAM PC computer.

Three examples are considered: a CSTR process (small scale problem), a mineral

flotation process (middle scale problem) and the TE process (large scale problem). Based

on our experience, we qualitatively classify three types of problems that can be solved by

our sensor network design program using the number of variables involved: i) small

scale: 1-18 variables, ii) middle scale: 19-39 variables and iii) large scale: 40 variables

and above. As usual, these are heuristic observations and although the number of

variables is indicative of size, as we shall see below, the tightness of the specifications

may make the same size problem to be solved much faster/slower.

41

2.7.1. Example 2.1: CSTR process

Consider the CSTR process which was introduced by Bhushan6 and is given in Figure 2.7

Figure 2.7 - The CSTR problem

The variables of interest are [Fi, cAi, cA, T, Ti, Tc, Fc, Tci, Fvg, F, F2, F3, F4]. There

are five equations (including both mass and energy balances) written around the reactor

and its jacket (equations 2-22 to 2-26), three mass balance equations written for pumps

and valves (equations 2-27, 2-28, 2-29)

1 0(, , ,) () 0
E

i RT
i Ai A Ai A d A

Fe F c c T c c c c k e
V

−
= − − = (2-22)

0
2

() ()
(, , , ,) () 0

E
RT

i d A c
i A i c i

p p

F c c k e H UA T Te F c T T T T T
V C V Cρ ρ

−
−∆ −

= − + − = (2-23)

Fc, Tc

Fvg

F, T, cA

F3 F2

Fi , Ti , cAi

Fci , Tci

F4

42

3
()(, , ,) () 0c c

c c ci ci c
j j j pj

F UA T Te T T F T T T
V V Cρ

−
= − + = (2-24)

4 0(, ,) 0
E

RT
A vg d A vge c T F c c k e V F

−
= − = (2-25)

5(,) 0i ie F F F F= − = (2-26)

6 2 3 3 2(,) 0e F F F F= − = (2-27)

7 2 2(,) 0e F F F F= − = (2-28)

8 4 4(,) 0c ce F F F F= − = (2-29)

The nominal operation conditions are given in Table 2.2 (value of flowrate is

given in ft3/hr, temperature : oR, concentration: lb.mole/ft3).

Table 2.2 - Nominal operating condition for the CSTR example

Variable Fi Fc Fvg F F2 F3 F4
Value 40 56.626 10.614 40 40 40 56.626
Variable cAi cA T Ti Tc Tci
Value 0.5 0.2345 600 530 590.51 530

The linearized model matrix is:

2 3 4 c c

 -0.00531 -0.8333 1.7763 0.00923 0 0
i Ai A i c c ci vg

nl

F T T T F T F F F F F

A =

 0 0 0 0 0 0 0
 1.4583 0 -754.4 5.9503 -0.8333 -125 0 0 0 0 0 0 0
 0 0 0 -93.8067 0 108.5 15.7169 -14.708 0 0 0 0 0
 0 0 -45.2612 -0.443 0 0 0 0 1 0 0 0 0
 1 0 0 0 0 0 0 0 0 -1 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 -1 0
 0 0 0 0 0 0 0 0

1

2

3

 0 1 -1 0 0
 0 0 0 0 0 0 -1 0 0 0 0 0 1

e
e
e

4

5

6

7

8

e
e
e
e
e

43

The process of generation of new equations is now illustrated. Take for example

the original equations e1 and e2, which have three common variables Fi, cA, T. Three new

equations result from the three possible Gaussian elimination operations: e9 = {cAi, cA, T,

Ti, Tc} obtained by eliminating the common variable Fi, e10 = {Fi, cAi, T, Ti, Tc} obtained

by eliminating the common variable cA, and e11 = {Fi, cAi, cA, Ti, Tc} obtained by

eliminating the common variable T. These three new equations are shown in Table 2.3.

Table 2.3 - New equations for the CSTR example obtained from the combination of
e1 and e2

(a) Variables involved

Equation Variables involved
e9 {cAi, cA, T, Ti, Tc }
e10 { Fi, cAi, T, Ti, Tc }
e11 {Fi, cAi,cA, Ti, Tc }

(b) Expressions

Equation Expressions
e9

/ /

0 0() () ()
0

()

E RT E RT
d A i d A c

Ai A p p

c c k e T T c c k e H UA T T
c c C V Cρ ρ

− −− −∆ −
+ − =

−

e10 /
0

/
0

() ()
() 0

()

E RT
i d i Ai c

i E RT
pp i d

F c k e H F c UA T T
T T

V V CC F Vc k e ρρ

−

−

−∆ −
− + − =

+

e11

0

()()() 0()ln(
i i Ai A

i c
i Ai Ap p

d A

F F c c H UA ET T TF c cV V C V C R
V c c k

ρ ρ

 − −∆ − + − − − =

−

 (c) Linearized Expressions
Equation Linearized expressions
e9 -0.833 cAi -0.972 cA, + 0.031 T -0.003 Ti -0.456Tc
e10 -0.002 Fi - 0.83cAi + 0.0232 T -0.002 Ti -0.294 Tc
e11 -0.0076 Fi -0.833 cAi + 2.946 cA + 0.0013 Ti + 0.194 Tc

44

It is clear from this example that the number of equations in nonlinear systems is

much larger than the number of cutsets in linear systems of the same flowsheet size, not

only because more equations are written for each unit, but also because any combination

of cutsets results in just one new cutset in linear systems, while several new equations can

be obtained from a combination of equations in nonlinear systems as illustrated above.

The case studies for this process using the proposed algorithms are shown next.

For the Decomposed Equations method, a single decomposition is performed, that is, the

graph is decomposed into two subgraphs corresponding to two subset constraint matrices,

one contains rows 1 to 4 and one contains rows 5 to 8 (the cutting is done between row 4

and 5). This is shown in Figure 2.8 where the original bipartite graph is decomposed into

two sub-graphs (A & B), each contains 4 nodes (4 original equations). The total number

of equations obtained from all eight original equations is 88, while the number of

equations obtained from the first four original equations (i.e. sub-graph A) is 28 and from

the last four original equations (i.e. sub-graph B) is 6. Thus, in the decomposition

method, the total number of equations (i.e. the tree size) is 34 (=28 plus 6) instead of 88.

The rest of the equations are found while exploring the tree by using variable elimination

operation on any pair of equations originated from any two different sub-graphs.

45

Figure 2.8 - Bipartite graph of the CSTR example with decomposition (common
variables are shown in thicker circles)

The costs of sensors that measure variables V1, V2,,… ,V13 are 100, 270, 300, 50,

55, 60, 105, 45, 85, 90, 95, 80, 82 respectively. The sensor precisions are 1% (for all

sensors).

Three design cases are considered corresponding to three levels of design

specification: low specification (CSTR1), moderate (CSTR2) and high specification

(CSTR3), which are shown in table 2.4. In table 2.4 as well as similar tables in the other

two examples, rows 2 to 6 show detail of specifications for each design case; the stated

threshold values (rows 5, 6) are applied to all the key variables listed in row 3, any key

Fi cAi cA T Ti Tc Fc Tci Fv F F2 F3 F4

e1 e2 e3 e4 e5 e6 e7 e8

Fi cAi cA T Ti Tc Fc Tci Fv

e1 e2 e3 e4

Fc F F2 F3 F4

e5 e6 e7 e8

Fi

Decomposition of
original graph

Subgraph A Subgraph B

46

variable with specific threshold will be mentioned separately. Rows 7 & 8 show the

optimal solution obtained by the four methods, which include two types of information:

the variables to measure (row 7) and the total sensor cost (row 8).

Table 2.4 - Design case studies for the CSTR example

Case Study
CSTR1

Low Spec.
CSTR2

Moderate Spec.
CSTR3

High Spec
No. of key variables 3 4 8
Key variables cA, T, F cA, T, Tci, F cAi,cA,T, Tc, Fc, Tci, F, F3
Requirement Observability Redundancy Observability
Precision thresholds 0.95% 1.5% 1.5%
Residual precision
thresholds

 2.5% 2.5%

Measured variables cAi ,cA ,Fvg ,F3 cAi,cA,T,Ti,Tci,F,F3,F4
cAi,cA, T, Ti,, Tc, Fc, Tci, F,

F3 and F4
Sensors cost 735 972 1137

The computation time and the number of nodes explored of the four methods are shown

in Table 2.5.

47

Table 2.5 - Results for the CSTR example

Case Study
CSTR1

(Low Spec.)
CSTR2

(Moderate
Spec.)

CSTR3

(High Spec.)

All-Equations
(no

decomposition)

Total computation time 8 sec. 26 sec. 27 sec.
Computation time to

generate equations
1 sec. 1 sec. 1 sec.

Number of equations

generated
85 87 87

Number of nodes

explored
1611 4,695 7,640

Decomposed

Equations
(two subgraphs)

Total computation time 4 sec. 8 sec. 14 sec.
Computation time to

generate equations
< 1 sec. < 1 sec. <1 sec.

Number of equations

generated
33 33 34

Number of nodes

explored
1,737 2,914 5,456

All Variables
Computation time 3 sec. 5 sec. 6 sec.
Number of nodes

explored
4,653 7,088 8,102

Inverted All

Variables

Computation time 2 sec. 2 sec. 1 sec.
Number of nodes

explored
2,520 682 117

When comparing the computation times, the equation-based method is sometimes

faster than that of the All Variables method because of the smaller number of nodes

explored and sometimes slower because the equation-based method initially requires

finding all the equations of the system and requires checking the branching criterion in

every node of the tree. The computation time of the Decomposed Equations method is

shorter than that of the All Equations method as expected.

48

The method with shortest computational time in this example is the “Inverted All

Variables” method, which can be seen to be faster than its “forward” counterpart, the “All

Variables” method, especially for the high specification design case (CSTR3).

Because in this example the equation-based methods do not offer much advantage

in terms of reduced number of nodes explored and requires extra time for performing

branching at any node, the real test for the advantage of the equation-based methods has

to come from applying them to a larger example.

The sensitivity of the obtained solution is now briefly discussed before the next

example is presented. As we linearize the nonlinear equations around the steady-state

values of the process variables, the obtained solution is valid only within the current

operating window. Take for example the design case CSTR1, if the steady-state values of

the process variables (except the reaction temperature) change within 40% the nominal

values, the precision values of the estimators change up to 95% of the precision values in

the base case (corresponding to the nominal values) but still satisfy the design

specifications, that is, the obtained solution is valid when the fluctuation is less than 40%

of the nominal value. If the fluctuation is more than 40% of the nominal values (except

the reaction temperature), the new optimal solution is to measure 7 variables with cost of

737. The obtained solution is more sensitive to the variation of the reaction temperature,

an important variable whose fluctuation significantly affects all other variables in the

process. The variation range of the reaction temperature within which the obtained

solution is valid is 26% of the nominal value. These results point out that the solution is

valid within the normal variation range of process variables (30% of the nominal values)

but it is not valid for a wider range of process operating conditions.

49

2.7.2. Example 2.2: Mineral flotation process

Consider a middle scale process, the mineral flotation process introduced by Smith and

Ichiyen (1973) shown in Figure 2.9.

Figure 2.9 - The mineral flotation process

The process consists of three flotation cells (separators) and a mixer. Each stream

consists of two minerals, copper (component A) and zinc (component B), in addition to

gangue material. The total flowrate F, the composition of copper CA and zinc CB of all

streams are variables of interest, so the total number of variables under consideration is

24 (8 flowrates and 16 compositions). Let us assume that each variable can be measured

separately by a sensor. The process model consists of three types of material balance

equations: the total flowrate balance, the copper component (A) flowrate balance and the

zinc component (B) component balance. These three types of balance equations are

written for unit 1 next. Balance equations for other units can be written in the same

fashion:

1 2 5 0F F F− − = (2-30)

U1 U2 U3
S1 S2 S3 S4

S5

S6

S7 S8

U4

50

1 1 2 2 5 5 0A A AFC F C F C− − = (2-31)

1 1 2 2 5 5 0B B BFC F C F C− − = (2-32)

The total number of original balance equations is 12 (3 per unit). The component balance

equations are nonlinear, hence the system is nonlinear (it is bilinear system). The

nominal operating condition is given in table 2.6 (taken from Narasimhan and Jordache,

2000):

Table 2.6 - Nominal operation condition for mineral flotation process

Streams 1 2 3 4 5 6 7 8

Fi

(kmol/hr)
100 92.67 91.57 84.48 7.33 8.43 7.09 1.1

C iA

(% mol)
0.019 0.0045 0.0013 0.001 0.2027 0.2116 0.0051 0.2713

CiB

(% mol)
0.0456 0.0437 0.0442 0.0041 0.069 0.0495 0.5227 0.001

When the balance equations are linearized, the process model can be written in the

following form Ax = b , where

1 2 3 4 5 6 7 8 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
1

A B A B A B A B A B A B A B A BF F F F F F F F C C C C C C C C C C C C C C C C

A =

 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.02 -0.005 0 0 -0.203 0 0 0 100 0 -92.67 0 0 0 0 0 -7.33 0 0 0 0 0 0 0
0 0.005 -0.001 0 0 0 0 -0.271 0 0 92.67 0 -91.57 0 0 0 0 0 0 0 0 0 -1.1 0
0 0 0.001 -0.001 0 0 -0.005 0 0 0 0 0 91.57 0 -84.48 0 0 0 0 0 -7.09 0 0 0
0 0 0 0 0.203 -0.212 0 0.271 0 0 0 0 0 0 0 0 7.33 0 -8.43 0 0 0 1.1 0
0.05 -0.044 0 0 -0.069 0 0 0 0 100 0 -92.67 0 0 0 0 0 -7.33 0 0 0 0 0 0
0 0.044 -0.044 0 0 0 0 -0.001 0 0 0 92.67 0 -91.6 0 0 0 0 0 0 0 0 0 -1.1
0 0 0.044 -0.004 0 0 -0.523 0 0 0 0 0 0 91.6 0 -84.5 0 0 0 0 0 -7.09 0 0
0 0 0 0 0.069 -0.05 0 0.001 0 0 0 0 0 0 0 0 0 7.33 0 -8.43 0 0 0 1.1

51

The first four rows in the constraint matrix A corresponds to the total flow balances, row

5 to row 8 represent for copper component balances and the rest corresponds to zinc

component balances. All sensor precisions are 2%. The sensor costs are given in table

2.7.

Table 2.7 - Sensor costs for mineral flotation process example

Streams 1 2 3 4 5 6 7 8

Fi 50 55 45 60 40 48 52 58

CiA 300 310 240 260 250 360 320 335

CiB 290 350 330 340 280 270 295 275

Three design cases at three different levels of design specification are considered: low

specification (MFP1), moderate (MFP2) and high specification (MFP3). They are shown

in table 2.8.

52

Table 2.8 - Design case studies for the mineral flotation process example

Case Study
MFP1

Low Spec.
MFP2

Moderate Spec.
MFP3

High Spec
No. of key variables 4 4 12

Key variables
F1, C1A, F7 and

C7B
F1, C1A, F7 and C7B

F1, F4, F6, C1A, C1B, F7,

C4A, C4B, C6A, C6B, C7A, C7B
Requirement Observability Redundancy Observability

Precision thresholds
1.5% (F1, C1A)
2% (F7 , C7B)

1.5% (F1, C1A)
2% (F7 , C7B)

1.5% (F1, F4, F6, C1A, C1B)
2% (F7, C4A, C4B, C6A, C6B,

C7A, C7B)

Residual precision

thresholds

5% for F1, F7 only

Measured variables
F1, F3, F5, F6, F7,

F8, C1A, C2A, C5A,

C7B

F1, F3, F5, F6, F7, F8,

C1A, C2A, C3B, C4B,

C5A and C7B

F1, F3, F5, F6, F7, F8, C1A,

C2A, C3B, C4A, C4B, C5A,

C6B, C7A and C7B
Sensors cost 1448 2118 2968

In all case studies, the decomposition is made by operating directly on the constraint

matrix, that is, the constraint matrix is “cut” into three subset matrices: {row 1 to row 4},

{row 5 to row 8} and {row 9 to row 12}. The submatrices for these systems are indicated

by dotted rectangles in matrix A. The common variables between the subset matrices

(called connecting streams in the case of linear systems) are the eight flowrate variables:

from F1 to F8. The computation time and number of nodes explored are shown in table

2.9.

53

1 2 3 4 5 6 7 8 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
1

A B A B A B A B A B A B A B A BF F F F F F F F C C C C C C C C C C C C C C C C

A =

 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.02 -0.005 0 0 -0.203 0 0 0 100 0 -92.67 0 0 0 0 0 -7.33 0 0 0 0 0 0 0
0 0.005 -0.001 0 0 0 0 -0.271 0 0 92.67 0 -91.57 0 0 0 0 0 0 0 0 0 -1.1 0
0 0 0.001 -0.001 0 0 -0.005 0 0 0 0 0 91.57 0 -84.48 0 0 0 0 0 -7.09 0 0 0
0 0 0 0 0.203 -0.212 0 0.271 0 0 0 0 0 0 0 0 7.33 0 -8.43 0 0 0 1.1 0
0.05 -0.044 0 0 -0.069 0 0 0 0 100 0 -92.67 0 0 0 0 0 -7.33 0 0 0 0 0 0
0 0.044 -0.044 0 0 0 0 -0.001 0 0 0 92.67 0 -91.6 0 0 0 0 0 0 0 0 0 -1.1
0 0 0.044 -0.004 0 0 -0.523 0 0 0 0 0 0 91.6 0 -84.5 0 0 0 0 0 -7.09 0 0
0 0 0 0 0.069 -0.05 0 0.001 0 0 0 0 0 0 0 0 0 7.33 0 -8.43 0 0 0 1.1

Table 2.9 - Results for mineral flotation process example

Case Study
MFP1

(Low Spec.)

MFP2
(Moderate

Spec.)

MFP3
(High Spec.)

All-

Equations

Computation time 6 hrs 22 min 45 hrs 44 min

Not used

Computation time to

generate equations
2 seconds 2 seconds

Number of equations

generated
2,225 2,225

Number of nodes explored 5,645 35,289

Decomposed

Equations
(3

subgraphs)

Computation time 13 seconds 40 seconds 1hr 29 min
Computation time to

generate equations
< 1 second < 1 second < 1 second

Number of equations

generated
27 27 33

Number of nodes explored 5,077 13,622 200,245

All

Variables
Computation time

23 min, 41

sec
2 hr, 16 min 7h 35 min

Number of nodes explored 529,130 3,743,327 12,366,120

Inverted All

Variables
Computation time

17 min, 20

sec
11 min, 18

sec
49 seconds

Number of nodes explored 376,432 130,733 19,722

In the case study MFP1, the number of equations containing at least one of the four key

variables {F1, F7, C1A ,C7B} in the equations-based tree search without decomposition

54

(All Equations method) is 2225. When the decomposition technique is used, the number

of equations containing at least one key variable reduces significantly to 27, which is the

main reason why the computation time reduces remarkably to less than 1 minute in both

design cases. For comparison, in the linear Madron example solved by Gala and

Bagajewicz (2006a), which has the same scale as our mineral example problem with 5

out of 24 variables required to be observable, the number of cutsets (depth of the tree) is

154. Although the All Variables method explores a lot more nodes than the All Equations

method, the time is considerably smaller because the branching criterion in the All

Equations method requires expensive computation to pick up the equation leading to the

minimum cost sensor network among roughly 2210-2220 candidates (= total number of

equations minus the number of equations active in the current node).

The larger tree size in this nonlinear example leads to much longer computation

time because of two main reasons:

i. A larger tree depth requires an exponentially longer computation time to

explore the tree

ii. A larger number of equations requires a longer time to perform the

branching criterion in a node (picking the equation leading to the minimum-

cost sensor network among all candidates). In fact, while example 2 of the

Madron problem requires only 37 seconds to explore 937 nodes in the

cutsets-based tree search (Gala and Bagajewicz, 2006a), in this example it

takes roughly one hour to explore every 1000 nodes in the equations-based

tree search without decomposition (All Equations method). Thus, reducing

the tree depth by using a decomposition technique is very beneficial for

55

nonlinear systems. Although capable of finding the optimal solution, the All

Equations method (equation-based without decomposition) is far less

computationally efficient than the Decomposed Equations method or even

the simpler All Variables method.

Tables 2.5 and 2.9 show that the computation time of the All Equations increases

from less than one minute in the 13-variable CSTR example to several hours or almost 2

days in the 24-variable mineral flotation process example. We conclude that the All

Equations method is severely affected by the scaling problem, which is due to the fact

that the number of equations generated (the tree size) usually increases combinatorially

with the size of the problem. The number of equations generated in nonlinear systems is

also much larger than the number obtained in the same sized linear systems. The main

reasons are:

i. Any combination of original equations may result in multiple new equations

(not just only one as in linear systems)

ii. The possibility that there is common variable(s) between a pair of equations

is high because one variable (such as the reactor temperature or the flowrate

variables) can appear in several equations (instead of at most 2 in linear

systems) as can be seen above (recall that ring sum operation on a pair of

cutsets or variables substitution on a pair of equations can be performed only

when there exists common stream(s) or common variable(s) between them).

56

For the mineral process example, the two best methods are the Decomposed

Equations method and the Inverted All Variables method. When low or moderate

specification is used (MFP1, MFP2), the Decomposed Equations method is the most

efficient: it can find optimal solution within less than a minute. When high specification

is used (MFP3), the Inverted All Variables method is the best because this method is

tailored for such design case: in the design case MFP3, the number of sensors in feasible

nodes is at least 15, hence the All Variables method (forward tree search) needs to

explore at least 15 levels before it stops, while the inverted tree search explores not more

than 9 (=24 minus 15) levels before it stops. This explains the remarkable improvement

in computation time by using the inverted tree search.

2.7.3. Example 2.3: The Tennessee Eastman process

Consider the well-known challenge problem, the TE process, which is given in figure

2.10. The simplified TE model described by Ricker and Lee (1995) is used. The steady

state operation conditions are generated from the Fortran file that implements the TE

model available at Ricker’s website

(http://depts.washington.edu/control/LARRY/TE/download.html). The steady state

equations used are:

3

,6 6 ,7 7
1

 = 0 , ,..., i i ij j
j

y F y F R i A B Hν
=

− + =∑ (2-33)

,7 7 ,8 8 9 ,10 10() = 0 , ,...,i i iy F y F F x F i A B H− + − = (2-34)

http://depts.washington.edu/control/LARRY/TE/download.html

57

*
,1 1 ,2 2 ,3 3 ,5 ,8 8 ,6 6 = 0 , ,...,i i i i i i iz F z F z F F y F F y F i A B H+ + + + + − = (2-35)

,10 10 ,11 11(1) , i i ix F x F i G Hφ− − = (2-36)

where φi (i = G,H) : separation factor of component i in the stripper, zi,j, yi,j and xi,j :

molar fraction of chemical i in stream j, which can be feed stream (zi,j), liquid stream (xi,j)

or gas stream (yi,j); νij : stoichiometry factor of chemical i in reaction j. The reaction rates

Rj are given by the following expressions:

, , ,

1.08 0.311 0.874
1 1

42600exp 44.06
A r C r D rVr

r
R V P P P

RT
β

= −

 (2-37)

, , ,

1.15 0.370 1.00
2 2

19500exp 10.27
A r C r D rVr

r
R V P P P

RT
β

= −

 (2-38)

,3 3 , ,
59500exp 59.50 (0.77)

A rVr D r E r
r

R V P P P
RT

β

= − +

 (2-39)

where βj: “tuning” factor of reaction j; Vv,r : liquid volume in the reactor, Tr : temperature

in the reactor, Pi, r : partial pressure of chemical i in the reactor.

The variables, their nominal operating conditions and costs of associated sensors are

given in table 2.10. Sensor precision of 2% (for all variables) is used.

58

Figure 2.10 - The Tennessee Eastman Process (following Downs and Vogel, 1993)

Table 2.10 - Data for the Tennessee Eastman Problem

Variables Nominal

operating

condition

Sensor

cost

Variables Nominal

operating

condition

Sensor

cost

F6 1889.9 300 YE,8 0.186 740

F7 1475.2 300 YF,8 0.023 730

F10 258.56 200 YG,8 0.048 740

F11 211.3 200 YH,8 0.023 750

YA,6 0.322 770 YA,9 0.33 720

YB,6 0.089 780 YB,9 0.138 730

YC,6 0.264 730 YC,9 0.24 740

YD,6 0.069 740 YD,9 0.013 750

YE,6 0.187 750 YE,9 0.186 760

YF,6 0.016 760 YF,9 0.023 770

REACTOR

CONDENSER

1

6

12

7

4

13

8

5

9

10

11
STRIPPER

SEPARATOR

 Steam

 Product

 CW Purge

 CW

 A

2
 D

3
 E

 C

59

Variables Nominal

operating

condition

Sensor

cost

Variables Nominal

operating

condition

Sensor

cost

YG,6 0.035 810 YG,9 0.048 780

YH,6 0.017 820 YH,9 0.023 790

YA,7 0.272 750 YD,10 0.002 700

YB,7 0.114 760 YE,10 0.136 710

YC,7 0.198 700 YF,10 0.016 720

YD,7 0.011 710 YG,10 0.472 720

YE,7 0.177 720 YH,10 0.373 730

YF,7 0.022 730 YG,11 0.537 730

YG,7 0.123 780 YH,11 0.438 740

YH,7 0.084 790 Pr 2806 100

YA,8 0.33 780 Tr 393.6 500

YB,8 0.138 770 Ps 2734.7 100

YC,8 0.24 760 Ts 353.3 500

YD,8 0.013 750

Values of flowrates Fi are given in kmol/hr, Pr, Ps: pressure in reactor and

separator, respectively (KPa); Tr, Ts: temperature in reactor and separator, respectively

(K); subscripts A, B, C, D, E, F, G, H denote components; subscripts 6, 7, 8, 9, 10, 11

denote stream number. The variables listed in table 2.10 are considered as candidates for

measurements, other variables in the TE process (e.g. input flowrates F1, F2, F3) are

assumed to be either known by measurements (forced measurements) or of little

importance for consideration. The total number of equations involving listed variables is

28.

Three design cases are considered, they are shown in table 2.11.

60

Table 2.11 - Design case studies for the TE process example

Design case
TE1

Low Spec.
TE2

Moderate Spec.
TE3

High Spec.
No. of key variables 6 17 39

Key variables
F6, yA6, yG6,

yH6,F7, F10

F6, yA6, yG6, yH6, F7, yG7,

yH7, yA9, yG9, yH9, F11, yG11,

yH11, Pr, Tr, Ps, Ts

All variables except {yD9,

yE9, yF9, yG9, yH9, F10, yD10,

yE10}

Requirement
Observabil-

ity
Observability Redundancy

Precision thresholds 2% 2%
1.5%

1.6% (yG8, yH8)

Residual precision

thresholds

4% for all key variables

except {yG8, yH8, Pr,Tr,

Ps,Ts}

Measured variables
F6, yA6, yG6,

yH6,F7, F10

F6, yA6, yG6, yH6, F7, yA7,

yA9, yG9, yH9, yG10, yH10,

F11, yH11, Pr, Tr, Ps, Ts

all variables except (yE9,

F10, yE10, Pr)
(43 variables in total)

Sensors cost 3,200 9,630 29,640

For this example, the All Equations method was not used because: i) the

computation time to generate all balance equations from (228 – 1) combinations of 28

original equation is too long; ii) its large tree size (large number of equations) leads to a

long computation time. The computation time and number of nodes explored for the other

methods are given in table 2.12.

61

Table 2.12 - Results for the TE process example

Case Study TE1 TE2 TE3
All-Equations method Not Used

Decomposed

Equations
(9 subgraphs)

Computation

time
2 min 40

seconds

> 74 hours (all

current best solutions

obtained in 14 hours)

>10 hours
(Suboptimal

solution found

in one second)
Computation

time to generate

equations
< 1 sec < 1 sec < 1 sec

Number of

equations

generated
61 67 68

Number of

nodes explored
11,628

> 1.8 millions
(All “current best”

solutions obtained

within first 510,000

nodes explored)

>500,000

(Suboptimal

solution found at

node 44)

All Variables

Computation

time
9 hr 8 min

> 3 days (45 days

estimated)

Not used Number of

nodes explored
1,867,295 > 6 millions

Inverted All

Variables

Computation

time
Not used Not used

4 min 16 sec

Number of

nodes explored
1,726

For the case studies with low and moderate specification (TE1, TE2), the Inverted

All Variable method is not used because the inverted tree search will perform poorly for

design case with low specification like TE1. The case study TE2 is similar to the case

study MFP1 (mineral flotation example) where the number of sensors in the optimal (or

62

sub-optimal) solution accounts for less than a half of all sensors; hence the performance

of the inverted tree search is predicted to be comparable to that of the All Variables

method, which performs poorly as shown in table 12.

The proposed methods can find optimal solution for the two design cases with

low and high specification (TE1 and TE3, respectively) with the Decomposed Equations

method being the best method for the design case TE1 while the Inverted All Variables

method is the best method for TE3 as expected. Optimal solution for these two design

cases are found within less than 5 minutes.

For design case with moderate specification (TE2), the Decomposed Equations

method is the only viable option when the factor of acceptable computation time is

desired. In fact, after roughly 3 days of running time and 6 millions number of nodes

explored, the “current best” solution found by the All Variables method consists of 21

sensors with the cost of 14,120, far worse than the solution found by the Decomposed

Equations method. We assume that the computation time of the All Variables method is

comparable to the computation time of the same sized linear system, the CDU process

presented in Gala and Bagajewicz (2006b), which was estimated to be 45 days. The

Decomposed Equations method was then used: the number of decompositions is 8

(original graph is decomposed into 9 sub-graphs), the number of equations generated is

67. All the “current best” solutions (the incumbent) were found within the first 510,000

nodes explored, 14 hours computation time. After that the tree search procedure kept

running for 60 hours, explored further 1.3 millions nodes without finding any better

solution before it was terminated (so in total, 74 hours running time and 1.8 millions

number of nodes explored). The current best solution is reported here, which is to

63

measure F6, yA6, yG6, yH6, F7, yA7, yA9, yG9, yH9, yG10, yH10, F11, yH11, Pr, Tr, Ps, and Ts. It has

a cost of 9,630. This solution contains only 14 of the 17 key variables: F6, yA6, yG6, yH6,

F7, yA9, yG9, yH9, F11, yH11, Pr, Tr, Ps, and Ts.

Finally, Case Study TE3 is one that will require a lot of measurements, because

the requirements are very strict. In this case, the best solution obtained by the

Decomposed Equations after roughly 500,000 nodes explored, 10 hours computation time

(before it was terminated) is to measure all variables except three variables (yE9, F10, yE10)

with a cost of 29,740. This solution contains one more sensor for measuring Pr and a cost

slightly higher (100 more) when compared with the optimal solution found by inverted

tree search. Thus, even in the case that the Decomposed Equations method has to be

terminated when the computation time becomes unacceptably long (e.g. with large scale

problems with high number of key variables) such that the finding of optimal solution is

not guaranteed, the method finds sub-optimal solutions very near to the global optimal

solution within an acceptable time (in fact, this sub-optimal solution is found at node 44,

just after 1 second running time).

The results shown here point out that

i. When the level of desired properties (the specifications) of sensor network

is either low or high (e.g. either a small or a large number of key variables

is involved), even large scale nonlinear sensor network problem like the

TE problem can be solved efficiently using either the Decomposed

Equations method (for a low level of specifications) or inverted tree search

method (for a high level of specifications)

64

ii. For realistic design cases of large scale nonlinear problem where the level

of desired properties is neither low nor high, the Decomposed Equations

method is able to find optimal or near-optimal solution within an

acceptable time, however the optimality is not guaranteed because the

computation process has to be terminated half-way.

2.8. Choice of strategy

It can be seen that the inverted tree search remarkably improves the computational

time when a high level of specifications is desired. A step further is to intelligently select

which strategy to use corresponding to a specific design case in order to have the shortest

computational time. The criterion of when to choose the inverted tree search instead of a

forward tree search, inferred empirically by our observations of testing problems, is to

choose the inverted tree search when the followings conditions are met:

i. The number of variables is more than 15

ii. The average number of sensors in feasible solutions is more than 70% of the

total number of variables (based on the first 10 feasible solutions found).

The first condition is needed because: a) the Equations-based methods (forward

strategy) can solve problems involving not more than 15 variables very efficiently, hence

Inverted tree search is not needed for this type of small scale problem, b) if number of

variables is less than 15, usually the computation time is short and the time to compute

the average number of sensors in feasible solutions offsets the gain in computation time

(if any) by using the inverted tree search.

65

The procedure to quickly calculate the average number of sensors in feasible

solutions that is as close as possible to the number of sensors in the optimal solution has

three steps:

i. Prepare two lists of variables: one list of key variables (list one) and a list

of non-key variables (list two)

ii. If measuring all key variables is a feasible solution, then use the number

of key variables as final result and stop, otherwise go to step iii

iii. Employ the tree enumeration procedure using non-key variables from list

two to find the first ten combinations of all key variables (list one) and

non-key variables (from list two) that are feasible solutions.

The average number of sensors in feasible solutions and the associated

computation time for the four mineral process design cases are shown in table 2.13:

Table 2.13 - Results used for selecting the right tree search strategy

Design cases MFP1 MFP2 MFP3
Computation time (second) 2 16 1
Average number of sensors in feasible solution 16.45 16.55 20.36
Number of sensors in optimal solution 10 12 15

According to the results shown in table 2.13 and the criteria presented above, the design

case MFP3 should be solved by using inverted tree search. The calculation results shown

in table 2.9 confirm that this is the “right” choice. The two design cases MFP1 & MFP2

should be solved by using the Decomposed Equations method (forward strategy).

66

2.9. Conclusions

In this chapter, the equations-based tree search method for the design of nonlinear

sensor network was presented. The proposed method is guaranteed to find optimal

solution and is computationally efficient for small scale and middle scale problems.

However, its performance is not always satisfactory when dealing with large scale

problems. Another version of the tree search method, the inverted tree search using the

list of variables, was also presented. The inverted strategy is tailored for design cases

with high level of specifications and is shown to remarkably improve the computation

time, especially with large scale nonlinear problems like the TE process where it solved a

high specifications design case within a few minutes.

For realistic large scale nonlinear design problems (those with moderate level of

specifications), the equation-based method is not yet efficient enough; thus a more

efficient method is needed. This method is presented in the next chapter

2.10. Nomenclature

− ci : cost of sensor i

− qi : binary variable indication whether sensor i is used

− iσ : precision of estimator i

− *
i

σ : precision threshold of estimator i

− Fi : flowrate of stream i

− hi : enthalphy of stream i

− cij : concentration of component j in stream i

− δi: stoichiometric coefficient of component i in chemical reaction.

67

− Tr & Pr: temperature and pressure of reactor

− Ts & Ps: temperature and pressure of separator

− Pi, r : partial pressure of chemical i in the reactor

− Tf : flash drum temperature

− Fi, Ti , cAi : inlet flowrate, temperature and concentration of A of the CSTR reactor

− F, T , cA : outlet flowrate, temperature and concentration of A of the CSTR reactor

− Fci, Tci : inlet flowrate and temperature of coolant in the CSTR reactor

− Fc, Tc : outlet flowrate and temperature of coolant in the CSTR reactor

− Fvg : flowrate of vent gas leaving the CSTR reactor

− U, A : heat transfer coefficient and heat transfer area in the CSTR reactor

− Cd : catalyst activity

− Vj : volume of jacket

− V: reactor volume

− Vv,r : liquid volume in the reactor

− Cp, ρ : heat capacity and density of fluid mixture in the CSTR reactor

− Cpj, ρj : heat capacity and density of coolant

− Ki : vapor-liquid equilibrium ratio of component i

− E : activation energy of chemical reaction

− k0 : pre-exponential factor or frequency factor

− α : reaction order

− νij : stoichiometry factor of chemical i in reaction j

− φi : separation factor of component i in the stripper

− βj: “tuning” factor of reaction j

68

− R : universal gas constant

− Rj : reaction rate of reaction j

− rxnH∆ (or simply ∆H): heat of reaction.

− Qvap : amount of heat removed in the flashing process

− zi,j, xi,j and yi,j : molar fraction of component i in stream j, which can be feed stream

(zi,j), liquid stream (xi,j) or gas stream (yi,j)

2.11. References

Ali, Y., and Narasimhan, S. Sensor Network Design for Maximizing Reliability of
Bilinear Processes. AIChe J. 1996, 42(9), 2563-2575.

Bagajewicz, M., Design and Retrofit of Sensors Networks in Process Plants. AIChe J.

1997, 43(9), 2300-2306.

Bagajewicz, M. Design and Upgrade of Process Plant Instrumentation. Technomic

Publishers: Lancaster, PA, 2000.

Bhushan M. and R. Rengaswamy. Comprehensive Design of Sensor Networks for

Chemical Plants Based on Various Diagnosability and Reliabilty Criteria. I. Framework.
Ind. Eng. Chem. Res. 2002a, 41, 1826-1839.

Bhushan M. and R. Rengaswamy. Comprehensive Design of Sensor Networks for

Chemical Plants Based on Various Diagnosability and Reliabilty Criteria. II.
Applications. Ind. Eng. Chem. Res. 2002b, 41, 1840-1860.

Chmielewski, D.,Palmer, T.,Manousiouthakis, V. On the Theory of Optimal Sensor

Placement. AIChe J. 2002, 48(5), 1001-1012.

Downs, J. J. and Vogel, E. F. A Plant-wide Industrial Process Control Problem.

Comput. Chem. Eng. 1993, 17(3), 245-255.

Gala, M. and Bagajewicz, M. J. Rigorous Methodology for the Design and Upgrade of

Sensor Networks Using Cutsets. Ind. Eng. Chem. Res. 2006a, 45(20), 6687-6697.

69

Gala, M. and Bagajewicz, M. J. Efficient Procedure for the Design and Upgrade of

Sensor Networks Using Cutsets and Rigorous Decomposition. Ind. Eng. Chem. Res.
2006b; 45(20), 6679-6686.

Heyen, G., Dumont, M. and Kalitventzeff, B. Computer-aided design of redundant

sensor networks, in: J. Grievink, J. van Schijndel (Eds.), Proceeding of 12th European
Symposium on Computer-aided Process Engineering, Elsevier Science, Amsterdam,
2002, pp. 685–690.

Kretsovalis, A. and R. S. H. Mah, Effect of Redundancy on Estimation Accuracy in

Process Data Reconciliation. Chem. Eng. Sc. 1987, 42, 2115.

Mah, R.S.H. Chemical Process Structures and Information Flows. Butterworths:

Stoneham, MA, USA, 1990.

Ricker N.L and Lee J.H. Nonlinear Modeling and State Estimation for the Tennessee

Eastman Challenge Process. Comput. Chem. Eng. 1995, 19(9), 983-1005.

70

3. NEW EFFICIENT METHODOLOGY FOR NONLINEAR SENSOR

NETWORK DESIGN PROBLEMS

The instrumentation network design and upgrade problem can only be

solved to optimality using a branch and prune tree search strategy,

usually a depth first one. In this chapter, an efficient tree search strategy

that explores the tree horizontally and exploits certain cost property of the

different nodes in the tree is presented. This method guarantees optimality

and its performance is much better than the depth first strategy. In case

this rigorous horizontal search method is not efficient enough for certain

types of problems, an approximate method is proposed to complement for

this horizontal search method. The approximate method is shown to be

very efficient and it is able to locate optimal solutions for all the design

case studies.

3.1. Overview

Two main groups of computational methods have been used to solve the SNDP

for process monitoring purpose: mathematical (integer) programming methods (these

methods guarantee optimality but they usually exhibit scaling problem) and stochastic

methods (e.g. genetic algorithms, these methods do not guarantee optimality). In the first

group, while other researchers transformed problems into well-established optimization

models such as mixed integer linear programming MILP (which was then solved by

71

using GAMS), our group particularly used the branch and bound “tree search” methods

(which were implemented in Fortran).

The nonlinear SNDP is the most computationally challenging problem. The first

attempt to solve the nonlinear SNDP, the equation-based tree search method, has some

success but it fails to locate optimal solution within an acceptable time for realistic large

scale nonlinear problems. In this chapter, new efficient methods that address the

shortcomings of the equation-based method are presented. Two methods are proposed,

which are sequentially presented in two parts of this chapter

The first part presents a new tree search method : instead of exploring the tree

through its branches, i.e. adding one instrument at a time and pruning branches using a

certain stopping criteria, we resort to look at configurations with the same number of

instruments, that is, looking at all branches at the same level of the tree. The former is

called depth-first tree exploration, while what we propose is known as breadth-first

strategy (Diwekar, 2008). In addition, a few modifications to these strategies are

proposed and the stopping criterion that is particular to minimum cost problems (like the

one we intend to solve) is also provided. The proposed method belongs to the breadth

first strategy category (in the sense that it expands first all successor / sister nodes of the

current node rather than going down the tree) but it is not exactly the breadth-first branch

and bound method as described in optimization textbooks, so we name it “level-by-level”

search.

The second part presents a heuristic local search attempting to locate optimal

solution starting from sub-optimal solutions provided by equation-based tree search

method. The local search is a two-step procedure. This local search method is meant to

72

be complementary for the “level-by-level” tree search and equation-based tree search: it

will be used in final step if these two tree search methods (which are rigorous methods

that guarantee optimality) fail to identify optimal solution within an acceptable

computational time.

3.2. Tree search methods

Solution strategies used in previous works:

• Transforming the problem into well-established optimization problems

(MILP, convex optimization using linear matrix inequalities techniques)

by introducing auxiliary variables. Applied to small scale linear systems.

• Branch and bound (tree search) method. The base unit can be single

measurement (Bagajewicz, 1997) or cutset of process graph (Gala and

Bagajewicz, 2006a, 2006b) or process balance equations (Nguyen &

Bagajewicz, 2008).

The direct enumeration tree search method is illustrated in figure 3.1. The

procedure is as follows:

• Start with a root node with no variables being measured (q = 0), it is

trivially infeasible.

• Develop each branch and making one element of q active until the

stopping criterion is met. Then back up one level and develop next branch

using a branching criteria.

73

Figure 3.1 - Tree search method

Branching Criteria: Sensors are added to nodes in the direction of minimum

cost, that is, the sensor chosen to be added to the current node has the cheapest cost

among all candidates

Stopping Criteria: In each node, the following two operations are performed in

sequential order to determine if we need to continue exploring the current branch: i) stop

if the cost of the current node is more than the current best because even if the cost is

feasible it cannot compete with the current best, ii) stop if the node is feasible; update the

current best if the cost of this feasible node is less than the current best.

This stopping criterion is valid for both depth first tree search and level traversal

(breadth first) tree search (described below). In depth first tree search, if the stopping

criterion is met, one should stop, back up one level and develop the next branch, as any

node below will be more expensive.

The depth first tree search method is not efficient for medium and large scale

problems because computational time increases exponentially with the size of the

Level 0

Level 1

Level 2

q = (0,0,0,...)

q = (1,0,0,..) q = (0,1,0,...)

 q = (1,1,0 q = (1,0,1,...)

74

problem. To deal with these problems, tree search methods based on cutsets were

proposed (Gala and Bagajewicz, 2006a, 2006b). Later, Nguyen and Bagajewicz (2008)

extended the cutset-based method to solve nonlinear problems by using process balance

equations and incidence matrix manipulation instead of cutsets and graph decomposition

(called equation-based method, which is presented in chapter 2). Nguyen and

Bagajewicz (2008) also presented a technique based on an inverted tree search. The idea

behind this method is to explore the tree in the reverse direction, that is, it to start with a

root node containing all sensors and continue removing sensors when going up the tree

until an infeasible node is found (stopping criterion). This method is very efficient for

problems with high level of specifications (e.g. when there are many key variables or

redundancy is required) where feasible solutions contain a large portion of available

sensors.

Table 3.1 summarizes the most suitable methods (that were developed in our

group) for each case

Table 3.1 - Most suitable method for solving sensor network design problem

Level of specifications Linear systems Nonlinear systems

Low
Cutsets-based or
measurement-based tree
search

Equations-based or
measurement-based tree
search

Medium Cutsets-based Equations-based

High Cutsets-based or Inverted
tree search

Equations-based or
Inverted tree search

Note that in table 3.1, the cutsets-based and equations-based methods are meant to

be the ones with decomposition (which is always better than the corresponding versions

without decomposition). It can be noted that the cutsets-based and equations-based

75

methods (with decomposition) are the best choice for all levels of specifications while

occasionally these methods are outperformed by the measurement-based tree search or

inverted tree search for problems with low level and high level of specifications,

respectively.

A level traversal (breadth first) technique that takes advantage of certain

properties of trees that are constructed using the minimum cost branching criteria is now

presented.

3.3. Level traversal search

Let us start first by defining the following terms:

Sister nodes: sister nodes of a current node are the ones that: i) are at the same

level (containing the same number of active elements) and in the right hand side of the

current node, ii) share the shame root (parent) with the current node

Families of nodes: a set (family) of nodes that have the same number of sensors

(same number of active elements) and share the same root (same parent)

Head of family: the leftmost node in the family of nodes, that is the cheapest

node.

To illustrate the above concepts, consider a list of sensors in ascending order

123456. At level three, the following nodes (consisting of three sensors) (123, 124, 125,

126) are said to form a family of nodes with parent (root) 12 (Figure 3.2). The next

families of nodes at the same level are (134, 135, 136) with parent root 13, (145, 146),

76

with parent root 14, and finally, (156), with parent root 15. The heads of families are

123, 134, 145 and 156.

Figure 3.2 - Families of nodes

We now note the following properties when the tree is built using the cheapest

candidate (minimum cost branching criteria).

• Property 1: There is cost monotonicity within each family, that is, the cost

increases as one moves within each family to the right.

• Property 2: There is cost increasing monotonicity among heads of family

that share the same root.

Property 1 is straightforward: it stems from the minimum cost branching criteria.

Property 2 is also self-evident from the branching criteria. For example Node 123 has

smaller cost than node 134 and so on. This is because they share the same root (node 1).

However, a member of one family can in fact have a larger cost than members of any

Families of nodes with root 1

Level 3

Head of family

Level 2

1

12

2

Head of family

13
14

15
23

24

234 134 145 156

16 25

77

family on the right. For example, node 125 (third member of the first family) can have

higher cost than node 134.

Properties 1 and 2 can be used efficiently in a level traversal strategy. Suppose

that one node at level 3 is found to satisfy the stopping criteria (it is feasible and its cost

is smaller than the current upper bound, or simply if it is more costly than the current

upper bound). Assume that the node is a head of family. In such case one can directly

omit looking at all families sharing the same root and move to the families in the next

root. For example if the head of family “123” is found to satisfy the stopping criterion,

then all the sister nodes of this node (124, 125, 126) and the families on the right side

with heads 134, 145,and 156 have higher cost (property 1). Thus, the traversal search

should continue looking at the families that have different roots, but only comparing the

current best node with heads of families corresponding to all other different roots. For

example, the node 123 has smaller cost that node 234 and smaller cost than 245 and so

on. Therefore, if 123, the head of the first family, is the current node, then one can

dismiss all other families. However, if the current node is not a head of the first family,

but head of other families on the left, monotonicity also holds. For example 134 is

cheaper than 234, and cheaper than 245 and so on. This monotonicity breaks at some

point. For example, node 156 can be more costly than 234, but if it is cheaper, then one

can dismiss all nodes to the right of 234. This suggests a strategy in which the current

feasible node is compared to heads of families on the left only until the monotonicity

breaks.

This discussion points out that:

78

- The level traversal tree search strategy is very efficient if a current best is

identified in left hand side of the tree, in such case lots of nodes in the

right side of that current best node can be eliminated. For example, if

node “1234” is identified to be current best (the leftmost node in the level

consisting of 4 sensors), then no other nodes in this level can compete with

the node 1234 and we can quickly move to the upper levels.

- Conversely, if the level traversal tree search cannot identify a node

satisfying the stopping criterion until the end (the nodes on the rightmost

side) of the current level, the tree search has to explore the whole level

(explore all nodes from left to right). If this situation occurs, the level

traversal tree search is not efficient to solve large scale problems.

The calculation procedure is then described next

The calculation procedure starts with a depth first search using the branching

criteria based on adding the cheapest sensor until a feasible node is found or when a

certain amount of nodes have been explored. This strategy is not efficient for medium

and large scale problems, so the depth first procedure stops when the number of nodes

explore reach a pre-defined limit. Assume that the current best node has been identified.

Because the current best (identified by depth first search) is unlikely to be global

optimum, the tree search continues seeking for global optimum by exploring the nodes in

the right hand side and at the same level with the current best (that is, breadth first or

level traversal strategy). In this strategy, within a family of nodes, tree search looks for a

node satisfying stopping criterion and updates the current best if applicable. Because

79

sensors are added in the direction of minimum cost, the sister nodes of this node have

higher cost than the current best so they are disregarded (Figure 2.3). The search should

continue with the next families of nodes at the same level and families in upper levels

until we identify a level where all nodes are infeasible (Figure 2.4).

Figure 3.3 - Stopping criterion

Cost increases

Root
node Do not

explore these

Node satisfying
stopping criterion, or
current best node for
depth search

80

Figure 3.4 - Searched space in horizontal search

Thus, the essence of the new method is to search the tree horizontally within the

“promising” region only, defined as some number of levels above the currently identified.

Compared with the depth first tree search method, this method saves computational time

by skipping the region above the “promising region” where nodes are infeasible. The

question is how to explore this region horizontally and how to guarantee global

optimality. For this two methods are proposed

3.4. Level-by-level search

The procedure of this method is as follows:

Smaller number
of sensors is
Infeasible

Larger number
of sensors,
which has
higher cost

“Promising” region contains
optimal and sub-optimal
solutions.

Increasing
number of
sensors

Current
Best Node

81

1. Run the depth first tree search method. Record the current best solutions and

the associated depth level (number of sensors) in those solutions

2. Stop if the number of nodes explored reaches the predefined limit. This limit

depends on the size of the problem. The current best solution found is denoted

as XQ and its depth level (the number of sensors) is denoted as Nle. (See

Figure 3.5). At this point all nodes to the left of XQ and their children have

been explored. Property 3 allows us not to explore the next level (Nle-1). If

there is a better solution, it is in this level or previous ones.

3. If node XQ is a leftmost head of a family, identify its parent and move to the

next level up (Nle-1). If not stay at level Nle. Either way go to step 4.

4. Identify all the families of nodes at the current level and on the right hand side

of XQ

5. In each family, identifying the node that satisfies the stopping criterion. If that

node is not a head of family, continue exploring the next families. If that node

is a head of family, disregarding all the nodes that are in the right hand side

and share the same root with that node. For example, if that node (which is a

head of a family) is “123478910”, then all the nodes that are on the right hand

side and share the same root (“1234”) with that node shall be disregarded; the

next node to be explored is “12356789” (assuming there is ascending order in

cost from sensor 1 to sensor 10)

6. If all nodes in the current levels are either explored or disregarded, continue

exploring the upper levels

82

7. The tree search terminates once it identifies a level where all nodes are found

to be infeasible.

Figure 3.5 - Level-by-level search

3.5. Hybrid vertical and “level-by-level” search

In this method, we combine breadth first and depth first strategies. The method is

outlined next:

1. Run the depth first tree search method. Record the current best solutions and

the associated depth level (number of sensors) in those solutions

2. Stop tree search if the number of nodes explored reaches the predefined limit.

This limit depends on the size of the problem

3. The current best solution found is denoted as XQ and its depth level (the

number of sensors) is denoted as Nle. The number of sensors in optimal

solution is at most equal to Nle. Testing results (for medium problems) show

XQ

Level Nle - 1

Families of nodes
Nodes explored by
depth first search

Nodes explored by
horizontal tree search

 NXQ

Level Nle

83

that the number of sensors (depth level) in the optimal solution is generally in

the range [Nle – 2, Nle – 5]

4. Switch to level traversal search.

5. Choose the depth level to perform horizontal search to be one value in the range

[Nle – 1, Nle – 5], denoted as N

6. Explore horizontally all the nodes on the right hand side of the branch that

contains XQ that have the same depth level of N. These nodes are called root

nodes.

7. In each root node, check for its feasibility, then:

• If the current root node (level N) is feasible, then the nodes in the upper levels

(N-1, N-2, etc.) can also be feasible. Then

o Explore the upper levels (N-1, N-2, etc.) by removing sensors out of

the root node (we are exploring the parents only) with the following

stopping criterion: stop exploring when the node is found to be

infeasible.

o Do not explore the sister nodes in the same family with the current

root node because even if these sister nodes are feasible, they result in

the same nodes in the upper levels (N-1, N-2, etc.) as with the current

root node.

o If that feasible node is head of a family, do not explore the families of

nodes that share the same root and on the right hand side of that head

of family

• If the current root node (level N) is infeasible

84

o If its cost is lower than current best cost, explore the lower levels

(N+1, N+2, etc.), but do not explore level Nle

o If the cost is larger than current best cost, skip this node and the

associated sister nodes of this current root node. If that node (which

has higher cost than the current best) is head of a family, do not

explore the families of nodes that share the same root and on the right

hand side of that head of family

The procedure is depicted in figure 3.6

Figure 3.6 - Hybrid Vertical and Level-by-level Search

Level N

Infeasible
Cost < current best

Feasible

Do not explore
these nodes

Level N

Level N+1

Level N+2

Level N

Level N-1

Level N-2

85

3.6. Illustrated example – Level traversal methods

The proposed methods are implemented in Fortran running on a 2.8 GHz Intel Pentium

CPU 1028 MB RAM PC.

Example 3.1: The mineral flotation process example, introduced in chapter 2 (example

2.2), is used. The same process flowsheet (figure 2.9) and data (tables 2.6 and 2.7) are

used. The same design specifications (table 2.8) are used. The level traversal tree search

methods, the Level-by-level search and Hybrid search are used to solve the problem.

They both identify the optimal solution. The design specifications and the optimal

solution are given in Table 3.2

Table 3.2 - Design case studies for the mineral flotation process example

Case Study MFP1
Low Spec.

MFP2
Moderate Spec.

MFP3
High Spec

No. of key
variables 4 4 12

Key variables F1, C1A, F7 and
C7B F1, C1A, F7 and C7B

F1, F4, F6, C1A, C1B, F7,
C4A, C4B, C6A, C6B, C7A,

C7B
Requirement Observability Redundancy Observability

Precision
thresholds

1.5% (F1, C1A)
2% (F7 , C7B)

1.5% (F1, C1A)
2% (F7 , C7B)

1.5% (F1, F4, F6, C1A,
C1B)

2% (F7, C4A, C4B, C6A,
C6B, C7A, C7B)

Residual
precision
thresholds

 5% for F1, F7 only

Measured
variables

F1, F3, F5, F6,
F7, F8, C1A,

C2A, C5A, C7B

F1, F3, F5, F6, F7,
F8, C1A, C2A, C3B,
C4B, C5A and C7B

F1, F3, F5, F6, F7, F8,
C1A, C2A, C3B, C4A, C4B,
C5A, C6B, C7A and C7B

Sensors cost 1448 2118 2968

86

The performance of the two level traversal tree search methods are shown in Table 3.3,

and compared to the performance of the depth first tree search. The predefined limit to

stop the depth first tree search and switch to level traversal search is 500 (for level-by-

level search) and 5000 (for hybrid search). In the hybrid search, the level to be explored

horizontally is 2 levels above the level of the current best identified by the depth first

tree search (that is, N = Nle – 2)

Table 3.3 - Performance of level traversal tree search methods, mineral flotation process
example

Case Study MFP1
(Low Spec.)

MFP2
(Moderate

Spec.)

MFP3
(High Spec.)

Hybrid search
Computation time 4 min 24 sec 7 min 22 sec 11 min 5 sec
Number of nodes

explored 205,168 119,188 186,521

Level-by-level
search

Computation time 1 min 11 sec 2 min 52 sec 6 min 42 sec
Number of nodes

explored 57,143 117,382 171,975

Depth First
tree search

Computation time 23 min, 41
sec 2 hr, 16 min 7h 35 min

Number of nodes
explored 529,130 3,743,327 12,366,120

Equations-
based with

decomposition

Computation time 13 seconds 40 seconds 1hr 29 min
Number of nodes

explored 5,077 13,622 200,245

It can be seen that the level-by-level search is generally better than the hybrid

search. In the two design cases MFP2 and MFP3, the two level traversal search methods

explored similar number of nodes but the computational time of the level-by-level search

is shorter than the other. The difference is largely due to implementation issue in Fortran

of the hybrid search: from a node in the chosen level (N = Nle – 2), the tree search either

goes up (explore upper levels N – 1, N -2) or goes down (explore next level N + 1, N + 2)

87

by calling the appropriate subroutines. It is well known that before the commands in a

subroutine are executed, a certain amount of time is spent to perform the pre-processing

step (known in computer science as “overhead”). The “extra” time spent on “overhead”

explains why the computational time of hybrid method is larger than that of the level-by-

level search. Although for design cases MFP1 & MFP2, the level-by-level search is not

better than the equations-based method with decomposition, but if design case MFP3 is

included for comparison, the level-by-level search can be considered to be better than the

equations-based method because the level-by-level search solved the design case MFP3

much faster. Another advantage of the level-by-level search over the equations-based

method is that it is much simpler to use because it does not require any knowledge to

decompose the problem (a poor choice of how to decompose the problem in equations-

based method can lead to much longer computational time)

Detail of steps in the level-by-level search for the design case 3 (MFP3) is now

illustrated. The list of sensors in ascending order of cost is [5, 3, 6, 1, 7, 2, 8, 4, 13, 17,

15, 20, 24, 18, 10, 22, 9, 11, 21, 14, 23, 16, 12, 19] (vector SC). For simplicity, we use

the indexes (or locations) of sensors in the vector SC to indicate the measurement

locations. For example, if the active element in vector q (in Eq. 1 and 2) is [1,2,3] then

the actual chosen sensors (measurement location) are 5, 3 and 6 whose indexes in SC are

1, 2 and 3 respectively. The solution q = [123] has the smallest cost among all the

solutions that have three sensors.

Let the set R be defined as follows: R=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The

depth first tree search after exploring 500 nodes identifies [R, 14, 16, 17, 18, 19, 20, 22]

as current best (containing 20 sensors and the current best cost is 3878) at node 406. The

88

node at which the depth first tree search terminates (node XQ) is [R, 14, 16, 18, 21, 23,

24] (19 sensors). The first node to be explored by level-by-level search is the node that

has the same level with the current best (20) and on the right hand side of XQ. That node

is [R, 14, 16, 19, 20, 21, 22, 23] (the different part between this node and XQ is italicized.

The node is also a head of family whose root is [R, 14, 16] and it has higher cost (cost is

3953) than current best. Thus all nodes on the right hand side and share the same root

with this node are disregarded. The next node to be explored is [R, 14, 17, 18, 19, 20, 21,

22]. The same thing is observed (head of family with higher cost than current best), thus

the next node to be explored is [R, 15, 16, 17, 18, 19, 20, 21] (which is again a head of

family) (the roots of those heads of families are indicated by normal letters, the other

members are indicated by italicized letters). The same thing is observed and this node is

disregarded. There is no node in the current level (20) can compete with the current best.

After exploring roughly 9000 nodes, the tree search completes exploring the two levels

20 & 19 (found a new current best at level 19, the new current best cost is 3653) and

quickly moves to the next level (18). The first node to be explored in this current level

(number of sensors = 18) is [R, 14, 16, 18, 22, 23], this node has lower cost than the

current best but it is infeasible, so its sisters node ([R, 14, 16, 18, 22, 24]) is explored,

which does not satisfy the stopping criterion either. The tree search keeps searching

horizontally from left to right; in the process it visited nodes that have lower cost than

current best but they are infeasible. The first node that is better than the current best is [1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 22]. This new current best is not a head

of family, so the next families are explored. The tree search continues in that fashion.

89

We have shown how the searching process proceeds and how to eliminate non-

optimal nodes in the level-by-level search. The hybrid search is performed in the similar

fashion. The only difference is that the hybrid search explores only one level (which is a

chosen parameter). In each node in the chosen level, it either explores the parent (the

root) of that node or the children originated from that node by calling the appropriate

subroutines to either “go up” or “go down” the tree.

It can be seen that the level traversal tree search is much more efficient than the

depth first tree search because it explores only the “promising” region. However, the fact

that the current bests are found in the left side of the tree plays a significant part in

reducing computational time because the tight bounds helps eliminate lots of non-optimal

solutions. If tight bounds are not obtained (in this context, when current bests are found

in the right side of the tree), the level traversal tree search basically has to explore the

whole level of tree, which makes it impossible to solve large scale problems efficiently

using this method. The large scale problem with medium level of specification shown in

chapter 2, the TE example case study 2, exposes such limitation of the level traversal tree

search. We attempted to solve the TE example using level traversal tree search but the

solutions provided by this method are worse than the equation-based method with

decomposition described in chapter 2 even after several days running. For the TE

example, a kind of heuristic local search or approximate method is probably the most

efficient method. This approximate method is shown in the next section.

90

3.7. Approximate method

This section presents an approximate (local search) method that improves the

equation-based method by complementing it with a local search. The idea is to use the

good solutions provided by the equation-based method as input in a local tree search

procedure to hopefully arrive close to the global optimum (the term “good” solution is

meant to be a feasible solution with objective value / cost near to that of the global

optimum)

The core of our methodology, the local search, relies on the following

observation:

- The global optimal solution and near-optimal solutions belong to the same region

(space of variables), that is, they are different from one another in values of only a

few variables (in this context, the measurement locations). This is due to the

inherent characteristic of the sensor network: if a measurement is good (because

the associated sensor is cheap and this measurement contributes significantly to the

observability and redundancy of key variables), then it will show up in global

optimum and some other “good” solutions. Compared to the global optimum, a

good solution usually misses one or two good measurements and contains some

other “extra” measurements

- Therefore, it is reasonable to assume that all the measurements show up in good

solutions are good measurements that are very likely to show up in global

optimum

91

Based on the above arguments, the proposed heuristic local search has the

following two steps:

Step one:

The purpose of this step is to find a minimum cost (and feasible) solution

constituted from those “good” measurements. The calculation procedure to find such a

solution is the following:

- Find the union of the last five current best solutions (find all good measurements

that show up the last five current best solutions), denoted as vector U

- Employ a tree enumerative strategy to remove measurements out of vector U to

obtain a minimum cost solution (the method is essentially the same as the inverted

tree search described in Nguyen & Bagajewicz, 2008). Let us denote that the

minimum cost solution as MC.

If all good measurements belonging to global optimum actually show up in the

last five current best solutions (which is highly probable), the identified minimum cost

solution MC is indeed global optimum. However, there is a very small chance that one or

two good measurements belonging to global optimum do not show up in vector U, thus

we go on to step two to account for such situation.

Step two

The purpose of this step is to identify if it is possible to improve the solution by

replacing a certain number of measurements in MC by some other measurements not

belonging to MC (denote all the measurements not belonging to MC as vector A). This is

92

done by exploring all the possibilities of replacing a certain number of measurements

(denoted as Nr, a parameter) in MC with elements in vector A trying to obtain a solution

better than MC. The calculation is as follows:

- Remove a certain set of Nr measurements out of MC, denote the resulting

vector as B

- Use a tree enumerative strategy to add elements (measurements) from A into B

trying to obtain feasible solutions with minimum cost.

- Remove another set of Nr measurements out of MC, obtain the new vector B

and repeat the same procedure

- Terminate the process when all the possibilities of removing Nr measurements

out of MC are explored

The two steps procedure is illustrated in Figure 3.7

93

Figure 3.7 - Approximate (heuristic local search) method

3.8. Illustrated example – Approximate method

The proposed approximate method is implemented in Fortran running on a 2.8 GHz Intel

Pentium 1028 MB RAM PC. One example is provided

All measurements in
the last five current
bests (vector U)

Vector MC

Remove measurements
out of U to obtain
feasible & minimum cost
solution

All measurements not
belonging to MC

Explore all the possibilities of
replacing Nr measurements from MC
with some “external” measurements
not belonging to MC

Possible final result (global
optimum)

94

Example 3.2: The TE process example (introduced in chapter 2) is used. The same

process flowsheet (shown in figure 2.10) and data (tables 2.10 and 2.11) are used.

Three design case studies are considered, which are described in table 3.4. The

first design case is the one with moderate specification described in chapter 2. The other

two design cases are ones with high level of specifications.

Table 3.4 - Design case studies for the TE process example

Design case TE1
Moderate Spec.

TE2
High Spec.

TE3
High Spec.

No. of key
variables 17 19 23

Key variables

F6, yA6, yG6, yH6, F7,
yG7, yH7, yA9, yG9,

yH9, F11, yG11, yH11,
Pr, Tr, Ps, Ts

F6, yA6, yB6, yG6, yH6,
F7, yA7, yB7, yC7, yA8,

yB8, yC8, yD8, yA9,
yB9, yC9, F11, yG11,

yH11

F6, yA6, yB6, yG6, yH6,
F7, yA7, yB7, yC7, yG7,

yH7, yA8, yB8, yC8,
yD8, yA9, yB9, yC9,

yG10, yH10, F11, yG11,
yH11

Requirement Observability Redundancy Redundancy
Precision
thresholds 2% 1.5% 1.5%

Residual precision
thresholds 4% 4%

Measured
variables

F6, yA6, yG6, yH6, F7,
yA7, yA9, yG9, yH9,
F11, yG11, Ps (12

sensors)

All variables but
{yC6, yE6, yF6, yE9,
yF9, yE10, yF10, yG10,
yH10, Pr, Tr, Ps, Ts}
(34 sensors)

All variables but
{yC6, yE6, yF6, yE9,
yF9, F10, yE10, yF10,
Pr, Tr, Ps, Ts} (35

sensors)
Sensors cost 7,070 23,560 24,810

95

Except for design case studies with low level of specifications (where feasible

solutions contain only a small fraction of available candidate sensors), the TE example

cannot be solved by using the individual measurement-based tree search (described in

Bagajewicz, 1997) in a reasonable computational time. Indeed, it is estimated that, if

moderate or high level of specification is required, solving the TE example by individual

measurement-based tree search takes as long as several weeks. Equation-based tree

search method coupled with decomposition (called Decomposed Equations method,

presented in chapter 2) is the only viable option for design cases with moderate level of

specifications while design cases with high level of specifications can be solved by using

either inverted tree strategy or Decomposed Equations method (as shown in chapter 2).

The Decomposed Equations method was first used to obtain several good

solutions as starting point, then use local search to arrive at optimum solution. The

specifics of the approximate method as applied to our example are:

- The Decomposed Equations method was first used to solve the problem, which is

terminated after 100,000 nodes are explored. All the current best solutions

(feasible ones) are recorded.

- The last five current best solutions are used as input (“good” measurements) to the

local search procedure described above.

- As stated above, the local search includes two steps:

i. Removing sensors out of the vector containing all “good” measurements

to arrive at the new current best MC (most likely to be optimal solution),

96

ii. Exploring all the possibilities of replacing Nr measurements in MC with

some other measurements not belonging to MC. We use Nr= 2

For the two last design cases (high specification), the inverted tree search method

described in Nguyen & Bagajewicz (2008) was used to validate the solutions obtained by

the proposed approximate method, which is a combination of the Decomposed Equations

method and the local search.

For the first design case, its solution was validated by using the level-by-level “L

by L” tree search described in above section. More specifically, the “L by L” tree search

was used to explore the level containing 12 sensors (same number of sensors with that of

TE1’s solution obtained by approximate method); which found no better solution. Thus,

the combination of the Decomposed Equations method and the local search is able to find

optimal solutions for the TE problem.

The computational performance of the approximate method is shown in table 3.5

Table 3.5 - Performance of the approximate method, TE process example

TE1

Moderate Spec.

TE2

High Spec.

TE3

High Spec.

Number of

nodes

explored

Step 1 48,544 484 212

Step 2 54,097 130,683 166,244

Total 202,641 231,167 266,456

Total computational time 1hr 12 min 1hr 33 min 1hr 40 min

97

• For design case studies TE2 & TE3: after exploring 100,000 nodes, the

Decomposed Equations method identifies four current best solutions that

contain 39, 37, 38 and 36 sensors respectively (costs are 26990, 26290, 26240

and 25540). The union of these solutions (vector U) contains 39 sensors, which

is exactly the same as the first current best identified (this means that the first

current best contains all “good” measurements). Exploring all the possibilities

of removing sensors out of vector U results in the optimal solutions (containing

34 and 35 sensors with costs being 23,560 and 24,810 for design cases TE2 and

TE3 respectively).

• For design case TE1: after exploring 100,000 nodes, the Decomposed

Equations method identifies 11 current best solutions; the last five solutions

having cost ranging from 11840 to 13370 and number of sensors ranging from

20 to 22. The union of the last five solutions (vector U) contains 23 sensors.

Using enumerative tree search strategy to remove sensors out of U (exploring

48,544 nodes) results in the optimal solution that contains only 12 sensors

costing 7070. This solution is much better than the current best solution

obtained by using the Decomposed Equations method only (that solution,

described in chapter 2, contains 17 sensors whose cost is 9630). Note that, as

stated in chapter 2, because the Decomposed Equations tree search was

terminated halfway, the obtained current best solution is not guaranteed to be

optimal solution. That solution is indeed confirmed to be a sub-optimal

solution in this work

98

In all the testing problems we have tried, the combination of the Decomposed

Equations method and step 1 is able to locate optimum solution. The use of step 2, which

is a safeguard step to avoid the possibility of missing optimum solution, somehow

“guarantees” optimality. We discuss some of this issue next:

Let us denote the measurements contained in the optimal solution as optimal

measurements (in the opposite side, the rest are called non-optimal measurements). The

optimal solution is missed only if the following two situations occur simultaneously:

i. The optimal solution is missed, that is, the current best MC is not optimal

solution (which means that MC contains some (=Nt) non-optimal

measurements)

ii. The number of non-optimal measurements in MC (Nt) is more than the

number of measurements we consider removing out of MC (Nr).

Table 3.6 concludes this chapter. This table is the table 3.1 updated with the two new

methods presented in this chapter, where the measurement-based tree search is replaced

by the level-by-level tree search and the approximate method is used when short

computational time is preferential over finding optimal solution

99

Table 3.6 - Most suitable method for solving sensor network design problem

Level of
specifications Linear systems

Nonlinear systems

Focus on finding
optimal solution

Focus on
computational

time

Low Cutsets-based or
level-by-level search

Equations-based or
level-by-level search

Equations-based or
Approximate

method

Medium Cutsets-based Equations-based or
level-by-level search

Approximate
method

High Cutsets-based or
Inverted tree search

Equations-based or
Inverted tree search

Approximate
method or Inverted

tree search

3.9. Conclusions

In this chapter, two efficient methods for solving nonlinear SNDP are presented:

1. The level traversal method helps reduce computation time of the depth first tree

search by skipping the non-feasible region and intelligently disregarding the non-

optimal solutions via notion of families of nodes. The method is very efficient if

feasible solutions are found in the left hand side of the tree.

2. The approximate method is a combination of Decomposed Equations method

(presented in chapter 2) and heuristic local search method. This method is very

efficient: it is able to solve nonlinear large scale problems within a couple of

hours. Although it does not guarantee optimality, the chance of finding global

optimal solution is very high. Indeed, the proposed method was able to find

optimal solution in all three design case studies shown in this paper.

100

3.10. References

Bagajewicz, M., Design and Retrofit of Sensors Networks in Process Plants. AIChe J.
1997, 43(9), 2300-2306.

Diwekar U. Introduction to Applied Optimization (Springer Optimization and Its
Applications) 2nd Ed, Springer: NY, USA, 2008

Gala, M. and Bagajewicz, M. J. Rigorous Methodology for the Design and Upgrade of

Sensor Networks Using Cutsets. Ind. Eng. Chem. Res. 2006a, 45(20), 6687-6697.

Gala, M. and Bagajewicz, M. J. Efficient Procedure for the Design and Upgrade of

Sensor Networks Using Cutsets and Rigorous Decomposition. Ind. Eng. Chem. Res.
2006b; 45(20), 6679-6686.

Nguyen D.Q. and Bagajewicz M. Design of Nonlinear Sensor Networks for Process
Plants. Industrial and Engineering Chemistry Research. 2008, 47(15), 5529-5542

101

4. VALUE-PARADIGM SENSOR NETWORK DESIGN

Traditional cost-optimal approach to design sensor networks requires

expertise knowledge of the users to use appropriate specifications in the

model. This chapter presents a new approach to design sensor network.

This approach, based on the concept of value of accuracy developed by

Bagajewicz (2006), allows the simultaneous optimization of cost and

performance of sensor network. Efficient methods to solve the problem

are also proposed

4.1. Overview

All the published work on SNDP for process monitoring purpose focused on

finding more efficient computational methods to solve the problem, where the sensors

cost is minimized and the popular specifications on precision, residual precision, error

detectability and resilience and estimation reliability are used as performance targets.

Recently, Bagajewicz (2005a) introduced the concept of software accuracy that

essentially encompasses all the aforementioned performance measures. The economic

value of software accuracy was also quantified (Bagajewicz, 2006) and an efficient

approximate method was developed to evaluate the economic value of accuracy (Nguyen

et al., 2006).

This chapter presents a new approach to design sensor networks that maximizes

the economic value of accuracy (named value-optimal SNDP). Relationship between this

102

new approach and the traditional cost-optimal approach is discussed and efficient

methods to solve the problem are presented.

This chapter is organized as follows: firstly the concept of software accuracy and

economic value of accuracy is briefly reviewed, followed by description of computational

methods to evaluate software accuracy and its associated economic value. The value-

optimal SNDP and efficient methods to solve the proposed problems are then presented.

4.2. Software accuracy

Accuracy was conventionally defined as precision plus bias (Miller, 1996).

However, the definition is of little practical use because bias size is generally unknown.

Recently, Bagajewicz (2005a) introduced the concept of software accuracy in the context

of data reconciliation and gross error detection being used to detect biases. In such

context, accuracy was defined as sum of precision and induced bias instead of the actual

bias. The induced bias and the software accuracy are shown next (Bagajewicz, 2005a):

ˆ [] []δ E x x I SW δ= − = −)
 (4-1)

*ˆ ˆi i ia = +σ δ (4-2)

where *ˆ ˆ, ,i i ia σ δ are the accuracy, precision (square root of variance Sii) and the

induced bias of the estimator, respectively.

By definition, the accuracy value relies on how one calculates the induced bias.

From Eq. (4-1), it is clear that the induced bias is the function of undetected biases whose

sizes can be any value below the threshold detection values and their location can be

anywhere in the system. Thus, the induced bias is a random number. Bagajewicz

103

(2005a) proposed to calculate the induced bias as the maximum possible value. Recently,

Bagajewicz (2005b) and Bagajewicz and Nguyen (2006) proposed to calculate the

induced bias as the expected value of all possible values, which is more realistic, and

used a Monte Carlo simulation – based procedure to obtain such expected value.

4.3. Economic value of accuracy

Bagajewicz et al. (2005) presented the theory of economic value of precision and

developed formulas for assessing downside financial loss incurred by production loss.

They argued that, due to inaccuracy (caused by random errors) of the estimator of a

product stream flowrate, there is a finite probability that the estimator is above the target

but in fact the real flow is below it. In such situation and under the assumption that the

operators did not make any correction to the production throughput set point when the

estimator suggested that the targeted production has been met or surpassed, the

production output will be below the target and financial loss occurs. The financial loss

under simplified assumptions of negligible process variations and normal distributions of

the process variation and the measurements was found to be DEFL = 0.19947*Ks*T* pσ̂

where Ks is the cost of the product (or the cost of inventory) and T is the time window of

analysis (Bagajewicz et al., 2005).

Using the same concept of downside financial loss, Bagajewicz (2006) extended

the theory of economic value of precision to include the effect of (induced) bias, namely

the economic value of accuracy. The expression for financial loss DEFL considering bias

is given by (Bagajewicz, 2006):

104

0 0 1 1 2 2
1, 2 1, 2,.,1, 2 1, 2,.,

1, 2 1, 2,.,

.. n N
i i i i i iNi i i i i iN

i i i i i iN
DEFL DEFL DEFL DEFL DEFL= Ψ + Ψ + Ψ + Ψ∑ ∑ ∑ (4-3)

In this equation, 1, 2,.., 1, 2,..,
 and n N

i i iN i i iN
DEFLΨ are the average fraction of time the

system is in the state containing n gross errors i1, i2,..,iN and its associated financial

losses, respectively. Detail expression and procedure to calculate the financial loss for

system containing n biases i1, i2,..,iN can be found in Nguyen et al. (2006)

Applications of the theory of economic value of precision/accuracy for the

determination of economical benefit of instrumentation upgrade were shown by

Bagajewicz et al. (2005) and Bagajewicz (2006). The economical benefit of an

instrumentation upgrade was calculated as the difference in downside financial loss

(DEFL) before and after such upgrade. The net present value of instrumentation upgrade

(IU) was then given by:

{ })()(IUafterDEFLIUbeforeDEFLdNPV n −= - cost of IU (4-4)

where dn is sum of discount factor for n years. The cost can be the cost of

purchasing of new sensor (when adding new sensors) or the cost of license (when

installing data reconciliation software). A large value of the net present value of

instrumentation upgrade may justify this type of investment. Case studies on the value of

performing data reconciliation as well as savings of adding new sensors at selected

locations to the sensor network of a crude distillation unit were provided by Bagajewicz

et al. (2005) and Bagajewicz (2006).

105

It has been also shown that the financial loss without bias 0DEFL is smaller than

financial loss in the presence of biases 1 2
1, 2

, , ...
i i i

DEFL DEFL (Nguyen et al., 2006).

Looking at the complete expression for financial loss (Eq. 4-3), it is obvious that if one is

to reduce financial loss, one can either directly reduce the individual financial loss (i.e.,

0 1 2
1, 2

, , ...
i i i

DEFL DEFL DEFL) by instrumentation upgrade, or one can increase the

fraction of time that the system is in the state containing no biases 0Ψ (as a result, the

fractions of time that the system is in the state containing biases 1 2
1, 2, ,...i i iΨ Ψ are reduced).

This is where maintenance policies come into play because different maintenance

schemes of sensor system affect the aforementioned fractions of time.

4.4. Computational methods to evaluate software accuracy and economic

value of accuracy

The financial loss
1, 2,..,

N
i i iN

DEFL corresponding to the presence of a specific set of

gross errors i1, i2,..,iN can be evaluated using two methods: approximate method and

Monte Carlo simulation as detailed in Nguyen et al. (2006); upon which the financial

loss of a sensor network (DEFL in Eq. 4-3) is evaluated. The expected value of accuracy,

which is the mean value of all possible values of accuracy, is a more realistic value than

the maximum possible value (which is too conservative). Similar to the financial loss

(DEFL), this expected value of accuracy can be evaluated using two methods:

approximate method and Monte Carlo simulation. The Monte Carlo simulation-based

procedure to evaluate the expected value of accuracy, termed stochastic accuracy, is

detailed in Bagajewicz and Nguyen (2008) (the approximate method to calculate

106

expected value of accuracy is not described in any published paper, but it is very similar

to the approximate method to calculate financial loss, which was described in Nguyen et

al., 2006).

The Monte Carlo simulation procedure to calculate the stochastic accuracy and

financial loss was described in Bagajewicz & Nguyen (2008) and Nguyen & Bagajewicz

(2009), respectively. This method takes longer computational time than the approximate

method so it is mainly used to validate the results obtained by the approximate method

The principle of the approximate method is to partition the space of variables into

several sub-spaces. In some sub-spaces the expression for financial loss (and accuracy

value) can be evaluated analytically while in the others the expression has to be evaluated

approximately (Nguyen et al., 2006). The partition of the space of variables is illustrated

in Figure 4.1 in the case two biases are present in the system.

Figure 4.1 - Different regions when two gross errors are present in the system

 Both θ1 & θ2
are detected

θ1

 δ2

 δ1 Only θ1 is
detected

Only θ1
is detected

Only θ2
is detected

 - δ2

 - δ1

No gross error

 is detected

1Z = ξ

θ2

Both θ1 & θ2
are detected

Both θ1 & θ2
are detected

Both θ1 & θ2
are detected

2 Z = ξ

Only θ2
is detected

1 1i iW
ξ

2
2 2"i iW

−
− =

ξ
δ

2 2i iW
ξ

1
1 1'i iW

− = −
ξ

δ

107

In the region where both biases are detected, the expression for financial loss can

be calculated analytically while in the others, an approximate scheme is used to evaluate

the expression (Nguyen et al., 2006).

The better the gross error detection capability of the network (which means the

smaller the area of the rhombus shown in figure 4.1), the smaller the expected value of

accuracy (and financial loss) is.

4.5. Dependence of software accuracy and the associated economic value

on sensor network

Because software accuracy is defined as precision plus induced bias, the

requirement on accuracy value encompasses the requirements on precision, gross errors

delectability and gross errors resilience. More specifically, a sensor network that renders

good (small) software accuracy for variables of interest needs to possess all of the

followings:

i. Good precision of estimators of key variables

ii. Good level of redundancy (i.e. enough measured variables) to detect biases so

that undetected biases would have small magnitudes; this property is directly

related to gross errors delectability

iii. Smearing effect of undetected biases on estimators of key variables is limited

(such that estimation accuracy is small even though undetected biases are

large); this property is directly related to gross errors resilience.

108

These needed network’s capabilities generally require a good level of hardware

redundancy (i.e. more sensors than the number of key variables). To improve estimation

accuracy, it is usually needed to use more sensors. The same thing is stated for financial

loss, that is, sensor network would have small financial loss if it possesses the three

aforementioned properties and it is necessary to use more sensors to reduce financial loss.

The exception to this generalization does exist. Indeed, there exists situation in

which the undetected biases are very large, for example, two gross errors cancel out each

other such that these two biases are undetected (by using measurement test) no matter

how big they are. This phenomenon is known as gross errors equivalency (Bagajewicz

and Jiang, 1998). An example for the case of gross errors equivalency is shown next.

Consider the system shown in figure 4.2. The two biases in S2 and S3 can not be

detected (no matter how big they are) if they are equal but in opposite sign (since the

material balance is satisfied in such case). The region of undetected biases for such case

is shown in figure 4.3. Note that, practically, gross errors are not unbounded. If a bias in

a measurement passes a certain threshold, which is usually a certain percentage of the

normal value of the variable, by common sense the operators can tell that there is bias in

the measurement.

Figure 4.2 – Illustrated example

S3

S1
S2

109

Figure 4.3 – Illustration of biases equivalency

Thus, if the newly added measurement forms such a set of gross errors with

existing measurements (while the original network does not have), the software accuracy

and financial loss increase when that new measurement is added to the network.

The typical case as well as the irregular case of software accuracy and financial

loss as function of the number of measurements is shown in figure 4.4

4a. Accuracy vs. number of sensors

Accuracy

Number of sensors

Typical case

Atypical case

θ2

θ1

Region of
Undetected
biases

θ3

110

4b. Financial loss vs. number of sensors

Figure 4.4 – Accuracy and financial loss as function of number of sensors

If typical value for sensor precision (2%) is used, typical range for accuracy is from 2%

to 20% (of nominal value of measured data). Financial loss does not have typical range

because it depends strongly on the economic parameters, which are Ks (cost of the

product or cost of inventory) and T (time window of analysis)

As can be seen from figure 4.4:

- The jumps (steep slopes) in figure 4.4 corresponding to the case where the newly

added measurement contributes significantly the process monitoring capabilities of

the sensor network (e.g. observability and redundancy of key variables). On the

other hand, if “meaningless” measurement (that contributes almost nothing to the

process monitoring capabilities of the sensor network) is added, the accuracy and

financial loss are almost unchanged.

Financial
loss

Number of sensors

Atypical case

Typical case

111

- Generally, adding sensors improves accuracy and financial loss

- If bias in the newly added sensor is very difficult to be detected, accuracy and

financial loss would increase when adding that sensor. However, continue adding

more sensors would again improve accuracy and financial loss

4.6. Accuracy and value-optimal SNDP

4.6.1. Accuracy-constrained SNDP

Software accuracy can be used as a constraint in the commonly used cost-optimal

SNDP (equation 1-6). The problem formulation for accuracy-constrained SNDP is

obtained by adding constraint on accuracy to equation (1-6):

. .
() *
() *

0,1

q
q

σ σ

∀

≤ ∀ ∈
≤ ∀ ∈

= ∀

∑ i i
i

i i S

i i S

i

Min c q

s t
i M

a a i N
q i

 (4-5)

where ai(q) and ai
* are accuracy of key variables and the associated threshold

values; NS represents the set of variables where specification on accuracy is required

The problem (4-5) can be readily solved by using any suitable branch and bound

method developed in our group (see table 3-6)

112

4.6.2. Value-optimal SNDP

The proposed sensor network design formulation is as follows:

{ }

1

Max () ()
. .

m

() b

q q

q
=

−

≤

≤

∑
in

i
i

V c
s t

q

c

 (4-6)

ni is the number of candidate sensors (number of process variables under considerations);

V(q) is value of sensor network (function of measurement locations q), c(q) is cost of

sensors; m is limit on number of sensors and b is limit on budget.

If limit on number of sensors and budget limit are not used, the problem becomes an

unconstrained optimization problem:

{ }Max () ()q q−V c (4-7)

The value of a sensor network is given by

{ }() (no sensor) (with sensors) ()V q DEFL DEFL RDEFL DEFL q= − = − (4-8)

The financial loss when there is no sensor is a large value, denoted as RDEFL (a

reference value). Equation (4-8) becomes

{ }Max { () ()}q q− +RDEFL DEFL c (4-9)

Thus, maximizing value minus cost is equivalent to minimizing financial loss plus cost of

sensor network

113

Min{ () ()}q q+DEFL c (4-10)

This is an unconstrained optimization problem with complicated surface of objective

function. When the number of sensor increases, cost c(q) increases but the financial loss

DEFL(q) generally decreases as shown in figure 4.5

The best situation is when the objective function exhibits a single global

minimum (as shown by line A in figure 4.5). Unfortunately, the objective function

(financial loss plus cost) is a complicated function of the sensor network (vector q) and

usually has many “hills” and “valleys”, that is, it usually has many extrema (as shown by

line B in figure 4.5)

Figure 4.5 – Objective function vs. dependent variables (q)

The most popular method to solve unconstrained optimization problem is to use

the KKT condition (contact condition). Unfortunately, the objective function is not a

Number of sensor

Cost DEFL + cost (A)

DEFL + cost (B)

DEFL

DEFL +

cost

114

explicit function of dependent variable (q); in fact, numerical method in the form of

approximate method or Monte Carlo method must be used to calculate the objective

function (more specifically, the financial loss). Thus, the only applicable method is the

“searching” method. Two “searching” methods are considered: tree enumeration method

and Genetic Algorithm, a very popular stochastic approach to solve combinatorial

optimization problem.

4.7. Illustrated example of accuracy-constrained SNDP and value-

optimal SNDP

4.7.1. Example 4.1

Consider the following process example, which was introduced in chapter 1

(example 1.1). The process flowsheet is shown in figure 4.6, the data for the example is

shown in table 4.1 (sensor precision = 2% for all sensors). Sensor failures are assumed to

occur with probability 0.2 (third column), the biases associated to these failures are

assumed to follow normal distributions with zero means (fourth column) and standard

deviations given in fifth column

Figure 4.6 – Example process

 S1

S2 S3

S4

S5

S6

S7

115

Table 4.1- Data for example 4.1

Stream Flow rates Costs

Prob. of

failure of

sensor

Mean of pdf

of bias

STD of pdf

of bias

S1 100 55 0.2 0 8
S2 140 40 0.2 0 11.2
S3 140 60 0.2 0 11.2
S4 20 50 0.2 0 1.6
S5 120 45 0.2 0 9.6
S6 20 55 0.2 0 1.6
S7 100 60 0.2 0 8

For this small illustrated example, optimal solutions are obtained by using

exhaustive tree search without stopping criterion (totally there are 127 candidate

solutions).

Accuracy-constrained SNDP

The sensor network design problem requesting a satisfactory accuracy value of

key variables (equation 4-5) is illustrated next. The results are shown in table 4.2

Table 4.2- Results for example 4.1, accuracy-constrained SNDP

Case Study 4.1.1a 4.1.1b 4.1.1c 4.1.1d 4.1.1e
Key

variables S1 & S5 S1 & S5 S1 & S5 S1 & S5 S1 & S5

Accuracy
thresholds 4 3 2 1.8 1.5

Accuracy
value

aS1 = 3.36
aS5 = 2.85

aS1 = 2.22
aS5 = 1.99

aS1 = 1.90
aS5 = 1.81

aS1 = 1.65
aS5 = 1.49

aS1 = 1.499
aS5 = 1.27

Measured

variables S1, S6 S1, S5, S6 S1, S6, S7 S1, S5, S6, S7 All variables

Sensors cost 110 155 170 215 365

116

The design specifications are shown in rows 2 & 3 of table 4.2, the optimal

solutions are shown in row 5 (optimal measurement placement) and row 6 (optimal cost).

The accuracy values of key variables corresponding to the optimal solutions are shown in

row 4.

From design case 4.1.1a to 4.1.1e, the desired value of accuracy decreases (from

4.0 to 1.5), which requires more sensors to be used. In design case 4.1.1.a, basically only

observability is required for the two key variables S1 & S5. In design cases 4.1.1b and

4.1.1c, the obtained optimal solutions render redundancy of level one for key variables

(the two key variables are still observable if one removes any one sensor out of the three-

sensor solutions). When a smaller accuracy threshold (design case 4.1.1d) is required,

both redundancy (of key variables) and gross error detection capability of the network are

required; hence more sensors need to be used. It can be seen that the optimal solution in

this design case is the same as the solution obtained in design case 1.1c (column 4, table

1.2) where both estimation redundancy and gross error detection capability are required.

Design case 4.1.1d is the extreme case where the required accuracy threshold is so small

such that all sensors need to be used to meet the requirement.

Value-optimal SNDP

The sensor network design problem simultaneously minimizing financial loss and

cost of a sensor network (equation 4-10) is illustrated next. This problem does not have

any constraint. The economic parameters used in the expressions to evaluate financial

loss are as follows: the time window of analysis T is 30 days (this is based on the

argument that, by mean of production accounting calculation every month, one can detect

117

the loss in production that has been covered by biased measurement); the cost of product

Ks (or cost of inventory) for the two key variables S1 & S5 are shown in row 3 of table

4.3. The financial losses of the optimal sensor networks are shown in row 6 of the table

Table 4.3- Results for example 4.1, value-based SNDP

Case Study 4.1.2a 4.1.2b 4.1.2c 4.1.2d
Key

variables S1 & S5 S1 & S5 S1 & S5 S1 & S5

Ks value Ks1 = 2
Ks5 = 2

Ks1 = 10
Ks5 = 10

Ks1 = 30
Ks5 = 20

Ks1 = 60
Ks5 = 50

Measured

variables S1, S6 S1, S6, S7 S1, S5, S6, S7 all

Sensors cost 110 170 215 365
Financial

loss 78.6 219.9 451.8 824.9

As can be seen from table 4.3:

- When the cost of product Ks increases, financial loss increases

- In the value-optimal SNDP problem, cost and financial loss are simultaneously

minimized. If Ks is small, the cost factor dominates financial loss factor and the

optimal network contains few sensors. In the opposite site, if Ks is large, the

financial loss term dominates the cost term and the optimal network contains large

fraction of candidate sensors so as to minimize financial loss. This means that if Ks

increases, then the number of sensors in optimal network increases as evidenced in

table 4.3

- In design case 4.1.2a, Ks is small, cost needs to be minimized and the optimal

network contains only enough sensors to guarantee observability of key variables

118

- In design case 4.1.2d, Ks is large, financial loss needs to be minimized and the

optimal network contains all sensors. This is an extreme case

- In design cases 4.1.2b & c, Ks is moderate, the optimal networks contains enough

sensors that can guarantee some degree of estimation redundancy and gross error

detection capability. The optimal networks in these two design cases are the same

as the networks obtained in the two design cases 4.1.1c & d, which have good

process monitoring capability (good accuracy value and good gross error detection

capability) as shown in columns 4 and 5 of table 4.2 and columns 1 and 3 of table

1.2

The rest of this chapter focuses on the efficient methods to solve the value-optimal SNDP

(as mentioned above, the accuracy-constrained SNDP is a constrained optimization

problem that can be readily solved by using any appropriate branch and bound method

shown in table 3-6)

4.8. Genetic Algorithm

The proposed optimization problem (equation 4-10) is amenable to standard

genetic algorithm because:

- The problem is a combinatorial optimization problem involving binary variables.

- There is no constraint.

- The objective function is a complicated function with many extrema.

119

Genetic Algorithm (GA) is used because this method is well-established and was

shown to have good performance (although it does not guarantee optimality). In brief,

Genetic Algorithm method is based on the principles of genetics, natural selection and

evolution; it “allows a population composed of many individuals to evolve under

specified selection rules to a state that maximizes the “fitness”, i.e. minimizes the cost

function” (R.L. Haupt and S.E. Haupt, 2004). The algorithmic procedure and detailed

description of the well-known Genetic Algorithm method can be found in various

textbooks such as the Haupts’ book (2004).

The GA is briefly described as a seven-step procedure as follows:

1. Variable Encoding and Decoding: this step involves the conversion (i.e.

encoding) of the values of decision variables into an appropriate representation

(a chromosome). If the type of decision variables and the type of GA are the

same (e.g. binary variables – binary GA, which is our case) then no conversion

is needed: the values of decision variables are copied directly into the

chromosomes. Decoding is the reverse process of encoding, which is the

conversion from binary representation into real values of variables so that the

cost function (i.e. objective function) can be evaluated

2. Initialization of population: this step involves randomly generating a population

of N chromosomes. For binary GA, this is done by using uniform distribution to

generate random binaries. The size of population, N, is a GA parameter.

3. Natural selection: this step involves three operations: i) evaluating the cost

function corresponding to each chromosome / individual in the population, ii)

120

sorting the population in descending order of “fitness” (e.g. if the cost function /

objective value is to be minimized, then lower cost = larger “fitness” value), iii)

selecting a portion of population with good fitness value to keep and discarding

the rest, usually half of the population (the lower half in the sorted list of

chromosomes) will be discarded.

4. Selection: selecting and pairing the retained (survived) chromosomes to

produce offspring for the next generation. Usually two chromosomes are paired

to produce two offspring. There exist many methods for this operation, one of

the most commonly used method is the roulette wheel selection.

5. Mating: offspring of the paired chromosomes (parent) are produced through the

crossover process whereby the parent’s genetic codes are passed on to the

offspring.

6. Mutation: random mutations alter a certain percentage of the bits in the list of

chromosomes. Mutation is the second way the GA method explores a cost

surface and avoids the trap of local optima. It introduces traits not in the

original population and keeps the GA from converging too fast before sampling

the entire cost surface. Mutation points are randomly selected from the

population; with each mutation point, changing a 1 to a 0 and visa versa. The

number of mutation points is defined by mutation rate, which is the fraction of

the number of mutation points divided by the total number of bits in the

population.

7. Convergence: after the mutation step, a next generation population is generated

which contains new chromosomes (i.e. new candidates for optimal solution to

121

evaluate). The same procedure of evaluating cost functions - selecting - pairing

- producing offspring (the steps from natural selection to mutation) is repeated

unless convergence criterion is met, which is to terminate the GA procedure if

the best objective value obtained in each iteration does not change after a

predetermined number of iterations.

The parameters involved in the GA method are the size of population, the portion

of population to keep, the mutation rate and the selection and crossover methods. The

methods for the GA operators and the values are intuitively chosen in accordance with

the scale of the problem using the guidelines provided in the literature (R.L. Haupt and

S.E. Haupt, 2004). They are as follows:

- Selection: roulette wheel selection method

- Crossover: two-point crossover method

- Population size = 20

- Fraction of population to keep = 0.5

- Mutation rate = 0.2

4.9. Cutset-based tree search method

The calculation procedure is described below:

1. Find all the cutsets of the process graph.

2. Consider only cutsets that contain at least one key variable, put them to a list of

cutsets

122

3. Remove key variables out of the cutsets in the list and consider them as separate

cutsets, e.g. if [1 2 3 4] is a cutset and “1” and “3” are key variables then consider

[1], [3] and [2,4] as separate cutsets

4. Sort these cutsets in ascending order of their cost (cost of a cutset is equal to sum

of the costs of the sensors placed on the streams of that cutset).

5. Start with the root node with no cutsets being added i.e. t = {0, 0, 0…), trivially

infeasible.

6. Use branching criterion to develop branches of the tree (add cutsets to vector t).

7. While performing the branching criteria, if any set of streams has already been

evaluated in previous nodes, that node is not continued. This occurs frequently

because one set of measurements can be a result of the union of different sets of

cutsets.

8. Continue adding cutsets until the stopping criterion is met. In such case, the

algorithm backs up two levels and develops the next branch.

Branching criterion

Cutset is added in the direction of minimum cost, that is, the newly added cutset is

chosen such that the cost obtained by its union with the existing active cutsets is

minimum.

An alternative branching has also been investigated, which is choosing cutsets in

the direction of minimum objective function. It is found that this branching criterion

requires much longer computational time than the other (direction of minimum sensors

cost). In fact, for the small scale example given above (figure 4.6), this branching

criterion requires roughly 10 times more computational time than the other criterion. For

123

medium or large scale problems, the difference is much larger. This is because the

calculation of financial loss is an intensive computation duty, especially for middle or

large scale problems.

The task remaining is to find a proper stopping criterion

Stopping criteria

In the branch-and-bound method, in each node of the search tree, it is necessary to

find the lower bound for the best solution obtainable if continuing exploring down the

branch of the tree. If that bound is not better than the current best solution (the

incumbent) obtained so far, stop exploring down the branch. Unless the bound is obvious,

it is found by solving relaxation sub-problems (e.g. LP-relaxation, Lagrangean

relaxation) in the subspace of variables. Unfortunately, none of the established techniques

to find the bound is applicable to our problem, the main reason is that there is no explicit

expression for the objective function.

The proposed stopping criterion is as follows:

In each node, calculating ∆D and ∆C as:

∆D = DEFL(current node) – DEFL(sensor network with maximum number of sensors)

∆C = Cost(sensor network with maximum number of sensors) - Cost (current node)

∆D indicates the maximum gain in financial loss and ∆C indicates the maximum

cost incurred if one continues exploring down the tree from the current node. It can also

be shown that if {∆C- ∆D} of current node > {∆C- ∆D} of previous node then the

objective value of current node < the objective value of the previous node (see appendix

124

A1). The reason why ∆D & ∆C are used is illustrated in figures 4.7 and 4.8, where

“MNS” is used to denote the network with maximum number of sensors.

Figure 4.7 – Differentiation of regions using ∆D & ∆C

We always start exploring the branch with nodes that have ∆D > ∆C or {∆C- ∆D} < 0 (in

region I); the relationship ∆D > ∆C implies that one can reduce the objective function if

continuing exploring down the tree.

Number of sensors

Maximum number of
sensors (all variables are
measured) MNS

∆D ∆D ∆D
∆D

∆C

DEFL

Cost

∆C ∆C

Region I (NOT all key variables
are observable)

Region II (all key
variables are
observable

∆D ∆D

∆C

∆D > ∆C

Cost of
MNS

DEFL
of MNS

DEFL

+ Cost

125

Figure 4.8 – Use of ∆D & ∆C in stopping criterion

Thus, ∆D & ∆C are used because:

i. Optimal solution can NOT be in the region where NOT all key variables are

observable (region I, figure 4.7), which always has ∆D > ∆C

ii. The relationship ∆D > ∆C implies that there is high potential of reducing the

objective function when exploring down the tree; if ∆D < ∆C: less potential

iii. If (∆C - ∆D) of node 1 > (∆C - ∆D) of node 2 then objective value of node 1

< objective value of node 2. Using this relationship, with reference to figure

4.8, we would have objective value of node B < objective values of all the

nodes that have (∆C - ∆D) < 0 (the region on left hand side).

Number of sensors

Node A
(∆C - ∆D) < 0

Node C

Node D

∆D > ∆C
∆D < ∆C

Local minimum in the
region of high potential of
reducing obj. value
including the region where
not all key variables are
observable

Local minimum in the
region of low potential of
reducing obj. value

Node B
(∆C - ∆D) > 0

∆D < ∆C

Stop here

DEFL

+ Cost

126

The proposed stopping criterion is:

- Exploring down the branch until ∆D < ∆C

- When ∆D < ∆C, explore further down the branch until objective value of

current node > objective value of previous node.

The essence of this proposed stopping criterion is, in a branch of the tree, locating

a local minimum in the region of less potential of reducing objective function.

We now investigate the possibility that the global optimal solution is missed

because the proposed stopping criterion stops the tree search before it reaches global

optimal. This is illustrated in figure 4.9

Figure 4.9 – Illustration of missing optimal solution because of stopping criterion

Number of sensors

Node A

Node C

∆D > ∆C ∆D < ∆C

Node B
Node D

Missed global
optimum ?

DEFL

+ cost

Stop here

127

It is found from testing results that there always exists a monotonic pathway to

reach global optimum. The reasons are:

- A union of variables (streams) is a result of many combinations (unions) of cutsets.

This fact implies that, when cutsets are used in the tree search procedure, a specific

set of active streams (measurements) can be reached by following many pathways

(branches) in the tree. Table 4.4 shows an estimate of how many pathways (using

cutsets) to reach a specific set of active streams (i.e. measurements location) for

the Madron process problem (shown in next section)

- In most of the cases one can find a pathway in which the objective function is a

monotonic decreasing function until it reaches the optimal solution (or at least

objective function is monotonic decreasing in the region ∆D < ∆C where the

stopping criterion is considered). Note that changing the pathway is actually

following another branch in the tree. We do not claim that one can always find

such a pathway because there is no mathematical proof for this, but we have not

found a counter example in which the global solution can NOT be reached by

following any branch or pathway using the stated stopping criteria.

The third row of table 4.4 shows the number (N1) of possible combinations (sets)

of cutsets from a given number of cutsets while the fourth row shows the number (N2) of

candidate solutions (i.e. measurements locations) resulting from the same given list of

cutsets. The ratio N1/N2 is an indicator of how frequently the situation that two sets of

cutsets result in the same measurements location (by union operation) can occur. For

example, if the ratio is 100, then among 100 possible combinations of cutsets, only one

128

combination leads to a candidate solution, the remaining 99 combinations are disregarded

because they result in the same measurements location. This also means that expectedly

there are 100 pathways to reach a specific set of active measurements. The information

shown in table 4.4 is obtained from the Madron example (containing 24 streams, shown

in next section)

Table 4.4- Estimate of pathways (built on cutsets) to reach a specific set of measurements

Case 1 2 3 4
Key variables {S1, S9, S14} {S1, S5, S22} {S1, S5, S24} {S1, S7, S24}
Number of key variables 3 3 3 3
Number of cutsets
containing at least one key
variable

99 97 102 108

Number of possible
combinations of cutsets (N1) 299-1 297-1 2102-1 2108-1
Number of candidate
solutions (N2) 46,042 64,781 39,552 38,365
N1/N2 1.38*1025 2.45*1024 1.28*1026 8.46*1027

Table 4.4 shows that only roughly 50,000 candidate solutions (each solution is a specific

set of measurement locations, for comparison, the total number of such set of

measurement locations is 224-1) resulted from the (2100 –1) possible combinations of

cutsets. This result reveals that the number of pathways (built on cutsets) to reach a

specific set of measurements is very large.

Figure 4.10 illustrated the two different pathways to reach optimal solution, one

of them is a monotonic pathway (using actual data from one of the testing problem,

example 4.1). If in pathway 1, the calculation procedure stops at the third node, then the

global optimal solution (the fourth node) can still be reached by the second pathway

where a different set of active cutsets is used. Note that because the calculation procedure

129

considers all the possible combination of cutsets from the cutsets list, all the pathways

that can reach global optimal solution will be automatically considered by the tree search

procedure as long as they are different from one another.

Figure 4.10 – Differeent pathways built on cutsets

In figure 4.10, AC stands for active cutsets in a node and AV stands for the

corresponding active variables (stream flowrates) in a node.

The next part shows conceptually how to obtain a monotonic pathway (to reach

optimal solution).

Illustration:

Consider the five cutsets C1,C2,C3,C4,C5 shown in figure 4.11. A cutset is represented by

a line, a stream (variable) is represented by a cross. There are two key variables K1 and

K2

Number of sensor

AC
1, 2

AV
1, 4

AC
1, 2, 3

AV
1, 4, 7

AC
1, 2, 3, 6

AV
1, 2, 4, 5, 7

AC
1, 2, 3, 6, 4

AV
1, 2, 4, 5, 6, 7

Optimal solution

AC
1, 7

AV
1, 2, 4, 6

AC
1, 7, 3

AV
1, 2, 4, 6, 7

AC
1, 7, 3, 4

AV
1, 2, 4, 5, 6, 7

Pathway 1

Pathway 2

130

Figure 4.11 – Illustration of cutsets

There are two combinations of cutsets that give the same result, which is

measuring all streams shown in figure 4.10: C1∪C2∪C4∪C5 and C1∪C3∪C4∪C5

- Cutsets C3 and C5 are only weakly connected to the key variables: using C3 or C5

alone does not make any of the key variable observable, using both C3 and C5

would make K2 observable. The improvement (decrease) in financial loss when

using such cutset is small

- Cutsets C1 and C4 are strongly connected to the key variables: using C1 makes K1

redundant while using C4 makes K2 redundant. The improvement in financial loss

when using such cutset is large

Conceptually, to obtain a monotonic pathway (to reach optimal solution), cutsets

can be added in the following order (suppose that there are more one key variable, which

is usually the case):

- Put first cutsets that are weakly connected to the key variables like cutsets C3 and

C5 then put cutsets strongly connected to the key variables like C1 and C4. The

reason is that if cutsets are added in such order, the improvement (decrease) in

financial loss progressively increases with the number of active sensors (active

C1 C4

C3

K1

K2

C2
C5

131

cutsets), the likely result is that objective function progressively decreases with the

number of active sensors (i.e. monotonic pathway)

- Put first expensive cutsets then put cutsets that are less costly: if cutsets are added

in such order, the increase in cost becomes progressively smaller with number of

active sensors. However, this sequence of adding cutsets is not favored by the

branching criterion, which requests using first the cheapest cutsets.

All these discussions point out that:

- Because there are so many pathways to reach a candidate solution, if the global

optimal solution is not reachable in a pathway (because that pathway is not

monotonic), it would be reachable in another pathway. Thus, the chance of finding

global optimal solution is very high.

- The bad side of this fact is that the stopping criterion may not have any effect at

all, that is, one candidate solution if not reachable in a pathway can still be

reachable in another pathway. The result is that the number of candidate solutions

explored is equal for both cases: with stopping criterion and without stopping

criterion. The obtained results from the Madron example confirm this speculation.

132

4.10. Parallelized cutset-based tree search method

4.10.1. Overview of parallel computing

Recently, scientific computing has gradually shifted from serial paradigm to

parallel paradigm, especially for large scale problems. Characteristic and benefits of

parallel computing (as compared against serial computing) are shown in table 4.5

Table 4.5- Parallel computing vs. Serial computing

Serial computing Parallel computing

- Run on a single computer having a

single CPU

- Instructions are executed one after

another

- Only one instruction may execute at

any moment in time

- Run on multiple CPUs

- Problem is broken into many parts

- A part (a subset of data and / or a part of

program instructions) is executed concurrently

(on multiple CPUs) together with other parts

 Benefits:

- Reduce computational time => solve problem

faster

- Can solve problems with large data set =>

solve bigger problems

The serial computing is illustrated in figure 4.12. As seen in this figure, the four

computation tasks (task 1 to 4) are executed sequentially using the whole problem data

133

(data set 1 to 4). Example of computation task is any kind of arithmetic calculation;

example of problem data is space (domain) of variables in optimization / modeling /

simulation problems or input data in data mining or data visualization problems

Figure 4.12 – Illustration of serial computing

The most common way to do parallel computing is to process different parts of

problem data in different computer nodes (CPUs). This approach is called single

instruction multiple data (SIMD) and is illustrated in figure 4.13. It is appropriate to use

this approach when problem data can be divided into different parts, each part can be

processed independently. This is indeed the case in data mining / visualization problems

and optimization / modeling problems, etc.

Data set 1 Data set 2 Data set 3 Data set 4

Task 1

Task 2

Task 3

Task 4

CPU

134

Figure 4.13 – Illustration of single instruction multiple data (SIMD) palallel program

In case the computational tasks can be executed independently (execution of a

task does not depend on output from another task), then the program can be parallelized

by executing the tasks concurrently as shown in figure 4.14

Figure 4.14 – Illustration of multiple instruction single data (MISD) palallel program

Data set 1 Data set 2 Data set 3 Data set 4

Task 1

CPU

Task 2

CPU

Task 3

CPU

Task 4

CPU

Data set 1 Data set 2 Data set 3 Data set 4

Task 1

Task 2

Task 3

Task 4

CPU

Task 1

Task 2

Task 3

Task 4

CPU

Task 1

Task 2

Task 3

Task 4

CPU

Task 1

Task 2

Task 3

Task 4

CPU

135

If both program instructions and program data can be divided, the parallelization

approach is called multiple instruction multiple data (MIMD)

The tree search method for solving SNDP is leaned to SIMD approach because

the space of variables can be partitioned into multiple sub-spaces, which are then

explored concurrently as shown in figure 4.15

Figure 4.15 – Parallel tree search method

There are many so-called library routines / interface specifications that make it

easier for programmer to transfer from serial program to parallel program; the most well-

known are openMP (a library of compiler directives and subroutines) and Message

Passing Interface (MPI). From a programmer perspective, openMP is very easy to use

because of its simplicity; however there is one down side of this advantage: it is difficult

to obtain an optimized performance, especially for a big program. The MPI requires

S1 S2 S3 S4

S1

S2
S3

S4

S1

S2

S3

S4

Serial computing
Search space S1 then S2
then S3, S4

Parallel computing
S1, S2, S3 and S4 are
explored concurrently

Tree search

136

significant effort in programming but it is relatively easy to obtain a satisfactorily good

performance, the MPI is very suitable for big programs like the value-optimal SNDP

under investigation in this work.

In this work we use all approaches: SIMD (single instruction multiple data) and

MISD (multiple instruction single data) and MIMD. The parallel computing is done using

an implementation of Message Passing Interface (MPI) called “openMPI”. More details

on parallel computing and MPI can be found in Pacheco (1997)

4.10.2. Automatic parallelization of loops

The simplest way to do parallel computing is to parallelize the loops (do, for

loops). This is illustrated in figure 4.16 where a loop is used to do computation on an

array containing 80 elements. The data (80 elements of the array) can be divided into four

sub-sets, which are then processed concurrently in four computer nodes as shown in

figure 4.16

Figure 4.16 – Parallelization of loop

1-20 21-40 41-60 61-80

Task

CPU

Task

CPU

Task

CPU

Task

CPU

Array 1-80

137

This parallelization of loops can be done easily using openMP. Fortunately, recent

Fortran compilers that support parallel computing can accomplish this task automatically

without any manual direction from the programmer. The Intel Fortran compiler used in

this research work has such kind of feature and as shown in the Madron illustrated

example, it greatly reduces computational time

4.10.3. Message Passing Interface (MPI)

The principle of parallel computing is to execute different parts of program on

different computer nodes (CPUs). However, it is usually the case that computation in one

node still needs to know certain kind of information from other nodes. For example, with

reference to figure 4.15, the tree search on sub-space S1 in one node may need to know

the current best solutions obtained in other nodes (where the searched spaces are S2, S3,

S4) because a tighter bound in branch and bound (tree search) method would result in

improved performance. This can be done by assigning a node (denoted as master node,

node 0) that receives and updates the current best solutions obtained in all other nodes on

which the tree search procedure is run (denoted as worker nodes, nodes 1 to 4). The most

updated current best solution found in any worker node at any moment in time is

“communicated” to all other worker nodes in the manner illustrated in figure 4.17

138

Figure 4.17 – Communication between nodes in parallel tree search method

Thus, there is usually a necessity to communicate between computer nodes. The

MPI is developed to provide communication channels between computer nodes (as

implied by the name Message Passing Interface). The MPI is a specification / standard

for passing message between computer nodes (the most current standard is MPI version

2.2). Openmpi is one of the most popular implementation of MPI; it is a library of

message passing subroutines (as well as other supporting subroutines for file handling,

debugging, etc…). It is a tool provided for the programmer to do parallel computing; the

programmer is responsible for determining all parallelism. More details on MPI can be

found in Pacheco (1997) and various documents maintained at (http://www.mpi-

forum.org/docs/). Note that, in MPI terminology, there is usually a computer node called

master node (or server node), the rest are called worker nodes

The next section describes three parallelized versions of cutset-based method for

solving value-optimal SNDP. The first one follows the SIMD approach, the second one

Node
0

Node
1

Node
2

Node
3

Node
4

Send newly found current best to master node

Send (broadcast) the most updated current
best to all worker nodes

http://www.mpi

139

follows the MISD approach and the third one follows MIMD . The focus is on the second

one and third one because their performance is much better than the first one (in this

specific problem).

4.10.4. Parallelized cutset-based method – SIMD approach

This parallel program follows the principle illustrated in figure 4.15, which is to

partition space of variables into several sub-spaces. The calculation procedure is

depicted in figure 4.18 for a system containing 6 cutsets.

- In this parallel program, no branching criterion is used. More specifically, cutsets are

added in numbered order, for example, if the current set of active cutsets is [124] then

the next cutset to be added is 5, if the new set [1245] is already evaluated (because the

measurement locations resulted from union of cutsets [1245] is already evaluated)

then consider new set [1246] and so on.

- As discussed in previous section (and proven in the Madron illustrated example), the

proposed stopping criterion has little effect in eliminating non-optimal solutions. So

it is not used in this parallelized version of cutset-based method. Thus, the best

solution obtained by this method is guaranteed to be optimal solution.

- As illustrated in figure 4.18, all combinations of cutsets containing the root [1 2] are

evaluated in one worker node (as shown in 4.18b, these combinations are [123],

[124], [1234] etc). At the same time all combinations of active cutsets containing

another root (e.g. [1 3]) are evaluated in another worker node and so on. This is how

the principle of dividing problem data works.

140

4.18a Calculation procedure in master node

Generate all
combinations of Nc
cutsets (Nc = 2)

12 13 23 24 14 15 16 25 26

More cutsets can be added to
these combinations

1 2 3

34 35 36

No or only one cutset can
be added to these
combinations

Evaluate objective value
and update the current best
(if applicable)

Check what worker node is currently idle

Send information on active cutsets
(e.g. [12]) to that idle worker node

Continue until all combinations of Nc cutsets have been explored

Check if all worker nodes have completed their tasks and become idle

Send shutdown (termination) signal to all worker nodes

Gather (receive) all current best solutions obtained in all worker nodes

Sort all these current best solutions and identify optimal solution

141

4.18b Calculation procedure in worker nodes

Figure 4.18 – Calculation procedure for parallel computing – SIMD approach

Receive information on Nc active cutsets from master node (e.g.
[12]), which is used as root in a tree search procedure

Once completing the tree search, notify master node that it is idle

Receive information from master node, which can be termination signal
(signal 1) or another set of Nc active cutsets for further process (signal 2)

Send current best solution to
master node and shut down
process

A new root is
obtained
Return to step 2

1235 1245
1246 1236

123 124

1256

12

125

1234

12345

123456

12346 12456 12356

Use tree enumerative search to explore combinations of that root with
other cutsets (as shown below). Identify the current best solution

Termination signal
(signal 1)

Signal 2

142

Notes:

- If number of cutsets is m and rank of the last active cutset is n (for example, the

current set of active cutsets is [12…n]) then the total number of possible new sets of

active cutsets starting from the current set of active cutsets [12…n] is 2(m-n) - 1 (for

example, the new sets are [12…n,n+1], [12…n,n+1,n+2], etc). If (m-n) ≤ 3 (i.e. the

number of possible new sets ≤ 23 - 1), the current set of active cutsets [12…n] is to

be processed in master node, otherwise ((m-n) > 3), it is processed in worker nodes.

The reason is that communication between computer nodes costs time, so it is better

to process a root (set of active cutsets) with (m-n) ≤ 3 directly in master node rather

than sending it to worker nodes (in figure 4.18, the condition (m-n) ≤ 1 is used)

- Initially, all worker nodes are idle (there is no running task at that time) so master

node automatically sends roots (combinations of Nc active cutsets) to worker nodes.

Only in later stage that the master node needs to check if a worker node is idle or not

in order to assign new job for that worker node

- The master node acts as a “manger”: it assigns jobs and monitors job completion for

worker nodes; if master node finds that a worker node is idle (because its job was

completed), master node assigns new job for that worker node

4.10.5. Parallelized cutset-based method – MISD approach

This parallel program follows the MISD (multiple instruction single data)

approach illustrated in figure 4.15, which is to execute multiple tasks at the same time.

The calculation procedure is depicted in figure 4.19

143

4.19a Calculation procedure in master node

Perform union operation of active cutsets to obtain candidate
solutions (sets of measurement locations)

Store candidate solutions in a list until 100 candidate solutions have been
stored. This list is called “list100”

Check what worker node is idle. Send list100 to that idle worker node.
Reset the list100

1235 1245 1246 1236

123 124

1256

12

125

1234

12345 12346 12456 12356

13

134

1

135

1345

Run tree search procedure using cutsets

Continue until all candidate solutions have been generated and
passed on to worker nodes (tree search procedure was completed)

Check if all worker nodes have completed their tasks and become idle

Send shutdown (termination) signal to all worker nodes

Gather (receive) all current best solutions obtained in all worker nodes

Sort all these current best solutions and identify optimal solution

144

4.19b Calculation procedure in worker node

Figure 4.19 – Calculation procedure for parallel computing – MISD approach

- Similar to the SIMD approach, there is no stopping criterion in this MISD parallel

program so the best solution obtained by this method is guaranteed to be optimal

solution

- Regarding branching criterion, there are two alternatives: i) branching criterion is

used, ii) branching criterion is not used (the tree search illustrated in figure 4.18b

and 4.19a does not have a branching criterion). Advantage of the former is that

optimal solution is usually identified early (which is very beneficial if

Receive list100 from master node

Once completing its task, notify master node that it is idle

Receive information from master node, which can be termination signal
(signal 1) or another list100 (signal 2)

Send current best solution to
master node and shut down
process

A new list100 is
obtained
Return to step 2

Evaluate all 100 candidate solutions stored in list100

Termination signal
(signal 1)

Signal 2

145

computation process has to be terminated halfway because computational time

exceeds limit). Advantage of the latter is that computational time is much shorter

than the former because there is no need to determine which cutset (to be added to

current active cutsets) results in a minimum cost among all candidate cutsets.

- It can be seen that in this approach there are two computation tasks that are

executed simultaneously: generating all candidate solutions (by using tree search

procedure with cutsets) in master node and evaluating (i.e. calculating objective

value, which is financial loss plus cost) all generated candidate solutions in

worker nodes. Although these two tasks are not completely decoupled (candidate

solutions need to be generated first before they can be evaluated), the two tasks

can still be executed concurrently: the fast job (generating candidate solutions) is

done in one master node while the slow job (evaluating candidate solutions) is

divided across many worker nodes. Relative computational times of these two

steps are shown in figure 4.20

In figure 4.20, the data is taken from the case study number 2 in the Madron illustrated

example shown below (using a 2.8 GHz Pentium CPU, 1028 RAM PC). The straight line

“Evaluating 100 solutions” shows the average computational time to evaluate 100

candidate solutions (this time ranges from 49 sec to 294 sec). The curve “with branching

criterion” shows computational time to generate 6400 candidate solutions when

branching criterion is used, the curve “without branching criterion” shows the same

computational time but no branching criterion is used. The value corresponding to point n

in x-axis is the elapse time when the number of generated solutions increases from

146

6400*(n-1) to 6400*n. Thus figure 4.20 shows that computational time to generate 6400

candidate solutions increases progressively with the number of solutions that have been

generated. The reason is that a candidate solution (a set of measurement locations) needs

to be verified that it is not coincident with any solution that has been evaluated so far.

The time spent for this verification step increases with the number of solutions that have

been generated; this fact explains the dependence of computational time on number of

candidate solutions shown in figure 4.20

Figure 4.20 – Comparisons of computational times of two steps in the MISD

Thus, on the same basis (e.g. generating 100 solutions and evaluating these 100

solutions), the first task is much faster than the second task.

In the MISD approach, the ideal situation that results in optimum performance is

shown in figure 4.21

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

Time
(sec)

No branching criterion

With branching criterion

Evaluating 100 solutions

147

Figure 4.21 – Ideal situation for MISD parallel program

The best performance (achieving short computational time without using too

much resource) is obtained when there is no or little idle (dead) time in any computer

node. This situation is realized when at the time master node finishes assigning jobs for

all worker nodes and starts a new cycle, the first worker node just finishes its job and is

ready to take on another job as shown in figure 4.21.

Suppose that the number of worker nodes utilized in the process is k and let the time to

generate (100*k) solutions be t1 and the average time to evaluate 100 solutions be t2,

then the best performance is obtained when t1≈ t2. However, this ideal situation will

never be achievable because t1 increases as computation process progresses (as shown in

figure 4.20). In the period where t1<t2, when starting a new cycle, the master node can

not find any idle worker node to assign new job (so there is delay time). In the other

hand, if t1>t2, worker nodes are idle for some time before they are assigned a new job

(so there is idle time or resource is not fully utilized). The best situation one can get is

Generate first batch of
100 solutions

Send to worker node
no. 1

Generate second batch
of 100 solutions

Send to worker node
no. 2

Evaluating 100
solutions

Generate kth batch of
100 solutions

Send to worker node
no. k

Master node

Worker node no. 1

New cycle

New 100
solutions

New 100
solutions

Time

Time

t2

t1

148

that t1 is close to t2 in the whole process. The case “No branching criterion” in figure

4.20 is near to this “best” situation.

As can be inferred from the calculation procedure, computational time of the

overall parallel computing process can not be reduced lower than the time to generate all

candidate solutions. This limit on computational time is achieved when t2 < t1 because

this condition (t2 < t1) implies that the master node can always find an idle worker node

to assign job (evaluating a batch of 100 solutions) whenever it needs. This usually means

using more computer nodes (CPUs)

Parallelized version (MISD approach) of cutset-based tree search method with

decomposition has also been developed. Decomposition technique was described in Gala

and Bagajewicz (2006). This parallelized program of cutset-based method with

decomposition is similar to the one without decomposition. The only differences are:

i) Differences in cutset-based tree search procedure (section 4.9):

- In step one: decompose the process graph into several sub-graphs. For example

a system containing six stream [1 2 3 4 5 6] is partitioned into two sub-systems:

one containing three streams [1 2 3] (sub-graph A) and the other containing [3 4

5 6] (sub-graph B). Then find all cutsets in all sub-graphs.

- In step two, consider only cutsets that contain at least one key variable and / or

a connecting stream (i.e. the intersection between two adjacent sub-graphs, for

example stream [3] connecting [1 2 3] and [3 4 5 6]). The reason why

connecting stream is also considered is better explained through an counter

149

example: suppose that [1] is the key variable, sub-graph A has only one cutset:

[1 2 3] (which contains both key variable [1] and connecting stream [3]), sub-

graph B has two cutsets containing connecting stream [3], which are [3 4 5] and

[3 4 6] (no cutset in sub-graph B contains key variable [1]). If cutsets [3 4 5]

and [3 4 6] are not considered, the solutions that contain many measurements

like [1 2 3 4 5] or [1 2 3 4 5 6] will never show up (these heavily measured

systems are most likely to be optimal solution if the parameter Ks is large)

- No stopping criterion is used

ii) Differences in parallelized version (section 4.10.5):

The only difference is in step two of calculation procedure in worker node (figure

4.19a) “Evaluate all 100 candidate solutions stored in list100”. If no decomposition is

used, the task is simply to evaluate objective functions of candidate solutions. When

decomposition is used, if a candidate solution (an element of a list100) is obtained from

union operation of cutsets coming from the same sub-graph, then simply evaluating

objective value of that candidate solution. Otherwise (cutsets come from different sub-

graphs), suppose that the candidate solution is obtained from union of cutsets A & B

(from sub-graph 1) and cutset C (from sub-graph 2) and cutset D (from sub-graph 3).

Then, as illustrated in Gala and Bagajewicz (2006), all solutions (that can be resulted

from these four cutsets A, B, C, D) are found by performing the following operations:

() ; ()A B C D A B C D∪ ∪ ∪ ∪ ∪ ⊕ and () ∪ ⊕ ∪A B C D and ()∪ ⊕ ⊕A B C D (note

that and∪ ⊕ are union operation and ring sum operation, respectively). The four

150

solutions (sets of measurement locations) resulted from the above four operations are

then evaluated

Now realizing that ()∪ ∪ ⊕A B C D is actually the union ()∪ ∪ ∪A B C D minus

the connecting stream of sub-graph 2 (containing cutset C) and sub-graph 3 (containing

cutset D) while () ∪ ⊕ ∪A B C D is the union ()∪ ∪ ∪A B C D minus the connecting

stream of sub-graph 1 (containing cutsets A, B) and sub-graph 2 (containing cutset C),

etc. Thus the above three operations ()∪ ∪ ⊕A B C D and () ∪ ⊕ ∪A B C D and

()∪ ⊕ ⊕A B C D are equivalent to exploring all possibilities of removing connecting

streams out of the union ()∪ ∪ ∪A B C D . This approach is used in this work: a tree

enumerative procedure is used to explore all possibilities of removing connecting streams

out of a candidate solution

Thus the step “Evaluate all 100 candidate solutions stored in list100” now

comprises of two steps: i) for each candidate solution (an element in the list100), use a

tree enumerative procedure to explore all possibilities of removing connecting streams

out of that candidate solution, ii) then evaluate all the resulting candidate solutions (sets

of measurement locations)

4.10.6. Parallelized cutset-based method – MIMD approach

In this MIMD (multiple instructions multiple data) approach, both program data

and programs instructions are divided. More specifically, this approach combines both

the technique of partitioning space of variables (SIMD approach shown in section 4.10.4)

and the technique of dividing and concurrently executing computation tasks (MISD

151

approach shown in section 4.10.5). The calculation procedure is essentially the same as

that of the MISD approach (figure 4.19) except that:

- The task of generating all candidate solutions (task one) is now divided and shared by

several computer nodes (call group 1 of computer nodes) instead of only one

computer node (the master node) in the MISD approach.

- The group of computer nodes that is responsible for task two, which is evaluating all

the generated candidate solutions (called group 2), receive the job assignment (the

list100) from a computer node in group 1.

- Because task one is fast job while task two is slow job, group two of computer nodes

(responsible for task two) is bigger (containing more computer nodes) than group

one.

- Group two is divided further into sub-groups. The number of these sub-groups is

equal to the number of computer nodes in group one. Each computer node in group

one “manages” one sub-group (belonging to group two) as illustrated in figure 4.22.

- The function (duty) and relationship between a computer node in group one (denoted

as “managing node”) and a sub-group that it manages is similar to the function and

relationship between master node and worker nodes in MISD approach (figure 4.19);

that is, the managing node generates list100 and sends it to worker nodes under

control of this managing node (e.g. in figure 4.22. CPU1 controls sub-group 1, etc.)

- The function and relationship between master node and computer nodes in group one

(the managing nodes) is similar to the function and relationship between master node

and worker nodes in SIMD approach (figure 4.18): master node generates a root (a

combination of Nc active cutsets like [1 2], [1 3] etc) and send it to managing nodes

152

- The communication and assigning jobs between master node and computer nodes in

group one and group two are illustrated in figure 4.22: group one comprises of four

“managing” nodes (CPU1 to CPU4), group two comprises of four sub-groups.

- The number of “managing” computer nodes in group one is an important parameter

because it strongly affects performance of the method. As shown in illustrated

example, usually the best performance is achieved at small number of “managing”

computer nodes.

- No branching criterion and no stopping criterion is used

Figure 4.22 – Illustration of MIMD parallelization

Send
list100

Notification
of idle status

Notification of
completing job

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 11

CPU 12

CPU 13

CPU 14

CPU 15

CPU 16

CPU 17

CPU 18

CPU 19

CPU 20

Master node

[1 2] [1 3]

Assigning root
(like [1 2])

Evaluating candidate solutions

Generating candidate solutions

Sub-group 1 Sub-group 2 Sub-group 3 Sub-group 4

153

4.11. Example 4.2 – Madron problem

All of the proposed methods were implemented in Fortran. The exhaustive tree

search, the GA method and the serial version of cutset-based method were run on a 2.8

GHz Intel Pentium CPU, 1028 MB RAM PC. The parallelized programs were run on

computer network (“super computer”) of OU (University of Oklahoma) Supercomputing

Center for Education and Research (abbreviated name is OSCER). The OSCER super

computer uses Intel Xeon CPU (speed ranges from 2.0 to 2.4 GHz) and 8,768 GB RAM.

More detail on configuration of OSCER super computer can be found in the website

www.oscer.ou.edu

Flowsheet of the example is given in Figure 4.23, which was introduced by

Madron and Veverka (1992). Madron and Veverka (1992) did not report flow rates, so

the flowrate values shown in Table 4.6 were taken from Bagajewicz (1997). The

precision and cost of sensors are also given in Table 4.6

Figure 4.23 – Flowsheet of Madron problem

1 2 3 4 5

6 7 10

11 8 9

5

11

16

21

22 23 24 12 14

13

19
20

17 15

 6 7
9 4

18 10 3 1

2

8

http://www.oscer.ou.edu

154

Table 4.6- Data for Madron problem

Stream Flow Sensor
cost

Sensor
Precision

(%)
Stream Flow Sensor

Cost

Sensor
Precision

(%)
1 140 19 2.5 13 10 12 2.5

2 20 17 2.5 14 10 12 2.5

3 130 13 2.5 15 90 17 2.5

4 40 12 2.5 16 100 19 2.5

5 10 25 2.5 17 5 17 2.5

6 45 10 2.5 18 135 18 2.5

7 15 7 2.5 19 45 17 2.5

8 10 6 2.5 20 30 15 2.5

9 10 5 2.5 21 80 15 2.5

10 100 13 2.5 22 10 13 2.5

11 80 17 2.5 23 5 13 2.5

12 40 13 2.5 24 45 13 2.5

Information used in the calculation of financial loss is as follows:

- Probability of sensors = 0.1 (for all sensors)

- Biases (in failed sensors) are assumed to follow normal distribution with zero

means and standard deviations = 4.0 (for all sensors)

- Windows time of analysis T = 30 days

- The Ks values (cost of product or cost of inventory) vary with design case

studies, which are shown in table 4.7

The value-optimal SNDP (equation 4.10) is being studied and performance of the

proposed cutset-based methods for solving value-optimal SNDP is tested. Ten design

case studies together with the optimal solutions obtained by using cutset-based methods

155

are shown in table 4.7. The objective is to minimize financial loss plus cost. The last four

columns of table 4.7 show details of the obtained optimal solutions, which are the number

of sensors, the measurements location, the cost of sensors and the financial loss

respectively.

Table 4.7- Results for Madron problem

Case
study

Key
variables Ks value Number

of sensors
Measured
variables

Sensors
cost

Financial
loss

4.2.1 1, 9, 14
Ks1 = 25
Ks9 = 20
Ks14 = 20

11
1, 2, 3, 4, 8, 9,
10, 12, 13, 14,
20

137 415.1

4.2.2 1, 5, 22
Ks1 = 25
Ks5 = 20
Ks22= 20

11
1, 2, 3, 4, 5, 8,
10, 12, 13, 20,
22

158 471.4

4.2.3 2, 6, 24
Ks2 = 25
Ks6 = 20
Ks24= 20

4
2, 6, 19, 24

57 400.1

4.2.4 4, 9, 23
Ks4 = 25
Ks9 = 20
Ks23= 20

4
4, 9, 17, 23

47 283

4.2.5 4, 5, 24
Ks4 = 25
Ks5 = 25
Ks24= 45

4
4, 5, 19, 24

67 527.1

4.2.6 1, 5, 24
Ks1 = 25
Ks5 = 20
Ks24= 20

12
1, 2, 3, 4, 5, 8,
10, 12, 14, 19,
20, 24

175 498.7

4.2.7 1, 5, 24
Ks1 = 45
Ks5 = 36
Ks24= 45

15

1, 2, 3, 4, 5, 8,
9, 10, 12, 13,
14, 18, 19, 20,
24

210 891.2

4.2.8 1, 7, 24
Ks1 = 25
Ks7 = 20
Ks24= 25

12
1, 2, 3, 4, 7, 8,
10, 12, 13, 19,
20, 24

157 538.8

4.2.9 1, 7, 24
Ks1 = 45
Ks7 = 40
Ks24= 45

19

1, 2, 3, 4, 6, 7,
8, 9, 10, 12, 13,
14, 16, 17, 18,
19, 20, 23, 24

251 859.3

4.2.10 1, 7, 24
Ks1 = 80
Ks7 = 70
Ks24= 80

22

1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 12,
13, 14, 15, 17,
18, 19, 20, 21,
22, 23, 24

302 1471.8

156

A few observations can be withdrawn from the above results:

- The locations of key variables can greatly affect the financial loss and the

obtained optimal network as evidenced in design cases 4.2.1 to 4.2.6: all of

these six design cases have three key variables with similar Ks values (only

locations of key variables are different) but the number of sensors in optimal

network can change significantly.

- As Ks values increase, the financial loss term dominates the cost term and

optimal network would contain more sensors to reduce financial loss as

evidenced in design cases 4.2.6 and 4.2.7 (same key variables, different Ks

values) and design cases 4.2.8 to 4.2.10

- There is a very high chance that all key variables appear in the optimal

solutions: this is the case in all ten design case studies under consideration

The next section shows performance of the proposed methods to solve value-optimal

SNDP.

4.11.1. Exhaustive tree search using individual measurements

The simplest method to solve the value-optimal SNDP is the tree search method

built on individual measurements (Bagajewicz, 1997; this method is called “All

Variables” method in chapter 2). This method is used for the sole purpose of validating

the results obtained by cutset-based tree search method; hence no stopping criterion is

used. The Madron problem contains 24 streams, hence the total number of candidate

solutions is 224 -1 = 16.78 millions. We attempted to solve the design case study 4.2.1

157

using this method, after one month (30 days) running time, the computational process is

terminated. When stopped, the tree search explored only 4.19 millions of candidate

solutions (and was able to identify the optimal solution shown in row 2 of table 4.7),

hence the estimated computation time of this method is 120 days (4 months!).

Computational time in other design case studies should be at the same magnitude with

this computational time (120 days). Thus, this method is applicable for small scale

problems only.

4.11.2. Genetic Algorithm

Performance of the GA method is shown in table 4.8. In table 4.8, the second and third

columns show details (the number and the location of sensors) of the best solutions

obtained by GA method. The fourth column shows objective values of these solutions.

For comparison, the optimal objective value (summation of sensors cost and financial

loss shown in table 4.7) is also shown in column five. The last column shows

computational time of the GA method.

158

Table 4.8- Performance of GA method

Case
study

Number
of sensors Measured variables

Objective
value

Optimal
objective

value

Computation
Time

4.2.1 13 1, 2, 3, 4, 8, 9, 10, 12,
13, 14, 17, 20, 23

568.1 552.1 54 min

4.2.2 13
1, 2, 3, 4, 5, 6, 8, 10,
12, 13, 19, 20, 22 653.6 629.4 54 min

4.2.3 4 2, 6, 19, 24 457.1 457.1 25 min
4.2.4 6 4, 8, 9, 17, 21, 23 349.9 330 17 min

4.2.5 8 4, 5, 7, 13, 14, 19, 21,
24

614.8 594.1 20 min

4.2.6 15
1, 2, 3, 4, 5, 6, 8, 9, 10,
12, 13, 18, 19, 20, 24 686.9 673.7 32 min

4.2.7 19
1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 13, 14, 15, 18,
19, 20, 23, 24

1104.7 1101.2 55 min

4.2.8 12
1, 2, 3, 4, 7, 8, 10, 12,
13, 19, 20, 24 695.8 695.8 38 min

4.2.9 18
1, 2, 3, 4, 6, 7, 8, 9, 10,
12, 13, 14, 16, 17, 19,
20, 23, 24

1111.7 1110.3 39 min

4.2.10 23

1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22,
23, 24

1775.5 1773.8 59 min

As shown in table 4.8

- Although the GA method does not guarantee optimality, it is able to locate optimal

solution in two design cases 4.2.3 and 4.2.8. Moreover, in the other three design

cases (4.2.7, 4.2.9 and 4.2.10), the best solutions obtained by GA are “very good”:

they are very near to the optimal solutions

- Computational time of the GA method is acceptable: it solves this problem within

an hour.

159

- In general, performance of the GA method is acceptable. Additionally, the GA

method does not exhibit scaling problem (computational time does not increase

exponentially with the size of the problem). To increase the chance of locating

optimal solution, one can adjust the GA parameters (increase the size of population

and / or mutation rate); or simply re-run GA many times (each GA run usually

gives a different result).

4.11.3. Cutset-based tree search method

Performance of the cutset-based tree search method is shown in table 4.9

Table 4.9- Performance of cutset-based method

Case

study

Number

of cutsets

Number of nodes explored
Computational

time
With stopping

criterion

No stopping

criterion

4.2.1 99 46,042 46,042 9 hrs 4 min

4.2.2 97 64,773 64,781 11 hrs 44 min

4.2.3 108 38,070 38,070 4 hrs 20 min

4.2.4 105 28,178 28,178 2 hrs 45 min

4.2.5 105 34,134 34,134 3 hrs 31 min

4.2.6 102 39,552 39,552 7 hrs 57 min

4.2.7 102 39,552 39,552 7 hrs 56 min

4.2.8 108 38,365 38,365 8 hrs 2 min

4.2.9 108 38,365 38,365 8 hrs 3 min

4.2.10 108 38,365 38,365 8 hrs 1 min

160

Column 2 of table 4.9 shows the number of cutsets (containing at least one key variable)

in the corresponding design problems, the last column shows computational time of

cutset-based method when stopping criterion is used. When stopping criterion is NOT

used, the computational time is almost the same (the difference is usually not more than 5

minutes)

As can be seen from table 4.9:

- When the stopping criterion is used, the cutset-based method is able to locate

optimal solutions (although optimality is not guaranteed if the stopping criterion is

used)

- The stopping criterion has “little” effect: the number of nodes explored and

computational time when stopping criterion is used are almost unchanged when

compared with the case stopping criterion is NOT used. Only in the design case

4.2.2 that there is a small difference in number of nodes explored between the two

cases (results of other case studies (not shown here) of Madron example also

testify this fact). Thus, it may be not necessary to use stopping criterion in cutset-

based tree search method. The parallel versions of cutset-based method will not

use stopping criterion

- It may also be not necessary to use branching criterion (just put cutsets in

numbered order as illustrated in figure 4.18b). The advantage of using branching

criterion is that optimal solution is usually identified earlier than the case where

branching criterion is NOT used: among the ten design case studies, there are six

design cases where optimal solution is located within the first 20 nodes explored.

161

The disadvantage is that using branching criterion costs more time as shown in

section 4.11.6

- Performance of cutset-based method is acceptable for this medium size Madron

problem. However, because this method exhibits scaling problem, it is not efficient

enough for large scale problems

4.11.4. Parallelized cutset-based method – parallelization of loops

As mentioned in section 4.10.2, the Intel Fortran compiler used in this research

work automatically parallelizes loops in the Fortran program that implements cutset-

based method. The results shown in table 4.10 are obtained simply by running the

“serial” cutset-based method on the OSCER “super computer” (using 4 CPUs)

Table 4.10- Performance of cutset-based method with parallelization of loops

Case study Computational time (sec)

4.2.1 2394

4.2.2 2834

4.2.3 1172

4.2.4 825

4.2.5 1005

4.2.6 2008

4.2.7 2007

4.2.8 2107

4.2.9 2106

4.2.10 2107

162

The results shown in table 4.10 and 4.9 shows that the simple approach to do

parallel computing, the parallelization of loops, greatly reduces computational time

(computational time reduces by the factor of 14 times, however, a part of this reduction is

due to the fact that the configuration of OSCER super computer is much better than the

PC used in this work)

4.11.5. Performance of parallelization method – SIMD approach

Performance of the parallelized cutset-based method - SIMD approach (described

in section 4.10.4) is shown in tables 4.11 and 4.12. As shown in figure 4.18a, Nc is an

important parameter that can be varied. If Nc = 1, all combinations of Nc cutsets are [1],

[2], [3],...; all solutions originated from root [1] will be evaluated in worker node 1,

solutions originated from root [2] will be evaluated in worker node 2, etc. (the case Nc =

2 is illustrated in section 4.10.4). If totally there are nt cutsets, then the number of

possible combinations of Nc cutsets is given by

!
!()!

=
−

nt t
Nc

c t c

nC
N n N

 (4-11)

There are roughly 100 cutsets in this Madron problem, thus if Nc = 1: 100
1 100=C ;

if Nc = 2: 100
2 4950=C ; if Nc = 3: 100

3 161700=C . Because 100
3C is already greater than the

total number of candidate solutions (not more than 70,000) so the case Nc = 3 is not

considered. Results for the case Nc = 1 and Nc = 2 are shown in table 4.11 and 4.12

respectively. The results are obtained using 64 computer nodes (64 CPUs), which

comprises of one master node and 63 worker nodes

163

Table 4.11- Performance of parallelized program – SIMD approach (Nc = 1)

Case

study

Computational

time (sec)

Number of candidate solutions explored

Total
Max – one

node

Min – one

node

Total – serial

program

4.2.1 2266 82,617 23,539 105 46,042

4.2.2 2623 99,674 33,528 143 64,781

4.2.3 1083 69,235 19,387 252 38,070

4.2.4 771 52,638 14,251 214 28,178

4.2.5 933 60,658 17,154 209 34,134

4.2.6 1333 72,848 19,920 195 39,552

4.2.7 1333 72,848 19,920 195 39,552

4.2.8 2017 69,595 19,566 252 38,365

4.2.9 2016 69,595 19,566 252 38,365

4.2.10 2016 69,595 19,566 252 38,365

Table 4.12- Performance of parallelized program – SIMD approach (Nc = 2)

Case

study

Computational

time (sec)

Number of candidate solutions explored

Total
Max – one

node

Min – one

node

Total – serial

program

4.2.1 1609 152,427 12,794 278 46,042

4.2.2 1513 253,796 17,976 3,102 64,781

4.2.3 747 196,069 10,218 2,588 38,070

4.2.4 767 159,078 7,339 2,186 28,178

4.2.5 641 173,509 9,109 2,287 34,134

4.2.6 768 170,223 10,809 1,432 39,552

4.2.7 768 170,223 10,809 1,397 39,552

4.2.8 1391 148,292 10,321 245 38,365

4.2.9 1392 148,292 10,321 245 38,365

4.2.10 1392 148,292 10,321 245 38,365

164

In tables 4.11 and 4.12:

- Column 3 shows the total number (i.e. the summation) of all candidate solutions

that have been evaluated in all worker nodes plus the master node. For

comparison, the total number of candidate solutions explored in serial program

(table 4.9) is also re-shown in the last column

- Column 4 shows the maximum value of the numbers of candidate solutions

evaluated in one worker node, while the corresponding minimum value is shown

in column 5. The maximum value is always realized in worker node number 1

(that explores solutions starting from root [1] (Nc = 1) or [1 2] (Nc = 2)).

The results shown in tables 4.11 and 4.12 show that

- Because the worker nodes do not communicate with one another, there is a high

chance of repetition of job (that is, the same candidate solution is evaluated in at

least two worker nodes). This repetition of task explains why the total number of

candidate solutions explored when SIMD parallelization is used (column 3 of the

tables) is more than the corresponding value when SIMD parallelization is NOT

used (column 6). The chance of repetition of job (and the total number of

candidate solutions explored, shown in column 3) increases when the parameter

Nc increases

- The SIMD approach offers only a small improvement in computational time: when

compared with the case when SIMD parallelization is NOT used (that is, the

results shown in table 4.10): the option (Nc = 1) offers roughly 5% improvement

in computational time while the option (Nc = 2) offers roughly 40% improvement.

165

- The poor performance of SIMD parallelization is due to the poor load balancing of

this approach in this specific problem. The SIMD parallelization achieves the best

performance if all the worker nodes process the same amount of job so that all

worker nodes finish their jobs at the same time. If this situation is realized, the

parallelization is said to have good balancing of jobs. If this is not the case (i.e.

poor balancing), the worker node with the heaviest amount of job will finish last

(and worker nodes with small amount of job will finish early and become idle until

the overall computation process completes, which means that the resource is not

fully utilized). In such case (poor balancing), the computational time of the overall

process is determined by the worker node with the heaviest amount of job.

- The load balancing property of the SIMD parallelization is indicated by the

difference in the numbers of candidate solutions evaluated in worker nodes. One

can see that there is a large difference between the maximum and minimum value

of the numbers of candidate solutions evaluated in a worker node (shown in

columns 4 and 5 of the tables), hence the balancing of jobs is poor

- The option Nc = 2 has a better load balancing property than the option Nc = 1, so

option Nc = 2 has better performance

- The performance of SIMD parallelization can be improved by improving the load

balancing of the parallelized program, which is left for future work.

166

4.11.6. Performance of parallelization method – MISD approach

Results of the case where branching criterion is used are shown first. The results

are obtained using 64 computer nodes (one master and 63 worker nodes). Table 4.13

shows results when decomposition technique is NOT used.

Table 4.13- Performance of MISD approach – With branching criterion

Case study
Computational time

(sec)

Number of candidate solutions evaluated

Min - one node Max - one node

4.2.1 126 600 800

4.2.2 192 800 1300

4.2.3 90 400 700

4.2.4 53 300 1200

4.2.5 74 400 1000

4.2.6 89 400 900

4.2.7 90 400 900

4.2.8 101 500 700

4.2.9 102 500 700

4.2.10 101 500 700

The results shown in tables 4.11, 4.12 and 4.13 show that:

- The MISD approach is much better than the SIMD approach: computational time

of the MISD approach is 12 times smaller than that of the SIMD approach. If

compared against the base case where MPI parallelization is not used (table 4.10),

the MISD approach reduces computational time by the factor of about 20 times

(this result is obtained using 64 computer nodes)

167

- The load balancing property of MISD approach is much better than the SIMD

approach, one can see that the difference between the maximum and minimum

value of solutions evaluated in a computer node is small

Let us now consider the case where decomposition technique is used. Three

decomposition options are considered for this case. They are described in table 4.14

Table 4.14- Decomposition option

Option Name Number of sub-
graphs

Locations of connecting
streams

1 Single decomposition 2 {S8, S18}
2 Double decomposition 3 {S3} and {S16}
3 Multiple decomposition 7 {S3}, {S15}, {S16}, {S17},

{S19}, {S20},

For example, in option 1, the process flowsheet is “cut” at position between unit 2

and 3 (the connecting streams are S8 and S18): the process graph is decomposed into two

sub-graphs, one contains five units 1, 2, 6, 7, 10 and the other contains six units: 3, 4, 5,

8, 9, 11.

Table 4.14 shows results when decomposition technique is used. In this table,

columns 4 and 7 shows the number of candidate solutions generated in master node,

which are then sent to worker nodes for evaluating (denoted as “number of solutions

generated”). When decomposition technique is used, because of the extra step of

“explore all possibilities of removing connecting streams out of that candidate solution”

(described in section 4.10), the number of candidate solutions evaluated will be greater

than the solutions sent to worker node from master node. For example, if an element in

168

the list100 (a candidate solution) is [1 2 3 4 5] and [4 5] are connecting streams, then for

this specific candidate solution the following four solutions need to be evaluated: [1 2 3 4

5], [1 2 3 4], [1 2 3 5] and [1 2 3]. Thus the total number (obtained by summation) of

solutions that have been evaluated in all worker nodes (shown in columns 3 and 6) must

be greater than the number of solutions generated in master node (columns 4 and 7).

Table 4.15- Performance of MISD approach with decomposition and branching criterion

Case

study
Option 1 Option 3

Comput.

time (sec)

Number of

solutions

evaluated

Number of

solutions

generated

Comput.

time (sec)

Number of

solutions

evaluated

Number of

solutions

generated

4.2.1 99 87,451 22,337 833 713,861 19,272

4.2.2 111 140,528 36,142 821 598,321 15,889

4.2.3 66 72,112 18,243 813 580,569 15,086

4.2.4 62 50,513 12,739 737 484,968 13,836

4.2.5 67 63,455 16,182 737 430,397 12,447

4.2.6 89 81,132 20,997 817 447,922 12,517

4.2.7 89 81,132 20,997 815 447,922 12,517

4.2.8 94 72,508 18,325 790 577,835 14,929

4.2.9 95 72,508 18,325 790 577,835 14,929

4.2.10 94 72,508 18,325 791 577,835 14,929

The large difference between the number of solutions evaluated in this case

(columns 3 and 6 of table 4.15) and the total number of candidate solutions (column 4 of

table 4.9) is due to the fact that there is repetition of job when decomposition is used.

Take for example the above illustration (where [4 5] are connecting streams), if the

mentioned candidate solution [1 2 3 4 5] is processed in one worker node while another

169

candidate solution [1 2 3 4] is processed in another worker node, then these two worker

nodes evaluate the same two solutions: [1 2 3 4] and [1 2 3]. The chance of job

repetition and the total number of solutions evaluated increase when the number of

decomposition (how many times the process graph is “cut”) increases as clearly shown in

table 4.15.

Using decomposition has two opposite effects: the good side is that it reduces the

time to generate candidate solutions in the master node, the bad side is that it increases

the time to evaluate solutions in worker nodes because of the problem of job repetition.

Table 4.15 shows that when branching criterion is used, a small number of decomposition

is beneficial: the option 1, single decomposition reduces computational time by 10%

(when compared with the base case where no decomposition is used, table 4.13).

However, a large number of decomposition (option 3) has adverse effect: it increases

computational time because of the problem of job repetition

The results when branching criterion is not used are shown in table 4.16. The

second column of this table shows computational time for the case when no

decomposition is used while the last three columns show computational times for the

three decomposition options described in table 4.14

170

Table 4.16- Performance of MISD approach with decomposition, no branching criterion

Case

study

Computational time (sec)

Number of decomposition

None Single Double Multiple

4.2.1 63 97 78 824

4.2.2 97 110 74 832

4.2.3 47 66 67 830

4.2.4 22 62 61 738

4.2.5 37 60 65 858

4.2.6 47 86 66 858

4.2.7 47 86 65 858

4.2.8 57 93 67 805

4.2.9 57 93 68 804

4.2.10 57 93 68 804

Table 4.16 shows that, when no branching criterion is used:

- The computational time improves significantly (compared with the base case when

branching criterion is used, computational time improves 50%).

- The bad effect of using decomposition (the problem of job repetition) overshadows

the benefit (less time to generate candidate solutions) and computational time

generally increases when decomposition technique is used

Dependence of computational time of this method (when no branching criterion

and no decomposition is used) on the number of computer nodes utilized is shown in

table 4.17

171

Table 4.17- Performance of MISD vs. number of CPUs

Case

study

Computational time (sec)

NCPU = 32 NCPU = 64 NCPU = 96

4.2.1 100 63 52

4.2.2 139 97 84

4.2.3 60 47 39

4.2.4 36 22 22

4.2.5 50 37 30

4.2.6 73 47 41

4.2.7 74 47 41

4.2.8 88 57 48

4.2.9 89 57 48

4.2.10 88 57 48

Table 4.17 shows that if more computer nodes are used (i.e. more “workers” to

share the tasks), computational time is reduced. However, it is well known that the

dependence of performance on number of computer nodes is not linear: the performance

improvement becomes smaller as more computer nodes are used: when number of

computer nodes increases from 32 to 64 and from 64 to 96 (32 nodes added),

performance (computational time) improves 36% and 15% respectively.

The best performance (column 4 of table 4.17) of the MISD parallelization is

achieved when: i) no branching criterion and no decomposition is used, ii) using as many

computer nodes as possible. The MISD parallelization is a great improvement over the

simple exhaustive tree search method and the serial cutset-based method.

172

4.11.7. Performance of parallelization method – MIMD approach

Performance of the MIMD parallelization method is shown in table 4.18 using the

following parameters: i) Nc (section 4.10.6) = 2, ii) the number of “managing” computer

nodes (in group one) = 4; thus the number of computer nodes in a sub-group (belonging

to group two) is 15, that is, one “managing” computer node generates candidate solutions

and then sends them to 15 computer nodes to evaluate them.

Table 4.18- Performance of MIMD parallelization method

Case

study

64 CPUs 96 CPUs

Candidate solutions explored
Time

(sec)

Candidate solutions explored
Time

(sec)
Max -

node

Min -

node
Total

Max -

node

Min -

node
Total

4.2.1 21,037 9,958 71,213 111 19,948 9,958 69,761 74

4.2.2 28,360 9,731 91,529 107 28,355 9,731 91,541 73

4.2.3 21,812 6,634 55,588 57 20,196 6,236 56,958 40

4.2.4 12,624 7,336 52,055 57 12,580 7,336 51,962 40

4.2.5 19,695 4,754 47,429 48 18,392 4,754 51,570 30

4.2.6 19,721 12,611 69,970 59 18,493 13,202 71,782 47

4.2.7 19,808 12,677 69,710 59 18,412 13,191 71,655 48

4.2.8 19,233 5,382 61,278 99 19,272 5,382 61,262 68

4.2.9 19,151 5,382 61,195 101 19,186 5,382 61,227 69

4.2.10 19,279 5,382 61,339 101 19,009 5,382 60,761 69

Columns 2, 3, 6, 7 (“Max-node”, “Min-node”) of table 4.18 show the maximum

and minimum value of candidate solutions explored in one “managing” node while

columns 4 and 8 show the total number of candidate solutions evaluated in the process

173

(summation of all candidate solutions explored in all “managing” nodes plus master

node)

The results shown in table 4.18 show that:

- As shown in section 4.11.5 (SIMD approach), dividing problem data suffers from

the problem of job repetition (a same candidate solution is evaluated in at least two

computer nodes) such that the total number of candidate solution is more than that

when no parallelization is used (table 4.9). This approach also divides problem

data so it also suffers from the problem of job repetition.

- Because this approach (MIMD) divides both the problem data and problem

instruction so reasonably it should be better than the SIMD and MISD approach.

However, because of the problem of job repetition this approach is not necessary

better than the MISD (multiple instruction single data) approach. In comparison

with the MISD approach:

i. The MIMD approach uses more resources to generate candidate solutions: four

CPUs in group one (in MIMD) vs. one CPU (master node) in MISD, so the

MIMD approach should spend less time to generate candidate solutions.

ii. Because of the problem of job repetition, the number of candidate solutions

that need to be evaluated in MIMD parallelization is more than that in the

MISD approach. Moreover, available resource (CPUS) for this purpose in

MIMD approach is less than that in MISD approach: 59 (64 – 1 master node –

4 CPUs in group one) vs. 63 (64 – 1 master node). Thus, the MIMD approach

should spend more time for this purpose.

174

iii. Comparison of performance of these two approaches can not be concluded

unless a large number of tests have been conducted. For this specific Madron

problem with this specific configuration (i.e. when 4 “managing” nodes are

used), the MISD parallelization is better than the MIMD approach.

- The load balance of this approach is pretty good (the difference between the

maximum and minimum value of candidate solutions evaluated in one node is

small) and when using more computer nodes, computational time decreases.

- Because of the dynamic nature of the process (real time checking of worker nodes’

status and assigning jobs), the number of candidate solution explored is usually

different if the computer system on which the process runs is different (e.g.

changing the number of CPUs) as shown in table 4.18

The effect of varying number of computer nodes (“managing” nodes) in group

one (M) is shown in table 4.19 using totally 96 CPUs. Three cases are considered (M =

2, M = 4, M = 8), which are shown in table 4.19. Take for example the second case (M =

4): each of the first thee “managing” CPU controls 23 worker nodes while the last

“managing” CPU controls 22 worker nodes (so the total number of CPUs is 1 master

node + 4 “managing” CPUs + 3*23 + 22 = 96)

175

Table 4.19- Performance of MIMD parallelization at varied number of managing nodes

Case

study

Total candidate solutions explored Computational time (sec)

M = 2 M = 4 M = 8 M = 2 M = 4 M = 8

4.2.1 65,373 69,761 102,555 54 74 148

4.2.2 81,505 91,541 137,974 62 73 142

4.2.3 50,594 56,958 89,230 25 40 73

4.2.4 41,652 51,962 79,258 25 40 74

4.2.5 48,975 51,570 81,744 18 30 64

4.2.6 58,920 71,782 83,669 46 47 79

4.2.7 59,410 71,655 83,916 47 48 78

4.2.8 51,973 61,262 89,713 39 68 133

4.2.9 51,864 61,227 89,873 39 69 134

4.2.10 51,973 60,761 89,613 39 69 134

It can be seen from table 4.19 that computational time increases when the number

of managing nodes (M) increases. This is because when M increases:

i) The problem of job repetition become more severe (the total number of

candidate solutions explored, shown in columns 2,3 and 4 of table 4.19,

increases when M increases)

ii) Less worker nodes to evaluate the candidate solutions (at the same total

number of CPUs)

It is recommended to use 2 managing nodes only; for large scale problems (e.g.

CDU example shown below), one can use up to 4 managing nodes or use decomposition

technique.

If decomposition technique is used, the calculation procedure (without

decomposition) is modified at the same way as described in section 4.10.5, that is, the

176

step “Evaluate all 100 candidate solutions stored in list100” (in worker nodes in group

two) now comprises of two steps: removing connecting streams out of a candidate

solution and then evaluate all the new candidate solutions resulted from that operation.

The results when decomposition technique is used are shown in table 4.20; only one

decomposition option (double decomposition, shown in column 3 of table 4.14) is

considered (using 96 CPUs, among which two are managing nodes). For comparison, the

results when decomposition is NOT used (and at the same configuration, 96 CPUs - two

managing nodes) are also shown in table 4.20

Table 4.20- Performance of MIMD parallelization with decomposition technique

Case study

Total candidate solutions explored Computational time (sec)

No

decomposition

Double

decomposition

No

decomposition

Double

decomposition

4.2.1 65,373 103,295 54 80

4.2.2 81,505 106,344 62 75

4.2.3 50,594 73,579 25 67

4.2.4 41,652 59,793 25 60

4.2.5 48,975 60,069 18 64

4.2.6 58,920 73,169 46 66

4.2.7 59,410 75,557 47 67

4.2.8 51,973 70,778 39 67

4.2.9 51,864 68,433 39 67

4.2.10 51,973 68,433 39 67

As can be seen from table 4.20, using decomposition technique costs more time

(this observation is also realized for the other decomposition options, option 1 and 3). As

177

explained above, using decomposition has two opposite effects: i) reduce the time to

generate candidate solutions (in master node and “managing” nodes) and ii) increase the

time to evaluate candidate solutions (in worker nodes) due to the problem of job

repetition. For this specific Madron problem, when decomposition is used, the number of

cutset in the problem reduces about 3.3 to 6 times (from about 100 cutsets to 30 cutsets in

decomposition option 1 and about 16 cutset in decomposition option 3). For this specific

Madron problem, it is not beneficial to use decomposition because using decomposition

increases computational time. However, for the large scale CDU example shown below,

it is advisable to use decomposition because decomposition leads to a great reduction in

number of cutsets.

Of all the parallelization methods and all options that have been considered, the

following option gives the best performance (the shortest computational time): MIMD

approach with no branching criterion and no decomposition, using 96 computer nodes in

total with 2 managing nodes

It can be concluded from the above results that the MIMD and MISD approach

are much better than the SIMD approach and it is always better to use more computer

nodes (more resource). Additionally, it is better not to use branching criterion. There is

no final conclusion regarding the following two issues:

i. Which parallelization method is better, MIMD or MISD

ii. Whether it is beneficial to use decomposition technique

As mentioned above, compared with the MISD (multiple instruction single data)

approach as base case, there are two opposite effects of also dividing the problem data

178

(that is, the MIMD approach): the time to generate candidate solutions decreases while

the time to evaluate candidate solutions increases. The same thing is said about using

decomposition (when compared against the counterpart where decomposition is NOT

used). The trade-off (final result) of these two opposite sides depends on the specific

problem under consideration. The following section gives an intuitive guideline on which

option is the best choice. Assuming that there are Nw worker nodes available, the

criterion to determine the best option is based on the analysis of relative computational

speed of the following two tasks: generating (Nw*100) candidate solutions and

evaluating list100 (that was sent from master node to worker nodes). Figure 4.24 shows

the two extreme cases that can occur for the base case where MISD parallelization

method and no decomposition are used.

Figure 4.24 – Analysis of performance of parallelization method

1 2 3 N

Case B

Case A

Generating (Nw*100) candidate solutions
(task 1)

Evaluating list100
(task 2)

Time

179

Notes:

- The points 1, 2, 3,…, N in x-axis indicate the total number of candidate solutions

generated in the process: at point N the total number of candidate solutions

generated is N*(Nw*100). As discussed above, the time to generate (Nw*100)

candidate solutions increases progressively along with the computational process.

- “Evaluating list100” refers to the task of evaluating the 100 elements of the list

list100. If no decomposition is used, this task is simply evaluating the 100

candidate solutions contained in the list. If decomposition is used, the actual

number of candidate solutions that need to be evaluated is more than 100 (because

“evaluating list100” now comprises of two steps as described above) and the time

for this task increases (compared against the base case where decomposition is

NOT used) as illustrated in figure 4.25

We now discuss possible options to reduce computational time for the two extreme cases:

- Case A: “Evaluating list100” takes significant time so any option that suffers from

the problem of job repetition (MIMD parallelization method and decomposition

technique) would increase computational time. The best option for this case is

MISD approach without decomposition.

- Case B: The task “Evaluating list100” (task 2) is a lot faster than the other task

(generating candidate solutions, task 1) so the task 1 is the dominating (limiting)

factor. Thus the options that reduce the time for task 1 would reduce overall

computational time of the process; which are MIMD parallelization method and

180

decomposition technique (use either of them or use both). The effect of using

these two options is illustrated in figure 4.25

Figure 4.25 –Performance of parallelization method - with MIMD and/or decomposition

The MIMD parallelization method and decomposition technique reduce time for task one

(generating candidate solutions) because

- This task is shared among several “managing” nodes (MIMD approach) instead of

only one computer node (master node) in MISD approach

- Or decomposition technique helps reduce the total number of candidate solutions

generated (as illustrated in figure 4.25: the “new” value of total number of

candidate solutions generated is M*(Nw*100) < the old value = N*(Nw*100)).

1 2 3 N

Time

Old – task 2

New – task 2

New – task 1

Old – task 1

M

181

For the cases in between these two extreme cases (i.e. computational times for the

two tasks are at the same magnitude), which option is the best choice can only be

determined from actual testing.

4.12. Example 4.3 – CDU example

Figure 4.26 –Process flowsheet – CDU example

35

U14

17

30 31

 32

U
1

U
2

U
5 U

4

U3

U
8 U

9

U1
2

U6 U
7

 U10

 U11

U13

U1
6

 U18

U1
9

1 2 3

4

5

6

7

8

9

10

11 12

13

14

15

1
6

20-
27

18

19

2
8

2
9

33

36

38-
41

42

49 50
51

52

43

44

45

46

47
48

34

U1
7

37

182

The CDU example introduced in Gala and Bagajewicz (2006) is considered next.

The process flowshheet is shown in figure 4.26 and the problem data is shown in table

4.21

Table 4.21- Data for CDU Example

Streams Flow Cost Streams Flow Cost

S1 413349 2000 S27 60413 2000
S2 419579 2000 S28 103939 1800
S3 209316 1800 S29 386580 1500
S4 210262 1800 S30 57169 2300
S5 419579 2200 S31 45829 2100
S6 460520 2100 S32 4202 1800
S7 26510 2100 S33 26133 2200
S8 230650 1700 S34 73900 2200
S9 229870 1700 S35 73704 2000
S10 26243 2400 S36 50851 2200
S11 413650 2000 S37 50715 2200
S12 413650 2000 S38 45902 2000
S13 206932 1800 S39 45878 2000
S14 206717 1800 S40 45928 2000
S15 413650 1500 S41 45851 2000
S16 27068 2300 S42 185593 2300
S17 5124 2200 S43 38557 1800
S18 21467 2200 S44 18932 1800
S19 478 1800 S45 19846 1800
S20 61562 2000 S46 23880 2100
S21 60985 2000 S47 18196 2100
S22 61253 2000 S48 18106 2100
S23 61490 2000 S49 48081 2300
S24 61109 2000 S50 15154 2000
S25 60796 2000 S51 20268 2000
S26 62012 2000 S52 12659 2000

183

Information used in the calculation of financial loss is as follows:

- Probability of sensors = 0.1 (for all sensors)

- Biases (in failed sensors) are assumed to follow normal distribution with zero

means and standard deviations = four times the standard deviations of

measurements (for all sensors)

- Windows time of analysis T = 30 days

Only one design case study is considered; the design case study and the obtained

solution are described in table 4.22

Table 4.22- Results for CDU Example

Key variables S31, S33, S35, S37, S43, S44

Ks values
Ks31 = 400, Ks33 = 360, Ks35 = 350, Ks37 =

340, Ks43 = 250, Ks44 = 240

Measured variables S31, S33, S34, S35, S36, S43, S44

Cost 14300

Financial loss 11566.3

Total number of candidate

solutions explored
3.1 millions

Computational time 10 hrs 5 min

For this problem, if decomposition is not used, the number of cutsets (containing

key variables) is 973 while if decomposition is used, the number of cutsets is reduced to

158 (single decomposition, connecting stream =S15) and 69 (double decomposition,

connecting streams = S11 & S29). Thus, simple decomposition strategies like those

184

described greatly reduces the number of cutsets (6.2 times for single decomposition and

14.1 times for double decomposition).

The following options are used to solve the problem:

- MIMD parallelization method using 200 CPUs in total, among which two

are managing nodes

- Double decomposition, connecting streams = S11 & S29

It takes a lot more time to solve this 52-stream CDU example than the 24-stream

Madron example (10 hours vs. 1 minute). However, the computational time is still

acceptable

4.13. Conclusions

In this chapter, two new approaches to design sensor networks for process

monitoring purpose are presented. These two new approaches are based on software

accuracy and its associated economic value. Efficient methods to solve the proposed

problems are presented, among which the parallelized cutset-based method is proven to

be a very efficient method to solve the value-optimal sensor network design problem.

185

4.14. References

Bagajewicz, M., Design and Retrofit of Sensors Networks in Process Plants. AIChe J.
1997, 43(9), 2300-2306.

Bagajewicz M. On the Definition of Software Accuracy in Redundant Measurement

Systems. AIChE Journal. 2005a; 51(4), 1201-1206.

Bagajewicz, M. On a New Definition of a Stochastic-based Accuracy Concept of Data

Reconciliation-Based Estimators. 15th ESCAPE proceeding (European Symposium on
Computer-Aided Process Engineering), Spain, 2005b, pp. 1135-1141

Bagajewicz M. and Q. Jiang. Gross Error Modeling and Detection in Plant Linear

Dynamic Reconciliation. Comp. Chem. Eng., 1998, 22(12), 1789-1810

Bagajewicz M., M. Markowski and A. Budek. Economic Value of Precision in the

Monitoring of Linear Systems. AIChE Journal. 2005, 51(4), 1304-1309.

Bagajewicz, M. Value of Accuracy in Linear Systems. AIChE Journal. 2006, 52(2),

pp. 638-650.

Bagajewicz M. and DuyQuang Nguyen. Stochastic-Based Accuracy of Data

Reconciliation Estimators for Linear Systems. Computers and Chemical Engineering.
2008, 32(6), 1257-1269.

Gala, M. and Bagajewicz, M. J. Efficient Procedure for the Design and Upgrade of

Sensor Networks Using Cutsets and Rigorous Decomposition. Ind. Eng. Chem. Res.
2006; 45(20), 6679-6686.

Haupt, R.L. and S.E. Haupt. Practical Genetic Algorithms, 2nd Edition, Wiley-

Interscience: New Jersey, USA, 2004

Madron, F., and V. Veverka, Optimal Selection of Measuring Points in Complex

Plants by Linear Models, AIChe J. 1992, 38(2), 227.

Nguyen Thanh D.Q., Siemanond K., Bagajewicz M.J. Downside Financial Loss of

Sensor Networks in the Presence of Gross Errors. AIChE J. 2006, 52(11), pp. 3825-3841.

Nguyen D.Q and Bagajewicz M. On The Impact of Sensor Maintenance Policies on

Stochastic-Based Accuracy. Comp. Chem. Eng. 2009, 33(9), 1491-1498

Pacheco P.S. Parallel Programming with MPI. Morgan Kaufmann Publishers: San

Francisco, USA, 1997.

186

5. CONCLUSIONS AND FUTURE WORKS

The research work aims to achieve the following two objectives:

i. Developing efficient computational methods to solve realistic large scale nonlinear

sensor network design problems

ii. Studying and proposing efficient methods to design sensor networks that

simultaneously optimize performance (using economic value of accuracy as

performance measure) and cost of sensor network.

For the first objective, although a perfect solution (i.e. an efficient method that guarantees

optimality) can not be found, a variety of “good” solutions are presented. The equation-

based method guarantees optimality but it is not efficient enough for realistic large scale

problems. The same thing is said for the level traversal tree search. The approximate

method is very efficient. Although the approximate method does not guarantee

optimality, the chance of finding optimal solution is very high. Additionally, the inverted

tree search strategy tailored for problems with high level of specifications is also

presented (it also guarantees optimality).

For the second objective, two methods that can run on a personal computer are proposed.

The genetic algorithm is satisfactorily efficient but it does not guarantee optimality. In

the opposite side, the cutset-based method guarantees optimality but it is not efficient

enough for large scale problems. The last proposed method, the parallelized cutset-based

187

method is very efficient and it guarantees optimality (although it has one small

disadvantage: it has to be run on a super computer).

As can be noted throughout this dissertation, this work studies the problem of designing

sensor network for process monitoring purpose only. The same approach (maximizing

value of sensor network) can be applied to design sensor network for other purposes like

process fault diagnosis. This is left for future work

188

APPENDIX A1

∆D = DEFL(current node) – DEFL(sensor network with maximum number of sensors)

∆C = Cost(sensor network with maximum number of sensors) - Cost (current node)

It is now shown that if {∆C- ∆D} of current node > {∆C- ∆D} of previous node then the

objective value of current node < the objective value of the previous node

Using “c.node” and “pre.node” as abbreviated names for current node and previous node

respectively, then

OBJ value (c.node) = Cost (c.node) + DEFL (c.node)

 = Cost (pre.node) + DEFL (pre.node)

+ {Cost (c.node) – Cost (pre.node)}

+ {DEFL (c.node) – DEFL (pre.node)}

= OBJ value (pre.node)

+ {Cost (c.node) – Cost (MSN)} - {Cost (pre.node) – Cost (MSN)}

+ {DEFL(c.node) – DEFL(MSN)} - {DEFL(pre.node) – DEFL(MSN)}

Suppose that OBJ value (c.node) ≤ OBJ value (pre.node)

⇒ {Cost (c.node) – Cost (MSN)} - {Cost (pre.node) – Cost (MSN)}

+ {DEFL(c.node) – DEFL(MSN)} - {DEFL(pre.node) – DEFL(MSN)} ≤ 0

{DEFL(c.node) – DEFL(MSN)} - {DEFL(pre.node) – DEFL(MSN)} ≤

{Cost (MSN) - Cost (c.node)} – { Cost (MSN) - Cost (pre.node)}

⇒ ∆D(c.node) - ∆D(pre.node) ≤ ∆C(c.node) - ∆C(pre.node)

⇒{∆C(c.node) - ∆D(c.node)} ≥ {∆C(pre.node) - ∆D(pre.node)}

Q.E.D

189

APPENDIX A2

List of publications

1) Bagajewicz M. and DuyQuang Nguyen. Stochastic-Based Accuracy of Data
Reconciliation Estimators for Linear Systems. Computers and Chemical Engineering.
2008, 32(6), 1257-1269

2) DuyQuang Nguyen and Bagajewicz M. On The Impact of Sensor Maintenance

Policies on Stochastic-Based Accuracy. Computers and Chemical Engineering. 2009,
33(9), 1491-1498.

3) DuyQuang Nguyen and Bagajewicz M. Design of Nonlinear Sensor Networks for

Process Plants. Industrial and Engineering Chemistry Research. 2008, 47(15), 5529-
5542

4) DuyQuang Nguyen, C. Brammer and M. Bagajewicz. New Tool for the Evaluation of

the Scheduling of Preventive Maintenance for Chemical Process Plants. Industrial
and Engineering Chemistry Research. 2008, 47(6); 1910-1924

5) DuyQuang Nguyen and M. Bagajewicz. Optimization of Preventive Maintenance in

Chemical Process Plants. Industrial and Engineering Chemistry Research. 2009,
submitted

6) DuyQuang Nguyen and M. Bagajewicz. New Efficient Level Traversal Tree Search

Methodology For The Design And Upgrade Of Sensor Networks. AiChe journal.
2009, submitted

7) Barbaro A., DuyQuang Nguyen, N. Vipanurat and M. J. Bagajewicz. All-At-Once

And Step-Wise Detailed Retrofit Of Heat Exchanger Networks Using an MILP
Model, Industrial and Engineering Chemistry Research. 2009, submitted

8) Bagajewicz M., Thang Cao, R. Crosier, S. Mullin, J. Tarver, and D.Q Nguyen.

Method for Evaluation of Thermochemical and Hybrid Water-Splitting Cycles.
Industrial and Engineering Chemistry Research. 2009, 48 (19), pp 8985–8998

In preparation

DuyQuang Nguyen and M. Bagajewicz. Efficient Approximate Methods For The
Design And Upgrade Of Sensor Networks

DuyQuang Nguyen and M. Bagajewicz. Value-optimal Sensor Network Design

