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ABSTRACT 
 

Due to economic reason, not every process variable can be measured by a sensor. 

In the context that data treatment techniques like data reconciliation and gross errors 

detection are used, the location of measured points (i.e. location of sensors) has direct 

effect on the accuracy of estimators of variables of interest (key variables), which in turn 

effect process plant performance. The problem of optimum selection of sensor location is 

referred to as sensor network design problem (SNDP). More details on the problem and 

research works up to year 2000 can be found in Bagajewicz (2000).  

Being a combinatorial optimization problem, the SNDP poses significant 

computational challenges for researchers, especially for large scale problems.  The 

methods to solve the SNDP can be divided into two three classes: mathematical 

programming, graph-theoretic methods and stochastic methods (e.g. genetic algorithm) 

The SNDP problem itself can be divided into two big classes: designing sensor 

network intended for process monitoring purpose (to obtain accurate process data) and 

designing sensor network for process fault diagnosis and resolution.  The former can be 

solved by many methods while the latter is usually solved by graph-theoretic methods 

Although extensive researches have been done on this problem, efficient methods 

to design sensor networks for large scale nonlinear problems have not yet been found. 

Moreover, all the published models are developed from technical point of view, which 

requires knowledge / expertise of the users to use appropriate constraints / specifications 

in the model.  A model that bases solely on an economic viewpoint has not yet been 

proposed.  
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Addressing the mentioned drawbacks is the objective of this work. More 

specifically, in this work:  

i) Efficient computational methods to solve SNDP for large scale 

nonlinear problems are proposed.  

ii) A value-optimal SNDP is proposed and solved by using appropriate 

methods. 
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1.   INTRODUCTION 

 

The first chapter aims to give a general overview of different approaches 

and methods used to solve the sensor network design problem (SNDP). 

Additionally, the objectives of this work are presented. 

 

Improved process monitoring via data reconciliation and appropriate gross error 

detection is achieved and/or improved by proper systematic location of sensors in a 

process plant. In all cases, the notion was to take advantage of the process relations, 

presented in the form of a mathematical model, to obtain accurate estimate for certain 

variables (called key variables) using available measurements. Considering the fact that, 

in reality, only a fraction of process variables are measured by sensors, the precision of 

the estimators depends on the location of the sensors and the precision of the sensors 

themselves. Hence the problem of systematically locating sensors that meets pre-

specified criteria arises naturally, formally known as the sensor network design/retrofit 

problem.  

This chapter is organized as follows: firstly some background on data treatment 

technique and overview of SNDP are introduced, then a brief summary of different 

approaches and different methods to solve SNDP is presented, followed by a literature 

review on SNDP.  Finally an overview of the main content of this dissertation is given. 
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1.1. Background 

 

1.1.1. Data reconciliation 

 

In a modern chemical plant, process measurements are used in a variety of 

activities such as planning, process control, optimization, and performance evaluation.  

The presence of random and nonrandom errors (gross errors) in “raw” measurement data, 

can easily lead to deterioration in plant performance.  The problem of improving the 

accuracy of process data so that they are consistent with material and energy balances of 

the system is known as data reconciliation.  Process data after being treated by data 

reconciliation technique is called reconciled data or the estimators.  Thus, data 

reconciliation is the technique to improve the accuracy of process data by making use of 

process constraints (typically material and energy balances). 

The essence of data reconciliation is that given the process measurements y from 

the plant, we want to estimate the process state x, which satisfies the process constraints.  

We denote these reconciled values of process data as )x .  )x  is obtained by solving the 

following problem: 

T -1

x
( ) ( - )Min

st.          = 0

y - x S y x

Ax
                          (1-1) 

where S is the variance-covariance matrix of measurements (and usually is a 

diagonal matrix) and A is incidence matrix (i.e.  Ax = 0 is the process balance equations 

like material balances) 
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Assuming all process variables are measured, the variance of the estimators )x  is 

given by (Bagajewicz, 2000): 

1ˆ ( )−= − T TS S SA ASA AS          (1-2) 

The variance Ŝ  is used in the SNDP as precision of the estimators, which needs 

to be compared against the threshold values. 

If not all variables are measured (as is usually the case), it has been shown that an 

unmeasured variable can be modeled in data reconciliation formulation using a fake 

sensor with very high variance (Chmielewski et al., 2002). This approach greatly 

facilitates the SNDP because it eliminates the need to solve the data reconciliation 

problem for partly measured systems.    

 

1.1.2. Gross error detection 

Gross errors are systematic errors that can exist in measurements (measurement 

biases) and process model (process leaks).  Measurement bias relates to malfunction of 

instruments and is the more prevalent form of gross error.  Even when only one gross 

error exists, it deteriorates accuracy of all measurements in the process system through 

“smearing effect” of data reconciliation. The reason is that a large deviation from true 

value in one measurement (i.e. gross error) will cause a series of small “corrections” 

made to other measurements through data reconciliation treatment.  Thus it is crucial that 

gross errors are detected, identified and eliminated. 

The maximum power measurement test (MPMT) is probably the most popular 

technique to detect biases.  The measurement test (MT) is based on the vector of 

measurement adjustments m: 
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1ˆ ( )−= − = T Tm y x SA ASA Ay                       (1-3) 

The maximum power measurement test (MPMT) proposed by Mah and Tamhane 

(1982) is based on vector d, which is obtained by premultiplying m by S-1 (d = S-1m). The 

test statistics, given by Eq. (1-4), have been shown to possess maximum power if S is a 

nondiagonal matrix (Mah and Tamhane, 1982): 

,
jMP

d j
jj

d
Z =

W
                  (1-4)       

where ,
MP
d jZ  is the maximum power measurement test statistic for measurement j;  dj and 

Wjj are elements of vector d and matrix W, W is given by W = SAT(ASAT)-1AS.   If the 

test statistic ,
MP
d jZ is larger than the threshold values Zcrit (equal to 1.96 at level of 

confidence of 95%), then measurement j is declared to contain gross error.  

The expected value of ,
MP
d jZ  is given by Eq. (1-5) (Bagajewicz, 2005): 

,[ ]
ji i

iMP
d j

jj

W
E Z

W

δ
=

∑
         (1-5) 

where iδ  is actual bias in measurement i 

 

1.1.3. Redundancy and Observability 

Observability and redundancy are defined as follows (Narasimhan and Jordache, 

2000): 
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Observability: a variable is said to be observable if it can be estimated by using 

the measurements and steady-state process constraints. 

Redundancy: a measured variable is said to be redundant if it is observable even 

when its measurement is removed.  

From the above definition of observability, it is obvious that a measured variable 

is observable, since its measurement provides an estimate of the variable. However, an 

unmeasured variable is observable if it can be indirectly estimated by exploiting process 

constraint relationships and measurements in other variables. Measured variables are 

redundant if they can also be estimated indirectly through other measurements and 

constraints even when their measured values are eliminated. 

 

1.2. Sensor network design problem 

 

1.2.1. Model formulation 

The popular cost optimal sensor network for process monitoring is formulated as 

follows (Bagajewicz, 1997) 

 

iq
Miq

ts

qcMin

i

Sii

i
ii

∀=
∈∀≤

∑
∀

1,0
*)(

..
σσ

            (1-6)  

 



6 
 

where qi is the vector of binary variable indicating that a sensor is located in variable i, ci 

is the cost of such a sensor and Ms represents the set of variables where a certain 

specification is required (desired level of precision / residual precision or error 

delectability, etc.), ( )i qσ  is the value of the property under consideration  (e.g. 

precision).  A brief description of network properties other than precision is given next 

 

1.2.2. Residual precision 

Residual precision is the ability of the network to guarantee a certain level of 

precision in key variables where the measurements are eliminated because the sensors 

either fail or are found to contain biases (Bagajewicz, 1997). Formally, a variable has a 

residual precision of order k, when the specified value of residual precision is maintained 

even after k measurements, regardless of their position in the network, are eliminated 

(Bagajewicz, 1997).  

 

1.2.3. Error detectability 

The ability of the network to detect k gross errors of a certain dimensionless size Dκ  or 

larger is called error detectability of order k (Bagajewicz 1997). More specifically, when 

measurements follow a normal distribution, the objective function of data reconciliation 

follows a central chi-square distribution with m degree of freedom. Using these concepts 

(which was developed by Madron, 1985; 1992), Bagajewicz (1997) provided an 

inequality that relates Dκ  to the noncentrality parameter and the variances of the 

measurements and the estimator, respectively.  
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( ) 2/122
,

,

imi

miD
i

σσ

σ
ωκ

−
≥             (1.7) 

This inequality needs to hold for gross error detectability of order k=1. No inequalities 

were developed for higher order.  

 

1.2.4. Resilience 

If a gross error of a certain magnitude occurs in some variable and is not detected, 

a certain corruption of data will take place when data reconciliation is performed. The 

ability of the network to limit the smearing effect of k undetected gross errors of a certain 

adimensional size or lower is called gross error resiliency of order k (Bagajewicz, 1997). 

 

1.2.5. Illustrated SNDP example 

 

Example 1.1.  Consider the following process example, which is shown in Figure 1.1 

 

Figure 1.1 - Example process 
 
 
Flowrate, precision and cost of sensors for example 1.1 are shown in Table 1.1 

 

 

 

    S1 

S2 S3 

S4 

S5 

S6 

S7 
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Table 1.1- Data for example 1.1 
 

Stream Flow rates Sensor precision (%) Sensor cost 
S1 100 2 55 
S2 140 2 40 
S3 140 2 60 
S4 20 2 50 
S5 120 2 45 
S6 20 2 55 
S7 100 2 60 

 

The design specification and the obtained optimal solutions for four design cases are 

shown in the first six rows of table 1.2. The last two rows show the optimal solution 

(optimal measurements location and optimal cost) 

 
Table 1.2 - Results for example 1.1 

  
Case Study 1.1a 1.1b 1.1c 1.1d 

Key variables S1 & S5 S1 & S5 S1 & S5 S1 & S5 

Requirement Observability Redundancy 
Redundancy 

& error 
detectability 

Redundancy & 
error 

detectability & 
resilience 

Precision 
thresholds 1.5% 1.5% 1.5% 1.5% 
Residual 
precision 
thresholds 

 4% 4% 4% 

Error 
dectectability 

thresholds 
  4 4 

Error 
resilience 
threshold 

   3 

Measured 

variables S1, S6, S7 S1, S5, S6, S7 S1, S5, S6, S7 S1, S2, S4, S5, S6 

Sensors cost 170 215 215 245 
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Notes  

- For design case 1.1c: in addition to redundancy requirement, it is required that 

biases whose magnitude is greater than four times the standard deviation be 

detected 

- For design case 1.1d: in  addition to the specifications used in design 1.1c, it is 

required that the induced biases in key variables causes by any biases in the 

systems be less than three times the standard deviation 

 

A few observations can be withdrawn from the above results: 

- For observability problems (key variables are required to be observable only), 

the solution of directly measuring all the key variables is usually not the 

optimal one. Moreover, if the required precision thresholds are smaller than 

the standard deviation of sensors, then the number of measurements is usually 

larger than (or at least equal to) the number of key variables (because more 

measurements are needed to improve the precision of the estimators). These 

are evidenced in design case 1.1a  (directly measuring S1 & S5 makes S1 & S5 

observable but the precision of the estimators of S1 & S5 are above the 

threshold values).  

- As one increases the level of specifications (e.g. more requirements to be 

satisfied), the obtained (feasible) solution would contain more sensors. 
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1.3. An overview of different approaches and methods to solve SNDP 

 

The SNDP can be divided into two classes: 

- Class one: designing sensor network for process monitoring purpose. More 

specifically, the sensor networks are designed to provide accurate estimators 

(measured or estimated value) for the process variables of interest (key 

variables).  The most popular model formulation is to find cost-optimal sensor 

network satisfying a certain number of pre-specified requirements (e.g. 

observability & redundancy of key variables).  The problems of data 

reconciliation and gross error detection of partly measured systems are 

inherent parts of the process monitoring-focused SNDP. 

- Class two: designing sensor network for process fault detection and isolation 

purpose. This problem is based on the principle that a process fault 

(malfunction / failure in an instrument in a process) at one point in the system 

will propagate to other locations in the system, which would eventually be 

detected by the sensors-based monitoring system. The sensor network will be 

able to detect the fault if it can detect the symptoms of the fault. The two 

different faults can be differentiated from each other if their symptoms (as 

shown up in the monitoring system) are different. The problem of detecting 

and identifying faults (using various well-established techniques) is an 

inherent part of the problem.   
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Computational methods to solve SNDP can be divided into three classes: 

- Mathematical programming: the problems are transformed into well-established 

optimization models such as mixed integer linear programming MILP (usually solved 

by using GAMS, a commercial software for solving optimization problem) or solved 

as an integer programming problem (usually solved by using branch and bound 

method).  These methods guarantee optimality but they suffer from scaling problem, 

that is, the computational time for large scale problems are usually unacceptably long. 

- Graph-theoretic methods: the methods are based on the many principles and operators 

of graph theory.  The SNDP for fault diagnosis purpose is usually solved by using 

graph-theoretic methods.  

- Stochastic methods: genetic algorithms are usually used to solve multi-objective 

SNDP 

 

1.4. Literature review 

After the seminal work of Vaclavek and Loucka (1976) several papers were 

published:  Kretsovalis and Mah (1987) minimized a weighted sum of estimation error 

and measurement cost using a combinatorial search algorithm. Madron and Veverka 

(1992) used multiple Gauss Jordan elimination to achieve observability of all key 

variables at minimum sensor cost.  Meyer et al. (1994) used graph oriented approach for 

cost-optimal sensor network design with requirement on observability of key variables. 

Luong et al. (1994) considered several requirements in the design of sensor network: 

observability of variables required for process control, required degrees of redundancy 
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for some variables, reliability of the measurement system and minimum sensor cost; 

computational method is based on the analysis of cycles of process graph.  

Bagajewicz (1997) was the first to formulate the sensor network problem as a 

mixed-integer programming (MINLP) model using binary variables to indicate whether a 

variable/stream is measured or not, sought to obtain minimum sensor cost. He also 

introduced new concepts regarding performance specifications: residual precision, gross 

errors resilience and error detectability.  The problem was solved using a tree search 

algorithm, which guarantees global optimality but its computation requirement inhibits its 

use in large scale problems. A generalized model for grass root sensor network design, 

instrumentation upgrade as well as resource allocation were presented by Bagajewicz and 

Sanchez (2000).  Finally, all literature review up to the year 2000 can be found in the 

book by Bagajewicz (2000).  

Chmielewski et al. (2002) showed that an unmeasured variable can be modeled in 

data reconciliation formulation using a fake sensor with very high variance and used 

branch and bound method with linear matrix inequalities (LMI) transformation to obtain 

solution.  The idea of using a fake sensor with very high variance for unmeasured 

variable enabled one to state certain types of performance constraints explicitly in 

analytical form.  It also greatly facilitates the solving of the data reconciliation of partly 

measured systems, which is an inherent part of the SNDP. The idea was used by 

Bagajewicz and Cabrera (2002), who presented a MILP formulation, and many other 

researchers (Carnero et al., 2001, 2005; Muske and Georgakis, 2003; Gala and 

Bagajewicz, 2006a, 2006b). 
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 Recently, multiobjective sensor network design became attractive and many 

researches have been reported. Bagajewicz and Cabrera (2001) addressed multiobjective 

sensor network design using pareto optimal solutions visualization techniques. Muske 

and Georgakis (2003) discussed the trade-off between measurement cost and process 

information that is used for control purpose and formulated a Pareto optimization 

problem for finding solutions. Sen et al. (1998) and Carnero et al. (2001, 2005) used 

genetic algorithms.  

Gala and Bagajewicz (2006a, 2006b) presented an alternative tree enumeration 

method where at each node combinations of process graph cutsets are used. This method 

has been proven to be remarkably faster, especially after a decomposition technique is 

used. Most recently, Kelly and Zyngier (2008) presented a MILP model based on the 

Schur complements theorem to design sensor network for process monitoring purpose.  

The authors showed that the model can quickly find “good” solutions but locating global 

optimum solution is too time-consuming.  

Departing from process monitoring criteria, Ali & Narasimhan (1993) introduced 

the concept of system reliability and proposed a method that maximizes system 

reliability. Raghuraj et al. (1999), Bhushan and Rengaswamy (2000, 2002a & 2002b) 

presented sensor network design formulation based on fault diagnosis criteria.  Musulin 

et al. (2004) used genetic algorithm in the design of sensor network for principal 

components analysis monitoring. Bagajewicz et al. (2004) designed sensor network for 

simultaneous process monitoring and fault detection / resolution purpose using a MILP 

formulation. Bhushan et al. (2008) presented a framework for designing robust sensor 

network for reliable process fault diagnosis; the problem was then solved by using 
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constraint programming (Kotecha et al., 2007, 2008). Chen and Chang (2008) used 

graph-theoretic method to design sensor network for process fault identification.  

Most of the aforementioned work was applied to linear systems, that is, when 

flowrates between units in process plants are to be estimated. Few researchers have 

published work on sensor network design for nonlinear processes, that is, when the 

underlying process model includes other balances like component and energy balances as 

well as other features like VLE relations or reactions in reactors. One such effort was 

presented by Ali and Narasimhan (1996) who developed a sensor network design 

program specifically for bilinear systems but maximizing system reliability instead of 

cost. Bhushan and Rengaswamy (2002a, 2002b) presented a general framework based on 

graph theory for finding a reliable sensor network from a fault diagnosis perspective. 

Heyen et al. (2002) used genetic algorithm to design cost-optimal sensor network that 

renders required precision of key variables; the computation algorithm can be applied to 

nonlinear systems by linearization of process constraints at the nominal operating 

conditions, assuming steady state. Singh and Hahn (2005, 2006) and Brewer et al. (2007) 

located sensors for state and parameter estimation of stable nonlinear systems.     

All the mentioned works on SNDP is the cost-paradigm approach in which 

minimum sensor cost is the objective and the performance targets (the requirements) need 

to be selected by the plant engineers.  However, practical engineers may find it hard to 

comprehend and determine what desired levels of targets are needed. It is well known 

that there is a trade-off between technical requirements and the economical requirement 

(minimum sensors cost), that is, if one increases the technical requirements (add more 

constraints or increase the desired levels in the constraints), in most of the cases the 
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optimum sensors cost is increased (more sensors are needed to satisfy all the constraints). 

However, there are situations that one relaxes the performance requirements (e.g. lower 

the desired levels or use less constraints) inconsiderably but obtains a significant 

reduction in sensors cost, or increases significantly the specifications but the extra cost 

incurred is small. Therefore, the right strategy to find optimum sensor network is to 

simultaneously optimize performance of the sensor network and the sensors cost. If the 

performance of sensor network can be translated into economic value or profit, then one 

can disregard the performance constraints and use economic value of performance of 

sensor network as a term in a composite objective function, which is value minus cost. 

The resulting sensor network design problem is an unconstrained optimization problem 

maximizing value minus cost of sensor network. This approach is value-paradigm SNDP 

in contrary to the conventional cost-paradigm SNDP. The approach has been 

conceptually discussed in the seminal paper by Bagajewicz, Chmielewski and 

Rengaswamy (2004).  The work by Narasimhan and Rengaswamy (2007) is the only 

published work that discusses the value (as a performance measure) of a sensor network 

(from fault diagnosis perspective).  Designing sensor network (for process monitoring 

purpose) maximizing value of sensor network is not yet addressed.  

The two mentioned shortcomings will be addressed in our work.  In summary, the 

objectives of this work are: 

i. Developing efficient computational methods for the design of cost-optimal 

sensor network for process monitoring purpose of nonlinear systems. 
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ii. Studying the problem of sensor network design (from process monitoring 

perspective) that is based on the value of sensor network.  Efficient 

computational methods to solve the problem are also proposed. 

 

Three different methods for solving nonlinear SNDP are presented in this work: 

equation-based tree search method (chapter two), “level-by-level” tree search and 

approximate method (chapter three). Chapter four presents our study on the value-

based SNDP for process monitoring purpose.  Chapter five concludes this dissertation 

with summary of findings and discussions of future works. 

 

1.5. References  

 

Ali, Y., and Narasimhan, S. Sensor Network Design for Maximizing Reliability of 
Linear Processes. AIChe J. 1993, 39(5), 820-828. 

 
Ali, Y., and Narasimhan, S. Sensor Network Design for Maximizing Reliability of 

Bilinear Processes. AIChe J. 1996, 42(9), 2563-2575. 
 
Bagajewicz, M., Design and Retrofit of Sensors Networks in Process Plants. AIChe J. 

1997, 43(9), 2300-2306. 
 
Bagajewicz, M. Design and Upgrade of Process Plant Instrumentation. Technomic 

Publishers, Lancaster, PA, 2000.  
 
Bagajewicz M. On the Definition of Software Accuracy in Redundant Measurement 

Systems. AiChE J. 2005, 51(4), pp. 1201-1206. 
 
Bagajewicz, M. and Cabrera, E. A New MILP Formulation for Instrumentation 

Network Design and Upgrade. AIChe J. 2001, 48(10), 2271-2282.  
 
Bagajewicz, M. and Cabrera, E. Pareto Optimal Solutions Visualization Techniques 

for Multiobjective Design and Upgrade of Instrumentation Networks. Ind. Eng. Chem. 
Res. 2003, 42, 5195-5203. 

 



17 
 

Bagajewicz, M., Chmielewski, D and Rengaswamy, R. Integrated Process Sensor 
Network Design.  Proceedings of the AiChe annual meeting, 2004, Austin, Texas. 

 
Bagajewicz, M., Fuxman, A. and Uribe, A. Instrumentation Network Design and 

Upgrade for Process Monitoring and Fault Detection.  AIChE J. 2004; 50(8), 1870-1880. 
 
Bagajewicz, M. and Sanchez, M.  Reallocation and Upgrade of Instrumentation in 

Process Plants. Comput. Chem. Eng. 2000, 24, 1945-1959. 
 
Bhushan M. and R. Rengaswamy. Design of Sensor Network Based on the Signed 

Directed Graph of the Process for Efficient Fault Diagnosis. Ind. Eng. Chem. Res. 2000, 
39, 999-1019. 

 
Bhushan M. and R. Rengaswamy. Comprehensive Design of Sensor Networks for 

Chemical Plants Based on Various Diagnosability and Reliabilty Criteria. I. Framework. 
Ind. Eng. Chem. Res. 2002a, 41, 1826-1839. 

 
Bhushan M. and R. Rengaswamy. Comprehensive Design of Sensor Networks for 

Chemical Plants Based on Various Diagnosability and Reliabilty Criteria. II. 
Applications. Ind. Eng. Chem. Res. 2002b, 41, 1840-1860. 

 
Bhushan M., S. Narasimhan and R. Rengaswamy. Robust sensor network design for 

fault diagnosis. Comp. Chem. Eng. 2008, Vol. 32, 1067–1084. 
 
Brewer J., Z. Huang, A.K. Singh, M. Misra and J. Hahn. Sensor Network Design via 

Observability Analysis and Principal Component Analysis. Ind. Eng. Chem. Res. 2007, 
Vol. 46, 8026-8032 

 
Chen J.Y. and C.T Chang. Development of an Optimal Sensor Placement Procedure 

Based on Fault Evolution Sequences. Ind. Eng. Chem. Res. 2008, Vol. 47, 7335–7346 
 
Chmielewski, D.,Palmer, T.,Manousiouthakis, V. On the Theory of Optimal Sensor 

Placement. AIChe J. 2002, 48(5), 1001-1012. 
 
Carnero, M., Hernandez J., Sanchez, M. and Bandoni, A.  An Evolutionary Approach 

for the Design of Nonredundant Sensor Networks.  Ind. Eng. Chem. Res. 2001, 40, 5578-
5584. 

 
Carnero, M., Hernandez J., Sanchez, M. and Bandoni, A. On the Solution of the 

Instrumentation Selection Problem. Ind. Eng. Chem. Res. 2005, 44, 358-367 
 
Gala, M. and Bagajewicz, M. J. Rigorous Methodology for the Design and Upgrade of 

Sensor Networks Using Cutsets.  Ind. Eng. Chem. Res. 2006a, 45(20), 6687-6697.  
 
Gala, M. and Bagajewicz, M. J. Efficient Procedure for the Design and Upgrade of 

Sensor Networks Using Cutsets and Rigorous Decomposition.  Ind. Eng. Chem. Res. 
2006b; 45(20), 6679-6686. 



18 
 

 
Heyen, G., Dumont, M. and Kalitventzeff, B. Computer-aided design of redundant 

sensor networks, in: J. Grievink, J. van Schijndel (Eds.), Proceeding of 12th European 
Symposium on Computer-aided Process Engineering, Elsevier Science, Amsterdam, 
2002, pp. 685–690. 

 
Kelly J. D and Zyngier D.  A New and Improved MILP Formulation to Optimize 

Observability, Redundancy and Precision for Sensor Network Problems. AIChe J. 2008, 
54(5), 1282-1291. 

 
Kotecha P. R., Bhushan M., and R.D. Gudi. Constraint Programming Based Robust 

Sensor Network Design. Ind. Eng. Chem. Res. 2007, Vol. 46, 5985-5999. 
 
Kotecha P. R., Bhushan M., and R.D. Gudi. Design of robust, reliable sensor networks 

using constraint programming. Comp. Chem. Eng. 2008, Vol. 32, 2030–2049. 
 
Kretsovalis, A. and R. S. H. Mah, Effect of Redundancy on Estimation Accuracy in 

Process Data Reconciliation. Chem. Eng. Sc. 1987, 42, 2115. 
 
Luong, M.; Maquin, D.; Huynh, C. and Ragot, J. Observability, Redundancy, 

Reliability and Integrated Design of Measurement Systems. Proceeding of 2nd IFAC 
Symposium on Intelligent Components and Instrument Control Applications, Budapest, 
Hungary, Jun 8-10, 1994 

 
Madron, F., and V. Veverka, Optimal Selection of Measuring Points in Complex 

Plants by Linear Models, AIChe J. 1992, 38(2), 227.  
 
Mah, R.S.H. and Tamhane, A.C. Detection of Gross Errors in Process Data. AIChE J. 

1982, Vol. 28, 828-830. 
 
Meyer M.; Le Lann, J.; Koehret, B. and Enjalbert, M. Optimal Selection of Sensor 

Location on a Complex Plant Using a Graph Oriented Approach. Comput. Chem. Eng. 
1994, 18 (Suppl), S535-S540. 

 
Muske, K. R. and Georgakis, K. Optimal Measurement System Design for Chemical 

Processes. AIChe J. 2003, 49(6), 1488-1494. 
 
Narasimhan S. and Jordache C.  Data Reconciliation & Gross Error Detection: An 

Intelligent Use of Process Data.  Gulf Publishing, Houston, Texas, USA, 2000 
 
Narasimhan S. and R. Rengaswamy.  Quantification of Performance of Sensor 

Networks for Fault Diagnosis. AIChe J. 2007, 53(4), 902-917.  
 
Raghuraj, R., Bhushan, M. and Rengaswamy, R. Locating Sensors in Complex 

Chemical Plants Based on Fault Diagnostic Observability Criteria. AIChe J. 1999, 45(2), 
310-322. 



19 
 

 
Sen, S., Narasimhan, S. and Deb, K. Sensor Network Design of Linear Processes 

Using Genetic Algorithms. Comput. Chem. Eng. 1998, 22, 385-390. 
 
Singh, A. K. and Hahn, J. Determining Optimal Sensor Locations for State and 

Parameter Estimation for Stable Nonlinear Systems. Ind. Eng. Chem. Res. 2005, 44, 
5645-5659 

 
Singh, A. K. and Hahn, J. Sensor Location for Stable Nonlinear Dynamic Systems: 

Multiple Sensor Case. Ind. Eng. Chem. Res. 2006, 45, 3615-3623 
 
Vaclavek V. and M. Loucka. Selection of Measurements Necessary to Achieve 

Multicomponent Mass Balances in Chemical Plant, Chem. Eng. Sc. 1976, 31, 1199. 
 
  



20 
 

2.   EQUATION-BASED TREE SEARCH METHOD FOR SOLVING 

NONLINEAR SENSOR NETWORK DESIGN PROBLEM 

 

Nonlinear SNDP pose significant computational challenge for researchers 

because of the high level of interaction between units in the system. Large 

scale nonlinear SNDP have not yet efficiently solved. In this work the 

cutsets-based methods (that were previously developed for linear systems) 

were extended and generalized to solve nonlinear problems. An 

alternative tree search method developed specifically for problems with 

high level of specifications is also presented.  

 

2.1. Overview 

As mentioned in chapter one, most of the published works on SNDP were 

developed for linear systems only. Few researchers have published work on nonlinear 

SNDP: Ali and Narasimhan (1996) developed a sensor network design program 

specifically for bilinear systems but maximizing system reliability instead of cost. 

Bhushan and Rengaswamy (2002a, 2002b) designed a general SNDP from a fault 

diagnosis perspective that is applicable to nonlinear systems.  Heyen et al. (2002) 

designed sensor network for general systems including nonlinear systems using genetic 

algorithm. Only the work of Heyen et al (2002) is closely related to our work because of 

the same perspective/objective, which is designing cost-optimal sensor network for 

process monitoring purpose, but their GA-based procedure does not guarantee optimality, 

neither local nor global. Thus, the nonlinear SNDP from the process monitoring 
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perspective with requirements on observability and redundancy has not yet been 

successfully tackled.  

In this chapter, a branch and bound procedure similar to the one presented by 

Gala and Bagajewicz (2006a, 2006b) is presented.  The algorithm is equation-based 

rather than cutset-based for reasons that are explained below.  A specific strategy tailored 

for problems with high level of specifications is also presented. Three illustrated 

examples are provided. 

 

2.2. Cutsets-based tree search methods 

The optimization model to design minimum-cost sensor network as presented by 

Bagajewicz (1997)  is (in its simplest form) as follows: 
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where qi , an element of vector q, is a binary variable indicating that a sensor is used to 

measured variable i, ci is the cost of such a sensor and Ms represents the set of variables 

where a performance specification is required (variables of interest or “key” variables).  

Realizing that there is no general explicit analytical expression for )(qiσ , 

Bagajewicz (1997) proposed a tree enumeration algorithm using the vector q as a basis 

(thus enumerating combinations of individual sensors). This algorithm guarantees 

optimum solution, however, for large scale problems, the computation requirement is so 
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intensive that the use of this algorithm becomes impractical. While the method of 

transforming the problem into a LMI-based convex MINLP (Chmielewski et al., 2002) 

allows the use of the classical branch and bound methods, this can only be applied to 

precision constraints, but not others and the method still suffers from scaling problem. 

Gala and Bagajewicz (2006a) realized that instead of exploring single 

measurements, specific (and meaningful) subsets could be used. These subsets are called 

cutsets (taken from graph theory)  and as  Kretsovalis and Mah (1987) pointed out, they 

correspond to a set of variables with which a material balance can be written. Gala and 

Bagajewicz (2006a) proved that by using the union of cutsets in a tree enumeration 

scheme, one can guarantee optimal solutions and, most importantly, reduce the 

computational time considerably. The virtue of this algorithm is that only meaningful 

measurements that contribute to the redundancy or observability of variables of interest 

(key variables) are added through the use of cutsets. Moreover, when adding a cutset, 

several measurements may be added at the time instead of only one as in tree 

enumeration using single measurement. These two properties help cutsets-based tree 

search methods find feasible nodes in a branch much more rapidly than tree enumeration 

using single measurement does, especially for middle and large scale problems. 

Although tree enumeration using cutsets is suitable for middle scale problem 

(number of streams ≥ 20), it still has one limitation, which is, for large scale problems 

(number of streams ≥ 40); the number of cutsets may be too large that the number of 

nodes in the tree that needs to be explored is prohibitively large, hence computation task 

is too intensive and computation time can take as long as several days. To overcome this 

limitation, Gala and Bagajewicz (2006b) proposed the “decomposition of process graph 
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network” algorithm to reduce computation time.  The algorithm still made use of cutsets. 

However, the process graph is decomposed into sub-graphs so as to reduce the number of 

cutsets in the candidate lists, hence reducing the size of the tree. There are some 

“missing” cutsets (these are cutsets spanning over sub-graphs) in the candidate cutsets list 

when compared with the cutsets list of original process graph. Fortunately, these 

“missing” cutsets can be found while exploring down the tree using ring-sum operation 

on cutsets.  The tree search procedure is almost the same as the procedure without 

decomposition except that:  

i. The branching and stopping criterion are modified  

ii. In each node, ring-sum operations between active cutsets are performed to 

find the mentioned “missing” cutsets.   

 

The cusets-based tree search coupled with decomposition technique has been 

shown to be a very efficient method for solving linear large scale problems (Gala and 

Bagajewicz, 2006b). 

We now explore the possibilities and difficulties of using cutsets and tree 

enumeration with non-linear problems.  

 

2.3. Use of cutsets in the nonlinear case 

For linear systems where usually total flowrates are variables of interest, a stream 

(for which the flowrate is the variable) is connected to not more than two nodes: it is 

either an input to a unit, an output from a unit or both an input to one unit and an output 

from another. As a result, a flowrate variable can always be represented by a stream in 



24 
 

process flowsheet and the proper representation of a linear system is the process digraph 

(Mah, 1990). Hence, for linear systems, the process constraint matrix that represents the 

overall material balance equations of the process is also the same as the incidence matrix 

that represents the connectivity of edges (streams) and vertices (nodes).  This is not the 

case for nonlinear systems where a variable may occur in more than two equations and 

therefore a digraph cannot be used to represent the system. A bipartite graph is, instead, 

the appropriate structural representation for nonlinear systems (Mah, 1990).  The digraph 

looks the same as the process flowsheet, the nodes are identified with equations and the 

edges are the flows. In a bipartite graph, two rows of nodes are made, one for the 

variables and the other for the equations. This is illustrated for the linear system in figure 

2.1 

 
Figure 2.1 - Process digraph and bipartite graph. 

 

Consider a nonlinear process (figure 2.2) consisting of an adiabatic reactor and an 

adiabatic flash drum. The nature of the balance equations will determine the nonlinearity 

of the system. When only total flowrates (Fi) are variables of interest, the system is 

linear; when the variables concentration (Ci) and temperature (Ti) also need to be 

estimated, the system is nonlinear. 
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Figure 2.2 - Example of nonlinear systems 

 

The corresponding equations are:  

/
1 1 2 3 1 2 3 1 1 2 2 3 3 2( , , , , , , )= ( ) 0rE RT
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1 3 4 4 3 3 4 4 4 4( , , , , ) / ( , , ) /SB A A B f B i i A B f A i
i i

g F c c c T c c K c c T c c= =∑ ∑                (2-9) 

Equations (2-2) to (2-5) are component balance equations  (we assume that the 

system  contains two components: A and B). Equations (2-6) and (2-7) are energy 

balance equations in which  h(•) are enthalpies. In these equations, we assume that the 

reactor is adiabatic and that a fixed known amount of heat (Qvap) is removed in the flash. 

Finally, equations (2-8) and (2-9) represent the vapor liquid equilibrium relationship. The 

term /
2

rE RT
o Ak e cα−  corresponds to reaction rate rA (we assume only one irreversible 

reaction involving one reactant A).  The corresponding bipartite graph is shown in figure 

2.3 

  

Figure 2.3 - Bipartite graph of the nonlinear process example 
 

 

Cutsets of digraphs have been used by Gala and Bagajewicz (2006a, 2006b) to 

design sensor networks for linear systems because: i) each cutset represents a material 

balance equation involving its elements (streams or variables), which is in turn directly 

connected to observability or redundancy of variables (Kretsovalis and Mah, 1987), ii) 

the properties of cutsets and procedures to enumerate all cutsets for linear systems are 
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well-known. This procedure is illustrated in Figure 2.4 for a linear case and in Figure 2.5 

for the corresponding ring sum operation in the context of bipartite graphs.  

 
Figure 2.4 - Process digraph and ring sum operation on cutsets of the linear system 

 
 

Figure 2.5 - Bipartite graph and ring sum operation on cutsets of the linear system 
 

The ring sum operation does not always apply properly to nonlinear cases.    

Indeed, consider equations gR1A and gR2A, which share two terms: 2 2 AF c and 3 3AF c  or four 

variables ( 2 2, AF c , 3F  and 3Ac ). Substitution of 4 4 2 2 3 3A A AF c F c F c= −  obtained from gR2A 

into gR1A renders the following equation:  

/
1 1 4 4 2( ) 0rE RT

A A A o AF c F c k e c Vαδ −− + =                                    (2-10) 
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The ring sum operation results in these four variables being eliminated as seen in 

Figure 2-6.  

 
Figure 2.6 - Ring sum operation on cutsets of bipartite graph  

 

It can be seen that the ring sum of these two cutsets leads to the elimination of all 

four variables that are in the intersection, including c2A..  But, unless the reaction is zero 

order, c2A. is still present in the merged equation (2-10). Thus, the variable substitution 

operation generates in this case a result that is different from the ring sum operation.  It is 

assumed here that one variable can be explicitly expressed as a function of others in one 

equation and formally substituted in a second equation, thus variable substitution can take 

place.  

Thus, for nonlinear systems one needs to depart from using ring sum of cutsets 

strictly and look for an equivalent procedure. Such procedure would be equivalent of 

finding an alternative operation to the ring sum. Indeed, as stated above, cutsets are 

equations in the linear case, and since the ring sum is equivalent to taking two equations 

and generating a third, thus eliminating one (or more ) variables.   
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The method proposed in this work is based on the same concept, but linearized 

equations are used instead of cutsets 

 

2.4. Automatic generation of all equations 

 

We now prove that the generation of new equations can be done automatically 

using Gaussian elimination on the linearized equations.  We do this by proving the 

following claims first 

 

Claim 1 (Necessary condition): 

Consider two nonlinear equations  

 

f1(x1, x2, … xk, xk+1,.. xm)=0                  (2-11)  

f2(xk, xk+1,.. xm,xm+1,.. xn)=0                  (2-12)      

 

If equation merging or variable substitution is performed targeting variable xk, and 

a set of other variables , namely xk+1, … xm , which are considered consecutive without 

loss of generality, are also eliminated, then:  

              a) The partial derivatives with respect to these eliminated variables in 

both equations are equal, that is:  
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∂                                              (2-

13) 
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              b) Variable substitution in the linearized system also eliminates the same 

variables.  

 
 

Proof: 

Assume first (without loss of generality) that  f1 and f2 can be expressed in terms 

of xk  as follows:  

 

f1(x1, x2, … xk, xk+1,.. xm)= Σi r1i(x1, x2, … xk-1, xk+1,.. xm)+  xk=0                      (2-14) 

f2(x1, x2, … xk-1, xk+1,.. xm) =Σi r2i(x1, x2, … xk-1, xk+1,.. xm)  +   xk = 0                               (2-15)   

 
 
In other words, xk can be isolated. Then, substitution of xk  in  equation f2  renders:  

 

f12(x1, x2, … xk-1, xk+1,.. xm, xm+1,.. xn)=  

=Σi r1i(x1, x2, … xk-1, xk+1,.. xm)- Σi r2i(x1, x2, … xk-1, xk+1,.. xm)=0         (2-16) 

 

For variables to be eliminated, then pairs of r1i and r2i need to be exactly the same 

expressions with the same combinations of variables so that they cancel.  Without loss of 

generality, assume now these variables are in both equations in the terms r11 and r21 only, 

that is  

r11(x1, x2, … xk-1, xk+1,.. xm)=r21(x1, x2, … xk-1, xk+1,.. xm)=0                                          (2-17) 
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Because (and only because) these terms disappear from the final version of (2-16), we 

can say that they ARE the same expression, which in turn, allows us to say the 

derivatives are also formally the same expression.  This proves part a) 

 

Proving part b) is now easy.  Indeed, linearizing  f1 and f2 , one obtains: 

 

  01 =+∑
≠

kjj
kj

xxa                        (2-18)               

02 =+∑
≠

kjj
kj

xxa                 (2-19)  

 

where 
i

k
i

ki x

r
a

∂









∂

=
∑

.    Substituting xk obtained from (2-18) into (2-19), one obtains.  

 

0)( 12 =−∑
≠

jjj
kj

xaa                 (2-20)  

Thus, if any variable is to be eliminated, say xk+1, then 2 1 1 1k ka a+ += , which is the 

same as (2-13) 

Q.E.D. 

 

Claim 2 (Sufficient condition): 

Consider the linearized equations (2-18) and (2-19). If Gaussian elimination is 

performed between these two equations, and aside from variable xk,  the  set of other 

variables, namely xk+1 , … xm ,are also eliminated, then, the same variables will be 
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eliminated if equation merging or variable substitution is performed on equations (2-14) 

and (2-15), provided that equation (2-13) holds symbolically (i.e. they are the same 

symbolic expression), not only numerically.  

 
Proof: 

The proof is straightforward: If a variable is eliminated, say xk+1, then 2 1 1 1k ka a+ += , which 

is the same as (2-13) numerically. We only need to make sure that (17) holds, and this is 

true only if (2-13) or (2-17) hold true symbolically.  

Q.E.D. 

 

Corollary: Both claims are valid if explicit expressions in terms of xk cannot be obtained.  

Proof:  

In this case, we would have  

f1(x1, x2, … xk, xk+1,.. xm)=0  à  Σi r1i(x1, x2, … xk-1, xk+1,.. xm)  

+  z(x1, x2, … xk,, xk-1, xk+1,.. xm) =0                                                         (2-21)     

Thus, if xk is to be formally eliminated from both equations then the term z(x1, x2, … xk,, xk-

1, xk+1,.. xm), needs to exactly appear in both equations. With this the proof can be 

continued exactly as before.  

Q.E.D. 

 

We can now present the procedure to find and enumerate all equations of the problem: 

i. Linearize the process model to arrive at the linearized model written in the 

matrix form Ax = b, where A is the process constraint matrix.   
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ii. For all pairs of equations, perform the Gaussian elimination operation to find 

new equations and put them at the end of the list of equations. If any pair of 

equations has more than one common variable, all possible new equations 

are to be found by choosing different variables to eliminate. Note that only 

combinations of equations with at least one common variable are performed.  

iii. If a resulting new equation is the same as any equation already in the list, 

disregard that equation. 

Because all combinations of original equations are considered, this procedure 

guarantees that all possible new equations are found.  Combinations between a new 

equation and an original equation or between a new equation and another new equation 

are not necessary because they can be obtained by combining original equations. 

There are two steps in the design procedure that call for the linearization of the 

nonlinear equations around nominal operating condition:  

i. Finding new equations from pairs of “original” equations using the variable 

substitution or equivalently the Gaussian elimination operation 

ii. Solving the associated data reconciliation problem, where an analytical 

solution is obtainable only when the model is linear or linearized, in order to 

check whether the candidate sensor network satisfies the design 

specifications.  

Changing operating conditions would not cause any effect in the equations 

generating step (the resulting equations are unchanged, only the coefficients in the 

equations change); but it may have an effect in the step of checking design specifications: 

for example, a feasible solution can become infeasible if the operating windows moves to 
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another region. As a result, different regions of operating conditions may lead to different 

optimal solutions and the obtained optimal solution is guaranteed to be valid only within 

the current operating windows. Designing optimal sensor network that is valid for a wide 

range of operating conditions requires a new problem formulation and a tailored 

computational method, which is beyond the scope of this work. However, in the 

examples section, a brief discussion of the sensitivity of the solution as the process 

variables fluctuate around their nominal values is provided. 

 

2.5. Equation-based tree search algorithm 

The tree enumeration algorithm using equations for the design of nonlinear sensor 

networks is the same as the one used by Gala and Bagajewicz (2006a), except that instead 

of using cutsets, we use equations. The procedure is briefly described below: 

  

1. Find all the equations of the problem using the procedure described above. 

2. Pick up only the equations containing key variables (called candidate 

equations) because other equations (not containing key variables) do not 

contribute to the observability or redundancy of key variables.  

3. Sort these candidate equations in ascending order of their cost (the cost of an 

equation is equal to sum of the costs of the sensors used to measure variables 

contained in that equation). 

4. Start with the root node with no equation being added i.e. e = {0, 0, 0…), 

trivially infeasible. 
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5. Using the branch first rule, develop each branch by making one element of 

‘e’ active and adding one candidate equation at a time which is chosen from 

the remaining equations using a branching criterion.  

6. While performing the branching criteria, if any set of equations has already 

been evaluated in previous nodes, that node is not continued. This occurs 

frequently because one set of measurements can be a result of the union of 

different combinations of equations. 

7. This is continued until the stopping criterion is met. In such case, the 

algorithm backs up two levels and develops the next branch.  

 

Branching Criterion 

While exploring the tree from one node to the other, either going down the tree or 

exploring the sister node, the newly added equation is chosen in such a way that the cost 

obtained by its union with the existing active equations is minimal.  

 

Stopping Criterion 

Because adding an equation always increases the cost, whenever a feasible node 

is found (one that satisfies all the constraints of the problem), the tree is not explored 

further down nor any sister branch. 

To overcome the computational limitations of the above procedure, Gala and 

Bagajewicz (2006b) proposed the “decomposition of process graph network” algorithm 

to reduce computation time.  The algorithm still makes use of cutsets to find the optimum 

sensor network but the process graph is decomposed into sub-graphs so as to reduce the 
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number of original cutsets, hence reducing the size of the tree. While exploring the tree, if 

cutsets from different subgraphs are used in a node of the tree, the ring sum operation on 

those cutsets is performed to generate all the cutsets that are missing and then the union 

operation among the resulting cutsets plus the originals is performed.  These are briefly 

described below: 

 

 Operations in a node: suppose that the current node contain cutsets from three 

different sub-graphs CA1, CB1 and CC1, then: 

- All the possible combinations of ring sum and union operation of cutsets are 

found:  CA1 × CB1 U CC1; CA1 x CC1 U CB1; CA1 U CB1 × CC1; CA1 × 

CB1 × CC1  where U: union operation; x: ring sum operation  

- Checking the feasibility of all the resulting solutions. 

   

Stopping criterion : stop if 

( Current feasible node cost – Connecting streams cost in this node               

+ Min Instrument cost )  ≥    Best feasible node cost found  

 

For nonlinear systems, the same technique as described in Gala and Bagajewicz 

(2006b) is used with some modifications (the same branching and stopping criterion are 

used). These modifications are:  

i. The ring sum operation on cutsets is replaced by our variable elimination 

operation on equations  
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ii. The decomposition is performed on the bipartite graph of the nonlinear system 

instead of the process digraph of linear system.  

 

2.6. Inverted tree strategy 

If a large number of key variables (those whose values are of interest) and/or good 

level of precision and residual precision is required, a large number of sensors needs to be 

used to meet the requirements. This is accentuated if error detectability and resilience 

requirements are added. In such design cases, the “forward” tree search methods (the 

Equation-based method presented above as well as the as the tree search methods 

presented in Bagajewicz (1997) and Gala and Bagajewicz (2006a, 2006b)) exhibit the 

following problems: 

i. The number of active elements in feasible nodes is large, that is, the search 

procedure needs to explore deeper down into the tree before it finds a 

feasible solution  

ii. The number of nodes explored is large and the computational time is long. 

Moreover, for the equation-based tree search methods, a large number of key 

variables leads to a large number of equations that contain at least one key 

variable (i.e. large tree size) 

iii. The number of feasible nodes is low and they are all located deep in the tree 

towards the end of it. 

 

To ameliorate this shortcoming (having to explore the tree very deep), an inverted 

tree search method is proposed. The idea behind this method is to explore the tree in  the 
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reverse direction, that is, it to start with a root node containing all sensors and continue 

removing sensors when going up the tree until an infeasible node is found (stopping 

criterion). Because the level of the feasible nodes explored by the tree search is low, the 

number of nodes explored is reduced, which results in a shorter computation time. The 

same thing is also argued if equations are used instead of sensors (measurements). 

There are two “forward” tree search methods as discussed above: one uses list of 

equations / cutsets and the other uses list of measurements. We investigate the reverse 

versions of these two tree search methods. The inverted tree search using list of 

measurements is described next: 

- Start tree search with the root node containing all sensors, an automatically 

feasible node.  

- Removing sensors out of root node by using the tree enumeration algorithm and a 

branching criterion, which is to remove the most expensive sensor among all 

sensors in the current node so that the sensors cost is minimized.  

- Always start developing branches with feasible nodes containing large number of 

sensors. The number of sensors in nodes decreases and cost is reduced when 

going up the tree.  

- Stop going up (stop removing sensors) when the current node becomes infeasible 

(Stopping  Criterion). If keeping going up, the cost is reduced but the node is 

infeasible. 
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An inverted tree search using equations (root node containing all equations and 

continue removing equations when going up the tree) is much less efficient, in principle, 

because of two problems that lead to longer computation time: 

(i) The number of equations is large (much larger than the number of variables), 

hence the tree depth is larger  

(ii) The search needs to explore further up into the tree before it finds an infeasible 

node and stop. The reason for this is that the union of only a small number of 

equations can result in the sensor network containing all sensors. Thus, if only a 

small number of equations is removed out of the root node, the resulting sensor 

network (obtained as union of equations in current node) usually still contains all 

sensors. As a result, a significant number of equations needs to be removed before 

the number of sensors in resulting sensor network is reduced and the node 

becomes infeasible.  

 

In summary, three methods are proposed to solve the nonlinear sensor network 

design problem: the inverted tree search using list of measurements (referred to by the 

short name of “Inverted All Variables” method) and the “forward” equations-based tree 

search methods that has two versions: i) without decomposition (referred to as “All 

Equations” method), ii) with decomposition (referred to as “Decomposed Equations” 

method). The characteristics of these three methods together with the forward tree search 

method using list of measurements (Bagajewicz, 1997 referred to as “All Variables” 

method), which is used to validate the optimality of obtained solutions, are summarized 

in Table 2.1: 
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Table 2.1. Summary of proposed tree search methods 

Method Search Strategy Base unit Decomposed 
All Variables Forward Measurements No 
All Equations Forward Equations No 
Decomposed Equations Forward Equations Yes 
Inverted All Variables Reverse Measurements No 

 

 

2.7. Illustrated examples 

 

The proposed Equations-based methods and the “Inverted All Variables” method 

guarantee optimality; their computational efficiency is tested using the following 

examples. The “All Variables” method (Bagajewicz, 1997) is used to validate the 

optimality of the solutions obtained by the proposed methods. The proposed algorithms 

were implemented in a Fortran program running on a 2.8 GHz Intel Pentium, 1028 MB 

RAM PC computer. 

Three examples are considered: a CSTR process (small scale problem), a mineral 

flotation process (middle scale problem) and the TE process (large scale problem). Based 

on our experience, we qualitatively classify three types of problems that can be solved by 

our sensor network design program using the number of variables involved: i) small 

scale: 1-18 variables, ii) middle scale: 19-39 variables and iii) large scale: 40 variables 

and above. As usual, these are heuristic observations and although the number of 

variables is indicative of size, as we shall see below, the tightness of the specifications 

may make the same size problem to be solved much faster/slower.  
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2.7.1. Example 2.1: CSTR process 

 

Consider the CSTR process which was introduced by Bhushan6 and is given in Figure 2.7 

 
Figure 2.7 - The CSTR problem 

 

The variables of interest are [Fi, cAi, cA, T, Ti, Tc, Fc, Tci, Fvg, F, F2, F3, F4 ]. There 

are five equations (including both mass and energy balances) written around the reactor 

and its jacket (equations 2-22 to 2-26), three mass balance equations written for pumps 

and valves (equations 2-27, 2-28, 2-29)   

1 0( , , , ) ( ) 0
E

i RT
i Ai A Ai A d A

Fe F c c T c c c c k e
V

−
= − − =                                     (2-22) 

0
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i d A c
i A i c i
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F c c k e H UA T Te F c T T T T T
V C V Cρ ρ

−
−∆ −

= − + − =                        (2-23) 
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3
( )( , , , ) ( ) 0c c

c c ci ci c
j j j pj

F UA T Te T T F T T T
V V Cρ

−
= − + =                            (2-24) 

4 0( , , ) 0
E

RT
A vg d A vge c T F c c k e V F

−
= − =                            (2-25) 

5( , ) 0i ie F F F F= − =                    (2-26) 

6 2 3 3 2( , ) 0e F F F F= − =                   (2-27) 

7 2 2( , ) 0e F F F F= − =                    (2-28) 

8 4 4( , ) 0c ce F F F F= − =                    (2-29) 

The nominal operation conditions are given in Table 2.2 (value of flowrate is 

given in ft3/hr, temperature : oR, concentration: lb.mole/ft3).  

 

Table 2.2 - Nominal operating condition for the CSTR example 

Variable Fi Fc Fvg F F2 F3 F4 
Value 40 56.626 10.614 40 40 40 56.626 
Variable cAi cA T Ti Tc Tci  
Value 0.5 0.2345 600 530 590.51 530  

 

The linearized model matrix is:  

 
2 3 4                                c         c                                                                       

  -0.00531  -0.8333  1.7763   0.00923       0            0 
i Ai A i c c ci vg
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     1                  0            0            0            0             0               0         0           0   -1     0    0   0
     0                  0            0            0            0             0               0         0           0     0     1   -1  0
     0                  0            0            0            0             0               0         0 
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The process of generation of new equations is now illustrated. Take for example 

the original equations e1 and  e2, which have three common variables Fi, cA, T. Three new 

equations result from the three possible Gaussian elimination operations: e9 = {cAi, cA, T, 

Ti, Tc} obtained by eliminating the common variable Fi, e10 = {Fi, cAi, T, Ti, Tc} obtained 

by eliminating the common variable cA, and e11 = {Fi, cAi, cA, Ti, Tc} obtained by 

eliminating the common variable T.  These three new equations are shown in Table 2.3.  

 

Table 2.3 - New equations for the CSTR example obtained from the combination of   
e1 and e2   

 
(a) Variables involved 

Equation  Variables involved 
e9 {cAi, cA, T, Ti, Tc } 
e10 { Fi, cAi, T, Ti, Tc } 
e11 {Fi, cAi,cA, Ti, Tc } 

 
(b) Expressions 

Equation                              Expressions 
e9 

 
/ /
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−
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e11 

0

( )( )( ) 0( )ln(
i i Ai A

i c
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F F c c H UA ET T TF c cV V C V C R
V c c k

ρ ρ

 
 − −∆  − + − − − =

− 
 
 

 
 

 (c) Linearized Expressions 
Equation  Linearized expressions 
e9  -0.833 cAi  -0.972 cA, + 0.031 T -0.003 Ti -0.456Tc   
e10 -0.002 Fi  - 0.83cAi + 0.0232 T  -0.002 Ti -0.294 Tc 
e11 -0.0076 Fi  -0.833 cAi + 2.946 cA + 0.0013 Ti  + 0.194 Tc 
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It is clear from this example that the number of equations in nonlinear systems is 

much larger than the number of cutsets in linear systems of the same flowsheet size, not 

only because more equations are written for each unit, but also because any combination 

of cutsets results in just one new cutset in linear systems, while several new equations can 

be obtained from a combination of equations in nonlinear systems as illustrated above. 

The case studies for this process using the proposed algorithms are shown next. 

For the Decomposed Equations method, a single decomposition is performed, that is, the 

graph is decomposed into two subgraphs corresponding to two subset constraint matrices, 

one contains rows 1 to 4 and one contains rows 5 to 8 (the cutting is done between row 4 

and 5).  This is shown in Figure 2.8 where the original bipartite graph is decomposed into 

two sub-graphs (A & B), each contains 4 nodes (4 original equations). The total number 

of equations obtained from all eight original equations is 88, while the number of 

equations obtained from the first four original equations (i.e. sub-graph A) is 28 and from 

the last four original equations (i.e. sub-graph B) is 6. Thus, in the decomposition 

method, the total number of equations (i.e. the tree size) is 34 (=28 plus 6) instead of 88.  

The rest of the equations are found while exploring the tree by using variable elimination 

operation on any pair of equations originated from any two different sub-graphs. 
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Figure 2.8 - Bipartite graph of the CSTR example with decomposition (common 
variables are shown in thicker circles) 

 

 

The costs of sensors that measure variables V1, V2,,… ,V13    are 100, 270, 300, 50, 

55, 60, 105, 45, 85, 90, 95, 80, 82 respectively. The sensor precisions are 1% (for all 

sensors).   

Three design cases are considered corresponding to three levels of design 

specification: low specification (CSTR1), moderate (CSTR2) and high specification 

(CSTR3), which are shown in table 2.4. In table 2.4 as well as similar tables in the other 

two examples, rows 2 to 6 show detail of specifications for each design case; the stated 

threshold values (rows 5, 6) are applied to all the key variables listed in row 3, any key 

Fi cAi cA T Ti Tc Fc Tci Fv F F2 F3 F4 

e1 e2 e3 e4 e5 e6 e7 e8 

Fi cAi cA T Ti Tc Fc Tci Fv

e1 e2 e3 e4 

Fc F F2 F3 F4 

e5 e6 e7 e8 

Fi 

Decomposition of 
original graph 

Subgraph A Subgraph B 
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variable with specific threshold will be mentioned separately.  Rows 7 & 8 show the 

optimal solution obtained by the four methods, which include two types of information: 

the variables to measure (row 7) and the total sensor cost (row 8). 

 

Table 2.4 - Design case studies for the CSTR example 

Case Study 
CSTR1 

Low Spec. 
CSTR2 

Moderate Spec. 
CSTR3 

High Spec 
No. of key variables 3 4 8 
Key variables cA, T, F cA, T, Tci, F cAi,cA,T, Tc, Fc, Tci, F, F3 
Requirement Observability Redundancy Observability 
Precision thresholds 0.95% 1.5% 1.5% 
Residual precision 
thresholds 

 2.5% 2.5% 

Measured variables cAi ,cA ,Fvg ,F3 cAi,cA,T,Ti,Tci,F,F3,F4 
cAi,cA, T, Ti,, Tc, Fc, Tci, F, 

F3 and F4 
Sensors cost 735 972 1137 

 

The computation time and the number of nodes explored of the four methods are shown 

in Table 2.5.   
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Table 2.5 - Results for the CSTR example 
 

Case Study 
CSTR1 

(Low Spec.) 
CSTR2 

(Moderate 
Spec.) 

CSTR3 

(High Spec.) 

All-Equations 
(no 

decomposition) 

Total computation time 8 sec. 26 sec. 27 sec. 
Computation time to 

generate equations 
1 sec. 1 sec. 1 sec. 

Number of equations 

generated 
85 87 87 

Number of nodes 

explored 
1611 4,695 7,640 

Decomposed 

Equations 
(two subgraphs) 

 

Total computation time 4  sec. 8 sec. 14 sec. 
Computation time to 

generate equations 
< 1 sec. < 1 sec. <1 sec. 

Number of equations 

generated 
33 33 34 

Number of nodes 

explored 
1,737 2,914 5,456 

All Variables 
Computation time 3 sec. 5 sec. 6 sec. 
Number of nodes 

explored 
4,653 7,088 8,102 

Inverted All 

Variables  

Computation time 2 sec. 2 sec. 1 sec. 
Number of nodes 

explored 
2,520 682 117 

 
 

When comparing the computation times, the equation-based method is sometimes 

faster than that of  the All Variables method because of the smaller number of nodes 

explored and sometimes slower because the equation-based method initially requires 

finding all the equations of the system and requires checking the branching criterion in 

every node of the tree. The computation time of the Decomposed Equations method is 

shorter than that of the All Equations method as expected.  
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The method with shortest computational time in this example is the “Inverted All 

Variables” method, which can be seen to be faster than its “forward” counterpart, the “All 

Variables” method, especially for the high specification design case (CSTR3). 

Because in this example the equation-based methods do not offer much advantage 

in terms of reduced number of nodes explored and requires extra time for performing 

branching at any  node, the real test for the advantage of the equation-based methods has 

to come from applying them to a larger example. 

The sensitivity of the obtained solution is now briefly discussed before the next 

example is presented. As we linearize the nonlinear equations around the steady-state 

values of the process variables, the obtained solution is valid only within the current 

operating window. Take for example the design case CSTR1, if the steady-state values of 

the process variables (except the reaction temperature) change within 40% the nominal 

values, the precision values of the estimators change up to 95% of the precision values in 

the base case (corresponding to the nominal values) but still satisfy the design 

specifications, that is, the obtained solution is valid when the fluctuation is less than 40% 

of the nominal value. If the fluctuation is more than 40% of the nominal values (except 

the reaction temperature), the new optimal solution is to measure 7 variables with cost of 

737. The obtained solution is more sensitive to the variation of the reaction temperature, 

an important variable whose fluctuation significantly affects all other variables in the 

process. The variation range of the reaction temperature within which the obtained 

solution is valid is 26% of the nominal value. These results point out that the solution is 

valid within the normal variation range of process variables (30% of the nominal values) 

but it is not valid for a wider range of process operating conditions. 
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2.7.2. Example 2.2: Mineral flotation process 

 

Consider a middle scale process, the mineral flotation process introduced by Smith and 

Ichiyen (1973) shown in Figure 2.9. 

 
Figure 2.9 - The mineral flotation process 

 

The process consists of three flotation cells (separators) and a mixer. Each stream 

consists of two minerals, copper (component A) and zinc (component B), in addition to 

gangue material. The total flowrate F, the composition of copper CA and zinc CB of all 

streams are variables of interest, so the total number of variables under consideration is 

24 (8 flowrates and 16 compositions).  Let us assume that each variable can be measured 

separately by a sensor.  The process model consists of three types of material balance 

equations: the total flowrate balance, the copper component (A) flowrate balance and the 

zinc component (B) component balance. These three types of balance equations are 

written for unit 1 next. Balance equations for other units can be written in the same 

fashion: 

1 2 5 0F F F− − =                    (2-30) 

U1 U2 U3 
S1 S2 S3 S4 

S5 

S6 

S7 S8 

U4 
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1 1 2 2 5 5 0A A AFC F C F C− − =                   (2-31) 

1 1 2 2 5 5 0B B BFC F C F C− − =                   (2-32) 

 

The total number of original balance equations is 12 (3 per unit). The component balance 

equations are nonlinear, hence the system is nonlinear (it is bilinear system).  The 

nominal operating condition is given in table 2.6 (taken from Narasimhan and Jordache, 

2000): 

Table 2.6 - Nominal operation condition for mineral flotation process 

Streams 1 2 3 4 5 6 7 8 

Fi 

(kmol/hr) 
100 92.67 91.57 84.48 7.33 8.43 7.09 1.1 

C iA  

(% mol) 
0.019 0.0045 0.0013 0.001 0.2027 0.2116 0.0051 0.2713 

CiB  

(% mol) 
0.0456 0.0437 0.0442 0.0041 0.069 0.0495 0.5227 0.001 

 

When the balance equations are linearized, the process model can be written in the 

following form  Ax = b , where  

 

1 2 3 4 5 6 7 8 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8                                                                                                                               
1      

A B A B A B A B A B A B A B A BF F F F F F F F C C C C C C C C C C C C C C C C

A =

        -1 0 0 -1 0 0 0      0 0     0 0     0 0      0 0     0 0      0 0     0 0     0 0
0 1 -1 0 0 0 0 -1     0 0     0 0     0 0      0 0     0 0      0 0     0 0     0 0
0 0 1 -1 0 0 -1 0      0 0     0 0     0 0      0 0     0 0      0 0     0 0     0 0
0 0 0 0 1 -1 0 1       0 0     0 0     0 0      0 0     0 0      0 0     0 0     0 0
0.02    -0.005 0 0        -0.203 0 0 0     100 0  -92.67 0     0 0      0 0  -7.33 0      0 0     0 0     0 0
0         0.005     -0.001 0 0 0              0       -0.271     0 0   92.67 0  -91.57 0      0 0     0 0      0 0     0 0   -1.1 0
0 0         0.001       -0.001 0 0       -0.005 0      0 0     0 0   91.57 0   -84.48 0     0 0      0 0   -7.09 0     0 0
0 0 0 0         0.203          -0.212 0        0.271     0 0     0 0       0 0      0 0    7.33 0   -8.43 0     0 0    1.1 0
0.05    -0.044 0 0        -0.069 0 0 0      0   100    0    -92.67  0 0      0 0     0    -7.33  0 0     0 0     0 0
0          0.044     -0.044 0 0 0 0      -0.001      0 0     0     92.67  0   -91.6  0 0     0 0     0 0     0 0     0     -1.1
0 0        0.044     -0.004 0 0        -0.523 0      0 0     0 0       0 91.6  0   -84.5 0 0     0 0     0    -7.09  0 0
0 0 0 0         0.069        -0.05 0       0.001      0 0     0 0       0 0       0 0     0    7.33   0   -8.43   0 0     0 1.1

 
 
 
 
 
 
 
 
 









 










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The first four rows in the constraint matrix A corresponds to the total flow balances, row 

5 to row 8 represent for copper component balances and the rest corresponds to zinc 

component balances. All sensor precisions are 2%. The sensor costs are given in table 

2.7. 

Table 2.7 - Sensor costs for mineral flotation process example 

Streams 1 2 3 4 5 6 7 8 

Fi 50 55 45 60 40 48 52 58 

CiA 300 310 240 260 250 360 320 335 

CiB 290 350 330 340 280 270 295 275 

 
 

Three design cases at three different levels of design specification are considered: low 

specification (MFP1), moderate (MFP2) and high specification (MFP3). They are shown 

in table 2.8.  
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Table 2.8 - Design case studies for the mineral flotation process example 

Case Study 
MFP1 

Low Spec. 
MFP2 

Moderate Spec. 
MFP3 

High Spec 
No. of key variables 4 4 12 

Key variables 
F1, C1A, F7 and 

C7B 
F1, C1A, F7 and C7B 

F1, F4, F6, C1A, C1B, F7, 

C4A, C4B, C6A, C6B, C7A, C7B 
Requirement Observability Redundancy Observability 

Precision thresholds 
1.5% (F1, C1A) 
2% (F7 , C7B) 

1.5% (F1, C1A) 
2% (F7 , C7B) 

1.5% (F1, F4, F6, C1A, C1B) 
2% (F7, C4A, C4B, C6A, C6B, 

C7A, C7B) 

Residual precision 

thresholds 
 

5%  for F1, F7 only 
 

 

Measured variables 
F1, F3, F5, F6, F7, 

F8, C1A, C2A, C5A, 

C7B 

F1, F3, F5, F6, F7, F8, 

C1A, C2A, C3B, C4B, 

C5A and C7B 

F1, F3, F5, F6, F7, F8, C1A, 

C2A, C3B, C4A, C4B, C5A, 

C6B, C7A and C7B 
Sensors cost 1448 2118 2968 

 

In all case studies, the decomposition is made by operating directly on the constraint 

matrix, that is, the constraint matrix is “cut” into three subset matrices: {row 1 to row 4}, 

{row 5 to row 8} and {row 9 to row 12}. The submatrices for these systems are indicated 

by dotted rectangles in matrix A. The common variables between the subset matrices 

(called connecting streams in the case of linear systems) are the eight flowrate variables: 

from F1 to F8. The computation time and number of nodes explored are shown in table 

2.9. 
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1 2 3 4 5 6 7 8 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8                                                                                                                               
1      

A B A B A B A B A B A B A B A BF F F F F F F F C C C C C C C C C C C C C C C C

A =

        -1 0 0 -1 0 0 0      0 0     0 0     0 0      0 0     0 0      0 0     0 0     0 0
0 1 -1 0 0 0 0 -1     0 0     0 0     0 0      0 0     0 0      0 0     0 0     0 0
0 0 1 -1 0 0 -1 0      0 0     0 0     0 0      0 0     0 0      0 0     0 0     0 0
0 0 0 0 1 -1 0 1       0 0     0 0     0 0      0 0     0 0      0 0     0 0     0 0
0.02    -0.005 0 0        -0.203 0 0 0     100 0  -92.67 0     0 0      0 0  -7.33 0      0 0     0 0     0 0
0         0.005     -0.001 0 0 0              0       -0.271     0 0   92.67 0  -91.57 0      0 0     0 0      0 0     0 0   -1.1 0
0 0         0.001       -0.001 0 0       -0.005 0      0 0     0 0   91.57 0   -84.48 0     0 0      0 0   -7.09 0     0 0
0 0 0 0         0.203          -0.212 0        0.271     0 0     0 0       0 0      0 0    7.33 0   -8.43 0     0 0    1.1 0
0.05    -0.044 0 0        -0.069 0 0 0      0   100    0    -92.67  0 0      0 0     0    -7.33  0 0     0 0     0 0
0          0.044     -0.044 0 0 0 0      -0.001      0 0     0     92.67  0   -91.6  0 0     0 0     0 0     0 0     0     -1.1
0 0        0.044     -0.004 0 0        -0.523 0      0 0     0 0       0 91.6  0   -84.5 0 0     0 0     0    -7.09  0 0
0 0 0 0         0.069        -0.05 0       0.001      0 0     0 0       0 0       0 0     0    7.33   0   -8.43   0 0     0 1.1

 
 
 
 
 
 
 
 
 









 











 

Table 2.9 - Results for mineral flotation process example  

Case Study 
MFP1 

(Low Spec.) 

MFP2 
(Moderate 

Spec.) 

MFP3 
(High Spec.) 

All-

Equations 
 

Computation time 6 hrs 22 min 45 hrs 44 min 

Not used 

Computation time to 

generate equations 
2 seconds 2 seconds 

Number of equations 

generated 
2,225 2,225 

Number of nodes explored 5,645 35,289 

Decomposed 

Equations 
(3 

subgraphs) 
 

Computation time 13 seconds 40 seconds 1hr 29 min 
Computation time to 

generate equations 
< 1 second < 1 second < 1 second 

Number of equations 

generated 
27 27 33 

Number of nodes explored 5,077 13,622 200,245 

All 

Variables 
Computation time 

23 min, 41 

sec 
2 hr, 16 min  7h 35 min 

Number of nodes explored 529,130 3,743,327 12,366,120 

Inverted All 

Variables 
Computation time 

17 min, 20 

sec 
11 min, 18 

sec 
49 seconds 

Number of nodes explored 376,432 130,733 19,722 

 
 
In the case study MFP1, the number of equations containing at least one of the four key 

variables {F1, F7, C1A ,C7B} in the equations-based tree search without decomposition 
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(All Equations method) is 2225. When the decomposition technique is used, the number 

of equations containing at least one key variable reduces significantly to 27, which is the 

main reason why the computation time reduces remarkably to less than 1 minute in both 

design cases. For comparison, in the linear Madron example solved by Gala and 

Bagajewicz (2006a), which has the same scale as our mineral example problem  with 5 

out of 24 variables required to be observable, the number of cutsets (depth of the tree) is 

154. Although the All Variables method explores a lot more nodes than the All Equations 

method, the time is considerably smaller because the branching criterion in the All 

Equations method requires expensive computation to pick up the equation leading to the 

minimum cost sensor network among roughly 2210-2220 candidates (= total number of 

equations minus the number of equations active in the current node). 

The larger tree size in this nonlinear example leads to much longer computation 

time because of two main reasons:  

i. A larger tree depth  requires an exponentially longer computation time to 

explore the tree  

ii. A larger number of equations requires a longer time to perform the 

branching criterion in a node (picking the equation leading to the minimum-

cost sensor network among all candidates). In fact, while example 2 of the 

Madron problem requires only 37 seconds to explore 937 nodes in the 

cutsets-based tree search (Gala and Bagajewicz, 2006a), in this example it 

takes roughly one hour to explore every 1000 nodes in the equations-based 

tree search without decomposition (All Equations method).  Thus, reducing 

the tree depth by using a decomposition technique is very beneficial for 
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nonlinear systems. Although capable of finding the optimal solution, the All 

Equations method (equation-based without decomposition) is far less 

computationally efficient than the Decomposed Equations method or even 

the simpler All Variables method.  

 

Tables 2.5 and 2.9 show that the computation time of the All Equations increases 

from less than one minute in the 13-variable CSTR example to several hours or almost 2 

days in the 24-variable mineral flotation process example. We conclude that the All 

Equations method is severely affected by the scaling problem, which is due to the fact 

that the number of equations generated (the tree size) usually increases combinatorially 

with the size of the problem.  The number of equations generated in nonlinear systems is 

also much larger than the number obtained in the same sized linear systems. The main 

reasons are:   

i. Any combination of original equations may result in multiple new equations 

(not just only one as in linear systems) 

ii. The possibility that there is common variable(s) between a pair of equations 

is high because one variable (such as the reactor temperature or the flowrate 

variables) can appear in several equations (instead of at most 2 in linear 

systems) as can be seen above (recall that ring sum operation on a pair of 

cutsets or variables substitution on a pair of equations can be performed only 

when there exists common stream(s) or common variable(s) between them). 
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For the mineral process example, the two best methods are the Decomposed 

Equations method and the Inverted All Variables method. When low or moderate 

specification is used (MFP1, MFP2), the Decomposed Equations method is the most 

efficient: it can find optimal solution within less than a minute. When high specification 

is used (MFP3), the Inverted All Variables method is the best because this method is 

tailored for such design case: in the design case MFP3, the number of sensors in feasible 

nodes is at least 15, hence the All Variables method (forward tree search) needs to 

explore at least 15 levels before it stops, while the inverted tree search explores not more 

than 9 (=24 minus 15) levels before it stops.  This explains the remarkable improvement 

in computation time by using the inverted tree search.  

 

2.7.3. Example 2.3: The Tennessee Eastman process 

 

Consider the well-known challenge problem, the TE process, which is given in figure 

2.10. The simplified TE model described by Ricker and Lee (1995) is used. The steady 

state operation conditions are generated from the Fortran file that implements the TE 

model available at Ricker’s website 

(http://depts.washington.edu/control/LARRY/TE/download.html). The steady state 

equations used are:  

3

,6 6 ,7 7
1

 = 0                                                , ,...,  i i ij j
j

y F y F R i A B Hν
=

− + =∑          (2-33) 

,7 7 ,8 8 9 ,10 10( )  = 0                                       , ,...,i i iy F y F F x F i A B H− + − =           (2-34) 

http://depts.washington.edu/control/LARRY/TE/download.html
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*
,1 1 ,2 2 ,3 3 ,5 ,8 8 ,6 6       = 0      , ,...,i i i i i i iz F z F z F F y F F y F i A B H+ + + + + − =          (2-35) 

,10 10 ,11 11(1 )                                                           ,  i i ix F x F i G Hφ− − =          (2-36) 

where φi (i = G,H) : separation factor of component i in the stripper, zi,j, yi,j and xi,j : 

molar fraction of chemical i in stream j, which can be feed stream (zi,j), liquid stream (xi,j) 

or gas stream (yi,j); νij : stoichiometry factor of chemical i in reaction j. The reaction rates 

Rj are given by the following expressions: 

, , ,

1.08 0.311 0.874
1 1

42600exp 44.06
A r C r D rVr

r
R V P P P

RT
β

 
= − 

 
            (2-37) 

, , ,

1.15 0.370 1.00
2 2

19500exp 10.27
A r C r D rVr

r
R V P P P

RT
β

 
= − 

 
            (2-38) 

,3 3 , ,
59500exp 59.50 (0.77 )

A rVr D r E r
r

R V P P P
RT

β
 

= − + 
 

            (2-39) 

where βj: “tuning” factor of reaction j; Vv,r : liquid volume in the reactor, Tr : temperature 

in the reactor, Pi, r : partial pressure of chemical i in the reactor. 

The variables, their nominal operating conditions and costs of associated sensors are 

given in table 2.10. Sensor precision of  2% (for all variables) is used. 
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Figure 2.10 - The Tennessee Eastman Process (following Downs and Vogel, 1993) 

 

Table 2.10 - Data for the Tennessee Eastman Problem 

Variables Nominal 

operating 

condition 

Sensor 

cost 

Variables Nominal 

operating 

condition 

Sensor 

cost 

F6 1889.9 300 YE,8 0.186 740 

F7 1475.2 300 YF,8 0.023 730 

F10 258.56 200 YG,8 0.048 740 

F11 211.3 200 YH,8 0.023 750 

YA,6 0.322 770 YA,9 0.33 720 

YB,6 0.089 780 YB,9 0.138 730 

YC,6 0.264 730 YC,9 0.24 740 

YD,6 0.069 740 YD,9 0.013 750 

YE,6 0.187 750 YE,9 0.186 760 

YF,6 0.016 760 YF,9 0.023 770 
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Variables Nominal 

operating 

condition 

Sensor 

cost 

Variables Nominal 

operating 

condition 

Sensor 

cost 

YG,6 0.035 810 YG,9 0.048 780 

YH,6 0.017 820 YH,9 0.023 790 

YA,7 0.272 750 YD,10 0.002 700 

YB,7 0.114 760 YE,10 0.136 710 

YC,7 0.198 700 YF,10 0.016 720 

YD,7 0.011 710 YG,10 0.472 720 

YE,7 0.177 720 YH,10 0.373 730 

YF,7 0.022 730 YG,11 0.537 730 

YG,7 0.123 780 YH,11 0.438 740 

YH,7 0.084 790 Pr 2806 100 

YA,8 0.33 780 Tr 393.6 500 

YB,8 0.138 770 Ps 2734.7 100 

YC,8 0.24 760 Ts 353.3 500 

YD,8 0.013 750    

 
 

Values of flowrates Fi are given in kmol/hr, Pr, Ps: pressure in reactor and 

separator, respectively (KPa); Tr, Ts: temperature in reactor and separator, respectively 

(K); subscripts A, B, C, D, E, F, G, H denote components; subscripts 6, 7, 8, 9, 10, 11 

denote stream number. The variables listed in table 2.10  are considered as candidates for 

measurements, other variables in the TE process (e.g. input flowrates F1, F2, F3) are 

assumed to be either known by measurements (forced measurements) or of little 

importance for consideration.  The total number of equations involving listed variables is 

28. 

Three design cases are considered, they are shown in table 2.11. 
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Table 2.11 - Design case studies for the TE process example 

Design case 
TE1 

Low Spec. 
TE2 

Moderate Spec. 
TE3 

High Spec. 
No. of key variables 6 17 39 

Key variables 
F6, yA6, yG6, 

yH6,F7, F10 

F6, yA6, yG6, yH6, F7, yG7, 

yH7, yA9, yG9, yH9, F11, yG11, 

yH11, Pr, Tr, Ps, Ts 

All variables except {yD9, 

yE9, yF9, yG9, yH9, F10, yD10, 

yE10} 

Requirement 
Observabil-

ity 
Observability Redundancy 

Precision thresholds 2% 2% 
1.5% 

1.6% (yG8, yH8) 

Residual precision 

thresholds 
  

4% for all key variables 

except {yG8, yH8, Pr,Tr, 

Ps,Ts} 

Measured variables 
F6, yA6, yG6, 

yH6,F7, F10 

F6, yA6, yG6, yH6, F7, yA7, 

yA9, yG9, yH9, yG10, yH10, 

F11, yH11, Pr, Tr, Ps, Ts 

all variables except (yE9, 

F10,  yE10, Pr) 
(43 variables in total) 

Sensors cost 3,200 9,630 29,640 

 

For this example, the All Equations method was not used because: i) the 

computation time to generate all balance equations from (228 – 1) combinations of 28 

original equation is too long; ii) its large tree size (large number of equations) leads to a 

long computation time. The computation time and number of nodes explored for the other 

methods are given in table 2.12. 
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Table 2.12 - Results for the TE process example 

Case Study TE1 TE2 TE3 
All-Equations method Not Used 

Decomposed 

Equations 
(9 subgraphs) 

 

Computation 

time 
2 min 40 

seconds 

> 74 hours (all 

current best solutions 

obtained in 14 hours) 

>10 hours 
(Suboptimal 

solution found 

in one second) 
Computation 

time to generate 

equations  
< 1 sec < 1 sec < 1 sec 

Number of 

equations 

generated 
61 67 68 

Number of 

nodes explored 
11,628 

> 1.8 millions  
(All “current best” 

solutions obtained 

within first 510,000 

nodes explored) 

>500,000 

(Suboptimal 

solution found at 

node 44) 

All Variables 

Computation 

time 
9 hr 8 min 

> 3 days (45 days 

estimated)  

Not used Number of 

nodes explored 
1,867,295 > 6 millions 

Inverted All 

Variables 

Computation 

time 
Not used Not used 

4 min 16 sec 

Number of 

nodes explored 
1,726 

 

For the case studies with low and moderate specification (TE1, TE2), the Inverted 

All Variable method is not used because the inverted tree search will perform poorly for 

design case with low specification like TE1. The case study TE2 is similar to the case 

study MFP1 (mineral flotation example) where the number of sensors in the optimal (or 



62 
 

sub-optimal) solution accounts for less than a half of all sensors; hence the performance 

of the inverted tree search is predicted to be comparable to that of the All Variables 

method, which performs poorly as shown in table 12. 

The proposed methods can find optimal solution for the two design cases with 

low and high specification (TE1 and TE3, respectively) with the Decomposed Equations 

method being the best method for the design case TE1 while the Inverted All Variables 

method is the best method for TE3 as expected. Optimal solution for these two design 

cases are found within less than 5 minutes. 

For design case with moderate specification (TE2),  the Decomposed Equations 

method is the only viable option when the factor of acceptable computation time is 

desired. In fact, after roughly 3 days of running time and 6 millions number of nodes 

explored, the “current best” solution found by the All Variables method consists of 21 

sensors with the cost of 14,120, far worse than the solution found by the Decomposed 

Equations method.  We assume that the computation time of the All Variables method is 

comparable to the computation time of the same sized linear system, the CDU process 

presented in Gala and Bagajewicz (2006b), which was estimated to be 45 days. The 

Decomposed Equations method was then used: the number of decompositions is 8 

(original graph is decomposed into 9 sub-graphs), the number of equations generated is 

67. All the “current best” solutions (the incumbent) were found within the first 510,000 

nodes explored, 14 hours computation time. After that the tree search procedure kept 

running for 60 hours, explored further 1.3 millions nodes without finding any better 

solution before it was terminated (so in total, 74 hours running time and 1.8 millions 

number of nodes explored). The current best solution is reported here, which is to 
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measure F6, yA6, yG6, yH6, F7, yA7, yA9, yG9, yH9, yG10, yH10, F11, yH11, Pr, Tr, Ps, and Ts. It has 

a cost of  9,630. This solution contains only 14 of the 17  key variables: F6, yA6, yG6, yH6, 

F7, yA9, yG9, yH9, F11, yH11, Pr, Tr, Ps, and Ts.  

Finally, Case Study TE3 is one that will require a lot of measurements, because 

the requirements are very strict. In this case, the best solution obtained by the 

Decomposed Equations after roughly 500,000 nodes explored, 10 hours computation time 

(before it was terminated) is to measure all variables except three variables (yE9, F10,  yE10) 

with a cost of 29,740. This solution contains one more sensor for measuring Pr and a cost 

slightly higher (100 more) when compared with the optimal solution found by inverted 

tree search. Thus, even in the case that the Decomposed Equations method has to be 

terminated when the computation time becomes unacceptably long (e.g. with large scale 

problems with high number of key variables) such that the finding of optimal solution is 

not guaranteed, the method finds sub-optimal solutions very near to the global optimal 

solution within an acceptable time (in fact, this sub-optimal solution is found at node 44, 

just after 1 second running time).  

The results shown here point out that  

i. When the level of desired properties (the specifications) of sensor network 

is either low or high (e.g. either a small or a large number of key variables 

is involved), even large scale nonlinear sensor network problem like the 

TE problem can be solved efficiently using either the Decomposed 

Equations method (for a low level of specifications) or inverted tree search 

method (for a high level of specifications) 
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ii. For realistic design cases of large scale nonlinear problem where the level 

of desired properties is neither low nor high, the  Decomposed Equations 

method is able to find optimal or near-optimal solution within an 

acceptable time, however the optimality is not guaranteed because the 

computation process has to be terminated half-way.  

 

2.8. Choice of strategy 

It can be seen that the inverted tree search remarkably improves the computational 

time when a high level of specifications is desired. A step further is to intelligently select 

which strategy to use corresponding to a specific design case in order to have the shortest 

computational time. The criterion of when to choose the inverted tree search instead of a 

forward tree search, inferred empirically by our observations of testing problems, is to 

choose the inverted tree search when the followings conditions are met:  

i. The number of variables is more than 15  

ii. The average number of sensors in feasible solutions is more than 70% of the 

total number of variables (based on the first 10 feasible solutions found).  

 

The first condition is needed because: a) the Equations-based methods (forward 

strategy) can solve problems involving not more than 15 variables very efficiently, hence 

Inverted tree search is not needed for this type of small scale problem, b) if number of 

variables is less than 15, usually the computation time is short and the time to compute 

the average number of sensors in feasible solutions offsets the gain in computation time 

(if any) by using the inverted tree search. 
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The procedure to quickly calculate the average number of sensors in feasible 

solutions that is as close as possible to the number of sensors in the optimal solution has 

three steps:  

i. Prepare two lists of variables: one list of key variables (list one) and a list 

of non-key variables (list two)  

ii. If measuring all key variables is a feasible solution, then use the number 

of key variables as final result and stop, otherwise go to step iii 

iii. Employ the tree enumeration procedure using non-key variables from list 

two to find the first ten combinations of all key variables (list one) and 

non-key variables (from list two) that are feasible solutions.  

  

The average number of sensors in feasible solutions and the associated 

computation time for the four mineral process design cases are shown in table 2.13: 

 
Table 2.13 - Results used for selecting the right tree search strategy 

 
Design cases  MFP1 MFP2 MFP3 
Computation time (second) 2 16 1 
Average number of sensors in feasible solution 16.45 16.55 20.36 
Number of sensors in optimal solution 10 12 15 

 
 
According to the results shown in table 2.13 and the criteria presented above, the design 

case MFP3 should be solved by using inverted tree search. The calculation results shown 

in table 2.9 confirm that this is the “right” choice. The two design cases MFP1 & MFP2 

should be solved by using the Decomposed Equations method (forward strategy). 
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2.9. Conclusions 

In this chapter, the equations-based tree search method for the design of nonlinear 

sensor network was presented. The proposed method is guaranteed to find optimal 

solution and is computationally efficient for small scale and middle scale problems. 

However, its performance is not always satisfactory when dealing with large scale 

problems. Another version of the tree search method, the inverted tree search using the 

list of variables, was also presented. The inverted strategy is tailored for design cases 

with high level of specifications and is shown to remarkably improve the computation 

time, especially with large scale nonlinear problems like the TE process where it solved a 

high specifications design case within a few minutes.  

For realistic large scale nonlinear design problems (those with moderate level of 

specifications), the equation-based method is not yet efficient enough; thus a more 

efficient method is needed.  This method is presented in the next chapter  

 

2.10. Nomenclature 

− ci : cost of sensor i 

− qi : binary variable indication whether sensor i is used 

− iσ : precision of estimator i 

− *
i

σ : precision threshold of estimator i 

− Fi : flowrate of stream i 

− hi : enthalphy of stream i 

− cij : concentration of component j in stream i 

− δi: stoichiometric coefficient of component i in chemical reaction.  
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− Tr & Pr:  temperature and pressure of reactor 

− Ts & Ps:  temperature and pressure of separator 

− Pi, r : partial pressure of chemical i in the reactor 

− Tf : flash drum temperature 

− Fi, Ti , cAi : inlet flowrate, temperature and concentration of A of the CSTR reactor 

− F, T , cA : outlet flowrate, temperature and concentration of A of the CSTR reactor 

− Fci, Tci :  inlet flowrate and temperature of coolant in the CSTR reactor 

− Fc, Tc :  outlet flowrate and temperature of coolant in the CSTR reactor 

− Fvg :  flowrate of vent gas leaving the CSTR reactor 

− U, A :  heat transfer coefficient and heat transfer area in the CSTR reactor 

− Cd :  catalyst activity 

− Vj :  volume of jacket 

− V:  reactor volume 

− Vv,r : liquid volume in the reactor 

− Cp, ρ :  heat capacity and density of fluid mixture in the CSTR reactor 

− Cpj, ρj :  heat capacity and density of coolant 

− Ki : vapor-liquid equilibrium ratio of component i 

− E : activation energy of chemical reaction 

− k0 : pre-exponential factor or frequency factor  

− α : reaction order 

− νij : stoichiometry factor of chemical i in reaction j 

− φi  : separation factor of component i in the stripper 

− βj: “tuning” factor of reaction j 
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− R  : universal gas constant 

− Rj : reaction rate of reaction j 

− rxnH∆ (or simply ∆H): heat of reaction.  

− Qvap : amount of heat removed in the flashing process  

− zi,j, xi,j and  yi,j : molar fraction of component i in stream j, which can be feed stream 

(zi,j), liquid stream (xi,j) or gas stream (yi,j) 
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3.   NEW EFFICIENT METHODOLOGY FOR NONLINEAR SENSOR 

NETWORK DESIGN PROBLEMS 

 

The instrumentation network design and upgrade problem can only be 

solved to optimality using a branch and prune tree search strategy, 

usually a depth first one. In this chapter, an efficient tree search strategy 

that explores the tree horizontally and exploits certain cost property of the 

different nodes in the tree is presented. This method guarantees optimality 

and its performance is much better than the depth first strategy. In case 

this rigorous horizontal search method is not efficient enough for certain 

types of problems, an approximate method is proposed to complement for 

this horizontal search method. The approximate method is shown to be 

very efficient and it is able to locate optimal solutions for all the design 

case studies.    

 

3.1. Overview 

Two main groups of computational methods have been used to solve the SNDP 

for process monitoring purpose:  mathematical (integer) programming methods (these 

methods guarantee optimality but they usually exhibit scaling problem) and stochastic 

methods (e.g. genetic algorithms, these methods do not guarantee optimality).  In the first 

group, while other researchers transformed problems into well-established optimization 

models such as mixed integer linear programming MILP (which was then solved by 
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using GAMS), our group particularly used the branch and bound “tree search” methods 

(which were implemented in Fortran).  

The nonlinear SNDP is the most computationally challenging problem. The first 

attempt to solve the nonlinear SNDP, the equation-based tree search method, has some 

success but it fails to locate optimal solution within an acceptable time for realistic large 

scale nonlinear problems. In this chapter, new efficient methods that address the 

shortcomings of the equation-based method are presented.  Two methods are proposed, 

which are sequentially presented in two parts of this chapter 

The first part presents a new tree search method : instead of exploring the tree 

through its branches, i.e. adding one instrument at a time and pruning branches using a 

certain stopping criteria, we resort to look at configurations with the same number of 

instruments, that is, looking at all branches at the same level of the tree. The former is 

called depth-first tree exploration, while what we propose is known as breadth-first 

strategy (Diwekar, 2008).  In addition, a few modifications to these strategies are 

proposed and the stopping criterion that is particular to minimum cost problems (like the 

one we intend to solve) is also provided.  The proposed method belongs to the breadth 

first strategy category (in the sense that it expands first all successor / sister nodes of the 

current node rather than going down the tree) but it is not exactly the breadth-first branch 

and bound method as described in optimization textbooks, so we name it “level-by-level” 

search.  

The second part presents a heuristic local search attempting to locate optimal 

solution starting from sub-optimal solutions provided by equation-based tree search 

method.  The local search is a two-step procedure. This local search method is meant to 
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be complementary for the “level-by-level” tree search and equation-based tree search: it 

will be used in final step if these two tree search methods (which are rigorous methods 

that guarantee optimality) fail to identify optimal solution within an acceptable 

computational time.  

 
 

3.2. Tree search methods 

Solution strategies used in previous works: 

• Transforming the problem into well-established optimization problems 

(MILP, convex optimization using linear matrix inequalities techniques) 

by introducing auxiliary variables. Applied to small scale linear systems. 

• Branch and bound (tree search) method. The base unit can be single 

measurement (Bagajewicz, 1997) or cutset of process graph (Gala and 

Bagajewicz, 2006a, 2006b) or process balance equations (Nguyen & 

Bagajewicz, 2008).  

The direct enumeration tree search method is illustrated in figure 3.1. The 

procedure is as follows:  

• Start with a root node with no variables being measured (q = 0), it is 

trivially infeasible. 

• Develop each branch and making one element of q active until the 

stopping criterion is met. Then back up one level and develop next branch 

using a branching criteria.  
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Figure 3.1 - Tree search method 

 

 

Branching Criteria: Sensors are added to nodes in the direction of minimum 

cost, that is, the sensor chosen to be added to the current node has the cheapest cost 

among all candidates 

Stopping Criteria: In each node, the following two operations are performed in 

sequential order to determine if we need to continue exploring the current branch: i) stop 

if the cost of the current node is more than the current best because even if the cost is 

feasible it cannot compete with the current best, ii) stop if the node is feasible; update the 

current best if the cost of this feasible node is less than the current best.   

 

This stopping criterion is valid for both depth first tree search and level traversal 

(breadth first) tree search (described below).  In depth first tree search,  if the stopping 

criterion is met, one should stop, back up one level and develop the next branch, as any 

node below will be more expensive.  

The depth first tree search method is not efficient for medium and large scale 

problems because computational time increases exponentially with the size of the 

Level 0 

Level 1 

Level 2 

 

q = (0,0,0,...)  

q = (1,0,0,..)  q = (0,1,0,...)  
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problem. To deal with these problems, tree search methods based on cutsets were 

proposed (Gala and Bagajewicz, 2006a, 2006b).  Later, Nguyen and Bagajewicz (2008) 

extended the cutset-based method to solve nonlinear problems by using process balance 

equations and incidence matrix manipulation instead of cutsets and graph decomposition 

(called equation-based method, which is presented in chapter 2).  Nguyen and 

Bagajewicz (2008)  also presented a technique based on an inverted tree search. The idea 

behind this method is to explore the tree in  the reverse direction, that is, it to start with a 

root node containing all sensors and continue removing sensors when going up the tree 

until an infeasible node is found (stopping criterion). This method is very efficient for 

problems with high level of specifications (e.g. when there are many key variables or 

redundancy is required) where feasible solutions contain a large portion of available 

sensors.  

Table 3.1 summarizes the most suitable methods (that were developed in our 

group) for each case 

 
Table 3.1 - Most suitable method for solving sensor network design problem 

 
Level of specifications Linear systems Nonlinear systems 

Low 
Cutsets-based or 
measurement-based tree 
search 

Equations-based or 
measurement-based tree 
search 

Medium Cutsets-based  Equations-based  

High Cutsets-based or Inverted 
tree search 

Equations-based or 
Inverted tree search 

 
 

Note that in table 3.1, the cutsets-based and equations-based methods are meant to 

be the ones with decomposition (which is always better than the corresponding versions 

without decomposition).  It can be noted that the cutsets-based and equations-based 
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methods (with decomposition) are the best choice for all levels of specifications while 

occasionally these methods are outperformed by the measurement-based tree search or 

inverted tree search for problems with low level and high level of specifications,  

respectively.  

A level traversal (breadth first) technique that takes advantage of certain 

properties of trees that are constructed using the minimum cost branching criteria is now 

presented.  

 

3.3. Level traversal search 

 

Let us start first by defining the following terms: 

Sister nodes: sister nodes of a current node are the ones that: i) are at the same 

level (containing the same number of active elements) and in the right hand side of the 

current node, ii) share the shame root (parent) with the current node 

Families of nodes: a set (family) of nodes that have the same number of sensors 

(same number of active elements) and share the same root (same parent) 

Head of family: the leftmost node in the family of nodes, that is the cheapest  

node. 

To illustrate the above concepts, consider a list of sensors in ascending order 

123456.  At level three, the following nodes (consisting of three sensors) (123, 124, 125, 

126) are said to form a family of nodes with parent (root) 12 (Figure 3.2). The next 

families of nodes at the same level are (134, 135, 136) with parent root 13, (145, 146), 
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with parent root 14, and finally, (156), with parent root 15.  The heads of families are 

123, 134, 145 and 156.   

 
Figure 3.2 - Families of nodes 

 

We now note the following properties when the tree is built using the cheapest 

candidate (minimum cost branching criteria).   

• Property 1: There is cost monotonicity within each family, that is, the cost 

increases as one moves within each family to the right.  

• Property 2: There is cost increasing monotonicity among heads of family 

that share the same root.   

 

Property 1 is straightforward: it stems from the minimum cost branching criteria. 

Property 2 is also self-evident from the branching criteria. For example Node 123 has 

smaller cost than node 134 and so on. This is because they share the same root (node 1). 

However, a member of one family can in fact have a larger cost than  members of any 

Families of nodes with root 1 
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Head of family   
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family on the right. For example, node 125 (third member of the first family) can have 

higher cost than node 134.  

Properties 1 and 2 can be used efficiently in a level traversal strategy. Suppose 

that one node at level 3 is found to satisfy the stopping criteria (it is feasible and its cost 

is smaller than the current upper bound, or simply if it is more costly than the current 

upper bound).  Assume that the node is a head of family. In such case one can directly 

omit looking at all families sharing the same root and move to the families in the next 

root. For example if the head of family “123” is found to satisfy the stopping criterion, 

then all the sister nodes of this node (124, 125, 126) and the families on the right side 

with heads 134, 145,and 156 have higher cost (property 1).  Thus, the traversal search 

should continue looking at the families that have different roots, but only comparing the 

current best node with heads of families corresponding to all other different roots. For 

example, the node 123 has smaller cost that node 234 and smaller cost than 245 and so 

on. Therefore, if 123, the head of the first family,  is the current node, then one can 

dismiss all other families. However, if the current node is not a head of the first family, 

but head of other families on the left, monotonicity also holds. For example 134 is 

cheaper than 234, and cheaper than 245 and so on. This monotonicity breaks at some 

point.  For example, node 156 can be more costly than 234, but if it is cheaper, then one 

can dismiss all nodes to the right of 234.  This suggests a strategy in which the current 

feasible node is compared to heads of families on the left only until the monotonicity 

breaks.   

This discussion points out that:  
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- The level traversal tree search strategy is very efficient if a current best is 

identified in left hand side of the tree, in such case lots of nodes in the 

right side of that current best node can be eliminated.   For example, if 

node “1234” is identified to be current best (the leftmost node in the level 

consisting of 4 sensors), then no other nodes in this level can compete with 

the node 1234 and we can quickly move to the upper levels. 

- Conversely, if the level traversal tree search cannot identify a node 

satisfying the stopping criterion until the end (the nodes on the rightmost 

side) of the current level, the tree search has to explore the whole level 

(explore all nodes from left to right). If this situation occurs, the level 

traversal tree search is not efficient to solve large scale problems.  

 

The calculation procedure is then described next 

The calculation procedure starts with a depth first search using the branching 

criteria based on adding the cheapest sensor until a feasible node is found or when a 

certain amount of nodes have been explored. This strategy is not efficient for medium 

and large scale problems, so the depth first procedure stops when the number of nodes 

explore reach a pre-defined limit. Assume that the current best node has been identified.  

Because the current best (identified by depth first search) is unlikely to be global 

optimum, the tree search continues seeking for global optimum by exploring the nodes in 

the right hand side and at the same level with the current best (that is, breadth first or 

level traversal strategy).  In this strategy, within a family of nodes, tree search looks for a 

node satisfying stopping criterion and updates the current best if applicable.  Because 
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sensors are added in the direction of minimum cost, the sister nodes of this node have 

higher cost than the current best so they are disregarded (Figure 2.3).  The search should 

continue with the next families of nodes at the same level and families in upper levels 

until we identify a level where all nodes are infeasible (Figure 2.4).  

 

 
 

Figure 3.3 - Stopping criterion 
 

Cost increases 

Root 
node Do not 

explore these 

Node satisfying 
stopping criterion, or 
current best node  for 
depth search 
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Figure 3.4 - Searched space in horizontal search 
 

 

Thus, the essence of the new method is to search the tree horizontally within the 

“promising” region only, defined as some number of levels above the currently identified.  

Compared with the depth first tree search method, this method saves computational time 

by skipping the region above the “promising region” where nodes are infeasible. The 

question is how to explore this region horizontally and how to guarantee global 

optimality.  For this two methods are proposed 

 

3.4. Level-by-level search 

 

The procedure of this method is as follows: 
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1. Run the depth first tree search method. Record the current best solutions and 

the associated depth level (number of sensors) in those solutions 

2. Stop  if the number of nodes explored reaches the predefined limit. This limit 

depends on the size of the problem. The current best solution found is denoted 

as XQ and its depth level (the number of sensors) is denoted as Nle. (See 

Figure 3.5). At this point all nodes to the left of XQ and their children have 

been explored. Property 3 allows us not to explore the next level (Nle-1). If 

there is a better solution, it is in this level or previous ones.  

3. If node XQ is a leftmost head of a family, identify its parent and move to the 

next level up (Nle-1).  If not stay at level Nle. Either way go to step 4.  

4. Identify all the families of nodes at the current level and on the right hand side 

of XQ 

5. In each family, identifying the node that satisfies the stopping criterion. If that 

node is not a head of family, continue exploring the next families. If that node 

is a head of family, disregarding all the nodes that are in the right hand side 

and share the same root with that node. For example, if that node (which is a 

head of a family) is “123478910”, then all the nodes that are on the right hand 

side and share the same root (“1234”) with that node shall be disregarded; the 

next node to be explored is “12356789” (assuming there is ascending order in 

cost from sensor 1 to sensor 10) 

6. If all nodes in the current levels are either explored or disregarded, continue 

exploring the upper levels 
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7. The tree search terminates once it identifies a level where all nodes are found 

to be infeasible.  

 

 
 

Figure 3.5 - Level-by-level search 
 

 

3.5. Hybrid vertical and “level-by-level” search 

 

In this method, we combine breadth first and depth first strategies.  The method is 

outlined next:  

1. Run the depth first tree search method. Record the current best solutions and 

the associated depth level (number of sensors) in those solutions 

2. Stop tree search if the number of nodes explored reaches the predefined limit. 

This limit depends on the size of the problem 

3. The current best solution found is denoted as XQ and its depth level (the 

number of sensors) is denoted as Nle. The number of sensors in optimal 

solution is at most equal to Nle.  Testing results (for medium problems) show 

XQ 
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that the number of sensors (depth level) in the optimal solution is generally in 

the range [Nle – 2, Nle – 5] 

4. Switch to level traversal search. 

5. Choose the depth level to perform horizontal search to be one value in the range 

[Nle – 1, Nle – 5], denoted as N 

6. Explore horizontally all the nodes on the right hand side of the branch that 

contains XQ that have the same depth level of N. These nodes are called root 

nodes.  

7. In each root node, check for its feasibility, then: 

• If the current root node (level N) is feasible, then the nodes in the upper levels 

(N-1, N-2, etc.) can also be feasible. Then  

o Explore the upper levels (N-1, N-2, etc.) by removing sensors out of 

the root node (we are exploring the parents only) with the following 

stopping criterion: stop exploring when the node is found to be 

infeasible.  

o Do not explore the sister nodes in the same family with the current 

root node because even if these sister nodes are feasible, they result in 

the same nodes in the upper levels (N-1, N-2, etc.) as with the current 

root node. 

o If that feasible node is head of a family, do not explore the families of 

nodes that share the same root and on the right hand side of that head 

of family 

• If the current root node (level N) is infeasible  
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o  If its cost is lower than current best cost, explore the lower levels 

(N+1, N+2, etc.), but do not explore level Nle   

o If the cost is larger than current best cost, skip this node and the 

associated sister nodes of this current root node.  If  that node (which 

has higher cost than the current best) is head of a family, do not 

explore the families of nodes that share the same root and on the right 

hand side of that head of family 

 

The procedure is depicted in figure 3.6 

 

 
Figure 3.6 - Hybrid Vertical and Level-by-level Search 
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3.6. Illustrated example – Level traversal methods 

 

The proposed methods are implemented in Fortran running on a 2.8 GHz Intel Pentium 

CPU 1028 MB RAM PC.  

Example 3.1:  The mineral flotation process example, introduced in chapter 2 (example 

2.2), is used. The same process flowsheet (figure 2.9) and data (tables 2.6 and 2.7) are 

used.  The same design specifications (table 2.8) are used. The level traversal tree search 

methods, the Level-by-level search and Hybrid search are used to solve the problem.  

They both identify the optimal solution. The design specifications and the optimal 

solution are given in Table 3.2 

 

Table 3.2 - Design case studies for the mineral flotation process example 
 

Case Study MFP1 
Low Spec. 

MFP2 
Moderate Spec. 

MFP3 
High Spec 

No. of key 
variables 4 4 12 

Key variables F1, C1A, F7 and 
C7B F1, C1A, F7 and C7B 

F1, F4, F6, C1A, C1B, F7, 
C4A, C4B, C6A, C6B, C7A, 

C7B 
Requirement Observability Redundancy Observability 

Precision 
thresholds 

1.5% (F1, C1A) 
2% (F7 , C7B) 

1.5% (F1, C1A) 
2% (F7 , C7B) 

1.5% (F1, F4, F6, C1A, 
C1B) 

2% (F7, C4A, C4B, C6A, 
C6B, C7A, C7B) 

Residual 
precision 
thresholds 

 5%  for F1, F7 only 
  

Measured 
variables 

F1, F3, F5, F6, 
F7, F8, C1A, 

C2A, C5A, C7B 

F1, F3, F5, F6, F7, 
F8, C1A, C2A, C3B, 
C4B, C5A and C7B 

F1, F3, F5, F6, F7, F8, 
C1A, C2A, C3B, C4A, C4B, 
C5A, C6B, C7A and C7B 

Sensors cost 1448 2118 2968 
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The performance of the two level traversal tree search methods are shown in Table 3.3, 

and compared to the performance of the depth first tree search. The predefined limit to 

stop the depth first tree search and switch to level traversal search is 500 (for level-by-

level search) and 5000 (for hybrid search). In the hybrid search, the level to be explored 

horizontally is 2 levels above the level of the current best identified by the depth first  

tree search (that is, N = Nle – 2) 

 

Table 3.3 - Performance of level traversal tree search methods, mineral flotation process 
example 

Case Study MFP1 
(Low Spec.) 

MFP2 
(Moderate 

Spec.) 

MFP3 
(High Spec.) 

Hybrid search 
Computation time 4 min 24 sec 7 min 22 sec 11 min 5 sec 
Number of nodes 

explored 205,168 119,188 186,521 

Level-by-level 
search 

Computation time 1 min 11 sec 2 min 52 sec 6 min 42 sec 
Number of nodes 

explored 57,143 117,382 171,975 

Depth First 
tree search 

Computation time 23 min, 41 
sec 2 hr, 16 min 7h 35 min 

Number of nodes 
explored 529,130 3,743,327 12,366,120 

Equations-
based with 

decomposition 

Computation time 13 seconds 40 seconds 1hr 29 min 
Number of nodes 

explored 5,077 13,622 200,245 

 
 

It can be seen that the level-by-level search is generally better than the hybrid 

search. In the two design cases MFP2 and MFP3, the two level traversal search methods 

explored similar number of nodes but the computational time of the level-by-level search 

is shorter than the other. The difference is largely due to implementation issue in Fortran 

of the hybrid search: from a node in the chosen level (N = Nle – 2), the tree search either 

goes up (explore upper levels N – 1, N -2) or goes down (explore next level N + 1, N + 2) 
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by calling the appropriate subroutines.  It is well known that before the commands in a 

subroutine are executed, a certain amount of time is spent to perform the pre-processing 

step (known in computer science as “overhead”).  The “extra” time spent on “overhead” 

explains why the computational time of hybrid method is larger  than that of the level-by-

level search. Although for design cases MFP1 & MFP2, the level-by-level search is not 

better than the equations-based method with decomposition, but if design case MFP3 is 

included for comparison, the level-by-level search can be considered to be better than the 

equations-based method because the level-by-level search solved the design case MFP3 

much faster. Another advantage of the level-by-level search over the equations-based 

method is that it is much simpler to use because it does not require any knowledge to 

decompose the problem (a poor choice of how to decompose the problem in equations-

based method can lead to much longer computational time)  

Detail of steps in the level-by-level search for the design case 3 (MFP3) is now 

illustrated. The list of sensors in ascending order of cost is [5, 3, 6, 1, 7, 2, 8, 4, 13, 17, 

15, 20, 24, 18, 10, 22, 9, 11, 21, 14, 23, 16, 12, 19] (vector SC).  For simplicity, we use 

the indexes (or locations) of sensors in the vector SC to indicate the measurement 

locations. For example, if the active element in vector q (in Eq. 1 and 2) is [1,2,3] then 

the actual chosen sensors (measurement location) are 5, 3 and 6 whose indexes in SC are 

1, 2 and 3 respectively. The solution q = [123] has the smallest cost among all the 

solutions that have three sensors. 

Let the set R be defined as follows: R=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The 

depth first tree search after exploring 500 nodes identifies [R, 14, 16, 17, 18, 19, 20, 22] 

as current best (containing 20 sensors and the current best cost is 3878)  at node 406. The 
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node at which the depth first  tree search terminates (node XQ) is [R, 14, 16, 18, 21, 23, 

24] (19 sensors). The first node to be explored by level-by-level search is the node that 

has the same level with the current best (20) and on the right hand side of XQ.  That node 

is [R, 14, 16, 19, 20, 21, 22, 23] (the different part between this node and XQ is italicized. 

The node is also a head of family whose root is [R, 14, 16] and it has higher cost (cost is 

3953) than current best.  Thus all nodes on the right hand side and share the same root 

with this node are disregarded.  The next node to be explored is [R, 14, 17, 18, 19, 20, 21, 

22].  The same thing is observed (head of family with higher cost than current best), thus 

the next node to be explored is [R, 15, 16, 17, 18, 19, 20, 21] (which is again a head of 

family) (the roots of those heads of families are indicated by normal letters, the other 

members are indicated by italicized letters). The same thing is observed and this node is 

disregarded. There is no node in the current level (20) can compete with the current best. 

After exploring roughly 9000 nodes, the tree search completes exploring the two levels 

20 & 19 (found a new current best at level 19, the new current best cost is 3653) and 

quickly moves to the next level (18).  The first node to be explored in this current level 

(number of sensors = 18)  is [R, 14, 16, 18, 22, 23], this node has lower cost than the 

current best but it is infeasible, so its sisters node ([R, 14, 16, 18, 22, 24]) is explored, 

which does not satisfy the stopping criterion either. The tree search keeps searching 

horizontally from left to right; in the process it visited nodes that have lower cost than 

current best but they are infeasible. The first node that is better than the current best is [1, 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 22].  This new current best is not a head 

of family, so the next families are explored.  The tree search continues in that fashion.   
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We have shown how the searching process proceeds and how to eliminate non-

optimal nodes in the level-by-level search.  The hybrid search is performed in the similar 

fashion. The only difference is that the hybrid search explores only one level (which is a 

chosen parameter). In each node in the chosen level, it either explores the parent (the 

root) of that node or the children originated from that node by calling the appropriate 

subroutines to either “go up” or “go down” the tree. 

It can be seen that the level traversal tree search is much more efficient than the 

depth first tree search because it explores only the “promising” region. However, the fact 

that the current bests are found in the left side of the tree plays a significant part in 

reducing computational time because the tight bounds helps eliminate lots of non-optimal 

solutions. If tight bounds are not obtained (in this context, when current bests are found 

in the right side of the tree), the level traversal tree search basically has to explore the 

whole level of tree, which makes it impossible to solve large scale problems efficiently 

using this method. The large scale problem with medium level of specification shown in 

chapter 2, the TE example case study 2, exposes such limitation of the level traversal tree 

search. We attempted to solve the TE example using level traversal tree search but the 

solutions provided by this method are worse than the equation-based method with 

decomposition described in chapter 2 even after several days running.  For the TE 

example, a kind of heuristic local search or approximate method is probably the most 

efficient method. This approximate method is shown in the next section. 
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3.7. Approximate method 

This section presents an approximate (local search) method that improves the 

equation-based method by complementing it with a local search. The idea is to use the 

good solutions provided by the equation-based method as input in a local tree search 

procedure to hopefully arrive close to the global optimum (the term “good” solution is 

meant to be a feasible solution with objective value / cost near to that of the global 

optimum) 

The core of our methodology, the local search, relies on the following 

observation:  

- The global optimal solution and near-optimal solutions belong to the same region 

(space of variables), that is, they are different from one another in values of only a 

few variables (in this context, the measurement locations). This is due to the 

inherent characteristic of the sensor network: if a measurement is good (because 

the associated sensor is cheap and this measurement contributes significantly to the 

observability and redundancy of key variables), then it will show up in global 

optimum and some other “good” solutions. Compared to the global optimum, a 

good solution usually misses one or two good measurements and contains some 

other “extra” measurements 

- Therefore, it is reasonable to assume that all the measurements show up in good 

solutions are good measurements that are very likely to show up in global 

optimum  
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Based on the above arguments, the proposed heuristic local search has the 

following two steps: 

Step one: 

The purpose of this step is to find a minimum cost (and feasible) solution 

constituted from those “good” measurements. The calculation procedure to find such a 

solution is the following: 

- Find the union of the last five current best solutions (find all good measurements 

that show up the last five current best solutions), denoted as vector U 

- Employ a tree enumerative strategy to remove measurements out of vector U to 

obtain a minimum cost solution (the method is essentially the same as the inverted 

tree search described in Nguyen & Bagajewicz, 2008). Let us denote that the 

minimum cost solution as MC.  

 

If all good measurements belonging to global optimum actually show up in the 

last five current best solutions (which is highly probable), the identified minimum cost 

solution MC is indeed global optimum.  However, there is a very small chance that one or 

two good measurements belonging to global optimum do not show up in vector U, thus 

we go on to step two to account for such situation. 

 

Step two 

The purpose of this step is to identify if it is possible to improve the solution by 

replacing a certain number of measurements in MC by some other measurements not 

belonging to MC (denote all the measurements not belonging to MC as vector A). This is 
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done by exploring all the possibilities of replacing a certain number of measurements 

(denoted as Nr, a parameter) in MC with elements in vector A trying to obtain a solution 

better than MC.  The calculation is as follows: 

- Remove a certain set of Nr measurements out of MC, denote the resulting 

vector as B 

- Use a tree enumerative strategy to add elements (measurements) from A into B 

trying to obtain feasible solutions with minimum cost.  

- Remove another set of Nr measurements out of MC, obtain the new vector B 

and repeat the same procedure 

- Terminate the process when all the possibilities of removing Nr measurements 

out of MC are explored 

 

The two steps procedure is illustrated in Figure 3.7 
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Figure 3.7 - Approximate (heuristic local search) method 
 

 

3.8. Illustrated example – Approximate method 

 

The proposed approximate method is implemented in Fortran running on a 2.8 GHz Intel 

Pentium 1028 MB RAM PC. One example is provided 

All measurements in 
the last five current 
bests (vector U) 

Vector MC 

Remove  measurements 
out of U to obtain 
feasible & minimum cost 
solution 

All measurements not 
belonging to MC  

Explore all the possibilities of 
replacing Nr measurements from MC 
with some “external”  measurements 
not belonging to MC 

Possible final result (global 
optimum)  
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Example 3.2:  The TE process example (introduced in chapter 2) is used.  The same 

process flowsheet (shown in figure 2.10) and data (tables 2.10 and 2.11) are used.  

Three design case studies are considered, which are described in table 3.4. The 

first design case is the one with moderate specification described in chapter 2. The other 

two design cases are ones with high level of specifications.  

 

Table 3.4 - Design case studies for the TE process example 
 

Design case TE1 
Moderate Spec. 

TE2 
High Spec. 

TE3 
High Spec. 

No. of key 
variables 17 19 23 

Key variables 

F6, yA6, yG6, yH6, F7, 
yG7, yH7, yA9, yG9, 

yH9, F11, yG11, yH11, 
Pr, Tr, Ps, Ts 

F6, yA6, yB6, yG6, yH6, 
F7, yA7, yB7, yC7, yA8, 

yB8, yC8, yD8, yA9, 
yB9, yC9, F11, yG11, 

yH11  

F6, yA6, yB6, yG6, yH6, 
F7, yA7, yB7, yC7, yG7, 

yH7, yA8, yB8, yC8, 
yD8, yA9, yB9, yC9, 

yG10, yH10, F11, yG11, 
yH11 

Requirement Observability Redundancy Redundancy 
Precision 
thresholds 2% 1.5% 1.5% 

Residual precision 
thresholds  4% 4% 

Measured 
variables 

F6, yA6, yG6, yH6, F7, 
yA7, yA9, yG9, yH9, 
F11, yG11, Ps (12 

sensors) 

All variables but  
{yC6, yE6, yF6, yE9, 
yF9, yE10, yF10, yG10, 
yH10, Pr, Tr, Ps, Ts} 
(34 sensors) 

All variables but  
{yC6, yE6, yF6, yE9, 
yF9, F10, yE10, yF10, 
Pr, Tr, Ps, Ts} (35 

sensors) 
Sensors cost 7,070  23,560 24,810 
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Except for design case studies with low level of specifications (where feasible 

solutions contain only a small fraction of available candidate sensors), the TE example 

cannot be solved by using the individual measurement-based tree search (described in 

Bagajewicz, 1997) in a reasonable computational time.  Indeed, it is estimated that, if 

moderate or high level of specification is required, solving the TE example by individual 

measurement-based tree search takes as long as several weeks.  Equation-based tree 

search method coupled with decomposition (called Decomposed Equations method, 

presented in chapter 2) is the only viable option for design cases with moderate level of 

specifications while design cases with high level of specifications can be solved by using 

either inverted tree strategy or Decomposed Equations method (as shown in chapter 2).   

 

The Decomposed Equations method was first used to obtain several good 

solutions as starting point, then use local search to arrive at optimum solution. The 

specifics of the approximate method as applied to our example are:  

- The Decomposed Equations method was first used to solve the problem, which is 

terminated after 100,000 nodes are explored. All the current best solutions  

(feasible ones) are recorded. 

- The last five current best solutions are used as input (“good” measurements) to the 

local search procedure described above. 

- As stated above, the local search includes two steps: 

 

i. Removing sensors out of the vector containing all “good” measurements 

to arrive at the new current best MC (most likely to be optimal solution),  
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ii. Exploring all the possibilities of replacing Nr measurements in MC with 

some other measurements not belonging to MC.  We use  Nr= 2 

 

For the two last design cases (high specification), the inverted tree search method 

described in Nguyen & Bagajewicz (2008) was used to validate the solutions obtained by 

the proposed approximate method, which is a combination of the Decomposed Equations 

method and the local search.  

For the first design case, its solution was validated by using the level-by-level “L 

by L” tree search described in above section.  More specifically, the “L by L” tree search 

was used to explore the level containing 12 sensors (same number of sensors with that of 

TE1’s solution obtained by approximate method); which found no better solution.  Thus, 

the combination of the Decomposed Equations method and the local search is able to find 

optimal solutions for the TE problem.   

The computational performance of the approximate method is shown in table 3.5 

 
Table 3.5 - Performance of the approximate method, TE process example 

 

 
TE1 

Moderate Spec. 

TE2 

High Spec. 

TE3 

High Spec. 

Number of 

nodes 

explored 

Step 1 48,544 484 212 

Step 2 54,097 130,683 166,244 

Total 202,641 231,167 266,456 

Total computational time 1hr 12 min 1hr 33 min 1hr 40 min 
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• For design case studies TE2 & TE3: after exploring 100,000 nodes, the 

Decomposed Equations method identifies four current best solutions that 

contain 39, 37, 38 and 36 sensors respectively (costs are 26990, 26290, 26240 

and 25540). The union of these solutions (vector U) contains 39 sensors, which 

is exactly the same as the first current best identified (this means that the first 

current best contains all “good” measurements). Exploring all the possibilities 

of removing sensors out of vector U results in the optimal solutions (containing 

34 and 35 sensors with costs being 23,560 and 24,810 for design cases TE2 and 

TE3 respectively).  

• For design case TE1: after exploring 100,000 nodes, the Decomposed 

Equations method identifies 11 current best solutions; the last five solutions 

having cost ranging from 11840 to 13370 and number of sensors ranging from 

20 to 22. The union of the last five solutions (vector U) contains 23 sensors. 

Using enumerative tree search strategy to remove sensors out of U (exploring 

48,544 nodes) results in the optimal solution that contains only 12 sensors 

costing 7070. This solution is much better than the current best solution 

obtained by using the Decomposed Equations method only (that solution, 

described in chapter 2, contains 17 sensors whose cost is 9630). Note that, as 

stated in chapter 2, because the Decomposed Equations tree search was 

terminated halfway, the obtained current best solution is not guaranteed to be 

optimal solution.  That solution is indeed confirmed to be a sub-optimal 

solution in this work 
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In all the testing problems we have tried, the combination of the Decomposed 

Equations method and step 1 is able to locate optimum solution.  The use of step 2, which 

is a safeguard step to avoid the possibility of missing optimum solution, somehow 

“guarantees” optimality. We discuss some of this issue next:  

Let us denote the measurements contained in the optimal solution as optimal 

measurements (in the opposite side, the rest are called non-optimal measurements).  The 

optimal solution is missed only if the following two situations occur simultaneously:   

i. The optimal solution is missed, that is, the current best MC is not optimal 

solution (which means that MC contains some (=Nt) non-optimal 

measurements) 

ii. The number of non-optimal measurements in MC (Nt) is more than the 

number of measurements we consider removing out of MC (Nr). 

 

Table 3.6 concludes this chapter. This table is the table 3.1 updated with the two new 

methods presented in this chapter, where the measurement-based tree search is replaced 

by the level-by-level tree search and the approximate method is used when short 

computational time is preferential over finding optimal solution 
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Table 3.6 - Most suitable method for solving sensor network design problem 
 

Level of 
specifications Linear systems 

Nonlinear systems 

Focus on finding 
optimal solution 

Focus on 
computational 

time 

Low Cutsets-based or 
level-by-level search 

Equations-based or 
level-by-level search 

Equations-based or 
Approximate 

method 

Medium Cutsets-based Equations-based or 
level-by-level search 

Approximate 
method 

High Cutsets-based or 
Inverted tree search 

Equations-based or 
Inverted tree search 

Approximate 
method or Inverted 

tree search 
 

 

3.9. Conclusions 

 

In this chapter, two efficient methods for solving nonlinear SNDP are presented:  

1. The level traversal method helps reduce computation time of the depth first tree 

search by skipping the non-feasible region and intelligently disregarding the non-

optimal solutions via notion of families of nodes. The method is very efficient if 

feasible solutions are found in the left hand side of the tree. 

2. The approximate method is a combination of Decomposed Equations method 

(presented in chapter 2) and heuristic local search method. This method is very 

efficient: it is able to solve nonlinear large scale problems within a couple of 

hours. Although it does not guarantee optimality, the chance of finding global 

optimal solution is very high. Indeed, the proposed method was able to find 

optimal solution in all three design case studies shown in this paper. 
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4.  VALUE-PARADIGM SENSOR NETWORK DESIGN 

 

Traditional cost-optimal approach to design sensor networks requires 

expertise knowledge of the users to use appropriate specifications in the 

model. This chapter presents a new approach to design sensor network.  

This approach, based on the concept of value of accuracy developed by 

Bagajewicz (2006), allows the simultaneous optimization of cost and 

performance of sensor network.  Efficient methods to solve the problem 

are also proposed    

 

4.1. Overview 

All the published work on SNDP for process monitoring purpose focused on 

finding more efficient computational methods to solve the problem, where the sensors 

cost is minimized and the popular specifications on precision, residual precision, error 

detectability and resilience and estimation reliability are used as performance targets.  

Recently, Bagajewicz (2005a) introduced the concept of software accuracy that 

essentially encompasses all the aforementioned performance measures.  The economic 

value of software accuracy was also quantified (Bagajewicz, 2006) and an efficient 

approximate method was developed to evaluate the economic value of accuracy (Nguyen 

et al., 2006).   

This chapter presents a new approach to design sensor networks that maximizes 

the economic value of accuracy (named value-optimal SNDP). Relationship between this 
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new approach and the traditional cost-optimal approach is discussed and efficient 

methods to solve the problem are presented. 

This chapter is organized as follows: firstly the concept of software accuracy and 

economic value of accuracy is briefly reviewed, followed by description of computational 

methods to evaluate software accuracy and its associated economic value. The value-

optimal SNDP and efficient methods to solve the proposed problems are then presented. 

 

4.2. Software accuracy 

Accuracy was conventionally defined as precision plus bias (Miller, 1996). 

However, the definition is of little practical use because bias size is generally unknown.  

Recently, Bagajewicz (2005a) introduced the concept of software accuracy in the context 

of data reconciliation and gross error detection being used to detect biases. In such 

context, accuracy was defined as sum of precision and induced bias instead of the actual 

bias.  The induced bias and the software accuracy are shown next (Bagajewicz, 2005a): 

ˆ [ ] [ ]δ E x x I SW δ= − = −)
                                                    (4-1)       

*ˆ ˆi i ia = +σ δ                                                                  (4-2) 

where *ˆ ˆ, ,i i ia σ δ are the accuracy, precision (square root of variance Sii) and the 

induced bias of the estimator, respectively. 

By definition, the accuracy value relies on how one calculates the induced bias.  

From Eq. (4-1), it is clear that the induced bias is the function of undetected biases whose 

sizes can be any value below the threshold detection values and their location can be 

anywhere in the system.  Thus, the induced bias is a random number.  Bagajewicz 
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(2005a) proposed to calculate the induced bias as the maximum possible value.  Recently, 

Bagajewicz (2005b) and Bagajewicz and Nguyen (2006) proposed to calculate the 

induced bias as the expected value of all possible values, which is more realistic, and 

used a Monte Carlo simulation – based procedure to obtain such expected value.    

 

4.3. Economic value of accuracy 

Bagajewicz et al. (2005) presented the theory of economic value of precision and 

developed formulas for assessing downside financial loss incurred by production loss. 

They argued that, due to inaccuracy (caused by random errors) of the estimator of a 

product stream flowrate, there is a finite probability that the estimator is above the target 

but in fact the real flow is below it. In such situation and under the assumption that the 

operators did not make any correction to the production throughput set point when the 

estimator suggested that the targeted production has been met or surpassed, the 

production output will be below the target and financial loss occurs. The financial loss 

under simplified assumptions of negligible process variations and normal distributions of 

the process variation and the measurements was found to be DEFL = 0.19947*Ks*T* pσ̂  

where Ks  is the cost of the product (or the cost of inventory) and  T is the time window of 

analysis (Bagajewicz et al., 2005). 

Using the same concept of downside financial loss, Bagajewicz (2006) extended 

the theory of economic value of precision to include the effect of (induced) bias, namely 

the economic value of accuracy. The expression for financial loss DEFL considering bias 

is given by (Bagajewicz, 2006): 
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0 0 1 1 2 2
1, 2 1, 2,.,1, 2 1, 2,.,

1, 2 1, 2,.,

.. n N
i i i i i iNi i i i i iN

i i i i i iN
DEFL DEFL DEFL DEFL DEFL= Ψ + Ψ + Ψ + Ψ∑ ∑ ∑   (4-3)     

   

In this equation, 1, 2,.., 1, 2,..,
 and n N

i i iN i i iN
DEFLΨ  are the average fraction of time the 

system is in the state containing n gross errors i1, i2,..,iN and its associated financial 

losses, respectively. Detail expression and procedure to calculate the financial loss for 

system containing n biases  i1, i2,..,iN  can be found in Nguyen et al. (2006) 

Applications of the theory of economic value of precision/accuracy for the 

determination of economical benefit of instrumentation upgrade were shown by 

Bagajewicz et al. (2005) and Bagajewicz (2006).  The economical benefit of an 

instrumentation upgrade was calculated as the difference in downside financial loss 

(DEFL) before and after such upgrade.  The net present value of instrumentation upgrade 

(IU) was then given by: 

{ })()( IUafterDEFLIUbeforeDEFLdNPV n −= - cost of IU                      (4-4) 

where dn is sum of discount factor for n years. The cost can be the cost of 

purchasing of new sensor (when adding new sensors) or the cost of license (when 

installing data reconciliation software).  A large value of the net present value of 

instrumentation upgrade may justify this type of investment. Case studies on the value of 

performing data reconciliation as well as savings of adding new sensors at selected 

locations to the sensor network of a crude distillation unit were provided by Bagajewicz 

et al. (2005) and Bagajewicz (2006). 
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It has been also shown that the financial loss without bias 0DEFL is smaller than 

financial loss in the presence of biases 1 2
1, 2

, , ...
i i i

DEFL DEFL  (Nguyen et al., 2006). 

Looking at the complete expression for financial loss (Eq. 4-3), it is obvious that if one is 

to reduce financial loss, one can either directly reduce the individual financial loss (i.e.,

0 1 2
1, 2

, , ...
i i i

DEFL DEFL DEFL ) by instrumentation upgrade, or one can increase the 

fraction of time that the system is in the state containing no biases 0Ψ  (as a result, the 

fractions of time that the system is in the state containing biases 1 2
1, 2, ,...i i iΨ Ψ are reduced).    

This is where maintenance policies come into play because different maintenance 

schemes of sensor system affect the aforementioned fractions of time.   

 

4.4. Computational methods to evaluate software accuracy and economic 

value of accuracy 

The financial loss 
1, 2,..,

N
i i iN

DEFL  corresponding to the presence of a specific set of 

gross errors i1, i2,..,iN  can be evaluated using two methods: approximate method and 

Monte Carlo simulation as detailed in Nguyen et al. (2006);  upon which the financial 

loss of a sensor network (DEFL in Eq. 4-3) is evaluated.  The expected value of accuracy, 

which is the mean value of all possible values of accuracy, is a more realistic value than 

the maximum possible value (which is too conservative).  Similar to the financial loss 

(DEFL), this expected value of accuracy can be evaluated using two methods: 

approximate method and Monte Carlo simulation.  The Monte Carlo simulation-based 

procedure to evaluate the expected value of accuracy, termed stochastic accuracy, is 

detailed in Bagajewicz and Nguyen (2008) (the approximate method to calculate 
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expected value of accuracy is not described in any published paper, but it is very similar 

to the approximate method to calculate financial loss, which was described in Nguyen et 

al., 2006).  

The Monte Carlo simulation procedure to calculate the stochastic accuracy and 

financial loss was described in Bagajewicz & Nguyen (2008) and Nguyen & Bagajewicz 

(2009), respectively.  This method takes longer computational time than the approximate 

method so it is mainly used to validate the results obtained by the approximate method 

The principle of the approximate method is to partition the space of variables into 

several sub-spaces.  In some sub-spaces the expression for financial loss (and accuracy 

value) can be evaluated analytically while in the others the expression has to be evaluated 

approximately (Nguyen et al., 2006).  The partition of the space of variables is illustrated 

in Figure 4.1 in the case two biases are present in the system. 

 

Figure 4.1 - Different regions when two gross errors are present in the system 
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In the region where both biases are detected, the expression for financial loss can 

be calculated analytically while in the others, an approximate scheme is used to evaluate 

the expression (Nguyen et al., 2006). 

The better the gross error detection capability of the network (which means the 

smaller the area of the rhombus shown in figure 4.1), the smaller the expected value of 

accuracy (and financial loss) is.    

 

4.5. Dependence of software accuracy and the associated economic value 

on sensor network 

Because software accuracy is defined as precision plus induced bias, the 

requirement on accuracy value encompasses the requirements on precision, gross errors 

delectability and gross errors resilience. More specifically, a sensor network that renders 

good (small) software accuracy for variables of interest needs to possess all of the 

followings:  

i. Good precision of estimators of key variables  

ii. Good level of redundancy (i.e. enough measured variables) to detect biases so 

that undetected biases would have small magnitudes; this property is directly 

related to gross errors delectability  

iii. Smearing effect of undetected biases on estimators of key variables is limited 

(such that estimation accuracy is small even though undetected biases are 

large); this property is directly related to gross errors resilience.  

 



108 
 

These needed network’s capabilities generally require a good level of hardware 

redundancy (i.e. more sensors than the number of key variables).  To improve estimation 

accuracy, it is usually needed to use more sensors. The same thing is stated for financial 

loss, that is, sensor network would have small financial loss if it possesses the three 

aforementioned properties and it is necessary to use more sensors to reduce financial loss.   

The exception to this generalization does exist.  Indeed, there exists situation in 

which the undetected biases are very large, for example, two gross errors cancel out each 

other such that these two biases are undetected (by using measurement test) no matter 

how big they are. This phenomenon is known as gross errors equivalency (Bagajewicz 

and Jiang, 1998).  An example for the case of gross errors equivalency is shown next. 

Consider the system shown in figure 4.2.  The two biases in S2 and S3 can not be 

detected (no matter how big they are) if they are equal but in opposite sign (since the 

material balance is satisfied in such case).  The region of undetected biases for such case 

is shown in figure 4.3.  Note that, practically, gross errors are not unbounded.  If a bias in 

a measurement passes a certain threshold, which is usually a certain percentage of the 

normal value of the variable, by common sense the operators can tell that there is bias in 

the measurement.  

 
Figure 4.2 – Illustrated example 

 
 

S3 

S1 
S2 
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Figure 4.3 – Illustration of biases equivalency 
 

Thus, if the newly added measurement forms such a set of gross errors with 

existing measurements (while the original network does not have), the software accuracy 

and financial loss increase when that new measurement is added to the network.  

The typical case as well as the irregular case of software accuracy and financial 

loss as function of the number of measurements is shown in figure 4.4 

 

 

4a. Accuracy vs. number of sensors 
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4b. Financial loss vs. number of sensors 

Figure 4.4 – Accuracy and financial loss as function of number of sensors 
 

If typical value for sensor precision (2%) is used, typical range for accuracy is from 2% 

to 20% (of nominal value of measured data).  Financial loss does not have typical range 

because it depends strongly on the economic parameters, which are Ks (cost of the 

product or cost of inventory) and T (time window of analysis)  

 

As can be seen from figure 4.4: 

- The jumps (steep slopes) in figure 4.4 corresponding to the case where the newly 

added measurement contributes significantly the process monitoring capabilities of 

the sensor network (e.g. observability and redundancy of key variables).  On the 

other hand, if “meaningless” measurement (that contributes almost nothing to the 

process monitoring capabilities of the sensor network) is added, the accuracy and 

financial loss are almost unchanged. 

Financial 
loss

Number of sensors

Atypical case

Typical case
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- Generally, adding sensors improves accuracy and financial loss 

- If bias in the newly added sensor is very difficult to be detected, accuracy and 

financial loss would increase when adding that sensor.  However, continue adding 

more sensors would again improve accuracy and financial loss 

 

4.6. Accuracy and value-optimal SNDP 

 

4.6.1. Accuracy-constrained SNDP 

 

Software accuracy can be used as a constraint in the commonly used cost-optimal 

SNDP (equation 1-6).  The problem formulation for accuracy-constrained SNDP is 

obtained by adding constraint on accuracy to equation (1-6): 

. .
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a a i N
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      (4-5) 

 

where ai(q) and ai
* are accuracy of key variables and the associated threshold 

values; NS represents the set of variables where specification on accuracy is required  

The problem (4-5) can be readily solved by using any suitable branch and bound 

method developed in our group (see table 3-6) 
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4.6.2. Value-optimal SNDP 

 

The proposed sensor network design formulation is as follows: 

{ }

1

Max ( ) ( )
. .

m

( ) b

q q

q
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−

≤

≤

∑
in

i
i

V c
s t

q

c

       (4-6) 

ni is the number of candidate sensors (number of process variables under considerations);   

V(q) is value of sensor network (function of measurement locations q), c(q) is cost of 

sensors; m is limit on number of sensors and b is limit on budget.  

If limit on number of sensors and budget limit are not used, the problem becomes an 

unconstrained optimization problem:  

{ }Max ( ) ( )q q−V c           (4-7) 

The value of a sensor network is given by 

{ }( ) (no sensor) (with sensors) ( )V q DEFL DEFL RDEFL DEFL q= − = −    (4-8) 

The financial loss when there is no sensor is a large value, denoted as RDEFL (a 

reference value).  Equation (4-8) becomes 

{ }Max { ( ) ( )}q q− +RDEFL DEFL c      (4-9) 

Thus, maximizing value minus cost is equivalent to minimizing financial loss plus cost of 

sensor network 
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Min{ ( ) ( )}q q+DEFL c         (4-10) 

This is an unconstrained optimization problem with complicated surface of objective 

function. When the number of sensor increases, cost c(q) increases  but  the financial loss 

DEFL(q) generally decreases as shown in figure 4.5 

The best situation is when the objective function exhibits a single global 

minimum (as shown by line A in figure 4.5). Unfortunately, the objective function 

(financial loss plus cost) is a complicated function of the sensor network (vector q) and 

usually has many “hills” and “valleys”, that is, it usually has many extrema (as shown by 

line B in figure 4.5) 

 

Figure 4.5 – Objective function vs. dependent variables (q) 
 

The most popular method to solve unconstrained optimization problem is to use 

the KKT condition (contact condition). Unfortunately, the objective function is not a 

Number of sensor 
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DEFL + cost (B) 
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explicit function of dependent variable (q); in fact, numerical method in the form of 

approximate method or Monte Carlo method must be used to calculate the objective 

function (more specifically, the financial loss). Thus, the only applicable method is the 

“searching” method. Two “searching” methods are considered: tree enumeration method 

and Genetic Algorithm, a very popular stochastic approach to solve combinatorial 

optimization problem.   

 

4.7. Illustrated example of accuracy-constrained SNDP and value-

optimal SNDP 

 

4.7.1. Example 4.1 

 

Consider the following process example, which was introduced in chapter 1 

(example 1.1).  The process flowsheet is shown in figure 4.6, the data for the example is 

shown in table 4.1 (sensor precision = 2% for all sensors).  Sensor failures are assumed to 

occur with probability 0.2 (third column), the biases associated to these failures are 

assumed to follow normal distributions with zero means (fourth column) and standard 

deviations given in fifth column 

 

Figure 4.6 – Example process 
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Table 4.1- Data for example 4.1 
 

Stream Flow rates Costs 

Prob. of 

failure of 

sensor 

Mean of pdf 

of bias 

STD of pdf 

of bias 

S1 100 55 0.2 0 8 
S2 140 40 0.2 0 11.2 
S3 140 60 0.2 0 11.2 
S4 20 50 0.2 0 1.6 
S5 120 45 0.2 0 9.6 
S6 20 55 0.2 0 1.6 
S7 100 60 0.2 0 8 

 

For this small illustrated example, optimal solutions are obtained by using 

exhaustive tree search without stopping criterion (totally there are 127 candidate 

solutions).   

 

Accuracy-constrained SNDP 

The sensor network design problem requesting a satisfactory accuracy value of 

key variables (equation 4-5) is illustrated next.  The results are shown in table 4.2 

 

Table 4.2- Results for example 4.1, accuracy-constrained SNDP 
 

Case Study 4.1.1a 4.1.1b 4.1.1c 4.1.1d 4.1.1e 
Key 

variables S1 & S5 S1 & S5 S1 & S5 S1 & S5 S1 & S5 

Accuracy 
thresholds 4 3 2 1.8 1.5 

Accuracy 
value 

aS1 = 3.36 
aS5 = 2.85 

aS1 = 2.22 
aS5 = 1.99 

aS1 = 1.90 
aS5 = 1.81 

aS1 = 1.65 
aS5 = 1.49 

aS1 = 1.499 
aS5 = 1.27 

Measured 

variables S1, S6 S1, S5, S6 S1, S6, S7 S1, S5, S6, S7 All variables 

Sensors cost 110 155 170 215 365 
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The design specifications are shown in rows 2 & 3 of table 4.2, the optimal 

solutions are shown in row 5 (optimal measurement placement) and row 6 (optimal cost).  

The accuracy values of key variables corresponding to the optimal solutions are shown in 

row 4. 

From design case 4.1.1a to 4.1.1e, the desired value of accuracy decreases (from 

4.0 to 1.5), which requires more sensors to be used.  In design case 4.1.1.a, basically only 

observability is required for the two key variables S1 & S5.  In design cases 4.1.1b and 

4.1.1c, the obtained optimal solutions render redundancy of level one for key variables 

(the two key variables are still observable if one removes any one sensor out of the three-

sensor solutions).  When a smaller accuracy threshold (design case 4.1.1d) is required, 

both redundancy (of key variables) and gross error detection capability of the network are 

required; hence more sensors need to be used.  It can be seen that the optimal solution in 

this design case is the same as the solution obtained in design case 1.1c (column 4, table 

1.2) where both estimation redundancy and gross error detection capability are required.  

Design case 4.1.1d is the extreme case where the required accuracy threshold is so small 

such that all sensors need to be used to meet the requirement. 

 

Value-optimal SNDP 

The sensor network design problem simultaneously minimizing financial loss and 

cost of a sensor network (equation 4-10) is illustrated next.  This problem does not have 

any constraint.  The economic parameters used in the expressions to evaluate financial 

loss are as follows: the time window of analysis T is 30 days (this is based on the 

argument that, by mean of production accounting calculation every month, one can detect 
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the loss in production that has been covered by biased measurement); the cost of product 

Ks (or cost of inventory) for the two key variables S1 & S5 are shown in row 3 of table 

4.3.   The financial losses of the optimal sensor networks are shown in row 6 of the table 

 

Table 4.3- Results for example 4.1, value-based SNDP 
 

Case Study 4.1.2a 4.1.2b 4.1.2c 4.1.2d 
Key 

variables S1 & S5 S1 & S5 S1 & S5 S1 & S5 

Ks value Ks1 = 2 
Ks5 = 2 

Ks1 = 10 
Ks5 = 10 

Ks1 = 30 
Ks5 = 20 

Ks1 = 60 
Ks5 = 50 

Measured 

variables S1, S6 S1, S6, S7 S1, S5, S6, S7 all 

Sensors cost 110 170 215 365 
Financial 

loss 78.6 219.9 451.8 824.9 

 

As can be seen from table 4.3: 

- When the cost of product Ks increases, financial loss increases 

- In the value-optimal SNDP problem, cost and financial loss are simultaneously 

minimized.  If Ks is small, the cost factor dominates financial loss factor and the 

optimal network contains few sensors. In the opposite site, if Ks is large, the 

financial loss term dominates the cost term and the optimal network contains large 

fraction of candidate sensors so as to minimize financial loss. This means that if Ks 

increases, then the number of sensors in optimal network increases as evidenced in 

table 4.3 

- In design case 4.1.2a, Ks is small, cost needs to be minimized and the optimal 

network contains only enough sensors to guarantee observability of key variables 
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- In design case 4.1.2d, Ks is large, financial loss needs to be minimized and the 

optimal network contains all sensors. This is an extreme case 

- In design cases 4.1.2b & c, Ks is moderate, the optimal networks contains enough 

sensors that can guarantee some degree of estimation redundancy and gross error 

detection capability. The optimal networks in these two design cases are the same 

as the networks obtained in the two design cases 4.1.1c & d, which have good 

process monitoring capability (good accuracy value and good gross error detection 

capability) as shown in columns 4 and 5 of table 4.2 and columns 1 and 3 of table 

1.2 

 

The rest of this chapter focuses on the efficient methods to solve the value-optimal SNDP 

(as mentioned above, the accuracy-constrained SNDP is a constrained optimization 

problem that can be readily solved by using any appropriate branch and bound method 

shown in table 3-6)  

 

4.8. Genetic Algorithm 

 

The proposed optimization problem (equation 4-10) is amenable to standard 

genetic algorithm because: 

- The problem is a combinatorial optimization problem involving binary variables. 

- There is no constraint. 

- The objective function is a complicated function with many extrema. 
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Genetic Algorithm (GA) is used because this method is well-established and was 

shown to have good performance (although it does not guarantee optimality). In brief, 

Genetic Algorithm method is based on the principles of genetics, natural selection and 

evolution; it “allows a population composed of many individuals to evolve under 

specified selection rules to a state that maximizes the “fitness”, i.e. minimizes the cost 

function” (R.L. Haupt and S.E. Haupt, 2004). The algorithmic procedure and detailed 

description of the well-known Genetic Algorithm method can be found in various 

textbooks such as the Haupts’ book (2004).  

 

The GA is briefly described as a seven-step procedure as follows: 

1. Variable Encoding and Decoding: this step involves the conversion (i.e. 

encoding) of the values of decision variables into an appropriate representation 

(a chromosome). If the type of decision variables and the type of GA are the 

same (e.g. binary variables – binary GA, which is our case) then no conversion 

is needed: the values of decision variables are copied directly into the 

chromosomes. Decoding is the reverse process of encoding, which is the 

conversion from binary representation into real values of variables so that the 

cost function (i.e. objective function) can be evaluated  

2. Initialization of population: this step involves randomly generating a population 

of N chromosomes. For binary GA, this is done by using uniform distribution to 

generate random binaries.  The size of population, N, is a GA parameter. 

3. Natural selection: this step involves three operations: i) evaluating the cost 

function corresponding to each chromosome / individual in the population, ii) 
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sorting the population in descending order of “fitness” (e.g. if the cost function / 

objective value is to be minimized, then lower cost = larger “fitness” value), iii) 

selecting a portion of population with good fitness value to keep and discarding 

the rest, usually half of the population (the lower half in the sorted list of 

chromosomes) will be discarded. 

4. Selection: selecting and pairing the retained (survived) chromosomes to 

produce offspring for the next generation. Usually two chromosomes are paired 

to produce two offspring. There exist many methods for this operation, one of 

the most commonly used method is the roulette wheel selection. 

5. Mating: offspring of the paired chromosomes (parent) are produced through the 

crossover process whereby the parent’s genetic codes are passed on to the 

offspring.  

6. Mutation: random mutations alter a certain percentage of the bits in the list of 

chromosomes. Mutation is the second way the GA method explores a cost 

surface and avoids the trap of local optima. It introduces traits not in the 

original population and keeps the GA from converging too fast before sampling 

the entire cost surface. Mutation points are randomly selected from the 

population; with each mutation point, changing a 1 to a 0 and visa versa. The 

number of mutation points is defined by mutation rate, which is the fraction of 

the number of mutation points divided by the total number of bits in the 

population. 

7. Convergence: after the mutation step, a next generation population is generated 

which contains new chromosomes (i.e. new candidates for optimal solution to 
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evaluate). The same procedure of evaluating cost functions - selecting - pairing 

- producing offspring  (the steps from natural selection to mutation) is repeated 

unless convergence criterion is met, which is to terminate the GA procedure if 

the best objective value obtained in each iteration does not change after a 

predetermined number of iterations. 

 

The parameters involved in the GA method are the size of population, the portion 

of population to keep, the mutation rate and the selection and crossover methods. The 

methods for the GA operators and the values are intuitively chosen in accordance with 

the scale of the problem using the guidelines provided in the literature (R.L. Haupt and 

S.E. Haupt, 2004). They are as follows: 

- Selection: roulette wheel selection method 

- Crossover: two-point crossover method 

- Population size = 20  

- Fraction of population to keep = 0.5 

- Mutation rate = 0.2 

 

4.9. Cutset-based tree search method 

 

The calculation procedure is described below: 

1. Find all the cutsets of the process graph. 

2. Consider only cutsets that contain at least one key variable, put them to a list of 

cutsets 
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3. Remove key variables out of the cutsets in the list and consider them as separate 

cutsets, e.g. if [1 2 3 4] is a cutset and “1” and “3” are key variables then consider 

[1], [3] and [2,4] as separate cutsets 

4. Sort these cutsets in ascending order of their cost (cost of a cutset is equal to sum 

of the costs of the sensors placed on the streams of that cutset). 

5. Start with the root node with no cutsets being added i.e. t = {0, 0, 0…), trivially 

infeasible. 

6. Use branching criterion to develop branches of the tree (add cutsets to vector t).  

7. While performing the branching criteria, if any set of streams has already been 

evaluated in previous nodes, that node is not continued. This occurs frequently 

because one set of measurements can be a result of the union of different sets of 

cutsets. 

8. Continue adding cutsets until the stopping criterion is met. In such case, the 

algorithm backs up two levels and develops the next branch.  

 

Branching criterion 

Cutset is added in the direction of minimum cost, that is, the newly added cutset is 

chosen such that the cost obtained by its union with the existing active cutsets is 

minimum.  

An alternative branching has also been investigated, which is choosing cutsets in 

the direction of minimum objective function. It is found that this branching criterion 

requires much longer computational time than the other (direction of minimum sensors 

cost). In fact, for the small scale example given above (figure 4.6), this branching 

criterion requires roughly 10 times more computational time than the other criterion. For 



123 
 

medium or large scale problems, the difference is much larger. This is because the 

calculation of financial loss is an intensive computation duty, especially for middle or 

large scale problems.  

The task remaining is to find a proper stopping criterion 

 
Stopping criteria 

In the branch-and-bound method, in each node of the search tree, it is necessary to 

find the lower bound for the best solution obtainable if continuing exploring down the 

branch of the tree. If that bound is not better than the current best solution (the 

incumbent) obtained so far, stop exploring down the branch. Unless the bound is obvious, 

it is found by solving relaxation sub-problems (e.g. LP-relaxation, Lagrangean 

relaxation) in the subspace of variables. Unfortunately, none of the established techniques 

to find the bound is applicable to our problem, the main reason is that there is no explicit 

expression for the objective function. 

  

The proposed stopping criterion is as follows: 

In each node, calculating ∆D and ∆C as: 

∆D = DEFL(current node) – DEFL(sensor network with maximum number of sensors) 

∆C = Cost(sensor network with maximum number of sensors) - Cost (current node) 

∆D indicates the maximum gain in financial loss and ∆C indicates the maximum 

cost incurred if one continues exploring down the tree from the current node.  It can also 

be shown that if {∆C- ∆D} of current node > {∆C- ∆D} of previous node then the 

objective value of current node < the objective value of the previous node (see appendix 
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A1).  The reason why ∆D & ∆C are used is illustrated in figures 4.7 and 4.8, where 

“MNS” is used to denote the network with maximum number of sensors. 

 

 

Figure 4.7 – Differentiation of regions  using ∆D & ∆C 
 

We always start exploring the branch with nodes that have ∆D > ∆C or {∆C- ∆D} < 0 (in 

region I); the relationship ∆D > ∆C implies that one can reduce the objective function if 

continuing exploring down the tree.   
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Figure 4.8 – Use of ∆D & ∆C in stopping criterion 
 

Thus, ∆D & ∆C are used because:  

i. Optimal solution can NOT be in the region where NOT all key variables are 

observable (region I, figure 4.7), which always has ∆D > ∆C  

ii. The relationship ∆D > ∆C implies that there is high potential of reducing the 

objective function when exploring down the tree; if ∆D < ∆C: less potential  

iii. If (∆C - ∆D) of node 1 > (∆C - ∆D) of node 2 then objective value of node 1 

< objective value of node 2.  Using this relationship, with reference to figure 

4.8, we would have objective value of node B < objective values of all the 

nodes that have (∆C - ∆D) < 0 (the region on left hand side).  

Number of sensors 

Node  A 
(∆C - ∆D) < 0 
 

Node C 

Node D 

∆D > ∆C 
∆D < ∆C 

Local minimum in the 
region of high potential of 
reducing obj. value 
including the region where 
not all key variables are 
observable 

Local minimum in the 
region of low potential of 
reducing obj. value 

Node B 
(∆C - ∆D) > 0 
 

∆D < ∆C 

Stop here 

DEFL  

+ Cost 



126 
 

The proposed stopping criterion is: 

- Exploring down the branch until ∆D < ∆C 

- When ∆D < ∆C, explore further down the branch until objective value of 

current node > objective value of previous node. 

The essence of this proposed stopping criterion is, in a branch of the tree, locating 

a local minimum in the region of less potential of reducing objective function.  

We now investigate the possibility that the global optimal solution is missed 

because the proposed stopping criterion stops the tree search before it reaches global 

optimal.  This is illustrated in figure 4.9 

 
 

 
 

Figure 4.9 – Illustration of  missing optimal solution because of stopping criterion 
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It is found from testing results that there always exists a monotonic pathway to 

reach global optimum. The reasons are: 

- A union of variables (streams) is a result of many combinations (unions) of cutsets. 

This fact implies that, when cutsets are used in the tree search procedure, a specific 

set of active streams (measurements) can be reached by following many pathways 

(branches) in the tree.  Table 4.4 shows an estimate of how many pathways (using 

cutsets) to reach a specific set of active streams (i.e. measurements location) for 

the Madron process problem (shown in next section) 

- In most of the cases one can find a pathway in which the objective function is a 

monotonic decreasing function until it reaches the optimal solution (or at least 

objective function is  monotonic decreasing in the region ∆D < ∆C where the 

stopping criterion is considered).  Note that changing the pathway is actually 

following another branch in the tree.  We do not claim that one can always find 

such a pathway because there is no mathematical proof for this, but we have not 

found a counter example in which the global solution can NOT be reached by 

following any branch or pathway using the stated stopping criteria. 

 

The third row of table 4.4 shows the number (N1) of possible combinations (sets) 

of cutsets from a given number of cutsets while the fourth row shows the number (N2) of 

candidate solutions (i.e. measurements locations) resulting from the same given list of 

cutsets.  The ratio N1/N2 is an indicator of how frequently the situation that two sets of 

cutsets result in the same measurements location (by union operation) can occur. For 

example, if the ratio is 100, then among 100 possible combinations of cutsets, only one 
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combination leads to a candidate solution, the remaining 99 combinations are disregarded 

because they result in the same measurements location. This also means that expectedly 

there are 100 pathways to reach a specific set of active measurements. The information 

shown in table 4.4 is obtained from the Madron example (containing 24 streams, shown 

in next section)  

 

Table 4.4- Estimate of pathways (built on cutsets) to reach a specific set of measurements 

Case  1 2 3 4 
Key variables {S1, S9, S14} {S1, S5, S22} {S1, S5, S24} {S1, S7, S24} 
Number of key variables 3 3 3 3 
Number of cutsets 
containing at least one key 
variable 

99 97 102 108 

Number of possible 
combinations of cutsets (N1) 299-1 297-1 2102-1 2108-1 
Number of candidate 
solutions (N2) 46,042 64,781 39,552 38,365 
N1/N2 1.38*1025 2.45*1024 1.28*1026 8.46*1027 

 

 

Table 4.4 shows that only roughly 50,000 candidate solutions (each solution is a specific 

set of measurement locations, for comparison, the total number of such set of 

measurement locations is 224-1) resulted from the (2100 –1) possible combinations of 

cutsets.  This result reveals that the number of pathways (built on cutsets) to reach a 

specific set of measurements is very large.  

Figure 4.10 illustrated the two different pathways to reach optimal solution, one 

of them is a monotonic pathway (using actual data from one of the testing problem, 

example 4.1).  If in pathway 1, the calculation procedure stops at the third node, then the 

global optimal solution (the fourth node) can still be reached by the second pathway 

where a different set of active cutsets is used. Note that because the calculation procedure 
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considers all the possible combination of cutsets from the cutsets list, all the pathways 

that can reach global optimal solution will be automatically considered by the tree search 

procedure as long as they are different from one another. 

 

Figure 4.10 – Differeent pathways built on cutsets 
 

In figure 4.10, AC stands for active cutsets in a node and AV stands for the 

corresponding active variables (stream flowrates) in a node.  

The next part shows conceptually how to obtain a monotonic pathway (to reach 

optimal solution). 

Illustration: 

Consider the five cutsets C1,C2,C3,C4,C5 shown in figure 4.11.  A cutset is represented by 

a line, a stream (variable) is represented by a cross. There are two key variables K1 and 
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Figure 4.11 – Illustration of  cutsets 

 

 

There are two combinations of cutsets that give the same result, which is 

measuring all streams shown in figure 4.10: C1∪C2∪C4∪C5 and C1∪C3∪C4∪C5 

- Cutsets C3 and C5 are only weakly connected to the key variables: using C3 or C5 

alone does not make any of the key variable observable, using both C3 and C5 

would make K2 observable. The improvement (decrease) in financial loss when 

using such cutset is small  

- Cutsets C1 and C4 are strongly connected to the key variables: using C1 makes K1 

redundant while using C4 makes K2 redundant. The improvement in financial loss 

when using such cutset is large 

 

Conceptually, to obtain a monotonic pathway (to reach optimal solution), cutsets 

can be added in the following order (suppose that there are more one key variable, which 

is usually the case):  

- Put first cutsets that are weakly connected to the key variables like cutsets C3 and 

C5 then put cutsets strongly connected to the key variables like C1 and C4. The 

reason is that if cutsets are added in such order, the improvement (decrease) in 

financial loss progressively increases with the number of active sensors (active 
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cutsets), the likely result is that objective function progressively decreases with the 

number of active sensors (i.e. monotonic pathway) 

- Put first expensive cutsets then put cutsets that are less costly: if cutsets are added 

in such order, the increase in cost becomes progressively smaller with number of 

active sensors. However, this sequence of adding cutsets is not favored by the 

branching criterion, which requests using first the cheapest cutsets. 

 

All these discussions point out that: 

- Because there are so many pathways to reach a candidate solution, if the global 

optimal solution is not reachable in a pathway (because that pathway is not 

monotonic), it would be reachable in another pathway. Thus, the chance of finding 

global optimal solution is very high.  

- The bad side of this fact is that the stopping criterion may not have any effect at 

all, that is, one candidate solution if not reachable in a pathway can still be 

reachable in another pathway. The result is that the number of candidate solutions 

explored is equal for both cases: with stopping criterion and without stopping 

criterion. The obtained results from the Madron example confirm this speculation. 
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4.10.  Parallelized cutset-based tree search method 

 

4.10.1. Overview of parallel computing 

 

Recently, scientific computing has gradually shifted from serial paradigm to 

parallel paradigm, especially for large scale problems.  Characteristic and benefits of 

parallel computing (as compared against serial computing) are shown in table 4.5 

 

Table 4.5- Parallel computing vs. Serial computing 

Serial computing Parallel computing 

- Run on a single computer having a 

single CPU 

- Instructions are executed one after 

another 

- Only one instruction may execute at 

any moment in time 

- Run on multiple CPUs 

- Problem is broken into many parts 

- A part (a subset of data and / or a part of 

program instructions) is executed concurrently 

(on multiple CPUs) together with other parts  

 Benefits: 

- Reduce computational time => solve problem 

faster 

- Can solve problems with large data set => 

solve bigger problems 

 

The serial computing is illustrated in figure 4.12.  As seen in this figure, the four 

computation tasks (task 1 to 4) are executed sequentially using the whole problem data 
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(data set 1 to 4).  Example of computation task is any kind of arithmetic calculation; 

example of problem data is space (domain) of variables in optimization / modeling / 

simulation problems or input data in data mining or data visualization problems 

 

 

Figure 4.12 – Illustration of serial computing 
 

The most common way to do parallel computing is to process different parts of 

problem data in different computer nodes (CPUs). This approach is called single 

instruction multiple data (SIMD) and is illustrated in figure 4.13.  It is appropriate to use 

this approach when problem data can be divided into different parts, each part can be 

processed independently.  This is indeed the case in data mining / visualization problems 

and optimization / modeling problems, etc. 
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Figure 4.13 – Illustration of  single instruction multiple data (SIMD) palallel program 
 

In case the computational tasks can be executed independently (execution of a 

task does not depend on output from another task), then the program can be parallelized 

by executing the tasks concurrently as shown in figure 4.14 

 

Figure 4.14 – Illustration of  multiple instruction single data (MISD) palallel program 
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If both program instructions and program data can be divided, the parallelization 

approach is called multiple instruction multiple data (MIMD) 

The tree search method for solving SNDP is leaned to SIMD approach because 

the space of variables can be partitioned into multiple sub-spaces, which are then 

explored concurrently as shown in figure 4.15 

 

Figure 4.15 – Parallel tree search method 

 

There are many so-called library routines / interface specifications that make it 

easier for programmer to transfer from serial program to parallel program; the most well-

known are openMP (a library of compiler directives and subroutines) and Message 

Passing Interface (MPI).  From a programmer perspective, openMP is very easy to use 

because of its simplicity; however there is one down side of this advantage: it is difficult 

to obtain an optimized performance, especially for a big program.  The MPI requires 
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significant effort in programming but it is relatively easy to obtain a satisfactorily good 

performance, the MPI is very suitable for big programs like the value-optimal SNDP 

under investigation in this work. 

In this work we use all approaches: SIMD (single instruction multiple data) and 

MISD (multiple instruction single data) and MIMD. The parallel computing is done using 

an implementation of Message Passing Interface (MPI) called “openMPI”. More details 

on parallel computing and MPI can be found in Pacheco (1997) 

 

4.10.2. Automatic parallelization of loops 

 

The simplest way to do parallel computing is to parallelize the loops (do, for 

loops). This is illustrated in figure 4.16 where a loop is used to do computation on an 

array containing 80 elements. The data (80 elements of the array) can be divided into four 

sub-sets, which are then processed concurrently in four computer nodes as shown in 

figure 4.16 

 

Figure 4.16 – Parallelization of loop 
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This parallelization of loops can be done easily using openMP.  Fortunately, recent 

Fortran compilers that support parallel computing can accomplish this task automatically 

without any manual direction from the programmer. The Intel Fortran compiler used in 

this research work has such kind of feature and as shown in the Madron illustrated 

example, it greatly reduces computational time  

 

4.10.3. Message Passing Interface (MPI) 

 

The principle of parallel computing is to execute different parts of program on 

different computer nodes (CPUs). However, it is usually the case that computation in one 

node still needs to know certain kind of information from other nodes. For example, with 

reference to figure 4.15, the tree search on sub-space S1 in one node may need to know 

the current best solutions obtained in other nodes (where the searched spaces are S2, S3, 

S4) because a tighter bound in branch and bound (tree search) method would result in 

improved performance.  This can be done by assigning a node (denoted as master node, 

node 0) that receives and updates the current best solutions obtained in all other nodes on 

which the tree search procedure is run (denoted as worker nodes, nodes 1 to 4). The most 

updated current best solution found in any worker node at any moment in time is 

“communicated” to all other worker nodes in the manner illustrated in figure 4.17  
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Figure 4.17 – Communication between nodes in parallel tree search method 

 
 

Thus, there is usually a necessity to communicate between computer nodes. The 

MPI is developed to provide communication channels between computer nodes (as 

implied by the name Message Passing Interface). The MPI is a specification / standard 

for passing message between computer nodes (the most current standard is MPI version 

2.2).  Openmpi is one of the most popular implementation of MPI; it is a library of 

message passing subroutines (as well as other supporting subroutines for file handling, 

debugging, etc…). It is a tool provided for the programmer to do parallel computing; the 

programmer is responsible for determining all parallelism. More details on MPI can be 

found in Pacheco (1997) and various documents maintained at (http://www.mpi-

forum.org/docs/).  Note that, in MPI terminology, there is usually a computer node called 

master node (or server node), the rest are called worker nodes 

The next section describes three parallelized versions of cutset-based method for 
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follows the MISD approach and the third one follows MIMD . The focus is on the second 

one and third one because their performance is much better than the first one (in this 

specific problem). 

 

4.10.4. Parallelized cutset-based method – SIMD approach 

 

This parallel program follows the principle illustrated in figure 4.15, which is to 

partition space of variables into several sub-spaces.  The calculation procedure is 

depicted in figure 4.18 for a system containing 6 cutsets. 

 

- In this parallel program, no branching criterion is used. More specifically, cutsets are 

added in numbered order, for example, if the current set of active cutsets is [124] then 

the next cutset to be added is 5, if the new set [1245] is already evaluated (because the 

measurement locations resulted from union of cutsets [1245] is already evaluated) 

then consider new set [1246] and so on. 

- As discussed in previous section (and proven in the Madron illustrated example), the 

proposed stopping criterion has little effect in eliminating non-optimal solutions.  So 

it is not used in this parallelized version of cutset-based method.  Thus, the best 

solution obtained by this method is guaranteed to be optimal solution. 

- As illustrated in figure 4.18, all combinations of cutsets containing the root [1 2] are 

evaluated in one worker node (as shown in 4.18b, these combinations are [123], 

[124], [1234] etc). At the same time all combinations of active cutsets containing 

another root (e.g. [1 3]) are evaluated in another worker node and so on. This is how 

the principle of dividing problem data works.  
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4.18a Calculation procedure in master node 

 

 

Generate all 
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Continue until all combinations of Nc cutsets have been explored 

Check if all worker nodes have completed their tasks and become idle 

Send shutdown (termination) signal to all worker nodes  

Gather (receive) all current best solutions obtained in all worker nodes 

Sort all these current best solutions and identify optimal solution 
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4.18b Calculation procedure in worker nodes 

 
Figure 4.18 – Calculation procedure for parallel computing – SIMD approach 
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Notes: 

- If number of cutsets is m and rank of the last active cutset is n (for example, the 

current set of active cutsets is [12…n]) then the total number of possible new sets of 

active cutsets starting from the current set of active cutsets [12…n] is 2(m-n)  - 1 (for 

example, the new sets are [12…n,n+1], [12…n,n+1,n+2], etc).  If (m-n) ≤ 3 (i.e. the 

number of possible new sets ≤ 23  - 1), the current set of active cutsets [12…n] is to 

be processed in master node, otherwise ((m-n) > 3), it is processed in worker nodes. 

The reason is that communication between computer nodes costs time, so it is better 

to process a root (set of active cutsets) with (m-n) ≤ 3 directly in master node rather 

than sending it to worker nodes (in figure 4.18, the condition (m-n) ≤ 1 is used) 

- Initially, all worker nodes are idle (there is no running task at that time) so master 

node automatically sends roots (combinations of Nc active cutsets) to worker nodes.  

Only in later stage that the master node needs to check if a worker node is idle or not 

in order to assign new job for that worker node 

- The master node acts as a “manger”: it assigns jobs and monitors job completion for 

worker nodes; if master node finds that a worker node is idle (because its job was 

completed),  master node assigns new job for that worker node 

 

4.10.5. Parallelized cutset-based method – MISD approach 

 

This parallel program follows the MISD (multiple instruction single data) 

approach illustrated in figure 4.15, which is to execute multiple tasks at the same time.  

The calculation procedure is depicted in figure 4.19 
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4.19a Calculation procedure in master node 

Perform union operation of active cutsets to obtain candidate 
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4.19b Calculation procedure in worker node 

 
Figure 4.19 – Calculation procedure for parallel computing – MISD approach 

 

 

- Similar to the SIMD approach, there is no stopping criterion in this MISD parallel 

program so the best solution obtained by this method is guaranteed to be optimal 

solution 

- Regarding branching criterion, there are two alternatives: i) branching criterion is 

used, ii) branching criterion is not used (the tree search illustrated in figure 4.18b 

and 4.19a does not have a branching criterion). Advantage of the former is that 
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computation process has to be terminated halfway because computational time 

exceeds limit).  Advantage of the latter is that computational time is much shorter 

than the former because there is no need to determine which cutset (to be added to 

current active cutsets) results in a minimum cost among all candidate cutsets. 

- It can be seen that in this approach there are two computation tasks that are 

executed simultaneously: generating all candidate solutions (by using tree search 

procedure with cutsets) in master node and evaluating (i.e. calculating objective 

value, which is financial loss plus cost) all generated candidate solutions in 

worker nodes.  Although these two tasks are not completely decoupled (candidate 

solutions need to be generated first before they can be evaluated), the two tasks 

can still be executed concurrently: the fast job (generating candidate solutions) is 

done in one master node while the slow job (evaluating candidate solutions) is 

divided across many worker nodes. Relative computational times of these two 

steps are shown in figure 4.20  

 

In figure 4.20, the data is taken from the case study number 2 in the Madron illustrated 

example shown below (using a 2.8 GHz Pentium CPU, 1028 RAM PC). The straight line 

“Evaluating 100 solutions” shows the average computational time to evaluate 100 

candidate solutions (this time ranges from 49 sec to 294 sec). The curve “with branching 

criterion” shows computational time to generate 6400 candidate solutions when 

branching criterion is used, the curve “without branching criterion” shows the same 

computational time but no branching criterion is used. The value corresponding to point n 

in x-axis is the elapse time when the number of generated solutions increases from 
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6400*(n-1) to 6400*n. Thus figure 4.20 shows that computational time to generate 6400 

candidate solutions increases progressively with the number of solutions that have been 

generated. The reason is that a candidate solution (a set of measurement locations) needs 

to be verified that it is not coincident with any solution that has been evaluated so far.  

The time spent for this verification step increases with the number of solutions that have 

been generated; this fact explains the dependence of computational time on number of 

candidate solutions shown in figure 4.20 

 

 

Figure 4.20 – Comparisons of computational times of two steps in the MISD 
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Figure 4.21 – Ideal situation for MISD parallel program   
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node. This situation is realized when at the time master node finishes assigning jobs for 
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that t1 is close to t2 in the whole process. The case “No branching criterion” in figure 

4.20 is near to this “best” situation. 

As can be inferred from the calculation procedure, computational time of the 

overall parallel computing process can not be reduced lower than the time to generate all 

candidate solutions. This limit on computational time is achieved when t2 < t1 because 

this condition (t2 < t1) implies that the master node can always find an idle worker node 

to assign job (evaluating a batch of 100 solutions) whenever it needs.  This usually means 

using more computer nodes (CPUs) 

 

Parallelized version (MISD approach) of cutset-based tree search method with 

decomposition has also been developed. Decomposition technique was described in Gala 

and Bagajewicz (2006). This parallelized program of cutset-based method with 

decomposition is similar to the one without decomposition. The only differences are: 

 

i) Differences in cutset-based tree search procedure (section 4.9): 

- In step one: decompose the process graph into several sub-graphs. For example 

a system containing six stream [1 2 3 4 5 6] is partitioned into two sub-systems:  

one containing three streams [1 2 3] (sub-graph A) and the other containing [3 4 

5 6] (sub-graph B). Then find all cutsets in all sub-graphs.  

- In step two, consider only cutsets that contain at least one key variable and / or 

a connecting stream (i.e. the intersection between two adjacent sub-graphs, for 

example stream [3] connecting [1 2 3] and [3 4 5 6]).  The reason why 

connecting stream is also considered is better explained through an counter 
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example: suppose that [1] is the key variable, sub-graph A has only one cutset: 

[1 2 3] (which contains both key variable [1] and connecting stream [3]),  sub-

graph B has two cutsets containing connecting stream [3], which are [3 4 5] and 

[3 4 6] (no cutset in sub-graph B contains key variable [1]). If cutsets [3 4 5] 

and [3 4 6] are not considered, the solutions that contain many measurements 

like [1 2 3 4 5] or [1 2 3 4 5 6] will never show up (these heavily measured 

systems are most likely to be optimal solution if the parameter Ks is large) 

- No stopping criterion is used 

 

ii) Differences in parallelized version (section 4.10.5): 

The only difference is in step two of calculation procedure in worker node (figure 

4.19a) “Evaluate all 100 candidate solutions stored in list100”.  If no decomposition is 

used, the task is simply to evaluate objective functions of candidate solutions.  When 

decomposition is used, if a candidate solution (an element of a list100) is obtained from 

union operation of cutsets coming from the same sub-graph, then simply evaluating 

objective value of that candidate solution.  Otherwise (cutsets come from different sub-

graphs), suppose that the candidate solution is obtained from union of cutsets A & B 

(from sub-graph 1) and cutset C (from sub-graph 2) and cutset D (from sub-graph 3).  

Then, as illustrated in Gala and Bagajewicz (2006),  all solutions (that can be resulted 

from these four cutsets A, B, C, D) are found by performing the following operations: 

( ) ;  ( )A B C D A B C D∪ ∪ ∪ ∪ ∪ ⊕  and  ( )  ∪ ⊕ ∪A B C D and ( )∪ ⊕ ⊕A B C D  (note 

that  and∪ ⊕  are union operation and ring sum operation, respectively). The four 
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solutions (sets of measurement locations) resulted from the above four operations are 

then evaluated  

Now realizing that ( )∪ ∪ ⊕A B C D  is actually the union ( )∪ ∪ ∪A B C D  minus 

the connecting stream of sub-graph 2 (containing cutset C) and sub-graph 3 (containing 

cutset D) while ( )  ∪ ⊕ ∪A B C D is the union ( )∪ ∪ ∪A B C D  minus the connecting 

stream of sub-graph 1 (containing cutsets A, B) and sub-graph 2 (containing cutset C), 

etc. Thus the above three operations ( )∪ ∪ ⊕A B C D  and  ( )  ∪ ⊕ ∪A B C D and 

( )∪ ⊕ ⊕A B C D  are equivalent to exploring all possibilities of removing connecting 

streams out of the union ( )∪ ∪ ∪A B C D .  This approach is used in this work:  a tree 

enumerative procedure is used to explore all possibilities of removing connecting streams 

out of a candidate solution  

Thus the step “Evaluate all 100 candidate solutions stored in list100” now 

comprises of two steps: i) for each candidate solution (an element in the list100), use a 

tree enumerative procedure to explore all possibilities of removing connecting streams 

out of that candidate solution, ii) then evaluate all the resulting candidate solutions  (sets 

of measurement locations) 

 

4.10.6. Parallelized cutset-based method – MIMD approach 

 

In this MIMD (multiple instructions multiple data) approach, both program data 

and programs instructions are divided. More specifically, this approach combines both 

the technique of partitioning space of variables (SIMD approach shown in section 4.10.4) 

and the technique of dividing and concurrently executing computation tasks (MISD 
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approach shown in section 4.10.5).  The calculation procedure is essentially the same as 

that of the MISD approach (figure 4.19) except that: 

- The task of generating all candidate solutions (task one) is now divided and shared by 

several computer nodes (call group 1 of computer nodes) instead of only one 

computer node (the master node) in the MISD approach.  

- The group of computer nodes that is responsible for task two, which is evaluating all 

the generated candidate solutions (called group 2), receive the job assignment (the 

list100) from a computer node in group 1.  

- Because task one is fast job while task two is slow job, group two of computer nodes 

(responsible for task two) is bigger (containing more computer nodes) than group 

one.   

- Group two is divided further into sub-groups. The number of these sub-groups is 

equal to the number of computer nodes in group one. Each computer node in group 

one “manages” one sub-group (belonging to group two) as illustrated in figure 4.22. 

- The function (duty) and relationship between a computer node in group one (denoted 

as “managing node”) and a sub-group that it manages is similar to the function and 

relationship between master node and worker nodes in MISD approach (figure 4.19); 

that is, the managing node generates list100 and sends it to worker nodes under 

control of this managing node (e.g. in figure 4.22. CPU1 controls sub-group 1, etc.) 

- The function and relationship between master node and computer nodes in group one 

(the managing nodes) is similar to the function and relationship between master node 

and worker nodes in SIMD approach (figure 4.18): master node generates a root (a 

combination of Nc active cutsets like [1 2], [1 3] etc) and send it to  managing nodes 
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- The communication and assigning jobs between master node and computer nodes in 

group one and group two are illustrated in figure 4.22:  group one comprises of four 

“managing” nodes (CPU1 to CPU4), group two comprises of four sub-groups. 

- The number of “managing” computer nodes in group one is an important parameter 

because it strongly affects performance of the method. As shown in illustrated 

example, usually the best performance is achieved at small number of “managing” 

computer nodes.  

- No branching criterion and no stopping criterion is used 

 

Figure 4.22 – Illustration of MIMD parallelization   
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4.11.  Example 4.2 – Madron problem 

 

All of the proposed methods were implemented in Fortran. The exhaustive tree 

search, the GA method and the serial version of cutset-based method were run on a 2.8 

GHz Intel Pentium CPU, 1028 MB RAM PC. The parallelized programs were run on 

computer network (“super computer”) of OU (University of Oklahoma) Supercomputing 

Center for Education and Research (abbreviated name is OSCER). The OSCER super 

computer uses Intel Xeon CPU (speed ranges from 2.0 to 2.4 GHz) and 8,768 GB RAM. 

More detail on configuration of OSCER super computer can be found in the website 

www.oscer.ou.edu 

 

Flowsheet of the example is given in Figure 4.23,  which was introduced by 

Madron and Veverka (1992).  Madron and Veverka (1992) did not report flow rates, so 

the flowrate values shown in Table 4.6 were taken from Bagajewicz (1997).  The 

precision and cost of sensors are also given in Table 4.6 

 

Figure 4.23 – Flowsheet of Madron problem   
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Table 4.6- Data for Madron problem 

Stream Flow Sensor 
cost 

Sensor 
Precision 

(%) 
Stream Flow Sensor 

Cost 

Sensor 
Precision 

(%) 
1 140 19 2.5 13 10 12 2.5 

2 20 17 2.5 14 10 12 2.5 

3 130 13 2.5 15 90 17 2.5 

4 40 12 2.5 16 100 19 2.5 

5 10 25 2.5 17 5 17 2.5 

6 45 10 2.5 18 135 18 2.5 

7 15 7 2.5 19 45 17 2.5 

8 10 6 2.5 20 30 15 2.5 

9 10 5 2.5 21 80 15 2.5 

10 100 13 2.5 22 10 13 2.5 

11 80 17 2.5 23 5 13 2.5 

12 40 13 2.5 24 45 13 2.5 
 

Information used in the calculation of financial loss is as follows: 

- Probability of sensors = 0.1 (for all sensors) 

- Biases (in failed sensors) are assumed to follow normal distribution with zero 

means and standard deviations = 4.0 (for all sensors) 

- Windows time of analysis T = 30 days 

- The Ks values (cost of product or cost of inventory) vary with design case 

studies, which are shown in table 4.7 

The value-optimal SNDP (equation 4.10) is being studied and performance of the 

proposed cutset-based methods for solving value-optimal SNDP is tested.  Ten design 

case studies together with the optimal solutions obtained by using cutset-based methods 
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are shown in table 4.7.  The objective is to minimize financial loss plus cost. The last four 

columns of table 4.7 show details of the obtained optimal solutions, which are the number 

of sensors, the measurements location, the cost of sensors and the financial loss 

respectively.   

Table 4.7- Results for Madron problem 

Case 
study 

Key 
variables Ks value Number 

of sensors 
Measured 
variables 

Sensors 
cost 

Financial 
loss 

4.2.1 1, 9, 14 
Ks1 = 25 
Ks9 = 20 
Ks14 = 20 

11 
1, 2, 3, 4, 8, 9, 
10, 12, 13, 14, 
20 

137 415.1 

4.2.2 1, 5, 22 
Ks1 = 25 
Ks5 = 20 
Ks22= 20 

11 
1, 2, 3, 4, 5, 8, 
10, 12, 13, 20, 
22 

158 471.4 

4.2.3 2, 6, 24 
Ks2 = 25 
Ks6 = 20 
Ks24= 20 

4 
2, 6, 19, 24 

57 400.1 

4.2.4 4, 9, 23 
Ks4 = 25 
Ks9 = 20 
Ks23= 20 

4 
4, 9, 17, 23 

47 283 

4.2.5 4, 5, 24 
Ks4 = 25 
Ks5 = 25 
Ks24= 45 

4 
4, 5, 19, 24 

67 527.1 

4.2.6 1, 5, 24 
Ks1 = 25 
Ks5 = 20 
Ks24= 20 

12 
1, 2, 3, 4, 5, 8, 
10, 12, 14, 19, 
20, 24 

175 498.7 

4.2.7 1, 5, 24 
Ks1 = 45 
Ks5 = 36 
Ks24= 45 

15 

1, 2, 3, 4, 5, 8, 
9, 10, 12, 13, 
14, 18, 19, 20, 
24 

210 891.2 

4.2.8 1, 7, 24 
Ks1 = 25 
Ks7 = 20 
Ks24= 25 

12 
1, 2, 3, 4, 7, 8, 
10, 12, 13, 19, 
20, 24 

157 538.8 

4.2.9 1, 7, 24 
Ks1 = 45 
Ks7 = 40 
Ks24= 45 

19 

1, 2, 3, 4, 6, 7, 
8, 9, 10, 12, 13, 
14, 16, 17, 18, 
19, 20, 23, 24 

251 859.3 

4.2.10 1, 7, 24 
Ks1 = 80 
Ks7 = 70 
Ks24= 80 

22 

1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 12, 
13, 14, 15, 17, 
18, 19, 20, 21, 
22, 23, 24 

302 1471.8 
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A few observations can be withdrawn from the above results: 

- The locations of key variables can greatly affect the financial loss and the 

obtained optimal network as evidenced in design cases 4.2.1 to 4.2.6: all of 

these six design cases have three key variables with similar Ks values (only 

locations of key variables are different) but the number of sensors in optimal 

network can change significantly. 

- As  Ks values increase, the financial loss term  dominates the cost term and 

optimal network would contain more sensors to reduce financial loss as 

evidenced in design cases 4.2.6 and 4.2.7 (same key variables, different Ks 

values) and design cases 4.2.8 to 4.2.10 

- There is a very high chance that all key variables appear in the optimal 

solutions: this is the case in all ten design case studies under consideration  

 

The next section shows performance of the proposed methods to solve value-optimal 

SNDP.   

 

4.11.1. Exhaustive tree search using individual measurements 

 

The simplest method to solve the value-optimal SNDP is the tree search method 

built on individual measurements (Bagajewicz, 1997; this method is called “All 

Variables” method in chapter 2). This method is used for the sole purpose of validating 

the results obtained by cutset-based tree search method; hence no stopping criterion is 

used. The Madron problem contains 24 streams, hence the total number of candidate 

solutions is 224 -1 = 16.78 millions.  We attempted to solve the design case study 4.2.1 
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using this method, after one month (30 days) running time, the computational process is 

terminated. When stopped, the tree search explored only 4.19 millions of candidate 

solutions (and was able to identify the optimal solution shown in row 2 of table 4.7), 

hence the estimated computation time of this method is 120 days (4 months!). 

Computational time in other design case studies should be at the same magnitude with 

this computational time (120 days).  Thus, this method is applicable for small scale 

problems only. 

 

4.11.2. Genetic Algorithm 

 

Performance of the GA method is shown in table 4.8. In table 4.8, the second and third 

columns show details (the number and the location of sensors) of the best solutions 

obtained by GA method. The fourth column shows objective values of these solutions. 

For comparison, the optimal objective value (summation of sensors cost and financial 

loss shown in table 4.7) is also shown in column five. The last column shows 

computational time of the GA method. 
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Table 4.8- Performance of GA method 

Case 
study 

Number 
of sensors Measured variables 

Objective 
value 

Optimal 
objective 

value 

Computation 
Time 

4.2.1 13 1, 2, 3, 4, 8, 9, 10, 12, 
13, 14, 17, 20, 23 

568.1 552.1 54 min 

4.2.2 13 
1, 2, 3, 4, 5, 6, 8, 10, 
12, 13, 19, 20, 22 653.6 629.4 54 min 

4.2.3 4 2, 6, 19, 24 457.1 457.1 25 min 
4.2.4 6 4, 8, 9, 17, 21, 23 349.9 330 17 min 

4.2.5 8 4, 5, 7, 13, 14, 19, 21, 
24 

614.8 594.1 20 min 

4.2.6 15 
1, 2, 3, 4, 5, 6, 8, 9, 10, 
12, 13, 18, 19, 20, 24 686.9 673.7 32 min 

4.2.7 19 
1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 12, 13, 14, 15, 18, 
19, 20, 23, 24 

1104.7 1101.2 55 min 

4.2.8 12 
1, 2, 3, 4, 7, 8, 10, 12, 
13, 19, 20, 24 695.8 695.8 38 min 

4.2.9 18 
1, 2, 3, 4, 6, 7, 8, 9, 10, 
12, 13, 14, 16, 17, 19, 
20, 23, 24 

1111.7 1110.3 39 min 

4.2.10 23 

1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 
23, 24 

1775.5 1773.8 59 min 

 

As shown in table 4.8 

- Although the GA method does not guarantee optimality, it is able to locate optimal 

solution in two design cases 4.2.3 and 4.2.8.  Moreover, in the other three design 

cases (4.2.7, 4.2.9 and 4.2.10), the best solutions obtained by GA are “very good”: 

they are very near to the optimal solutions 

- Computational time of the GA method is acceptable: it solves this problem within 

an hour.  
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- In general, performance of the GA method is acceptable.  Additionally, the GA 

method does not exhibit scaling problem (computational time does not increase 

exponentially with the size of the problem). To increase the chance of locating 

optimal solution, one can adjust the GA parameters (increase the size of population 

and / or mutation rate); or simply re-run GA many times (each GA run usually 

gives a different result). 

 

4.11.3. Cutset-based tree search method 

 

Performance of the cutset-based tree search method is shown in table 4.9 

 

Table 4.9- Performance of cutset-based method 

Case 

study 

Number 

of cutsets 

Number of nodes explored 
Computational 

time 
With stopping 

criterion 

No stopping 

criterion 

4.2.1 99 46,042 46,042 9 hrs 4 min 

4.2.2 97 64,773 64,781 11 hrs 44 min 

4.2.3 108 38,070 38,070 4 hrs 20 min 

4.2.4 105 28,178 28,178 2 hrs 45 min 

4.2.5 105 34,134 34,134 3 hrs 31 min 

4.2.6 102 39,552 39,552 7 hrs 57 min 

4.2.7 102 39,552 39,552 7 hrs 56 min 

4.2.8 108 38,365 38,365 8 hrs 2 min 

4.2.9 108 38,365 38,365 8 hrs 3 min 

4.2.10 108 38,365 38,365 8 hrs 1 min 
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Column 2 of table 4.9 shows the number of cutsets (containing at least one key variable) 

in the corresponding design problems, the last column shows computational time of 

cutset-based method when stopping criterion is used. When stopping criterion is NOT 

used, the computational time is almost the same (the difference is usually not more than 5 

minutes) 

 

As can be seen from table 4.9: 

- When the stopping criterion is used, the cutset-based method is able to locate 

optimal solutions (although optimality is not guaranteed if the stopping criterion is 

used) 

- The stopping criterion has “little” effect: the number of nodes explored and 

computational time when stopping criterion is used are almost unchanged when 

compared with the case stopping criterion is NOT used. Only in the design case 

4.2.2 that there is a small difference in number of nodes explored between the two 

cases (results of other case studies (not shown here) of Madron example also 

testify this fact).  Thus, it may be not necessary to use stopping criterion in cutset-

based tree search method. The parallel versions of cutset-based method will not 

use stopping criterion 

- It may also be not necessary to use branching criterion (just put cutsets in 

numbered order as illustrated in figure 4.18b).  The advantage of using branching 

criterion is that optimal solution is usually identified earlier than the case where 

branching criterion is NOT used: among the ten design case studies, there are six 

design cases where optimal solution is located within the first 20 nodes explored. 
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The disadvantage is that using branching criterion costs more time as shown in 

section 4.11.6  

- Performance of cutset-based method is acceptable for this medium size Madron 

problem. However, because this method exhibits scaling problem, it is not efficient 

enough for large scale problems 

 

4.11.4. Parallelized cutset-based method – parallelization of loops 

 

As mentioned in section 4.10.2, the Intel Fortran compiler used in this research 

work automatically parallelizes loops in the Fortran program that implements cutset-

based method. The results shown in table 4.10 are obtained simply by running the   

“serial” cutset-based method on the OSCER “super computer” (using 4 CPUs) 

 

Table 4.10- Performance of cutset-based method with parallelization of loops 

Case study Computational time (sec) 

4.2.1 2394 

4.2.2 2834 

4.2.3 1172 

4.2.4 825 

4.2.5 1005 

4.2.6 2008 

4.2.7 2007 

4.2.8 2107 

4.2.9 2106 

4.2.10 2107 
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The results shown in table 4.10 and 4.9 shows that the simple approach to do 

parallel computing, the parallelization of loops, greatly reduces computational time 

(computational time reduces by the factor of 14 times, however, a part of this reduction is 

due to the fact that the configuration of OSCER super computer is much better than the 

PC used in this work)  

 

4.11.5. Performance of parallelization method – SIMD approach 

 

Performance of the parallelized cutset-based method - SIMD approach (described 

in section 4.10.4) is shown in tables 4.11 and 4.12.  As shown in figure 4.18a, Nc is an 

important parameter that can be varied. If Nc = 1, all combinations of Nc cutsets are [1], 

[2], [3],...; all solutions originated from root [1] will be evaluated in worker node 1, 

solutions originated from root [2] will be evaluated in worker node 2, etc. (the case Nc = 

2 is illustrated in section 4.10.4).  If totally there are nt cutsets, then the number of 

possible combinations of Nc cutsets is given by 

!
!( )!

=
−

nt t
Nc

c t c

nC
N n N

             (4-11) 

There are roughly 100 cutsets in this Madron problem, thus if Nc = 1: 100
1 100=C ; 

if Nc = 2: 100
2 4950=C ; if Nc = 3: 100

3 161700=C .  Because 100
3C  is already greater than the 

total number of candidate solutions (not more than 70,000) so the case Nc = 3 is not 

considered. Results for the case Nc = 1 and Nc = 2 are shown in table 4.11 and 4.12 

respectively.  The results are obtained using 64 computer nodes (64 CPUs), which 

comprises of one master node and 63 worker nodes 
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Table 4.11- Performance of parallelized program – SIMD approach (Nc = 1) 

Case 

study 

Computational 

time (sec) 

Number of candidate solutions explored 

Total 
Max – one 

node 

Min – one 

node 

Total – serial 

program 

4.2.1 2266 82,617 23,539 105 46,042 

4.2.2 2623 99,674 33,528 143 64,781 

4.2.3 1083 69,235 19,387 252 38,070 

4.2.4 771 52,638 14,251 214 28,178 

4.2.5 933 60,658 17,154 209 34,134 

4.2.6 1333 72,848 19,920 195 39,552 

4.2.7 1333 72,848 19,920 195 39,552 

4.2.8 2017 69,595 19,566 252 38,365 

4.2.9 2016 69,595 19,566 252 38,365 

4.2.10 2016 69,595 19,566 252 38,365 

 

 

Table 4.12- Performance of parallelized program – SIMD approach (Nc = 2) 

Case 

study 

Computational 

time (sec) 

Number of candidate solutions explored 

Total 
Max – one 

node 

Min – one 

node 

Total – serial 

program 

4.2.1 1609 152,427 12,794 278 46,042 

4.2.2 1513 253,796 17,976 3,102 64,781 

4.2.3 747 196,069 10,218 2,588 38,070 

4.2.4 767 159,078 7,339 2,186 28,178 

4.2.5 641 173,509 9,109 2,287 34,134 

4.2.6 768 170,223 10,809 1,432 39,552 

4.2.7 768 170,223 10,809 1,397 39,552 

4.2.8 1391 148,292 10,321 245 38,365 

4.2.9 1392 148,292 10,321 245 38,365 

4.2.10 1392 148,292 10,321 245 38,365 
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In tables 4.11 and 4.12: 

- Column 3 shows the total number (i.e. the summation) of all candidate solutions 

that have been evaluated in all worker nodes plus the master node. For 

comparison, the total number of candidate solutions explored in serial program 

(table 4.9) is also re-shown in the last column  

- Column 4 shows the maximum value of the numbers of candidate solutions 

evaluated in one worker node, while the corresponding minimum value is shown 

in column 5. The maximum value is always realized in worker node number 1 

(that explores solutions starting from root [1] (Nc = 1) or [1 2] (Nc = 2)).  

 

The results shown in tables 4.11 and 4.12 show that 

- Because the worker nodes do not communicate with one another, there is a high 

chance of repetition of job (that is, the same candidate solution is evaluated in at 

least two worker nodes). This repetition of task explains why the total number of 

candidate solutions explored when SIMD parallelization is used (column 3 of the 

tables) is more than the corresponding value when SIMD parallelization is NOT 

used (column 6).  The chance of repetition of job (and the total number of 

candidate solutions explored, shown in column 3) increases when the parameter 

Nc increases 

- The SIMD approach offers only a small improvement in computational time: when 

compared with the case when SIMD parallelization is NOT used (that is, the 

results shown in table 4.10): the option (Nc = 1) offers roughly 5% improvement 

in computational time while the option (Nc = 2) offers roughly 40% improvement.  
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- The poor performance of SIMD parallelization is due to the poor load balancing of 

this approach in this specific problem. The SIMD parallelization achieves the best 

performance if all the worker nodes process the same amount of job so that all 

worker nodes finish their jobs at the same time.  If this situation is realized, the 

parallelization is said to have good balancing of jobs. If this is not the case (i.e. 

poor balancing), the worker node with the heaviest amount of job will finish last 

(and worker nodes with small amount of job will finish early and become idle until 

the overall computation process completes, which means that the resource is not 

fully utilized). In such case (poor balancing), the computational time of the overall 

process is determined by the worker node with the heaviest amount of job. 

- The load balancing property of the SIMD parallelization is indicated by the 

difference in the numbers of candidate solutions evaluated in worker nodes. One 

can see that there is a large difference between the maximum and minimum value 

of the numbers of candidate solutions evaluated in a worker node (shown in 

columns 4 and 5 of the tables), hence the balancing of jobs is poor 

- The option Nc = 2 has a better load balancing property than the option Nc = 1, so 

option Nc = 2 has better performance 

- The performance of SIMD parallelization can be improved by improving the load 

balancing of the parallelized program, which is left for future work. 
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4.11.6. Performance of parallelization method – MISD approach 

 

Results of the case where branching criterion is used are shown first. The results 

are obtained using 64 computer nodes (one master and 63 worker nodes). Table 4.13 

shows results when decomposition technique is NOT used.  

   

Table 4.13- Performance of MISD approach – With branching criterion 

Case study 
Computational time 

(sec) 

Number of candidate solutions evaluated 

Min - one node Max - one node 

4.2.1 126 600 800 

4.2.2 192 800 1300 

4.2.3 90 400 700 

4.2.4 53 300 1200 

4.2.5 74 400 1000 

4.2.6 89 400 900 

4.2.7 90 400 900 

4.2.8 101 500 700 

4.2.9 102 500 700 

4.2.10 101 500 700 

 

The results shown in tables 4.11, 4.12 and 4.13 show that: 

- The MISD approach is much better than the SIMD approach: computational time 

of the MISD approach is 12 times smaller than that of the SIMD approach. If 

compared against the base case where MPI parallelization is not used (table 4.10), 

the MISD approach reduces computational time by the factor of about 20 times 

(this result is obtained using 64 computer nodes) 
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- The load balancing property of MISD approach is much better than the SIMD 

approach, one can see that the difference between the maximum and minimum 

value of solutions evaluated in a computer node is small 

 

Let us now consider the case where decomposition technique is used. Three 

decomposition options are considered for this case.  They are described in table 4.14 

 

Table 4.14- Decomposition option 

Option Name Number of sub-
graphs 

Locations of connecting 
streams 

1 Single decomposition 2 {S8, S18} 
2 Double decomposition 3 {S3} and {S16} 
3 Multiple decomposition 7 {S3}, {S15}, {S16}, {S17}, 

{S19}, {S20}, 
 

For example, in option 1, the process flowsheet is “cut” at position between unit 2 

and 3 (the connecting streams are S8 and S18): the process graph is decomposed into two 

sub-graphs, one contains five units 1, 2, 6, 7, 10 and the other contains six units: 3, 4, 5, 

8, 9, 11.  

Table 4.14 shows results when decomposition technique is used. In this table, 

columns 4 and 7 shows the number of candidate solutions generated in master node, 

which are then sent to worker nodes for evaluating (denoted as  “number of solutions 

generated”).  When decomposition technique is used, because of the extra step of 

“explore all possibilities of removing connecting streams out of that candidate solution” 

(described in section 4.10), the  number of candidate solutions evaluated will be greater 

than the solutions sent to worker node from master node. For example, if an element in 
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the list100 (a candidate solution) is [1 2 3 4 5] and [4 5] are connecting streams, then for 

this specific candidate solution the following four solutions need to be evaluated: [1 2 3 4 

5], [1 2 3 4], [1 2 3 5] and [1 2 3].  Thus the total number (obtained by summation) of 

solutions that have been evaluated in all worker nodes (shown in columns 3 and 6) must 

be greater than the number of solutions generated in master node (columns 4 and 7).  

 

Table 4.15- Performance of MISD approach with decomposition and branching criterion 

Case 

study 
Option 1 Option 3 

 
Comput. 

time (sec) 

Number of 

solutions 

evaluated 

Number of 

solutions 

generated  

Comput. 

time (sec) 

Number of 

solutions 

evaluated 

Number of 

solutions 

generated 

4.2.1 99 87,451 22,337 833 713,861 19,272 

4.2.2 111 140,528 36,142 821 598,321 15,889 

4.2.3 66 72,112 18,243 813 580,569 15,086 

4.2.4 62 50,513 12,739 737 484,968 13,836 

4.2.5 67 63,455 16,182 737 430,397 12,447 

4.2.6 89 81,132 20,997 817 447,922 12,517 

4.2.7 89 81,132 20,997 815 447,922 12,517 

4.2.8 94 72,508 18,325 790 577,835 14,929 

4.2.9 95 72,508 18,325 790 577,835 14,929 

4.2.10 94 72,508 18,325 791 577,835 14,929 

 

The large difference between the number of solutions evaluated in this case 

(columns 3 and 6 of table 4.15) and the total number of candidate solutions (column 4 of 

table 4.9) is due to the fact that there is repetition of job when decomposition is used. 

Take for example the above illustration (where [4 5] are connecting streams), if the 

mentioned candidate solution [1 2 3 4 5] is processed in one worker node while another 
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candidate solution [1 2 3 4] is processed in another worker node, then these two worker 

nodes evaluate the same two solutions:  [1 2 3 4] and [1 2 3].  The chance of job 

repetition and the total number of solutions evaluated increase when the number of 

decomposition (how many times the process graph is “cut”) increases as clearly shown in 

table 4.15.   

Using decomposition has two opposite effects: the good side is that it reduces the 

time to generate candidate solutions in the master node, the bad side is that it increases 

the time to evaluate solutions in worker nodes because of the problem of job repetition. 

Table 4.15 shows that when branching criterion is used, a small number of decomposition 

is beneficial: the option 1, single decomposition reduces computational time by 10% 

(when compared with the base case where no decomposition is used, table 4.13).  

However, a large number of decomposition (option 3) has adverse effect: it increases 

computational time because of the problem of job repetition 

The results when branching criterion is not used are shown in table 4.16. The 

second column of this table shows computational time for the case when no 

decomposition is used while the last three columns show computational times for the 

three decomposition options described in table 4.14 
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Table 4.16- Performance of MISD approach with decomposition, no branching criterion 

Case 

study 

Computational time (sec) 

Number of decomposition 

None Single Double Multiple 

4.2.1 63 97 78 824 

4.2.2 97 110 74 832 

4.2.3 47 66 67 830 

4.2.4 22 62 61 738 

4.2.5 37 60 65 858 

4.2.6 47 86 66 858 

4.2.7 47 86 65 858 

4.2.8 57 93 67 805 

4.2.9 57 93 68 804 

4.2.10 57 93 68 804 

 

Table 4.16 shows that, when no branching criterion is used: 

- The computational time improves significantly (compared with the base case when 

branching criterion is used, computational time improves 50%).   

- The bad effect of using decomposition (the problem of job repetition) overshadows 

the benefit (less time to generate candidate solutions) and computational time 

generally increases when decomposition technique is used 

 

Dependence of computational time of this method (when no branching criterion 

and no decomposition is used) on the number of computer nodes utilized is shown in 

table 4.17 
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Table 4.17- Performance of MISD vs. number of CPUs 

Case 

study 

Computational time (sec) 

NCPU = 32 NCPU = 64 NCPU = 96 

4.2.1 100 63 52 

4.2.2 139 97 84 

4.2.3 60 47 39 

4.2.4 36 22 22 

4.2.5 50 37 30 

4.2.6 73 47 41 

4.2.7 74 47 41 

4.2.8 88 57 48 

4.2.9 89 57 48 

4.2.10 88 57 48 

 

Table 4.17 shows that if more computer nodes are used (i.e. more “workers” to 

share the tasks), computational time is reduced. However, it is well known that the 

dependence of performance on number of computer nodes is not linear: the performance 

improvement becomes smaller as more computer nodes are used: when number of 

computer nodes increases from 32 to 64 and from 64 to 96 (32 nodes added), 

performance (computational time) improves 36% and 15% respectively.  

The best performance (column 4 of table 4.17) of the MISD parallelization is 

achieved when: i) no branching criterion and no decomposition is used, ii) using as many 

computer nodes as possible. The MISD parallelization is a great improvement over the 

simple exhaustive tree search method and the serial cutset-based method. 
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4.11.7. Performance of parallelization method – MIMD approach 

 

Performance of the MIMD parallelization method is shown in table 4.18 using the 

following parameters: i) Nc (section 4.10.6) = 2, ii) the number of “managing” computer 

nodes (in group one) = 4; thus the number of computer nodes in a sub-group (belonging 

to group two) is 15, that is, one “managing” computer node generates candidate solutions 

and then sends them to 15 computer nodes to evaluate them.   

 

Table 4.18- Performance of MIMD parallelization method 

Case 

study 

64 CPUs 96 CPUs 

Candidate solutions explored 
Time 

(sec) 

Candidate solutions explored 
Time 

(sec) 
Max - 

node 

Min - 

node 
Total 

Max - 

node 

Min - 

node 
Total 

4.2.1 21,037 9,958 71,213 111 19,948 9,958 69,761 74 

4.2.2 28,360 9,731 91,529 107 28,355 9,731 91,541 73 

4.2.3 21,812 6,634 55,588 57 20,196 6,236 56,958 40 

4.2.4 12,624 7,336 52,055 57 12,580 7,336 51,962 40 

4.2.5 19,695 4,754 47,429 48 18,392 4,754 51,570 30 

4.2.6 19,721 12,611 69,970 59 18,493 13,202 71,782 47 

4.2.7 19,808 12,677 69,710 59 18,412 13,191 71,655 48 

4.2.8 19,233 5,382 61,278 99 19,272 5,382 61,262 68 

4.2.9 19,151 5,382 61,195 101 19,186 5,382 61,227 69 

4.2.10 19,279 5,382 61,339 101 19,009 5,382 60,761 69 

 

Columns 2, 3, 6, 7 (“Max-node”, “Min-node”) of table 4.18 show the maximum 

and minimum value of candidate solutions explored in one “managing” node while 

columns 4 and 8 show the total number of candidate solutions evaluated in the process 
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(summation of all candidate solutions explored in all “managing” nodes plus master 

node) 

The results shown in table 4.18 show that: 

- As shown in section 4.11.5 (SIMD approach), dividing problem data suffers from 

the problem of job repetition (a same candidate solution is evaluated in at least two 

computer nodes) such that the total number of candidate solution is more than that 

when no parallelization is used (table 4.9).  This approach also divides problem 

data so it also suffers from the problem of job repetition. 

- Because this approach (MIMD) divides both the problem data and problem 

instruction so reasonably it should be better than the SIMD and MISD approach. 

However, because of the problem of job repetition this approach is not necessary 

better than the MISD (multiple instruction single data) approach. In comparison 

with the MISD approach:  

i. The MIMD approach uses more resources to generate candidate solutions: four 

CPUs in group one (in MIMD) vs. one CPU (master node) in MISD, so the 

MIMD approach should spend less time to generate candidate solutions.  

ii. Because of the problem of job repetition, the number of candidate solutions 

that need to be evaluated in MIMD parallelization is more than that in the 

MISD approach. Moreover, available resource (CPUS) for this purpose in 

MIMD approach is less than that in MISD approach: 59 (64 – 1 master node – 

4 CPUs in group one) vs. 63 (64 – 1 master node).  Thus, the MIMD approach 

should spend more time for this purpose.  
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iii. Comparison of performance of these two approaches can not be concluded 

unless a large number of tests have been conducted. For this specific Madron 

problem with this specific configuration (i.e. when 4 “managing” nodes are 

used), the MISD parallelization is better than the MIMD approach. 

- The load balance of this approach is pretty good (the difference between the 

maximum and minimum value of candidate solutions evaluated in one node is 

small) and when using more computer nodes, computational time decreases. 

- Because of the dynamic nature of the process (real time checking of worker nodes’ 

status and assigning jobs), the number of candidate solution  explored is usually 

different if the computer system on which the process runs is different (e.g. 

changing the number of CPUs) as shown in table 4.18 

 

The effect of varying number of computer nodes (“managing” nodes) in group 

one  (M) is shown in table 4.19 using totally 96 CPUs. Three cases are considered (M = 

2, M = 4, M = 8), which are shown in table 4.19.  Take for example the second case (M = 

4): each of the first thee “managing” CPU controls 23 worker nodes while the last 

“managing” CPU controls 22 worker nodes (so the total number of CPUs is 1 master 

node + 4 “managing” CPUs + 3*23 + 22 = 96) 
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Table 4.19- Performance of MIMD parallelization at varied number of managing nodes 

Case 

study 

Total candidate solutions explored Computational time (sec) 

M = 2 M = 4 M = 8 M = 2 M = 4 M = 8 

4.2.1 65,373 69,761 102,555 54 74 148 

4.2.2 81,505 91,541 137,974 62 73 142 

4.2.3 50,594 56,958 89,230 25 40 73 

4.2.4 41,652 51,962 79,258 25 40 74 

4.2.5 48,975 51,570 81,744 18 30 64 

4.2.6 58,920 71,782 83,669 46 47 79 

4.2.7 59,410 71,655 83,916 47 48 78 

4.2.8 51,973 61,262 89,713 39 68 133 

4.2.9 51,864 61,227 89,873 39 69 134 

4.2.10 51,973 60,761 89,613 39 69 134 

 

It can be seen from table 4.19 that computational time increases when the number 

of managing nodes (M) increases. This is because when M increases:  

i) The problem of job repetition  become more severe (the total number of 

candidate solutions explored, shown in columns 2,3 and 4 of table 4.19, 

increases when M increases)  

ii) Less worker nodes to evaluate the candidate solutions (at the same total 

number of CPUs) 

It is recommended to use 2 managing nodes only; for large scale problems (e.g. 

CDU example shown below), one can use up to 4 managing nodes or use decomposition 

technique. 

If decomposition technique is used, the calculation procedure (without 

decomposition) is modified at the same way as described in section 4.10.5, that is, the 



176 
 

step “Evaluate all 100 candidate solutions stored in list100” (in worker nodes in group 

two) now comprises of two steps: removing connecting streams out of a candidate 

solution and then evaluate all the new candidate solutions resulted from that operation. 

The results when decomposition technique is used are shown in table 4.20; only one 

decomposition option (double decomposition, shown in column 3 of table 4.14) is 

considered (using 96 CPUs, among which two are managing nodes).  For comparison, the 

results when decomposition is NOT used (and at the same configuration, 96 CPUs - two 

managing nodes) are also shown in table 4.20 

 

Table 4.20- Performance of MIMD parallelization with decomposition technique 

Case study 

Total candidate solutions explored Computational time (sec) 

No 

decomposition 

Double 

decomposition 

No 

decomposition 

Double 

decomposition 

4.2.1 65,373 103,295 54 80 

4.2.2 81,505 106,344 62 75 

4.2.3 50,594 73,579 25 67 

4.2.4 41,652 59,793 25 60 

4.2.5 48,975 60,069 18 64 

4.2.6 58,920 73,169 46 66 

4.2.7 59,410 75,557 47 67 

4.2.8 51,973 70,778 39 67 

4.2.9 51,864 68,433 39 67 

4.2.10 51,973 68,433 39 67 

 

As can be seen from table 4.20, using decomposition technique costs more time 

(this observation is also realized for the other decomposition options, option 1 and 3). As 
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explained above, using decomposition has two opposite effects: i) reduce the time to 

generate candidate solutions (in master node and “managing” nodes) and ii) increase the 

time to evaluate candidate solutions (in worker nodes) due to the problem of job 

repetition.  For this specific Madron problem, when decomposition is used, the number of 

cutset in the problem reduces about 3.3 to 6 times (from about 100 cutsets to 30 cutsets in 

decomposition option 1 and about 16 cutset in decomposition option 3). For this specific 

Madron problem, it is not beneficial to use decomposition because using decomposition 

increases computational time. However, for the large scale CDU example shown below, 

it is advisable to use decomposition because decomposition leads to a great reduction in 

number of cutsets. 

Of all the parallelization methods and all options that have been considered, the 

following option gives the best performance (the shortest computational time): MIMD 

approach with no branching criterion and no decomposition, using 96 computer nodes in 

total with 2 managing nodes 

It can be concluded from the above results that the MIMD and MISD approach 

are much better than the SIMD approach and it is always better to use more computer 

nodes (more resource).  Additionally, it is better not to use branching criterion.  There is 

no final conclusion regarding the following two issues:  

i. Which parallelization method is better, MIMD or MISD 

ii. Whether it is beneficial to use decomposition technique 

 

As mentioned above, compared with the MISD (multiple instruction single data) 

approach as base case, there are two opposite effects of also dividing the problem data 
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(that is, the MIMD approach): the time to generate candidate solutions decreases while 

the time to evaluate candidate solutions increases. The same thing is said about using 

decomposition (when compared against the counterpart where decomposition is NOT 

used).  The trade-off (final result) of these two opposite sides depends on the specific 

problem under consideration. The following section gives an intuitive guideline on which 

option is the best choice.  Assuming that there are Nw worker nodes available, the 

criterion to determine the best option is based on the analysis of relative computational 

speed of the following two tasks: generating (Nw*100) candidate solutions and 

evaluating list100 (that was sent from master node to worker nodes).  Figure 4.24 shows 

the two extreme cases that can occur for the base case where MISD parallelization 

method and no decomposition are used.  

 

 

Figure 4.24 – Analysis of performance of parallelization method   
 

1 2 3 N 

Case B 

Case A 

Generating (Nw*100) candidate solutions 
(task 1) 

Evaluating  list100 
(task 2) 

Time 
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Notes: 

- The points 1, 2, 3,…, N in x-axis indicate the total number of candidate solutions 

generated in the process: at point N the total number of candidate solutions 

generated is N*(Nw*100). As discussed above, the time to generate (Nw*100) 

candidate solutions increases progressively along with the computational process. 

- “Evaluating list100” refers to the task of evaluating the 100 elements of the list 

list100.  If no decomposition is used, this task is simply evaluating the 100 

candidate solutions contained in the list. If decomposition is used, the actual 

number of candidate solutions that need to be evaluated is more than 100 (because 

“evaluating list100” now comprises of two steps as described above) and the time 

for this task increases (compared against the base case where decomposition is 

NOT used) as illustrated in figure 4.25 

 

We now discuss possible options to reduce computational time for the two extreme cases: 

- Case A: “Evaluating list100” takes significant time so any option that suffers from 

the problem of job repetition (MIMD parallelization method and decomposition 

technique) would increase computational time. The best option for this case is 

MISD approach without decomposition. 

- Case B: The task “Evaluating list100” (task 2) is a lot faster than the other task 

(generating candidate solutions, task 1) so the task 1 is the dominating (limiting) 

factor.  Thus the options that reduce the time for task 1 would reduce overall 

computational time of the process; which are MIMD parallelization method and 
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decomposition technique (use either of them or use both).  The effect of using 

these two options is illustrated in figure 4.25 

 

 

Figure 4.25 –Performance of parallelization method  - with MIMD and/or decomposition 
 

 

The MIMD parallelization method and decomposition technique reduce time for task one 

(generating candidate solutions) because  

- This task is shared among several “managing” nodes (MIMD approach) instead of 

only one computer node (master node) in MISD approach 

- Or decomposition technique helps reduce the total number of candidate solutions 

generated (as illustrated in figure 4.25: the “new” value of total number of 

candidate solutions generated is M*(Nw*100) < the old value = N*(Nw*100)). 

 

1 2 3 N 

Time 

Old – task 2 

New – task 2 

New – task 1 

Old – task 1 

M 
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For the cases in between these two extreme cases (i.e. computational times for the 

two tasks are at the same magnitude), which option is the best choice can only be 

determined from actual testing.    

 

4.12.  Example 4.3 – CDU example 

 

Figure 4.26 –Process flowsheet – CDU example 
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The CDU example introduced in Gala and Bagajewicz (2006) is considered next. 

The process flowshheet is shown in figure 4.26 and the problem data is shown in table 

4.21 

Table 4.21- Data for CDU Example 

Streams Flow Cost Streams Flow Cost 

S1 413349 2000 S27 60413 2000 
S2 419579 2000 S28 103939 1800 
S3 209316 1800 S29 386580 1500 
S4 210262 1800 S30 57169 2300 
S5 419579 2200 S31 45829 2100 
S6 460520 2100 S32 4202 1800 
S7 26510 2100 S33 26133 2200 
S8 230650 1700 S34 73900 2200 
S9 229870 1700 S35 73704 2000 
S10 26243 2400 S36 50851 2200 
S11 413650 2000 S37 50715 2200 
S12 413650 2000 S38 45902 2000 
S13 206932 1800 S39 45878 2000 
S14 206717 1800 S40 45928 2000 
S15 413650 1500 S41 45851 2000 
S16 27068 2300 S42 185593 2300 
S17 5124 2200 S43 38557 1800 
S18 21467 2200 S44 18932 1800 
S19 478 1800 S45 19846 1800 
S20 61562 2000 S46 23880 2100 
S21 60985 2000 S47 18196 2100 
S22 61253 2000 S48 18106 2100 
S23 61490 2000 S49 48081 2300 
S24 61109 2000 S50 15154 2000 
S25 60796 2000 S51 20268 2000 
S26 62012 2000 S52 12659 2000 
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Information used in the calculation of financial loss is as follows: 

- Probability of sensors = 0.1 (for all sensors) 

- Biases (in failed sensors) are assumed to follow normal distribution with zero 

means and standard deviations = four times the standard deviations of 

measurements (for all sensors) 

- Windows time of analysis T = 30 days 

 

Only one design case study is considered; the design case study and the obtained 

solution are described in table 4.22 

 

Table 4.22- Results for CDU Example 

Key variables S31, S33, S35, S37, S43, S44 

Ks values 
Ks31 = 400, Ks33 = 360, Ks35 = 350, Ks37 = 

340, Ks43 = 250, Ks44 = 240 

Measured variables S31, S33, S34, S35, S36, S43, S44 

Cost 14300 

Financial loss 11566.3 

Total number of candidate 

solutions explored 
3.1 millions 

Computational time 10 hrs 5 min 

 

For this problem, if decomposition is not used, the number of cutsets (containing 

key variables) is 973 while if decomposition is used, the number of cutsets is reduced to 

158 (single decomposition, connecting stream =S15) and 69 (double decomposition, 

connecting streams = S11 & S29).  Thus, simple decomposition strategies like those 
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described greatly reduces the number of cutsets (6.2 times for single decomposition and 

14.1 times for double decomposition).   

The following options are used to solve the problem: 

- MIMD parallelization method using 200 CPUs in total, among which two 

are managing nodes 

- Double decomposition, connecting streams = S11 & S29 

 

It takes a lot more time to solve this 52-stream CDU example than the 24-stream 

Madron example (10 hours vs. 1 minute).  However, the computational time is still 

acceptable 

 

4.13. Conclusions 

 

In this chapter, two new approaches to design sensor networks for process 

monitoring purpose are presented.  These two new approaches are based on software 

accuracy and its associated economic value.  Efficient methods to solve the proposed 

problems are presented, among which the parallelized cutset-based method is proven to 

be a very efficient method to solve the value-optimal sensor network design problem. 
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5.   CONCLUSIONS AND FUTURE WORKS 

 

The research work aims to achieve the following two objectives:  

i. Developing efficient computational methods to solve realistic large scale nonlinear 

sensor network design problems 

ii. Studying and proposing efficient methods to design sensor networks that 

simultaneously optimize performance (using economic value of accuracy as 

performance measure) and cost of sensor network.  

 

For the first objective, although a perfect solution (i.e. an efficient method that guarantees 

optimality) can not be found, a variety of “good” solutions are presented.  The equation-

based method guarantees optimality but it is not efficient enough for realistic large scale 

problems.  The same thing is said for the level traversal tree search. The approximate 

method is very efficient. Although the approximate method does not guarantee 

optimality, the chance of finding optimal solution is very high.  Additionally, the inverted 

tree search strategy tailored for problems with high level of specifications is also 

presented (it also guarantees optimality).  

 

For the second objective, two methods that can run on a personal computer are proposed. 

The genetic algorithm is satisfactorily efficient but it does not guarantee optimality.  In 

the opposite side, the cutset-based method guarantees optimality but it is not efficient 

enough for large scale problems.  The last proposed method, the parallelized cutset-based 
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method is very efficient and it guarantees optimality (although it has one small 

disadvantage: it has to be run on a super computer). 

 

As can be noted throughout this dissertation, this work studies the problem of designing 

sensor network for process monitoring purpose only.  The same approach (maximizing 

value of sensor network) can be applied to design sensor network for other purposes like 

process fault diagnosis.  This is left for future work 
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APPENDIX A1 

 

∆D = DEFL(current node) – DEFL(sensor network with maximum number of sensors) 

∆C = Cost(sensor network with maximum number of sensors) - Cost (current node) 

 

It is now shown that if {∆C- ∆D} of current node > {∆C- ∆D} of previous node then the 

objective value of current node < the objective value of the previous node 

Using “c.node” and “pre.node” as abbreviated names for current node and previous node 

respectively, then 

 

OBJ value (c.node) = Cost (c.node) + DEFL (c.node) 

 =   Cost (pre.node) + DEFL (pre.node) 

+ {Cost (c.node) – Cost (pre.node)} 

+ {DEFL (c.node) – DEFL (pre.node)} 

= OBJ value (pre.node) 

+ {Cost (c.node) – Cost (MSN)} - {Cost (pre.node) – Cost (MSN)} 

+ {DEFL(c.node) – DEFL(MSN)} - {DEFL(pre.node) – DEFL(MSN)} 

 

Suppose that OBJ value (c.node) ≤  OBJ value (pre.node) 

 

⇒  {Cost (c.node) – Cost (MSN)} - {Cost (pre.node) – Cost (MSN)} 

+ {DEFL(c.node) – DEFL(MSN)} - {DEFL(pre.node) – DEFL(MSN)} ≤  0 

 

{DEFL(c.node) – DEFL(MSN)} - {DEFL(pre.node) – DEFL(MSN)} ≤ 

{Cost (MSN) - Cost (c.node)} – { Cost (MSN) - Cost (pre.node)} 

 

⇒ ∆D(c.node) - ∆D(pre.node) ≤ ∆C(c.node) - ∆C(pre.node) 

⇒{∆C(c.node) - ∆D(c.node)} ≥ {∆C(pre.node) - ∆D(pre.node)} 

 

Q.E.D 
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