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CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Introduction 

The natural numbers or positive rational. integers 9 

play an important role in mathema.ticso All the real and complex num-

bers can be derived from themo The set of' natural numbers is the 

domain of' the arithmetic functions of' number theoryo The natural num­

bers even play a role in the complex function ez .which can be seen in 

the rela.tion0 
2rlz 2TTi(z ± n) 

e = e P 

which holds for any natural number n and all complex values z. This 

study is not to find applications of' the natural numbers in mathem.. 

atics 9 however, but to a.pply mathematics in the study of the natural 

numbers. 

The theory of additive arithmetic involves expressing an arbitrary 

natural number n in the form 

n = a1 + a2 + • oo + as 

where a1EA (i = 19 29 000 9 s). The set A might be; the set ot natural 

numbers» the set of' prime numbers 9 the set of' even :natural numbers 9 the 

set of' squares 9 etcoe If A is the set of natural numbers then the study 

of' these representations is referred to as the theory of partitions. If 

A is the set of natural numbers; no ?te.strictions are placed on s i, 

1 
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repetitions are allowed 9 and order is irrelevant 9 then this is the study 

of unrestricted partitionso The number of such representations o;f' n is 

denoted by p( n) o 

For example if n = .5 9 the possible representations are~ 

.5 = 5 

and consequently p(5) = 7. 

=4+1 

= 3 + 2 

=3+1+1 

=2+2+1 

=2+1+1+1 

=1+1+1+1+1 

The study of partitions is basically done by combinatorial methods 

or analytic methodso The first method is aided by graphs introduced by 

Drso Ferrers and Sylvester4 The second method 9 which will be used in 

this paper 9 is aided by the generating function introduced by Euler. 

Graphs 

Partitions can also be represented graphically. Since 9 in unre= 

the summands ao such that a1 > a2 > a
3 

> ooo > a o Then a geometric 1 ~ ~ ~ ~ S 

representation of n = a1 + a2 +•••+as is the array of points with a1 

points in the first row9 a.2 points 1n the second row9 and on down to the 

last row. For example 

0 0. Cll, O· 0 0 0 

D O 0, D 

0. 0 0 

0 0 

o. 0 
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represents the partition 19 = 7 + 4 + 3 + 2 + 1. The graph could also 

represent the partition 19 = 6 + 5 + 3 + 2 + 1 + 1 + 1 if it was read by 

columns .instead of rows" Partitions related i.n this manner are said to 

be conjugate. 

Another graphical representation of 19 is the following& 

J),, .0, ,D,. "O, O. 0 

0, o. .0,, 0 0 

a. O· It 

a •· 

• • 

If the graph is read by rows it represents the partition 19 = 6 + 5 + 3 

+ 2 + 2 + 1. Thli3 same :representation i.s obtained if the graph is read 

by columnso Rejresentations of this type are considered self~conjugate. 

Many of th~ theorems in the theory of partitions can be proved by 

combinatorial methods which use the idea of 1=1 correspondence. This 

method is greatly enhanced by the graphic representation... Since this 

method is not used in this paper it will be illustrated by the elemen-

tary Theorem 1.1. 

Consider the partitions of n in which the summands are Sm. The 

number of all such partitions will be denoted by p(nim). Let the number 

of partitions of n with no more than m summands be denoted by pm(n). 

Proofs Represent the partitions of n graphically. If the graphs are 

read by rows 9 then p(n,m) is the number of such graphs with maximum 

number of columns m. On the other hand 9 if the graphs are read by 

columns~ then the number of graphs with a maximum of m columns will be 

pm(n). But~ since each graph can be read by rows or by colurllns~ there 
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is a 1=1 correspondence between the graphs representing p(n~m) and the 

graphs representing pm(n) and the theorem is proved. 

Generating Functions 

Generating functions are extremely useful in the study of the 

theory of partitions. It will be shown in Chapter IV that 

The function P(x) is said to be the generating function for p(n) 9 the 

number of unrestricted partitions of n. Since 

••• 

= 1 + x + a 2 + 3x3 + 5x4 + 7x5 + iix6 + 15x7 + • 0 • 

the coefficients generate values of p(n). That iss the coefficient 

of xn is equal to p(n). Evidently p(n) is 1~ 2 9 J 9 59 7~ 11 and 15 for 

n = 19 2~ 3~ 49 59 6 and? respectively. It will also be convenient to 

define p(O) = 19 the coefficient of x0• 

The size of p(n) increases very fast as n increases. For example 

it is known that p(JOO) = 9 925J~082 99J6~723 9602 and that 

p(6oo) = 4580 04788 00814 43085 53622. 

The values of p(n) 9 i'or all n s 600 9 can be found i.n Gupta.' s tables (21] 

and [22]. A few isolated values of p(n) for n > 600 have been computed 

by D. H. Lehmer. 

Until recent years p(n) was not known for very large n. With the 

aid of generating functions 9 asymptotic formulae can be developedo 

Generating functions are also useful for developing arithmetic properties 

for p(n) 'Which are still few in number. 
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Purpose and Signif:icance of Study 

The purpose of this paper i.s to give a brief introduction and 

historical development of the theory of partitions. A second purpose is 

to illustrate the various branches of mathematics used in attempting to 

solve the problems in the theory of partitions. Thirdly, it will be the 

purpose of this paper to give a brief report, in an expository manner~ 

on the recent work involving the asymptotic and arithmetic properties of 

p(n). 

It is hoped that this dissertation may be of use to college students~ 

to gain insight into some procedures and techni.ques of research in 

mathematics 9 doing independent study or work in a seminar course. The 

author has attempted to show how one generalizes concepts and ideas in 

mathematics. The importance of trying to simplify known proofs is also 

significant and the author feels he has particularly accomplished this 

in the proof of Theorem 5,7. 



CH,AJ,'TER II 

CONCEPTS FROM NUMBER THEORY AND ANALYSIS 

This chapter is only for the purpose of making the paper more self ... 

contained. It includes the topics from number theory and analysis which 

are needed in the-,.following chapters. The definitions and theorems 

(stated here without proof) ca..n be found in most elementary books on the 

subject and in particular Apostol (1], Grosswald [23] and Pennisi (39]. 

If one has a good background in elementary number theory and anal-

ysi.s 9 including series and complex va1•iables, it is possible to skip 

this chapter. One may refer back to it as the need arises. 

The materi~l on elementary number theory should be sufficient for 

Chapters III 9 IV and V, however, Chapter VI requires the more advanced 

analysis, 

Topics from El~mentary Number Theory 

Definition 2.1. For any integer m f O, a is congruent to b modulo m if 

and only if m divides a .. b. We write a ~ b (mod m). If a - b is not 

divisible by m9 we say that a is not congruent to b modulo m~ with the 

notation a~ b (mod m). 

For example 9 22 1;; 1 (mod 7) since 7 I (22-1). Note that the remai~ 

der of 1 is obtained when 22 is divided by 7. This observation leads to 

an equivalet1t definition of congruence in terms of :remainders (or res"' 

6 
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idues). The set A = {Ov 11> 2 9 3!> 4';) 59 6} 1> for .example 9 will be con ... 

sidered the least residue system modulo 7 since n :1; a (mod?) for some a 

in A. 

Definition 2.2o If a= nq + r with OS r < m9 then r is called the 

least residue of a modulo m. 

Definition 2o3o The set of integers 09 1~ 29 ••• 9 :m.,,1 is called the 

least residue system modulo m. Arry set of m integers 9 no two of which 

are congruent modulo m~ is called a complete residue system modulo m. 

Theorem 2.4c For every integer m~ the congruence modulo mis an equiva­

lence relation. 

Because of Theorem 2.4 9 a residue system is s:io.metJ111es called a resi= 

due class. 

Theorem 2.5. The following statements hold where all congruences :without 

indication of a modulus are mod ms 

(1) a ;; b implies ca~ cbg 

(2) a~ b9 c 1;;; d implies a+ c:;; b + d~ 

(:3) a~ b,, c ~ d implies ac;; bd; 

(4) a~ b implies an; bn3 and 

(5) a ; b (mod mn) implies a li1i b (mod m). 

Theorem 2.6. If p(x) is a polynomial with integer coefficients and 

a ~ b (mod m) 9 then p(a) ; p{b) (mod m). 

Definition 2. 7. n=fo p{ n) xn ; J.o q( n} xn (mod m) if and only if 

p(n) 5 q(n) {mod m) for each n. 
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Definition 208. If (a 9b) = 1, then a and bare said to be relatively 

prime or coprime where (a,b) represents the greatest common divisor of 

a and b. 

Theorem 2.9. ca: cb (mod m) implies a 5 b (mod m/(m~c)). 

Theorem 2.11. R R If R is a prime 9 then (1 .,,,x) 1; 1 "" x (I11,od R). 

Theorem 2.12. 

Definition 2.1~. The number of positive integers r 9 not exceeding m 

and coprime with mis denoted by ¢(m) 9 called Euler¢ function, i.e. 

, (m) = O<~ 1 

(m9;)=1 

~~ition 2.j,1;!:o Any set of ¢(m) integers which are coprime with m and 

which are mutually incongruent (no two are congruent), modulo m, is 

called a reduced residue system modulo m. 

!.~~..O.F .. ~ .. 12. ... bJ,jo (The Euler=Fermat Theorem). If (a 9 m) = 1 9 then 

ap(m) ~ 1 (mod m). 

Definition 2016. Let (r 9m) = 1; then r is said to be a quadratic resi-
.. tMII' ,._ 

due modulo m9 if there exists some integer x 9 such that x2 : r (mod m). 

2 We call n a quadratic non-residue modulo m9 if the congruence x : n 

(lllod m) has no solutions. 

Definition 2.170 
OU.AO ts.:;::;.;oo;..a~ 

For prime pt a we define the Legendre symbol (!j as 4 p 



followss (!) = 1 if a is a quadratic residue and (!q = ~1 if a is a 
p p 

quadratic non-residue modulo p. 

Definition 2.18. The greatest integer function 9 in symbols [.x] 9 is de­

fined as the largest rational integer not to exceed x. 

9 

Definition 2.19. The sum of the k~th powers of the divisors of the 

integer n is denoted by ok(n). In particular~ o0(n) (also denoted 't'(n)) 

is the number of divisors of n and o1(n) (also denoted O'(n)) is the sum 

k of the divisors of n. In symbolsj ok{n) = t d. 
din 

Theorem 2.20. t ~ = t d = O'(n). 
djn drn 

Some notation9 which is perhaps restricted almost exclusively to 

analytic number theory9 is given in Definitions 2.21, 2.22 and 2.23. 

Definition 2.21. If f and g are two functions (real or complex) defined 

in a neighborhood of c (finite or infinite)~ we say f is asymptotic to 

g, written f f"t,,J g9 if iim f / g = 1. 
Xi-fC 

Definition 2.22. If f and g are two functions (real or complex) defined 

in a neighborhood of c (finite or infinite)~ we say f is °'big O of g°', 

written f = O(g)~ if there exists a constant K > 0 and a neighborhood 

N(c) such that lf(x)j SK lg(x)I for all x in N(c). 

'Definition 2.23. If f and g are two functions (real or complex) defined 

in a neighborhood of c with g(x) > 0 9 then we say f is u'little o of g", 

written f = o(g), if lim f/g = o. 
Xi-fC 

Equivalent definitions for 2.21, 2.22 and 2.23 could be given for 

sequences. 
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Topics From Advanced Calculus and Complex Variables 

vergent with sums A and B respectiyely~ then 

"' "' ~- a t b -nf:'O n n:-0 n -

in the sense that the series on the right is also absolutely convergent 

and has sum AB o 

P,~
0
~BJ,}t~on..2~?~· (Double series) Let f be a double sequence. The 

double series s defined by the equation 

s(p 9 q) = J1 Jl f(m 9 n) 

is called a double series. The dottble series is said to converge to the 

su:m a if liln s(p 9 q) = a. The convergent double sari.es is denoted by 
p~q,,,.,» 

""' Let n
9
m~i f(:m 9n) be an absolutely convergent double series9 

then 

(a) nt f(m 9 n) and m=ti f(m 9 n) both converge absolutely and 

(b) 

if a:n # =1 at least for n ~ :r:i0 and if li:tn 
k"""" 

ti (1 +a) exists and is 
n=n n 0 

different from zero. 

Theorem 2.28. 
~:':;:l'!C-W CA,. .=m! a.:;.ew 

The infinite product IT (1 +a) with a .J. .,,.1 for all n 
n=1 n n r 

is absolutely convergent if and only if n=ti an is absolutely convergent. 
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~l!L.:S.~· (Riemann zeta function) ~ ( s) = n~ 

2 
converges for u > 1. In particular !(2) = n /6. 

... s n ~wheres= u + iv)) 

(a Tauberian theorem) If a > 0 and ~- a zn tf'.J -.CL 
n - n='(J n 1~z 

n~ en converges:, then lim f(x) 
X•1 

In particular 

~~· Let f be a complex-valued function defined on an open 

set Sand let z be any fixed point in S. Then f is said to have a 
0 

derivative f 0(z) at z if the 1:imit 
0 0 

f(z) ... f(z) 
lim """""""'"""'"·""'"" .. '?.., = f' (z ) 

Z - Z O 
2',~ 0 

0 

exists. 

Functions 'Which posseoo a continuous derivative at each point of an 

open set are called analytic functions. It has been shown tha.t the 

existence of f 0 on S automatically implies continuity of f 1 on s. 

~~:?.,,l1!,t.3&n,,,k2±· A compl'=>x-valued function f is said to be analytic 

(or an analytic function) on an open set S if it has a derivative at 

every point in S. The function f is said to be analytic at a point z 
0 

if there exists a neighborhood N(z) on which f is analytic. 
0 

~eiiYl=k~i'?Jl.Z,~. A contour C represented by z = f(t) on the i:ntervljl.1 Is 

a:~ t 'S f; 9 is said to be closed if f\a:) = f(j). A contour C is said to 

be simple if for any two points t 1 # t 2 in I we have f(t1) f f(t2)~ 



except possible when t 1 =~and t 2 = J, that is the contour doesn't 

cross itself. A contour which is both simple and closed is called a 

simple closed contour. 

12 

Theorem 2.~~· (Cauchy's Integral Formula) Let f(z) be analytic within 

and on a simple closed contour C. If z is any point interim:· to C, then 
0 

where the integral along C is taken in the positive (counterclockwise) 

direction. 

!!1£~I'E:,.ID 2 ... ,2z. (Laurent's Series) Let S be the region bounded by the 

concentric circles c
1 

and c2 with center at z
0 

and radii r 1 and r 2 

:respectively9 r 1 < r 2• Let f(z) be analytic within Sand on c1 and c2• 

Then at each point z in the interfor of 5 9 f(z) can be represented by a 

convergent series of positive and negative powers of (z-z ) 9 0 

(2.1) f(z) = t
0 

a (z-z )n + f. b (z-z )=n~ 
n= n o n=-+ n o 

(2.2) 

(2 .• J) 

a = n 

bn = 2k Sa
1 

·c::~~::~r~ n = 1,293~ ••• 
0 

and the integral along c1 and, c2 being in the positive direction. 

12££iAition 2.1_8. A point z
0 

is called a singular point or a singularity 

of the function f(z) 9 if f is not analytic at z
0

, but every neighborhood 

of z contains at least one point at which f is analytice The series in 
0 

negative powers of (z~z) in (2,1) is called the principal part off at 
0 
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the isolated singular point z o If .an infinite nU111ber of the b do not o - n 

vanish in (2oJ), then z is said to be an essential singular point. 
0 

pefiniti.011_2. J2• If z is an isolated singular point of f(z)~ then 
0 

b1 = ~ ~
1 

f(z) dz 9 

the coefficient of (2.J) for n = 1, is called the residue off at z = z 9 
0 

and will be denoted by Res [f(z), z
0
J. 

Theorem 2.40. (Cauchy's residue theorem) Let C be a s:hnple closed co11= 
.41 : C;j a.a. 4 ,SCQUZ 

tour 9 and let f be analytic on C and in the.interior of C except at a 

finite number of singular points z1, z2, ••• , zk contained in the 

interior of C. Then 

where the integral along C is taken in the po$itive direction. 



CHAPTER III 

HISTORICAL DEVELOPMENT 

Early Beginnings 

The study of the natural numbers is but a small part of the field 

called the theory of numbers or number theory. Even this study can be 

divided into two major divisions, multiplicative number theory and addi­

tive number theory. 

Multiplicative number theory, which deals with questions of factor-

ization, divisibility, prime number, and so on, goes back more than 2000 

years to Euclid. Additive number theory, on the other hapd, began less 

than 250 years ago with Leonard Euler (1707-1783, Swiss). In his famous 

treatise, Introductio ~ Analysin Infinitorum (1748), Euler devotes the 

sixteenth chapter, "De partiti.one numerorum, 11 to problems of additive 

number theory. A "partitior." is, after Euler a decomposition of a 

natural number into summands (parts) which are natural numbers. 

According to Dickson (14], G. W. Leibniz (1646-1716, German) asked 

Bernoulli (1654-1705, Swiss) if he had investigated the number of ways a 

given number can be separated into two, three, or many parts, and 

remarked that the problem seemed difficult but important. Leibniz saw 

the relation between the number of ways a given integer could be 

expressed as a sum of smaller integers, as 3, 2 + 1, 1 + 1 + 1, and the 

number of symmetric functions of a given degree as t a3, t a2b, t abc. 

14 
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The first real contributions to the theory of partitions 9 howeve:r 9 

were made by Euler. The great algorist that he was~ Euler developed many 

formulae by the device of comparing coefficie~ts in two or mare expres~ 

sions of a given function by different algorithms. By the use of symmet= 

ric functions and their relationships, he was able to find the number of 

ways n is a sum of a given number of distinct parts. He also noted in 

1748 that p(n) 9 the number of unrestricted partitions of n 9 is the 

ff 0 
• t f n ° th ' f ~IT· (1 k)~i O t O coe icien o x in e expansion o k=i - x in o power series 

in x~ hence tM.s is called a generating (or enumerating) function of 

p(n). More will be said about the generating function after discussing 

the theory of formal power series. 

E l d th ' 1 k th t · h m n m+n u er ma e e simp e remar a? since we ave xx = x. 

exponents of powers can easily be combined in an additive manner 9 and 

therefore products of power series can be used as "generating function. 00 

Formal Power Series 

The method of formal power series was introduced by Euler around 

the middle of the eighteenth century and is one of the basic tools in 

additive number theory. 

A formal power series is an expression 

2 3 n 
ao + ai x + a2x + ar + • • • + arr + ••• 

where the symbol x :i.s an indeterminate symbol 9 i.e. it is never assigned 

a numerical value. Consequently, all questions of convergence are 

irrelevant. 

.., n · .. n Consider the power series A= t 0a x and B = ~-bx 9 where a and 
n= n n='O n n 

b are elements of some algebraic system with the defini,tionss n 



A= B if and only if a = b for all n. 
n n 

ID n 
A+ B = ~-(a + b )x (A formal power series.) n='O n n 

AB= f_(a
0
b + a

1
b ·· 

1 
+ ••• +a· 

1
b
1 

+ a b0)xn 
n='O n n- n- n 

(A formal power series.) 

A= 0 if and only if a = 0 for all n. 
n 
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Many properties can be verified and all the follow:ing fifteen have 

been verified by Rademacher (41]. If the coefficients are elements of a 

ring, then the formal power series form a connnutative ring. That is 9 

the identity relation(=) and the two binary relations of addition and 

multiplication which have been defined satisfy1 

A+B=B+A 

(A+ B) + C =A+ (B + C) 

A(B + C) =AB+ AC 

(2) AB;:; BA 

(4) (AB)C = A(BC) 

(1) 

(3) 

(5) 

(6) A+ 0 = 0 +A= A., where O is the zero power series, 

If the coefficients have multiplicative inverses, then the addi~ 

tional properties follows 

(8) AB= 0 implies A= 0 or B = 0 

(9) A # 0 an\i AB = AC implies B = C 

(10) a f O implies there exists a B such that B = 1/A is a power series. 
0 

. ~ n-1 Consider A'= ~-na x to be the derivative of A. The following n=U n 

properties follows 

(11) (A+ B)' =A'+ B' (12) (AB)'= AB'+ A'B 

Both of these can be extended by induction to a finite number of sums or 

products. 

If AB has a 1:·eciprocal (i.e. a b f O), (AB) '/AB is called the 
0 0 



logarithmic derivative of AB. It follows thatg 

(1J) (AB)' 
AB 

A'B AB' A' B' =-+-·=-+·-. AB AB A B 

By induction it follows thatg 

O D o 

• • 0 

A a 
i =r+ 
1 

••• 

A formal power seri.es will result from the product of a fini.te number 
n 

17 

of power se:ries 9 i:MiAi 9 since the coefficient of the kth power of x can 

be found by adding only a finite number of terms. If we consider pro= 

ducts such that only a finite nu.mber of terms are needed to compute the 

term xn 9 then it also follows thatB 

( ilA,) 0 .A' 
( 15) n=1 n "' n • 

.. ' 

00 = n~.r 
II

1
A n n= n 

Formal power series will frequently be expressed as products. It 

will thus be necessary to work with products P particularly of the type 

J1(a + bxk). Only products in which there exists a finite number of 

terms involving xn will be considered. 

Identities of Euler and Jacobi 

Euler used formal power series to develop the generating function 

of p(n). A gi,ren partition of n~ 

can be writte:n i11 the more systematic form 

(3.2) 

where n1 i.s the number of 1 's 9 n2 is the number of 2 1 s ~ n
3 

is the number 

of 3°s 9 etc. Thus p(n) is the number of solutions of (3.2). 



18 

On the other hand 9 

. 1 . ·--~·-··2 
1 - x 

1 . ---... 
1 .,, X) 

• •• 

0 0 I 

= n~C(n) xn 9 

where n = n1 + 2n2 + 3nJ + • • • and C ( n) = t i" where the sum is over all 

ni such that n =_ n1 + 2n2 + 3n
3 

+ ••• • Thus C(n) is the number of 

solutions of (3.2) and one formally concludes, 

(3.3) 

Relation (3.3; 'Will be stated and proved in Theorem 4,5 for all real x 

such that lxl < 1. 

In order to gain knowledge of p(n), Euler. studied the reciprocal of 

the generating function, i.e. m(x) = p~;;J = ~ 1(1 ~ xk). 

After expanding the product of a number of factors 9 he obtained 

2 5 7 12 15 22 26 1~x=x +x +x -x -x +x +x .-.-++ ••• 

He wrote out the powers of Xg odd terms to the right and even ter~ns to 

the left as followss 

• • • 26' 15 ll 7 ll 2 9 0 9 1 ~ 5 ~ 12' 22 '; • 0 0 

Euler then took the diff ere nee of each pair of consecutive numbers i.n 

the sequence to obtain the new sequence, 

••• 

He again took the difference of each pair of consecutive numbers to get 

the constant 3 in each case. It was now evjdent that the original 

2 sequence must be of the form an + bn + c. He was led to conjectures 

(J.4) 
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and he was unable to prove this result until 9 years later in 1750. The 

relation (3.4) is known as Euler's identity and will be stated and proved 

in Theorem 4.?. Euler's identity was also proved by Carl G. J. Jacobi. 

(1804,,,1851, German) in his "Fundamenta Nova" of 1829~ where he ma.de 

important applications of elliptic functions to the theory of partitions. 

Jacobi's wel1=known theta formulas 

(3.5) 
2 n 

"" n z tx 
n=="' 

was proved by Jacobi in 1829. James J. Sylvester (1814=1897 11 English) 

(4-7] gave a direct proof by elementary means and E. Maitland Wright 

(1906= 9 Britian) (50] gave. an enumerative or conibi.natorial proof of 

Jacobi 0 s theta formula in 1963 from which not only Euler's identity but 

other results in partition theory can be deduced. F. Franklin gave a 

proof of ll.."uler's formula (:3.4.) with combinatorial arguments. A more 

recent algeb:t0aic proof was given by Daniel Shanks [45J 9 which is the 

method of proo£ given in Chapter IV. 

With unsurpassed manipulative skillj Euler derived numerous identi= 

ties from his relations (:3.3) and ('.3.4). Among the many results of 

Eulervs were the elegant formulae whereby p(n) c_ould be calculated 

recursively. 

Recursion Formulae 

The result of multi.plying the relations (3.3) and (J.4) together 

yields 

Upon equating coefficients~ Euler obtained the recursion formula 

(3.6) 
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where wk= k(3k - 1)/2, (k = O, ± 1, ± 2, ••• ). 

The recursion formula (3.6) makes possible the computation of p{n) 

by inductive steps. Of course the number of terms in (3,6) increases as 

n increases. The number of terms needed to find p(n) may be determined 

approximately as follows. Fork> O, 

w = .J!t: - lf < n, 
k 2 2 

and for large k 9 the term k/2 is small compared to (31/)/2 and hence may 

be neglected, Thus {3k2)/2 < n and hence k < ./2nTJ:' Similarly, for 

k < 0; or approximately 2/2n[j terms altogether. 

Anothe1' of Euler's recursion formulae was 

(3,7) p (n) = p 1(n) + p (n,,.m), m m- m 

where pm(n) is the number of partitions of n into summands not greater 

than m, By the U$e of this recursion formula, Euler computed a table of 

values of pm(n) for n s 69 9 m S 11, [14]. A proof of the recurs:l.on 

formula (3,7) is given by Grosswald (23]. However, this recursion form ... 

ula is useless as an aid to practical computation for any but 1.nconsider= 

ably small numbers (7]. 

One peculiarity of Euler's formal analysis (The interested reader 

can refer to Rademacher's lecture [41] Chapter I, Formal Power Series, 

to see a more complete development of formal analysis.) is that :l.t can 

lead to absurdities if not used properly. He recognized that if an 

infinite series is not convergent it is unsafe to use unless the vari ... 

able is used as an indeterminate. For example, by long division one 

obtains 

(1 = x)-1 = 1 + x + x2 + x3 + ••• = 1c=fo xk. 

It is known that th:l.s series converges for !xi< 1, but for x = 2 the 
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absured result of -1 = 1 + 2 + 4 + 8 +•••is obtained, 

P, A. MacMlhon (1854-1929, Britian), used Euler's formula (3.6) to 

compute a table of values of p(n) for values of n up to 200. This table 

was published at the end of a paper by Hardy and Ramanujan [25], 

Hansraj Gupta [21] added to the list another recursion formula, 

(n,m) = (n ... m,m) + (n + 1, m + 1), 

where (n,m) denotes the number of those partitions of n in which the 

smallest element t'1at occurs ism. This helped him to construct tables 

(21] of p(n) for values of n up to 300 and later for values of n up to 

600 [22]. 

Asymptotic Results 

The generating function and the formulae of Euler and Jacobi were 

used to develop many interesting recursion formulae. No general inde-

pendent representation of p(n) was known until 1937 -when Hans Rademacher 

(1892 .. , German) [42] developed a convergent ser'ies representation. 

According to Rademacher the order of magnitude of p(n) for large n was 

never examined until 1917, when G. H. Hardy (1877-, English) ands. 

Ramanujan (1887 .. 1920, Indian) [25] applied their new analytic methods and 

derived an asymptotic formula for p{n). 

The value p{200) = 397 29990 29388, computed from the recursion 

formula byMacMahon, can be computed with only six terms of the asymp-

totic formula with an error of .004. 

The asymptotic formula obtained by Hardy and Ra.ma.nujan is 

(3. 8) p{n) r--1 
1 exp(~), 4nff . 

or mor~ precisely, 



(3.9) 

with O: an arbitrary con.stant, ~ = Jn - 1/ 24 and n . 

Ak(n) = t. Wh k exp(=21T:ilm/k). 
h mod k ' 
(h9k) = 1 

The symbol Wh~k means a 24k ... th root of uni.ty given for odd h by 

wh~k = ( ... k/h)exp(~£(2"" hk.,., h)/4 + (k ... 1/k)(2h ... he+ h
2
h')/12}1T:Ll 

and for odd k by 

Wh
9
k = (=h/k)exp( ={(k ... 1)/4 + (k - 1/k)(2h ... h' + h

2
h 1 )hri]~ 
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where (a/b) denotes the Legendre-Jacobi symbol and h' is any solution of 

the congruence 

hh'; ~1 (mod k). 

Ra,de:macher has also sho'Wll that Wh~k has the following representation 

. 1<:-1 x 1 rue hx · 1 
wh~k = exp 'TTi ~1 ( k - 2 )( k = [k J "' 2 ) 9 

where [x] means the greatest integer function. 

D. H. Lehmer (1905~~ American) [30] used the series (3.9) to develop 

p(599) = 4353 50207 8L1J01 70000, 

p(721) = 16 10617 55750 17947 347629 

p(2052)~ and the 127 digit number for p(14031) 9 the largest known (40]. 

Lehmer (29] later proved that the series (3.9) is not convergent but 

divergent. His results for p(599) and p(721) are easily justified 9 how= 

ever~ by conve:rgent series due to Hans Rademacher (1892= 9 German) (42]. 

Rademacher simplified and perfected the original analysis of Hardy 

and Ramanujan to obtain the convergent series 

1 d sinh C ln/k 
p(n) = - ~" A (n) ,./k -dn __ __,,,.._ 

1T./z k="""l k ln 
(3.10) 
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He also showed (42] that the series (.3.9) can be derived as a corollary 

from his series (J.10). 

Congruence froperties 

Ramanujan (24]~ upon observation of MacMahonas table of p(n) for n 

up to 200 9 discovered and proved the congruence properties 

(a) p(5m + 4) _ 0 (mod 5) 

(b) p(?m + 5): 0 (mod?) 

(c) p(11m + 6); 0 (mod 11). 

He made the general conjecture that if 

6 = 5a 7b 11c 

and 

then p(n) = 0 (mod 6). 
a b c The proof would only need to involve the cases 6 = 5 9 7 9 and 11 since 

all others would follow as corollaries. Ramanujan proved the result for 

2 2 3 = 59 7~ 11 9 5 9 and 7 o It was later observeq by S. Chowla (13] from 

Gupta 0 s table 9 with values of n up to 300 9 that there was a contradiction 

to the conjecture. A contradiction occurs with n = 243 since 24(24;Y; 1 

(mod 73) but 73 does not divide p(243) = 13397 82593 4L~888. 

Watson (48] found and proved the appropriate modification of Ram= 

anujan°s conjecture for 6 = 7b 9 vis. that p(n) ;;=;O (mod 7b) if b > 1 and 

· ~2 a 
2Lm ~ 1 (mod ? = ) • He also proved the congruence for the case 5 • 

Lehm~r (28] used the celebrated Ra.manujan series to compute p(599) 

a.nd p(721) to check the conjecture for & r= 54 and 113 respectively. 

However 9 he could not be sure of these values and this led Gupt~ [?d;J to 

extend his tables for p(n) up to n = 6oq. This confirmed his value fot' 

p(599) and also for p(721) with respect to the modul~s 24?. 
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However 9 after Rademacher's development of his convergent series for 

p(n)~ Lehmer (28] establ.1.shed the following factsg 

p(1224): 0 (mod 54) 

p(2052) _ 0 (mod 113) 

p(24?4) ~ 0 (mod 53) 

p(14031); 0 (mod 114)~ 

which are all in accord with Ramanujan's conjecture. 

In 1943 9 Joseph Lehner (1912-~ American) (31] proved the Ra:manujan 

Conjecture for 11 and 112 but said nothing is known concerning the con-

jecture for higher powers of 11 except for the affirmative test of 

Lehmer' s above:. Seven years. later Lehner (32] also p:roved the conjecrture 

for 113. 

Atkin and Swinnerton=Dyer proved some results for which the congru= 

ences (3.11) are immediate corollaries. More general theorems were also 

proved by J.M. Gandhi which will be given in Chapter IV. 

In spite of the simplicity of the de~inition of p(n) 9 very few 

arithmetic properties are known. There is no simple criterion to deter-

mine whether p(n) is even or odd for example. Ramanujan had inquired of 

MacMa.hon if he had a simple way of determining the parity of p(n). 

Si.nee Ramnujan was successful in discovering some congruences from a 

table of values for p(n) for n up to 300, MacMahon [34] obtained the 470 

values of p(n) 'Which are even for n S 1000. More on congruences will. be 

given in Chapter V. 

Generalizations 

The usual thing in mathemattcs, if possible 9 is to generalize what 

you already have. This is exactly what happened in the theory of parti.= 
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tions and continues to happen. For example a partition of 10 can be 

written with the su:mrna.nds in non-ascending order of magnitude along a 

line as followsg .5 3 2. This is regarded as a one.,,dimensional or line 

partition. 

A:.u Plane Partitions and hi&!er dimensinns 

MacMahon [33] was the first to take a line partition of an integer 

n and arrange the summands in rows and columns with no11=ascending order 

of magnitude in each row from left to right, and i:n each colu:m.n from top 

to bottom. Such an obvious generalization is called a two ... dimensional 

or plane partition. 

Th r:.:~ from the line pa::rti.tion .5 3 2 of the number 10, vJe would 

have the plane partitions .532 9 53, 52, 5. 
2 3 3 

2 

MacMahon was now able to place restrictions on (i) the size o.f each 

summand~ (ii) the number of rows, and (iii) the number of columns. Jf 

the number of rows is k 9 (k S n), then the rep:r:•esentation is referred to 

as a k=rowed or k=line partition. He was able to obtain generating 

functions i'or the plane partitions with and without restrictions. How°" 

ever 9 his developments were neither intui.tive nor easy. He used the 

intricate and beautiful analysis based on his theory of Lattice Fune:= 

tions. 

Later T. W. Chaundy (10] devised an algebraic technique which gives 

the result more rapidly. Other proofs were given fork= 2 by Forsyth 

[15] and the first one based on the purely combinatorial method of one= 

to ... one correspondence by Cheema and Gordon (12]. 

More recently, Gordon and Houten (19] have given a much more simple 

proof of the generating function for the plane partition function. 



They also developed a generating function for the k=rowed partition 

function with restrictions. However, the proofs still fall short of the 

intuitive development which was first the goal of MacMahon and which 

still remains perhaps an impossible challenge, 

Wright (54] uses the notation p(n), q(n) 9 and r(n) for the number 

of linears plane and solid partitions of n respectively. He claims it 

has long been conjectured that the generating function for r(n) is 

An asymptotic result for the plane partition function was first 

obtained in 1931 by E. M. Wright (51]. He applies Cauchy 0 s integral 

theorem to the generating function and applies the method of usteepest 

descent 0 in evaluating the integral. He mentions in this paper the 

improbability of an asymptotic result with as small an order for the 

error as in the case of p{n). 

In 19649 published in 1966 [52] 9 Wright used the reciprocal of the 

generating function for plane partitions, i.e.j 

and developed asymptotic results for c(n). Before this was published 9 

Haskell (27] also developed the asymptotic results which includes the 

famous Hardy-Ramanujan results for p(n) ~s a special case. Haskellas 

paper also has a crude asymptotic formula for the k-line partition 

function. 

There are very few results concerning congruence properties of 

k=line and plane partition functions. Cheema and Gordon (12] gave some 

for t 2(n) and t3'n) 9 the two-line a:nd th,ree=line partitions. In 1.967 9 

Gandhi (18] extended this to tk(n) for k :;: 4 and 5 a.ncl cla.ims to have 
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some fork= 69 7 9 8 and 9 which have not appeared in print at this time. 

The partitions of n have also been extended in a logical way to 

n~dimensional or multi=dimensional. MacMahon refers to the number of 

)=dimensional partitions of n as the number of 'solid graphs' of n nodes. 

The generating f.unctiori,s 9 some asymptotic and arithmetic results 

will be given i,n a later chapter~ 

B. Vector Partitions 

Another e:x;tension of the theory of partitions is to consider the 

'multipartite' numbers. A multipartite number of orders is as dimen-

sional vector, the components of which are no11=negative rational inte~ 

gers. A vector partition of (n19 n29 ••• ns) is a solution of the vec­

tor equation 

~ (n1k9 n2k9 ooo n
5
k) = (n19 n2 9 ••• n

5
) 

in multipartite numbers other than (0 9 O~ ••• O). The number of such 

partitions without restrictions (order of vectors not significant) is 

generally den~te.d by p(n19 n29 ••• n2). The generating funct~on is 

Il-(1 k1 ki k, k )=1 k,i?U = x 1 x 1 x 22 ••• x
5

s -= 
J. 

• 0 • 

where k1 + k2 + • • • + k 
8 

> 0. 

The generating function for the partitions of bipartites (m9n) 

n x s, s 

without restrictions was already known by MacMahon [33]. However, L. 

Carlitz (8] obtained explicit generating functions for the bipartite 

with restrictions. Let u(mpn) denote the number of partitions of (m,n) 

into parts (mi 9 ni) such that min (mi 9ni)? max (m19n1) for (i=1 92,J, ••• ). 

Then he obtains, 

J1 (1 ~ xnl1"'1)""1(1 "" xn,.,1ynr1(1 - x2ny2nr1 = m9n=tc,u(m,n)xmyn. 

(m+n>O) 

He noticed the close similarity with the Jacobi theta functions and was 



able to prove 

nD1 (1 "" xny11=1)(1 - xn-1yn)(1 = x2ny2n) 

= ~
1

( 1 + xnyn)r=E~(-i)rxr(r-i-1)/2Yr(r=1)/2
0 

L. Carlitz [9] was then able to develop the following two relations. 

v(mjn) = p(m = (m - n)(m - n + 1)/2] 9 
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where p(n) is the number of unrestricted partitions of n with p(-m) = 0 

form> 0 and v(m 9 n) is the number of partitions of (m 9n) into distinct 

parts (a 9 a = 1) 9 (b = 1 9b) (a 9b = 1~ 2 9 3 ••• ). 

w(m 9 n) = ~~(mjn)p(r)y(m = r 9 n = r) 9 

where w(m 9 n) denotes the number of partitions of (m9 n) i.nto (not necess"" 

and y(m 9 n) is the number of partitions of (m9 n) into (not necessarily 

distinct) parts (a 9 a = 1) 9 (b = 19b) (a9 b = 19 2 9 3 ••• ). 

In 1953 Auluck (5] obtained an asymptotic formula for p(n19 n
2

) 

when n2 is fixed and n1 large. Nanda [35] shows this same result applies 

for fixed n2 of order n1
1/ 4 and large n

1
• Robertson (44] extended 

Nanda as method to asymptotic formula for the number of unrestricted 

partitions of an S=dimensional vector. Cheema (11] obtains some 

asymptotic results of p(n19 o•• n
5

) with restrictions and establishes 

a relation between vector partitions and the multi=dimensional parti= 

tions. 

The problem of congruences~ ioeo to show p(n19 oo• n
5

) ~ a 

(mod m) has an infinite number of solutions for all ms a 9 and fixed s 9 

is an open problem even in the cases= lo 

The problem of finding certain generati.ng functions is still o;peno 

CheemA 1}1 J states the conjecture that the genera.ting function for 



bipartite plane partitions (with non.mascending order of magnitude in 

both directions) is 

k k ~(1 - xt1 x~2)·(k1+k2). 
1 2"" 

k1+k2>0 

Wright (47] refers to a conjecture for the generating function of 

d-dimensional partitions of n, name_ly 

k ...,(d+k ... 2) 
Rd(x) = ~ 1(1 ~ x) k ... 1 
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where \d:~1) takes the value 1 for k.=1 and otherwise denotes the usual 

binomial coefficient. The proofs for d=1 and 2 have already been 

alluded to, but it has been disproved for d=3 by Atkin et al. [3]. E. M. 

Wright [53] makes the following comment, °'It is interesting to learn 

that R
3

(x) is not the generating function of q(3,•;n) and it would be of 

some intere.st to have a more plausible conjecture as to what is the cor-

rect generating function. 11 He denotes the number of unrestricted 3-

dimensional partitions of n by q(3,"' ;n). 

c. The partition function pr(n) 

Another generalization has been to study the function p (n) which 
r 

is defined by the relation 

r ~ kr ... n 
P (x) = ,_g1(1 = x) = ~-n (n) x. 

A= n:?O'""r 

Thus p_1(n) = p(n) is just the unrestricted partitions of n. 

K. Go Ramanathan, in 1950 9 proved congruence properties modulo 

powers of .5, 7 and 11 for pr(n) simila.r t.ilil wha.t had al.ready been .. done ... for 

p(n). However 9 Atkin [2] in 1966 found an error in his lemma 4 on which 

his main theorem depends and unfortunately his results are incorrect. 

Atkin does prove a theorem for the congruence properties modulo 5 and 7 



for p_k(n)~ (1 < k < 8). 

The function p (n) is very useful in obtaining elementary proofs 
r 
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for the congruences of p(n). In 1964 Gandhi (17] used i"t to obtain very 

simple proofs for p(5m + 4): 0 (mod 5) and p(7m + .5) ~ 0 (mod 7). The 

author has used it in Chapter V of this paper to develop a simple proof 

for p(11m + 6) ~ 0 (mod 11). 

The only applications of the theory of partitions which will be 

indicated in this pa.per will now be given as a quote from v~ s. Nanda 

with reference given by Wright (52]. 

The close similarity between tb,e basic problems in statis­
tical thermodynamics and the partition theory of numbers 
is now well recognized. In either case one is concerned with 
partitioning a large integer, under certain restrfoti.ons ~· 
which in effect means that the 'Zustandsumm.e' of a thermo­
dynamic assembly is identical with the generating function of 
partitions appropriate to that assembly. ••• Asymptotic 
expressions are deduced which constitute a generalization 
of the Hardy=Ramanujan formula for p(n) which corresponds 
to an assembly of linear oscillators •••• It is remarkable 
that the Zustandsumme of an assembly of a, variable number 
of two=dimensiona~ oscillators is identical with the gen= 
erating function of plane par.titions. o. o Further 9 .it 
is noticed that a study of twe1=dim~nsional oscillator assem= 
bly is connected with the partitions of bi=partite numbers. ••• 



CHAPTER IV 

GENERAL DEFINITIONS AND THEOREMS OF PARTITIONS 

Partition Functions 

A function which is defined on th(;! natural munbers or positive 

rational integers is said to be an arithmetic function. Many arithmetic 

functions exist in number theory and the partition function to be dis.., 

cussed in this chapter is such a function. 

Definition 4.1. A partition of the positive integer n ls a representa= 

ti.on of n as a sum of positive integers referred to as the sunnnands or 

parts. Sums whlch differ only in the order of sUllJlllands are considered 

the same partition. 

Definition 4.2. The number of partitions of the positi.ve integer n is 

the parti tj.on function p( n) • 

Other partition functions of n have been defined by placing various 

restrictions on the summands and/or the number of swnmands. Some of 

these will be introduced and illustrated here. There are different sym­

bols in the literature for certain functions (as you have perhaps 

noticed in the previous chapter), but to avoid dupljcation of symbols 

from this point on the f9llowing definition will be adhered to. 

Definition 4.J. The functions p(n;m), pA(n), q(n)~ q9 (n) and q0 (n) rep~ 

31 
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resent the number of partitions of n with summands not exceeding m!) sum­

mands from the set A~ mutually distinct summands~ an even number of 

mutually distinct summands and an odd number of mutually distinct sum-

mands, respectively. 

To illustrate the partition functions, consider the following 

partitions of the number 5. 

(1) 5 

(2) 4 + 1 

(3) 3 + 2 

(4) 3 + 1 + 1 

(5) 2 + 2 + 1 

(6) 2 + 1 + 1 + 1 

(?) 1 + 1 + 1 + 1 + 1 

There are a total of seven partitions and hence p(5) = ?. The three 

partitions in (5) - (?) are the only ones with summands not exceeding 2 

and consequently p{5;2) = 3. The partitions in (1), (4) and(?) have 

odd summands 9 with the set of odd integers represented by 0 9 we have 

p0(5) = 3. Since no partition has only even (E) summands~ pE(5) = o. 

The partitions with mutually distinct summands are (1), (2) and (3) so 

q(5) = 3. There are two partitions with an even number of mutua],ly 

distinct summands and there is only one with an odd number of mutually 

distinct summandsp thus qe(5) = 2 and q0 (5) = 1. 

An almost evident result relating the partition functions is given 

by the following theorems. 

Theorem 4.4. (a) p(nom) = p(n) if n Sm, 

(b) p(n;m) $ p(n) for all m? 1 9 
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(c) q(n) = q0 (n) + q0 (n)~ 

(d) p(n)? pE(n) + Po(n) and 

(e) pE(2n+1) = o. 

Proof& (a) follows since each summand of n must be less than or equal 

to n. If it happens that m < n~ then it is ev:tdent from the definition 

that the inequality will hold in (b), otherwise the equality will hold. 

The result in (c) follows since every partition with disti.nct summands 

must have either an even number or an odd number of summands. A parti"" 

tion of n :must be one of the three typess summands all even 9 all odd 9 

or some even and some odd~ thus (d) follows. Since no odd integer can 

be expressed as the sum of even positive integers the result (e) follows. 

Generating Functions 

Power series are extremely useful in additive number theory because 

of the additive proper·ty in the laws of exponents. Much of the work in 

the theory of partitions has been done with the aid of power series. 

Certain functions represented by power series can be used to define the 

partition functionso 

If a real valued function F can be expressed in a power series 

F(x) ~ n~O f(n) xn ~ f(O) + f(1) x + f(2)x2 + ••• + f(n):x:11 + o. 09 

then the coefficient of xn is the function value off at n. Thus it is 

possible to use series to define an arithmetic functi.on and it will be 

convenient to extend the domain of the functio;n to include zero. Since 

the generating function (defined in Definition 4.6) for the partition 

functions 'Will have constant terms equal 1 ~ i.t is convenient to make 

the following definition. 
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That is 9 all partition functions are defined to be 1 for n = O. 

Dei'ini.tion 4.6. Any function F(x) = n~ f(n)xn is called a generating 

function 0£ f(n). 

The convergence of the series is not really significant in terms of 

defining the arithmetfo function f(n) since it is the coefficients which 

give the function values. However 9 in most of the work convergence is 

needed and the series representi.ng the partiti.o:n functions converge for 

all real x numerically less than 1. 

First a formal development of the generating functions will be 

given without regard to the question of convergence. The gene:t'ating 

functions will be represented by the same letter but it will be capital. 

The proof will require Lemma 4.7. 

£,_:mma 4.z. PA (n) is the number of distinct solutions of the diophantine 

equation 

in positive integers k, and distinct elements a, of A. 
1 1 

Proofg Any solution of (4~1) is by definition a partition of n~ s:lnce 

the value of k, indicates the number of times a, occurs as a summand. 
1 1 

Hence 9 the number of distinct solutions corresponds to the number 

partitions of n with summands that ar'=l elements of A 9 i.e. pA(n). 

Theorem 4.8. pA(x) = aPA (1 = xa)-1 and Q(x) = ~ 1 (1 + xk) 

are generating functions for pA(n) and q(n) respectively. 

of 

Proofs (1 = xarl = k=to (xa/ ('!'he interval of convergence will be 



considered in Theorem 4.11). From this it follows that 

PA (x) = a~A (1 ~ xar1 

ak 
"' x 

= a~A ~ 
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~ ( 1 + X a + x2a + ka · ) 
: 'A ••• + X + ••• a ,i 

where c is the number of distinct positive integral solutions of the n 

diophantine equation (4.1). By Lemma 4.7~ en= pA(n) and thus PA(x) is 

the genera.ting function for pA(n). Similarly~ 

• k 2 3 J11 (! + x) ~ (1 + x)(1 + x )(1 + x ) ••• 

"' n = I"._ d.x 9 n=O n 

where d is the n'U!llber of distinct solutions of the diophantine equation n. 

1k1 + 2k2 + Jk3 + ••• = n, where ki (i = 19 2, Jj ••• ) is O or 1. 

Hencej d is the number of times that n can be expressed as the sum of n 

distinct positive integers, i.e. q(n). Thusl> Q(x) is the generating 

function for q(n) and the theorem is proved. 

Other generating functions follow as a consequence of Theorem 4.8. 

C'1..ro_;p.ar;l ~· 

(b) 

( ) ( ) 

00 
( 2k=1)=1 ~ ( ) n c P0 x = idJi 1 = x = n~ Pon x ~ and 

(d) P(x,m) = iJ1
1 

(i = xk)-1 = n~O p(nvm) xn. 

That is, P(x) 9 PE(x)~ P0(x) 9 and P(x;m) are generating functions for 

p(n)w pE(n) 9 and p(n;m) respectively. 
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Proofi This follows i:mmedi,ately from Theorem 4.8 where A is the set of 

positive integers~ even positive integers 11 odd positive integers~ and 

positive integers not exceeding mo 

The next theorem shows that the generating function P(x) actually 

converges for all x such that j xi < 1 o .All the other generating func.,,, 

tions comrerge for ix! < 1 with similar proofs which will not be 

included hereo This implies that they represent analytic: functions at 

least inside the uni.t circle. 

A convenient notation which is used -through=out thi.s: paper will be 

stated in the following definition. 

Definition 4010. For all x (particularly x = O)~ 

E- p(n) xn = 1 + f 1 p(n) x11
• n=O n~ 

This definition applies for other parti.tion functions as well. 

Theorem 4 .1 L 
4WWW 

Proofg Let z be a complex number such that izl = r < 1. Then 

jP(z)I S P(r) 

= nn1 (1 = rn)=1 

n 
j{ 0 

But with O < r < 19 

rn 
the geometric series a converges absolutely 1md has sum -""""'™". The n n 

1 = r 

product of absolutely convergent series ~onverges by Theorem 2.2l-1- and 

thus~ 
n 

r n), 0 < r < 1 1 

= r 



which converges by Theorem 2.28 since ~ 1 
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n 
r ----n converges absolutely 

1 - r 

for O < r < 1, In view of Corollary 4.9(a) thi.s completes the proof, 

A longer proof' with less advanced analysis is given by Niven and 

Zuckerman (38]. 

It should be observed here that the convergence of the generating 

function is uniform for !zl S 1 - E (for arbitrarily small E > O). It 

can also be observed from the prc;,duct representation of the generating 

function that it fails to converge on or outside the unit circle. 

A simple application of the generating functions will be illus.., 

trated in the proof of Theorem 4.12. 

Theorem 4,12. The number of partitions of n whose summands are odd inte= 

gers is equal to the number of partitions of n with distinct summands. 

That is9 p0{n) = q(n), 

Proofg It will only be necessary to show that they have the same gen= 

erating functions since a given partition function is represented (or 

enumerated) by a unique series. 

From Theorem 4.89 

.. k 
Q(x) = iJli (1 + x) 

= (1 + x)(1 + x2)(1 + x3) D • • (1 + xk) D • • 

1 2 1 4 1 
6 

1 
2k 

= x = x - x • • • = x • • • = k 1 1 2 1 ... x3 1 = x ""x ""x 

Since the factors in the numerators 9 (1 - x2k) for all klN (natural 

numbers), also occur in the denominator leaving only the factors 

(1 ""x2k=1) for kEN in the denominator, it follows that 



J8 

which is the generating function for P0(x) given in Corollary 4.9. 

An interesting alternative proof of Theorem 4.1.2 which uses the 

base two representation 0£ the natural numbers is given by Hardy and 

Wright (26]. 

The next theorem will be given not only to illustrate the use of 

generating functions in obtaining a relation between two partition 

functions 9 but also to illustrate a technique used by Euler of intro= 

ducing a second variable. This theorem involves p(n,r~m) 9 the nmnber of 

partitions of n into r summands with each summand greater than or equal 

tom~ and p(n,r) given in Definition 4.J. This proof, with slightly 

different notation~ is given by Haskell [ 27]• 

Theorem 4.13. 

Proofg From Corollary 4o9(d) the generating function of p(n;r) is 

(1) r k ... 1 "' n iJI1 (1 = x) = n:'ta p(nB:r) x • 

The function p(n;r~m)j already known by MacMahon [32] 9 is the coeffi= 

' t "" r n ' th ' f cien 01 ax in · e expansion o 

(2) 

(3) 

F(a3xgm) = jllo (1 = axm+j)=1 

= f_ g (xim) ar 9 where r=D r 

n 
x • 

Replace a by ax in (2) to obtain 

F(ax3xim) = ----........ --
1
---~---

(1=axm+1 )( 1=a.JC*2)(1=axm+3) • • • 

= ___________ (~1~=~a~xm""""')~----"""""" 
(1-a.:x:m)(1=axm+1)(1=axm+2)••• 

= (1-axm) F(a~xim). 



Thus~ 

or from (2), 

r=ta gr(x,m) arx:r = :r~ gr(x;m) a:r = a:x.m ~ gr(xim) 

Equate coefficients of ar to obtain 9 

Hence 9 

xr g (xgm) = g (x~m) ... xm g 
1

(xzm). 
r :r r= 

:m: 
g (x,m) = _x __ g 

1
(x;m). 

r 1 r r-
= x 

ni 

gi(x;m) = 1 ~ x9 

fu 

r 
a • 

m 
g2(x,m) = ._.....x-..,..,.2 x 

9 and by induction 

(4) 

1 "" x 

m: 
g (x;m) = .,..x-..,_ 
r 1 ... x 1 

= 

1 ... x 

:in . 
x 

2 
""x 

0 • • 

rm 
x 

m 
x 

Cd!QIUI.,.$ s:; . r 
1 = x 

2 (1 = x)(1 = x) • • • 

Therefore!) from (1) and (3) 9 (l}) becomes 

"' ( )n rm= ( )n n~O p n,rim x = x n~ p nir x. 

Equate the coefficients to obtain the :results of the theorem. 

Theorems of Euler and Jacobi 

Perhaps the most useful theorems in the theory of partitions are 

Theorems 4.15 and 4.16 9 due to Euler and Jacobi 9 respectively. Euler 

considered the function defined by the reciprocal of the generating 

function P(x) which will be stated for reference purposes in the 

following definition. 

39 
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Definition 4.14. (P(x)J'1 = J1 (1 ~ xk) and denoted by ai(x). 

Euler was able to express this funotion in a ~eries repre= 

:sented in equation {4.2). Thi.s will be proved by the algebraic m.ethod 

of Shanks (45] s 

(Euler's identity) 

(4.2) %( ) _ n"' (i k) -· ~ ( 1)n n(Jn+1)/2 
w x - 1...::1 "" x - ,I:., ""' ' x O ~- n=-oo 

Proof: First notice that the identity may be ,lll"it;ten in the form 

(4.3) ~i (1 = xk) = 1 + n~1 (=i)n [xn(JrJ,z,1)/2 + xn(;n + 1)/2]. 

Let the partial products and partial sums of (4.J) be 

and 

It is important to observe that~ 

Pn 
(4.4) 

p n...1 = 
and 

(4.5) 

It vrill first be sho-wn by mathe:ma.tical induction that 

S =Fa where F = ~- (~1) 5 :U xsn+s{s+i)/2• 
n n· n s~ P 

i) If n = 1~ then 

2 s1 = 1 = (x + x) 

s 

2 = (1 = x) + x = F1• 

Thus~ (4.6) is true for n = 1. 

i:!,) Now :it will be shor..m that Sk-i = F k=i implies Sk = F k• From 

ths definition of F in (4.6)~ and detaching the last term of the sum= n 



Use (4.4)in the form Pk= Pk .. 1(1 - xk) to split the summation into two 

parts, This gives~ 

Fk = :~ (-i>5 :k-1 xsk+s(s+i)/2 + ~~ ( ... i)r+1 ;k .. 1 xk+rk+r(r+i)/2 
s r 

+ (-l)k xk(3k+1)/2
0 

41. 

Now detach the first term~ s = O, in the first summation and detach the 

last ter:m 9 r = k-1 g in the second summation to obtai.n 9 

F p p 
F = ~ + k~~ (-i)s .J£::l xsk+s(s+i)/2 + k~~ (-i)r+1 ~ xk(r+1)+r(r+1)/2 

k P0 s='l P r=--0 P s r 

+ (-i)k [xk(3k-1)/2 + xk(3k+1)/2], 

Let r = s=1 in the second summation in order to re-combine summations 

p 
From (4.4) 9 it follows that f- = 1 = xs. This substitution in the 

S=1 

brackets of the surr.anation and including the first term in the summation 

for s = 0 gives~ 

Fk = ~~ (-i)s ;k=1 xs(k-1)+s(s+1)/2 + (-i)k [xk(3k-1)/2 + :x:k(3k+1)/2J. 

s 

= Fk=1 + (Sk = 5k-1), 

by the use of (4.5) with n = k, This can be written in the form 9 

Thus, if sk.,,,i = Fk-P then Sk = Fk and equation (4.6) follows by induc.,,, 

tion. Now to compare F and P, we observe that the first term in n n 
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definition (406) of Fn gives Pno That is 9 

F = p ~ :n xn+1 + 
0 

•• + (~i)s ~ xsn+s(s+1)/2 + • 
0

• + (~i)n(;nH)/2. 
n n P1 Ps 

Since the degree of P
8 

is s(s+1)/2, it follows that all the terms of Fn 

after the first are of degree n+1 or greater. This implies that all the 

terms of degree less than n+1 agree for both F and P. Let n •"" and · n n 

the series representation for both numbers of (4.J) are the same and the 

theorem is provedo 

Hardy and Wright [26] have proved several theorems which use 

Euler's device of the introduction of a second parameter which Euler 

used in proving his identity (4.2). However, Hardy and Wright prove the 

identity (4.2) as a special case of Jacobi I s theta formula (:, • .5). Since 

this formula belongs properly to the theory of elliptic fu:nctions 9 it 

will not be proven here. It can also be used to prove (26], as a. spacial 

case 9 the very useful identity of Jacobi'se 

Theorem 4.i6o (Jacobi's identity) 

(4.7) m3(x) = ~1 (1 - xk)3 = nio (=1)n(2n+1) xn(n+i)/2. 

Proofg Can be found on page 285 of Hardy and Wright [26]. 

Some Generalizations and Relations 

Euler w~s the first to consider the reciprocal of the generating 

function for p(n) 9 namely m(x). Many have since considered the more 

general definition. 

Definition 4.1?. Define p (n)g for all integral rand positive integral 
r 

n 9 by the equation~ 

xr(x) ~TI ( k)r ~ ( ) n 
w = k=i 1 = x = p;O pr n x. 
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For convenience define pr(O) = 1 and pr(-n) = O. 

It is important for the reader to note that p_1{n) is identical to 

p{n), the ordinary partition function of n 9 i,e, the number of unre"" 

striated linear partitions of n. Another function closely related to 

pr(n) is Ramanujan' s ,.; function (16] which is of no particular interest 

here. 

It is interesting to note that the only power series representation 

of mr(:x:) are those for r = 1 and 3 given by Eul(oi:t·'s itlent:rt;y {h,.2) a.nd 

Jacobi's identity (4.7) respectively. The function pr(n) 9 for different 

values of r 9 is related to the k~line partition funct:lon. The real 

significance of this function will be evi.dent in Chapter V. 

Definition 4.18. A k ... line partition of the positive integer n is a 

representation of n in the form 9 

(4.8) 
k 

n = ·h1 1-

... 
j~ 

where the u, • • (summands) are non-negative integers which satisfy the 
::t,J 

conditions n, . > a, '"'--! and a. , > a. 1 . 
~L;J = 1~J-.-- 1 9 J ·""' 1+ ~J· 

The representation of n in (4.8) is considered an ur1restricted 

k=line partition. The reason for the conditions or. ai j is simply for 

the convenience of arranging the summands in a decreasing order. 

Definitiop 4.12. The nU111ber of kmli.ne partitions of the positive 

integer n is the k-line partition function tk(n). For converd.ence we 

define tk(O) = 1 and tk(""'n) = o. 

A k=line partition of n may be conveniently written down by 

arranging the suxrmiands in k rows (lines) with a. . as the j= th member of 
19J 
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i=th row, It will be convenient to omit zero smmnands and the plus 

signs, Thus~ the three-line partitions of 4 arei 

4, 31, 22, 211, 1111, 

3 2 21 111 11 
1, 2, 1, 1 11, 

2 11 
1 1 
1, 1 , 

and evidently t
3
(4) = 12. It can also be observed that p(4) = t 1(4) = .5l) 

t 2(4) = 10, and since there would only be one four=line partition of lJ,~ 

ti4) = 13. 

Again the reader can notfoe that a one ... line (linear) partition is 

identical to the ordinary partition and we have p(n) = t 1(n) = P .. 1(n). 

An interesting result which shows the relation between the number 

of two-line partitions of n and the ordinary unrestricted partitions of 

n is given by Theorem 4.20. 

Theorem 4.20. The number of solutions of (4,8) with k = 2 and with the 

additional restriction that a, , > a. ·+
1
(i.e. strictly decreasing 

l9J 1~J 

a,long rows) is p(n). 

Proofs A direct proof by combinatorial methods has been given by 

Sudler [46]. His references list a. proof by Gordon -who used the gener.., 

atjng function. 

It was pointed out in Chapter III that there are several different 

proofs of the generating function for tk(n). 

Theroem 4,21, The generating function for tk(n) is given by 

~1 (1 ~xm)~min(m,k) = n~ tk(n) xn. 
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Proof8 A proo.f is given by Chaundy (10j, 

The plane partition function, t(k) (sometimes denoted by q(n)) 9 is 

the k=line partition function where k ...,oo, The generating function for 

plane partitions is given by Theorem 4,22, 

Theorem 4.22, 

Proof~ A proof is given by C4aundy (10]. 

n 
x • 

The remaining theorems in this chapter 9 except for Theorems 4.34 

and 4.3.5 9 will be given not only to see the relation between tk(n) and 

pk(n)j but also because they are needed in Chapter V. 

!_heorem 4,23. (12] t 2(n) = P ... 2(n) ... p_2(n-1) for integral n. 

Proofg The result i.s immediate for non-positive integers n by Defi.ni= 

tions 4.17 and 4.19. For positive n 9 we havel) first by the use of 

Theorem 4.21 and later the use of Definition 4.17: 

Hence, 

. ~ () n ( )-1 ~ ( · m)-2 ~- t 2 n x = 1 = x IT? 1 ... x 
n=U m= ... 

= (1 - x) m~1 (1 = xm)=2 

= (1 = x) n~ p=2(n) xn 

= f- p 
2

(n) xn = !'.- p 
2
(n) 

n=O "" :n=O .., 

n~ t 2(n) xn = n=Eo (p_2{n) ... p~2(n-1)] xn. 

Now to equate the coefficients of :xn we obtain, 

n+1 
x 

t
2

(n) = p_
2

(n) - P..,
2
(n ... 1) and the theorem i.s proved. 



Proofs From Theorem 4,21 and later Definition 4,17 9 

Hence, 

f_ t { ) n ~ {l _ xm)-min{m,J) 
n:?O J n x = m~h 

= 1 
.. 2 2 

(1-x) {1-x) 

2 2 = (1-x~. (1-x) 
{1-x)J (1~x2)3 

. 2 . 2 3 = (1-x) (1-x) nl41 (1. xm) .. 

= (1-2:JC+2x3-x4) n~ p3(n) 
n x • 

n~ tin) xn = n~ [P_3{n) .. 2p_3(n-1) + 2p_3(n-J) 

~ p .. 3'n-4)Jxn, 

Equate the coefficients of xn to obtain the results of the theorem. 

Actually, as indicated by Cheema and Gordon (12], the technique 

used in Theorems 4,22 and 4,23 can be extended arbitrarily to give 

p~k(n) in terms of tk(n) and conversely. For example, 

n~ tk{n) xn = nJl1 (1 - xm)-min(m,k) 

= ~~ (1 .. xm)k-m mn1 (1 - xm)-k 

v ) n ~ ) n = n~ ak(n x n~O p_k(n x, 

where v = v(k) will be deter:mi.ned by k and ak(n) is determined by the 

finite product in equation (4.9). 
v n k-i m k-m 

(4.9) n~O ak(n) x = xJJ1 (1 - x) • 

Therefore we have, 

m n ~ v ' n 
n,;O tk(n) x = n~O [s~ ak(sJ P .. i}n-s)J x • 

Equate the coefficients of both members to obtain Theorem 4.25. 

Theorem 4.~. 



where v and ak(s) are given by equation (4,9), 

Theorem l}o 26. 

Proof8 From Theorems 4.21 and Definition 4.1'? 9 with k = 2 9 we have 9 

"" ( ) n ( .. ) " ( m)=2 n'£o t 2 n x = 1-x m~h 1 ... x 

ThUS9 

~ [ n ( · )] n = n~ kfeo t2 :n-k x" 

Equate the coefficients of xn to obtain tne :results. 

The proof of the next theorem can be simplified by use of the 

following lemma. 

Proofg From elementary analysis~ 

and hence~ 

Now from the definition of in(x) 9 Definition 4.14 and some straight... 

forw·ard manipulations we obtain, 

log m(x) = log ~ 1 (i=xk) 

"" k) = ~ 1 log (1-x 
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= ·Ji [xk + x.2k/2 + ~'Jk/3 + • • •· + xrrik/m + • • • J 

= ~n~ Cr~ 1/r] xn 

= - ~. [ t 1/ d] ~n 
n~ din 

= ~~ (1/n ; n/dJ xn 
din 

= ~ ~- (1/n t d] xn 
n=l din 

= - ~- o(n) /n xn n=l 

and conse~uently, 
., CD l n 

log m(~) = ·n~ O(n) n x, 

. n . 
Theorem 4,28. p (n) =. r/n .~. O(j) p (n-j), 

r J='l r 

Proofs Take the logarithm of each member of, 

mr(x) = n=ta pr(n) xn 

to obtain, 

r log i(x) = log n~ pr(n) xn, 

Sub.s.titution-f.or. ],.o~-li.(x}. from. Lemma..J,1.,27 yie:J..ds, 

- r ~- O(n) xn/n = log ~- p (n) xn. n=l n==U r 

Differentiate each side with respect to x and then multiply both mem-

CD - \ n hers. by.h=tc, pr(s.i.1- x .. to obtain, 

tD n-1 CD n CD n.,.1 
- r t 1 o(n) x ~- p (n) ~ ~ ~- n p (n) x n= n=O r n:!O r 

or 

- r i. .~. a( j) p (n-j) xn-1 = ~- n p (n) xn-1• 
n=J. ~ r ~ r 

Equate the coefficient~ of xn-1 to ob~ain, 
n 

- r .~.- O(j) p (n-~) ~ n p (n) 
J=l r ~ 

or 
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n 
pr(n) = - r/n j;1 O'(j) pr{p..j), 

The more co:mmon relation is obtained by letting r = -1 and recall= 

ing p_1(n) = p(n) to yield Corollary ~.29. 

Corollary 4.22• 
n 

p(n) = 1/n j~ q(j) p(n~j), 

This result is interesting in that it relates the arithmetic 

function, O'(n), of multiplicatiYe number theory and the partition 

function, p(n), of additive number theory. 

It will be mor~ convenient to use the recursion formula 9 of Corol-

lary 4.29, in Theorem 6,3, ii' it is put in a slightly different form. 

,Theo_re:rg 4, JO. 
n n 

n p{n) = ~ 1 k=ti m p{n-km), 

Proof1 From Corollary 4,29, after multiplying both members by n and 

then applying the definition for c;(j), we obtain, 
n . 

n p(n) = j~ O(j) p(n-j) 

~ ,£
1 

p(n-j) t m, 
J- ~1j 

Now replace j by km so that 9 n n ng .t1 p(n...j) t m = t
1 

,..::: p(n-km)m 
J- mp In= K~ . 

n n 
::: #1 ~1 m p(n-km) 

and the theorem is proved, 

A similar recursion formula for the plane p~rtition fu:notion 9 t(n) 9 

can also be given, 

Theorem 4,31, 
n-1 

(27] n t(n) c j~ t(j) o2(n-j). 

Proof1 Let the~(n) divisors of n 9 refer to Definition 2,19 9 be rep= 



n h n n 
resented as followsa n =di> d2 > ••• > d((n)-l > d~(n) = 1, Take 

the natural logarithm·of both.members of Theorem 4.21, the generating 

function of t(n), and carry out the following manipulations1 

f- t(n)·xn = n1 (1 - xnrn n:?!!O n:.. 

( .. n) • n 
ln Jro t(n) x = -n~ n ln (1 - x) 

... \'- n i 1J 
= n~ ,r-;'1 j 

= (x + x2/2 + x3/3 + x4/4 + ••• + xj/j + ... ) + 2(x2 + x4/2 + 

+ x2j/j + ,oo) + ,'.3(x3 + x6/2 + ••• + x3j/j + ••• ) + ••• 

+ n(xn + x2n/2 + ••• + xnj/j + ••• ) + ••• 

= x + (1/2 + 2•1)x2 + (1/3 + 3•1)x3 + (1/4 + 2•1/2 + 4•1)x4 + 

+ ~/n + d~(n).,.,l 0 1/d~ + d~(n)-Z 0 1/d; + ••• + n•1)xn + ••• 

- + (1+2
2
) 2 + (1+3

2
) 3 + {1+2

2
+4

2
) 4 + 

-x 2 x 3 x ' 4 x ... 

+ [1 + {d~{n)-1)2 + (d~(n)-2)2. + • • o + n2J xn + 
n ••• 

., 0'2(n) n 
=~1 n Xo 

••• 

••• 

Now take the derivative with respect to x of both members, then multi .. 

ply by x and n~ t(n) xn to obtain9 

Ji· h t(n) xn 
., n = n~ 02(n) 

rr;='to t(n) x 
and hence 9 

n 
x 9 

= Ji ci t( j) "2(n-j~ xn. 

Equate the coefficients of xn which completes the proof. 

Let (n1,n2, ••• 9ns) be a non-negatives-vector, i.e. an ordered 

s-tuple of non-negative integers. 
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~inition 4.32. A vector partition 9f a vector will mean a representa= 

tion as a sum of non-zero vectQrs called parts or summands. Sums wh:1.ch 

differ only in the order of parts are 1•ega:rded as the same partitiono 

Q_e
0
finition lJ...3J• The number of vector partitions of the vector 

(n19}\';9 •• 09 ns) is the vector partition function p(n19n29 •• qn
5
). We 

again define p(0 1 0 9 ••• ,o) = 1. 

To illustrate,> consider the foll.av-Ting partitions of (2~1) g 

(291) = (2~1) 

= (2,0) + (091,) 

= (191) + (1,0) 

= (1,0) + (1,0) + (0,1)~ 

and consequently p(2 9 1) = 4. 

The generating function for the unrestricted vector partition funcb 

tion was first knovm by MacMahon [33]. 

Theor2_,m 4~. The generating functipn for p(n1,n29 ••• 9n
5

) is given by 

k )=1 
000 x. $ s 

oo ( ) n n n ~ p n19n2, ••• ,n
5 

x11 x22 
i 

where k1+k2+ ••• +ks>O and n1 = n1,129•••9ns. 

••• 
n x s~ s " 

A recursion formula for the vector partition 9 si:milar to Theorem 

4.30 for ordinary partitions ~nd Theorem 4e31 for plane partiti,ons\l was 

obtained by Cheema [11] and is gi:ven in the following theorem. 

= 
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Proofs Take the logarithm qf ea.ch member of (4.9) and simplify to 

obtain, 
,0 

p(n19 ••• ,ns) 
n n 

log k,~ (1 k xks)~1. log n,~ x
1

1 • • • x s = - x 11 ••• s s 
1 1 

k,~ log (i 
. k k )""1 = .... x

1
1 8 •• x s 

1"' s 

••• 
n 

Now take the partial derivat:i,ve with respect to x1 of each member to 

obtain~ 

"" ( ) n -1 h h1~ n1p. nt9·•• • ,ns x11 ~22 • • • 
:;: t - nk =1 nk2 k >O k 1 x1 1 x? n, ~. . ,.,. 

1'"' 

which yields~ after multiplying by x1 and the denominator, 

t· ( )n n n n,~ i\P n19 ••• ~n
5 

x 11 x22 ••• xss 
]. 

••• 
nk x s s 

nk 0 x s 
s 

= n.,; rrk.~ p(nf'"k1, n2-k2, •• -, ns-ks)( t 
1 
kif t \lx~1. .. x~s 

.L l ~ J. . t i cf 1 p •• 9 ks }#j 

Equate the coefficients and t)le th~orem :is proved. 

One may perhaps most easily U'\59 the :recursive formulae given i.n 

Theorems 4.25j 4.28 and l~.31 to compute t:r(n), p:r(n) and t(n) respec= 

tively. Values for t 1(n) = p_
1

(n) = p(n), t 2(n), t)(n) 9 t
5

(n) 0 t(n) 9 

and p=2(n) are given for n s; 34 in appendix A. Haskell (27]1, to my 
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knowledge 9 has the only printed table for :r ... )n) 9 t
5

(n) and t(n) for all 

values of n S 299. His values for tk(n) (k=2,3s5 and 25) and t(n) WEU'G 

computed by Lippm,;1.n on the IBM 7072 computer *t the University of 

Arizona in 1963. Values for p=}n) were computed on the IBM 1620 at 

California State Polytechnic College, San Luis Obsispo by Messrs. Kay 

and Arndt. 



CHAPTER V 

CONGRUENCE PROPERTIES 

Congruences of p(n) and pr(n) 

The purpose of this chapter is to investigate arithmetic pr©per= 

ties e1f the partition functions, For ex~ple 9 it would be good to know 

if n can be deter.mined for which p(n) is even, oddi, a multi.ple of 5 9 a 

:multiple of 7, etce 

The first congruences to be considered are the welL:,kno·wn Ramanu= 

jan's c©ngruencesg 

(5c1) 

(5.2) 

(5oJ) 

p(5m + 4) ~ 0 (mod 5) 9 

p(?m + 5) ~ 0 (mod?) and 

p(11m + 6); 0 (mod 11). 

'I'he proof's of (5.1) and (5.2) have beeµ much easier than the pl'oof 

o.f' (5o3) o The proof of (5o3) h.as requi:r~d much more adiranGed analysis 

!"equ:iring 00:mplex integration and a modular tran:sfor:rr1a:tion which o:t 

o~ux0 se will require the convergence of the seri~s usedo Gandhi (17] ha~ 

given a remarkably s:im.ple proof of (5.1) and (5.2) which is a special 

©a.a:e of a co:ng:rnence for p/n), The 9--q.thor w:i.11 give this proof for 

(.5.1) and then apply this method 9 thus giving a simple proof 9 to (5o3)o 

Before proving the congruences it will be necessary to prove some 

preli.'l'linary theorems which have been developed by Gandhi [16]. 



integral values of r, 

Prooft Substitute m/t in pliaoe of r/n in Theorem 4,28 to obtain., 

pr(n) = - rn/t j~ o(j) p(n.j). 

Since m/t: 0 (mod m), the theorem follows, 

It will be convenient to consider r = ± R (Ra prime) in Theorem 

5,1. Also, if n and Rare coprime, we have the following corollary, 

Corollary 5,2, If Risa prime and coprime with n, then 

p±R(n): 0 (~od R). 

Theorem 5.3. If Risa prime, then pkR(mR); pk(m) (mod R), for 

integral values of k, 
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Proofs Fro~ Theorems 2.11 and 2,12, it follows, for all integral k and 

prime R, 

((1 - x)R]k; ((1 - xR)Jk (mod R). 

Now replacing x by xm for any positive integer m, 

m)Rk :mR k ( 1 - x : ( 1 - x ) ( mod R) • 

Hence, 

~ 1 (1 - xm)Rk: ~ 1 (1. xmR)k (mod R). 

But, by Definition LJ •• 17, this is equivalent to; 

~ n m ) Rn 
YF"I:.o pkR (n) x : n~ pk(n x (mod R). 

Now compare the coefficients of xRm and use Definition 2,7 to obtai.n, 

and the theorem is proved. 

Theorem 4,4. (17] If Risa prime, then 



where ti i(i+1)/2 + j(Jjai)/2 (mod R) fo~ any i arld j except 

i; (R-1)/2 (mod R). 

Proof, From Definition 4 .17 of p ( n) , Eul~r • s identity ( 4. 2) a.:nd r . 

Jacobi's identity (4.?), 

~ ( ) n ~ ( k).(R-4) 
~ P.,,(R-4) n x = iJJl 1 - x 

= ~1 (1 - xk)~R ~1 (1 - xk)3 ~1 (1 - xk) 

= rr=to p ~R(n) xn i~ (..,1)i(2i+1) xi(i+i)/2 

,i_ (-i)j xj(3j-1)/2" 
J- .. 

But, from Corollary 5.2 and Theorem 5.3 with k = -1, respecrt.ively·l) 

n:::ta P_R(n) ::it: Jo P_R(Rn) ~n (mod R) 

Therefore it follows (note that P_i(n) = p(n)) that, 

f_ ( ) n _ f_ ( ) Rn ~- ( i)i(Z'+i) i(i+1)/2 neu P -(R-4) n x :;; n='O P n ;x: iS'O .. 1: :x; 

,_t (.,.1)j xj(Jj.,,i)/z (mod R) !> 

J-"""' 

u = Rn+ i(i+i)/2 + j{3j-1)/2. 

Now P..,(R..,4)(n) i.s divisible by R for all values of n for which xn <lees 

not occur in the right member of (1); or, :if' it does occur but its coeff= 

icient is di.visible byR. The coefficient of xu tn the right member 

of (1) will be divisible byR if 2i+1 is divisiole by R or equivalently, 

(2) i; (R-t)/Z (mod R). 
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Thu~ 9 one can conclude p-(R.,.4)(n) will be divisible by R tor tho£:>e 

values of n = mR + t 'f Rn + i(i+1)/2 + j(Jj ... 1)/2 for all i and j ·whfoh 

do not satisfy (2). This is to say P .. (R .. 4)(mR + t) ~ 0 (mod R) fo:r all 

t such that t i i(i+1)/2 + j(Jj .. 1)/2 (mod R fo:r all i. and j with thee 

restriction ii (R=1)/2 (mod R)o This completes the proof. 

p(5m + 4); 0 (mod 5), (5.1) 

Proofs Let R = 5 in Theorem 5o4, Since (5-1)/2 = 2~ consider all 

i ~ 2 (mod 5). The only possible least residues of i(i+1)/2. (:mod 5) 

are O and 1. The lea.st residues :fo:r j(Jj ... :J.)/2 (mod 5) aJt~e O~ 1 and 2o 

Therefore 9 the only possible lea.st residues for i(i:+1)/2 + j(3jco1)/2 a:i."'9 

09 i 9 2 and J 9 and hence t = 4 £ i(i+i)/2 + j(3j=1)/2 (mod 5) and the 

congruen~e (5.1) follows. 

The proof of congruence (5,2) is simil~ and is also given by 

Gandhi (i'?]o The author wou1d lik~ to use the same method to prov-e the 

CBongruence (.5aJ). To shorten the p:roo;t', a le:mma will be stated withi('llut 

proof which is given byWinquist (49]. 

!e~~o Jt1 (1 "" :X:k)iO = i~ (.,.1)i+j(2i+1)(6j+1) 

j~cc,,00 

[(3i+1)(3i+2)/2 = 3j(3j+1)/2J x3i(i+i)/Z + j(3j+i)/2
0 

~,?J:r>em .ial o If R is a prime 9 then 

p=(R-iO)(mR + t) 5 0 (mod R) 9 

where t ~ 3i(i+1)/2 + j(3j+1)/2 (mod R), for all i and j ex~ept 

i ~ (R=i)/2 (mod R) and j t (5R=1)/6 (mod R)o 

Prbofs From Definition 4.17 and. Lemma 506~ 



"' , . ( ) n ~ ( k).,,(R ... 10) 
n~ P =(R..,10) n x = IJ!1. 1 - x 

= ~1 (1 = xk)~R Jl1 (1 - xk)10 

= n-to P_R(n) xn i~ (-1)i.+j(2i+1)(6j+1) 
j= ...... 

((3i+1)/2 - Jj{Jj+1)/2] x3i(i+1)/2 + j(3j+1J/20 

~ n .., sR 
nko P_R(n) x ; 

8
~ p(s) x (mod R) 9 

by Theorem 5.3 and Corollary 5.2. Therefore, 

(1) :n:~ P=(R=lO)(n) xn = s,i~ (=1)i+j p(s) (2i+1)(6j+1) 

j=~~ [(Ji+i)/2 = Jj+i)/2] XU 9 

where u :a; sR + Ji(i+i)/2 + j(Jj+l.)/2. Now P.,.(Jt=iO)(n.) is d:ivisible by 

R for all values of n for which xn does not occur in the right member 

of (1) ~ or, if it does occur but its coefficient is divi.s:ible by R. 

The Cloef:ficient of xu i:q the right member of (1) will be di.visible by R~ 

fo:t> exa:mple 9 if 2i+1 ~ 0 (mod R) or if 6j+1 :; 0 (mod R) or equi"'ITalentlyB 

(2) i ~ (R=i)/2 (mod R) or j ii (SR-1)/6 (mod R). 

Thus, p=(R~iO)(n) will be divisible by R for those values of n ~ niR + t 

# sR + Ji(i+i)/2 + j(JJH)/2 for all i and j which do not sid:;,j,,sfy (2) o 

'rhe'.!"efore: 9 p=(R=iO)(mR + t) 1:; O (mod R) for all t such that 9 

t ~ 3i(i+1)/2 + j(Jj+1)/2 (rood R) for all i and j such that ti (R=i)/2 

(;mod R) a.nd j , (5R-1)/6 (mod R) and the theorem is proved, 

p(11m + 6) ~ 0 (rood 11), 

Proofs Let R = 11 in Theorem 5,7. Since (11~1)/2 = 5 and (55=1)/6 ~ 99 

t1onsider all i and j such that i i 5 (mod :t1) a.nd j i 9 (mod 11.). Fo1"' 

thesrei values of i and j, the lea~t :residues of Ji(i+i)/2 + ,j(Jj+i)/2 
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(mod H) are O, 1,, 2, 30 4, 5, 7, 8,, 9 and 10. Hence~ for t ~ 6 and 

R = 11 9 the result (5.3) f.9llows. 

Other congruences for p (n), of no real signifi.cance for this 
r 

paper!) are given by Gandhi (16], 

Congruences ot t(n) and tk(n) 
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Several congruences will now be develqped for the k ... llr1e partition 

function, tk(n), for k = 2, 3, 4, 5, 6, 7 and 8, 'l'hese results are 

bad.cally du~ to Cheema ~nd Gordon (12] and Gandhi (18Jo 

Proofg From Definition 4.17 of p
3

(n) and Jacobi's identity (4.7), 

(1) n~ P3(n) xn = irJl1 (1 - 4m)3 

= .fo (-1)j(2j+-i) xj( j+i)/z. 
J-

Butl) 2j+1:;;; 0 (mod 5) for j;;; 2 (mod 5). Hence, if j' 2 (mod 5)ll then 

the only residues for j(j+1)/2 (mod 5) are O and 1. Therefore 9 by com~ 

pari:ng coefficients in (1), 

(2) p3(n) ~ 0 (mod 5) for n ~ 2, 3, or 4 (mod 5). 

~ ( m)~2 _ ~ ( m)~5 ~ ( m)J N©Wp s:5.nce rr#.i 1 ... x - mMi i ... :x :rrJh 1 ... x ll 

= Jo [j2o p-.5(j) ~3':0-j)] 
Equate the coefficients to obtain, 

(:3) 

n 
x • 

From Corollary 5.2, p .. .5( j) ; 0 (mod 5) fo1• all j , 0 (:mod 5). 

Thusp for n ~ 2, 3~ or 4 (:mod 5) t it. follows that ea.ch term i.n the r:i.ght 
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member of (3) is divisible by 5 and hencs 9 

p""2(n) ; 0 (mod 5) for n ~ 2~ 3 or 4· (mod 5) o 

Hence~ if n; 3 or 4 (mod 5), then p=2(n) ~ p=2(r1=i) ~ 0 (mod 5)o 

From the results of Theorem 4023 9 t
2
(n) = p ,,(n) = p ,,(n.,,,1) 9 it follows 

c:::;,&:., GD~ 

that t
2
(n) ; 0 (mod 5) fo:r n :;: 3 or 4 (mod 5) ill,nd the theorem J,s p:rovedo 

Theorem 5.10. If n ~ 2~ 3 or l-1, (mod 5) 9 then Jo t 2(k) ~ 0 (mod 5L 

P:roofg From Theorem 4026 9 

n 
P =2{n) = k~ t2(k)o 

But 9 p=2(n) :;; 0 (mod .5) for n 5' 2~ 3 or h (:mod 5) f':rom equation (.5o4) 

and the theorem follows. 

The next theorem state.s that p(n) 9 t
2

(2n) and \~(2n+i) have the 

same parity. That is 9 for all values of n such that p(n) is even9 it 

follows that t 2(2n) and t 2(2n+1) are al~o even and the values of n for 

which p(n) is odd are the values .for 1.tl1:i.~h t"(2n) and t~(2n+1) are od.do 
~ rt..., 

!h,eorem 5.11. 

Proof g Replace n b~~ 2n and 2n+i respectively in the results of ·rheorem 

4o23 to obtains 

(1.) 

(2) 

t 2(2n) = p=2(2n) = p=2(2n=1) and 

t 2(2n+1) = p~2(2n+1) = p=2(2n). 

But~ from Theorem 5.3 with R = 2 and k a'a: =1~ 

p = 2(2n) ~ p =i (n) (mod 2) o 

Also 9 from Corollary 5.2 ·with k a;;: 2 9 since 2n-+1. and 2TJ,cp1 a:r0e odd 9 

p""2(2n=1) ~ p=i2n+i) ~ 0 (mod 2). 

Therefore~ it follows from (1) and (2) that8 
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t 2(2n+1) ~ =P_2(2n): p~1(n) (mod 2). 

But, since p_1(n) = p(n) 9 t2'2n); p(n); t 2(2n+1) (mod 2) which proves 

the theorem. 

There is no convenient way of determining which values of n will 

ma.ke p(n) even or odd. HowE;lve:.r, with the ::restriction that summands of 

the partitions be unique, the problem becomes easy. 

!h,eo:.rem 2,12. If n is a pentagonal number, i.e. of the form j(Jjti)/2 9 

then q(n) ii;; odd, For n not of this type, q(n) is even. 

Proofg From Definition 4.3, Theorem 4,8 ano. Euler's identity (4.2) 9 

~ n ~ k) 
n~ q(n) x = iJki (1 - x 

= t (-l)n xn(Jn+1)/2
0 n=-"" 

Another form of Euler's series 

.. n 
I: q(n) x = n=O 

,; xj(Jjti)/ 2 (mod 2) 
- J!:'0 

and the theorem follows. 

Proofg Replace n by ,3n+2 in the results of Theorem lJ...24 to obtaing 

(1) t 3(Jn+2) = p=J(Jn+2) - 2p-J(Jn+1) + 2p_3(Jn~1) = p=J(Jri,.,2). 

But~ with R = 3 in Corollary 5.2 9 

(2) p _3'3n+2) : P _3'Jn+i) s P _3'Jn .. 1) : p _3(3n ... 2) ;; 0 (mod J). 

The results of (2) used in (1) gives the result of the theorem. 

'.I',heorem 5 .14. 



Proofg Replace n by 3n+1 and 3n+3 respectively in the results of 

Theorem 4.24 to obtain: 

(1) t
3
(3n+1) = p _3(3n+1) "" 2p _3(3n) + 2p _3(3n=2) - p =3(Jn=3) and 

(2) t
3
(3n+J) = P..,3(Jn+3) - 2p ... 3(3n+2) + 2p_3(3n) = p_3(3n.,,,1). 

But, from Corollary 5.2 with R = 3, 

(J) P_3(Jn+1); P_3(Jn-2) 1:J P .. 3(3n+2):; P_3'311,m1) ~ 0 (mod 3). 

Also 9 from Theorem 5.3, 

(4) P ... 3'3n) ; p ... 1 (n) 9 p _3(3n+3) ;; P ..,1 (nH) and p ... 3(3n=J) ~ p =i (n=1) 

with each cong:1;·uence (mod 3). Therefore~ from (1) and (2) 9 with (3) 

and (4) g 

(5) t
3

(Jn+1) ~ -2p_1(n) = P,.,1(n.1); p~1(n) - p_1(n.,.,1) (mod 3) and 

(6) t 3(3n+3) E p_1(n+1) + 2p=1(n); P ... 1(n+1) = p=1{n) (mod 3). 

Replace n by n+1 in (5) which gives, 

(?) t 3(3n+4); p_1(n+1) - P,., 1(n) (mo~ 3). 
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Since the right member of (6) and (7) are the same 9 the theorem follows. 

Gandhi (18] has stated the following congruences concerning tk& 

t 4(4n) ~ t 4(4n+1); t 4(4n+2) (mod 2) 9 

t 4(4n+J) ~ 0 (mod 2) 9 

t 5(5n+1) 5 t
5
(5n+J) (mod 5) and 

t 5(5n+2); t
5
(5n+4) (mod 5). 

Gandhi claims he has congruences for tk (k = 6, 7, 8 and 9) which will 

:soon be published. The autp.or hasn't seen any in print and includes 9 

in the next three theoremsj some congruences for t 6~ t
7 

and t 8• 



P:roo:fg 

(1) 

where 

(2) 

From Theorem 4.25 with k = 69 

v 
t 6(n) = 

5
; 0 a6(s) P ... 6(n..s)~ 

v s S m 6=m t 0 a6(s) x = n1 (1 = x) • 
s- m= 
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After computing a6(s) (s = 19 2poo,35) (mod 3) in equation (2) and sub= 

stituting into (1) 9 it follows thati 

(3) t6(n) ;; P=6(n) + P..,,6(n-1) + P_6(11a,,3) = P..,6(n=4) = P,,.6(ns.,6) 

+ p=6(n=7) + p_6(n.,,8) - P_6(n-9) = P..,6(r1=10) + p=6(n=11) 

+ p=6(n.,,,13) ""p'96(n-14) = P ... 6(n-16) = p=6(1'1=17) = p=6(n=1.8) 

= p=6(n=21) + p=6(n..,22) + p=6(n..24) = p=6(n=2.5) = p=6(n=26) 

+ P=6(11=27) + P_6(n,..28) - P ... 6(11<=29) = P=6(n=31) + P=6(11=J2) 

+ P=6(n=J4) + p=6(n-35) (mod J). 

Now replace n by 6n+i 9 6n+2 9 6n+:3 and 6n+4 respectively in (3) to 

obtain9 after applying Theorems 5.1 and 5.3, 

(4) t6(6n+1) ~ p=2(2n).,. p=2{2n-1) + p_2(2n=2) = p=2(2:n,,.,J) + pw2(2n=4) 

= p=2(2n=6) + p=2(211=7) = p=2(2n=8) + p=2(2n=9) 

= p=2(2n:,10) + p=2{2n=11) (mod 3) 9 

(5) t 6(6n+2) ~ P=2'2n,,,,2) + p=2(2I1=J) = p=2(2I1=4) ~ p=2(2n=8) 

= P=}2n=9) + P.,,2(2n.o10) + p=2(2n=H) (mod 3) 9 

(6) t 6(6n+J ~ p = 2(2n+1) + p =2(2n) .,., p ... 2(2n=1) = p =i2n=2) = p =2(2:n=6) 

+ p=2(2n.,,,7) + p-2(2n,..8) (~od 3) and 

(7) t 6(6n+4) ~ p=2(2n+1) = p=2(2n) + p=2(2n=1) ""p=2(2nc.,2) + p=2(2n=3) 

= p=2'2n=4) + p =2(2p=6) = p =2(2!1=7) + p =2'2n,,~8) 
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• P_2(2n~9) + p_2(2n-+O) (mod 3). 

The theorem follows by comparing the sum of equations (4) and (6) with 

the sum of equations (5) and (7). 

Proof: The use of Theorem 4.24 with~= 7 gives 57 terms for t 7(n). 

After replacing n by 7n+2, 7n+3, 7n+4 and 7n+5 respectively and then 

using Corollary 5.2 and Theorem 5.3 gives: 

( 1) t 7(?n+2) s Jp(n) + 3p(n..1) + p(n-3) + 2p(n-4) - p(n •. ,5) + 2p(n-6) 

- 3p(n-7) (mo4 7), 

(2) t 7{7n+3); - p(n) + Jp(n-1). 3p(n-2) - p(n-3) = 2p(n-4) ~ Jp(n=5) 

- p(n-6) + p(n-7) (mod 7), 

(3) t 7(?n+4); - p(n) + p(n-1) + 3p{n~2) + 2p(n..3) + p(n-4) + 3p(n=5) 

- 3p(n-6) + p(n-7) (mod 7) and 

(4) t 7(7n+5) ; 3p(n - 2p(n-1) + p(n-2) - 2p(n ... J) ~ p(n-li,) - Jp(n..,6) 

- 3p(n-7) (mod 7), 

Since the sum of equations (1) and (2) is the same a.s the sum of equ.a.., 

tions (3) and (4), the theorem follows, 

Theo:r:em 5.17. (a) t 8(8n) ;; t 8(8n+4) (mod 2) and 

(b) t 8(8n+5); t 8{8n+6) s t 8(8n+7); 0 (mod 2). 

Proofi From Theorem 4,25 with k = 8, 

(1.) t 8(n) = st a8(s) p _8(n,.,s), 

where 

(2) s~ a8(s) xs = ~1 (1 - xm)B-m 

= 1 + x + x2 + x 4 + x 8 + x11 + x12 + x16 + x17 

20 2~ 27 3~ 34 35 41 43 + x + x .., + x + x .I + x + x + x ' + x 



49 50 .51 ~7 ~9 64 67 + x + x + x + x-' + :x~ + x + x · 

68 72 73 76 80 82 83 + X + X + X + X' + X + X + X 

84 + x (mod 2). 

After substituting the values of a8(s) (s = 0,1, ••• ,84) into equation 

(1) 9 replacing n by 8n9 8n+49 8n+5, 8n+6 and 8n+7, respectiv-ely, and 

observing from Theorem 5,1 that p_8(n) i, 0 (mod 2) only if 8 divides n9 

it follows thatg 

+ p~8(8n..80) (mod 2), 

(4) t8(8n+4): P-s(8n) + P_s(Sn..8) + P_8(8n,..i6) + P_s(8r1=64) 

+ p-8(8n.-72) + p_8(8n-80) (mod 2) 9 

(5) 

(6) 

(7) 

ts( 8n+5) = 0 (mod 2) 9 

t 8(8n+6); 0 (mod 2) and 

t 8(8nr7); 0 (mod 2). 

Part (a) follows from (3) ~nd (4)~ pa.rt (b) follows from (5) 9 (6) and 

(7) and the theorem is proved. 



CHAPTER VI 

ASYMPTOTIC PROPERTIES 

J;ntroduction 

Chapter V dealt with the arithmetic properties oi p(n) and other 

more general functions. This chapter is concerned with the behavior of 

the partition function for large values of n. It is obvious that p(n) 

increases rapidly as n increases, but just how fast, Si.nee the recur= 

sion formulae will be of no use for large n, the problem is how to 

determine p(n) for large n. 

It is apparently beyond the r~esent resources of mathematics to 

give a simple expression for p(n), hence all one can hope for is a si.m~ 

ple function f which approximates p(n) for large n, That is 9 it would 

be desirable to find a function f such that, 

p(n) ~ f(n) + r(n) 

where f would be as simple a, function a$ possible and r would approach 

zero as n gets large. This is to say, with reference to Definitions 

2.21 and 2.23 respectively, that, 

p(n) . ..-v f(n) or _p(n) = f(n)(1 + o(1)], 

It might first be of int~rest to get some idea of the relative size 

of p(n) and the function values of some well-knowµ functions for large 

n, This has been done by Ayoub [6] with the functions nc1 and exp(c2n) 

w.i.th results given in Theorem 6.2. To facilitate the proof, however~ one 

111itst first look at the generating function of p(n), 

66 



(6,1) 
· .. k ... 1 • n 

P(x) = IJ11 (1 - x) = n*° p(n) x, for lxl< 1, 

According to the Tauberian Theorem 2.31 and the equation (6,1), 

since p(n)? 0 and the series in (6.1) converges for lxl < 1, it follows 

that the order of magnitude of p(n) will determine the behavior of P(x) 

in the neighborhood of x = 1 and conversely:, the behavior of P(x) as 

x .. 1 yields information concerning p(n). A result concerning P(x) 

which will be needed for Theorem 6,2 will now be given. 

2 
Lemma 6,1, log P(x) rv ~, as x • 1o 

Proofs Take the logarithm..of P(x) in equation (6,1) to obtain, 

log P(x) = log ~ 1 (1. xk)-1 

• ( k)-1 = ~1 log 1 - x 

= Ji Ji (xk)m/m 

• • m k/ = ~ ~ (x) m. 

But with lxl < 1, hence lxml < 1, the geometric series (xm/ has a sum 

which gives, 
m 

(1) log P(x) = ~ x m. 
m(1-x) 

k Also, with O < x < 1, hence O < x < 1 fork= 1, 2, ••• , :m.-1 and 

xm.,,1 < xm-2 < ••• < x < 1, it follQws that, 

mx:m.-1 < 1 + x + • • • 
m-1 + x < m • 

Multiply each member by (1-x) to obtain, 

mx:m.,.1(1-x) < 1-xm < m(1-x) 

or 



Now from equation (1) 9 

(2) 1 ~ m 2 1 ~ 2 
1=X ~1 x /m < log P(x) < r ... x rJ:1 x/m • 

But 9 from Theorem 2,32, 

CD m; 2 2, ~ iJ1 x m = 'fT 6. 

Therefore, after diYiding all members pf (2) by the left member and 

letting x • 19 it follows that 9 

2 n 
log P(x) ~ b{i.,..xj 

and the lemma is proved. 

Theorem 6.2. For n sufficiently large, 

(1) r/11 < p(n) < exp(c
2
n), (c

1
, c

2 
2: 1 are arbitrary constants). 

P:roofg Let (1) be :replaced by the two equ::l..valent inequalities& 

(2) n°1 < p(n) and 

(3) p(n) < eXp(c
2
n). 

Assume p(n) = nci. Then for x = e-Y, 

Si.nee y = = 

which implies that 9 

) ~ c n ~ c =ny P(x = r. n 1 x = t n 1 e • n=·o n=1 

log P(x) 'i' log r(c1+1) ... (c1+1)1og (1=x) + o(i). 

This contradicts Lemma 6.1, since, 
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There.fore 9 inequality (2) follows. 

To prove inequality (3), as~ume p(n) = e:xr(c
2
n). Then there exists 

a constant d such that !di< 1, namely d = exp((1-c2)n) 9 for which 

n~O exp(c2n)(d)n diverges. This contradicts equation (6.1) since that 

series converges ±;or all I :x: I < 1. This proves inequality (J) and hence 

the theorem. 

In the light of Theorem 6.2, one might conjecture that p(n) >= 

b . 
exp(an )i, for the appropriate constants a and b, yet to be determined. 

In order to estimate a and b; let p(n) = e:x:p(anb) and x = e=Y. 'l'hen 

the series, 

~ ( ) n ~ b 
n~O pp x = ~O exp(an - ny) 

b=i has its largest term when the derivative is zero, i.e. abn = y = O. 

This gives n = [y/(ab)Jl/(b-i) and for this n, the term which will 

determine the order of :magn,it1ide of P(x.) 9 is 

exp ( a[y/{ab)Jb/(b=l) - Y(y/(ab)]1/(b=1)) 

_ ( 1/(1-b)bb/{1-b) b/(1-b) 1/Cl=b)b1/(1=b) b/(h,,,jJ\ 
- exp a y = a y f 

P( ) ( 
1/(1=b)bb/(1 ... b)(1 )b/(1-b) 1/(1=b)b1/(1=b) . .:x: ,-J exp a. =X = a 

(1.,.x)b/(10b)). 

To choose a and b so this agrees with the result (6.2) 9 one may select 

b = 1/2 and a=~. Hence 9 assume p(n) 9 for large n9 is approx= 

imately exp(~). rheorem 6.3 is a very similar result. 

Asymptotic Formula. for log p(n) 

,I!i~o~em 6.~. [6] (Hardy and RaJl').anujan' s asymptotic formula for log p(n)l 

(6.3) log p(n) rv -rrJ,2nJJ. 



Proofg The theorem follows from the two inequalitiesg 

(1) p(n) < exp(11J2n/3) 

and for every E > 0 9 there exists a constant AE such that 9 

(2) 

This .... is seen by combining the inequalities (1) and (2) 9 dividing by 

TIJ2n]J and then letting n .-;,c,oto obtain, 

1 ~E/(rrr,fiJJ) ~ lim 10~ p(n) S 1. 
n~ 'IT,./2n(j 

By Definition 2.21 of asymptotic, the result follows. 

Now to prove inequality (1) by induction on ni 

(i) p(i) = l < exp(ff./2Tj). 

(ii) Suppose that for all m < n, p(m) < exp(rrJ2m/J). Now from 

Theorem 4.28 9 

n n 
n p(n) = !#1 J:i m p(n,..,km) 

< rrh J1 rn exp('TT$n-laa)/3) 

n n 
= rJi J:1 m exp(~/2"n!3 ,.;r::;;;/n). 

Since (1~x)a S 1 = a.x 9 it follows that 9 

n n kti 
n p(n) < iJi ~ 1 m exp[~ 0= Zii)J 

From the fact that 9 

~ =IDX 1 /' 2 ~ 0 ~- m e = 2 < 1 x 9 !or x < ·, 
m=:"""1 4 sinh x/2 

tvhich can easily be verified~ it follows with x = krr/.{bn that 9 

n p(n) < exp(1rj2n/3) k=ti 6n/{krr) 2 
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= n exp(~). 

Division by n gives, 

p(n) < exp('ITJ2n/3) 

and by induction, inequality (1) holds for all n. 'l'he proof of inequa= 

lity (2) is similar and will be omitted. 

The result of the theorem is not a,s significant as one might hope 

since an asymptotic property of log p(n) does not give very accurate 

results concerning p(n). For example with the results of Theorem 6.3!) 

one could just as well haves 

( ) 1000 ( ·,~) p n rrv n exp 'IT,; 2n1 3 

( ) =1000 (-~) p n r-J n exp 11,/GTI/ ;3 • 

Asymptotic Formula for p(n) 

The next step in the development of trying to evaluate p(n) 9 or at 

least approximate it 9 is to prove the asymptotic formula (6.4). Only 8, 

sketch of the proof will be given. For a complete proof 9 the reader can 

refe;r, to Hardy and Ramanujan [25]• 

Theorem. 6.4. (Hardy and Ramanujan' s asymptotic fo:rmula for p(n) )@ 

p(n),...,,,, J- exp(~). 
4n/3 

The proofs given for Theorem 6.4 requires much :more advanced :math= 

e:m.atics than for any of the previous :rei;;ults. :):n order to prove this 

theore:m9 at least to our present knowledge, it will require the theory 



of analytic functions 9 in particular Cauchy's integral (6.5), and the 

theory of modular functions, in particular (6.6). 

Cauchy's integral Theorem 2.40 can be applied to the generating 

function (6.1) in a natural way. Clearly P{x) is analyti.c inside the 

unit circle with center at the origin, 

P,{ac) = . ~ p(k) 
n+1 k='O 

x 

Thus~ since 

k-n-1 x 

.,,n 
X · + eoa 

+ p(n+1) + p{n4-2) x + ••• , 

+ p(n) 

( ) , P(xl it follows that p n is the residue at x = 0 of the function :n:+i" 
x 

Now, from Cauchy's Theorem 2.40, 

p(n) = 2,;i Sc P~f dx, 
x 

whel'e C is a simple closed contou:r enclosing the origin and lying 

entirely inside the unit circle. The difficulty now comes 9 of course, 

in evaluating the integral. 

'l'he reason for the difficulty is that, 

P(x) = _J_~~ 
1=X 1-x 1-x 

••• 
1 

"'1' k 
=X 

• •• 

has zero denominators in every factor when x = 1, every second when 
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x = =1, every third when ~ = exp(ZITi/3), and in general Enrery k..,th when 

x = exp(2nih/k) 9 (h 9k) = +• Ilflnce, x = exp(2'!iih/k) for every rational 

number is an essential signula:rity of P(x). However, since the rational 

points are dense, any irrational point will have singularities arbi= 

trarily close to it and therefore 1P-ll itself be a singularity. There= 

fore 9 all points on the circle are singular points and there is no 
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possibi.li.ty of integri:J.ting 14cross. the :;,ingularities. 

The difficulty see:med unsurmountable until G, H. Hardy recognized 

thatp quotes 1~P(x) belongs to a class of functions called elliptic modu-

lar functions whose properties have be~n intensively studied and w4ose 

behavior is well-known." Riemann, Dedekind and others have studied the 

:important modular function, 

which is very nearly the :reciprocal of P(x). To be exact, if one lets 

2ITit x = e · !) Im (t) > 0 to give lxl < 1, then from (6.1) and (6.6)~ 

h(t) _ exp(,rrit/12) 

P(e2'1'Tint) 

Nmo19 the 'heaviest' singularity of P(x) occurs at x = L Hence, suppose 

that the greatest contribution to the integral of (6,5) wuuld come at 

x :ea: 1. In fact, if f(n) is t):le contribution to p(n) from the point 

x = 1, one might expect (~sit turns out) that the contribution from 

:x a,:; l is O(,j'f'[nJ) and so on, The:ref ore, one would like to find a func= 

ticm g(x) which is analytic at all points of the 1.+nit circle except 

x GS 1 ~ i:tnd has there a singularity ot.' a type as near as possible to that 

of the singularity of P(x). Cauchy• s ~heorem would then be applied to 

A function g can be found from the properties of the modular func.,, 

tion h(t). 'l'he substitution x = e=211'\ Re(t) > 0 to give I :x;I '< 1 9 into 

(606) gives~ 

(6.7) 

P(e""2rrt) = Jt exp[rr(1/t - t)/12] P(exp(-2rr/t)J 

= g(t) P[exp(~2rr/t), 
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where g(t) = Jt expcrr(i/t - . t)/12] is the desired funct:l.on. Since 

P[exp{=2'l"f/t)J = n~ p(n) exp(-21111/t) approaches 1 very rapidly as t ·~ Oj) 

i.e. X-+ 1 9 it follows that P(e .. 21Tt) ·-+g(t) as t ~o. 

The first approximation will now be found by choosing the contour 

C o.f (6.5) to be the circle C g x = rei¢ (-rr ~ ¢ ~ 'IT) 9 in the complex 
0 

x""pla.ne with a radius of Ix I = r
0 

< 1 but extremely close to 1. Now 

make the transformation 9 x = e=2'rrt 9 where t = u+:i.v 9 u > o. Then 

t :;::; = i(l:n r + i¢) 9 so that C
0 

i.s mapped onto the line L9 in the t= 

planes u ~ = ~ ln r with endpoints t = u + i/2 and t ~ u = i/2 
0 ~·· 0 0 0 1 0 

as sketched. bel.owg 

Im (x) .v 

Re (x) 

X=plane t=plane 

~ b t"t t" f °"2'1'ft O t (6 ~) "th R c O 

i.iil ts ·1 u .ion o x ~ e 1.n o ·:> wi, 1., ""' gJ..ves 9 
0 

·1 p(n) ;;';a a~ 

- 2Til. 

Now the integral is divided into two parts by the ide:ntity9 

u 

(6.8) 1 S 2rmt 1 ~ 2nt p(n) = = i L g(t) e · dt - I JL [P(e= ) = g(t)] dt 9 

where the first integral will contribute the principal part and the 
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second integral wi.11 be investigated only to determine its magnitude. 

The evaluation of (6,8), still very difficult a.nd long, is given by 

Ayoub [6] to be, 

(6.9) p(n) = .;J.__ ~ ealn/~n + O(exp(5ain/8)], 
2n/2 

where An = Jn '_ 1/ 24, a = 'ff./273 and O refers to n-"7'00, The asymptotic 

result (6,4) can now be obtain~d if we carry out the differentiation to 

obtain.i 

( ) 1 pn =-
2n/2 

p(n) ,-,J --1. exp(~). 
4n.fj 

The next step is to consider the singular point at x ~ =i and to 

subtract from P(x) a second auxiliary function related to this point as 

g(x) is to x = 1. Similar developments by Hardy and Ra:manujan gave, 

p(n) = ...L.,.., 2- ea~n/'A + k_1)n 2-, ea>.n/2 + O(en./n) ti 

2'ff,./2 dn n 2'!T dn ln 

where D > 1 a. One might also notice that in equation (6,9)i 

5a}.,jB > ! a,Jn. Therefore, since the accuracy is imprcn.ring 9 Hardy 

and Ram.anujan (25] continued the process with the rational singula.r= 

ities and were able to obtain the more preciqe results given in (3.9) 

so that p(n) is 9 for sµfficiently large values of n, the integer near= 

est the value of the first term in the right member of (3.9). 



It was later shown~ however~ that the series in (3.9) was divergent. 

Rademacher simplified and perfected the original analysis of Hardy and 

Rrunanujan to obtain a convergent series representl;ltion of p(n). 

Convergent Series Representation of p(n) 

Rademacher [4i] proved the convergent series ::representation of p(n) 

given in the next theorem. 

Theorem 6 .j,. 

(6.10) An = Jn '"" 1/24~ Ak(p) = os;1F<:k wh9k exp(=2'liihn/k) ID 

(h,k)=1 

the bracket function). 

In 1938~ L. R. Ford discovered some geometric properties of the 

Farey sequences to be defined in Definiti.on 6.1 below. lt"'ord represented 

each Farey fraction by a circlei now called 8Ford circles 9
9 given in 

Defi.nition 6.3. This permitted Rademacher to replace his previous path 

t?f integration~ done by dissecting the circle into 'Farey a1°cs O 
9 by the 

new path along the Ford circles. It is t~is method which we shall 

briefly outline. The reader may furnish the missing details and proofs 

or fi.nd them in Rademacher's lecture notes f 41 J. Ayoub (6] also gives a 

proof 9 due to J. V. Uspensky9 which differs very little from Rademacher~ 

proof. 

First the substitution x = e2rfit~. lm(t) > O~ is made in the 
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integral (6.5) to obtain9 

(6-.1.1) 

where the path of integrati9n can be any curve in the upper half=plane 

connecting the points i and i+i. Now, to determine a convenient path 9 

it will be necessary to discus~ the Fa:rey sequences and Ford circles. 

Definition 6.1. By a Farey sequE)_nce F of order n 9 is meant the set of 
n 

all fractions h/k with OS h ~ k, (h,k) = 1 9 1 S k ~ n and arranged in 

ascendi.ng order of :magnitude. For e~amples the Farey sequences F 9 n 

0/1~ 1/1 

0/1, 1/2, 1/1 

0/19 1/'J, 1/2., 2/'3t i/1 

0/19 1/4~ 1/39 1/2 9 2/3 9 J/49 1/1 

Farey sequences have many interesting properties. Only those 

properties needed to prove the:; necessary results of the Ford circles 

will now be stated with proofs found in (41]. 

Properties8 

(1.a) 

(2.a) 

If h/k and hu/k 0 are two successive fractions in F ~ then , n 

k + k 0 > n. 

If h/k and h 9/k' are two :successive fractions in F 9 then n 

k f k 0 
o 

If h/k and h'/k' are two successive fractions in F ~ then 
n 

\ 

h 0k""' hk 0 = 1. 

De-rinition 6.2. The m(;)diant u of h/k and h '/k 1 , two successive frac'"' 

tio:ns in F ~ is u = (h + h')/(k + k'). Observe that h/k < u < h 0/k 0
• 

n . ·.' 



pefinition 6.;,. Let h/k be a fraction in F. n 
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Con.sider the complex t.., 

plane and suppo_se that the1•e is a circle ch,k with center at the point 

oh k = h/k + i/ (2k
2

) and radius 1/ (21/). Such a circle is called a Ford 
' 

circle. 

The Ford circles corresponding to the Farey sequence Fn have the 

following properties which can be found in (41]. 

Properties& 

(1.b) All the circles are tangent to the real axis. 

(2.b) No two circles interseqt. 

(3.b) Two circles ch,k and Ch,
9
k' are tangent if and only if h/k 

and h'/k 1 are neighbors in some F'arey sequence of the same 

order. 

The Ford circles corresponding to F4 are illustrated in Fig. i. 

/ 

Fig. 1. 

Now consider any fixed positive integer N (later we let N-=,·=) and 

the Ford circles corresponding to FN" By property (J.b)j c.:msecuti've 

circles are tangent. T:t'ie points of tangency divide each circle into 
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upper and lower arcs. For the circle Qh,k' denote the points of tan= 

gency by h/k + S' and h/k + S0 and the upper arc by gh,k" For N = 4 9 

the points A and B in Fig. 1 illustrate 1/ 4 + S' and 1/ 4 + sn with the 

upper arc of AB corresponding to g1, 4• 

Let the path of integration, PN' for the integral in (6.11) be the 

row of arcs gh,k st~rting at the point i and endi.ng at the point i+1. 

Because of the periodicity of the integrand, that part of the arc of 

g0~1 to the left of the imaginary axis is replaced by the part of g
191 

to the left of the line Re(t) ::: 1. The heavy line in F'ige 1 illustrates 

the path P4 • The integral (6.11) now becomes, 

(6.12) 

where gh,k runs clockwise from h/k + sh,k to h/k + Sh~k· 
Now the change of variable t = h/k +Sin each integral gives~ 

(6.13) p(n) = t s:~,k P(e21Ti(h/k + S)) e-2rrin(h/k + S) dS
9 

h,k 
where the summation here and henceforth will be over all hand k such 

thatg O" h < k $ N and (h 9k) = 1, except where otherwise indicated. 

This transformation had the effect of transforming each of the cireles 

so that the new centers are at the points i/(2k2). Now, to transform 

the circles to the circle K with radius 1/2 and center at the point 

1/2, let S = iz/k2• The integr~l (6.13) now becomeso 

. 2 2rr·nh/k szh k P( 2ni(h/k + iz/k
2

)) 
(6.14) p(n) = t i/k e- 1 

, ' e 
z. k h, 

where zh,k and zh,k are the images of sh,k and sh,k respectively. The 

path of integration is illustrated in Fig. 2. 
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Fig. 2. 

Now apply to P the functional eq1.+ation derived from the theory of 

the elliptic modular functions by Hardy and Ra:manu.jan [25Ji 

(6.14) P(x) = Wh~k Gk{z) P(x')9 

where x ~ exp(2rri(h/k + iz/k2 )}~ x 9 = exp[2'!Ti(h'/k + i/z)] 9 bhv 1;; cai 

(mod k) 9 Wh k is given in (6.1.0) and Gk(z) = J;. exp( 7TI
2
= = J!Z

2
= ) • 

-g ~ z 12k 

The integral in (6.13) now becomes, 

where ~(n) is defined in (6.10). 

Divide each integral into two integrals by the identity9 

to obtain 9 

(6.16) 

where 
~" 2 

I e s-.'h 9 k G ( ) 2rrnz/k d d 
h 9 k = z e z an Z I k 

hgk 

where the path of integration is an arc of the circle Kin the clock= 

wise (negative) direction. 

Estfa.:a.tio:n of Ih
9
k 9 found by replacing the arc z O to z11 by the 

chord ( integrand is analytic away from the origin) 9 and using the propac, 



erties of Ford circles gives~ 

I I" I S C(k/N)3/ 2
, h,k 

where. C is a constant which depends on the fixed integer no 

Now the second sum in (6.16) can be estimated for size to show 

that it is less than or equal to C/N1/ 2 which givest 

(6.17) p(n) = l: ik""5/ 2 Ak(n) :Ch"k + O(N""
1
/

2
). 
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The eval~ation of Ih,k is carried out by using the entire circle K 

as followsg 

(6. 18) p ( ) '2:rfnz/k
2

d szh,k G () 2mrz/k
2 

Ih,k = JK Gk z e z - 0 k z e · dz 

' 2 

So G ( ) 2rrrrz/k ct' - z" k z e Z9 
h,k 

where K is traversed in a clockwise direction. The last two integrals 

in (6.18) can be written as, 

z" I 2 \~~,k G (z) 9 2nrrz k dz. 
,)zh~k k 

As before 9 it can be shown that the integral in (6.19) is of order 

O(k/N)3/2 and also O(t k=5/ 2(k/N)3/2) = O(N""1/ 2). Substitution of this 

result into (6.17) gives 9 

(6.2.0) p(n) = i t Ak(n) k-5/ 2 SK Gk(z) e2rfnz/k
2
dz + O(N""'l./ 2). 

Notice that the summands are independent of N. Let N -,.,oo 1.n ( 6. 20) to 

obtain the infinite seriesg 

(6.21) p(n) = i ~ Ak(n) k-5/Z ~ Gk(z) e2nnz/k
2
dz 0 

It is now possible to evaluate the integral in (6.21) by the use of the 

substitution w = 1/z and application of Bessel functions to y"ield the 

result of the theorem. 

The techniques of Rademacher have been used to obtain series rape,, 

resentations of other partition functions. In parti.cular 9 Haskell (27]~ 



and independently Wright, have obtained series representations for 

p~k(n) which includes Rademacher's for p(n) as a special case. 
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CHAPTE:fi VII 

SUMMAR"! 

The purpose of this thesis is given in Chapter Io Brieflyi, i.t is 

to introduce to the advanced undergraduate student the rather unf.?..m::Uiar 

but important theory of partitions of a number which involves the, num.,, 

ber=theoretic partition function, p(n). ]j.fter giving the necessary 

background in Chapter II!j the origin and a brief historical development 

. is given in Chapter III. The introduction!! including basfo definitions 

and theorems of partition theory, is given in Chapter IVo 

One of the major problems 1 to determine the congruence properties 

of the partition functions 9 is .considered in Chapter Vo Several con.,, 

gruences are obtained. A simple proof of the congruence p(ii.111 + 6) ;;;; 0 

(mod 11) is given. Except for a proof in 1969 by Wi.nquist (4-9] 9 this :i.s 

the only proof to the author's knowledge which has not required the more 

advanced analysis, including modular functions 9 which is needed and used 

in Chapter VI. 

Congruences are also obtained for the k-line partition function, 

tk(n)~ fork= 1 9 2, 3, 4, 5, 69 7 and 8. The congruences for t 6(n) 9 

t 7(n) and t 8(n) are found by the method of Cheema (12] which 9 to the 

author's knowledge~ have never appeared in print. 

Chapter VI 9 requi:ring more advanc!ed analysis and mathematical 

maturity9 gives a brief development of the asymptotic and series repre= 

sentation of p(n) which were found by Hardy and Ramanujan [2.5] in 1918 
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and Rademacher (42] in 1937 9 respectively. 

An interesting problem for further study would be an att~mpt to 

solve the conjecture posed by Morris NeW?llan (36] in 1960. 

f.gnjecture. p(n) fills all residue classes modulo m infinitely often9 

that is 9 that if r is any integer such that O'S :r ,S I11=is then the con= 

gruence p(n) ~ r {mod m) has infinitely many solutions in non=ne,ga:tive 

integers n. 

81+ 

The k:no.m congruences of Ramanujan's conjecture already give a 

partial answer for all powers of 5 and 7, for 11, 112 and 113. Newman 

[36]!) in an attempt to prove the conjecture, has shown the conjecture to 

be true form= 5 and 13. 

Another interesting problem is to determine the (asymptotic) dens1°~ 

ty9 if it exists 9 of the integers n such that m divides p(n) for~ given 

m. For e:xample 9 the congruence p(5m + 4) :; 0 (mod m) implies that 5 

divides p(n) for .infinitely many n. Ne'Wlllan [37] showed that 9 

lim inf ~ > 1 + 2 · x 5 4~ 
X=:l>-00 5,19 

w:here 9 

s(x) = , )IL ( 1 ) ~x; p(n ~ :mod 5 a 

Whether the limit exists 9 hence the density9 still seems a difficult 

question. 

The_ need. for .an expliGit .. generating function for the .d-dinJ.andiol!.al 

parti.tion .function9 more fully .explained .in Chapter III 9 is cert.a.inly a 

challenge to anyone capable of even coming up w:i,,th a worthy conjecture. 
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APPENDIX 

A Table of Partitions 

The following table gives the values of p(n), t 2(n)~ t 3(n), t
5
(n)~ 

t(n) and p _
2

(n) .for all. n :S 34. These values can easily be c.o..mpu:t.ed 

from the recursion formulae of Chapter IV. 

A more complete table for p(n), values for n S 600, is given by 

Gupta (21,22]. The values of tk(n) for~= 29 3, 59 25, t(n) and p~2(n) 

for all n ~ 299 are given by Haskell (27]. 
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A TABLE OF PARTITIONS 
"ii p(n) t

2
(n) t 3(n) t

5
(n) t(n) P=2(n) 

~ = ===-
1 1 1 1 1 1 2 

2 2 3 3 3 3 5 
3 3 5 6 6 6 10 

4 5 10 12 13 13 20 

5 7 16 21 24 24 36 
6 11 29 40 47 48 65 

7 15 45 67 83 86 1.10 

8 22 75 117 152 160 185 

9 30 115 193 263 282 300 

10 42 181 319 457 500 481 

11 56 271 510 768 859 7.52, 
12 '7'? 

I' 413 818 1292 1479 u65 
13 ' 10:1 60.5 1271-1, 2118 2485 1770 
14 13.5 895 1983 3462 4167 266.5 

15 176 1291 JOJ2 5564 6879 3956 
16 231 1866 4610 8888 11297 5822 

17 297 26l}8 6915 14016 18334 8470 

18 38.5 3760 10324 21937 29601 12230 

19 490 5260 1.5235 34081 47330 17490 
20 627 7352 22371 52552 75278 24842 

21 792 10160 32554 80331 1 18'?94 3.5002 

22 1002 14008 47119 i 22078 1 86475 li9010 

23 1255 19140 67689 i 84161 2 90783 68150 
24 1575 26085 96763 2 76303 4 51194 9l}2:35 

25 1958 35277 1 37404 4 11870 6 96033 1 2,9512 

26 2l~J6 47575 1 94211 6 10818 10 68745 1 77087 

27 3010 63753 2 72939 9 00721 16 32658 2 40840 

28 3718 85175 3 81872 13 21848 24, 8J234 3 26015 
29 4565 1 13175 5 31576 19 29981 37 .59612 l}, 39190 
30 .5604 1 49938 '? 36923 28 05338 56 68963 5 89128 

31 6842 1 97686 10 16904 40 58812 85 12309 ? 868il~ 

32 8349 2 59891 13 97853 58 47966 127 334·29 10 46705 

33 10143 3 40225 19 13561 83 90097 189 74973 13 86930 
34 12310 4 44135 26 10023 119 90.531 281 7.5955 18 31065 
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