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CHAPTER I
INTRODUCTION AND STATEMENT OF THE PROBLEM
Introduction

The natural numbers or positive rational integers,
15 25 35 soos My oo
play an important role in mathematies. All the real and complex num-
bers can be derived from them. The set of natural mumbers is the
domain of the arithmetic functions of number theory. The natural num-
bers even play a role in the complex function e which can be seen in

the relation,
o2mz _ 2mi(z £ n)
- 9

which holds for any natural number n and all complex values z. This
study is not te find applications of the natural numbers in mathem-
atics, howsver§ but to apply mathematics in the study of the natural
numbers

The theory of additive arithmeti¢ involves expressing an arbitrary
natural number n in the form

n=ai+a +ooe.‘+’as

2
where a,€A (1 = 1, 2; o005 5)o The set A might be; the set of natural
numbers, ﬁhe set of prims numbsrs, the set of even natural numbers, the
set of squares;, etc., If A is the set of natural numbers then the study
of these representations is referred to as the theory of partitions. If

A is the set of natural numbers; no restrictions are placed on s,



repetitions are sllowed, and order is irrelevant, then this is the study
of unrestricted partitions; The number of such representations of n is
denoted by p{n).
For example if n = 5, the possible representations are,
5=5
b +1

L1

34+ 2

0

[1}

3+ 1 +1

2+ 2+ 1

i

24+ 1+1+1

"

it

i+1+1+1+1
and consequently p(5) = 7.

The study of partitions is basically done by combinatorial methods
or analytic methods, The first method is aided by graphs introduced by
Drs, Ferrers and Sylvester. . The second method, which will be used in

this paperg is aided by the generating function introduced by Euler,
Graphs

Partitions can also be represented graphically. Since, in unre-
stricted partitions order is lrvelevant, it is convenient to arrangs
> a

the summands a, such that ay > a > 000 2 a_. Then a geometric

2= "3

representation of n = ay + 2y + a0 F 2 is the array of points with ay

points in the first row, 3, points in the second row, and on down to the
last row., For example

c0 o o

¢ © o o @
°© e e
o o
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represents the partition 19 =7 + 4 + 3 % 2+ i, The graph could also
represent the partition 19 =6 + 5+ 3+ 2+ 1 + 1 + 1 if it was read by
columns instead of rows, Partiticns related in this manner are said teo
be conjugate,

Another graphical representation of 19 is the followings

E-N L]
]

@:
2

e & B

= o 8 = 0 b
2 © ® o o

If the graph is read by rows it represents the partition 19 =6+ 54 3
+ 2+ 2+ 1. The same representation is obtained if the graph is read
by columns. Repfresentations of this type are considered self=conjugate,

Many of the theorems in the theory of partitions can be proved by
combinatorial methods which use the idea of i=1 correspondence., This
method is greatly enhanced by the graphic representation; Since this
method is not used in this paper it will be illustrated by the elemenw
tary Theorem 1.1,

Consider the partitions of n in which the summands are < m, The
number of all such partitions will be denoted by p{nim)., Let the number

of partitions of n with no more than m summands bs denoted by pm(n)o
Theorem 1.1, pn) = p(nsm),

Préofs Represent the partitions of n graphically. If the graphs are
read by rows, then p{nsm) is the number of such graphs with maximum
number of columns m. On the other hand, if the graphs are read by
columns, then the nmumber of graphs with a maximum of m columns will be

pm(n)o But, since each graph can be read Ey rows or by columns, there



is a 1=1 correspondence between the graphs representing p(n;m) and the

graphs representing pm(n) and the theorem is proved,
Generating Functions

Generating functions are extremely useful in the study of the

theory of partitions. It will be shown in Chapter IV that
= mel = n
Px) = B (1 -xM"" = & p(n) x"

The function P(x) is said to be the generating function for p(n), the

number of unrestricted partitions of n., Since

]

R e CI el CR L CRS LS

24 33 ¢ 5t 4 7x0 4 150 + 1557+ o

1]

1+x+ 2x
the coefficients generate values of pln). That is, the coefficient
of xé is equal to p(n). Evidently p(n) is 1, 2, 3, 5, 7, 11 and 15 for
n ? 1,2, 3, &, 5 6 and 7 respectively. It will also be convenient to
define p(0) = 1, the coefficient of <,

The size of p(n) increases very fast as n increases. For example
it is known that p(300) = 99253908299369?239602 and that

p(600) = 4580 04788 00814 43085 53622,

The valuss of p(n), for all n g 600, can bs found in Gupta's tables [21]
and [227. A few isolated values of p(n) for n > 600 have bsen computed
by D. H. Lehmer.

Until recent years p{n) was not known for very large n., With the
aid of generating functions, asymptotic formulae can be dewveloped,
Generating functions are alsc useful for developing arithmetic properties

for p(n) which are still few in number,



Purpose and Significance of Study

The purpose of this paper is to give a brief introduction and
historical development of the theory of partitions. A second purpose is
to illustrate the various branches of mathematics used in attempting to
solve the problems in the theory of partitions. Thirdly, it will be the
purpose of this paper to give a brief report, in an expository manner,
on the recent work involving the asymptotic and arithmetic properties of
p(n).

It is hoped that this dissertation may be of use to college students§
to gain insight into some procedures and techniques of research in
mathematics, doing independent study or work in a seminar courss., The
author has attempted to show how one generalizes concepts and ideas in
mathematics. The importance of trying to simplify known proofs is also
significant and the author feels he has particularly accomplished this

in the proof of Theorem 5.7.



CHAPTER IT
CONCEPTS FROM NUMBER THEORY AND ANALYSIS

This chapter is only for the purpose of making the paper more self;
contained. It includes the topics from number theory and analysis which
are needed in the,following chapters, The definitions and theorems
(stated here without proof) can be found in most elementary books on ?he
subject and in particular Apostol [17, Grosswald [23] and Pennisi [397.

If one has a good background in elementary number theory and anal;
vsis, including series and complex variables, it is possible to skip
this chapter. One may refer back to it as the need arises.

The material on elementary number theory should be sufficient for
Chapters III, IV and V, however, Chapter VI requires the more advanced

analysis;
Topics from Elementary Number Theory

BgfihifgghNZ:i, For any integer m # 0, a ié congruent to b modulo m if

and only if m divides a - b, We write a = b (mod m). If a - b is mot
divisible by m, we say that a is not congruent to b modulo m, with the
notation a % b (mod m).

For example, 22 = 1 (mod 7) since 7 | (22-1). Note that the remaine

der of 1 is obtained when 22 is divided by 7; This observation leads to

an equivalent definition of congruence in terms of remainders (or res=



sdues), The set A = {0, 1, 2, 3, 4s 5, 6 }, for example, will be cone
sidered ths least residue system modulo 7 since n = a {mod 7) for some a

in Avo

Definition zjz; If a = ng+ r with 0 € »r < m, then r is called the

least residue of a modulc m,

Definition 2,3, The set of integers 0, 1, 2, s¢s, m=1 is called the
least residue system modulo m. Any set of m integers, no two of which

are congruent modulo m, is called a complete residue system modulo m,

Theorem 2,4. For every integer m, the congruence modulo m is an equiva=-

lence relztion.

Because of Theorem 2.4, a residue gystem is Sometimes called a resi-

dug class.

Theorem 2.,5. The following statements hold where all congruences without

indication of a modulus are mod ms

(i) a = b implies ca = cb;

(2) a=b, czdimpliss a+ c = b+ d;
(3) a=b, ¢c=d implies ac = bd;

(4) az b implies a” = b"; and

(5) a=zb (mod mn) implies 2 = b (mod m).

Theorem 2,6, If p{x) is a polynomial with integer coefficients and

a = b (mod m), then p{a) = p(b) (med m).

it

o=

Definition 2.7. ngb p(n) x* = ngb a{n) x® (mod m) if and only if

p(n) = q(n) (mod m) for each n,



Definition 2,8, If (a,b) = 1, then a and b are said to be relatively

prime or coprime where (a,b) represents the greatest common divisor of

a and b,

Theorem 2,9, ca = cb (mod m) implies a = b (mod m/(m,c)).

Theorem 2,10, If (migmz) =1, az b (mod mi)9 and a = b (mod mz), then

a=b (mod m1m2)°
Theorem 2,11, If R is a prime, then (i ;x)R 21 - & {mod R).

Theorem 2,12, If R is a prime, then (i~ x)éR (1 - XR)°1 (med R).

i

Definition 2.13; The number of positive integers r, not exceeding m

and coprime with m is denoted by f(m), called Euler § function, i.e.

P =i, !

(m,r)=1

Definition 2034, Any set of p(m) integers which are coprime with m and

which are mutually incongruent (no two are congruent), modulo m, is

called a reduced residue system modulc m.

Theorem 2,15, (The Euler-Fermat Theorem). If (a,m) = 1, then
aﬁ(m) z 1 (mod m),

Definition 2,16, Let (r;m) = 1; then r is said to be a quadratic resi-

due modulo m, if there exists some integer x, such that %% = r (mod m).

We call n a quadratic non.residue modulo m, if the congruence x2'§ n

(mod m) has no solutions.

Definition 2,17, For prime p * a we define the Legendre symbol (%j as



followss (%) = 1 if a is a quadratic residue and (%) = =l if a is a

quadratic non-residue modulo p.

Definition 2,18, The greatest integer function, in symbols [x]9 is de~

fined as the largest rational integer not to exceed x.

Definition 2,19, The sum of the k=th powers of the divisors of the

integer n is denoted by gk(n); In particular, go(n) (also denoted T(n))
is the number of divisors of n and oi(n) {(alsc denoted &(n)) is the sum

1
of the divisors of n. In symbols, ak(n) = F a<,
din

Theorem 2,20, T § =% d=on).
d|n dln

Some notation, which is perhaps restricted almost exclusively to

analytic rmumber theory, is given in Definitions 2.21, 2,22 and 2.23;

Definition 2.21. If f and g are two functions (real or complex) defined

in a neighborhood of ¢ (finite or infinite), we say f is asymptotic to

g, written £~ g, if lim f/g = 1.
X

Definition 2,22, If f and g are two functions (real or complex) defined
in a neighborhood of ¢ (finite or infinite), we say £ is "big 0 of g",
written £ = 0(g), if there exists a constant K > 0 and a neighborhood

N(c) such that If(x)i <K Eg(x)l for all x in N{e),

Definition 2,23, If f and g are two functions (real or complex) defined

in a neighborhood of ¢ with g{x) > 0, then we say £ is "1little o of g",

written £ = o(g), if lim £/g = 0,
XomC

Equivalent definitions for 2,21, 2,22 and 2.23 could be given for

sequences,
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Topics From Advanced Calculus énd‘Complex Variables

Theorem 2,24, If the series n§0 a, and n§o bn are both absolutely cone
vergent with sums A and B respectively, then
& ] b - oo ( éo b )
220 ®n n20 °n = 20 ¢ 10 Pnek
in the sense that the series on the fight is also absolutely convergsnt

and has sum AB.

Definition 2025, (Double series) Let f be a dpuble sequence, The

doubls series s defined by the equation
s(psq) = m§1 ngi £(m,n)

is called a double series., The double series is said to converge te the

sum a if lim s(p,q) = a. The convergent double series is denoted by
Pog

n5,1n§1 f(msn) L]

Theorem 2,26, Let N mgi f(my,n) be an absclutely conveérgent dcuble series,
oI

then
) f{m,n) and mgﬁ f{m,n) both converge absolutely and

(=)

(b) mgﬁ =1 £{myn) = ngi mgﬁ £{myn),

v 1]

=

i1

Definition 2,27, The infinite product (1 + an) is said to converge,

0 and if lim ﬁ {1 + a ) exists and is
n=En n

if a % =1 at least for nz n
n
K 0

different from zero.

Theorem 2,28, The infinite product [, (1 + a ) with a_# =1 for alln

is absglutely convergent if and only if nzian is absolutely convergent,

Definition 2,29. (Gamma function) ['(x) ={7 & g™ ag, x > .
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Theorem 2,30, (Riem_ann zeta function) g(s) = nzi n‘»"”s‘9 where s = u + iv,

2
converges for u > 1, In particular §(2) = m /6,

. v . & N
Theorem 2,31. (a Tauberian theorem) If a, 2 0and Z,a =

" (a5 z=i™) then 1y B ™ e

Theorem 2,32, (Abel“s theorem) If f(x) = ngb c, x5 (;1 < x < 1) and

n;b c, CONVerges, then ii? £f{x) = ngb Cpo In particular

m
1n % = 4G22 = /e,
g

‘Definition 2s33, Let f be a complex-valued function defined on an open

set S and let Z be any fixed point in S. Then f is said to have a
derivative f“(zo) at z if the limit
(z) - £(z )

2 = 2
Y]

1im

ZemZ
o}

- v
f (zo)
exists,

Functions which possess a continuous derivative at each point of an
open set are called analytic functions. It has been shown that the

existence of £° on S automatically implies continuity of f£° on S,

Definition 2,34, A complsxevalued function f is said to be analytic

(or an analytic function) on an open set S if it has a derivative at
every point in S. The function f is said to be analytic at a point z

if there exists a neighborhood N(zo) on which f is analytic.

Definition 2,35. A contour C represented by z = f(t) on the interval I:
d_g t < g5 is said to be closed if fla) = f(g). A contour C is said to

be simple if for any two points ti # té in I we have f(ti) # f(t2)9



iz

except possible when t, = o and t2 = B that is the contour doesn't

1
cross itself. A contour which is both simple and closed is called a

simple closed contour.

Theorem.2o36. (Cauchy's Integral Formula) Let £(z) be analytic within

and on a simple closed contour C, If 2 is any point interior to C, then

_ 1 € £(z) da
f(zo) T i C Z s ZO

9

where the integral along C is taken in the positive (counterclockwise)

direction.

Theorem 2,37. (Laurent's Series) Let S be the region bounded by the

concentric circles Cl4and 02 with center at 2 and radii ry and r,

respectively, r, < r,. Let £(z) be analytic within S and on €, and Cyo

2 i

Then at esach point z in the interior of 8, f£(z) can be represented by a

convergent series of positive and negative powers of (zmzo)9

- 2 n @ =il
{(2.1) f(z) = n;b an(zazo) + n;a bn(zuzo) R
whers
La 1 *
(2&!2} an = '?é'{?? \S\C m""("‘zﬁ 3 = 091929000
, ‘ 2 (=2 )
. f . .
(2.3) b, = eémf_-;,s{ Sc 2 _nil-ﬂ ne 1,2,35000
i (z= }

and the integral along C1 and 02 being in the positive direction,

Definition 2,38, A point z is called a singular point or a singularity
of the function f(z)s if £ is not analytic at Z s but every neighborhood
of zg contains at least one point at which f is analytic. The series in

negative powers of (zmzo) in (2.1) is called the principal part of f at
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the isolated singular point 2o If .an infinite number of the bn do not

vanish in (2.3), then z, is said to be an essential singular point,

_Definitiqn 2.39, If z is an isolated.singular,point of f(z), then

&S
b1 = . £(z) dz,

the coefficient of (2.3) for n = 1, is called the residue of f at z

i
3

b

and will be denoted by Res [f(z), zo].

'Theorem 2.40, (Cauchy's residue theorem) Let C be a simple closed con;

tour, and let f be analytic on C and in the interior of C except at a
finite number of singular points Zys 2oy eees Zy contained in the

interior of C. Then
.k
Se f(z) dz = 2gi ngl Res Ef(z)gzn39

where the integral along C is taken in the positive direction,



CHAPTER IIT
" HISTORICAL DEVELOPMENT
Early Beginnings

The study of the natural numbers is but a small part of the field
called the theory of numbers or number theory., Even this study can be
divided into two major divisions, multiplicative number theory and addi;
tive number theory.

Multiplicative number theory, which deals with questions of factor=
ization, divisibility, prime number, and so on, goes back more than 2000
years to Euclid., Additive number theory, on the other hand, began less
than 250 years ago with Leonard Euler (1707—1783, Swiss). In his famous

treatise, Introductio in Analysin Infinitorum (1748), Euler devotes the

sixteenth chapter, "De partitione numerorum," to problems of additive
number theory. A "partitiorn" is, after Euler a decomposition of a
natural number into summands (parts) which are natural numbers.
According to Dickson [147], G. W. Leibniz (1646-1716, German) asked
Bernoulli (165&#1705, Swiss) if he had investigated the number of ways a
given number can be separated into two, three, or many parts, and |
remarked that the problem seemed difficult but important. Leibniz saw
the relation between the rnumber of ways a given integer could be
expressed as a sum of smaller integers, as 3, 2+ 1, 1 + 1 4 1, and the

number of symmetric functions of a given degree as % a3, p azb, = abc.

1L
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The first real contributions to the theory of partitions, however,
were made by Euler., The great algorist that he was, Eulsr developed many
formulae by the device of comparing coefficients in two or more expres;
sions of a given function by different algorithms. By the use of symmefa
ric functions and their relationships, he was able to find the number of
ways n is a sum of a given number of distinct parts. He alsc noted in
1748 that p(n), the mmber of unrestricted partitions of n, is the
coefficient of x" in the expansion of kgi (1 = 91 into power series
in x, hence this is called a generating (or enumerating) function of
p{n). More will be said about the generating function after discussing
the theory of formal power series. ,

Euler made the simple remark that, since we have X = xm+n9

exponents of powers can easily be combined in an additive manner, and

therefore products of power series can be used as "generating function.”
Formal Power Series

The methed of formal power series was introduced by Euler around
the middle of the eighteenth century and is one of the basic tools in
additive number theory.

A formal powsr series is an expression

2 3 n
ao + aix & azx + 33x + 200 an; + cooe

where the symbol x is an indeterminate symbol, i.e. it is never assigned
a numerical value. Consequently, all questions of convergence are
irrelevant,
Consider th ios A= $axand B= b« wh d
cnsider the power series A = an = where a_ an
p v n20%n* néb W re a,

£

bn are elements of some algebraic system with the definitionss
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A = B if and only if a = bn for all n,

A+B = ngb(an + bn)xn (A formal power series,)

AB = ngb(aobn oAby teeeta gt an.bo)xn
(A formal pbwer series.)
A = 0 if and only if a = 0 for all n,

Many properties can be'verifiéd and all the following fifteen have
been verified by Rademacher [41]. If the coefficients are elements of a
ring, then the formal power series form a commutative ring. That is,
the identity relation (=) and the two binary relations of addition and
multiplication which have been defined satisfys
(1) A+B=B+A (2) AB=BA
(3) (A+B)+C=h+(B+0C) (1) (aB)C = A(BC)

(5) A(B+C) = AB + AC
(6) A+0 =0+ A = A, where 0 is the zero power series,
(7) A+ (%A) = 0, where =A = ngb(gan)xn. |

If the coefficients have multiplicative inverses, then the addi;
tional properties followé
(8) AB =0 implies A =0 or B=0
(9) A # 0 and AB = AC implies B = C

{(10) a, #0 impiies there exists a B such that B = 1/A is a power series,

Consider A' = ngbnan;n”i to be the derivative of A. The following
properties follows

(11) (A +B)' = A' + B' (12) (AB)' = AB' + A'B

Both of these can be extended by induction to a finlte number of sums or
products.,

If AB has a reciprocal (i.e. a b, # 0), (AB)'/AB is called the
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logarithmic derivative of AB. It follows thats

(AB)' _A'B, AB' _A', B'
W) F-="F BTty

By induction it follows that:

4 [ ) )t A ® AT
o it AL
h2 °°° 1 n

A formal power seriss will result from the product of a finite number
n

of power series, igiAig sinee the coefficient of the kth power of x can

be found by adding only a finite number of terms. If we consider pro-

ducts such that only a finite number of terms are nesded to compute the

ternm xng then it also follows that:

( 4 A, .
X n=1 n’
(15) mmﬁA nzm
n=1i"n

Formal powsr series will frequently be expressed as products., It
will thus be necessary to work with products, particularly of the type
kgi(a + bxk)o Only products in which there exists a finite number of

terms involving %" will be considered,
Tdentities of Euler and Jaccbi

Euler used formal power seriss to develop the generating funection

of p{n). A given partition of n,

(3.1) n=mn, +on,+ ng +oee + 0

can be written in the more systematic form

{3.2) n=n, + Zné + n

4 + 000 (ni > 0) ,

3

where n, is the number of 1's, n. is the number of 2°'s, n., is the number

1 2 3
of 3's, ete, Thus p(n) is the number of solutions of (3.2),
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On the other hand,

(1. 2=t = L 1 L1

ﬁ R ] : . - v
=1t lax 1« % 1 %2
n . 2n 3n
@ 1 @ 2 @ 3
= X ° _2_ . z X oo
niz'o n2-0x n3...O

,n§oC(n) X
where n = ny + 2n2 + 3n, + .., and c(n) = %1, where the sum is over all

3

ng such that n = ny + 2n

it

+ 3.+ 400 « Thus C{n) is the number of

_ 2 3
solutions of (3.2) and one formally concludess

. B k ;1 . & n
(3.3) P(x) = (1~ x)"" = Zp(n) x,
Relation (363: will be stated and proved in Theorem 4,5 for all real x
such that |x| < 1.

In order to gain knowledge of p(n), Euler studied ths reciprocal of

the generating function, i.e. &(x) = ?%?j = kgi(i - xk)

After expanding the product of a number of factors, he obtained

2 5

1l oXe=x +x 7 - xiz - x15 + x22 26

+ x + X ==ttt g4
He wrote out the powers of x, odd terms to the right and even terms to
the left as followss

see 264 155 74 25 05 1, 55 12, 22 weo
Euler then took the difference of each pair of consecutive numbers in
the sequence to obtain the new sequence,

aos =11y =8, =5, =2y 1, 4y 75 10, aeo
He again tock the difference of each pair of consecutive numbers to get
the constant 3 in each case, It was now evident that the original

sequence must be of the form an® + bn + c. He was led to conjectures

(BaL’») ﬁ(x) = 1(1 - xk) = n=§m(u1)nxn(3nel)/29

2
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and he was unable to prove this result until 9 years later in i750. The
relation (3.4) is knowm as Buler's identity and will be stated and proved
in Theorem 4.7. Euler's identity was also proved by Carl G. J. Jacobi
(1804=1851, German) in his "Fundamenta Nova" of 1829, where he made
important applications of elliptic functions to the theory of partitionsQ

Jacobi's well;known theta formulas

: . . . 2 n
{3.5) ngi(i - xzn)(i + xznﬂiz)(l + xznmiz“i) = F0E

=St
was proved by Jacobi in 1829. James J. Sylvester (181MQ18979.English)
EQ?] gave a direct proof by elementary means and E. Maitland Wright
(1906-, Britian) [507 gave an enumerative or combinatorial proof of
Jacobi's theta formula in 1963 from which not only Euler's identity but
other resulis in partition theory can be deduced. F, Franklin”gave a
proof of Buler's formula (3.4) with combinatorial arguments., A more
recent algebraic proof was given by Daniel Shanks [457], which is the
methed of proof given in Chapter IV,

With unsurpassed manipulative skill, Euler derived numerous identﬁ;
ﬁi@s from his relations (3.3) and (3.4)., Among the many results of
Buler's were the elegant formulae whersby p{n} could be calculated

resursively,
Recursion Formulae

The result of multiplying the relations (3.3) and (3.4} together
vields
& n 2 n n{3n-1)/2
1= Zopln) x nng(gi) % o
Upon equating ccefficients, Buler obtained the recursion formula

‘(306> p(n) = sz}(gn(mi)kglp(n = 'W'k)9
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where W, = k(3k - 1)/2y (k= 0, £ 1, £ 25 c00lo

The recursion formula (3.6) makes possible the computation.ofbp(n)
by inductive steps. Of course the number of terms in (3;6) increases as
n increases. The number of terms needed to find p(n) may be determined
approximately as follows. For k > O,

2
:’.llsrmmals
I A
and for large k, the term k/2 is small,compared.toi(Bkz)/Z and hence may

be neglected, Thus (3k2)/2 < n and hence k < /2n/3, Similarly, for

k < 0; or approximately z/zn]a terms altogether.

Another of Buler's recursion formulae was

(3.7) , p,(n) = pm_i(n> + pm(n;m)s
where pm(n) is the number of partitions of n into summands not greater
than m. By the use of this recursion formula, Euler computed a table of
values of pm(n) for ng 69, m < 11, Ei“]? N proéf of the recursion
formula (3.7) is given by Grosswald [23]. However, this recursion form
ula is useless as an aid to practical computation for any but inconsider-
ably small numbers [77].

One peculiarity of Euler's form@l analysis (The interested reader
can refer to Rademacher's lecture [41] Chapter I, Formal Power Series,
to see a more complete development of formal analysis.) is that it can
lead to absurdities if not used properly. He recognized that if an
infinite series is not convergent it is unsafe to use unless the vari-
able is used as an indeterminate., For example, by long division one
obtains

(1-0T=1+x+x+2+ ous ?Ff:OXk.

It is known that this series converges for |x| < 1, but for x = 2 the
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-absured result of w1 =1+ 2+ 4 + 8+ .,. is obtained,

| P. A, MacMahon (18541929, Britian), used Euler's formula (3.6) to

compute a table of values of p(n) for values of n up to 200, This table

was publiéhed at the end of a paper by Hardy and Ramanujan [25];
Hansraj Gupta [21] added to the list another recursion formula,

(n,m) = (ne=mym) + (n+ 1, m+ 1),

where (n,m) denotes the number of those partitions of n in which the

smallest element that occurs is m. This helped him to construct tables

[217] of p(n) for values of n up to 300 and later for valuss of n up to

600 [22].

Asymptotic Results

The generating function and the formulae of Euler and Jacobi were
used to develop many interesting recursion formulae, No general indew
pendent representation of p(n) was known until 1937 when Hans Rademacher
(1892-, German) [427 developed a convergent series representation.
According to Rademacher the ordér of magnitude of p(n) for large n was
never examined until 1917, when G, H, Hardy (1877-, English) and S.
Ramanu jan (1887m1920, Indian) [257] applied their new analytic metheds and
derived an asymptotic formula for p(n).

The value p{200) = 397 29990 29388, computed from the recursion
formula by MacMahon, can be computed with only six terms of the asymp=
totic formula with an error of .004,

The asymptotic formula obtained by Hardy and Ramanmujan is
(3.8) p(n) ~ == oxp(n/Z3),
4n/§"

or more precisely,
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(3.9) p(n) = . = A JE %}'{ (e@(ﬂim ,An)'> . O(nwi/il»)s
| onfz kgo/n n
with 0 an arbitrary constant, Ay = Jgftnf7§z'and
A (n) = LB Wy exp(~2mihn/k).

(hsk) = 1
The symbol Wh;k means a 2hk-th root of unity given for odd h by N
W, = (~k/B)exp[~{(2 = Bk = B)/4 + (k = 1/1)(2h = b + B*n*)/1Z}mi],
and for odd k by

Wy = (=B/0exp[={(kc « 1)/b + (k = 1/K)(2h = " + n%n " }mi ]

where (a/b) denotes the Legendre-Jacobi symbol and h' is any solution of
the congruence

hh' = «1 (mod k).
Rademacher has also shown that Whgk has the following representation
i ACE- B[,

where [xj means the greatest integer function,

= exp i

D, Ho Lehmer (1905-, American) [30] used the series (3,9) to develop
p{599) = 4353 50207 84301 70000,
p{721) = 16 10617 55750 17947 34762,
p(ZOSZ)» and the 127 digit mumber for p(14031), the largest known [407
Lehmer [297 later proved that the series (3.9) is not convergent but
divergent; His results for p(599) and p(721) are easily justified, how-
sver, by convergent series due to Hans Rademacher (1892-, German) {427,
Rademacher simplified and perfected the original analysis of Hardy

and Ramanujan to obtain the convergent series

S ivh C 4 [k
(3.10) p(n) = == & A (n) /K %ﬁw .
/2 An
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He alsc showed [HZ] that the series (3.9) can be derived as a corollary

from his ssries (3.10).
Congruence Properties

Ramanujan [247, upon observation of MacMahon's table of pln) for n
up to 200, discovered and proved the congruence properties
(2) p(5m+ 4) = 0 (mod 5)
(3.11) (b) p(7m+ 5) = 0 (mod 7)
{(c) pl{itm + 6) = 0 (mod 11).

He made the general conjecture that if

6= 5a 7b 11¢
and 2bn = 1 (mod §),
then p(n) = 0 (mod §).

The proof would only need to involve the cases § = Sa9 7b9 and 1ic since
all others would follow as corollaries. Ramamuijan proved the result for
& =5, 7, 11, 529 and 720 It was later observed by S. Chowla [13] from
Gupte's table, with values of n up to 300, that there was a contradiction
to the conjecture., A contradiction occurs with n = 243 since 24{247%}s 1
(mod ?3) but 73 does not divide p{243) = 13397 82593 44888,
Watson [48] found and proved the appropriate modification of Ram;

anujan’s cenjecturs for § = 7b9 vis, that p{n) =0 {mod 7b) if b > 1 and

2in = 1 (mod.?Zbgg)o

He also proved the congruence for the case 5a°
Lehmer [287] used the celebrated Ramanujan series to compute p{599)

~and p{724) to check the conjecture for § = 54 and 113 respsctively.

However, he could not be sure of these values and this led Gupta E?Qj to

extend his tables for p{n) up to n = 600, This confirmed his value for

p(599) and alsc for p(721) with respect to the modulus 247,
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However, after Rademacher's development of his convergent series for

p(n), Lehmer [28] established the following facts:

i

p(1221) = 0 (mod 5%)

1

p(2052) = 0 (mod 113)

1]

p(2474) = 0 (mod 5°)
p(14031) = 0 (mod 117,
which are all in accord with Ramarujan's conjecture.

In 1943, Joseph Lehner (1912;9 American) [31] proved the Ramaﬁuéan
Conjecture for 11 and 112 but said nothing is known concerning the coh;
jecture for higher powers of 11 except for the affirmative test of
Lehmer's above., Seven years later Lehner [327] also proved the conjecture
for 113;

Atkin and Swinnerton;Dyer proved some results for which the eongrﬁ;
ences (B,ii) are immediate corollaries, More general theorems were also
proved by J. M, Gandhi which will be given in Chapter IV.

In spite of the simplicity of the definition of p(n), very few
arithmetic properties are known. There is no simple criterion to detef;
mine whether p(n) is even or odd for example. Ramanujan had inquired of
MacMahon if he had a simple way of determining the parity of pln).

Since Ramnujan was successful in discovering some congruences from a
table of values for p(n) for n up to 300, MacMahon EBﬁj obtained the 470

values of p{n) which ars even for n € 1000. More on congruences will be

given in Chapter V.
Generalizations

The usual thing in mathematics, if possible, is to generslize what

you already have, This is exactly what happened in the theory of parti-



tions and continues to happen, For example a partitiocn of 10 can be
written with the swmmands in non-ascending order of magnitude along a
line as followss 5 3 2. This is regarded as a one-dimensional or line

partition.

A, Plane Partitions and higher dimensimns
MacMahon [33] was the first to take a line partition of an integer

. n and arrange the summands in rows and columns with non-ascending order

of magnitude in each row from left to right, and in each column from top
to bottom, Such an obvious generaligation is called a two-dimensional
or plane partition,

Thye from the line partition 5 3 2 of the number 10, we would
have the plane partitions 532, 53, 52, 5.

2 3 3
2

MacMahon was now able to place restrictions on (i) the size of sach
summand, (ii) the number of rows, and (iii) the number of columns, I
the number of rows is k, (k € n), then the representation is referred to
as a kerowed or ke-line partition. He was able to obtain gensrating
functions for the plane partitions with and without restrictions., Hows-
ever, his developments were neither intuitive nor sasy. He used the
intricate and beautiful analysis based on his theory of Lattice Func;
tions.

Later T, W. Chaundy [10] devised an algebraic technique which gives
therresult more rapidly. Other proofs were given for k = 2 by Forsyth
{157 and the first one based on the purely combinatorial method of one
to-one correspondence by Cheema and Gordon [12]a

More recently, Gordon and Houten [19] have given za much more simple

proof of the generating function for the plane partition function,
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They also developed a generating function for the k;rowed partition
function with restrictions. However, the proofs still fall short of the
intuitive development which was first the goal of MacMahon and which
still remains perhaps an impossible challenge. |

Wright [547 uses the notation p(n), q(n), and r{n) for the number
of linear, plane and solid partitions of n respectively. He claims it

has long been conjectured that the generating function for r{n)} is

Ic-ﬁi(i - xk)'k(k+ﬁ/z= ngor(n) %, but it is now known to be false.

An asymptotic result for the plane partition function was first
obtained in 1931 by E, M. Wright [51]. He applies Cauchy's integral
theorem to the generating function and applies £he method of ’steepest
descent® in evaluating the integral., He mentions in this paper the
improbability of an asymptotic result with as small an order for the
error as in the case of p(n).

In 1964, published in 1966 [527, Wright used the reciprocal of the

generating function for plane partitions, i.e.,

J - 9 = Re(n) 27, (e(0) = 1)

and developed asymptotic results for c{n)., Before this was published,
Haskell [2?] also developed the asymptotic results which includes the
famous Hardy;Ramanujan results fdr p(n) as a special cass., Haskell's
paper also has a crude asymptotic formula for the k-line partition
function,

There are very few results concerning congruence properties of
k-line and plane partition functions. Cheema and Gordon [127] gave some
for tz(n) and tB(n)9 the twowline and three=line partitions., In 1967,

Gandhi [187] extended this to tk(n) for X = 4 and 5 and claims to have
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some for k = 6, 7, 8 and 9 which have not appeared in print at this time;
The partitions of n have also been extended in a logical way to
n~dimensional or multi;dimensional° MacMahon refers to the number of
3=-dimensional partitions of n as the number of ‘solid graphs' of n nodes.,
The generating functions, some asymptotic and arithmetic results
will be given ip a lsater chgpter,

B. Vector Parﬁit;ons

~ Another extension of the theory of partitions is to consider the
'multipartite® numbers. A multipartite number of order s is a s dimen

sional vector, the components of which are non-negative rational inte-

gers, A vector partition of (n19 N, ,;. ns) is a solution of the vec;

2

tor equation

E(nlkg n2k9 300 nsk) = (nig n29 s0e ns)
in multipartite numbers other than {0, 0, ... 0). The number of such
partitions without restrictions (order of vectors not significant) is
generally denoted by p(n19 D5 o0 n2)° The generating function is

T k., k, _k. k \=1 _ ] Jhoon, o n
kigo(i o Xii Xii XZZ 000 XSS) = nigop('nig nzg 000 ns) x11 x22 et x55,

Whére k1+’k +onn+k > 0,
_ 2 s

The generating function for the partitions of bipartites (m,n)
without restrictions was already known by MacMahon [33], However, L.
Carlitz [8] obtained explicit generating functions for the bipartite
with restrictions. Let u(m,;n) denote the number of partitions of (myn)
into parts (migni):such that min (migni) > max (mi,ni) for (i=1,2,3,..;);
Then he obtains, |

o nely=l Ne1 nye1 2n 2n\=1 _ & m n
ngl(i =Xy ) - x Ty )1 - XY = msngou(m,n)x Y e
(m+r>0)

He noticed the close similarity with the Jacobi theta functions and was
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able to prove
nﬁi(i - Xn nai)(1 _ xnni ﬂ)(l _ XZn Zn)

= (1 + xy) E (~1)%x r{r+i)/2 r&mi)/z

L, Carlitz [9] was then able to develop the following two relaticns,
v{myn) = p[m - (m = n)(m « n + 1)/27,

where p{n) is the number of unrestricted partitions of n with p(-m) =

for m > 0 and v{m,n) is the number of partitions of (m,n) into distinct

parts {a,a = 1), (b = 1,b) {a,b =1, 2, 3 eee)o

w{myn) = _;g(msn)p(r)y(m - Pl = P

where w(m,n) denotes the number of partitions of (myn) intc {not necess-
arily distinct) parts {a,a), (b,b = 1), {c - 2.¢) (a,bye = 1, 2, 3 e;o)
and y(my;n) is the number of partitions of (m,n) into (not necessarily
distinct) parts (a,a = 1), (b = 1,b) (a,b = 15 25 3 e0als

In 1953 Auluck ES] obtained an asymptotic formula for p(ni” n2)
when n, is fixed and ny large. Nanda [35] shows this same result applies

for fixed n, of order nii/4 and large n Robertson [4lt] extended

2 1°

Nanda's method to asymptotic formula for the number of unrestricted
partitions of an s;dimensional vector, Cheema [iij obtains some
asymptotic results of p(n19 cse ns) with restrictions and establishes
a relation between vector partitions and the multi-dimensicnal parti-
tions,

The problem of congruences, i.,e. tc show p(n19 sos ns) =
{mod m) has an infinite number of solutions for all m, a, and fixed s,
is an open problem sven in the case s = 1,

The problem of finding certain generating functions is still open.

Gheem@{}ij states the conjecture that the generating function for
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bipartite plane partitions (with non;ascending order of magnitude in

both directions) is

] k, k. =(k,+k,)
klkzgo(l o x11 x22) 1 727,
k,+k.>0

172 _
Wright [47] refers to a conjecture for the generating function of
dedimensional partitions of n, namely

-ﬁ‘ K m(d-a-kaz
Rd(X) = k=1(1 - X ) k=1

dika 1
k-1

binomial coefficient. The proofs for d=1 and 2 have already been

where { ) takes the value 1 for k=1 and otherwise denotes the usual
alluded to, but it has been disproved for d=3 by Atkin et él. [3]. E. M,
Wright [53] makes the following comment, "It is interesting to learn
that RB(x) is not the generating function of q(3,¢;n) and it would be of
some interest to have a more plausible conjecture as to what is the cor-
rect generating function.” He denotes the number of unrestricted 3=
dimensional partitions of n by q(3,=3n).

C.The partition function pr(n)

Another generalization has been to study the function pr(n) which

is defined by the relation

Prx) = B0 -9 = Fp (n) <",
Thus pal(n) = p(n) is just the unrestricted partitions of n,

K. G..Ramanathan9 in 1950, proved congruence properties modulo
powers of 5, 7 and i1 fo? pr(n)‘simil&r to what had alrsady been-dané“for
p(n). However, Atkin [2] in 1966 found an error in his lemma 4 on which
his main theorem depends and unfortunately his results are incorrect.

Atkin does prove a theorem for the congruence properties modulo 5 and 7
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for p;k(n), (1t < k< 8),

The function pr(n) is very useful in obtaining elementary proofs
for the congruences of p(n). In 1964 Gandhi [177] used it to obtain very
simple proofs for p(5m + 4) = 0 (mod 5) and p(7m + 5) = 0 {mod 7). The
author has used it in Chapter V of this paper to develop a simple proof
for p{1im + 6) = 0 (mod 11),

The only applications of the theory of partitions which will be
indicated in this paper will now be given as a quote from V, S, Nanda
with reference given by Wright [527.

The close similarity between the basic problems in statis-
tical thermodynamics and the partition theory of numbers
is now well recognized, In either case one is concerned with
partitioning a large integer, under certain restrictions,
which in effect means that the ‘'Zustandsumme' of a thermo-
dynamic assembly is identical with the generating function of
partitions appropriate to that assembly. ... Asymptotic
expressions are deduced which constitute a generalization
of the Hardy-Ramanujan formula for p(n) which correspends
to an assembly of linear oscillators., ... It is remarkable
that the Zustandsumme of an assembly of a variable number
of two-dimensional oscillators is identical with the gene
erating function of plane partitions. ... Further, it
is noticed that a study of two-dimensional oscillator assem
bly is connected with the partitions of bi-partite numbers, ...



CHAPTER IV
GENERAL DEFINITIONS AND THEOREMS OF PARTITIONS
Partition Functions

A function which is defined on the natural numbers or positive
rational integers is said to be an arithmetic function. Many arithmetic
functions exist in number theory and the partition function to be dise

cussed in this chapter is such a function.

Definition 4,1, A partition of the positive integer n is a representé;

tion of n as a sum of positive integers referred to as the summands or
parts, Sums which differ only in the order of summands are considered

the same partition.

Definition 4,2. The number of partitions of the positive integer n is

the partition function p{n).

Other partition functions of n have been defined by placing various
restrictions on the summands and/or the number of summands, Some of
these will be introduced and illustrated here. There are different syme
bols in the literature for certain functions (as you have perhaps
noticed in the previous chapter), but to avoid duplication of symbols

from this point on the following definition will be adhered to.

Definition 4,3. The functions p{nim), pA(n)9 q(n), q°(n) and ¢°(n) rep-

31
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resent the number of partitions of n with summands not exceeding m, suﬁ;
mands from the set A, mutually distinct summands, an even number of
rmutually distinet summands and an odd number of mutually distincet sume
mands, respectively.

To illustrate the partition functions, consider the following

partitions of the number 5e

1) s

(2) 4+1
(3) 3+2

(b) 3+1+1

(5) 2+2+1

(6) 2+1+1+1

(7) 1+1+1+1+1
There are a total of seven partitions and hence p(5) = 7. The three
partitions in (5) = (7) are the only ones with summands not exceeding 2
and consequently p(5;2) = 3. The partitions in (1), (4) and (7) have
odd summands, with the set of odd integers represented by 0, we have
pO(S) = 3, Since no partition has only even (E) summands, pE(5) = 0,
The partitions with mutually distinet summands are (i), (2) and (3) so
q(5) = 3. There are two partitions with an even number of mutually
distinet summands and there is only one with an odd number of mutually
distinct summands, thus q°(5) = 2 and q°(5) = 1.

An almost evident result relating the partition functions is given

by the following theorems.

i

Theorem 4,4, (a) p(nim) = p(n) if ngm,

(b) p(nim) < p(n) for allm > 1,
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(c¢) q(n) = ¢°(n) + ¢*(n), -

(d) p(n) 2 pE(n) + pO(n) and

i

(e) pE(2n+1) = 0,

Proofs (a) follows since each summand of n must be less than or equal
to n, If it happens that m < n, then it is evident from the definition
that the inequality will hold in (b}, otherwise the equality will hold;
The result in (c) follows since every partition with distinet summands
mist have either an even number or an odd numbsr of summands, A,parti;
tion of n must be one of the three typess summands all even, all odd,
or soms even and some odd, thus (d) follows., Since no odd integer can

be expressed as the sum of even positive integers the result (e) follows.
Generating Functions

Power series are extremely useful in additive number theory because
of the additive property in the laws of exponents. Much of the work in
the theory of partitions has been done with the aid of power series,
Certain functions represented by power series can be used to define the
partition functions,

If a real valued function F can be expressed in a power series

P(x) = _§o £(n) «™ = £(0) + £(1) x + £(2)e% # oo0 + (0 + Lo,

then the coefficisnt of % is the function value of f at n, Thus it is
pessible to use series to define an arithmetic funetion and it will be
convenient to extend the domain of the function to include zero, Since
the generating function (defined in Definition 4.6) for the partition
functions will have constant terms equal 1, it is convenient to make

the following definition.,
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Definition 4ys. p(0) = p(0sm) = p,(0) = (0) = ¢°(0) = (0) = 1,

That is, all partition functions are defined to be i for n = 0,

Defimition 4.6, Any function F(x) = ngo,f(n)xn is called a generating

function of f{n).

The convergence of the series is not really signifiéant in terms of
defining the arithmetic function f{n) since it is the coefficients which
give the function values, However, in most of the work convergence is
nesded and the series representing the partition functions converge for
all real x rumerically less than 1.

First a formal development of the generating functions will be
given without regard to the question of convergence., The generating
functions will be represented by the same letter but it will bs capital,

The proof will require Lemma 4.7,

Lemma 4,7. p,.{(n) is the number of distinct solutiocns of the diophantine
A P
equation

) ' -
(!’oi) kiai + kzaz *+ 400 ¥ kiai + 200 n

in pesitive integers ki and distinct elements ay of 4,

Proof: Any solution of (4.1) is by definition a partition of n, since
the valus of ki indicates the number of times 2, occurs as a summand
Hence, the mumber of distinct solutions corresponds te the number of

partitions of n with summands that are elements of A, i.e. pA(n).

Theorem 4,8, pA(x) = agA (1 - xa)“i and Q{x) = kzl (i + xk>

are generating functions for pA(n) and g{n} respectively.

Proofs (1 = xa>@1 = kgo (xa)k (The interval of convergence will be
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considered in Theorem 4.11)» From this it follows that

ak
X

il

py (x) = 0,

agA kgO
agA (1 +x*+ ¥ & sos F &2 4 )
= n20 cnxn9

where ¢y is the number of distinct positive integral solutiens of the

il

diophantine equation (4.1), By Lemma 4.7, c = pA(n) and thus PA(X) is

the generating function for pA(n). Similarly,

H

(1 + x)(1 + X2>(1 + Xs)oou

2 n
n§0 dnx K

vhere dn is the number of distinct solutions of the diophantine equation

= ‘ k
kgi(i“FX)

ik, + 2k2 + 3k3+ sen = Il where ki (i = 19 29 39 oco) is O or 1,

1
Hence, dn is the rumber of times that n can be expressed as the sum of
distinet positive integers, i.s. q{n). Thus, Q(x) is the generating

function for g{n) and the theorem is proved,

Other generating functions fellow as a consequence of Theorem 4.8,

Corollary 4,9,

(a) B(x) = kgi (1 mxk>m1 = ngO p(n) %7,

Zky=1 _

(b) Pylx) = f, (1-x oo pg(n) =%,

kai)ai

{c) Po(x) = kzi {1 = x = ngﬂ po(n) 7, and

ky=1 _

m o
(a) Plxym) = 0, (1 - x £ plnm) 7,

That is, P(x), PE(x>9 PO(X)9 and P{x;m) are generating functions for

p{n), pE(n)9 and p(nim) respectively,
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Proofs This follows immediately from Theorem 4.8 where A is the set of
positive integers; even positive integers, odd positive integers, and
positive integers not exceeding m,

The next theorem shows that the generating function P(x) actually
converges for all x such that {x| < 1. All the other generating func=
tions converge for |x| < 1 with similar proofs which will not be
included here. This implies that they represent analytic functions at
least inside the unit circle.

A convenient notation which is used through-out this paper will be

stated in the following definition,

Definition 4,10, For all x {particularly x = 0),

2 . n o _ & il
020 p{n) x" =1 + 2 pln) x°,
This definition applies for other partition functions as well,

Theorem 4,41, [237] For x| <1, P(x) = kzi (1 = xk>ui = ngﬁ p(n) x",

Proofs Let z be a complex number such that ﬁzg =r <1, Then

aP(z)g < P(;“)

n ;1
nzi (1=x7)

"

= ngi (1 + an>9

- nk . m=l = nyk .
whers a, = & (), since (1 = )" = 120 (r*)%, But w1ti O<r<i,
the geometric series a, converges absolutely and has sum s = The
11

product of absolutely convergent series gonverges by Theorem 2.24 and

thus,
n
EP(Z)E < ngi (1 + == n)g O<r<i,
o 1=r
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-
which converges by Theorem 2.28 since ngi -£—~E converges absolutely
l-1r

for 0 < r < 1, In view of Corollary 4.9(a) this completes the proof.
A longer proof with less advanced analysis is given by Niven and
Zuckerman [387,

It should be observed here that the convergence of the generating
function is uniform for |z] € 1 = € (for arbitrarily small € > 0). It
can also be observed from the product representation of the gensrating
funetion that it fails to converge on or outside the unit circle.

A simple application of the generating functions will be illuse

trated in the proof of Theorem 4,12,

Theorem 4,12, The mumber of partitions of n whose summands are odd inte-

gers is squal to the number of partitions of n with distinet summands,

That is, po(n) = q(n).

Proofs It will only be necessary to show that they have the same gen-
erating functions since a given partition function is represented (or
enumeréted) by a unique series.

From Theorem 4,8,

i

ax) = 0, 1+

A+ +22)L+x) 00w (LX) oo

1 -x ]l = x2 1= x3 i~ xk

Since the factors in the numerators, (i - x2k) for all k€N (natural

numbers), alsc occur in the dénominator‘leaving only the factors

2ke

(1 = 1) for k€N in the denominator, it follows that

ox) = 0, (1 - Fh



which is the generating function for Po(x) given in Corollary 4,9.
An interesting alternative proof of Theorem 4,12 which uses the
base two representation of the natural nmumbers is given by Hardy and
Wright [26],
The next theorem will be given not only to illustrate the use of
generating functions in obtaining a relation between two partition
functions, but also to illustrate a technique used by Euler of intro-

ducing a second variable. This theorem involves p{nsrsm), the number
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partitions of n into r summands with esach summand greater than or equal

to my and p(nir) given in Definition 4.3, This proof, with slightly

different notation, is given by Haskell [277.

Theorem 4,13, | p(nirsm) = p{n-rmsr).

Proof: From Corollary 4,9{d) the generating function of p(nir) is

k‘)ui =

r o
(1) kgi (1 = x 20 p(nsr) %7,

The function p(n;rim), already known by MacMahon [327], is the coeffia

: - TN :
clent of a"x" in the expansion of

{2) Flasxsm) = jEO (1« ax™d)=1
= rgb gr(xgm) a’, where
(3) golxsm) = 1 and g (xsm) = 5 Plnsrim) x",

Replace a by ax in (2) to obtain
]
(1= (102x™2) (1max™ D) oo

(1maxm)
(1=axm)(1=axm+1)(1=axm'g"2) oo

it

Flax;x;m)

i

i}

(1-2x") F(asxim).
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Thus,
Faxsxim) = (1-ax™) Flasxim),
or from (2),
oo &plxim) a'x = g (xim) a¥ - ax™ Lo & (xim) a.
Equate coefficlients of a’ to obtain,
x" g (xim) = g (xim) « X" g,_q{xim.
Hence,

i

X .
I‘?:“ﬁ;; grgi(x,nz.).

i

g,.(x;m)

Thus, with g.{xim) = 1, it follows that,
0

o
gy (xsm) = 5=,
i xm ém”
gz(x;m) = 5 , and by induction
l1ex" 1a=x
xm Xm', xm
(u) g (xim) = == e R "
lex {=x 1 =x
rm
P

(1 - %)(1 - xz) e o o (1= x?)a

Therefore, from (i) and (3), {4) becomes

n§0 p(nsrim) x° = x n§O plnsr) x

BEquate the ccefficients to obtain the results of the theorem,
Theorems of BEuler and Jacobi

Perhaps the most useful theorems in the theory of partitions are
Theorems 4,15 and 4,16, due to Euler and Jacobi, respectively. Euler
considered the function defined by the reciprocal of the generating
function P(x) which will be stated for reference purposes in the

following definition,
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Definition 4.14. [P(x) wi i - Xk) and denoted by &{(x).
T k=i

Euler was able to express this function in a series repre-

sented in equation (4.2), This will be proved by the algebraic method
of Shanks [457,

Theorem Lei5. (Euler®s identity)

(.2 B(x) = k—=1 (1 =29 =_§ ()7 2O0/2,

Proofg First notice that the identity may be written in the form
| . ky _ 2 o 0 pen(30-1)/2 , n(3n + 1)/2
(4.3) kgi (1 =x)=1+ w2 (=1)" [x + x 7o
Let the partial products and partial sums of (4.3) be
n X s
P,.=1, Pn = sgl (1 = x)

and

sn =i + S;g:i (m:l)S EXS(BSmi)IQ + XS(33+1>/23.:

It is important to cbserve that,
p

' n _ ., .n
(Lio“") Pmi =] e x
and ' _

! ' 1))z n+1)/2
(4,5) s, -6, = ()" [xn@nm )2, n(3o+1)f 1.

It will first be shown by mathematical induction that
_ s n sn+s(s+1)/2
(4,6) S, =F o where F_ ;@ (=1)

i) If n= 1, then

2
5, )

i

1 - {(x + x

(1 = x) + x? =F,,

]

Thus, (4.6) is trus for n= 1.

i3} Now it will be shown that S, 1 = F_q implies S,

the definition of F_ in (4.6), and detaching the last term of the -

= Fko From
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mation,
k Xsk+s(s+i)/2

s

k k(3k+1)/2

= :gg (-1)° + (= 1)

Use (4.4)in the form P, = (1 - x ) to split the summation into two

k 1

parts; This gives,

;0 («1)°

-1 2 kel , Py
k (Skes(st)/2 | 5 (n1)TFH! el xk+rk+r(r+1)/2

PI‘

+ (DX Xk(3k+1)/2’

Now detach the first term, s = 0, in the first summation and detach the
last term, v = k";-i9 in the second summation to obtain,

Pi Ckel sk+s(s+i)/2 i kml k(r+i)+r(r+1)/2
= == («1)° (~1)
I ;ﬁ F_ 2@ 7.
+ (1)K [Xk(Bk-i)/Z + Xk(3k+1)/2j.

F

Let r = s=1 in the second summation in order to re-combine summations

to give,
P

Fk - m, + 521 (gl)s Ked [xsk+s(s+1)/2 + §§*“ st+s(sm1>/2]

Sl
£ (L)E [Xk(3k.1)/2 + xk(3k+i)/2j;

P
From (4.4), it follows that P?
S=1

brackets of the surmation and including the first term in the summation

=1 « x>, This substitution in the

for s = 0 giwves,

i}

Fy Eii (=1)° ;531 xs(k~1)+s(s+1)/2 + (bi)k [Xk(3k=1>/2 " xk(3k+1>/2j.

=P+ (8 =5,

by the use of (4.5) with n = k., This can be written in the form,

St = Frot ¥ Sk = Fie

Thus, if S =F then 8, = F and equation (4.6) follows by induce

kel kei?® k

tion. Now to compare Fn and Pn’ we observe that the first term in
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definition (4,6) of F, gives P . That is,

P S 5 » Y
Fo=p -8y 4 () RSl (ynat)/z
n n P1 ps

Since the degree of P_ is s(s+1)/2, it follows that all the terms of F
after the first are of degree n+l or greater. This implies that all the
terms of degree less than nt+l agree for Eoth Fn and Pno Let nes » and
the series representation for both numbers of (4,3) are the same and the
theorem is proved,

Hardy and Wright [26] have proved several theorems which use
Euler's device of the introduction of a second parameter which Buler
used in proving his identity (4.2). However, Hardy and Wright prove the
identity (4.2) as a special case of Jacobi's theta formula {(3.5), Since
this formula belongs properly to the theory of elliptic functions, it
will not be proven here, It can alsoc be used to prove [26]3as a special

case, the very useful identity of Jacobi's.

Theorem 4,16, {Jacobi's identity)

(4.7) P = J, (1= = § 0w S/,

Proofs Can be found on page 285 of Hardy and Wright [26ju

Some Generalizations and Relations
Euler was the first to consider the reciprocal of the generating
function for p(n), namely &(x). Many have since considered the more

general definition,

Definition 4,17, Define pr(n)g for all integral r and positive integral

n, by the equation,

r _ = ksr _ = n
g (x) = 1y (1-x) = n§0 pr(n) X
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For convenience define pT(O) = 1 and pr(;n) = 0,

It is important for the reader to note that p;i(n) is identical to
p(n), the ordinary partition function of n, i.e. the number of WNTew
stricted linear partitions of n., Another function closely related to
pr(n) is Ramanujan’s % function [167] which is of no particular interest
here;

It is interesting to note that the only power series repr@sentation
of & (x) are those for r = 1 and 3 given by Euler's identity (1,2) and
Jacobi's identity (4.7) respsctively. The function pr(n)9 for different
values of r, is related to the k-1ine partition function. The real

significance of this funection will be svident in Chapter V.

Definition 4,18, A ke=line partition of the positive integer n is a

representation of n in the form,

k »
(4.8) ST SR
where the gﬁ-j { summands) are non-negative integers which satisfy the
aditi 8, .>a, ., and a, ,>a,,., .
conditions ﬁidJ > 3193+1 and 8193-= al+193.

The representation of n in (4,8) is considered an unrestricted
k=1ine partition. The reason for the conditions or a, 3 is simply for

the convenience of arranging the summands in a decrsasing order,

Definition 4.19, The number of k=line partitions of the positive

integer n is the kline partition function tk(n). For convenience we

define tk(o) = 1 and tk(mn) = 0,

A k=1ine partition of n may be conveniently written dewn hy

arranging the summands in k rows (lines) with ay 3 as the j;th member of
]



i-th row. Tt will be convenient to omit zero summands and the plus
signs. Thus, the threé-line partitions of 4 ares
4, 31, 22, 211, 1111,

3 2 21 111 11
1, 2, 1 ® 1 ] 119

2 11
1 1
1, 1,

and evidently t3(4) = 12, Tt can also be observed that p(4) = ti(h) = 5,
t2(4) = 10, and since there would only be one fouréline partition of 4,

tq(h) 13.

i

Again the reader can notice that a one-line (linear) partition is
identical to the ordinary partition and we have p(n) = ti(n) = p;i(n);

An interesting result which shows the relation between the number
of twowline partitions of n and the ordinary unrestricted partitions of

n is given by Theorem 4,20,

Theorem 4,20. The number of solutions of (4.8) with k = 2 and with the

additional restriction that a, > (i.e. strictly decreasing
9

37 .54
along rows) is pn).
Proof: A direct proof by combinatorial methods has heen given by
Sudler [467, His refsrences list a proof by Gordon who used the gener;
ating funetion,
It was pointed out in Chapter III that there are ssveral different

proofs of the generating function for tk(n).

Theroem 4,21, The generating function for tk(n) is given by

1 uxm)umin(m,k) -

mgi ( n§o tk(nD X
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Proofs A proof is given by Chaundy [107].
The plane partition function, t(k) (sometimes denoted by q(n)), is
the k;line partition function where k » 02, The generating function for

plane partitions is given by Theorem 4.22.

My-m & n
Theorem 4,22, mgi (1 -x)7 = n;b t(n) x .

Proofs A proof is given by Chaundy [107.
The remaining theorems in this chapter, except for Theorems 4,34
and 4,35, will be given not only to see the relation between tk(n) and

pk(n), but also because they are needed in Chapter V.

Theorem 4,23, [12] tz(n) = p’z(n) - P 2(n=1) for integral n.

Proofs The result is immediate for nonepeositive integers n by'Defini;
tions 4.17 and 4.19, For positive n, we have, first by the use of

Theorem 4,21 and later the use of Definition 4,17

. 2 n _ =1 = m ;2

o0 tz(n) x = (1 =x) e (1 ~-x)
- R =.2 ® : . My =l
= {1 = x){1 = %} il {1 «x)
=(1-x) 0 (1297

= {1 « x) ngb pgz(n) "

i}

0 n o ) +
ngb p=2(n> x - n§o pmz(n) X 8

Hence,

(]

20 tz(n) % 2o [puz(n) pmg(n Dl x
Now to equate the coefficients of x" we obtain,

tz(n) = p 2(n) - pﬁz(nui) and the theorem is proved,

Theorem L4.24, tB(n) = p~3(n> - 2pa3(nai) + ZpQB(nNBD - paa(nmh).




Proofs From Theorem 4,21 and later Definition 4.17,

£yt = B (- y=min(m,3)

o B fo- m);3
(1-x) (1=x2)% ™3 *

_ (e0)? (1ox®) . my=3
T (B w

= (10218 B, (1« 27

)

(1;2x+2x3~x4) nzo pB(n) =,

Hence,

i

nﬁb [p;B(n) - 2p;3(n;1) f 2p_3(?_3)
- Pus(nah)]xn.

Equate the coefficients of x" to obtain the results of the theorem,

n;O tB(n) <

Actually, as indicated by Cheema and Gordon {127, the technique
used in Theorems 4,22 and L,23 can be extended arbitrarily to give

p;k(n) in terms of tk(n) and conversely. For example,

2 n - my=min(m,k)
o t(m = 0 (1= <) ’
kﬁi
=]

it

(1 m Xm)k-m mgi (1 - xm)uk

= R S-S n
- _n#zO ak(n) X n-;O P_k(n) X
where v = v{k) will be determined by k and ak(n) is determined by the

finite product in equation (4.9).

k~i ' m kKem
Igi (1 = X ) [

]

(4.9) ngo ak(n) x*

Therefore we have,

]

ngo tk(n) %" ngo [séb ak(s) pnk(nps)] "

Equate the coefficients of both members to obtain Theorem 4,25,

v
Theorem 4,25. t,(n) = £, a (s) p_(n-s),




by

where v and ak(s) are given by equation (4.9).

Theorem 4,26, [13] p;é(n) = kgo té(k).

Proofs From Theorems 4,21 and Definition L,17, with k = 2, we have,

2 n_ 4 omye2
ngo tz(n) X = (1"3{) mgi (1 w X )

= (i;x) né@ p;z(n) 7,

Thus,
2 - n. 1 % n
néb puz(n) x = l=x ngb t2(n> x

i

0 [Lio tynk) ] %

Equate the coefficisnts of x" to obtain the results.

The proof of the next thsorem can be simplified by use of the

following lemma,
Lomma 4.27. log &(x) = ;ngl o(n) x*/n.

Proofs From elementary analysis,

log (1ay) = = F = ¥/2 = /3 = cous =15y <1,
and hence,

log (iaxk) = e K2 ka/B - ss0 = ;mgi £ fn,
Now from the definition of &(x), Definition 4,14 and some straight;

forward manipulations we obtain,

log &(x)

i

log kzi (1;xk)

2]

1

i

1 log (1=xk)

e o = _mk
= kgi Eﬁmgi x /mj
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i D2+ 3 e ]

b [y 21 5
;n§§1 C df‘n 1/ dj x

..nz;i [1/n dfnvn/d] P

"n§1‘ [1/n di?n a] x

o

o . n
v 'n§1 o(n) /n x
and consequently,

log &(x) “"nzl o(n)/n xn,

, n :
Theorem 4,28, pr(n) = = r/n j-;-l o(3) pr(n..j).

Proof: Take the logarithm of each member of,
Lo ® n
g (x) = n=20 pr(n) X
to obtain,
= & n
r log 8(x) = log 2o Pp(n) X'
Substitution for.log &(x). from Lemma 4,27 yields,
! @ ® n
-r 5 o(n) x*/n = log w20 pr(n) X s
Differentiate each side with respect to x and then multiply both meme
bod n . .
bers. byn=20 .pr(n), x. .to obtain,
' e \ el @ n_ e nel
- n-;i o(n) x n§o pr(n) X = n§0 n pr(n) x
or .
= n . . n=1 _ a nel -
- T o(3) p(n=j) x " = T onp(n)x"",

Equate the coefficients of xn"i

to obtain,
-r ng a(j) pr(n-,j) = n p,(n)

or



]

n ,
p(n) = - r/n j§1 o(3) p(n-3).
The more common relation is obtained by letting r = =1 and recalls

ing p;i(n) = p(n) to yield Corollary 4.29.

Corollary 4,29, p(n) = t/n jgi ¢(3) p(n=3).

This result is interesting in that it relates the arithmetic
function, d(n), of multiplicative number theory and the partition
function, p{n), of additive number theory.

It will be more convenient to use the recursion formula, of Corol=

lary 4.29, in Theorem 6,3, if it is put in a slightly different form.

n n
Theorem 4,30, n p(n) = N iR p(n=km),

Proof: From Corollary 4.29, after multiplying both members by n and

then applying the definition for ¢(j), we obtain,
n 3 ! 3
& o(j) p(n-3)

n p(n)

i

gi P(n-j) 2° M

J ml 3

Now replace j by km so that,

i
ez

n °
&1 p(n-j) I m
m!J

and the theorem is proved,
A similar recursion formula for the plane partition function, t{(n),

can also be given.

Theorgm 4.31. [277 n t(n) = ?2% t(j),az(n.j).

Proofs Let the %(n) divisors of n, refer to Definition 2.19, be rep;



d =d>a> ... > s =1,
resented as follows: d1 d2 d (n)-1 d@( ) 1 Take

the natural logarithm of both members of Theorem 4.21, the generating

function of t(n), and carry out the following.manipulations;

g t@x"= B (1 -

1n (nf;o t(n) xn) £ nin (1=

- % § nx-
= n jgi 3

(x+ x2/2 + X3/3+ X /Ll'+ n‘ubo + xJ/j + °'.°) + 2(x2 + xLP/z + "o

ij/j + o.o.o) + B(X + x /2 4+ eoo0 +X3j/j + oo‘o) + ;oo.

+ (P + x 202 4 ee + X j/.] + oe) ¥ en

* (1/“ * d’\’,(n)n1°1/d2 + dc(n)}-z_’l/dj *oeen n"i)x * oo
- x4+ 51-1-2?2“2 2+ §1+132') 3 R g1+22+42) Ha
[14—( (),1)2 ( (n)_)z-i- ...,+n‘]

X + o-‘o
E Oé(n) xn
i n ¢

Now take the derivative with respect to x of both members, then multi

ply by x and %, t(n) x° to obtain,

n;i n t(n)xn .
‘io t(n) xn - ngi GZ(n) xn”
and hence, =
n;i n t(n) x° = nzb t(n) x° ngﬁ Oé(n) xn‘

1]

o fh=1
& (o #0) oytem) ™
Equate the coefficients of %" which completes the proof.

Let.(ni,nz,o..,ns) be a non-negative s-vector, i.e. an ordered

s;tuple of non-negative integers,

x+ (1/2 + 2¢ 1)x% + (1/3 + 3¢ 1)50 + (1/4+ 2:1/2 + L 1)x + aes

50
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Definition 4,32, A vector partition of a vector will mean a representa-

tion as a sum of non-zero vectors called parts or summands. Sums which

differ only in the order of parts are regarded as the same partition.

Definition @033, The number of vector partitions of the vector

(nivwwgooagn ) is the vector partition function p(nignzsoougn Yo We
again define p(OQOSoo;QO) = i,
To illustrate, consider the following partitions of (2,1):
(2,1) = (2,1)
(2,0) + (041)

1}

i

(1,1) + (1,0)

il

(1,0) + (1,0) + {0,1),
and consequently p{2,1) = 4,
The generating function for the unrestricted vector partition funce

tion was first known by MacMahon {337,

Thecrem 4,34, The generating function for p(ni,n 9.,,9n@) is given by

2

{4.,9) kcgé {1 < T?i xgz coo xk )“1
i

% n, n n
= N, glmge 1 1 X2 oo S
nigb pl gotipeeeee s> *4 43 vee o

where P1+£2+°°°+KS>O and N, = Nflosesesle

A recursion formula for the vector partition, similar to Theorem
B,30 for ordinary partitions and Theorem 4,31 for plane partitions, was

obtained by Cheema [117] and is given in the following theorem.

Theorem 49350 nip(nignggoougns)

= k°=-0£ b | ? :ci/t) p(niaki,,”wnsmks}e
1 ti(klgooogksf

M8



Proof: Take the logarithm of each member of {4.9) and simplify to

obtain,

log , &, (1 - x?i voo KﬁS)Wi

L
1

il

2 I n
log ni% p(nigcoo,ns) Xil sae XSS

L ok Kyl
= ki;'% 10% (i L Xli eao0 XSS)
= e-k §O 10g (1 = Xii 200 XI;S)

iao
k., k _yn
(Xil TR XSS>

= n,k{;o n i

J—‘-

where (kig..,gks) # (05eees0). Hence,

nk

Xi 1 voa X::k»s.a

p n, n n_ _
log nng p(ni""’ns) X11 ¥p2 vee X S = n,k.§b n

1=

Now take the partial derivative with respect to Xy of sach member to

obtain,
n,-1 _n n
n§0 nip‘(._ni,g.o.,o‘a‘,g.n..g) xij. |22 XY XSS . N
1 = &k xnkluixnk2 s
n.k.>0 71 71 2 0t s

; . n n " n 1=
ni§0 p(nlgooogns> xii X22 see XSS

which yields, after multiplying by x, and the denominator,

1
3 . n n S
ni§0 ﬂip(nig 000 91'.!.5) Xii X22 oee Xss
= 2 n nk, nk_
= <ni§0 p(nigonosns) 4{11 L] Xss)(ngkigo ki Xi J. o009 XS g\>

A . J.n n_

néo . 5o p(ny=kys Bymkys sees ns-,ks) Lk /t }xilnexsg
L 1 tE(?f 90.091§>
Y i S/

Equate the coefficients and the theofem is proved.

One may perhaps most easily usé the recursive formulae given in
Theorems 4,25, 4,28 and 4,31 to compute tr(n), pr(n) and t(n} respec;
tively., Values for tl(n) = pmi(n) = p(n), tz(n), tB(n)9 t5(n)9 t{n),

and pmz(n) are given for ng 34 in appendix A. Haskell [277], to my



knowledge, has the only printed table for p’wz(n)9 ‘tﬁ(n) and t{n) for all
values of n < 299, His values for tk(n) (k=2,3,5 and 25) and t{n) were
computed by Lippman on the IBM 7072 computer at the University of
Arizona in 1963, Values for p ,(n) were computed on the IBM 1620 at
California State Polytechnic College, San Luls Qbsispo by Messrs, Kay

and Arndt,



CHAPTER V
CONGRUENCE PROPERTIES
Congruences of p(n) and pr(n)

The purpose of this chapter is to investigate arithmetic proper-
ties of the partition functions, For example, it would be good to know
if n can be determined for which p(n) is even, odd, a multipls of 5, a
miitiple of 7, eba, |

The first congrusnces to be considered are the well=krnown Ramanie

jan's congruencess

(5.1) p(5m + 4) 2 0 (mod 5),
(5.2} p{7m + 5) = 0 (med 7) and
{5.3) p{iim + 6) = 0 (mod 11).

The preofs of (5.1) and (5.2) have been much easier than the proof
of (5:3)s The proof of (5.3) has required much mors advancsd analysis
requiring complex integretion and a modular transfermation which of
course will require the convergence of the series ussed, Gandhi Ei?j has
given a remarkably simpls proof of (5.1) and (5.2) which is a speeial
case of a congruence for pr(n). The aythor will give this proof for
(5+1) and then apply this method, thus giving a simple proof, to (5.3),.

Before proving the congruences it will be necessary to prove some

preliminary theorems which have been develeped by Gandhi [167,

Theorem 5e.1. If r/n = m/t, (m,t) = 1, then pr(n) = 0 (mod mj, for

5k
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integral values of r,

Proof: Substitute m/t in place of r/n in Theorem 4,28 to obtain,
pp(n) = - w/t & o(3) p(n-3).
Since m/t = 0 (mod m), the theorem follows.
It will be convenient to consider r = + R (R a prime) in Theorem

5¢1s Also, if n and R are coprime, we have the following carollary;

Corollary 5.2. If R is a prime and coprime with n, then

piR(n) = 0 (med R),

Theorem 5.3, If R is a prime, then ka(mR) = Pk(m) (mod R), for

integral values of k.

Procf:r Frem Theorems 2,11 and 2,12, it follows, for all integral k and
prime R,
[(1 - R 2 [t = BT (moa B).

Now replacing x by x" for any positive integer m,

(1 = = (1 2 B (moa R).

LI

Hence,
J @ - e B« (mod v).
But, by Definition 4,17, this is equivalent to;
ngb ka(n) x' = ngb pk(n) &0 (mod R).
Now compare the coefficients of me and use Definition 2,7 to obtain,
Pg(1R) = py(m) (mod R),

and the theorem is proved.

Iheorem 5,4+ [17] If R is a prime, then
B_(poy) (o + ) 5 0 (mod R),



where t # 1(i+1)/2 + j(33=1)/2 (mod R) for any i and j except

i= (R=1)/2 (mod R).

Proofs From Definition 4.17 of pr(n), Buler's identity (4.2) and

Jacobi's identity (4.7),

n;b Pg(R_a)(n) x" kzi (1 - Xk).(R_L,,)

i}

H

g (1= xR Wy (1= x) Wy (- %)

= n g i 1(a+i)/2
20 p_,R(n) X 4% («1)7(23+1) x

i

& ()] LJ(33-1)/2
But, from Corollary 5.2 and Theorem 5,3 with k = -1, respectively,

Lo pp(® "= & p p(Rn) £ (nod R)

= ngb pal(n) o {mod R).

Therefore it follows (note that p_i(n) = p(n)) that,

o Pan® 2 F p(w) A F (D) XM/

jggm(mi)j xj(Bjmi)/Z {mod R),
or

< n,

(1) & pgup(® "2 & (1) p(n) (25+1) =* (mod R),
Je=e

where

u = Rn + i(i+1)/2 + j(sj.-l)/é.
Now-pa(Rgh)(n) is divisible by R for all values of n for which x does
not ocour in the right member of (1); or, if it dees cceur but its eoeff-
icient is divisible by R. The coeffiqieht of Xu in the right member
of (1) will be diﬁisible by R if 2i+1 is divisible by R or equivalently,

(2} iz (R=1)/2 (mod R),
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Thus, one can conclude p (R u)(n) will be divisible by R for thoss

values of n = nR + t # Rn + 1(i+1)/2 + J(3j=1)/2 for all 1 and j which

§

do net satisfy (2). This is to say p (R 4)(m'R +t) 2 0 (mod R) for all
t such that t # 1(i+1)/2 + j(33=1)/2 (mod R for all i and 3 with the

restriction 1 £ (R=1)/2 (mod R). This complstes the proof.

Corollary 5.5. p(5m + 4) = 0 (mod 5),. | (5.1)

Proofs Let R = 5 in Theorem 5.4. Since (5-1}/2 = 2, consider all

i# 2 (mod 5). The only possible least residuss of i(i+1}/2 (mod 5)

are 0 and 1, The least residues for j(3j=1)/2 (mod 5) are 0, L and 2,
Therefore, the only possible least residues for i{i#+1}/2 + 3{(3j=1)/2 ave
0, i, 2 and 3, and hence t = 4 # i(i+1)/2 + j(3j=1)/2 (med 5) and the
congrusnce (5,1) follows.

The proof of congruence (5.2) is similar and is alse given by
Gandhi [i?j. The author would like to use the same method to prove the
congruence (5.3). To shorten the proof, a lemma will be stated without
vroof which is given by Winquist [h?].

Lema 5,6 B, (1= 2910 = B (1) aun)(60)
Jeee

[(31+1)(3842)/2 = 33(35+1)/2] LS/ 2 + 5552

Theorem 5,7, If R is a prime; then
pm(Raio)(mR +t) = 0 {med R),
where t # 31(i+1)/2 + 3(33#1)/2 (med R), for all i and j except

1 # (R=1)/2 (mod R) and j # (5R=1)/6 (mod R).

Proofs From Definition 4,17 and Lemma 5.6,
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L]

Xk)w(leo)

0 P_(g.10)® « = B (-

xk)10

i}

k\R
Wy (== 1 (.

n}'_io p_p(n) x? ,ijzo (=1)1*3(2141) (6341)

[(33+1)/2 « 33(33+1)/2] P2FH/2 + JOR0/2,
But,
' ngb p;R(n) X g Sé@ p(s) xR (mod R),

by Theorem 5.3 and Corollary 5.2, Therefore,

(1) B p_pogo)® x = yF (<17 p(s) (241)(6510)

= [(33#1)/2 = 33¢1)/27 =",
where u = sR + 3i(i+i}/2 + j(33+1)/2. Now pa(R;10)(n) is divisible by
R for all values of n for which x° does not occur in the right member
of (1): or, if it does cceur bub its eoefficient is divisible by R,
The coefficient of x™ in the right member of (1) will be divisible by R,
for example, if 2i+1 = 0 (mod R) or if 631 = 0 (mod R) or equivalentlys
(2) iz (Re1)/2 (mod B) or 3 3 (5R-1)/6 (mod R).
Thus, pw(ﬁq10>(n) will he divisible by R for those values of n = ol + &
# sk + 31(i+1)/2 + 3(35+1)/2 for all 1 and j which do not sabisfy (2),
Thersfors pm(Rm10>(mR + t) 2 0 (mod R) for all t such that,
¢ 31(3+1)/2 + §(35+1)/2 (mod R) for all i and j such that i ¢ (R-1)/2

{mod R) and j £ (5R=-1)/6 {mod R) and the theorem is provsd,

Corollary 5.8, p{lim + 6) g 0 (mod 11). (5.3)

Proofs Let R = 11 in Theorem 5.7. Since (11-1)/2 = 5 and (55=1)/é = 9,
consider all 1 and j such that 1 £ 5 (mod 11) and j £ 9 (mod 11). Fer

these values of i and j, the lsast residues of 3i(i+i}/2 + I(331)/2
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{mod 11) are 0, 1, 2, 3, 4, 5, 75 8, 9 and 10, Hence, for t = 6 and
R = 11, the result (5.3) follows,
Other congruences for pr(n), of no real significance for this

paper, are given by Gandhi [167.
Congruences of t(n) and tk(n)

Several congruences will now-be develgped for the k;line partition
fanction, tk(n), for k=2, 3, 4, 5, 6, 7 and 8, These results are

basically due to Cheema and Gordon [127] and Gandhi [187,

Theorem 5.9, té(5n +3) = tz(5n + 4) = 0 (mod 5);

Proofs From Definition 4.17 of p3(n) and Jacobi's identity (4.7),

il

(1) oo pytm) & = B (1A

H|

£ 03 HID/2,

But, 25+1 = 0 (med 5) for j 5 2 (mod 5)e Hence, if j # 2 (mod 3), then
the only residues for j(j+1)/2 (mod 5) are O and 1. Therefore, by @@m;
paring coefficients in (1),

{(2) pB(n) £ 0 (mod 5) for ng 2, 3, or 4 (mod 5),

o 1’!1::25‘.u mcns @ m3
Now, since mg (1 -x )%= mgi (1 « x) mgi (1 = %),

ngb p_,(n) X = ngh p=5(n) x"? ngb pB(n) %"

2 n o ’ o
= 29 {350 p_5(J) PB(I%J)J =%,
Equate the coefficients to obtain,
d - n = 2
(3) Pﬂz(n) = jéo PFB(J) ps(n’ﬂ;’)n
From Corollary 5.2, p_5(j) = 0 (mod 5) for all j# 0 (mod 5).

Thus, for ng 2, 3, or 4 (mod 5), it follows that each term in the right



member of (3) is divisible by 5 and hence,

{5.4) paz(n) = 0 {mod 5) for n= 2, 3 or 4 {med 5),
Hence, if n= 3 or 4 {mod 5), then pmz(nD = pug(mml) = 0 (mod 5),

From the results of Theorem 4,23, tg(n) = pmgin) - ng(ngi>9 it follows

that tz(n) 2 0 (mod 5) for n = 3 or 4 (mod 5) and the theorem is proved,

o . 1 ) .
Theorem 5,10, If ng 2, 3 or 4 (mod 5}, then kgje t,(k) = O (mod 5),

Proofs From Theorem 4,26,
p_yn) = Bt (),
But, pmz(n) = 0 (mod 5) for ng 2, 3 or & (mod 5) from equation {5.4)
and the theorem follows,
The next theorem states that p(n), t2(2n> and tz(ZH%i) have the
same parity, That is, for all values of n such that p{n) is even, it
follows that t2(2n) and t2(2n+i) are also even and the values of n for

which p(n) is odd ars the values for which t,{2n} and t2(2n+i> are odd,

Theorem 5,11, p(n) = t2(2n) & t?(2n+i} {mod 2),

Proof's Replace n by 2n and 2ntl respectively in the results of Theorem
4,23 to obtains
{1) t2(2n) = p@2(2n> - p®2€2nmi> and
(2) t2(2n+1) = pm2(2n+1) - pwz(Zn),
But, from Theorem 5.3 with R = 2 and k = =1,
p@z(zn) = pai(HD {mod 2),
Alscy, from Corollary 5.2 with k = 2; since Znkl and Zn-1 are odd,
| pwz(ani) = pm2(2n+1> = 0 (mod 2),
Therefore, it follows from (1) and {2) thats

t2(2n) = pmi(nD {mod 2) and
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Bil

t2(2n¥1) = =p_2(2n) p_i(n) {mod 2).

But, since p 1(n) = p(n), t2(2n) = p(n) = t2(2n#1) (mod 2) which proves

the theorem,
There is no convenient way of determining which values of n will
make p{n) even or odd. However, with the restriction that summands of

the partitions be unique, the problem becomes esasy.

Theorem 5,12. If n is a pentagonal number, i.s. of the form (3jt1)/2,

then q(n) is odd, For n not of this type, g{n) is even,

Proofs From Definition 4.3, Theorem 4,8 and Euler's identity (4.2),

1]

By ) = B o

I

nng(-i)n'xn(3n+i)/2.

Another form of Euler's series is which glves,

i (1)3 I(331)/2

b= ® s 2 o ) R
Eo aln) =" & (-1)3 IBH1)/2

jgb xj<3jt1)/2 {mod 2)

1

and the theorem follows.,

Theorem 5,13, t3(3n+2) g 0 (mod 3).

Proofs Replace n by 3n+2 in the results of Theorem 4,24 to obtains
t . : = e o v y { oo o= “l e

(1) t5(3n#2) = p_5(30+2) = 2p_4(3u+l) + 2p_5(3n-1) = p_,(3n-2)

But, with R = 3 in Corollary 5.2,

{2) pm3(3n+2) = p®3(3n+1) g p_B(ani) = p_3(3n=2) g 0 (mod 3).

The results of (2) used in {1) gives the result of the theorem,

Theorem 5,14. t3(3n+3) B t3(3n+4) (mod 3).
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Proofs Replace n by 3n+l and 3nt+3 respectively in the results of

Theorem 4.24 to obtains

(1) 5(3m+1) = p_y(3mH1) = 2p_5(3n) + 2p_5(3n-2) = p_y(3n-3) and
(2) t5(3n+3) = p_(30+3) = 2p_(3n+2) + 2p_(3n) = p_(3nm1).

But, from Corollary 5.2 with R = 3, )

(3) p_5{30+1) 3 p_5(30-2) 5 p_4(3n+2) = p_3(3néi) z 0 (mod 3),
Also, from Theorem 5.3,

(#) B_5(30) = p_y(n), p_4(3m3) 2 p_y(n+1) and p_4(3n-3) & p_,(n-1)
with each congruence (mod 3)., Therefore, from (1) and (2}, with (3)
and (L)

5) t3(3n+i) g ~2p_,(n) = p ,(n1) zp 4(n) - p ,(n-1) (mod 3) and
(6) t3(3n+3) = p_y(m+1) + 2p ;(n) = p_j(nt1) = p_y(n) (mod 3J,

Replace n by n+i in (5) which gives,

(7) t,(3n+h) 2 p_(m#1) = p_,(n) (mod 3).

Since the right member of (6) and (7) are the same, the thecrem follows.
Gandhi [18] has stated the following congruences concerning tkz
tQ(hn) = th(@n+1> = tu(4n+2) {mod 2},

tu(&n+3> 2 0 (mod 2),

t5(5n+1) g t.(5n+¢3) (mod 5) and

5
t5(5n+2) = t5(5n+u> {rod 5),

Gandhi claims he has congruences for tk (k = 6, 7, 8 and 9} which will
soon be published. The author hasn't seen any in print and includes,

in the next three theorems, some congruences for t@s t? and tB’

Theorem 5,15, té(én#l) + t6(6n+3) z t6(6n+2) + t6(6n+h) {mod 3}, ~
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Proofs From Theorsm 4,25 with k = 6,

(1) té(n) = SEO aé(s) p,.é(n?S%
where
(2> sg() 36(S> Xs = mﬁl (1 - xm>6mm°‘

After computing as(s) (s = 1,2,.44,35) (mod 3) in equation (2) and sub-

stituting into (1), it follows that:

(3) tg(n) s p_((n) +p_g(ne1) + p_((n-3) = p_((n-l) = p_(n=6)
+p (0=7) + p_((n8) = p_((n-9) = p_({n-10) + pgé(n;ii>
+p_g(n=13) = p_g(n-14) = p_g(n-16) - pmé(nm17)'= p_g(0-18)
- b_g(n=21) + p_g(n=22) + p_g(n=2h) = p_g(n-25) = p_g(n=26)
+ Pué(nEZV) +p_(0-28) = p ((n=29) = p_ (0=31) + p_,(n=32)
+p_¢(n=34) + p_((n-35) (mod 3).

Now replace n by 6m#l, 6n+2, 6nt3 and 6mtlh respectively in (3} to
obtain, after applying Theorems 5.1 and 5,3,

(4) tg6n+1) 5 p_p(2n) = p_p(201) + p_,(2n2) = p_,(20-3) + p_,(2n-4)

s

= p_p{2n6) + p_,(2n-7) « p_,(2n-8) + p_,(2n-9)
- p_,(20-10) + p_(2n-11) (mod 3),
{5) t6(6n+2) = p;2(2ng2) + pmz(QnMB) - pmz(znmﬁb - p;?Kan8)
= p_p{20-9) + p_,(20=10) + p_,(2n=11} {mod 3},
(6) t(6m3 g p_o{2ntl) + p_,(2n) - p_,(2n-1} - p_,{2n-2) - pwg(an6)
+ pm2(2n;7) + pmg(EHFB) (mod 3) and
{7) t6(6n+&) = p=2(2n+1) - pEQ(Zn)>+ pmz(ani) o pmz(ZnMQ) + pm2(2nm3)

- p=2(2n54> + pmz(Znué) - ng(2n=7) + pmz(gnmg)
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- p_n(2n-9) + p_,(2n-10) (mod 3.
The theorem follows by comparing the sum of equations {4) and (6) with

the sum of equations (5) and (7).

Theorem 5,16, t7(7n+2) + t7(7n+3) = t7(7n+4) + t7(7n+5) {mod 7).

Proof: The use of Theorem 4,24 with k = 7 gives 57 terms for t7(n);
After replacing n by 7nt+2, 7nt3, 7ntd and 7n+5 respectively and then
using Corollary 5.2 and Theorem 5.3 gives: v
(1) £,(70%2) = 3p(n) + 3p(n=1) + p(ne3) + 2p(net) = p{n-5) + 2p(n=6)
3p(n7) (mod 7),

p(n) + 3p(n-1) = 3p(n-2) = p(n-3) = 2p(nett) = 3p(n-5)
p(n-6) + p(n-7) (mod 7),

8
L

(2) t7(7n+3)

p(nj + p(n-1) + 3p(n=2) + 2p(n-3) + p(n-4) + Ip(n-5)

(3) t,(7mt)

3p(n-6) + p(n-7) (mod 7) and

() t,(7nt5) = 3p(n = 2p(ne1) + p(ne2) = 2p(ne3) = plnet) = 3p(ne6)
- 3p(n=7) (mod 7).

Since the sum of equations (1) and (2) is the same as the sum of equa-

tions {3) and (4), the thsorem follows.,

Theorem 5.,17. (a) t8(8n) s t8(8n+4) {mod 2) and

t

{b) t8(8n+5) = t8(8n+6) = t8(8n+7) 0 {mod 2).

Proofs From Theorem 4,25 with k = 8,

(1) tg(n) = & ag(s) p_gln-s),
where
(2) Sgo a8(s) x° = mﬁl (1 - Xm)S-m

1+ x+ x2 + x4 + x8 + xl1 + xiz + Xié + xiV

+ XZO + x25 + x27 + x33 + X34 + x35 o xhl + th

ti
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+ ;{81‘L (mod 2),
After substituting the values of a8(s) (s = 0,1,e00,84) into equation
(1), replacing n by 8n, 8nt+l, 8n+5, 8nt+b and 8n+7, respectively, and
observing from Theorem 5.1 that p,8(n) £ 0 (mod 2} only if 8 divides n,
it follows thats

(3) t8(8n) = p;8(8n) + pﬂ8(8nm8) + pu8(8n”16) + pn8(8nméﬂ) + p;8(8n”72>

S

pg8(8nm80) {mod 2),

(4) t8(8n+4)

i

p’8(8n) + p;8(8n~8) + pu8(8nu16> + p@8(8nm6&)

+ pm8(8n=72) + p§8(8n-8O) {mod 2),

(5) tg(8n+5) £ 0 {mod 2),
(6} t8(8n+6) z 0 {mod 2) and
{7) t8(8n+7) z 0 (mod 2),

Part (a) follows from (3) and {4}, part (b) follows from (5), {(6) and

{7) and the theorem is proved.



CHAPTER VI
ASYMPTOTIC PROPERTIES
Introduction

Chapter V dealt with the arithmetic properties ot p{n) and other
more general functions, This chapter is concerned with the behavior of
the partition function for large values of n. It is obvicus that p{n)
increases rapidly as n increases, but just how fast, Since the recur-
sion formulae will be of no use for large n, the problem is how to
determine p(n) for large n.

It is apparently beyond the present resources of mathematics to
give a simple expression for p(n), hence all one can hope for is a sime
ple function f which approximates p(n) for large n, That is, it would
be desirable to find a function f such that,

p(n) = £(n) + r(n)
where f would be as simple & function as possible and r would approach
zero as n gets large., This is to say, with reference to Definitions
2.21 and 2,23 respectively, that,
p(n) ~~ £(n) orip(n) = f(n)[l + o(i)].

It might first be of interest to get some idea of the relative size
of p{n) and the function values of some well-known functions for large
n, This has been done by Ayoub [67] with the functions n°l and eXp(02n>
with results given in Theorem 6,2, To facilitate the proof, however, one

‘muet first look at the generating function of p{n),

66
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(6.1) P(x) = k;'ﬁ-l (1- xk)'i = nzo p(n) x°, for |x|< 1.

According to the Tauberian Theorem 2.31 and the equation (6.1),
since p(n) > 0 and the series in (6.1) converges for |x| < 1, it follows
that the order of magnitude of p(n) will determine the behavior of P(x)
in the neighborhood of x = 1 and conversely, the behavior of P(x) as
X » 1 yields information concerning p(n). A result concerning P(x)

which will be needed for Theorem 6,2 will now be given.

2
Lemma 6.1, log P(x) ~~ z-&:;)-, as X =» 1,

Proof: Take the logarithm of P(x) in equation (6.1) to obtain,

log Bl (1 = xk)'j'

log P(x) i

k_:§_1 log (1 = xk)gl

S b 6

= m:gl kz‘l (xm)k/m.
But with |x| < 1, hence 'xm| < 1, the geometric series (™Y has a sun
which gives,

m

(1) log P(x) = mii (ixni .
m( =X

Also, with 0 €« x < 1, hence 0 <xk< 1 for k=1, 25 sesy ni-l and

xm"’l < xm"2 < .00 € x< 1, it follows that,

mxm"’1<1+x+ voe +xm"1<m.
Multiply each member by (1-x) to obtain,
mxm"l(i-.x) < 1" < m(1-x)

or




Now from equation (1),

4 1’ 2 2
(2) Tx 2y X /m < log P(x) < === = 21 x/n”,

But, from Theorem 2.32,
. g my 2 _ 2
Hp oy x /0" = /6
Thersfore, after dividing all members of {2) by the left member and

letting x = 1, it follows that,
>
I
log P(x) ™~ m

and the lemma is proved,

Theorem 6,2, For n sufficiently large,

(1) n°1 < p(n) < exp(czn), (ci, ¢, 2 1 are arbitrary constants),

Proofs Let (i) be replaced by the two equivalent inequalitiess
(2) n°1 < p{n) and
{3) p(n) < exp(czn)g

¢ -
Assume p{n}) = n"i. Then for x = e y’

c, N _ =& &, Ny
P(x) D nix = n§1 nie ¥,
But,
g _C ny @ .G,  =T¥ (%Gi+i/,
oy nle NSOtie ai e
Since y = « log x »v {le=x) as x =» 1, it follows that,
) r1c1+1)
B{x) ~/ -
(1-x)%1*1

which dmplies that,
log P(x) = log fﬂ(c +1) « (e +1)10g (i=x) + o{1).
This contradicts Lemma 6,1, since,

log ‘L:&"Fl) o (Cq“l'i)log (1‘”3{) + G(i> = { % 1,
ﬁ’/[6(1~X>]

st
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Therefore, inequality {2) follows.

To prove inequality (3), assume p(n) = exy(c2n>. Then there exists
a constant d such that hi|< 1, namely d = exp((iacg)n)9 for which
’ngO exp(czn)(d)n diverges., This contradicts equaticn (6.1) since that
series converges for all |x| < 1. This proves inequality {3) and hence
the theorem,

In the light of Theorem 6.2, one might conjecture that p(n) =
exp(anb), for the apprépriate constants a and by, yet to be d@termin@d;
In order to estimate a and b; let p{n) = e;p(anb) and x = 879, Then
the series,

nio p(n) ¥ = ngo exp(anb - 1Y)

b-l

has its largest term when the derivative is zero, i.¢, akn =y = 0,

This gives n = [yf(ab)ji/(bmi) and for this n, the term which will
determine the order of magnituyde of P{x), is
SXp (a{yf(ab>jb/(b”1) - y{y/(ab)jij(bmi)}
= exp< Y (1-b)bb/(.1~b)yb/(lab) _ ai/(im‘b)bi/'(iab)yb/(bmi)}
Now, as X 1y ¥y = =log x f»li = X and therefore,
P{x) ~v exp <aj'/(1“b)bb/(i”b)(imx>b/(1wb) N ai/(iwb)bi/(imb)
( i@j{)b/ (1%)) .

To choose a and b so this agrees with the result (6.2}, ons may select
b= 1/2 and a = ﬁJ273. Hence, assume p{n), for large n, is approxg

imately expém/2n73). Theorem 6,3 is a very similar result.
Asymptotic Formula for log p{n)

Theorem 6.3. [67 (Hardy and Ramanujan's asymptotic formula for logp(nlh
{6.3) log p(n)f\J'm(2n7 .



Proofs The theorem follows from the two inequalitiess

(1) p(n) < exp{m/2n/3)
and for every € > O, there exists a constant Ag such that,
(2) p(n) > (1/A;) exp[(a=€) J/n J.

This.is seen by combining the inequalities (1) and (2), dividing by

TM/2n/3 and then letting n =eoto obtain,

1 we /(nfAT5) ¢ 1im 202 o

Tivon ,/20] 3
By Definition 2,21 of asymptotie, thes result follows,
Now to prove inequality (1) by induction on ns
(1) p{1) = 1 < exp(n/2/3).
(11) Suppose that for all m < n, p(m) < exp{TM/2m/3). Now from
Theorem 4,28,

n
< & E nexnEEEITH)
a n
= B & m expln/2n/3 JI-dm/n),

Since (1=x)® € 1 = ax, it follows that,
. n 1n ) . w ICm\
n p{n) < = B exp{fr;/zn73 (i ?r‘x’j
B n < mkﬂ'ﬁf
< exp(m/2n/3) k#z‘:l m“—gi m exp(w)o

n

From the fact that,

2 X 1 ‘2
me = < 1/x7, for x < C,
nE1 I sinh® x/2

which can sasily be verified, it follows with x = km//Bn that,

n p{n) < exp(n/2n/3) k§1 6n/ (km)?

70
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A

exp(/ZRT3) énfr? &, 1/%°

exp(r/Za]3) (6n/1°)(12/6)
n expCm/2n73).

i

Division by n gives,
p(n) < exp(T/2n]3)
and by induction, inequality (1) holds for all n. The proof of inequa.
lity (2) is similar and will be omitted,
The result of the theorem is not as significant as cne might hope
since an asymptotic property of log p(n) does not give very accurate
results concerning p{n). For example with the results of Theorem 6.3,

one could just as well haves

p{n) ~~ nlOOO exp(T/Zn/ 3)

p(n) ~~ n=1000 exp(n/2n/3).

Asymptotic Formula for p(n)

The next step in the development of trying to evaluate p(n), or at
least approximate it, is to prove the asymptotic formuls (6.4}, Only a
sketch of the proof will be given., For a complete proof, the rsader can

refer to Hardy and Ramarujan [257.

Theorsm 6,4, (Hardy and Ramanujan's asymptotic formula for p{n)).
(6.4) p(n) A hee exp(m/Zn]3).
/3

The proofs given for Theorem 6.4 requires much more advanced math-
ematics than for any of the previcus results. In ordesr te prove this

theorem, at least to our present knowledge, it will require the thecory
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of analytic functions, in particular Cauchy's integral (6.5), and the
theory of modular functions, in particular (6.6).

Cauchy's_integral Theorem 2,40 can be applied to the gensrating
function (6.1) in a natural way. Clearly P(x) is analytic inside the

unit eircle with center at the origin, Thus, since

X

p(0) x’n”1 + p(;) L pln) %=1

i

+ p(rﬂ-i) 4 p(n+2> x 4+ esn gy

it follows that p(n) is the residue at x = 0 of the functicn.£%§%.
s

Now, from Cauchy's Theorem 2,40,

I o ¢
(6.5) p(n) = zhe § ;Sn;?fdxg

where C is a simple closed contour enclosing the origin and lying
sntirely inside the unit circle., The difficulty now comes, of course,
in evaluating the integral.

The reason for the difficulty is that,

P(X>: 1 112‘.13500"“’1"“‘??100
lox l=x l=x leax™

has zero denominators in every factor when x = 1, every sescond when

it

x = =1, every third when x = exp{2mi/3), and in general every keth when

[t}

x = exp(2mih/k), (h,k) = 1, Hence, x = exp{2mih/k} for every rational
number is an essential signularity of P{x). However, since the raticnal
points are dense, any irrational point will have singularities arbi-

trarily close to it and therefore will itself be a singularity. There-

fore, all points on the circle are singular points and there is no
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possibility of integrating across the singularities.

The difficulty seemed unsurmountable until G, H, Hardy recognized
that, quote, "P{x) belongs to a class of functions called elliptic modu=
lar functions whose properties have been intensively studied and whoss
behavior is well-known," Riemann, Dedekind and others have studied the
mportant medular function,

(6.6) n(t) = exp(mit/12) J, (16208

which is very nearly the reciprocal of P(x). To be exact, if one lets

X = egﬁitg Im {(t) > 0 to give ix] < 1, then from {6.1) and (6.6},

n(t) = eggﬁﬂltz12).
P(eZWIHt)
Now, the ‘heaviest' singularity of P(x) occurs at x = 1., Hence, suppose
that the greatest contribution to the integral of (6.5) would come at

A

1. In fact, if f{n) is the contribution to p{n) from the point

£

X

i

¥ = 1, one might expect (3s it turns out) that the contribution from

W

£ =1 is OQJEEHT) and sc on. Therefore, one would like to find z funce
tion g{x) which is analytic at all points of the uynit circle except
x = 1, and has there a singularity of a type as near as possible to that
of the singularity of P{x). Cauchy's theorem would then be applied to
Peg dinstead of P,

A function g can be found from the properties of the modular funce
tion hit). The substitution x = e”zﬁt, Re{t) > 0 to give !x! < 1, into
{6.6) gives,

P(ngﬁ%)'

]

JE exp[m(1/t - t)/127 Plexp(-21/t)]

£6.7)

#

g(t) Plexp(~2/t),
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where g(t) = Jt expcﬁ(i/t m,t)/izj is the desired function. Since
Plexp(=2m/t)] = ngb p(n) exp(=2rm/t) approaches i very rapidly as t -0,

$.20 %3 1, it follows that P(e~2"C

) =>g(t) as t ==0,

The first approximation will now be found by choosing the contour
£ of (6.5) to be the circle Cjp x= rei¢ (-Tg P <, in the complex
geplane with a radius of |x| = r,<1 but extremely cleose to i, Now

=21t

make the transformation, x = e s Where t = utiv, u > 0, Then

t = é%(ln,r + if), sc that Go is mapped onto the line L, in the t-

[t}

™ I | . .
planes U, o= 5 1In LR with endpoints to

as sketehed bhelows

ug + if2 and ti = U, = ife

= T
R
| H2 g
x;plane : ' t=plane
Substitution of x = o™2"" into (6.5) with C = C_ gives,
ey i oty 2mt(ntl) _-2m
pln) = gz § Be®™) &EM (azm) at

i

-4 SQ P(eﬂzﬁﬁ) 2™t 4y,
1 L
Now the integral is divided into two parts by the identity,
P(e™2™) = g(t) + P(e™2™) - g(t),
so that,

(6.8} p(n) = - & gL g(t) &Mlat ,.,%-: & [P(e™2™) = ()] at,

where the first integral will contribute the principal part and the



75

second integral will be investigated only to determine its magnitude.
The evaluation of (6.8), still very diffiecult and long, is given by
Ayoub [67] to be,

~ _ 1.4 |
(6.9) p{n) = ;;75 = eaxn/ln + O[exp(Saxn/S)j,

whore An = /n - 172 , a =‘m/273 and 0 refers to n-seo, The asymptotic
result {6.,4) can now be obtained if we carry qut the differentiation to

obtaing

S WP Y
p(n) - 1. e n(a/2);e nl"lz} Szanz l + OE@XP(E&%n/8>]
2n/f2 A

o*Ay
- uzJé =27 (1 - in) + Ofexp(524_/8)]

1 eaxn 1 |
= -Z:% m (1 o zi’r:) + O[eXp(SaAn/B)].

Now, as n-»oe, aj —>co, ne1/2h~»n,
p(n) ~ == exp(n/Z573).
/3

The next step is to congider ths singular point at x = -1 and to
subtract from P(x) a second auxiliary function related to this point as

g{x) is to x = 1. Similar developments by Hardy and Ramanujan gave,

n 3}, /2 ..
p(n) = e = dn eaxn/x i;llm 4 Eu%Q#m + O(eDJz)g

21/ 2 n

where D >-i a. One might also notice that in equation (6.9):

3
5axn/8 >-% aJE. Therefore, since the accuracy is improving, Hardy
and Ramanujan [25] continued the process with the rational singulare
ities and were able to obtain the more precise results given in {3.9)
so that p{n) is, for sufficiently large values of n, the integer near.

est the value of the first term in the right member of {(3.9).
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It was later shown, however, that the series in (3.9) was divargent,
Rademacher simplified and perfected the original analysis of Hardy and

Ramanujan to obtain a convergent series representation of p(n),
Convergent Series Representation of p{n)

Rademacher [ 42] proved the convergent series reprssentation of p{n)

given in the next theorem,

sinh Tk 2] 5%
1 = 4 5t n
Thaoren 60 ° p(n) = coeo £ A (n) Aflz o= i 9
Absorenm 02 7 i®r A & .
where,
(6.10) Ay = Jn = 1]k, Ak(n) = 05%‘(1{ ‘Whgk exp(=-2mihn/k},
(h,k)=1
thk = exp[misS(hk)7] and,

k=1 ru  iVhu Thul 4 | - i
s(h;k} = B, (r - 3)(“12“ - E,Fj - §>9 {Brackets refér to

the bracket funetion),

In 1938, L. R. Ford discovered some geometric properties of ths
Faray sequences to be defined in Definition 6.1 below. Ford represented
sach Farey fraction by a cirele, now called '"Ford cirsles®, given in
Definition 6,3, This permitted Rademacher toc replace his previous path
of integration, done by dissecting the circle into 'Farey ares', by the
new péth along the Ford circles. It is this method which we shall
briefly outline, The reader may furnish the missing details and proofs
or find them in Rademacher's lecture notes [@1]. Ayoub E6j also gives a
proof, due to JoKVo Uspensky, which differs very little frem Rademacherk

roof,

o

First the substitution x = e 1t& Im(t) > O, is made in the
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integral (6.5) to obtain,

(6011> p(n) = ;+1 P(emit) ewZﬁin'tdtg

where the path of integration can be any curve in the upper half;plane
connecting the points i and i+l, Now, to determine a convenient path,

it will be necessary to discuss the Farey sequences and Ford circles,

Definition 6.1. By a Farey sequence F_ of order n, is meant the set of

all fractions h/k with 0 € h € k, (h,k) = 1, 1 € k € n and arrangsd in
ascending order of magnitude. For example, the Farey sequences an
n.§ i, 25 3 and & ares
o/1, 1/1
0/1, 1/2, 1/1
0/1, 1/3, 1/2, 2/3, 1/1
0/1, 1/8, 1/3, 1/2, 23 3/t 1/1
Farsy sequences have many interesting propertiss. Only those
properties needed to prove the necessary results of the Ford circles
will now be stated with proofs found in [4i7,
Propertisss
{i.2) If hfk and h'/k’ are two successive fractions in Foo then
k+ %' >n,
(2.2) If hik and h'/k*® are twp successive fractions in Fo then
k # k',
{302} If hfk and h'/k' are two successive fractions in Fo then

: S
h'k = hk® = 1,

Definition 6,2, The mediant u of h/k and h'/k', twc successive frace

tMmin%9Mu:(h+wyw+kQ.omwwtmtwk<u<wmu
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Béfinitisﬁhéoé. Let h/k be a fraction in Fna Consider the complex t;

plane and suppose that there is a circle C with center at the point

= hik + i/(Zkz) and radius 1/(2k2). Such a circle is called a Ford

O,k
¢ircle,

The Ford circles corresponding to the Farey sequence Fn have the
following properties which can be found in [41].
Propertiess

{1.b) All the circles are tangent to the real axis.

{2.b) No two circles intersect.

(3.b) Two circles Chsk and Ch'gk' are tangent if and only if h/k

and h'/k’ are neighbors in some Farey sequence of the same

order,

The Ford circles corresponding to Fh are illustrated in Fig. 1.

Fig. 1.
Now consider any fixed positive integer N (later we let N=seo) and
the Ford circles corresponding to Fy+ By property (3.b), ccnsecutive

circles are tangent. The points of tangency divide each circle inte



79

upper and lower arcs. For the circle Ch I denote the points of tane
s

gency by h/k + 8' and h/k + 8" and the upper arc by For N = I,

&h,k*
the points 4 and B in Fig. 1 illustrate 1/4 + S and 1/4 + S” with the
upper arc of AB corresponding to By e

s

Let the path of integration, P,., for the integral in (6.11) be the

N*
row of arcs gh,k starting at the point i and ending at ths point i+i,
Because of the periodicity of the integrand, that part of the arc of
gOgi to the left of the imaginary axis is replaced by ths part of gi»l
to the left of the line Re{t) = 1. The heavy line in Fig. 1 illustrates

the path P;. The integral (6.11) now becomes,

(6.12) p{n) = T S‘ p(e2ity g=2mint g,
Osh<kel Vg
(hsk)=1 *

) F3 t 1}
where &, ) TURS clockwise from h/k + S,k to h/k + bk

Now the change of variable t = h/k + § in each integral gives,

S"
(6.13) p{n) = % s?’k P(e
hyk

where the summation here and henceforth will be over all h and k such

2mi(h/k + 8), egzwin(h/k +8) 4o

that; 0 g h < k < N and (h,k) = 1, except whers otherwise indicated,
This transformation had the effect of transforming each of the circles
so that the new centers are at the points i/(Zkz). Now, to transform
the circles to the cirele K with radius 1/2 and center at the point

1/2, let 8 = iz/kz, The integral {6.13) now becomes.

. . -
Szk’k P(GZWl(h/k + iz/k )) eZﬁ’nz/k. dz,
]

{6.14) p(n) = 3 i/k2 ea2ﬁinh/k
Phyk

and z®

. 1
where 2y b,k

are the images of 8! , and S!

ok ok respectively, The
s 9

ok

path of integration is illustrated in Fig. 2.
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i
Ny
ok " teplane

Fig. 2.

Now apply to P the functional equation derived from the theory of
the elliptic modular functions by Hardy and Ramanujan [ZSjg
. a gy 8
{(6.14) P(x) = thk Gk(z) P(x'),
where x = exp{Zﬁi(h/k + iz/kz)], x' = exp[?ﬁi(h'/k + i/z)j9 hh' = 1

3 3 3 3 = 'amﬁawmﬁz
(mod k), Whek is given in {6.10) and Gk(z) Jz exp 5% Tyl o

The integral in (6.13) now becomes,

‘ y 2y st e o ooy 16
(6.15) p(n) = ¢ 1k™5/2 A (0) h,k 6, (2) p(o2Mih ' [k = 2nfay 2mafk,

hok
where Ak(n) is defined in (6.10),
Divide each integral into two integrals by the identity,
Gk(z) P(x') = Gk(z)EP(x’) = 17+ Gk(z)g
to obtain,

{6.16) pln)

5 1%=5/2 M) T, + & 11:“’5/ a0 1y
> 9

hok?
whers
Il;, L= h ko ( ) o ZTFnz/k o and
’ 2y k
h k 2
I = 2mih'fk - 4ﬁ]z 2mmazf %
hok h K k(Z)EP( =17 e dz,

where the path of integration 1s an arc of the cirele X in the clocke
wise {negative) direction,
Estimation of Iﬁ 9 found by replacing the arc z' to z" by the
b

chord {integrand is analytic away from the origin), and using the prope
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srties of Ford circles gives,

,kl s c(x/m)?/2,

where C is a constant which depends on the fixed integer n.

[1]
I

Now the second sum in (6.16) can be estimated for size to show

1/2 which gives,

that it is less than or equal to C/N
(6.17) o(n) = £ ik"2 4 () 10 .+ o(n-1/?),
k h.k
The evaluation of Iﬁ K is carried out by using the entire cirecle X
. 3

as followsa

2 z! 2
_e 2mnz/k hok 2ozl k
(6.18) Iﬁgk = Sk Gk(z) e dz SO ’ .Gk(z) s dg

i . 2
SZ” Gk(z) eZan/k dz,
b,k

where K is traversed in a clockwise direction., The last two integrals

in (6,18) can be written as,
ZM ) 2
(6.19) Coek 6, (2) 2T/ X gz,
hok
As before, it can be shown that the integral in {6.19) is of order
o(k/m)¥2 ana also O(%, =9 20m)3%) = o2y, substitution of this
result into (6.17) gives,
_ - 2 ;
(6.20) p(n) = 1 % A (n) =52 S% 6, (2) J2mafkE O(Nwi/z)a
Notice that the summands are independent of N, Let N-»eein (6,20) to

obtain the infinite seriess

, ) )
(6.21) p{n) = 1 kgﬁ Ak(n) k=5/2 S% Gk(z> eﬁﬁnz/k dz.

Tt is now possible to evaluate the integral in (6.21) by the use of the
substitution w = 1/z and application of Bessel functions to yisld the
result of the theorem. |

The techniques of Radsmacher have been used to obitain series rep-

resentations of other partition functions. In particular, Haskell [277,



and independently Wright, have obtained series representations for

P k(n) which includes Rademacher's for p(n) as a special case,
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CHAPTER VII
SUMMARY

The purpose of this thesis is given in Chapter I. Brieflyg it is
to introduce to the advanced undergraduate student the rather unfamiliar
but important theory of partitions of a number which involves the nume
ber-theoretic partition function, p{n). After giving the necessary
background in Chapter II, the origin and a brief histeorical development
is given in Chapter III. The introduction, including basic definitions
and theorems of partition theory, is given in Chapter IV;

One of the major problems, to determine the congruence properties
of the partition functions, is considered in Chapter V., Ssveral con-
gruences are obtained, A simple proof_of the congruence p(iim + 6) = 0
(mod 11) is given. Except for a proof in 1969 by Winquist [497, this is
the only proof to the author's knowledge which has not required the more
advanced analysis, including modular funetions, which is nesded and used
in Chapter VI,

Congruences are alsc obtained for the k-line partition function,
tk(n)D for k =1, 2, 3, 4, 5, 6, 7 and 8, The congruences for té(n)9
t7(n) and t8(n) are found by the method of Cheema [127 which, to the
author's knowledge, have never appeared in print.,

Chapter VI, requiring more advanced analysis and mathematical
maturity, gives a brief developmént of the asymptotic and seriss repre;

sentation of p(n) which were found by Hardy and Ramanujan [257 in 1918

83
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and Rademacher [427 in 1937, respectively.
An interesting problem for further study would be an attempt to

solve the conjecture posed by'Mérris Newman [36] in 1960,

Conjecture, p(n) fills all residue classes modulo m infinitely often,
that is, that>if r 1s any integer such that 0 € r < m=1, then the cone
gruence p(n) = r (mod m) has infinitely many solutions in noﬂ;negative

integers Ne

The known congruences of Ramanmujan's conjecture already give a
partial answer for all powers of 5 and 7, for 1ii, 112 and 113. Newman
[36j9 in an attempt to prove the conjecture, has shown the conjecture to
be true for m = 5 and 13,

Another iﬁteresting problem is to determine the (asymptotic)“densﬂm
ty, if it exists, of the integers n such that m divides p(n) for a given
m. For example, the congruence p(5m + 4) = 0 (mod m) implies that 5

divides p(n) for infinitely many n, Newman [377] showed that,

lim inf SEEL % 4 e,
Xpen 5,19

where,

s(x) = ngx; p(n)20 (mdd 5),
Whether the limit exists, hence the density, still seems a difficult
question,
The need. for an explicit.generating function for the d-dimendiomal
partition function, more fully explained in Chapter III, is certainly a

challenge to anyone capable of sven coming up with a w0rthy’cenjecture;
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APPENDIX
A Table of Partitions

The following table gives the values of p(n), té(n)9 ts(n)g tg(n)g
t(n).and-pmz(n) for all n < 34, These values can easily be computed
from the recursion formulae of Chapter IV.

A more complete table for p(n), values for n € 600, is given by
Gupta [21522j0 The values of tk(n) for k = 2, 3, 5, 25, t(n) and p;g(n>

for all n g 299 are given by Haskell [277. -
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A TABLE OF PARTITIONS

119 90531

a p(n)  t,(n) t5(n) t.(n) Yn)  p (0
1 1 1 1 1 1 2
2 2 3 3 3 3 5
3 3 5 6 6 6 10
I 5 10 i2 13 13 20
5 7 16 21 24 24 36
6 11 29 40 w7 48 65
7 15 L5 67 83 86 110
8 22 75 117 152 160 185
9 30 115 193 263 282 300
10 42 181 319 457 500 481
11 56 271 510 768 859 752,
12 77 413 818 1292 1479 1165
13 101 605 1274 2118 2485 1770
14 135 895 1983 3462 4167 2665
i5 176 1291 3032 5564 6879 3956
16 231 1866 3610 8888 11297 5822
17 297 2648 6915 14016 18334 8470
18 385 3760 10324 21937 29601 12230
19 490 5260 15235 34081 47330 17490
20 627 7352 22371 52552 75278 20842
21 792 10160 32554 807331 1 18794 35002
22 1002 14008 47119 1 22078 1 86475 49010
23 1255 19140 67689 1 84161 2 90783 68150
24 1575 26085 96763 2 76303 L 51194 9h235
25 1958 35277 1 37404 4 11870 6 96033 1 29512
26 2436 47575 1 94211 6 10818 10 68745 1 77087
27 3010 63753 2 72939 9 00721 16 32658 2 LOBLO
28 3718 85175 3 81872 43 21848 24 83234 3 26015
29 L5651 13175 5 31576 19 29981 37 59612 4 39190
30 5604 1 49938 7 36923 28 05338 56 68963 5 85128
31 6842 1 97686 10 16904 40 58812 85 12309 7 868ilL
32 8349 2 59891 13 97853 58 47966 127 33429 10 46705
33 10143 3 40225 19 13561 83 90097 189 74973 173 86930
3 12310 4 44135 26 10023 281 75955 18 31085
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