
MULTIDATABASE CONCURRENCY CONTROL

By

GLENN RAY THOMPSON

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1974

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1976

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 1987

.,

. '

The.s\:~
\C) 'S'1 C)

TL1'7t~
C.o t'' Ql..

MULTIDATABASE CONCURRENCY CONTROL

Thesis Approved:

~er

tl

Dean OfheGraduate College

ii

C 0 P Y R I G H T

By

Glenn Ray Thompson

December, 1987

PREFACE

I would like to express my sincere appreciation to my

research advisor, Dr. Yuri Breitbart, for all of his encour

agement and guidance. My gratitude also goes to the other

members of my committee, Dr. George Hedrick, Dr. Michael

Folk, and Dr. Daryl Nord, for their valuable comments during

the preparation of the manuscript.

I would like to thank Amoco Production Company for

allowing me to use the resources of the Tulsa Research

Center to complete my course work and dissertation. Thanks

goes to the members of the Database Research Group, Pete

Olson, Bing Vassaur, George Thomas, Steve Lee, Tom Reyes,

and Hector Morales for many productive brainstorming ses

sions. Thanks also to the members of the PROFS Group for

putting up with my many questions about document prepara

tion.

A special thanks to Dr. Avi Silberschatz for valuable

discussions early in my research.

Finally, a heart felt thank you goes to my wife, Vicki,

for years of love and support, and to my son, Jeffrey, for

allowing me to work at home when I know he had playing foot

ball on his mind.

iii

Chapter

I.

II.

III.

IV.

v.

TABLE OF CONTENTS

INTRODUCTION.

Heterogeneous Database Problem •
Taxonomy of Distributed Database
Comparison of Existing Systems .
Objectives and Scope • . . • . •

MULTIDATABASE MODEL AND DEFINITIONS •

.
Systems

.

Model . • • • • • • • • •
Global Components. • ••
Local Components . • • • • • •
Global Subtransactions • • • . •
Global Database Consistency.
Global Deadlock. • . •...•.••••

A MULTIDATABASE SYSTEM.

Page

1

1
4
9

13

17

17
21
25
26
28
31

40

MOBS General Architecture. • • • • • • • 40
Update Algorithm . • • . . • . • • • 44
Correctness of the Update Algorithm. . . . • 56

A DISTRIBUTED MULTIDATABASE SYSTEM. 59

ADDSNET General Architecture . • 61
Data Dictionary. . • . • • • • • . . • . . . 62
Logical Network. • • . • • • • • . . • • 65

Logical Network Components. . • • • 67
Network Controller . • • • • • • • 67
Network Interface. . . 67
Network Definition . • • • • • • • 69

Logical Network Protocols • • • • • 69
Session Protocol . . • • • • • 71
Message Protocol • • • • • . . . • 71
Broadcast Protocol • • • • 71

SUMMARY AND RECOMMENDATIONS • • 73

S umm.a r y 7 3
Recommendations for Further Research • • 74

iv

Chapter

SELECTED BIBLIOGRAPHY ••

APPENDIX - ABBREVIATIONS AND ACRONYMS.

v

Page

77

81

LIST OF FIGURES

Figure

1. Geographic Distribution of Data Within a
Corporation . • • • • . . • • • •

2. Logical Database Distribution ..

3. Physical Database Distribution ..

4. Integrated Database Distribution •.

. .
. . . .

Page

3

5

6

8

Sa. Comparison of Multidatabase Systems, Part A • . 10

Sb. Comparison of Multidatabase Systems, Part B . . 11

6. Multidatabase Model •...

7. Local Resource Allocation Graphs.

8. Local Resource Allocation Graphs with
MOBS Synchronization .•••.•••

9. Deadlocked Transactions of Figure 7

10. MD~S Architecture ...

lla. Site Graph With No Cycles

llb. Site Graph With A Cycle .•

12. Transaction Processing Algorithm ..

13. Site Selection Algorithm.

14. Site Graph Algorithm •••.

15. Transaction Commit Algorithm.
16. Transaction Rollback Algorithm •••.

17. ADDSNET Architecture •.

18. ADDS CDB Definitions ••

vi

20

33

35

37

41

46

46

47

51

53

54

55

60

62

Figure

19. ADDSNET Logical Network Model
(Extended OSI Model) ••..•

_ 20. Sample Logical Network Session .•

vii

Page

66

70

CHAPTER I

INTRODUCTION

Heterogeneous Database Problem

Data accessibility is important for the successful

operation of any corporation. Historically, however, it has

been difficult for individuals to locate and access data

within different departments of their own organizations. In

many cases, data within an organization is controlled by

different database management systems {DBMSs). Some DBMSs

are better suited for scientific and engineering applica

tions, while other DBMSs are better suited for business

applications. Also, some DBMSs are used simply because of

personal preference. Therefore, accessing data from dif

ferent sources within a corporation usually represents a

difficult and specialized task. For these reasons, multida

tabase research has increased in the past several years

{Breitbart and Tieman, 1985; Ferrier and Stangret, 1983;

Landers and Rosenberg, 1982; Litwin et al., 1982; Pu, 1986;

Staniszkis et al., 1985; Yu et al., 1985).

Ideally, a multidatabase system {MOBS) supports access

to preexisting heterogeneous distributed databases using a

1

global database model and a global query language (Thompson

and Breitbart, 1986). A global database model does not

require the user to know the location or understand the

characteristics of the physical data. A global query lan

guage allows users to access multiple preexisting databases

in a single query. Knowledge of the intricacies of the

2

_DBMSs supporting the physical data is not required. Several

prototype multidatabase retrieval systems have been devel

oped and some of these prototypes have been deployed suc

cessfully in industry (Breitbart and Tieman, 1985; Landers

and Rosenberg, 1982). A more detailed explanation of a mul

tidatabase system and appropriate terminology is provided in

Chapter II.

The multidatabase approach is not the only technique

for solving the problems described above. Another solution

involves the migration of data to a common DBMS, thereby

reducing the complexity of accessing the data (Staniszkis

et al., ,1985). If data movement from one geographic loca

tion to another is required, the problem again becomes a

complex one. Therefore, conversion to a homogeneous dis

tributed DBMS (DDBMS) seems to be the perfect solution to

the problem. However, migration of data and application

programs to a DDBMS may represent an enormous expenditure of

resources, which most organizations are unwilling to allo

cate. Migration to a DDBMS also defeats the arguments, men

tioned previously, for maintaining different DBMSs.

USERS

DATA

•
• •

USERS

DATA

USERS

NETWORK

DATA

USERS

DATA

Figure 1. Geographic Distribution of Data
Within a Corporation

In many cases, data is distributed geographically

throughout different branches of a corporation {see

Figure 1). This situation complicates matters when it is

3

4

necessary to retrieve the data. However, if physical commu

nication paths are established among the sites involved, the

data can usually be maneuvered to the appropriate locations

for manipulation. If similar requirements exist for users

at several locations, the deployment of a distributed multi

database system may be appropriate (Thompson and Breitbart,

1986).

A distributed multidatabase system has several advan

tages over multiple autonomous multidatabase systems:

(1) reduces data transmission with enhanced query optimiza

tion and localized processing of intermediate query results,

(2) establishes a vehicle for data access synchronization,

(3) provides better distribution of data processing loads

and costs, and (4) eliminates unnecessary direct communica

tion paths to data sources. Chapter IV contains a discus

sion of several design aspects of distributed multidatabase

systems.

Taxonomy of Distributed Database Systems

In general, DBMSs utilize different data models, such

as the hierarchical (Tsichritzis and Lochovsky, 1976), rela

tional (Codd, 1970), and network (Bachman and Williams,

1964) models. A variety of different local area and wide

area networks may also be utilized to access distributed

databases from remote locations (Cole, 1987; Thompson,

1984). However, DDBMSs usually fall into one of three

classes based on the methods of data management and distri

bution that are utilized (Thompson and Breitbart, 1986). A

DDBMS classification scheme is described below •

• • •

DBMS

PROTOCOL: DBMS ~DATA

Figure 2. Logical Database Distribution

5

Class 1, logical database distribution (Figure 2), is

characterized by a centralized DBMS managing data distrib-

uted among several locations. Each location contains sup-

port software for data access by the central DBMS.

,
DATA

• •
• DATA

NETWORK

DATA

PROTOCOL: DBMS ~DBMS

DATA

Figure 3. Physical Database Distribution

6

The logical database distribution model requires the

development of data access communication protocols. Most

multidatabase systems (e.g. ADDS (Breitbart and Tieman,

1985) and MULTIBASE (Landers and Rosenberg, 1982; Smith et

al., 1981)) fall into this category.

Class 2, physical database distribution (Figure 3), is

·characterized by multiple distributed DBMSs, each cont-

rolling access to localized data. Each DBMS operates in a

peer-to-peer relationship with all other DBMSs in the net

work. This technique requires the development of DBMS-to-

DBMS communication protocols. System R* (Lohman et al.,

1985) and SDD-1 (Bernstein et al., 1981) are examples of

7

homogeneous DBMSs that utilize the physical database distri-

bution technique for accessing distributed data. Heteroge-

neous SIRIUS-DELTA (Ferrier and Stangret, 1983; Litwin et

al., 1982) also uses this technique for data access in a

local area network.
,

Class 3, integrated database distribution (Figure 4),

is characterized by multiple distributed DBMSs, each cont-

rolling access to a mixture of local and geographically dis-

tributed data. Access to geographically distributed data in

this category may not be available through the primary net-

work used for DBMS-to-DBMS communication. As with physical

database distribution, each DBMS operates in a peer-to-peer

relationship with all other DBMSs in the network. This

model requires the development of DBMS-to-DBMS and data

access communication protocols. The architecture of the

ADDSNET system (Thompson and Breitbart, 1986) is an example

of a multidatabase system that utilizes this technique for

accessing distributed data. Some of the components of the

ADDSNET system are discussed in Chapter IV.

• • •

DATA • • • DATA

DATA • • • DATA

NETWORK

DATA • • • DATA

DATA • • • DATA

PROTOCOL: DBMS ~DBMS
DBMS~DATA

Figure 4. Integrated Database Distribution

8

9

A number of multidatabase systems exist that utilize a

variety of database models and design techniques. Katz

(1981) applies a taxonomical classification scheme to multi

database systems. In his paper, Katz refers to a "local

database" as a physical database from which data is to be

retrieved and manipulated. He also refers to a ''global data

-model" as the data model applied to a logical database which

consists of one or more fragments of the local databases.

His classification of multidatabase systems is based upon

the level of freedom of the global data model (i.e. Does the

system support one or multiple global data models?), the

level of integration of the local databases (i.e. Are the

local databases integrated into a single global database?),

and the degree of overlap supported for integrated local

databases (i.e. Does the system support data fragmentation

and replication?).

Comparison of Existing Systems

In this section, the characteristics of several multi

database systems are examined. These systems include ADDS

(Breitbart et al., 1984: Breitbart and Tieman, 1985: Breit

bart et al., 1986), DOTS (Devor and Weeldreyer, 1980),

MERMAID (Templeton et al., 1983: Yu et al., 1985), MULTIBASE

(Landers and Rosenberg, 1982: Smith et al., 1981), NOMS

(Staniszkis et al., 1985), POLYPHEME (Adiba et al., 1980;

Decitre and Andre, 1980), and Heterogeneous SIRIUS-DELTA

(Ferrier and Stangret, 1983: Litwin et al., 1982).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

SIRIUS-
Features MULTI BASE DDTS DELTA

Data transparency supported? y y y

Global data model Daplex ECR Rel

Local data models supported Network Rel Rel
Rel

Hierarch

Preexisting databases y N N
supported?

User interfaces:
- Interactive? y y y
- Programming language? N N N

Views supported? y y y

Query processing: ·
- Separation of global and y y y

local optimization?
- Take only transmission y y y

costs into account?
- Use semijoins? y y N

Updates supported? N y y

Two-phase locking? N y y

Deadlocks avoided (A), - A A
detected (D)? How? prevent prevent

Replicated data supported? y y y

- Update method for copies - write-all write-all

Two··phase commit? N y y

Distributed multidatabase N N y
system?

Type of networks supported LAN and LAN and LAN
WAN WAN

Figure Sa. Comparison of Multidatabase Systems,
Part A

10

MERMAID

y

Rel

Rel

y

y
N

y

y

y

y

N

N

-

y

-
N

N

LAN

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Features POLYPHEME NDMS ADDS

Data transparency supported? y y y

Global data model Rel Rel Rel

Local data models supported Rel Network Network
Rel Rel

Hierarch Hierarch

Preexisting databases y y y
supported?

User interfaces:
- Interactive? y y y
- Programming language? y y y

Views supported? N y y

Query processing:
- Separation of global and y y y

local optimization?
- Take only transmission y N y

costs into account?
- Use semijoins? N y y

Updates supported? N y N

Two-phase locking? N N N

Deadlocks avoided (A), - D -
detected (D)? How? time-out

Replicated data supported? y y y
- Update method for copies - - -
Two-phase commit? N y N

Distributed multidatabase N N N
system?

Type of networks supported Cyclades X.25 LAN and
LAN WAN

Figure Sb. Comparison of Mu1tidatabase Systems,
Part B

11

12

Several multidatabase features are of primary concern.

Among these are preexisting database support, concurrency

control, and distributed system support. Figure 5 contains

a tabular comparison of the multidatabase systems mentioned

above. The comparisons made are based upon the most recent

information available to the author for these systems.

Also, some information for the comparisons is taken from

Ceri and Pelagatti (1984, pp. 361-385).

Figure 5 indicates that three of the systems examined

support update transactions: NDMS, DDTS, and Heterogeneous

SIRIUS-DELTA. However, there are significant differences

between these systems and the multidatabase model and tran

saction processing algorithm discussed in Chapters II and

III.

The architectural philosophy of NDMS differs greatly

from the multidatabase model discussed in Chapter II. NDMS

provides distributed processing primitives, such as SEND and

RECEIVE, for distributed transaction processing. The log

ical components (or subtransactions) of a distributed tran

saction must be written in the language of the local DBMS

and the components must communicate using the supported

primitives. NDMS does not provide a distributed concurrency

control mechanism for maintaining the consistency of a

global database. Transaction recovery is managed manually

by restoring the global database from a historical journal.

NDMS is implemented as a centralized multidatabase system,

13

supporting access to databases on the MVS 1 and VMS 2 systems.

Heterogeneous SIRIUS-DELTA requires that modifications

be made to the local DBMSs to bring the functionality of the

local DBMS up to the level of a common "pivot system".

Also, local transactions are not permitted outside of the

control of the multidatabase system. The "pivot system" on

-each of the local DBMSs supports transaction commit and

recovery algorithms. Heterogeneous SIRIUS-DELTA is imple-

mented as a distributed multidatabase system, supporting

access to databases on Honeywell 3 computing systems and var-

ious microcomputers.

The DDTS system uses information contained in the con-

currency control mechanisms of the local DBMSs to construct

its global two-phase locking concurrency control scheme.

The local DBMSs are required to support a two-phase locking

protocol and modifications to each local DBMS are required

to supply appropriate lock information to the global concur-

rency control mechanism. DDTS is implemented as a central

ized multidatabase system, supporting access to databases on

Honeywell 3 computing systems.

Objectives and Scope

As stated previously, a large amount of research

recently has been conducted in the area of multidatabase

1 MVS is a product of the IBM Corporation.
2 VMS is a product of the Digital Equipment Corporation.
3 Honeywell, Incorporated.

14

systems. However, the problem of updating semantically

related data located in preexisting databases has not been

addressed sufficiently (Breitbart et al., 1987b). Pu (1986)

requires that the multidatabase system be made aware of

local transaction execution. Making the MOBS aware of local

transaction execution requires changes to the local concur

rency control mechanisms to enable the local OBMSs to report

local transaction execution information to the MOBS. The

MOBS uses this information for local and global transaction

synchronization. Introducing such changes allows any two

OBMSs to communicate with each other and, therefore, reduces

the multidatabase concurrency control problem to the concur

rency control problem in homogeneous distributed database

management systems.

Another assumption that is frequently made is that

retrieve-only multidatabase systems do not require a concur

rency control mechanism, since the probability of inconsis

tent retrievals in the presence of local transactions is

quite low (Landers and Rosenburg, 1982). In (Breitbart et

al., 1987a), it is shown that while the probability of

inconsistent retrieval may be low, it is still possible.

Gligor and Popescu-Zeletin (1985) discuss several inhe

rent difficulties of the update problem in a multidatabase

system. These problems are outlined below.

1. Generating and executing subtransactions based on the

global transactions submitted to the MOBS,

15

2. Maintaining global transaction and subtransaction atom

icity,

3. Preserving global database consistency, and

4. Avoiding global deadlocks.

The two main objectives of this study are (1) the

design of an algorithm for performing database updates in a

centralized multidatabase system that solves the problems

listed above and (2) the design of a general architecture

for distributed multidatabase systems. The multidatabase

update problem involves (1) determining the restrictions, if

any, that must be applied to global and local transactions

and (2) providing an algorithm that performs consistent exe

cution of global and local transactions. The distributed

multidatabase system components discussed in this study are

the data dictionary and the interconnection network.

The characteristics of transaction execution in a mul

tidatabase system are examined in this study. The model of

a multidatabase system outlined in (Breitbart et al., 1987b~

Thompson and Breitbart, 1987) and formalized in (Breitbart

and Silberschatz, 1987c) is provided in Chapter II. The

model serves as a basis for our results presented in Chap

ters III and IV, and is similar to the database model

16

described in (Bernstein and Goodman, 1984~ Bernstein and

Goodman, 1985) The multidatabase update model characterizes

the types of transactions permitted and describes the condi

tions for preserving global database consistency. The

problem of global deadlock is also discussed in Chapter II.

The main results of this study are presented in Chap-

-ters III and IV. Chapter III describes an algorithm that

permits a multidatabase system to update semantically

related data items while retaining global database consis

tency in the presence of global and permitted local transac

tions. Chapter IV proposes an architecture for a distrib

uted multidatabase system and also proposes solutions to the

problems of distributed data dictionary and network manage

ment. Chapter V provides a summary of the study and recom

mendations for further research. The Appendix describes the

abbreviations and acronyms used throughout the study.

CHAPTER II

MULTIDATABASE MODEL AND DEFINITIONS

Model

A multidatabase system consists of two or more data

bases, possibly distributed, which are controlled by one or

more DBMSs (Breitbart et al., 1987b; Breitbart and Silber

schatz, 1987c; Thompson and Breitbart, 1987). An MOBS

allows users to manipulate data contained in the databases

without modifying current database applications and without

migrating the data to a new database. An MOBS also creates

the illusion of logical database integration without

requiring physical integration of the databases. For simpl

icity, the intricacies of the DBMSs and data access methods

are transparent to the user.

To provide a facility that is acceptable to the end

users, as well as the application programmers, an MOBS

should adhere to the following principles.

1. No modifications to the local DBMS software to accommo

date the MOBS are permitted.

2. The autonomy of the local databases are maintained.

17

18

Preventing changes to the DBMS software is an important

issue. Modifying the DBMSs to interact with the MDBS puts a

heavy burden on the MDBS developers when support for a new

DBMS is added. These changes may also create difficult

problems, both in maintaining current applications and in

maintaining the DBMS software.

The concept of local autonomy requires that existing

local transactions be allowed to execute as if the MDBS were

not present. Local autonomy also requires that DBMS mainte

nance and performance tuning be allowed to continue as

usual.

Since changes to the local database software are not

permitted, the DBMSs treat the global subtransactions and

the local transactions equally. Also, the local DBMSs,

should perform their operations without the knowledge of

other DBMSs and the MDBS. Therefore, local autonomy require

ments make the update problem in a multidatabase system sig

nificantly different from the update problem in a homoge

neous DDBMS.

In a homogeneous DDBMS, when global transactions are

submitted, the sites involved in the execution of the tran

sactions communicate to guarantee consistent execution of

the transactions. However, this is not the case for the

execution of global transactions in a multidatabase system.

We assume that the only communication between the MDBS and

the local DBMSs is in the form of query submission from the

19

MOBS to the OBMSs and data transmission from the OBMSs to

the MOBS.

In a multidatabase system where only~global transac

tions are permit ted, homo~~Oj!§.~Q1?..~-~..§.....£.<2E.£~.E.!~.!:EY-~2~IJ.t: .. ~~

~Jg_~-~-f?M . ._!:ll.l!LE~~.<~~219..Y,~ .. 9· However, from a practical

standpoint, this restriction significantly diminishes the

usefulness of the system. Users should be allowed to submit

transactions outside of the control of the MOBS. Permitting

the execution of some types of local transactions may create

semantic inconsistencies in the global database. An example

of such a local transaction is described below.

If a global database contains replicated data, the

copies of the data should not be updated by local transac-

tions. Consider, for example, a global database that con-

tains global data item x which has a copy at site A and

site B. If a local transaction is submitted at site A that

changes the value of x, the global database becomes incon-

sistent, since the value of x is no longer the same at both

sites. Therefore, for a multidatabase system, it is clea~

that the execution of local transactions that modify local

copies of replicated data items must be prohibited.

In this chapter, the mathematical model for performing

updates in a multidatabase system constructed in (Breitbart

and Silberschatz, 1987c) is described. The model consists

of global and local components and uses the notion of one

copy serializability (Attar et al., 1982) to define global

database consistency. Figure 6 illustrates the relation

ships among the major components of the model.

LOCAL
TRANSACTIONS

LOCAL
DATABASE

GLOBAL
TRANSACTIONS

MULTI DATABASE
SYSTEM

• • •

LOCAL
DATABASE

LOCAL
TRANSACTIONS

Figure 6. Multidatabase Model

The following assumptions are made about a multidata

base system.

20

1. The MOBS guarantees serializable global transaction

execution.

2. The local DBMSs guarantee serializable local transac

tion execution.

3. Modifications to the local DBMS software are not per

mitted.

4. No communication exists among the local DBMSs.

The remainder of this chapter formalizes a multidata

base model based on these assumptions.

Global Components

21

The global database consists of a set of data items,

denoted by x, y, z, •••. We treat the data items as

abstractions. In practice, the data items may be files,

relations, or records (Berstein and Goodman, 1981; Bernstein

and Goodman, 1984). The global operations defined on the

global database are read(x), which returns the current value

of some data item x, and write(x), which assigns a new value

to data item x. Read(x) is denoted by r[x] and write(x) is

denoted by w[x]. The read and write operations may also be

referred to as atomic actions.

The global database system (or MOBS) processes read and

write operations on data items in the global database.

Interaction with the global database is performed by user

22

programs called global transactions. A global transaction

consists of a sequence of read and write operations on items

in the global database. Example 1 provides samples of

global transactions. The notation r. [x] and w. [x] is used
l l

to associate a read or write operation with a global tran-

saction T., where xis the data item referenced by T ..
l l

Example 1

Global Database: x, y, and z

Global Transaction Tl: w1 [x] rl[y] wl[y]

Global Transaction T2: w2[x] r 2[z] w2[z]

Global Transaction T3: r 3 [x] r3[y]

0

In this discussion, a global transaction is considered

to be a processing program. We also assume that global

transactions are independent and do not communicate with

each other.

The read set of a transaction is defined as the set of

database items read by the transaction and the write set of

a transaction is the set of database items written by the

transaction. The write set of a read transaction is empty

and the write set of a write transaction contains at least

one item. In Example 1, T1 and T2 are write transactions

and T3 is a read transaction.

23

Each global transaction executes as a unit. That is,

_either a transaction runs to completion or it does not run

at all. We further assume if transaction Ti reads and

writes x, then operation ri[x] occurs before operation wi[x]

in the execution of the transaction. We also assume that no

transaction reads or writes a data item more than once.

The isolated execution of a global transaction sub

mitted to the MDBS maintains global database consistency.

Given a set of global transactions, T1 , T2, ••. , the MDBS

may execute them serially, that is, for every pair of tran-

sactions Ti and Tj either all of Ti's operations precede all

of Tj's or vice versa. Serial execution of only global

transactions guarantees global database consistency.

The interleaved execution of atomic actions from dif-

ferent global transactions makes it necessary to introduce

the notions of equivalent global schedules and serializable

global schedules. Let T1 , T2, ••• be a set of global tran-

sactions. global schedule over T1 , T2 , ••• as a
·• -·oo--.• -.. • •••. ··~·

sequence S of atomic actions of the transactions such that

the relative order of the atomic actions for each transac-

tion Ti is retained in s. Example 2 illustrates what is

meant by a global schedule.

Example 2

The following sequence of operations is a global

schedule for the set of global transactions in Example 1.

D

Let S be a global schedule over global transactions

T1 , T2, •••• Transaction Ti reads-x-from Tj ins if

(Attar et al., 1982; Bernstein and Goodman, 1985):

24

(l. Wj[x] and ri[x] are global operations ins,

/ 2. Wj[x] precedes ri[x] in S,

\
\\3. No wk[x] falls between operations wj[x] and ri[x].

In Example 2, T3 reads-x-from T1 and T3 reads-y-from T1 •

Two global schedules over transactions T1 , T2 , ... are

equivalent if for all i, j, and x, T. reads-x-from T. in one
1 J

schedule, if and only if, Ti reads-x-from Tj in the other

schedule. A global schedule is serializable if it is equi-

valent to some serial global schedule.

The schedule illustrated in Example 2 is equivalent to

the serial sc_he!!.u.:.!~_T 1 T 3 T 2 . We use ser ializabili ty as the
~ ~-----.,,, .. ---"

correctness criteria for the global and local concurrency

control mechanisms.

A global serialization graph (Bernstein and Goodman,

1985) for a global schedule S is a directed graph whose

nodes represent global transactions and whose arcs are

{T. ~ T. I there exists operation o. in T; and operation 0.
1 J 1 ... J i\

in T., such that o. conflicts with o. and o. occurs before 1
J 1 J 1

o. ins}.
J

25

Theorem 1 (Bernstein and Goodman, 1985)

If a global serialization graph for a schedule S is

acyclic then S is serializable.

Local Components

The sites of the multidatabase system are a collection

of data locations, possibly distributed, denoted by a, b, c,

A replicated data item has two or more copies,

denoted by xa' xb' xc' ..• , at sites a, b, c, .•••

A local database is a set of data items, denoted by xa'

Ya' za' ••• , located at the same site a. The local opera-

tions defined on the local databases are read{xa) which

returns the current value of some data item xa and write{xa)

which assigns a new value to data item xa. Read{xa) is

denoted by r[xa] and write{xa) is denoted by w[xa].

A local database system {or DBMS) processes read and

write operations on data items in a local database. A local

transaction is a sequence of local read and write operations

on items in a single local database. A singular transaction

is a loca~ transaction that operates only on non-replicated

data items. Read transactions and singular write transac-

tions are the only local transactions permitted. This

restriction on local transactions is required to maintain

the consistency of replicated data items and is discussed in

greater detail in Chapter III.

26

The definition of local schedule, serializable local

schedule, equivalent local schedules, and the correctness of

local database concurrency control are the same as the cor

responding global definitions, given in the previous section

of this chapter, with the replacement of the word "local"

for the word "global".

Global Subtransactions

Let x be a replicated data item with copies located at

sites a, b, and c. When a global transaction executes oper

ation r[x], it is sufficient to read the value of x at a

single site. When global operation w[x] is executed, the

copies of x at all sites, a, b, and c, must be written.

To formalize the relationship between global and local

operations, we define a translation function. The transla

tion function F(t) maps each global operation r[x] in t onto

local operation r[xa] for some copy xa of x, and each global

operation w[x] in t into local operations w[xa1], ••• ,

w[xam] for all copies xal' ••• , xam of x. Applying function

F to a global transaction generates a sequence of operations

to be performed on the local databases.

Example 3

Consider the global database of Example 1 consisting of

data item x located at site 1, data item y located at sites

2 and 4, and data item z located at site 3. Applying trans-

lation function F to schedule S in Example 2 may yield the

following schedule.

F(S) = wl[xl] r3[xl] rl[y2] w2[xl] wl[y2] wl[y4]

r2[z3] r3[y2] w2[z3]
'

Notice that operation r 1 [y 2] or r 1 [y4] may be chosen to

_replace operation r 1 [y] in schedule s.

0

27

A subtransaction is a sequence of local operations for

a single site which have been derived from a single global

transaction. Only one subtransaction is generated for each

site from a single global transaction. To assist in gener-

ating the subtransactions for a global transaction, we

define a projection function. The projection function P(s)

groups the local read and write operations in s into

sequences of operations, one operation sequence for each

site. The result is a set of local operation sequences,

where each local operation sequence contains read and write

operations for a single site. P(F(T)) yields all subtran

sactions of global transaction T. The projection of a

schedules on a site i, Pi(s), yields a sequence of local

operations containing read and write operations only for

site i.

Example 4

Applying projection function P to the result of

Example 3 yields the following set of schedules.

28

P(F(S)) = {wl[xl] r3[xl] w2[xl], rl[y2] wl[y2] r3[y2],

r2[z3] w2[z3], wl[y4]}

0

Global Database Consistency

The following discussion of global database consistency

is taken from (Breitbart and Silberschatz, 1987c).

Given a set of global transactions, the execution of

these global transactions in the absence of any other tran

sactions at the local sites, is equivalent to the execution

of a set of global subtransactions that are generated using

the translation function F and the projection function P,

discussed in the previous section. Preservation of global

database consistency is based on the assumption that the

MDBS produces serializable schedules of global transaction

execution. This definition of global database consistency

can be extended to include the execution of local transac-

tions at multiple sites.

Let G be a set of global transactions and let L be a

set of local transactions executed at one or more sites.

Breitbart and Silberschatz define an operator Q on the oper

ations of the local transactions, such that

Q(r.(x.))
J ~

= rj(x) and

Q(w.(x.)) =
J ~

where i represents the site containing data item x and j

identifies a local transaction.

Example 5

29

Applying operator Q to the subtransactions of global

transaction T2 in Example 4 yields the global operations of

the original transaction.

0

Applying operator Q to each operation of the local

transactions in L yields a system G' of global transactions.

Breitbart and Silberschatz argue that the execution of the

transactions in G and L retain global database consistency

if, and only if, there is a serializable global schedule for

{G union G'} that is computationally equivalent to the exe-

cution of G by the MDBS and L by the local DBMSs.

If the execution of the global transactions in both G

and G' are controlled by the MDBS, then generating a seria-

lizable global schedule for a multidatabase system is equi-

valent to generating a serializable global schedule for a

homogeneous DDBMS. However, the MDBS does not control the

execution of the transactions in G', based on the assump-

tions of the model. The problem remains that the MDBS con-

currency control algorithm must produce a serializable

schedule for the execution of the global transactions in

30

{G union G'} without any knowledge of G'. Under these con

ditions, inconsistencies can be introduced into the global

database if the transactions in G' contain operations that

conflict with operations of the transactions in G.

Breitbart and Silberschatz state that, in a multidata

base system, there are two cases where the execution of

local transactions may violate global database consistency.

1. A local transaction changes the value of a replicated

data item at only one site.

2. Local transactions contain operations that conflict

with the operations of global transactions.

Theorem 2 specifies the conditions for global database

consistency in a multidatabase system. The correctness of

the theorem depends on the assumption that the local DBMSs

produce serializable schedules of local transaction execu

tion.

Theorem 2 (Breitbart and Silberschatz, 1987c)

Let G be a set of global transactions and L be a set of

local transactions executed at sites 1, ••• , k. The execu

tion of the transactions in the set {G union L} retains

global database consistency if the following conditions

hold.

31

1. The local transactions from L are either read

transactions or singular write transactions.

2. There exists a total ordering of transactions from G,

such that for each pair of atomic

from different local transactions

operations oi and oj

ST. and ST. that are
1 J

projections of global transactions Gi and Gj' operation

Oi precedes operation Oj in any local schedule if, and

only if, Gi precedes Gj in the total ordering.

Global Deadlock

In order to formalize the concept of global deadlock

(Gligor and Popescu-Zeletin, 1985), it is necessary to

introduce the notion of a global resource allocation graph

and a global wait-for graph.

A resource allocation graph consists of a pair

RAG= (V,E), where Vis a set of vertices and Eisa set of

edges (Holt, 1971; Holt, 1972; Peterson and Silberschatz,

1983). The set of vertices consists of local data items and

transactions that are either waiting for or holding locks on

local data items. The set of edges consists of all edges

Ti ~ x, where transaction Ti has requested a lock on data

item x which is already locked by another transaction, and

all edges x ~ Ti' where Ti owns a lock on data item x. Con

flicts among both shared and exclusive locks are considered

32

here. We assume that a shared lock (read lock) is obtained

prior to reading a data item and an exclusive lock (write

lock) is obtained prior to writing a data item.

A wait-for graph (WFG) is a simplification of the

resource allocation graph, where the set of vertices con-

sists only of transactions that are either waiting for or

holding locks on local data items (Holt, 1971; Holt, 1972;

Korth and Silberschatz, 1986; Peterson and Silberschatz,

1983). The set of edges consists of all edges T. ~ T.,
~ J

where transaction Ti has requested a lock on a data item

which is already locked by T .. An edge of the form
J

Ti ~ w ~ Tj in a resource allocation graph is represented by

the edge T. ~ T. in a wait-for graph.
~ J

When transactions are allowed to hold one or more locks

on data items while requesting additional locks, the possi-

bility of transaction deadlock exists. Intuitively, a dead-

lock condition occurs when a set of transactions exists such

that every transaction in the set is waiting for another

transaction in the set (Korth and Silberschatz, 1986). A

cycle in a resource allocation graph or a wait-for graph

indicates the presence of a deadlock condition. If there

are no cycles in the graph, then a deadlock condition does

not exist. When a deadlock is discovered, at least one of

the transactions involved in the cycle must be killed and

the effects of the transactions on the database must be can-

celed.

33

A local resource allocation graph (LRAG) consists of

vertices and edges representing the data item allocation

conditions among local transactions and global subtransac

tions at a single site. Accordingly, a local wait-for graph

(LWFG) consists of only local transactions and global sub

transactions at a single site (Ceri and Pelagatti, 1984,

_pp. 219-225). These graphs are maintained by the local

DBMSs and are unavailable to the MOBS. Figure 7 contains

sample local resource allocation graphs for sites 1 and 2,

global transactions T1 and T2 , and local transactions L3 and

The notation T. . defines the subtransaction of global
~.J

transaction Ti executing at site j.

LRAG SITE 1 LRAG SITE 2

0 0 0
Figure 7. Local Resource Allocation Graphs

A global resource allocation graph (GRAG) is con

structed by merging the LRAGs for the set of local sites,

where each vertex in the GRAG appears only once. Vertices

of the type T. k and T .. , representing different subtran-
1. 1.]

34

sactions of the same global transaction, are merged into the

single vertex Ti. A global wait-for graph (GWFG) is con

structed by merging the LWFGs for the set of local sites in

much the same way as a GRAG is constructed (Ceri and Pela

gatti, 1984, pp. 219-225). LWFGs can be constructed from

Figure 7 by "collapsing" the edges of the LRAGs as described

in the definition of a wait-for graph. A GWFG can then be

constructed from the LWFGs. Notice that the GWFG for the

LRAGs in Figure 7 contains the following cycle.

A WFG, and accordingly a RAG, may also contain another

type of edge between global subtransactions executing at

different sites. This new edge appears in a graph when a

subtransaction at one site waits for the execution of a sub-

transaction at another site due to synchronization enforced

by the multidatabase system.

An example of this type of synchronization is the allo-

cation of server resources to global transactions, when only

a limited number of server resources are available. A

server is an MOBS process that executes a subtransaction for

35

one global transaction at a time. When a global transaction

requires a new server to continue execution and none are

available, the transaction must wait until another global

transaction releases a server.

LRAG SITE 1 LRAG SITE 2

0 0

Figure 8. Local Resource Allocation Graphs
with MDBS Synchronization

0

Figure 8 contains two local resource allocation graphs

which are joined by arcs, labeled with an R, between sub

transactions of T2 and T1 • These arcs indicate that the

MDBS is attempting to synchronize the execution of global

R

transactions T1 and T2 , in that order. The GWFG for the

LRAGs in Figure 8 contains the following cycles.

36

A global deadlock is defined to be a cycle in a global

resource allocation graph or a global wait-for graph. The

deadlock is undetectable because the local transactions are

not included in the graphs maintained by the MDBS and the

local database systems have no knowledge of transactions

executing at other sites. The reason for the undetectable

deadlock is that the MDBS is attempting to synchronize the

execution of global transactions, at the local sites, and

the local DBMSs have no knowledge of the global synchroniza-

tion strategy. In fact, any type of synchronization

enforced by the MDBS may cause a deadlock. Therefore, an

undetectable deadlock must be resolved by some method other

than simply maintaining the execution order of the global

subtransactions at the local sites.

Gligor and Popescu-Zeletin (1985) describe an undetec

table global deadlock in terms of global transactions that

reference replicated data items. However, Figures 7 and 9

illustrate a situation where an undetectable deadlock exists

involving two global transactions that reference only non-

replicated data items.

Global
Transaction T1

Subtransaction

Tl.l

Subtransaction

Tl.2

x rlock[x] x rlock[x]

x r[x] x r[x]

0 rlock[y] o rlock[y]

0 r [y] o r[y]

0 unlock[x,y] o unlock[x] 0 unlock[y]

Global
Transaction T2

Subtransaction

T2.1

Subtransaction

T2.2

x rlock[z] x rlock[z]

X r [z] x r[z]

0 rlock[w] o rlock[w]

0 r[w] o r[w]

o unlock[w,z] 0 unlock[w] o unlock[z]

Local Local
Transaction L3 Transaction L4

X rlock[w] x rlock[y]
x r[w] x r[y]
x rlock[x] x rlock[z]
X r[x] x r[z]
X wlock[w] X wlock[y]
X w[w] X w[y]
0 wlock[x] 0 wlock[z]
0 w[x] 0 w[z]
o unlock[w,x] 0 unlock[y,z]

Figure 9. Deadlocked Transactions of Figure 7

37

38

In Figure 9, the symbol "X" adjacent to an atomic

action indicates that the operation has been completed. The

symbol "D" adjacent to an atomic action indicates that the

operation has been requested but not completed.

Global transaction T1 reads data items x and y, and

global transaction T2 reads data items w and z. Local tran-

_saction L3 reads and writes data items wand x, and local

transaction L4 reads and writes data items y and z. In this

example, a read lock (rlock) is obtained before reading a

data item and a write lock (wlock) is obtained before

writing a data item. All read and write locks are released

when the transactions are committed.

The following local schedules represent the execution

order of the atomic operations of global transactions T1 and

T2, and local transactions L3 and L4 . These schedules pro

duce the deadlock situation illustrated in Figures 7 and 9.

The site indications for each data item and the read and

write lock indications have been eliminated from the sched-

ules for readability. The set of operations preceding the

symbol "I" in each schedule are completed. The set of oper

ations following the symbol "I" in each schedule cannot be

executed due to the global deadlock.

/~

Site l:(r1 [x] r 3 [w] r 3 [x] w3 [w] I r 2_[w] w3 [x]
~/ ,,~ "

Site 2: r 2 [z] r4[y] r 4[z] w4[y] I rl[y] ,w4[z]
/

The transaction processing algorithm described in

Chapter III prevents the chain of events that lead to the

creation of a global deadlock.

39

CHAPTER III

A MULTIDATABASE SYSTEM

In Chapter II, a model of transaction execution in a

centralized multidatabase system is discussed. In this

chapter, we propose an algorithm for maintaining global

database consistency in the presence of global and permitted

local transactions using the framework of the transaction

execution model. The correctness of the algorithm is dis-

cussed in the last section of the chapter. The ADDS system

(Breitbart and Tieman, 1985; Breitbart et al., 1987b) uti-

lizes the techniques described in this chapter for global ,

transaction execution.

MDBS General Architecture

A multidatabase system provides uniform access to

preexisting heterogeneous distributed databases. The ADDS

multidatabase system uses a relational data model and an

extended relational algebra query language to provide access

to distributed data. The local database schemas are mapped

into a relational global database schema as described in

(Breitbart et al., 1986) and the mappings are stored in the

data dictionary. The data dictionary also contains the

40

41

physical characteristics and location of the local data.

The only communication between the MOBS and the local DBMSs

is in the form of query submission and data retrieval. We

require that each of the local OBMSs utilize a concurrency

control mechanism that maintains local database consistency.

r----------1
I
I
I
I
I
I

DATA
BASE

GLOBAL
TRANSACTIONS

MOBS
,... --- -- --- - --,

GLOBAL
TRANSACTION

INTERFACE

GLOBAL
DATA

MANAGER

GLOBAL
TRANSACTION

MANAGER

DATA
BASE

•••

DATA
DICTIONARY

DATA
BASE

Figure 10. MOBS Architecture

42

Figure 10 illustrates the proposed layered architecture

of a multidatabase system and provides a more detailed look

at the multidatabase model contained in Figure 6 (Breitbart

et al., 1987b). Global transactions are considered to be

processing programs. The global transaction interface (GTI)

receives user transactions, ensures their syntactical cor-

_ rectness and generates a global execution plan.

The global data manager (GDM) uses the data dictionary

to determine the location or locations of the data refer-

enced by global transactions. The GDM is also responsible

for managing all intermediate data that is received from the

global transaction manager during transaction execution.

The global transaction manager (GTM) manages the execu-

tion of the global transactions. The GTM allocates a server

to a global transaction to process read and write operations ,

for data controlled by a single DBMS.
(

A server is a process that executes a single global

subtransaction. In this study, we assume that the MDBS has

an unlimited number of servers available for allocation. A

server has several responsibilities with respect to global

subtransaction execution.

1. Initialize the execution of a global subtransaction at

a local site.

2. Translate the global operations into the language of

the local DBMS for execution.

3. Manage data transfer between the local DBMS and the

GTM.

4. Interface local DBMS commit and abort processing with

MDBS commit and abort processing.

The GTM allocates one server to a global transaction

.for each of the sites referenced by the transaction. A

43

server allocated to a transaction is not released until the

transaction has completed execution at each site and the

results of the transaction have been committed or aborted by

the MDBS.

As operations are received from the global transac-

tions, the GTM sends the global operations to the appro-

priate servers. If a server is not allocated to a global

transaction for a particular site, the GTM allocates a ,

server to the transaction and passes the global operation to

the appropriat~ servers for execution.

When a global transaction completes execution, the GTM

instructs the servers allocated to the transaction, to

commit the updates to the local databases. The MDBS uses a

two-phase commit protocol in communication with the servers

to commit the results of a global transaction. The MDBS

does not require any specific commit protocol to be sup-

ported by the local DBMSs and assumes that any local DBMS is

capable of properly committing the results of local transac

tions. \If a global transaction must be aborted, the GTM
----..._.

44

instructs the servers to rollback the updates to the local

databases.

The layered MDBS architecture discussed here is

employed by the ADDS multidatabase system. The current ver

sion of ADDS is implemented under the VM/SP 1 operating

system. The local databases supported include IMS 2 , SQL/DS 3 ,

.Inquire4 , RIM5 , and Focus. 6 Communication with the local

DBMSs is accomplished using the SNA7 and Ethernet 8 networks.

The current ADDS network nodes include geographically dis-

tributed mainframes containing complete ADDS systems, as

well as, workstations (e.g., Sun 9 and Apollo10) containing

ADDS user interface software and connected by local area

networks.

Update Algorithm

The notion of a site graph (Thompson and Breitbart,

1987; Breitbart and Silberschatz, 1987c) is central to our

discussion of the MDBS update algorithm. We create a site

graph of a global transaction T by first determining the

1 VM/SP is a product of the IBM Corporation.
2 IMS is a product of the IBM Corporation.
3 SQL/DS is a product of the IBM Corporation.
4 Inquire is a product of Infodata Systems, Inc.
5 RIM is a product of the Boeing Computer Services Co.
6 Focus is a product of Information Builders, Inc.
7 SNA is a product of the IBM Corporation.
8 Ethernet is a local area network specification by the

Xerox, Intel, and Digital Equipment Corporations.
9 Sun Workstation is a registered trademark of Sun

Micros6stems, Inc.
1 Apollo Computer, Inc.

45

sites that contain copies of the global data items refer

enced by T and connecting them as nodes in a graph that has

exactly one path between any two nodes. The nodes of the

graph are connected by undirected edges labeled with the

transaction name T. The data structures for the graph are

not specified in this study. The reader is directed to (Aho

· et al., 1974) for implementation details of undirected

graphs.

Given a set of global transactions, if we combine a

site graph for each of the transactions into a single graph,

we obtain a site graph for the system of global transac-

tions. The next example illustrates the notion of a site

graph.

Example 6 (Breitbart et al., 1987b)

Consider a global database that contains data item x at

sites 1 and 2, data item y at sites 1 and 3, and data item z

at sites 2 and 3. Global transactions T1 and T2 are defined

in the following way.

The GTM may generate one of the following sequences of

local operations for each transaction.

or

The site graphs of Ti and T2 for each site selection are

shown in Figures lla and llb, respectively.

0

Figure lla. Site Graph With No Cycles

Figure llb. Site Graph With A Cycle

46

procedure PROCESS TRANSACTION(T, op, x, Q, n, s):
begin -
comment The PROCESS TRANSACTION algorithm synchro

nizes the exec~tion of global transactions in a
manner that maintains global database consistency.

let T be the global transaction from which the
global operation is derived, op be the global
operation to be performed, x be the global data
item referenced by op, Q be the set of sites
that contain a copy of x, n be the number of
elements in Q, and s be the sites currently
participating in the execution of T.

if op = 'COMMIT' then
begin
invoke COMMIT TRANS(T)
return
end

if op = 'ABORT' then
begin
invoke ROLLBACK TRANS(T)
return
end

if op = 'READ' then

else
invoke SITE SELECTION(T, - ~

Q, n, s)

begin
comment op = 'WRITE'
invoke SITE_GRAPH(T, Q, n, s)
end

if the site graph contains a cycle then
begin
let T' be the global transaction selected for

rollback.
invoke ROLLBACK TRANS(T')
if T = T' then

return
end

if Q is not a subset of s then
begin
comment Allocate the appropriate number of servers

to process the current operation.
allocate the number of servers defined by n minus

the number of elements in {Q intersect s}
end

send the global operation (T, op, x) to the servers
allocated to transaction T for the sites in Q

Figure 12. Transaction Processing Algorithm

47

48

The existence of a cycle in the site graph of a system

of global transactions may cause global database inconsis-

tency during the execution of read and write operations of

global and permitted local transactions. On the other hand,

in the absence of cycles in the site graph, the MDBS guaran-

tees correct execution of any mix of global transactions and

.permitted local transactions and also guarantees the absence

of global deadlocks (Breitbart and Silberschatz, 1987c).

The technique used by the MDBS to process read and

write operations for a system of global transactions is

described below. For all read and write operations, the GDM

uses the data dictionary to determine the sites that contain

a copy of the referenced data item.

During the initialization of a global transaction, the

transaction sends a BEGIN TRANSACTION message to the GTI ,

process and the GTI process assigns a unique identifier to

the transaction. The transaction is now free to submit

global read and write operations to the MDBS for execution.

Figure 12 describes the algorithm used by the GTM to process

the global operations of the global transactions. The com-

ponents of the transaction processing algorithm are

described below.

The PROCESS_TRANSACTION algorithm in Figure 12

describes the global transaction execution process for the

MDBS. The steps performed as each global operation (i.e.

read, write, commit, or abort) enters the system from the

49

global transactions is described. Servers are allocated to

process the read and write operations, as appropriate.

Upon receiving a read operation, the GTM invokes the

SITE_SELECTION algorithm which selects a site that contains

a copy of the data item to be read and that does not create

a cycle in the site graph. If a site is selected that meets

_this criteria, the read operation proceeds. Upon receiving

a write operation, the GTM adds all the sites that contain a

copy of the data item to the site graph. If the addition of

these sites to the site graph does not create a cycle, the

write operation proceeds.

If any of the sites that contain the data item do not

have servers allocated to the transaction, the GTM allocates

the required servers and sends the global operation to the

servers for execution. For example, if the transaction exe-,

cutes a w[x] operation and global data item x is replicated

at sites 1 and 2, the GTM sends the w[x] operation to the

servers responsible for accessing data items at sites 1 and

2 for the transaction.

After a server completes a read operation, the server

sends the data to the GTM process, which in turn sends the

data to the global transaction. After a server completes a

write operation, the server simply sends an acknowledgement

to the GTM process that the operation is complete and the

GTM sends an acknowledgement to the global transaction.

50

If the addition of the sites where the global operation

is to be performed creates a cycle in the site graph, one of

the transactions involved in the cycle is rolled back and

later restarted. Any one of several transaction restart

strategies may be used to select the global transaction to

rollback. The ADDS system rolls back the youngest global

.transaction to break a cycle in the site graph. After a

transaction has committed or aborted, all edges labeled with

the transaction are removed from the site graph.

The GTM employs a two-phase server allocation strategy

which requires that once a server has been deallocated from

a transaction, the transaction may not request any addi-

tional servers. Also, servers are not deallocated from a

transaction until the effects of the global transaction have

been committed to the local databases or until the global ,

transaction is aborted. This condition is very important

since the failure of a global subtransaction at one or more

sites requires that the effects of all other subtransactions

for the same global transaction be rolled back.

When a server process is allocated to a global transac-

tion, the appropriate local database processing software is

loaded and the server is prepared for local database access.

The server is responsible for translating the global opera-

tions received into the language of the local DBMS for exe-

cution and appears as a single transaction processing pro-

gram to the local DBMS.

procedure SITE SELECTION(T, Q, n, s):
begin -
comment The SITE SELECTION algorithm selects an

appropriate-site for reading the value of a repli
cated data item.

let T be the global transaction from which the
global operation is derived, Q be the set of
sites that contain a copy of the data item, n be
the number of elements in Q, and s be the
sites currently participating in the execution of
T.

if {O intersect s} is not empty then
begin

else

end

select a site s from {O intersect s}
n + 1
Q + s
end

begin
for i + 1 step 1 while i <= n do

begin
select site Q(i}
invoke SITE GRAPH(T, Q(i}, 1, S)
if the site-graph is acyclic then

begin
n + 1
Q + Q(i}
return
end

if i < n then

end

delete the edge just added to the site
graph

select site Q(n)
Q + Q(n}
n + 1
end

Figure 13. Site Selection Algorithm

51

52

The SITE_SELECTION algorithm in Figure 13 selects an

appropriate site for reading the value of a replicated data

item. Site selection can prevent the unnecessary rollback

of a global transaction due to a cycle in the site graph.

If a transaction has already processed data at a site

that contains a copy of the data item to be read, the site

·is selected to perform the read operation. However, if the

transaction has not processed any data at a site that con

tains a copy of the data item, all sites that contain a copy

of the data item must be examined individually. If there

exists a site that contains a copy of the data item and the

addition of the site to the site graph does not create a

cycle, the site is selected for the execution of the read

operation. A new server for this site is allocated to the

transaction. This server then processes all data items that

are located at the specified site for the transaction. If no

site containing the data item may be added to the site graph

without creating a cycle, one of the transactions involved

in the cycle is rolled back and later restarted.

The SITE_GRAPH algorithm in Figure 14 adds the speci-·

fied sites for a global transaction to the site graph.

Maintenance of the site graph prevents the possibility of a

global deadlock and global database inconsistency, which is

shown later in this chapter. Cycles in the site graph are

detected by performing a depth first traversal of the graph,

producing a spanning tree for the graph, and checking for

the existence of any "back edges'' (Aho et al., 1974). This

technique provides an efficient method for locating cycles

in the site graph.

procedure SITE GRAPH(T, Q, n, s):
begin -
comment The SITE GRAPH algorithm adds the specified

sites for a-global transaction to the site graph.
let T be the global transaction from which the

global operation is derived, Q be the set of
sites that contain a copy of the data item, n be
the number of elements in Q, and s be the
sites currently participating in the execution of
T.

delete the sites from Q that are also in s and adjust
n accordingly

if n = 0 then
return

comment Add the sites in Q to the site graph for
transaction T.

if n > 1 then
add an edge with label T between each pa1r of sites

Q(i) and Q(j}, where i = 1, ••• , n- 1 and
j = i + 1

~f set s is not empty then
begin
let S(i) be the last site in s that was added to

the site graph for transaction T.
add edge (S(i), Q(l)) to the site graph for

transaction T
end

merge the site graph for transaction T with the site
graph for all global transactions

end

Figure 14. Site Graph Algorithm

53

The COMMIT_TRANS algorithm in Figure 15 commits the

updates performed by the global transactions to the global

database. The transaction processing algorithm assumes that

54

the local DBMSs support a commit protocol for updating the

local databases. A COMMIT message is sent to all servers

allocated to the specified transaction, indicating that the

updates

servers

servers

to the local databases must be applied. After the ~

complete commit processing with the local DBMSs, the J

are deallocated from the global transaction and are ·

returned to the pool ~f available servers. After a global /

transaction is committed, the edges of the site graph asso

ciated with the transaction are deleted.

procedure COMMIT TRANS(T):
·~gb -
comment The COMMIT TRANS algorithm commits the

updates performed by the specified transaction to
the global database.

let T be the global transaction to be committed.
comment The servers use the commit protocol of the

local DBMSs to apply the updates to each of the
local databases.

send a 'COMMIT' message to all servers currently
allocated to T and receive a 'COMMITTED' response
from each of the servers

deallocate the servers from transaction T
delete the edges for transaction T from the site graph
end

Figure 15. Transaction Commit Algorithm ·

procedure ROLLBACK TRANS(T):
begin -
comment The ROLLBACK TRANS algorithm rolls back the

specified transaction and performs the necessary
processing to cancel the effects of the trans
action on the global database.

let T be the global transaction to be rolled back.
comment The servers cancel all updates to the local

databases for transaction T and then terminate.
send an 'ABORT' message to all servers currently

allocated to T and receive an 'ABORTED' response
from each of the servers

deallocate the servers from transaction T
delete the edges for transaction T from the site graph
place transaction T on the restart queue
~d

Figure 16. Transaction Rollback Algorithm

,

55

The ROLLBACK_TRANS algorithm in Figure 16 cancels the

affects of the specified global transaction on the global

database. An ABORT message is sent to the servers allocated

to the global transaction, indicating that the updates to

the local databases must be canceled. After the servers

have completed abort processing, the servers are deallocated

from the global transaction and returned to the pool of

available servers. All edges in the site graph associated

with the global transaction are deleted and the transaction

is placed on the restart queue.

56

Global transaction recovery protocols are only briefly

discussed in this study. Extreme caution must be exercised

for global transaction recovery since the MDBS cannot con

trol the recovery actions of the local DBMSs. Additional

investigation is suggested in this area.

Correctness of the Update Algorithm

The critical component of the transaction processing

algorithm presented in this chapter is the notion of a site

graph. Therefore, it is necessary to prove that the mainte

nance of a site graph for global transactions, together with

the execution of only permitted local transactions, main

tains global database consistency and prevents global dead

lock.

Theorem 1 (Breitbart and Silberschatz, 1987c)

Let G be a set of global transactions and L be a set of

local transactions for sites 1, •.• , k. The execution of

the transactions in the set {G union L} retains a global

database consistency if the following conditions hold:

1. All local transactions in L are either read transac

tions or singular write transactions.

2. The site graph for the global transactions in G is

acyclic for at least one application of translation

function F, defined in Chapter II, to each transaction

in G.

Theorem 4 (Breitbart and Silberschatz, 1987c)

If the conditions of Theorem 3 hold, no global dead

locks can occur.

57

Careful analysis shows that the algorithm proposed in

this chapter solves all of the multidatabase concurrency

control problems mentioned in the last section of Chapter I.

Global subtransactions are generated using the translation

and projection functions described in Chapter II, and a

two-phase server allocation strategy is used for the execu

tion of global subtransactions. The allocation of a server

to process all of the global operations at a single site for

a global transaction, together with a two-phase commit pro

tocol for global transactions, maintains global transaction

and subtransaction atomicity. The DBMSs guarantee local

database'consistency and freedom from local deadlocks, and

the site graph algorithm guarantees global database consis

tency and freedom from global deadlocks. The MOBS, by

careful distribution of global operations to the local

sites, ensures global database consistency without any

information from the local DBMS concurrency control mechan

isms.

It should be noted that the algorithm is independent of

the types of concurrency control mechanisms used by the

local DBMSs. Also, the site graph algorithm is not depen

dent on the technique used for site specification. That is,

58

a predeclaration technique for the sites could be employed

by the MDBS, instead of the dynamic site specification tech

nique used in the algorithm.

The algorithm permits concurrent execution of global

and local transactions. However, the level of concurrency

for global transactions in this environment may be less than

.the level of concurrency for global transactions in the

absence of local transactions. In our view, the reduction

in the level of concurrency is a small price to be paid for

retaining local autonomy in a multidatabase system.

A comprehensive study of multidatabase update transac-

tion processing is currently being performed (Breitbart and

Morales, 1987e). Initial results indicate that in certain

environments (e.g. a fully replicated global database)

excessive transaction restarts occur. Excessive transaction ,

restarts for fully replicated global databases appear to be

the main deficiency of the proposed algorithm. An alterna

tive to the proposed algorithm is needed for such environ-

ments. In practice, however, it is unlikely that a multida-

tabase system consisting of preexisting databases would be

fully replicated. Therefore, we feel that the proposed

algorithm has substantial value for practical multidatabase

systems.

CHAPTER IV

A DISTRIBUTED MULTIDATABASE SYSTEM

In Chapter III, we propose an algorithm for the consis-

tent execution of global read and write transactions in a

multidatabase system consisting of a centralized MDBS pro-

cess. We mentioned in Chapter I, however, that when users

at several locations have the need for distributed data

access, the notion of a distributed multidatabase system

becomes an important issue. A distributed multidatabase

system has several potential benefits: (1) reduces data

transmission with enhanced query optimization and localized ,
processing of intermediate query results, (2) establishes a

vehicle for data access synchronization, (3) provides better

distribution of data processing loads and costs, and

(4) eliminates unnecessary direct communication paths to

data sources.

In this chapter, we discuss the general architecture of

a distributed multidatabase system and relate this architec

ture to the distributed version of the ADDS multidatabase

system (ADDSNET) (Thompson and Breitbart, 1986). We also

examine the major components of a multidatabase system which

are impacted by the migration to a distributed system. For

59

60

convenience, we limit our discussion to that of a retrieve

only distributed multidatabase system. However, the con

cepts discussed apply to a system supporting update transac

tions as well.

ADDS NETWORK.

VM

ADDS
WORKSTATIONS

LOGICAL NETWORK

VM VM

ADDS ADDS

Figure 17. ADDSNET Architecture

61

ADDSNET General Architecture

The ADDSNET system is an example of a multidatabase

system that uses integrated database distribution for

accessing distributed databases, as described in Chapter I.

Figure 17 illustrates the general architecture of the

ADDSNET system.

User queries may be submitted from any ADDSNET node and

the queries may reference distributed databases accessible

to any ADDSNET node. The ADDSNET system requires that each

network node containing data sources for distributed

queries, also contain the ADDSNET software. The single

exception to this requirement is in a local area network

(LAN) environment where multiple workstations are intercon

nected. In this case, only one of the workstations in the

network i~ required to contain the ADDSNET software. This

exception is made because of the limited capacity of most

workstations and the great transmission speeds of most LANs.

A key component of the ADDSNET system, as well as any

database system, is the data dictionary (Breitbart et al.,

1986~ Breitbart et al., 1987d). The data dictionary is

resident on each ADDSNET node. The next section discusses

the architecture of the ADDSNET data dictionary.

62

Data Dictionary

As mentioned in Chapter III, the local database schemas

are mapped into a relational global database schema, called

a composite database (CDB), and the mappings are stored in

the ADDS data dictionary. The COBs also contain the phys-

ical characteristics and location of the local data. Figure

18 illustrates the major components of the COB definitions.

I

Composite Database Definition

Local
Database
Schemas

I
I

I

Mapping

<------------>
Global
Database
Schema

Figure 18. ADDS COB Definitions

r--

The ADDS query compiler requires data dictionary infer-

mation to resolve references made to logical relations and

attributes. The query optimizer requires data dictionary
I

63

information to create a runtime schedule for a query. The

database servers require data dictionary information to

translate an ADDS user subquery to the language of the local

DBMSs.

The data dictionary at each ADDSNET location is logic

ally divided into a "test" and a "production" dictionary.

The test dictionary contains composite database definitions

that are being developed and tested. A CDB in the test dic

tionary may reference databases at any of the ADDSNET nodes,

however, the definition of the CDB exists only at the local

node. An update to a test CDB affects only the local test

data dictionary.

The production dictionary is replicated at all ADDSNET

locations to enhance the performance of query compilation

and execution. A CDB definition is moved to the production

dictionary only after the CDB definition has been completely

tested. An update to any copy of the production dictionary

is propagated to the other copies of the dictionary at the

other ADDSNET locations.

The ADDS data dictionary consists of a set of rela

tional tables that contain the components of the CDB defini

tions. There are at least two techniques for managing the

production data dictionary for the ADDSNET system: (1)

store the set of tables under the control of a homogeneous

DDBMS and let the DDBMS perform the updates to the copies of

the data dictionary at the ADDSNET nodes, or (2) store the

64

set of tables under the control of separate non-distributed

DBMSs at the ADDSNET nodes and define a CDB for the tables

and let ADDSNET perform the updates to the copies of the

data dictionary at the different nodes. Option (2) relies

on the availability of a distributed version of the site

protocol of Chapter III for the ADDSNET system.

When a user query against a production CDB is initi

ated, the subqueries are transmitted to the appropriate

ADDSNET locations for execution. Since the production CDB

is replicated at all nodes, no CDB information needs to

accompany the subqueries sent to the ADDSNET nodes. How

ever, when a user query against a test CDB is initiated, the

subqueries and necessary components of the test CDB are

transmitted to the appropriate ADDSNET locations for execu

tion. Test CDB information is required by the servers at

the ADDSNET locations where the subqueries are ultimately

executed. An ADDSNET node receives a subquery from another

location only when the node supports access to the databases

referenced by the query.

This technique provides a flexible and efficient

mechanism for managing a distributed MDBS data dictionary.

Only a minimum amount of global schema information is trans

mitted between sites to accomplish query execution. Also,

minimal overhead is incurred managing the production dic

tionary, since the production global schema definitions are

relatively static.

65

Logical Network

Users of a distributed multidatabase system may require

access to a wide variety of different hardware and software

systems. Therefore, providing a uniform interface to these

systems is important for MOBS development and maintenance.

Also, the flexibility of the network architecture is of pri

mary concern. Listed below are the major requirements of

the ADDSNET network architecture (Lee et al., 1987;

Thompson, 1984).

1~ The network must be flexible enough to support virtu

ally any physical network utilized. In some cases,

several wide area and local area networks may be uti

lized by a single network node.

2. The network must be capable of migrating to a replace

ment physical network with minimal modifications.

3. The network protocols must be flexible enough to sup

port complex communication, such as remote sessions, as

well as less complex message and broadcast communica

tion.

4. The network must not compromise established security

procedures for data access.

The open systems interconnection (OSI) reference model

(ISO, 1982) provides a flexible and consistent framework for

66

network specification. The layered approach of the OSI

model provides the generality necessary for the interconnec-

tion of very diverse systems •. This is the main reason for

utilizing an extended OSI model for the ADDSNET network

architecture.

/
/

LAYERS
/

/
/

APPLICATION

PRESENTATION ' ' ' ' ' SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

;I'

/
/

;I'

/
/

/

' ' ' ' ' ' ' '

SUBLAYERS

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

Figure 19. ADDSNET Logical Network Model
(Extended OS! Model)

67

The ADDSNET network architecture extends the layered

approach used in the OSI model one step further into the OSI

application layer. The ADDSNET network architecture divides

the OSI application layer into sublayers that describe a

"logical" network architecture (Lee et al., 1987; Thompson,

1984). Figure 19 illustrates the ADDSNET logical network

.model.

Logical Network Components

Network Controller. The network controller (NC) pro

cess is the primary component of the ADDSNET logical net-

work. A single NC process that performs session and logical

network management is located at each network node. The NC

process embodies the presentation, transport, and session

sublayers of the logical network model. Communication with ,

the NC process is accomplished using a set of procedure

calls. These procedure calls define the application sub-

layer interface to the logical network. The various commu-

nication protocols supported by the logical network are dis-

cussed later in this section. The NC process is actually

composed of four asynchronous processes. These processes

perform logical network control, timing, interprocess commu-

nication, and operator command processing.

Network Interface. The network interface (NI) is the

only process within the logical network that is physical

network dependent. One NI process is allocated for each

68

physical network supported by a logical network node. An NI

process is responsible for direct communication with a spe

cific physical network and embodies the network, data link,

and physical sublayers of the logical network model. The NC

process transmits logical network packets to the NI pro

cesses destined for other network nodes. The NI processes

- transfer the logical packets to the physical networks using

the established communication procedures for the physical

networks. The process is reversed for incoming network

traffic.

A logical network packet may consist of one or more

physical packets, depending on limitations that may be

imposed on the length of physical packets or messages. An

NI process is responsible for the appropriate segmentation

and reconstruction of logical packets as they are trans

mitted. It may also be necessary for a NI process to map

logical network node names to physical node names, depending

on the naming conventions established for the physical net

work.

Each NI process maintains a single session with the NI

processes at other nodes in the same physical network. The

NC process, together with the NI process for a specific net

work, multiplexes many logical network sessions over a

single physical network session. This technique helps to

eliminate session limitations associated with some physical

network implementations.

69

Network Definition. The network definition language

(NDL) defines a logical network node and its interconnection . (

with one or more physical networks. The network definition

file contains the NDL statements which are interpreted at NC

process initialization. Each logical network node has its

own set of NDL statements. The NDL is general in design to

-prevent the exclusion of any physical network because of its

nonconformity to predefined logical network specifications.

System dependent information, such as the character set used

by a logical network node, is contained in the NDL state

ments to allow the NI processes to perform appropriate

system dependent functions.

Logical Network Protocols

Three logical network protocols are currently imple-

mented: (l) a session, (2) a message, and (3) a broadcast

protocol. Each protocol provides a unique function within

the logical network. The session protocol is used for

process-to-process communication when a high degree of

integrity for a logical connection is required. The message

and broadcast protocols are less complex protocols that pro

vide communication among distributed processes. An applica

tion process may communicate with any number of other appli-

cation processes without regard for the physical connections

or network software required to accomplish the communica-

tion. Figure 20 illustrates this feature of the logical

network.

CPU
1

~
"

CPU
3

CPU
2

~
II

Figure 20. Sample Logical Network Session

Target processes for all of the protocols are identi

fied by a logical network function name. A source process

communicates with a target process using the function name

70

of the target process. When an application process is ini-

tialized and prepared to receive communication, the process

declares its function name to the local NC process. A

71

source process is required to identify the logical network

node name and the function name of the target process when

ever any of the protocols are used. The same function name

may be active at many different network nodes. However, at

a single node, a function may be associated with only one

application process. Also, a single application process may

perform many functions.

Session Piotocol. The session protocol provides dis

tributed applications with a reliable logical connection

between application processes that may span heterogeneous

hardware and software. A session is initiated by requesting

session services from the local NC process. The NC process

manages all logical network sessions and provides support

for session error recovery across the physical networks.

Message Protocol. The message protocol is designed to

provide a less complex communication path between distrib

uted application processes. This protocol provides a veh

icle for the implementation of higher level protocols among

application processes. A message is transmitted by

requesting message services from the local NC process. The

NC process manages the transmission of the specified message

to the remote network node.

Broadcast Protocol. The broadcast protocol supports

the transmission of "global" messages to all logical network

nodes. The source process defines the function name of the

target process, possibly located at all network nodes, to

72

receive the specified message. The source process then

requests broadcast services from the local NC process. The

NC process manages the communication of the specified mes

sage to all network nodes defined.

CHAPTER V

SUMMARY AND RECOMMENDATIONS

Summary

The problem of managing heterogeneous distributed data-

bases is becoming an increasingly difficult problem due to

an ever increasing number of different DBMSs utilized in

many corporations. Many retrieve-only multidatabase systems

have been developed that attempt to provide a tool for man-

aging heterogeneous distributed data sources. However, most

of these systems have not progressed beyond early prototype

stages.

The problem of updating semantically related data

located in preexisting heterogeneous databases has not been

addressed in sufficient depth. Some multidatabase systems

have been developed that perform updates to different local

databases. However, most of these systems either ignore

global database consistency or require changes to the local

DBMS software to accommodate the multidatabase system.

We feel that both of these options are unacceptable.

Maintaining global database consistency and local database

autonomy are of critical importance for user acceptance of a

multidatabase system.

73

74

A multidatabase transaction processing algorithm, based

on a ''site protocol" concurrency control mechanism, is pro

posed as a solution to the problem of updating heterogeneous

distributed databases. The proposed algorithm maintains

global database consistency in the presence of global and

permitted local transactions, and eliminates the possibility

-of global transaction deadlock. A model of a centralized

multidatabase system is described in this study to provide a

foundation for the transaction processing algorithm.

An architecture for a distributed multidatabase system

is presented and solutions to the problems of distributed

data dictionary and network management are proposed. The

notion of a test/production dictionary is proposed as a

flexible and efficient means for dictionary management in a

distributed multidatabse system. The concept of a logical

network provides an effective means of integrating heteroge

neous networks.

Recommendations for Further Research

In Chapter III, a transaction processing algorithm for

a multidatabase system is described. The algorithm is

designed to maintain global database consistency for a cen

tralized multidatabase system in the presence of global and

permitted local transactions. Further investigation is

required to extend the algorithm to support transaction pro

cessing in a distributed multidatabase system, such as

75

ADDSNET. In particular, a distributed site graph algorithm

must be constructed.

The transaction processing algorithm makes the assump

tion that an inexhaustible pool of server resources are

available for global subtransaction execution. This assump

tion may not be practical for some systems, where only a

.small number of server resources may be available for allo

cation. This situation may produce global deadlocks when a

global transaction waits for server resources held by one or

more global transactions. Therefore, the finite server

allocation problem should be investigated further.

The concurrency control component (site protocol) of

the transaction processing algorithm in Chapter III is sub

stantially different than conventional concurrency control

schemes, such as two-phase locking and optimistic concur

rency control. Therefore, a thorough performance analysis

of the algorithm should be performed to determine the levels

of transaction concurrency provided under varying condi

tions. For example, the ratio of the number of read to

write operations in a global transaction and the number of

replicated data items can be varied to determine their

effect on global transaction throughput. As stated in

Chapter III, Breitbart and Morales (1987e) are currently

investigating the performance characteristics of the pro

posed algorithm.

76

From the initial results obtained by Breitbart and

Morales (1987e), excessive global transaction restarts

appear to be the main deficiency of the proposed algorithm.

If a technique, such as site preallocation, is utilized for

all global transactions, transaction restarts due to cycles

in the site graph would be eliminated. However, global

.transaction restarts initiated by the local DBMSs are still

possible. The performance characteristics of the site

preallocation technique should be evaluated.

For the model described in Chapter II, we assume that

local read and singular write transactions are permitted.

However, in an environment where only local read transac

tions are permitted, it may be possible to increase transac

tion concurrency by modifying the site protocol, taking into

consideration the limitation on local transactions.

Global transaction commit and recovery protocols are

not discussed in detail in this study. Extreme caution must

be exercised for global transaction recovery since the mul

tidatabase system does not control the recovery actions of

the local DBMSs. Additional investigation is required in

this area.

SELECTED BIBLIOGRAPHY

Adiba, M., J. M. Andrade, P. Decitre, F. Fernandez, and N.
G. Toan. "Polypheme: An Experience in Distributed
Database System Design and Implementation." Distrib
uted Data Bases. Eds. c. Delobel and w. Litwin.
North-Holland, 1980, 67-84.

Aho, A. v., J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley,
1974, 172-179.

Attar, R., P. A. Bernstein, and N. Goodman. "Site Initiali
zation, Recovery, and Backup in a Distributed Database
System." Proceedings of the Sixth Berkeley Workshop on
Distributed Data Management and Computer Networks,
(Feb. 1982), 185-202.

Bachman, C. W. and S. S. Williams. "A General Purpose Pro
gramming System for Random Access Memories." Proceed
ings of the Fall Joint Computer Conference, 26, AFIPS
Press, 1964, 411-422.

Bernstein, P. A., N. Goodman, E. Wong, C. L. Reeve,
B. Rothnie, Jr. "Query Processing in a System
tributed Databases (SDD-1)." ACM Transactions
base Systems, 6, 4 (Dec. 1981);-602-625.

and J.
for Dis
on Data-

Bernstein, P. A. and N. Goodman. "An Algorithm for Concur
rency Control and Recovery in Replicated Distributed
Databases." ACM Transactions on Database Systems, 9, 4
(Dec. 1984), 596-615.

Bernstein, P. A. and N. Goodman. "Serializability Theory
for Databases." Journal of Computer and System Sci
ences, 31, 1985, 355-374.

Breitbart, Y. J., L. F. Kemp, Jr., G. R. Thompson, and A.
Silberschatz. "Performance Evaluation of a Simulation
Model for Data Retrieval in a Heterogeneous Database
Environment." Proceedings of the Trends and Applica
tions Conference, (May 1984), 190-197.

77

78

Breitbart, Y. J. and L. R. Tieman.
Distributed Database System. 11

Systems. Eds. F. A. Schreiber
Holland, 1985, 7-24.

11 ADDS - Heterogeneous
Distributed Data Sharing
and w. Litwin. North-

Breitbart, Y. J., P. L. Olson, and G. R. Thompson. 11 Data
base Integration in a Distributed Heterogeneous Data
base System." Proceedings of the Second International
Conference on Data Engineering, (Feb. 1986), 301-310.

Breitbart, Y. J., A. Silberschatz, and G. R. Thompson. An
Approach to the Update Problem in Multidatabase Sys=
tems. Research Technical Report No. F87-C-ll, Amoco
Production Co., Tulsa, OK, 1987a.

Breitbart, Y. J., A. Silberschatz,··~nd G. R. Thompson. 11 An
Update Mechanism for Multidatabase Systems." Data
Engineering, 10, 3 (Sept. 1987b), 12-18.

Breitbart, Y. J. and A. Silberschatz. "Multidatabase Update
Issues, .. 1987c (in preparation).

Breitbart, Y. J., W. F. Lee-, P. L. Olson, Y. Y. Sung, G. F.
Thomas, and G. R. Thompson. "Catalog Management in a
Heterogeneous Distributed Database System," 1987d (in
preparation).

Breitbart, Y. J. and H. A. Morales. "Performance Evaluation
of a Multidatabase Update Algorithm, .. 1987e (in prepa
ration).

Ceri, S. and G. Pelagatti. Distributed Databases Principles
and Systems. McGraw-Hill, Inc., 1984.

Codd, E. F.
Banks."
377-387.

11 A Relational Model for Large Shared Data
Communications of the ACM, 13, 6 (June 1970),

Cole, R. "A Method for Interconnecting Heterogeneous Com
puter Networks." Software-Practice and Experience, 17,
6 (June 1987), 387-397.

Decitre, P. and E. Andre. 11 Polypheme Project: The DEM Dis
tributed Execution Monitor." Distributed Data Bases.
Eds. C. Delobel and W. Litwin. North-Hollana;-1980,
85-98.

Devor, c. and J. Weeldreyer. DDTS: A Testbed for Distrib
uted Database Research. Honeywell Report HR-80-268,
Honeywell Corporate Computer Science Center, Bloom
ington, Minnesota, 1980.

79

Ferrier, A. and C. Stangret. "Heterogeneity in the
Distributed Database Management System Sirius-Delta."
Proceedings of the Eighth VLDB Conference, 1983, 45-53.

Gligor, v. D. and R. Popescu-Zeletin. "Concurrency Control
Issues in Distributed Heterogeneous Database Management
Systems." Distributed Data Sharing Systems. Eds. F.
A. Schreiber and w. Litwin. North-Holland, 1985, 43-56.

Holt, R. c. "Comments on Prevention of System Deadlocks."
Communications of the ACM, 14, 1 (Jan. 1971), 36-38 •

. Holt, R. c. "Some Deadlock Properties of Computer Systems."
ACM Computing Surveys, 4, 3 (Sept. 1972), 179-196.

ISO International Standards Organization, ISO/TC97: Informa
tion Processing Systems. Open Systems Interconnection
- Basic Reference Model. Draft International Standard
ISO/DIS 7489, (April 1982).

Katz, R. "Software Architectures for Heterogeneous Database
Management." Proceedings of the COMPSAC Conference,
1981, 33-42.

Korth, H. F. and A. Silberschatz. Database System Concepts.
McGraw-Hill, Inc., 1986, 390-402.

Landers, T. and R. L. Rosenberg. "An Overview of Multibase."
Distributed Data Bases. Ed. H. J. Schneider. North
Holland, 198~53-184.

Lee, w. F., P. L. Olson, G. F. Thomas, and G. R. Thompson.
A Remote User Interface for the ADDS Multidatabase
System. Research Technical Report No. F87-C-12, Amoco
Production Co., Tulsa, OK, 1987.

Litwin, w., J. Boudenant, c. Esculier, A. Ferrier, A. M.
Glorieux, J. La Chimia, K. Kabbaj, c. Moulinoux, P.
Rolin and C. Stangret. "SIRIUS Systems for Distributed
Data Management." Distributed Data Bases. Ed. H. J.
Schneider. North-Holland, 1982, 311-366.

Lohman, G. M., c. Mohan, L. M. Haas, D. Daniels, B. G.
Lindsay, P. G. Selinger, and P. F. Wilms. "Query Pro
cessing in R*." Query Processing in Database Systems.
Eds. w. Kim, D. s. Reiner, and D. S. Batory.
Springer-Verlag, 1985, 31-47.

Peterson, J. and A. Silberschatz. Operating System Con
cepts. Addison-Wesley, Inc., 1983, 257-286.

80

Pu, C. Superdatabases for Composition of Heterogeneous
Databases. Technical Report No. CUCS-243-86, Columbia
University, New York, NY, 1986.

Smith, J. M., P. A. Bernstein, U. Dayal, N. Goodman, T. A.
Landers, K. w. T. Lin, and E. Wong. "Multibase: Inte
grating Heterogeneous Distributed Database Systems."
Proceedings of the AFIPS National Computer Conference,
1981, 487-499.

Staniszkis, w., W. Kaminski, M. Kowalewski, K. Krajewski, S.
Mezyk, and G. Turco. "Architecture of the Network Data
Management System." Distributed Data Sharing Systems.
Eds. F. A. Schreiber and w. Litwin. North-Holland,
1985, 57-75.

Templeton, M., D. Brill, A. Hwang, I. Kameny, and E. Lund.
"An Overview of the Mermaid System - A Frontend to Het
erogeneous Databases." Proceedings of the EASCON Con
ference, (Sept. 1983), 387-402.

Thompson, G. R. A Network Independent Architecture for Com
municating Network Systems. Research Technical Report
No. F84-C-24, Amoco Production Co., Tulsa, OK, 1984.

Thompson, G. R. andY. J. Breitbart. "Design Issues in Dis
tributed Multidatabase Systems." Proceedings of the
Workshop on Applied Computing, Stillwater, OK, (Oct.
1986)' 38-46.

Thompson, G. R. and Y. J. Bre.itbart. A Method for Consis
tent Multidatabase Transaction Processing.--patent
Application Setia1 No. 078129, Amoco Production Co.,
Tulsa, OK, 198~. .

', I
·~

Tsichritzis, D. c. and F. H. Lochovsky. "Hierarchical
Data-base Management: A Survey." ACM Computing Sur
veys, 8, 1 (March 1976), 67-103.

Yu, C. T., C. C. Chang, M. Templeton, D. Brill, and E. Lund.
"Query Processing in a Fragmented Relational Distrib
uted System: Mermaid." Transactions on Software Engi
neering, SE-11, 8 (Aug. 1985), 795-810.

ADDS

ADDSNET

COB

CPU

Cyclades

Daplex

DBMS

DDBMS

DOTS

ECR

GDM

GRAG

GTI

GTM

GWFG

Hierarch

IBM

IMS

ISO

LAN

APPENDIX

ABBREVIATIONS AND ACRONYMS

Amoco Distributed Database System

Amoco Distributed Database System Network

Composite DataBase

Central Processing Unit

local area network used by the Polypheme system

data definition language and model used by the

Multibase system

DataBase Management System

Distributed DataBase Management System

Distributed Database Test System

Entity Category Relationship data model

Global Data Manager

Global Resource Allocation Graph

Global Transaction Interface

Global Transaction Manager

Global Wait-For Graph

Hierarchical data model

International Business Machines corporation

Information Management System

International Standards Organization

Local Area Network

81

LRAG

LWFG

MDBS

MVS

NC

NDL

-NDMS

NI

OS!

r

AAG

Rel

RIM

rlock

SDD-1

SNA

SQL/DS

VM/SP

VMS

w

WAN

WFG

wlock

X.25

Local Resource Allocation Graph

Local Wait-For Graph

MultiDataBase System

Multiple Virtual Spaces operating system

Network Controller process

Network Definition Language

Network Data Management System

Network Interface process

Open Systems Interconnection.

read atomic operation

Resource Allocation Graph

Relational data model

Relational Information Management system

read (shared} lock

System for Distributed Databases

Systems Network Architecture

Structured Query Language/Data System

82

Virtual Machine/System Product operating system

Virtual Memory System operating system

write atomic operation

Wide Area Network

Wait-For Graph

write (exclusive} lock

packet switching network protocol standard

~

VITA

GLENN RAY THOMPSON

Candidate for the Degree of

Doctor of Philosophy

Thesis: MULTIDATABASE CONCURRENCY CONTROL

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Fort Smith, Arkansas, July 16,
1952, the son of Wendell R. and Margaret G.
Thompson. Married to Vicki L. Green on August 3,
1974. Son, Jeffrey B. Thompson, born on November
9, 1982.

Education: Graduated from Mount Saint Mary High
School, Oklahoma City, Oklahoma, in May, 1970;
received Bachelor of Science Degree in Mathematics
from Oklahoma State University in May, 1974;
received Master of Science Degree in Computing and
Information Sciences from Oklahoma State
University in May, 1976; completed requirements
for the Doctor of Philosophy Degree at Oklahoma
State University in December, 1987.

Professional Experience: Teaching Assistant,
Department of Computing and Information Sciences,
Oklahoma State University, August, 1974, to May,
1976; Programmer Analyst, Standard Oil Company
(Indiana), Tulsa, Oklahoma, June, 1976, to July,
1977; Senior Systems Programmer, Bank of Oklahoma,
Tulsa, Oklahoma, July, 1977, to November, 1978;
Systems Engineer, Cities Service Company,
Technology Center, Tulsa, Oklahoma, November,
1978, to June, 1982; Research Scientist and
Research Supervisor, Amoco Production Company,
Research Center, Tulsa, Oklahoma, June, 1982, to
present; Member and past President of the student
chapter of the Association for Computing
Machinery.

