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Abstract

In this dissertation, we consider two problems. The �rst one is a general approach to the

optimal design of uncertain dynamical systems, where the uncertainty is represented by a

random parameter. The problem is formulated using two types of performance criteria, that

result in two different optimal design methods. However, both of them are dif�cult to solve

analytically for most uncertain complex dynamical systems. A numerical scheme is de-

veloped for the optimal design that involves two steps. First, in order to obtain a numerical

algorithm for the optimal solution, we apply randomized algorithms for average perform-

ance synthesis to approximate the optimal solution. Second, using the properties of the

Perron-Frobenius operator we develop an ef�cient computation approach for calculating

the stationary distribution for the uncertain dynamical systems and the average perform-

ance criteria. The proposed approach is demonstrated through numerical examples. The

second problem is a novel approach for evaluating the short-term Loss of Load Probability

(LOLP) in power systems that include wind generation resources that vary stochastically

in time. We �rstly introduce a mathematical model for calculating the short-term LOLP,

and then a novel quantitative measure of its behavior when converging to its steady-state

level is derived. In addition, the corresponding empirical formulas are offered which can

be used in practice to estimate the convergence time of LOLP under different conditions.

Finally, an application of the outcomes of the analytical work in estimation of the dynamic

behavior of short-term LOLP with an actual wind generation pro�le is presented to show

the signi�cance of the developed measures.

ix



Part I

Part I: Optimal Design of Uncertain

Dynamical Systems
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CHAPTER 1

Introduction

Demands for increased functionality, improved performance, increased ef�ciency and bet-

ter utilization of resources frequently results in engineered systems that are large, distrib-

uted and highly interconnected. Typical systems are built as complex physical and func-

tional interconnection of components that are sophisticated systems themselves that have

been designed and optimized for performance and cost in isolation. The system com-

ponents frequently have complex nonlinear behavior that when combined with the spatial

distribution of components, large separation of time scales and high connectivity results in

a system that can have very complex dynamic behavior.

The use of physics based models in the design of complex systems is becoming a part

of standard engineering design process [3]. The value of model-based design includes the

ability to quickly evaluate a large number of design alternatives, optimize system design

and evaluate transient behavior. Additional bene�ts include early detection of design �aws,

prevention of component damage and decreased hardware commissioning time.

However, all models in applications have some degree of uncertainty. This uncertainty

can be attributed to errors in the physical description, due to either unknown or ignored

phenomena, parametric uncertainty or unknown external conditions. In general, we can

classify uncertainty into two classes, parametric uncertainty and model uncertainty. Para-

metric uncertainty is uncertainty in the parameters and initial/boundary conditions of a

model of a �xed structure whereas model uncertainty is uncertainty in the structure of the

model itself. The former type of uncertainty typically arises due to imperfect measure-

ments or information about the physically parameters of a system. Model uncertainty is
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usually either due to unknown or unmodeled behavior or approximation error. These un-

certainties call for improved design methodologies that can account for the complexities

and uncertainties in the model descriptions in the design process.

Many pessimistic results on the complexity-theoretic barriers of classical robust control

problems have stimulated research in the direction of �nding alternative solution [9]. One

effective solution is to �rst shift the meaning of robustness from its usual deterministic

sense to a probabilistic one. This shift in meaning implies a statistical description of the

uncertainty, opposed to a purely unknown-but-bounded one. It has been shown that the

probabilistic approach presents itself as a natural tool to deal with the random character

of uncertainties affecting control systems [10]. In this work we consider the problem of

optimal design of uncertain systems by a probabilistic robust design approach. In particular

we assume that the system is described by a discrete time dynamical system

xi+1 = T (xi;θ ;ξ )

yi = f (xi)

where ξ represents the uncertainty in the system which is assumed to be a random para-

meter with distribution ρ and θ is a vector of design parameters that can either be physical

parameters and/or controller parameters.

Frequently the design objective is to minimize a cost function g(y) over all admissible

θ 2Θ; where y is the stationary output for the system (i.e. ignoring the effect of dynamics,

see e.g. [60]). In this case the resulting optimization problem is

min
θ2Θ

g(y) s.t. x= T (x;θ ;ξ ) ; y= f (x) :

If the parameter ξ is random the steady state value x is random as well and consequently

the objective function g(y) is random. Following [48], [71] an average performance is

used as the objective function to be minimized. Thus, we replace g(y) with the average
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cost resulting in the optimal design problem

min
θ2Θ

Eρ [g(y)] s.t. x= T (x;θ ;ξ ) ; y= f (x)

where Eρ [�] is the expectation with respect to the distribution ρ .

The objective of this method is to select the design parameters so as to minimize the

cost function based on the a-priori uncertainty information due to parameter uncertainty.

Obviously, the above design methodology only makes sense when the system converges

to the equilibrium x̄ = x̄(θ ;ξ ) for all initial conditions. Indeed, if for some values of ξ

and θ the equilibrium is unstable then the system will never reach the steady state and

consequently the steady state optimization problem does not make sense. Furthermore, for

some complex dynamical systems that have uncertain behavior generated by the dynamics

of the system itself, e.g. chaotic motion, the above method also fails. Therefore, there is a

strong need for ef�cient alternatives. In this dissertation, we propose an alternative optimal

design approach by analysis of asymptotic dynamics of uncertain systems.

The dissertation is organized as follow: In Chapter 2 we introduce the mathematical

setup that forms the basis for our proposed research. In Chapter 3 we formulate the optimal

design of the uncertain dynamical systems. In Chapter 4 we introduce randomized al-

gorithms for average performance synthesis in the design of uncertain systems. In Chapter

5 we solve the optimal design problem numerically. In Chapter 6 we review the Monte

Carlo method as a traditional method for calculating the invariant measure. In Chapter 7

we discuss an ef�cient computational approach for the calculation of the invariant meas-

ure. In Chapter 8 we present illustrative examples for the proposed methods to calculate

the invariant measure and optimal design of uncertain dynamical systems. In Chapter 9

we conclude the Part I of my dissertation. In Chapter 10 a study of short-term reliability

analysis of power systems with wind generation is presented as Part II of my dissertation.
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CHAPTER 2

Mathematical Setup

In this chapter, we introduce the basic mathematical concepts necessary for formulation

and solution of the uncertain system design problem. These concepts may be studied in

detail before continuing on to the core of our subject matter, which starts in Chapter 3, or,

they may be skimmed on �rst reading to �x the location of important concepts for later

reference.

2.1 Measure Theory

In this section, we brie�y outline some essential concepts from measure theory applied to

dynamical systems [39]. This material is in no sense exhaustive; more detailed treatments

can be found in [30] and [56].

De�nition 1 A collectionB of subsets of a set X is a σ�algebra if:

(a) When A 2B then X nA 2B;

(b) For any �nite or in�nite sequence fAkg of subsets, Ak 2 B, the countable union

[kAk 2B;

(c) X 2B.

From this de�nition it follows immediately, by properties (a) and (c), that the empty

set /0 belongs to B since /0 = X nX : Further, given a sequence fAkg, Ak 2 B, then the

intersection \kAk 2B, because

\kAk = X n[k (X nAk)

5



and then apply properties (a) and (b). Finally, the difference AnB of two sets A and B that

belong toB also belongs toB because

AnB= A\ (X nB) :

If X is any metric space, or more generally any topological space, the σ�algebra gen-

erated by the family of open sets in X is called the Borel σ�algebra on X : Its members are

called Borel sets. Borel σ�algebra includes open sets, closed sets, countable intersections

of open sets, countable unions of closed sets, and so forth. It is the smallest σ�algebra

containing intervals in X .

De�nition 2 A real valued function µ de�ned on a σ�algebraB is a measure if:

(a) µ ( /0) = 0;

(b) µ (A)� 0 for all A 2B;

(c) µ ([kAk) =∑
k

µ (Ak) if fAkg is a sequence of disjoint sets fromB, that is Ai\A j = /0

for i 6= j:

This de�nition of a measure and the properties of a σ�algebra ensure that if we know

the measure of a set X and a subset A of X we can determine the measure of X nA; and if

we know the measure of a collection disjoint subset Ak ofB we can calculate the measure

of their unions.

If X = R, there is a large family of measures whose domain is the Borel σ�algebra

and such measures are called Borel measures. The Lebesgue measure on R is the measure

for which the measure of an interval is its length. In particular, the Lebesgue measure is

usually denoted as m, and m([a;b]) = b�a. The Lebesgue measure is a completed Borel

measure. The de�nition of a completion of a measure can be found in [24]. Whenever

considering spaces X =R or X =Rn or subsets of these we always assume measures to be

Borel measures.
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Another important class of measures are supported on �nite or countable sets. The

simplest of these measures is the Dirac measure de�ned by

δ x(A) =

8><>: 1 x 2 A

0 x =2 A

De�nition 3 If B is a σ�algebra of subsets of X and if µ is a measure on X, then the

triple (X ;B;µ) is called a measure space. The sets belonging toB are called measurable

sets.

De�nition 4 Let (X ;B;µ) be a measure space. A real-valued function f : X!R is called

measurable on X if f�1 (∆) 2B for every interval ∆� R: In particular, if X = R, then the

function f is called Lebesgue measurable.

De�nition 5 A measure space (X ;B;µ) is called �nite if µ (X) < ∞. In particular, if

µ (X) = 1, then the measure space is said to be probabilistic and such a measure µ is

called probability measure.

In a probabilistic measure space, X is to be considered as the set of all possible out-

comes of some process, such as an experiment or a gambling game, and a measure of a set

E 2B is interpreted as the probability that the outcome lies in E. In the study of dynamical

systems, it is a convention to use analysts' terms in measure theory instead of probabilists'

terms in probability theory.

If (X ;B;µ) is a measure space, a set E 2B such that µ (E) = 0 is called a null set. If

a statement about points x 2 X is true except for x in some null set, we say that property is

true almost everywhere (a.e.).

One of the most important notations in analysis, measure theory, and topology, as well

as other areas of mathematics, is that of the Cartesian product. To introduce this concept

we start with a de�nition.
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De�nition 6 Given two arbitrary sets A1 and A2, the Cartesian product of A1 and A2 is the

set of all pairs (x1;x2) such that x1 2 A1 and x2 2 A2 . This is written as

A1�A2 = f(x1;x2) : x1 2 A1;x2 2 A2g :

In a natural way this concept may be extended to more than two sets. Thus the Cartesian

product of the sets A1 ; :::;Ad is the set of all sequences (x1; :::;xd) such that xi 2 Ai ; i =

1; :::;d; or

A1�� � ��Ad = f(x1; � � �;x2) : xi 2 Ai; for i= 1; :::;dg :

An important consequence following the concept of the Cartesian product is to extend

the property of measure space to the Cartesian product. Thus, given d measure spaces

(Xi;Bi;µ i), i= 1; :::;d, we de�ne

X = X1�� � ��Xd; (2.1)

B to be the smallest σ�algebra of subsets of X containing all sets of the form

A1�� � ��Ad with Ai 2Bi; i= 1; :::;d (2.2)

and

µ (A1�� � ��Ad) = µ1 (A1) � � �µd (Ad) for Ai 2Bi: (2.3)

Theorem 1 If measure spaces (Xi;Bi;µ i) ; i = 1; :::;d are given and X, B, and µ are

de�ned by equations (2.1), (2.2) and (2.3), respectively, then there exists a unique extension

of µ to a measure de�ned onB.

The measure space (X ;B;µ) whose existence is guaranteed by Theorem 1 is called the

product space and the measure is called the product measure. Moreover, if all the measure

space (Xi;Bi;µ i) are �nite or probabilistic, then (X ;B;µ) is also �nite or probabilistic.
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Finally, we conclude this section with the de�nition of absolutely continuity of a meas-

ure.

De�nition 7 Assume two measures ν and µ are de�ned on (X ;B). Then we say that ν is

absolutely continuous with respect to µ denoted as

ν � µ

if ν (E) = 0 for every E 2B for which µ (E) = 0:

Theorem 2 (Radon-Nikodym theorem) Let (X ;B;µ) be a measure space and let ν be

a �nite measure with ν � µ . Then there exists a non-negative integrable function f 2

L1 (X ;µ) such that

ν (E) =
R
E
f (x)µ (dx)

for all E 2B.

In the following sections, we will introduce some notations used in the study of dynam-

ical systems, including both deterministic and uncertain cases.

2.2 Deterministic Dynamical Systems

In this section, some notations used in the study of deterministic dynamical systems will

be de�ned. Consider a deterministic discrete time dynamical system

xi+1 = T (xi) (2.4)

yi = f (xi)

where T : X ! X is a diffeomorphism on a compact subset X � Rn:We denote by B the

Borel σ�algebra on X and by m the Lebesgue measure on B. Moreover, let M be the

space of all real value measures onB.
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De�nition 8 A measure µ 2M is said to be an invariant measure of T if

µ(B) = µ
�
T�1(B)

�
for all sets B 2B.

De�nition 9 A function p : X�B!R is a stochastic transition function, if (i) p(x; �) is a

probability measure for every x 2 X : (ii) p(�;A) is Lebesgue-measurable for every A 2B:

Let δ y denote the Dirac measure supported at the point y 2 X : Then p(x;A) = δ h(x) (A)

is a stochastic transition function for every m-measurable function h. We will see below

that the speci�c choice h = T represents the deterministic situation as system (2.4) in this

more general set up.

We set p(1) (x;A) = p(x;A) and de�ne recursively the i-step stochastic transition func-

tion p(i) : X�B! R by

p(i+1) (x;A) =
R
p(i) (y;A) p(x;dy) ; i= 1;2; :::

It is easy to see that p(i) is indeed a stochastic transition function. In particular, for the case

where p(x;A) = δT (x) (A) we obtain for i� 1

p(i) (x;A) = δT i(x) (A)

De�nition 10 Let p be a stochastic transition function. If µ 2M satis�es

µ (A) =
R
p(x;A)dµ

for all A 2B, then µ is an invariant measure of p.
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Remark 1 (a) If µ is an invariant measure of p then if follows that

µ (A) =
R
p(i) (x;A)dµ

for all i= 1;2; :::

(b) For system (2.4) the stochastic transition function is chosen as p(x; �) = δT (x): If µ

be an invariant measure of p, then µ is also an invariant measure of T:

If we assume that for every for x 2 X the probability measure p(x; �) is a absolutely

continuous with respect to the Lebesgue measure m, then we can write p(x; �) with an

appropriate transition density function k : X�X ! R by

p(x;A) =
R
A
k(x;y)dm(y)

for all A 2 B. In this case, we also call the stochastic transition function p absolutely

continuous.

De�nition 11 Let p be a stochastic transition function. Then the Perron-Frobenius (P-F)

operator P: M !M is de�ned by,

Pµ (A) =
R
p(x;A)dµ (x)

where M is the space of bounded complex valued measures on B. If p is absolutely

continuous with density function k then we can de�ne the Perron-Frobenius operator P on

L1 by,

Pg(y) =
R
k (x;y)g(x)dm(x)

for all g 2 L1: In particular, for the deterministic dynamical system T : X ! X the P-F
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operator is de�ned by,

Pµ(A) =
R

δT (x)(A)dµ (x) = µ(T�1(A))

for all sets A 2B.

Remark 2 (a) By de�nition a measure µ 2M is invariant if and only if it is a �xed point

of the P-F operator P, that is, for all sets A 2B;

Pµ(A) = µ(A)

(b) The P-F operator characterizes the evolution of the distribution of the state xi, i.e.

if the initial state has distribution µ0 2M ; the distribution of xi is Piµ0

(c) Note that in the case when p is absolutely continuous with density function k we

have P: L1! L1 and for each g 2 L1

Z
Pg(y)dm(y) =

Z Z
k(x;y)g(x)dm(x)dm(y)

=
Z
g(x)

Z
k(x;y)dm(y)dm(x)

=
Z
g(x)dm(x)< ∞

Since our goal is to characterize the stationary distribution for uncertain systems, the

same notations used for deterministic dynamical systems will be extended to random dy-

namical systems with parametric uncertainty in the next section.
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2.3 Random Dynamical Systems

Consider an uncertain dynamical system

xi+1 = T (xi;ξ ) (2.5)

yi = f (xi)

In order to simplify the discussion we assume that X is a compact subset of Rn and N is

a compact subset of Rr. The random parameter ξ can be very general and is speci�ed in

more detail later. We assume that T (x;ξ ) is Cr;r � 1 in x for every ξ 2 N and assume that

f : X ! R satis�es f 2 L1(X). Denote T i
ξ
(x) = Tξ � ::: �Tξ where Tξ (x) = T (x;ξ ). Note

that for a given parameter ξ the uncertain dynamical system (2.5) becomes the deterministic

case (2.4). Therefore, the notations used in Section 2.2 can be de�ned in a similar way for

uncertain dynamical systems. The discussion that follows is based on some recent results

[2], [42], [57], [43] and is not exhaustive.

De�nition 12 LetM be the vector space of real valued measures on X. For a �xed value

of ξ the Perron-Frobenius (P-F) operator Pξ : M !M corresponding to the dynamical

system Tξ : X ! X is de�ned as

Pξ µ(B) =
Z
T�1

ξ
(B)
dµ = µ

�
T�1

ξ
(B)
�

for all sets B 2B:

De�nition 13 A measure µξ 2M is said to be a Tξ invariant measure if

µξ (B) = Pξ µξ (B) = µξ

�
T�1

ξ
(B)
�

for all sets B 2B.
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Thus, µξ 2 M is invariant if and only if it is a �xed point of the Perron-Frobenius

operator Pξ .

Let P= X�N be the state-uncertainty product space and endow it with the product σ -

algebraP in the usual way, i.e. ifB is the Borel σ�algebra on X andF is the σ�algebra

on N, thenP =B�F .

De�nition 14 A probability measure η onP is called an input measure.

Example 1 Consider the evolution given by

xi+1 = xi+ξxi� x3i : (2.6)

System (2.6) has a bifurcation point at ξ = 0: In particular, for ξ < 0 there is an unique

stable equilibrium at x= 0 and for ξ > 0 there are three equilibria, two stable at x=�
p

ξ

and an unstable one at x= 0. The input measure η is given by the product measure ν�ρ;

where ν(E) = l(E \ [�a;a])=l([�a;a]), l the Lebesgue measure on the real line, a > 0:

This measure is given by the uniform density function fν(x) = 1=2a for x 2 [�a;a] and

represents the uncertainty in initial conditions. The measure ρ is a measure on R de�ned

by ρ(E)= l(E\ [�b;b])=l([�b;b]), 0< b< 1: This measure is given by the uniform density

function fρ(ξ )= 1=2b for ξ 2 [�b;b] and is the density for the �parameter input measure�.

We are interested in the question of how does the uncertainty in the "output" of the

process depend on the input measure. For the observable de�ned by f : X!R; the "initial"

uncertainty is described by a probabilistic measure ϖ i on R (endowed with the Borel σ -

algebraB) de�ned by

ϖ i(E) = η(( f )�1(E));
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where E 2B: This measure evolves in time, becoming

ϖ
n(E) = η(( f �T n

ξ
)�1(E))

= η((T n
ξ
)�1 f�1(E)) = Pn

ξ
η( f�1(E));

We call ϖn an output measure. It describes the uncertainty of the system output at the n-th

step of the process given the input measure η :

Frequently we are mostly interested in the long term behavior of the solution of the

system. In this case the uncertainty in the system output is best studied in terms of the

uncertainty in the asymptotic properties of the system. In particular, de�ne the time-average

f �(x;ξ ) = lim
n!∞

1
n

n�1
∑
i=0
f (T (xi;ξ )) (2.7)

and the asymptotic output measure ϖa

ϖa(E) = lim
n!∞

ϖ
n(E) = η(( f �)�1(E)): (2.8)

Return now back to the uncertain system (2.5) with assumption that ξ = c where c repres-

ents a (certain) parameter. In other words, there is no parametric uncertainty and the input

measure η is replaced by uncertainty distribution ν for the initial conditions of the states.

Then we can rewrite the asymptotic output measure as

ϖa(Ejξ = c) = lim
n!∞

Pnc ν( f�1(E)) = µc( f
�1(E)) (2.9)

Therefore, if the random parameters in the dynamical systems are �xed, the asymptotic

output measure can be characterized by the invariant measure of the system.

Next we discuss methods for characterizing the asymptotic output (2.7) in terms of

the invariant measures of the random dynamical system. In particular, we are interested
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in situations when the system has a physical measure µ in the sense that for almost all

(x;ξ ) 2 X�N

f �(x;ξ ) =
Z
X�N

f dµ (2.10)

We begin by rewriting system (2.5) so that it can be studied within the framework

of Discrete Random Dynamical System (DRDS) [2]. We are interested in characterizing

invariant measures for (2.5). For the purpose of presenting the formulation in [2] full

generality we allow the uncertainty to vary as a function of time. Let Ω= NZ be the space

of all sequences taking values in N, denote an element of Ω as ω and let F be the Borel

σ�algebra onΩ. Let S (k) be the shift transformation onΩ, i.e. S (k)ω i =ω i+k; de�ne the

map π :Ω! N by

π (ω) = ω (0)

and the coordinate process

ξ i = ω (i) = π (S (i)ω) = (π �S (i))(ω) :

Let P be any S invariant (probability) measure. Then ξ i = ω (i) is a stochastic process on

the probability space (Ω;F ;P) : Now we let �T (x;ω) = T (x;ω (0)) and get

xi+1 = T (xi;ξ i) = T (xi;ω (i)) = �T (xi;S (i)ω) (2.11)

yi = f (xi)

Let ψ (ω) : X ! X be the operator de�ned by ψ (ω)x = �T (x;ω): Then the solution of

(2.11) can be represented as xi = ϕ (i;ω)x where

ϕ (i;ω) =

8><>: ψ (Si�1ω)� � � � �ψ (ω) i� 1

idX i= 0
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where idX is the identity operator on X : The mapping

(ω;x) 7�! (Siω;ϕ (i;ω)x) =Θ(i)(ω;x)

is called the skew product of Si and ϕ (i; �) and is measurable dynamical system on (Ω�X ;F �BX) :

Let πΩ denote the projection by πΩ (ω;x) = ω:

De�nition 15 A probability measure µ on (Ω�X ;F �B) is said to be an invariant meas-

ure of the DRDS de�ned by (2.11) if it satis�es (i) Θ(1)µ = µ and (ii) πΩµ = P:

Note that any measure that is invariant with respect to Θ has a marginal πΩµ that

is invariant with respect to S: Furthermore, the second condition in the above de�nition

is imposed since the measure is an a-priori speci�ed invariant measure for S . Now let

P (Ω�X) be the set of all probability measures on Ω�X and de�ne

PP (Ω�M) = fν 2P (Ω�X) : πΩν = Pg

IP = fµ 2PP (Ω�X) : µ is invariant for (2:11)g

Assume µ 2PP (Ω�X) : A function µ � (�) : Ω�B �! [0;1] is called a factorization

of µ with respect to P if

1. for all A 2B; µ � (A) isF measurable,

2. µω (�) is a probability measure on (X ;B) for P almost all ω;

3. for allC 2F �B we have

µ (C) =
Z

Ω

Z
X

χC (ω;x)µω (dx)P(dω)

where χC is the indicator function forC.
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Note that it follows that for h 2 L1 (µ) we have

Z
Ω�X

hdµ =
Z

Ω

Z
X
h(ω;x)µω (dx)P(dω)

It can be shown that under the assumptions we have made about X the factorization

exists and is P almost surely unique [2].

Return now back to the uncertain system (2.5), i.e. assume that for all i we have ξ i = ξ

where ξ is a random parameter that has distribution ρ on N. Then the invariant measure of

S (1) is a (random) measure concentrated at ξ and if µ is a physical measure in the sense

(2.10)

f � (x;ξ ) =
Z

Ω�X
f dµ =

Z
Ω

Z
X
f (z)µω (dz)δ (ω�ξ )dω

=
Z
X
f (z)µξ (dz)

We note that the through the factorization of the physical measure the time average

f � (x;ξ ) is an explicit function of the random parameter ξ : The dependence on the (ran-

dom) initial state can be characterized in terms of the ergodic properties of the system.

De�nition 16 Let ρ be an a-priori measure on the Borel σ -algebra on X : System (2.5) is

called Bρ -regular if for each �xed ξ there exists a �nite set of ergodic invariant measures

µ i
ξ
; i = 1; : : : ;Kξ such that for almost every x 2 X and every f 2 C (X) there exists a

j 2
�
1; : : : ;Kξ

	
such that the time average satis�es

f � (x;ξ ) =
Z
X
f (z)µ

j
ξ
(dz)

Furthermore, there exists an ergodic partition, i.e. disjoint (random) sets Dξ

1 ; : : : ;D
ξ

Kξ
such
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that ρ

�
X�[Kξ

i=1D
ξ

i

�
= 0 and

Dξ

i =

�
x 2 X

���� f � (x;ξ ) = ZX f (z)µ
i
ξ
(dz) 8 f 2C (X)

�

The following proposition from [43] characterizes the calculation of the asymptotic

output measure in terms of the ergodic invariant measure.

Proposition 3 Assume that (2.5) is Bρ -regular and the family of measures µ
ξ

i ; i= 1; :::;Kξ

has the property that each µ
ξ

i (B) is continuous as a function of ξ for any B 2BX : Assume

that the input measure η is absolutely continuous with respect to the a-priori measure ρ:

Then the cumulative distribution function Fϖa for ϖa is piecewise continuous with a �nite

number of steps.

If we de�ne µξ (A) =∑
Kξ

i=1 µ i
ξ

�
A\Dξ

i

�
then µξ (A) is an invariant measure for Tξ and

factorization of the invariant measure µ for (2.5).

The following result proven in [2] provides further insight into the conditions under

which the invariant measure of (2.11) is a physical measure in the sense of (2.10).

De�nition 17 The DRDS is said to be continuous if for each �xedω the mapping ϕ (�;ω) � :

Z�X ! X is continuous.

We note that by Theorem 1.5.10 in [2] if X is a compact metric space and the DRDS is

continuous then IP is a non-empty convex compact subset ofPP (Ω�X) : For a measure

ν 2P (Ω�X) and f 2 L1 (ν) de�ne ν ( f ) =
R
f dν .

Theorem 4 Assume that DRDS is continuous. For ν 2PP (Ω�X) de�ne

µN ( f ) =
1
N

N�1
∑
n=0

Θ(n)ν ( f ) =
1
N

N�1
∑
n=0

ν ( f �Θ(n))

Then as N! ∞ every limit point of µN converges weakly to some µ 2 IP and every µ 2

IP arises in this way.
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Finally we have the following general result taken from [2] that further characterizes

the factorization of the invariant measure.

Theorem 5 Let µ 2PP (Ω�X) : Then (i) µ 2IP if and only if for all i 2 N

E
�
(ϕ(i; �)µ � j S(i)�1F

�
ω
= µS(i)ω P�a:s:

(ii) If S is measurably invertible then S(i)�1F =F for all i 2 Z; and µ 2IP if and only

if for all i 2 Z

ϕ(i;ω)µω = µS(i)ω P�a:s:

Consider now the special case of an uncertain system (2.5), i.e. ξ i = ξ for all i where

ξ has the distribution ρ on N. In this case, if µ 2 IP then ϕ(i;ξ )µξ = µξ : Thus, since

ϕ(1;ξ )x = Tξ (x) ; for each �xed value of ξ 2 N the marginal µξ = πXµ is the invariant

measure of (2.5) on (X ;BX). Furthermore, if the dynamical system Tξ is ergodic for each

ξ 2 N, then the ϕ-invariant measure µξ is called a random Dirac measure, i.e. there exists

a map h : N! X with µξ = δ h(ξ ).

In the following chapters, we will present the main contribution of the paper, i.e. an

ef�cient optimal design method of uncertain dynamical systems.
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CHAPTER 3

Uncertain System Design

The use of mathematical models in the design of engineering products and systems has

become widespread in the last few decades. Depending on the complexity of the product

or process the models range from simple physics based and empirical models to large com-

putational models. Most of the models used in design are algebraic models representing

the steady state or static relationship between variables. In [1], the quantities of interest in

a typical design problem are the following:

� Design Parameter [DP]: Any free or independent parameter whose value is determ-

ined during the design process.

� Performance Parameter [PP]: Any parameter used in the design process that has

a speci�ed value [FR] determined independent of (and usually in advance of) the

design process. The performance parameters [PPs] are usually dependent on the

design parameters [DPs], and possibly some other PPs.

� Output Parameter [OP]: Any parameter used in the design process that is dependent

on the design parameters [DPs], and possibly some performance parameters [PPs],

but has no speci�ed functional requirement [FR] value.

� Functional Requirement [FR]: A value, or range of values, or fuzzy number that

is the speci�ed value for a Performance Parameter [PP]. This value is determined

independent of (and usually in advance of) the design process. Each Performance

Parameter has a FR.
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� Performance Parameter Expression [PPE]: An expression, relationship, or equation

relating some or all of the Design Parameters to a Performance Parameter. Each PP

has a PPE.

In terms of a mathematical design process the problem is formulated as an optimiz-

ation problem where the objective is to optimize over the Design Parameters the devi-

ation between Performance Parameters and their corresponding Functional Requirements

subject to constraints set by the Performance Parameter Expressions. Let y represent the

Performance Parameters, d denote the Design Parameter, P(y;d) = 0 represent the Per-

formance Parameter Expression and g(y) be a cost function or performance function that

represents the level to which the Performance Parameters meet the Functional Require-

ments. Then the optimal design problem becomes the optimization of g(y) subject to the

constraint P(y;d) = 0.

In many practical problems the Performance Parameter Expression is subject to uncer-

tainties that can be attributed to inaccuracies in physical parameters, lack of knowledge

about physical characteristics as well as modeling inaccuracies and approximation errors.

Frequently these uncertainties are modeled as random parameters with a known distribution

and incorporated into the Performance Parameter Expression [48].

In some design problems the Performance Parameter Expression is a true static rela-

tionship. This is in particular true for many component design problems. In other problems

the system is truly dynamic and the effect of the dynamics cannot be ignored. This is the

case for many system design problems that can exhibit complex nonlinear behavior. In

this section we discuss the incorporation of uncertainty into the design speci�cations in

such problems. In particular, we consider the uncertain discrete dynamical system (2.5) but

assume that the system depends on a design parameter θ . Thus the system is now

xi+1 = T (xi;θ ;ξ ) (3.1)

yi = f (xi)
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where xi 2 G � Rn is the system state, θ 2 Θ is the design parameter, and the uncertainty

ξ 2H is as before a random parameter with distribution ρ . In order to simplify the discus-

sion we assume that G is a compact subset of Rn and H is a compact subset of Rr. Also,

we assume that the system is stable for all initial states, all θ 2Θ and all parameters ξ 2H:

Of particular interest is the case when the parameters θ arise from a parameterization of

controllers. In this case we assume we start with the controlled system with control input

ui. Thus the system is now

xi+1 = �T (xi;ui;ξ ) (3.2)

yi = f (xi)

Furthermore, we assume the control input ui has the form ui = u(xi;θ) where the control

parameter θ 2 �Θ. We denote the class of all such control laws by fU (θ): We assume that

there exists a nontrivial compact subset Θ � �Θ and a subset U (θ) � fU (θ) that has the

property that any control law u2U (θ) with θ 2Θ stabilizes the closed loop system for all

initial states and all parameters ξ 2H. In other words, we focus our attention on stabilizing

state feedback control laws. For u 2 U (θ), θ 2 Θ the dynamical system equation can be

rewritten as

xi+1 = �T (xi;u(xi;θ);ξ ) = T (xi;θ ;ξ ) (3.3)

yi = f (xi)

Assume that the objective of the design for system (3.3) is to minimize the performance

function g(y) over all admissible θ 2 Θ, where y is the Performance Parameter for the

system. In the design literature y is frequently evaluated at an equilibrium point of the

system. In that case the resulting optimization problem becomes

min
θ2Θ

g(y) s.t. x= T (x;θ ;ξ ) ; y= f (x)
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where y is the stationary output of the system. Since the parameter ξ is random the steady

state value x is random as well and consequently the objective function g(y) is random.

Following [48], [71] we use an average performance as the objective function to be minim-

ized. Thus, we replace g(y) with the average cost resulting in the optimal design problem

min
θ2Θ

Eρ [g(y)] s.t. x= T (x;θ ;ξ ) ; y= f (x) (3.4)

where Eρ [�] is the expectation with respect to the distribution ρ . If we de�ne a a-priori

equilibrium measure ϖθ
s by

ϖ
θ
s (E) = ρ (fξ 2 Hj f (x) 2 E;x= T (x;θ ;ξ )g) (3.5)

then (3.4) can be rewrite as

min
θ2Θ

Z
R
g(z)ϖθ

s (dz) (3.6)

In the remainder of the paper we refer to (3.6) as the a-priori design criteria.

For a dynamical system evolving from an (unknown) initial condition the above for-

mulation only makes sense if the solution x of the constraint equations corresponds to an

attractor of the dynamical system. Indeed, if for some values of ξ and θ the equilibrium is

unstable then the system will never reach the steady state and consequently the steady state

optimization problem does not make sense. Furthermore, the system may exhibit uncertain

behavior that is "generated" by the dynamics of the system itself. All uncertainty effects

can be correctly accounted for by reformulating the design problem utilizing the asymptotic

output measure corresponding to the time-averages of the output y. Indeed, formulating the

optimal design problem as

min
θ2Θ

Z
R
g(z)ϖθ

a (dz) (3.7)
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captures all uncertainty effects through the de�nition of asymptotic output measureϖθ
a (E)=

η

��
f �
θ

��1
(E)
�
where

f �θ (x;ξ ) = lim
n!∞

1
n

n�1
∑
i=0
f (T (xi;θ ;ξ )) (3.8)

and η is the input measure. We call (3.7) the a-posteriori design criteria.

It is of interest to compare the designs obtained from the above two formulations for

the design optimization. In the former one (3.6) the objective is to design a controller that

minimizes the cost function based on the a-priori uncertainty information due to initial

conditions and parameter uncertainty, while the latter one (3.7) incorporates a-posteriori

uncertainty induced by the system dynamics [57]. We call the former design method a-

priori design and the latter one a-posteriori design. The difference between the two design

measures is illustrated in the following simple example.

Example 2 Consider the system

xi+1 = xi+ξ (xi�θ)� (xi�θ)3 (3.9)

where θ 2 [�a;a] is a design parameter and ξ 2 [�b;b] is an uncertain parameter, assumed

to uniformly distributed on [�b;b]: The initial state is assumed to be uniformly distributed

on [�a;a]. System (3.9) has equilibrium at x = θ ; θ �
p

ξ . The cumulative distribution

function of the output measure is given by

Fa (z;θ) =

8>>>>>>><>>>>>>>:

0; z��
p
b+θ

(a+θ)(b�(z�θ)2)
4ab ; �

p
b+θ < z� θ

3a+θ

4a + (a�θ)(z�θ)2

4ab , θ < z�
p
b+θ

1; z>
p
b+θ
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and it is easy to see that Fa (z;θ) has density

fa (z;θ) =
1
2

δ (z�θ)� (a+θ)(z�θ)

2ab
χfzj�pb+θ<z<θg

+
(a�θ)(z�θ)

2ab
χfzjθ<z�pb+θg

On the other hand the equilibrium measure (3.5) has density

fs (z;θ) = �(z�θ)

b
χfzj�pb+θ<z<θg

+
(z�θ)

b
χfzjθ<z�pb+θg

Comparing the two measures shows that they will result in quite different cost functions.

Furthermore, the dependence of the density fa for the average output measure on the initial

conditions (re�ected in the appearance of a) and the presence of the term 1
2δ (z�θ) shows

shows the importance of the initial condition and the dynamic evolution of the system.

We remark that both (3.6) and (3.7) are in general dif�cult to compute analytically, since

the a-priori equilibrium measure ϖθ
s and asymptotic output measure ϖθ

a cannot generally

be characterized analytically for complex systems. Consequently, since it is dif�cult to de-

rive the performance function analytically it is even harder to obtain the optimal parameters

that minimize the performance functions. Therefore, we need an effective computational

method for the optimal design of the uncertain system. In this dissertation research, we

have developed an ef�cient approach called randomized algorithms that is based on statist-

ical learning theory to solve this problem.
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3.1 Randomized Algorithms for Average Performance Synthesis

In recent years, probabilistic and randomized methods have been developed as effective

tools to deal with uncertain complex systems, see e.g. the book [63] and the papers [12],

[64]. The starting point of these methods is the assumption that the uncertainty affecting the

system is random. The objective is then to provide probabilistic assessments on the system

characteristics. More precisely, we say that a certain performance level of the system is

robustly satis�ed in a probabilistic sense if it is guaranteed against most, albeit not all,

possible uncertainty outcomes. In other words, we accept the risk that a given system

property is violated for a set of uncertainties having small probability. Such systems may

be viewed as being �practically robust� from an engineering point of view.

One of the advantages of this approach for control purposes is to provide a reapproa-

chement between the stochastic and the robust paradigms, utilizing classical worst-case

bounds of robust control together with probabilistic information, which is often neglected

in a deterministic context. The interplay of probability and robustness also leads to innov-

ative concepts such as the probabilistic robustness margin and the probability degradation

function. However, it should be noted that moving from deterministic to probabilistic ro-

bustness does not imply a simpli�cation of the problem. Indeed, assessing probabilistic

robustness may be even computationally harder than establishing robustness in the usual

deterministic sense, since it requires the evaluation of multidimensional probability integ-

rals, which can be computed exactly only in very special cases of limited practical interest.

This computational problem is often resolved by means of randomization techniques,

which have been used extensively in various branches of science and engineering to tackle

dif�cult problems that are too hard to be treated via exact deterministic methods. Spe-

ci�c examples include the Monte Carlo methods in computational physics, simulations and

�nancial risk analysis, and the Las Vegas techniques in computer science [64]. In the con-

text of systems and control, the key idea is to introduce �uncertainty randomization,� and
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this requires the development of speci�c techniques for generating random samples of the

structured uncertainty acting on the system [63]. The probability of performance is estim-

ated using a �nite number of random samples, and tail inequalities are used to bound the

estimation error. Since the estimated probability is itself a random quantity, this method

always entails a certain risk of failure, i.e. there exists a nonzero probability of making an

erroneous estimation. The resulting algorithms, called randomized algorithms (RA), often

have low complexity and the resulting robustness bounds are generally less conservative

than classical ones [11].

The randomized algorithms used for the probabilistic approach are particularly effective

in the context of control design where the system is not �xed a a-priori, but depends on

some controller parameters which should be determined. Speci�cally, a RA for average

performance synthesis is an algorithm that returns a parameter vector which guarantees

the average performance is minimized with an a-priori speci�ed accuracy characterized by

probabilities. In other words, this probabilistic approach aims at designing a controller

that performs well on average. Let ξ 2 H represent the random uncertainty acting on the

system and let ρ be the distribution of ξ . The design parameter is a vector θ 2 Θ, where

Θ�Rnθ is the set of allowable design parameters. Furthermore, let J :H�Θ! [0;1] be a

performance function for the uncertain system. The following de�nition of RA for average

performance synthesis is from [63].

De�nition 18 Let ε 2 (0;1), δ 2 (0;1) be given probability levels. Let

φ(θ) =
Z
H
J(ξ ;θ)ρ (dξ ) = Eρ [J(ξ ;θ)] (3.10)

denote the average performance cost (with respect to ρ) of the uncertain system, and

φ
� =min

θ2Θ
φ(θ)

denote the optimal achievable average performance. A randomized average synthesis al-
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gorithm should return with probability 1�δ a design vector
^
θN 2Θ; such that

φ(
^
θN)�φ

� � ε

The parameter
^
θN is constructed based on a �nite number N of random samples of ξ .

The RA for average performance synthesis design procedure follows two steps: In the

�rst step, the average performance cost φ(θ) = Eρ [J(ξ ;θ)] is approximated, and in the

second step a minimization is performed on the approximate cost to obtain the "optimal"

solution. In the �rst step of the procedure, since the exact computation of the expected

value is, in general, computationally dif�cult, we approximate the expectation φ(θ) by its

empirical version. That is, N samples ξ 1; :::;ξN are collected and the empirical mean is

obtained as
^
φN(θ) =

^
EN [J(ξ ;θ)] =

1
N

N

∑
i=1
J(ξ i;θ):

Obviously, the approximation error will be affected by sample size N. From Statistical

Learning Theory in [54], [69], [72], we have the following result for sample size bound.

Theorem 6 Given ε1;δ 1 2 (0;1); let

N � 32
ε21

�
ln
8

δ 1
+d
�
ln
16e
ε1
ln ln

16e
ε1

��
(3.11)

where d is an upper bound on the so-called Pollard (or P) dimension of the function family

fJ(�;θ);θ 2Θg ; then, it can be asserted with con�dence 1�δ 1 that

����φ(θ)� ^
φN(θ)

����= ����Eρ [J(ξ ;θ)]�
^
EN [J(ξ ;θ)]

����� ε1 (3.12)

for all θ 2Θ:

In the second step, we have to �nd the solution
^
θN 2Θ such that minimize the approx-
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imate expectation
^
φN(θ), that is

^
θN = arg inf

θ2Θ

^
φN(θ):

In principle the minimization of
^
φN(θ) over θ 2 Θ can be performed by any numerical

optimization method. However, if the performance function J(ξ ;θ) is non-convex in θ

for some �xed ξ , then the empirical mean
^
φN(θ) is also non-convex, and there are ob-

vious dif�culties in �nding a global minimum. Thus, a viable approach would be to use

a randomized algorithm also for the determination of a probable minimum of
^
φN(θ). In

order to apply a randomized algorithm to �nd the optimal solution, we introduce an arti-

�cial probability distribution π over the set Θ of design parameters (sometimes based on

some a-priori knowledge about the parameters). Note that the sampling distribution π is

often chosen to be the uniform distribution on Θ if we have no a-priori knowledge about

the parameters. Correspondingly, the performance function
^
φN(θ k) is evaluated for each

sample θ k, k = 1; :::;M and the empirical optimal solution is obtained as

^
θNM = argmin

k=1;:::;M

^
φN(θ k): (3.13)

This randomized algorithm to �nd the approximate optimal solution is also called a random

search algorithm.

A simple randomized algorithm to search the optimal solution is a so-called pure ran-

dom search (PRS) that generates a sequence of independent, identically distributed sample

points in the feasible regionΘ, and the objective function has no impact on the technique of

generating the next sample points. However, it has been shown that PRS is inef�cient when

the search region is high dimensional since the expected number of sample points in PRS

is exponential in dimensionality. In [61], a more ef�cient search procedure is developed

called adaptive partitioned random search (APRS) which is shown to be at least hundreds
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of times more ef�cient compared with PRS. In this dissertation, we still use PRS to present

our randomized algorithms for simplicity. Furthermore, the following theorem in [35], [62]

gives us an estimation of sample size M required for a speci�c approximation error .

Theorem 7 For any ε2 2 (0;1) and δ 2 2 (0;1); if

M �
ln 1

δ 2

ln 1
1�ε2

then, with probability greater than 1�δ 2, we have

Pr
�
^
φN(θ)�

^
φN(

^
θNM)

�
� ε2 (3.14)

Finally, combining two steps randomized algorithm presented in Theorem 6 and The-

orem 7, we obtain the following corollary.

Corollary 8 Given ε1; ε2;δ 2 (0;1); let

M �
ln 2

δ

ln 1
1�ε2

and

N � 32
ε21

�
ln
16
δ
+d
�
ln
16e
ε1
ln ln

16e
ε1

��
(3.15)

Then, with con�dence 1�δ ; it holds that

Pr
�

φ(θ)<
^
φN(

^
θNM)� ε1

�
� ε2.

The quantity
^
θNM in (3.13) is called in [70] a probably approximate near minimizer

of φ(θ). In the same paper, it is observed that the sample size in (3.11) can be reduced

if we use a randomized approach to �nd the optimal parameters since it is not strictly

necessary to guarantee uniformity of the bound (9.6) for all values of θ 2 Θ. Actually, it
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is suf�cient to require that the inequality (9.6) holds for θ 2 fθ 1; :::;θMg. This amounts to

guaranteeing the convergence of the empirical estimate uniformly with respect to a family

of performance functions having �nite cardinality M. It follows that the bound (9.6) is

satis�ed for θ 2 fθ 1; :::;θMg if we draw at least

N �
ln 2M

δ 1

2ε21

samples of ξ : This leads to the following theorem, also stated in [70].

Theorem 9 Given ε1; ε2;δ 2 (0;1); let

M �
ln 2

δ

ln 1
1�ε2

(3.16)

and

N �
ln 4M

δ

2ε21
(3.17)

Then, with con�dence 1�δ ; it holds that

Pr
�

φ(θ)<
^
φN(

^
θNM)� ε1

�
� ε2. (3.18)

It is easy to verify that the bounds required by (3.17) are substantially better than is

required by (3.15). For example, taking δ = ε1 = ε2 = 0:01, Theorem 9 leads to M � 528

and N � 61;295; whereas Corollary 8, with d = 1, would require N � 4;248;297: Now, we

present the randomized algorithms for average performance synthesis based on Theorem 9

as follows [63]:

Algorithm 1: (RA for average performance synthesis) Let J : H�Θ! [0;1]. Assume

θ and ξ are random with distribution π and ρ . Given ε1; ε2;δ 2 (0;1); this RA returns

with probability at least 1�δ a design vector
^
θNM such that (3.18) holds. The steps of the

algorithm are:
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1) DetermineM =M(ε2;δ ) and N = N(ε1;δ ;M) according to (3.16) and (3.17);

2) DrawM iid samples θ 1;:::;θM from π;

3) Draw N iid samples ξ 1;:::;ξN from ρ;

4) Return the empirical optimal parameter:

^
θNM = argmin

k=1;:::;M

1
N

N

∑
i=1
J(ξ i;θ k): (3.19)

Obviously, the computational burden of a randomized algorithm is strictly related to

its sample complexity. One of the main critical issues of Algorithm 1 is that the bounds

obtained are conservative for extremely small values of ε2 resulting in dif�cult practical

application. Therefore, a challenging topic of great interest is to reduce this conservatism.

Along this direction, an attempt is given in [15], where a bootstrap technique is used to

determine a stopping rule for the number of required samples.

In the next section, we present an ef�cient optimal design approach for uncertain sys-

tems based on RA for average performance synthesis.
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3.2 Optimal Design of Uncertain Systems

In this section we apply the algorithm presented in Section 3.1 to both the a-priori and a-

posteriori design criteria for optimal design for the uncertain systems. We assume that all

performance functions are normalized to satisfy the requirement in Algorithm 1.

3.2.1 The a-priori Design Criteria

As we discuss earlier, for the a-priori design criteria, by comparing (3.4) and (3.10) we get

the performance function

Js(ξ ;θ) = g(yθ ;ξ )

where yθ ;ξ is the stationary output of the system equations (3.3) determined by θ and ξ . In

applying Algorithm 1 we sample the parameter and controller spaces to obtain ξ i and θ k

for i= 1; :::;N; k = 1; :::;M: Thus, we obtain

Js(ξ i;θ k) = g(yk;i)

where yk;i is the output solution of steady state equations for θ k;ξ i; that is,

x= T (x;θ k;ξ i) (3.20)

yk;i = f (x)

If yk;i is not unique, since the a-priori equilibriummeasure is only determined by the system

steady state equations, and has nothing to do with system dynamics, ϖ
θ k
s is a Dirac delta

measure concentrated at every stationary output with equal weights, i.e.

Js(ξ i;θ k) =
1

n(yk;i)

n(yk;i)

∑
j=1
g(yk;i; j)
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where n(yk;i) is the number of distinct solution yk;i for equation (3.20). Furthermore, by

Algorithm 1 we obtain the a-priori design controller,

^
θ

s

NM = argmin
k=1;:::;M

1
N

N

∑
i=1

n(yk;i)

∑
j=1

g
�
yk;i; j

�
n(yk;i)

: (3.21)

3.2.2 The a-posteriori Design Criteria

For the a-posteriori design criteria, it is not as straightforward to derive the suboptimal

solution. In particular, in order to apply the randomized design algorithm we rewrite the

a-posteriori design criteria (3.7) as follows.

Proposition 10 The a-posteriori design criteria (3.7) satis�es

Z
R
g(z)ϖθ

a (dz) =
Z
H
Ja(ξ ;θ)ρ(dξ )

where the performance function Ja(ξ ;θ) is given by

Ja(ξ ;θ) =
Z
R
g(z)ν (x 2 Gj f �θ (x;ξ ) 2 dz) :

Proof. We note that

Z
R
g(z)ϖθ

a (dz)

=
Z
R
g(z)η

�
( f �θ )

�1 (dz)
�

=
Z
H

Z
G

Z
R
g(z)χ

( f �θ )
�1
(dz)
(x;ξ )ν(dx)ρ(dξ )
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where χ(�) is the indicator function and ν is the initial distribution de�ned on state space

G. Thus, we have

Ja(ξ ;θ) =
Z
R

Z
G
g(z)χ

( f �θ )
�1
(dz)
(x;ξ )ν(dx)

=
Z
R
g(z)ν (x 2 Gj f �θ (x;ξ ) 2 dz) :

Now that we have rewritten the design criteria in the standard form (3.10) we proceed

to apply the randomized algorithm for optimal design. We sample parameter and controller

space to obtain Ja(ξ i;θ k);

Ja(ξ i;θ k) =
Z
R
g(z)ν

�
x 2 Gj f �θ k (x;ξ i) 2 dz

�
: (3.22)

From the de�nition of the asymptotic output measure ϖθ
a we have

ϖ
θ k
a (Ejξ = ξ i) = ν

�
x 2 Gj f �θ k (x;ξ i) 2 E

�
:

Also, by (2.9), we have

ϖ
θ k
a (Ejξ = ξ i) = µ

θ k
ξ i
( f�1(E))

where µ
θ k
ξ i
is the invariant measure of the dynamical system for given ξ i and θ k: Thus, we

can rewrite (3.22) with respect to invariant measure as

Ja(ξ i;θ k) =
Z
R
g(z)µθ k

ξ i
( f�1(dz))

=
Z
G
g� f (x)µθ k

ξ i
(dx):
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By (3.19), the a-posteriori suboptimal design vector is

^
θ

a

NM = argmin
k=1;:::;M

1
N

N

∑
i=1

Z
G
g� f (x)µ

θ k
ξ i
(dx) : (3.23)

In order to evaluate the cost function (3.23) we need to evaluate the integrals
R
G g �

f (x)µ
θ k
ξ i
(dx)which requires the invariant measures µ

θ k
ξ i
:A common approach for the com-

putation of µ
θ k
ξ i
is to use a Monte Carlo type method that samples the distribution of the

initial state and then simulates the system until it reaches stationarity (steady state), which

is discussed in the next chapter. Then we present an alternative operator based approach for

the computation of the invariant measure that is more accurate and ef�cient than the Monte

Carlo approach.
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CHAPTER 4

Computation of Invariant Measure

4.1 Monte Carlo Method

In this section we discuss Monte Carlo (MC) and quasi Monte Carlo (QMC) methods. The

Monte Carlo method has a very long history, which began in 1949 with the seminal paper

of Metropolis and Ulam [41]. The quasi Monte Carlo (QMC) is an improved Monte Carlo

method, which is more recent and regarded as a deterministic version of MC [46].

Monte Carlo methods are a class of computational algorithms that rely on repeated ran-

dom sampling to compute their results. Monte Carlo methods are often used in simulating

physical systems and evaluation of mathematical objects. Because of their reliance on re-

peated computation, these methods are most suited for calculation by a computer and tend

to be used when it is unfeasible or impossible to compute an exact result with a determin-

istic algorithm.

Monte Carlo simulation methods are especially useful in studying systems with a large

number of coupled degrees of freedom, such as �uids, disordered materials, strongly coupled

solids, and cellular structures. More broadly, Monte Carlo methods are useful for modeling

phenomena with signi�cant uncertainty in inputs, such as the calculation of risk in business.

These methods are also widely used in mathematics: a classic use is for the evaluation of

de�nite integrals, particularly multidimensional integrals with complicated boundary con-

ditions. It is a widely successful method in risk analysis when compared with alternative

methods or human intuition.
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4.1.1 Monte Carlo Methods for Calculating Invariant Measure

The most straightforward method for obtaining the stationary distribution (invariant meas-

ure) for the uncertain dynamical system (3.3) is Monte Carlo Simulation. We assume that

the probability distribution of the initial state x0 = x is known and want to �nd the invariant

measure µ
θ k
ξ i
for (3.3).

We propose the following nested Monte Carlo algorithm for calculating the invariant

distribution. In particular we sample L points xl0 from the initial distribution ν and for

each sample we simulate the system equation until it reaches steady state x
�
xl0;ξ i;θ k

�
:

Let χA be the indicator function for the set A and de�ne random variables zl (ξ i;θ k) =

χA
�
x
�
xl0;ξ i;θ k

��
: Then compute 1L ∑Ll=1 zl (ξ i;θ k) as an approximation to µ

θ k
ξ i
(A):

The accuracy of this method is determined by the number of the samples we pick

from the distribution ν . In order to evaluate the error in the Monte Carlo approximation

scheme we compare simulation result with the true value µ
θ k
ξ i
(A): Consider the independ-

ent samples x
�
xl0;ξ i;θ k

�
; l = 1; :::;L and assume that the distribution of the x

�
xl0;ξ i;θ k

�
is

identical to that of the steady state x(x;ξ i;θ k) ; i.e. each simulation has reached the steady

state. Then it follows that E[zl (ξ i;θ k)] =E[χA
�
x
�
xl0;ξ i;θ k

��
] = µ

θ k
ξ i
(A) and by the central

limit theorem,

Pr
�����1L L

∑
l=1
zl (ξ i;θ k)�µ

θ k
ξ i
(A)
����< 3v(ξ i;θ k)p

L

�
� 0:997 (4.1)

and the mean square error between the estimate 1L
L
∑
l=1
zl (ξ i;θ k) and true value µ

θ k
ξ i
(A) is

given by,

eMCL =

0@E
24�����1L L

∑
l=1
zl (ξ i;θ k)�µ

θ k
ξ i
(A)

�����
2
351A 1

2

=
v(ξ i;θ k)p

L
(4.2)
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where v(ξ i;θ k) is the standard deviation of the zl (ξ i;θ k) ; that is,

v(ξ i;θ k)
2 = E

��
zl (ξ i;θ k)�µ

θ k
ξ i
(A)
�2�

= E
h
zl (ξ i;θ k)

2
i
�2E [zl (ξ i;θ k)]µ

θ k
ξ i
(A)+

�
µ

θ k
ξ i
(A)
�2

= µ
θ k
ξ i
(A)�2

�
µ

θ k
ξ i
(A)
�2
+
�

µ
θ k
ξ i
(A)
�2

= µ
θ k
ξ i
(A)�

�
µ

θ k
ξ i
(A)
�2

Note that since µ
θ k
ξ i
(A) 2 [0;1] we have v(ξ i;θ k)

2 � 1
4 : Also, we note that the variance

depends on the uncertain parameter.

At the heart of the Monte Carlo method is the generation of the independent statist-

ical samples x0 from distribution ν . It can be shown that an arbitrary random sequence

(φ i)i=1;2;::: can always be represented as a sequence of functions ψ i (α1; :::;α i) ; i = 1;2:::

where (α i)i=1;2;::: is a sequence of independent uniformly distributed random variables on

unit interval U = [0;1] [31]. In particular, assume that we are interested in generating a

sequence of independent and identically distributed random variables with cumulative dis-

tribution function Fν and random variable α is uniformly distributed onU . De�ne

g(α) = inffz : Fν (z)� αg (4.3)

Then we have,

Prfg(α)< xg = Prfinffz : Fν (z)� αg< xg

= PrfFν (x)� αg

= Fν (x)

Therefore, the random variable φ = g(α) has cumulative distribution function Fν . Us-

ing this method, a sequence of independent random variables (φ i)i=1;2;::: with an arbitrary
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distribution Fν can be generated from a sequence of uniformly distributed random vari-

ables (α i)i=1;2;:::. Other methods, that may be computationally superior, for generating the

sequences (φ i)i=1;2;::: are discussed in [32].

A device that generates the sequence (α i)i=1;2;::: of independent uniformly distributed

random variables is called a random generator. The most common procedure for generating

(α i)i=1;2;::: is to use ef�cient computer codes that generate pseudo-random sequences, i.e.

long sequences that have many of the properties of the independent uniformly distributed

random sequences, as measured by statistical tests.

One of the drawback of Monte Carlo method is that the mean square error between

the approximate and true value is proportional to 1p
L . Therefore, in order to achieve a

mean square error of ε we need of the order of 1
ε2
simulations, i.e. L = o

�
1
ε2

�
. In many

real applications, particularly for complex dynamical systems, each simulation run can be

computationally expensive as well as very time-consuming.

For problems where each simulation run is computationally very expensive more ef�-

cient methods are needed. Various improved statistical sampling techniques such as im-

portance sampling and strati�ed sampling) exists that result in reduction in the variance in

the error estimate (4.2) but still have an error of the order 1p
L [32]. An attempt for increas-

ing the computational ef�ciency that has shown great promise in several applications are

so-called quasi Monte Carlo methods which arise in information based complexity theory

[66].

4.1.2 Quasi Monte Carlo Methods for Calculating Invariant Measure

The quasi Monte Carlo (QMC) method is a deterministic version of Monte Carlo with

guaranteed approximation errors instead of probabilistic errors (4.2). In the quasi Monte

Carlo method, deterministic points chosen according to some optimal criterion are used

instead of random samples generated according to a given probability density function.

In particular, in quasi Monte Carlo methods, the sample sequence with some distribution
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Fν is generated by a low discrepancy sequence of random variables instead of uniformly

distributed random sequences in regular Monte Carlo methods [46].

Let d denote the dimension of random variable we want to generate, let x=(x1x2:::xd)T 2

Ud and let χ [0;x) be the indicator function for the cube [0;x) : For ς1; :::;ςL 2Ud de�ne

RL (x;ς1; :::;ςL) =
1
L
L
∑
l=1

χ [0;x) (ς l)�m([0;x))

=
1
L
L
∑
l=1

χ [0;x) (ς l)� x1x2:::xd

where m is the Lebesgue measure. The L2 and L∞ discrepancy of ς1; :::;ςL are de�ned as

follows

kRL (�;ς1; :::;ςL)k2 =

 R
Ud
R2L (x;ς1; :::;ςL)dx

! 1
2

kRL (�;ς1; :::;ςL)k∞ = sup
x2Ud

jRL (x;ς1; :::;ςL)j

It can be shown that

inf
ς1;:::;ςL

kRL (�;ς1; :::;ςL)k2 = o
 
(logL)

d�1
2

L

!

A low discrepancy sequence (ς l)l=1;2;::: is an in�nite sequence for which

kRL (�;ς1; :::;ςL)k2 � kRL (�;ς1; :::;ςL)k∞ = o

 
(logL)d

L

!

The basic idea behind a low discrepancy sequence is that they cover the unit cube Ud as

uniformly as possible. Examples of low discrepancy sequences are the Halton and Sobol

sequences [53].

Assume that we use a low discrepancy sequence (ς l)l=1;2;::: to generate the sequence of

initial states
�
xl0
�
l=1;2;:::, e.g. x

l
0 = g(ς l) where g(�) is de�ned by (4.3). Then we simulate

system (3.3) L times giving zl (ξ i;θ k) = χA(x
�
xl0;ξ i;θ k

�
) where x

�
xl0;ξ i;θ k

�
is the steady

42



state of (3.3) for each sample ξ i; θ k and initial condition xl0. Using the fact that (ς l)l=1;2;:::

is a low discrepancy sequence it can then be shown that the mean square error for the quasi

Monte Carlo method is given by

eQMCL =

�����1L L

∑
l=1
zl (ξ i;θ k)�µ

θ k
ξ i
(A)

�����
2

(4.4)

� CkRL (�;ς1; :::;ςL)k∞

� o

 
(logL)d

L

!

where the constant C depends only on the parameters of the system and is independent of

the number of samples L.

Compared to (4.2), the quasi Monte Carlo method outperforms the Monte Carlo method

in terms of convergence speed if the dimension d is small. For large d the upper bound

for the quasi Monte Carlo method exceeds the Monte Carlo error bound for large value

of L. Several simulation studies for large values of d indicate that quasi Monte Carlo

methods still outperform standard Monte Carlo methods [65], [53], [49], [51]. However,

these results are empirical and rigorous explanation for this good performance of quasi

Monte Carlo methods for large values of d do not exist. Although there exist other methods

(such as variance reduction schemes) for improving the computational ef�ciency of Monte

Carlo methods, these methods only result in marginal improvements or are only applicable

to a limited class of dynamical systems. Thus, there is a considerable need for ef�cient

alternatives. In the next section, we introduce a new approach to solve this problem using

some recently developed results from Random Dynamical Systems.
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4.2 Operator Approach

In this section we discuss an approach for calculating the invariant measure in (3.23) using

the theory of random dynamical systems in Section 2.3. In particular we note that under

the appropriate conditions the system has an ergodic invariant measure that is characterized

as a �xed point of the Perron Frobenius operator Pξ for Tξ :

We note that the invariant measure may not be unique. However, it can be shown

that, under mild conditions on the dynamical system, by adding small (localized) noise,

the resulting system possesses an unique invariant measure [37] that converges to the true

ergodic measure as the noise intensity converges to zero. The computational approach

relies on the discretization of the P-F operator that we discuss next.

4.2.1 Discretization

In order to obtain a �nite-dimensional (discrete) approximation of the P-F operator, we

consider a �nite partition of the state space G; denoted as B1;B2; :::BL; where Bi\B j = φ

and [ jB j = G: Corresponding to each partition element we associate a positive number

µ j 2 [0;1] with ∑Lj=1 µ j = 1, i.e. µ = (µ1;:::µL) 2 RL is a probability vector. De�ne a

probability measure on G as

µ(dx) =
L

∑
i=1

µ iχBi(x)
m(dx)
m(Bi)

(4.5)

where m is the Lebesgue measure and χBi is the indicator function for Bi: Then, the action

of the Perron Frobenius operator Pξ on µ on the element B j is

Pξ µ(B j) = µ

�
T�1

ξ
(B j)

�
=

L

∑
i=1

µ i
m(T�1

ξ
(B j)\Bi)
m(Bi)

=
L

∑
i=1

µ iPi j (ξ )
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where the L�L matrix with entries

Pi j (ξ ) =
m(T�1

ξ
(B j)\Bi)
m(Bi)

(4.6)

is a stochastic transition matrix. We will see below that the operator P(ξ ) is a "good"

approximation of Pξ and the invariant measure for Pξ can be approximated by a measure µ

de�ned by (4.5) where the coef�cients of µ are invariant for P(ξ ) ; i.e. satisfy µ i = (πL)i

where πL = πLP(ξ ). We note that the computation of the entries of P(ξ ) is much more

ef�cient than the Monte Carlo method.

The basic justi�cation for using a �nite dimensional approximation for the calculation

of the invariant measure lies in the theory of �nite dimensional approximations for compact

operators [19], [47]. For the Perron Frobenius operator Pξ we will de�ne an approximate

compact operator Pε : L2 (G) ! L2 (G) and then use �nite dimensional approximations

for compact operators to obtain the �nite dimensional approximation for Pξ : Here L2 (G)

denotes the space of functions that are square integrable on G: De�ne a kernel

kε (y;z) =
1

εnm(B)
χB

�
z� y

ε

�
; x;z 2 G

where B � G is the ball of radius one and center at zero. We note that kε

�
Tξ (x) ;z

�
is a

transition density for the transition function

pε (x;A) =
Z
A
kε

�
Tξ (x) ;z

�
m(dz)

It can be shown that pε (x; �)! δTξ (x) (�) as ε ! 0 in a weak sense, i.e. pε is the transition

function for a Markov process that is a small random perturbation of a discrete dynamical

system de�ned by Tξ [36]. We note that the evolution of the distribution for the Markov

process is given by the operator Pεν (A) =
R
G pε (x;A)ν (dx) : If the initial measure ν has

density g with respect to m then Pε can be viewed as an operator mapping L2 (G)! L2 (G),
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i.e. the density evolves according to

Pεg(y) =
Z
kε

�
Tξ (x) ;y

�
g(x)m(dx)

Next note that Z Z ��kε

�
Tξ (x) ;z

���m(dx)m(dz)� m(G)
εnm(B)

Therefore, the transition operator Pε is a compact operator on L2 (G) [38].

Next we describe how to construct the �nite dimensional approximation (4.6) for the

compact operator Pε that (for small ε) gives a �nite dimensional approximation for Pξ as

well [19]. LetVL be a L�dimensional approximation of L2 (G) ; e.g. VL= spanfϕ1; : : : ;ϕLg

for some "independent" functions ϕ1; : : : ;ϕL 2 L2 (G) : Let QL : L2 (G)! VL be a projec-

tion such that QL converges pointwise to the identity in L2 (G) as L! ∞: De�ne an ap-

proximate operator Pε;L =QLPε where Pε is the compact operator de�ned previously. Then

kPε;L�Pεk2! 0 as L! ∞. We use the �nite dimensional operator Pε;L as an approxima-

tion of the Perron-Frobenius operator Pξ :

LetVL be de�ned by ϕ i (y) = χBi (y) where the sets Bi form the partition of G discussed

earlier. De�ne the Galerkin projection QL of g 2 L2 (G) by

hQLg;ϕ ii= hg;ϕ ii ; i= 1; : : : ;L (4.7)

where h�; �i is the inner product on L2 (G). Since ϕ i (y) = χBi (y) we have

Z
Bi
QLg=

Z
Bi
g; i= 1; : : : ;L

For g 2VL = spanfϕ1; : : : ;ϕLg we write g(y) =∑Li=1ϕ i (y)gi: It is easy to see that for any

such gwe have
D
g;ϕ j

E
= g j:Now for any g2 L2 (G)we have by de�nition Pε;Lg=QLPεg:
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Therefore, we get from (4.7) with Pεg replacing g

hPεg;ϕ ii= hQLPεg;ϕ ii= hPε;Lg;ϕ ii ; i= 1; : : : ;L (4.8)

Since Pε;Lg 2 VL we know that there exist constants mi; i = 1; : : : ;L such that Pε;Lg =

∑Li=1ϕ i (y)mi: Furthermore, for j = 1; : : : ;L we get from (4.8)

m j =
D
Pε;Lg;ϕ j

E
=
D
Pεg;ϕ j

E

Now if in addition g 2VL then

Pε;Lg= Pε;L
L

∑
j=1

ϕ j (y)g j =
L

∑
j=1
Pε;Lϕ j (y)g j

Note that if g=ϕ j then Pε;Lϕ j (y)=∑Li=1ϕ i (y)mε
i j wheremε

i j=
D
Pε;Lϕ j;ϕ i

E
=
D
QLPεϕ j;ϕ i

E
=D

Pεϕ j;ϕ i

E
: Thus

Pε;Lg=
L

∑
j=1

L

∑
i=1

ϕ i (y)m
ε
i jg j

We note that when restricted to the �nite dimensional subspace VL the action of the the

operator Pξ is fully represented by the L�L matrix Mε with coef�cients mε
i j: We �nally

note that in the limit ε ! 0 we have mε
i j ! m(T�1(Bi)\B j) which after renormalization

to a stochastic matrix agrees with (4.6). Furthermore, it follows from the results in [37],

[19] that when the invariant measure of (2.5) is an ergodic invariant measure in the sense

of De�nition 16 then the approximate invariant measure πL converges to µξ as L! ∞:

4.2.2 Subdivision

In this section, we will discuss the application of subdivision methods for the partition of

the state space in the computation of the approximate invariant measure. Recently subdivi-

sion methods have been successfully applied to the numerical analysis of complex dynam-
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ical behavior [21], [17], [16], [19], [25]. These methods can be used for two essentially

different purposes: the �rst is to understand the geometric structure of an underlying at-

tractor. Secondly the goal may be to approximate the observable dynamical behavior of the

underlying system in a speci�c region of state space by the computation of invariant meas-

ures. Here, we concern the application of subdivision algorithms for the second purpose.

The subdivision algorithm has been used to approximate the unstable manifolds of in-

variant sets in discrete dynamical systems. Existing methods for the computation of an

unstable manifolds are local in the sense that one starts the computation at a hyperbolic

periodic point and then computes part of the unstable manifold by some sort of continu-

ation procedure [52]. In contrast to these methods, the subdivision algorithm is a global

approach in the estimation of unstable manifolds.

In particular, we consider discrete dynamical systems of the form

x j+1 = f
�
x j
�
; j = 0;1;2; :::;

where f : Rn! Rn is a diffeomorphism. The central object which is approximated by the

subdivision algorithm developed in [17] is the so-called relative global attractor,

AQ = \
j�0
f j (Q)

where Q � Rn is a compact subset. Roughly speaking, the set AQ should be viewed as

the union of unstable manifolds of invariant sets inside Q. Moreover, the relative global

attractor is in general "invisible" in the sense that it cannot be computed by direct simulation

of the underlying dynamical system.

The subdivision algorithm for the approximation of AQ generates a sequenceB0;B1;B2; :::

of �nite collections of boxes with the property that for all integers k the set Qk = [
B2Bk

B is

a covering of the relative global attractor under consideration. The sequence of coverings
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is constructed in such a way that the diameter of the boxes,

diam(Bk) = max
B2Bk

diam(B)

converges to zero for k ! ∞: Moreover, it is shown in [17] that the �nite collection of

closed subsets Qk converges to the relative global attractor AQ as k! ∞:

Given an initial collectionB0; one can inductively obtainBk fromBk�1 for k= 1;2; :::

by any subdivision method. The simplest approach is to use bisection for all boxes and

such algorithm called a standard subdivision algorithm. In particular, we assume that the

dynamical system is de�ned on a compact subset of Rn:We start by specifying one box in

Rn on which we want to analyze the dynamical behavior. For a given �xed integer L we

interactively obtain 2L boxes in Rn, B1; :::;B2L , of equal size by a bisection algorithm.

In the calculation of the approximate invariant measure, the principal factor affect-

ing the computational complexity is the discretization level on the state space. Using the

standard subdivision algorithm with the discretization level L, the size of the approximate

stochastic transition matrix P is then 2L�2L:We note that if the requirement for computa-

tional accuracy is stringent then L will be large and the resulting P will be huge requiring

excessive storage and computational effort.

The standard subdivision algorithm described above leads to a partition with boxes of

equal size. We note that the subdivision is done without utilizing any information about

the system dynamics or the invariant measure. However, frequently there exist subsets in

the state space that have a very small invariant measure. Consequently, the subdivision of

these subsets is not necessary for the computational determination of the invariant meas-

ure and their subdivision will lead to unnecessary computational effort. By incorporating

information about the invariant measure it is possible to produce more ef�cient partition-

ing schemes that result in an adaptive subdivision into boxes of unequal sizes. Here, we

introduce an adaptive subdivision algorithm that is a variant of the algorithm developed in
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[18].

Roughly speaking, the idea of the adaptive subdivision algorithm is as follows. Suppose

that the dynamical system is de�ned onG and we start by one box covering the whole space.

In a �rst step we subdivide this box and throw away boxes which have empty intersection

with the support of the invariant measure. Then we subdivide the remaining boxes again

and proceed in the same manner. Since we use the information on the actual approximation

of the invariant measure to decide whether or not a box should be subdivided, the adaptive

subdivision algorithm is obviously more ef�cient in the calculation of the approximate

invariant measure.

In particular, let fδ kg be a sequence of positive real numbers such that δ k ! 0 for

k! ∞ and letBk be a �nite collection of compact subsets of Rn at step k (the partition at

step k): Let πk be invariant measure of stochastic matrix Pk obtained at step k. Given an

initial pair (B0;π0); one inductively obtains (Bk;πk) from (Bk�1;πk�1) for k= 1;2; : : : in

three steps:

(i) Subdivision: De�ne

B�
k�1 = fB 2Bk�1 : πk�1(B)< δ k�1g and

B+
k�1 = Bk�1nB�

k�1

Construct a new collection �B+
k such that

[
B2 �B+

k

B= [
B2B+

k�1

B

where

diam( �B+
k )� θ diam(B+

k�1)

for some 0< θ < 1:
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(ii) Calculation of the invariant measure: Set

�Bk =B�
k�1[ �B+

k

For the collection �Bk calculate the approximate invariant measure as the �xed point

�πk of the discretized P-F operator de�ed by (4.6):

(iii) Selection: Set

Bk =
n
B 2 �Bk : �πk(B)> 0

o
and

πk = �πkjBk:

In the �rst step, we subdivide the boxes in the collections �B+
k , which is consist of

successively �ner boxes as k increasing. Meanwhile, we remove each subset with small

invariant measure based on the information in the second step. In the third step, a new

collectionBk is constructed for the next subdivision. As we shall see, this algorithm is an

ef�cient way for calculating the invariant measure.

Example 3 Let us illustrate the algorithm for the simplest possible case, namely for the

mapping f : R! R,

f (x) = αx

with α 2
�
0; 12
�
: With this choice of α the invariant measure of the dynamical system is a

Dirac measure on origin, i.e. δ fx=0g. We start with a single interval B0 = f[�1;1]g and

construct �B+
k by bisection of the intervals inB+

k�1. Hence,

B�
0 = /0

B1 = �B+
1 = f[�1;0] ; [0;1]g :
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No interval is removed, since each of them has equal invariant measure 12 : Subdividing

again, we get four intervals

B2 = �B2 =

��
�1;�1

2

�
;

�
�1
2
;0
�
;

�
0;
1
2

�
;

�
1
2
;1
��
:

Applying the selection rule, the two boundary intervals are removed from subdivision, i.e.

B�
2 =

��
�1;�1

2

�
;

�
1
2
;1
��

B+
2 =

��
�1
2
;0
�
;

�
0;
1
2

��
Keep the interval inB�

2 and subdivide the interval inB+
2 , we get

�B3 =

��
�1;�1

2

�
;

�
�1
2
;�1
4

�
;

�
�1
4
;0
�
;

�
0;
1
4

�
;

�
1
4
;
1
2

�
;

�
1
2
;1
��

B3 =

��
�1
2
;�1
4

�
;

�
�1
4
;0
�
;

�
0;
1
4

�
;

�
1
4
;
1
2

��
Proceeding this way, we obtain after k subdivision steps

Bk =

��
� 1
2k�2

;� 1
2k�1

�
;

�
� 1
2k�1

;0
�
;

�
0;

1
2k�1

�
;

�
1
2k�1

;
1
2k�2

��
:

We see that the union [B2BkB is indeed approaching the global attractor x= 0 for k! ∞.

Moreover, the number of intervals in the collection remains constant during the adaptive

subdivision algorithm whereas the standard subdivision algorithm has exponential growth

of intervals.

Compared with standard subdivision algorithm with an exponential growth of boxes, it

is easy to see that adaptive subdivision algorithm even in the worst case, that is the invariant
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measure is positive everywhere, has a polynomial growth of boxes:

jBkj= 1+ jB+
0 j+ jB

+
1 j+ ::::+ jB

+
k�1j at step k

where j�j denote the number of boxes in the collection and

jB+
i j � 2

i for i= 0;1; :::;k�1

In the realization of the algorithm, we typically subdivide the boxes in the collection

B+
k by bisection. This guarantees that the number of boxes is not growing too fast. The

details concerning the implementation are discussed in [17], [19]. Moreover, there is some

freedom in choosing the sequence fδ kg of positive numbers used in the subdivision step.

Note however that this sequence determines the number of boxes which will be subdivided

and hence it has a signi�cant in�uence on the storage requirement. In the computations it

turned out to be quite ef�cient to choose the average

δ k =
1
Nk ∑
B2 �Bk

πk(B) =
1
Nk

where Nk is the number of boxes inBk:

Using the proposed P-F method in this section, the invariant measure µ
θ k
ξ i
is approxim-

ated by a measure π
θ k
ξ i
calculated by the corresponding transition matrix P(θ k;ξ i) de�ned

in a similar way as (4.6):

Pi j (θ k;ξ i) =
m(T�1

ξ i;θ k
(B j)\Bi)

m(Bi)
(4.9)

Utilizing the approximate invariant measure π
θ k
ξ i
the approximate optimization problem for

(3.23) becomes
^
θ

a

NM = argmin
k=1;:::;M

1
N

N

∑
i=1

L

∑
j=1
g� f

�
m j
�
�πθ k

ξ i
( j) (4.10)
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where L is the number of boxes in the partition of the state space G and m j is the central

point of the j-th box.

We illustrate both the Monte Carlo and P-F based approach for calculating the invariant

measure and the uncertain system design in numerical examples in the next chapter.
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CHAPTER 5

Example

5.1 Computation of Invariant Measure

5.1.1 Pitchfork

Consider the system in Example 1, i.e.

xi+1 = xi+ξxi� x3i

where xi 2G �R is the system state, ξ 2H �R is a random parameter. As before for ini-

tial conditions the initial measure is chosen as ν(E) =m(E\ [�a;a])=2a and the uncertain

parameter is assumed to have the distribution ρ(E) =m(E \ [�b;b])=2b:We want to com-

pute the invariant measure µξ for any ξ : Below we illustrate the numerical determination

of the invariant measure using both Monte Carlo Simulation and the suggested P-F method

for random dynamical system. We pick a= 1 and b= 0:5 in the example.

Monte Carlo Method

First we sample L = 100 points from the distribution of the parameter to obtain ξ i; i =

1;2:::100: Second, for each ξ i, we perform K = 100 simulations with initial conditions

drawn from the initial condition distribution and obtain the distribution of the limiting

steady states as the approximation of the invariant measure µξ i
. The results are displayed

in Figure 5.1. To display the invariant measure we use a square to denote the steady states

and color the squares with respect to their probability (i.e. frequency).

From the Monte Carlo simulation we see that for each �xed value of ξ the system has
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Figure 5.1: Invariant Measure by Monte Carlo

either one or two equilibrium points at _x = 0 and _x = �
p

ξ , respectively, and and the

corresponding invariant measure µξ is approximated as

µξ =

8><>:
1
2δ fx=�

p
ξg+

1
2δ fx=

p
ξg for ξ � 0

δ fx=0g for ξ < 0

Since the invariant measure µξ is the combination of �nite Dirac measure we note that the

system is a parametric Bρ -regular system.

P-F Method

The adaptive subdivision algorithm and the approximate P-F method was used to calcu-

late the invariant measure µξ . In order to the make the algorithm even more ef�cient we

considered the parameter to be a dynamic state (sitting at a �xed point) and calculated the

invariant measure for the skew product system. This allows us to adaptively select the size

of the partition in both the state and uncertainty dimension.

The results using a standard subdivision algorithm and 1024 boxes are displayed in

Figure 5.2.
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Figure 5.2: Invariant measure by standard subdivision

The savings in computational effort when using the adaptive subdivision algorithm is

considerable. Indeed, after 10 subdivision steps (note 210 = 1024 so this corresponds to the

previous non adaptive case) we obtain only 388 boxes so there is considerable reduction

in computational load but at the same time the result are much more precise as is seen in

Figure 5.3.

We note that theMonte Carlo method and P-Fmethod give us the same results. Moreover,

since the P-F method requires one step simulation for the determination of the elements

of the discretized operator it was found to be much more ef�cient than the Monte Carlo

method. This is illustrated in the following catalytic reactor example with S-shape steady

state characteristic, which is referred to as a system with Arrhenius dynamics. The negative

slope part of the S-shape curve represents a set of unstable steady states.

5.1.2 Catalytic Reactor

In [14], [20], a set of nonlinear partial differential equations, which describe heat and mass

transfer in a spherically shaped catalytic pellet, was reduced to a dimensionless �rst-order

ordinary differential equation which we represent in the form
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Figure 5.3: Invariant measure by adaptive subdivision

dx=dt = A�g(x;B)

where x is the dimensionless temperature in the reactor and t is time expressed in units

of the rise time of the system. The rise time is de�ned as the time necessary to reach a

suf�ciently small neighborhood of the equilibrium position. A is the dimensionless external

temperature, which is the random parameter in our example. B is a parameter de�ned by

the reacting substances viewed as a constant and g(x;B) is of the form

e�Bx(ϕ1(x)=ϕ2(x))

where ϕs(x), s = 1;2 are polynomials in x. In our simulation, we choose B = 5:5 and

g(x;B) = (x=(1� x))e�5:5x. For initial uncertainty of the system, we assume x has an

uniform distribution in [0;1] and A is also uniform in [0;0:16]. The discretization time step

is 0:01.
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Figure 5.4: Invariant measure by Monte Carlo

Monte Carlo Method

We sample 1000 points both in state space and parameter space. As we discuss before, the

mean square error is proportional to 1p
N , that is about 0.03 in this example. The results are

shown in Figure 5.4 and the simulation costs 50.94 sec.

P-F Method

The standard subdivision is shown in Figure 5.5 and the adaptive subdivision is shown

in Figure 5.6. For standard subdivision, we have 4096 boxes to cover the whole space

with 21.57 sec. simulation time while we only have 286 boxes with 8.49 sec. in adaptive

subdivision. Moreover, the adaptive subdivision method has much higher accuracy than

standard method in the computation of the invariant measure. The average size of boxes

that cover the invariant measure is 2:5�10�6 in the adaptive subdivision while the size of

boxes is 3:9�10�5 in the standard subdivision. The adaptive subdivision algorithm shows

great ef�ciency in this example.

The negative slope part of the S-shape curve represents a set of unstable steady state.

It has been shown that the system with smaller negative slope part gives an increase in

productivity of the plants. Studying the invariant measure for the system can help us in
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Figure 5.5: Invariant measure by standard subdivision
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Figure 5.6: Invariant measure by adaptive subdivision
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analysis of the domains of attraction and in the design of control methods to shape the

curve so to increase the reaction productivity.

5.2 Uncertain System Design

Consider an optimal design problem for a continuous stirred tank reactor (CSTR) system.

In [68], the kinetic equations of the reaction can be reduced to a dimensionless second-order

ordinary differential equation which we represent in the form as (3.2)

�x1 =�x1+u � expfx2g (5.1)

�x2 =�(1+β )x2+Bu � expfx2g

where x1 2 [0;1], x2 2 [0;10] are the system states denoting the reactant concentration and

temperature respectively, u is the control input for the reactant concentration. The constant

B 2 [5;9] is de�ned by the dimensionless adiabatic temperature rise and related to the

inverse of the reactant feed temperature which, in turn, is viewed as a random parameter.

Finally, β = 0:5 is a dimensionless heat transfer coef�cient viewed as a constant parameter

in our example. It is well known that the norm of the steady state kxs(B;u)k2 has an

interpretation as the productivity of the reaction process in the system, and maximization

of this productivity in a stable steady state by an appropriate control method is an important

practical goal. Here, we consider the simple state feedback control strategy,

u= Da � (1� x1)

where Da is the Damkohler number is identi�ed with the inverse of the input �ow rate and

is considered here as a control parameter. Then, we modify the dynamical system (5.1) by
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Figure 5.7: Arrhenius Dynamics

adding the control parameter Da and an output equation related to the objective function,

�x1 =�x1+Da(1� x1)expfx2g (5.2)

�x2 =�(1+β )x2+BDa(1� x1)expfx2g

y=
q
x21+ x22

It can be shown that steady state xs = (x1s x2s)T of (5.2) satis�es

Da = (x1s=(1� x1s))expf�(B=(1+β ))x1sg (5.3)

x2s = (B=(1+β ))x1s

Therefore,

y= jjxsjj2 = x1s(1+B2=(1+β )2)1=2

which results, for all values of the control parameter Da; in the S-shape steady state charac-

teristic shown in Figure 5.7, referred to as a system with Arrhenius dynamics. The negative

slope part of the S-shape curve represents a set of unstable steady states.In reality, the upper

stable branch of the curve is not acceptable because of technological reasons. Hence, our
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performance function is chosen to maximize the norm of steady states bounded to some

acceptable range. Speci�cally, the resulting optimization problem is

min
θ2Θ

g(y) = min
Da2Θ

1
χE (jjxsjj2)

where χE (�) is the indicator function for some acceptable system operation range E de-

termined by reaction device parameters. Due to the random parameter B, the steady states

are random also. The problem can be considered as an uncertain system design problem of

the type discussed in the previous Sections. Below we will apply both the a-priori design

method and the a-posteriori design method. In our design, we assume initial states have uni-

form distribution in [0;1]� [0;10] and the control parameter Da is uniform on [0:06;0:12]

and choose E = [0;2]: The discretization step is 10�4.

1) a-priori design method:

Choosing ε1 = ε2 = 0:1; δ = 0:01; the design of the optimal controller according to

Algorithm 1 requires

M = 51

samples of the controller parameter Da, and

N = 496

samples of the uncertainty B: For every sample of Da and B, we solve the steady state

equation (5.3) and �nd the optimal controller parameter by (3.21),

D�a = 0:0784
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Figure 5.8: Stationary distribution by apriori design method

The corresponding average optimal performance value is

bφ sN(D�a) =
1
N

N

∑
i=1
Js(ξ i;D

�
a)

=
1
N

N

∑
i=1

n(yi)

∑
j=1

1
χE
�
yi; j
�
�n(yi)

= 2:1872

The stationary distribution of system output jjxsjj2 colored by a-priori equilibrium measure

is shown in Figure 5.8.

2) a-posteriori design method:

Setting the same probability levels as in the a-priori design method results in the same

number for samples M = 51 and N = 496. For every sample of Da, using the P-F method

and adaptive subdivision algorithm, we obtain the approximate invariant measure π
θ k
ξ i
for

k= 1;2; :::;M; i= 1;2; :::;N with the number of boxes L= 472. Finally, (4.10) gives us the

optimal controller parameter

D�a = 0:0642
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Figure 5.9: Stationary distribution by aposteriori design method

and the corresponding average optimal performance value

bφaN(D�a) =
1
N

N

∑
i=1
Ja(ξ i;D

�
a)

=
1
N

N

∑
i=1

L

∑
j=1

1
χE
�
jjm jjj2

� �πθ k
ξ i
( j)

= 2:8409

The stationary distribution of output with respect to asymptotic output measure is shown in

Figure 5.9.

Although the numerical calculations show that bφ sN(D�a)< bφaN(D�a); the a-priori equilib-
rium measure ϖθ

s does not discriminate between stable and unstable points and as result

the optimal calculation includes values evaluated at some unstable steady states as shown in

Figure 5.8. Obviously, unstable points are not allowed as part of the optimal solution. Con-

sequently, since the support of asymptotic output measureϖθ
a is only on the stable branches

of the steady states characteristic and a-posteriori design method does not include any such

unstable points we conclude that it still yield a better result. Moreover, the a-posteriori

design method is more robust than a-priori design method since the norm of steady states

stays in the accessible range for a larger range of values of the uncertain parameter.
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CHAPTER 6

Conclusions

In this part of the dissertation we discussed two types of optimal design based on a prob-

abilistic approach for uncertain system design. We sought a controller that minimizes the

average performance function with respect to the uncertainty. The �rst approach, called

a-priori design, is based on a-priori equilibrium measure for the design of the system on

the basis of a-priori uncertainty information for the parameter uncertainty. However, this

method may fails for the dynamical systems that have initial condition dependent uncer-

tain behavior. The second design method, a-posteriori design, utilizes an asymptotic output

measure for the design of an optimal controller based on a-posteriori uncertainty gener-

ated by the dynamics of the system itself. It is shown that the a-posteriori design approach

can capture all uncertainty effects. In order to obtain the optimal controller numerically,

we applied randomized algorithms for average performance synthesis for the two design

methods by sampling both the uncertain parameters space and the design parameters space.

Furthermore, an approach using properties of the Perron-Frobenius operator is presented

to ef�ciently compute the invariant measure of dynamical systems with random uncertain

parameters. Finally, to illustrate the approach, we applied the a-priori and a-posteriori

design methods to a CSTR example system and compared the results.
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Part II

Part II: Characteristics of Short-term

LOLP with Wind Generation
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CHAPTER 7

Introduction

Large-scale intermittent and variable wind generation in the future electric energy supply

portfolio challenges the assessment of generation adequacy, especially when the penet-

ration is high. Although the capacity provided by the wind power improves the system

adequacy level to a certain extent in a long-term measure, the variability of its output can

affect the system adequacy in a short-term, which imposes an immediate risk to system

reliability operation [29], [67].

Loss of Load Probability (LOLP) is an important measure of generation adequacy. By

de�nition, for a power system with both wind generation and conventional generation, for

any time t 2 [0;T ] and a given peak load l during this period of T , LOLP can be described

as follows

LOLP(t) = PrfCT (t)+CW (t)< lg

where CT (t) is a variable representing the total available conventional generation at time t

and CW (t) represents the wind generation at time t. Conventionally, controllable genera-

tion is usually modeled with a two-state process including an available state with planned

capacity and an outage state with zero or reduced amount of output, while wind generation

can be viewed as a stochastic process driven by the wind.

Incorporation of wind generation in LOLP calculation has been explored in several

studies. For example, [34] and [6] used the Monte Carlo method to simulate hourly

stochastic change of generation availability. An auto-regressive and moving average (ARMA)

time series model is used in [7] to simulate hourly wind speed and available wind power

in consideration of chronological characteristics. [26] and [8] presented some analytical
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methods for estimation of wind output with multi-state models of wind speed.

These existing techniques mainly focus on the long-term reliability evaluation ranging

from several months to several years using the stationary LOLP. In long-term LOLP calcu-

lation, wind generation has been viewed as a multi-state power plant and probabilities for

each output level are time-invariant, which cannot be directly used to describe the short-

term change of LOLP. Lack of an appropriate techniques to assess the dynamics of short-

term LOLP makes it dif�cult to quantify the impact of the wind on generation adequacy.

The concerns about the impact of variable wind generation on short-term generation

adequacy are expressed in several recent articles, where some new methods are also pro-

posed. For example, [45] developed an empirical sliding window to update LOLP on an

hourly basis. This approach was extended and applied to assess the fraction of system

reserve that can be allocated to wind farms [44]. In [27] and [28], the authors applied a

Markov chain model to represent variable wind generation in operational risk evaluation.

However, it is found that the short-term LOLP converges to its steady-state value, i.e. its

long-term level. This �nding indicates that the information about variable and intermittent

wind generation can be lost if the updating interval of LOLP is too long [33].

In this dissertation, we will introduce a method for calculation of the short-term LOLP.

An instantaneous multi-state model is constructed to characterize the output of wind gen-

eration. The instantaneous state probabilities are estimated by Markov chains. Moreover,

a novel analytical description of convergence time is developed and empirical formulas for

calculation of convergence time are derived, which can be used to determine the appropriate

period for updating LOLP and understanding its dynamic behavior. Finally, an application

of the methods and measures are shown using the output pro�le of an actual wind farm.

The discussion of the impact of short-term LOLP on generation adequacy under different

wind penetration scenarios are also presented.
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CHAPTER 8

Computation of Short-term LOLP with Wind Generation

8.1 Instantaneous Multi-State Wind Generation Model

A multi-state model has been used to study the impact of wind generation on LOLP calcu-

lation [26]. More speci�cally, wind generation is assumed to have multiple output states,

while conventional generation has only two states: �on� for available state and �off� for

outage state.

Due to the variability of the wind input, a time-invariant multi-state model is not suitable

for short-term LOLP calculation. In order to describe the change of wind generation, an

instantaneous k-state wind generation model is proposed as follows

CW (t) =

8>>>>>>><>>>>>>>:

c0w with probability µ t(0)

c1w with probability µ t(1)
...

...

ck�1w with probability µ t(k�1)

(8.1)

where c jw; j = 0; :::;k� 1 are discretized states for wind generation levels while µ t( j) are

the corresponding instantaneous state probabilities for the output state at time t, which are

de�ned by

µ t( j) = Pr
�
CW (t) 2

�
c jw;c j+1w

�	
; j = 0; :::k�1 (8.2)

with ckw = cmaxw the maximum output of wind generation.

Usually, we rewrite µ t( j); j = 0; :::;k� 1 in a probability row-vector form, i.e. µ t =

[µ t(0); :::;µ t(k�1)] ; to describe the distribution for different levels of wind generation at
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time t.

8.2 Formulation of Short-term LOLP

The LOLPmodel considering only conventional generation can be computed through prob-

ability convolution. In long-term LOLP computation, the force outage rate (FOR) is used

to describe the unavailability of conventional units. Since we are interested in the probab-

ility of generation outage during a short-term period T , the force outage rate is replaced by

the outage replacement rate (ORR) used in PJM method [5]. Speci�cally, the ORR of a unit

during period T is given by

ORRT = Prfunit is out during Tg= 1� exp(�λT ) (8.3)

where λ is the failure rate. For a two-state conventional generation with capacity c, let

ORRT be the generation outage replacement rate, then the probabilities of available state

and outage state are 1�ORRT and ORRT , respectively. Thus the cumulative probability

of having a generation capacity less than or equal to x during period T after adding this

conventional generation, PT (x) can be calculated as follows

PT (x) = ORRT �
^
PT (x)+(1�ORRT ) �

^
PT (x� c) (8.4)

where
^
PT (x) is the cumulative probability of having a system capacity less than or equal to

x before adding this generation unit with capacity x. Using the above equation iteratively,

we can obtain a capacity outage table where the cumulative probability PT (x) is deduced

directly for any given x:

Similar to the convolution of a two-state conventional generation, a time-variant cumu-

lative probability, Pt(x), of having a system capacity less than or equal to x after adding a
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k-state wind generation can be found as follows

Pt(x) = PrfCT (t)+CW (t)� xg

=
k�1
∑
j=0

µ t( j)
^
Pt(x� c jw)

where µ t( j) is the instantaneous state probability of wind generation for state j, while
^
Pt (x) is the instantaneous cumulative probability of having conventional generation less

than or equal to x before adding any wind generation. Then, the instantaneous LOLP at

time t 2 [0;T ] for peak load l can be written as

LOLP(t) = Pt(l) =
k�1
∑
j=0

µ t( j)
^
Pt
�
l� c jw

�
(8.5)

=
k�1
∑
j=0

µ t( j)
^
PT
�
l� c jw

�
:

Equation (8.5) assumes that the system has two types of supplies, conventional genera-

tion (two-states) and wind generation (k-state). The cumulative probability
^
Pt (x) describes

the probability of generation capacities less than or equal to x with only conventional gen-

eration. Since the generation outage replacement rateORRT is time-invariant once a certain

period T is �xed, we can replace
^
Pt (�) with

^
PT (�), which is known a-priori from the capa-

city outage table. Therefore, the key to the computation of instantaneous LOLP described

by Equation (8.5) is to calculate the instantaneous state probabilities of wind generation,

i.e., µ t( j), for all state j at time t.

8.3 Probability Estimation by Markov Chain

In steady state LOLP calculation, the probability of the wind generation output staying at

each output level can be computed using the power curve of wind turbines and the Weibull

distribution of hourly wind speeds as discussed in [26] and [8]. However, since we want

to compute the instantaneous transition probabilities between states, those computation
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methods for long-term LOLP cannot be used for short-term LOLP estimation because the

state probabilities estimated by these methods are time-invariant, thus cannot characterize

the impact of variable wind on LOLP.

A number of articles have adopted Markov chains to describe the variation of wind

speed, where each state represents a discrete wind speed level. In some recent studies, such

as [58], a �rst-order Markov chain is used to generate synthetic series of wind speed and

the results show that short-term dynamics by the Markov chain are very close to the actual

wind speed. In [50], a method for direct generation of synthetic time series of wind power

output by Markov chain Monte Carlo is proposed. Another application of Markov chains in

evaluation of the reliability of distribution networks containing embedded wind generation

can be found in [59]. In addition, a study reported in [28] used a Markov process to model

wind generation to evaluate operational risk in a power system with high wind penetration.

Note that for a process to be represented by a Markov chain, it need to be stationary.

In other words, the transition rates between different states remain constant throughout the

period of interest. Since the wind speed usually has seasonal patterns, the mean and stand-

ard deviation of wind speed cannot remain constant all the time. Therefore, the wind speed

cannot be described as a stationary process. In some recent studies, such as [22], authors

have proposed an approach to overcome this problem of non-stationary by partitioning the

annual cycle into months and model monthly wind data.

Based on the idea proposed in previous studies, we use a Markov process to model wind

generation and estimate the instantaneous state probabilities in Equation (8.5). Assume

the wind generation, CW (t), is a homogenous Markov process with states described by

Equation (8.2). Then, the instantaneous state probabilities, µ t( j), can be evaluated by
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solving the differential equations [40]

dµ t( j)
dt

=
k�1
∑

i= 0

i 6= j

µ t(i)α i j�µ t( j)
k�1
∑

i= 0

i 6= j

α ji j = 0; :::;k�1 (8.6)

where α i j is the transition rate from state i to state j. If we rewrite Equation (8.6) with

row-vector µ t , we have
�
µ
T
t = A �µTt (8.7)

where matrix A is given by

A=

26666666666666664

�
k�1
∑
i=1

α0i α10 � � � αk�1;0

α01 �
k�1
∑

i= 0

i 6= 1

α1i � � � αk�1;1

...
... . . . ...

α0;k�1 α1;k�1 � � � �
k�2
∑
i=0

αk�1;i

37777777777777775
It is shown in [40] that solving Equation (8.6) under initial condition µ0( j); j= 1;2; : : : ;k�

1, the instantaneous state probability, µ t( j); can be calculated for any time instant t 2 [0;T ].

The solution of Equation (8.7) is given by [13]

µ
T
t = e

A(t�t0) �µTt0 (8.8)

for any t0 2 [0;T ]: However, the practical challenge is that, in order to have high compu-

tational accuracy, a large number of states k may be needed, which makes computation

complexity high in Equation (8.7).

Here we use a discrete approximation so that Equation (8.7) can be solved easily
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without compromising much accuracy. Let ∆t be a very small time step compared to the

minimum residence time in all states of wind generation. Then the time period of interest,

[0;T ], can be divided toN intervals of equal length ∆t = T=N. During each small time inter-

val of ∆t, the state probabilities, µ t( j), are assumed constant. Let
^
µn( j) be the probability

that wind generation is in j state during the (n+ 1)th time interval, and
^
µN( j) = µT ( j).

Denote
^
µnas the row vector representation of state probabilities

^
µn( j) for all states. Thus,

for a �xed ∆t; a discrete form of Equation (8.8) can be obtained for interval n= 1; : : : ;N�1

^
µ
T
n = e

A∆t � ^µ
T
n�1 = P �

^
µ
T
n�1 (8.9)

if initial condition
^
µ0 is known. Equation (8.9) represents a k-state �rst-order Markov chain

and eA∆t is called transition probability matrix denoted as P characterizing the probability

of going from one state to other states during ∆t. Once the initial distribution
^
µ0 and the

transition probability matrix P are given, the state distribution of the Markov chain for any

step can be found.

For empirical study on the short-term LOLP, we propose the following formula for the

estimation of the state distribution and transition probability matrix P based on real wind

data. The method is based on matrix multiplication approach discussed in [4].

Using Taylor series, we have

P=eA∆t = I+A∆t+
(A∆t)2

2!
+
(A∆t)3

3!
+ :::

Since ∆t is small, �rst two terms in Taylor series are used as an approximation for Equation

(8.9), that is

^
µn =

^
µn�1 � (I+AT∆t) =

^
µn�1 �

^
P

=
^
µ0 �

^
P
n

(8.10)
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where
^
P is a k� k stochastic matrix as an approximation of P with entries ^pi j de�ned by

^pi j =

8>>>>>>><>>>>>>>:

1�
k�1
∑

j = 0

j 6= i

α i j �∆t f or i= j

α i j �∆t f or i 6= j

(8.11)

Note that the transition rate between two states describes the frequency of occurrence of a

transition per unit time independent from the time step ∆t. For a metered wind generation

data over time period Tt , the maximum likelihood estimator for the transition rate α i j from

state i to state j is given by

α i j =
ni j
Tt

where ni j is the number of transitions of samples from state i to state j observed in the time

period, Tt .

Since the time period of interest [0;T ] is divided into N intervals with equal length of

∆t, there exists a unique n 2 f0;1; : : : ;N�1g with which the corresponding row vector of

state probabilities,
^
µn, that can characterize the instantaneous state distribution, µ t for any

t 2 [0;T ]. In other words, we have

µ t =
^
µb t∆t c =

^
µ0 �

^
P
b t∆t c

(8.12)

where b�c is the �oor function mapping a real number to the next smallest integer.

The instantaneous LOLP described by Equation (8.5) can be written by using the ap-

proximate discrete time state probabilities
^
µnas,

LOLP(t) =
k�1
∑
j=0

^
µb t∆t c( j)

^
PT
�
l� c jw

�
: (8.13)

Note that
^
µb�cis the estimated instantaneous state probability by Equation (8.12), and

^
PT (�)
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is the cumulative probability of the availability of conventional generation that can be com-

puted by (8.4). Hence, once the time step ∆t is determined and the transition matrix
^
P is

constructed by (8.11), the instantaneous LOLP during the time period [0;T ] for a given

initial wind generation condition can be obtained by Equation (8.13).
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CHAPTER 9

Time Period for Updating Short-term LOLP

9.1 Estimation of Convergence Time

Figure 9.1 shows a short-term LOLP pro�le for a 6 hour time period with different initial

conditions. It is observed that different initial conditions can cause the different trajectories

of short-term LOLP, since the initial conditions of wind power affect the instantaneous

state probabilities according to Equation (8.12). Moreover, it is also observed that the

convergences of instantaneous LOLP under both high and low initial wind speeds: LOLP(t)

will converge to a steady state if the time period T for estimation is long enough. For

example, as shown by the diamond marked line, if the estimation period is T = 200 min,

the LOLP(t) with a high initial wind speed will increase to its stationary level 0:054. On

the other hand, as shown by the square marked line, LOLP(t) with a low initial wind speed

will decrease to its steady state level in about T = 180 min.

The reason for the convergence of short-term LOLP is due to the fact that the instantan-

eous state distribution converges. In particular, as t ! ∞, it can be shown that the instant-

aneous state distribution µ t will converge to the stationary distribution π of the Markov

chain. The corresponding steady state LOLP is given by

LOLP(∞) =
k�1
∑
j=0

π( j)
^
PT
�
l� c jw

�
: (9.1)

Since the stationary distribution π characterizes the long-term behavior of a Markov chain,

Equation (3.20) also provides another way to look at long-term LOLP.

Once the LOLP converges, it will not change signi�cantly as the time period further
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Figure 9.1: Short-term LOLP

increases. This implies that the short-term effect of wind generation will be lost if the

period of estimation is too long. For example, as shown in Figure 9.1, for a given initial

wind speed, instantaneous LOLP(t) with t 2 [0;T ] for a period of T = 200 min is almost

the same as the one estimated for T = 350 min. In order to have a better assessment, it

is necessary to update the LOLP with a new initial wind generation condition before it

converges to the steady-state.

We found that the appropriate updating frequency can be found by applying some

properties of Markov chain. It is known that instantaneous state probabilities of an er-

godic Markov chain converge to its steady state distribution as time increases, and the

corresponding convergence rate is determined by the absolute value of the second largest

eigenvalue of the transition matrix [55]. More speci�cally, if the absolute value of the

second largest eigenvalue is small, the short-term LOLP for different initial wind power

will quickly converge to the steady state LOLP. Therefore, choosing a suitable time period

[0;T ] is important to the calculation, since it will impact the accuracy of assessment of

generation adequacy.

In general, for short-term LOLP calculation, we have a maximum time period Tmax; say

12 hours. Moreover, we de�ne the convergence time of instantaneous LOLP as the shortest
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time period T when the difference between LOLP(T ) and LOLP(∞) stays within a certain

tolerance level, which is the solution to the following optimization problem

min T s.t. T � Tmax; jLOLP(T )�LOLP(∞)j � δ (9.2)

where Tmax is the maximum time period for the short-term LOLP calculation and δ is the

given tolerance level.

The optimal solution of (9.2), i.e. convergence time of instantaneous LOLP, is denoted

as T �. The tolerance level used in this study is given by

δ = α � jLOLP(0)�LOLP(∞)j (9.3)

where α 2 (0;1) is a coef�cient.

According to equations (8.5) and (3.20), we de�ne the discrete form of convergence

time N� with time step ∆t

min N s.t.

�����k�1∑
j=0

^
PN�∆t

�
l� c jw

�
�
�^

µN( j)�π( j)
������� δ (9.4)

where
^
PN�∆t (�) is the cumulative probability of conventional generation,

^
µN( j) is the ap-

proximated state probability of wind generation at level j in step N; and π is the stationary

distribution of the Markov chain. The discrete convergence time is the optimal solution

N� to the problem described by Equation (9.4). The corresponding convergence time is

T � = N� �∆t.

De�nition 19 We refer the optimal solution N� as the time window or window.

In order to obtain a more accurate results in practical estimation, numerous states of

wind generation might be needed. Therefore, it could be very challenging and time-

consuming to solve for the window N� through iterative simulation. In order to address
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this issue, we will propose a simpli�ed method for quick assessment of the convergence

time or window using the properties of ergodic Markov chains.

9.2 Empirical Formula

We found that the convergence properties of an ergodic Markov chain can be used to sim-

plify the numerical problem described by Equation (9.4). A Markov chain is ergodic if

the chain is aperiodic and irreducible. Let P be the transition matrix of a k-state Markov

chain and λ 0;λ 1; : : : ;λ k�1 be the eigenvalues of P. Then, the stationary distribution π of

the chain satis�es the equation [55]

πP=π

The chain is ergodic if and only if π is unique which is equivalent to the condition that

there is a unique eigenvalue equal to 1.

We notice that in this case the magnitude of all the remaining eigenvalues of P are

strictly less than one, i.e. if λ 0 = 1 then jλ ij< 1 for i= 1; ::;k�1: This property allows us

to use the unique stationary distribution π to de�ne a metric, so that the distance between

probability distributions of the Markov chain at any time instant and the its stationary dis-

tribution can be characterized and then, used to simplify Equation (9.4).

De�nition 20 For two probability vectors µ; π on a �nite state space X, the variation

distance between these two probability vectors is de�ned as follows,

jjµ�πjjvar =max
A�X

jµ (A)�π (A)j= 1
2 ∑
j2X
jµ ( j)�π ( j)j :

The proof of the following result can be found in [23].

Theorem 11 Let P be an ergodic transition matrix on a �nite state space X and let π be

its stationary distribution. Then for any initial distribution µ0; the distribution of the chain
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at time n, denoted as µn, satis�es the following inequality:

jjµn�πjj2var �
1
4

λ
2n
� ∑
j2X

(µ0 ( j)�π ( j))2

π ( j)

where λ � is the absolute value of the second largest eigenvalue of P.

For an ergodic Markov chain, the stationary distribution is unique. Therefore, the vari-

ation distance in De�nition 20 can be used to measure the convergence time between the

distribution
^
µN and the stationary distributions π , i.e., the two distributions used in com-

puting the LOLP convergence time.

In many practical problems such as those associated with variable wind generation, the

transition matrix P has distinct eigenvalues and is therefore diagonalizable. For a diagonal-

izable transition matrix, we found that estimation of the variation distance by Theorem 11

can be further simpli�ed to characterize the absolute difference between the current state

distribution of Markov chain µn and the stationary distribution π for any point in the state

spaces. This simpli�cation is discussed in the following proposition.

Proposition 12 For an ergodic Markov chain de�ned on a �nite state space X, assume the

initial state distribution µ0 is given and transition matrix P is diagonalizable with distinct

eigenvalues λ 0;:::;λ k�1, and de�ne λ 0 = 1, λ � = max1� j�k�1 jλ jj: Then, the absolute dif-

ference between the state distribution µn at time n and the stationary distribution π for

point j 2 X satis�es:

jµn ( j)�π ( j)j �
k�1
∑
i=1
jaivi( j)j � jλ ijn

�
�
k�1
∑
i=1
jaivi( j)j

�
�λ n�

where v0; ::;vk�1 is a basis of left eigenvectors of the transition matrix P corresponding to
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λ 0;:::;λ k�1; and a0; :::;ak�1 are the unique coef�cients such that

µ0 = a0v0+ :::+ak�1vk�1:

Proof. For any eigenvalue λ i of the transition matrix P with the corresponding left eigen-

vector vi; we have

viP=λ ivi

Furthermore, by iteration, for any n� 0; we also have

viPn=λ
n
i vi

Assume λ 0 = 1 and the initial distribution µ0 is given by

µ0 = a0v0+a1v1+ :::+ak�1vk�1

then, for any n� 0; we have

µn = µ0P
n = a0v0+a1v1(λ 1)n+ :::+ak�1vk�1(λ k�1)n:

Since jλ 1j ; :::; jλ k�1j< 1,

π = lim
n!∞

µn = a0v0:

For a point x 2 X ,

jµn(x)�π(x)j =
��a1v1(x)λ n1+ :::+ak�1vk�1(x)λ nk�1��

�
k�1
∑
i=1
jaivi(x)j � jλ ijn

�
�
k�1
∑
i=1
jaivi(x)j

�
�λ n�
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where λ � =max1� j�k�1
��λ j�� :

Now, the time window N� for the empirical estimation of the convergence time of the

short-term LOLP will be derived using these analytical results. Note that the time period T

affects the outage replacement rate ORRT and cumulative probability
^
PT in Equations (8.3)

and (8.5). It is obvious that the following condition holds

^
PT (x)�

^
PTmax (x) (9.5)

for any given x.

Using Equation (9.5) and Theorem 11, we can have

�����k�1∑
j=0

^
PN�∆t

�
l� c jw

�
�
�^

µN( j)�π( j)
������ (9.6)

�
k�1
∑
j=0

^
PTmax

�
l� c jw

�
� jj^µN�πjjvar

� 1
2
k�1
∑
j=0

^
PTmax

�
l� c jw

�0B@k�1∑
j=0

�^
µ0 ( j)�π ( j)

�2
π ( j)

1CA
1
2

λ
N
�

The smallest N, i.e. window N�, is approximated by letting the upper bound of (9.6) equal

to the boundary δ and the approximate window �N� is given by

�N� =

6666666664logλ �

0BBBBBB@
2δ

k�1
∑
j=0

^
PTmax

�
l� c jw

� k�1
∑
j=0

�^
µ0( j)�π( j)

�2
π( j)

! 1
2

1CCCCCCA

7777777775 (9.7)

where b�c is the �oor function.
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By Proposition 12, if the transition matrix P is diagonalizable, we have

�N� =

6666664logλ �

0BBB@ δ

k�1
∑
j=0

^
PTmax

�
l� c jw

��k�1
∑
i=1
jaivi( j)j

�
1CCCA
7777775
:

(9.8)

Since the transition matrix P is diagonalizable, the left eigenvectors vi; i = 0; ::;k� 1 are

independent and the coef�cients a0; :::;ak�1 can be obtained by

266666664

a0

a1
...

ak�1

377777775
=V�1 �

266666664

µ0(0)

µ0(1)
...

µ0(k�1)

377777775
where V = [v0; :::;vk�1] 2 Rk�k is nonsingular.

The �N� found in Equations (9.7) and (9.8) is a suboptimal solution of (9.4) and the

corresponding convergence time �T � = �N� �∆t is slightly smaller than the actual optimal

solution of (9.2). By Equations (9.7) and (9.8), it is convenient to estimate the time window

for updating LOLP in empirical analysis.

In the next chapter, the analytical results obtained will be used to study the dynamic

behavior of the short-term LOLP and its convergence time based on an actual wind pro�les

in different situations.
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CHAPTER 10

Application

This section presents three case studies on the characteristics of the short-term LOLP based

on wind data measured at 10 min time interval at a wind farm located in northwest Ok-

lahoma, with the concepts and the methodology developed in previous sections.

Case 1 only considers conventional generation in estimation of short-term LOLP. Case

2 studies the short-term LOLP with wind generation added. The wind generation pro�le in

winter and in summer are considered separately to overcome the problem of non-stationary

due to seasonal patterns, as suggested in [22]. Case 3 studies the impact of wind penetration

level on the convergence time.

10.1 Case 1: LOLP with Conventional Generation Only

Assume that the power system has 6 conventional generating units, each with capacity of

250 MW. The time horizon of interest, T , is set to be 6 hours. The generation failure rate

is λ = 0:0139h�1. Equation (8.3) gives an outage replacement rate ORRT = 0:08. The

convolution algorithm can be used to generate the capacity outage table by adding one

generator at a time. The results are shown in Table 10.1.

If the peak load l is assumed to be 1000 MW, the LOLP with conventional generation

is 0:077, which remains constant over time period T .
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Available

Gen.

Forced Out-

age Gen.

Cumulative

Probability

1500 MW 0 MW 1:000000000

1250 MW 250 MW 0:39364500

1000 MW 500 MW 0:07728587

750 MW 750 MW 0:00851214

� � � � � � � � �
Table 10.1: LOLP with conventional generation

10.2 Case 2: Short-term LOLP with Wind Generation

In this case, 500 MW wind generation is added to the conventional generation portfolio

described in Case 1. The wind generation consists of 100 wind turbines, each with capacity

of 5 MW. The outage rate of wind turbine is ignored in this short-term performance study.

The time series of wind generation is based on a real wind pro�les at a wind farm

located in northwest Oklahoma measured at 10 min time interval. A simple cubic function

below is assumed to describe the power curve, given by

Pt =

8>>>><>>>>:
0 wt � wci;wt > wco

Pτ �
�
wt� wci
wτ� wci

�3
wci < wt � wτ

Pτ wτ < wt � wco

where Pt is the power output of wind generation at time t, wt is wind speed at time t, wτ

and Pτ are rated wind speed and power output, wci and wco are the cut-in and cut-out wind

speeds. In the study, we choose wci = 3 m=s; wτ = 14 m=s; wco = 25 m=s. The generated

wind power output time series is shown in Figure 10.1. Figure 10.1 (a) shows that the wind

generation output in winter (Dec, 2009), while Figure 10.1 (b) shows that in summer (Aug,

2009).
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Figure 10.1: Time series of wind generation

In order to calculate the short-term LOLP numerically, we discretized the time series

into 10 states with equal range between the adjacent states, i.e., c0w = 0 MW; c1w = 50 MW;

:::; c9w = 450 MW. The time step chosen to be ∆t = 1 min and we estimated the transition

rate between different wind levels from the time series to construct a 10� 10 transition

matrix P for the Markov chain.

In this study, we found that all eigenvalues of P matrix are distinct, which means it is

diagonalizable. Therefore, the assumption for Proposition 12 is valid for the study.

The variation of short-term LOLP depends on the initial state probability of wind gen-

eration, as described in Equation (8.12). In this study, three different initial state distri-

butions are presented for low, medium and high initial wind generation levels, given by
^
µ
L
0 = [1;0; :::;0];

^
µ
M
0 = [0:::;1; :::0];

^
µ
H
0 = [0; :::0;1]: The result of the short-term LOLP

with wind generation in winter is shown in Figure 10.2.

As shown in Figure 10.2, the short-term LOLP converges to its stationary level regard-

less the initial levels, i.e., LOLP(∞) = 0:0378. Note that for 6 hours time period, LOLP has

already been in its steady state for about 1 hours. This means that, if the time period for

LOLP updating is 6 hours, it will have lost all short-term information. Therefore, LOLP

has to be updated much more frequently than 6 hours.
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Figure 10.2: Short-term LOLP in winter

The variation ranges for three different initial distributions are: δ 1 = 0:0099; δ 2 =

0:0073; δ 3 = 0:0093; with the tolerance factor equal to 0:25 in Equation (9.3). To sim-

plify the problem, we assume Tmax = T = 6h: The corresponding window N�1 ; N�2 ; N�3 are

also shown in Figure 10.2: The approximated windows obtained by (9.8) are: �N�1 = 52;

�N�2 = 87; �N�3 = 110 for low, medium and high initial wind conditions, respectively. The

corresponding approximated convergence times are: �T �1 = 52 min, �T �2 = 87 min, �T �3 = 110

min.

The result of the short-term LOLP with wind generation in summer is shown in Figure

10.3.In this case, the states of Markov chain are the same as that for wind generation in

winter while the transition matrix P is constructed using time series in Figure 10.1 (b).

Compared to that in Figure 10.2, the short-term LOLP in summer converges to its steady

state level at a slower rate. The time windows for LOLP updates are shown in Figure 10.3.

Using the same tolerance level α , the approximated convergence times are: �T �1 = 64 min,

�T �2 = 92 min, �T �3 = 131 min.

The time window or convergence time for updating LOLP in summer is larger than

that in winter due to the "smoother" time series of wind generation shown in Figure 10.1

(b) compared with Figure 10.1 (a). It means that for a fast-changing intermittent wind
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Figure 10.3: Short-term LOLP in summer

generation, LOLP needs to be updated much more frequently to better re�ect the actual

system generation adequacy condition in short-term.

It is also shown that the steady state LOLP in Figure 10.2 is better than that in Figure

10.3 due to the fact that the wind generation in winter remains at a high level for longer

time than in summer. In other words, the wind generation in winter has more contribution

to generation adequacy than in summer for the time period of this case study.

Based on the observations in Case 2 study, it is also suggested that although the capacity

bene�t of wind generation is better in winter in a long-term, the LOLP needs to be updated

more frequently to re�ect the actual generation adequacy condition.

10.3 Case 3: Impact of Wind Penetration Level

Case 3 studies the impact of wind penetration level on the convergence time of short-term

LOLP by changing the number of wind turbines in wind farms. The wind penetration is

de�ned as the percentage of total wind generation over total system generation. The results

are shown in Figure 10.4.

Figure 10.4 indicates that the impact of wind penetration level on the short-term LOLP

is non-linear. By increasing the penetration, the time window decreases, which implies that
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Figure 10.4: Impact of wind penetration level

we should update the short-term LOLP more frequently. Note that when the penetration

level of wind generation is increased, the impact of variable wind generation on short-term

LOLP becomes larger, thus more frequent update of LOLP is desired.

The �nding and suggestion presented in above three case studies show that the pro-

posed method and measures improve the understanding about the impact of variable wind

generation on short-term generation adequacy, and provide quantitative support for power

system reliability operation.
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CHAPTER 11

Conclusions

In this part of the dissertation, a method for understanding the short-term impact of wind

generation on LOLP is proposed. The short-term LOLP is calculated using an instant-

aneous multi-state wind generation model. A discrete method based on a corresponding

Markov chain is proposed for estimation of short-term LOLP. Furthermore, by using prop-

erties of an ergodic Markov chains, several methods for determining the appropriate time

interval for updating the short-term LOLP are provided. Finally, the methods are applied

to a study of the short-term LOLP under different initial wind generation levels, different

wind generation output pro�les and different penetration rates.

The novel measures of LOLP convergence time presented in this paper can be used to

better understand the impact of wind generation on system reliability and are very useful for

short-term generation adequacy assessment. More speci�cally, the methods and measures

enable a quantitative estimation of convergence characteristics of short-term LOLP, which

provides scienti�c support for the system operator to understand the accountability of wind

generation.

Additional enhancements could be made in our future research. For example, the failure

rate of the wind turbines could be taken into consideration. Also, due to the daily and

seasonality patterns of wind energy, different transition matrices for different time periods

may be needed for more accurate results.
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