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CHAPTER I 

HISTORICAL 

Introduction 

Several members of the 3,7-diheterabicyclo[3.3.1]nonanes (DHBCN) family 28,58 

1 have been of great interest due to their excellent antiarrhythmic action.4,6,l1,22,45 

Antiarrhythmic agents are generally classified into five types on the basis of their modes 

of action,54 namely class la, Ib, Ic, IT, ill, IV, or V. To date, DHBCNs have been found 

2 

1 
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7 

1 
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5 

6 

to exhibit Class Ib and ill activity, but testing for other class actions in this family is in 

progress.4,7,45 By obtaining structure-activity relationships, it has been found that certain 

structural modifications in the 3- and 7-positions of DHBCNs can significantly change 

the observed Class Ib and III antiarrhythmic activity.4,8,22,37,38 Introduction of some 

specific functional groups can lead to agents with enhanced activity and more than one 

class of action. Apart from being good antiarrhythmic agents, it has also been found that 

certain DHBCNs, like 1,5-diaryl-3,7-diazabicyclo[3.3.1]nonanes, possess hypotensive 

activity14 and also act as good local anaesthetics.20,57 

DHBCNs possess confonnational mobility and as a result can adopt four different 



confonnations,28,35,58 namely a chair-chair (I-CC), boat-chair (I-BC), chair-boat (I-CB) 

and/or boat-boat (I-BB). The dynamic properties of these bicyclic system may result in 

equilibration between the above four confonners.58 The confonnational preferences of 

these systems appears critical for their biological activity and mechanism of action.45 

l-CC l-CB I-BC I-BB 

I 
y 

The DHBCN ring moiety is found in naturally occurring C-15 lupine alkaloids 

like sparteine (2a), aphylline (2b), lupanine (2c), and a-isosparteine (2'd').26,27,34,40,56 

Sparteine (2a), the most common among the four alkaloids, has been used in the manage-

a R,R'=H 
b R',R'=O,R=H 
c R, R = 0, R' = H 

d'R,R'=H 

ment of cardiac arrhythmias.37 It was concluded from these early studies that sparteine 

prolonged the action potential duration (APD) and induced an increase in the refractory 

period of heart action in rats.l0,39 The structure of sparteine (2a) is shown as the chair-

2 
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boat conformation, but IR and NMR analyses has concluded that in the liquid state 

conformer 2d' is also present.41 

The discussion here will focus on the 3,7-diazabicyclo[3.3.1]nonan-9-ones (3,7-

DABCNONs) and 3,7-diazabicyclo[3.3.1]nonan-9,9-diols (3,7-DABCN-9,9-diols). The 

conformational properties and synthetic methodology for constructing these ring systems 

will be reviewed. The metal complexation properties of 3,7-DABCNONs and the effects 

of various substituents at the 2-,3-,4- and 7-positions on complexation will be discussed. 

Synthetic Methodology 

The synthesis of the few known 3,7-DABCNONs has been examined and 

reviewed.28,58 It was reported that certain 3,7-diazabicyclo[3.3.1]nonanes (3,7-

DABCNs-also known as bispidines) were obtained as by-products during the preparation 

of piperidinones from ketones, aldehydes, and amines.9 A ring cleavage of certain 1,5-

Ph Ph 

o Ph 
3 

Ph 

4 
aR=MeC(O) 
bR=Tosyl 
cR=CHO 
d R =PhC(O) 
eR=NO 

diaryl substituted diazaadamantanes15,31,51like 3, under acidic conditions, produces 1,5-

diaryl bispidinones, such as 4. Alternatively, intramolecular cyclization using N-tosyl­

piperidine-3,5-dicarboxylic acid48,49,50 (5) with ammonia can form 6. 



(i) SOCl2 
(ii) aq. NH3 
(iii) heat 

6 0 

A double Mannich condensation reaction of the l-alkyl-4-piperidin-4-ones 7 with 

paraformaldyde and various primary amines under acidic conditions has proven to be one 

of the better and commonly used methods for constructing the 3,7-DABCNONs 8.28,58 

o 

7 8 

A series of 3,7-dialkylbispidinones 8 (bispidinones is a commonly used name synomous 

with 3,7-diazabicyclo[3.3.1]nonan-9-ones) were synthesized in modest yields (40-55%) 

by Douglass and Ratliff.21 Similarly, other research groups have employed various N­

alkylpiperidin-4-ones as well as other primary amines.8,21,42,43,44 The ketones are 

4 HCHO ... 

10 
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5 

usually isolated as crude materials via an aqueous workup. Oils are purified by 

distillation under reduced pressure and crude solids by recrystallization.8.21 Numerous 

1,5-diaryl-3,7-DABCNONs 10 have been synthesizedI,15-I9.57 by condensing 1,3-

diarylacetone (9) with paraformaldehyde and an amine. The aryl group may be phenyl, p­

chlorophenyl, p-anisyl, or o-methoxyphenyl groups. 

A number of 2,4-diaryl-3,7-diazabicyclo[3.3.1]nonan-9-ones 12 have also been 

prepared by Haller24,25 The commonly used aryl groups are phenyl, o-chlorophenyl, p­

chlorophenyl, 2-pyridyl, 3-pyridyl, or 4-pyridyl. These reactions were generally carried 

6 
I 
R 

11 

2ArCHO .. 

out by boiling an ethanolic solution of the reactants for a few minutes up to several hours. 

The products frequently precipitated from the reaction mixtures upon the addition of a 

nonpolar solvent such as ether. A common problem associated with the Mannich 

reaction for synthesizing 3,7-DABCNONs is the low yields. This undesireable feature 

was overcome in studies of a double Mannich condensation3,33,37,38,45,59 in which an 

amine, p araformalde hyde, a piperidin-4-one, and acetic acid (and/or conc HCI in 

methanol) were employed. It was discovered that the addition of conc Hel increased the 

yield of some 3,7-DABCNONs from 20-40% to 56-60%.7,59 It was speculated that the 

pH plays a critical role in the reaction kinetics, perhaps in accelerating formation of the 

intermediate iminium ion. As a part of our continuing efforts to improve the yields in 

Mannich reactions, we found that the addition of a second equal amount of 

paraformaldehyde after 10 hours of reflux increased the isolated yields of certain ketones 

from 16.3-27.8% (Table I). 



TABLE I 

YIELDS OF KETONES 13, 14, AND 15 BY PREVIOUS AND NEW METHODS 

Yield from Yield from 
Compd X Y previous method new method 

13 NCH(CH3h NCH2Ph 57.2%59 73.5%22 

14 NCH3 NCH2Ph 45.0%4,32 72.8%22 

15 NCH2Ph NCH2Ph 58.2%8a 69.1%22 

22Unpublished data 

A rationale for this phenomenon is not well defmed, but a partial explanation might be 

that some paraformaldehyde is lost during the reaction via the formation of the side 

products. Replenishment of this lost reagent may increase the yield of ketone. 

It has been known for some time that certain carbonyl compounds can form gem 

diols in aqueous acid. In the family of DHBCN s only one paper has been reported on this 

type of compound, namelyl6.5 Indeed, very few 3,7-DABCNONs and very few 

HO 

OH 16 

3,7-DABCN-9,9-diols have been recorded or investigated for conformational preferences. 

Conceivably, 3,7-DABCN-9,9-diols of the type 16 might be obtained by treatment of 3,7-

6 
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DABCNONs of the general type 8 with mineral acids like perchloric acid, hydrobromic 

acid, or hydrochloric acid. Such diols with other heteroatoms at the 3- and 7-positions 

have therefore been relatively unexplored. The diols discovered and described in the 

current work are remarkably stable in air and appear to be only slightly hygroscopic. The 

diols are also reasonably soluble in aqueous medium in spite of the large 

H004 (60%) 
• 

OR 

hydrocarbon content. It should be emphasized that the although the general reaction is 

illustrated using CC conformers, such as a CC-8 --+ CC-16, a CB conformer for 8 is also 

quite possible in some examples. 

Conformational Analysis 

As previously mentioned, 3,7-DABCNs 1 can exist in four different con­

formations when X and Y are non-equivalent. Some of the factors that probably 

influence the conformation of these systems are (i) steric repulsion of the heteroatoms, 

(ii) dipole repulsion, (iii) lone pair orbital repulsion, and/or (iv) intramolecular hydrogen 

bonding involving a proton on one heteratom at the 3-position, for example, with the 

heteroatom at the 7-position.2,36 A solid state 13C NMR analysis of bicyclo[3.3.1]nonan-

9-one 17 at 42°C suggested the existence of the CC form predominantly. 55 This was 

." 

17CC 
17BC 



further supported by analysis of the solution 1 H NMR shifts induced by the lanthanide 

shift reagent Eu(fodh on 17 in CC4.36 A distribution of 78:22 favoring the CC 

confonner was observed by comparing the experimental shifts with those predicted by the 

pseudocontact equations using geometries obtained from empirical force field (EFF) 

calculations. 

Confonnational analyses of several3,7-DABCNONs 8a-g using IH, 13C NMR, 

and IR spectral techniques were perfonned by Galvez and co-workers.2 Their analyses 

suggested that ketones 8 adopt a flattened CC confonnation in solution, and an increase 

8 

R R' R R' 

a CH3 CH3 e CH3 CH2Ph 

b CH3 CH2CH3 f CH2Ph CH2Ph 

C CH3 CH(CH3h g CH3 CH2CH2Ph 
d CH3 CH2CH2CH3 h CH(CH3h CH2Ph 

in distortion from an ideal CC takes place in the series from the methyl to the isopropyl 

substituents.2 This was deduced in view of an increase in the [OC(6.8)-Oc(2.4)1 values in 

the 13C NMR data observed in the series 8a-8c, which was taken as an indication of a 

more flattened CC confonnation as the size of the N-alkyl substituent increased. It was 

implied that rings with R, R' > Me were more flattened than the ring containing R, R' = 

Me. However, an X-ray analysis of 8e, for example showed a BC confonnation in the 

solid state.46 On the other hand, variable temperature (VT) 13C NMR spectral studies 

perfonned by Takeuchi52 on 18 and 19 suggested a BC+zCB equlibrium at -63 °C. 

8 



18 R=Me 
19 R= (-Bu 

9 

Our group has done extensive NMR work on several members of the 3-hetera-7-

azabicyclo[3.3.1]nonan-9-ones3,4,53 which include ketones 20-21. An X-ray diffraction 

x 
20a S 

20b Se 

20c S 

20d Se 
21 0 

R 

CH2Ph 

CH2Ph 

CH2CH2Ph 

CH2CH2Ph 

CH2Ph 

analysis of solid ketones 20a and 20b showed a preference for a BC conformation which 

was further supported by VT NMR studies of 20a in the solution.4 A flattened CC 

conformation was suggested for 21 in solution) More recently, an enhanced population 

of the BC conformation in D3CCN solution at 70 ·C was assigned to ketones 8h, 8j, and 

20a by 170 NMR spectroscopy.32 In each case, the ring bearing the benzyl group existed 

in a chair form and thus appeared to be somewhat biased. This assignment was derived 

on the basis of the observation that an upfield shift for C=O of 5-7 ppm [due to increased 

shielding at C(9)] was observed for each system. This observation appeared defensible 



only if a significant interaction existed between the lone pair on the heteroatom and the 1t 

orbital of the carbon of the carbonyl group. Thus, it was tentatively concluded that a BC 

conformer could give rise to such an effect. 

Based on the studies carried out by our group3,4,53 and the others,2,52,58 it is 

reasonable to believe that many 3,7-DABCNONs may have a high population of a BC 

conformation in solution with a BC~CB equlibrium. The existence of this equilibrium is 

likely in all systems but where one of the fused rings has large substitutents, there appears 

to be a conformational bias. This hints that systems like Sa-Sg and 20a-20d may not 

exhibit an easily detectable BC~CB equilibrium at room temperature since large groups 

are attached to N. It appears that some simple 3,7-DABCNONs exhibit a BC~CC 

equilibrium in solution with an increased population of a BC form at higher temperatures 

(greater than or equal to that at RT) and an increased popUlation of a CC form at low 

temperatures (-50 °C to -100 °C).3,4,52,53 

Few 3,7-DABCNONs and very few 3,7-DABCN-9,9-diols of the type 16 have 

been reported and examined for their conformational preferences.28 As stated previously, 

the only diol system investigated is N-benzyl-3-thia-7-azabicyclo[3.3.1]nonan-9,9-diol 

hydrogen perchlorate (22).5 On the basis of 13C NMR spectrum and X-ray analysis, this 

HO 

OH 22 

10 

system was assigned a CC conformation in the solid state with little ring distortion near 

the gem diol group in the molecule. The conformation in solution could not be wholly 

defined due to the lack of model systems of known conformation by which to make 

comparisons of spectral data. 



Metal Complexation Properties 

There have been very few examples of 3,7-DABCNON derivatives bound to 

metals. The only examples reported are complexes 23,47 the 1:1 adducts 24,29 and the 

2: 1 adducts 25,51 which are illustrated below with reasonable configurations at nitrogen. 

~ 
N.... .,,0 

"M 
" ' .......... 

N "0 

-.~o 
23 

R = Me M = Co (II), Ni(II), Cu(II) 

R = H M = Co (I!), Ni(II), Cu(II) 

0-_ 

Me 
I 

N.. Cl .... I .... C 
<#*. '\ 

'--N:'" Cl 
'Me 

24 

However, only IR spectral data and elemental analysis were provided to support the 

structures. Thus the interpretation is considered tentative. In all cases, divalent transition 

metals have been employed, the most common being copper. In addition to fonning 

complexes with transition metals, it was stated by Ruenitz that a few 3,7-DABCNs also 

R 
I 

R~ 

25 

R' = Ph, R=H,X =CH3CO£ 
R'= H, R = Me, X = CI04-

2+ 

R' 

11 

react with alkaline earth metals Ca2+ and Mg2+ and form certain complexes.37 

Formation of such complexes was illustrated by perfonning titration experiments on 3,7-



12 

DABCNs solutions with known concentrations of Ca++ and Mg++ ions in ether. These 

data were in the fonn of observations of 1 H chemical shifts in the NMR spectrum, but no 

complexes of Ca2+ or Mg2+ were isolated. Moreover, the monoprotonated form of 

certain 3,7-DABCNs did not fonn metal complexes with transition metals or with 

alkaline earth metals.37 Very little evidence exists to support most of the structures 

suggested in the literature except for elemental analyses, and those were only present in a 

very few cases. 

A very small number of metal complexes of the ethoxycarbonyl derivative (R = 

C02Et) of the 6,8-substituted 3,7-DABCNONs 26 have also been reported with the 

transition metals shown.24.25 Based only on IR spectral data, it was suggested that the 

2+ 

O-_~ 

26 
M = Cu(Il), Mn(Il), Co(Il), Ni(Il) X=SCN 

N atoms in the pyridine ring, along with the N atoms at 3- and 7 -positions, were involved 

in the complexation to the metal ion. It was suggested, on the basis of elemental analyses 

alone, that all members of 26 were monodentate chelates in the above systems. Apart 

from 3,7-DABCNONs, it was shown by Mason and Peacock30 that (-)-sparteine (2a) also 

formed bidentate metal complexes of the general formula [M(sparteine), 2 X-] 27 with 

transition metal ions like c02+, Ni2+, eu2+, and Zn2+. These complexes were stable in 

ethanol and chlorofonn. Complexes with Fe(III) and Mn(Il) were also prepared but were 

found to be stable only in the solid state. Magnetic moments, electronic spectra, and the 



a::c 

2a 

sparteine 

,.. 

2d 

isosparteine 

~MeX2 
2+ 

27 

Me = Co(Il), Ni(Il), Cu(Il), Mn(Il) 

X= CI,Br 

13 

circular dichroism absorption pattern (down to 5000 cm-I ) were reported for [Ni(sp)CI2]. 

The electronic structures of the cobalt(ll) and nickel(Il) complexes were discussed in 

terms of an effective C2v chromophoric symmetry. Based on the formation of stable 

complexes (such as 27) by sparteine, one might speculate that its antiarrhythmic activity 

may be due, in part, to a direct interference with the dynamic behaviour of membrane­

associated cations such as magnesium and calcium. At this stage, there is little evidence 

regarding the exact mechanism of action of most antiarrhythmic agents including the 3,7-

DABCNs. This is mainly due to a lack of knowledge about the physiological aspects of 

arrhythmias. However, very recent work with a few DHBCNs suggest that some 



14 

alteration in the function of Na+/K+-ATPase enzyme may be the cause of antiarrhythmic 

activity.ll,12 It is known also that lipophilic character can influence Na+/K+-ATPase 

action. 11,12 

Although research in recent years has enhanced our understanding of the cellular 

mechanisms of arrhythmias, the general approach to the therapy has been to develop 

agents with specific class actions. Such agents are under development in many 

laboratories. 
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CHAP1ERll 

RESULTS AND DISCUSSION 

The next three pages summarize our research followed by a more detailed 

discussion. One aim of the project was to determine if metal chelates could be prepared 

from DHBCNs-28 and DHBCNONs 29 since such agents may complex calcium or 

magnesium in the process of controlling arrhythmias in ischemic tissues. 1l,12 This 

investigation has resulted in the development of new methodology to obtain novel 9,9-

R 
I 

R 
I 

r1~N' L:l:::7 R' 
r7~N' j:t:; R' 

o 29 28 

R 

b CH(CH3h 

C H2C-<1 
d CH(CH3h 

R' 

CH2Ph OCH3 

H2C-(_S-OCH, 
CH2Ph 

CH(CH3h 

diols of DHBCNs 29 and derivatives thereof. The DHBCNs are well known for 

possessing useful antiarrhythmic properties. 13,37 ,38,59 Initial work focused upon the 

generation of metal chelates from selected members of 28 and 29 with MgBr2 and CaBr2 

in absolute ethanol from which heavy oils were obtained. Interestingly, in absolute 

ethanol no chelates formed. However, we discovered that certain 3,7-

diheterabicyclo[3.3.1]nonan-9-ones 29 with CoBr2, CaBr2, and MgBr2 in slightly wet 



THF led to the formation of stable 9,9-diols 30-33 which are also salts via protonation on 

nitrogen. No stable chelates could be isolated from any of these reactions mixtures. It 

was reasoned that the metal bromide probably reacted with water and generated some 

HBr which initiated a reaction of the ketones to form the diols and protonated the 

nitrogen to create the bromide. 

Y. s( fG.2 N .... H 

HO 1 .!.J..-N", Ph 

9 5 6 

yS( 

Ho}h 
OH 30 OH 31 

ys-
N+ r 

'H 

HO"""'-'L ____ HO"""'-'L ____ 

OH OH 33 

Stable diols such as 30-33 are very rare and not well studied in terms of physical 

properties as well as chemical properties. Although such diols may possess useful 

16 



antiarrhythmic activity, the one such diol 22 reported and examined for antiarrhythmic 

activity in dog models did not exhibit cardiovascular properties of the specific type 

desired. Of course, other examples might be useful in this area of chemotherapy. 

In order to gain support for the working hypothesis that water was critical for 

generating the diols, the ketone precursors of 30-33 were dissolved in anhydrous ether 

and subjected to a stream of dry HBr gas. Bromides 34-37 were isolated, and, although 

hygroscopic, had observable Ae--Q groups in the IR spectra. These salts were 

characterized spectroscopically and are the fIrst reported in this family. 

The last objective was to synthesize DHBCNs which would chelate metal ions by 

minimizing the steric congestion around one of the nitrogen atoms. This was achieved by 

y 
HC02NHJ 

PdlC/1!,. • 

~_~"""'--NVPh 

29a 

y 
39 

,. , , , 
_____ N ..... 

a CuCl2 40 

H 

b Ni(CI04h'6H20 
C Mg(CI04h 
d CoBr2 

+ MX2 

m 

CuCl2 
Ni(CI04h' 6H20 

Mg(CI04h 
CoBr2 
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the debenzylation of the benzyl group in 29a to give a less sterically hindered secondary 

amine 39. An ethanolic solution of 39 was then treated with metal salts CuCI2, 



Ni(CI04)z·6H20, Mg(CI04n, and CoBr2 to fonn solids 40a-d, which were characterized 

by IR spectral studies. Based on the elemental analysis data for 40a, a monodentate 

structure may be assigned to it tentatively. The analyses on the other complexes is 

currently under investigation. 

A detailed discussion of the results now follows. It has been shown by our group 

and others that certain amides and sulfoxides exhibit good antiarrhythmic activity.6 

Specifically, some amides and sulfoxides prepared in our laboratory have shown good 

class III antiarrhythmic activity.7 A detailed pharmacological study and the mechanism 

of action of these agents are currently under investigation. As discussed earlier, attempts 

were made to prepare metal complexes of different derivatives of 28 and 29. Based on 

18 

this information, it seemed plausible to investigate the metal complexation properties of 

the amides 28a-c as their activity may be due in part to binding with metal ions like Ca2+ 

and Mg2+. Chelation of 28a-c with metal salts like CaBI'2 and MgBr2 were tried in polar 

solvents like ethanol and methanol, but resulted in the fonnation of either heavy oils or 

suspensions. 

R 

a CH(CH3h 

b CH(CH3h 
c CH(CH3h 

R' 

C(O)C6H4F(P ) 

C(O)C6~N02(P ) 

S02C6H4N02(P ) 

Attention was then directed towards DHBCNs of the type 29. Due to the presence 

of a carbonyl group at the 9-position in 29, such bicyclic ring systems are more flattened 

than the corresponding DHBCNs 28 thereby increasing the "gap" between the nitrogen 
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atoms at 3- and 7-positions. This might mean that 29 systems may incorporate a metal 

ion more easily than 28. A literature search on the metal complexes of DHBCNs 

revealed only a few complexes had been made from systems like 297,13,24,25 although 

there was no mention about a flattened nature of such ring systems. 

The derivatives 29a-d were selected for metal complexation. The approach 

involved the mixing of a hot ethanolic solutions of the metal salts and the ketones 29a-d 

R 
I 

r7~N' j:l::; R' 

o 29 

R R' 

a CH(CH3h CH2Ph OCH3 

b CH(CH3h H2C-<_>- OCH, 
H2C~ C CH2Ph 

d CH(CH3h CH(CH3h 

and boiling the resulting solution mixture, followed by cooling the solutions to 0 °C. This 

method gave suspensions or slurries. Another method involved mixing dry THF 

solutions of the metal salts and the ketones 29a-c and then gradually evaporating the 

solvent under a gentle stream of N 2. This approach also did not form chelates. However, 

when solution of 29a-b and metal salts like, CaBr2, MgBr2, and CoBr2 in wet THF were 

mixed and allowed to sit in dark at room temperature for approximately 72 hours, crystals 

formed. The X-ray analyses showed the crystals to be diols 30 and 31 and not metal 

complexes.7 The formation of such diols may be envisioned by a possible reaction 

between the metal halide and moisture present in the THF to produce hydrobromic acid. 

The hydrobromic acid then probably protonates the carbonyl oxygen in 29a-b, followed 
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by a nucleophlic addition of a water molecule to the activated carbonyl group to produce 

the diols 30 and 31. Such diols are stable and have good solubility in polar solvents. 

29a,b 

MX2 + H20 

CoBr2 
CaBr2 
MgBr2 

THF 

"" 
HBr + MXOH 

R 
I 

HBr ....IbN 
H20,.. 

" ---N ..... R~ 
HO 

+0' 
B - I OH 

r H 30,31 

Another mechanism that may be possibly operating involves the protonation of N(3), 

which probably activates the C=O group for protonation, followed by a nucleophilic 

attack of H20 on the carbonyl group to produce 30, 31. 

HBr~ HBr<&! 

29a,b 

HO 

OH 30,31 



Synthesis and conformational analysis of such diols have not been explored in great detail 

as stated earlier. The only example reported and studied so far in this family is 22.5 

In order to support the proposed mechanism of formation of 30 and 31, ether 

solutions of 29c and 29d were treated with 48% HBr in 2-propanol to give diols 32 and 

33. It thus appears that small amounts of water and acid can lead to the formation of the 

HO 
OH 32 

HO 
OH 33 

diols. This fact was further corroborated by reacting a dry ether solution of 29a-d with 

dry HBr gas to produce the hydrobromides 34-37, respectively, which exhibit a carbonyl 

stretch in the infrared spectra. These results lend credence to our theory and proposed 

mechanism of formation of diols. The hydrobromides 34-37 were found to be extremely 

hygroscopic and showed a strong tendency to absorb moisture from the atmosphere to 

produce the corresponding diols. In attempted high resolution mass spectral analysis of 

36, for example, it was found that approximately 45% of the molecules had absorbed 

water and had been converted to 32. An exact reason for the highly hygroscopic nature 

of such salts is not very clear at this point. A hydrochloride of 29d was also prepared by 

the same method and was found to be equally sensitive to moisture. 

JR, IH NMR, l3e NMR, and high resolution mass spectral studies were 

performed on the diols 30-33 and hydrobromides 34-38. A comparison of the 1 H and l3e 

NMR shifts in 30-33 was made with the corresponding ketones 29a-d, and the results 

have been summarized in Tables IT· V. Such a comparison reveals an informative pattern. 



Compound 

CH(CH3h 

CH(Cfuh 

H(2,4)ax 

H(2,4)eq 

H(9) 

CH(CH3h 

CH~H3h 

C(2,4) 

C(9) 

Table II. 

COMPARISON OF 1H and 13C CHEMICAL SHIFfS (b from TMS) OF 29a, 30, 34 

y 

~4 ~37 
5 ~N'-Ph 

1 8 o 9 

29a 

2.87 (m) 

1.02 (d) 

2.87 (m) 

3.03 (dd) 

53.41 

18.25 

53.71 

215.20 

:Y 
)8

N~H B( 

HO -./""N '--Ph 

OH 

30 

3.57 (m) 

1.16 (d) 

2.81 (d) 

2.97 (d) 

6.15, 6.18 (s) 

55.26 

16.29 

50.47 

89.37 

+Y 
Jb

N~H B( 

--..-:N 
'-Ph 

o 

34 

3.58 (m) 

1.17 (d) 

2.81 (d) 

3.01 (d) 

53.07 

17.54 

50.27 

192.85 

N 
N 



Compound 

CH(CH3h 

CH(Cfuh 

H(2,4)a~ 

H(2,4)eq 

H(9) 

CH(CH3h 

CH(CH3h 

C(2,4) 

C(9) 

Table III. 

COMPARISON OF IH and 13C CHEMICAL SHIFTS (b from TMS) OF 29b, 31, 35 

y 
5 6 N CH3 ffi,4 ~3~ 

o 9 1~ ~-II OCH3 

29b 

2.81-2.90 (m) 

1.03 (d) 

2.81-2.90 (m) 

2.98 (dd) 

53.40 

18.17 

53.86 

215.27 

:Y S-

r?N __ ~ r OCH
3 

HO~NL{ )-OCH' 
OH 

31 

3.15-3.51 (m) 

1.16 (d) 

2.51 (d) 

2.85 (d) 

6.19,6.21 (8) 

54.92 

16.46 

50.30 

89.45 

y 
j8N_H Sr-

N OCH3 

-- L{ )-OCH' 
o 

35 

3.50 (m) 

1.14 (d) 

2.86 (d) 

3.24 (d) 

57.76 

17.17 

50.54 

206.62 

tv 
w 



Table IV. 

COMPARISON OF IH and BC CHEMICAL SHIFfS (b from TMS) OF 29c, 32, 36 

y Y' B- Y 
Compound 1f~ k:-< )f!~ 5 ~N 

HO 
9 1 8 29c 

OH 32 a o 36 

CH(CH3h 2.87 (m) 3.13 (m) 3.25-3.48 (m) 

CH(Cfuh 1.02 (d) 1.36 (d) 1,14 (d) 

H(2,4>a~ 2.87 (m) 3.44 (d) 3.16-3.23 (m) 

H(2,4)eq 3.04 (dd) 3.61 (d) 3.25-3.48 (m) 

H(9) 3.98 (bs) 

CH(CH3h 53.17 67.36 65.40 

CH(CH3h 17.90, 18.02 16.98 16.69, 17.02 

C(2,4) 53.27 or 53.36 49.10 53.45 

C(9) 215.18 87.02 

~ 



Compound 

CH2-cyclopropyl 

CH -cyclopropyl 

H(2,4)ax 

H(2,4)eq 

H(9) 

CH2-cyclopropyl 

CH-cyclopropyJ 

C(2,4) 

C(9) 

Table V. 

COMPARISON OF IH and BC CHEMICAL SHIFfS (b from TMS) OF 29d, 33 37 

r<J +r<1 s- +r<1 
~7 k: r 

JQBr 
5 ~N ______ N 

'-Ph HO '-Ph '-Ph 
o 9 1 8 29d OH 33 o 37 

2.32 2.54 (d) 3.11 (d) 

0.89 (m) 1.08 (m) 1.34 (m) 

2.94 (dd) 3.20 (d) 3.72 (d) 

3.12 (dd) 3.33-3.62 (m) 3.88 (d) 

6.23,6.33 (s) 

61.85 60.80 63.93 

8.53 6.16 5.25 

58.19 53.90 52.24 

214.85 89.63 

N 
VI 
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It was found that in diols 30-33 versus ketones 34-38 there was a significant downfield 

shift for the methine proton as well as the carbon of the isopropyl group. The H(2,4)ax 

and H(2,4)eq protons in 30-33 appear upfield relative to the ketone precursors 29a-d. 

Another interesting observation was that the 13e and 1 H signals for the bridge carbon 

[C(9)] in 30-33 appeared in a range of 87-102 ppm from TMS while the 1H signals 

appeared at 3.40-6.25 ppm from TMS. It is thus clear that not only the heteroatom 

present but substitution on the ring is also important for determining the chemical shift 

for the gem-diol carbon C(9). In the salts 34-38, the C(9) appeared in the range of 205-

210 ppm from TMS which is approximately 10-15 ppm upfield than in ketones 29a-d. 

Possibly, the inductive effect of the positive nitrogen atom induces more double bond 

character into the carbonyl group with the carbon atom becoming more shielded. 

As stated earlier, another objective of this work is to prepare metal complexes of 

3,7-DABCNONs. The centers involved in the chelation process are the nitrogens at 3-

and 7-positions. An optimum binding is likely to occur if the bispidinones are in a chair­

chair conformation. Although such systems exist in a BC~CC equilibrium, with 

predominantly a BC form at and above room temperature,2,4,52 only a few stable 

transition metal complexes for such systems have been synthesized and very few 

characterized.22,52,53 Since various approaches to produce chelates of this type of N­

substituted system gave negative results, it was reasoned that perhaps the bulky groups 

attached to the nitrogen atoms at the 3- and 7-positions could cause a steric crowding and 

possibly interfere with the complexation of the metal ion. One way to reduce the steric 

congestion in 29a,b,d was to remove the benzyl group by debenzylation to form a less 

crowded secondary amine like 39. Debenzylation of 29a with ammonium formate and 

palladium on activated charcoal gave 39 which displayed a characteristic N-H stretch 

(3326 cm-1) in the IR spectrum. An ethanolic solution of crude 39 was mixed with metal 

salts like CuCI2, Ni(CI04n·6H20, Mg(CI04)z, and CoBr2 dissolved in ethanol. Heating 

the solution resulted in the precipitation of complexes 40a-d. All the complexes showed 



a shift in the N-H absorption band to a lower wave number (3200-3151 cm-1) compared 

to that in amine 39 (3326 cm-1), suggesting the formation of a complex. 

o 

ethanol 

41 

42 
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Another approach that could possibly enhance the binding of the metal ion with 

the bispidinones was to introduce pyridyl ring at 2- and 4-positions. To investigate the 

role of the pyridine ring in complexation, model system 3,5-diphenyl-2,6-dipyridyl-4-

piperidinone (41) was prepared. An ethanolic solution of 41 was mixed with anhydrous 

copper chloride dissolved in absolute ethanol. Upon heating the solution, crystals of a 

light blue solid 42 precipitated. The N-H and the C=N absorption bands in the IR 

spectrum of 41 appear at 3317 cm- l and 1593 cm- l , respectively, while in 42 the N-H and 

the C=N band occur at 3151 cm- l and 1607 cm- l , respectively. These results suggest a 

complex, formed between the secondary amine 41 and copper ions. No NMR studies 

have been performed on 42 to date due to its insolubility in commonly used NMR 

solvents. The exact number of ligand molecules attached to the copper ion remains 

unclear at this stage. 

Synthetic Methodology 

The synthesis of 3,7-DABCNONs 29a-d was performed by a modified double 

Mannich reaction. Condensation of a piperidinone, an amine, paraformaldehyde, acetic 

acid, and hydrochloric acid in methanol gave 29a-d. Mixing a solution of 29a with 
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I 
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MeOH/M24h 
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a CH(CH3h 
b CH(CH3h 
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C6Hr 3,4-(OCH3)z 
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CaBr2 and MgBr2 each in THF and a solution of 29b with CoBr2 in TIlF produced the 

diols 30 and 31, respectively_ Diols of the 3,7-DHBCNONs were also made by reacting 

such systems with aqueous solutions of mineral acids like hydrogenperchloric acid or 

HO 

OH 30,31 

29a-d 

~~r(48%) 
, Br­
N .... H 
+ 

OH 32,33 

dry HBr(g) 

ether 

34-37 



29 

hydrobromic acids in the synthesis of 32 and 33. Salts 34-37 were prepared by passing a 

stream of dry HBr gas to the dry ether solutions of 29a-d, respectively. Salt 38 was 

prepared by the same method but by using a stream of dry HCI gas. Such salts were 

purified by washing with the dry ether since purification via recrystallization was difficult 

to achieve due to their very hygroscopic nature. 

The metal complexes 40a-d were prepared by the debenzylation of 29a using 

using PdlC and ammonium formate to give the secondary amine 39 as an oil. 

Ammonium formate acts as a hydrogen source in the reaction, a technique developed 

recently in these heterocycles. 59 The order of addition appears critical to the reaction. 

After the PdlC was placed in the flask and the system was flushed with nitrogen, 

methanol was slowly added, followed by the addition of the bispidinone and the 

ammonium formate to give the best yields. Purification of 39 has not been achieved as 

yet since it changed color upon standing for a short time and appeared vulnerable to air 

oxidation during purification. An ethanolic solution of the crude 39 and the metal salts 

MeOH/A/lh 

MX2/ethanol 

m 
40a-d 
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CuC12, Ni(CI04h·6H20, Mg(CI04h, and CoBr2 were combined and boiled for 5-10 

minutes to produce 40a-d. The complexes usually precipitated or crystallized from the 

solution. If this did not occur, the reaction mixture was concentrated and precipitation 

could be induced by the addition of a solvent with low dissolving power for the complex. 

The complexes were purified by crushing and washing in dry methanol, dry ethanol and 

anhydrous ether. Surprisingly, the solubility of all the complexes was low in polar 

solvents like methanol, ethanol, isopropyl alcohol, acetonitrile or dimethyl sulfoxide. 

The infrared spectra of the nickel perchlorate 40b and the magnesium perchlorate 

complex 40c exhibited strong broad absorption bands around 1105 cm- i and medium 

absorption bands at approximately 915 cm-i, indicating the presence of a perchlorate 

anion in the complexes.22 

The preparation of 42 was achieved by a Mannich reaction under basic conditions. 

Condensation of 1,3-diphenylacetone, pyridine-2-carboxaldehyde, and a 10% solution of 

liquid ammonia in ethanol gave 41. An ethanolic solution of 41 and copper chloride were 

mixed, and the resulting solution was boiled to produce light blue crystals of 42 

° II 
Ph~~Ph + 

o 

. .. .. . .. 
I 

.. N 
~" .", 
~Cu2+ 2Cr 

42 

ethano ~ 
+ liq. NH3(1O%) 24h 

ethanol 

41 



which were characterized by the IR spectral data. It is not known at this time if 42 

contains one or more organic ligand systems, although we have represented it as a 

monodentate. 
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Preparation of 7-benzyl-2,4-bis(2-pyridyl)-3,7-diazabicyclo[3.3.1]nonan-9-one 

(45) was attempted by a Mannich reaction. Condensation of 3,5-diphenyl-2,6-dipyridyl-

4-piperidinone (41) was initiated with a mixture of benzylamine, HCI, glacial acetic acid 

and paraformaldehyde. A mixture of starting materials was recovered and identified by 

spectroscopic analysis. A different approach, which involved a double Mannich conden­

sation of pyridine-2-carboxyaldehyde (43), N-benzyl-4-piperidinone (44) and ammonium 

formate, was also attempted. 1 H, 13C, and IR spectral analysis of the reaction mixture 

o 

~H 
~N I 

•. N 

indicated the presence of starting materials. The same reaction was also tried under 

acidic conditions using HCI and glacial acetic acid, but identical results were obtained. 

o 

N 
I 
H 
41 

20 + 
llN~CHO 

43 

(HCHO) CH3C02H 
n HCVM24h~ 

starting material 

6 + NH40Ac ~~H. startingmaterial 

44 Lph 



20 + A+ N~ CHO ~N) 
43 44 lph 

CH3C02H1HCl 
NH40Ac CH30IW24h t 

starting material 
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A synthesis of 7-benzyl-3-isopropyl-l,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one 

(46) by a Manich condensation involving N-isopropyl-3,5-diphenyl-4-piperidinone (47), 

benzyl amine, and paraformaldehyde in the presence of HCI and glacial acetic acid was 

attempted. Spectral analysis of the product indicated it to be starting material 47. It is 

not clear why this reaction failed under conditions that have been productive to generate 

29, for example. 

o 
Ph 

47 

Ph 46 

Ph 

+ PhCH2NH2 + (HCHO) CH3C02H1HCI.. starting material 
n C2H50HlM24h 

Conformational Analysis 

NMR spectroscopy and X-ray crystallography are useful methods in determining 

the conformational preferences of 3,7-diazabicyclo[3.3.1]nonan-9-ones. Such analyses 

can be helpful in understanding the biological properties and possibly the mechanism of 



action of such compounds. While X-ray crystallographic analysis describes the 

conformation in the solid state, debate over the preferred conformation in solution usually 

remains. Variable temperature (VT) 13C NMR spectral studies on certain 3,7-

DABCNONs (as described in Chapter I) support the existence of a boat-chair 

conformation possibly in a BC~CB equilibrium in some systems.2,4,32,36,45 It was 
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proposed that 3,7-DABCNONs exhibit a BC~CC equilibrium in solution with an 

increased population of a BC form at higher temperature and CC form at lower 

temperature. Several reduced forms of 3,7-DABCNONs namely DHBCNs and their salts 

have been examined4,45,53 and found to prefer the CC conformation in solution in many 

cases. 

1H, 13C, and 15N NMR spectral studies have been reported by our group on 

certain DHBCNs4,53 salts such as 48. The studies suggested a CC conformation for such 

R 

a CH(CH3h 
b CH(CH3h 
c CH(CH3h 
d CH(CH3h 
e CH(CH3h 
f CH2C6H4-4-I 

48a·f 

y 

NCH2Ph 

NCH2C6H4 -4-CI 

NCH2C6H3-3,4-(OCH3)z 

NH 

S 
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systems.4,53 Some factors that support these results are: (1) hydrogen bonding between 

the proton on one heteroatom and the other heteroatom and (2) a reluctance to consider a 

boat ring which could result in severe bow-sprit interaction with the C(9) protons. 
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The 13C NMR spectral analysis for 48a-e proved more informative than the IH 

NMR spectra. The methine carbons of the isopropyl groups in 48a-e were deshielded 

(56.0-58.6 ppm) compared to the same carbons (53.40-53.45 ppm) in the ketone 

precursors of 48a-e. This implied that protonation occurred at N(3). Interestingly, this 

deshielding did not occur at C(2,4). In fact, the C(2,4) 13C shifts in the ketone precursors 

were shielded (52.74-52.85 ppm) more than in the corresponding salts (53.71-53.86 

ppm). This was explained by assuming a 'Y shielding effect on C(2,4) by the C(6)-N(7) 

and C(8)-N(7) bonds thereby offsetting to some extent the deshielding of C(2,4) resulting 

from protonation of N(3). Similar shifts are seen in our diols 30 and 31 compared to the 

ketone precursors. 

Like the 3,7-DABCNONs, few 3,7-DABCN-9,9-diols have been synthesized and 

studied in terms of conformational preferences both in the solid state and in solution. An 

X-ray analysis of the diols 31 revealed a chair-chair conformation with the nitrogen 

atoms at 3 positionprotonated (Figure 1).7 The same configuration exists for 30.7 The 

preference for chair-chair arrangement probably arises due to favorable hydrogen 

bonding between the N(7) and the proton at N(3). Although no crystallographic data are 

available on 32 and 33 at present, a chair-chair conformation is strongly suspected for 

each case. The preferred conformation in solution for 30-33 remains undef'med. In 30-

33, the methine proton and carbon of the isopropyl group attached to N(3) are downfield 

relative to the ketone precursors 29a-d (see Tables II-V). This deshielding is not 

observed at C(2,4), especially in 30 and 31, possibly due to the fact that the stabilized CC 

form of the diols possess a pronounced y shielding effect by the C(6)-N(7) and N(7)-C(8) 

bonds on C(2,4). This shielding offsets to some degree any deshielding contribution 
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FIGURE L ORTEP Diagram of 31 
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which results from protonation of N. For instance, the shifts for C(2,4) in 29a,b are 

53.71-53.86 ppm versus 50.30-50.47 ppm in diols 30 and 31, respectively. In contrast, 

C(6,8) have signals at 57.92-58.01 ppm in 29a,b while in 30 and 31 the signals occur at 

53.65-53.82 ppm. These chemical shifts suggest a chair-chair conformation for 30 and 

31 in solution. Such a trend in chemical shifts is also observed in salts 48a-c. Based on 

such comparisons, chair-chair conformation may be tentatively assigned to 30-33 in 

solution. Similarly, the hydrobromides 34-37 show a deshielding of the methine proton 

and carbon of the isopropyl group, indicating protonation of the N(3). The C(9) in such 

systems appears at 205-210 ppm versus 215-218 ppm in 29a-d. Due to the lack of model 

systems, it is difficult to assign absolutely any conformational preferences to 34-37 in 

solution. The possibility of a hydrogen bonding between the N(7) and the proton at N(3), 

resulting in a chair-chair conformation both in solution as well as in solid state, can not be 

ruled out. 

Suggestion For Future Work 

One difficulty encountered was to perform solution NMR studies on the metal 

complexes. As mentioned in chapter II, this was mainly due to the poor solubility of the 
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complexes in the commonly used NMR solvents. This problem may find partial solution 

in solid state IH, 13C, and 15N NMR studies on the complexes. Such studies are 

expected to give some indication of the effects of chelation on the chemical shifts of the 

ring protons and carbons as well as the substituents attached at N(3) and N(7). The exact 

number of ligand molecules attached to a metal ion may possibly be determined reliably 

by atomic absorption analysis or X-ray crystallography. It also seems reasonable to 

obtain the 15N NMR shifts for 30 and 31 since such data has sometimes been helpful in 

diagnosing the nature of the major conformer present in solution.45 

Conclusions 

Metal complexes of certain 3,7-diazabicyclo[3.3.1]nonan-9-ones have been 

synthesized. Such complexes were characterized by IR spectral data. Preliminary results 

on complexes such as 40a suggests a monodentate complex formation. Formation of 

such complexes also support our theory that less steric crowding around the N(3) and 

N(7) is required in order for the amines to form complexes. In addition, a new 

methodology has been developed to obtain noveI3,7-diazabicyclo[3.3.1]nonan-9,9-diols 

and 3,7-diazabicyclo[3.3.1]nonan-9-one hydrobromides. Based on the results of X-ray 

crystallography, a chair-chair conformation has been assigned to diol31 in solid state. A 

chair-chair conformation is being proposed tentatively, in solution of such diols, based on 

the comparisons of the chemical shifts of the ring protons and carbons with those of the 

salts 48a-c, as discussed earlier in this Chapter. Such assignment must be considered 

tentative. Although no X-ray crystallographic data are available for 3,7-diazabicyclo­

[3.3.1]nonan-9-one hydrobromides, a chair-chair arrangement may be predicted in the 

solid state and in solution due to a favorable hydrogen bonding between N(3) and H(7). 
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CHAPTERID 

EXPER~NTALSECTION 

General. Information: AlIIH and 13C spectral data were obtained on a Varian 

XL-400 NMR spectrometer operating at 399.5 and 100.6 MHz, respectively. Chemical 

shifts for IH and 13C-NMR spectra were recorded in ppm values downfield from the 

TMS. IR spectra were recorded on a Nicolet impact 400 FTIR spectrometer as KBr 

pellets or as ftlms. Melting points, which were uncorrected, were recorded on a Thomas­

Hoover capillary melting point apparatus. High resoultion mass spectral analyses were 

performed on a VO analytical instrument, model ZAB-2SE. Elemental analyses were 

performed by Galbraith Laboratories, Inc., Knoxville, Tennessee. 

Syntheses were executed, unless otherwise indicated, under an atmosphere of N2 

with magnetic stirring. The following reagents were obtained commercially and used 

without further purification: glacial acetic acid, PdlC (10%), paraformaldehyde, 

hydrobromic acid, sodium hydroxide, benzyl amine, liquid ammonia, 1,3-

diphenylacetone, hydrochloric acid, and sulfuric acid. The following compounds 

required distillation prior to use: N-benzyl-4-piperidinone (bp 120-122 °Cll mm Hg) and 

pyridine-2-carboxaldehyde (185-186 ·C). N-Isopropyl-3,5-diphenyl-4-piperidinone 

(46),7 7-benzyl-3-isopropyl-3,7-diazabicyclo[3.3.1]nonan-9-one (29a),59 7-(3,4-

dimethoxybenzyl)-3-isopropyl-3,7-diazabicyclo[3.3.1]nonan-9-one (29b),59 3,7-diiso­

propyl-3,7-diazabicyclo[3.3.1]nonan-9-one (29c),22 and 7-benzyl-3-cyclopropyl-3,7-

diazabicyclo[3.3.1]nonan-9-one (29d)22 were prepared by known methods.59 

Ammonium formate and ammonium acetate were dried (vaccum pump, overnight, 0.2 

mm Hg) in a dessicator prior to use. All solvents were reagent grade and used without 



further purification, unless otherwise indicated. All the metal salts were dried under 

vaccum at RT in an Abderhalden for 7-10 hours before use. 

7-Benzqrl-3-isQpropyl-3,7 -diazabicyc1of3.3.llnonan-9,9-diol HYdrobromide (30). 
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To a 30-mL beaker containing dried MgBr2 (0.092 g, 0.50 mmol) dissolved in 10 

mL of THF was added a solution of 7-benzyl-3-isopropyl-3,7-diazabicyclo[3.3.1]nonan-

9-one (29a, 0.204 g, 0,75 mmol) in 10 mL of THF. The resulting solution mixture was 

protected from the atmosphere by covering the beaker with paraffin film and was allowed 

to stand at room temperature in the dark for approximately 72 h. Crystals formed and 

were ftltered under vaccum, via an aspirator trap and washed with copious amounts of 

THF. The solid was recrystallized (10 mL, isopropyl alcohol:CH2C12 1:1) to give 0.140 

g (51 %) of 30, mp 159-160 °C. IR (KBr) 3330 (O-H), 3096 (Ar-H), 2943, 2830 (C-H) 

em-I; 1H NMR (DMSO-li6) B 1.16 [d, 6H, CH3], 1.95 [bs, 2 H, H(l, 5)], 2.81 [d, 2 H, 

H(2, 4)ax], 2.97 [d, 2 H, H(2, 4)eq], 3.39-3.62 [m, 2 H, H(6, 8)ax], 3.70 [s, 2 H, Ar-CH2], 

3.93 [d, 2 H, H(6, 8)eq], 6.15, 6.18 [s, 2 H, OH], 6.36-7.61 [m,5 H, Ar-H]; 13c NMR 

(DMSO-d6) ppm 16.29 [CH3], 38.45 [C(l, 5)], 50.47 [C(2, 4)], 53.65 [C(6, 8)], 55.25 

[CH(CH3)2], 60.26 [Ar-CH2], 89,37[C(9)], 126.74, 128.53, 129.80, 137.00 [Ar-C]. 

Anal. Calcdfor C17H27N202Br: C, 51.61; H, 6.87; N, 7.08. Found: C, 51.60; H, 7.17; 

N,6.97. 

7 -(3.4-Dimethoxybenzqrll-3-isoprqpyl-3,7 -diazabicyclof3.3.llnonan-9,9-diol 

Hydrobromide (31). 

To a 30-mL beaker containing dried CoBf2 (0.109 g, 0.50 mmol) dissolved in 10 

mL of THF was added a solution of 7-(3,4-dimethoxybenzyl)-3-isopropyl-3,7-

diazabicyc1o[3.3.1]nonan-9-one (29b, 0.249 g, 0.75 mmol) in 10 mL of THF. The 

resulting solution mixture was protected from the atmosphere by covering with paraffin 

film and was allowed to stand at room temperature in dark for approximately 72 h. 
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Crystals fonned and were filtered under vaccum, via an aspirator trap, and washed with 

copious amounts of THF. The solid was recrystallized (10 mL, 1:1 isopropyl 

alcohol:CH2CI2) to give 0.152 g (49%) of 31, mp 158-159·C. IR (KBr) 3347 (O-H), 

3213 (N-H), 3043 (Ar-H), 2981, 2842 (C-H) cm- l ; IH NMR (DMSO-d6) 0 1.16 [d, 6H, 

CH3], 1.95 [bs, 2 H, H(1, 5)], 2.51 [bs, 2 H, H(2, 4)ax], 2.85 [d, 2 H, H(2, 4)eq], 3.05 [d,2 

H, H(6, 8)ax], 3.15-3.51 [m, 3 H, H(6, 8)eq, CH(CH3)2], 3.55 [s, 2 H, Ar-H], 3.87 [s, 3 H, 

OCH3], 3.88 [s, 3 H, OCH3], 6.19, 6.21 [s, 2 H, OH], 6.89-7.15 [m, 3 H, Ar-H]; 13C 

NMR (DMSO-d6) ppm 16.46 [CH3], 40.12 [C(1, 5)], 50.30 [C(2, 4)], 53.82 [C(6, 8)], 

54.92 [CH(CH3)2], 55.52, 55.42 [OCH3], 59.98 [Ar-CH2], 89.45[C(9)], 111.37, 113.26, 

122.15, 128.10, 148.50, 148.73 [Ar-C]. High resolution mass spectral (FAB) data calcd 

for C19H31N204Br m/z (M+): 351.2283 (-Br). Found: 351.2273. 

3,7 -DiisQpropyl-3,7 -diazabicyclor3.3.llnonan-9,9-diol Hydrobromjde (32). 

A 50-mL, Erlenmeyer flask was equipped with a magnetic stirrer and an ice bath. 

A solution of HBr (48%, 1.040 g, 6.16 mmol) in 2-propanol (1 mL) was added dropwise 

over a period of 15 min to a stirred, cold (0 ·C, via ice water bath) solution of 3,7-

diisopropyl-3,7-diazabicyclo[3.3.1]nonan-9-one (29c, 0.6 g, 2.60 mmol) in wet THF (20 

mL) to produce a light yellow oil, which crystallized after 72 hours at -10·C The 

crystals were filtered under vaccum, via an aspirator trap, washed with dry ether, and 

recrystallized (2-propanol:chlorofonn, 1:1) to give 32 (0.320g, 45%), mp 97-98 ·C. IR 

(KBr) 3403 (O-H), 3040 (Ar-H), 2900, 2850 (C-H) em-I; IH NMR (DMSO-d6) 0 1.36 

[d, 12 H, CH3], 1.77 [bs, 2 H, H(1, 5)], 3.13 [m, 1 H, CH(CH3)z]' 3.44 [d, 4 H, 

H(2,4,6,8)ax], 3.61 [d, 4 H, H(2,4,6,8)eq], 3.98 [bs, 2 H, OH]; 13C NMR (DMSO-d6) 

ppm 16.98 [CH3], 25.39 [C(l, 5)],49.10 [C(2, 4)], 60.82 [C(6, 8)], 67.36 [CH(CH3)z], 

87.02 [C(9)]. High resolution mass spectral (FAB) data calcd for C13H27N202Br m/z 

(M+): 243.2072 (-Br). Found: 243.2082. 
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7 -Benzyl-3-cycloprQPylmethyl-3,7 -diazabicyc1Qf3. 3. 11nQnan -9,9-diol HydrQbromide 

(33). 

A 50-mL, Erlenmeyer flask was equipped with a magnetic stirrer and an ice bath. 

A solution of HBr (48%, 1.040 g, 6.16 mmol) in 2-propanol (1 mL) was added dropwise 

over a period of 15 min to a stirred, cold (0 0 C, via ice water bath) solution of 7-benzyl-3-

cyclopropylmethyl-3,7-diazabicyclo[3.3.1]nonan-9-one (29d, 0.6 g, 2.20 mmol) in dry 

ether (20 mL) which produced a white solid. This solid was vaccum filtered, via an 

aspirator trap, washed with copious amounts of ether, and recrystallized (2-

propanol:chloroform, 1:1) to give 33 (0.540 g, 67%), mp 155-156.5 0c. IR (KBr) 3240 

(O-H), 3094 (Ar-H), 2933, 2833 (C-H) cm- 1; IH NMR (DMSO-d6) 0 0.54 [m, 2 H, 

(CH2)ax, cyc1opropyl ring], 0.62 [m, 2 H, (CH2kq, cyclopropyl ring], 1.08 [m, 1 H, C-H, 

cyc1opropyl ring], 2.00 [bs, 2 H, H(1, 5)], 2.77 [d, 2 H, H(6, 8)ax], 2.93-2.99 [m, 2 H, 

CH2-cyclopropyl ring], 3.06 [d, 2 H, H(6, 8)eq], 3.20 [d, 2 H, H(2,4)ax], 3.33-3.62 [m, 2 

H, H(2, 4)eq], 3.70 [s, 2 H, Ar-CH2], 6.23, 6.32 [s, 2 H, OH], 7.34-7.61 [m, 5 H, Ar-H]; 

13C NMR (DMSO-d6) ppm 4.08 [CH2, cyclopropyl ring], 6.61 [CH, cyc1opropyl ring], 

40.01 [C(I, 5)], 53.90 [C(2, 4)], 54.98 [C(6, 8)], 60.09 [Ar-CH2], 60.80 [CH2, 

cyclopropyl ring], 89.63[C(9)], 127.74, 128.53, 129.70, 137.00 [Ar-C]. High resolution 

mass spectral (FAB) data calcd for ClSH27N202Br m/z (M+): 303.2071(-Br). Found: 

303.2060. 

7-Benzyl-3-iso.pro.pyl-3.7-diazabicyclQf3.3.llnQnan-9-Qne HYdrobrQlnide (34). 

Gaseous HBr was generated in a standard setup with a 250-mL collection flask 

containing solid KBr. The H2S04 (-15 mL) was added dropwise ( ... ImL/min), and the 

gas generated was passed through a CaCl2 drying tube. Into a 250-mL Erlenmeyer flask 

equipped with a magnetic stirrer and an ice bath was bubbled HBr(g) to a chilled solution 

of7-benzyl-3-isopropyl-3,7-diazabicyclo[3.3.1]nonan-9-one (29a, 0.250 g, 0.919 mmol) 

in anhydrous ether (15 mL) over a 15 min period. The mixture was allowed to stir an 
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additional 15 min at 0-5 ·C. A white solid was formed, which was filtered under vaccum, 

via an aspirator trap and washed with cold ether. The solid was recrystallized (2-

propanol/chloroform, 1:1) to give 35 (0.233 g, 72%), mp 152-154·C. This solid was 

sensitive to moisture and was not exposed to the atmosphere for more than 5 min. IR 

(KBr) 3319 (N-H), 3067 (Ar-H), 2982, 2842 (C-H), 1747 (C=O) cm- 1; IH NMR 

(DMSO-d6) 0 1.17 [d, 6 H, CH3], 1.97 [bs, 2 H, H(I, 5)], 2.81 [d, 2 H, H(2, 4)ax], 3.01 

[d, 2 H, H(2, 4)eq], 3.40-3.56 [m, 5 H, CH(CH3n and ring protons], 3.74 [s, 2 H, ArCH2], 

7.37-7.73 [m, 5 H, Ar-H]; 13C NMR (DMSO-d6) ppm 17.54 [CH3], 45.16 [C(1, 5)], 

50.27 [C(2, 4)], 53.07 [CH(CH3h], 57.76 [C(6, 8)], 59.76[ArCH2], 128.87, 129.45, 

130.55, 133.14 [Ar-C], 192.85 [C=O]. Anal. Calcd for C17H2SN20Br(IH20): C,54.99; 

H, 7.32; N, 7.54. Found: C, 54.70; H, 7.35; N, 7.45. 

7-(3.4-Dimethoxybenzyl)-3-isQPropyl-3.7-diazabicyclor3.3.11nonan-9-one 

HydrObroroide (35). 

Gaseous HBr was generated in a standard setup with a 250-mL collection flask 

containing solid KBr. The H2S04 (-15 mL) was added dropwise (- ImL/min), and the 

gas generated was passed through a CaC12 drying tube. Into a 125-mL, Erlenmeyer flask 

equipped with a magnetic stirrer and an ice bath was bubbled HBr(g) to a chilled solution 

of 7-(3,4-dimethoxybenzyl)-3-isopropyl-3,7-diazabicyclo[3.3.1]nonan-9-one (29b, 0.250 

g, 0.75 mmol) in anhydrous ether (15 mL) over a 15-min period. The mixture was 

allowed to stir an additional 15 min at 0-5 ·C. A white precipitate fonned and was 

fIltered under vaccum, via an aspirator trap, and washed with cold ether. The solid was 

recrystallized (2-propanol/chloroform, 1:1) to give 35 (0.198 g, 64%), mp 179-180.5 ·C. 

The solid was hygroscopic and was not exposed to moisture for more than 5 min. IR 

(KBr) 3326 (N-H), 3039 (Ar-H), 2973, 2865 (C-H), 1735 (C=O), 1620, 1605 (C=C) cm-

1; IH NMR (DMSO-d6) 0 1.14 [d, 6 H, CH3], 1.96 [s, 2 H, H(I, 5)], 2.86 [d, 2 H, H(2, 

4)ax], 3.05 [d, 2 H, H(6, 8)ax1, 3.24 [m, 2 H, H(2,4)eq], 3.41-3.54 [m, 3 H, CH(CH3n and 
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H(6,8)eq], 3.56 [s, 2 H, ArCH2], 3.75 [s, 3 H, OCH3], 3.76 [s, 3 H, OCH3], 6.92-7.22 [m, 

3 H, Ar-H]; 13C NMR (DMSO-d6) ppm 17.17 [CH3], 45.16 [C(l, 5)], 50.54 [C(2, 4)], 

53.55 [C(6,8)], 55.85, 56.46 [OCH3], 57.76 [CH(CH3)2], 59.76[ArCH2]' 110.92, 113.90, 

122.88, 126.81, 149.12, 149.37 [Ar-C], 206.62 [C=O]. High resolution mass spectral 

(FAB) data calcd for C19H29N203Br rn/z (M+): 333.2179 (-Br). Found: 333.2196. 

3,7 -DiisoprQPyl-3,7 -diazabjcyclo[3.3.llnonan-9-one Hydrobromide (36). 

Gaseous HBr was generated in a standard setup with a 250-mL collection flask 

containing solid KBr. The H2S04 (-10 mL) was added dropwise (- 1mL/min), and the 

gas generated was passed through a CaCh drying tube. Into a 125-mL Erlenmeyer flask 

equipped with a magnetic stirrer and an ice bath was bubbled HBr(g) to a chilled solution 

of 3,7-diisopropyl-3,7-diazabicyclo[3.3.1]nonan-9-one 29c (0.150 g, 0.660 mmol) in 

anhydrous ether (10 mL) over a 15 min period. A white solid was formed, and the 

mixture was allowed to stir an additional 15 min at 0-5 °c. The supernatant ether layer 

was discarded and a fresh 25 mL of anhydrous ether was added. The reaction mixture 

was stirred for 15 min. This process was repeated 2 times to remove any unreacted 29c. 

Residual ether was then removed by rotary evaporator to give 36 as a white solid (0.095 

g, 64%). The mp of 36 could not be taken because of its hygroscopic nature. IR (KBr) 

3403 (N-H), 2979 (C-H), 1749 (C=O) em-I; IH NMR (DCCI3) 0 1.14 [d, 12 H, CH3], 

1.42-1.48 [m, 2 H, H(I, 5)], 3.16-3.23 [m, 4 H, H(2,4,6,8)ax]' 3.25-3.48 [m, 5 H, H(2, 

4,6,8)eq and CH(CH3a]; 13C NMR (DMSO-d6) ppm 16.69, 17.02 [CH3], 37.57 [C(1, 

5)], 53.45 [C(2, 4)], 54.48 [C(6, 8)], 65.40 [CH(CH3n]. High resolution mass spectral 

(FAB) data calcd for C13H25N20Br rn/z (M+): 225.1966 (-Br). Found: 225.1957. 

7 -Benz,yl-3-cyclopropylmetbyl-3,7 -diazabicyclo[3 .3.11 nonan-9-one Hydrobromide (37). 

Gaseous HBr was generated in a standard setup with a 250-mL collection flask 

containing solid KBr. The H2S04 (-10 mL) was added dropwise (- ImL/min), and the 
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gas generated was passed through a CaCl2 drying tube. Into a 125-mL Erlenmeyer flask 

equipped with a magnetic stirrer and an ice bath was bubbled HBr(g) to a chilled solution 

of 7-benzyl-3-cyclopropyl-3,7-diazabicyc1o[3.3.1]nonan-9-one (29d, 0.150 g, 0.528 

mrnol) in anhydrous ether (10 mL) over a 15 min period. A white solid was formed, and 

was allowed to stir an additional 15 min at 0-5 ·C. The supernatant ether layer was 

discarded and a fresh 25 mL anhydrous ether was added. The reaction mixture was 

stirred for 15 min. This process was repeated twice to remove any unreacted 29d. 

Residual ether was then removed by rotary evaporator to give 37 as a white solid (0.117 

g, 64%). The mp of 37 could not be taken because of its hygroscopic nature. IR (KBr) 

3240 (O-H), 3094 (Ar-H), 2933, 2833 (C-H) cm- 1; 1H NMR (DCCI3) 80.53 [m, 2 H, 

(CH2)ax, cyc1opropyl ring], 0.78 [m, 2 H, (CH2)eq, cyc1opropyl ring], 1.34 [m, 1 H, 

(CH)-cyclopropyl ring], 3.03 [d, 2 H, CH2-cyc1opropyl ring], 3.11 [d, 2 H, H(6, 8)ax], 

3.52 [d, 2 H, H(6, 8)eq], 3.72 [d, 2 H, H(2, 4)ax], 3.88 [d, 2 H, H(2, 4)eq], 4.42 [s, 2 H, 

CH2-Ar], 6.23, 6.32 [s, 2 H, OH], 7.43-7.81 [m, 5 H, Ar-H]; 13C NMR (DCCI3) ppm 

4.68 [CH2, cyclopropyl ring], 5.25 [CH, cyclopropyl ring], 36.67 [C(l, 5)], 52.01 [C(6, 

8)], 52.24 [C(2, 4)], 62.84 [Ar-CH2], 63.85 [NCH2-cyclopropyl ring], 87.90 [C(9)], 

127.09, 128.89, 130.15, 132.09 [Ar-C]. 

3-Isopropyl-3,7-diazabicyclo-r3.3.11nonan-9-one (39). 

A 200-mL, three-necked, round-bottomed flask was equipped with a magnetic 

stirrer, a heating mantle, a condenser with a N2 inlet, and two glass stoppers. The flask 

was initially charged with 10% PdlC (0.551 g, 30 mg/mrnol of the ketone) and flushed 

with N2 for 10 min. Then the solvent methanol (40 mL) was slowly poured over the 

catalyst, and the mixture was stirred. Extreme caution should be taken while pouring the 

methanol over PdlC since the catalyst is pyroforic. The ammonium formate (4.053 g, 

64.33 mrnol) was added followed by the ketone (29a, 5.00 g, 18.38 mrnol) in 40 mL of 

methanol, and the mixture was boiled for 1 h. The mixture was cooled to RT, filtered 
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over a celite pad in a fritted funnel, and washed with copious amounts of methanol. 

Methanol was removed by rotary evaporator. The gummy material obtained was 

redissolved in water (80 mL), and the pH was adjusted to -12 using 10% NaOH. 

Combined extracts (CC4, 4 x 40 ml) of the aqueous layer were dried (Na2S04, 1 h), 

filtered, and concentrated (rotary evaporator then vaccum pump, 10 min, RT/0.2 mm Hg) 

to give a yellow oil 39 (2.234 g, 73%) which was used without further purification for 

metal complexation. IR (film) 3326(N-H), 2975, 2919, 2814(C-H), 1733(C=O) cm-1. 

[3-Isopropyl-3,7-diazabicyclo[3.3.llnonan-9-onelcQPperill) Chloride (40a). 

A 100-mL beaker was equipped with a magnetic stirrer and a heating mantle. A 

solution of copper (II) chloride (0.258 g, 1.9 mmol) in 10 mL of absolute ethanol was 

added dropwise over a period of 10 min to a hot, stirred solution of 3-isopropyl-3,7-

diazabicyclo[3.3.1]nonan-9-one (39,0.350 g, 1.92 mmol) in 10 mL of absolute ethanol. 

The mixture was heated gently until a dark green solid had precipitated. After cooling, 

the solid was filtered under vaccum, washed successively with ethanol and 

dichloromethane. The solid was purified by crushing in hot absolute ethanol, methanol 

anhydrous ether until the filterate was colorless, and dried under vaccum in an 

Abderhalden overnight at 80 °C to give 40a (0.424 g, 70%), mp 207-208 0c. IR (KBr) 

3410 (N-H), 2975(C-H), 1720(C=O) cm-1 Anal. Calcd for 

ClOH18N20CuCI2(monodentate·3.5 H20): C, 31.61; H, 6.58. Found: C, 31.77; H, 6.43. 

[3-ISQpIQPyl-3,7 -diazabicyclo[3.3.llnonan-9-onelnickelilll Perchlorate (40b). 

A 100-mL beaker was equipped with a magnetic stirrer and a heating mantle. A 

solution of nickel (II) perchlorate hexahydrate (0.490 g, 1.90 mmol) in 15 mL of absolute 

ethanol was added dropwise over a period of 5 min to a hot, stirred solution of 3-methyl-

3,7-diazabicyclo[3.3.1]nonan-9-one (39, 0.350 g, 1.90 mmol) in 15 mL of absolute 

ethanol. The mixture was heated for additional 10 min. Upon cooling to 0 °C, a light 
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yellow solid precipitated, which was filtered under vaccum, via an aspirator trap, and 

washed with ethanol. This solid was then crushed successively in cold ethanol and 

anhydrous ether and was then filtered under vaccum, via an aspirator trap, and dried 

under vaccum in an Abderhalden overnight at 80°C to give 40b (0.685 g., 82%), mp 263-

265°C (dec). IR (KBr) 3621 (O-H), 3310 (N-H), 2975, 2842 (C-H), 1635 (C=O) em-I. 

[3-Isopropyl-3.7-diazabicyc10[3.3.11nonan-9-onelmawesiumaD Perchlorate (4Oc). 

A 100-mL beaker was equipped with a magnetic stirrer and a heating mantle. A 

solution of magnesium (II) perchlorate (0.424 g, 1.90 mmol) in 15 mL absolute ethanol 

was added dropwise over a period of 10 min to a hot, stirred solution of 3-isopropyl-3,7-

diazabicyc10[3.3.1]nonan-9-one (39,0.350 g, 1.90 mmol) in 15 mL of absolute ethanol. 

The mixture was gently heated for 10 min. Upon cooling to 0 °c, a colorless solid 

precipitated, which was filtered under vaeeum, via an aspirator trap, and washed with 

ethanol. This solid was then crushed successively in cold absolute ethanol and anhydrous 

ether and was then filtered under vaccum, via an aspirator trap, and dried under vaccum 

in an Abderhalden overnight at 80°C to give 40c (0.485 g., 63%), mp 292-293 °c (dec). 

IR (KBr) 3596 (O-H), 3315 (N-H), 2986, 2841 (C-H), 1640 (C=O) em-I. 

[3-Isopropyl-3.7 -diazabieyc10[3.3.llnonan-9-oneJcobaltan Bromide (40d). 

A 100-mL beaker was equipped with a magnetic stirrer and a heating mantle. A 

solution of cobalt bromide (0.230 g, 1.90 mmol) in 15 mL absolute ethanol was added 

dropwise over a period of 10 min to a hot, stirred solution of 3-isopropyl-3,7-

diazabicyc10[3.3.1]nonan-9-one (39,0.350 g, 1.90 mmol) in 15 mL of absolute ethanol. 

The mixture was gently heated for 10 min. Upon cooling to 0 °c, a purple color solid 

precipitated, which was filtered under vaccum, via an aspirator trap, and washed with 

ethanol. This solid was then crushed successively in eold absolute ethanol and anhydrous 

ether and was then filtered under vaeeum, via an aspirator trap, and dried under vaeeum 



in an Abderhalden overnight at 80 °c to give 40d (0.426 g., 56%), mp 261-262 0c. IR 

(KBr) 3596 (O-H), 3315 (N-H), 2986, 2841 (C-H), 1640 (C=O) cm-l . 

3,5-Diphenyl-2,6-bis (2-pyridyD-4-piperidinone (41). 
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A 100-mL, three-necked, round-bottomed flask was equipped with a magnetic 

stirrer, a heating mantle, a condenser with a N2 inlet and two glass stoppers. A mixture of 

1,3-diphenylacetone (8.0 g, 38 mmol), pyridine-2-carboxaldehyde (8.152 g, 76.1 mmol) 

and liq NH3 (10%,30 mL) in 60 mL of absolute ethanol was introduced in one portion. 

The mixture was boiled for 24 h. Upon cooling to RT, the solution was concentrated 

(rotary evaporator) to give a light brown solid. To this was added 75 mL water, which 

resulted in the formation of a brown suspension. This suspension was extracted with 

ether (4 x 30 mL), and the combined extracts were dried (Na2S04, overnight), filtered, 

and concentrated (rotary evaporator) to give a white solid. This solid was recrystallized 

(methanol, 30 mL) to give 41 (2.930 g, 47%), mp 220-221 0c. IR (KBr) 3316.8 (N-H), 

3028.6 (Ar-H), 2904.5, 2875 (C-H), 1708.2 (C=O), 1434.5 (C=C), 750, 701 (C-H out of 

plane, monosubstituted) cm-I; IH NMR (DCCI3) B 1.84 [s, 1 H, N-H], 4.39 [d, 2 H, H(I, 

6)],4.56 [d, 2 H, H(3, 5)], 6.70 [d, 2 H, Ar-H], 7.01-7.34 [m, 13 H, Ar-H, Py-H] , 8.61 [d, 

2 H, Py-H]; 13C NMR (DCCI3) ppm 64.18 [C(2, 6)], 68.60 [C(3, 5)], 122.22, 122.96, 

126.42, 127.63, 129.34, 134.86, 135.75, 149.37, 158.04 [Ar-C, Py-C], 205.90 [C=O]. 

Anal, Calcd for C27H23N30: C, 79,97; H, 5.71; N, 10.36. Found: C, 79,58; H, 6.07; N, 

10,30 

f3,5-Diphenyl-2,6-bis(2-pyridyD-4-piperidinoneJcmweran Chloride (42). 

A 50-mL beaker was equipped with a magnetic stirrer and a heating mantle. A solution 

of copper (IT) chloride (0.049 g, 0.37 mmol) in 10 mL of absolute ethanol was added 

dropwise over a period of 10 min to a hot, stirred solution of 3,5-diphenyl-2,6-bis-(2-

pyridyl)-4-piperidinone (41, 0.150 g. 0.37 mmol) in 10 mL of absolute ethanol. The 
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mixture was heated gently until light blue crystals precipitated. After cooling, the solid 

was filtered under vacuum, via an aspirator trap, and washed successively with ethanol 

and dichloromethane. The solid was then crushed successively in cold absolute ethanol 

and anhydrous ether, fIltered under vacuum, via an aspirator trap, and dried under vaccum 

in an Abderhalden overnight at 80°C to give 42 (0.092 g, 46.2%), mp 222-223 0c. IR 

(KBr) 3151 (N-H), 3031 (Ar-H), 2912, 2856 (C-H), 1726 (C::::O), 1607 (C::::N) cm- l . 

Attempted Preparation of 7-Benzyl-2.4-bis(2-pyridyn-3.7-diazabicyclor3.3.llnonan-9-

~ (45). 

Method A. A 100-mL, three-necked, round bottomed flask was equipped with a 

magnetic stirrer, a heating mantle, a 50 mL addition funnel, a condenser with a N2 inlet, 

and a glass stopper. A mixture of benzyl amine (0.395 g, 3.69 mmol), HC! (37%, 1.86 g, 

3.69 mmol), glacial acetic acid (0.221 g, 3.69 mmol), and paraformaldehyde (0.443 g, 

14.79 mmol) in deoxygenated methanol (30 mL) was stirred and boiled for 15 min under 

N2. A solution of 3,5-diphenyl-2,6-bis(2-pyridyl)-4-piperidinone (41, 1.5 g, 3.69 mmol) 

in methanol (30 mL) was then added dropwise to the mixture over a period of 15 min 

through the addition funnel, followed by stirring at reflux for an additional 24 h. 

Concentration (rotary evaporator) of the solution gave an oil which was redissolved in 

water (50 mL). An ether extract (40 mL) of this acidic solution was discarded. 

Basification (pH ..... 13) of the water layer was achieved by the addition of 10% NaOH, 

resulting in the formation of milky suspension which was extracted with diethyl ether (4 

x 40 mL). Combined extracts were dried (Na2S04, 3 h), filtered, and concentrated 

(rotary evaporator) to give a viscous red oil. The IH NMR and 13C NMR spectrum 

showed peaks which indicated the presence of only the starting materials. 

Method B. A 100-mL, three-necked, round bottomed flask was equipped with a 

magnetic stirrer, a heating mantle, a condenser with a N2 inlet, and two glass stoppers. 

The flask was charged with ammonium acetate (2.31 g, 30.0 mmol) and methanol (15 
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mL), and the flask was flushed with N2. The slurry was boiled with stirring until all the 

ammonium acetate dissolved, and then the solution was cooled to RT. A solution of 

pyridine-2-carboxaldehyde (43,6.426 g, 60 mmol), N-benzyl-4-piperidinone (44, 5.677 

g, 30 mmol), and methanol (30 mL) was added in one portion. The resulting solution was 

boiled with stirring for an additional 24 h. Upon cooling to RT, the solution was 

concentrated (rotary evaporator) to give a dark reddish brown oil which was dissolved in 

water (25 mL). The ether extract of this water layer was discarded. Basification (pH .... 13) 

of the water layer was achieved by 10% NaOH, resulting in the formation of a reddish 

brown suspension. This was extracted with ether (4 x 30 mL), and the combined extracts 

were dried (Na2S04, 5 h), filtered, and concentrated (rotary evaporator) to give a dark 

brown oil. The IH and 13e NMR spectrum of this oil exhibited a very complex peak 

pattern, probably indicating that the oil was still impure. This oil was therefore digested 

with Skelly B (2x100 mL, 20 min), and the supernatant extracts were concentrated (rotary 

evaporator) to give a brown oil. The IR, IH and 13C NMR spectrum showed peaks which 

indicated the presence of only the starting materials. 

Method C. A l00-mL, three-necked, round bottomed flask was equipped with a 

magnetic stirrer, a heating mantle, a 50 mL addition funnel, a condenser with a N2 inlet, 

and a glass stopper. A mixture of ammonium acetate (2.310 g, 30.0 mmol), HCI (37%, 

2.960 g, 30.0 mmol), glacial acetic acid (0.900 g, 15 mmol), and pyridine-2-

carboxaldehyde (43,6.426 g, 60 mmol) in deoxygenated methanol (30 mL) was stirred 

and boiled for 15 min under N2. A solution of N-benzyl-4-piperidinone (44, 5.677 g, 30 

mmol) in methanol (30 mL) was then added dropwise to the mixture over a period of 20 

min, followed by stirring at reflux for an additional 24 h. Concentration (rotary 

evaporator) of the solution gave a dark brown oil which was redissolved in water (40 

mL). An ether extract (30 mL) of this acidic solution was discarded. Basification 

(PH-13) of the water layer was achieved by the addition of 10% NaOH, resulting in the 

formation of milky suspension which was extracted with ether (4 x 40 mL). Combined 



extracts were dried (Na2S04, 5 h), filtered, and concentrated (rotary evaporator) to give a 

viscous brown oil. The IH NMR and 13C NMR analyses of this oil showed a complex 

peak pattern which indicated that the oil was still impure. The oil was then digested in 

skelly B (75 mL, 20 min), and the supernatent extracts were concentrated (rotary 

evaporator) to give a light brown oil. IH NMR and 13C NMR analyses indicated the 

presence of only the starting materials. 

Attempted fuparation 7-Benzyl-3-isopropyl-l .5-diphenyl-3.7-diazabicyclor3.3.llnonan­

~(46). 

50 

A 100-mL, three-necked, round-bottomed flask was equipped with a magnetic 

stirrer, a heating mantle, a condenser with a N2 inlet, and two glass stoppers. A mixture 

of benzylamine( 2.92 g, 13.651 mmol), glacial acetic acid (0.819 g, 13.651 mmol), HCI 

(0.498 g, 6.825 mmol), and paraformaldehyde (1.638 g, 54.604 mmol) in absolute ethanol 

(30 mL) was added to the system and brought to gentle reflux with stirring under N2 over 

15 min. A hot solution of N-isopropyl-3,5-diphenyl-4-piperidinone (47) in absolute 

ethanol (30 mL) was added immediately and the resulting solution was boiled for 24 h. 

Upon cooling to RT, a white solid was obtained which was filtered under vaccum and 

washed with copious amounts of absolute ethanol. The mother liquor was concentrated 

on a rotary evaporator and cooled at -10 ·C overnight. No additional solid was formed. 

The original solid was recrystallized from methanol (25 mL) to give a new white solid 

(3.130 g, 60.3%), which was identified as recovered starting material 47, mp 179-180 OCt 

Although this compound had been prepared in our Laboratory by previous students, 

spectral data had not been recorded previously and is hereby included for the sake of 

completeness. IR (KBr) cm-1 3060 (Ar-H), 2971, 2842 (C-H), 1720 (C=O), 1440 (C=C), 

762, 709 (C-H, out of plane monosubstituted); IH NMR (DMSO-d6) 0 1.12 [d, 6 H, 

CH3], 3.02 [m, C-H, isopropyl], 3.18 [d, 4 H, ring proton], 3.52 [d, 4 H, ring proton], 

3.54 [s, 2 H, Ar-CH2], 7.20-7.34 [m, 15 H, Ar-H]; 13C NMR (DMSO-d6) ppm 18.25 



[CH3], 46.93 [C(l, 5)], 53.41 [CH(CH3h], 53.71 [C(2, 4)], 58.07 [C(6, 8)], 61.25 [Ar­

CH2], 125.42, 125.77, 126.03, 127.04, 127.54, 128.61, 128.82, 143.73 [Ar-C], 211.69 

[C=O]. 

51 
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