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Abstract 

The ~4.7Mb genomes of Leptospira interrogans serovar pomona and 

Leptosrira kirschneri serovar grippotyphosa respectively were sequenced to 

understand the molecular basis of leptospiral physiology, virulence, and pathogenesis 

in leptospirosis. 

3,733 genes were predicted in L. pomona and 3,828 genes were predicted in L. 

grippotyphosa and compared with those of L. lai and copenhageni.  The large 

chromosomes of L. pomona, grippotyphosa, lai, and copenhageni encode 133, 205, 

854, and 98 species specific genes, respectively while 77, 99, and 66 genes are species 

specific in the small chromosomes of L. pomona, grippotyphosa, and lai, respectively, 

but none are specific in the copenhageni small chromosome. 

Nearly 50 metabolic pathways, including glycolysis, pentose phosphate, TCA 

cycle, oxidative phosphorylation, and ATP synthesis, have been reconstructed for four 

Leptospira species using KEGG.  Domain analysis, isozymes search, and literatures 

mining confirmed that all these pathways investigated were identical in L. pomona, 

grippotyphosa, lai, and copenhageni. 

Virulence genes that include methyl-accepting chemotaxis protein, flagellar 

basal body-associated protein, flagellar motor switch protein, Lig A protein, 

thermolysin, multiple antibiotic resistance protein, acriflavine resistance protein, and 

rfb-related genes were identified and compared among the four Leptospira species: 

pomona, grippotyphosa, lai, and copenhageni.  Based on the unique distribution of 

their virulence genes, grippotyphosa and pomona can be paired while copenhageni 

 xviii



and lai similarly can be grouped.  This pairing correlates well with their respective 

host ranges. 

 xix



Chapter I 

Introduction 

1.1 Leptospirosis and Leptospiries 

Spirochaetes, consisting long and helical Gram-negative bacteria, 

distinguished from other bacterial phyla by the presence of flagella, or axial filaments, 

that run lengthwise between the cell membrane and outer membrane.  There are three 

families of spirochaetes, Treponema pallidum (Fraser, C. M. et al., 1998), Borrelia 

burgdorferi (Fraser, C. M. et al., 1997), and Leptospira species.  T. pallidum, is the 

causative agent of the sexually transmitted disease syphilis, B. burgdorferi  is the 

causative agent of tick-transmitted Lyme disease, and Leptospira species that cause 

Leptospirosis are one of a group of emerging infectious diseases whose mammalian 

hosts include both livestock and humans (World Health Organization, 1999).  The 

infection is transferred by exposure to water, damp soil, or vegetation contaminated 

with the urine of infected animals, because the infected animals pass the pathogens in 

their urine.  Leptospirosis often results in fever, headache, and jaundice, that lead to 

renal failure, cardiopulmonary failure, and widespread hemorrhaging.  In female 

cattle, pigs, horses, and dogs, leptospirosis often causes abortions, stillbirths and 

reproductive failure.  There also is increasing prevalence of leptospirosis in humans 

who have come in contact with infected animals. 

1.1.1 Taxonomy and Classification 

There are two major methods to classify Leptospira, serologically and 

genotypicly.  Serological classification is based on the agglutination after cross-

absorption with lipopolysaccharide homologous antigen.  Using this approach, the 
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genus Leptospira can be divided into two species, L. interrogans, comprising all 

pathogenic strains, and L. biflexa, comprising the saprophytic strains isolated from the 

environment (Faine and Stallman, 1982).  Both L. interrogans and L. biflexa are 

further divided into many serovars with more than 200 serovars and 60 serovars, 

respectively.  Genotypic classification is based on DNA hybridization, 16 

genomospecies of Leptospira have been defined that interestingly do not discriminate 

between pathogenic and nonpathogenic serovars or phenotypic characteristics 

(Ramadass, et al., 1992). 

In my dissertation research, the genome sequences of Leptospira interrogans 

serovar pomona and Leptospira kirschneri serovar grippotyphosa were determined.  

These serovars are most common in the United States.  L. pomona infects pigs, dogs, 

cows, sheep, and horses, while L. grippotyphosa infects dogs, cows, and sheep, but 

rarely infects pigs or horses.  The genomes of two additional serovars, L. interrogans 

serovar lai (Ren, et al., 2003) and L. interrogans serovar copenhageni (Nascimento, et 

al., 2004) were determined in 2003 and 2004, respectively.  L. lai is the causative 

agent of rural leptospirosis in China, while L. copenhageni is responsible for the urban 

epidemics in Brazil.  The hosts for serovar lai and copenhageni are the striped field 

mouse (Apodemus agrarius) and the domestic rat (Rattus norvegicus), respectively.  

All of the above four serovars are able to cause severe infection in humans. 

1.1.2 Biology of Leptospires 
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Figure 1.1.1 Scanning electron micrograph of leptospiries (Levett, 2001) 

As shown in Figure 1.1.1, leptospires are tightly coiled spirochetes, usually 0.1 

µm by 6-20 µm, with helical amplitude of 0.1-0.15 µm and a helical twist of 

approximately 0.5 µm.  All leptospires are indistinguishable in morphology.  The cells 

have a typical double membrane structure in common with other spirochetes, in which 

the cytoplasmic membrane and peptidoglycan cell wall are closely associated and 

surrounded by an outer membrane (Haake, 2000).  The periplasmic space contains 

two flagella allowing leptospires to exhibit two distinct forms of movement, 

translational and nontranslational. 

1.1.3 Molecular Biology 

The genomic size of most Leptospira typically is approximately 5 Mbp 

(Smibert, 1977), and often is comprised of two chromosomes, a 4.4 Mbp chromosome 

and a smaller 350 Kbp chromosome, but no other plasmids are reported.  Physical 

maps for serovars pomona subtype kennewicki and icterohaemorrhagiae have been 

constructed (Zuerner, 1991; Takahashi, et al., 1998).  Most leptospires contain two 
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sets of 16S and 23S rRNA genes but only one set of 5S rRNA gene (Takahashi, et al., 

1998), and the rRNA genes usually are widely separated on the large chromosome 

(Fukunaga and Mifuchi, 1989). 

1.1.4 Pathogenesis and Virulence Factors 

The mechanisms by which leptospires cause disease are not well understood.  

A number of putative virulence factors have been suggested, but the function of most 

of them in pathogenesis remains unexplored.  Basically, virulence factors are involved 

in the following biological process: motility, adhesion to the host cells, penetration of 

the host cells, iron uptake, and the defense against the host immune response. 

1.1.4.1 Motility 

Prior to the infection, the pathogen has to move close to the host cell.  E. coli 

cells depend on rotation of outside flagella filaments to move (Kim, et al., 2003).  But 

motility of leptospires is dependent on the presence of two periplasmic flagella.  Each 

flagellum is composed of a basal body, hook, and filament.  The leptospires can swim 

through gel-like media, such as connective tissues, that inhibit the motility of most 

other bacteria (Li, et al., 2000), suggesting that mobility could play an important role 

as a virulence factor.  A periplasmic flagellin gene, flaB, of Leptospira interrogans 

was expressed in E. coli for the production and antigenic characterization of the 

protein (Lin, et al., 1999).  Two separate flaB genes of Leptospira borgpetersenii have 

been identified and characterized (Lin, et al., 2004). 

1.1.4.2 Attachment 

Usually, the first step in the infection process is the adherence of the pathogen.  

This process involves the interaction between surface proteins (adhesins) on the 
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bacteria and membrane components on the host cell surface.  Virulent strains of 

leptospires can attach to the renal epithelial cells.  A putative adhesin has been 

identified.  It is a single 36-kDa fibronectin-binding protein specifically expressed by 

the virulent strains, but is not found in avirulent strains (Merien, et al., 2000).  This 

protein interacts with the gelatine-binding domain of fibronectin and then the integrin 

cell-binding domain of fibronectin likely binds to the CR3 receptor on host cells 

(Cinco, et al., 2002). 

1.1.4.3 Invasion 

Once the pathogen has attached to the cell surface, it will release enzymes that 

degrade the host cell membrane.  Hemolysins from several serovars have been 

characterized.  The hemolysins of serovars Leptospira pomona, hardjo, tarassovi, and 

ballum are sphingomyelinase (Bernheimer and Bey, 1986; del Real, et al., 1989), 

while phospholipase A1 and lysophospholipase have been identified in Leptospira 

biflexa (Yanagihara, et al., 1984), a phospholipase C has been reported in serovar 

canicola (Yanagihara, et al., 1982), and a novel hemolysin (encoded by SphH) from 

serovar lai that is neither a sphingomyelinase nor phospholipase but rather a pore-

forming protein (Lee, et al., 2000; Lee, et al., 2002). 

1.1.4.4 Iron Uptake 

A TonB-dependent outer membrane receptor, FecA, has been identified in L. 

biflexa (Louvel, et al., 2005) that is analogous to the bacterial ferric dicitrate iron 

transport system Fec (Ferguson, et al., 2002) that requires a direct physical interaction 

between TonB and FecA via a TonB box located at the N termini of all TonB-

dependent receptors.  Interestingly a TonB-independent receptor for iron acquisition, 
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called FeoB, recently was identified in L. biflexa and the inability of FeoB mutants to 

transport ferric dicitrate and iron sulfate suggests that FeoB is involved in the uptake 

of both FeSO4 and Fe(3+) dicitrate (Louvel, et al., 2005). 

1.1.4.5 Immune Response 

Leptospiral lipopolysaccharide (LPS) is the basis of serovar identification and 

is the apparent target of naturally acquired immunity.  Antibodies raised against LPS 

from different Leptospira strains during infections are related to polysaccharide 

structure in terms of its sugar composition, number, repetitiveness, and ramification 

(Faine, et al., 1999).  Leptospiral LPS is the predominant component that signals to 

the innate immune system (Werts, et al., 2001).  It activates macrophages through a 

Toll-like receptor 2 (TLR2) pathway rather than TLR4.  The latter is the classical 

signaling receptor of the innate immune system that detects the lipid A moiety of most 

other Gram-negative LPSs (Poltorak, et al., 1998). 

1.2 DNA, Gene, and Genome 

1.2.1 DNA 

Deoxyribonucleic acid (DNA) is a polymer with nucleotide monomer units 

that are composed of a 2'-deoxyribose sugar, one of four nitrogenous bases, a purine, 

adenine (A) or guanine (G), or a pyrimidine, thymine (T) or cytocine (C), attached to 

C-1 of 2-deoxyribose via a glycosidic bond from N-9 of a purine or N-1 of a 

pyrimidine, and a phosphate group esterified to the 3' OH group of one nucleotide to 

the 5' OH group of the next (Figure 1.2.1). 

Prokaryotes and eukaryotes have double-stranded DNA genomes where the 

two anti-parallel chains interwine to form a double helix with the sugar-phosphate 
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backbone outside and nitrogenous bases inside.  This structure of DNA was initially 

elucidated by Watson and Crick (1953) where they described that base pairing occurs 

between the two antiparallel DNA chains between adenine (A) and thymine (T) with 

two hydrogen bonds and cytosine (C) and guanine (G) with three hydrogen bonds.  In 

addition, the double helical structure is stabilized by hydrophobic base stacking 

interactions between the aromatic rings of adjacent bases. 

 

Figure 1.2.1 The structure of DNA 
(http://nobelprize.org/chemistry/educational/dna/b/replication/dna_structure.html) 

In 1970, Crick proposed the “Central Dogma of Molecular Biology” that 

predicted genetic information stored in DNA flows through RNA to protein (Crick, 

1970).  Subsequently this idea has evolved to include more details as illustrated 

below. 
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Figure 1.2.2 The evolution of Crick’s Central Dogma from the 1950s to today 
(http://www.genome.ou.edu/5853/CentralDogma.ppt) 

1.2.2 Gene 

A gene is a sequence of DNA that is transcribed to RNA.  Most genes encode 

proteins, such as enzymes, structural proteins, or regulatory proteins, but some encode 

stable RNA molecules.  The molecular details of genes in prokaryotes and eukaryotes 

are different, even though they share some basic overall design.  The first difference 

lies in that most prokaryotic genes are polycistronic (one transcription unit contains 

coding sequences for more than one type of protein or RNA), while eukaryotic genes 

are monocistronic (one transcription unit contains only a single coding sequence for a 

protein or stable RNA) with very few exceptions.  The second difference is that most 

eukaryotic genes have exons separated by introns, i.e. they are discontinuous, while 

the prokaryotic genes are continuous. 

1.2.3 Genome 

Bacteria have a chromosome that either consists of double-stranded linear 

DNA (for example, Borrelia burgdorferi, the organism that causes Lyme disease 
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(Fraser, et al., 1997)) or double-stranded circular DNA (for example, Vibrio cholerae, 

the pathogenic bacterium that causes cholera (Clayton, et al., 2000)) and their genome 

sizes vary between 0.5 and 10 Mbp, but generally average between 2 to 5 Mbp.  The 

smallest bacteria genome identified thus far is from Mycoplasma genitalium, an 

obligate intracellular pathogen with a genome size of 0.58 Mbp (Fraser, et al., 1995).  

In addition to their genomic DNA, many bacteria also contain smaller, double-

stranded, autonomously replicating DNA plasmids that coexist with the larger 

genomic DNA in a bacterial cell.  The plasmids can be transmitted from one cell to 

another by bacterial conjugation. 

Bacterial genomes have compact genetic organizations with, for example, the 

non-coding DNA in the E. coli genome accounting for only 11% of the total.  In 

addition, most bacterial genes are organized into operons where functionally related 

genes coding for a set of proteins that are involved in a single biochemical activity are 

expressed coordinatively.  The lactose operon, the first to be discovered (Jacob and 

Monod, 1961), encodes those co-expressed genes involved in converting lactose to 

glucose.  Bacteria that are related to each other often have a similar organization, 

although they have subtle genetic differences.  For example, a comparison of E. coli 

K12 (Serres, et al., 2001) and E. coli O157:H7 (Perna, et al., 2001) reveals that 

O157:H7 has about 1,400 genes not present in K12, and K12 has about 500 genes not 

present in O157:H7, giving an overall difference of about 7.5×104 base pairs. 

1.3 Bacterial Genome Sequencing 

1.3.1 Brief Introduction of Sequencing Methods 
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Two basic methods of DNA sequencing were developed in the 1970's.  One 

depends on specific chemical degradation (Maxam and Gilbert, 1977) and the other 

depends on enzymatic synthesis (Sanger, et al., 1977).  Both methods produce nested 

DNA-fragment sets with one end sheared and the other differing in length by only one 

nucleotide that can be separated via polyacrylamide gel electrophoresis. 

The Maxam-Gilbert sequencing method involves chemical degradation using 

base-specific chemical cleavage of end labeled DNAs.  Each chemical reaction 

cleaves the DNA preferably at specific bases resulting in a mixture of DNA-strands of 

different lengths, with one end representing one of the bases and the other end 

containing a 32P phosphate.  By loading the A, C, G, and T specific cleavage reactions 

in different lanes on the same polyacrylamide gel, fragments in each mixture can be 

resolved by electrophoresis and the template DNA sequence can be deduced by 

comparing the four corresponding lanes in an autoradiogram. 

The early Sanger dideoxy method required two steps, a labeling-reaction and a 

termination-reaction.  During the labeling-reaction, DNA polymerase I and a short 

oligonucleotide primer were used to copy a complementary DNA template.  The 

reactions include DNA, primer, four deoxyribonucleoside triphosphates (dNTP: 

dATP, dTTP, dCTP, and dGTP), trace amounts of 32P-dATP, and one of the four 

dideoxynucleotide triphosphates (ddNTPs) in each of four tubes.  Because ddNTP 

lacks the 3'-hydroxyl terminal needed to form the next phosphodiester bond, once it is 

incorporated at the 3' end, the chain can not be extended.  In reaction mixtures 

containing a given ddNTP, chain-terminated fragments of various length are 

produced, with each fragment extending from the primer to one of the positions 
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represented by the ddNTP base.  The fragments then are separated by electrophoresis 

and the template DNA sequence can be deduced by comparing the four corresponding 

lanes in an autoradiogram. 

Because the Maxam-Gilbert method gives complex data, requires hazardous 

chemicals, and is difficult to scale-up, the Sanger's method is more widely used.  

Since 1977, a number of improvements have been introduced to the Sanger dideoxy 

method.  The first improvement was to replace the radiolabled 32P-dATP with 

fluorescence dyes.  These dyes can be attached to either the four dideoxynucleotide 

terminators (Prober, et al., 1987) or the primers (Smith, et al., 1986).  However the 

latter is used less frequently today since four separate reactions must be set up for 

each sequence.  Originally, four single dyes (either fluorescein or rhodamine 

derivatives) (Swerdlow and Gesteland, 1990; Karger, et al., 1991; Metzker, et al., 

1996) were utilized as fluorescent labels.  The major disadvantage of single dye-

labeled terminators is the presence of very small or very large peaks, which can result 

in errors in automated base-calling.  Later, energy-transfer dyes were developed 

(Rosenblum, et al., 1997) as they have both improved spectral resolution and 

improved fluorescence yield compared to the single dyes, as they employ fluorescence 

resonance energy transfer (FRET). 

The second important improvement was the development of improved 

enzymes for DNA sequencing.  The enzyme originally used in the Sanger method was 

the Klenow fragment of E. coli DNA polymerase I (Klenoew, et al., 1971).  

Sequenase (T7) polymerase then was developed to replace the Klenow fragment for 

DNA sequencing with radioactive nucleotides because of its high processivity and low 
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error rate (Tabor and Richardson, 1990).  The enzyme currently in general use is a 

variant of Thermo aquaticus (Taq) DNA polymerase.  The advantage of using the 

thermostable Taq polymerase rather than Sequenase is that multiple rounds of 

sequencing can be performed without the need to add additional enzyme.  Other 

amino acid modifications to the Taq DNA polymerase have enabled it to incorporate 

the fluorescent dye-labeled terminators more evenly and efficiently, resulting in very 

even peak heights over a sequence read.  One of the typically used enzymes is 

AmpliTaq DNA polymerase, FS, a mutant form of Taq DNA polymerase that contains 

two point mutations, F667Y and G46D.  The former mutation results in lower 

discrimination against dideoxynucelotides and leads to a more even peak intensity 

pattern (Tabor and Richardson, 1995), while the latter removes almost all of the 5' 3' 

exonuclease activity, thereby eliminating artifacts that arise from the activity. 

However, the Sanger's method still faces limitations in both throughput and 

cost for most future applications.  Many research groups have developed alternative 

approaches for DNA sequencing (Nyren, et al., 1993; Ronaghi, et al., 1996; Jett, et al., 

1989).  Recently, 454/Roche GS-20 instrument's “sequencing by synthesis” 

nanotechnology has been successfully used for both confirmatory and de novo 

sequencing (Margulies, et al., 2005).  Compared with the conventional Sanger 

technology, this new method does not require any cloning but instead uses PCR for 

DNA fragment amplification.  Here an emulsion-based PCR (emPCR) is used to 

amplify DNA fragment immobilized on a bead in water-in-oil micelles that contain 

the DNA template capture beads and PCR reagents (Dressman, et al., 2003).  During 

the emulsification, millions of micelles are created, and millions of individual PCR 
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reactions, instead of only one as in the conventional sequencing method, are carried 

out simultaneously in a single tube.  The amplified DNA then is sequenced by a 

pyrosequencing rather than dideoxy chain termination approach (Ronaghi, et al., 

1998).  Pyrosequencing is based on detecting the release of pyrophosphate (PPi) when 

a nucleotide is incorporated into an extended DNA chain by DNA polymerase.  This 

released PPi subsequently is converted to ATP by ATP sulfurylase, and the hydrolysis 

of this ATP provides the energy for luciferase to oxidize luciferin and generate light.  

Since the added nucleotide is known, the sequence of the template can be determined 

when a light flash occurs.  In addition, it should be emphasized that the sequencing 

reactions are run in picoliter-sized wells on a slide, containing approximately 1.6 

million wells (Leamon, et al., 2003).  With massive parallelization, more than 20 

million bases can be sequenced per 4.5-hour instrument run, making this technique 

approximately 30 times faster and cheaper than current Sanger sequencing.  However, 

this new method still has some disadvantages.  For example, the average reads 

initially were only ~ 100 bp but now have been extended by members of our 

laboratory to ~ 300 bp. Initially all of the pyrosequencing reads were unpaired rather 

than paired as in conventional double stranded DNA sequencing, but our laboratory 

now has begun implementing a novel paired-end approach.  Although at present the 

454/Roche GS-20 instrument platform is better used as a complement to, rather than a 

replacement of, the existing Sanger sequencing method, this may change in the near 

future as improvements in read length and read accuracy are introduced. 

1.3.2 Strategies of Bacterial Genome Sequencing 
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Sequencing of a bacterial genome generally begins with a shotgun approach 

(Anderson, et al., 1982) followed by a more directed closure phase.  In the shotgun 

phase, the genomic DNA is randomly sheared into short fragments.  After the ends of 

the fragments are sequenced, these sequences are assembled into hundreds of contigs 

to obtain the genomic draft sequence.  In the closure phase, various methods, such as 

sequencing off PCR products and construction of a large-insert library, are used to 

join the contigs into a single contig representing the whole genome sequence.  Gap 

closure currently is both a time-consuming and often difficult phase in large-scale 

sequencing whether its based on a Sanger, a pyrosequencing or a combined approach. 

1.3.2.1 Shotgun Phase 

A hybrid sequencing approach was adopted to carry out this phase in the late 

study of this dissertation.  Two shotgun libraries were constructed.  The first was a 

small-insert 2~4 Kbp library.  Both ends of fragments were sequenced on ABI 

sequencers.  The second was a 454/Roche GS-20 instrument library in which the end 

sequences of DNA fragments of 300-800 bp long are obtained on the 454/Roche GS-

20 instrument GS 20 sequencer.  The end sequences from the different sequencers 

were assembled separately and integrated by Phrap (Green, pers. comm.).  The details 

about shotgun library construction, sequencing, and assembly will be discussed in 

section 2.1 Construction of Shotgun Library and Sequencing. 

1.3.2.2 Closure Phase 

A variety of methods typically are employed to join the contigs and reduce the 

overall error to less than 1 uncertain base per 10 kb.  The first method is based on the 

small-insert library.  If the terminal sequences of the single insert DNA fragments 

 14



belong to different contigs, it is highly probable that these two contigs are neighbors.  

The second method is based on a large-insert shotgun library typically a fosmid 

library, in which the insert DNA fragments are ~40 kb long.  This library is used to 

obtain a “scaffold” of the genome during the closure phase.  In addition, the partial 

sequence of the genome being sequenced also may be conserved in the sequenced 

genome of a related organism.  In this way, a control genome may be of help in the 

completion of the genome under study. 

To insure the sequence is assembled correctly, the predictions of all the 

potential contig neighbors need to be verified by standard PCR (Barnes, 1994).  For 

the contigs without identified neighbors, multiplex PCR (Claustres, et al., 1989) also 

can be helpful as it involves PCR amplification using a mixture of primers that are 

located in the vicinity of contig ends.  After sequencing the PCR products, the contigs 

can be ordered and the gaps filled.  The details of the closure phase are discussed later 

in section 2.3 Gap Closure. 
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Chapter II 

Materials and Methods 

2.1 Construction of Shotgun Library and Sequencing 

Genomic DNA of L. pomona strain RM211 and L. grippotyphosa strain RM52 

were supplied by Dr. Yung-Fu Chang at Cornell University.  The strategy of whole 

genome shotgun was employed to obtain the draft sequence of these genomes 

followed by several directed closure methods. 

2.1.1 Small-insert Library 

A small-insert library was generated and randomly end-sequenced to obtain 

the initial genomic draft sequence.  At first, the genomic DNA was sheared to 2-4 kb 

fragments.  After end-repair, DNA fragments then were size-selected by purification 

on a low-melt agarose gel, inserted into pUC18 vectors, and transformed into E. coli 

XL1-Blue MRF'.  After the subcloned DNA molecule was isolated, cycle sequencing 

was performed with forward and reverse universal primers and fluorescent-labeled 

Taq ddNTP terminators.  End sequences of the shotgun DNA sub-clones were 

collected on ABI3700 sequencers, converted to base calls with Phred, and assembled 

with Phrap (Green, pers. comm.). 

2.1.1.1 Fragmentation of Target Genomic DNA 

The point of this step is to break the DNA into random small clonable pieces 

(2-4 kb). The major methods include sonication (Deininger, 1983), partial restriction 

enzyme digestion (Fitzgerald, et al., 1992), nebulization (Bodenteich, et al, 1994), 

transposon insertion (Phadnis, et al., 1989), or the HydroShear (Oefner, et al., 1996).  
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The Hydroshear shearing method was chosen in this dissertation because of the 

limited amount of DNA available.  Genomic DNA was sheared according to the 

manufacturer recommended procedure, but using a solution cooled to 4°C to give 

more random library. 

After 100 µl of DNA (100-200 µg) is randomly sheared into the fragments, the 

sheared DNA is precipitated with 2.5× ethanol-acetate (95% ethanol and 0.12 M 

sodium acetate), washed with 2.5× 75% ethanol, dried in a vacuum, and then 

dissolved in 27 µl of ddH2O. 

2.1.1.2 End Repair and Size Selection 

The mechanical method of DNA fragmentation produces a collection of DNA 

fragments with heterogeneous ends, 5' and 3' overhangs, with or without phosphate 

groups at the ends.  Therefore, it is necessary to repair the ends of the resulting 

fragments prior to cloning. 

DNA fragments were end-repaired and phosphorylated by Klenow fragment of 

DNA polymerase and T4 polynucleotide kinase.  Klenow fragment is a large fragment 

of DNA Polymerase I, E. coli (Ollis, et al., 1985), that has the 5' 3' polymerase 

activity and the 3' 5' exonuclease activity, but lacks 5' 3' exonuclease activity.  

Therefore, if the 5' end of one strand of some certain fragment is overhang, the 

complementary strand will be elongated.  If the 3' end of one strand is overhang, this 

strand will be cleaved to the blunt end.  In this way, all the fragments are made blunt-

ended.  T4 polynucleotide kinase catalyzes the transfer of phosphate group from the 

gamma position of ATP to the 5'-hydroxyl terminus of DNA fragments (Richardson, 

1981). 
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The end repair solution contains 27 µl of the sheared DNA, 5 µl of 10× Kinase 

buffer, 5 µl of 10 mM rATP, 7 µl of 0.25 mM dNTPs, 1 µl of T4 Polynucleotide 

Kinase (3U/µl), and 2 µl of Klenow DNA polymerase (5U/µl).  The reaction was 

incubated for 30 minutes at 37°C and loaded on to a 1% low-melt agarose gel with 

molecular size markers (Hind III-digested λ-DNA and HaeI-digested φX174-DNA).  

Electrophoresis was performed at 120 mA for 1.50 hours.  Fragments with the size 

between 2-4 kb were excised from the gel into a 1.5 ml snap-cap tube and then frozen 

at –80°C. 

After thawing the tube at the room temperature for 5 minutes and 

centrifugation in a table-top microcentrifuge at 13,000 rpm for 15 minutes, the 

supernatant containing the DNA fragments was transferred into a new tube.  The step 

of centrifugation was repeated once more and all the supernatants were pooled.  Then 

the DNA fragments were precipitated with 2.5× ethanol-acetate (95% ethanol and 

0.12 M sodium acetate), washed with 2.5× 75% ethanol, dried in a vacuum, and then 

dissolved in 15 µl of ddH2O. 

2.1.1.3 Ligation 

2.1.1.3.1 Vector pUC18 

pUC18 vector, 2,686 bp, is a small E. coli plasmid with the high copy number 

of ~200 (Takeshita, et al., 1987).  pUC18 plasmid contains (1) the replicon ori 

responsible for the replication of plasmid, (2) bla gene, coding for beta-lactamase that 

confers resistance to ampicillin, and (3) region of E. coli operon lac containing CAP 

protein binding site, promoter Plac, lac repressor binding site, and 5'-terminal part of 

the lacZ gene encoding the N-terminal fragment of beta-galactosidase (Figure 2.1.1).  
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At first, pUC18 is digested with the endonuclease SmaI to generate the correct ends 

required for cloning.  Then the plasmid is dephosphorylated by calf intestine alkaline 

phosphatase to decrease the possibility of self ligation. 

 

 

Figure 2.1.1 pUC18 plasmid 

(http://www.genomex.com/vector_maps/puc18_map.pdf) 

2.1.1.3.2 Ligation of DNA Fragments with pUC18 

T4 DNA ligase is used to join the sheared DNA fragments with the vector 

pUC18 to obtain the subclones.  DNA ligase catalyzes formation of a phosphodiester 

bond between the 5' phosphate of DNA fragment and the 3' hydroxyl of the vector 

(Pheiffer and Zimmerman, 1983).  The ligation reaction solution contained 2 µl (~ 20 

ng) of pUC18 vector, 1 µl of 10× ligase buffer, and 1 µl of T4 DNA ligase (400U/µl).  

A set of different volume of sheared DNA (such as 0.5 µl, 1 µl, and 2 µl) was added 

to the ligation reactions, respectively.  Finally, ddH2O was added to the final volume 

of 10 µl.  The reactions were incubated at 4°C overnight. 

2.1.1.4 Transformation 
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Following the ligation, the recombinant pU18 was transformed into the 

electrocompetent cell E. coli XL1-Blue MRF'.  Here 2 µl of ligation solution was 

mixed with 40 µl of electrocompetent cell in the cold room.  Then the cell-DNA 

mixture was transferred to an electroporation chamber.  After an electrical pulse of 2.5 

kV was applied for 5 microseconds at 4°C, 1 ml of cold YENB medium was 

immediately added to the chamber.  After mixing, the cells were transferred to a new 

Falcon tube and incubated at 37°C for 30 minutes with shaking at 250 rpm.  The 

transformed cells then were harvested by centrifugation at 2,000 rpm for 5 minutes.  

After decanting the supernatant, 30 µl of 25 mg/ml 5-bromo-4-chloro-3-indolyl-D-

galactoside (X-gal) and 30  µl of 25 mg/ml isopropyl thiogalactoside (IPTG) were 

added to the tube.  The resuspended cells were poured on the surface of an LB agar 

plate with 100 µg/ml ampicillin that then were incubated at 37°C for 18 hours. 

After the incubation, two types of colonies, white and blue, are obtained.  

Without the foreign DNA, the lacZ gene region on the vector of pUC18 is intact.  The 

presence of IPTG, an inducer of the lac operon, allows transcription of the beta-

galactosidase by strongly binding and inhibiting the lac repressor.  The beta-

galactosidase cleaves X-Gal and results in a blue colored metabolite.  Insertion of 

DNA within the lacZ gene on the vector of pUC18 inactivates the N-terminal 

fragment of beta-galactosidase and therefore bacteria carrying recombinant plasmids 

give rise to white colonies on Petri dishes containing both IPTG and X-gal. 

Using Flexys colony picker, white colonies were picked from 20×20 cm Petri 

dishes into 384-well flat bottom microtiter plates, containing 72 µl TB broth and 8 µl 

of 10× TB salt supplemented with 100 µg/ml ampicilin.  The plates were incubated in 
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a HiGro incubator at 37°C with shaking at 350 rpm.  After 3.5 hours' shaking, an 

oxygen flow begins with the setting at 0.5 second on and 0.5 minute off.  18 hours 

later, cell pellets in the plate were harvested at 3,000 rpm for 10 minutes, and frozen 

overnight at –80°C. 

2.1.1.5 Automatic Isolation of Subclone DNA 

The subclone DNA was isolated by single acetate cleared lysis method 

(Birnboim and Doly, 1979).  In this procedure, SDS was used to dissolve the 

phospholipid and protein components of the cell membrane of E. coli.  Once the cell 

contents were released, NaOH and RNase A/T1 are added to destroy RNA.  

Subsequent treatment with KOAc and HOAc forms an insoluble precipitate of 

SDS/lipid/protein and neutralizes NaOH from the previous step.  At neutral pH, the 

chromosomal DNA is trapped in the SDS/lipid/protein precipitate, while the plasmid 

DNA remains in solution.  After centrifugation, the supernatant was collected, and the 

plasmid DNA was precipitated by isopropanol.  Finally, the pellet was washed with 

ethanol and resuspended in sterile-distilled deionized water (Micklos and Freyer, 

1999). 

Briefly, the procedure for the automatic isolation of subclone DNA initially 

requires using a ZyMark robot to transfer the cell pellets containing 384-well flat-

bottom microtiter plates to the bed of a SiClone robot where the cells were suspended 

in 23 µl of TE-RNase solution (50 mM Tris-HCl, pH 7.6, 0.5 M EDTA, 40 µg/ml 

RNase A, and 0.04 U/µl RNase T1).  After 10 minutes of shaking at 1,000 rpm, 23 µl 

of lysis buffer (1% SDS and 0.2 M NaOH) was added and the plates were shaken for 

another 10 minutes at 1000 rpm.  Then 23 µl of 3 M KOAc (pH 4.5) was added and 
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the plates shaken for another 10 minutes at 1,000 rpm and frozen at –80°C overnight.  

Next, the plates were thawed and centrifuged at 3,000 rpm for 45 minutes in Beckman 

C56R centrifuge.  Using the Vprep, 50 µl of the resulting supernatant was transferred 

to a new 384-well plate, and the DNA was precipitated by adding 50 µl of 100% 

isopropanol.  Then 50 µl of air bubbles were added to mix the isopropanol.  After 

centrifugation at 3,000 rpm for 30 minutes in Beckman C56R centrifuge, the obtained 

DNA pellet was washed with 50 µl of 70% ethanol.  After centrifuging the plates at 

3,000 rpm for 10 minutes and decanting the supernatant, the DNA templates were 

dried in a vacuum for 10 minutes and then dissolved in 20 µl of sdd-water.  An aliquot 

then was evaluated by electrophoresis on a 1% agarose gel. 

2.1.1.6 Reaction and Clean Up 

The cycle sequencing method was used to sequence the DNA templates 

(Mardis and Roe, 1989; Chissoe, et al., 1991).  In cycle sequencing, the sequencing 

reaction is incubated for several cycles consisting of three different temperatures: one 

for denaturation of double-stranded DNA, one for primer annealing, and one for chain 

elongation. 

Approximately 150-200 ng of subclone DNA was used for the sequencing 

reaction.  The other reagents include 2 µl of 6.5 µM universal forward or universal 

reverse primer and 2 µl of the 20× diluted ET reaction kit containing AmpliTaq FS, 

dATP, dCTP, dTTP (100 µM each), dITP (500 µM), ddATP, ddCTP, ddTTP, and 

ddGTP (~0.11 µM each).  The reaction mix was thermocycled for 60 cycles of 95°C 

for 30 seconds, 50°C for 20 seconds, and 60°C for 4 minutes. 
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Once the cycling reaction was complete, the unincorporated terminators were 

removed from the sequencing reactions by ethanol-acetate (95% ethanol and 0.12 M 

sodium acetate) precipitation, followed by a 70% ethanol rinse.  Then the plates were 

dried for 10 minutes at room temperature and stored at –20°C until ready for loading 

onto the sequencer. 

2.1.1.7 Sequencing 

The products of sequencing reaction initially were dissolved in 20 µl of 

ddH2O, but more recently in 0.1mM EDTA, then loaded on the ABI 3700 or 3730 

DNA sequencer.  After 2.5 hours of electrophoresis at 6.5 kV, the trace files of DNA 

sequencing were collected automatically and analyzed using the ABI base caller on 

the attached computer.  These trace files then were transferred to a Unix-based SUN 

work station for further analysis by Phred and assembled by Phrap that could be 

viewed by Consed. 

2.1.2 454/Roche GS-20 instrument Library 

 
Figure 2.1.2 General overview of 454/Roche GS-20 instrument DNA sequencing 
protocol. 
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The flowchart of 454/Roche GS-20 instrument DNA sequencing is described 

in Figure 2.1.2.  Briefly, the DNA sample is nebulized into 300-800 bp fragments, 

compared with 2-4 kb fragments in the Small-insert Library.  Each fragment then is 

ligated to DNA adaptors that carry the required sequence key, as well as the 

amplification and sequencing primer sequences.  The ligation products are bound to a 

solid support that permits the isolation of a library of random single-stranded template 

DNA fragments. 

After purification and quantitation of the fragments, the single-stranded DNA 

library is immobilized onto beads with each bead carrying no more than one 

amplifiable single-stranded DNA molecule.  The entire bead-bound library then is 

emulsified with the amplification reagents in a water-in-oil mixture, such that bead is 

captured within its own microreactor (micelle) for the amplification of a single single-

stranded DNA fragment. 

After amplification, the DNA-carrying beads are spun into the wells of a 

PicoTiterPlate device such that each well contains only single bead.  The loaded 

PicoTiterPlate device then is inserted into the 454/Roche GS-20 instrument GS 20 

sequencer, and sequencing reagents are sequentially flowed over the plate.  

Information from all the wells of the PicoTiterPlate device is captured simultaneously 

by the camera, and processed by the associated computer.  The detailed 454/Roche 

GS-20 instrument DNA sequencing protocol is described in Appendix A  454/Roche 

GS-20 instrument DNA Sequencing Protocol. 

2.1.3 Large-insert Library 
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Figure 2.1.3 Construction of a fosmid library using the EPICENTRE CopyControl™ 
BAC Cloning Kit (http://www.epibio.com/item.asp?ID=385#figure1) 

 

The large-insert library can be used to aid in assembly verification and 

determination of the future gap sizes and provide a minimal scaffold for order and 

orientation across assembly gaps.  To construct the large-insert library, L. pomona 

genomic DNA first was sheared into ~40 kb fragments by passing it through a 200 µl 

syringe 50-100 times (Figure 2.1.3).  The sheared DNA was end-repaired to generate 

5'-phosphorylated blunt ends and size-selected using a low-melt agarose gel.  The 

sheared DNA was ligated into the linearized and dephosphorylated CopyControl 

pCC1 Cloning-Ready vector, and packaged using ultra-high efficiency MaxPlax™ 

Lambda Packaging Extracts (>109 pfu/µg for phage lambda), and plated on phage T1-

resistant EPI100™-T1R E. coli plating cells.  Individual CopyControl clones were 

picked from the plate and grown in culture.  Then the induction solution (L-arabinose) 

was added to amplify the clones to high copy number.  Finally, both ends of the 

fosmid DNA were sequenced after purification via the protocol described in 

Appendix B  Fosmid DNA Isolation and End Sequencing Protocol.  The major 

differences between small-insert and large insert library construction are discussed 

below. 
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2.1.3.1 Vector pCC1 

The vector pCC1 (Figure 2.1.4) used for the construction of the large-insert 

library is a fertility factor (f-factor) fosmid that is capable of containing much larger 

pieces of DNA, up to 50 kb compared to about 10 kb in a plasmid, and like plasmids, 

fosmids are double-stranded circular DNA.  However, unlike multicopy plasmids, 

fosmids have much lower copy number. 

 

Figure 2.1.4 Map of vector pCC1 
Note: 
Features of the pCC1 Vector include: 
• Chloramphenicol-resistance as an antibiotic selectable marker. 
• E. coli F factor-based partitioning and single copy origin of replication. 
• oriV high copy origin of replication. 
• Bacteriophage lambda cos site for lambda packaging or lambda-terminase cleavage. 
• Bacteriophage P1 loxP site for Cre-recombinase cleavage. 
• Bacteriophage T7 RNA polymerase promoter flanking the cloning site. 

 

2.1.3.2 Methods to Insert Foreign DNA into Host Cells 

During the construction of small-insert library, the competent cells obtained 

the foreign plasmid by the way of transformation (see 2.1.1.4 Transformation), while 

transduction was adopted during the construction of large-insert library (see Figure 

2.1.3).  In this process, a shuttle organism (phage) was used.  Here the phage packages 
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the ligated fosmid DNA and then infects bacteria as a parasite to mediate the transfer 

and replication of fosmid DNA. 

2.1.3.3 DNA Isolation 

As discussed in 2.1.1.5 Automatic Isolation of Subclone DNA, plasmid DNA 

is isolated automatically by single acetate cleared lysis method.  However fosmid 

DNA initially was isolated manually using the detailed protocol described in 

Appendix B  Fosmid DNA Isolation and End Sequencing Protocol.  At later stage 

of this research, fosmid DNA isolation was automated using the Zymark robot. 

2.2 Sequence Assembly 

2.2.1 ABI Sequencing Reads 

 

Figure 2.2.1 DNA sequence assembly pipeline 

Once the end sequencing trace files of small- or large-insert DNA were 

transferred to the Unix-based SUN work station, they were re-analyzed by Phred 
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(Ewing, et al., 1998; Ewing and Green, 1998) and assembled by Phrap (Green, pers. 

comm.) as shown in Figure 2.2.1. 

Phred 

The Phred software performs several tasks: reads DNA sequencing trace files 

from the sequencers, calls bases, assigns a quality value to each called base, and 

writes these to output files. 

The quality value is a log-transformed error probability, specifically 

Q = -10 log10(Pe) 

where Q and Pe are respectively the quality value and estimated probability 

error for a base call. 

Phrap 

Phrap (“phragment” assembly program) then assembles the individual 

sequence reads into contiguous sequences using the Phred quality values.  The main 

features of Phrap are that it allows use of the entire read and not just the trimmed high 

quality portion.  Phrap uses a combination of user-supplied and internally computed 

data quality information to improve assembly accuracy in the presence of repeats to 

construct the contig sequence as a mosaic of the highest quality read segments rather 

than a consensus.  It provides extensive assembly information to assist in trouble-

shooting assembly problems, and it handles large datasets while generating output 

files (such as *.ace) that can be visualized by Consed. 

Consed 
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Consed (Gordon, et al., 1998; Baxevanis and Devison, 2004) is a tool for 

viewing, editing, and finishing sequence assemblies created with Phrap (Figure 2.2.2).  

It provides extensive information about the assembled sequence, including the original 

trace files, the quality of the data, the error rate of the contiguous sequence, and the 

presence of repetitive sequences.  Consed also can view and compare traces, align and 

compare two regions, look for homologous sequence regions, and pick primers. 

 

Figure 2.2.2 Assembly visualization by Consed 

Exgap 

Exgap (http://www.genome.ou.edu/informatics), developed by Dr. Axin Hua 

in our laboratory, can view paired end relationships from assembled shotgun 

sequencing data (Figure 2.2.3).  After reading the new ace file generated from the 
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Phrap/Consed assembly suite, Exgap automatically orders contigs based on their 

forward-reverse mate pairs, lists the subclones covering gaps for selecting gap-closing 

PCR primers, and locates potential miss-joints for further examination. 

 
Figure 2.2.3 Exgap of L. pomona during final closure 
Note: The thick arches represent the contigs.  The longer arch means that the corresponding contig has 
more base pairs.  And the thin loop refers to a pair of end sequences of a certain insert, either small or 
large. 

 

2.2.2 454/Roche GS-20 instrument Sequencing Reads 

454/Roche GS-20 instrument sequencing reads are assembled by Newbler 

Assembler, the new de novo assembly software developed by 454 Life Sciences.  It 

operates in flowgram signal space, as opposed to the standard nucleotide space.  The 

advantage lies in that Newbler Assembler utilizes the abundant information stored in 

the flowgram signals that is lost after base calling.  It has three main components, 

overlap generation, contig layout, and consensus generation (Figure 2.2.4).  The 

overlap generator aligns raw reads in flowgram signal space using a proprietary 

algorithm.  Then all aligned flowgram signals at each position are averaged.  Based on 

the averaged signal, the consensus is generated.  Finally, the contigs from the 
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consensus are converted into chromatogram files with the phred quality values and 

reassembled with ABI sequencing reads by Phrap. 

 

Figure 2.2.4 Newbler™ Assembler: A whole genome shotgun assembler using flow 
signals (http://www.454.com/enabling-technology/the-software.asp) 
 

2.3 Gap Closure 

As mentioned above, the data collected from the sequencers were assembled 

into a draft of sequence using Phred/Phrap.  Once the coverage of the genome reached 

8×, alternative strategies were needed to close the remaining gaps and reduce the 

overall error rate to less than one per 10,000 nucleotides.  Viewing the assembly with 

exgap reveals two types of contigs (see Figure 2.2.3), those with their orientation 

identified using linking information from forward and reverse reads, and contigs with 

unknown order and orientation.  For example as shown in Figure 2.2.3, the small-

insert subclone w3l08po spans the reverse end of Contig 12 and the forward end of 

Contig 10, while the large-insert subclone FOS42d01pm bridges the reverse end of 

Contig 13 and the reverse end of Contig 10.  Contig 5, Contig 7, and Contig 8 are 

examples of unordered and unoriented contigs.  Different approaches were utilized to 

join the different type of contigs. 

2.3.1 Uniplex PCR-based Approach 
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For the contigs with the known orientation, uniplex PCR (Mullis and Falooan, 

1987) was performed to amplify the gap region.  The primer pairs for uniplex PCR 

were selected at both ends of the contigs with Consed using the following criteria: 

(1) Within an acceptable range of 50-65oC, a pair of primers should have 

similar melting temperatures with 40-60% GC content. 

(2) Every primer base should have a corresponding consensus quality value at 

or above the threshold (default 30), because the data with a quality of 20 is not 

completely accurate. 

(3) Every primer picked should be unique by pre-screening against either a 

single contig or the entire sequencing project target contig set. 

(4) No primer should contain more than 4 contiguous base pairs of homology 

to itself or counterpart, in order to decrease the possibility of the primer dimers. 

Once primers were picked and synthesized, 50 µl of PCR reaction typically 

containing 2 µl of each 6.5 µM primer, 5 µl of 10× PCR buffer (containing 500 mM 

KCl, 100 mM Tris-HCl, and 10 mM MgCl2, pH 7.6), about 10 ng of genomic DNA, 5 

µl of 2 mM dNTPs, 2 µl of Taq DNA Polymerase (2 units) was used to amplify the 

gap.  The reaction mix first was denatured at 95oC for 5 minutes, and then 

thermocycled for ~35 cycles of 95oC for 1 minute, 55oC for 1 minute, and 72oC for 2 

minutes.  The resulting PCR products were evaluated by electrophoresis on a 1% 

agarose gel prior to removing the excess primers by treatment with 5 U of 

Exonuclease I (ExoI) and 1 U of Shrimp Alkaline Phosphatase (SAP).  ExoI digests 

single stranded DNA into free nucleotides and SAP dephosphorylates free nucleotides 

making them unavailable for polymerisation.  The clean up reaction was incubated at 
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37oC for 30 minutes, 80oC for 10 minutes, and then held at 4oC.  For sequencing, 4-6 

µl of PCR product, 2 µl of primer used in the PCR reaction, and 2 µl of 20× diluted 

ET reaction kit were mixed and sequencing was performed by incubating as described 

in 2.1.1.6 Reaction and Clean Up. 

However, there are instances in which a particular DNA region proves difficult 

to amplify by PCR.  Typically these target gaps were GC rich or they formed 

secondary structures that resulted in little or no yield of expected product.  

Furthermore, amplification may result in products derived from regions other than the 

target DNA region, as indicated by multiple bands on a stained agarose gel.  To 

overcome these problems, two PCR enhancing agents, betaine and DMSO, are 

commonly used.  Both of these agents facilitate strand separation as DMSO disrupts 

base pairing whereas betaine equalizes the contribution of GC- and AT-base pairing to 

the stability of the DNA duplex (Baskaran, et al., 1996).  In addition, two nucleotide 

analogs, deoxyinosine triphosphate (dITP) and 7-deaza-dGTP (Dierick, et al., 1993), 

can be used in PCR to release secondary structure of the PCR product that will be 

used as a template for DNA sequencing.  Either dITP or 7-deaza-dGTP forms fewer 

H-bonds with dCTP than dGTP does, and makes the secondary structure more easily 

disrupted.  Elimination of spurious GC hydrogen bonding and release of the secondary 

structure result in more efficient and specific synthesis of PCR products. 

Since often the gap region may result in PCR products longer than 2 kb, 

multiple rounds of end sequencing often are needed to sequence across the entire gap.  

In this case, primer walking typically is used.  Here a primer that is 100 base pair 
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upstream or downstream of sequence end is used to “walk” on the template of PCR 

product.  This process is repeated until the entire gap sequence is obtained. 

2.3.2 Multiplex PCR-based Approach (MPCR) 

For the contigs with the unknown orientation, Multiplex PCR (MPCR) is 

utilized (Claustres, et al., 1989).  As a variant of uniplex PCR, MPCR enables 

simultaneous amplification of many targets by including more than one pair of primers 

in a single reaction.  The primers for MPCR were selected at both ends of the orphan 

contigs using Consed.  As many as 96 primers were pooled, together with the other 

PCR reaction components.  The PCR products then were distributed into individual 

cycle reaction wells, and the individual primer was added to each well for sequencing.  

The detail protocol for MPCR, cleaning up of PCR product, and sequencing reaction 

of PCR products is available at http://www.genome.ou.edu/ MultiplexPCRbasedSeq. 

html. 

In some cases, MPCR failed because of the presence of multiple repeat regions 

that were misassembled into the incorrect contigs by Phrap.  These misassembled 

contigs cannot be used properly unless they are corrected.  In this dissertation, two 

ways are utilized to locate and correct the misjoined regions. 

2.3.2.1 Large-insert Clone Scaffolding 

The read pairing information from the large insert (fosmid DNA) was used to 

locate a misjoined region.  For example, the forward end sequence of FOS42d11 was 

in Contig 9 of L. pomona, with the distance from the end of Contig 9 of 157 kb, while 

the reverse end sequence was in Contig 11, with the distance from the end of Contig 

11 of 441 kb (Figure 2.3.1). 
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Figure 2.3.1 Scaffolding of fosmid DNA 

Since the average size of fosmid DNA is approximately 40 kb, Contigs 9 and 

11 must have been misjoined by Phrap.  In this case, the fosmid DNA of FOS42d11 

was shared into small fragments using Hydroshear and subcloned into the pUC18 

vector as described in 2.1.1 Small-insert Library.  End sequences of these library 

clones were assembled separately to obtain a consensus sequence, and the consensus 

sequence subsequently was copied into the shotgun library database to cover the 

repeat region to correct the misjoined region. 

2.3.2.2 Genome Comparison 

Since L. lai and L. pomona are close related species, it is assumed that both of 

them share the similar sequence in most regions.  The contigs of pomona could be 

aligned with the complete genome sequence of lai by using cross_match program.  A 

portion of homology search result is shown as follows: 

L. lai Start End L. pomona Start End 
lai.fa 211 2511 Contig 7 151594 149309 
lai.fa 2508 4460 Contig 7 149208 147268 

Possible Misjoined Region 
lai.fa 4459 48026 Contig 10 526507 570077 
lai.fa 48026 63754 Contig 10 570465 586193 
lai.fa 63747 67711 Contig 10 586227 590207 

 

Based on the above result, we can see that the 147268 to 151594 region of 

pomona Contig 7 is homologous to the region of 211 to 4460 of lai, while the 526507 

to 590207 region of pomona Contig 10 is homologous to the region of 4459 to 67711 
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of lai.  In this way, the misjoined regions in Contig 7 and 10 were recognized and a 

uniplex PCR could be used to correct the misjoined region. 

2.4 Sequencing Data Analysis 

The genomic sequences of L. pomona and grippotyphosa were analyzed to 

determine the features present and extract scientifically interesting knowledge from 

the raw genomic sequence data.  This annotation provided information on the 

predicted open reading frames (ORFs), rRNA and tRNA genes, repeat elements, and 

transposable elements.  After biological functions were assigned to all ORFs, 

metabolic pathways of L. pomona and grippotyphosa were reconstructed, and then 

potential virulence genes involved in leptospirosis were identified. 

2.4.1 Annotation 

2.4.1.1 ORFs Prediction 

 

Stop codons of the 
+ strand in frame 

Stop codons of the  
– strand in frame 

Figure 2.4.1 ORF Prediction by Artemis 
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Artemis (Rutherford, et al., 2000) is one of the widely used methods for 

analysis of microbial genomes.  The complete microbial genomic DNA sequence was 

input to the Artemis program to display six-frame translation of the sequence.  Then 

all the six translated amino acid sequences were scanned for stop codons and the 

region between two consecutive stop codons (> 100 bp long) was predicted as an open 

reading frame (ORF) (Figure 2.4.1). 

2.4.1.2 Assignment of Biological Function to the Putative ORFs 

The derived amino acid sequences of all the ORFs were searched by Blastp 

(Altshul, et al., 1990) against the NCBI non-redundant protein databases to determine 

the relationship to previously sequenced genes.  The ORFs could be classified into 

three classes based on this homology search: homology to a gene of known function 

(with E value as 1.0e-10), homology to a gene of unknown function (usually referred to 

as a conserved hypothetical protein, also with E value as 1.0e-10), or no database 

homology.  Functional protein coding genes then were grouped into physiological and 

metabolism subclasses, while those genes with unknown function or no database 

homology were analyzed further to determine if they harbor known functional or 

structural motifs. 

2.4.1.3 Assignment of Enzyme Commission (E.C.) Numbers 

Before assignment of E.C. numbers to the ORFs of a microbial genome, a 

genome-specific database was set up that included all known enzymes involved in the 

physiology of E. coli and other studied prokaryotes.  Each enzyme then was attached 

to its EC number, when available, enzyme name, gene name, and amino acid 

sequence.  All the amino acid sequences of the bacterial genome then were analyzed 
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by BlastP against the above enzyme database.  A Perl program (Extract_KEGG.pl), 

written by Dr. Najar Fares in our laboratory, was utilized to search the output files 

generated by BlastP to assign the E.C. number to some certain ORFs. 

2.4.1.4 Identification of Secreted Proteins 

Secreted proteins possess an N-terminal signal peptide that typically is 15-40 

amino acids long (Rapoport, 1992).  The common structure of signal peptides is 

described as a positively charged n-region, followed by a hydrophobic h-region and a 

neutral but polar c-region (von Heijne, 1985).  Based on neural network and hidden 

Markov model algorithms, the program of SignalP can analyze the amino acid 

sequences of all predicted ORFs and identify secreted proteins with the signal 

peptides (Bendtsen, et al., 2004). 

2.4.1.5 Identification of Transmembrane Protein 

Transmembrane proteins constitute an important subset of the proteins 

encoded by a genome, typically making up ~25% of the proteome (Krogh, et al., 

2001).  These proteins are crucial for many cellular processes including signaling and 

transport processes.  The major features of transmembrane proteins include helices 

that are on average more hydrophobic than the loop regions of transmembrane 

proteins and positively charged amino acids are more common in the cytoplasmic than 

in the external loop regions (Claros and von Heijne, 1994).  The program of TMHMM 

was used to analyze the amino acid sequences of all microbial ORFs and predict the 

transmembrane proteins (Krogh, et al., 2001). 
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2.4.1.6 Functional Domain Search 

ORFs with no significant homology in the GenBank database or with 

homology to other proteins with no known functions then were analyzed for known 

motifs by cluster of orthologous groups (COG) analysis (Tatusov, et al., 2003).  A 

COG is defined if a group of three or more proteins from different lineages that have 

homology to each other.  It is therefore thought to correspond to evolutionary ancient 

conserved domain.  The basic idea is that if the function is known for at least one 

member of the COG it can be assumed that the other members of the COG have an 

identical or a very similar function.  This relation automatically yields a number of 

functional predictions for poorly characterized ORFs.  The current COG set consists 

of 4852 clusters of orthologs, which include 59,838 proteins from 63 sequenced 

prokaryotic genomes and three genomes of unicellular eukaryotes (Tatusov, et al., 

2003). 

2.4.1.7 Identification of tRNA Genes 

All tRNAs have similar sequences of 73-93 nucleotides, terminated with the 

sequence CCA at 3' end.  They have cloverleaf secondary structure due to four base-

paired stems.  The cloverleaf also contains three non-base-paired loops: D, anticodon, 

and TpsiC loop (Voet and Voet, 1995).  tRNAscan-SE (Lowe and Eddy, 1997) was 

the most widely used program to identify tRNA genes.  This program uses 

probabilistic models that flexibly describe the primary sequence consensus and 

secondary structure (such as the conserved bases, the position of four stems, and the 

length of three loops) of a RNA sequence family. 
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2.4.1.8 Identification of Ribosomal Frameshifts 

Maintenance of correct reading frame is fundamental to the integrity of the 

translation process.  However, the translating ribosome sometimes is intentionally 

directed to shift reading frame at a specific site in response to special signals in the 

messenger RNA.  This frameshift plays a significant role in morphogenesis, 

autogenous control, and in producing alternative enzymatic activities (Farabaugh, 

1996). 

The ribosomal frameshift mainly includes two categories, –1 frameshift and +1 

frameshift.  In the first category, the ribosome slips a single nucleotide in the upstream 

direction.  It includes three components: a slippery site, where the ribosome changes 

reading frames, a 5-9 nt of spacer, and a stem-loop structure (Baranov, et al., 2002).  

The slippery site often consists of a heptameric sequence, X XXY YYZ.  –1 

frameshift typically produces fusion proteins in which the N- and C-terminal domains 

are encoded by two distinct, overlapping ORFs (Hammell, et al., 1999).  In the second 

category, +1 frameshift, the ribosome slides back a single nucleotide.  It also includes 

three components: a Shine–Dalgarno (SD) sequence, a 5-9 nt of spacer, and a slippery 

sequence, normally CUU UGA C, and in a single known case CUU UAA C (Baranov, 

et al., 2002).  –1 frameshift is much more common than +1 frameshift.  Frameshift 

Signal Finder is a useful tool to discover unknown genes that use either –1 or +1 

frameshift (Moon, et al., 2004). 

All the above annotation was integrated into the Artemis file where an overall 

representation of the genome can be viewed. 
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2.4.2 Reconstruction of Metabolic Pathways 

2.4.2.1 Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Once the EC numbers were assigned to the ORFs (see 2.4.1.3 Assignment of 

Enzyme Commission (E.C.) Numbers), the results were put into KEGG (Kanehisa 

and Goto, 2000) to reconstruct metabolic pathways computationally by correlating 

genes in the genome with gene products (enzymes) in the reference pathways 

according to the matching E.C. numbers (see 3.2 Reconstruction of Metabolic 

Pathways). 

2.4.2.2 Pathway Holes Filling 

A pathway hole is a reaction in a pathway for which no corresponding gene 

has been identified in the genome.  Pathway holes may exist for a number of possible 

reasons.  They may represent true enzymatic functions in the organism for which the 

gene has not yet been found, or they could represent false positive pathway 

predictions or cases in which the pathway in this organism differs slightly from the 

reference pathway in KEGG.  Three ways are mainly used to fill the pathway holes in 

this dissertation study. 

2.4.2.2.1 Domain Analysis 

The principle behind the domain analysis lies in the divergent evolution, which 

occurs when two or more genes have a common evolutionary origin but have diverged 

over evolutionary time such that their functional domains still are conserved.  

Therefore, if an enzyme is not found for a given pathway but one ORF is identified 

that includes the same functional domain conserved in the missing enzyme, this ORF 
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may function as the missing enzyme.  Several examples were discussed in 3.2 

Reconstruction of Metabolic Pathways. 

2.4.2.2.2 Isozymes Search 

Isozymes are different variants of the same enzyme that have identical 

functions and occur as genecopies in an individual species (Hunter and Merkert, 

1957).  Often isozymes result from convergent evolution that occures when two or 

more genes evolved toward a similar biological function.  Since their structure and 

function have arisen independently, the amino acid sequences of isozymes are not 

necessarily homologous.  Thus to perform an isozymes search, the amino acid 

sequences of isozymes of the enzyme absent in a pathway are retrieved from NCBI 

and then compared, using BLASTP, with the database of all Leptospira ORFs.  The 

candidate isozyme will have an E value of less than 1.0e-10.  If this is observed, it is 

highly likely that this gene candidate is an isozyme that functions as the missing 

enzyme (Green and Karp, 2004). 

2.4.2.2.3 Literatures Mining 

The research progress from the relevant literatures can be used to fill the 

pathway holes reliably.  For example, hemD gene involved in the heme biosynthesis is 

absent in the genome of Leptospira species.  Guégan and colleagues discovered that 

the leptospiral hemC gene encodes a bifunctional enzyme, one function from the 

enzyme encoded by hemC and another function from the enzyme encoded by hemD 

(Guégan, et al., 2003).  In this way, this pathway hole is filled (see 3.3.5 Iron 

Acquisition and Utilization). 
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2.4.3 Virulence Genes 

2.4.3.1 Definition of Virulence Genes 

Most bacterial pathogens use the common strategies to cause the disease, such 

as adhesion to the host cells, penetration of the membranes, and the defense against 

the host immune response.  So the genes involved in these biological processes are 

considered as the pathogenic genes (Wilson, et al., 2002). 

2.4.3.2 Identification of Virulence Genes 

Although the mechanisms by which leptospires cause disease are not well 

understood, virulence genes still can be predicted.  At first, the query sequences were 

set up.  They include all ORFs of L. pomona or grippotyphosa.  Then a database of 

virulence genes was constructed.  It includes about 20 bacterial pathogens, such as E. 

coli, two sequenced Leptospira species, lai and copenhageni.  Then the homolog 

search was performed by the query sequences against the database.  In this way, the 

potential virulence genes of pomona or grippotyphosa were identified (see 3.3 

Virulence Genes). 

 



Chapter III 

Results and Discussion 

3.1 Genome Overview 

The small chromosome of L. pomona has 353,967 bp with a G+C content of 

35.1% and a ~4.3 Mbp large chromosome with a G+C content of 35.0%.  The L. 

pomona genome encodes 3,733 predicted genes (Table 3.1.1) with 380 on the small 

chromosome and 3,311 on the large chromosome as well as 37 tRNAs, and 5 rRNAs 

(one 5S, two 16S, and two 23s).  The rRNA genes are not organized in operons, as in 

most other bacteria, but are scattered through the large chromosome.  The genome 

features of the other three Leptospira species including L. grippotyphosa sequenced as 

part of this dissertation research also were analyzed and are shown in Table 3.1.1. 

Table 3.1.1 General genome features of four Leptospira species 

 pomona grippotyphosa lai1 copenhageni2 
Features lg. chr.3 sm. chr.4 lg. chr. sm. chr. lg. chr. sm. chr. lg. chr. sm. chr. 

Chromosome size ~4.3Mb 353,967bp ~4.3Mb 352,307bp 4,332,241bp    358,943bp 4,277,185bp 350,181bp 

G+C content 35.0% 35.1% 35.9% 35.0% 36.0% 36.1% 35.1% 35.0% 
Total 
Protein-coding genes 

tRNA genes 
5s rRNA 

16s rRNA 
23s rRNA 

3,353 
3,311 

37 
1 
2 
2 

380 
380 
0 
0 
0 
0 

3,436 
3,395 

37 
1 
1 
2 

392 
392 
0 
0 
0 
0 

4,361 
4,319 

37 
1 
2 
1 

367 
367 
0 
0 
0 
0 

3,393 
3,351 

37 
1 
2 
2 

276 
276 
0 
0 
0 
0 

 

Note: 1Ren, S. X., et al., 2003; 2Nascimento, A.L.T.O. et al., 2004 
         3lg. chr.: large chromosome; 4sm. chr.: small chromosome 
 

Table 3.1.2 Comparison of protein-coding genes among four Leptospira species. 
 

large chromosome small chromosome Leptospira 
shared genes species specific genes* shared genes species specific genes 

pomona 2,741 133 261 77 
grippotyphosa 2,825 205 261 99 
lai 2,788 854 263 66 
copenhageni 2,724 98 256 0 

 

Note: * A species specific gene is one that has a E-value of less than 1.0e-5 at the amino acid level. 
 

In addition, all the protein-coding genes were compared among the four 

Leptospira species shown in Table 3.1.2.  On the small chromosomes, 261, 261, 263, 
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and 256 genes from pomona, grippotyphosa, lai, and copenhageni, respectively, are 

shared by the other three Leptospira species.  77, 99, and 66 genes are species specific 

to pomona, grippotyphosa, and lai, respectively.  However, copenhageni has no 

species specificgenes in its small chromosome.  Among 77 pomona specific genes, all 

of them encode hypothetical proteins.  Among 99 grippotyphosa specific genes, 92 

encode hypothetical proteins and 8 encode proteins with known function, including 

three transposases, two lipoproteins, one integrase, and one chromate transport protein.  

Among 66 lai specific genes, 65 encode hypothetical proteins and one encodes a 

transposase.  In addition, the gene organization also was compared among four 

Leptospira species.  There are 69, 78, 85, 73 operons in the small chromosome of L. 

pomona, grippotyphosa, lai, and copenhageni, respectively.  The operon distributions 

were compared in Figure 3.1.3 and in Table 3.1.3. 

On the large chromosomes, 2,741, 2,825, 2,788, and 2,724 genes from 

pomona, grippotyphosa, lai, and copenhageni, respectively, are shared by the other 

three Leptospira species, while 133, 205, 854, and 98 genes are species specificto 

pomona, grippotyphosa, lai, and copenhageni, respectively.  Among 133 pomona 

specific genes, 123 encode hypothetical proteins and 10 encode proteins with known 

function, including four integrases, two lipoproteins, two transcriptional regulators, 

one glucosamine-6-phosphate deaminase, one Cobalamin B12-binding protein.  

Among 205 grippotyphosa specificgenes, 183 encode hypothetical proteins and 22 

proteins with known function.  It is worth mentioning that one 16S rRNA gene from 

Corynebacterium was identified from grippotyphosa genomic sequence.  Therefore, 

the grippotyphosa genomic DNA is likely to be contaminated.  Among 854 lai 
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specificgenes, all of them encode hypothetical proteins.  Among 98 copenhageni 

specificgenes, 93 encode hypothetical proteins and 5 encode proteins with known 

function, including one transcriptional repressor, one transcriptional regulator, one 

cytoplasmic membrane protein, one tautomerase, and one lipoprotein.  In addition, the 

gene organization was also compared among four Leptospira species.  There are 787, 

729, 754, 723 operons in the large chromosome of L. pomona, grippotyphosa, lai, and 

copenhageni, respectively.  The operon distributions were compared in Figure 3.1.4 

and in Table 3.1.4. 

Besides, the genome organization of four Leptospira species is compared with 

each other.  For the small chromosome, lai, copenhageni, and pomona are quite 

similar, while grippotyphosa has one large rearrangement and one large flip 

(inversion) (Figure 3.1.1a-d).  For the large chromosome, lai and copenhageni are 

quite similar except one large inversion.  Interestingly there are more regions inverted 

between pomona and lai than pomona and copenhageni, while grippotyphosa has 

more small rearrangements and inversions making it far different from the other three 

Leptospira species (Figure 3.1.2a-d).  However, it is very interesting to notice that the 

origin (upleft in Figure 3.1.2) and terminus (downright in Figure 3.1.2) of replication 

in all four Leptospira species are conserved and encode several replication-related 

genes, including the chromosomal replication initiator protein (dnaA), DNA 

polymerase III beta subunit (dnaN), DNA gyrase subunit (gyrB1), DNA gyrase 

subunit A (gyrA1), integrase, and DNA polymerase III subunits gamma and tau 

(dnaX2). 
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Figure 3.1.1 The small chromosome organization of one Leptopsira species compared 
with that of the other three: (a) lai, (b) copenhageni, (c) pomona, and (d) 
grippotyphosa. 
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Figure 3.1.2 The large chromosome organization of one Leptopsira species compared 
with that of the other three: (a) lai, (b) copenhageni, (c) pomona, and (d) 
grippotyphosa. 
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Figure 3.1.3 The operon distribution among the small chromosomes of four 
Leptospira species: (a) pomona, and (b) grippotyphosa, (c) lai, and (d) copenhageni. 
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Figure 3.1.4 The operon distribution among the large chromosomes of four Leptospira 
species. 
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Table 3.1.3 Comparison of operon distribution among the small chromosomes of four 
Leptospira species. 

 

 
 No. of operons 

No. of genes pomona grippotyphosa lai copenhageni 
2 38 39 52 38 
3 12 21 16 18 
4 11 10 9 8 
5 3 2 3 4 
6 2 3 0 0 
7 0 1 1 1 
8 0 1 0 0 
9 2 0 3 3 
17 1 1 0 1 
18 0 0 1 0 

 

 
 
 
 
 
 
 
 
 
 
 
Table 3.1.4 Comparison of operon distribution among the large chromosomes of four 
Leptospira species. 
 

 No. of operons 
No. of genes pomona grippotyphosa lai copenhageni

2 454 405 413 393 
3 170 145 172 165 
4 83 78 78 81 
5 36 43 38 33 
6 15 13 23 19 
7 7 12 7 9 
8 5 8 6 7 
9 4 3 3 3 
10 3 2 4 2 
11 2 3 3 1 
12 0 3 4 2 
13 3 2 1 3 
14 1 1 0 0 
15 1 0 0 2 
16 1 0 0 1 
19 1 0 1 1 
25 0 0 1 1 
26 0 1 0 0 
31 1 0 0 0 
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3.2 Reconstruction of Metabolic Pathways 

Analysis of the genome sequences of four Leptospira species revealed as 

shown in Figure 3.2.1 and 3.2.2 that both aerobic and anaerobic glycolysis pathways 

are complete, even though it has been reported that beta-oxidation of long-chain fatty 

acids is utilized as the major energy and carbon source (Nascimento, et al., 2004).  

Interestingly, Leptospira species seem to lack the enzymes needed for the oxidative 

arm of the pentose phosphate pathway, but encode the NADH dehydrogenase and 

NAD(P) transhydrogenase needed to produce NADPH from NAD.  Most genes 

encoding the enzymes needed for the citric acid cycle, the synthesis of amino acids, 

fatty acids and phospholipids also were observed.  In addition, the lipoprotein and 

peptidoglycan biosynthetic pathways seem to be complete, as are pathways for 

vitamin and cofactor synthesis including thiamin, biotin, pantothenate, molybdenum 

cofactor, and riboflavin.  Four Leptospira species also encode the replication, 

transcription, and translation machineries similar to those in E. coli.  From these 

studies, we can conclude that the central metabolic pathways identically are conserved 

in four Leptospira species: pomona, grippotyphosa, lai and copenhageni. 

3.2.1 Carbohydrate, Lipid Catabolism, and Oxidative Phosphorylation 

3.2.1.1 Glycolysis 

Glycolysis is the sequence of reactions that converts glucose into pyruvate 

with the concomitant production of a relatively small amount of ATP.  Glycolysis also 

serves as a source of raw materials for the synthesis of other compounds needed for 

many other pathways.  Under normal laboratory conditions, L. interrogans cannot 

utilize glucose as a carbon and energy source for the unknown reasons, however my 
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comparative genomic analysis revealed that the glucose utilization pathway is 

complete in all four Leptospira species (Figure 3.2.1). 

 
 

Figure 3.2.1 The predicted glycolic pathway in the four Leptospira species 

Table 3.2.1 Enzymes involved in the glycolic pathway, their EC numbers, a 
description, and an indication of the presence in four Leptospira species. 

 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni 

2.7.1.2 glucokinase Yes Yes Yes Yes 
5.3.1.9 glucose-6-phosphate isomerase Yes Yes Yes Yes 
2.7.1.11 6-phosphofructokinase Yes Yes Yes Yes 
4.1.2.13 fructose-bisphosphate aldolase Yes Yes Yes Yes 
5.3.1.1 Triosephosphate isomerase Yes Yes Yes Yes 
1.2.1.12 glyceraldehyde 3-phosphate 

dehydrogenase 
Yes Yes Yes Yes 

2.7.2.3 phosphoglycerate kinase Yes Yes Yes Yes 
5.4.2.1 2,3-bisphosphoglycerate-

independent phosphoglycerate 
mutase 

Yes Yes Yes Yes 

4.2.1.11 Enolase Yes Yes Yes Yes 
2.7.1.40 pyruvate kinase Yes Yes Yes Yes 

 

3.2.1.2 TCA Cycle 

TCA cycle produces reducing equivalents (NADH and FADH2) for the 

electron transport chain and provides anabolic precursors to different amino acid 

synthetic pathways.  The genes coding all the required enzymes for TCA cycle are 

observed in L. pomona, grippotyphosa, lai, and copenhageni.  Figure 3.2.2 
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summarizes the pathway of TCA cycle with the enzymes involved listed in Table 

3.2.2. 

 

Figure 3.2.2 The predicted pathway of TCA cycle in the four Leptospira species. 

Table 3.2.2 Enzymes involved in the TCA, their EC numbers, a description, and an 
indicator of the presence in four Leptospira species. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni 

2.3.3.1 citrate synthase Yes Yes Yes Yes 
4.2.1.3 aconitate hydrase Yes Yes Yes Yes 
1.1.1.42 isocitrate dehydrogenase Yes Yes Yes Yes 
1.2.4.2 α-ketoglutarate 

decarboxylase 
Yes Yes Yes Yes 

6.2.1.5 succinyl-CoA synthetase Yes Yes Yes Yes 
1.3.99.1 succinate dehydrogenase Yes Yes Yes Yes 
4.2.1.2 fumarase Yes Yes Yes Yes 
1.1.1.37 malate dehydrogenase Yes Yes Yes Yes 

 

Although several microorganisms bypass the decarboxylation steps of the 

citric acid cycle by employing the glyoxylate cycle, that requires isocitrate lyase and 

malate synthase.  However, neither of these two key enzymes has been observed in 

Leptospira species, even after an extensive analysis for the two conserved domains, 

COG2224 in isocitrate lyase and COG2225 in malate synthase.  Thus, the glyoxylate 

pathway likely does not occur in at least these four Leptospira species. 
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Figure 3.2.3 Proposed 3-hydroxypropionate pathway in the four Leptospira species 
(KEGG Propanoate Metabolism) 
 
Table 3.2.3 Enzymes involved in 3-hydroxypropionate pathway, their EC numbers, a 
description, and an indicator of the presence in four Leptospira species. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

6.4.1.2 acetyl-CoA carboxylase Yes Yes Yes Yes 
4.2.1.17 enoyl-CoA hydratase Yes Yes Yes Yes 
1.3.99.3 acyl-CoA dehydrogenase Yes Yes Yes Yes 
6.4.1.3 propionyl-CoA carboxylase 

beta chain 
Yes Yes Yes Yes 

5.1.99.1 methylmalonyl CoA 
epimerase 

No No No No 

5.4.99.2 methylmalonyl-CoA mutase Yes Yes Yes Yes 
 

In the initial analysis, all 3-hydroxypropionate pathway enzymes, except 

methylmalonyl CoA epimerase were observed in the four Leptospira genomes 

analyzed.  However, since the 3-hydroxypropionate pathway also is involved in the 

oxidative carboxylation of propionyl-CoA to succinyl-CoA in Chloroflexus 

aurantiacus (Sylvia, et al., 2001; Figure 3.2.3), further domain analysis was 

performed in an effort to find a possible Leptospira glyoxylase.  This analysis 

revealed a candidate gene containing the same functional domain (COG0346: 

lactoylglutathione lyase) that occurs in methylmalonyl CoA epimerase.  Therefore this 

additional enzyme likely is the missing methylmalonyl CoA epimerase, and if so, 

Leptospira species contain all the genes needed for the complete 3-hydroxypropionate 

pathway. 
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3.2.1.3 Pentose Phosphate Pathway (PPP) 

Pentose phosphate pathway has both an oxidative and a non-oxidative arm.  

The oxidation arm is used to generate reducing power, NADPH.  The non-oxidative 

arm is designed to synthesize ribose 5-phosphate, the precursor for the synthesis of the 

nucleotides and nucleic acids.  All enzymes required for the PPP non-oxidative arm 

were observed encoded in the four analyzed Leptospira genomes and are shown in 

Figure 3.2.4 and Table 3.2.4. 

 

Figure 3.2.4 The non-oxidative arm of Pentose Phosphate Pathway in the four 
Leptospira species. 
 
Table 3.2.4 Enzymes involved in the non-oxidative arm of Pentose Phosphate 
Pathway in four Leptospira species. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

5.3.1.9 glucose-6-phosphate isomerase Yes Yes Yes Yes 
2.7.1.11 pyrophosphate--fructose 6-

phosphate 1-phosphotransferase 
Yes Yes Yes Yes 

4.1.2.13 fructose-bisphosphate aldolase Yes Yes Yes Yes 
2.2.1.1 transketolase C-terminal section Yes Yes Yes Yes 
2.2.1.2 transketolase N-terminal section Yes Yes Yes Yes 
5.1.3.1 ribulose-phosphate 3-epimerase Yes Yes Yes Yes 
5.3.1.6 Ribose 5-phosphate isomerase B Yes Yes Yes Yes 
2.7.1.15 ribokinase Yes Yes Yes Yes 
2.7.6.1 Ribose-phosphate 

pyrophosphokinase 
Yes Yes Yes Yes 
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However, most enzymes involved in the oxidative arm are absent in 

Leptospira species and without the oxidative arm they cannot produce NADPH.  

Further analysis of the genomic sequences of four Leptospira species revealed the 

complete pathway for the synthesis of NAD as shown in Figure 3.2.5 and Table 3.2.5.  

In addition, the genes for three other enzymes, NADH dehydrogenase (EC 1.6.5.3), 

NAD(P) transhydrogenase (EC 1.6.1.2), and malate dehydrogenase (EC 1.1.1.40), 

were identified in the Leptospira genomes.  NADH dehydrogenase catalyzes NAD to 

produce NADH, that will be converted to NADPH by NAD(P) transhydrogenase or 

malate dehydrogenase.  Therefore, Leptospira species may use the pathway shown in 

Figure 3.2.5 to produce NADPH. 

 
 

Figure 3.2.5 NADPH biosynthesis of the four Leptospira species. 
 

Table 3.2.5 Enzymes involved in NADPH biosynthesis, their EC numbers, a 
description, and an indication of the presence in four Leptospira species. 
 

 

EC#/gene 
name 

Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

1.4.3.16 aspartate oxidase Yes Yes Yes Yes 
nadA quinolinate synthetase A Yes Yes Yes Yes 
2.4.2.19 nicotinate-nucleotide 

pyrophosphorylase 
Yes Yes Yes Yes 

2.7.7.18 nicotinate-nucleotide 
adenylyltransferase 

Yes Yes Yes Yes 

6.3.5.1   glutamine-dependent NAD(+) 
synthetase 

Yes Yes Yes Yes 

1.6.5.3 NADH dehydrogenase Yes Yes Yes Yes 
1.6.1.2 NAD(P) transhydrogenase Yes Yes Yes Yes 
1.1.1.40 malate dehydrogenase Yes Yes Yes Yes 
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3.2.1.4 Beta-oxidation of Long-chain Fatty Acids 

Leptospira species utilize beta-oxidation of long-chain fatty acids as the major 

energy and carbon source (Henneberry and Cox, 1970) instead of the more common 

sugar oxidative pathway.  Beta-oxidation of fatty acids is initiated by the ATP driven 

coupling of Coenzyme A (CoA) to the fatty acid by fatty acid-CoA ligase.  Next, the 

acyl-CoA is oxidized with oxidation of the β-carbon and a series of steps that each 

releases a two-carbon fragment, in the form of acetyl-CoA, from the fatty acid 

undergoing oxidation.  The degradation of the fatty acid yields the other high-energy 

compounds, NADH and FADH2.  Acetyl-CoA is catabolized via the citric acid cycle, 

and FADH2 and NADH transfer electrons to the respiratory chain.  A complete set of 

genes for the long-chain fatty-acid utilization was identified in all four Leptospira 

species.  Figure 3.2.6 summarizes the pathway of fatty acid oxidization with the 

enzymes involved listed in Table 3.2.6. 

 

Figure 3.2.6 The predicted pathway of beta-oxidation of long-chain fatty acid in the 
four Leptospira species. 
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Table 3.2.6 Enzymes involved in the pathway of beta-oxidation of long-chain fatty 
acid, their EC numbers, a description, and an indicator of the presence in four 
Leptospira species. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

6.2.1.3 long-chain fatty acid-CoA ligase Yes Yes Yes Yes 
1.3.99.3 acyl-CoA dehydrogenase Yes Yes Yes Yes 
4.2.1.17 enoyl-CoA hydratase Yes Yes Yes Yes 
1.1.1.35 3-hydroxyacyl-CoA 

dehydrogenase 
Yes Yes Yes Yes 

2.3.1.16 3-ketoacyl-CoA thiolase Yes Yes Yes Yes 
 

3.2.1.5 Oxidative Phosphorylation 

Photosynthetic bacteria often adopt an oxidative phosphorylation pathway 

similar to that in eukaryotic cells (Bernard, 1990).  However, bacteria such as E. coli 

and Leptospira species use a slightly modified oxidative phosphorylation pathway 

(Figure 3.2.7).  Besides Complexes I, II, and IV, Leptospira species have additional 

substrate-specific electron carriers, that include lactate dehydrogenase, glycerol 3-

phosphate dehydrogenase, and pyruvate dehydrogenase.  However, since complex III 

is absent in the genomes of Leptospira species, they generate ATP via an F0F1-type 

ATPase that is encoded in a single operon with a conserved gene organization in L. 

pomona, grippotyphosa, lai, and copenhageni. 

 

Figure 3.2.7 Possible pathways for aerobic respiration in the four Leptospira species. 
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Table 3.2.7 Enzymes involved in the predicted oxidative phosphorylation pathway in 
four Leptospira species. 
 

Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

NADH dehydrogenase, subunit from A to N Yes Yes Yes Yes 
succinate dehydrogenase, subunit A, B, and 
C 

Yes Yes Yes Yes 

lactate dehydrogenase Yes Yes Yes Yes 
glycerol-3-phosphate dehydrogenase Yes Yes Yes Yes 
pyruvate dehydrogenase Yes Yes Yes Yes 
cytochrome C oxidase assembly factor Yes Yes Yes Yes 
cytochrome C oxidase, subunit I, II, III, and 
XV 

Yes Yes Yes Yes 

ATP synthase F1, subunit alpha, beta, 
gamma, delta, and epsilon 

Yes Yes Yes Yes 

ATP synthase F0, subunit A, B, and C Yes Yes Yes Yes 
 

3.2.2 Lipid Biosynthesis 

3.2.2.1 Fatty Acids Synthesis 

Fatty acids are the essential building blocks for membrane phospholipid 

formation.  Fatty acid metabolism is a fundamental component of the cellular 

metabolic network (Rock and Cronan, 1996).  Fatty acid biosynthesis can be separated 

into two stages, stage I (initiation) and stage II (cyclic elongation) (Cronan and Rock, 

1996).  In stage I, the acetate moiety is transferred from acetyl-CoA to acetyl-ACP, 

and then the acetyl-ACP is condensed with malonyl-ACP to form acetoacetyl-ACP.  

In stage II, acetoacetyl-ACP is reduced and dehydrated.  After the second reduction, 

acyl-ACP is formed, and served as a substrate for another round of elongation (Figure 

3.2.8). 

Three essential enzymes involved in the pathway for fatty acid synthesis are 

absent in the four Leptospira genomes: ACP S-malonyltransferase (FabD, EC 

2.3.1.39), enoyl-ACP reductase (FabI, EC 1.3.1.9), and 3-hydroxydecanoyl-ACP 

dehydratase (FabA, EC 4.2.1.60).  Through the domain analysis, one putative fatty 

acid synthase from four Leptospira species was identified that included the same 
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functional domain (COG0331: ACP S-malonyltransferase) conserved in FabD.  In 

addition, two conserved domains (COG0623: enoyl-ACP reductase and COG0764: 3-

hydroxydecanoyl-ACP dehydratase) were identified from E. coli FabI and FabA, 

respectively.  However, neither of the two above domains was identified from any 

ORF of Leptospira species.  Heath and the colleagues discovered that expression of B. 

subtilis FabL complemented the FabI defect in E. coli (Heath, et al., 2000).  

Therefore, B. subtilis FabL may function as FabI.  A possible short-chain 

dehydrogenase in all four Leptospira species was identified as it included the same 

functional domain (COG1028: dehydrogenases) conserved in B. subtilis FabL.  In 

order to find the third missing gene, FabA, isozymes search was employed (Green and 

Karp, 2004).  902 amino acid sequences of FabA isozymes were downloaded from 

NCBI and each sequence was compared with each L. pomona ORF by blastp.  When 

the isozyme from Saccharophagus degradans was used as the query sequence, one 

ORF of L. pomona (ORF2849108) could be identified as the best substitute with E 

value of 4.0e-49 for the missing FabA.  In the same way, the best substitutes were also 

identified from the other three Leptospira species.  Therefore, since all three missing 

genes that likely encoded the enzymes involved in this pathway were identified, 

Leptospira species may be capable of synthesizing fatty acids de novo. 
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Figure 3.2.8 Fatty acid biosynthesis in the four Leptospira species where the enzymes 
missing are indicated in dotted arrows and those present by the solid arrow. 
 
Table 3.2.8 Enzymes involved in the fatty acid biosynthesis pathway present in four 
Leptospira species. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni

6.4.1.2 acetyl-CoA carboxylase Yes Yes Yes Yes 
2.3.1.41 3-oxoacyl-ACP synthase (FabH) Yes Yes Yes Yes 
2.3.1.39 ACP S-malonyltransferase Yes Yes Yes Yes 
1.1.1.100 3-oxoacyl-ACP reductase Yes Yes Yes Yes 
4.2.1.60 3-hydroxydecanoyl-ACP 

dehydratase (FabA) 
Yes Yes Yes Yes 

1.3.1.9 enoyl-ACP reductase (NADH) Yes Yes Yes Yes 
 

3.2.2.2 Synthesis of Phospholipids 

Phospholipids are amphipathic molecules that are major structural components 

of cellular membranes (Cronan and Rock, 1996).  In addition, phospholipids provide 

precursors for the synthesis of macromolecules, serve as molecular chaperons, serve 

in protein modification for membrane association, and are reservoirs of second 

messengers.  Thus, phospholipids are essential for vital cellular processes (Iwanyshyn, 

et al., 2004). 

Figure 3.2.9 shows the pathway responsible for the biosynthesis of the three 

major phospholipids: phosphatidylserine (PE), phosphatidyl glycerol (PG), and 
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cardiolipin (CL).  After phosphatidic acid (PA) is synthesized, it is converted to CDP-

diacyl-glycerol, which serves as an intermediate in the biosynthesis of all membrane 

phospholipids.  PE is formed by the condensation of CDP-diacyl-glycerol with serine 

followed by decarboxylation. PG is formed by the condensation of CDP-diacyl-

glycerol with glycerol-3 phosphate followed by removal of the phosphate.  CL is 

formed by the condensation of two molecules of PG.  Analysis of the four Leptospira 

genomic sequences revealed that all the other genes except cardiolipin synthase 

(2.7.8.-) are present that could encode the enzymes associated with phospholipid 

biosynthesis as shown in Figure 3.2.9 and listed in Table 3.2.9.  The domain analysis 

revealed that one putative phospholipase D family protein includes the same 

functional domain (COG1502: cardiolipin synthase) conserved in cardiolipin 

synthase.  Therefore, Leptospira species likely encode for the complete pathway for 

the phospholipid biosynthesis. 

 

 

 

 

 

 

 

 

Figure 3.2.9 Reconstructed pathway of phosphoglyceride synthesis in the four 
Leptospira species where the enzymes missing are indicated in dotted arrows and 
those present by the solid arrow. 
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Table 3.2.9 Enzymes involved in the phosphoglyceride synthesis present in four 
Leptospira species. 
 

EC# Description Genes in 
pomona 

Genes in  
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni 

1.1.1.94 Glycerol-3-phosphate dehydrogenase Yes Yes Yes Yes 
2.3.1.15 Glycerol-3-phosphate acyltransferase Yes Yes Yes Yes 
2.3.1.51 1-acyl-sn-glycerol-3-phosphate 

acyltransferase  
Yes Yes Yes Yes 

2.7.7.41 Phosphatidate cytidylyltransferase Yes Yes Yes Yes 
2.7.8.8 Phosphatidylserine synthase Yes Yes Yes Yes 
4.1.1.65 Phosphatidylserine decarboxylase Yes Yes Yes Yes 
2.7.8.5 CDP-diacylglycerol--glycerol-3-

phosphate 3-phosphatidyltransferase
Yes Yes Yes Yes 

3.1.3.27 Phosphatidylglycerophosphatase Yes Yes Yes Yes 
2.7.8.- Cardiolipin synthase Yes Yes Yes Yes 

 
3.2.3 Biosynthesis of Amino Acids 

The central pathways provide the precursors needed to synthesize 20 amino 

acids.  All the four Leptospira species seem capable of synthesizing all 20 amino acids 

except asparagine. 

3.2.3.1 Glutamate, Glutamine, Aspartate, Asparagine, and Alanine 

As illustrated below in Figure 3.2.10, all of the enzymes needed for the 

formation of glutamate, glutamine, aspartate, and alanine were found encoded in the 

four Leptospira genomes.  However, asparagine synthetase (EC 6.3.1.1) involved in 

the synthesis of asparagine was not observed.  Domain analysis revealed that no 

Leptospira ORF could be found that corresponded to the functional domain 

(COG2502: asparagine synthetase A) conserved in asparagine synthetase.  How is 

protein synthesis affected if asparagine cannot be synthesized?  It will be discussed in 

3.2.6.3 Aminoacyl-tRNA Synthesis. 
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Figure 3.2.10 Synthesis of glutamate, glutamine, aspartate, asparagine, and alanine.  
All the enzymes except aspariginr synthetase (dotted arrow) were present in the four 
Leptospira genomes. 
 

3.2.3.2 Branched-chain Amino Acids 

Analysis of four Leptospira genomic sequences reveals that they all contain 

the enzymes necessary for the synthesis of the branched-chain amino acids. 

 

Figure 3.2.11 Synthesis of branched-chain amino acids.  All enzymes except threonine 
dehydratase (EC 4.3.1.19), represented by the dotted arrow, were observed encoded in 
the four Leptospira genomes. 
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Table 3.2.10 Enzymes involved in the biosynthesis of valine, leucine, and isoleucine. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.2.1.6 acetolactate synthase Yes Yes Yes Yes 
1.1.1.86 isomeroreductase Yes Yes Yes Yes 
4.2.1.9 dihydroxy-acid dehydratase Yes Yes Yes Yes 
2.6.1.42 branched-chain-amino-acid 

transaminase 
Yes Yes Yes Yes 

2.3.3.13 2-isopropylmalate synthase Yes Yes Yes Yes 
4.2.1.33 isopropylmalate isomerase Yes Yes Yes Yes 
1.1.1.85 3-isopropylmalate 

dehydrogenase 
Yes Yes Yes Yes 

4.1.3.- citramalate synthase Yes Yes Yes Yes 
 

In most microorganisms, isoleucine is synthesized from aspartate via threonine 

deaminase pathway (Umbarger, 1978) with threonine dehydratase (EC 4.3.1.19) being 

the key enzyme in this pathway.  Because this enzyme could not be identified by 

either homolog search or domain analysis, Leptospira species might use the 

alternative pathway from pyruvate (Xu, et al., 2004) for isoleucine biosynthesis.  All 

the essential enzymes involved in this alternative pathway are present (Figure 3.2.11). 

3.2.3.3 Methionine, Threonine, and Lysine 

All the genes encoding the enzymes required for the biosynthesis of 

methionine and threonine are present in the four Leptospira genomes (Figure 3.2.12).  

However, two essential enzymes, succinyl-diaminopimelate desuccinylase (EC 

3.5.1.18) and 2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase (EC 

2.3.1.117), involved in lysine biosynthesis, were not identified by the homolog search.  

Domain analysis revealed that one possible enzyme from four Leptospira species 

includes the same functional domain (COG0624: succinyl-diaminopimelate 

desuccinylase) conserved in succinyl-diaminopimelate desuccinylase.  However, no 

ORF was observed in any of the four Leptospira species that includes the functional 

domain (COG2171: DapD) conserved in 2,3,4,5-tetrahydropyridine-2-carboxylate N-
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succinyltransferase.  To investigate further, an isozyme analysis (Green and Karp, 

2004) was performed to search for the missing succinyltransferase.  384 isozyme 

amino acid sequences were downloaded from NCBI and each sequence was compared 

with each L. pomona ORF by blastp.  When the isozyme from Streptococcus 

pneumoniae was used as the query sequence, one ORF of L. pomona (ORF642477) 

could be identified as the most likely substitute with E value of 6.0e-12 for the missing 

succinyltransferase.  Similarly, the corresponding gene was also identified from lai, 

copenhageni, and grippotyphosa.  Taken together, all the four Leptospira species 

likely synthesize lysine de novo via the pathway shown in Figure 3.2.12. 

 

Figure 3.2.12 Synthesis of threonine, methionine, and lysine.  The reaction catalyzed 
by succinyl-diaminopimelate desuccinylase (EC 3.5.1.18) and 2,3,4,5-
tetrahydropyridine-2-carboxylate N-succinyltransferase (EC 2.3.1.117) are 
represented by dotted arrows. 
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Table 3.2.11 Enzymes involved in the biosynthesis of lysine, threonine, and 
methionine. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.7.2.4 aspartate kinase Yes Yes Yes Yes 
1.2.1.11 aspartate semialdehyde 

dehydrogenase 
Yes Yes Yes Yes 

4.2.1.52 dihydrodipicolinate synthase Yes Yes Yes Yes 
1.3.1.26 dihydrodipicolinate reductase Yes Yes Yes Yes 
2.3.1.117 2,3,4,5-tetrahydropyridine-2-

carboxylate N-succinyltransferase 
Yes Yes Yes Yes 

2.6.1.7 N-succinyldiaminopimelate 
aminotransferase 

Yes Yes Yes Yes 

3.5.1.18 succinyl-diaminopimelate 
desuccinylase 

Yes Yes Yes Yes 

5.1.1.7 diaminopimelate epimerase Yes Yes Yes Yes 
4.1.1.20 diaminopimelate decarboxylase Yes Yes Yes Yes 
1.1.1.3 homoserine dehydrogenase Yes Yes Yes Yes 
2.3.1.31 homoserine acetyltransferase Yes Yes Yes Yes 
2.5.1.49 methionine synthase Yes Yes Yes Yes 
2.1.1.13 methionine synthase Yes Yes Yes Yes 
2.7.1.39 homoserine kinase Yes Yes Yes Yes 
4.2.3.1 threonine synthase Yes Yes Yes Yes 

 

3.2.3.4 Serine, Glycine, and Cysteine 

As illustrated in Figure 3.2.13 and Table 3.2.12, all the four Leptospira species 

appear to encode all enzymes required for the complete biosynthetic pathways for 

serine, glycine and cysteine.  It is interesting that the last reaction for cysteine 

biosynthesis pathway (catalyzed by cysteine synthase, EC 2.5.1.47) utilizes hydrogen 

sulfide.  Even though the complete sulfate transport system was observed from 

Leptospira species (see 3.2.8.1 Cation and Anion Transporters), it is still unclear 

how sulfate is reduced to hydrogen sulfide.  It is possible that a different pathway 

might exist to utilize sulfate or that Leptospira species rely on external cysteine 

through the different amino acid and peptide transport systems that the analysis of the 

genome revealed (Schiemann, 1973). 
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Figure 3.2.13 Synthesis pathways for serine, glycine, and cysteine. 

Table 3.2.12 Enzymes involved in the synthesis of serine, glycine, and cysteine in four 
Leptospira species. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

1.1.1.95 phosphoglycerate 
dehydrogenase 

Yes Yes Yes Yes 

2.6.1.52 phosphoserine aminotransferase Yes Yes Yes Yes 
3.1.3.3 phosphoserine phosphatase Yes Yes Yes Yes 
2.1.2.1 serine hydroxymethyltransferase Yes Yes Yes Yes 
2.3.1.30 serine acetyltransferase Yes Yes Yes Yes 
2.5.1.47 Cysteine synthase Yes Yes Yes Yes 

 

 

3.2.3.5 Aromatic Amino Acids 

All the four Leptospira species are capable of synthesizing all three aromatic 

amino acids as all of the genes needed for the enzymes involved in the aromatic amino 

acid biosynthetic pathways are present as shown in Figure 3.2.14 and Table 3.2.13. 
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Figure 3.2.14 Synthesis of aromatic amino acids. 

Table 3.2.13 Enzymes involved in aromatic amino acid biosynthesis. 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.5.1.54 Phospho-2-dehydro-3-deoxyheptonate 
aldolase 

Yes Yes Yes Yes 

4.2.3.4 dehydroquinate synthase Yes Yes Yes Yes 
4.2.1.10 dehydroquinate dehydratase Yes Yes Yes Yes 
4.2.1.11 phosphopyruvate hydratase Yes Yes Yes Yes 
1.1.1.25 shikimate dehydrogenase Yes Yes Yes Yes 
2.7.1.71 shikimate kinase Yes Yes Yes Yes 
2.5.1.19 enolpyruvylshikimate phosphate 

synthase 
Yes Yes Yes Yes 

4.2.3.5 chorismate synthase Yes Yes Yes Yes 
4.1.3.27 chorismate lyase Yes Yes Yes Yes 
2.4.2.18 phosphoribosyltransferase Yes Yes Yes Yes 
5.3.1.24 phosphoribosylanthranilate isomerase Yes Yes Yes Yes 
4.1.1.48 indoleglycerol phosphate synthetase Yes Yes Yes Yes 
4.2.1.20 tryptophan synthase Yes Yes Yes Yes 
5.4.99.5 chorismate mutase Yes Yes Yes Yes 
4.2.1.51 prephenate dehydratase Yes Yes Yes Yes 
2.6.1.1 aspartate transaminase Yes Yes Yes Yes 
1.3.1.12 prephenate dehydrogenase Yes Yes Yes Yes 

 
3.2.3.6 Arginine and Proline 

Four Leptospira genomes contain all the genes needed to encode the enzymes 

which synthesize arginine and proline.  A summary of the arginine and proline 
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biosynthetic pathway is shown in Figure 3.2.15 and the genes present for the 

biosynthetic enzymes in Leptospira species are indicated in Table 3.2.14. 

 

 

Figure 3.2.15 Biosynthesis of arginie and proline. 

 

Table 3.2.14 Enzymes involved in the biosynthesis of arginine and proline. 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.7.2.11 glutamate kinase Yes Yes Yes Yes 
1.2.1.41 glutamate-5-semialdehyde 

dehydrogenase 
Yes Yes Yes Yes 

1.5.1.2 proline oxidase Yes Yes Yes Yes 
2.3.1.1 acetylglutamic synthetase Yes Yes Yes Yes 
2.7.2.8 acetylglutamate kinase Yes Yes Yes Yes 
1.2.1.38 N-acetyl-gamma-glutamyl-

phosphate reductase 
Yes Yes Yes Yes 

2.6.1.11 acetylornithine transaminase Yes Yes Yes Yes 
3.5.1.14 aminoacylase Yes Yes Yes Yes 
2.1.3.3 ornithine carbamoyltransferase Yes Yes Yes Yes 
6.3.4.5 argininosuccinate synthase Yes Yes Yes Yes 
4.3.2.1  arginosuccinase Yes Yes Yes Yes 
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3.2.3.7 Histidine 

All the genes that are needed to encode the histidine biosynthesis pathway 

enzymes were observed in the four Leptospira species as shown in Figure 3.2.16 and 

Table 3.2.15. 

 

Figure 3.2.16 Synthesis of histidine. 

Table 3.2.15 Enzymes involved in the biosynthesis of histidine. 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.4.2.17 ATP phosphoribosyltransferase Yes Yes Yes Yes 
3.6.1.31 phosphoribosyl-ATP 

pyrophosphohydrolase 
Yes Yes Yes Yes 

3.5.4.19 phosphoribosyl-AMP 
cyclohydrolase 

Yes Yes Yes Yes 

5.3.1.16 phosphoribosylformimino-5-
aminoimidazole carboxamide 
ribotide isomerase 

Yes Yes Yes Yes 

2.4.2.- Amidotransferase hisH Yes Yes Yes Yes 
4.2.1.19 Imidazoleglycerol-phosphate 

dehydratase 
Yes Yes Yes Yes 

2.6.1.9 histidinol-phosphate transaminase Yes Yes Yes Yes 
3.1.3.15 histidinol-phosphatase Yes Yes Yes Yes 
1.1.1.23 histidinol dehydrogenase Yes Yes Yes Yes 

 
3.2.4 Nucleotide Metabolism 

Analysis of the four Leptospira genomic sequences revealed the presence of 

the genes for all the enzymes needed for de novo synthesis of purine (Figure 3.2.17) 
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and pyrimidine (Figure 3.2.18).  These pathways lead to production of nucleoside-5-

phosphates through the utilization of an activated sugar intermediate, 5-phosphoribo- 

syl-1-pyrophosphate (PRPP), and a class of enzymes, phosphoribosyltransferases. 

3.2.4.1 Purine Nucleotides 

 

Figure 3.2.17 The purine biosynthetic pathway 

Table 3.2.16 Enzymes involved in purine metabolism of four Leptospira species. 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.4.2.14 amidophosphoribosyltransferase Yes Yes Yes Yes 
6.3.4.13 phosphoribosylamine-glycine ligase Yes Yes Yes Yes 
2.1.2.2 phosphoribosylglycinamide 

formyltransferase 
Yes Yes Yes Yes 

6.3.5.3 phosphoribosylformylglycinamidine 
synthase 

Yes Yes Yes Yes 

6.3.3.1 phosphoribosylformylglycinamidine 
cyclo-ligase 

Yes Yes Yes Yes 

4.1.1.21 phosphoribosylaminoimidazole 
carboxylase 

Yes Yes Yes Yes 

6.3.2.6 phosphoribosylaminoimidazolesucci
nocarboxamide synthase 

Yes Yes Yes Yes 

4.3.2.2 adenylosuccinate lyase Yes Yes Yes Yes 
2.1.2.3 imidazolecarboxamide 

formyltransferase 
Yes Yes Yes Yes 

3.5.4.10 IMP cyclohydrolase Yes Yes Yes Yes 
6.3.4.4 adenylosuccinate synthetase Yes Yes Yes Yes 
2.7.4.3 adenylate kinase Yes Yes Yes Yes 
2.7.4.6 nucleoside diphosphate kinase Yes Yes Yes Yes 
1.17.4.1 ribonucleotide reductase Yes Yes Yes Yes 
1.1.1.205 IMP dehydrogenase Yes Yes Yes Yes 
6.3.5.2 GMP synthase Yes Yes Yes Yes 
2.7.4.8 guanylate kinase Yes Yes Yes Yes 
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As shown in Figure 3.2.16 and Table 3.2.16, purine biosynthesis begins with 

PRPP and the purine base is built upon the ribose by several amidotransferase and 

transformylation reactions.  The first fully formed nucleotide, inosine 5-

monophosphate (IMP), represents a branch point for purine biosynthesis that results in 

the synthesis of either AMP or GMP through two distinct reaction pathways. 

3.2.4.2. Pyrimidine Nucleotides 

 

Figure 3.2.18 The pyrimidines biosynthetic pathway 
 

Table 3.2.17 Enzymes involved in pyridine metabolism of four Leptospira species. 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

6.3.5.5 carbamoyl-phosphate synthase Yes Yes Yes Yes 
2.1.3.2 aspartate carbamoyltransferase Yes Yes Yes Yes 
3.5.2.3 dihydroorotase Yes Yes Yes Yes 
1.3.3.1 dihydroorotate oxidase Yes Yes Yes Yes 
2.4.2.10 orotate phosphoribosyltransferase Yes Yes Yes Yes 
4.1.1.23 orotodylate decarboxylase Yes Yes Yes Yes 
2.7.4.14 cytidylate kinase Yes Yes Yes Yes 
2.7.4.6 nucleoside-diphosphate kinase Yes Yes Yes Yes 
6.3.4.2 CTP synthase Yes Yes Yes Yes 
1.17.4.1 ribonucleotide reductase Yes Yes Yes Yes 
3.5.4.13 dCTP deaminase Yes Yes Yes Yes 
2.7.4.9 thymidylate kinase Yes Yes Yes Yes 
2.1.1.45 thymidylate synthase Yes Yes Yes Yes 
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All four Leptospira species contain the complete set of genes needed for 

pyrimidine biosynthesis (Table 3.2.17).  It is well established that the synthesis of 

pyrimidine differs in two significant ways from that of purine as shown in Figure 

3.2.18.  First, the pyrimidine ring structure is assembled as a free base, rather than 

being built upon PRPP.  Then, PRPP is added to the first fully formed pyrimidine base 

(orotic acid), forming orotate monophosphate (OMP), which subsequently is 

decarboxylated to UMP.  Second, there is no branch in the pyrimidine synthesis 

pathway as there is no purine biosynthetics as UMP is phosphorylated twice to yield 

UTP, and then UTP is aminated by the action of CTP synthase, generating CTP. 

3.2.5 Biosynthesis of Cofactors and Vitamins 

3.2.5.1 Riboflavin Biosynthesis 

 
 

Figure 3.2.19 Riboflavin biosynthetic pathway 

Table 3.2.18 Enzymes involved in riboflavin biosynthesis, their EC numbers, a 
description, and an indication of the presence in four Leptospira species. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

3.5.4.25 GTP-8-formylhydrolase Yes Yes Yes Yes 
3.5.4.26 2,5-diamino-6-hydroxy-4-(5-

phosphoribosylamino)pyrimidi
ne 2-aminohydrolase 

Yes Yes Yes Yes 

1.1.1.193 5-amino-6-(5-
phosphoribosylamino)uracil 
reductase 

Yes Yes Yes Yes 

2.5.1.9 riboflavin synthase Yes Yes Yes Yes 
2.7.1.26 riboflavin kinase Yes Yes Yes Yes 
2.7.7.2 FMN adenylyltransferase Yes Yes Yes Yes 
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Riboflavin, also known as vitamin B2 or vitamin G, is a water-soluable 

vitamin.  It supports metabolism of fats, carbohydrates, and proteins and biosynthesis 

of a number of compounds through its coenzyme forms, flavin adenine dinucleotide 

(FAD) and flavin adenine mononucleotide (FMN).  As shown in Figure 3.2.19 and 

Table 3.2.18, all of the genes that encode the enzymes required for the synthesis of 

riboflavin are present in all four Leptospira genomes. 

3.2.5.2 Folate Biosynthesis 

 

Figure 3.2.20 Folate biosynthetic pathway 

Table 3.2.19 Enzymes involved in folate biosynthesis, their EC numbers, a description, 
and an indication of the presence in four Leptospira species. 

 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

3.5.4.16 GTP cyclohydrolase Yes Yes Yes Yes 
3.1.3.1 glycerophosphatase Yes Yes Yes Yes 
4.1.2.25 dihydroneopterin aldolase Yes Yes Yes Yes 
2.7.6.3 7,8-dihydro-6-

hydroxymethylpterin 
pyrophosphokinase 

Yes Yes Yes Yes 

6.3.5.8 aminodeoxychorismate synthase Yes Yes Yes Yes 
4.1.3.38 4-amino-4-deoxychorismate lyase Yes Yes Yes Yes 
2.5.1.15 dihydropteroate synthase Yes Yes Yes Yes 
6.3.2.12 dihydrofolate synthase Yes Yes Yes Yes 
1.5.1.3 dihydrofolate reductase Yes Yes Yes Yes 
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Folate, a water-soluble B vitamin, is the precursor of coenzyme 

tetrahydrofolate.  Folate plays a role in protein metabolism, the formation of genetic 

material, cell growth and division, and pyridine dimer repair.  All the genes for all the 

complete folate biosynthetic pathway enzymes are present in all four Leptospira 

species as shown in Figure 3.2.20 and Table 3.2.19. 

3.2.5.3 Thiamine Biosynthesis 

Thiamine, also known as vitamin B1, is a water-soluble vitamin.  It is the 

precursor of coenzyme thiamine pyrophosphate.  Thiamine is needed to process 

carbohydrates, fat, and protein.  It is also necessary for the formation of ATP.  It 

seems that all but one of the genes for the thiamine biosynthetic pathway enzymes are 

present in four Leptospira genomes (Figure 3.2.21 and Table 3.2.20).  The last 

enzyme in thiamine biosynthesis, bifunctional isocitrate dehydrogenase 

kinase/phosphatase (AceK), was not observed in any of the four Leptospira genomes, 

and it has been reported that thiamine is required for the Leptospira culture medium 

base (Johnson and Gary, 1962).  However, both the bifunctional isocitrate 

dehydrogenase kinase/phosphatase (AceK) with its conserved domain (COG4579: 

isocitrate dehydrogenase kinase/phosphatase) and phosphohistidine phosphatase 

(SixA) with its conserved domain (COG2062: phosphohistidine phosphatase) are 

annotated as EC 3.1.3.- (Phosphoric monoester hydrolases) by KEGG.  Since all those 

Leptospira species do encode SixA, but do not encode AceK, it is possible that the 

leptospira species cannot synthesize thiamine de novo, or that SixA can replace the 

AceK that most other microorganisms use to convert thiamine phosphate to thiamine, 

but at a much slower rate that required for rapid cell growth in culture media. 
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Figure 3.2.21 Thiamine biosynthetic pathway 

Table 3.2.20 Enzymes involved in thiamine biosynthesis, their EC numbers, a 
description, and an indication of the presence in four Leptospira species. 

 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.7.1.49 hydroxymethylpyrimidine kinase Yes Yes Yes Yes 
2.7.4.7 phosphomethylpyrimidine kinase Yes Yes Yes Yes 
2.7.1.50 4-methyl-5-(beta-

hydroxyethyl)thiazole kinase 
Yes Yes Yes Yes 

2.5.1.3 thiamine-phosphate 
diphosphorylase 

Yes Yes Yes Yes 

2.7.4.16 thiamine-phosphate kinase Yes Yes Yes Yes 
3.1.3.- phosphohistidine phosphatase 

(SixA) 
Yes Yes Yes Yes 

3.1.3.- bifunctional isocitrate 
dehydrogenase 
kinase/phosphatase (AceK) 

No No No No 

 
3.2.5.4 Biotin Biosynthesis 

Biotin, commonly referred to as vitamin H, is a water-soluble B vitamin.  It is 

involved in the biosynthesis of fatty acids, gluconeogenesis, energy production, the 

metabolism of the branched-chain amino acids, and the de novo synthesis of purine 

nucleotides (Zempleni and Mock, 1999).  As shown in Figure 3.2.22 and Table 3.2.21, 

all of the genes that encode the enzymes required for the synthesis of biotin are 

present in the all four Leptospira genomes.  In addition, it is very interesting to notice 
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that all four genes involved in Biotin biosynthesis pathway form an operon in the 

large chromosome and conserved in all four Leptospira species. 

 
 

Figure 3.2.22 Biotin biosynthetic pathway 
 

Table 3.2.21 Enzymes involved in biotin biosynthesis, their EC numbers, a 
description, and an indication of the presence in four Leptospira species. 

 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.3.1.47 8-amino-7-oxononanoate synthase Yes Yes Yes Yes 
2.6.1.62 adenosylmethionine-8-amino-7-

oxononanoate aminotransferase 
Yes Yes Yes Yes 

6.3.3.3 dethiobiotin synthase Yes Yes Yes Yes 
2.8.1.6 biotin synthase Yes Yes Yes Yes 

 
3.2.5.5 Biosynthesis of Pantothenate and Coenzyme A 

 

Figure 3.2.23 Pantothenate and CoA biosynthesis of four Leptospira species.  The 
dotted arrow represents reactions carried out by pantothenate kinase, the candidate 
Leptospira gene found by isozyme analysis. 
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Pantothenate, a component of the vitamin B complex, serves as a precursor for 

coenzyme A and acyl carrier protein.  A thorough examination of the four Leptospira 

genomic sequences revealed the presence of all the genes that encode the enzymes 

involved in the biosynthetic pathway for pantothenate and CoA except pantothenate 

kinase (EC 2.7.1.33) (Figure 3.2.23 and Table 3.2.22).  A domain analysis revealed 

that E. coli pantothenate kinase includes the conserved domain, COG1072: 

panthothenate kinase, but there was no ORF from any of four Leptospira species that 

included this conserved domain.  However, a novel pantothenate kinase encoded by 

coaX was recently identified from Helicobacter pylori (Brand and Strauss, 2005).  It 

includes the conserved domain, COG1521: putative transcriptional regulator, distinct 

from the previously characterized E. coli pantothenate kinase.  The domain analysis 

revealed that one possible gene from L. pomona, lai, copenhageni, and grippotyphosa, 

respectively, could encode the missing pantothenate kinase as it includes the same 

functional domain (COG1521).  Thus all the four Leptospira species may be capable 

of synthesizing CoA de novo (Figure 3.2.23). 

Table 3.2.22 Enzymes involved in pantothenate and CoA synthesis in the four 
Leptospira species. 

 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.2.1.6  acetolactate synthase Yes Yes Yes Yes 
1.1.1.86 acetolactate reductoisomerase Yes Yes Yes Yes 
4.2.1.9 dihydroxy-acid dehydratase Yes Yes Yes Yes 
2.1.2.11 ketopantoate 

hydroxymethyltransferase 
Yes Yes Yes Yes 

1.1.1.169 ketopantoate reductase Yes Yes Yes Yes 
6.3.2.1 pantothenate synthetase Yes Yes Yes Yes 
3.5.1.- hydrolase Yes Yes Yes Yes 
2.7.1.33 pantothenate kinase Yes Yes Yes Yes 
2.7.7.3 dephospho-CoA 

pyrophosphorylase 
Yes Yes Yes Yes 

2.7.1.24 dephospho-CoA kinase Yes Yes Yes Yes 
 

3.2.6 Macromolecular Metabolism 
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Macromolecular metabolism broadly includes the metabolic processes 

involving DNA, RNA, and protein synthesis. 

3.2.6.1 DNA Metabolism 

Generally, replication in Leptospira species is similar to that of E. coli as 

suggested by the genomic analysis, although the gene for DNA polymerase II used in 

E. coli for DNA repair was absent in all four Leptospira genomes studied.  Thus it is 

likely that DNA repair is accomplished using DNA polymerase I and/or III.  In E. 

coli, the DNA polymerase III holoenzyme is assembled from subunits tau, beta, core, 

and clamp loader.  The core consists of subunits alpha, epsilon, and theta, while the 

clamp loader consists of subunits gamma, delta, delta, prime, chi, and psi (Table 

3.2.23).  Among all the subunits, only alpha, tau, gamma, delta, and beta are 

conserved in all the sequenced bacteria, while subunits theta, delta prime, chi, psi, and 

epsilon of DNA polymerase III are absent from Leptospira species. 

Table 3.2.23 Components of DNA polymerase III 
 

DNA polymerase III subunits and subassemblies 
Subunit Function Subassembly 

(complex) 
alpha1,2 DNA polymerase 
epsilon1 3' 5' exonuclease 
theta1 stimulates 3' 5' exonuclease 

 
core 

tau1,2 dimerizes cores, activates DnaB helicase activity  
gamma1,2 binds ATP 
delta1,2 unknown 
delta prime1 stimulates clamp loading 
chi1 removal of primase 
psi1 unknown 

 
 

clamp loader 

beta1,2 sliding clamp.  
 

Note: 1 present in E. coli, 2 present in Leptospira species. 
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Figure 3.2.24 Demonstration of DNA replication in the four Leptospira species with 
the proteins involved in the replication process. 
 
Table 3.2.24 Complete list of all proteins involved in replication of four Leptospira 
species. 
 

Gene 
name 

Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni 

SSB single-stranded DNA binding 
protein 

Yes Yes Yes Yes 

DnaA chromosomal replication 
initiator protein 

Yes Yes Yes Yes 

DnaB replicative DNA helicase B Yes Yes Yes Yes 
DnaC DNA replication protein Yes Yes Yes Yes 
DnaG DNA primase Yes Yes Yes Yes 
LigA DNA ligase Yes Yes Yes Yes 
GyrA DNA gyrase subunit A Yes Yes Yes Yes 
GyrB DNA gyrase subunit B Yes Yes Yes Yes 
PolA DNA polymerase I Yes Yes Yes Yes 
DnaE DNA polymerase III, subunit 

alpha 
Yes Yes Yes Yes 

DnaX1 DNA polymerase III, subunit 
gamma and tau  

Yes Yes Yes Yes 

HolA DNA polymerase III, subunit 
delta  

Yes Yes Yes Yes 

DnaN DNA polymerase III, subunit 
beta  

Yes Yes Yes Yes 

 
3.2.6.2 RNA Metabolism 

3.2.6.2.1 Transcription 
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Analysis of the four Leptospira genomes reveals that they contain the 

transcription machinery similar to that of E. coli since homologs of all genes for the 

proteins required for the transcription in E. coli are present as shown in Table 3.2.25.  

In addition, three other sigma factors (RpoN, RpoD, and RpoE) needed for the 

transcription of most cellular genes also were identified in the four Leptospira species.  

Each species has one sigma 54 factor and two sigma 70 factors. But it is very 

interesting to notice that L. copenhageni has one more copy of RNA polymerase ECF-

type sigma factor (11) than the other three Leptospira species (10). 

Table 3.2.25 List of encoded proteins involved in transcription of four Leptospira 
species. 

 

Gene 
name 

Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

RpoN transcription initiation factor Yes Yes Yes Yes 
NusA transcription elongation factor Yes Yes Yes Yes 
Rho transcription termination factor Yes Yes Yes Yes 
NusB transcription antitermination protein Yes Yes Yes Yes 
RpoA DNA-directed RNA polymerase 

alpha chain 
Yes Yes Yes Yes 

RpoB DNA-directed RNA polymerase beta 
chain 

Yes Yes Yes Yes 

RpoC DNA-directed RNA polymerase beta 
prime chain 

Yes Yes Yes Yes 

SrmB ATP-dependent RNA helicase Yes Yes Yes Yes 
RpoN RNA polymerase sigma 54 factor Yes Yes Yes Yes 
RpoD Yes Yes Yes Yes 
RpoE RNA polymerase ECF-type sigma 

factor 
Yes Yes Yes Yes 

RNA polymerase sigma 70 factor 

 
3.2.6.2.2 Processing of Ribosomal and Transfer RNAs 

As in E. coli, the 70S ribosomes are composed of three rRNAs, 5S, 16S, and 

23S, and more than 50 ribosomal proteins.  21 ribosomal proteins (S1-S21) makeup 

the 30S ribosomal subunit, while 36 ribosomal proteins (L1-L36) are components of 

the 50S ribosomal subunit.  It is interesting to note that all four Leptospira species 

lack the gene of L33 (rpmG).  A mutagenesis study of E. coli revealed that protein 
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L33 has no significant effect on ribosome synthesis or function (Maguire and Wild, 

1997) and if the same is true in Leptospira, the 70S Leptospira ribosomes can be 

assembled normally even without rpmG gene. 

Generally, several ribosomal RNA operons are encoded in a bacterial genome, 

but they are scattered throughout the large chromosomes of four Leptospira species.  

It needs to be mentioned that each species has different number of rRNAs as shown in 

Table 3.2.26. 

Table 3.2.26 The distribution of ribosomal RNAs in four Leptospira species. 
 

 pomona grippotyphosa lai copenhageni 
5S rRNA 1 1 1 1 

16S rRNA 2 1 2 2 
23S rRNA 2 2 1 2 

 
Phylogenetic analysis was performed to 16s rRNA genes from all four 

Leptospira species.  It showed clearly that these four leptospiries can be grouped: 

grippotyphosa with pomon, and copenhageni with lai, two groups that correlates well 

with their observed host ranges. 

 

 

Figure 3.2.25 Phylogenetic tree of 16s rRNA among four Leptospira species. 
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Figure 3.2.26 Schematic illustration of the processing steps of rRNA and tRNA 
(adapted from KEGG). 

 
Table 3.2.27 Enzymes involved in the rRNA/tRNA processing of four Leptospira 
species. 

 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni 

3.1.26.3 Ribonuclease III Yes Yes Yes Yes 
3.1.26.5 Ribonuclease P Yes Yes Yes Yes 
3.1.13.1 Ribonuclease II Yes Yes Yes Yes 
2.7.7.56 Ribonuclease PH Yes Yes Yes Yes 

 
Several enzymes are needed to process the rRNA/tRNA transcription (Figure 

3.2.26).  Ribonuclease III (EC 3.1.26.3) cleaves multimeric tRNA precursor at the 

spacer region, and also is involved in processing precursor rRNA (Rech, et al., 1980).  

Ribonuclease P (EC 3.1.26.5) cleaves sequences from the 5' ends of precursors of 

tRNAs to produce the mature 5' termini of the tRNAs (Pace and Smith, 1990).  
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Ribonuclease II (EC 3.1.13.1) processes 3'-terminal extra-nucleotides of monomeric 

tRNA precursors, following the action of ribonuclease P (Shimura, et al., 1978).  

Ribonuclease PH (EC 2.7.7.56) trims the 3'-terminus of tRNA precursors to produce a 

mature 3'-terminus on tRNA (Deutscher, et al., 1988).  Of the four above genes, 

ribonuclease PH could not be observed in the four Leptospira species.  The domain 

analysis revealed that one putative polynucleotide phosphorylase from Leptospira 

species includes the functional domain (COG0689: RNase PH) conserved in 

ribonuclease PH, indicating that this gene may replace ribonuclease PH. 

3.2.6.2.3 Post Transcriptional Modification of Ribosomal and Transfer 

RNA Precursors to Mature RNAs 

Table 3.2.28 RNA modification enzymes. 
 

EC#/Gene 
name 

Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni

yjfH rRNA methylase Yes Yes Yes Yes 
rluC ribosomal large subunit pseudouridine 

synthase C 
Yes Yes Yes Yes 

rluD ribosomal large subunit pseudouridine 
synthase D 

Yes Yes Yes Yes 

ksgA dimethyladenosine transferase Yes Yes Yes Yes 
trmD tRNA (Guanine-N1)-methyltransferase Yes Yes Yes Yes 
trmU tRNA (5-methylaminomethyl-2-

thiouridylate)-methyltransferase 
Yes Yes Yes Yes 

2.1.1.- RNA methyltransferase Yes Yes Yes Yes 
2.4.2.29 tRNA-guanine transglycosylase Yes Yes Yes Yes 
miaA tRNA delta(2)-isopentenylpyrophosphate 

transferase  
Yes Yes Yes Yes 

truA tRNA pseudouridine synthase A Yes Yes Yes Yes 
truB tRNA pseudouridine synthase B Yes Yes Yes Yes 
queA S-adenosylmethionine--tRNA 

ribosyltransferase-isomerase 
Yes Yes Yes Yes 

 
The post transcriptional modification of RNA in bacteria requires a large 

number of enzymes (Björk, 1996).  As in E. coli, several genes encoding rRNA 

modification enzymes were identified in the four Leptospira genomes (Table 3.2.28).  

They include rRNA methylase, required for 16S rRNA processing, and pseudouridine 
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synthase, required for ribosomal large subunit processing.  In addition, at least 8 genes 

encoding tRNA modification enzymes are present in all four Leptospira species 

(Table 3.2.28). 

3.2.6.3 Aminoacyl-tRNA Biosynthesis 

The aminoacyl-tRNA synthetases catalyse the attachment of an amino acid to 

its cognate transfer RNA molecule.  These proteins differ widely in size and 

oligomeric state, and have limited sequence homology (Eriani, et al., 1990).  Based on 

their secondary structure, the 20 aminoacyl-tRNA synthetases are divided into two 

classes, class I and class II (Sugiura, et al., 2000; Perona, et al., 1993).  In reactions 

catalyzed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled 

to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is 

preferred.  Class I synthetases are specific for arginine, cysteine, glutamic acid, 

glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan, and valine, while 

class II synthetases are specific for alanine, asparagine, aspartic acid, glycine, 

histidine, lysine, phenylalanine, proline, serine, and threonine.  Some organisms, such 

as E. coli, use a distinct aminoacyl-tRNA synthetase (aaRS) for each amino acid 

species to be charged on the cognate tRNA, while others lack one or several aaRSs 

(Tumbula, et al., 2000).  Specifically, all aaRSs except glutaminyl-tRNA synthetase 

(EC 6.1.1.18) were observed in the four Leptospira genomes.  This indicates that an 

alternative pathway is required to aminoacylate the corresponding glutaminyl-

tRNA(s) correctly (Figure 3.2.27).  The first step of this pathway is the misacylation 

of tRNAGln with glutamate, catalyzed by glutamyl-tRNA synthetase (EC 6.1.1.17) 

(Lapointe, et al., 1986), followed by the transamidation of Glu-tRNAGln into Gln-

 87



tRNAGln, catalyzed by a tRNA-dependent amidotransferase (EC 6.3.5.-) (Curnow, et 

al., 1997).  All three subunits of tRNA-dependent amidotransferase (gatA, gatB, and 

gatC) were identified in four Leptospira genomes. 

 
Figure 3.2.27 Putative pathways for Gln-tRNAGln and Asn-tRNAAsn synthesis in four 
Leptospira species. 
 

As mentioned early, the four Leptospira species cannot synthesize asparagine 

as it lacks the gene for aspartate aminotransferase (EC 6.3.1.1).  However, Asn-

tRNAAsn synthesis still is possible because tRNA-dependent amidotransferase (EC 

6.3.5.-) can transamidate both Glu-tRNAGln and Asp-tRNAAsn (Akochy, et al., 2004). 

In addition, initiation of protein synthesis in prokaryotes employs fmet-

tRNAfmet, where the esterified methionine is formylated.  At first, the methionine is 

esterified to tRNAfmet by the methionyl-tRNA synthetase (EC 6.1.1.10) and then the 

esterified methionine is formylated via the anzyme methionyl-tRNA 

formylatransferase (EC 2.1.2.9).  The genes for both of these enzymes were observed 

in the genomes of all four Leptospira species. 

3.2.6.4 Protein Biosynthesis 

Proteins are synthesized from mRNA templates by a highly conserved process 

as shown in Figure 3.2.28 and the genes coding for all enzymes necessary for 

translation are listed in Table 3.2.29.  The translation process can be divided into three 

stages: initiation, elongation, and termination.  In the first stage, two initiation factors 
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(IF-1 and IF-3) are bound to the 30S ribosomal subunit.  The mRNA and initiator N-

formylmethionyl tRNA then join the complex, with IF-2 specifically recognizing the 

initiator tRNA.  IF-3 then is released, allowing a 50S ribosomal subunit to associate 

with the complex.  This association leads to the release of IF-1 and IF-2.  Finally, a 

70S initiation complex is formed. 

In the second stage, the polypeptide chain is elongated.  The ribosome has 

three sites for tRNA binding, designated the “P” (peptidyl), “A” (aminoacyl), and “E” 

(exit) sites.  The initiator methionyl tRNA is bound at the “P” site.  The aminoacyl 

tRNA is escorted to into the “A” site by an elongation factor EF-Tu, which is 

complexed to GTP.  Then, elongation factor EF-Tu is released with the hydrolysis of 

GTP to GDP and elongation factor EF-Ts regenerates EF-Tu/GDP to EF-Tu/GTP.  

Once EF-Tu has left the ribosome, a peptide bond can be formed between the initiator 

methionyl tRNA at the “P” site and the second aminoacyl tRNA at the “A” site by 

peptidyl transferase.  Another elongation factor P (EF-P) enhances the synthesis of the 

first peptide bond initiated by N-formylmethionine (Aoki, et al., 1997).  Finally, the 

ribosome translocates along the mRNA to the next codon accompanied by the 

hydrolysis of the GDP associated with elongation factor EF-G.  This frees the “A” site 

for the next aminoacyl-tRNA to bind while the growing peptide chain is residing on 

the “P” site. 

In the third stage, the peptide chain is terminated when a stop codon (UAA, 

UAG, or UGA) is translocated into the “A” site of the ribosome.  Cells contain release 

factors that recognize the signals and terminate protein synthesis.  The first release 
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factor RF-1 recognizes UAA or UAG, and the second release factor RF-2 recognizes 

UAA or UGA.  The third release factor RF-3 does not recognize specific termination 

codons but acts together with RF-1 and RF-2.  The release factors (RF-1, RF2, and 

RF-3) bind to a termination codon at the “A” site and stimulate hydrolysis of the bond 

between the tRNA and the polypeptide chain at the “P” site, resulting in release of the 

completed polypeptide from the ribosome.  The fourth release factor RF-4 enhances 

the dissociation of ribosomes from mRNA template after termination of translation 

(Heurgué-Hamard, et al., 1998).  As stated above, the genes encoding the enzymes 

required for protein translation identified in all four Leptospira species are listed in 

Table 3.2.29. 

 

Figure 3.2.28 Schematic representation of the translation process as found in the four 
Leptospira species (adapted from KEGG) 
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Table 3.2.29 Proteins involved in protein synthesis in four Leptospira species. 
 

EC#/Gene 
Name 

Desription Gene in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

2.1.2.9 methionyl-tRNA 
formyltransferase 

Yes Yes Yes Yes 

2.3.2.12 peptidyl transferase 
(50S ribosomal protein L16) 

Yes Yes Yes Yes 

3.4.11.18 methionine aminopeptidase Yes Yes Yes Yes 
3.5.1.31 formylmethionine deformylase Yes Yes Yes Yes 
InfA translation initiation factor IF-1 Yes Yes Yes Yes 
InfB translation initiation factor IF-2 Yes Yes Yes Yes 
InfC translation initiation factor IF-3 Yes Yes Yes Yes 
Tsf elongation factor EF-Ts Yes Yes Yes Yes 
Tuf elongation factor EF-Tu Yes Yes Yes Yes 
FusA elongation factor EF-G Yes Yes Yes Yes 
Efp elongation factor EF-P Yes Yes Yes Yes 
PrfA peptide chain release factor RF-

1 
Yes Yes Yes Yes 

PrfB peptide chain release factor RF-
2 

Yes Yes Yes Yes 

PrfC peptide chain release factor RF-
3 

Yes Yes Yes Yes 

Frr ribosome recycling factor Yes Yes Yes Yes 
 

3.2.6.5 Protein Degradation 

Hydrolysis of peptides by the protease (also called peptidase) to free amino 

acids is one of the central activities within a cell.  The degradation of proteins is an 

important mechanism for regulating many pathways, degrading mis-folded proteins, 

and degrading proteins during starvation to provide amino acids for energy.  Usually, 

proteases are classified into the different families, based on the evolutionary 

relationship between each other.  Each family is identified by an upper-case letter 

representing the catalytic type (S for serine-type, T for threonine-type; C for cysteine-

type, A for aspartic-type, M for metallo-type, and U for unknown type) (Puente, et al., 

2003).  As shown in Tbale 3.2.30, analysis of the genomes of the four Leptospira 

species revealed a slightly different distribution of the three protease families, C, M, 

and S. 
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Table 3.2.30 Protease distribution in Leptospira species. 
 

members in each family Protease 
Family pomona grippotyphosa lai copenhageni 

A 1 1 1 1 
C 2 2 3 4 
M 34 38 35 36 
T 0 0 0 0 
S 7 8 7 8 
U 1 1 1 1 

 

 
3.2.7 Cell Wall 

3.2.7.1 Peptidoglycan 

In order to maintain shape and withstand intracellular pressure, most bacteria 

are surrounded by a cell wall consisting mainly of the peptidoglycan, a polymer of a 

repeating disaccharide-peptide unit, where the pentapeptide chains attached to 

adjacent sugar molecules are cross-linked.  The synthesis of peptidoglycans can be 

divided into three stages (van Heijenoort, 1998; Mirelman, et al., 1976). 

The first stage involves synthesis of two amino sugars precursors UDP-NAG 

and UDP-NAM in the cytoplasm.  After D-glutamate and D-alanyl-D-alanine are 

synthesized respectively, UDP–NAM is linked to pentapeptide, forming the basic 

subunit of peptidoglycan. 

In the second stage, the lipid carrier (lipid P) transfers UDP–NAM-

pentapeptide through the inner membrane to the periplasm, where UDP–NAM-

pentapeptide is linked to the UDP-NAG sugar to form the disaccharide precursor.  

Then, lipid PP is hydrolyzed to lipid P that can reenter the cycle. 

In the third stage, after the newly synthesized peptidoglycan subunit is 

transferred to the growing point of the cell wall's peptidoglycan, the sugars are 

polymerized, and the peptide chains are cross-linked. 
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As shown in Table 3.2.31, all the enzymes involved in peptidoglycan synthesis 

except UDP-N-acetylmuramoylpentapeptide lysine N6-alanyltransferase (EC 

2.3.2.10) were found in four Leptospira species.  The domain search revealed that one 

possible ORF could encode the missing transferase as it includes the same functional 

domain (COG2348: uncharacterized protein involved in methicillin resistance) 

conserved in UDP-N-acetylmuramoylpentapeptide lysine N6-alanyltransferase.  

Figure 3.2.29 illustrates peptidoglycan synthesis as reconstructed in the four 

Leptospira species. 

 

 

 

Figure 3.2.29 Peptidoglycan biosynthesis 
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Table 3.2.31 Enzymes involved in peptidoglycan biosynthesis 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni

2.6.1.16 glucosamine--fructose-6-phosphate 
aminotransferase 

Yes Yes Yes Yes 

5.4.2.- Phosphoglucosamine mutase Yes Yes Yes Yes 
2.3.1.157 glucosamine-1-phosphate N-

acetyltransferase 
Yes Yes Yes Yes 

2.7.7.23 UDP-N-acetylglucosamine 
pyrophosphorylase 

Yes Yes Yes Yes 

2.5.1.7 UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 

Yes Yes Yes Yes 

1.1.1.158 UDP-N-acetylmuramate dehydrogenase Yes Yes Yes Yes 
6.3.2.8 UDP-N-acetylmuramate--alanine ligase Yes Yes Yes Yes 
5.1.1.3 glutamate racemase Yes Yes Yes Yes 
6.3.2.9 UDP-N-acetylmuramoylalanine--D-

glutamate ligase 
Yes Yes Yes Yes 

6.3.2.13 UDP-N-acetylmuramoylalanyl-D-
glutamate--2,6-diaminopimelate ligase 

Yes Yes Yes Yes 

5.1.1.1 alanine racemase Yes Yes Yes Yes 
6.3.2.4 D-alanylalanine synthetase Yes Yes Yes Yes 
6.3.2.10 UDP-N-acetylmuramoylalanyl-D-

glutamyl-2,6-diaminopimelate--D-
alanyl-D-alanine ligase 

Yes Yes Yes Yes 

2.7.8.13 phospho-N-acetylmuramoyl-
pentapeptide-transferase 

Yes Yes Yes Yes 

2.4.1.227 UDP-N-acetylglucosamine--N-
acetylmuramyl-(pentapeptide) 
pyrophosphoryl-undecaprenol N-
acetylglucosamine transferase 

Yes Yes Yes Yes 

2.4.1.129 peptidoglycan glycosyltransferase Yes Yes Yes Yes 
3.6.1.27 undecaprenyl-diphosphatase Yes Yes Yes Yes 
6.3.1.2 glutamine synthetase Yes Yes Yes Yes 
2.3.2.10 UDP-N-acetylmuramoylpentapeptide 

lysine N6-alanyltransferase 
Yes Yes Yes Yes 

2.6.1.21 penicillin-binding protein Yes Yes Yes Yes 
 

3.2.7.2 Lipopolysaccharides (LPS) 

Lipopolysaccharide (LPS) contributes greatly to the structural integrity of the 

bacteria and protects them from the host immune defenses.  An LPS contain three 

parts: lipid A, core polysaccharide, and O-specific chain (Figure 3.2.30). 
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Figure 3.2.30 A schematic diagram of a lipopolysaccharide molecule (Bulach, 2000) 

The first part, lipid A, consists of six fatty acyl chains linked to two 

glucosamine residues.  The second part, core polysaccharide, is attached to lipid A 

through 3-hydroxy-D-manno-octulosonate (KDO).  This core is further divided into 

two regions, an inner core and an outer core.  The inner core consists of KDO, 

heptose, and phosphate, and the outer core consists of hexoses.  The third part, O-

specific chain, determines the antigenic specificity of the organism.  The O-specific 

chain consists of four to six sugars that may be repeated up to 50 times, making it the 

most variable region, while lipid A is the most conserved. 

The core and O-specific chain are synthesized in a manner similar to 

peptidoglycans, where the sugar residues are synthesized and assembled on a lipid P 

carrier.  Figure 3.2.30 described the biosynthesis pathway of lipid A.  All the genes in 

this pathway except KDO 8-P phosphatase (EC 3.1.3.45) were identified from 

Leptospira species.  A further domain analysis revealed that no any ORF from 

Leptospira species includes the functional domain (COG1778: low specificity 

phosphatase) conserved in KDO 8-P phosphatase.  However, since an amino acid 

sequence analysis indicates that KDO 8-P phosphatase is a member of the haloacid 

dehalogenase hydrolase superfamily (Wu and Woodard, 2003) and one haloacid 

dehalogenase-like hydrolase could be identified in all four Leptospira species, this 

enzyme may function as the missing KDO 8-P phosphatase (Table 3.2.32). 
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Figure 3.2.31 Lipid A biosynthetic pathway 
 

Table 3.2.32 Enzymes involved in Lipid A and KDO biosynthesis. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni

2.3.1.129 UDP-N-acetylglucosamine 
acyltransferase (lpxA) 

Yes Yes Yes Yes 

3.5.1.- UDP-3-O-[3-hydroxymyristoyl] N-
acetylglucosamine deacetylase (lpxC)

Yes Yes Yes Yes 

2.3.1.-(a) UDP-3-O-[3-hydroxymyristoyl] 
glucosamine N-acyltransferase (lpxD)

Yes Yes Yes Yes 

2.4.1.182 Lipid-A-disaccharide synthase (lpxB) Yes Yes Yes Yes 
2.7.1.130 Tetraacyldisaccharide 4'-kinase Yes Yes Yes Yes 
2.4.99.- 3-deoxy-D-manno-octulosonic-acid 

transferase (KDO transferase) (kdtA) 
Yes Yes Yes Yes 

2.3.1.-(b) Apolipoprotein N-acyltransferase (lnt) Yes Yes Yes Yes 
2.3.1.-(c) Lipid A biosynthesis lauroyl 

acyltransferase;lauroylacyltransferase 
(htrB) 

Yes Yes Yes Yes 

2.5.1.55 KDO 8-P synthase Yes Yes Yes Yes 
3.1.3.45 3-deoxy-manno-octulosonate-8-

phosphatase 
Yes Yes Yes Yes 

2.7.7.38 3-deoxy-manno-octulosonate 
cytidylyltransferase (CMP-KDO 
synthetase) (kdsB) 

Yes Yes Yes Yes 

 
3.2.8 Transport Proteins 

Transport proteins are responsible for the passage of substances, from small 

ions to large molecules, across the cell membrane.  Therefore, transport proteins can 
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compensate for the incomplete metabolic pathways by providing the cell with needed 

precursors for these reactions. 

3.2.8.1 Cation and Anion Transporters 

Analysis of the four Leptospira genomes revealed the presence of similar ion 

transporter genes as listed in Table 3.2.33. 

Table 3.2.33 Cation and anion transporters found in four Leptospira species. 
 

Gene name Description Genes in 
pomona 

Genes in 
grippotyphosa

Genes 
in lai 

Genes in 
copenhageni 

cysT/cysW sulfate ABC transport system Yes Yes Yes Yes 
eriC chloride ion channel Yes Yes Yes Yes 
--- phosphate transporter Yes Yes Yes Yes 
trkH potassium uptake protein Yes Yes Yes Yes 
kefA potassium efflux system Yes Yes Yes Yes 
kefB potassium efflux system Yes Yes Yes Yes 
kefC potassium efflux system Yes Yes Yes Yes 

kdpA 
potassium-transporting ATPase, 
A chain 

Yes Yes Yes Yes 

kdpB 
potassium-transporting ATPase, 
B chain 

Yes Yes Yes Yes 

kdpC 
potassium-transporting ATPase, 
C chain 

Yes Yes Yes Yes 

nctP1 sodium transporter Yes Yes Yes Yes 
nctP2 sodium transporter Yes Yes Yes Yes 
amtB ammonium transporter Yes Yes Yes Yes 
corA magnesium and cobalt transporter Yes Yes Yes Yes 
atc copper-transporting ATPase Yes Yes Yes Yes 
mgtA magnesium-transporting ATPase Yes Yes Yes Yes 
mgtE magnesium transporter Yes Yes Yes Yes 
--- mercuric ion permease Yes Yes Yes Yes 
feoB ferrous iron transporter Yes Yes Yes Yes 

 

3.2.8.2 Phosphotransferase System (PTS) 

PTS is used to import carbohydrates into the cell, and it has been described 

previously in several bacteria (Reizer, et al., 1993; 1999).  PTS consists of two 

cytoplasmic energy-coupling proteins (enzyme I (EI) and HPr) and a permease 

enzyme II (EII) (Figure 3.2.32).  At first, the EI transfers the phosphate group (P) 
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from phosphoenol-pyruvate (PEP) to the phosphocarrier protein HPr.  Then, the 

phosphoryl group is delivered to the carbohydrate via EII with three functional 

domains IIA, IIB, and IIC.  The IIA domain becomes phophorylated by HPr and 

further passes the phosphate to the IIB domain.  Finally, IIB domain phosphorylates 

the carbohydrate as IIC domain translocates it into the cell.  It is noteworthy that EI 

and HPr are general PTS components, while EIIs are specific for one or a few 

carbohydrates (Saier, 2000). 

 
Figure 3.2.32 The phosphotransferase system in E. coli (Kotrba, et al., 2001) 
Note: EI-enzyme I, EII-enzyme II, PEP-phosphoenol-pyruvate, CM-cytomembrane. 

Enzyme I (ptsI, EC 2.7.3.9), phosphocarrier protein HPr (ptsH), and fructose-

specific IIA component (ptsN, EC 2.7.1.69) were identified from the four Leptospira 

genomes.  However, IIB and IIC were not present.  To investigate further, an isozyme 

analysis (Green and Karp, 2004) was performed to search for the missing IIB.  To 

accomplish this, 1599 isozyme amino acid sequences were downloaded from NCBI 

and each sequence was compared with each L. pomona ORF by blastp.  When the 

isozyme from E. coli UTI89 is used as the query sequence, the best candidate 

identified from L. pomona was ORF163092 with E value of 0.25 for the missing IIB.  

Then an isozyme analysis (Green and Karp, 2004) was performed to search for the 

missing IIC.  Each of 640 isozyme amino acid sequences was compared with each L. 
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pomona ORF by blastp.  When the isozyme from Salmonella enterica is used as the 

query sequence, the best candidate identified from L. pomona was ORF1380300 with 

E value of 0.007 for the missing IIC.  Actually, L. pomona ORF163092 is assigned as 

Glycerol-3-phosphate dehydrogenase, and L. pomona ORF1380300 is assigned as 

cytochrome C oxidase polypeptide I.  Therefore, ORF163092 and ORF1380300 could 

not function as IIB and IIC, respectively.  Similarly, the isozyme analysis was 

performed to the other three Leptospira species.  No gene was identified that could 

substitute for the function of IIB or IIC.  Taken together, neither of the four 

Leptospira species includes the complete phosphotransferase system. 

Table 3.2.34 Proteins involved in the phosphotransferase system in four Leptospira 
species. 
 

Gene 
name 

Desription Gene in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

EI PTS system Enzyme I Yes Yes Yes Yes 
HPr phosphocarrier protein Yes Yes Yes Yes 
EII A PTS system Enzyme II A component Yes Yes Yes Yes 
EII B PTS system Enzyme II B component No No No No 
EII C PTS system Enzyme II C component No No No No 

 

It is interesting to notice that Leptospira species seem to have one glucose 

uptake system, a glucose-sodium symporter that is dependent on a sodium gradient 

across the bacterial membrane. pomona encodes two sugar transporters, 

grippotyphosa two, and lai also two, but copenhageni encodes only one.  Therefore, 

the Leptospira species may uptake sugar only through the transporter, as opposed to 

other bacteria that import sugar via the phosphotransferase system. 

3.2.9 Protein Export and Secretion 
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Prokaryotes possess two parallel and complementary pathways for the export 

of proteins across the cytoplasmic membrane and into different cellular compartments.  

The first pathway is known as the general secretory (Sec) pathway (Fekkes and 

Driessen, 1999) and has been studied most extensively in E. coli (Stephenson, 2005).  

Multiple proteins are involved in this process (Figure 3.2.33).  SecB, a chaperone, 

binds to the mature part of the preprotein and prevent folding.  SecA, an ATPase, 

binds the signal sequence of the preprotein.  SecY, SecE, and Sec G form a 

heterotrimeric complex.  SecD, SecF, YajC, and YidC form a heterotetrameric 

complex.  These two complexes then form the translocation channel.  Once SecA 

approaches to the channel, SecB is released with a concomitant binding of ATP by 

SecA.  Then ATP binding inserts the signal sequence into the membrane.  SecA 

pushes the preprotein through the transmembrane pore upon hydrolysis of ATP.  Once 

translocated into the membrane, the exported protein is fastened to the membrane by 

the signal peptide.  Signal peptidase cleaves off the signal peptide thereby allows the 

protein to travel to it final destination. 

The core of the Sec pathways of Leptospira species is generally equivalent to 

that of E. coli.  However, the striking difference lies in that the chaperone SecB is 

absent in Leptospira species (Table 3.2.35).  Domain analysis revealed that no 

Leptospira ORF could be found that corresponded the functional domain (COG1952: 

preprotein translocase subunit SecB) conserved in E. coli SecB.  To investigate 

further, an isozyme analysis (Green and Karp, 2004) was performed to search for the 

missing SecB.  To accomplish this, 779 isozyme amino acid sequences were 

downloaded from NCBI and each sequence was compared with each L. pomona ORF 
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by blastp.  When the isozyme from Rickettsia conorii was used as the query sequence, 

the best candidate identified from L. pomona was ORF399057 with a very high E 

value of 0.039 for the missing SecB.  Therefore, ORF399057 might not function as 

SecB.  The similar results were obtained from the other three Leptospira species.  It is 

very interesting to also note that no homologous gene for E. coli SecB was identified 

in Bacillus subtilis as the Leptospira species (Kunst, et al., 1997).  Yamane and 

colleges discovered that gene Ffh from Bacillus subtilis may function as SecB 

(Yamane, et al., 2004).  However, further domain analysis did reveal that one possible 

flagellar GTP-binding protein from Leptospira species includes the same functional 

domain (COG0541: signal recognition particle GTPase) conserved in FfH.  Therefore, 

Leptospira species may use the modified Sec dependent pathway for the protein 

secretion in case of the absence of SecB (Figure 3.2.32). 

 

Figure 3.2.33 Sec dependent pathway in L. pomona. 
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Table 3.2.35 Proteins involved in the Sec dependent pathway in four Leptospira 
species. 

 

Gene 
name 

Desription Gene in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

SecA preprotein translocase SecA 
subunit 

Yes Yes Yes Yes 

SecB preprotein translocase SecB 
subunit 

No No No No 

FfH signal recognition particle GTPase Yes Yes Yes Yes 
SecD preprotein translocase SecD 

subunit 
Yes Yes Yes Yes 

SecE preprotein translocase SecE 
subunit 

Yes Yes Yes Yes 

SecF preprotein translocase SecF 
subunit 

Yes Yes Yes Yes 

SecG preprotein translocase SecG 
subunit 

Yes Yes Yes Yes 

SecY preprotein translocase SecY 
subunit 

Yes Yes Yes Yes 

YajC preprotein translocase YajC 
subunit 

Yes Yes Yes Yes 

YidC preprotein translocase YidC 
subunit 

Yes Yes Yes Yes 

Spase I signal peptidase I Yes Yes Yes Yes 
Spase II signal peptidase II Yes Yes Yes Yes 

 

The second pathway for the export of proteins is the twin arginine 

translocation (Tat) pathway (Berks, et al., 2005).  It is distinct from the Sec pathway 

because Tat substrates are secreted in a folded conformation (Thomas, et al., 2001), 

Tat signal peptides contain a highly conserved twin-arginine motif (Niviere, et al., 

1992), and the energy driving translocation is provided solely by the proton motive 

force (Santini, et al., 1998). 

Four genes (TatA, TatB, TatC, and TatE) have been identified that encode the 

components of the E. coli Tat translocation apparatus (Muller and Klosgen, 2005).  

TatA, TatB, and TatE are sequence-related proteins.  TatE encodes a protein with high 

sequence similarity to TatA, and the two proteins can functionally substitute for each 

other (Jack, et al., 2001; Blaudeck, et al., 2005).  TatA and TatB show the weaker 
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sequence identity.  However, TatA may replace TatB (Blaudeck, et al., 2005).  TatA 

and TatBC form separate highly oligomeric complexes (Figure 3.2.34).  The signal 

peptide of the preprotein binds to a site in TatC.  This TatBC-preprotein complex 

induces a protein-conducting channel in TatA open, allowing the mature domain of 

the preprotein across the membrane.  After protein transport has been completed, the 

signal peptide is cleaved by the signal peptidase.  Then the TatA and TatBC 

components dissociate and the system returns to the initial state. 

Analysis of the four Leptospira genomes revealed that genes for TatA and 

TatC were present, while TatE and TatB were not (Table 3.2.36).  As mentioned 

above, since TatA may function as TatE and it also may replace TatB, Leptospira 

species may be capable of employing the Tat system for the protein excretion. 

 

 
Figure 3.2.34 The Tat translocation pathway in bacteria (Berks, et al., 2005).  This 
figure was refined manually to show the systems as present in the four Leptospira 
species. 
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Table 3.2.36 Proteins involved in the Sec dependent pathway in four Leptospira 
species. 

 

Gene 
name 

Desription Gene in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

TatA Sec-independent protein translocase 
protein 

Yes Yes Yes Yes 

TatB Sec-independent protein translocase 
protein 

Yes Yes Yes Yes 

TatC Sec-independent protein translocase 
protein 

Yes Yes Yes Yes 

TatE Sec-independent protein translocase 
protein 

Yes Yes Yes Yes 

LepB signal peptidase I Yes Yes Yes Yes 
 

3.3 Virulence Genes 

Leptospirosis is the most widespread zoonosis in the world and has emerged as 

an important public health problem (Levett, 2001).  Its severe disease form, known as 

Weil's syndrome, is an acute febrile illness associated with multiorgan system 

complications, including jaundice, renal failure, meningitis, and pulmonary 

hemorrhage, with a mortality rate of more than 15% (Marotto, et al., 1999).  

Leptospirosis is caused by the pathogens-leptospiries.  Although the mechanisms 

underlying leptospirosis are not well understood (Vinetz, 2001), potential virulence 

genes have been inferred from this dissertation research and earlier genomic 

sequencing studies (Ren, et al., 2003; Nascimento, et al., 2004).  Most bacterial 

pathogens use common virulence strategies that include, for example, adhesion to the 

host cells, penetration of the membranes, and the defense against the host immune 

response (Wilson, et al., 2002) as described below. 

3.3.1 Chemotaxis 
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Figure 3.3.1 The E. coli chemotaxis system (Baker, et al., 2005) 

 

Note:  RECEPTORS-methyl-accepting chemotaxis protein (MCP); A-CheA; B-CheB; R-CheR; W-
CheW; Y-CheY; Z-CheZ; P-phosphoryl group. 

 

Chemotaxis and motility, critical for the virulence of pathogenic leptospires, 

enable the bacteria to move towards attractants and avoid repellents, and thus respond 

quickly to different environments as well as allow them to penetrate host tissue 

barriers during infection (Charon and Goldstein, 2002). 

Table 3.3.1 Genes involved in the chemotaxis system of four Leptospira species. 
 

Gene name Function Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

MCP methyl-accepting chemotaxis 
protein 

11 11 12 11 

CheA histidine protein kinase 2 2 2 2 
CheB chemotaxis response regulator 

protein-glutamate methylesterase 
3 3 3 3 

CheR chemotaxis protein 
methyltransferase 

2 2 2 2 

CheW coupling protein 3 3 3 3 
CheY response regulator 1 1 1 1 
CheZ CheY-P phosphatase 0 0 0 0 
CheX CheY-P phosphatase 1 1 1 1 
FliY flagellar motor switch protein 1 1 1 1 

 
In E. coli chemotaxis (Baker, et al., 2005), see Figure 3.3.1, the 

transmembrane receptors first recognize the signal (the change of the concentration of 

a chemical) in the surrounding environment.  This signal then is transduced to the 

histidine kinase, CheA, and the coupling protein, CheW, and the phosphorylation of 

CheA induces phosphorylation of the response regulator, CheY.  Finally, 

phosphorylated CheY (CheY-P) interacts with the flagellar motors to direct the 
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motility of cell.  In addition, the activity of CheA can be altered by the adaptional 

proteins CheB and CheR, and the phosphatase CheZ can enhance the 

dephosphorylation of CheY-P by interacting with CheA. 

The Leptospira species seem to have adopted a similar chemotaxis system as 

E. coli, but they lack an obvious CheZ gene.  It was reported that FliY and CheX 

genes from Bacillus subtilis (Szurmant, et al., 2003) and Borrelia burgdorferi 

(Motaleb, et al., 2005), respectively, encode proteins that catalyze the 

dephosphorylation of CheY-P.  Therefore they may have functional role analogous to 

that of CheZ in E. coli.  Both FliY and CheX genes were identified from the genomes 

of all four Leptospira species as shown in Table 3.3.1.  Furthermore, it is very 

interesting to notice that there are different numbers of methyl-accepting chemotaxis 

protein in the different species: 11 in pomona, 11 in grippotyphosa, 12 in lai, and 11 

in copenhageni. 

3.3.2 Motility 

 

Figure 3.3.2 Representation of flagella assembly in E. coli. 
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Table 3.3.2 Genes involved in the motility of four Leptospira species. 
 

Gene 
name 

Function Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

FliD flagellar hook-associated protein 1 1 1 1 
FliC/
FlaB 

periplasmic flagellin 4 4 4 4 

FlgL flagellin and related hook-associated 
proteins 

1 1 1 1 

FlgK flagellar hook-associated protein 1 1 1 1 
FlgE flagellar hook protein 1 1 1 1 
FliK flagellar hook-length control protein 1 1 1 1 
FlgD flagellar basal-body rod modification 

protein 
1 1 1 1 

FlgF flagellar hook protein 0 0 0 0 
FlgG flagellar hook protein 2 2 2 2 
FlgH flagellar L-ring protein precursor 1 1 1 1 
FlgI flagellar basal-body P-ring protein 1 1 1 1 
MotA chemotaxis motA protein 2 2 2 2 
MotB chemotaxis motB protein 4 4 4 4 
FliE flagellar hook-basal body protein 1 1 1 1 
FlgB flagellar basal body protein 1 1 1 1 
FlgC flagellar basal body rod protein 1 1 1 1 
FliF flagellar MS-ring protein 1 1 1 1 
FliG flagellar motor switch protein 3 3 3 3 
FliL flagellar basal body-associated protein 1 2 2 1 
FliM flagellar motor switch protein 1 1 1 1 
FliN flagellar motor switch protein 2 3 2 2 
FlhA flagellar biosynthesis protein 1 1 1 1 
FlhB flagellar biosynthetic protein 1 1 1 1 
FliH flagellar assembly protein 1 1 1 1 
FliI flagellum-specific ATP synthase 1 1 1 1 
FliO flagellar protein required for flagellar 

formation 
1 1 1 1 

FliP flagellar biosynthesis protein 1 1 1 1 
FliQ flagellar biosynthetic protein 1 1 1 1 
FliR flagellar biosynthetic protein 1 1 1 1 

 
The flagellum, used by E. coli for motility, has three parts (Figure 3.3.2).  The 

first part is the basal body associated with the cell wall and the cytoplasmic membrane 

that functions as a rotary motor to generate torque and consists of both rings and rod 

like structures (Ikeda, et al., 1996).  The second part is the hook that acts as a 

universal joint to transmit the motor torque to the long helical propeller in its different 

orientations.  The third part is the filament with a thin helical structure and rapid 

rotation that propels the cell locomotion in viscous environments. 
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All genes except FlgF involved in the flagellar assembly were identified in 

four Leptospira species as shown in Table 3.3.2.  A domain analysis revealed that 

FlgG and FlgF shared the common functional domain, COG1749: flagellar basal body 

and hook proteins.  Therefore, FlgG, identified from Leptospira species, may function 

as FlgF.  In addition, it is noteworthy that different Leptospira species have different 

copy numbers of FliL and FliN as shown in Table 3.3.2. 

3.3.3 Adherence 

Adherence often is an essential step in bacterial pathogenesis or infection and 

in an early event in the establishment of the infection.  To effectively adhere to 

mammalian host surfaces, Leptospira pathogens produce multiple families of 

adhesions as shown in Table 3.3.3 (Ren, et al., 2003; Nascimento, et al., 2004). 

The first family of adhesins consists of three integrin alpha-like proteins 

(Springer, 1997).  The N-terminal region of the alpha subunit is composed of seven 

FG-GAP (phenyl-alanyl-glycyl and glycyl-alanyl-prolyl) repeats that fold into a beta-

propeller domain.  These adhesins recognize the diverse ligands on the host cell 

surface and in the extracellular matrix.  Three common genes encoding integrin alpha-

like proteins were identified in L. pomona, grippotyphosa, lai, and copenhageni. 

The second family consists of the Lig (leptospira immunoglobulin-like) 

proteins that include about 10 bacterial immunoglobulin-like (Big) repeat domains 

(Palaniappan, et al., 2002).  These adhesins mediate host cell attachment and entry.  It 

is notable that Lig genes have been reported to be present only in pathogenic but not 

saprophytic Leptospira species (Matsunaga, et al., 2003).  This family comprises three 

genes: ligA, ligB, and ligC.  ligA and ligB encode large lipoproteins (128 and 212 
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kDa, respectively).  But ligC contains mutations that disrupt the reading frames.  All 

the four Leptospira species harbor single copy of each Lig gene except L. lai as it 

lacks LigA gene (Nascimento, et al., 2004). 

The third family consists of fibronectin-binding protein (cadF) (Merien, et al., 

2000). These adhesions are 36kDa outer-membrane protein with a conserved ompA 

functional domain (Pautsch and Schulz, 1998).  Each Leptospira species (pomona, 

grippotyphosa, lai, or copenhageni) harbors three genes encoding fironectin-binding 

proteins that likely mediate the binding of the Leptospira pathogens to the 

extracellular matrix component fibronectin of the host. 

Table 3.3.3 Genes involved in adherence of four Leptospira species. 
 

Gene 
name 

Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in lai Genes in 
copenhageni 

itgA integrin alpha-like proteins 3 3 3 3 
LigA Ig-like repeat domain protein 1 1 1 0 1 
LigB Ig-like repeat domain protein 3 1 1 1 1 
LigC --- 1 1 1 1 
cadF fibronectin-binding protein 3 3 3 3 

 
3.3.4 Invasion 

In addition to chemotaxis and motility, leptospiral invasion may be mediated 

by secretion of enzymes capable of degrading host cell membranes (Ren, et al., 2003).  

Basically, there are three families of protein involved in invasion as shown in Table 

3.3.4. 

The first family, related to the hemolysin, consists of proteins that likely bind 

to the outer membrane of the susceptible host cell to form a transmembrane channel 

that allows water, ions, and small organic molecules to pass through the 

transmembrane channel that can result in host cell death by irreversible osmotic 

swelling, a major mechanism by which protein toxins can damage cells (Gentschev, et 
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al., 2002).  Eighteen common genes encoding hemolysins were identified from 

pomona, grippotyphosa, lai, and copenhageni: 5 sphingomyelinase C-type 

hemolysins, 3 orthologs of the Serpulina hyodysenteriae tlyABC hemolysins, and 10 

other hemolysins. 

The second family is a phospholipase that converts phospholipids into fatty 

acids and other lipophilic substances.  There are four major classes, termed A, B, C 

and D, that act by cleaving the triglyceride molecule into various fragments (Birch, et 

al., 1996).  Only one copy of phospholipase C and one copy of phospholipase D were 

identified from each of these four Leptospira species. 

The third family is a protease that degrades extracellular matrix proteins to 

facilitate invasion of host tissues.  One gene encoding collagenase, and four genes 

encoding metalloprotease were identified in all four Leptospira species.  A 

particularly interesting finding from our analyses was that there are four predicted 

thermolysins in pomona, five in grippotyphosa, three in lai, and four in copenhageni. 

Table 3.3.4 Genes involved in invasion of four Leptospira species. 
 

Family Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in lai Genes in 
copenhageni 

sphingomyelinase C-type 
hemolysins 

5 5 5 5 

tlyA 
tlyB 
tlyC 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

hemolysin 
 
 
 other hemolysins 10 10 10 10 

phospholipase C 1 1 1 1 phospholipase 
phospholipase D 1 1 1 1 
collagenase 1 1 1 1 
metalloprotease 4 4 4 4 

 
protease 

thermolysin 4 5 3 4 
 
3.3.5 Iron acquisition and utilization 

Iron is an essential nutrient to support the growth of most organisms.  

However, despite the relative abundance of iron in nature, oxidation creates insoluble 
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iron complexes that are unavailable to bacteria.  To satisfy their iron requirements, 

bacteria have evolved numerous strategies for iron uptake and the ability to acquire 

iron and iron complexes also has long been recognized as an important determinant of 

bacterial virulence (Braun, 2001). 

 
 
 
 
 

 

 
 
 
 
 
 
 

Figure 3.3.3 Heme synthesis pathway as deduced from the genomic sequences of four 
Leptospira species. 
 

Table 3.3.5 Enzymes involved in the heme synthesis pathway in four Leptospira 
species. 
 

EC# Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes 
in lai 

Genes in 
copenhageni 

6.1.1.17 
 

glutamyl-tRNA synthetase 
(gltX) 

Yes Yes Yes Yes 

1.2.1.70 
 

glutamyl-tRNA reductase 
(hemA) 

Yes Yes Yes Yes 

5.4.3.8 
 

glutamate-1-semialdehyde 2,1-
aminomutase (hemL) 

Yes Yes Yes Yes 

4.2.1.24 
 

porphobilinogen synthase 
(hemB) 

Yes Yes Yes Yes 

2.5.1.61 
 

hydroxymethylbilane synthase 
(hemC) 

Yes Yes Yes Yes 

4.2.1.75 
 

uroporphyrinogen-III synthase 
(hemD) 

No No No No 

4.1.1.37 
 

uroporphyrinogen decarboxylase 
(UPD) (hemE) 

Yes Yes Yes Yes 

1.3.3.3 
 

coproporphyrinogen III oxidase 
(hemF) 

Yes Yes Yes Yes 

1.3.3.4 
 

protoporphyrinogen oxidase 
(hemG) 

Yes Yes Yes Yes 

4.99.1.1 ferrochelatase (hemH) Yes Yes Yes Yes 
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Analysis of the Leptospira species genomes shows that all heme biosynthetic 

genes (hemA, hemL, hemB, hemC, hemE, hemN, hemY, and hemH) except hemD 

were identified.  A domain analysis revealed that all four Leptospira species lack the 

conserved hemD uroporphyrinogen III synthase functional domain (COG1587: 

uroporphyrinogen III synthase).  Guégan and colleagues reported that the leptospiral 

hemC gene (encoding porphobilinogen deaminase) could restore the activity of 

uroporphyrinogen III synthase in an E. coli ∆hemD mutant (Guégan, et al., 2003).  

Their discovery indicated that the leptospiral hemC gene encodes a bifunctional 

enzyme, allowing Leptospira species to synthesize heme de novo even without the 

hemD gene.  In addition, it is very interesting to notice that all these nine genes form 

an operon in the small chromosome and conserved in all four Leptospira species. 

Table 3.3.6 Genes involved in the iron uptake systems of four Leptospira species. 

Gene 
name 

Description Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni 

FhuA the receptor for deferoxamine Yes Yes Yes Yes 
HmuR the receptor of heme Yes Yes Yes Yes 
TonB 
 

periplasmic protein, linking 
inner and outer membranes 

Yes Yes Yes Yes 

ExbB biopolymer transport protein Yes Yes Yes Yes 
ExbD biopolymer transport protein Yes Yes Yes Yes 
FeoB ferrous iron transport protein Yes Yes Yes Yes 

 

Although as shown in Figure 3.3.3 and Table 3.3.5, all four Leptospira species 

possesses the genes for all the enzymes necessary for synthesizing heme, they still 

require an iron uptake system.  Previous studies have showed that iron uptake systems 

can be classified into two categories, TonB-dependent and TonB-independent. The 

first category includes two distinct systems based on the form of iron entering the cell.  

One system takes up iron in the form of deferoxamine, a hydroxamate siderophore, 

with FhuA serving as the deferoxamine receptor (Pawelek, et al., 2006).  The other 
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system imports heme using the HmuR receptor (Simpson, et al., 2000).  These two 

systems share the same TonB energy transducing system that consists of three 

proteins: TonB, ExbB, and ExbD.  The second category consists of only FeoB 

(Louvel, et al., 2005), a protein that can transport either ferric dicitrate or iron 

sulphate.  All the genes involved in both iron uptake systems were identified from 

each of the four Leptospira species and listed in Table 3.3.6. 

3.3.6 Stress Response 

Depending upon the environment stress, a large number of stress response 

proteins are induced to protect the bacteria against further damage.  This response is 

crucial for bacterial survival.  All four Leptospira species respond to two major stress 

conditions, oxidation and heat. 

Under the oxidative stress, the toxic superoxide radicals and H2O2 are 

produced and enzymes such as superoxide dismutase (SOD), catalase, and peroxidase 

function as the scavengers.  No SOD orthologs have been observed in the four 

Leptospira genomes, consistent with the observation that Leptospira interrogans 

serovars lacked significant SOD activity (Austin, et al., 1981).  However, catalase, 

thiol peroxidase, and glutathione peroxidase have been identified and they function to 

replace the missing SOD in Leptospira species as shown in Table 3.3.7. 

Under the heat stress, a group of heat-shock proteins are induced that protect 

cells against the adverse effects of hypothermia.  Basically, heat-shock proteins can be 

classified into two categories, molecular chaperons and ATP-dependent proteases.  A 

sudden heat shock results in some denatured and mis-folded proteins immediately.  

These denatured proteins are recognized and bound by chaperons, and then degraded 
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by ATP-dependent proteases (Schumann, 2003).  The two categories of heat-shock 

proteins were identified from four Leptospira species and listed in Table 3.3.7. 

Table 3.3.7 Stress response proteins identified from four Leptospira species. 

Gene name Function Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni 

SOD superoxide dismutase 0 0 0 0 
CatA catalase 1 1 1 1 
Tpx thiol peroxidase 1 1 1 1 
Gpo glutathione peroxidase 2 2 2 2 
Hsp20 chaperone 2 2 2 2 
Hsp33 chaperone 1 1 1 1 
Hsp70 (groEL) chaperone 1 1 1 1 
Hsp90 (htpG) chaperone 2 2 2 2 
DnaJ chaperone 5 5 5 5 
DnaK chaperone 1 1 1 1 
GroES chaperone 1 1 1 1 
GrpE chaperone 1 1 1 1 
HtpX protease 1 1 1 1 
Lon protease 1 1 1 1 
LonA protease 1 1 1 1 
hslU (clpY) protease 1 1 1 1 
hslV (clpQ) protease 1 1 1 1 
ClpA protease 1 1 1 1 
ClpB protease 1 1 1 1 
ClpC protease 1 1 1 1 
ClpP protease 2 2 2 2 
ClpS protease 1 1 1 1 
ClpX protease 1 1 1 1 

 
3.3.7 Lipopolysacharides (LPS) 

As discussed in 3.2.7.2 Biosynthesis of Lipopolysaccharides, LPS is an outer 

membrane chemical moiety consisting of three sections: a toxic lipid (Lipid A) 

anchored in the outer membrane, an immunogenic polysaccharide core, and an 

antigenic O-linked series of oligosaccharides (O-antigen) at the extracellular surface.  

Lipid A, a strong biological enhancer, can boost the immune system while the highly 

variable O-antigen often allows the pathogens to successfully evade the host immune 

response.  LPS therefore was considered as one of the initially discovered virulence 

factors in bacterial pathogens (Moxon, et al., 1998).  
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Leptospires are classified into more than 200 serovars and 24 serogroups based 

on the structural diversity of LPS.  LPS in the different serovar has the different sugar 

composition, number, repetitiveness, and ramification (Faine, et al., 1999).  Therefore, 

changes in genes involved in the LPS biosynthesis may account for serovar diversity 

among leptospires (de la Pena-Moctezuma, et al., 1999).  In Leptospira, as many other 

bacteria, at least part of the genes coding for enzymes of the polysaccharide 

biosynthesis pathway are found clustered in a region of chromosomes named O-

antigen gene cluster (rfb locus) (de la Pena-Moctezuma, et al., 1999).  In agreement 

with findings in other rfb loci of leptospires, almost all of the identified genes are 

encoded on the same strand. 

In the rfb locus, 63, 61, 62, and 62 genes were identified in the genomes of L. 

grippotyphosa, pomona, copenhageni, and lai, respectively (Figure 3.3.4, Table 

3.3.8).  Among them, 35 genes are shared by all the four Leptopira species.  17 genes 

are shared only by grippotyphosa and pomona, 9 and 8 genes are species specificto 

grippotyphosa and pomona, respectively, while 25 genes are shared only by 

copenhageni and lai.  Most of these genes are co-linear between copenhageni and lai, 

with the only exception being that one gene of copenhageni, LIC12159 (hypothetical 

protein), is absent in lai, while one gene of lai, LA1622 (galactoside O-

acetyltransferase), is absent in copenhageni.  These differences in the rfb loci of L. 

grippotyphosa, pomona, copenhageni, and lai may reflect their evolutionary 

adaptation to different animal hosts (Ren, et al., 2003; Nascimento, et al., 2004). 
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Figure 3.3.4 Genes involved in the rfb locus are compared among four Leptospira 
species: grippotyphosa, pomona, copenhageni, and lai. 
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Table 3.3.8 Genes in the rfb locus are compared among four Leptospira species: 
grippotyphosa, pomona, copenhageni, and lai. 
 

grippotyphosa pomona copenhageni lai Genes in the rfb locus 
 
● 

 
● 

 
● 

 
● 

35 genes 
5 transferase 

7 rfb genes 
7 glycosyl transferase 

16 others 
● ○ ● ● 1 gene 

1 putative lipoprotein 
 
● 

 
● 

 
○ 

 
○ 

17 genes 
3 rfb genes 
3 reductase 

11 others 
 
○ 

 
○ 

 
● 

 
● 

25 genes 
3 epimerase 

4 dehydratase 
5 rfb genes 

6 transferase 
7 others 

● ○ ○ ● 1 gene 
1 galactoside O-acetyltransferase 

○ ● ● ○ 1 gene 
1 methyltransferase 

 
● 

 
○ 

 
○ 

 
○ 

9 genes 
1 methyltransferase 

1 TPR repeat 
7 rfb genes 

 
○ 

 
● 

 
○ 

 
○ 

8 genes 
1 transposase 

1 methyltransferase 
1 FAD dependent oxidoreductase 

5 rfb genes 
 

Note: ● present, ○ absent. 
 

3.3.8 Antibiotic Resistance 

In addition to the above mentioned virulence factors, numerous antibiotic 

resistance genes were identified in all four Leptospira genomes.  These resistance 

genes appear to operate by catabolizing antibiotic, preventing an antibiotic from 

reaching its intracellular target, modifying the antibiotic's target site, or by producing 

an alternative metabolic pathway that bypasses the blockage of the antibiotic 

(Tenover, 2006).  The antibiotic resistance genes discovered in four Leptospira 

species are listed and compared in Table 3.3.9, and it should be noted that different 
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Leptospira species harbors different numbers of multiple antibiotic resistance genes 

and acriflavine resistance genes. 

Table 3.3.9 The putative antibiotic resistance genes identified in four Leptospira 
species. 

 

Gene Category Genes in 
pomona 

Genes in 
grippotyphosa 

Genes in 
lai 

Genes in 
copenhageni 

bacitracin resistance protein 1 1 1 1 
small multidrug resistance protein 1 1 1 1 
vancomycin resistance protein 1 1 1 1 
tetracycline resistance protein 2 2 2 2 
bleomycin resistance protein 5 5 5 5 
multiple antibiotic resistance 
protein 

4 3 3 3 

acriflavine resistance protein 13 11 12 12 
 

 118



Chapter IV 

Conclusion 

Living organisms exist and prosper in unique environments because the genes 

in their genomes encode for macromolecules that provide the ability for that organism 

to have a selective advantage.  Through genomic sequencing we can uncover the 

specific genotype components that yield the resulting successful phenotype.  In the 

research leading to this dissertation, the complete nucleotide sequences of two animal 

pathogents, Leptospira interrogan serovar pomona and Leptosrira kirschneri serovar 

grippotyphosa were sequenced, their putative genomic features, including their 

predicted coding and non-coding regions, genomic organization, metabolic 

capabilities and virulence-related genes were determined and compared in detail to 

those predicted for other spirochetes, e.g. Leptospira interrogans serovar lai (Ren, et 

al., 2003) and Leptospira interrogans serovar copenhageni (Nascimento, et al., 2004), 

that also cause Leptospirosis in domestic and wild animals as well as secondary 

infections in humans, T. pallidum (Fraser, C. M. et al., 1998) , the causative agent of 

syphilis, and B. burgdorferi (Fraser, C. M. et al., 1997), that causes Lime's Disease.  

An additional comparison with Actinobacillus actinomycetemcomitans, an oral 

pathogen (Najar, F., 2002), reveals that Leptospira species likely have many fewer 

membrane-associated transporters because they infect tissues that do not provide 

fewer nutrients than are available to the oral pathogen. 

The first major conclusion is that almost 50 of the central metabolic pathways 

identically, genomic and megaplasmid sizes are conserved in all four Leptospira 

species: pomona, grippotyphosa, lai, and copenhageni, while their genomic 
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organization and virulence-related genes differ in various degrees.  In contrast, the 

spirochetes, T. pallidum and B. burgdorferi have relatively smaller ~1 Mbp genomes, 

and limited biosynthetic abilities while their metabolic pathways, including the TCA 

cycle, electron transport chain, fatty acid synthesis, LPS biosynthesis, nucleotide and 

amino acid biosynthesis, often are incomplete.  The limited metabolic capacities of 

these two spirochetes may reflect convergent evolution by gene loss from more 

metabolically competent progenitors and may explain why both T. pallidum and B. 

burgdorferi are obligate parasite of humans, and cannot survive without a host. 

One unique metabolic characteristic of Leptospira species is that they lack the 

asparagine synthetase that is involved in the synthesis of asparagine and since they do 

encode both aspartyl-tRNA synthetase and the three-subunit tRNA-dependent 

amidotransferase, the latter may be responsible for the production of Asn-tRNAAsn by 

the transamidation of Asp-tRNAAsn, as has been observed for example in 

Pseudomonas aeruginosa  (Akochy, et al., 2004) and Bacillus megaterium (Wilcox 

and Nirenberg, 1968). 

Interestingly, all four Leptospira species do encode a HemR-type receptor 

containing the amino acid motif FRAP that is specific to receptors of haem-containing 

compounds (Bracken, et al., 1999).  Since each Leptospira species possesses the genes 

for the heme biosynthetic enzymes, it is likely that leptospiries are capable of both 

heme uptake and de novo heme synthesis, consistent with the observation that heme is 

an essential growth factor for Leptospira species (Faine, 1959). 

The second major conclusion from this dissertation research is that we have 

provided additional support that Leptospirosis virulence is attributed in part to the 
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presence of species specific Lipopolysacharides (LPS) on the surface of the microbial 

outer membrane (Levett, 2001).  These genes synthesizing LPS are encoded in an O-

antigen biosynthesis gene cluster (rfb locus) and differences in the rfb locus and 

subsequent synthesized LPSs and have been implicated in determining the diversity of 

Leptospira serovars (Levett, 2001).  In addition, based on their O-antigen genes, the 

four sequenced Leptospira species can be divided into two groups, with one group 

including grippotyphosa and pomona and the other including copenhageni and lai.  

This is a grouping consistent with their unique host ranges as both grippotyphosa and 

pomona infect dogs, cows, sheep, pigs, and mice (Leptospirosis, 2000), while lai and 

copenhageni are closely related, and infect the striped field mice (Apodemus agrarius) 

(Ren, et al., 2003) and the domestic rats (Rattus norvegicus), respectively 

(Nascimento, et al., 2004) (Table 4.1). 

Table 4.1 Strains of Leptospira species used in DNA sequence analysis studies. 
 

Species and Serovar Isolation Country(1) Host Range 
Leptospira interrogan 
serovar pomona 

Australia dogs, cows, sheep, pigs, horses, mice, and 
humans(2) 

Leptosrira kirschneri 
serovar grippotyphosa 

United States dogs, cows, sheep, pigs, mice, rats, and 
humans(2) 

Leptospira interrogans 
serovar lai 

China field mice and humans(3) 

Leptospira interrogans 
serovar copenhageni 

Brazil domestic rats and humans(4) 

 

Note:  (1) Haake, et al., 2004. 
(2) Leptospirosis, Control of Communicable Diseases Manual. 2000. 
(3) Ren, et al., 2003 
(4) Nascimento, et al., 2004. 
 
The third major conclusion is that the sequence of Leptospira interrogans 

serovar pomona and Leptosrira kirschneri serovar grippotyphosa and our comparative 

study with the other two sequenced Leptospira interrogans serovar lai and 

copenhageni has revealed much information about the Leptospira lifecycle (see 

Figure 4.1).  The primary hosts for Leptospira are wild and domestic animals, and 
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leptospirosis has a major economic impact in the meat and diary industry.  However, 

humans can be accidental or secondary hosts for Leptospira, and when infection 

occurs by drinking contaminated water or the spirochete entering the blood stream 

through cuts in the skin, can cause symptoms that range from subclinical to fatal.  As 

shown below in Figure 4.1, Leptospira enter through broken skin where it often 

causes a skin rash at the site of infection or enters the blood stream through the 

mucosal lining of the mouth, where it is spread throughout the body via the blood 

stream, and subsequently causes meningitis in the brain, hepatitis in the liver, and 

nephritis in the kidney and the appearance of Leptospira in the urine. 

 

Figure 4.1 The lifecycle of Leptospira species in human. 
(a) Leptospira species enter into the host through the mouth or cut in the skin. 
(b) Leptospira species colonize in the liver, the major site for beta-oxidation of fatty acid.  Using the 

fatty acid transporter, Leptospira species import the fatty acid from the environment. 
(c) By adhesion, chemotaxis, and flagella, Leptospira species move to the kidney where they secret 

enzymes that digest kidney cells to produce their needed nutrients, such as fatty acid, nucleotides, 
and amino acids. 

(d) After destroy the kidney, Leptospira species re-enter the environment via urine. 
 

Note: The four images in Figure 4.1 were adopted/modified from the following websites, respectively: 
(a) http://www.gordonwater.com/wt_residential.html 
(b) http://www.hepcbc.ca/liver.htm 
(c) http://www.kidney.ab.ca/kidneys/index.html 
(d) http://www.pequannockriver.org/ 

Each of the Leptospira species studied occupies a unique niche in the 

ecosystem as shown in Table 4.1.  Although both the glucose and long-chain fatty-
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acid catabolic pathways are complete in all four Leptospira species, they often utilize 

beta-oxidation of long-chain fatty acids as the major energy and carbon source instead 

of the more common sugar oxidative pathway based on the host they infect 

(Henneberry and Cox, 1970).  In addition, one fatty acid transporter (fadL) was 

identified from each Leptospira species.  This observation is confirmed by detailed 

genomic analysis and supports the postulate that Leptospira species evolved the 

ability to fill a broad niche in organisms (or environments) that are rich in both fats 

and/or lipids as well as those rich in glycogen and/or simple sugars. 

Another observation involves NADPH biosynthesis.  Although all the genes 

needed to encode the enzymes for the non-oxidative arm of the pentose phosphate 

pathway are present, their oxidative arms are incomplete.  Therefore leptospiries can 

use this pathway to produce robose-5-phosphate but require an alternative pathway to 

produce NADPH.  As a result, with the oxidative pathway bypassed and with the 

requirement that the reducing potential of NADPH is critical for all microbial 

survival, NADPH is produced from NAD to NADH then NADPH via the fatty acid 

oxidation pathway rather than pentose phosphate pathway.  In details, NADH 

dehydrogenase catalyzes NAD to produce NADH.  Then NADH is converted to 

NADPH by NAD(P) transhydrogenase or malate dehydrogenase.  In addition, there is 

no NADPH transporter identified from Leptospira species. 

The Phosphotransferase System (PTS) is incomplete in all four Leptospira 

species since neither the genes nor the active site domains for permease enzyme II, 

IIB and IIC, could be identified in the four Leptospira genomes.  However, because of 

the presence of several sugar transporters, it may be that the Leptospira species uptake 
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sugar through the transporter instead of phosphotransferase system as has been 

observed in E. coli (Kundig, et al., 1964). 

Compared with Actinobacillus actinomycetemcomitans, an oral pathogen 

(Najar, F., 2002), Leptospira species have many fewer membrane-associated 

transporters (Figure 4.2a and 4.2b).  For example, the transporters for pantothenate, 

nicotinate, nucleotides, and thiamine were not identified in any of the four Leptospira 

species.  Since A. actinomycetemcomitans colonizes in the human oral cavity where 

nutrients usually are abundant, it is not surprising that this microbe has many 

transporters.  In contrast, Leptospira species in acute infection colonizes the kidneys 

that have fewer nutrients available.  Therefore, Leptospira species evolved fewer 

transporters, an observation in agreement with their metabolic pathways.  For 

example, most central metabolic pathways of Leptospira species are complete 

compared with A. actinomycetemcomitans that uptakes numerous metabolic 

intermediates. 

 
Figure 4.2a Overview of the metabolic scheme utilized by Leptospira species showing 
transporters and metabolic pathways. 
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Figure 4.2b Overview of the metabolic scheme utilized by A. actinomycetemcomitans 
showing transporters and metabolic pathways (Adopted from Dr. Fares Najar’s Ph. D. 
dissertation). 
 

The genes for many virulence factors were observed in all four Leptospira 

genomes.  Since chemotaxis and motility are critical for the virulence of pathogenic 

leptospires, it was interesting to discover at least 40 genes involved in the flagellar 

assembly and at least 20 genes involved in the chemotaxis system of each Leptospira 

species.  The presence of these complicate chemotaxis and motility systems may 

account for the ability of leptospira to rapidly translocate across host cell monolayers 

during infection (Nascimento, et al., 2004). 

The sequenced Leptospira species also possess at least three families of 

adhesins related to the attachment of eukaryotic cells.  The first family includes three 

integrin alpha-like proteins (Springer, 1997).  The second one consists of the Lig 

(leptospira immunoglobulin-like) proteins that include about 10 bacterial 

immunoglobulin-like repeat domains (Palaniappan, et al., 2002).  The third family 

consists of only fibronectin-binding protein (cadF) (Merien, et al., 2000).  It is a 
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36kDa outer-membrane protein with a conserved ompA functional domain (Pautsch 

and Schulz, 1998).  The presence of these adhesins may account for the ability of 

leptospiries to invade and colonize host tissues and to establish the robust infection 

(Nascimento, et al., 2004). 

In addition, at least three families of proteins involved in degrading host 

kidney cells were identified in the sequenced Leptospira species.  They include 

hemolysin, phospholipase, and protease.  Both hemolysin and phospholipase act on 

host cell membranes containing the substrate phospholipids, leading to cytolysis (Lee, 

et al., 2002), while the protease degrades extracellular matrix proteins to facilitate 

invasion of host tissues.  These proteases may play a significant role in causing one of 

the fatal features of leptospira infections, acute renal failure (Levett, 2001). 

In summary, sequencing two Leptospira species and the extensive comparative 

study enhances our understanding of the molecular mechanisms of leptospiral 

physiology, virulence, and pathogenesis.  Our studies showed that nearly 50 central 

metabolic pathways identically are conserved in four Leptospira species: pomona, 

grippotyphosa, lai, and copenhageni.  These findings may account for their similar 

phenotype and physiological characters.  However, the virulence genes identified 

from four Leptospira species involved in chemotaxis and motility, attachment to the 

host cells, corruption of the membranes, and the defense against the host immune 

response may play the important roles in the pathogenesis in leptospirosis as well as 

contributing to each species adaptation to its specialized host environment.  With 

these sequences completed, additional genetic transformation, proteomics and 

microarray studies aimed at further understanding these unique parasitic spirochetes 
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are likely to reveal additional virulence gene candidates and the development of new 

vaccines, which ultimately will result in the prevention and treatment of leptospirosis 

worldwide. 
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Appendix A 454/Roche GS-20 instrument  DNA Sequencing Protocol 

A1 DNA Library Preparation 

A1.1 DNA Nebulization 

1. Pipette 3-5µg of DNA (in TE) into a nebulizer. 

2. Add TE buffer to a final volume of 100ul. 

3. Add 500ul of nebulization buffer and swirl the mixture completely. 

4. Nebulize the mixture for 1 min. by 45 psi of nitrogen. 

5. Add 2.5ml of Qiagen’s buffer PB into the nebulizer. 

6. The nebulized DNA is purified using two columns from a MinElute PCR 

Purification Kit (Qiagen) according to the manufacture’s instructions. 

A1.2 Fragment End Repair 

1. Add the following reagents into a tube: 23 µl of purified, nebulized DNA 

fragments, 5 µl of 10× Polishing buffer, 5 µl of BSA, 5 µl of ATP, 2 µl of 

dNTPs, 5 µl of T4 PNK, and 5 µl of T4 DNA polymerase rather than Klenow 

DNA polymerase. 

2. Incubate the end repair mixture for 15 min. at 12°C followed by 15 min. at 

25°C. 

3. Purify the end-repaired fragments as mentioned in Step 6 of A1.1 DNA 

Nebulization. 

A1.3 Adaptor Ligation 

1. Add the following reagents into a tube: 15 µl of nebulized, polished DNA, 20 µl 

of 2× Ligase buffer, 1 µl of adaptor, 4 µl of ligase. 

2. Incubate the mixture for 15 min. at 25°C. 
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3. Purify the mixture using MinElute PCR Purification Column. 

A1.4 Library Immobilization and Fill-in Reaction 

1. Elute the ligated DNA from tge MinElute column with 25ul of Buffer EB into 

the tube containing washed 50ul Library Immobilization Beads. 

2. Spin the mixture for 20 min. at 22°C. 

3. Add the following reagents into a tube: 40 µl of Mol. Biol. Grade water, 5 µl of 

10× Fill-in polymerase buffer, 2 µl of dNTPs mix, 3 µl of Fill-in polymerase. 

4. Incubate the mixture for 20 min. at 37°C. 

5. Wash the immobilized library twice with 100ul of Library Wash Buffer. 

A1.5 ssDNA Library Isolation 

1. Remove the 100ul of Library Wash Buffer from the library-carrying beads 

using Magnetic Particle Collector (MPC). 

2. Add 50 µl of Melt Solution (0.125 ml of NaOH and 9.875 ml of Mol. Biol. 

Grade water). 

3. Vortex the mixture and remove the beads from the supernatant. 

4. Transfer the supernatant to the nebulization solution (500ul of Qiagen PB buffer 

and 3.8ul of 20% acetic acid). 

5. Repeat steps 2-4 and combine the supernatant. 

6. Purify ssDNA library using MinElute PCR Purification Column. 

A2 ssDNA Amplification and Sequencing 

A2.1 ssDNA Library Capture 

1. Transfer 60ul of DNA capture beads per reaction to a tube. 

2. Spin the tube for 10 sec., rotate the tube 180°, and spin again for 10 sec. 
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3. Pellet the beads, then remove the supernatant. 

4. Wash beads in each tube twice with 200ul of 1× Capture Bead Wash buffer. 

5. Resuspend the beads in 50ul of 1× Capture Bead Wash buffer. 

6. Pellet the beads and discard 30ul of the supernatant. 

7. Add the appropriate amount of ssDNA determined from titration experiment to 

the tube. 

8. Anneal the ssDNA library to beads by running ssDNA annealing program on 

thermal cycler. 

9. Pellet the beads and discard ~20ul of the supernatant.  In total, 16 tubes of beads 

are prepared. 

A2.2 Emulsification and Amplification 

1. Prepare the Live Amplification Mix for 16 reactions, including 2905.92 µl of 

Amplification Mix, 160 µl of MgSO4, 33.28 µl of Amplification primer mix, 96 

µl of Platinum HiFi polymerase, 4.8 µl of PPiasa. 

2. Vortex 16 tubes of emulsion oil (500ul in each tube) for 10 sec. 

3. Add 240 µl of Mock Amplification mix to each tube. 

4. Put tubes into the TissueLyser and shake for 5 min. at 25/sec. 

5. Add 160 µl of Live Amplification Mix to each of the 16 tubes prepared in A2.1 

ssDNA Library Capture. 

6. Add the bead mixture to the emulsion tube and shake in TissueLyser for 5 min. 

at 15/sec. 

7. Split each emulsion reaction into 8 amplification reactions. 
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8. ssDNA is amplified in each emulsion by running the amplification program on 

thermal cycler. 

A2.3 Emulsion Breaking and Bead Washing 

1. Add 100 µl of isopropanol to each emulsion reaction tube. 

2. Draw the emulsion/isopropanol mix from every 32 wells (4 reactions) into a 

syringe. In total, four syringes are needed. 

3. Add 100 µl of isopropanol to each reaction wells. 

4. After mixing, draw the content of the wells to corresponding syringe until the 

solution volume reaches 9 ml. 

5. After inverting, draw some air into the syringe. Then, attach the SwinLock 

Filter between the blunt needle and the syringe. 

6. After mixing, expel the content of syringe and draw 9 ml of fresh isopropanol 

into the syringe for a second wash. 

7. Wash the beads with 6 ml of 1× Bead Wash Buffer and 6 ml of 1× Enhancing 

Fluid. 

8. Draw 0.5 ml of 1× Enhancing Fluid into each syringe to resuspend beads. 

A2.4 Bead Recovery 

1. Expel the content of syringe into a 1.5ml tube after removing the Swinlock 

filter. 

2. Spin the content of the tube to pellet beads. Then discard the supernatant. 

3. Draw 0.5 ml of 1× Enhancing Fluid into each syringe to resuspend beads for a 

2nd recovery. 

4. Expel the content of the syringe into a corresponding 1.5 ml tube. 
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5. Spin the content of the tube to pellet beads, and discard ~100 µl of 1× 

Enhancing Fluid from each tube. 

A2.5 Bead Enrichment 

1. Resuspend the tube of Enrichment beads completely. 

2. Add 1 ml of 1× Enhancing Fluid to each of four 1.5 ml tubes.  Then add 20 µl 

of Enrichment beads to each tube and vortex for 5 sec. 

3. Place the tubes on a MPC to pellet beads. 

4. Discard ~400 µl of supernatant, then add 100 µl of Enrichment Fluid to each 

tube and resuspend the beads. 

5. Combine 100ul of washed Enrichment Beads with 100ul of amplified DNA 

beads, and votex for 3 seconds. 

6. Add 1ml of 1× Enhancing Fluid to each tube. 

7. Leave the tube on a MPC for 2 min. Then discard the supernatant. 

8. Add 1 ml of 1× Enhancing Fluid to each tube. 

9. Repeat steps 7 and 8 twice. 

10. Take the tube out of the MPC, and resuspend the bead pellet in 700 µl of Melt 

Solution (0.125 ml of 10N NaOH and 9.875 ml Mol. Grade water). 

11. After vortexing for 5 min, put the tube back on theMPC. 

12. Transfer the supernatant containing the enriched ssDNA into a separate 1.5 ml 

tube. 

13. Pellet the enriched DNA beads by spinning for 10 sec, and after 180° rotating, 

additional 10 sec. 
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14. Discard the supernatant. Then wash the beads twice with 1 ml of 1× Annealing 

Buffer. 

15. Spin and discard 900ul of the supernatant. 

16. Transfer the remaining enriched bead suspension to a 0.2ml tube. 

A2.6 Sequencing Primer Annealing 

1. pellet the enriched beads and discard the supernatant. 

2. Add 15 µl of 1× Annealing Buffer and 12 µl of Sequencing Primer to each of 

the four tubes. 

3. After vortexing for 5 sec, run the Sequencing Primer Annealing program. 

4. After the program is finished, add 100 µl of 1× Annealing Buffer to each tube, 

pellet the beads and discard the supernatant. 

5. Wash the beads again with 200 µl of 1× Annealing Buffer, and then resuspend 

them in 100ul of 1× Annealing Buffer. 

6. Count a 5ul aliquot of the beads in the Coulter Counter following the 

manufacturer's instructions. 

Finally, load the sample in the wells of a PicoTiterPlate device, and perform the 

sequencing using the GS 20 sequencer. 
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Appendix B Fosmid DNA Isolation and End Sequencing Protocol 

B1 Culture Growth 

1. Prepare 1L of media including 900ml of TB media, 100ml of TB salt, and 1.5ml 

of Antibiotic Chloraphenicol (10mg/ml). 

2. Fill 96 deep-well blocks with 1.5ml of media. 

3. Incubate deep well blocks with 2µl of initial inoculation culture. 

4. Grow in floor shaker for 15 hours. 

5. Dilute the induction solution (1000×) 100 times to get 10× of induction 

solution, and add 15µl into each well. 

6. Keep growing 5 hours more. 

B2 fosmid DNA Isolation 

1. Centrifuge the blocks at 25,000rpm for 10 minutes. Then discard the 

supernatant. 

2. Immediately add 300µl of TE-RNase A/T1 to each well. 

3. Incubate on the top shaker at the speed of 6 for 20 minutes or more until cells 

are fully resuspended. 

4. Make the 400ml of fresh lysis buffer including 40ml of 10% SDS, 40 ml of 2N 

NaOH, and 320ml of ddH2O. 

5. Add 300µl of fresh lysis buffer to each well. 

6. Incubate by shaking at a speed of 2 for 5 minutes or more until a clear lysate is 

developed. 

7. Add 300µl of KOAc (3M, pH 4.5) to each well. Shake at a speed of 4 for 15 

minutes. 
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8. Freeze the blocks at –80°C overnight. 

9. Thaw the blocks and centrifuge at 4,250 rpm for 45 minutes. 

10. Transfer 600µl of supernatant into the new deep-well blocks. 

11. Add 1ml of 95% of ethanol into the each well. 

12. Centrifuge at 3,000 rpm for 30 minutes. 

13. Decant the supernatant. Wash the pellet by adding 1ml of 70% ethanol into 

each well. 

14. Centrifuge the blocks at 3,000rpm for 30 minutes. 

15. Decant the supernatant. And dry the DNA pellets on the bench for at least 30 

minutes. 

16. Prepare 24ml of RNase A solution including 240µl of Tris-HCl (50mM, pH 

7.6), 4.8µl of 0.5M EDTA, 5µl of 40µg/ml RNase A, and X ml of H2O. 

17. Resuspend the DNA in 20µl of RNase A solution. 

18. Shake on the table-top shaker for 30 minutes to dissolve DNA. 

B3 End Sequencing 

Sequencing mix includes 10µl of fosmid DNA, 2µl of 20× diluted ET, 1.5µl of 

DMSO, and 2µl of 7nM universal forward or reverse primer. 
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