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Abstract  

Surfactant flooding for the mobilization of residual oil is a promising technology for 

enhanced oil recovery (EOR) and surfactant enhanced aquifer remediation (SEAR). A 

significant economic barrier to the widespread use of the technology is the loss of 

surfactant through adsorption on aquifer and reservoir minerals. Especially in the case of 

EOR in highly saline brines, adsorptive losses of surfactant may be the single essential 

expense in the application. In this study, we examine the use of hydrotropes to reduce 

surfactant adsorption and to improve the surfactant flooding performance. The HLD 

equation, interfacial tension measurement and phase behavior of salinity scan were used 

to determine the Winsor type III microemulsion on four types of pure alkane 

hydrocarbons. Linear mixing rule has also is utilizing during the analysis. A new method 

has been established for the detection of hydrotropes, which is using the UV-VIS 

spectrophotometer on a targeted wavelength range. Adsorption amount is measured and 

compared within three types of sand materials. 
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CHAPTER 1. MITIGATION OF SURFACTANT LOSSES IN 

POROUS MEDIA: INFLUENCES OF HYDROTROPE ON 

TRANSPORT AND MICROEMULSIONFICATION  

I. Introduction 

Surfactant flooding is a promising approach in the enhanced oil recovery (EOR) due 

to its high efficiency of reducing the interfacial tension between oil and water and 

mobilizing the residual oil (Bera et al. 2013). However, adsorption of surfactant onto 

reservoir rock surface may cause the loss of surfactant or reduce the surfactant 

concentration and result in drastic underperformance of surfactant flooding (Bera et 

al. 2013). Furthermore, excessive adsorption of surfactant in the porous media may 

cause an economic issue of field operations and severe impact of project investment 

and return.   

This study offers insights on the extent to which addition of proper hydrotrope may 

help in the reformulation tasks aiming at more efficient and cheaper surfactant 

flooding candidates. Ideally, this will facilitate to further mitigate the undesirable 

surfactant losses and improve the surfactant formulations performance for surfactant 

flooding technology applied in areas of enhanced oil recovery (EOR) and surfactant 

enhanced aquifer remediation (SEAR). Several of the modified formulations tested 

could noticeably form a stable and broader Winsor Type III microemulsion region and 

much relaxed salt window for system optimization, in particularly for oil of longer 

carbon chain like dodecane.  It is anticipated that by adding appropriate hydrotrope in 

various surfactant system, one can potentially alter the key parameters in the current 
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flushing system, such as interfacial tension, optimum salinity, coalescent rate, stability 

and so on, lead to better and cost-effective operations for oil production and 

contaminant remediation. 

 

Surfactant system 

In this study, a binary surfactant mixture system is examined. It contains dual anionic 

surfactants, dioctyl sodium sulfosuccinate (AOT) and sodium dodecyl benzene 

sulfonate (SDBS), with the fixed concentration of 0.75% and 0.19% by weight 

percentage. SDBS is a high content surfactant with noticeable properties of good 

detergency, moistening, foaming, and dispersity. The biological degradability of 

SDBS is more than 90% under aerobic conditions. International security organizations 

have been recognized it as safe chemicals (Qingdao). Urea and Sodium Xylene 

Sulfonate are the representative hydrotropes used. The chemical structure of these 

surfactants and hydrotropes are shown in Figure 1. 
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Figure 1: Chemical structure of AOT (top), SDBS (bottom left) and urea (bottom right) and 

Sodium Xylene Sulfonate (bottom middle) 

 

 

Objectives 

The newly modified system, which the selected hydrotrope was added into the current 

ultra-low IFT surfactant formulations, could potentially create an improved stable 

microemulsion with an ultra-low IFT, which can be measured experimentally based 

on a series of phase behavior study and IFT measurements. In general, an ultra-low 

IFT system should preferably be  

10-3 mN/m or less, and the equilibrated samples of Winsor Type III microemulsions 

should be distinctly recognized with visual observations. Ideally, the targeted total 

surfactant concentration should be less than one weight percent to meet the 

environmental requirements and better control of surfactant cost. Most of the key 
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operational parameters, e.g., optimum salinity, Type III windows, coalescent rate, and 

stability of the surfactant solutions should show some evidences of improvement. 

As for the adsorption study, batch adsorption experiments of sodium dodecyl benzene 

sulfonate (SDBS) were evaluated in different porous media, involving surfactant 

contact with Ottawa sand, Indiana limestone and activated carbon for comparison 

purpose. By adding hydrotrope into the samples, the modified flushing formulations 

is anticipated to produce a noticeable reduction of surfactant losses on the surfactant 

adsorption amount. The adsorption amount of surfactant is calculated by comparing 

the initial and final concentration in the treated solution. In general, after 72-hours of 

equilibrated period, the concentration of SDBS in the supernatant can be detected 

simultaneously by two separate devices, ultraviolet-visible spectroscopy (UV-Vis), 

and High-Performance Liquid Chromatography (HPLC) to cover different 

concentration levels and sensitivity needs.  Results of adsorption plots and their 

analysis which are exposed to both with and without hydrotrope condition are 

discussed. Reduction of adsorption amount is calculated and shown in the result 

section. 
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II. Literature review 

Surfactant 

"Surfactant" is a word stand for the surface-active agent which is also the general 

definition of surfactant. The prevailing impression we have on a typical surfactant in 

daily life is soap and soap solution can easily generate foam. Surfactant is a type of 

compound that can be surface active and lower the surface tension or interfacial 

tension. The surfactant has extensive applications in our life and various industries. In 

our daily life, surfactants can be found in the dishwasher detergents or personal care 

products like facial cleanser; it helps water to remove the dirt or the oil from the dishes 

and our skin surface. It serves the functions of cleaning, wetting, dispersing and 

emulsifiers (Nippon). In applying chemical flooding for Enhanced Oil Recovery 

(EOR) technique, surfactants are used to dramatically lower the interfacial tension 

between oil and water and then achieve the goal of mobilizing the entrapped residual 

oil.  

The basic structure of surfactant contains a hydrophilic(water-loving) head group and 

a hydrophobic (water-hating) tail group. The general structure of surfactant is shown 

in the Figure. 2 below. When mixing with water and oil phase, surfactant head is 

attracting to the water phase, while the tail group is contacting the oil phase like shown 

in the figure below. When the surfactant concentration increases and reaches the 

Critical Micelle Concentration (CMC) the micelle is formed, and its morphology can 

be a spherical structure, a cylindrical micelle or a bilayer configuration as shown in 

Figure. 3. After forming micelles, the oil phase or the solid dirt will be removed easily; 

this is also a process of surfactant cleaning, or detergency.  
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Figure.2. Schematic Illustration of Basic Structure of Surfactant. 

 

 

Figure. 3. Schematic Illustration of Three Main Types of Micelle Shapes (Som et al. 2012) 

 

As for the classification of surfactant, the most well-known types are non-ionic, 

anionic, cationic and amphoteric surfactant. Since the charged part of the surfactant is 

the polar head group, nonionic surfactant means the head group is not indicated any 

charges, while the anionic and cationic means the head group can be either negative 

or positive charge. Amphoteric surfactant also known as the zwitterionic surfactant, 

this type of surfactant is less common when compare with other three types. 

Zwitterionic surfactant will show the characteristics of both anionic and cationic 

surfactant (Som et al. 2012). The illustration of four types of surfactant head group is 

present below corresponding to various charges of the head group as adopted from the 

example post from Lorna corp. (Lorna 2018).  
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Figure.4: Schematic illustration of the various types of surfactants (Lorna 2018) 

 

Surfactant flooding 

Waterflooding is the widely used techniques in the oil fields. However, some oil called 

residual oil will remain trapped and unproduced in porous media after extended period 

of waterflooding (Sheng 2015). Residual oil is trapped largely due to strong capillary 

forces in porous media. Thus, in the Enhanced Oil Recovery (EOR) technique, 

surfactant flooding is needed to mobilize the residual oil trapped in the reservoir rock 

by significantly reducing the interfacial tension between oil and water (at least 2 to 

three orders of magnitude reduction). Two principal operational functions of the 

injected surfactants are to decrease interfacial tension and promote wettability 

alteration, especially in the case of carbonate reservoirs (Sheng 2012). The simplified 

illustration is shown in Figure 5 below illustrating simple explanation of main 

mechanisms involved during the surfactant flooding in the reservoir. 
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Figure.5. Mechanisms of Surfactant Flooding (Abriola, 2002) 

 

Once injecting surfactant solution into the subsurface, surfactant micelles can increase 

the oil solubility in the aqueous phase and ideally reduce interfacial tension 

dramatically which will largely improve the mobility of the organic liquid. Then, we 

recover the organic phase from production wells, the separation process may be 

needed afterward to collect high purity crude or oily phase. In the illustration, red 

stands oil phase, light blue stands for aqueous phase, brown represents rock matrix 

and black dot symbols are surfactant molecules. Two primary mechanisms of this 

process are mobilization and solubilization (Nivas et al. 1996). The phenomenon of 

non-polar species partition into the organic interior of the micelles is called 

Solubilization (Nivas et al. 1996). 
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Hydrotrope 

More than a century ago, Carl A. Neuberg found that by adding a particular type of 

compound can largely increase the solubility of the hydrophobic compound in water 

(Dhapte and Mehta 2015). These solubility-enhancing molecules were named 

hydrotropic agents or hydrotropes. Meanwhile, the phenomenon of this is called 

hydrotropy (Balasubramanian et al. 1989). There are some typical examples of 

hydrotropes such as sodium benzoate, salicylate, and xylene-sulfonate 

(Balasubramanian et al. 1989).  

Hydrotropy may also be explained as a salting-in process; this idea has been pointed 

out by McKee, R. H in 1946. Hydrotropy can be an excellent example of the salting-

in effect, which defined as in addition of certain salt compound will increase the 

charge of the solute molecule and lead to increasing the interaction with water 

molecule; then, improve the solubility in water.  

Like surfactant, hydrotrope also contains the hydrophilic and hydrophobic part in their 

molecule, however; the major difference is hydrotropes have much smaller 

hydrophobic fraction so that there are too small to cause spontaneous self-aggregation 

(Nidhi et al. 2011). Nidhi and his group suggested that unlike the surfactant, 

hydrotropes do not have the CMC and do not form the aggregation that suddenly like 

surfactant, the process will be more gradual. Most hydrotropes even do not self-

aggregate (Nidhi et al. 2011). 
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Phase behavior and HLD Equation 

There are plenty of methods we can examine the phase behavior. Mathematical 

modeling and experimental method are most well-known methods to simulate the 

phase behavior under reservoir condition. To achieve the reservoir condition, we need 

to adjust the salinity, pH, temperature, pressure and additional parameters. To conduct 

the experimental phase behavior tests, a salinity scan of surfactant samples and HLD 

equation can be used to facilitate the formulation tasks and effort. The HLD equation 

for anionic surfactants is: 

HLD = ln S − K(EACN) − f (A) + σ − aT (DT)      (1) 

Where, 

S is the salinity in wt% NaCl (based on the aqueous phase) 

K is a constant number depending on the type of surfactant head group EACN stands 

for the equivalent alkane carbon number, for instance, EACN of Decane is 10.  

 f (A) is a function of the alcohol type and concentration 

σ is a surfactant characteristic parameter, also known as Cc 

aT is the temperature constant, and DT is the temperature difference measured from 

the reference temperature (Tref = 25 ◦C). (Witthayapanyanon et al. 2008; Salager et al. 

1979).  

 

ln S∗ = K(EACN) – σ,         (2) 

ln S∗mix = Kmix(EACN) − σmix,        (3) 

 

If the microemulsion is formed without the addition of alcohols (f (A) = 0) and at the 
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reference temperature (T = Tref = 25 ◦C), the general HLD equation listed in Eq. (1) 

can be simplified as shown in Eq. (2) and Eq. (3) (Witthayapanyanon et al. 2008; 

Salager et al. 1979) where Eq. (2) is for a single anionic surfactant system and Eq. (3) 

is for the mixed surfactant conditions. In the Eq. (3), an idealized linear mixing rule 

has been applied which gives the equation below. (Witthayapanyanon et al. 2008): 

 

S*mix = S∗i          (4) 

ln S∗mix = ∑ xi ln S∗i         (5) 

σmix = ∑ xi σi           (6) 

Kmix = ∑ xi Ki          (7) 

 

By examining the salinity of individual group of phase behavior samples, we can 

visually observe the optimal condition within the samples, and HLD value can be 

calculated to be zero value which means no deviation between the hydrophilic and 

lipophilic interaction energies (Witthayapanyanon et al. 2008). When the salinity of 

the sample reaches the optimum salinity situation, the surfactant system interacts 

equally with the oil and water phases and thus has the strongest affinity to accumulate 

at the oil-water interface; furthermore, resulting in formation of middle phase 

microemulsions with the minimum IFT and concomitant with highest oil 

solubilization (Witthayapanyanon et al. 2008). Results of negative, zero or positive 

HLD values suggest the formation of Winsor Type I, Type III or Type II 

microemulsions (Jin et al. 2017; Salager and Antón 1999). Salager and Antón also 

indicate that a positive sign means an increasing value of that variable would produce 

a Type I → Type III → Type II transition, while a negative sign would correspond to 
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the different transition (Salager and Antón 1999).  

The microemulsion of phase behavior samples is explained in Figure 6. Salinity 

increasing from left to right and three different microemulsion types are observed with 

the perfectly matched IFT value on the bottom. Begin with the low salinity Type I 

samples on the left which is the "oil in water" microemulsion; then the Type III 

microemulsion reaches at a certain salinity while the interfacial tension becomes the 

lowest value (γ*
om). In the end, the Type II microemulsion, "water in oil," is reached 

while increasing the salinity in the phase behavior samples. The typical “V” shape on 

the upper half or a "fish" shape in the whole figure is formed in the interfacial tension 

versus salinity plot. 

 

Figure. 6. Variation in interfacial tension versus water salinity (Jin et al. 2017) 
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Winsor R Ratio 

To examine the phase behavior, in the early times, people also use Winsor R ratio 

approach, the classical equation of R ratio is listed below: 

R = 
𝐴𝑐𝑜

𝐴𝑐𝑤
 

Where 

ACO is the cohesive energy per unit area between the surfactant and oil 

ACW is the cohesive energy per unit area between the surfactant and the water phase.  

 

An R ratio less than one indicates Winsor Type I microemulsion which defined as the 

oil molecules go into the aqueous phase. R ratio higher than one represent Winsor 

Type II microemulsion which is the water molecules go into the oil phase, and an R 

ratio equal to unity indicates a bicontinuous microemulsion (type III or IV) where the 

surfactant-oil and surfactant-water interactions are identical (Bourrel and Schechter 

1988). Figure. 7 is an illustration adapted from the Handbook of microemulsion 

science and technology by Jean-Louis Salager and Raquel E Antón, which illustrates 

the relationship between R ratio and matched phase behavior observation.  
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Figure.7. Illustration of R Ratio Corresponding to Typically Observed Phase Behavior (Salager 

and Antón 1999) 

 

Surfactant Adsorption 

Bera and few other people pointed out that the process of adsorption is the dissolved 

component separate from the solvent and transfer onto the surface of the adsorbent. 

According to the same group, this phenomenon is complicated due to the various 

potential causes such as reaction and mass transfer (Bera et al. 2013).  

In the surfactant flooding system, adsorption occurs, surfactant adsorbed onto the 

surface of the rock and lost the effectiveness. One of the primary cause of this can be 

the surface charge of rock and interface of aqueous surfactant solution. The positively 

charged surfactants attract to the negatively charged rock surface, similarly; 

negatively charged surfactants will be captivated by the positively charged rock 

surface (Bera et al. 2013). There are some other significant parameters like pH and 

salinity are also play the considerable role of surfactant adsorption due to the ability 

to change the surface charge.  
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The study of adsorption is important, especially when applied to the surfactant 

flooding for Enhanced Oil Recovery (EOR) and surfactant enhanced aquifer 

remediation (SEAR) process. The adsorption study in the laboratory measurements of 

specific rock/sand corresponding to the reservoir fluid and condition is essential. It is 

helpful for obtaining more precise estimation of the reservoir environment; it can 

provide far better prediction of expenditure and amount of surfactant required at 

reservoir conditions. 
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III. Experimental  

Materials 

In this study, Heptane, Octane, Decane, and Dodecane are the pure alkanes being 

chosen as the oil phase, and properties of these hydrocarbons are displayed in Table 

1 below. These four types of hydrocarbon are from the same supplier, Sigma Aldrich. 

The purity of each one is, ≥ 99.5%, ≥ 98%, ≥ 95% and ≥ 99.5% in the order of 

increasing EACN. Sigma Aldrich also provides sodium chloride (NaCl) used in the 

phase behavior study, and the effective weight percentage is above 99%. 

 

Table. 1 Properties of Four types of Pure Alkane Hydrocarbon 

 

 

 

As discussed in the previous introduction section, there are two surfactants is chosen 

in this study. They are 0.75% dioctyl sodium sulfosuccinate (AOT) and 0.19% sodium 

dodecyl benzene sulfonate (SDBS) by weight percentage. Dioctyl sodium 

sulfosuccinate, AOT, is from a supplier Sigma-Aldrich and it is white waxy chemical 

Name
Chemical 

Formula
EACN

Density, 

g/ml

Molecular

weight, 

g/mol

Heptane C7H16 7 0.684 100

Octane C8H18 8 0.703 114

Decane C10H22 10 0.73 142

Dodecane C12H26 12 0.75 170
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which has more than 97% active. SDBS is from Sigma Aldrich as well with a 79.7% 

activity. 

 

Urea and Sodium Xylene Sulfonate are selected as hydrotropes in this study. The 

supplier is also Sigma-Aldrich, and it’s 99% and 91% active by weight percentage. 

The first reason for choosing urea is the low cost and high safety features. People even 

put urea into the makeup and skincare products. The second reason is that urea as a 

hydrotrope; it is also an optimizing CO2 generating agent (Wang et al. 2018). Wang 

and his colleagues have accomplished this new application in the past few years. Urea 

can be used in the in-situ CO2 generation for enhanced oil recovery (Wang et al. 2018). 

To choose urea as the hydrotrope, we may benefit from it more than just a simple role 

of hydrotrope due to the CO2 generation under proper conditions. As for comparison 

purpose, another common hydrotrope, sodium xylene sulfonate (NaXS), is chosen. It 

is found in personal care products, primarily in shampoos, because of its ability to 

serve as a claritant or wetting agent that helps a formula spread more easily and ensure 

efficient cleansing (Johnson 2018). 

 

Methods 

A series of methods and tools were used to cover different aspects of the aim in this 

study. First, the phase behavior test. The 14mL glass vials are chosen which contain 

5mL surfactant solution mixing with 5mL hydrocarbon. Coalescence rate is the time 

spend to form clear type III emulsion after manually shacking of the vials. Interfacial 

tension was measured using a spinning drop tensiometer; the rotating speed is set to 



 

18 
 

approximately 4000 rpm. The adsorption test is done by preparing SDBS solutions in 

seven different concentrations and mixing with selected porous media for 72-hr 

equilibrium time. The adsorption amount is calculated by comparing the concentration 

of SDBS in the supernatant after the mixing and before 72-hr adsorption. 

 

Phase behavior Study  

Phase behavior study is the visual observation of the surfactant system behavior by 

mixing the equal amount of aqueous phase and oil phase. In this study, a 5ml of 

surfactant solution with DI water which can be described as the aqueous phase and 

mix it with 5ml of selected hydrocarbons from Table 1. First, the aqueous phase is 

added into the 14ml flat bottom glass tube, and then a line of aqueous phase level is 

marked on the glass tube using a color marker. Then the oil phase is added into the 

test tube and wrapped with Teflon tape on the opening to control the volatilization and 

loss of solution. This marked line is a quick and straightforward approach to compare 

the location of the aqueous phase before and after adding the oil. It conveniently points 

to the right type of microemulsions formed. If the marked line is below the interface 

of the oil and water, aqueous phase enlarged which it is an oil in water solution. Then, 

it is defined as the Winsor Type I microemulsion. Otherwise, if the marked line is 

beyond the interface of oil and water, it means the water is going into the oil phase; 

thus, it is going to be Winsor Type II microemulsion. If there is a middle phase 

between the oil and water, it is Winsor Type III microemulsion. After three-day 

equilibration period, the photos of the samples were taken, and the resulted 

microemulsions and types were recorded. 
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Coalescence rate 

Coalescence rate is visually observed in type III microemulsions. It is measured after 

samples are manually flipped 3 to 4 times.  The coalescence rate is defined as the time 

needed when the oil-microemulsion and water-microemulsion boundaries were 

sharply formed even if the excess oil or water is still opaque. Sometimes, faster 

coalescence does not mean better system; as long as the coalescence rate is less than 

15 minutes, the results of better formulations are acceptable. The targeted coalescence 

rate can be different depending on the actual circumstances and oil properties (e.g., 

long-chain or multicomponent molecules). 

 

Interfacial Tension 

A spinning drop tensiometer is applied in this interfacial tension measurement. A 

capillary glass tube and a syringe were also used to hold the aqueous phase for the 

injection of the oil phase. First, fill the capillary tube with an aqueous phase from the 

bottom of phase behavior samples. During this process, it should not introduce any 

bubble in the capillary tube; otherwise, the bubble will influence the measurement and 

cause the error. Then insert the tube into the tensiometer horizontally. Afterward, 

approximately 2 μL of the oil phase is carefully injected into the center of the capillary 

tube by the glass syringe. For each IFT measurements, the aqueous phase and oil phase 

need to be acquired from the matched samples from the phase behavior study. Then, 

the rotation speed of tensiometer is set to approximately 4000 RPM, and oil droplet 

requires to be maintained in the center of the test tube without movement, and no 

contact of the ends on both sides. Record the diameter reading of the oil droplet every 
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5 minutes with the actual rotational speed until the change of the reading is less than 

5% change compared to the previous reading. All the recorded data need to be inserted 

into the excel file, and interfacial tension will be calculated in a unit of mN/m. 

 

Adsorption Test 

First, prepare seven different concentrations of SDBS surfactant solution from 300 

ppm to 1500 ppm, 10 grams of each in the 40 ml test tube separately. Then, mixing 

the 10 grams of surfactant solution with selected sand/soil for 72-hr equilibrium time.  

Samples are manually flipped every 12 hours. After equilibration, samples are 

centrifuged and filtered to remove suspended clays and other fine particles before 

analyzing the concentration of surfactant in the supernatant by UV-Vis. Three types 

of media were tested in this study. They are Ottawa sand, Indiana limestone, and 

activated carbon. With the fixed amount of surfactant solution, the solid amount is 

different based on the adsorption ability. The amount of porous media used in this 

study of Ottawa sand, Indiana limestone, and activated carbon are 5 gram, 3 gram, 

and 0.5 gram, based on considering their capacity of surfactant adsorption and residual 

surfactant levels in the treated solution being able to quantify. The adsorption amount 

is calculated from the milligram of surfactant adsorbed divided by the actual amount 

of sand in the unit of the gram. 
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Figure 8. Thermo Scientific: Genesys 10s UV-VIS Spectrophotometer 

 

A new method of using UV-vis to measure the SDBS concentration is set up to 

measure supernatant after adsorption. The baseline is the DI water, and the scanning 

wavelength is in the range of 190-300 nm. UV-Vis Spectrophotometer is a measure 

the absorbance which is the amount of light absorbed by the solution shown in Figure 

8. Calibration is created since there is an apparent linear relationship between the 

SDBS concentration and absorbance as shown in Figure 9 below. As we can see from 

the figure, Case one is the surfactant with DI water case and Case two is the surfactant 

with urea added case.  
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Figure. 9. Calibration of Absorbance for SDBS only (top) and SDBS with 5% Urea (bottom) on 

190 to 300 nm Wavelength. 

 

Calibration curves are developed for both surfactant-only formulations and surfactant 

with hydrotropes mixtures. The selected wavelength is 262nm. It can be seen in the 

graph above, from 190 to 240nm, the absorbance responses are exceeding the 

reasonable upper limit (> 2.0) and not reliable. The response around 260 nm is 

representative, and 262 nm is selected wavelength which is the peak in the figure.  

The various concentration of urea with SDBS 1000 ppm solutions are also tested, urea 

reading showed no impact on SDBS reading at the selected wavelength. During the 
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adsorption test, SDBS is the primary surfactant analyzed in this study. As for sodium 

xylene sulfonate, the calibration curve and impact on SDBS responses is also 

examined. 

 

Surface Tension Measurement  

Attension® Theta is an advanced and versatile contact angle meter for highly accurate 

measurements of static and dynamic contact angle and surface and interfacial tension 

(Biolin Scientific). The experimental apparatus is shown in the Figure 10 below. A 

computer with the software is connected to the equipment for the real-time analyzation.  

A syringe needle, a pump, and the pipeline are connected for injecting the fluid. After 

the pendant drop formed, the shape of a droplet is analyzed by the software shows in 

Figure. 11. The surface tension of the pendant drop in the air is calculated and 

recorded. 

 

Figure. 10. Attension Theta Optical Tensiometer (Biolin Scientific) 
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Figure. 11. Attension Theta Optical Tensiometer Operation Software (Biolin Scientific) 

 

Stability test 

Stability test of the aqueous solution is also carried out to examine the surfactant 

solution stability. For the surfactant only case, the 5 ml surfactant solutions are 

prepared in the 15ml flat bottom test tube which contains 0.75% AOT, 0.19% SDBS 

and DI water by weight percentage. For the surfactant with hydrotrope cases, an 

addition of 5% urea and 1% NaXS samples also tested for comparison requirement. 

Samples with selected salinity range are provided and set on the laboratory bench. 

Changes in the solution are recorded daily up until the end of 2 weeks period. 

 

 

 

 



 

25 
 

IV. Results & Discussions 

Phase behavior of Case I (Surfactant Only without hydrotrope) 

The case I system contains surfactant-only with DI water. The surfactant solution 

contains 0.75% AOT and 0.19% SDBS by weight percentage. The numbers on top of 

each phase behavior samples represent the NaCl salinity scan. Blue color stands for 

type I microemulsion, red is type III, and green stands for type II microemulsion. The 

color lines on the test vials are marked before adding the oil phase as mentioned in 

the previous section. It’s a tool to diagnose whether it is an oil in water or a water in 

oil microemulsion. 

 

Phase behavior samples are shown in the figures below from Figure. 12 to Figure. 

15. Figure 12 is the surfactant with Heptane samples. The Winsor Type III window is 

narrow that only one sample is observed (salinity of 0.7%). Figure 13 is the phase 

behavior samples contains the Octane as the oil phase. The type III window is also 

really narrow which means it is salinity sensitive since only the salinity of 0.9% 

sample gives the Type III microemulsion. In this sample, the water-microemulsion 

and the oil-microemulsion boundary are evident compared to heptane samples. 
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0.4%        0.6%       0.7%       0.8%    1.0% 

 

Figure 12: Salinity scan for Case 1 with heptane 

 

 

0.8%     0.9%     1.0%      1.2%     1.4% 

 

Figure 13: Salinity scan for Case 1 with Octane. 
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Figure 14: Salinity scan for Case 1 with Decane. 

 

Phase behavior samples which contain decane and dodecane are shown in Figures. 

14 and 15. Decane samples provide a wider type III microemulsion range compare 

with previous two sets of samples. Decane samples shown in the photo can produce 3 

different salinity concentrations with type III microemulsion. However, when doing 

the same NaCl salinity scan for dodecane, only two samples exhibit a clear type III 

microemulsion. The middle phase is quite thinner to detect and apparently has mcuh 

higher viscosity.   

 

 

 

 

1.0%      1.1%       1.2%       1.3%       1.4%        1.6%       1.8% 
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Figure 15: Salinity scan for Case 1 with Dodecane. 

 

There is a critical observation that the dodecane samples shown in Figure 15 did phase 

separate only one-day long which was denoted inside the white line. This SDBS and 

AOT formulation are not stable when mixing with dodecane in lower salinity 

concentration range. 

Due to the phase separation issue, stability rest is needed to determine how the 

surfactant solubilizes in the aqueous phase and how long it is stable after mixing with 

water but before add oil phase. Stability tests results are shown in the later section. 

Figure.16 is the optimum salinity point based on IFT measurements as a function of 

equivalent alkane carbon number (EACN). The linear relationship is observed from 

the graph. The Winsor Type III window is shown in Figure.17. Symbols of square 

dots represent type III samples; rhombic dots are type I samples and rounded ones 

represents type II samples. It is evident that the type III range is limited and salinity 

sensitive, only changing 0.1 % of salinity results in distinct types of the microemulsion. 

1.4%       1.6%     1.7%        1.8%     1.9%      2.0%      2.2% 



 

29 
 

Figure.18 is the Interfacial tension measurements of four types of hydrocarbon for 

comparison. The IFT less than 0.01 is consider the ultra-low IFT which is also related 

to type III microemulsion. The sharp V shape can be seen from the graph and matches 

the literature graph. 

 

 

Figure 16. Natural log of salinity vs. EACN for Case 1(Surfactant with DI Water) optimum 

points 
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Figure 17: IFT vs. salinity for Case 1(Surfactant with DI Water) 

 

 

Figure 18: EACN vs. Salinity for Case 1 with microemulsion type identified 
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Phase behavior of Case II (Surfactant with 5% Urea) 

Case 2 is the Surfactant with hydrocarbon samples and urea of 5% added.  Phase 

behavior samples with different oil phase are shown from Figures 19 to Figure 22. 

When compare with surfactant-only case, type III window becomes more broaden, 

and the resulting middle phase becomes more transparent in color. A wider Type III 

range allows operators a more accessible and convenient operation environment. If 

the surfactant formulation being used on a field site, a wider range of salinity is 

especially easy to handle in the field. Also, an increased optimum salinity, as well as 

the improved coalescent rate, is given potential to the higher salinity tolerance. For 

the stability issue mentioned in Case 1 with Dodecane as the oil phase, it is being 

optimized; no more phase separation issue after two weeks.  

 

 

Figure 19: Salinity scan for Case 2 with heptane. 

 

 

 

0.8%       1.0%       1.1%      1.2%      1.3%      1.4%   
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Figure 20: Salinity scan for Case 2 with Octane. 

 

 

 

Figure 21: Salinity scan for Case 2 with Decane. 

 

 

 

 

 

1.2%        1.3%         1.4%          1.5%        1.6%        1.8%       2.0% 

1.2%     1.4%     1.5%     1.6%    1.8%     2.0%     2.2%     2.3%     2.4%    2.6%  
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Figure 22: Salinity scan for Case 2 with Dodecane. 

 

 

Figure 23. Natural log of salinity vs. EACN for Case 2 optimum points 

 

1.4%       1.6%       1.8%       2.0%    2.2%      2.4%      2.6%      2.8%      3.0% 
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Figure 24: IFT vs. salinity for Case 2. 

 

 

Figure 25: EACN vs. Salinity for Case 2 with microemulsion type 
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Figure 23 is the optimum salinity point based on IFT measurements as a function of 

equivalent alkane carbon number.  The linear relationship is evident observed from 

the graph. The K and Cc number can be obtained. The Winsor Type III window is 

shown in Figure 25. Again, the square, rhombic and rounded dots represent type III, 

type I and type II microemulsions. Type III window is much wider to be observed 

compared to Case 1 which means it is less salinity sensitive. Heptane and octane, in 

this case, has 0.3% salinity fluctuate range within type III microemulsion, while 

decane and dodecane have 0.5% salinity fluctuate range within Type III 

microemulsion. Changing 0.1 % of salinity, may not result in microemulsion type 

change. Figure 24 is the Interfacial tension measurements in the log scale of four 

types of hydrocarbon for comparison. Again, the interfacial tension at 0.001mN/m is 

considered to be the ultra-low IFT which represents Type III microemulsion. 

Moreover, the V shape can also be seen from the graph, but when compared to Case 

1, the curve is much flatter shape which mean more Type III microemulsion is 

observed. 

 

Phase behavior of Case 3 (Surfactant with Sodium xylene sulfonate) 

Sodium xylene sulfonate is chosen as the second tested hydrotrope. Case 3 is the 

surfactant (AOT and SDBS) with hydrocarbon samples, 5%, 1% and 0.5% sodium 

xylene sulfonate (NaXS) added. Phase behavior samples with different heptane and 

dodecane as the oil phase are shown starts in Figure 26. The various concentrations 

of NaXS have been examined and present below. The 5% NaXS concentration has 

been tested first to be identical with the 5% urea added case. The salinity(NaCl) 
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weight percentage is on the top of the matched samples. 

 

 

 

Figure. 26: Salinity scan for 5% NaXS with Heptane at room temperature. 

 

As seen from the figure above, it is all clear type II from left to right which is ranging 

from no NaCl condition up to 2% NaCl. There are two reasons for this phenomenon: 

it can be NaXS introduce salt into the system, makes the current system at the higher 

salinity range which lies in the type II range. Another reason may be the NaXS itself 

contribute to the hydrophobicity of the solution, which makes the system more 

hydrophobic and shifts the optimum salinity to the lower salinity range.  Thus, the 

samples are heated in the 50oC oven for 4 hours (Figure 27). Then the photos were 

taken, and the results are compared.  

 

 

0%           0.5%         1.0%           1.5%            2% 
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Figure 27: Salinity scan for 5% NaXS with Heptane at 50oC. 

 

When compared with the room temperature samples, it is evident that the samples at 

zero salinity show a thin middle phase. According to HLD equation, increased 

temperature will increase the hydrophilicity of the whole solution, which is clearly 

matching the data observed. After increasing temperature, the optimum salinity of the 

solutions shifts to the right and appear in the photo above.  

To examine another reason, NaXS introducing salt, the concentration of NaXS is 

decreased from 5% to 1% and redo salinity scan. It may be too much cations 

introduced to the system with additional 5% NaXS. If fewer NaXS in the system, a 

type III sample may appear in the selected salinity range. The result is shown in 

Figure 28 below. The salinity of each sample is matched above them. 

 

   0%           0.5%         1.0%           1.5%            2% 



 

38 
 

 

 

Figure 28. Salinity scan for 1% NaXS with Heptane at room temperature. 

 

By reducing the concentration of NaXS, the type III microemulsion range shifts. 

Compare with 5% NaXS added case, an addition of 1% NaXS is clear to observe all 

different types of microemulsions. No salinity sample forms a gelation phase in the 

oil phase which makes the sample looks unusual. The gelation is considered the 

hydrogel which is not a strong gel formation. The sample with 1% NaXS shows a 

broader range of type III microemulsion; however, NaXS shifts the optimum salinity 

to the lower concentration.  

It is obvious that the middle phase looks even more transparent compared to the 

previous two cases. A decreased optimum salinity, as well as improved coalescent 

rate, increases the potential of this surfactant system to work for the low salinity site. 

For instance, in the groundwater remediation process, a low salinity or no salinity 

injection fluid is required because of the environmental concern from the state’s law 

or other ordinances. This is also the reason people introduce CaCl2 into the surfactant 

 0%        0.3%     0.4%      0.5%      0.6%        0.7%        1%  
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system to replace the high NaCl concentration since the efficiency for CaCl2 is higher 

than NaCl.  

Heating the sample to 50oC for 4 hours also contribute to the transparency of the 

middle phase shown in Figure 29 below. Besides, the gelation in the zero-salinity 

sample did not break up to 50oC. The cloudy line between the oil phase and middle 

phase is thinner in the salinity of 0.3% to 0.5% samples, on the contrary, the opaque 

line formed between the middle phase and bottom aqueous phase with NaCl 

concentration greater than 0.6% and above samples. This cloudy line is also a symbol 

of surfactant lactation in this water in oil microemulsion. The enlarged image of 0.6% 

salinity sample is present in Figure. 30 for clear observation. 

 

 

 

Figure 29: Salinity scan for 1% NaXS with Heptane at 50OC. 

      0%    0.3%   0.4%    0.5%   0.6%   0.7%   0.8%   0.9%     1%      
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Figure. 30: Middle Phase of Surfactant Sample contains 1% NaXS, 0.6% NaCl and Heptane at 

50OC. 

 

Moreover, the addition of 0.5% NaXS with the surfactant system is also tested 

(Figure.31). There is no significant difference at this point. Type III microemulsion 

and middle phase appearance all looks similar with the 1% NaXS case. The optimum 

salinity increased 0.2 wt% from 0.4% to 0.6% when compared to the 1% NaXS added 

case. But, still slightly decrease the optimum salinity of the whole surfactant solution. 

The phase behavior result is in the figure below; the upper image is taken at the room 

temperature while the lower picture is taken after 4 hours heating in a 50oC oven. 
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Figure. 31: Salinity scan for 0.5wt% NaXS with Heptane at Room Temperature (upper) and 

50OC(lower). 

 

 

 

 

 

       0%      0.4%     0.5%       0.6%     0.8%        1%        1.5% 
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A critical improvement of adding urea into the surfactant system is to solve the phase 

separation issue in the low salinity range with heavier oil(dodecane). Thus, the 1 wt% 

NaXS addition with dodecane is also tested to check if NaXS also contribute to the 

stability of the surfactant solution. The result is shown in Figure 32. 

 

 

 

Figure.32: Salinity scan for 0.1wt% NaXS with Dodecane at Room Temperature (upper) and 

50OC(lower). 

 

0.5%     1%      1.5%     1.8%    2.0%     2.2%    2.5%     3% 
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Unfortunately, when mixing with dodecane, there is one sample at 1.5% NaCl has the 

phase separation issue again. However, for the type III range, it is improved to be 

more extensive, from 1.8% to 2.2%, but the optimum salinity is not shift much; still 

similar with the surfactant only case. When heating the samples to 50oC, the phase 

separation issue is solved. 

Stability Test 

To examine the phase separation issue and aqueous phase stability. In Figure 33, a 

set of stability test samples is prepared. 

 

 

Figure.33. Stability Test Samples with 0.75% AOT, 0.19% SDBS and NaCl. Surfactant only 

(top), with 5% urea (middle) and 1% NaXS (bottom). 

 

0%       0.5%        1%         1.5%        2.0%        2.5% 
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These 5ml stability test samples contain two surfactants (0.75 wt% AOT and 0.19 wt% 

SDBS), two types of hydrotrope and NaCl. The salinity of each sample is marked on 

top of them. The top 6 samples are surfactant with DI water; samples in the middle 

are the surfactant with 5% urea, and bottom set of samples are surfactant with 1% 

NaXS. 

The photo is taken after two-day of equilibrium time. These samples are stable and no 

precipitation up to 6 days. Then the higher salinity ( more than 1.0% salt) samples will 

have a minute amount of cloudy phase on the bottom of the test tube display in 

Figure.34. The dioctyl sodium sulfosuccinate (AOT) has a complicated phase 

behavior. Although the AOT used is more than 97 wt% purity, it still generates some 

complex phenomenon. This precipitation may due to the self-aggregation of AOT 

micelles along with time. This phenomenon is also viewed in the AOT stock solution. 

When first prepare the 1% stock solution of AOT and DI water, the solution is 

transparent within a week; however, as time goes by, the AOT solution will generate 

some white precipitation on the bottom of the tube and bring cloudiness to the solution. 

It should be the large aggregation of micelles settle down on the bottom. 
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Figure. 34. Example of Precipitation Sample of Stability Test 

 

Table. 2. Summary of Phase Behavior of Case 1 (Surfactant only) 

 

 

 

 

 

 

 

 

Hydrocarbon Heptane Octane Decane Dodecane

S
* 0.7 0.9 1.3 1.7

Type III range 0.7 0.9 1.2-1.4 1.7-1.8

Coalescent rate

of type III
8 min 5 min 12 min 6 min
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Table. 3. Summary of Phase Behavior of Case 2 (5% urea) 

 

 

Table. 4. Summary of Phase Behavior of Case 3 (NaXS) 

 

 

In summary, 5% urea has the best stability among these three cases. When mixing 

with the oil phase, samples contain 5% urea will be stable up to 2 months. Even the 

surfactant with an aqueous urea phase is stable up to one week.  Samples with NaXS 

will be stable at a higher temperature. If the oil site requires an elevated temperature 

but low salinity formulation, NaXS as well as surfactant system should be suitable. 

Hydrocarbon Heptane Octane Decane Dodecane

S
* 1.2 1.4 2 2.4

Type III range 1.1-1.3 1.4-1.6 1.6-2.3 1.8-2.6

Coalescent rate

of type III
6 min 3.5 min 6.5 min 2.5 min

S
*
 Increase 71.40% 55.60% 53.80% 41.20%

Hydrocarbon Heptane Heptane Heptane Dodecane

NaXS conc. 5% 1% 0.50% 1%

S
* N/A 0.4 0.6 1.7

Type III range 0 0.3-0.7 0.5-0.8 1.7-2.4

Coalescent rate

of type III
7 min 5 min 5 min 6 min

S
*
 Decrease N/A 60% 15.70% 0.00%
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Both addition of urea and NaXS provide a more extensive and clear type III 

microemulsions, an addition of 5% urea will result in up to 70% optimum salinity 

increase compare with the surfactant only case. On the contrary, introduce NaXS into 

the system will reduce the optimum salinity. The optimum salinity shifts more with 

more NaXS added. For instance, 5% of NaXS shift the microemulsion to all type II 

from zero to 2 wt.% NaCl, while 0.5% NaXS only reduce the optimum salinity of 16% 

(from 0.7 wt.% to 0.6 wt.%). 

 

Solubilization Parameter 

Another study is done on the solubilization parameter as shown in Figure 35. Here is 

an example of decane salinity scan with 5% Urea added. Interfacial tension and 

solubilization parameter of oil and water have been calculated and shown with the 

matching salinity. Solubilization parameter is plotted; in a unit of the milliliter per 

gram. In other words, oil solubilization parameter is calculated based on the milliliter 

of oil dissolved in the gram of water phase, while the water solubilization parameter 

is the amount of water dissolved in the oil phase. 

The R ratio of type I is less than 1; type 2 is greater than 1, and type III is equal to1. 

R ratio is defined as the cohesive energy per unit area between the surfactant and oil 

divided by the cohesive energy per unit area between the surfactant and the water 

phase. Thus, in type III microemulsion, the surfactant-oil and surfactant-water 

interactions are equal. By adding urea, the entire system becomes more hydrophilic 

which also changed the interactions. More hydrophilic means optimal salt level 

required is increased; it needs more salt to reach equilibrium. 
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The salinity of 1.3 wt.% sample is the optimum salinity in no urea case. However, the 

samples contain 1.3 wt.% NaCl is still in the Type I range after adding urea. This 

means either the interaction of surfactant and water increased, or the oil and surfactant 

interaction decreased. 

 

 

Figure 35. Solubilization Parameter and Interfacial Tension of AOT and SDBS with 5% Urea 

Mixed with Decane. 
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Adsorption study 

Activated carbon, Indiana limestone, and Ottawa sand are chosen as the sand/soil. 

These sand is mixing with SDBS solutions for 72-hr equilibrium time separately. The 

0.2 um filter and centrifuge are needed to keep the solution clear and clean for UV-

Vis. Case 1 is still the SDBS only case with DI water; case 2 is SDBS mixing with 5% 

urea and case 3 is SDBS mixing with 1% NaXS solution. 

Ottawa sand is clean and uniformed silica sand. According to the zeta potential 

measurements from Mukul M. Sharma and his group, Ottawa sand is negatively 

charged in the water solution (Sharma et al. 1987). However, the surface charge of 

mineral in the water depends on the pH; the neutral solution is giving a close to neutral 

surface charge as well. Then, limestone mainly contains calcite which is carbonates, 

the surface charge of limestone can be positively charged from pH 5 to pH 13 based 

on the result by Schramm and his group (Schramm et al. 1991). The surface area has 

also been reported, silica fines have 4.3 m2 per gram, while the limestone has around 

10.4m2 per gram. Ottawa sand (left), Indiana limestone (middle) and Activated 

Carbon (right) with US Dime is shown in Figure. 36 
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Figure. 36. Ottawa sand (left), Indiana limestone (middle) and Activated Carbon (right) with 

US Dime 

 

The activated carbon adsorption samples are shown in Figure 37. from left to right, 

SDBS concentration is varying from 300 ppm to 1500 ppm. The figure gives an idea 

of how the adsorption changes the surfactant concentration in the aqueous phase. 

Activated carbon has a powerful absorbability, due to the large surface area (500-1700 

m2g-1) and other physical properties. Thus after 72 hours, the foam is mainly 

disappearing as well as the aqueous solution becomes transparent. 
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Figure 37. Comparison of Activated Carbon Samples Pre (Top) and Post (bottom) Adsorption. 

 

The black activated carbon settled down on the bottom with some clay still in the 

upper aqueous phase and changed the color of the solution. The top photo was taken 

at the surfactant solution mix with activated carbon. The bottom photo was taken after 

72-hr equilibrium time. However, for the clean Ottawa sand, the adsorption amount 

cannot be differentiated by just observation of naked eyes. The foam generation 

amount of after adsorption is similar to the beginning of the adsorption process from 

the photo shown in Figure 38 below. 
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Figure 38. Comparison of Ottawa Sand Samples Pre (Top) and Post (bottom) Adsorption. 

 

Adsorption amount has been calculated based on the UV-Vis absorbance on the 262 

nm wavelength. The supernatant is taken from each sample, centrifugation for 20 

minutes on the 6000 rpm is needed before the extract of the supernatant. Filtration is 

required primarily for the activated carbon samples since the black colored aqueous 

solution represent the suspension particles in the solution. Due to the working 

mechanism of UV-Vis being measuring the amount of light absorbed at the targeted 

wavelength, the color of the solution and the suspended solids will influence the result. 

The results of the three types of sand are present below. Adsorption of surfactant 

(SDBS) in milligram per gram of sand as a function of post concentration of SDBS in 

the unit of ppm. 
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Figure 39. Adsorption Test of SDBS with Ottawa Sand 

 

Figure 40. Adsorption Test of SDBS with Indiana Limestone 
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Figure 41. Adsorption Test of SDBS with Activated Carbon 

 

Figures 39 - 41 are the adsorption study result of Ottawa sand, Indiana limestone, and 

activated carbon, respectively. By adding urea, there is an apparent reduction of 

surfactant adsorption for all three types of sand. Addition of NaXS results in reducing 

the adsorption amount of Ottawa sand and activated carbon but no significant change 

for the Indiana limestone. The reduction percentage is calculated of each 

concentration and average of all concentration and concentration beyond CMC is 

shown in Tables 5 and 6. 

Table. 5 Adsorption Reduction by Adding Urea 

 

 

Ottawa Sand Indiana Limestone Activated Carbon

Average

Reduction
42.67% 34.98% 7.16%

Average

Reduction

above CMC

21.64% 34.66% N/A
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Table. 6 Adsorption Reduction by Adding NaXS 

 

 

The critical micelle concentration (CMC) of SDBS is around 650 ppm based on the 

surface tension measurement in Figure 42. For case 1 (Ottawa sand), the CMC of 

SDBS is approximately 650 ppm when the plateau is reached. After introducing 5% 

urea into the SDBS solution, the CMC increased, and the plateau is being put off to 

around 1000 ppm. The reason why CMC increased should be the aqueous phase 

structure changed. It became harder to form micelle due to the surface tension, and 

chemical bonding between water molecule changed. In the literature, by adding 

hydrotrope, the radius of the water molecule changed. Then, after adding 1% NaXS, 

the reduction of adsorption amount is also observed after 500 ppm of SDBS 

concentration. Moreover, Ottawa sand adsorption amount is traces. The maximum 

value is around 0.32 mg/g, which is reasonable because of the uniformed particle size, 

clean sand constitution, and limited surface area. 

Then, for the second case (Indiana limestone), the adsorption amount of SDBS only 

case become flat at the very early time (500 ppm). And the urea one display a 

significant reduction of absorbed of SDBS in solution.  Approximately, 40% reduction 

is observed after CMC. This result gives a new insight into the surfactant flooding 

system. It can contribute to solve the surfactant loss of adsorption on reservoir rock 

Ottawa Sand Indiana Limestone Activated Carbon

Average

Reduction
7.44% 12.19% 53.44%

Average

Reduction above

CMC

13.61% 3.68% N/A
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and control economically on the spendings on chemicals purchase. 

On the contrary, the addition of NaXS did not show a significant drop of adsorption 

amount of SDBS. It has some effect on reducing the adsorption in the lower 

concentration (less than 620 ppm) but when reaches the CMC, the result has been 

weakening and becoming similar to the DI water case. This can be the effect of the 

surface charge of Indiana limestone in the water, the positively charged sand face in 

contact with the anionic surfactant solution, the interaction between them may be an 

issue. 

Lastly, the activated carbon case, both urea, and NaXS solution show a reduction on 

the SDBS adsorption. Only 0.5g of AC is added into 10g of surfactant solution due to 

the strong adsorption ability. The tendency of these three lines are quite dissimilar, 

NaXS added case is the flattest one. Unlike the previous two cases, Indiana limestone 

displays the best ability to reducing the surfactant loss. When examining the 

supernatant samples, there is an interesting phenomenon being found. The loss of 

hydrotrope itself may influence the adsorption result. In this activated carbon case, 

when determining the concentration of SDBS in the post solution. Approximately 60% 

of NaXS is disappeared after adsorption, while this phenomenon is not detecting in 

any other cases. This unaccounted part of NaXS may be adsorbed onto the sand 

surface first and occupied the limited area. Then, influence the SDBS adsorption and 

decrease the surfactant loss. 
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Figure 42. Surface Tension Measurement SDBS with DI and SDBS with 5% urea and 1% 

NaXS added, measured by pendant drop method. 

 

To ensure the integrity of adsorption results, the surface tension of each solution is 

tested using the pendant drop method mentioned in the previous section. The result is 

shown in Figure 42 where the x-axis is SDBS concentration in parts per million in a 

log scale and the y-axis is the measurements of surface tension.  The black rhombic 

dots stand for the SDBS with DI water solution; gray square dots are SDBS with 5% 

urea solution and the triangular dots on the bottom represents SDBS with 1% NaXS 

added. Four straight line is marked to calculate the CMC value of SDBS and SDBS 

with urea case. The CMC is reported to be 650 ppm and 775 ppm. Thus, the addition 

of 5% urea increases the CMC of 125 ppm which is roughly 19% increase. This 

surface tension measurement supports the adsorption test result that by adding urea, 

CMC of SDBS increase.  

Due to the NaXS has surface active ability itself and the effect on SDBS solution, the 

surface tension measurements are all around 29 mN/m even on the 200 ppm SDBS 
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solution. This may also because of the error due to the low surface tension, which 

caused the pendant drop not to form the familiar pendant shape; instead, the droplet 

sticks to the outside surface of the needle and become build up the volume on it. An 

example of this phenomenon shown in Figure 43. This unusual fact is changing the 

shape of the droplet and cause the software analysis the changed shape of the droplet. 

This error caused the surface tension measurement not reliable for this case.  

 

Figure. 43. Droplet of SDBS with NaXS Solution on the Needle surface 
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V. Conclusions 

A significant economic barrier to the widespread use of the surfactant flooding 

technology is the loss of surfactant through adsorption on aquifer and reservoir 

minerals. Especially in the case of EOR in highly saline brines, losses of surfactant 

may be the most significant single expense in the application. In my study, with only 

adding 5% of Urea, we can reduce up to 43% of surfactant adsorption with Ottawa 

sand and 35% of Indiana limestone. For NaXS, the effect on surfactant adsorption is 

less practical on Ottawa sand and Indiana limestone, but for activated carbon, the 

reduction is up to 53%. Also, the addition of 5% urea, critical micelle 

concentration(CMC) increased. 

As for phase behavior study, by adding 5 wt% of urea into the AOT/SDBS system, 

resulting in type III window becomes wider and middle phase becomes more 

transparent; S* increased up to 71%; coalescent rate improved. Stability issue with 

phase separation after adding oil phase is solved. Addition of 1% NaXS will shift the 

Type III microemulsion to the lower or no salinity range which gives the excellent 

potential for the low salinity reservoir condition. The 50 °C will fix the phase 

separation issue. 

This study offers insights on the extent to which the addition of proper hydrotrope 

may help to formulate an efficient and low-cost surfactant flooding system. 
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Chapter II: Formulations of Microemulsions for Dense Non-Aqueous 

Phase Liquids: Effects of Soybean Oil Methyl Ester 

I. Introduction: 

A new solvent has been found in the 1990s, extract from soybean oil, which named 

SoyGold. The primary compounds of SoyGold are fatty acid methyl esters, and some 

types of SoyGold also contains surfactant depending on the targeted application. This 

light oil like fluid has been widely used as a solvent on bioremediation of groundwater 

and soil. SoyGold also is put in cleaners in our daily life, such as hand cleaner and 

nail polish remover (Chempoint). SoyGold is an environmentally friendly solvent 

compare to other petroleum-based ones. It is 100% biodegradable, has a higher 

solvent strength and a lower volatile organic compound (VOC) (Chempoint).  

Groundwater is a valuable resource that is used for drinking water in many countries 

all over the world (Feld et al. 2016). Polluted groundwater aquifers used for drinking 

water are often remediated by use of the pump-and-treat technology, where the water 

is pumped up and treated at the site, typically by adsorption of the contaminants onto 

activated carbon (Benner et al. 2013; Feld et al. 2016). However, a new treatment 

approach of injecting SoyGold straightforward into the subsurface is found. By 

pumping SoyGold into the underground, it will not only benefit the bioremediation 

on the contaminated phase, but also it will contribute to the buoyancy and density 

adjustments. In the oil industry, this new solvent will offer significant assistance on 

mobilizing the dense non-aqueous phase liquid (DNAPL) in the subsurface. 
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Bioremediation  

Bioremediation is a process of using the naturally occurring bacteria to remediate 

contaminants in soil and groundwater (Gundling). SoyGold is used during this 

bioremediation process to optimizes the subsurface environment by beneficial 

bacteria growth. The illustration (Figure 44) shows the SoyGold working process 

during the groundwater bioremediation. SoyGold is injected into the subsurface, and 

it will provide the nutrition for bacteria to consume. Then the enzymes which released 

by the bacteria will break down the contaminations of groundwater (Gundling). 

 

 

Figure 44. Illustration of SoyGold Working Process During the Groundwater Bioremediation 

(Gundling). 
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Fatty acid methyl esters (FAME) 

Fatty Acid Methyl Esters (FAME) are esters of fatty acids. The physical 

characteristics of fatty acid esters are closer to those of fossil diesel fuels than pure 

vegetable oils, but properties depend on the type of vegetable oil (European Biofuels). 

FAME has physical properties similar to those of conventional diesel. It is also non-

toxic and biodegradable (European Biofuels). FAME is produced from vegetable oils, 

animal fats or waste cooking oils by transesterification. The production reaction of 

FAME biodiesel is shown in Figure 45. with the help of methanol. glyceride reacts 

with an alcohol in the presence of a catalyst, forming a mixture of fatty acids esters 

and an alcohol (European Biofuels). SoyGold is produced in this method and can be 

considered as the biodiesel. 

 

 

Figure 45. The reaction of producing FAME (European Biofuels) 
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Dense non-aqueous phase liquids (DNAPLs) 

Dense non-aqueous phase liquids (DNAPLs) is a type of chemicals or mixtures of 

compounds that have two primary characteristics in common: they are heavier than 

water, and they are only slightly soluble in water (CLU-IN). Due to the physical 

characteristics of DNAPL, they may form the separate non-aqueous phase in the 

subsurface (ITRC 2015). The mobility characteristics of DNAPL is discussed in 

Figure 46. which adopted from ITRC (Interstate Technology & Regulatory Council) 

website. 

 

Figure 46. The mobility characteristics of DNAPL. Mobile and potentially mobile DNAPL(left) 

and Immobile residual phase DNAPL(right) (ITRC 2015) 

 

In the illustration, the orange portion represents the DNAPL, and it is located in the 

porous media of the reservoir rock. The mobile DNAPL has the continuous shape in 

the pore, and it is able to migrate. The potentially mobile DNAPL is also in the similar 

form of mobile DNAPL; however, the capillary pressure is not exceeding the 

groundwater pore pressure. It can be mobilized with the change of pore conditions. 

The immobile residual phase DNAPL is shown on the right of Figure 46. It cannot 

be mobilized due to the capillary pressure limitation (ITRC 2015). 
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II. Objective 

Three types of SoyGold samples are chosen in this study. A prediction of the 

equivalent alkane carbon number (EACN) is needed before examining the SoyGold 

effect on DNAPL phase behavior. Trichloroethylene (TCE) is the DNAPL phase 

selected and measured the EACN for comparison. To examine the SoyGold effect on 

DNAPL phase, phase behavior study of a SoyGold and TCE mixture is needed and 

IFT data also measured by the spinning drop tensiometer. Density adjustments and 

viscosity measurements are also provided. The newly developed system, which adds 

SoyGold into the TCE, should create a stable type III microemulsion with a selected 

surfactant system. Density and stability of mobilized DNAPLs produced by the new 

surfactant formulations should be significantly improved to safely catching and 

recovering through the recovery wells. 
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III. Materials & Methods 

Materials 

Three types of SoyGold is selected. The comparison of them are listed in Table 7.  

The information is adopted from the Chempoint website (Chempoint). They are all 

vegetable oil has the light-yellow color and the same density. The viscosity values 

are different by observation in the test tube and the SoyGold 2000 has the most 

yellowish color among them.  

Table 7. Comparisons of various SoyGold Products 

 

 

The hydrocarbons used in this study is listed in Table 8. The physical properties of 

them are also provided. 

 

Table 8. Hydrocarbon Tested 

 

 

 

Name Chemical formula Density, g/ml molecular weight, g/mol

TCE  C2HCl3 1.46 131.38

Octane C8H18 0.702 114.23

Dodecane C12H26 0.75 170.34
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Methods 

In this chapter, phase behavior study and interfacial tension measurements of the 

SoyGold samples are also utilized in the same procedures as in the previous chapter. 

Coalescence rate and the location of the middle phase in the type III microemulsion 

phase behavior samples are compared and used to determine the optimum salinity 

case. 

The viscosity data is obtained from the dropping-ball viscometer. The solution been 

prepared first and filled up the glass tube. No bubble is allowed in the tube, and the 

glass ball is placed in the tube before sealed. Place the viscometer vertically and 

observe the glass ball dropping. Record the ball dropping time from the start line to 

the end line which marked on the glass tube and the viscosity of the fluid can be 

calculated. 
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IV. Results and Discussions 

Prediction of the equivalent alkane carbon number (EACN) 

The EACN of SoyGold 1000 is measured by the phase behavior study with extended 

surfactant (2.5 wt.% Alfoterra 8-41S). A 5ml of the surfactant solution is mixed with 

5 ml of the oil phase (2.5ml of Dodecane and 2.5 ml of SoyGold 1000). Due to the 

low EACN of SoyGold, the EACN of the mixture contains SoyGold and dodecane is 

easier to be measured. The phase behavior samples are shown in Figure 47 with 

selected salinity marked on top of each sample. 

5%     10%   14.5%    15%    15.5%    18% 

 

14.8%     14.9%    15%      15.1%    15.2% 

 

Figure 47. Phase behavior samples of SoyGold 1000 for EACN measurement in bigger salinity 

scan (top) and finer salinity scan (bottom) 
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Similarly, EACN is measured in the same method for SoyGold 1100 and 2000. The 

results are shown in Figures 48 and 49. 

10%      12.2%     12.3%    12.4%    12.5%     12.6%     15% 

 

Figure 48. Phase behavior samples of SoyGold 1100 for EACN measurement 

 

10.0%    11.5%   12.0%   12.1%   12.2%    12.3%   12.4%     15% 

 

Figure 49. Phase behavior samples of SoyGold 2000 for EACN measurement 

 

The optimum salinity of SoyGold 1000, 1100 and 2000 with dodecane mixtures are 

15 wt.%, 12.4 wt.% and 12.2 wt.% from the observation of phase behavior samples. 

Then the EACN of the mixture is calculated based on the K and Cc value from 
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literature. Based on the 2.5wt% AF 8-41s K and Cc value, the equation below from 

Wei Wan is used, and EACN of the mixture is calculated to be 8.5 for the SoyGold 

1000 and dodecane (Wan 2014).  

 

ln(S*) = 0.0478 * EACN + 2.4075     (8) 

EACNmix = X1 * EACN1 + X2 * EACN2    (9) 

 

Where X1 is the mole fraction of dodecane (0.59), EACN1 equals 12 and X2 is the 

mole fraction of SoyGold 1000 (0.41). The mole amount of each type of oil can be 

calculated by the weight divided by the molecular weight of each one. Then, the mole 

fraction is calculated by the mole amount of each type of oil taken place in the oil 

mixture. Then, according to linear mixing rule, the EACN of SoyGold 1000 is 

calculated to be 3.46 based on Eq 9 and the related properties. Similarly, EACN of 

SoyGold 1100 and 2000 is estimated to be 4.10 and 3.73. An IFT measurement is also 

provided to ensure the result of the optimum salinity (Figure 50). 

 

Figure 50. IFT measurement of phase behavior sample of SoyGold 1100 and dodecane 
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After predicting the EACN of three types of SoyGold, TCE is also been tested and 

measured. The samples are shown in Figure 51. 

10%    12.5%    13.5%    15%    15.3%    15.5%    15.7%     16%    17.5% 

 

Figure 51. Phase behavior samples of TCE and Octane (1:9 ratio) for EACN measurement 

 

In this case, TCE is dyed using Sudan red powder due to the high toxicity. After TCE 

solution is dyed to red color, it is easy to be found if any TCE is spilled. Again, due 

to the low EACN number of TCE, a 1 to 9 ratio of TCE and octane is used in the 

EACN measurement. The mixture of oils is being stirred with a magnetic bar in the 

solution for 24 hours of equilibration period. The optimum salinity is observed to be 

15 wt.%, and the EACN of TCE is estimated to be -2.07. 

 

 

 

 

 



 

71 
 

 

Density alteration of SoyGold and TCE mixture 

Before doing the phase behavior study of the mixture contains SoyGold and TCE, a 

density adjustment is needed to determine the optimum case which the density is 

lighter than the aqueous phase. SoyGold 1100 is selected as the optimum SoyGold 

due to the fast coalescence rate compared to other SoyGold samples. The ratio of 

SoyGold/TCE and the density measurements are shown in Table 9. The volume ratio 

of TCE and SoyGold 1100 of 2 to 8 is selected. 

 

 

Table 9. Density adjustment of SoyGold and TCE mixture 

 

 

 

 

 

Density

TCE SoyGold 1100 g/cm
3

2 8 0.98

3 7 1.03

4 6 1.09

5 5 1.16

6 4 1.2

7 3 1.27

8 2 1.32

9 1 1.39

Volume Ratio
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Phase behavior study of SoyGold 1100 and TCE mixture 

The selected surfactant solution with AOT/Calfax and mixed with the 2 to 8 ratio 

mixtures of TCE and SoyGold 1100. A wider salt window for type III microemulsions 

is realized in the Figure 52. The middle phase is thin and cloudy. The IFT 

measurement is provided in Figure 53. A large range of ultra-low IFT is detected 

from salinity of 1wt.% to 4 wt.%.  

 

0.5%     1%    1.3%     1.4%   1.5%     1.6%   1.8%      2%       4% 

 

Figure 52. Phase behavior samples of SoyGold 1100 and TCE mixture 

 

Figure 53. IFT measurement of phase behavior samples of SoyGold 1100 and TCE mixture 
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Stability test with Viscosity measurement 

To examine the stability of the SoyGold and TCE mixtures, a stability test with the 

viscosity measurement is needed. Xanthan Gum is used to improve the viscosity and 

stability of the samples. The samples contain 5ml of aqueous solution and 5ml of 

SoyGold 1100; another set of the samples contains addition of 2ml of TCE. Four set 

of samples are prepared and shown in Figure 54, 55. and Table 10.  

 

 

 

 

Figure 54. Stability test samples with 5ml SoyGold 1100 
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Figure 55. stability test samples with 5ml SoyGold 1100 and 2ml TCE 

 

Table 10. Viscosity measurements in centipoises 

 

 

After manually mixing, sample 1 and 2 are separated after 6 to 12 minutes. However, 

in addition of xanthan gum, the stability is improved up to 12 hours as well as the 

viscosity increased. This study offers a lot of possibilities of this co-solvent 

formulation on other heavier DNAPLs which can benefit the mobility and stability of 

the fluids. 

① ② ③ ④

With 5ml 

SoyGold and 

2ml TCE

2.98 1.73 10.4 6.73

Surfactant 

only

With 1%  

NaCl

With 100pm 

Xanthan Gum

With 50 ppm 

Xanthan Gum

Sample

2 4.05 12.92 12.3
With 5ml 

SoyGold
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V. Conclusion 

SoyGold 1100 can be used on the density adjustment of DNAPL phase, and it can 

provide a broad and stable type III microemulsion which has an ultra-low interfacial 

tension in low salinity range (less than 4 wt.% NaCl). With the injecting SoyGold 

straightforward into the subsurface, the DNAPL phase that trapped in the pore can be 

solubilized and mobilized with the aqueous phase. By pumping SoyGold into the 

underground, it will not only benefit the bioremediation on the contaminations, but 

also it will contribute to the buoyancy and density adjustments and then assistance on 

mobilizing the residual dense non-aqueous phase liquid (DNAPL) in the subsurface. 
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