
UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

THREE-DIMENSIONAL FULLY COUPLED THERMOPOROMECHANICAL MODELLING 

OF FRACTURED RESERVOIR ROCK 

 

 

 

 

 

 

A DISSERTATION 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

 

By 

 

QIAN GAO 

 Norman, Oklahoma 

2019 

  



 

 

 

 

 

THREE-DIMENSIONAL FULLY COUPLED THERMOPOROMECHANICAL MODELLING 

OF FRACTURED RESERVOIR ROCK 

 

 

A DISSERTATION APPROVED FOR THE 

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING 

 

 

 

 

 

 

 

 

BY 

 

 

 

     

Dr. Ahmad Ghassemi, Chair 

 

 

 

Dr. Matthew J. Pranter 

 

 

 

Dr. Mashhad Fahes 

 

 

 

Dr. Deepak Devegowda 

 

 

 

Dr. Jean-Claude Roegiers 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by QIAN GAO 2019 

All Rights Reserved. 

 



iv 

Dedication 

To my parents, brothers, and sisters,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

Acknowledgements 

I would like to express my sincerest and deepest gratitude to my advisor, Dr. Ahmad 

Ghassemi, for his guidance, encouragement, and patience throughout my Ph.D. work over the 

last six years. Dr. Ghassemi’s dedication to research has been and will always be the excellent 

model for me to follow.  

I would like to thank for my dissertation committee: Dr. Jean-Claude Roegiers, Dr. 

Matthew J. Pranter, Dr. Deepak Devegowda, Dr. Mashhad Fahes, Dr. Ahmad Jamili for their 

help.  

I have been fortunate to have an opportunity to study with and learn from a group of 

excellent colleagues in the Reservoir Geomechanics & Seismicity Research Group. Many thanks 

go to Dr. Xiaonan Wang, Dr. Varahanaresh Sesetty, Lianbo Hu, Dr. Dharmendra Kumar, Dr. 

Yawei Li, Dr. Kai Huang, Dr. Zhi Ye, Dr. Qinglu Cheng, Jianrong Lu, Jiman Liu, and many 

others. I want to thank all my friends for sharing the joyful and wonderful life during my Ph.D. 

study. 

I would like to thank my parents, brothers and sisters for their endless love and support.  

 

 

 



vi 

Table of Contents 

 

Acknowledgements ..........................................................................................................................v 

Table of Contents ........................................................................................................................... vi 

List of Tables ................................................................................................................................. xi 

List of Figures .............................................................................................................................. xiii 

Abstract .................................................................................................................................... xxviii 

1 Introduction ..........................................................................................................................1 

1.1 Motivation ......................................................................................................................1 

1.2 Literature review ............................................................................................................2 

1.2.1 Hydraulic fracturing in reservoirs ............................................................................2 

1.2.2 Coupled analysis of fluid flow, heat transport and geomechanics ...........................7 

1.3 Research objectives ........................................................................................................9 

1.4 Dissertation outline ......................................................................................................10 

References ................................................................................................................................11 

2 3D planar hydraulic fracture propagation in an elastic medium: formulation and 

verification .........................................................................................................................16 

Abstract ....................................................................................................................................16 

2.1 Introduction ..................................................................................................................17 

2.2 Governing equations ....................................................................................................19 

2.2.1 The cohesive law....................................................................................................19 

2.2.2 Fluid flow in hydraulic fracture .............................................................................22 

2.3 Numerical implementation...........................................................................................23 

2.3.1 Hydro-mechanical interface element .....................................................................23 

2.3.2 Finite element formulation .....................................................................................25 

2.4 Parallel computing environment ..................................................................................27 

2.5 Model verification ........................................................................................................29 

2.5.1 Mode I test .............................................................................................................29 

2.5.2 Penny-shaped hydraulic fracture............................................................................31 

2.5.3 KGD hydraulic fracture in 3D domain ..................................................................41 

2.6 Numerical analyses: CZM parameters and element size .............................................48 



vii 

2.6.1 Sensitivity analyses of CZM parameters ...............................................................49 

2.6.2 Influence of the interface element size on hydraulic fracturing ............................59 

2.6.3 Discussion ..............................................................................................................62 

2.7 Conclusions ..................................................................................................................67 

References ................................................................................................................................68 

3 3D planar hydraulic fracture propagation in an elastic medium: height growth in layered 

formations ..........................................................................................................................73 

Abstract ....................................................................................................................................73 

3.1 Introduction ..................................................................................................................74 

3.2 Problem description .....................................................................................................77 

3.3 Validation of the numerical model ..............................................................................79 

3.3.1 Simulation results for the step-like injection rate without wellbore elements .......80 

3.3.2 Simulation results for the constant injection rate with wellbore elements ............84 

3.4 Numerical analyses of hydraulic fracturing in layered formations ..............................86 

3.4.1 Effects of layered Young’s modulus......................................................................86 

3.4.2 Effects of in-situ stress ...........................................................................................99 

3.4.3 The combined effects of the in-situ stress and Young’s modulus heterogeneity 110 

3.4.4 Effects of rock ductility .......................................................................................114 

3.5 Discussion ..................................................................................................................117 

3.6 Conclusions ................................................................................................................119 

References ..............................................................................................................................120 

4 3D planar hydraulic fracture propagation in an elastic medium: interaction between 

hydraulic fractures and discontinuities ............................................................................123 

Abstract ..................................................................................................................................123 

4.1 Introduction ................................................................................................................124 

4.2 Problem statement and methodology .........................................................................127 

4.2.1 Problem statement ................................................................................................127 

4.2.2 Fully coupled hydro-mechanical model...............................................................129 

4.3 Mechanical behaviors of the interface element .........................................................136 

4.3.1 Mode I fracture ....................................................................................................136 

4.3.2 Mode II fracture with friction coupling ...............................................................137 



viii 

4.3.3 Mixed-mode fracture ...........................................................................................139 

4.4 Numerical analyses ....................................................................................................141 

4.4.1 Comparison of model predictions with analytical crossing criterion ..................141 

4.4.2 Simulation of laboratory tests on hydraulic fracture crossing a pre-existing 

discontinuity .........................................................................................................149 

4.4.3 Effect of Young’s modulus ..................................................................................151 

4.4.4 Effect of stress contrast ........................................................................................155 

4.5 Discussion ..................................................................................................................156 

4.6 Conclusions ................................................................................................................158 

References ..............................................................................................................................160 

5 3D thermo-poromechanical analysis of flow, heat transport and deformation in fractured 

rock with applications to a lab-scale geothermal system .................................................164 

Abstract ..................................................................................................................................164 

5.1 Introduction ................................................................................................................165 

5.2 Governing equations ..................................................................................................170 

5.2.1 Thermo-poroelastic theory for porous, permeable rock ......................................170 

5.2.2 Mechanical behaviors of fracture.........................................................................173 

5.2.3 Fluid flow in fracture ...........................................................................................175 

5.2.4 Heat transport in fracture .....................................................................................177 

5.2.5 Fluid flow in wellbore ..........................................................................................178 

5.3 Finite element implementation ..................................................................................180 

5.3.1 Zero-thickness interface (ZTI) element ...............................................................181 

5.3.2 Discretization in time ...........................................................................................182 

5.3.3 The Weak form ....................................................................................................184 

5.3.4 Discretization in space .........................................................................................186 

5.3.5 Newton-Raphson method.....................................................................................189 

5.4 Stabilized finite element method for thermal convection ..........................................190 

5.4.1 Stabilization of heat transport in the porous matrix .............................................192 

5.4.2 Stabilization of heat transport in fracture.............................................................193 

5.5 Numerical analyses: verification and illustration ......................................................193 

5.5.1 Initiation and propagation of a KGD hydraulic fracture ......................................194 



ix 

5.5.2 Thermo-poroelastic consolidation .......................................................................198 

5.5.3 Stabilization of convection-dominated flow ........................................................201 

5.5.4 Heat transport in fractured porous rock ...............................................................202 

5.6 Numerical simulations of a lab-scale EGS ................................................................211 

5.6.1 Stepwise constant pressure injection ...................................................................212 

5.6.2 Initiation and propagation of hydraulic fracture ..................................................215 

5.6.3 Thermal circulation ..............................................................................................219 

5.7 Conclusions ................................................................................................................226 

References ..............................................................................................................................228 

6 Pore pressure and stress distribution around a hydraulic fracture in heterogeneous rock236 

Abstract ..................................................................................................................................236 

6.1 Introduction ................................................................................................................237 

6.2 Problem description and methodology ......................................................................239 

6.2.1 Problem description .............................................................................................239 

6.2.2 Generation of random fields ................................................................................240 

6.2.3 Poroelastic model .................................................................................................241 

6.3 Model verification ......................................................................................................245 

6.4 Numerical simulations ...............................................................................................248 

6.4.1 Homogeneous case...............................................................................................248 

6.4.2 Heterogeneous case ..............................................................................................254 

6.5 Discussion ..................................................................................................................260 

6.5.1 Influence of Young’s modulus.............................................................................261 

6.5.2 Influence of Biot’s effective stress coefficient ....................................................269 

6.5.3 Influence of drained and undrained Poisson’s ratio .............................................272 

6.6 Conclusions ................................................................................................................275 

References ..............................................................................................................................276 

7 3D Thermo-poromechanical simulation of Fenton Hill HDR experiment ......................280 

Abstract ..................................................................................................................................280 

7.1 Introduction ................................................................................................................280 

7.2 Methodology ..............................................................................................................282 

7.2.1 Finite Element Implementation............................................................................282 



x 

7.2.2 Damage mechanics ..............................................................................................283 

7.3 Code verification ........................................................................................................288 

7.3.1 Terzaghi’s consolidation ......................................................................................288 

7.3.2 Mandel’s problem ................................................................................................290 

7.3.3 Thermoelastic consolidation ................................................................................293 

7.4 Fluid injection at Phase 1 Fenton Hill geothermal reservoir .....................................294 

7.4.1 Permeability of natural fracture (joint) ................................................................297 

7.4.2 A pressure-stimulation test ..................................................................................298 

7.4.3 Injection-venting experiments .............................................................................300 

7.5 Conclusions ................................................................................................................306 

References ..............................................................................................................................307 

8 Summary and future work ...............................................................................................310 

8.1 Summary ....................................................................................................................310 

8.2 Future work ................................................................................................................310 

Appendix A: Publications ............................................................................................................312 

  



xi 

List of Tables 

 

Table 2.1 Rock and fluid properties used for penny-shaped hydraulic fracture. .......................... 32 

Table 2.2 Total execution time, relative speedup and efficiency for the verification case in one 

time step. The mesh is composed by 106×16×106 8-node hexahedral and 106×1×106 12-

node hydro-mechanical interface elements. ............................................................................ 38 

Table 2.3 Rock and fluid properties used for penny-shaped hydraulic fracture. .......................... 42 

Table 2.4 Rock and fluid properties used for penny-shaped hydraulic fracture. .......................... 60 

Table 2.5 Different combinations of CZM parameters and their corresponding number of 

elements in cohesive zone. ...................................................................................................... 63 

Table 3.1 Material properties and injection parameters used in the laboratory test. .................... 80 

Table 3.2 Fracture radius, rock and fluid properties used for the verification test. ...................... 89 

Table 3.3 Injection pressures when using layered modulus and thickness-weighted modulus 

(average modulus) for three different scenarios. .................................................................... 91 

Table 3.4 Fracture radius, rock and fluid properties used for the verification test. .................... 100 

Table 4.1 Basic input parameters for PPR cohesive interface element. ..................................... 136 

Table 5.1 Wellbore parameters, rock and fluid properties used for the KGD hydraulic fracture.

............................................................................................................................................... 195 

Table 5.2 Basic input parameters for thermoelastic consolidation. ............................................ 199 

Table 5.3 Geometry and thermal properties for the fractured porous medium. ......................... 205 

Table 5.4 Experimental results of stepped constant pressure injection. (Hu et al., 2017) .......... 213 

Table 5.5 Mechanical and fluid properties for granite in this study and for Westerly granite. .. 214 

Table 6.1 Basic input parameters for the homogeneous case. .................................................... 249 

Table 6.2 Statistical values for the assumed random variables. ................................................. 255 

Table 7.1 Basic input parameters for Terzaghi 1-D consolidation. ............................................ 289 

Table 7.2 Basic input parameters for Mandel’s problem. ........................................................... 292 

Table 7.3 Basic input parameters for thermoelastic consolidation. ............................................ 294 

Table 7.4 Model parameters for Phase I Fenton Hill geothermal reservoir................................ 296 

Table 7.5 Flow-back volume and permeability at the end of each venting for scenario #1. ...... 302 

Table 7.6 Flow-back volume and permeability at the end of each venting for scenario #2, β = 20.

............................................................................................................................................... 303 



xii 

Table 7.7 Flow-back volume and permeability at the end of each venting for scenario #3. ...... 305 

Table 7.8 Flow-back volume and permeability at the end of each venting for scenario #4. ...... 306 

 



xiii 

List of Figures 

 

Figure 2.1 Cohesive process zone and fluid pressure distribution in a cohesive zone model. ..... 20 

Figure 2.2 Normalized traction-separation law for the cohesive elements: 1 elastic deformation; 2 

crack initiation; 3 softening deformation; 4 complete failure. ................................................ 22 

Figure 2.3 12-node hydro-mechanical interface element. Nodes 1 ~ 8 have degrees of freedom 

for displacement; nodes 9 ~ 12 have degrees of freedom for fluid pressure in hydraulic 

fractures. Initially the three layers have zero thickness and are overlapped with each other in 

numerical models. Here they are separated for visualization purpose. ................................... 24 

Figure 2.4 (a) Deformation of 12-node hydro-mechanical interface elements after fluid injection; 

(b) The hydro-mechanical interface elements are linked to and bounded by conventional 

elastic elements. ...................................................................................................................... 25 

Figure 2.5 Running procedures on each processor in a serial manner. ......................................... 28 

Figure 2.6 Diagram for element type class. .................................................................................. 29 

Figure 2.7 Diagram for material type class. .................................................................................. 29 

Figure 2.8 The mesh and boundary conditions used in the mode I test. The top element is 8-node 

hexahedron; the bottom one is zero-thickness cohesive element, a thickness is added to it for 

demonstration purpose. ........................................................................................................... 30 

Figure 2.9 Traction-displacement curve for the mode I test. ........................................................ 31 

Figure 2.10 Geometry of one quarter of the 3D model. The center plane shown in blue color is 

discretized into 12-node interface elements; the matrix indicated by the light gray color is 

discretized into 8-node hexahedral elements. The injection point is located in the corner of 

the center blue plane. (Unit: m). ............................................................................................. 33 

Figure 2.11 κ plotted as a function of time for viscosity-dominated regime. ............................... 34 

Figure 2.12 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for penny-shaped hydraulic fracture in viscosity-dominated regime.34 

Figure 2.13 Dimensionless aperture (a) and pressure (b) plotted as a function of normalized 

fracture radius at different injection time. ............................................................................... 35 

Figure 2.14 Aperture, pressure and fracture radius plotted as a function of injection time: (a) 

aperture at the injection point; (b) pressure at the injection point; (c) fracture radius. ........... 36 

Figure 2.15 Total execution time in one time step versus the number of processors used. .......... 37 



xiv 

Figure 2.16 κ plotted as a function of time for toughness-dominated regime. ............................. 39 

Figure 2.17 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for penny-shaped hydraulic fracture in toughness-dominated regime. 

(continued) .............................................................................................................................. 39 

Figure 2.18  Dimensionless aperture (a) and pressure (b) plotted as a function of normalized 

fracture radius at different injection time. ............................................................................... 40 

Figure 2.19 Aperture, pressure and fracture radius plotted as a function of injection time for 

penny-shaped hydraulic fracture in toughness-dominated regime. Solid lines are for 

asymptotic analytical solutions; data markers are for numerical solutions. ........................... 41 

Figure 2.20 Geometry of the KGD model in 3D. (Unit: m) ......................................................... 42 

Figure 2.21 Fracture aperture (a) and pressure (b) plotted as a function of fracture length at 

different injection time for 3D KGD hydraulic fracture in viscosity-dominated regime. 

(continued) .............................................................................................................................. 43 

Figure 2.22 Dimensionless aperture (a) and pressure (b) plotted as a function of normalized 

fracture length at different injection time. The asymptotic analytical solution predicts 

negative infinite pressure in the vicinity of fracture tip; numerical simulations yield finite 

values close to the tip as shown by the discrete dots near the tip in (b). ................................ 44 

Figure 2.23 Dimensionless aperture (a) and pressure (b) plotted as a function of normalized 

fracture length at different injection time. The asymptotic analytical solution predicts 

negative infinite pressure in the vicinity of fracture tip; numerical simulations yield finite 

values close to the tip as shown by the discrete dots near the tip in (b). ................................ 45 

Figure 2.24 Fracture aperture (a) and injection pressure (b) plotted as a function of fracture 

length at different injection time for KGD hydraulic fracture in 3D domain in toughness-

dominated regime. (continued) ............................................................................................... 46 

Figure 2.25 Dimensionless aperture and pressure plotted as a function of normalized fracture 

length at different injection time: (a) dimensionless aperture; (b) dimensionless pressure. ... 47 

Figure 2.26 Aperture, pressure and fracture half-length plotted as a function of injection time for 

KGD hydraulic fracture in toughness-dominated regime. Solid lines are for asymptotic 

analytical solutions; dots are for numerical solutions. ............................................................ 48 

Figure 2.27 Relationship between normal cohesive traction (Tn) and normal separation (Δn) for 

cohesive elements with rn of 0.01, 0.05 and 0.1, respectively. ............................................... 51 



xv 

Figure 2.28 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for rn being 0.01, 0.05 and 0.1, respectively. Larger slope indicator 

(rn) makes the material ahead of fracture tips more ductile, thus experiencing larger 

deformation. (continued)......................................................................................................... 51 

Figure 2.29 Fracture aperture (a) and pressure (b) at injection point versus injection time for rn 

being 0.01, 0.05 and 0.1, respectively..................................................................................... 52 

Figure 2.30 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for tensile strength being 0.5 MPa, 1.5 MPa and 5.0 MPa. Larger 

tensile strength generates smaller aperture in the vicinity of fracture tip. .............................. 54 

Figure 2.31 Fracture aperture (a) and pressure (b) at injection point versus injection time for 

tensile strength being 0.5 MPa, 1.5 MPa and 5.0 MPa. (continued) ...................................... 54 

Figure 2.32 Relationship between normal cohesive traction (Tn) and normal separation (Δn) for 

cohesive elements with tensile strength of 0.5 MPa, 1.5 MPa and 5.0 MPa, respectively. .... 56 

Figure 2.33 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for energy release rate (GIC) being 5.0 N/m, 12.0 N/m and 32.0 N/m.

................................................................................................................................................. 57 

Figure 2.34 Fracture aperture (a) and pressure (b) at injection point versus injection time for 

energy release rate (GIC) being 5.0 N/m, 12.0 N/m and 32.0 N/m. ........................................ 58 

Figure 2.35 κ plotted as a function of injection time. ................................................................... 58 

Figure 2.36 Relationship between normal cohesive traction (Tn) and normal separation (Δn) for 

cohesive elements with energy release rate of 5 N/m, 12 N/m and 32 N/m, respectively. 

Larger GIC corresponds to more ductile deformation. ............................................................ 59 

Figure 2.37 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for element size being 0.12 m, 0.40 m and 0.80 m. .......................... 61 

Figure 2.38 Fracture aperture (a) and pressure (b) at injection point versus injection time for 

element size being 0.12 m, 0.40 m and 0.80 m. (continued) .................................................. 61 

Figure 2.39 Fracture aperture and pressure at injection point versus injection time for the penny-

shaped hydraulic fracture propagating in toughness-dominated regime with tensile strength 

equal to 8 MPa, 14 MPa, and 20 MPa. Other parameters are the same as those provided in 

Table 2.1. The solid lines are for asymptotic analytical solutions, the data markers are for 

numerical results. .................................................................................................................... 64 



xvi 

Figure 2.40 Total work done during injection and the energy spent on fracture creation with 

different GIC for hydraulic fracture propagating in the viscosity-dominated regime. ............ 66 

Figure 2.41 Total work done during injection and the energy spent on fracture creation with GIC 

= 2000 N/m for hydraulic fracture propagating in the toughness-dominated regime. ........... 66 

Figure 3.1 Geometry and stress configuration of the laboratory test. ........................................... 80 

Figure 3.2 Injection pressure plotted as a function of time for the experimental observation and 

the numerical simulation. The jump of pressure at t = 31 s is caused by the increase in the 

injection rate; the drop of pressure at t = 151 s is due to the decrease in the injection rate in 

the simulation. ......................................................................................................................... 82 

Figure 3.3 Aperture plotted as a function of time at two monitoring points for the laboratory 

observation and the numerical simulation. Since the two observation points are symmetric to 

the injection point, numerical results are identical at these locations. .................................... 82 

Figure 3.4 Fracture front at distinctive time from the laboratory experiment and the numerical 

simulation. ............................................................................................................................... 82 

Figure 3.5 Aperture distribution from the numerical simulation at injection time of 144 s (a), and 

665 s (b). The red line shows the fracture front obtained from the laboratory experiment. 

(Unit: m).................................................................................................................................. 83 

Figure 3.6 Injection pressure plotted as a function of time for the experimental observation and 

the numerical simulation. ........................................................................................................ 85 

Figure 3.7 Aperture plotted as a function of time at two monitoring points for the laboratory 

observation and the numerical simulation. ............................................................................. 86 

Figure 3.8 Aperture plotted as a function of time at two monitoring points for the laboratory 

observation and the numerical simulation. ............................................................................. 88 

Figure 3.9 Normalized fracture half width plotted as a function of normalized fracture radius. . 89 

Figure 3.10 Normalized stress distributions along the line perpendicular to the center point of the 

fracture. ................................................................................................................................... 90 

Figure 3.11 Normalized stress distributions along the line parallel to the fracture surface (the line 

with an arrow). The distance from the line to the fracture surface is 0.4a (0.58 m). .............. 90 

Figure 3.12 Distribution of layered Young’s modulus in vertical direction: (a) Well log for 

Woodford shale; (b) Well log with two synthetic layers above and below the payzone having 



xvii 

higher Young’s modulus; (c) Well log with the two synthetic layers having lower Young’s 

modulus. .................................................................................................................................. 92 

Figure 3.13 Aperture profiles plotted along fracture radius in vertical direction from simulations 

using layered modulus and thickness-weighted modulus (average modulus):  (a) Based on 

well log data for Woodford shale; (b) Based on well log data with two synthetic layers 

having higher Young’s modulus; (c) Based on well log data with two synthetic layers having 

lower Young’s modulus. The two rectangle formed by dashed lines in (b) and (c) indicate the 

synthetic layers........................................................................................................................ 92 

Figure 3.14 Aperture and pressure profiles from FEM plotted in vertical direction passing 

through the injection point after11.5 seconds of fracture propagation: (a)+(d) Based on well 

log data for Woodford shale; (b)+(e) Based on well log data with two synthetic layers having 

higher Young’s modulus; (c)+(f) Based on well log data with two synthetic layers having 

lower Young’s modulus. The two rectangle formed by dashed lines indicate the synthetic 

layers. ...................................................................................................................................... 93 

Figure 3.15 Distribution of layered Young’s modulus in vertical direction: (a) modulus above the 

injection location is 2 times larger than that below the injection location; (b) modulus above 

the injection location is 4 times larger than that below the injection location; (c) fluid injected 

into the layer with relatively higher Young’s modulus that is confined by top and bottom 

layers having lower Young’s modulus. .................................................................................. 95 

Figure 3.16 Aperture distribution on a vertical plane passing through the injection point: (a) 

lower modulus contrast; (b) higher modulus contrast. The red lines indicate the variation of 

Young’s modulus. ................................................................................................................... 96 

Figure 3.17 Aperture distribution on a vertical plane passing through the injection point: (a) time 

= 12 s; (b) time = 24 s. Left figures are for the simulation using layered modulus; right 

figures are for the simulation having a uniform Young’s modulus (16.1 GPa). .................... 98 

Figure 3.18 Pressurized vertical fracture in a layered-stress medium. h indicates the penetration 

depth of the pressurized fracture in the bounding layers. ..................................................... 100 

Figure 3.19 Net pressure, pnet, from Eq. (3.2) plotted as a function of the fracture half-height, l. 

The red dash line indicates the interface that separates the center formation from the top (or 

bottom) formation. When l < H (H = 20 m), the hydraulic fracture is confined in the center 

formation as illustrated in Figure 3.18. ................................................................................. 100 



xviii 

Figure 3.20 Calculated stress intensity factor in numerical simulations using the applied fluid 

pressure and the fracture half-height from Eq. (3.2), as shown in Figure 3.19. The red dash 

line indicates the assumed fracture toughness (KIc = 1.0 MPa.m
1/2

), based on which the fluid 

pressure and the fracture half-height are obtained. ............................................................... 101 

Figure 3.21 (a) aperture distribution before the pressurized fracture extends across the location 

where the stress contrast exists; (b) aperture distribution for the fracture half-height ranging 

from 5 m to 30 m. When fracture is confined in the center formation (l ≤ 20 m), the analytical 

solution of aperture is available from Sneddon and Elliot (1946) as indicated by the red 

circles; after crossing into the layer with higher confining stress, the analytical solution for 

aperture is provided in an integral form, no straightforward expression exists. (continued) 102 

Figure 3.22 (a) Aperture distribution plotted as a function of time at the injection point; (b) 

Injection pressure plotted as a function of time at the injection point; (c) Fracture half-height 

plotted as a function of time. (continued) ............................................................................. 104 

Figure 3.23 (a) Aperture profiles at different injection times; (b) Pressure profile at different 

injection times. At 14.5 second, the hydraulic fracture reaches the location where the stress 

contrast (3MPa) exists. When time < 14.5 s, the numerical results match well with the 

asymptotic analytical solutions (no stress contrast exists). ................................................... 106 

Figure 3.24 (a) Aperture profiles at different injection times; (b) Net pressure profiles at different 

injection times. When time > 14.5 s, the hydraulic fracture slightly passes across the stress 

contrast boundaries; the numerical results differ dramatically with the asymptotic analytical 

solutions. The stress contrast used in the numerical model is 3 MPa. .................................. 107 

Figure 3.25 (a) Aperture profiles at different injection times; (b) Pressure profiles at different 

injection times. The stress contrast used in the numerical model is 1 MPa. (continued) ..... 107 

Figure 3.26 Aperture profiles at t = 24 s. (a) left figure has zero stress contrast, right figure has 

0.5 MPa stress contrast; (b) left figure has 1.0 MPa stress contrast, right figure has 3.0 MPa 

stress contrast. The red line indicates the variation of confining stress as a function of depth. 

(continued) ............................................................................................................................ 109 

Figure 3.27 Aperture, net pressure and fracture half-height distributions plotted as a function of 

time for the scenario with the stress contrast of 0.5 MPa existing between the injection layer 

and the bounding layers. (a) aperture at the injection point; (b) net pressure at the injection 

point; (c) fracture half-height. ............................................................................................... 112 



xix 

Figure 3.28 Aperture, net pressure and fracture half-height distributions plotted as a function of 

time for the scenario with the stress contrast of 3.0 MPa existing between the injection layer 

and the bounding layers. (a) aperture at the injection point; (b) net pressure at the injection 

point; (c) fracture half-height. (continued) ........................................................................... 113 

Figure 3.29 GIC distributed as a function of depth. ..................................................................... 116 

Figure 3.30 Aperture profiles at different time: (a) t = 12 s; (b) t = 24 s. The red line shows the 

variation of GIC as given in Figure 3.29. ............................................................................... 116 

Figure 3.31 Aperture and pressure at the injection point plotted as a function of time for the case 

having ductile layers (Figure 3.29) and the case having uniform GIC distribution (aperture 

profile is shown through the right figures on Figure 3.17). .................................................. 117 

Figure 4.1 12-node zero-thickness elements embedded in the traditional 8-node hexahedron 

elements at the intersection part of a vertical interface and a horizontal interface. The shadow 

area circled by red dash lines indicates the center plane of a zero-thickness element. The 

three layers of quadrilateral (1-2-3-4; 5-6-7-8; 9-10-11-12) in a cohesive interface element 

are initially overlapped with each other and have zero thickness. They are separately 

illustrated for visualization purpose. ..................................................................................... 135 

Figure 4.2 Normal traction plotted as a function of normal opening. During the loading-

unloading-reloading process, the tangential opening is maintained as zero. No tangential 

opening occurs. ..................................................................................................................... 137 

Figure 4.3 Tangential traction (shear) decomposed into cohesive traction component (Tt) and 

frictional traction component (Tf) and plotted as a function of tangential (shear) opening (Δt).

............................................................................................................................................... 138 

Figure 4.4 Tangential traction plotted as a function of tangential opening (Δt) during one cycle of 

loading. (a) cohesive traction (Tt) and frictional traction (Tf) vs. tangential opening (Δt); (b) 

total tangential traction (Tt + Tf) vs. tangential opening (Δt). The arrows indicate the “loading 

directions”. The number gives the deformation stages: (1) elastic loading, (2) softening, (3) 

unloading, (4) softening in the reverse direction, (5) reloading, (6) softening, and (7) 

complete failure. ‘2-3’ and ‘4-5’ mark the reverse of loading direction. ............................. 139 

Figure 4.5 Mixed-mode failure under three different reloading conditions: (a) Δn = Δt; (b) Δn > 0 

and Δt = 0; (c) Δn = 0 and Δt > 0. The frictional component of tangential traction is actually 



xx 

zero, since the normal opening is positive, the cohesive interface is in tensile stress state. 

(continued) ............................................................................................................................ 140 

Figure 4.6 Illustration of the interaction between a hydraulic fracture and a formation interface 

(bedding plane) in a layered medium. Formation a and b have different material properties 

and in-situ stress. The red line indicates the formation interface. ........................................ 144 

Figure 4.7 Net pressure, aperture and corresponding fracture profiles vs. time for the first case. 

(a) Net pressure and aperture at the injection point plotted as functions of time for 0 ≤ time ≤ 

150 s. The red lines show the asymptotic analytical solution, which is applicable (time < 34s) 

before the hydraulic fracture (HF) is restricted by high stress contrast in order to stop it 

propagating in the downward direction and before it reaches the horizontal formation 

interface in the upward direction; (b) Variation of net pressure and aperture at the injection 

point when time > 30s. The HF profiles are shown by color contours, the deformation is 

enlarged by a factor of 200: t1: HF stops propagating downward; t2: HF reaches the 

horizontal interface; t3: Interface slips due to pressurization of HF; t4: HF initiates at the 

intersection point; t5: HF crosses the formation interface and propagates in the upward 

direction; t6: HF propagates continuously. The mesh is uniform in horizontal and vertical 

directions and each grid is 0.1 m by 0.1 m. .......................................................................... 145 

Figure 4.8 Net pressure, aperture and corresponding fracture profiles vs. time for the second 

case. (a) Net pressure and aperture at the injection point plotted as functions of time for 0 ≤ 

time ≤ 150 s. The red lines show the asymptotic analytical solution, which is applicable (time 

< 34s) before the HF is restricted by high stress contrast in order to stop it propagating in the 

downward direction and before it reaches the horizontal formation interface in the upward 

direction; (b) Variation of net pressure and aperture at the injection point when time > 30s. 

The HF profiles are shown by color contours, the deformation is enlarged by a factor of 200: 

t1: HF stops propagating downward; t2: HF reaches the horizontal interface; t3: Slippage and 

opening of the formation interface. The mesh is uniform in horizontal and vertical directions 

and each grid is 0.1 m by 0.1 m. ........................................................................................... 147 

Figure 4.9 Stress distribution at t = 140 s around the opening portion of the formation interface: 

(a) σyy (horizontal) distribution; (b) σzz (vertical) distribution............................................... 148 

Figure 4.10 Geometry of the block sample and locations of the cutting discontinuity and the 

designed fracture propagation path. Red color indicates the designed fracture propagation 



xxi 

path; blue color indicates the discontinuity. The minimum horizontal stress (Shmin) is 

perpendicular to the red plane. Unit: m. ............................................................................... 150 

Figure 4.11 Fracture foot print and aperture distribution after 7.3 seconds of injection. The left 

figure is for the first test; the right one is for the second test. The red dash line shows the 

location of the discontinuity that is orthogonal to the plane (x-z plane) of fracture 

propagation. .......................................................................................................................... 150 

Figure 4.12 Net pressure and aperture at the injection point vs. time. The asymptotic analytical 

solution for penny-shaped hydraulic fracture is given for reference. The solution assumes no 

existence of discontinuities. .................................................................................................. 151 

Figure 4.13 (a) σyy distribution at t = 112 s around the opening section of the formation interface; 

(b) Aperture, injection net pressure vs. time for numerical results and asymptotic analytical 

solutions (t1: HF stops propagating downward; t2: HF reaches the location where Young’s 

modulus contrast exists). ....................................................................................................... 153 

Figure 4.14 (a) Induced σyy distribution at t = 60 s before the fracture tip reaches the formation 

interface, upper layer E = 38.8 GPa, lower layer E = 19.4 GPa; (b) Induced σyy distribution at 

t = 54 s before the fracture tip reaches the formation interface, upper layer E = 19.4 GPa, 

lower layer E = 38.8 GPa; (c) Induced σyy along a line parallel to the horizontal interface in 

the upper layer (red dash line in (a) and (b)). (y is the horizontal direction; z is the vertical 

direction.) (continued)........................................................................................................... 154 

Figure 4.15 (a) σyy distribution at t = 82 s around the opening section of the formation interface; 

(b) Aperture, injection net pressure vs. time for numerical results and asymptotic analytical 

solutions (t1: HF stops propagating downward; t2: HF reaches the location where stress 

contrast exists). ..................................................................................................................... 156 

Figure 5.1 Schematic illustration of domain Ω and boundary Γ. ................................................ 173 

Figure 5.2 12-node interface element. Nodes 1 ~ 8 have degrees of freedom for displacement, 

pore pressure and temperature; nodes 9 ~ 12 have degrees of freedom for fluid pressure and 

temperature. Initially the three layers have zero thickness and overlap each other in numerical 

models. Here they are separated for visualization purpose................................................... 182 

Figure 5.3 Connection of 1D elements for wellbore to the zero-thickness interface element in 3D. 

The red bar and circles indicate the 1D elements and their corresponding nodes; the white 

color shows the zero-thickness interface elements; the light blue color shows the 8-node 



xxii 

hexahedron elements after deformation. The dark nodes connect the 1D element representing 

the wellbore to the zero-thickness element representing the hydraulic fracture. .................. 194 

Figure 5.4 Hydraulic fracture variables plotted as a function of time. (a) Aperture at the fluid 

inlet point of the hydraulic fracture; (b) fluid pressure at the fluid inlet point of the hydraulic 

fracture; (c) fracture half-length. The fluid inlet point connects the 1D element for wellbore 

to the 3D zero-thickness interface element for hydraulic fracture as indicated by the black 

circles in Figure 5.3. (continued) .......................................................................................... 196 

Figure 5.5 Aperture and net pressure profiles plotted along the fracture length at different time.

............................................................................................................................................... 197 

Figure 5.6 Fluid flux entering the hydraulic fracture from the wellbore as a function of time. . 198 

Figure 5.7 Geometry and boundary conditions of the 1D thermo-poroelastic consolidation 

problem. ................................................................................................................................ 199 

Figure 5.8 Settlement at different locations plotted as a function of time. ................................. 200 

Figure 5.9 Pore pressure at different locations plotted as function of time. ............................... 200 

Figure 5.10 Temperature at different locations plotted as function of time. .............................. 200 

Figure 5.11 Illustration of the 1D heat transfer problem. ........................................................... 201 

Figure 5.12 Temperature profiles of the convection-dominated heat flow at time = 0.6 s: (a) 

without the use of SUPG stabilization; (b) with the use of SUPG stabilization. The analytical 

solution is for κ = 0.001 since κ = 0.0001 is too small to yield results from analytical 

solutions. ............................................................................................................................... 202 

Figure 5.13 Three different ways to simulate fractures in a porous medium: (a) elements 

representing fractures are superimposed onto the boundary of continuum elements; (b) 

continuum element which is the same as that used for porous media but with different 

properties; (c) zero thickness element. Red color indicates the fracture. ............................. 203 

Figure 5.14 Illustration of heat transport in a fractured porous medium. ................................... 204 

Figure 5.15 Temperature distribution along the fracture surface at different injection time. The 

fracture surface is also the surface of continuum element since the fracture is simulated using 

8-node hexahedron element. ................................................................................................. 206 

Figure 5.16 Temperature distribution at discrete points plotted as a function of time. The points 

are located in the rock matrix and are 0.2 meters away from the fracture. Their coordinates 

are given in the figure. .......................................................................................................... 206 



xxiii 

Figure 5.17 Illustration of convection surface condition and the corresponding numerical model 

to simulate the convection surface condition using a zero-thickness element. 3D hexahedron 

element is utilized to simulate the solid part of the 1D problem. The red color indicates the 

zero-thickness element where the convection surface condition is located. ......................... 208 

Figure 5.18 Temperature distribution along the line perpendicular to the interface (x direction in 

Figure 5.17) at different time. ............................................................................................... 209 

Figure 5.19 Temperature profiles within fracture for different convective heat transfer coefficient 

(h) at time = 3000 seconds (a) and at time = 7000 seconds (b). The unit for h is W/m
2
·°C. 

Discrete points are from analytical solutions, lines are from numerical simulations. .......... 211 

Figure 5.20 (a) Discretized grid model. 8-node hexahedron element is used; (b) Production and 

injection wells in the tested block. The red color indicates open-hole section of the one 

injection well; the blue color indicates open-hole sections of four production wells. Unit: m.

............................................................................................................................................... 213 

Figure 5.21 Flow rate plotted as a function of time for the cases with permeability equal to 595 

nD (a), 680 nD (b), 765 nD (c). (continued) ......................................................................... 214 

Figure 5.22 Comparison of injection pressure from the numerical simulation to those from the 

laboratory experiment. .......................................................................................................... 216 

Figure 5.23 Fracture radius, aperture and fluid pressure at the injection well node connecting the 

zero-thickness element to the wellbore element plotted as a function of time. (a) distribution 

of variables in the complete numerical simulation duration; (b) simulation time from 160 

second to 200 second, during which break down occurs and the hydraulic fracture touches 

the production wells. The vertical dot line in (b) indicates the time (t = 182 s) at which the 

injection is ceased. ................................................................................................................ 218 

Figure 5.24 Fracture footprint indicated through the aperture size atdifferent time from the 

numerical simulation. (a) fracture footprint at t = 182 s when the injection is just ceased and 

the hydraulic fracture touches the four production wells; (b) fracture footprint at t = 192 s 

when the injection pressure is stable after shutin. The redline gives the fracture geometry 

obtained from the laboratory experiment. ............................................................................. 219 

Figure 5.25 (a) The distritribution of the created hydraulic fracture in the rock block; (b) 

Geometry of the hydraulically created fracture. The red color on the plane indicates the 

created hydraulic fracture, which intersects the open-hole section of the left and bottom 



xxiv 

production wells. (The geometry is reconstructed based on Figure 4 in Hu and Ghassemi 

(2018b).)................................................................................................................................ 222 

Figure 5.26 Laboratory recorded temperature plotted as a function of time for the injection well 

and production wells. The total circulation time is around 8000 s; the temperature drop in the 

injection well is 52.6 °C, in bottom and right production well is 23.8 °C and 10.0 °C, 

respectively. .......................................................................................................................... 223 

Figure 5.27 Injection rate plotted as a function of time. ............................................................. 223 

Figure 5.28 Aperture at the injection well plotted as a function of time using convective heat 

transfer coefficient, h, equal to 100 W/(m
2
.K) (a) and 500 W/(m

2
.K) (b), respectively. ..... 225 

Figure 5.29 Injection pressure plotted as a function of time using convective heat transfer 

coefficient, h, equal to 100 W/(m
2
.K) (a) and 500 W/(m

2
.K) (b), respectively. ................... 225 

Figure 5.30 Temperature of fluid from the left production well plotted as a function of time using 

convective heat transfer coefficient, h, equal to 100 W/(m
2
.K) (a) and 500 W/(m

2
.K) (b), 

respectively. .......................................................................................................................... 225 

Figure 5.31 Temperature of fluid from the bottom production well plotted as a function of time 

using convective heat transfer coefficient, h, equal to 100 W/(m
2
.K) (a) and 500 W/(m

2
.K) 

(b), respectively..................................................................................................................... 226 

Figure 6.1 Load decomposition for a pressurized fracture in a poroelastic rock:  mode 1 (stress 

loading) is represented by a unit normal stress, σn , applied on the fracture surface; mode 2 

(pore pressure loading) is represented by a unit pore pressure, p, (equal to σn ) applied on the 

fracture surface...................................................................................................................... 244 

Figure 6.2 A 3D mesh for the numerical simulation domain: (a) Side view of the domain interior 

showing the circular fracture in red; (b) boundary conditions for the pressurized fracture in 

(a) showing a vertical section in the YZ-plane. .................................................................... 247 

Figure 6.3 Fracture width vs. radial distance for a penny-shaped fracture under mode 1 (or stress) 

loading. Comparison of numerical and analytical results for elastic and poroelastic cases. The 

very short time poroelastic results correspond to undrained rock response. The long term 

poroelastic results correspond to drained response which equal that of a purely elastic rock.

............................................................................................................................................... 247 

Figure 6.4 Normalized mode 1 fracture width vs. radial distance for a penny-shaped fracture. The 

profile of the normalized fracture aperture is independent of time and material properties. 248 



xxv 

Figure 6.5 Induced total (sum of mode 1 and mode 2) stresses and pore pressure along a line 

(OA) (top figure) perpendicular to the fracture surface, passing through the center of the 

fracture: (a) t = 0.02s; (b) t = 7 mins; (c) t = 24 hrs. ............................................................. 250 

Figure 6.6 Induced (total) shear stresses along the line OA (see the top of Figure 6.5) 

perpendicular to the fracture surface passing through the center of the fracture: (a) ΔSxy; (b) 

ΔSyz; (c) ΔSzx. ......................................................................................................................... 251 

Figure 6.7 Symmetrical distributions of reorientation angle (R-angle) of the minimum principal 

stress in a plane cut through the center of the fracture (the central plane parallel to the XY 

plane in Figure 6.2): (a) t = 7 mins; (b) t = 24 hours. The small dashes indicate the orientation 

of the minimum principal stress at those locations. (continued) .......................................... 252 

Figure 6.8 Generated stress contrast (ΔSyy – ΔSxx) at different pressurization time along the line 

OA (see the top of Figure 6.5) through the center of the fracture and perpendicular to it 

(homogeneous rock scenario). .............................................................................................. 254 

Figure 6.9 Random distribution of Young’s modulus (Pa). ....................................................... 255 

Figure 6.10 Random distribution of permeability (md). ............................................................. 256 

Figure 6.11 Induced total stresses and pore pressure along the line OA (see the top of Figure 5) 

perpendicular to the fracture surface, passing through the center of the fracture, for the 

heterogeneous case: (a) t = 0.02s; (b) t = 7 mins; (c) t = 24 hrs. .......................................... 257 

Figure 6.12 Variation of induced shear stresses along the line OA (see the top of Figure 6.5) 

perpendicular to the fracture surface, passing through the center of the fracture, for the 

heterogeneous case: (a) Sxy; (b) Syz; (c) Szx. ........................................................................... 258 

Figure 6.13 Unsymmetrical distributions of reorientation angle (R-angle) of the minimum 

principal stress for the heterogeneous medium from a top view slice cutting through the 

center of the fracture: (a) t = 7 mins; (b) t = 24 hours. ......................................................... 259 

Figure 6.14 (a) A 3D model of a simple heterogeneous system showing a cube of rock with an 

interior zone having different properties than the rest of the body. Elements with different 

Young’s moduli are shown in purple (interior zone). Red color indicates the exterior zone; 

(b) A section of the 3D model showing the central section parallel to the yz-plane and the 

boundary conditions. (continued) ......................................................................................... 261 



xxvi 

Figure 6.15 Displacements in x- and y-direction on a central horizontal plane: (a) displacement in 

x-direction; (b) displacement in y-direction. (Area encircled by red dash lines has 50% of 

initial Young’s module.) (Unit: m). (continued) ................................................................... 263 

Figure 6.16 Distribution of ΔSxy on two orthogonal slices. (Unit: Pa). ....................................... 264 

Figure 6.17 Induced normal stresses along the line yy’ for cases with different Young’s modulus 

between y = 0.4 m and y = 0.8 m: (a) ΔSxx; (b) ΔSyy; (c) ΔSzz. ............................................. 265 

Figure 6.18 Induced shear stresses along the line yy’ for cases with different Young’s modulus 

between y = 0.4 m and y = 0.8 m: (a) ΔSxy; (b) ΔSyz; (c) ΔSzx. ............................................. 266 

Figure 6.19 Displacement in x direction along the line yy’. ....................................................... 267 

Figure 6.20 Induced total stress ΔSyy (compression positive) on a central horizontal plane: (a) 

Mode 1; (b) Mode 2; (c) Mode 1+2. (Unit: MPa). (continued) ............................................ 268 

Figure 6.21 Induced normal stresses along the line yy’ (see Figure 20) due to the change of the 

Biot effective stress coefficient α between y = 0.4 m and y = 0.8 m: (a) ΔSxx; (b) ΔSyy; (c) 

ΔSzz. ....................................................................................................................................... 270 

Figure 6.22 Displacement in the x-direction along the line yy’ (see Figure 6.20) for different 

Biot’s effective stress coefficients in the central zone. ......................................................... 271 

Figure 6.23 Induced shear stresses along the line yy’ (see Figure 20) for cases using different 

Biot effective stress coefficient between y = 0.4 m and y = 0.8 m: (a) ΔSxy; (b) ΔSyz; (c) ΔSzx. 

(continued) ............................................................................................................................ 271 

Figure 6.24 1-D fluid pressure loading condition on pressurized fracture surface. .................... 274 

Figure 6.25 Induced stresses and pore pressure for 1-D fluid pressure loading. ΔSyy equals to the 

applied net pressure during the process of fluid pressure diffusion...................................... 274 

Figure 7.1 Stress-strain curve for a 1D tension-compression test. ............................................. 286 

Figure 7.2 Damage evolution curve for an uniaxial tension-compression test. .......................... 286 

Figure 7.3 Stress-strain curves of compressive tests under different confining pressure. .......... 287 

Figure 7.4 Terzaghi’s problem: comparison of analytical and numerical solution for the pore 

pressure distribution. ............................................................................................................. 290 

Figure 7.5 Terzaghi’s problem: history of displacement for analytical and numerical solutions.

............................................................................................................................................... 290 

Figure 7.6 Mandel’s problem. ..................................................................................................... 291 



xxvii 

Figure 7.7 Mandel’s problem: comparison of analytical and numerical solution for the pore 

pressure distribution. ............................................................................................................. 292 

Figure 7.8 Mandel’s problem: comparison of analytical and numerical solution for the 

displacement distribution. ..................................................................................................... 293 

Figure 7.9 Surface settlement plotted as a function of time for thermoelastic consolidation. .... 294 

Figure 7.10 Aperture plotted as a function of β and σ’. (a0 = 100 × 10
-6

 m, σnref = 1.0 × 10
7
 Pa, 

ares = 0.1 × 10
-6

 m) ................................................................................................................ 298 

Figure 7.11 Grid model and discretized joint plane with different element mesh size. (a) grid 

model (200 m×300 m×300 m), red color indicates joint elements; (b) coarse mesh for joint 

plane, element size is 10 m; (c) finer mesh for joint plane, element size is 5 m. ................. 299 

Figure 7.12 Bottom-hole pressure plotted as a function of time using a coarse mesh, 31×30×30 

elements are respectively used in x, y, and z directions. (a) pressure profile during first 2 

mins; (b) pressure profile over 70 mins. ............................................................................... 300 

Figure 7.13 Bottom-hole pressure plotted as a function of time using a finer mesh, 31×60×60 

elements are respectively used in x, y, and z directions. (a) pressure profile during first 2 

mins; (b) pressure profile over 70 mins. ............................................................................... 300 

Figure 7.14 Aperture plotted as a function of effective normal stress for three cases in scenario 

#1........................................................................................................................................... 301 

Figure 7.15 Bottom-hole pressure plotted as a function of time for the four injection-venting 

treatments (β = 80). ............................................................................................................... 302 

Figure 7.16 Aperture distribution along a line passing through an injection point and parallel to 

the direction of maximum horizontal stress (β = 20). ........................................................... 303 

Figure 7.17 Fluid pressure distribution at the end of each venting treatment along a line passing 

through an injection point and parallel to the direction of maximum horizontal stress (β = 20).

............................................................................................................................................... 304 

Figure 7.18 Fluid pressure distribution at the end of each venting treatment along a line passing 

through an injection point and parallel to the direction of maximum horizontal stress. ...... 305 



xxviii 

Abstract 

The coupled behaviors of fluid flow, heat transport and geomechanics in fractured porous 

media are studied. Emphasis is placed on the coupled hydro-mechanical processes involved in 

hydraulic fracture propagation, thermal circulation in pre-existing fractures, and reactivation of 

joints due to fluid injection. 

A 3D fully coupled hydro-mechanical model is developed to simulate hydraulic 

fracturing. The model is built on a parallel computation framework. Finite element method is 

utilized to discretize the governing equations. Hydraulic fracture propagation and fluid flow in 

the created hydraulic fracture are modeled through a special zero-thickness interface element 

which is developed based on the cohesive zone model (CZM). The 3D model is verified by 

considering a penny-shaped hydraulic fracture and a KGD hydraulic fracture (in 3D domain) 

propagating in both the viscosity- and toughness-dominated regimes. Good agreements have 

been achieved between numerical results and asymptotic analytical solutions with respect to fluid 

pressure, fracture height, length and width distributions. The effects of some key CZM 

parameters and the size of interface element on modeling of hydraulic fracturing are investigated.  

Using the hydro-mechanical model, height growth of hydraulic fractures in layered 

formations is simulated. First, the model is validated through a laboratory hydraulic fracturing 

experiment in the presence of stress contrast. Through explicit modeling of the injection 

wellbore, the compressibility effects of the wellbore are demonstrated. Comparing the numerical 

results to those obtained in the laboratory experiment, good agreements in the distribution of 

fracture aperture, injection pressure and fracture footprint are achieved. Then, numerical analyses 

are performed to investigate the impacts of in-situ stress contrast, modulus contrast and 

formation ductility on hydraulic fracture height growth.  
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The interaction between hydraulic fractures and discontinuities is analyzed. The 

nonlinear mechanical behavior of frictional sliding along interface surfaces is considered. 

Typical loading paths demonstrated through numerical examples exhibit the capability of the 

model to simulate different working conditions. Since discontinuities are explicitly simulated 

through the use of interface element, detailed descriptions of the deformation processes are 

revealed. For example, information related to aperture opening/sliding and stress distribution 

along the discontinuities is obtained in the simulations. Numerical simulations of height growth 

in a layered rock with the existence of a formation interface are performed. The model is first 

evaluated through the commonly used Renshaw and Pollard’s criterion. Then laboratory 

experiments on fracture-discontinuity interaction under triaxial-stress conditions are studied. 

Numerical results match well with those predicted through theoretical formulations and with 

those observed in laboratory. Typical processes associated with fracture-discontinuity interaction 

are reveled. With the existence of a horizontal interface, the influence of modulus contrast and 

stress contrast on hydraulic fracture height growth is analyzed. It is found that the combined 

effects of material properties of rock, mechanical properties of interfaces, and in-situ stress 

distribution could effectively inhibit the height growth of hydraulic fractures. 

Based on the theory of thermo-poroelasticity, together with the equations describing fluid 

flow and heat transport in fractures, and the equation for fluid flow in wellbore, the coupled 

processes of fluid flow, heat transport and geomechanics are studied. The thermo-hydro-

mechanical behaviors of a fracture/matrix system are modeled through a special zero-thickness 

interface element. The constitutive law of the interface element is built based on the cohesive 

zone model (CZM), which is suitable for simulating both tensile and shear failures. Fracture flow 

is formulated through the commonly used “cubic law”. The fluid flux exchange between the 
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fractures and the surrounding permeable rock matrix is determined by a fluid transfer coefficient. 

A convective heat transfer coefficient is introduced in the equation governing heat transport in 

the fractures. Numerical analyses are performed to verify the model, to illustrate some 

fundamental phenomena, and to provide some applications to laboratory injection and circulation 

experiments to further validate the model. Numerical simulations reveal the role of mechanical, 

hydraulic and thermal properties and the coupled processes in the experiments. 

In addition, the stress and pore pressure distributions during hydraulic stimulation in a 

heterogeneous poroelastic rock are studied. Results indicate that the stress- and pore pressure 

distributions are more complex in a heterogeneous reservoir than in a homogeneous one. The 

spatial extent of stress reorientation during hydraulic stimulations is a function of time and is 

continuously changing due to the diffusion of pore pressure in the heterogeneous system. In 

contrast to the stress distributions in homogeneous media, irregular distributions of stresses and 

pore pressure are observed. Due to the change of material properties, shear stresses and non-

uniform deformations are generated. The induced shear stresses in heterogeneous rock cause the 

initial horizontal principal stresses to rotate out of horizontal planes. 

At last, an on-site hydraulic stimulation at the Phase I Fenton Hill geothermal reservoir is 

studied. Four scenarios are proposed to analyze the mechanisms involved in repeated injection-

venting experiments. It is found that the stiffness of joint, a key parameter used in aperture 

calculation, controls the flow-back volume and trapped fluid pressure during venting operations. 

Considering the size dependent characteristic of joint stiffness and hysteresis behaviors observed 

during injection and venting, a parameter related to stiffness is gradually changed after each 

injection-venting treatment. In this way, the numerical simulations yield results close to those 

observed in the field test.  
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1 Introduction 

1.1 Motivation  

Underground resources, such as geothermal energy and hydrocarbons are essential for the 

development of our society. To effectively and efficiently recovery the energy stored in the 

reservoirs, the physical mechanisms involved in production should be understood for operation 

design and forecasting. Fluid flow and the associated rock deformation are always associated 

with the transportation or migration of energy in underground reservoirs. The storage and 

transport of fluids in fractured porous rock can give rise to significant coupling processes 

between fluid flow, rock deformation, and heat transfer. In the development of geothermal 

reservoirs and unconventional shale reservoirs, newly created fractures or pre-existing natural 

fractures are extremely important for economical production.  

Due to the deficiency of either water or permeability, or both (the so-called hot dry rock), 

vast geothermal resources have yet to be utilized (Ghassemi 2012). To reduce the high cost and 

(or) risks in reservoir creation (including drilling), the development technology should be 

carefully executed based on rock mechanics/geomechanics principles, since the geothermal 

reservoirs are stimulated mainly based on fluid injection and the effectivity of hydraulic 

stimulation is largely determined by in-situ stress, the characteristics of discontinuities and rock 

properties. After the creation of geothermal reservoirs, circulation paths covering a large portion 

of the reservoirs and having high conductivity are necessary for economic production. The 

mechanical, hydraulic, thermal and chemical processes that arise from fluid circulation control 

the conductivity of induced and natural fractures.  

Hydraulic fracturing as an effective reservoir stimulation technique is widely used in 

creating fresh fractures and in reactivating pre-existing natural fractures. Following the pursuit 
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for green and clean geothermal energy and also the demands for hydrocarbon resource, 

especially with the development of unconventional reservoirs since the mid-2000s, researches on 

the subject of hydraulic fracturing have increased dramatically. In addition to theoretical and 

numerical analyses, lab-scale experiments are also widely performed to investigate the 

mechanisms involved in hydraulic fracturing (Jeffrey and Bunger 2009; Hu and Ghassemi 2017).  

1.2 Literature review  

The main focus of this study is about hydraulic stimulation and the coupled mechanical, 

hydraulic, and thermal processes. In the following, the literature review related to these aspects is 

presented.  

1.2.1 Hydraulic fracturing in reservoirs 

As the most widely used reservoir stimulation technique, hydraulic fracturing has 

attracted numerous research efforts. The pioneering works in hydraulic fracturing attribute to the 

KGD model (Khristianovic and Zheltov 1955; Geertsma and De Klerk 1969) and the PKN model 

(Perkins and Kern 1961; Nordgren 1972) developed in the 1960s – 1970s.  

The PKN model assumes a fixed height when the fracture propagates away from the 

wellbore. The vertical cross section is elliptic and is filled by fluid with a constant pressure. The 

pressure drop along the propagation direction is determined by the flow resistance of fluid in a 

narrow elliptically shaped channel. The width of the cross sections perpendicular to the direction 

of fracture propagation is determined by the width formula for a plain strain crack. This 

treatment makes each cross section “mechanical independent” with other. The PKN model is 

suitable in estimating long fractures with limited height.  

The KGD model assumes constant width at cross sections perpendicular to the 

propagation direction. The fractures in KGD model also have a fixed height. The plain strain 
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condition prevails in the plane perpendicular to the cross sections of fractures. This makes the 

cross section be rectangular. The fluid pressure in each cross section is constant. The pressure 

drop in the fracture propagation direction is determined by the flow resistance of fluid in a 

rectangular slit. The KGD model utilizes a concept proposed by Barenblatt (1962). It states that 

the faces of a hydraulic fracture close smoothly at the edge when it is in mobile equilibrium in a 

homogeneous brittle solid (Geertsma and De Klerk 1969; Geertsma and Haafkens 1979). This 

essentially indicates the stress intensity factor is zero at the fracture tips, since the stress 

component perpendicular to the fracture surfaces at the tip of the fracture is finite and equal to 

the tensile strength of the rock.  

The self-similar solutions for plain strain hydraulic fracture considering the fracture 

toughness was derived by Spence and Sharp (1985). Later the solutions were used to analyze the 

magma-driven propagation of cracks (Spence and Turcotte 1985). Two limiting cases (small 

fracture toughness and high fracture toughness) were studied. When small fracture toughness 

was used, the obtained fracture tip is a cusp; when large fracture toughness was used, the fracture 

was elliptical and the pressure in fractures has a uniform value. The near tip processes in 

hydraulic fractures were studied by the SCR Geomechanics Group (1993) and Desroches et al. 

(1994) in view of the works of Spence and Sharp (1985). The problem was treated in more detail 

and the competition processes (viscous/toughness dominated, storage/leak-off dominated) in 

hydraulic fracturing were studied by Garagash and Detournay (1999), Adachi and Detournay 

(2002), Savitski and Detournay (2002) and Adachi and Detournay (2008). The competition 

processes make the fracture tips exhibit multi-scale behaviors. The initiation of hydraulic 

fractures is in the toughness-dominated regime; the propagation of hydraulic fractures with 

typical properties for reservoir rock generally is in the viscosity-dominated regime and stays in 



4 

this regime for a long time (i.e., at least one order of magnitude longer than the stimulation time) 

before it reaches back to the toughness-dominated regime. The derived asymptotic analytical 

solutions assume the rock is isotropic and homogeneous and only elastic deformation is 

considered.  

To simulate problems with complex geometry or sophisticate stress configuration and 

material property distribution, numerical simulations must be adopted. There are several coupled 

processes involved in the hydraulic fracturing modelling: (a) mechanical deformation of rock 

matrix generated by the fluid pressure on the fracture surfaces; (b) fluid and heat flow in the 

fracture and leak-off of fluid from the fracture to the surrounding rock; (c) fracture propagation. 

These complex processes could be modelled through a fully coupled numerical scheme. 

Compared to sequential coupling schemes, fully coupled method is accurate but computation 

heavy.  

Boundary element method (BEM), which uses integral equation representations of the 

governing partial differential equations to solve problems of interest (Ghassemi et al. 2013), has 

been widely used in modeling fracture behaviors. Displacement discontinuity method (DD), as a 

branch of BEM, is an effective method for solving problems involving discontinuities and 

fractures in rock. Vandamme and Curran (1989) proposed a 3D numerical simulator based on 

DD to model the propagation of non-planar hydraulic fractures. A 2D coupled DD model was 

used by Sesetty and Ghassemi (2015) to simulate facture propagation in simultaneous and 

sequential hydraulic fracture operations. Simulations were performed for both single well and 

multiple parallel wells. It was found that facture spacing as well as the boundary conditions of 

the previous created fractures affects the fracture geometry. Kumar and Ghassemi (2016) studied 

the 3D hydraulic fracturing in conventional zipper manner and in modified zipper manner based 
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on DD. The conventional zipper manner tended to generate relatively straight fractures. More 

complex fractures could be produced through the modified zipper manner. The effects of in-situ 

stress, rock and fluid properties, and “stress shadowing” were demonstrated. Numerical 

simulations of multistage hydraulic fracturing in a permeable porous medium were performed by 

Kumar and Ghassemi (2018). The results indicated that the mechanical interactions between 

fractures strongly influence the created fracture network geometries; the poroeleastic effects 

cause the increase of the net fracture pressure and the decrease of the fracture volume.  

In BEM, only the boundaries and discontinuities, which could be treated as interior 

boundaries, are discretized. The computation time could be tremendously less than that required 

by domain mesh-based methods, since the generated matrix in BEM is much smaller than those 

generated by discretizing the whole domain of interest. However, BEM is mostly limited to 

homogeneous reservoirs so that for complex geology the finite element method (FEM) is a 

strong alternative since it can handle complex geometry, nonlinear deformation, and 

multiphysics coupling, albeit at the cost of larger of computation efforts and complexities in 

simulation of facture propagation. 

As we know, hydraulic fracture propagation involves moving boundaries. When FEM is 

used to discretize both the fracture and the surrounding rock, a large number of elements are 

utilized. How to incorporate the moving fracture front into FEM mesh, especially in 3D, is a 

major challenge when the FEM is used. Different approaches are adopted to handle the mesh for 

fracture propagation. A commonly used one is to pre-define the propagation path by using 

symmetric initial and boundary conditions. As an effective way to simulate fracture initiation and 

propagation, cohesive zone model (CZM) is also utilized to simulate hydraulic fracturing. CZM 

assumes the existence of a fracture process zone (where the rock has yielded or experienced 
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micro-cracking) in front of the crack tip. The mechanical behaviors of CZM are governed by a 

traction-separation law. Boone and Ingraffea (1990) proposed a numerical procedure based on 

CZM to model a 2D hydraulic fracturing in a poroelastic medium. Finite difference method was 

utilized to discretize the equation for fluid flow in fractures. The mechanical deformation for the 

porous medium and the fluid flow in the hydraulic fracture were solved in a sequential manner. 

Papanastasiou (1999a) and Papanastasiou (1999b) studied the influence of plastic deformation on 

hydraulic fracturing based on CZM. The high net injection pressure that is often encountered in 

field operations was explained through the non-linear deformation of rock. Chen et al. (2009) 

simulated the toughness-dominated hydraulic fracture propagation by using a pore pressure 

cohesive finite element. The effects of cohesive material parameters and fluid viscosity on the 

behaviors of hydraulic fractures were analyzed. Utilizing CZM, Chen (2012) modeled the 

propagation of hydraulic fractures in the viscosity-dominated regime. Hydraulic fracturing in a 

poroelastic medium was studied by Carrier and Granet (2012) based on CZM. 

Toughness/viscosity- and leak-off/storage- dominated regimes were simulated.  

For hydraulic fractures under mixed model loading and curving in arbitrary directions, 

adaptive re-meshing technique is usually needed. Paluszny and Zimmerman (2011) studied the 

curved fractures through the re-mesh technique. As an alternative way to model fracturing 

curving, the extended finite element method (XFEM) is developed to minimize the requirement 

of re-mesh. Paul et al. (2018) developed a 3D coupled hydro-mechanical XFEM model. Non-

planar hydraulic fracture propagation was simulated. The interference between multiple 

hydraulic fractures was demonstrated. In addition to mesh-related operations, constitutive models 

are also developed to simulate the failure processes during fracture propagation using traditional 

finite element types, such as 4-node tetrahedron, 8-node hexahedron elements. Min et al. (2010) 
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studied the usage of virtual multidimensional internal bonds (VMIB) to analyze multiple fracture 

propagation in heterogeneous rock. Huang et al. (2013) modeled 3D hydraulic fracture 

propagating using the method of VMIB.  

When performing hydraulic fracturing, the geometry of hydraulic fractures (e.g. fracture 

height and length) is largely determined by in-situ geological conditions, which often exhibit 

complex rock properties and in-situ stress. Simplified geological conditions are often assumed 

partly due to the complexity of the coupled hydro-mechanical processes if heterogeneous 

distributions of rock properties and in-situ stress are all considered. In many studies, the layered 

formation properties are not modeled explicitly in hydraulic fracturing. Instead, an average value 

(e.g. thickness weighted average) is usually adopted for each layered property (e.g. Young’s 

modulus). As pointed out by Smith et al. (2001), the thickness weighted average (effective 

modulus) is purely a mathematical treatment and does not consider the mechanical effects. In 

reservoir formations with layered in-situ stress, the in-situ stress contrast could be the most 

important factor that directly controls the height growth of hydraulic fractures. To simplify 

analyses, static step-wise pressurization is often used in approximately calculating fracture 

height. A constant pressure is applied on the whole fracture surface and is adjusted through trial-

and-error to satisfy a critical equilibrium state. The so-called equilibrium height model was first 

proposed by Simonson et al. (1978). The variation of fracture width and fluid pressure within 

hydraulic fractures are not considered in this kind of static model.  

1.2.2  Coupled analysis of fluid flow, heat transport and geomechanics 

Fluid flow in geothermal reservoirs usually is dominated by high permeable 

discontinuities (such as natural fractures, joints and faults). One of the main purposes of 

hydraulic stimulation is to create new fractures with high fluid conductivity or to enhance the 
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fluid conductivity of pre-existing fractures. The opening, closing, sliding of fractures and the 

associated fracture conductivity evolution are related to the coupling of mechanical, hydraulic, 

and/or chemical processes. They are also heavily influenced by heat transport processes in 

geothermal reservoirs. The coupled thermo-hydro-mechanical behaviors of fractured rock are 

studied extensively in both laboratory experiments and field applications. 

Experimental study on hydro-mechanical behaviors is usually conducted through uniaxial 

normal compression tests, biaxial compression/shear tests. Many tests were performed to 

investigate the relationships among hydraulic aperture, mechanical aperture and effective normal 

stress (Rutqvist and Stephansson 2003). The size effect on fracture normal closure was observed 

in experiments (Yoshinaka et al. 1991). It was shown that the maximum closure increases with 

sample size. Based on laboratory experiments, validation of the commonly used “cubic law” 

(Witherspoon et al. 1980) for fluid flow in fractures was performed (Boitnott 1991). It was found 

the cubic law works for a wide variety of fractures.  

The in-situ tests on hydro-mechanical behaviors of fractured rock were performed in lots 

of projects and by lots of researchers. Jung (1989) conducted in-situ experiments to study 

turbulent friction losses in the vicinity of an injection and a production borehole and to 

investigate the hydro-mechanical behaviors of a fracture. The friction pressure losses in the 

fracture were recorded under different injection rates. The theory of laminar and turbulent flow 

was utilized to explain the observed relationship between friction pressure losses and flow rates. 

The behaviors of hydraulic aperture and mechanical aperture were recorded and analyzed. 

During the development of Fenton Hill HDR geothermal reservoir, a number of in-situ 

experiments were conducted and recorded (Brown et al. 2012). In the beginning of this project, 

fluid injection was intended for creating fresh hydraulic fractures which would be penny-shaped 
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and vertical. After a few years of development, it was gradually realized that hydraulic fracturing 

at Fenton Hill was not actually breaking open intact crystalline rock; instead, pre-existing, sealed 

joints were being opened.  

There are mainly two kinds of numerical approaches to handle the coupled thermo-hydro-

mechanical processes in fractured porous rock. One is based on boundary element method 

(BEM), which uses integral equation representations of the governing partial differential 

equations to solve problems of interest (Ghassemi et al. 2013). The second type of numerical 

approach is domain mesh-based, such as finite element method, finite volume method and 

discrete element method. The entire spatial domain of interest needs to be discretized when these 

methods are adopted.  

1.3 Research objectives 

Through literature review, it is found that CZM is widely used in simulating fracture 

propagation, especially for mix mode fractures. However, most of studies utilizing CZM to 

simulate hydraulic fracturing are in 2D. A 3D fully coupled hydro-mechanical model is rarely 

found to be verified through asymptotic analytical solutions for hydraulic fracturing. At the same 

time, the coupled mechanical, hydraulic and thermal processes associated with fluid flow and 

heat transport through fractures are of vital importance in analyzing the behaviors of fractured 

rock. The impacts of transportation of fluid and heat from fractures to the surrounding rock 

matrix in a fracture/rock system are not fully understood. 

The main purpose of this dissertation is to study the thermo-hydro-mechanical behaviors 

due to fluid injection into fractured porous media. Emphasis is focused on the coupled hydro-

mechanical processes involved in hydraulic fracture propagation, thermal circulation in pre-

existing fractures, and reactivation of joints due to fluid injection.  
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Specifically, the main objectives include: 

(1) Develop a parallel computation framework which is suitable for simulating coupled 

thermo-hydro-mechanical problems; 

(2) Develop a 3D fully coupled thermo-hydro-mechanical model for simulating fractured 

reservoir rock; 

(3) Develop thermo-hydro-mechanical interface element that is capable to model the 

behaviors of discontinuities, such as fresh created fractures, pre-existing fractures, and joints; 

(4) Analyze the pore pressure and stress distribution around hydraulic fractures during 

fluid injection in homogeneous and heterogeneous porous media; 

(5) Simulate and analyze the hydro-mechanical responses of a joint during hydraulic 

stimulation in Fenton Hill HDR geothermal reservoir.  

1.4 Dissertation outline 

Chapter 1 states the motivation and research objectives of this dissertation. Literature 

review is performed. 

Chapter 2 develops and analyzes a hydro-mechanical interface element, which is built 

based on cohesive zone model (CZM). The model is verified through the penny-shaped hydraulic 

fracture and the KGD hydraulic fracture (in 3D domain) propagating in both viscosity- and 

toughness-dominated regimes. Impacts of some key CZM parameters and the size of cohesive 

interface elements on hydraulic fracturing are analyzed.  

Chapter 3 studies the height growth of hydraulic fractures in layered formations. The 

model presented in Chapter 2 is validated through a laboratory experiment. The influence of 

Young’s module contrast, stress contrast and formation ductility on height growth are analyzed. 
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Chapter 4 analyzes the interaction between hydraulic fractures and discontinuities. The 

numerical model is evaluated through a commonly used crossing/arrest criterion. Laboratory 

tests on fracture-discontinuity interaction are also modeled. The combined effects of material 

properties, in-situ stress and the existence of discontinuities are investigated. 

Chapter 5 describes a 3D fully coupled thermo-hydro-mechanical (THM) model. The 

finite element formulations are presented. Hydraulic fracture initiation and propagation are 

studied. Some typical coupled THM processes are analyzed. A lab-scale geothermal system is 

model. 

Chapter 6 studies pore pressure and stress distributions around a hydraulic fracture in 

both homogeneous and heterogeneous porous rock. The reasons for nonuniform distribution of 

stresses in heterogeneous rock are investigated.  

Chapter 7 simulates the reactivation of a joint during hydraulic stimulation in Fenton Hill 

HDR geothermal reservoir. The effects of joint stiffness on fluid flow back after injection are 

studied.  

In the last chapter, Chapter 8, a summary of this dissertation is conducted; some 

recommendations are given for future research.   
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2 3D planar hydraulic fracture propagation in an elastic medium: 

formulation and verification   

Abstract 

In this study, we develop and use a 3D fully coupled hydro-mechanical model to simulate 

hydraulic fracturing. The hydraulic fracturing simulator is developed based on the finite element 

method utilizing a parallel computation framework. A special zero-thickness interface element 

based on the cohesive zone model (CZM) is developed for modeling fracture propagation and 

fluid flow in the created hydraulic fracture. A standard local traction-separation law with strain-

softening is used to capture the main characteristics of tensile cracking. The commonly used 

cubic law is adopted to describe the fluid flow in fractures. In this study we verify the 3D model 

by considering a penny-shaped hydraulic fracture and a KGD hydraulic fracture (in 3D domain) 

propagating in both the viscosity- and the toughness-dominated regimes. Good agreement 

between numerical results and asymptotic analytical solutions has been achieved with respect to 

fluid pressure, fracture height, length and width distributions. The model is then used to 

investigate the influence of rock and fluid properties on hydraulic fracturing via sensitivity 

analyses. Lower stiffness cohesive elements tend to yield a larger elastic deformation around the 

fracture tips before the tensile strength is reached. It generates a larger fracture length and lower 

fluid pressure in fracture when compared with those using higher stiffness. It is also found that 

the energy release rate has almost no influence on hydraulic fracturing in the viscosity-

dominated regime since the energy spent on creating new fractures is too small when compared 

to the total input energy. For the toughness-dominated regime, the released energy during 

fracturing should be accurately captured. It requires smaller elements when compared with those 

used in the viscosity-dominated regime. To obtain stable and accurate results from a cohesive 
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zone model, certain number of elements should be contained within the cohesive zone ahead of 

the crack tips which is a function of the energy release rate and the tensile strength. According to 

our numerical experience, it is recommended that at least 5 interface elements should be 

contained within the cohesive zone in order to get stable and accurate numerical results. 

2.1 Introduction 

Hydraulic fracturing is a technique used to enhance reservoir production in the petroleum 

industry and/or in the development of a geothermal reservoir. For ultralow-permeability shale 

reservoirs now being regularly exploited, hydraulic treatment is essential to obtain an economic 

level of production. Hydraulic fracturing involves complex processes and has been the subject of 

significant research efforts. During the last few decades, both analytical and numerical methods 

have been proposed to solve problems in hydraulic fracturing. The well-known 2D plane strain 

PKN and KGD models, and the axisymmetric penny-shaped model were developed in the 1960s 

(Khristianovich and Zheltov 1955; Perkins and Kern 1961; Geertsma and De Klerk 1969). Due 

to the geometric limitations of the analytical models, numerical models are developed and 

applied to simulate the propagation of hydraulic fractures in more complex and realistic 

geometries. Although significant progress has been achieved in developing 2D and 3D numerical 

hydraulic fracture models, it is still a challenging task to solve the strongly coupled hydro-

mechanical problems particularly in unconventional reservoirs (Huang et al. 2013; Sesetty and 

Ghassemi 2015; Kumar and Ghassemi 2016).  

When considering failure of rock, it is often observed that most rocks are not perfectly 

brittle in the Griffith sense, but exhibit some ductility during the post-peak deformation (de Borst 

2003; Huang and Ghassemi 2017). This behavior has led to the concept of cohesive zone and 

cohesive zone models for fracture propagation. The cohesive zone model was introduced by 
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Barenblatt (1962) and Dugdale (1960) for analyzing elastic-plastic fracture in ductile metals, and 

by Hillerborg et al. (1976) for simulating fracture and fragmentation processes in quasi-brittle 

materials, such as concrete, rock, ceramics. Instead of using the classic linear elastic fracture 

mechanics (LEFM) to deal with an elastic crack tip region where stress singularity exists, the 

cohesive zone model assumes the existence of a fracture process zone (where the rock has 

yielded or experienced micro-cracking) in front of the material crack tip (Figure 1), which is 

governed by a traction-separation law. The stress singularity at the crack tip is avoided in 

cohesive zone models through this constitutive law. In this way, the cohesive zone model 

provides an alternative approach to explicitly simulate fracture processes near the tip, and is 

often applied in modeling hydraulic fracturing. Chen et al. (2009) and Chen (2012) applied a 

cohesive zone based finite element method (2D) to study a toughness dominated penny-shaped 

hydraulic fracture and the propagation of hydraulic fractures in a viscosity-dominated regime. 

Based on a 2D plane strain finite element framework, Carrier and Granet (2012) simulated the 

four limiting propagation regimes (toughness-fracture storage, toughness-leak-off, viscosity-

fracture storage, and viscosity-leak-off dominated) utilizing a cohesive zone model. The 

influence of cohesive process zone on hydraulic fracturing was investigated by Sarris and 

Papanastasiou (2011), they found that higher interface stiffness generates lower injection 

pressure; the exact shape of the post-peak softening stage on the traction-separation curve has 

almost no influences on results.  

In this study, a 3D fully coupled interface element utilizing cohesive zone model is 

developed to analyze hydro-mechanical processes involved in hydraulic fracturing. We first give 

the governing equations and their corresponding finite element discretization. Then, the proposed 

model is verified through numerical examples. Sensitivity analyses are performed to investigate 
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the influence of input parameters on hydraulic fracturing. The influence of interface element size 

on the behaviors of the numerical model is also analyzed. 

2.2 Governing equations 

The basic equations governing a hydraulic fracturing model are (1) the rock constitutive 

equations; (2) the fracture fluid flow equation; (3) the fracture propagation condition and (4) the 

fluid leak-off from the fracture into the reservoir rock. The fracture initiation and propagation in 

reservoir rocks are natural outcomes of a cohesive zone model. In this work, the cohesive 

damage zone is permeable and filled with the fracturing fluid with zero lag. We do not consider 

the leak-off and poroelastic effects (e.g., Kumar and Ghassemi 2018; Gao and Ghassemi 2017; 

Cheng 2016, Safari and Ghassemi, 2016) considering the very low permeability of 

unconventional petroleum and geothermal reservoirs. 

2.2.1 The cohesive law 

There are numerous researches on using the cohesive zone model to simulate fracture 

propagation. The technique has attracted considerable attention due to its efficient and powerful 

algorithms to describe the behaviors of both fracture initiation and propagation (Boone et al. 

1986). Interface damage initiates when the traction (normal, shear or combined normal and 

shear) on a pair of cohesive surfaces reaches the strength of the interface. Once a fracture has 

initiated, it propagates when the energy release rate reaches a critical value GIC, which is related 

to fracture toughness for the case of small-scale yielding (Irwin 1957). The cohesive zone ahead 

of the crack tip is characterized by micro-cracking along the crack path. Conceptually, when the 

micro-cracks have coalesced with each other, a main fracture is formed. In the CZM concept, 

there are several ‘crack tips’ (Shet and Chandra 2002), as illustrated in Figure 2.1. The 

mathematical crack tip refers to a point which is yet to separate. The cohesive crack tip 
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corresponds to a point where the separation stress has reached the cohesive strength. The 

material crack tip is where complete failure has occurred and the cohesive traction decreases to 

zero. It is assumed that the rock deformation in the cohesive zone ahead of material crack tip has 

of an elastic part and an inelastic softening part. This behavior is similar to the softening stress-

displacement relation that exhibits by various quasi-brittle materials, such as rock.  

 
Figure 2.1 Cohesive process zone and fluid pressure distribution in a cohesive zone model. 

 

Since the cohesive zone is filled with liquid at pressure pf, similarly to the theory of 

poroelasticity, the effective stress (T’) is introduced and is related to the total stress (T) and fluid 

pressure (pf) through the following equation (tension is considered positive): 

 
 (2.1)  

where n is the normal of the cohesive zone interface. When the cohesive zone is completely 

damaged, the cohesive traction (T’) is zero and the fluid pressure (pf) is acting as traction on the 

open fracture surfaces. 

The stress singularity in linear elastic fracture mechanics is eliminated in the cohesive 

zone model by considering a nonlinear fracture process zone in front of the crack tip. The 

relationship between the traction (T’) and the displacement jump (Δ) across a cohesive interface 

is defined by a cohesive law, which is defined through a potential function (ψ): 
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 (2.2)  

The “PPR” potential-based traction-separation law (Park and Paulino 2012; Spring and 

Paulino 2014) is adopted in this study, which is shown in Figure 2.2. Four deformation stages 

exist in the cohesive crack propagation. They are elastic deformation, crack initiation, softening 

deformation and complete failure. Before reaching the maximum cohesive strength (Tmax), the 

law exhibits reversible elastic behaviors. After the peak strength, the traction gradually reduces 

to zero (Park and Paulino 2012). The area under the pure normal traction-separation curve 

represents the fracture energy GIC in the normal direction: 

 
 (2.3) 

where δn is the final normal opening width between two fracture surfaces. The fracture energy 

GIC is an independent input parameter to the model. When the size of cohesive zone is much 

smaller than the fracture length, the cohesive energy (GIC) can be related to the fracture 

toughness in mode-I (KIC) in LEFM through Irwin’s formula (Irwin 1957): 

 
 (2.4)  

where E is Young’s modulus and υ the Poisson’s ratio. 
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Figure 2.2 Normalized traction-separation law for the cohesive elements: 1 elastic deformation; 2 

crack initiation; 3 softening deformation; 4 complete failure. 

 

2.2.2 Fluid flow in hydraulic fracture 

The fracturing fluid is assumed to be incompressible, linear (Newtonian) viscous fluid. 

From mass conservation in the fracture, the fluid mass balance equation is formulated as: 

 
 (2.5) 

where w is the local fracture width, which is equal to the displacement jump (Δn) in the normal 

direction of a fracture surface, q is the fluid flux of the longitudinal flow, and Q(t) is the injection 

rate. 

The longitudinal flow within the fracture is derived from conservation of momentum. For 

fluid flow between parallel plates, the lubrication equation is written 

 
 (2.6) 

where v is the average fluid velocity, μ is the viscosity of the Newtonian fluid. The above 

equation is commonly called cubic law (Witherspoon et al. 1980). 

Combining equation (2.5) and (2.6), it is obtained: 
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 (2.7) 

The boundary conditions at the fracture tips are given as 
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At the injection point, we have 
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2.3 Numerical implementation 

The finite element method is adopted to implement the hydro-mechanical interface 

element. Spatial and temporal discretizations are performed separately using the standard 

Galerkin method and the finite difference method (θ method). The predicted hydraulic fracture 

path is represented by the cohesive interface elements, while the reservoir matrix is meshed 

through the traditional hexahedron elements. 

2.3.1 Hydro-mechanical interface element 

A triple-node interface element with zero thickness (Figure 2.3), on which the cohesive 

zone model is built, is developed to simulate the coupled hydro-mechanical behaviors. The 

hydro-mechanical interface element is isoparametric and quadrangular. As illustrated in Figure 

2.3, it is composed of three layers of quadrilateral elements. Initially the three layers have zero 

thickness and are overlapped with each other. The top and bottom surfaces (1-2-3-4 and 5-6-7-8) 

represent the surfaces of a hydraulic fracture. Fluid filled in the hydraulic fracture flows along 

the center plane (9-10-11-12) and is governed by the lubrication equation (Eq. (2.7)). Each of 

nodes 1 ~ 8 has three degrees of freedom for displacements (ux, uy, uz); each of nodes 9 ~ 12 has 

one degree of freedom for fluid pressure (pf) in the hydraulic fracture. We assume the pore 
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pressure on fracture surfaces equals to the fluid pressure in hydraulic fracture with aperture Δn. 

This assumption could be made for freshly created hydraulic fractures on which no mud cake has 

been built yet. To summarize, the mechanical and hydraulic degrees of freedom are written in 

vectors at each node as 

 

 for nodes 1~8 

 for nodes 9~12 

(2.10) 

Propagation of hydraulic fracture generates two fracture surfaces (1-2-3-4 and 5-6-7-8), 

the propagation of which is governed by the cohesive law (Eq. (2.2)). The opening between the 

two surfaces is filled with injected fluid. Lubrication equation (Eq. (2.7)) is used to describe the 

fluid flow within the hydraulic fracture and is discretized on the center plane (9-10-11-12). As an 

example, Figure 2.4 shows the deformation of hydro-mechanical interface elements after fluid 

injection. The interface elements are linked to and bounded by conventional elastic continuum 

elements.  

 
Figure 2.3 12-node hydro-mechanical interface element. Nodes 1 ~ 8 have degrees of freedom for 

displacement; nodes 9 ~ 12 have degrees of freedom for fluid pressure in hydraulic fractures. 

Initially the three layers have zero thickness and are overlapped with each other in numerical 

models. Here they are separated for visualization purpose. 
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Figure 2.4 (a) Deformation of 12-node hydro-mechanical interface elements after fluid injection; (b) 

The hydro-mechanical interface elements are linked to and bounded by conventional elastic 

elements. 

 

2.3.2 Finite element formulation 

Based on the principle of virtual work, the weak form of the governing equations is 

obtained (Carrier and Granet 2012):  

 
 (2.11) 

 
 (2.12) 

A standard Galerkin finite element discretization procedure is used to discretize the above 

variational equations. 

The displacement ui, and fluid pressure in hydraulic fractures pf are discretized through 

spatial interpolation functions (trial functions) in the domain of interest and expressed as: 

 
 (2.13) 

where N
u
 and N
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 are displacement and fluid pressure shape functions, and ui and pf are 

corresponding unknown nodal values. The test functions are written in a similar manner: 
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 (2.14) 

Using Eq. (2.13), the gradient and divergence of the unknown variables could be obtained 

and represented in the following format: 

 
 (2.15) 

The local opening of hydraulic fracture surfaces (Δn) is related to the global nodal 

displacements (ui) on the fracture surfaces and is given as 

 
 (2.16) 

Substituting the trial and test functions into Eqs. (2.11) and (2.12), invoking the 

arbitrariness of the test functions, we obtain the following residual equations: 

 (2.17) 

 

 (2.18) 

where θ = 0, giving the “explicit” method; θ = 1/2, giving the “Crank-Nicolson” method; θ = 1, 

giving the “fully implicit” method.  

The incremental solution at the k+1 iteration is determined as 
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(2.19) 

The above generated stiffness matrix is a function of fracture opening (Δn) which is an 

unknown variable and is updated using the value obtained in the previous iteration. Newton-

Raphson iterative method is adopted to solve the nonlinear system equations for each time step. 

The unknowns for rock deformation (U) and fluid pressure (pf) are solved simultaneously at each 

time step.  

2.4 Parallel computing environment 

Numerical simulations in petroleum or geothermal reservoir development usually involve 

models with very large degrees of freedom (DOFs). Millions of DOFs could easily be reached 

when we try to obtain accurate results. For 3D multi-physics and multi-scale problems at 

reservoir scale, e.g. 3D fracture propagation in elastic or poroelastic rocks, it is common to have 

multi-million DOFs in a model. To efficiently simulate problems at large scale, a 3D fully 

coupled thermo-hydro-mechanical simulator is developed using the finite element method 

through a parallel computation framework. The parallelism is implemented through MPI 

(Message Passing Interface). It is designed to run on distributed memory systems, like 

commodity clusters. 

Domain decomposition is performed to split a whole finite element mesh into pieces 

(sub-domains) that have almost equal number of elements. They are then distributed to each 

processor. The stiffness matrix assembly and internal force calculation are performed at each 
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processor. The sub-domain contributions are assembled through the PETSc library (Balay et al. 

2018) to form a system of equations for the whole domain of the original problem. Figure 2.5 

illustrates the running procedures in a serial manner on each processor. 

 

Figure 2.5 Running procedures on each processor in a serial manner. 

 

The model in this work is developed to be flexible as possible. A series of element types 

are developed particularly for modeling coupled fluid flow and geomechanical problems. Each 

element type is encapsulated in a relatively independent class. They are mechanical element type 

(without DOFs for pore pressure and temperature), hydro-mechanical element type, thermo-

hydro-mechanical element type, and interface element type. The interface elements can be used 

to simulate fluid flow and thermal transport in discontinuities. All of them are implemented in 

3D. Currently we focus on hexahedron and brick interface elements though other types of 
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elements can be implemented into the simulator in a similar manner. Figure 2.6 shows all the 

element types available in the simulator. The material types are given in Figure 2.7. The code is 

designed to allow element types to be used solely or in a mix form. For example, we use 8-node 

mechanical hexahedron elements together with 12-node hydro-mechanical interface elements in 

this study. 

 

Figure 2.6 Diagram for element type class. 

 

 

Figure 2.7 Diagram for material type class. 

 

2.5 Model verification 

2.5.1 Mode I test 

In order to verify the mechanical behavior of the implemented cohesive zone model, the 

uniaxial tensile test (mode I test) is simulated. The geometry and mesh are shown in Figure 2.8. 

The mesh has one cohesive zone element and one 8-node hexahedron element. The cohesive 
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element has zero thickness. A thickness is added in Figure 2.8 for illustration purpose. The 

bottom surface of the cohesive element is fixed in vertical direction. Incremental displacements 

are applied on the top surface of the hexahedron element. 

For the 8-node hexahedron element, the Young’s modulus is 32 GPa, and the Poisson’s 

ratio is 0.2. The fracture parameters for the cohesive zone element are: normal fracture energy 

(GIC) = 100 N/m, normal cohesive strength (σmax) = 30 MPa. 

As shown in Figure 2.9, the force in the vertical direction (z direction) gradually increases 

up to the normal cohesive strength (30 MPa), and then it decreases close to zero during the 

softening stage.  

 

Figure 2.8 The mesh and boundary conditions used in the mode I test. The top element is 8-node 

hexahedron; the bottom one is zero-thickness cohesive element, a thickness is added to it for 

demonstration purpose. 
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Figure 2.9 Traction-displacement curve for the mode I test. 

 

2.5.2 Penny-shaped hydraulic fracture 

The proposed 3D fully coupled hydro-mechanical cohesive model is utilized to simulate 

the viscosity-dominated hydraulic fracture propagation. Numerical results are compared with the 

asymptotic analytical solutions for a penny-shaped hydraulic fracture (Savitski and Detournay 

2002). Both viscosity- and toughness-dominated propagation are considered. The assumed 

material parameters are given in Table 2.1. Fixed displacement boundaries are adopted. Figure 

2.10 illustrates one quarter of the 3D model due to the symmetry of the boundaries with respect 

to the injection point. The model is discretized into 106×16×106 8-node hexahedral elements and 

106×1×106 12-node hydro-mechanical cohesive interface elements. Hexahedron elements are 

used to discretize the bulk volume of rock matrix. For hydro-mechanical cohesive elements, a 

uniform element size, 0.06 m, is adopted for the region of interest; element sizes of 5 m and 10 m 

are used to discretize far field regions. We assume the rock matrix is impermeable. The cohesive 

elements are on a horizontal plane, as indicated by the blue color in Figure 2.10. The injection 

point is located at the corner of the horizontal plane which is discretized into interface elements.  

(1) Viscosity-dominated regime 
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The dimensionless toughness, κ, in the viscosity scaling is usually considered as a 

parameter to distinguish the fracture propagation in a viscosity-dominated regime (κ ≤ 1) from 

toughness-dominated regime (κ ≥ 3.5) (Savitski and Detournay 2002), which is expressed as: 

 

 

 

(2.20) 

As shown in Figure 2.11, κ is plotted as a function of time. In this verification case, κ is 

less than 1.1 during injection, which indicates that the fracture propagates in a viscosity-

dominated regime and can be approximated through the zero-toughness asymptotic solutions.  

Table 2.1 Rock and fluid properties used for penny-shaped hydraulic fracture. 

       Viscosity-dominated    Toughness-dominated  

Poisson’s ratio, ν             0.15        0.15 

Young’s modulus, E          3.88 × 10
10

 Pa     3.88 × 10
10

 Pa 

Fracture toughness, KIC        1.13 × 10
6
 Pa.m

1/2
    8.91 × 10

6
 Pa.m

1/2
 

Tensile strength, Tn             1.5 × 10
6
 Pa      14.0 × 10

6
 Pa 

Energy release rate, GIC       32.0 N/m       2000.0 N/m 

Slop indicator, rn         0.01        0.005 

 

Fluid viscosity, µ              1.0 cp        0.5 cp 

Injection rate, Q0:                 0.001 m
3
/s      0.004 m

3
/s 

Note: Fracture toughness KIC is not an input parameter for CZM, it is calculated using Eq. (2.4) for 

reader’s convenient.  
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Figure 2.10 Geometry of one quarter of the 3D model. The center plane shown in blue color is 

discretized into 12-node interface elements; the matrix indicated by the light gray color is 

discretized into 8-node hexahedral elements. The injection point is located in the corner of the 

center blue plane. (Unit: m). 

 

In Figure 2.12, the fracture aperture and fluid pressure are plotted separately as functions 

of the created fracture radius at different injection time. The dimensionless aperture and pressure 

are also plotted as functions of the normalized fracture radius and shown in Figure 2.13 (a) and 

(b), respectively. In addition, the aperture and pressure at injection point are shown in Figure 

2.14 (a) and (b). Figure 2.14 (c) gives the facture radius as a function of time. As shown, our 

numerical results match well with the asymptotic analytical solutions. This suggests that the 3D 

coupled hydro-mechanical cohesive model can produce satisfactory results with respect to fluid 

pressure, fracture aperture and fracture radius in a viscosity-dominated regime. 

Injection 

point 
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Figure 2.11 κ plotted as a function of time for viscosity-dominated regime.  

 

 
(a) 

 
(b) 

Figure 2.12 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for penny-shaped hydraulic fracture in viscosity-dominated regime. 
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(a) 

 
(b) 

Figure 2.13 Dimensionless aperture (a) and pressure (b) plotted as a function of normalized 

fracture radius at different injection time. 
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(a) 

 
(b) 

 
(c) 

Figure 2.14 Aperture, pressure and fracture radius plotted as a function of injection time: (a) 

aperture at the injection point; (b) pressure at the injection point; (c) fracture radius. 
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The verification case is also used to demonstrate the performance of the parallel 

simulator. OU's newest supercomputer – Schooner, which has over 10,000 CPU cores, 23TB of 

RAM and 450TB of usable hard disk space, is utilized to run all the simulations in this study. 

The same model is run using different number of processors. There are 179,776 8-node 

hexahedral elements and 11,236 12-node interface elements. The direct solver MUMPS is 

chosen to solve the assembled system of equations. Figure 2.15 shows the total execution time 

plotted as a function of the number of processors for one time step. Total execution time, relative 

speedup and efficiency for cases with different processors in one time step are summarized in 

Table 2.2. For problems of this size, a good performance is obtained when 100 processors are 

used. The efficiency reaches more than 80%. The results also indicate that the simulator can be 

used to handle large scale problems on large number of processors with good speedup 

performance. 

 
Figure 2.15 Total execution time in one time step versus the number of processors used.  
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Table 2.2 Total execution time, relative speedup and efficiency for the verification case in one time 

step. The mesh is composed by 106×16×106 8-node hexahedral and 106×1×106 12-node hydro-

mechanical interface elements. 

# Processors Total time (s) Relative speedup   Efficiency 

20     218.45    -       - 

60     74.12     2.95      0.98 

80     58.54     3.73      0.93 

100    50.62     4.32      0.86 

140    41.68     5.24      0.75 

200    37.35     5.85      0.58 

300    34.57     6.32      0.42 

 

(2) Toughness-dominated regime 

The asymptotic analytical solutions are derived based on LEFM. Fracture toughness (KIC) 

is one of the parameters used in analytical solutions. However, in CZM, energy release rate (GIC) 

is used instead of fracture toughness. To verify fracture propagation in toughness-dominated 

regime, released energy needs to be accurately captured and Eq. (2.4) should be satisfied. 

Usually element size should be smaller than the length of fracture process zone in order to 

accurately obtain the released energy. In 3D models, this requires tremendous number of 

elements if remesh technology is not available. To reduce the computational cost, the same mesh 

as that used for viscosity-dominated regime is utilized. 

Using the parameters given in Table 2.1, κ is plotted as a function of time in Figure 2.16. As can 

be seen, κ ranges from 3.90 to 8.13. The fracture propagates in the toughness-dominated regime 

(κ ≥ 3.5) for this verification case. Figure 2.17 (a) shows the aperture profile in the radial 

direction at different injection time. The numerical results do not match the asymptotic solutions 

exactly at the fracture tips. As mentioned before, analytical solutions are derived based on 

LEFM; stress singularity exists at the tips. CZM allows ductile deformation at the tips. Figure 

2.18 (a) and (b) illustrate the dimensionless aperture and pressure distributions, separately. We 

can observe that the pressure in hydraulic fracture is almost uniform and matches the asymptotic 
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analytical solution very well (Figure 2.17 (b) and Figure 2.18 (b)). The aperture and pressure are 

separately plotted as a function of time in Figure 2.19. They have a good match with the 

asymptotic analytical solutions. The fracture radius is also shown in Figure 2.19. It is slightly 

larger than the asymptotic analytical solutions but do not match them exactly since different 

assumptions are implied. 

 
Figure 2.16 κ plotted as a function of time for toughness-dominated regime.  

 

 
(a)  

Figure 2.17 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for penny-shaped hydraulic fracture in toughness-dominated regime. 

(continued)  
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(b) 

Figure 2.17 (continued). (Caption shown on previous page.)  

 

 
(a) 

 
(b) 

Figure 2.18  Dimensionless aperture (a) and pressure (b) plotted as a function of normalized 

fracture radius at different injection time.  
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Figure 2.19 Aperture, pressure and fracture radius plotted as a function of injection time for 

penny-shaped hydraulic fracture in toughness-dominated regime. Solid lines are for asymptotic 

analytical solutions; data markers are for numerical solutions. 

 

2.5.3 KGD hydraulic fracture in 3D domain 

The KGD hydraulic fracture in 3D domain is also analyzed. As shown in Figure 2.20, 

injection rates are the same along the z direction to make the variables along the z direction 

distributed uniformly. The two boundaries perpendicular to the z axis are fixed in the z direction. 

With this configuration, the xy plane is under plane strain condition. The size of hydro-

mechanical interface element is 0.0015 m. The input parameters for fracture propagation in 

viscosity- and toughness-dominated regimes are given in Table 2.3. The dimensionless 

toughness, κ, is calculated using the following expression (Detournay 2004): 

 
 (2.21) 
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Figure 2.20 Geometry of the KGD model in 3D. (Unit: m) 

 

Table 2.3 Rock and fluid properties used for penny-shaped hydraulic fracture. 

          Viscosity-dominated  Toughness-dominated  

Poisson’s ratio, ν             0.15        0.15 

Young’s modulus, E          3.88 × 10
10

 Pa     3.88 × 10
10

 Pa 

Fracture toughness, KIC       0.63 × 10
6
 Pa.m

1/2
    8.91 × 10

6
 Pa.m

1/2
 

Tensile strength, Tn             1.0 × 10
6
 Pa      10.0 × 10

6
 Pa 

Energy release rate, GIC      10.0 N/m       2000.0 N/m 

Slop indicator, rn         0.1         0.005 

 

Fluid viscosity, µ              10.0 cp       0.5 cp 

Injection rate, Q0:                0.001 m
2
/s      0.001 m

2
/s 

 

Dimensionless toughness, κ    0.216        6.461 

Note: Fracture toughness KIC is not an input parameter for CZM, it is calculated using Eq. (2.4) for 

reader’s convenient.  

 

(1) Viscosity-dominated regime 

Injection 

points 
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As shown in Table 2.3, the dimensionless toughness (κ = 0.216) is less than 1, which 

indicates the hydraulic fracture propagates in viscosity-dominated regime and can be 

approximated through the zero-toughness solution as provided by Adachi (2001) and Detournay 

(2004). Figure 2.21 (a) and (b) illustrate the fracture aperture and fluid pressure plotted 

separately as a function of fracture length at different injection time. The dimensionless aperture 

and pressure distributions are shown in Figure 2.22 (a) and (b). Also the aperture and pressure at 

the injection point are plotted as a function of time and shown in Figure 2.23 (a) and (b). Figure 

2.23 (c) gives the fracture length at different injection time. As can be seen from these figures, 

the 3D KGD model also produces results that match well with the asymptotic analytical solutions 

(plane strain solutions) in terms of injection aperture, injection pressure, fracture length, aperture 

and pressure profiles. There is some mismatch in dimensionless pressure near close vicinity of 

the fracture tip (Figure 2.22 (b)). Asymptotic analytical solutions predict pressure singularity 

(infinite negative pressure) close to the fracture tip. Numerical models can only produce finite 

values and could experience oscillations when singularity exists. In addition, the existence of the 

cohesive process zone ahead of the fracture tip may contribute to the discrepancy in fluid 

pressure.  

 
(a)  

Figure 2.21 Fracture aperture (a) and pressure (b) plotted as a function of fracture length at 

different injection time for 3D KGD hydraulic fracture in viscosity-dominated regime. (continued)  
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(b) 

Figure 2.21 (continued). (Caption shown on previous page.)   

 

 
(a) 

 
(b) 

Figure 2.22 Dimensionless aperture (a) and pressure (b) plotted as a function of normalized 

fracture length at different injection time. The asymptotic analytical solution predicts negative 

infinite pressure in the vicinity of fracture tip; numerical simulations yield finite values close to the 

tip as shown by the discrete dots near the tip in (b).  
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(a) 

 
(b) 

 
(c) 

Figure 2.23 Dimensionless aperture (a) and pressure (b) plotted as a function of normalized 

fracture length at different injection time. The asymptotic analytical solution predicts negative 

infinite pressure in the vicinity of fracture tip; numerical simulations yield finite values close to the 

tip as shown by the discrete dots near the tip in (b).  
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(2) Toughness-dominated regime 

The parameters given in Table 2.3 produce dimensionless toughness κ = 6.461 for 

simulations in this section. Figure 2.24 (a) and (b) present the aperture and pressure at the 

injection point plotted as a function of fracture length at different injection time. The numerical 

results have a good match with the asymptotic solutions even for areas near fracture tips. It 

should be noted that the element size for KGD verification (0.0015 m) is much smaller than that 

(0.06 m) used in the verification of the penny-shaped hydraulic fracture. Figure 2.25 (a) and (b) 

illustrate the dimensionless aperture and pressure distributions. They all have a good match with 

the asymptotic analytical solutions. The aperture and pressure at injection point are shown in 

Figure 2.26. Figure 2.26 also shows the fracture length as a function of time. It can be seen that 

the KGD model in 3D domain produces results matching well with the asymptotic analytical 

solutions.   

 

 
(a)  

Figure 2.24 Fracture aperture (a) and injection pressure (b) plotted as a function of fracture length 

at different injection time for KGD hydraulic fracture in 3D domain in toughness-dominated 

regime. (continued) 
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(b) 

Figure 2.24 (continued). (Caption shown on previous page.) 

 

 
(a) 

 
(b) 

Figure 2.25 Dimensionless aperture and pressure plotted as a function of normalized fracture 

length at different injection time: (a) dimensionless aperture; (b) dimensionless pressure.  
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Figure 2.26 Aperture, pressure and fracture half-length plotted as a function of injection time for 

KGD hydraulic fracture in toughness-dominated regime. Solid lines are for asymptotic analytical 

solutions; dots are for numerical solutions. 

 

2.6 Numerical analyses: CZM parameters and element size 

When using CZM to simulate fracture propagation, a set of parameters is required, 

including tensile strength, energy release rate and parameters to control the stiffness of a 

cohesive interface element. Only purely tensile failure and its corresponding CZM parameters 

are considered in this study. The behaviors of a cohesive interface element are defined through 

these parameters. To obtain a successful (or accurate) simulation, the size of interface elements 

must by smaller than the cohesive zone length, which is also called as fracture process zone 

ahead of fracture tips and is an inherent property for quasi-brittle materials. This condition limits 

the application of CZM for large scale applications due to the fact that the fracture process zone 

is usually much smaller when compared with the size of a model for field applications. For 

quasi-brittle materials, such as rock and concrete, the process zone is usually at scale of 

centimeter or millimeter (Otsuka and Date 2000; Turon et al. 2007). In this section, the 

influences of cohesive zone parameters and element size on hydraulic fracture propagation are 

analyzed. The parameters are chosen to make fracture propagate in the viscosity-dominated 
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regime, which is commonly encountered in reservoir stimulation and when the hydraulic 

fractures propagate in a cluster manner (Sesetty and Ghassemi 2017). 

2.6.1 Sensitivity analyses of CZM parameters 

The distance from the physical crack tip to the point where the maximum tensile strength 

is reached (mathematical crack tip) is usually called the cohesive zone length (Figure 2.1). The 

cohesive zone length is a function of energy release rate (GIC), tensile strength, Young’s modulus 

and other material properties. Different models are proposed to estimate the cohesive zone length 

lcz in the literature. They share the formulation 

 
 (2.22) 

where M is a constant that is determined by each cohesive zone model. The models proposed by 

Irwin (1957), Barenblatt (1962), Hillerborg et al. (1976), Rice (1979) and Hui et al. (2003), have 

M equal to 1/π, π/8, 1.0, 9π/32 and 2/3π, respectively. A brief literature review about the 

formulations can be found in Turon et al. (2007). 

As we can see, the main parameters for cohesive elements that influence the cohesive 

zone length are the critical energy release rate GIC, and the tensile strength Tmax. Either increase 

of the critical energy release rate GIC or decrease of the tensile strength Tmax could make the 

cohesive zone length larger. When using relatively coarse mesh, a larger cohesive zone length is 

preferred in order to accurately capture the released energy in cohesive elements. There are no 

strict rules to determine the number of elements that should be confined within the cohesive 

zone. A minimum of 5 to 10 elements is usually suggested. 

In the sensitivity analyses, influences of tensile strength, critical energy release rate, and 

stiffness of cohesive elements on hydraulic fracture propagation are studied. The mesh is the 

same as that used for verifying the penny-shaped hydraulic fracture. 
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(1) Stiffness of cohesive elements 

The stiffness of a cohesive element is indicated by the slope of the elastic deformation 

part (before tensile strength is reached) on a traction-separation curve. For a fixed energy release 

rate, the slope, and thus the stiffness, is characterized through the ratio of the critical crack 

opening width to the final crack opening width (Park and Paulino 2012), as shown in Figure 2.2. 

The slope indicator rn is used to represent the ratio in this study. The critical crack opening is the 

opening at which the tensile strength is reached and softening deformation starts; the final crack 

opening is the opening at the complete failure of a cohesive element. Through the variation of 

slop indicator rn, the influence of cohesive element stiffness on fracture propagation is analyzed. 

Figure 2.27 illustrates the traction-separation curves corresponding to slop indicators of 0.01, 

0.05 and 0.1 with the critical energy release rate of 32 N/m. As shown, the smaller the slop 

indicator, the steeper the slopes of the elastic deformation portion of the curve, which makes the 

cohesive element stiffer. It should be remembered that the area under the three curves are the 

same and equal to the critical energy release rate. Except for the slope indicator, all the other 

parameters are the same as those given in Table 2.1 for the viscosity-dominated regime. 

Figure 2.28 (a) and (b) illustrate aperture and pressure profiles plotted along the radius of 

the penny-shaped fracture, respectively. Since the slop indicator is related to the elastic 

deformation before the tensile strength is reached, a larger slop indicator implies relatively larger 

fracture opening is needed to reach the tensile strength and to enter into softening deformation. 

As shown in Figure 2.28, this property makes the material around fracture tips more ductile 

when larger slop indicator is used. The fluid pressure and the fracture aperture are smaller but the 

fracture length is larger when fracture tips experience larger ductile deformation. The aperture 
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and fluid pressure at the injection point are shown in Figure 2.29 (a) and (b). They both match 

well with the asymptotic analytical solutions. 

 
Figure 2.27 Relationship between normal cohesive traction (Tn) and normal separation (Δn) for 

cohesive elements with rn of 0.01, 0.05 and 0.1, respectively.  

 

 

 
(a)  

Figure 2.28 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for rn being 0.01, 0.05 and 0.1, respectively. Larger slope indicator (rn) 

makes the material ahead of fracture tips more ductile, thus experiencing larger deformation. 

(continued) 
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(b) 

Figure 2.28 (continued). (Caption shown on previous page.) 

 

 
(a) 

 
(b) 

Figure 2.29 Fracture aperture (a) and pressure (b) at injection point versus injection time for rn 

being 0.01, 0.05 and 0.1, respectively.  

 

(2) Tensile strength 
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Three scenarios are considered. The tensile strength for each scenario is 0.5 MPa, 1.5 

MPa, and 5.0 MPa. Except for tensile strength, all the other rock and fluid properties are the 

same as those provided in Table 2.1.  

Figure 2.30 (a) and (b) illustrate the profiles of fracture aperture and fluid pressure 

respectively at different injection times. As illustrated, the change of tensile strength from 0.5 

MPa to 1.5 MPa has a slight influence on the distributions of aperture and pressure for a large 

portion of the profiles. Relatively larger aperture and fluid pressure and smaller fracture length 

are generated when the tensile strength equals 5.0 MPa. Large tensile strength produces more 

resistance for fracture propagation in the CZM. The aperture and pressure at the injection point 

are almost the same for the three scenarios, as shown in Figure 2.31 (a) and (b). There are 

discrepancies in the aperture and pressure near the tips when compared with asymptotic 

analytical solutions. A higher tensile strength generates a smaller aperture and pressure in the 

close vicinity of fracture tips. This is likely due to the basic differences in the assumptions 

involved in the CZM and the LEFM from which the asymptotic solutions are derived. Tensile 

strength is an input parameter for CZM and is related to the stiffness of cohesive interface 

element; it is not needed in LEFM when deriving the asymptotic solutions. 
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(a) 

 
(b) 

Figure 2.30 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for tensile strength being 0.5 MPa, 1.5 MPa and 5.0 MPa. Larger tensile 

strength generates smaller aperture in the vicinity of fracture tip.  

 

 
(a)  

Figure 2.31 Fracture aperture (a) and pressure (b) at injection point versus injection time for 

tensile strength being 0.5 MPa, 1.5 MPa and 5.0 MPa. (continued) 
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(b) 

Figure 2.31 (continued). (Caption shown on previous page.)  

 

In Figure 2.32, the normal cohesive traction (Tn) is plotted as a function of normal 

separation (Δn) for cohesive elements with tensile strength of 0.5 MPa, 1.5 MPa and 5.0 MPa, 

respectively. Since the critical energy release rate (the area under the traction-separation curve) 

has a fixed prescribed value, the larger the tensile strength, the steeper the curve’s slope for both 

the elastic deformation part and the inelastic deformation part on the traction-separation profile, 

though the elastic deformation is too small to be seen on Figure 2.32. A steeper slope of the 

elastic deformation part represents a higher stiffness. The fracture aperture would be smaller for 

cohesive elements with higher stiffness during fluid pressurization at tips where traction is not 

zero. This is manifested in numerical results. Numerical results indicate that cohesive elements 

with higher stiffness yields smaller fracture aperture and fluid pressure at the fracture tips, as 

shown in Figure 2.30 (a) and (b). The solutions at fracture tips influence the aperture and 

pressure distributions for the whole domain of interest. It should be mentioned that smaller 

tensile strength yields a larger cohesive zone length, within which more cohesive elements are 

contained. Larger cohesive zone length benefits numerical stability. When the stiffness of 

cohesive elements is too high and makes the corresponding cohesive zone length too small to 

contain enough cohesive elements, it then often causes loss of computation stability and crash.  
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Figure 2.32 Relationship between normal cohesive traction (Tn) and normal separation (Δn) for 

cohesive elements with tensile strength of 0.5 MPa, 1.5 MPa and 5.0 MPa, respectively.  

 

(3) Critical energy release rate 

The influence of the critical energy release rate (GIC) on fracture propagation is analyzed 

through its variation. Three scenarios with critical energy release rates equal to 5 N/m, 12 N/m 

and 32 N/m are considered. The tensile strength is set to 0.5 MPa. The rest of the parameters are 

the same as those provided in Table 2.1. 

The fracture aperture and fluid pressure are plotted as a function of fracture radius, and 

are shown in Figure 2.33 (a) and (b). The aperture and pressure at injection point are also given 

in Figure 2.34 (a) and (b). As can be seen, the numerical results match well with the asymptotic 

solutions even when the critical energy release rate changes from 5 N/m to 32 N/m. Figure 2.35 

shows the κ as a function of injection time. All the three scenarios have κ less than 1.2, which 

indicates all examples are in the viscosity-dominated regime. Converting the critical energy 

release rate of 5 N/m, 12 N/m and 32 N/m to fracture toughness through Eq. (2.4), the 

corresponding fracture toughness values are 0.45 MPa/m
1/2

, 0.69 MPa/m
1/2

 and 1.13 MPa/m
1/2

. 

According to these numerical simulations, it is considered that the hydraulic fracture propagation 

is not sensitive to the critical energy release rate or fracture toughness given that the propagation 

is within the viscosity-dominated regime. This numerical characteristic would facilitate the 
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selection of CZM parameters since the critical energy release rates within a large range produce 

almost identical results in the viscosity-dominated regime. 

 
(a) 

 
(b) 

Figure 2.33 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for energy release rate (GIC) being 5.0 N/m, 12.0 N/m and 32.0 N/m.  
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(a) 

 
(b) 

Figure 2.34 Fracture aperture (a) and pressure (b) at injection point versus injection time for 

energy release rate (GIC) being 5.0 N/m, 12.0 N/m and 32.0 N/m.  

 

 
Figure 2.35 κ plotted as a function of injection time.  
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The traction-separation curves for critical energy release rates of 5 N/m, 12 N/m and 32 N/m are 

shown in Figure 2.36. A higher value of critical energy release rate corresponds to a larger area 

under the curves and to a larger ultimate failure separation (zero cohesive traction exists) when a 

fixed tensile strength is used here. It also makes the cohesive elements more ductile. Higher 

critical energy release rate also indicates a larger cohesive zone length according to Eq. (2.22). 

Provided that fracture propagation is within the viscosity-dominated regime, a higher value of 

critical energy release rate benefits numerical simulations and produces the same results as those 

obtained using smaller critical energy release rate. 

 
Figure 2.36 Relationship between normal cohesive traction (Tn) and normal separation (Δn) for 

cohesive elements with energy release rate of 5 N/m, 12 N/m and 32 N/m, respectively. Larger GIC 

corresponds to more ductile deformation.  

 

2.6.2 Influence of the interface element size on hydraulic fracturing 

Interface elements are used to represent 2D planar surfaces in 3D space (Figure 2.3 and 

Figure 2.4). The sizes of interface elements are the same in the two spatial directions for the 2D 

planar surfaces for all the simulations in this study. As stated before, to accurately capture the 

traction distribution and the energy released ahead of the crack tips, a sufficient number of 

interface elements should be placed within the cohesive zone. The size of the interface element 
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becomes critical when we try to obtain accurate results. Here we study the influence of element 

size on fracture propagation. 

Three different element sizes are considered. They are 0.12 m, 0.4 m and 0.8 m. The 

material and fluid properties are given in Table 2.4. In order to use a relatively large element 

size, the tensile strength is chosen as 0.5 MPa. Although simulations using larger critical energy 

release rate (e.g. GIC = 22 N/m, GIC = 32 N/m) are performed, only the results for GIC = 12 N/m 

are presented for the sake of brevity. 

Table 2.4 Rock and fluid properties used for penny-shaped hydraulic fracture. 

Poisson’s Ratio, ν:             0.15 

Young’s Modulus, E:           3.88 × 10
10

 Pa 

Tensile strength, Tnc:             0.5 × 10
6
 Pa 

Energy release rate, GIC       12.0 N/m 

Slop indicator, rn          0.1 

 

Fluid Viscosity, µ:               1.0 cp 

Injection rate, Q0:                 0.001 m
3
/s 

 

Fracture aperture and fluid pressure are plotted as a function of fracture radius and are 

shown in Figure 2.37 (a) and (b), respectively. As shown, compared with the asymptotic 

analytical solutions, the aperture distributions from numerical results are smaller around the 

injection point and larger around the fracture tip. The relative error is about 5% at the injection 

point. For pressure profiles along the radial direction, numerical results match well with the 

asymptotic ones, even when the element size is as large as 0.8 m. The aperture and pressure at 

the injection point are separately plotted as a function of time in Figure 2.38 (a) and (b). The 

pressure has a good match with asymptotic solution. For element size equal to 0.8 m, the 

aperture at the injection point experiences oscillations, especially in the beginning of injection. 

Apparently, the oscillation is caused by the relatively large element size. Even when larger 

element sizes (e.g. 0.12 m, 0.4 m in this study) are used, numerical results are still close to 

asymptotic solutions though there are discrepancies. 
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(a) 

 
(b) 

Figure 2.37 Fracture aperture (a) and pressure (b) plotted as a function of fracture radius at 

different injection time for element size being 0.12 m, 0.40 m and 0.80 m.  

 

 
(a)  

Figure 2.38 Fracture aperture (a) and pressure (b) at injection point versus injection time for 

element size being 0.12 m, 0.40 m and 0.80 m. (continued)  
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(b) 

Figure 2.38 (continued). (Caption shown on previous page.)  

 

2.6.3 Discussion 

The fundamental difference between CZM and models based on LEFM is that there are 

inelastic deformations around the fracture tips in CZM. To accurately capture the behaviors of 

CZM, certain number of elements should be contained in cohesive zone. Table 2.5 summarizes 

different combinations of parameters and their corresponding number of elements in cohesive 

zone. Through numerical experiments, it is found that most of the combinations yield results 

very close to the asymptotic solutions. The number of elements in the cohesive zone not only 

influences the accuracy of results but also affects the stability of the model. For the case with GIC 

= 5N/m, Tmax = 2 MPa and element size = 0.06 m, the corresponding number of elements in the 

cohesive zone is less than 1 (0.7) and the simulation fails. Another factor related to the stability 

of the model is the stiffness indicator rn. When rn is too low (e.g. rn = 0.0001), the stiffness of 

cohesive element will be large and the simulation may also fail. From numerical experiments, it 

is observed that simulations with the number of elements in cohesive zone larger than 5, and rn 

close to 0.01 usually run smoothly without failure and could yield results close to the asymptotic 

solution. It should be emphasized that the discussions are focused on viscosity-dominated 

propagation regime. 
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Table 2.5 Different combinations of CZM parameters and their corresponding number of elements 

in cohesive zone.  

Energy release  Tensile strength, Cohesive zone  Element size  Number of  

rate,  GIC (N/m)  Tmax (Pa)     length, lcz (m)   (m)     elements 

5       0.5     0.70     0.06    11.7 

12       0.5     1.68     0.06    28.1 

32       0.5     4.49     0.06    74.8 

     

5       1.5     0.08     0.06    1.3 

12       1.5     0.19     0.06    3.1 

32       1.5     0.50     0.06    8.3 

     

5       2     0.04     0.06    0.7 

12       2     0.11     0.06    1.8 

32       2     0.28     0.06    4.7 

     

12       0.5     1.68     0.12    14.0 

12       0.5     1.68     0.4     4.2 

12       0.5     1.68     0.8     2.1 

 

For the propagation of hydraulic fractures in toughness-dominated regime, the solutions 

of aperture, pressure and fracture radius/length are functions of fracture toughness. To generate a 

toughness-dominated propagation regime, the fracture toughness KIC (and the corresponding 

energy release rate GIC) should be much larger than the common values for reservoir rock 

(around 1 ~ 2 MPa.m
1/2

) while other parameters are within ranges for engineering applications 

(i.e. fluid viscosity around 1 cp). It is intuitive to consider that materials having large fracture 

toughness should have high tensile strength. The impact of tensile strength on the penny-shaped 

hydraulic fracturing in toughness-dominated regime is analyzed. Except tensile strength, other 

parameters are the same as those used in the verification section (Table 2.1). As shown in Figure 

2.39, tensile strength equal to 14 MPa and even 20 MPa produce results matching well with the 

asymptotic analytical solutions. However, when tensile strength = 8 MPa (and 2 MPa, 5 MP, 

corresponding results are not given for the sake of brevity), the aperture and pressure profiles 

cannot match well with the asymptotic analytical solutions. It yields relatively smaller aperture 

size and injection fluid pressure. It is suggested that when large energy release rate is chosen for 
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hydraulic fracturing in toughness-dominated regime, the corresponding tensile strength for the 

cohesive interface element should also be high. As illustrated, a wide range of tensile strength 

(i.e. 14 MPa – 20 MPa in this study) would yield almost the same results that match well with 

the asymptotic solutions. 

 
Figure 2.39 Fracture aperture and pressure at injection point versus injection time for the penny-

shaped hydraulic fracture propagating in toughness-dominated regime with tensile strength equal 

to 8 MPa, 14 MPa, and 20 MPa. Other parameters are the same as those provided in Table 2.1. The 

solid lines are for asymptotic analytical solutions, the data markers are for numerical results.  

 

As we know there are several input parameters for CZM. Given that the input parameters 

are corresponding to a viscosity-dominated propagation regime, variation of CZM parameters 

within a certain range could yield the almost same results. As shown previously, using either rn = 

0.01 or rn = 0.1, the results are close to asymptotic solutions. The same is true for the variations 

of energy release rate GIC and maximum tensile strength Tmax. This flexible property benefits the 

choice of input parameters for CZM though it has more parameters than traditional models based 

on LEFM. Of course, all the chosen CZM parameters should make sense within ranges of 

engineering applications. Another advantage of this property is that we could reduce the tensile 

strength to get a relatively large length of cohesive zone, so as to incorporate more elements in 

the cohesive zone even when relatively large elements are used. This feature is attractive in field 

applications at reservoir scale. As shown in analyses about element size, when element size is as 



65 

large as 0.8 m, we can still capture the pressure and aperture distributions quite well though there 

are oscillations in the beginning of injection. The same point is also suggested by Bažant and Oh 

(1983) and Turon et al. (2007) for engineering applications of CZM. 

The relationship between the total work done during injection and the energy dissipated 

in creating new hydraulic fracture surfaces are analyzed below. Integrating the product of 

injection pressure and fluid flow rate with respect to time, the total work done can be calculated 

as: 
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(2.23) 

where Q is the injection rate, p(ρ, P(t)) is the dimensionless pressure which is a function the 

scaled radius ρ and the dimensionless evolution parameter P(t) (Savitski and Detournay 2002). 

At the injection point, ρ = 0. 

The total work done during injection and the energy spent on fracture creation for the 

previous sensitivity analyses (viscosity-dominated regime) with respect to GIC are shown in 

Figure 2.40. As can be seen, the energy dissipated in creating new fracture surface is much less 

than the total input energy. Small alteration of GIC has almost no influence on the overall 

response of the model from the energy point of view. In contrast, the situation is different for 

hydraulic fracture propagates in toughness-dominated regime. Figure 2.41 illustrates the total 

work done during injection and the energy dissipated by creating new fractures for the 

verification of penny-shaped hydraulic fracture in toughness-dominated regime. As shown, the 

energy spent on fracture creation takes the majority portion of the total input energy. To get 

accurate results, the dissipated energy should be captured accurately. This usually requires a 



66 

small element size. Given that the size of elements is small enough, as shown in the verification 

for KGD hydraulic fracture in 3D, we indeed capture the toughness- (and viscosity-) dominated 

propagation accurately. 

 
Figure 2.40 Total work done during injection and the energy spent on fracture creation with 

different GIC for hydraulic fracture propagating in the viscosity-dominated regime.  

 

 
Figure 2.41 Total work done during injection and the energy spent on fracture creation with GIC = 

2000 N/m for hydraulic fracture propagating in the toughness-dominated regime.  

 

There are two nonlinear processes involved in the coupled processes of hydraulic 

fracturing. The first one is the nonlinear lubrication equation Eq. (2.7). The second one is the 

moving boundary condition about the fracture tip (or fluid front). The Newton-Raphson method 

can handle the nonlinear lubrication equation quite well. The moving boundary condition usually 

needs iterations to update the tip position. In the CZM, no special treatments of the fracture tip 



67 

are needed. In other words, the moving boundary is automatically satisfied. This feature may be 

due to the fact that the cohesive element is a special continuous element that can simulate 

discontinuous behaviors. For 3D FEM simulations at reservoir scale, the computational cost is 

usually heavy so that when the iterations for the moving boundary are not needed, tremendous 

time savings could be made. 

Cohesive zone model is an effective way to deal with fracture propagation problems 

based on FEM, and it becomes popular in hydraulic fracturing. When we use it, different 

strategies should be adopted. It should also be kept in mind that the CZM should be accurate at 

least on qualitative level when we pursue efficiency. One limitation of the proposed interface 

element is that it can only be aligned with the surfaces of the continuum element used for the 

main problem domain (e.g., 8-node hexahedron element). This limits the ability of interface 

element to propagate in arbitrary directions. Many efforts are still needed to improve the 

proposed model. 

2.7 Conclusions 

In this work, a 3D fully coupled hydro-mechanical interface element is developed. 

Governing equations and corresponding finite element discretization are given. The hydro-

mechanical interface element is implemented based on the cohesive zone model. Numerical 

examples are provided to verify the proposed model. The first one illustrates the mechanical 

behaviors of the cohesive zone model. The second and third examples study separately the 

penny-shaped hydraulic fracture and the KGD hydraulic fracture (in 3D domain) in both 

viscosity- and toughness-dominated regimes. Comparison our numerical results with asymptotic 

analytical solutions indicates that good agreement has been achieved. 
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Sensitivity analyses are performed to investigate the influence of input parameters of 

CZM on hydraulic fracturing. Smaller stiffness of cohesive elements tends to have larger ductile 

deformation around fracture tips. The tensile strength influences the number of elements within 

the cohesive zone. The energy release rate has almost no influence on hydraulic fracturing in 

viscosity-dominated regime since the energy consumed on fracture creation is too small when 

compared with the total input energy. The property simplifies the selection of input parameters 

because small variation of energy release rate would yield almost the same results. On the 

contrary, for hydraulic fracturing in toughness-dominated regime, the energy spent on fracture 

creation takes a majority portion of the total input energy; to obtain correct numerical results, the 

energy spent on creating new fractures should be accurately captured. The size of interface 

element is directly related to the stability and accuracy of numerical simulations. From our 

numerical experience, it is recommended that at least 5 interface elements should be contained 

within the cohesive zone. 
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3 3D planar hydraulic fracture propagation in an elastic medium: height 

growth in layered formations  

Abstract 

There are many challenges associated with hydraulic fracturing, such as the lithological 

layering, the heterogeneity of rock and the in-situ stress. In the previous chapter, a fully coupled 

model using hydro-mechanical interface elements was developed and verified along with 

additional analyses to characterize the influence of the cohesive zone model parameters on 

hydraulic fracturing simulations. In this chapter we treat the important problem of hydraulic 

fracturing in the presence of elastic modulus contrast and stress contrast in layered rock systems 

encountered in petroleum resources development. First, the model is validated by simulating a 

laboratory hydraulic fracturing experiment dealing with the influence of stress contrast. The 

compressibility effects of the wellbore are considered through explicitly modeling the wellbore. 

Good agreements in the distribution of fracture aperture, injection pressure and fracture footprint 

have been achieved. Then, numerical analyses are performed to investigate the influence of in-

situ stress and formation layer properties, such as Young’s modulus and fracture energy release 

rate, on the height growth and containment of hydraulic fractures. Comparing the results of 

simulations using conventional thickness-weighted Young’s modulus to those from explicit 

modeling of layers’ Young’s moduli, it is found that, given the same amount of injection volume, 

the thickness-weighted modulus generates a higher injection pressure than the layered modulus. 

Explicit modeling of the layers (with higher or lower modulus than the target layer) influences 

the hydraulic fracture aperture distribution in the pay zone as well as in the surrounding layers. 

When modulus contrast is considered, a relatively large fracture aperture is observed in the layer 

with lower Young’s modulus. Also, the hydraulic fracture tends to propagates mainly in the 
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lower Young’s modulus layers which could facilitate containment of the hydraulic fracture by 

limiting height growth. When considering the influence of stress contrast on height growth, the 

conventional equilibrium height model produces a relatively large aperture and overestimates the 

fracture height, since it applies a uniform pressure and does not consider the pressure drop along 

fracture height. Under the assumed injection rate, fluid viscosity, and in-situ stress, the numerical 

simulations based on the fully coupled model show stress contrast larger than a certain value, for 

example 30% of the in-situ minimum horizontal stress, could effectively inhibit the height 

growth of hydraulic fractures. When the payzone is bounded by ductile top and bottom layers, 

the injection pressure is higher and the corresponding aperture at the injection point is larger than 

those obtained from using uniform material properties. 

3.1 Introduction 

Layered formations with different material properties and in-situ stress are widely 

encountered during petroleum resource extraction. When performing hydraulic fracturing, the 

geometry of hydraulic fractures (e.g. fracture height and length) is largely determined by in-situ 

geological conditions. One of the main problems in stimulation designs is to accurately predict 

the fracture height growth. In hydraulic fracturing treatments, height growth is needed to achieve 

good pay zone coverage and height confinement is desirable to generate long fractures and to 

minimize environmental impact. Field experiments have shown the height growth of many 

hydraulic fractures is much less than their lateral growth (Warpinski et al. 1998). Due to the 

importance of fracture height prediction, many studies have been conducted to understand the 

mechanisms involved in. The formation Young’s modulus, in-situ stress, fracture toughness and 

interface slippage are considered as the main factors that affect the height growth and are the 

focus of analyses in the literature. 
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According to the principles of linear elastic fracture mechanics (LEFM), when the stress 

intensity factor (depending on stress state and fracture geometry) at the fracture tips is larger than 

the fracture toughness (material property), fractures will propagate. It is thus natural to consider 

the use of the stress intensity factor to analyze fracture height containment. When a hydraulic 

fracture is confined between different formation layers, it usually has a much larger lengths than 

height. To generate a suitable aperture size for proppant placement, while at the same time 

preventing the fracture growth in the vertical direction, the required fracture toughness at the 

upper and lower edges of the fractures would need to be an order of magnitude larger than the 

typical value for rocks (van Eekelen 1982). It was suggested that fracture toughness alone would 

not be sufficient to stop the height growth in order to confine the hydraulic fractures within the 

target zone.  

Often when simulating hydraulic fracture growth, layered modulus is not considered as 

an important factor that directly controls height growth. However, elastic modulus influences the 

fracture width, the shape of the fracture, and hence the fluid pressure distribution and the 

transportability of proppant inside the fracture (van Eekelen 1982; Smith et al. 2001; Gu and 

Siebrits 2008). Both laboratory experiments (Daneshy 1978) and field tests (Warpinski et al. 

1998) have indicated that modulus contrast, by itself, is insufficient to act as a barrier to prevent 

fracture propagation. Formulations have been developed to estimate the width and the 

propagation rates of fractures that have crossed the interface between two layers having different 

modulus (van Eekelen 1982). It has been shown the fracture width is narrow when it propagates 

in the high-modulus layer. The smaller width reduces the flow of viscous fluid in the facture, and 

thus decreases the height growth rate. Simulations based on finite element method were utilized 
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to investigate the width distribution in layered formations (Smith et al. 2001) and to illustrate the 

shortcomings of using average modulus to approximate layered modulus. 

In-situ stress difference is generally suggested to have the dominant effect on controlling 

fracture height. Decades of hydraulic fracturing in conventional reservoirs have supported this 

view. Laboratory experiments have demonstrated the containment of hydraulic fracture due to 

the existence of a stress contrast. Warpinski, Clark, et al. (1982) and Teufel and Warpinski 

(1983) performed laboratory experiments to investigate the impacts of material properties and 

stress contrasts on the confinement of hydraulic fracture propagation. Their experiments have 

shown that 2 to 4 MPa stress contrast across the rock interface is sufficient to restrict the height 

growth of hydraulic fractures under the designed experimental conditions. A laboratory 

experiment that created step-like stress changes on the contact surface of two transparent 

Polymethyl methacrylate (PMMA) block was carried out by Jeffrey and Bunger (2007). The 

fracture height and length evolution in the lower-stress region, which was bounded by two 

symmetric higher-stress regions, were recorded. A hydraulic fracture with the ratio of overall 

height to half-length equal to 1.7 to 3 was generated. The height growth was effectively 

restricted by the created stress barriers. Wu et al. (2008) also studied the propagation of a 

hydraulic fracture using the transparent PMMA blocks. Three distinct stress layers on the contact 

surface between two PMMA blocks were generated. The experiment clearly showed that the 

propagation of the hydraulic fracture was impeded when the layer with higher confining stress 

was encountered, and was favored when the layer with lower confining stress was met. A simple 

static model to estimate the fracture height in a layered-stress medium was proposed by 

Simonson et al. (1978). The model assumes a uniform fluid pressure in the hydraulic fracture and 

no variations of material properties. This is commonly called the “equilibrium-height model”. 
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The assumptions, especially the uniform internal pressure of hydraulic fracture, are overly 

simplified. Both the reduction of aperture size towards fracture tips and the fluid viscosity can 

restrict flow, and induce a pressure drop along the fracture height during injection, and thereby 

make the fracture height growth lower than that obtained by assuming a uniform fluid pressure. 

In addition to modulus contrast and stress contrast, interface slippage should also be 

considered in analyses of fracture height containment. Laboratory experiments conducted by 

Daneshy (1978) showed that shear sliding on interfaces between layers caused fracture arrest. 

Warpinski et al. (1998) considered many factors in an attempt to explain the mechanisms 

involved in fracture height containment in field tests. The observed height growth from 

microseismic imaging was considerably less than that predicted from most fracture models. 

Neither stress contrast nor different fracture toughness in bounding layers could be used to 

reasonably explain the field observations. It was suggested that enhanced toughness, interface 

slip and stress and energy dissipation in the rock layers were combined to contribute to the 

fracture containment. Many studies have also suggested that slippage along pre-existing planes 

may cause of arrest in fracture propagation (Huang et al. 2018; Ye et al. 2018), and thus the 

fracture height growth. A review of the interaction between a hydraulic fracture and an interface 

can be found in Ghassemi (2017) and Mendelsohn (1984). There are many other factors that 

contribute to the fracture height containment. In this study, we focus on the impacts of Young’s 

modulus, in-situ stress and formation ductility. Details of the numerical method and its 

verification can be found in the previous paper. 

3.2 Problem description 

From theoretical work, experimental and field observations (Simonson et al. 1978; 

Warpinski et al. 1998; Wu et al. 2008), it is well-known that both material properties and in-situ 
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stress influence the hydraulic fracture propagation. However, the variation of material properties 

(e.g., Young’s modulus) in multi-layered formations has often been ignored in modeling, partly 

due to the complexity of the coupled problem. In this work, we utilize the 3D finite element 

method (FEM) presented in the previous chapter, to treat the problem involving multi-layered 

formations. We use 8-node hexahedron elements exclusively in this study. 

van Eekelen (1982) proposed an approximate formulation to estimate fracture height 

growth in layers with modulus contrasts. In the vertical section of hydraulic fractures, the fluid 

pressure was assumed as a constant. Smith et al. (2001) discussed the layered modulus effects on 

fracture height growth and proppant placement. Constant fluid pressure within fractures was also 

assumed. This assumption simplifies calculations and the derivation of approximate formulations 

and is appropriate when fractures propagate in a toughness-dominated regime. However, when 

the fractures propagates in a viscosity-dominated regime, the distribution of fluid pressure from 

the injection point to the fracture tip would not be constant. The input energy is mainly spent on 

fluid flow and deformation of matrix, rather than the creation of new fracture surfaces. In this 

paper, we investigate hydraulic fracture propagation under various configurations of modulus 

contrast and compare with results obtained using a uniform modulus. 

When assuming perfectly bonded (without any interface slippage) interfaces in a layered-

stress rock system, the in-situ stress contrast could be the most important factor that directly 

controls the height growth of hydraulic fractures. To simplify analyses, static step-wise 

pressurization is often used in approximately calculating fracture height in a layered rock system 

with stress contrast. A constant pressure is applied on the whole fracture surface and is adjusted 

through trial-and-error to satisfy a critical equilibrium state. The so-called equilibrium height 

model was first proposed by Simonson et al. (1978). Thereafter, more complex situations have 
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been considered based on Simonson’s work. As pointed by van Eekelen (1982) thirty years ago, 

the static model of fracture propagation does not consider the variation of fracture width and 

hence the variation of fluid pressure within the fracture; it also does not consider the competition 

between horizontal and vertical growth of hydraulic fractures. In the following sections, 

hydraulic fracture propagation in a layered environment with stress contrast is investigated 

through the fully coupled hydro-mechanical model and is compared with results obtained from 

static step-wise pressurization. 

3.3 Validation of the numerical model 

A laboratory experiment (Wu et al. 2008) on the influence of in-situ stress on hydraulic 

fracture height growth is studied and used as to validate our numerical model. Step-like 

confining stresses were generated when a machined PMMA block with a designed profile was 

pressed against another block with a flat surface (Wu et al. 2008). Three zones with distinctive 

confining stresses were created. The injection zone had intermediate confining stress. It was 

bounded on one side by a barrier zone with higher confining stress, and on the other side by a 

zone with smaller confining stress. Figure 3.1 illustrates the geometry and stress profile of the 

laboratory test. The material properties and fluid injection parameters are presented in Table 3.1.  

Since the PMMA is impermeable, there was no leak-off into the block sample. In the 

laboratory experiment, a constant injection rate (2.3 × 10
-9

 m
3
/s) was used. After considering the 

compressibility effects of the experimental system, the injection rate was adjusted into a step-like 

manner as given in Table 3.1 (Wu et al. 2008). Fluid flow in the wellbore and its corresponding 

compressibility effects are characterized in our numerical model through a partial differential 

equation. A brief description of the equation and the corresponding FEM formulation are given 

in the Appendix of this paper. We simulate the experiment first using the adjusted injection rate 
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without explicitly using wellbore elements. Then, numerical simulations are performed by 

considering the compressibility effects of wellbore through wellbore elements. Constant 

injection rate at the inlet of wellbore elements is used in the latter cases.  

 
Figure 3.1 Geometry and stress configuration of the laboratory test.  

 

Table 3.1 Material properties and injection parameters used in the laboratory test.  

Poisson’s Ratio, ν:           0.4 

Young’s Modulus, E:        3.3 × 10
9
 Pa 

 

Fluid Viscosity, µ:             30 Pa.s 

Injection rate, Q0:               0.9 × 10
-9

 m
3
/s (0 < t ≤ 31 s) 

                  6.5 × 10
-9

 m
3
/s (31 < t ≤ 151 s) 

                  2.3 × 10
-9

 m
3
/s (151 < t ≤ 665 s) 

 

Initial fracture radius, a:   5 mm 

 

3.3.1 Simulation results for the step-like injection rate without wellbore elements 

The numerical model described in Part I of this paper is utilized to simulate the 

laboratory experiment. The CZM parameters for the simulation are rn = 0.05, tensile strength = 1 

MPa, GIC = 15 N/m (corresponding KIC = 0.24 MPa.m
1/2

). In the laboratory, the interface on 

which the hydraulic fracture propagates is the contact surface between two unbonded transparent 

PMMA blocks. Therefore, the created interface has zero tensile strength and zero energy release 

rate. However, finite values for CZM parameters are needed in the numerical simulation. Three 

40 mm

50 mm

180 mm

340 mm

Confining stress, 11.2 MPa

Confining stress, 7.0 MPa

Confining stress, 5.0 MPa

Injection point

Zone 1

Zone 2

Zone 3

Monitoring point
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layers are built, each of which has the confining stress as shown in Figure 3.1. Figure 3.2 gives 

the injection pressure obtained from both the experimental records and the numerical simulation. 

Since the fluid is injected through a point source in the numerical model, an initially high 

pressure is obtained, but it rapidly drops close to the pressure observed in the laboratory test. The 

sudden increase of the pressure at t = 31 s corresponds to the increase of injection rate. The drop 

of pressure at t = 151 s is caused by the sudden decrease in the injection rate used in the 

simulation. The trends of the injection pressure profiles from the laboratory test and the 

numerical simulations have a good overall match though there is approximately 1 MPa 

difference. The difference is further analyzed in the following section. The fracture width, 

recorded at two monitoring pints at a distance of 30 mm from the injection point on the line 

parallel to the layered-stress interface (see Figure 3.1), is compared in Figure 3.3. The numerical 

results are symmetric to the injection point, and match well with those from the laboratory 

experiment. The fracture fronts at distinct times obtained from the laboratory observation and the 

numerical simulation are compared in Figure 3.4. The aperture profiles from the numerical 

simulation at t = 144 s and at t = 665 s are illustrated in Figure 3.5, within which the 

corresponding fracture fronts from the laboratory test are also given. The fracture initially 

propagates in Zone 2, which has the intermediate confining stress. After it reaches the boundary 

separating layers with different confining stress, it stops propagating towards the layer with the 

higher confining stress and starts growing into the layer with the lower confining stress. As 

shown, a very good match between the laboratory records and the numerical results is achieved. 

Both the laboratory experiment and the numerical simulation clearly show that the propagation 

of hydraulic fracture is inhibited by relatively a larger stress barrier, and is favored when a 

relatively smaller stress barrier is encountered. 
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Figure 3.2 Injection pressure plotted as a function of time for the experimental observation and the 

numerical simulation. The jump of pressure at t = 31 s is caused by the increase in the injection 

rate; the drop of pressure at t = 151 s is due to the decrease in the injection rate in the simulation.  

 

 
Figure 3.3 Aperture plotted as a function of time at two monitoring points for the laboratory 

observation and the numerical simulation. Since the two observation points are symmetric to the 

injection point, numerical results are identical at these locations.  

 

 
Figure 3.4 Fracture front at distinctive time from the laboratory experiment and the numerical 

simulation.  
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(a) 

 

(b) 

Figure 3.5 Aperture distribution from the numerical simulation at injection time of 144 s (a), and 

665 s (b). The red line shows the fracture front obtained from the laboratory experiment. (Unit: m)  
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3.3.2 Simulation results for the constant injection rate with wellbore elements 

The injection point, shown in Figure 3.1, is connected to 1D elements representing the 

wellbore. The compressibility effects of the wellbore (and the whole injection system) are 

considered through a compressibility parameter c (see the following chapter). A linear 

pressurization stage before the propagation of the hydraulic fracture can be observed on the 

pressure vs. time record from the laboratory experiment. The compressibility parameter c is 

calculated as 8.72 × 10
-9

 based on the pressure vs. time record. The geometry of the wellbore 

used in the simulation (length = 0.2 m; diameter = 0.01 m) is created based on the information 

provided by Wu et al. (2008). 

As analyzed in the previous chapter, there are several CZM parameters that impact the 

simulation. Through comparison of the laboratory record, the influences of CZM parameters on 

pressure and aperture distributions are demonstrated. Three cases are considered by adjusting the 

slope indicator rn and the tensile strength in numerical simulations: 

● Case 1      rn = 0.05     Tensile strength = 1 MPa 

● Case 2      rn = 0.05     Tensile strength = 2 MPa 

● Case 3      rn = 0.2       Tensile strength = 2 MPa 

The energy release rate (GIC) is 15 N/m for all the simulations. Figure 3.6 illustrates the 

injection pressure plotted as a function of time. The trend of numerical simulations matches well 

with the pressure records from the laboratory experiment. Before fracture propagation, there is a 

linear pressurization stage. A perfect match is obtained. After break down, the difference in 

injection pressure between the numerical simulations and the laboratory experiment is 

approximately 0.8 MPa. We use 1D wellbore elements in the numerical model to represent the 

3D borehole. The fluid is injected through one node in the numerical model rather than a 3D 
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circular notch as used in the laboratory. These factors cause the small differences in the injection 

pressure. The aperture variation vs. time at the two monitoring points is shown in Figure 3.7. 

Results from Case 1 and Case 3 match well with the experimental records. Case 2 generates a 

slightly larger aperture size at the monitoring points. A relatively larger pressure and aperture are 

obtained in Case 2. Case 2 has a larger tensile strength compared to Case 1. It has a smaller slop 

indicator rn (thus larger element stiffness) than Case 3. These observations are consistent with 

those sensitivity analyses performed in the previous chapter. The fracture footprints from the 

three cases also have a good match with those obtained from the laboratory experiment. They are 

not presented for the sake of brevity. 

 

 
Figure 3.6 Injection pressure plotted as a function of time for the experimental observation and the 

numerical simulation.  

 



86 

 
Figure 3.7 Aperture plotted as a function of time at two monitoring points for the laboratory 

observation and the numerical simulation.  

 

3.4 Numerical analyses of hydraulic fracturing in layered formations 

As an application of the proposed model, the influence of layered modulus on hydraulic 

fracturing is studied first. Thickness-weighted modulus and explicitly modeled layered modulus 

are used in simulations. Then, the effects of in-situ stress contrasts on hydraulic fracture 

propagation, especially on height growth, are investigated. Both static pressurization and quasi-

static hydraulic fracture propagation are considered. 

3.4.1 Effects of layered Young’s modulus  

Review of the literature regarding the influence of layered Young’s modulus (e.g., 

layered formations with different modulus in each layer) suggests, compared to stress contrast, 

modulus contrast is probably not an important parameter that directly controls the fracture height 

growth. It mainly influences the fracture width and conductivity. However, hydraulic fracturing 

involves strongly coupled processes and the variation of fracture width caused by modulus 

contrast, affects the pressure distribution in the fracture, influencing fracture propagation or 

height growth. Since it is a common practice to calculate an average modulus from the layered 

modulus based on well logs, we first analyze the case of the averaging operation (or 
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homogenization). After obtaining the average modulus, fracture propagation is simulated using 

both the average modulus and the layered modulus, and the results are compared.  

(1) Pressurization of a stationary fracture in a multi-layer rock system 

A commonly used approach to analysis of a hydraulic fracture in a multi-layer rock 

system is to use an effective equivalent modulus calculated from the layers’ moduli via thickness 

weighted averaging or homogenization. As pointed out by Smith et al. (2001), the thickness 

weighted average (effective modulus) is purely a mathematical treatment and does not consider 

the mechanical effects. In other words, it is assumed the average modulus should yield the same 

average width calculated based on a rigorous, layered modulus solution when the fracture is 

pressurized. To consider the mechanical effects in the process of assessing the impacts of the 

homogenization approach, a numerical experiment on fluid injection is proposed. The purpose is 

to evaluate whether, for the same fracture size and injection volume, the injection pressure at the 

end of the injection time obtained from using the average modulus approach yields the same 

value as that obtained based on the layered modulus. Here we evaluate at the resulting injection 

pressure rather than the average width, since the injection pressure is directly measurable during 

operations. 

To simplify the analytical solution which relates the injection volume and the injection 

pressure to the Young’s modulus, a stationary penny-shaped is considered. Based on Sneddon’s 

solution for a penny-shaped fracture under constant internal pressure (Sneddon 1946), the 

volume of the fracture is a function of loading pressure, fracture radius, Young’s modulus and 

Poisson’s ratio. Through integration of Sneddon’s equation for aperture profile, the volume of 

fracture is obtained as: 
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  (3.1)  

where Pnet is the net pressure at the end of injection, E is Young’s modulus, ν is Poisson’s ratio, 

and a is the radius of the penny-shaped fracture. To obtain a uniform distribution of the net 

pressure in the fracture, a small value of viscosity is assumed. Through numerical experiments 

utilizing layered modulus, an equivalent average Young’s modulus E can be calculated using the 

above equation. It should be emphasized that the assumption of fixed fracture size is just for 

calculating the average Young’s modulus. In addition, since there is a linear relationship between 

the injection volume and the net pressure, different injection volumes and their corresponding net 

pressures will yield the same Young’s modulus when the same material parameters are used. 

The proposed model is verified through an injection test. Figure 3.8 shows the geometry 

and the penny-shaped fracture. The penny-shaped fracture is discretized using zero-thickness 

hydro-mechanical interface elements. The inputs are given in Table 3.2. 

 
Figure 3.8 Aperture plotted as a function of time at two monitoring points for the laboratory 

observation and the numerical simulation.  
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Table 3.2 Fracture radius, rock and fluid properties used for the verification test.  

Poisson’s Ratio, ν:           0.15 

Young’s Modulus, E:         3.88 × 10
10

 Pa 

 

Fluid Viscosity, µ:             1.0 × 10
-5

 Pa.s 

Injection rate, Q0:               0.001 m
3
/s 

Injection time, t:             8 s 

 

Fracture radius, a:              5 m 

 

At the end of injection, the uniformly distributed net pressure, Pnet is found to be 4.4 × 

10
5
 Pa. Using the net pressure and Eq. (3.1), the injected volume is calculated as 7.43 × 10

-3
 m

3
. 

The relative error is around -7% when comparing the fracture volume obtained from the 

numerical model (0.008 m
3
) to that from Eq. (3.1). Figure 3.9 illustrates the fracture half width 

profile. The induced stress distributions along the line perpendicular to the center point of the 

fracture are shown in Figure 3.10. Figure 3.11 shows the induced stresses along a line parallel to 

the fracture surface. The distance from the line to the fracture surface is 0.4a (2 m). As shown in 

the aperture and stress distributions, good agreement between numerical results and analytical 

solutions (Sneddon 1946) has been achieved. 

 
Figure 3.9 Normalized fracture half width plotted as a function of normalized fracture radius.  
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Figure 3.10 Normalized stress distributions along the line perpendicular to the center point of the 

fracture.  

 

 
Figure 3.11 Normalized stress distributions along the line parallel to the fracture surface (the line 

with an arrow). The distance from the line to the fracture surface is 0.4a (0.58 m).  

 

As an example, well log data for Woodford shale (Figure 3.12(a)) is utilized to analyze 

the approach of calculating an “average modulus” from layered modulus through thickness-

weighted method. The thickness-weighted modulus is obtained as 16.3 GPa. Simulations are 

performed separately to compare the differences due to the use of layered modulus and the 

thickness-weighted modulus. Other parameters needed in the injection test are Poisson’s ratio ν = 

0.21, fracture radius a = 5.93 m, and injection volume V = 0.5 m
3
. When the thickness-weighted 

Young’s modulus is used, the numerical simulation yields an injection pressure of 7.65 MPa. 

Using layered modulus, the injection pressure is 7.62 MPa. A slightly higher injection pressure is 

 0.4a 
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obtained when thickness-weighted Young’s modulus is used. Figure 3.13(a) gives the aperture 

profiles generated from the analytical solution and the numerical simulations. As shown, the 

aperture profile is symmetric to the injection point when the thickness-weighted modulus is used. 

Using layered modulus, the aperture distribution is not symmetric to the injection point and 

relatively larger aperture size exists in the region having lower Young’s modulus. 

Two additional examples are investigated by adding synthetic layers into the well log. 

Figure 3.12(b) and Figure 3.12(c) illustrate respectively the well logs with the added synthetic 

layers having higher and lower Young’s modulus. The average Young’s moduli calculated 

through thickness-weighted method are 22.8 GPa and 14.4 GPa for the two cases. Figure 3.13(b) 

and Figure 3.13(c) plot the aperture profiles along fracture radius in vertical direction. As 

expected, aperture experiences variation when layers’ Young’s modulus is used. When 

thickness-weighted Young’s modulus is used, the injection pressure is higher than that obtained 

from simulations using the layers’ moduli, regardless of whether the synthetic neighboring or 

bounding layers have relatively higher or lower Young’s moduli. Table 3.3 summarizes the 

injection pressures for different simulation scenarios. When four synthetic layers having 

relatively higher or lower Young’s moduli than the surrounding rock are used, the injection 

pressure is approximately 9% higher than that obtained from simulations using layered moduli. 

The results are not listed for the sake of brevity. 

 

Table 3.3 Injection pressures when using layered modulus and thickness-weighted modulus 

(average modulus) for three different scenarios.  

       Woodford shale  Synthetic layers     Synthetic layers 

             (having higher modulus)  (having lower modulus)  

Using layered modulus 7.62 × 10
6
 Pa  1.00 × 10

7
 Pa     6.25 × 10

6
 Pa 

Using average modulus 7.65 × 10
6
 Pa  1.04 × 10

7
 Pa     6.81 × 10

6
 Pa 
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(a)                                                     (b)                                                   (c) 

Figure 3.12 Distribution of layered Young’s modulus in vertical direction: (a) Well log for 

Woodford shale; (b) Well log with two synthetic layers above and below the payzone having higher 

Young’s modulus; (c) Well log with the two synthetic layers having lower Young’s modulus. 

 

           
(a)                                          (b)                                              (c) 

Figure 3.13 Aperture profiles plotted along fracture radius in vertical direction from simulations 

using layered modulus and thickness-weighted modulus (average modulus):  (a) Based on well log 

data for Woodford shale; (b) Based on well log data with two synthetic layers having higher 

Young’s modulus; (c) Based on well log data with two synthetic layers having lower Young’s 

modulus. The two rectangle formed by dashed lines in (b) and (c) indicate the synthetic layers.  

 

(2) Hydraulic fracture propagation in layered formations 

Propagation of a hydraulic fracture is studied for the three scenarios in Figure 3.12. In 

this part, fractures form and propagate through continuous fluid injection. The parameters for the 

interface elements are the same as those used in the penny-shaped hydraulic fracturing in the 
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viscosity-dominated regime in the previous chapter. Fluid is injected for 11.5 s at a rate of 0.02 

m
3
/s. The injection point is located at 15.6 m. Figure 3.14 illustrates the aperture and pressure 

profiles in vertical direction passing through the injection point for the three scenarios. As can be 

seen, the aperture profiles from the simulation using the thickness-weighted modulus are not 

penny-shaped (unlike those from the simple pressurization of a stationary fracture-Figure 3.13). 

             
(a)                                            (b)                                             (c) 

.             

(d)                                            (e)                                             (f) 

Figure 3.14 Aperture and pressure profiles from FEM plotted in vertical direction passing through 

the injection point after11.5 seconds of fracture propagation: (a)+(d) Based on well log data for 

Woodford shale; (b)+(e) Based on well log data with two synthetic layers having higher Young’s 

modulus; (c)+(f) Based on well log data with two synthetic layers having lower Young’s modulus. 

The two rectangle formed by dashed lines indicate the synthetic layers.  
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For the stationary fracture case, a uniform pressure is applied. However, in quasi-static 

hydraulic fracturing, the pressure within the hydraulic fracture decreases from the injection point 

to the fracture edges, as shown in Figure 3.14 (d), (e) and (f). Focusing on the results using 

layered moduli, a number of observations can be made. Comparing Figure 3.14 (b) to (a), the 

fracture aperture in a softer layer between two stiffer synthetic layers (having larger Young’s 

modulus) is larger than the case without the synthetic layers. In other words, the presence of 

higher modulus layers makes the fracture in the softer rock layer between them experience more 

deformation. Comparing Figure 3.14 (c) to (a), the two softer synthetic layers generate a larger 

aperture fracture; the low modulus synthetic layers also influence the deformation of their 

surrounding formations through the leverage effect. Figure 3.14 (d), (e) and (f) illustrate the 

pressure profile within the hydraulic fracture. The maximum injection pressure from the 

simulations using thickness-weighted modulus is close to that when layered moduli are explicitly 

modeled though they have different profiles. The existence of layers with larger or lower 

Young’s modulus does not cause too much variation in the pressure profiles. 

To analyze the influence of Young’s modulus on hydraulic fracture propagation, modulus 

contrasts are assumed to exist in the vertical direction. Two scenarios are considered. As shown 

in Figure 3.15, in one scenario the modulus above the injection location is 2 times larger than 

that below the injection location (Figure 3.15 (a)); in the other scenario, the modulus above the 

injection location is 4 times as large as that below the injection location (Figure 3.15 (b)). Fluid 

viscosity is 1.0 cp. The injection rate is 0.004 m
3
/s. A fixed displacement in the direction 

perpendicular to the fracture is applied on the boundary surfaces.  

The aperture distributions after 24 seconds of injection are shown in Figure 3.16. As 

illustrated, instead of propagating symmetrically about the injection point, the fracture mainly 
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propagates along the zone with lower Young’s modulus, especially in the presence of a larger 

modulus layer (Figure 3.16 (b)). Although hydraulic fracture propagates into the higher Young’s 

modulus layers above, its aperture size (≈ 0.2 mm) is much less than that (≈ 0.6 mm) that in the 

lowest Young’s modulus layer. In addition, the simulation using a higher modulus contrast 

(Figure 3.16 (b)) generates a smaller fracture height when compared to the simulation with lower 

modulus contrast (Figure 3.16 (a)). 

To further investigate the influence of Young’s modulus contrast on the growth of 

fracture height and length, consider a scenario with one relatively higher Young’s modulus (16 

GPa) layer is confined by upper and lower layers having lower Young’s moduli (4 GPa) (Figure 

3.15 (c)). As shown, the fluid is injected into the layer having a higher Young’s modulus. Other 

parameters are the same as those used in the previous example. For comparison purpose, an 

additional scenario using a uniform Young’s modulus (16 GPa) is also modeled. 

                                                                
(a)                                                          (b)                                                   (c) 

Figure 3.15 Distribution of layered Young’s modulus in vertical direction: (a) modulus above the 

injection location is 2 times larger than that below the injection location; (b) modulus above the 

injection location is 4 times larger than that below the injection location; (c) fluid injected into the 

layer with relatively higher Young’s modulus that is confined by top and bottom layers having 

lower Young’s modulus.  
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(a) 

 

(b) 

Figure 3.16 Aperture distribution on a vertical plane passing through the injection point: (a) lower 

modulus contrast; (b) higher modulus contrast. The red lines indicate the variation of Young’s 

modulus.  
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Figure 3.17 illustrate the aperture distribution at two different time (time = 12 s and time 

= 24 s). It can be seen that the hydraulic fracture mainly propagates in the lower modulus layers. 

The aperture in the upper and bottom layers are larger than that in the middle layer where the 

injection point is located and having larger Young’s modulus. After the hydraulic fracture 

reaches the upper and bottom layers, it propagates faster (in the lateral direction, i.e., length 

growth, not vertical growth) in those layers compared to its propagation in the middle layer. The 

aperture of the hydraulic fracture in the upper and lower layers favors the fracture opening in the 

middle layer, making it wider compared to the case with stiffer bounding layers, benefiting fluid 

flow, and hence making fracture propagation relatively easier in the middle layer through the 

leverage effect. As for the scenario with a uniform Young’s modulus, the aperture distribution 

and fracture propagation are always symmetric to the injection point. 

Another interesting phenomenon is related to the fracture height growth. After the 

hydraulic fracture reaches the upper and bottom layers, it mainly propagates laterally instead of 

vertically. The layers with lower Young’s modulus act as barriers that prevent the fracture 

propagating in the vertical direction, thus limiting the height growth. It should be emphasized 

that all the scenarios in this section are for fracture propagating in viscosity-dominated regime. 

Most of energy is spent on fluid flow. The energy spent on creating new fracture or “conquering 

the fracture toughness” is negligible. Also, the layers are assumed to be fully bonded so that the 

interaction between the hydraulic fracture and bedding planes is not considered. This is the 

subject of another forthcoming study.  
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(a) 

 

(b) 

Figure 3.17 Aperture distribution on a vertical plane passing through the injection point: (a) time = 

12 s; (b) time = 24 s. Left figures are for the simulation using layered modulus; right figures are for 

the simulation having a uniform Young’s modulus (16.1 GPa).  

 



99 

3.4.2 Effects of in-situ stress  

In-situ stress in a reservoir could vary in both vertical and horizontal directions. To 

simplify analyses, it is assumed that all the three principal stresses (minimum horizontal stress, 

maximum horizontal stress, vertical stress) are constant in each horizontally layered formation; 

differences in in-situ stress exist when changing from one layer to another. In equilibrium height 

model, a plane strain fracture (2D) is embedded in a homogeneous isotropic medium and is 

uniformly pressurized by a fluid. The layers surrounding the fracture have step variations in in-

situ stress. The location of top and bottom tips of the fracture is determined by the requirement of 

equilibrium between the stress intensity factor and the fracture toughness. In this section, we first 

give the results obtained from static pressurization. Then hydraulic fracture propagation is 

modeled through fluid injection. 

Figure 3.18 illustrates a symmetric configuration of a pressurized fracture in a three layer 

stress system. The center layer has a height of 2H with a minimum horizontal stress of σa. The 

top and bottom layers have the minimum horizontal stress of σb. The height of the hydraulic 

fracture is 2l. The penetration depth of the hydraulic fracture in the adjacent layers is h (h = l - 

H). Based on the work of Simonson et al. (1978), the following equation, which relates fluid 

pressure p to the half-height of hydraulic fracture l, can be derived: 

  
12

sinb Ic

b a b a

p H K

l l



     

  
  

  
 (3.2)  

Using the parameters given in Table 3.4, the net pressure (pnet = p - Shmin) using Eq. (3.2) 

is plotted as a function of the fracture half-height (l) in Figure 3.19. Before the hydraulic fracture 

propagates into the formation with a higher in-situ stress (when l < H), the applied pressure 

gradually decreases as the fracture length and height increase. After the hydraulic fracture 

propagates across the boundary where the stress contrast exists, the net pressure begins to 
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increase dramatically, though it is still lower than the stress difference between the layers (σb - σa 

= 3MPa). 

Table 3.4 Fracture radius, rock and fluid properties used for the verification test.  

Poisson’s Ratio, ν:             0.15 

Young’s Modulus, E:           3.88 × 10
10

 Pa 

 

Fracture toughness, KIc:         1.0 × 10
6
 Pa.m

1/2
 

Stress contrast, σb - σa:         3.0 × 10
6
 Pa 

Height (center formation), 2H:      40.0 m 

                             Note: E and ν are not needed in Eq. (3.2). But they are used in the numerical model. 

 

 
Figure 3.18 Pressurized vertical fracture in a layered-stress medium. h indicates the penetration 

depth of the pressurized fracture in the bounding layers. 

 

 
Figure 3.19 Net pressure, pnet, from Eq. (3.2) plotted as a function of the fracture half-height, l. The 

red dash line indicates the interface that separates the center formation from the top (or bottom) 

formation. When l < H (H = 20 m), the hydraulic fracture is confined in the center formation as 

illustrated in Figure 3.18.  
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The finite element model is also utilized to simulate the pressurization test (Figure 3.18) 

using the parameters provided in Table 3.4. Instead of adjusting the fracture height to match the 

given fracture toughness under the applied fluid pressure, we apply the fluid pressure on a given 

fracture height and then check whether the calculated stress intensity factor equals the given 

fracture toughness (KIc = 1.0 MPa.m
1/2

). Figure 3.20 illustrates the calculated stress intensity 

factor. As can been seen, the maximum relative error is less than +14%. 

 

 
Figure 3.20 Calculated stress intensity factor in numerical simulations using the applied fluid 

pressure and the fracture half-height from Eq. (3.2), as shown in Figure 3.19. The red dash line 

indicates the assumed fracture toughness (KIc = 1.0 MPa.m
1/2

), based on which the fluid pressure 

and the fracture half-height are obtained.  

 

The aperture distribution during pressurization is also investigated in this study. Through 

comparison of aperture, a clearer picture about the “real” fluid pressure, which should be 

calculated based on a fully coupled hydro-mechanical model (rather than pressurization), could 

be obtained since the fluid pressure is strongly coupled with fracture conductivity which is 

proportional to the cube of aperture size. The relationship between in-situ stress and fluid 

pressure (Eq. (3.2)) is derived based on the superposition method according to the principles of 

fracture mechanics. However, the aperture size is rarely reported in works related to the 

equilibrium-height model since the analytical formulation for aperture involves a complex 
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integration and it is not easy to obtain in a straightforward manner. In numerical models, the 

aperture distribution is a natural part of the solution (no post-processing is needed). Figure 3.21 

gives the aperture distribution plotted as a function of the fracture half-height. Before the 

pressurized fracture is extended across the formation boundary into the high stress zone, the 

analytical solution can be obtained from Sneddon and Elliot (1946). As shown in Figure 3.21 (a), 

our numerical results match well with the analytical solution. After the tips of the pressurized 

fracture penetrate the bounding layers where the higher minimum horizontal stress exists, the 

fluid pressure increases dramatically (Figure 3.19) provided that the calculated stress intensity 

factor is equal to the given fracture toughness; the corresponding aperture size also exhibits a 

jump (Figure 3.21 (b)). The stress contrast makes the aperture increases almost by one order of 

magnitude when the fracture propagation criterion is satisfied. 

 
(a)  

Figure 3.21 (a) aperture distribution before the pressurized fracture extends across the location 

where the stress contrast exists; (b) aperture distribution for the fracture half-height ranging from 

5 m to 30 m. When fracture is confined in the center formation (l ≤ 20 m), the analytical solution of 

aperture is available from Sneddon and Elliot (1946) as indicated by the red circles; after crossing 

into the layer with higher confining stress, the analytical solution for aperture is provided in an 

integral form, no straightforward expression exists. (continued) 
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(b) 

Figure 3.21 (continued). (Caption shown on previous page.)  

 

(1) A KGD hydraulic fracture 

To compare the behavior of the hydraulic fracture under static pressurization 

(equilibrium-height model) and the injection-induced propagation (fully coupled model), the 

KGD hydraulic fracture and 3D planar hydraulic fractures are modeled using the parameters 

provided in Table 3.4. This section details the analysis for the case of a KGD hydraulic fracture. 

The injection rate is 0.002 m
2
/s (3D model is used to simulate the plane strain condition), fluid 

viscosity is 1.0 cp. The calculated dimensionless toughness is 0.51. The configuration of in-situ 

stress is the same as that shown in Figure 3.18. There are three layers. The minimum horizontal 

stress in the top and bottom layers is 3 MPa larger than that in the middle layer. The injection 

point is located at the center of the middle layer. For asymptotic analytical solutions (Detournay 

2004), are applicable when no stress contrast exists so that numerical results can still be 

compared with the asymptotic solutions before the hydraulic fracture propagates into layers with 

higher in-situ stress. 

Figure 3.22 gives the aperture size and fluid pressure at the injection point; it also shows 

the fracture half-height plotted as a function of time. At time = 14.5 s, the hydraulic fracture 

reaches the stress contrast boundaries. As shown, the numerical results match well with the 
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asymptotic solutions before 14.5 s; as the fracture penetrates into the top and bottom bounding 

layers, the numerical results deviate from the asymptotic analytical solutions. At the injection 

time of 50 s (after fracture crosses the stress boundaries), the fracture half-height, aperture size 

and net pressure at the injection point are 23.7 m, 2.94 mm and 1.32 MPa, each according to the 

numerical simulation. The corresponding values from the asymptotic solution are 45.6 m, 1.53 

mm and 0.40 MPa. The difference is not small. When stress contrast exists, the hydraulic 

fracture almost stops propagating. 

 
(a) 

 
(b)  

Figure 3.22 (a) Aperture distribution plotted as a function of time at the injection point; (b) 

Injection pressure plotted as a function of time at the injection point; (c) Fracture half-height 

plotted as a function of time. (continued) 
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(c) 

Figure 3.22 (continued). (Caption shown on previous page.) 

 

The aperture and pressure profiles along the fracture height are plotted in Figure 3.23 

(injection time ≤ 15 s) and Figure 3.24 (injection time ≥ 18 s). As illustrated, when injection time 

< 14.5 s, the hydraulic fracture is still confined in the middle layer (20 m of half-thickness); 

numerical results match well with the asymptotic analytical solutions. At injection time = 15 s, 

the hydraulic fracture slightly grows into the bounding layer (Figure 3.23a); the fluid pressure 

starts building up at tips (Figure 3.23b). As the injection is continued, the aperture and pressure 

profiles differ dramatically with those from the asymptotic analytical solutions. After the fracture 

propagates into the layers with higher in-situ stress, the fracture aperture and fluid pressure 

continuously increase; however, the fracture height growth is nearly impeded. 

For comparison purpose, stress contrast of 1 MPa is also used in simulations. Figure 3.25 

shows the aperture and net pressure profiles. The fracture half-height does not increase much 

when compared to the zero stress contrast solutions, though it is larger than that obtained with 3 

MPa stress contrast.  
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(a) 

 
(b) 

Figure 3.23 (a) Aperture profiles at different injection times; (b) Pressure profile at different 

injection times. At 14.5 second, the hydraulic fracture reaches the location where the stress contrast 

(3MPa) exists. When time < 14.5 s, the numerical results match well with the asymptotic analytical 

solutions (no stress contrast exists).  
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(a) 

 
(b) 

Figure 3.24 (a) Aperture profiles at different injection times; (b) Net pressure profiles at different 

injection times. When time > 14.5 s, the hydraulic fracture slightly passes across the stress contrast 

boundaries; the numerical results differ dramatically with the asymptotic analytical solutions. The 

stress contrast used in the numerical model is 3 MPa.  

 

 
(a)  

Figure 3.25 (a) Aperture profiles at different injection times; (b) Pressure profiles at different 

injection times. The stress contrast used in the numerical model is 1 MPa. (continued) 
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(b) 

Figure 3.25 (continued). (Caption shown on previous page.)  

 

Comparing the aperture size distribution obtained from the static pressurization (Figure 

3.21b) to that from KGD hydraulic fracture with zero stress contrast (Figure 3.24a and Figure 

3.25a) and to that from KGD hydraulic fracture with 1 MPa and 3 MPa stress contrast (Figure 

3.24a and Figure 3.25a), the influence of in-situ stress contrast on aperture and fluid pressure is 

obvious. It restricts the height growth of the hydraulic fracture. It also reduces the aperture size 

in the higher in-situ stress layer. From simulations based on the fully coupled model, the growth 

of fracture height is almost impeded by the stress contrast and the fluid pressure in higher stress 

layers decreases dramatically. This fact underscores the inapplicability of the static 

pressurization approach (the equilibrium height model) in estimating the hydraulic fracture 

height in the viscosity-dominated regime. 

(2) A 3D planner hydraulic fracture 

In this section we consider the influence of in-situ stress contrast on the propagation of a 

planar 3D hydraulic fracture using the parameters provided in Table 3.4. The injection rate is 

0.004 m
3
/s, and fluid viscosity is 1.0 cp. The base case has a uniform confining stress of 10 MPa. 

Three additional scenarios having two bounding layers with confining stress higher than 10 MPa 
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are considered (Figure 3.26) with the stress contrasts of 0.5 MPa, 1.0 MPa, and 3.0 MPa, 

respectively. 

The aperture profile for each scenario is plotted in Figure 3.26. The fracture propagates 

symmetrically in relation to the injection point in the absence of a stress contrast. As the 

confining stress in the top and bottom bounding layers increases, the fracture height growth is 

limited by the stress barriers and the fracture tends to grow in the lateral direction in the middle 

layer (where the injection interval is located). When the stress contrast = 3 MPa, the fracture is 

completely confined in the middle layer.   

 
(a)  

Figure 3.26 Aperture profiles at t = 24 s. (a) left figure has zero stress contrast, right figure has 0.5 

MPa stress contrast; (b) left figure has 1.0 MPa stress contrast, right figure has 3.0 MPa stress 

contrast. The red line indicates the variation of confining stress as a function of depth. (continued) 
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(b) 

Figure 3.26 (continued). (Caption shown on previous page.)  

 

3.4.3 The combined effects of the in-situ stress and Young’s modulus heterogeneity  

In previous sections, the factors that influence the height growth of hydraulic fractures 

are analyzed considering separately the Young’s modulus and the in-situ stress. It is highly 

probable that layered rocks with different material properties have different confining stresses as 

well and vice versa. To gain some insights into the behavior of hydraulic fractures propagating in 

layered rock with variation of both Young’s modulus and in-situ stress, a KGD hydraulic 

fracture is studied (to facilitate solution comparison). As shown in Figure 3.18, three layers in 

vertical direction are considered, with the center layer having a thickness of 20 m. The upper and 

lower bounding layers have the same properties. The injection point is located in the middle of 

the center layer. Under these configurations, the model is symmetric with respect to the injection 

point. The center layer has a minimum horizontal stress of 10 MPa. The bounding layers have a 

minimum horizontal stress of 10.5 MPa for one scenario and of 13 MPa for another scenario. 

Poisson’s ratio is 0.15, the injection rate is 0.001 m
2
/s, and the fluid viscosity is 1.0 cp. The 
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energy release rate GIC is calculated using the fracture toughness KIC being 1 MP.m
1/2

. Three 

cases are considered for the distribution of Young’s modulus: 

● Case 1      Center layer  E = 38 GPa   Bounding layer E = 19 GPa 

● Case 2      Center layer  E = 38 GPa   Bounding layer E = 38 GPa 

● Case 3      Center layer  E = 19 GPa   Bounding layer E = 38 GPa 

Figure 3.27 shows the aperture, net pressure and fracture half-height distributions for the 

0.5 MPa stress contrast scenario. At about 5.2 seconds, the hydraulic fracture in case 1 and case 

2 (Young’s modulus in the center layer is 38 GPa for both cases) propagates to the formation 

boundary where the stress contrast and the modulus contrast exist. It arrives at the formation 

interface at about 7 seconds for case 3. After crossing the formation interface, the hydraulic 

fracture in case 1 (bounding layer E = 19 GPa) grows slower than that in case 2 (bounding layer 

E = 38 GPa), as indicated in Figure 3.27(c). Compared with case 1 and case 2, the case 3 

hydraulic fracture has a larger aperture size and a smaller net pressure at the injection point, as 

well as a smaller half-height. Apparently these are caused by the relatively small Young’s 

modulus in the center layer in case 3. These observations give us some hints about the selection 

of injection location in hydraulic fracture design. Injection in a zone having a relatively larger 

Young’s modulus tends to generate larger fracture length and height under the plane strain 

condition shown in Figure 3.18(i.e., when fracture length is much larger than fracture height), 

and thus covers a relatively larger drainage area. 
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(a) 

 
(b) 

 
(c) 

Figure 3.27 Aperture, net pressure and fracture half-height distributions plotted as a function of 

time for the scenario with the stress contrast of 0.5 MPa existing between the injection layer and the 

bounding layers. (a) aperture at the injection point; (b) net pressure at the injection point; (c) 

fracture half-height.  
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The results for the scenario with stress contrast being 3 MPa are illustrated in Figure 

3.28. Before reaching the formation interface, they have the same behaviors as those shown in 

Figure 3.27. However, after the hydraulic fracture crosses the formation interface, the height 

growth is almost inhibited. We see the continuous increase of aperture and net pressure at the 

injection point. From the numerical results, it is observed that the Young’s modulus mainly 

influence the aperture size, the corresponding net pressure and could limit fracture height 

growth; the stress contrast could, however, prevent the growth of hydraulic fractures when it is 

larger than a certain value, whether the modulus contrast exists or not.  

 
(a) 

 
(b)  

Figure 3.28 Aperture, net pressure and fracture half-height distributions plotted as a function of 

time for the scenario with the stress contrast of 3.0 MPa existing between the injection layer and the 

bounding layers. (a) aperture at the injection point; (b) net pressure at the injection point; (c) 

fracture half-height. (continued) 
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(c) 

Figure 3.28 (continued). (Caption shown on previous page.)  

 

3.4.4 Effects of rock ductility  

For quasi-brittle rocks encountered in petroleum reservoir development, ductile behavior 

is often observed. When cracks propagate in salt, shale and coal, it is often considered that a 

small region in the vicinity of the crack tips experiences ductile deformation. In practical 

hydraulic fracturing operations, the injection pressure tends to be higher than that predicted 

according to the classical hydraulic fracturing simulators which are developed based on linear 

elastic fracture mechanics. It is considered that the higher injection pressure is partially caused 

by the ductile deformation during the fracture propagation. Through analyses considering elastic 

and plastic deformations, Papanastasiou (1999) demonstrated that more than an order of 

magnitude in the rock effective fracture toughness could be induced by the plastic yielding near 

the tips of a propagating fracture, and the results of plasticity could be matched well by an elastic 

model using the concept of effective fracture toughness. Tables of effective fracture toughness 

were given for a set of representative physical parameters including in-situ stress, rock strength, 

elastic modulus and injection parameters. Yao (2012) proposed a method to estimate the 

effective fracture toughness of ductile rock according to the size of the fracture process zone. 
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To analyze the influence of ductility on fracture height growth, two simulations are 

presented in this section. Relatively larger effective fracture toughness (GIc = 320 N/m, 

corresponding KIc is 2.3 MPa. m
1/2

) is assumed for two ductile layers which are surrounded by 

layers with smaller fracture toughness (GIc = 32 N/m, corresponding KIc is 0.73 MPa. m
1/2

). The 

Young’s modulus is 16.1 GPa, Poisson’s ratio 0.21, fluid viscosity 1.0 cp and injection rate 

0.004 m
3
/s. Figure 3.29 shows the profile of GIc distributed as a function of depth. A fixed 

displacement boundary is used to isolate the ductility effect. 

Figure 3.30 illustrates the aperture profiles at different injection time. As shown, the 

aperture size in ductile layers is smaller than that in the confined layer which has smaller GIC; the 

hydraulic fracture mainly propagates in the confined layer. The bounding ductile layers consume 

more energy during fracture propagating so it is reasonable for the hydraulic fracture to 

propagate in the confined layer which consumes less energy. The aperture and pressure at the 

injection point are plotted as a function of time in Figure 3.31. For comparison purpose, results 

from the scenario having uniform GIC (= 32 N/m) are also given. The aperture profiles for the 

scenario having uniform GIC are demonstrated through the right figures in Figure 3.17. In the 

presence of the ductile layers, the injection pressure is higher and the corresponding aperture at 

the injection point is larger than that obtained from the scenario using a uniform GIC. Therefore, 

formation ductility promotes hydraulic fracture containment. 



116 

 

Figure 3.29 GIC distributed as a function of depth.  

 

                            

(a)                                                               (b)         

Figure 3.30 Aperture profiles at different time: (a) t = 12 s; (b) t = 24 s. The red line shows the 

variation of GIC as given in Figure 3.29.  
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(a) 

 
(b) 

Figure 3.31 Aperture and pressure at the injection point plotted as a function of time for the case 

having ductile layers (Figure 3.29) and the case having uniform GIC distribution (aperture profile is 

shown through the right figures on Figure 3.17).  

 

3.5 Discussion 

Due to the complexity involved in explicitly modeling hydraulic fractures in layered 

formations, different ways to obtain an “average Young’s modulus” have been used in the 

literature. However, the repercussions of this approach are often not carefully considered. In this 

paper we have shown that the “average Young’s modulus” produces different results in fluid 

pressure and especially in the fracture aperture, when compared to modeling that considered the 

presence of multiple layers having different moduli. The presence of a modulus contrast tends to 

make hydraulic fractures propagate in the layers having a relatively lower Young’s modulus. 
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Thus, the modulus contrast could act as a potential barrier to prevent the fracture height growth 

though its effect is not significant than that caused by stress contrast. 

Hydraulic fracturing involves coupled processes, such as rock deformation, fracture 

propagation, and fluid flow. They are strongly influence each other. Usually fully coupled 

models should be utilized to characterize the behaviors of a hydraulic fracture. However, often 

the “equilibrium height model” is utilized to simplify the problem. Since a uniform pressure is 

usually applied on the hydraulic fracture surface in this model, the pressure drop along the 

fracture surface is often not considered, so the model inevitably overestimates the hydraulic 

fracture height. As illustrated in this study, the influence of stress contrast on height growth of 

hydraulic fractures in the fully coupled model is much larger than that obtained according to the 

static pressurization. When the stress contrast is larger than a certain value in the fully coupled 

model, for example, 30% of in-situ minimum horizontal stress in this study, the fracture height 

growth is effectively inhibited. From in-situ experiments (Warpinski, Schmidt, et al. 1982), it has 

been found a stress contrast in the range of 1.4-3.5 MPa is sufficient to arrest the height growth 

of a hydraulic fracture. Experiments conducted to analyze hydraulic fracture containment also 

suggested that stress contrasts of 2-3 MPa are sufficient to prevent fracture growth in laboratory 

samples (Warpinski et al. 1982). Whether these stress contrasts would result to confine the 

fracture height growth depends on the designed hydraulic fracturing parameters, such as the fluid 

viscosity and the injection rate. 

Rock properties usually are discontinuous across formation interfaces. We have also 

considered the simultaneous presence of a stress contrasts across formation interfaces. In reality, 

the stress contrasts may not necessarily be associated with modulus contrasts. Significant 

variation of in-situ stress could well exist in the same formation. Numerical simulations in this 
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study have mainly focused on analyzing the mechanisms involved in the height growth of 

hydraulic fractures considering the influence of layered material properties and in-situ stress. 

Other important factors, such as the slippage of on the formation interfaces and natural fractures, 

could also heavily affect the height growth. Additional studies are ongoing to investigate these 

effects. 

3.6 Conclusions 

The 3D fully coupled hydraulic fracturing model, developed in Part I of this paper, is 

validated through a laboratory experiment, which investigated the propagation of a hydraulic 

fracture under the influence of stress contrast. Through explicitly modeling of the wellbore, the 

influence of wellbore compressibility is demonstrated. Good agreements in fracture aperture, 

injection pressure and fracture footprint have been achieved. Numerical simulations are 

performed to analyze the influence of layered material properties and in-situ stress on hydraulic 

fracture height growth. Emphases are placed on the differences when comparing results obtained 

from the fully coupled model to those obtained based on the static pressurization manner. When 

the layered Young’s modulus is explicitly simulated, its influences on aperture distribution and 

fracture propagation are captured. It is found that, given the same amount of injection volume in 

pressurization tests, the average modulus calculated through thickness-weighted method 

generates higher injection pressure than that obtained using the layered modulus. Hydraulic 

fractures tend to propagate in the layer with lower Young’s modulus. This suggests the soft 

layers in reservoirs could potentially act as barriers to limit the height growth of hydraulic 

fractures. Since the height equilibrium model does not consider the pressure drop along the 

surface of hydraulic fractures, it yields larger aperture size and overestimates the fracture height. 

As shown in numerical simulations, when the stress contrast is larger than a certain value in the 
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fully coupled model, for example, 30% of the in-situ minimum horizontal stress in this study, the 

fracture height growth could be effectively inhibited under the assumed injection rate, fluid 

viscosity and in-situ stress. When ductile layers exist above and below the payzone, the injection 

pressure is higher and the corresponding aperture at the injection point is larger than that 

obtained from the scenario using uniform and homogenized rock properties. 
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4 3D planar hydraulic fracture propagation in an elastic medium: 

interaction between hydraulic fractures and discontinuities 

Abstract 

In recent years much research effort has focused on hydraulic fracture height growth 

because height containment is needed to ensure effective stimulation of target zones. In many 

cases, fracture height growth determines the success or failure of a hydraulic stimulation. For 

layered rock systems, material properties, interface’s mechanical characteristics and its 

permeability, as well as the in-situ stresses influence both the lateral and height growth of 

hydraulic fractures. It is generally believed that stress contrast is a dominant factor that directly 

controls the fracture height. The influence of Young’s modulus contrast on height growth is 

usually ignored. Simplified “average methods” are often proposed and utilized to homogenize 

layered modulus. Also, it is commonly assumed that the layer interfaces are perfectly bonded 

without slippage even when high stress contrast exits. Use of theses simplifying assumptions in 

modeling analysis are partially due to the difficulty in handling all the factors involved. In this 

study, a fully coupled 3D hydraulic fracture simulator based on finite element method is used to 

investigate the above factors and study how they impact hydraulic fracture propagation and 

height growth. The influence of modulus contrast, interface conditions, and in-situ stress on 

hydraulic fracturing and especially on fracture height growth is analyzed. 

The numerical approach is a 3D finite element model with a special zero-thickness 

interface element based on the cohesive zone model (CZM) to simulate the fracture propagation 

and fluid flow in fractures. A local traction-separation law with strain-softening is used to 

capture tensile cracking. The nonlinear mechanical behavior of frictional sliding along interface 

surfaces is also considered. Since discontinuities are explicitly simulated through the use of the 
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interface element, details of the deformation processes are captured and revealed. For example, 

information related to aperture opening/sliding and stress distribution along the discontinuities is 

obtained in the simulations. After model verification and validation, it is used to simulate height 

growth in layered rock of practical interest. The numerical model is evaluated through a 

commonly used crossing/arrest criterion. Laboratory experiments on fracture-discontinuity 

interaction under triaxial-stress conditions are also studied. Numerical results match well with 

predictions of theoretical formulations and laboratory observations. Typical processes associated 

with fracture-discontinuity interaction are reveled. The recorded injection pressure increases 

when the hydraulic fracture reaches a bedding interface (or other discontinuities). Continuous 

opening and/or sliding along the interface requires higher injection pressure. With the existence 

of a horizontal interface, the influence of modulus contrast and stress contrast on hydraulic 

fracture height growth is analyzed. The combined effects of rock properties, mechanical 

properties of the interfaces, and in-situ stress can effectively inhibit hydraulic fracture height 

growth. 

4.1 Introduction 

Hydraulic fracture height growth is a key issue in hydraulic stimulation of 

unconventional reservoirs. Due to the complexity of geological conditions, prediction or 

determination of fracture height has been one of the challenge tasks when designing hydraulic 

fracturing. There are many factors that impact the height growth of hydraulic fractures in layered 

formations. In-situ stress contrast has been recognized as one of the most effective factors that 

can prevent the height growth. Other factors, such as modulus contrast and formation interface 

opening/slippage, have usually ignored in order to simplify analyses. There are both 

experimental and field observations suggesting that the growth of fractures can be impeded by 
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discontinuities (e.g. natural fracture, joint, layered formation interface/bedding plane). 

Depending on in-situ stress, properties of discontinuities and intact rock, a hydraulic fracture can 

cross or open the discontinuity; it can also be arrested. After the opening of a discontinuity, 

complex fracture paths could be created by fracture reinitiation or branching at flaws in the 

vicinity of the discontinuity interface. Formation interfaces and bedding planes can experience 

local stress disturbances as a hydraulic fracture approaches. It is highly possible that frictional 

sliding along the interfaces occurs. The induced stresses and pressurization by the fracturing 

fluid can make it open and thus take-in more fluid. Pressure loss due to fluid flow in the interface 

and local stress alteration due to reinitiation of fractures at flaws from the discontinuity would in 

turn impact the fracture propagation and height growth. Complex coupled hydro-mechanical 

processes are involved. 

Many laboratory experiments on the interaction between hydraulic fractures and 

discontinuities can be found in the literature (Daneshy 1978; Warpinski and Teufel 1987; 

Anderson 1981; Teufel and Clark 1984). Daneshy (1978) performed experiments to study the 

fracture propagation in layered formations. The crossing and arrest of hydraulic fractures were 

demonstrated through experiments. Experimental results showed that the contrast of physical and 

mechanical properties on the two sides of an interface were not sufficient to stop the fracture 

propagation at the interface. It was suggested that confinement of fracture height may be caused 

more by low interface strength rather than by the contrast in rock properties. In addition, a lag 

between the fluid front and the fracture tip was observed. 

One of the first studies of fracture crossing an interface was by Cook and Erdogan (1972) 

based on the principles of linear elastic fracture mechanics (LEFM). According to their results, a 

pressurized crack cannot grow across a bonded interface if the neighboring rock is stiffer than 
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the layer containing the crack (because the stress intensity factor would go to zero). On the other 

hand, for a softer neighboring material, the crack would cross the interface into the softer 

material because of the large stress intensity factor. These finding are not in agreement with the 

experimental observations cited above. This was explained by Roegiers and Wiles (1981) who 

argued that the conventional stress intensity factor does not hold for an interface and that the 

critical energy release rate is larger for a stiffer neighboring rock, hindering crossing. 

Vijayakumar and Cormack (1983) improved the solution of Cook and Erdogan (1972) and 

showed that a crack approaching an interface induces singular stresses in both the host layer and 

the stiffer neighboring layer; the singular stresses can potentially make the crack cross the 

interface. Utilizing formulations from LEFM, Renshaw and Pollard (1995) proposed a criterion 

for a fracture crossing an orthogonal interface. Through combing the stress state ahead of 

fracture tips and the Coulomb friction law, the crossing criterion was derived. The criterion 

assumes that rocks are linearly elastic, homogeneous and isotropic and no slip/opening occurs 

before the induced fracture contacts the interface (so that the mathematical stress singularity is 

still applicable at the tip of the approaching fracture). A series of laboratory experiments were 

conducted to evaluate the criterion and yielded results consistent with the criterion. Following 

Renshaw and Pollard (1995), Gu et al. (2012) extended the orthogonal criterion for 

nonorthogonal crossing. Laboratory experiments were designed to assess the extended criterion 

and produced results that were in agreement with those predicted by the extended crossing 

criterion. Laboratory experiments on interaction between hydraulic fractures and natural 

fractures can also be found in Hu and Ghassemi (2019). According to the observed displacement 

jump (slippage) across a natural fracture together with increasing AE activities, it was 
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demonstrated that the hydraulic fracture could cause slippage of the saw-cut fractures even 

before reaching them. 

Mineback experiments, and exposed outcrops also provide valuable information for a 

better understanding of the interaction between hydraulic fractures and geological 

discontinuities. Warpinski and Teufel (1987) presented results from mineback experiments. The 

influence of geological discontinuities on hydraulic fracture propagation was analyzed. Offset of 

hydraulic fractures was observed after they crossed joints. Multiple fractures propagating side by 

side in a “zone of fracturing” were recorded. Through analyzing a hydraulic fracture slightly 

penetrating a bedding plane (2.5 to 5 cm), it was suggested that bedding plane and stress contrast 

together provide a fracture containment mechanism. Through mining the stimulated zones in a 

coal mine, Jeffrey et al. (1992) measured the size and geometry of hydraulic fractures. A propped 

horizontal hydraulic fracture was mapped at the interface between the coal and floor rock. The 

deflection of vertical fractures into formation interfaces forms the T-shaped fracture geometry. 

In this study, we emphasize the impact of formation interfaces on fracture height growth. 

A fully-coupled hydro-mechanical model, which can simulate mixed-mode failure during 

fracture propagation, is developed and utilized. The numerical model is evaluated through a 

commonly utilized crossing/arrest criterion. 3D laboratory experiments on fracture-discontinuity 

interaction are studied. At last, the influence of material properties and in-situ stress together 

with the formation interface, on fracture height growth is studied. 

4.2 Problem statement and methodology 

4.2.1 Problem statement  

Due to the complexity of fracture-discontinuity interactions, a large amount of efforts 

have been spent on understanding and modeling the physical mechanisms involved. It is still a 
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challenging task to accurately capture the main characteristics of the problem. Crossing/arrest 

criterions presented in the literature are usually derived based on ‘static stress analyses’ without 

considering the deformation of intact rock and discontinuities. The crossing criterion is mainly 

determined by the strength of rock. The energy criterion required for fracture initiation and 

propagation across a discontinuity is not considered. The coupled processes between mechanical 

deformation and fluid flow are often ignored. To use the existing formulations from LEFM, 

reservoir rock is commonly assumed to be linear elastic, homogeneous and isotropic. The 

material properties and in-situ stress across a discontinuity are also assumed as uniform (i.e. 

modulus contrast and stress contrast cannot exist in a model). These assumptions made in 

analytical or numerical models often limit the applications of them. 

One of the main objectives of this study is trying to relax the above mentioned 

assumptions through reliable and robust numerical solutions. As a widely used method in 

engineering and scientific applications, finite element method is adopted in this work. A special 

hydro-mechanical interface element is developed to model the fully coupled hydro-mechanical 

processes. For mode I failure problem, the model has been successfully verified through penny-

shaped hydraulic fracture and KGD hydraulic fracture for both viscosity- and toughness-

dominated regimes (Gao and Ghassemi 2018, 2019b). When dealing with problems related to 

fracture-discontinuity interactions, mixed mode failure coupled with frictional sliding should be 

considered. Cohesive zone model (CZM) as a mature technique, has been proven to be a reliable 

and efficient way to simulate the mixed mode fracture (Park and Paulino 2013; Spring and 

Paulino 2015). Since the rock surrounding discontinuities is discretized through traditional 

volume elements (i.e. 3D 8-node hexahedron element in this model), the material heterogeneity, 

nonlinear mechanical behaviors and stress-contrast can all be considered. The effects of physical 
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properties of rock, mechanical properties of discontinuity, and in-situ stress will be analyzed in 

the following sections. 

4.2.2 Fully coupled hydro-mechanical model 

A fully coupled hydro-mechanical model is developed based on finite element method 

(FEM). The mechanical behaviors of pre-existing discontinuities and the freshly created 

hydraulic fractures are determined through a cohesive zone model (CZM), which is suitable to 

simulate both tensile and shear failure. In addition, frictional effects are considered when the two 

surfaces of fractures are in contact and under compression. 

(1) Cohesive interface 

Numerous studies on fracture propagation can be found in the literature. One of the most 

widely used approaches is the cohesive zone model. Due to its efficient and powerful algorithms, 

CZM has been successfully utilized in simulating mode I, mode II and mix mode fractures. In 

hydraulic fracturing modeling, mode I fracture is the most widely studied one; mix mode fracture 

is encountered in non-planar propagation. However, both of them usually assume the created 

fractures have opening space between the two facture surfaces. In other words, the fracture 

surfaces are separated and not in contact. Even for the cases in which fracture surface contact 

exists, the friction force exerting on the contact surfaces of hydraulic fractures are commonly 

ignored. One of the advantages of CZM lies not only in its power to efficiently handle the mix 

mode fracture, but also in its ability to couple the frictional slippage into the mixed-mode failure. 

Coupling a friction relation into CZM to simulate hydraulic fracturing in formations having 

discontinuities is one of the main targets of this study. 

Like the stress-strain relationship in continuum mechanics, the behaviors of 

discontinuities in CZM are determined by a traction-separation law. There are mainly two kinds 
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of constitutive relationship for CZM that are able to handle the mixed-mode failure. One is 

effective displacement-based models; another one is potential-based models. A detailed 

comparison between the two can be found in Park and Paulino (2013). The PPR potential-based 

model (Park and Paulino 2012; Spring and Paulino 2015) is utilized in this work. Here we briefly 

summarize the thermodynamic consistent version of the PPR cohesive model (Spring et al. 2016) 

and the formulations pertinent to frictional sliding. 

The cohesive tractions are related to the opening of fractures, and are written as following 

 
𝑇𝑛(𝜅𝑛, 𝜅𝑡 , ∆𝑛) = 𝑇𝑛

′(𝜅𝑛, 𝜅𝑡)
∆𝑛

𝜅𝑛
, and 𝑇𝑡(𝜅𝑛, 𝜅𝑡, ∆𝑡) = 𝑇𝑡

′(𝜅𝑛, 𝜅𝑡)
∆𝑡

𝜅𝑡
 , (4.1) 

where Δn and Δt are normal opening and tangential opening, respectively; Tn and Tt normal and 

tangential traction, respectively; Tn’ and Tt’ are normal and tangential traction obtained using 

internal history parameters κn and κt., they have closed form expression and are derived from the 

PPR cohesive potential. The internal history parameters κn and κt are irreversible state variables 

and stand for the maximum normal opening and absolute tangential opening in the history of 

loading: 

 
𝜅𝑛 = max{∆𝑛}, and 𝜅𝑡 = max{∆𝑡}.  (4.2) 

When the two surfaces of a cohesive interface are in contact and under compression in 

the normal direction, a penalty method is activated to prevent the overlap of the two fracture 

surfaces; the corresponding resisting force is calculated at the same time. Frictional forces are 

then generated if the interface has the potential to slide. The onset of friction is coupled to the 

damage status of the interface and is assumed to occur when the maximum shear strength has 

been reached. The Coulomb friction law is adopted to calculate the frictional force: 

 
𝑇𝑓 = 𝜇𝑓𝑔(𝜅𝑡)|𝑇𝑛| when 𝑇𝑛 < 0 and ∆𝑡> ∆𝑡|𝑇𝑡=𝑇𝑡𝑚𝑎𝑥(= 𝜆𝑡𝛿𝑡) , (4.3) 
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where μf is the coefficient of friction; δt the final tangential opening that is reached when shear 

strength equals to zero; λt the ratio of critical tangential opening δtc (when the maximum shear 

strength is reached) to the final tangential opening δt; g(κt) varies monotonically from 0 to 1, its 

value depends on the internal history parameter κt: 

 
𝑔(𝜅𝑡) = (1 −

𝑇𝑡(0, 𝜅𝑡 , 𝜅𝑡)

𝐷0𝜅𝑡
)

𝑠

 (4.4) 

where s controls the shape of the monotonically increasing curve of g(κt). D0 is the stiffness of 

the interface when the maximum shear strength is reached. 

The tangential opening (Δt) is composed by two perpendicular tangential openings (Δt1 

and Δt2) on the interface plane through the relationship ∆𝑡= √∆𝑡1
2 + ∆𝑡2

2
. The normal and 

tangential tractions in the corresponding opening directions is determined by the following 

expression (Spring and Paulino 2015): 

 
𝑻 = {

𝑇𝑛
𝑇𝑡1
𝑇𝑡2

} =

{
 
 

 
 

𝑇𝑛

𝑇𝑡
∆𝑡1
∆𝑡

+ 𝑇𝑓 (
|∆𝑡1|

∆𝑡
)
∆̇𝑡1

|∆̇𝑡1|

𝑇𝑡
∆𝑡2
∆𝑡

+ 𝑇𝑓 (
|∆𝑡2|

∆𝑡
)
∆̇𝑡2

|∆̇𝑡2|}
 
 

 
 

 (4.5) 

The friction force on the interface plane is decomposed into two parts in directions 

corresponding to Δt1 and Δt2. They are coupled to the cohesive force in Eq. (5). 

The material tangent stiffness matrix, D, is given as 

 
𝑫 =

[
 
 
 
 
 
 
𝜕𝑇𝑛
𝜕Δ𝑛

   
𝜕𝑇𝑛
𝜕∆𝑡1

   
𝜕𝑇𝑛
𝜕∆𝑡2

𝜕𝑇𝑡1
𝜕Δ𝑛

   
𝜕𝑇𝑡1
𝜕∆𝑡1

   
𝜕𝑇𝑡1
𝜕∆𝑡2

𝜕𝑇𝑡2
𝜕Δ𝑛

   
𝜕𝑇𝑡2
𝜕∆𝑡1

   
𝜕𝑇𝑡2
𝜕∆𝑡2]

 
 
 
 
 
 

 (4.6) 
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Fluid flow in fractures is coupled to the CZM. As will be demonstrated by hydro-

mechanical interface element, the injected fluid flows between the two surfaces of a cohesive 

interface element. On the interface surfaces, fluid pressure acts as traction in the normal 

direction. There is a nonlinear fracture process zone in front of the fracture tips, where elastic 

and inelastic cohesive tractions characterized by Eq. (4.5) exist (Figure 2.1). Similar to the theory 

of poroelasticity, the concepts of effective traction (T) and total traction (Ttotal) are introduced. 

They are related to the fluid pressure (pf) through the following formulation: 

 
𝑻𝒕𝒐𝒕𝒂𝒍 = 𝑻 − 𝑝𝑓𝒏 (4.7) 

where n is the normal of the cohesive interface. The effective traction T is the one that given in 

Eq. (4.5). 

(2) Fluid flow in fractures 

Fluid flow and heat transport in fractures surrounding by elastic and thermo-poroelastic 

media are presented in detail in Gao and Ghassemi (2019a) and Gao and Ghassemi (2019b). 

Here we briefly present the governing equations and boundary conditions. In this study, we 

assume the reservoir formation is elastic. The leak-off and poroelastic effects are ignored 

considering the extremely low permeability of unconventional petroleum and geothermal 

reservoirs. Incompressible, linear (Newtonian) viscous fluid is assumed. The fluid pressure is 

considered to be constant over normal opening along the direction perpendicular to the fracture 

surfaces. It has pressure gradient in the tangential direction parallel to the facture surfaces. 

The longitudinal flow within hydraulic fractures is treated as fluid flow between two 

parallel plates. It is governed by the lubrication equation: 

 
𝒒 = 𝒗𝑤 = −

𝑤3

12𝜇
∇𝑝𝑓 (4.8) 
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where μ is the fluid viscosity, w(x, t) is the normal opening, v is the average flow velocity, q is 

the fluid flow rate. 

The mass balance equations is written as 

 

𝜕𝑤

𝜕𝑡
+ ∇ ∙ 𝒒 = 𝑄(𝑡) (4.9) 

where Q(t) is the sink/source term, it represents injection rate in this study. 

The following equation is obtained after substituting Eq. (4.8) to (4.9): 

 

𝜕𝑤

𝜕𝑡
− ∇ ∙

𝑤3

12𝜇
∇𝑝𝑓 = 𝑄(𝑡) (4.10) 

At the injection point, we have 

 
𝒒(𝑥, 𝑡)|𝑥=0 = 𝑄(𝑡) (4.11) 

At the fracture tips, the normal opening and fluid flux equal to zero, they are expressed as 

following: 

 

𝑤(𝑥, 𝑡)|𝑥=𝑡𝑖𝑝𝑠 = 0 

𝒒(𝑥, 𝑡)|𝑥=𝑡𝑖𝑝𝑠 = 0 

(4.12) 

(3) Hydro-mechanical interface element 

A triple-node zero-thickness interface element is developed to simulate the coupled 

hydro-mechanical behaviors of fractures. The mechanical responses of the interface element are 

governed by CZM. As shown in Figure 2.3, the hydro-mechanical interface element has three 

layers and is composed by isoparametric and quadrilateral elements. There are 12 nodes: 1 ~ 8 

have degree of freedoms for displacement (ux, uy, uz); 9 ~ 12 have degree of freedoms for fluid 

pressure (pf). The fluid flows on the center plane (9-10-11-12). The top and bottom planes (1-2-

3-4 and 5-6-7-8) represent the surfaces of a fracture and share the nodes with traditional 8-node 

hexahedron elements discretizing surrounding rock. Figure 4.1 illustrates the insertion of 12-
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node zero-thickness elements into the 8-node hexahedron elements where a vertical interface 

intersects a horizontal interface. The shadow area circled by the red dash lines indicates the 

center plane in a cohesive interface element. We exclusively use 8-node hexahedron elements 

(3D) for discretizing the rock matrix. When modeling a plane strain condition using the 3D 

elements, the displacement is fixed in the direction perpendicular to the plane on which the plane 

strain condition is satisfied. 

When cohesive interface elements are under compression, the two surfaces of the 

interface elements come into contact. To prevent the overlap of the two surfaces when they are in 

contact, the penalty method is used. The penalty method utilizes a large interface stiffness to 

prevent the overlap of the surfaces. It should be emphasized that the stiffness used to prevent the 

overlap in the penalty method is different with the well-known joint stiffness. In the numerical 

model, when the surfaces of interface elements are in contact, the mechanical aperture is zero. 

However, due to the rough surfaces of geological discontinuities, the contact of two surfaces of a 

geological discontinuity, such as joint, does not indicate it zero aperture. In other words, a 

geological discontinuity can still be permeable when it is under compression; hydraulic aperture 

is used to account for the permeability of the discontinuity. Hydraulic aperture is a function of 

the “joint stiffness”. In the coupled hydro-mechanical model, the aperture used in (4.10) is the 

sum of mechanical aperture and hydraulic aperture. When the surfaces of an interface element 

are in contact, the mechanical aperture is zero; when it is open, the mechanical aperture is 

usually orders of magnitude larger than the hydraulic aperture, and makes the hydraulic aperture 

negligible. During the closure of an interface element, the compressive stress gradually increases 

in the normal direction of the interface element; the corresponding hydraulic aperture gradually 

decreases and is calculated according to the normal stress and the joint stiffness until reaching 
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the residual aperture of the interface element. The reversed process applies for the opening of an 

interface element which is under compression initially and is subjected to fluid pressurization 

subsequently. 

 

Figure 4.1 12-node zero-thickness elements embedded in the traditional 8-node hexahedron 

elements at the intersection part of a vertical interface and a horizontal interface. The shadow area 

circled by red dash lines indicates the center plane of a zero-thickness element. The three layers of 

quadrilateral (1-2-3-4; 5-6-7-8; 9-10-11-12) in a cohesive interface element are initially overlapped 

with each other and have zero thickness. They are separately illustrated for visualization purpose. 

 

According to the principle of virtual work, the following weak form of the governing 

equations is derived 

 

 

 

(4.13) 

A standard Galerkin finite element method is adopted to discretize the weak form of 

equations. Detailed procedures can be found in Gao and Ghassemi (2019b). Newton-Raphson 

method is utilized to solve the nonlinear system equations assembled at each time step. The 

unknowns for displacement and fluid pressure are solved simultaneously. For mode I failure, the 

hydro-mechanical model has been successfully verified. Interested readers are referred to Gao 

and Ghassemi (2018) and Gao and Ghassemi (2019b) for details. 
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4.3 Mechanical behaviors of the interface element 

Numerical experiments are performed to illustrate and analyze the behaviors of the 

cohesive interface element. Since the interaction between hydraulic fractures and discontinuities 

involves complex processes, such as mixed-mode failure coupled with frictional sliding, 

loading/unloading stress conditions, special attentions are spent on investigating the reliability of 

the CZM in handling these failure processes. 

Typical loading paths for mode I, mode II and mixed-mode failure are studied and 

demonstrated. The same input parameters are used for examples presented in this section. The 

difference between them lies in the loading paths. Table 4.1 gives the input values, the physical 

meaning of each parameter is consistent with those given in Park and Paulino (2012) and Spring 

et al. (2016). 

Table 4.1 Basic input parameters for PPR cohesive interface element. 

Normal fracture energy, ϕn or Gc_I   100 J/m
2
 

Tangential fracture energy, ϕt or Gc_II  200 J/m
2
 

Normal cohesive strength, σmax    2.0×10
6
 Pa 

Shear cohesive strength, τmax     4.0×10
6
 Pa 

Normal shape parameter, α     5.0 

Tangential shape parameter, β    2.0 

Normal initial slope indicator, λn    0.1 

Normal initial slope indicator, λt    0.2 

Shape parameter for g(κt) in Eq. (4), s   3.0 

Coefficient of friction, μ      0.5 

 

4.3.1 Mode I fracture 

For mode I fracture, only the normal opening is considered. The tangential opening is 

zero. As shown in Figure 4.2, the interface element is first loaded to near its maximum tensile 

strength of 2 MPa causing it to enter the softening zone (Δn = 0.03 mm); then it is unloaded to 

the original state (zero normal opening) (Δn = 0 mm) along the line connecting the unloading 

point on the traction-separation curve and the original point. After unloading, it is reloaded to the 
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original traction-separation curve (Δn = 0.03 mm). The unloading and reloading curves are 

overlapped for mode I fracture. This is one of the properties of the thermodynamic consistent 

CZM. Continuously reloading brings it to the complete failure status where zero traction exists 

(Δn = 0.13 mm). 

 
Figure 4.2 Normal traction plotted as a function of normal opening. During the loading-unloading-

reloading process, the tangential opening is maintained as zero. No tangential opening occurs. 

 

4.3.2 Mode II fracture with friction coupling 

As stated in Eq. (4.3), the frictional force can only take effect when the cohesive interface 

is under compression in the normal direction. To illustrate the mode II failure and the evolution 

of coupled frictional force as a function of cohesive damage, a predefined normal opening (Δn = - 

7.0 × 10
-6 m) is applied to a single element to create a compressive stress on the interface. It 

should be noted that the penalty method is utilized in PPR cohesive model when the two surfaces 

of an interface element are in contact. Small penetration of two contacting surfaces is allowed. 

In Figure 4.3, the tangential opening (Δt) is continuously increased to 0.1 mm. The 

cohesive traction (Tt) initially increases; it then enters into the softening stage until complete 

failure of the interface. The tangential traction generated by the frictional force (Tf) initiates 

when the maximum tangential strength is reached and gradually increases. When the interface 



138 

failures completely (Tt = 0), the frictional traction arrives at a maximum value (𝑇𝑓 = 𝜇𝑓|𝑇𝑛|) and 

maintains at it as the frictional sliding on the interface occurs continuously. 

 
Figure 4.3 Tangential traction (shear) decomposed into cohesive traction component (Tt) and 

frictional traction component (Tf) and plotted as a function of tangential (shear) opening (Δt). 

 

Numerical experiments are also carried out to investigate the behaviors of the coupled 

cohesive – friction relation under one cycle of loading-unloading-reloading. A predefined normal 

opening is set as Δn = - 7.0 × 10
-6 m. One cycle of tangential loading is applied, as shown in 

Figure 4.4. Figure 4.4 (a) illustrates the cohesive (Tt) and frictional (Tf) components of the 

tangential traction. Following the arrow, which indicates “loading direction”, some typical 

deformation stages are identified: (1) elastic loading, (2) softening, (3) unloading, (4) softening 

in the reverse direction, (5) reloading, (6) softening, and (7) complete failure. When the loading 

direction is reversed, the sign of frictional force is changed into an opposite one correspondingly, 

as marked by ‘2-3’ and ‘4-5’ on Figure 4.4 (b). The total tangential traction (Tt + Tf) is obtained 

by combining the frictional and cohesive components according to Eq. (4.5). 
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(a) 

 
(b) 

Figure 4.4 Tangential traction plotted as a function of tangential opening (Δt) during one cycle of 

loading. (a) cohesive traction (Tt) and frictional traction (Tf) vs. tangential opening (Δt); (b) total 

tangential traction (Tt + Tf) vs. tangential opening (Δt). The arrows indicate the “loading 

directions”. The number gives the deformation stages: (1) elastic loading, (2) softening, (3) 

unloading, (4) softening in the reverse direction, (5) reloading, (6) softening, and (7) complete 

failure. ‘2-3’ and ‘4-5’ mark the reverse of loading direction. 

 

4.3.3 Mixed-mode fracture 

The behaviors of the cohesive interface under mixed-mode failure are demonstrated 

through three examples. They all have the same loading/unloading paths. The reloading path is 

different among them. At first, a mixed-mode loading is applied proportionally with Δn = Δt = 

0.02 mm; then a mixed-mode unloading is performed proportionally until Δn = Δt = 0. At last, the 
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reloading is carried out until complete failure. During the reloading stage, case 1 has proportional 

opening with Δn = Δt; case 2 Δn > 0 and Δt = 0; case 3 Δn = 0 and Δt > 0. 

The critical energy release rate in mode I (Gc_I) is two times larger than that in mode II 

(Gc_II). As shown in Figure 4.5 (a), under proportional reloading in case 1, the complete failure in 

mode I is achieved first, which makes the tangential traction equal to zero in mode II failure. It 

should be remembered that the complete failure in either mode I or mode II makes the cohesive 

interface fail completely. For example, if an interface element has an ultimate failure in the 

normal direction (mode I), the tangential cohesive strength of the interface element will also be 

reduced to zero. In mixed-model, the mode I and II failures influence each other, three reloading 

paths produces distinctive behaviors of the cohesive interface. The maximum normal and 

tangential tractions in mixed-mode are less than that in mode I and mode II failures, respectively. 

The complex mechanical behaviors in mixed-mode failure could impact hydraulic fracturing 

when the mixed-mode failure, rather than commonly analyzed tensile failure (mode I), exists in 

this treatment.  

 
(a)  

Figure 4.5 Mixed-mode failure under three different reloading conditions: (a) Δn = Δt; (b) Δn > 0 

and Δt = 0; (c) Δn = 0 and Δt > 0. The frictional component of tangential traction is actually zero, 

since the normal opening is positive, the cohesive interface is in tensile stress state. (continued) 
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(b) 

 
(c) 

Figure 4.5 (continued). (Caption shown on previous page.) 

 

4.4 Numerical analyses 

The hydro-mechanical model is first evaluated through the commonly used Renshaw and 

Pollard’s criterion. Then laboratory experiments on fracture-discontinuity interaction under 

triaxial-stress conditions are studied. With the existence of formation interface, the influence of 

modulus contrast and stress contrast on hydraulic fracture height growth is analyzed at last. 

4.4.1 Comparison of model predictions with analytical crossing criterion 

For interaction between an induced fracture and a pre-existing discontinuity (e.g. natural 

fracture, formation interface), multiple criterions existing in the literature can be used to 

determine whether an induced fracture could cross a frictional interface. A commonly used one 
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is that proposed by Renshaw and Pollard (1995), which was successfully verified through 

laboratory experiments for its conditions of applicability. The criterion was derived based on the 

theory of linear elastic fracture mechanics (LEFM). It suggests fracture reinitiation on the 

opposite side of the interface could occur when the stress singularity still exists at fracture tips as 

the fracture is approaching the interface but not in contact yet. Analyses indicate that there is no 

mathematical stress singularity at the fracture tips when they are in contact with a frictional 

interface. In other words, if reinitiation prior to contact does not occur, a fracture may not be able 

to cross an interface since the loss of stress singularity at the contact points with a frictional 

interface reduces the stress concentration around the tips. To use formulations derived based on 

LEFM, linear elastic, homogeneous and isotropic material properties are assumed on both sides 

of the interface; the elastic properties across the interface should not have a strong contrasts (i.e., 

the ratio of Young’s modulus on the two sides should range from 0.4 to 2.0 given identical 

Poisson’s ratio); a uniform in-situ stress field is assumed (i.e. no stress contrast exists at the 

interface); the criterion also assumes the interface is perfectly bonded, no slippage or opening 

exists along the interface. As will be illustrated in following sections, slippage or opening would 

inevitably occur when an induced hydraulic fracture is approaching and is in contact with a 

formation interface. 

For a vertical hydraulic fracture propagating towards a horizontal interface, the criterion 

for the hydraulic fracture crossing the interface has the following form (Renshaw and Pollard 

1995) (note: tension is positive; compression negative): 

 
−𝜎𝑣

𝑟

𝑇0 − 𝜎ℎ𝑚𝑖𝑛
𝑟 >

0.35 +
0.35
𝜇

1.06
 

(4.14) 
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where 𝜎𝑣
𝑟 is remote vertical stress (in-situ vertical stress), 𝜎ℎ𝑚𝑖𝑛

𝑟  remote minimum horizontal 

stress, T0 tensile strength of intact rock, μ coefficient of friction. Eq. (4.14) involves in-situ 

stresses, tensile strength and coefficient of friction. Other elastic properties of rock, such as 

Young’s modulus, Poisson’s ratio, and critical energy release rate/fracture toughness, are not 

considered. 

Two cases are studied in order to evaluate our numerical model. The schematic geometry 

of the model is illustrated in Figure 4.6. A hydraulic fracture is approaching vertically to a 

horizontal formation interface (indicated by the red line). Homogeneous, isotropic material 

properties (Young’s modulus E = 38.8 GPa, Poisson’s ratio ν = 0.15) and uniform in-situ stress 

are used here though there are two layers indicated in Figure 8. In the first case, the vertical 

stress 𝜎𝑣
𝑟 is set as 10.0 MPa; the minimum horizontal stress 𝜎ℎ𝑚𝑖𝑛

𝑟  = 9.0 MPa; the tensile strength 

of intact rock T0 = 1.0 MPa; the critical energy release rate of intact rock GIC = 100 N/m 

(corresponding fracture toughness KIC = 2.0 Pa.m
1/2

); the coefficient of friction μ = 0.6. The 

formation interface has negligible tensile strength and critical energy release rate. Injection rate 

is 4.0 × 10
-5

 m
3
/(s.m) (plain strain condition is simulated in a 3D domain), fluid viscosity 1.0 

Pa.s. For the given parameters, the left side of Eq. (4.14) equals 1.0, the right side equals  0.88. 

The criterion predicts the hydraulic fracture crosses the formation interface. 

Numerical results for the first case are shown in Figure 4.7. The hydraulic fracture 

crosses the horizontal formation interface. It is consistent with the analytical prediction. 

Analyzing the variation of net pressure and aperture on the curves in Figure 4.7 (a) and (b), 

several processes related to fracture propagation can be observed. Initially the hydraulic fracture 

propagates in both the upward and downward directions (t < 34 s). During this stage, the 

numerical results match well with asymptotic analytical solutions for a plane strain KGD 
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hydraulic fracture (Detournay 2004). At t = 34 s (t1), the lower tip of the hydraulic fracture 

reaches a zone with a higher lateral stress set intentionally to prevent the fracture propagating in 

the downward direction and to force it to propagate in the upward direction where the horizontal 

interface exists. At t = 66 s (t2), the hydraulic fracture reaches the formation interface (bedding 

plane). After 66 s, the injection net pressure continuously increases; the formation interface starts 

sliding and the top tip of the hydraulic fracture is widened, as illustrated by the fracture profile at 

t3. At t = 86 s (t4), the shear force on the interface is large enough to initiate the tensile failure in 

rock on the opposite side of the interface (t4 in Figure 4.7); the hydraulic fracture starts crossing 

the interface and propagating again in the upward direction. After 86 s, the injection net pressure 

experiences decrease as the hydraulic fracture propagates continuously in the upward vertical 

direction (t5 and t6 in Figure 4.7). Similar phenomenon was reported in a laboratory study on 

hydraulic fracture propagation crossing a formation interface (Daneshy 1978). Injection pressure 

was observed to be accumulated when the hydraulic fracture reached the formation interface. 

After hydraulic fracture penetrated into the bounding layers, injection pressure began once again 

to decrease. 

 
Figure 4.6 Illustration of the interaction between a hydraulic fracture and a formation interface 

(bedding plane) in a layered medium. Formation a and b have different material properties and in-

situ stress. The red line indicates the formation interface. 
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Figure 4.7 Net pressure, aperture and corresponding fracture profiles vs. time for the first case. (a) 

Net pressure and aperture at the injection point plotted as functions of time for 0 ≤ time ≤ 150 s. 

The red lines show the asymptotic analytical solution, which is applicable (time < 34s) before the 

hydraulic fracture (HF) is restricted by high stress contrast in order to stop it propagating in the 

downward direction and before it reaches the horizontal formation interface in the upward 

direction; (b) Variation of net pressure and aperture at the injection point when time > 30s. The HF 

profiles are shown by color contours, the deformation is enlarged by a factor of 200: t1: HF stops 

propagating downward; t2: HF reaches the horizontal interface; t3: Interface slips due to 

pressurization of HF; t4: HF initiates at the intersection point; t5: HF crosses the formation 

interface and propagates in the upward direction; t6: HF propagates continuously. The mesh is 

uniform in horizontal and vertical directions and each grid is 0.1 m by 0.1 m. 

 

t1 = 34 s t2 = 66 s t3 = 78 s 

t4 = 86 s t5 = 94 s t6 = 100 s 

(a) (b) 
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In the second case, the vertical stress 𝜎𝑣
𝑟 is lower, 9.1 MPa; the minimum horizontal 

stress 𝜎ℎ𝑚𝑖𝑛
𝑟  = 9.0 MPa; the tensile strength of intact rock is higher, T0 = 2.0 MPa. All the other 

parameters are the same as those used in the first case. For the given parameters, the left side of 

Eq. (4.14) equals 0.83. The crossing criterion of Eq. (4.14) is not satisfied. Arrest of the 

hydraulic fracture is predicted through Eq. (4.14). As expected, the numerical results are 

consistent with the analytical criterion, the vertical growth of the hydraulic fracture is inhibited 

by the formation interface, as illustrated in Figure 4.8. The net pressure and aperture at the 

injection point are plotted as functions of time in Figure 4.8 (a) and (b). The variation of net 

pressure and aperture at the injection point is associated with several processes related to fracture 

propagation. As in the first case, the hydraulic fracture is free to propagate upward and 

downward until it reaches the stress contrast at t = 34 s. The stress contrast is set to restrict its 

propagation in the downward direction. After downward growth stops, the hydraulic fracture 

propagates upward and approaches the formation interface above it. At t = 66 s, the hydraulic 

fracture reaches the interface. Because of the lower vertical stress, frictional force on the 

interface is insufficient to initiate the tensile failure of rock above the interface, the hydraulic 

fracture is arrested by the formation interface. Continued pumping causes the interface to open, 

as shown by the fracture profile at t3 = 140 s. Field mapping of fracture geometry in a coal mine 

revealed the propagation of hydraulic fractures along formation interfaces (Jeffrey et al. 1992). 

The deflection of a vertical hydraulic fracture into a horizontal formation interface between coal 

and roof-rock generated the T-shaped fracture geometry. 
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Figure 4.8 Net pressure, aperture and corresponding fracture profiles vs. time for the second case. 

(a) Net pressure and aperture at the injection point plotted as functions of time for 0 ≤ time ≤ 150 s. 

The red lines show the asymptotic analytical solution, which is applicable (time < 34s) before the HF 

is restricted by high stress contrast in order to stop it propagating in the downward direction and 

before it reaches the horizontal formation interface in the upward direction; (b) Variation of net 

pressure and aperture at the injection point when time > 30s. The HF profiles are shown by color 

contours, the deformation is enlarged by a factor of 200: t1: HF stops propagating downward; t2: 

HF reaches the horizontal interface; t3: Slippage and opening of the formation interface. The mesh 

is uniform in horizontal and vertical directions and each grid is 0.1 m by 0.1 m. 

 

The stress distribution at t = 140 s around the opening section of the formation interface 

for the second case is illustrated in Figure 4.9. As shown, on the opposite side of the hydraulic 

fracture, the stress in the horizontal direction (σyy) in rock above the interface is under tension at 

tips, and is under compression at the center part of the opening section. The compressive stress 

would prevent the initiation of new hydraulic fractures at the center part above the interface. 

However, if flaws (e.g. natural fracture, joint) exist at the regions close to fracture tips, 

reinitiation of hydraulic fractures along the flaws in rock above the interface may occur. Below 

t1 = 34 s t2 = 66 s t3 = 140 s 

(a) (b) 
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the interface, the rock is under compression. On-site mineback and coring showed hydraulic 

fractures are offset when they cross joints (Warpinski and Teufel 1987; Jeffrey et al. 1992). 

Exposed outcrops also demonstrate the reinitiation of fractures from pre-existing flaws along 

bedding planes or natural fractures (Helgeson and Aydin 1991; Underwood et al. 2003). 

 
(a) 

 
(b) 

Figure 4.9 Stress distribution at t = 140 s around the opening portion of the formation interface: (a) 

σyy (horizontal) distribution; (b) σzz (vertical) distribution.  

 

It should be noted that our numerical model is built through FEM-based CZM so that the 

more realistic interactions can be studied by relaxing the limiting assumptions in the analytical 

approach. For example, when an induced hydraulic fracture is approaching the interface, the 

interface can experience either frictional slippage (mode II failure) or opening (mode I failure) or 
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both (mixed mode failure). Both  modulus contrast and stress contrast can exist at the interface. 

One of the important parameters lacking in Eq. (4.14) is the critical energy release rate (or 

fracture toughness). Fracture propagation is determined by the critical energy release rate. 

4.4.2 Simulation of laboratory tests on hydraulic fracture crossing a pre-existing discontinuity 

In this section we simulate laboratory experiments conducted by Gu et al. (2012) to study 

the crossing/arrest criterion for fracture-discontinuity interaction. The block samples were tested 

under triaxial-stress conditions. A discontinuity was created by cutting the block samples at 

specified angles (i.e. 90°, 75°, and 45°) with respect to the designed direction for hydraulic 

fracture propagation. The two faces of the discontinuity were ground smooth and flat. Here we 

focus on the orthogonal interaction. The hydraulic fracture propagates toward the created 

discontinuity perpendicularly. Same type of rock (Colton sandstone) is used in all the tests. The 

Young’s modulus is 20 GPa; Poisson’s ratio 0.15; tensile strength of rock 4 MPa; critical energy 

release rate (GIC) 115 N/m (corresponding fracture toughness KIC = 1.6 MPa.m
1/2

); fluid viscosity 

1.0 Pa.s; injection rate 0.5 × 10
-6

 m
3
/s. The coefficient of friction for the discontinuities was 

measured to be 0.615. The cohesive strength and critical energy release rate (GIC) for 

discontinuities are negligible. The coupled hydro-mechanical model is utilized to simulate two of 

the laboratory tests, which have the same laboratory configurations but have different stresses 

applied on the boundaries. In the first test, Sv = 27.6 MPa (4000 psi), SHmax = 13.8 MPa (2000 

psi), Shmin = 6.89 MPa (1000 psi). The only difference between the first and second test lies in the 

SHmax, which is equal to 7.58 MPa in the second one. 

The geometry and the location of the discontinuity are shown in Figure 4.10. The 

injection point is located at the center point of the block. Figure 4.11 illustrates the fracture 

footprint and the distribution of aperture at t = 7.3 s for the first and second tests. As shown, in 
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the first numerical simulation, the hydraulic fracture crosses the discontinuity; in the second test, 

the hydraulic fracture is arrested at the discontinuity. Numerical results are consistent with the 

laboratory observations. 

 
Figure 4.10 Geometry of the block sample and locations of the cutting discontinuity and the 

designed fracture propagation path. Red color indicates the designed fracture propagation path; 

blue color indicates the discontinuity. The minimum horizontal stress (Shmin) is perpendicular to the 

red plane. Unit: m. 

 

 
Figure 4.11 Fracture foot print and aperture distribution after 7.3 seconds of injection. The left 

figure is for the first test; the right one is for the second test. The red dash line shows the location of 

the discontinuity that is orthogonal to the plane (x-z plane) of fracture propagation. 

 

The injection pressure and aperture at the injection point are plotted as functions of time 

in Figure 4.12. Before the hydraulic fractures reach the discontinuity (t < 1.36 s), the results from 

the two numerical simulations are identical in pressure and aperture distribution and should 
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match the asymptotic analytical solution (Savitski and Detournay 2002) for penny-shaped 

hydraulic fracture. The numerical results have larger aperture and higher net pressure than those 

in analytical solutions. Simple calculation reveals that the hydraulic fracture propagates in a 

viscosity-dominated regime. The analytical solutions for viscosity-dominated regime work for 

idealized situations in which the influence of tensile strength (or fracture toughness) on fracture 

propagation is negligible. The rock samples studied here have a tensile strength = 4 MPa, which 

is too large to be ignored and causes the differences between the numerical results and analytical 

solutions. Detailed analyses on the effects of tensile strength in the hydro-mechanical model can 

be found in Gao and Ghassemi (2019b). At t = 3.36 s, the hydraulic fracture starts crossing the 

discontinuity in the first test. At t = 7.30 s, the hydraulic fracture in both the first test and the 

second test reaches the boundary of the rock samples (Figure 4.11). Before reaching boundaries, 

the crossing scenario (first test) has larger aperture and smaller net pressure at the injection point. 

 
Figure 4.12 Net pressure and aperture at the injection point vs. time. The asymptotic analytical 

solution for penny-shaped hydraulic fracture is given for reference. The solution assumes no 

existence of discontinuities. 

 

4.4.3 Effect of Young’s modulus 

In traditional modeling on hydraulic fracturing in layered formations, the formation 

interfaces are commonly assumed to be perfectly bonded without slippage during hydraulic 
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fracturing; the influence of layered Young’s modulus is often ignored or an uniform Young’s 

modulus obtained from a certain kind of average method (e.g., thickness-weighted average) is 

used instead. It is suggested in the literature that, compared to stress-contrast, modulus contrast is 

negligible. Through laboratory tests, Daneshy (1978) demonstrated that the variation of modulus 

on the two sides of cemented interfaces is insufficient to terminate fracture growth across the 

interfaces. In many situations, the change of modulus occurs on the two sides of a formation 

interface which could be weakly bounded. The slippage along weakly bounded interfaces 

together with modulus contrast could yield results different with observations or simulations that 

have strongly bounded formation interfaces. 

The influence of modulus contrast on hydraulic fracture-discontinuity interaction is 

studied here. The example shown in Figure 4.7 is used as a base case, which has a uniform 

distribution of Young’s modulus (38.8 GPa). A scenario is created that has Young’s modulus = 

38.8 GPa for the layer above the interface and has Young’s modulus = 19.4 GPa for the layer 

below the interface within which the hydraulic fracture propagates (as illustrated in Figure 4.6). 

All the other parameters are the same as those used in the base case. As shown in Figure 4.13 (a) 

about σyy distribution at t = 112 s, the hydraulic fracture is arrested by the formation interface. 

Tensile stress develops across the interface due to the frictional slippage along the interface; the 

maximum tensile stress in the horizontal direction (σyy) in rock above the interface is about 1.4 

MPa. If there are flaws with tensile strength less than the tensile stress, reinitiation of fractures 

could take place along the interface. The modulus contrast together with the interface causes the 

arrest of the hydraulic fracture. For comparison purpose, an additional scenario not having the 

horizontal interface in the model is also simulated. At t2 = 89 s, the hydraulic fracture reaches the 

interface. When the horizontal interface does not exist, the hydraulic fracture crosses the 
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interface, just as those shown in Figure 4.7. For the scenario having the horizontal interface, the 

injection net pressure is larger than that in the scenario without the interface (Figure 4.13(b)). 

When the layer above the horizontal interface has Young’s modulus = 19.4 GPa and the 

layer below the interface has Young’s modulus = 38.8 GPa, the hydraulic fracture crosses the 

interface just as those shown in Figure 4.7.   

 
(a) 

 
(b) 

Figure 4.13 (a) σyy distribution at t = 112 s around the opening section of the formation interface; 

(b) Aperture, injection net pressure vs. time for numerical results and asymptotic analytical 

solutions (t1: HF stops propagating downward; t2: HF reaches the location where Young’s modulus 

contrast exists). 

 

Due to the existence of the horizontal interface and the modulus contrast, the stress distribution is 

not continuous across the interface. Figure 13 illustrates the induced σyy distribution before the 
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fracture tip reaches the interface for the above mentioned two different scenarios. Figure 4.14 (a) 

is for the scenario with E = 38.8 GPa for the upper layer and E = 19.4 GPa for the lower layer. 

Figure 4.14 (b) is for the scenario with reversed distribution of Young’s modulus. As can be 

seen, the range of induced σyy around the fracture tip in Figure 4.14 (b) (upper layer E = 19.4 

GPa, lower layer E = 38.8 GPa) is larger than that in Figure 4.14 (a) (upper layer E = 38.8 GPa, 

lower layer E = 19.4 GPa). The induced σyy along a line (red dash line in Figure 4.14 (a) and (b)) 

above the interface is shown in Figure 4.14 (c). The maximum induced tensile stress is not 

located ahead of the fracture tip (the symmetric point of the model) (y = 215 m), but located at a 

distance away from it. The distribution of induced stresses in the upper layer could reinitiate 

fractures at locations away from the intersection point (y = 215 m) between the vertical hydraulic 

fracture and the horizontal interface, thus creates an offset between the intersection point and the 

reinitiation points. Laboratory experiments and in-situ observations have well documented the 

offset phenomena for fracture-discontinuity interaction (Jeffrey et al. 1992; Warpinski and 

Teufel 1987).   

       
(a)                                                      (b)  

Figure 4.14 (a) Induced σyy distribution at t = 60 s before the fracture tip reaches the formation 

interface, upper layer E = 38.8 GPa, lower layer E = 19.4 GPa; (b) Induced σyy distribution at t = 54 

s before the fracture tip reaches the formation interface, upper layer E = 19.4 GPa, lower layer E = 

38.8 GPa; (c) Induced σyy along a line parallel to the horizontal interface in the upper layer (red 

dash line in (a) and (b)). (y is the horizontal direction; z is the vertical direction.) (continued) 
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(c) 

Figure 4.14 (continued). (Caption shown on previous page.) 

 

4.4.4 Effect of stress contrast 

Stress contrast in a layered formation is often considered as the dominating factor that 

controls the hydraulic fracture height growth. Laboratory and on-site experiments have 

demonstrated that stress contrast larger than a certain value can completely inhibit the growth of 

hydraulic fractures. When in-situ stress contrast is combined with the weakly bounded interfaces 

(or other discontinuities, such as natural fracture, joint), their effects on fracture height growth 

could become more significant. 

The example shown in Figure 4.7 is used again as a base case, which has a uniform 

distribution of minimum horizontal stress (Shmin). A case is created with stress contrast of 0.5 

MPa existing at the horizontal interface (see Figure 4.6 for illustration). The top layer has 0.5 

MPa larger Shmin than the bottom layer. All the other parameters are the same as those used in the 

base case. Figure 4.15 gives the distribution of σyy and the curves for the net pressure and the 

aperture at the injection point vs. time. As shown, the hydraulic fracture is arrested; the minimum 

value of σyy is at the fracture tips and still under compression (≈ - 0.26 MPa). An additional 

scenario without the existence of the horizontal interface is considered for comparison purpose. 

At t2 = 68 s, the hydraulic fracture reaches the stress contrast. The injection net pressure for the 
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scenario having the horizontal interface is larger than that in the case without the interface after 

reaching the stress contrast.   

 
(a) 

 
(b) 

Figure 4.15 (a) σyy distribution at t = 82 s around the opening section of the formation interface; (b) 

Aperture, injection net pressure vs. time for numerical results and asymptotic analytical solutions 

(t1: HF stops propagating downward; t2: HF reaches the location where stress contrast exists). 

 

4.5 Discussion 

Multiple key factors influence and control the height growth of hydraulic fractures in 

layered formations. Effects of material properties, in-situ stress, and mechanical properties of 

discontinuities are analyzed in this study. The emphasis is placed on the mechanical behaviors of 

discontinuities considering the effects of modulus contrast and stress contrast. As we know, the 

change of material properties usually occurs at a discontinuity (e.g. formation interface/bedding 
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plane). The effects of layered modulus (or modulus contrast) on fracture propagation are often 

not considering in many analyses. Since the fracture-discontinuity interaction involves complex 

mechanical behaviors, the formation interface/bedding plane is commonly assumed to be 

perfectly bounded without frictional slippage; its influence on hydraulic fracture height growth is 

thus weakened when the discontinuities are not considered. As shown in previous analyses, the 

combination of modulus contrast and frictional slippage could produce results that are different 

with those using single uniform modulus. In-situ stress contrast can directly control the fracture 

height growth. When stress-contrast is considered together with the existence of discontinuities, 

their influence on height growth or fracture propagation is significant. A slight stress contrast 

(0.5 MPa in this study) at a discontinuity could effectively inhibit the propagation of fractures. 

On-site experiments demonstrated that neither the material properties nor the in-situ stress 

contrast is sufficient to explain the observed relatively longer fracture lengths compared to their 

height. The combined effects from material properties, in-situ stress and the existence of 

discontinuities should be considered in analyzing height confinement mechanisms (Warpinski et 

al. 1998). 

Based on FEM and Newton-Raphson solution scheme, all the hydro-mechanical 

processes in this study are modelled in a fully coupled manner. Fully coupled scheme is crucial 

to accurately predict the behaviors of hydraulic fractures, especially for fracture propagation in 

viscosity-dominated regime. All the examples in previous sections are in the viscosity-dominated 

regime. Within this regime, the pressure within hydraulic fractures varies significantly as a 

function of fracture aperture. After the form of “T-shaped” hydraulic fractures, the opening along 

formation interface/bedding plane is usually smaller than the vertical part of the “T-shaped” 

hydraulic fractures, partly due to the relatively larger vertical in-situ stress. Smaller aperture 
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along formation interface/bedding plane causes larger pressure drop, which in turn requires 

higher injection pressure for further propagation along the interface. This phenomenon has been 

well demonstrated on the injection pressure curves in the previous examples. On the curves for 

the injection net pressure vs. time, higher injection pressure is always observed when the vertical 

hydraulic fractures reach the horizontal interface. The injection pressure continuously increases 

when the horizontal interface experience slippage and/or opening. The mechanism of frictional 

slippage could potentially be used to explain the relative higher injection pressure observed in 

field than those predicted by traditional hydraulic fracturing simulators without considering the 

existence of discontinuities. In addition, it should be emphasized that the frictional slippage in 

this work is coupled into the nonlinear solution scheme, based on which the frictional slippage is 

a part of the solutions but not evaluated subsequently according to the solutions. 

4.6 Conclusions 

A coupled hydro-mechanical model utilizing a cohesive interface element is developed 

and utilized to study the hydraulic fracture height growth in layered formations. The cohesive 

interface element is suitable to simulate mode I, mode II and mixed mode fractures. Mechanical 

behaviors of the interface element are determined by a cohesive zone model that can account for 

frictional slippage. A series of numerical tests are performed to evaluate the mechanical 

behaviors of the interface element under different typical loading paths. The demonstrated 

loading, unloading and reloading paths illustrate the versatility of the model and reveal its 

capability to handle many different working conditions. To study the height growth of hydraulic 

fractures in layered formations considering modulus contrast, in-situ stress contrast and the 

existence of discontinuities, the model is evaluated through the commonly used Renshaw and 

Pollard’s criterion for an induced fracture orthogonally crossing a pre-existing fracture/interface. 
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The numerical model produces results being in agreement with those predicted by the criterion. 

The responses of injection pressure and aperture at the injection point are recorded. Several 

processes related to the fracture-interface interaction are reveled. When the vertical hydraulic 

fractures reach the horizontal interface, the injection pressure increases. Continuous opening and 

sliding of the interface causes the need of higher injection pressure. Stress distribution around the 

tips of “T-shaped” hydraulic fractures indicates the potential of fracture reinitiation along the 

interface if flaws exist. The model is also utilized to study laboratory experiments on fracture-

discontinuity interaction under triaxial-stress conditions. The numerical results match well with 

the experiments in terms of hydraulic fractures crossing of or being arrested by a pre-existing 

discontinuity. 

The influence of interface on fracture height growth is studied under the existence of 

modulus contrast and in-situ stress contrast at the interface. For a hydraulic fracture propagates 

in a lower layer, which has one-half of the Young’s modulus as that in the upper layer, the 

hydraulic fracture is arrested by the interface existing between the two layers. However, it 

crosses the interface when a uniform modulus is used for the two layers (the modulus contrast 

does not exist). The effects of stress contrast yield the similar results. A hydraulic fracture is 

arrested when adding slightly higher in-situ stress (0.5 MPa) in the upper layer. When combining 

together the effects of modulus contrast, stress contrast, and the existence of discontinuities, the 

propagation of fractures and the height growth of hydraulic fractures could be effectively 

impeded. 
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5 3D thermo-poromechanical analysis of flow, heat transport and 

deformation in fractured rock with applications to a lab-scale geothermal 

system  

Abstract 

Fluid flow in subsurface rock with either pre-existing fractures or newly created ones, 

involves coupled thermal-hydro-mechanical processes. Fractures and other discontinuities, such 

as joints, bedding planes, and faults, usually act as highly permeable flow paths, which dominate 

the fluid flow and heat transport underground. Better description and understanding of the 

fracture response to flow and heat transport is of crucial importance in developing underground 

energy resources. In this work we investigate this problem within the framework of the 

governing equations for the theory of thermo-poroelasticity, together with the equations 

describing fluid flow and heat transport in fractures, and the equation for fluid flow in wellbore. 

The finite element method (FEM) is utilized to discretize the governing equations in a fully 

coupled manner. A special zero-thickness interface element is implemented to simulate the 

thermo-hydro-mechanical behaviors of a fracture/matrix system. The constitutive law of the 

interface element is built based on the cohesive zone model (CZM), which is suitable for 

simulating both tensile and shear failures. Fracture flow is formulated through the commonly 

used “cubic law”. The fluid flux exchange between the fractures and the surrounding permeable 

rock matrix is determined by a fluid transfer coefficient. A convective heat transfer coefficient is 

introduced in the equation governing heat transport in the fractures. When discontinuities in 

porous rock are treated as interior boundaries, fluid and heat flux equilibrium is maintained. 

However, the corresponding fluid pressure and temperature are not necessarily continuous across 

the interior boundaries. The introduction of fluid transfer coefficient and heat transfer coefficient 
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satisfies the mass balance and energy balance across the interior boundaries, while at the same 

time allowing for a temperature drop and pressure drop across the interface connecting the 

fractures and the surrounding rock matrix. Numerical analyses are performed to verify the 

model, to illustrate some fundamental phenomena, and to provide some applications to 

laboratory injection and circulation experiments to further validate the model. In particular, three 

lab-scale EGS (enhance geothermal system) experiments are studied. Numerical simulations 

reveal the role of mechanical, hydraulic and thermal properties and the coupled processes in the 

experiments. 

5.1 Introduction 

The coupled thermo-hydro-mechanical (THM) processes in porous and fractured rock are 

associated with a wide range of applications. These include geothermal energy extraction, fluid 

injection induced seismicity, stimulation of petroleum reservoirs, and design of nuclear waste 

repository in rock, etc. All of these problems involve strong coupling among pressure diffusion, 

transport of heat, and the change of in-situ stresses and rock deformation. 

Since Biot (1941) proposed the isothermal theory of poroelasticity for fluid-saturated 

porous media, extensive and excellent efforts have been spent to extend the theory to investigate 

a wide variety of subsurface phenomena. Rice and Cleary (1976) have recast Biot’s theory in 

terms with straightforward physical concepts. A substantial literature exists on extending the 

well-known isothermal theory to include the thermal effects (Schiffman 1971; Booker and 

Savvidou 1984, 1985; Kurashige 1989; McTigue 1986; McTigue 1990). The governing equations 

derived in these papers are different only in some details (McTigue 1986). For example, the 

expressions for fluid content and fluid pressure are presented in different forms. Both analytic 
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and numerical methods are developed to derive solutions for the coupled thermal-hydro-

mechanical problems in porous media. 

Compared to continuous porous media, one distinguishing feature of underground rock 

mass is the presence of discontinuities (e.g., joints, fractures and faults) which are widely 

distributed. Problems related to discontinuities are commonly encountered in engineering 

applications. Pre-existing or newly-created fractures are crucial in the development of 

geothermal and petroleum reservoir. Discontinuities usually act as highly permeable flow paths, 

which dominate the fluid flow and heat transfer in reservoirs. Interaction between the 

discontinuities and the porous matrix is a multi-physics problem. At the interface between the 

discontinuity and the rock matrix, fluid transfer and convective heat transfer occur and contribute 

to the mechanical deformation (opening or closing of discontinuities) of the fracture resulting in 

a coupled system. 

There are mainly two kinds of numerical approaches to handle the coupled thermo-hydro-

mechanical processes in fractured porous rock. One is based on boundary element method 

(BEM), which uses integral equation representations of the governing partial differential 

equations to solve problems of interest (Ghassemi et al. 2013). Since it uses boundary-only 

discretization, significant reduction in generalized linear algebraic equations is achieved. 

Extensive work has been done on the thermo-poroelastic formulation of BEM and its usage, 

especially the displacement discontinuity method (a branch of BEM), to study the coupled 

processes related to discontinuities in petroleum and geothermal reservoirs. The thermo-

poroelastic responses of a stationary crack were studied by Ghassemi and Zhang (2006) using the 

displacement discontinuity method (DD). Ghassemi et al. (2013) and Ge and Ghassemi (2008) 

utilizing elastic and poroelastic models based on DD to study the failure processes around a 
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hydraulic fracture. Simulation results showed the dominant failure mode to be tension in the 

close vicinity of the fracture where the pore pressure reaches its highest values. Shear failure 

potential exists away from the fracture walls and near the tips. 3D thermo-poroelastic analyses of 

fractured network deformation in enhanced geothermal systems were performed by Ghassemi 

and Zhou (2011), Rawal and Ghassemi (2014) and Safari and Ghassemi (2015). The nonlinear 

characteristics of the fracture deformation in the normal and shear deformations were considered. 

In addition, the DD method has been widely used in hydraulic fracturing. Interested readers are 

referred to Vandamme and Curran (1989), Sesetty and Ghassemi (2015), Kumar and Ghassemi 

(2016) and Kumar and Ghassemi (2018) for further reading. 

The second type of numerical approach is domain mesh-based, such as finite element 

method, finite volume method and discrete element method. The entire spatial domain of interest 

needs to be discretized when these methods are adopted. In the FEM, the generated stiffness 

matrix is sparse, instead of full in the DD, but is relatively larger than that generated from DD 

method. When simulating discontinuities based on the FEM, interface elements and enriched 

elements in the framework of extended finite element method (XFEM) are usually utilized. The 

usage of 2D XFEM to simulate hydro-mechanical problems is often reported; however, the 

utilization of 3D XFEM to study fully coupled thermo-hydro-mechanical problems is rarely 

found. In this study we concentrate on using ‘zero-thickness’ interface element to discretely 

represent discontinuities and to study the fully coupled processes in 3D. 

Initially the zero-thickness interface element was developed for rock joints without 

considering fluid flow and heat transport in discontinuities (Goodman et al. 1968). Many 

nonlinear mechanical constitutive laws from rock and soil mechanics were successfully 

implemented into the interface element (Beer 1985; Potts and Zdravkovic 1999). They were 
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utilized to reproduce a wide range of observed joint stress-strain behavior. For example, Gens et 

al. (1990) developed an elastoplastic constitutive law to describe the 3D mechanical behavior of 

joints. A hyperbolic failure criterion was adopted and the hardening/softening evolution was 

considered. Based on the Mohr-Coulomb failure theory, Lotfi Hamid and Shing (1994) proposed 

an interface constitutive model capable of simulating the interface fracture under combined 

normal and shear stresses; the shear dilation phenomenon was also considered. In addition to 

model the behavior of pre-existing discontinuities, interface elements are also used to analyze 

cracking phenomena. One of the most commonly used constitutive models capable of capturing 

the main characteristics of crack initiation and propagation in quasi-brittle materials (e.g. rock, 

concrete, ceramics) is the cohesive zone model (CZM). There are numerous publications related 

to CZM since Hillerborg et al. (1976) used it to analyze the cracking behavior in concrete. 

To couple the rock matrix and fracture mechanical deformation with the fluid flow and 

the heat transport in the interface element, different numerical strategies can be found in the 

literature (Noorishad et al. 1984; Rutqvist et al. 2002). Here we focus on fully coupled 

approaches, not iteratively coupled (or staggered). Depending on particular physical mechanisms 

that are considered, double-node zero-thickness interface elements or triple-node zero-thickness 

interface elements are usually adopted. For example, Noorishad et al. (1982) proposed a fully 

coupled hydro-mechanical interface element. It is double-nodded and assumes the fluid pressure 

is continuous across the interface (no pressure drop exists across the interface). Segura and Carol 

(2008) formulated an interface element with double nodes. Pressure drop across the interface was 

considered. Cerfontaine et al. (2015) proposed a 3D zero-thickness interface element with triple 

nodes to simulate coupled hydro-mechanical processes. The fluid flow in discontinuities was 

discretized by the nodes located on the center plane of the interface and the central plane nodes 
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were used for fluid flow and top and bottom planes nodes for deformation of fractures. The 

theory of contact mechanics was utilized to simulate discontinuity behaviors. 

When thermal effects need to be considered, additional degrees of freedom for 

temperature should be defined to simulate heat transport in discontinuities. Considering the 

discontinuities as internal boundaries, a thermal boundary layer would exist between the 

discontinuity and the porous matrix (Bergman et al. 2011) and thus a convective heat transfer 

boundary condition should be applied at the interface. This will cause a temperature drop across 

the interface. Depending on the value of the convective heat transfer coefficient, the temperature 

in the discontinuity may be close to that on the two walls of the discontinuity due to high heat 

flux; or it could have little influence on the wall temperature because of low heat flux. As will be 

shown here in, the triple-node zero-thickness interface element can handle the convective heat 

transfer within discontinuities quite well. 

In this work, a triple-node zero-thickness interface element is developed to describe the 

fully coupled thermo-hydro-mechanical behavior of discontinuities. The mechanical constitutive 

law of the interface element is built based on the CZM, which is suitable for characterizing both 

pre-existing discontinuities and developing fractures. The transfer of fluid and heat from the 

interface element to the surrounding continuum elements (8-node hexahedron elements) 

representing reservoir matrix are determined by transfer coefficients for fluid and heat, 

respectively. In the following, the governing equations for thermo-poroelasticity, fluid flow and 

heat transport in fracture, and for fluid flow in wellbore are given first. Then the θ-method and 

the standard Garlerkin method are adopted to perform temporal and spatial discretization of the 

given equations. Finally, simulations and analyzes of a few problems are discussed and the 

model is applied and validated against a lab-scale enhanced geothermal system. 
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5.2 Governing equations 

The formulations for coupled thermo-hydraulic-mechanical model are presented in this 

section. We first give the strong form of the governing equations. After temporal discretization, 

the weak form is derived. Through spatial discretization, a system of nonlinear equations is 

generated. The Newton-Raphson method is adopted to solve the linearized system of equations 

iteratively. 

5.2.1 Thermo-poroelastic theory for porous, permeable rock 

By extending Rice and Cleary (1976) or Cleary (1977) theory, McTigue (1986) and 

Kurashige (1989) developed a themoelastic theory for fluid-saturated porous media. The quasi-

linear and quasi-static theory assumes constant material properties. Inelastic terms are ignored. 

The thermo-poroelastic governing equations consist of the following (McTigue, 1986; Kurashige 

1989) 

• Constitutive equations: 
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 (5.3) 

• Fourier’s law: 

 
 (5.4) 

In the above equations, a set of five parameters for the theory of linear isotropic 

poroelasticity consist of the shear modulus G, the drained and undrained Poisson’s ratios v and 

vu, the Biot’s effective stress coefficient α, and the permeability coefficient κ (κ = k/μ , where k is 

the intrinsic permeability and μ the dynamic fluid viscosity). ϕ is porosity, ρf fluid density, ρt 

matrix density. M is Biot’s modulus (Cheng 2016): 

 
 

(5.5) 

The thermal related parameters are the volumetric thermal expansion coefficient of the 

porous matrix αm
T
 and the pore fluid αf

T
, thermal conductivity κ

T
, matrix specific heat Ct, and 

specific heat of pore fluid Cf. The indices take the values 1, 2 and 3, and repeated indices imply 

summation. So, in total 9 independent parameters are need to describe the rock thermo-

poroelastic response. 

After some algebraic operations, the field equations for the theory of thermo-

poroelasticity can be obtained: 
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In derivation of Eq. (5.6)3, it is assumed that the fluid and solid densities are independent 

of temperature and pressure. The variation of porosity due to heating-induced expansion of solid 

is not considered (Placiauskas and Domenico, 1982). Also, the influences of elastic deformation 

of solid and dilatation of the fluid on energy generation or consumption are neglected. The 

thermoelastic coupling effect could be included after considering the solid deformation energy, 

[β∂/∂t]εii (Noorishad et al. 1984). The derived energy balance equation is identical to those 

utilized by Lewis et al. (1986) and Noorishad et al. (1984), which states the energy balance 

between the rate of inflow into a control volume and the increase in the internal energy. 

Considering a closed domain denoted by , where Ω is an open domain with 

boundary Γ. The boundary domain is decomposed into different parts on which essential and 

natural boundary conditions are specified for displacement or stress, pressure or fluid flow, and 

temperature or heat flow (Figure 5.1). The decomposed boundaries are subject to the restrictions: 

 

 

 

(5.7) 

where Γu is the displacement boundary; Γt is the stress traction boundary; Γp is the fluid pressure 

boundary; Γq is the fluid flux boundary; ΓT is the temperature boundary; ΓqT is the heat flux 

boundary. 

The boundary conditions for the thermo-poroelastic model are given as 
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 (5.11) 

 
 (5.12) 

 
 (5.13) 

The initial conditions at t = 0 are given as 

 
 (5.14) 

 

 
Figure 5.1 Schematic illustration of domain Ω and boundary Γ.  

 

5.2.2 Mechanical behaviors of fracture  

Natural fractures have a variety of strength and deformation characteristics. Some pre-

existing fractures have cohesive strength and resist opening during pressurization. For newly 

created hydraulic fractures, enough energy should be provided to maintain the propagation of the 

fractures. In this work, a cohesive law is adopted to govern the mechanical behaviors of natural 

and hydraulic fractures, based on which a cohesive zone model (CZM) is built. Other nonlinear 

mechanical constitutive laws for discontinuities, e.g. elasto-plastic constitutive model based on 

Mohr-Coulomb theory, can be implemented in the same manner. 

Since the introduction of CZM by Barenblatt (1962) and Dugdale (1960) for analyzing 

elastic-plastic fracture in ductile metals, and by Hillerborg et al. (1976) for simulating fracture 
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and fragmentation processes in quasi-brittle materials, extensive literature related to CZM has 

been published. The approach has attracted considerable attention because it provides an 

efficient and powerful algorithm to describe the behaviors of fracture. By modifying material 

parameters, the CZM can be used to simulate both newly created fractures and pre-existing 

natural fractures. In this work we couple thermo-hydro-mechanical processes, fluid flow, and 

thermal transfer with CZM through an interface element. 

Similarly to the theory of poroelasticity, the effective cohesive stress (T’) is introduced 

and is related to the total cohesive stress (T) and fluid pressure (pf) through the following 

equation: 

 
 (5.15) 

where n is the local normal of the cohesive zone interface. When the cohesive zone is completely 

damaged, the cohesive traction (T’) is zero and the fluid pressure (pf) is acting as traction on the 

open fracture surfaces. 

A cohesive law relates the traction (T’) to the displacement jump (Δ) across a cohesive 

interface through a potential function (ψ) (Park and Paulino 2012): 

 
 (5.16) 

A second derivative of the potential function with respect to the displacement jump 

provides the constitutive relationship (material tangent modulus). The traction-separation 

relationship governs the behaviors of fractures. In this study, the PPR, potential-based cohesive 

law (Park and Paulino 2012; Spring and Paulino 2014), is adopted; the traction and separation in 

both the normal and shear directions of the fracture surfaces can be considered. As shown in 

Figure 2.2, four deformation stages exist on the traction-separation curve. They are elastic 
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deformation, fracture initiation, softening deformation and complete failure. The area under the 

pure normal traction-separation curve represents the fracture energy GIC in the normal direction: 

 
 (5.17) 

where δn is the final normal opening width between two fracture surfaces. The fracture energy 

GIC is an independent input parameter to the model. When the size of cohesive zone is much 

smaller than the fracture length, the cohesive energy (GIC) can be related to the fracture 

toughness in mode-I (KIC) in linear elastic fracture mechanics (LEFM) through Irwin’s formula 

(Irwin 1957): 

 
 (5.18) 

where E is Young’s modulus and υ the Poisson’s ratio. 

During injection operations, the response of the fluid flow is coupled with the fracture 

deformation. Figure 2.1 illustrates the fluid pressure and cohesive traction distributions in CZM 

considering the coupled hydro-mechanical effects as given by Eq. (5.15). On fracture surfaces, 

either nonzero cohesive traction or zero cohesive traction exists depending on the deformation 

stage of a particular region. The fluid pressure is applied on the two surfaces of a fracture.  

5.2.3 Fluid flow in fracture  

For liquid flow within discontinuities, the compressibility is negligible when compared 

with the deformation of discontinuities (opening or closure), so that the fluid within 

discontinuities is assumed to be incompressible. Linear (Newtonian) viscous fluid is adopted in 

this study. The longitudinal flow within the space between two surfaces of a fracture is derived 

from conservation of momentum and approximated through the lubrication equation, which is 

also known as cubic law: 
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 (5.19) 

where q is the fluid flux of the longitudinal flow; v is the average fluid velocity; μ is the 

viscosity of the Newtonian fluid; w is the local fracture width, which is equal to the displacement 

jump (Δn) in the normal direction of the surface for a freshly created fracture; for pre-existing 

fractures, the hydraulic aperture at zero mechanical opening (Δn) should be used for the local 

fracture width. 

Deriving from mass conservation in a fracture, the fluid mass balance equation is 

formulated as 

 
 (5.20) 

where q
+
 and q

-
 are the transversal flow rates to account for the fluid transfer through two 

fracture surfaces into the surrounding rock (leak-off), Q(t) is the injection rate into the fracture. 

The fluid transfer terms in Eq. (5.20) can be expressed as: 

 
 (5.21) 

where c is the fluid transfer coefficient, p
+
 and p

-
 are pore pressure on the two fracture surfaces. 

Combining equations (5.19) and (5.20), it is obtained: 

 
 (5.22) 

When the model is used to simulate hydraulic fracturing, during which new fractures are 

created, we have the following boundary conditions at the fracture tips: 
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At the injection point, the fluid flux is 
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5.2.4 Heat transport in fracture 

There are several mechanisms involved in the heat transport in a fracture, such as heat 

storage, advection, longitudinal dispersion, and conduction from surrounding rocks to fracture 

surfaces (Cheng et al. 2001). Due to the complexity of the problem, simplified assumptions are 

often made in analytical and numerical solutions. One commonly assumed condition is that the 

temperature is continuous across the fracture surfaces. In other words, it is assumed that the 

temperature in the space between the two fracture surfaces is equal to the temperature on the 

surfaces of the fracture (i.e., the surfaces of surrounding rock matrix). However, in advection-

dominated heat transport, this assumption is not necessarily valid. In this study, the temperature 

is assumed uniform within the fracture in transverse direction (perpendicular to fracture surfaces) 

since the fracture aperture size is relatively small comparing to the length of fractures. The 

possibility of a discontinuity in temperature across the fracture surfaces is considered. In other 

words, the temperature within the fracture could be different than that on the surfaces of 

surrounding rock matrix. The equation governing heat transport, which is modified from Cheng 

et al. (2001), is expressed as 
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where Tf is the fluid temperature in the space between two fracture surfaces, ρw is the fluid 

density, cw is the specific heat of fluid, D is the dispersion coefficient, q
+

T and q
-
T are the heat 

fluxes from the fracture to the surrounding rock matrix through the two fracture surfaces. 

The heat transfer terms in Eq. (5.25) can be expressed as: 
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where h is the convective heat transfer coefficient, T
+
 and T

-
 are rock temperature on the two 

fracture surfaces. 

The dispersion coefficient D is a function of flow velocity (Zhao et al. 2010): 

 
 (5.27) 

where α is dispersion, Dm is molecular diffusion coefficient. 

5.2.5 Fluid flow in wellbore  

As mentioned before, the thermo-hydro-mechanical interface element can be used to 

model pre-existing discontinuities and it can simulate newly created hydraulic fractures as well. 

From analytical and numerical hydraulic fracturing models, we know that the fluid pressure at 

the injection point could be infinitely large in the beginning of injection, since the 

compressibility effects from the injection system are not considered. After considering the 

compressibility effects, an initial pressure buildup stage would usually exist in the pressure 

record, as demonstrated in many laboratory experiments (Hu and Ghassemi 2018a; Wu et al. 

2008) or field observations. 

The compressibility effects of the whole injection system could be induced by the 

deformation of fluid pipe and wellbore during pressurization. In this study, these are considered 

by introducing a wellbore in numerical simulations. Fluid flow through wellbores and the 
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corresponding compressibility and pressure drop in the whole injection system are characterized 

by the mass balance equation and the momentum balance equation. By averaging the 

conservation of mass and the balance of momentum at the cross-section of wellbore (Lecampion 

and Desroches 2015), the fluid flow in wellbores is simplified into a one-dimensional problem. 

For pipe flow, the conservation of mass in 1D is given as: 

 
 

A AV
Q t

t x

 


 
 

 
 (5.28) 

where ρ is the fluid density and ρ ≈ ρ0(1 + c(pw – p0)), ρ0 is the fluid density under the fluid 

pressure of p0, c the fluid compressibility; A the cross-section area of wellbore, A = πr
2
, r the 

internal radius of wellbore; V the average velocity through the cross-section area; Q(t) the 

sink/source term. Strictly speaking, both the fluid density ρ and the cross-section area A are 

functions of time and the spatial coordinates. In this work, we assume the wellbore is rigid and 

its compressibility effects are considered through the fluid compressibility parameter c 

representing the total system compressibility. Through the linearization of Eq. (5.28), the 

following continuity equation is obtained: 
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The balance of momentum for 1D pipe flow is given as: 
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where τw is the shear stress on the pipe wall. Empirical correlations should be used to determine 

the frictional pressure loss when the flow pattern is recognized as turbulent in pipe. After 

introducing the dimensionless friction factor, the Fanning equation is derived (Bourgoyne et al. 

1991): 
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where fFan is called the Fanning friction factor; fD the Darcy-Weisbach friction factor. The Darcy-

Weisbach friction factor can be approximated numerically for laminar, transitional and turbulent 

flow based on Moody’s chart (Moody, 1944): 
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Substituting Eq. (5.31) into (5.29), the following non-linear equation characterizing fluid 

flow in the wellbore is obtained: 
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The boundary condition at the injection point of the wellbore is: 
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5.3 Finite element implementation 

The finite element method is utilized to discretize the governing equations. A fracture in 

a thermo-poroelastic medium gives rise to discontinuities in displacements, fluid pressure and 

temperature. When dealing with fluid flow and heat transport in a fracture, a multi-physics 

process is encountered since aperture variations are connected with fluid pressure and 

temperature changes in space and time. In this study, a zero-thickness interface element is 

developed to handle the complex thermo-hydro-mechanical processes in fracture. 
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5.3.1 Zero-thickness interface (ZTI) element  

A triple-node interface element with zero thickness is developed (Figure 5.2), which is 

similar to that proposed in Cerfontaine et al. (2015). The mechanical behavior of the ZTI is 

governed by CZM. The interface element allows for pressure and temperature discontinuity 

across the interface. To simulate hydraulic fracture propagation, assuming fluid pressure is 

continuous across newly created fractures, larger value of fluid transport coefficient, c, should be 

used. To simulate the situations where fluid pressure or temperature is required to be continuous 

across newly created fractures, a relatively large value of the fluid transport coefficient or the 

convective heat transfer coefficient should be used. The influence of transport coefficient on 

temperature distribution is analyzed in detail in following sections. Initially the three layers have 

zero thickness and are overlapped with each other. In Figure 5.2, the top and bottom planes (1-2-

3-4 and 5-6-7-8) represent the surfaces of the fracture. Fluid flow and heat transport are 

discretized on the center plane (9-10-11-12) of the three layers where the quadrilateral elements 

used. Each of the nodes 1 ~ 8 has five degrees of freedom; 3 for displacements (ux, uy, uz), 1 for 

pore pressure (p), and 1 for temperature (T). Each of the nodes 9 ~ 12 has two degrees of 

freedom; 1 for fluid pressure (pf) and 1 for temperature (Tf) in the fracture. To summarize, the 

mechanical, hydraulic, and thermal degrees of freedom are written in vector form at each node: 

 

 for nodes 1~8 

 for nodes 9~12 

(5.35) 

As an example, Figure 2.4 shows the deformation of the interface elements after fluid is 

injected into the ZTI elements. The interface elements are linked to and bounded by conventional 

thermo-poroelastic rock matrix elements through 4 shared nodes on the surface of rock matrix.  
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Figure 5.2 12-node interface element. Nodes 1 ~ 8 have degrees of freedom for displacement, pore 

pressure and temperature; nodes 9 ~ 12 have degrees of freedom for fluid pressure and 

temperature. Initially the three layers have zero thickness and overlap each other in numerical 

models. Here they are separated for visualization purpose.  

 

5.3.2 Discretization in time  

For finite element analysis of time-dependent problems, the usual practice is to perform 

the spatial discretization before the time discretization. However, for stabilization techniques in 

transient analysis, it is preferable that the time discretization be performed first (Donea and 

Huerta, 2003). As we will see later, the residual term in stabilization analyses involves a time 

derivative of temperature, which results in a rather cumbersome implementation if the spatial 

discretization is performed first. 

The θ family of methods is adopted to perform the time discretization. No time-

derivatives are included in the momentum balance equation (5.2)1, so it is implicitly evaluated at 

step n + 1. 

Let Δt be the time step size of a time interval [0, t]. We use a superscript to refer to the 

time step counter, and define: 
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The θ family of methods consist of, finding u
n+1

 given u
n
 and by satisfying the boundary 

conditions: 

 
 (5.37) 

where Δut = ut
n+1

 - ut
n
. Substituting ut by pt and Tt using Eqs. (5.6)2 and (5.6)3, we obtain the 

following semi-discrete equations: 

 

, 

. 

(5.38) 

Particular cases of interest are θ = 1 (backward Euler), θ = 1/2 (Crank-Nicolson) and θ = 

0 (forward Euler). The Crank-Nicolson scheme is of second-order accuracy and the rest of the 

cases are of first-order accuracy. 

For equations governing fluid flow (Eq. (5.22)) and heat transport (Eq. (5.25)) in 

fractures and for the equation characterizing fluid flow in wellbores (Eq. (5.33)), the same 

method is used. The following semi-discrete equations are obtained: 
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5.3.3 The Weak form  

If the temporal truncation error is neglected, the time-discretized equations (Eqs. (5.38) -

(5.39)) could be interpreted as a set of spatial differential operators representing the strong form, 

and must be solved at each time step. The standard Galerkin method of weighted residuals is 

employed for spatial discretization of the time discretized equations (Eq. (5.38) and Eq. (5.39)). 

To develop the weak form of the boundary value problem, we define two classes of functions: 

the trial functions and the test functions. 

The spaces of trial function consist of all functions have square integrable first 

derivatives over the solution domain Ω for rock deformation in 3D thermo-poroelastic medium, 

over the solution domain Γc for fluid flow and heat transport on 2D fracture surface, and over the 

solution domain sw for 1D fluid flow in wellbore, and are required to satisfy the essential 

boundary conditions. They are defined as: 

 

, 

, 

, 

, 

, 

 1: ( ),   on 
wp w w w w w w wS p s R p H s p p s     . 

(5.40) 

where H
1
(Ω) represents a Sobolev space of order one. The corresponding spaces of test function 

are similar to the trial functions except that they are vanished on the essential boundaries. They 

are defined as follows: 

 1: ( ),   on 
iu i i i i uS u R u H u u Γ    

 1: ( ),   on p pS p R p H p p Γ    

 1: ( ),   on T TS T R T H T T Γ    

 1: ( ),   on 
f fp f c f c f f pS p Γ R p H Γ p p s   

 1: ( ),   on 
f fT f c f c f f TS T Γ R T H Γ T T s   
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 1: ( ), 0  on 
w wp w w w w p wV p s R p H s s     . 

(5.41) 

For the θ family of methods, the weak form for the problem of rock deformation in 3D 

porous medium consists in finding  , ,i u p Tu p T S S S    such that for all 
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(5.42) 

The equations for fluid flow and heat transport are discretized on 2D surfaces 

representing discontinuities in a 3D domain. Using similar procedures, it is obtained: 

 1: ( ), 0  on 
i i i iu u u u uV R H Γ       

 1: ( ), 0  on p p p p pV R H Γ       

 1: ( ), 0  on T T T T TV R H Γ       

 1: ( ), 0  on 
f f fp f c f c p pV p Γ R p H Γ s   

 1: ( ), 0  on 
f f fT f c f c T TV T Γ R T H Γ s   
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(5.43) 

where  is fracture surface, s is the boundary of fracture surface; , , , , , 

and are virtual strain, virtual separation normal to fracture surface, virtual displacement, 

virtual pore pressure in porous medium, virtual fluid pressure in fracture, virtual temperature in 

porous medium and virtual fluid temperature in fracture, respectively. Scripts n + 1 and n + θ 

refer to the time step counter. 

The equation for 1D fluid flow in wellbore has the following weak form: 

1

s s s

s s

4
ds ds ds

( ) ds ds 0

w

w w w
w w w

w w
w w

n n
pn w w w

p p w w p w

D

n n

p w p w

p rA p p
R Ac AVc

t x f V x x

Q t AV

 

 


 



 

 


 



     
    

      

  

  

 

. (5.44) 

5.3.4 Discretization in space  

Following the standard Galerkin approximation for spatial discretization, the 

displacement, pressure and temperature are discretized through spatial interpolation functions 

(shape functions) in the domain of interest and expressed as: 
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where N
u
, N

p
, and N

th
 are displacement, pore pressure and temperature shape functions for 3D 

porous medium, N
pf

 and N
Tf

 are fluid pressure and temperature shape functions in 2D fracture, 
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N
pw

 is the shape function for 1D fluid flow in wellbore, and u, p, T, pf, Tf , pw  are corresponding 

unknown nodal values. The test functions are written in a similar manner: 
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Using Eq. (5.45), the gradient and divergence of the unknown variables could be obtained 

and represented in the following format: 

 
 (5.47) 

The local separation of fracture surfaces (Δn) is related to the global nodal displacements 

(ui) on the fracture surfaces and is given as 

 
 (5.48) 

Substituting the trial and test functions into Eqs. (5.42) and (5.43), invoking the 

arbitrariness of the test functions, we obtain the following residual equations: 
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(2) Balance of mass 
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(3) Balance of energy 
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(4) Fluid flow in fracture 
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(5.52) 

(5) Heat transport in fracture 
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It should be noted that the v in Eq. (5.51) is for flow rate in porous medium; v in Eq. 

(5.53) is for flow rate in fracture. 

(6) Fluid flow in wellbore 
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(5.54) 

5.3.5 Newton-Raphson method 

When failure processes, such as generation of new fractures, reactivation of natural 

fractures or plastic deformation (shear slip), are generated during fluid injection or production, 

the constitutive laws for the solid deformation and fluid flow would be nonlinear. Fluid flow and 

heat transport are nonlinear with respect to aperture size and flow rate in the fracture. Another 

nonlinear behavior commonly encountered in reservoir simulations is the stress (or strain)-

dependent permeability. In these scenarios, the residual terms above, Ru
n+1

, Rp
n+1

, RT
n+1

, Rpf
n+1

, 

RTf
n+1

, and Rpw
n+1

 are nonlinear with respect to the primary variables u, p, T, pf, Tf and pw. 

The Newton-Raphson method is utilized to solve the system of nonlinear equations 

(5.49), (5.50), (5.51), (5.52), (5.53) and (5.54) iteratively at each time step. The residual in each 

iteration can be approximated as: 

 
. (5.55) 

From above approximation, a linear set of equations for Δx are to be solved at each 

Newton-Raphson iteration: 

 
. (5.56) 
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Performing the linearization, the matrix-vector form of equations (5.49), (5.50), (5.51), 

(5.52), (5.53) and (5.54) is derived as: 
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The terms in the stiffness matrix can be calculated straightforward from the given 

residual equations. Usually, the residual terms would not strictly equal to zero during iterations. 

An error tolerance needs to be chosen as a convergent criterion. 

5.4 Stabilized finite element method for thermal convection 

In problems which involve coupled thermal-poro-mechanical processes, the value of heat 

diffusivity is usually smaller by several orders of magnitude compared to convection velocity 

(also known as advection). This means the coupled equations become convection-dominated. It 

is well known in practice that spurious oscillations would occur in numerical simulations 

involving convection-dominated flow (Brooks and Hughes 1982). Though these oscillations 

could be removed by severe mesh refinement, it is clearly not economical with respect to the 

1n n   u u u 1n n   p p p 1n n   T T T

1n n
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1n n
  f f fT T T
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computation time to use finer meshes, especially when coefficient of diffusivity is extremely 

small. By modifying the standard Galerkin formulation, various numerical techniques have been 

proposed to eliminate the spurious oscillations caused by advection-dominated transport (Codina 

1998). These include streamline-upwind Petrov-Galerkin method (SUPG), Space-time 

Galerkin/least-squares method (ST-GLS), subgrid scale method (SGS), characteristic Galerlin 

method (CG), Taylor-Galerkin method, and so on. Among these, stabilized finite element 

methods are more commonly used. The SUPG stabilization technique will be described and 

applied in the following. 

Comparison of the standard Galerkin discrete equations with the exact solution of the 

heat transport equation (5.6)3, indicates that the Galerkin method introduces a truncation error in 

the form of a diffusion operator (Donea and Huerta 2003). The magnitude of the truncation error 

is a function of the Peclet number (Pe), which expresses the ratio of convection to diffusive 

transport: 

 2
e

ah
P

v
  (5.58) 

where a is the convection velocity, v is the coefficient of diffusivity, and h is the characteristic 

length. This truncation error is systematically negative for all value of Pe. Because of the 

introduction of a negative truncation error, in effect, a modified equation with a reduced 

diffusion coefficient is actually solved. The diffusion coefficient may become negative when Pe 

increases. No stable solution is guaranteed in this situation. To reduce spurious oscillations, an 

additional stabilizing term is added into the original Galerkin formulation of the thermal 

transport equation (5.6)3. 

The stabilization techniques can be expressed in a general form (Brooks and Hughes 

1982; Codina 1998; Donea and Huerta 2003): 
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where ω is the weighting functions, τ stabilization parameter. 

For coupled phenomena studied in this work, two convection-dominated processes could 

exist. The first one is the heat transport in the porous matrix (Eq. (5.6)3), and the other one is the 

heat transport in the fracture fluid (Eq. (5.25)). They share the same basic formulation although 

they have different coefficients and additional terms. 

5.4.1 Stabilization of heat transport in the porous matrix 

For heat transport in the porous rock matrix, the stabilization terms introduced by the 

SUPG method have the following forms: 

 
. (5.60) 

Using the same procedures for the spatial and temporal discretization of the thermal 

transport equations (5.6)3 in the porous matrix, the following discretized stabilization terms, 

which should be added to the standard Galerkin formulations (Eq. (5.42)3), are obtained: 

. (5.61) 
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The terms related to thermal diffusivity are neglected in the stabilization derivation due to 

the usage of trilinear 8-node hexahedron element (second order partial derivative of linear shape 

function with respect to spatial coordinate equals to zero). 

5.4.2 Stabilization of heat transport in fracture  

Fractures in a porous rock often act as major flow paths, which dominate fluid flow 

underground. Under the condition of continuous injection of fluid, heat transport in a fracture is 

usually convection-dominated. The stabilization terms based on SUPG method to reduce the 

numerical oscillation caused by convection-dominated flow have the following forms: 
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After spatial and temporal discretization of the above equations, the following discretized 

stabilization terms are obtained: 
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5.5 Numerical analyses: verification and illustration  

Several typical problems with analytical solutions related to thermal-hydro-mechanical 

processes are studied to verify and analyze the proposed numerical schemes. A KGD Hydraulic 

fracture in 3D domain is studied first. With the consideration of the compressibility effects of 

wellbore, the initiation and propagation of the hydraulic fracture are demonstrated and analyzed. 

A thermo-poroelastic consolidation problem is utilized to illustrate the coupled processes in 

porous rock. Then, the convective-dominated transport problem and its corresponding SUPG 
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stabilization technique are studied. At last, a heat transport problem in fractured porous rock is 

simulated; methods commonly used in simulating fractures in porous rock are analyzed. 

5.5.1 Initiation and propagation of a KGD hydraulic fracture  

A KGD hydraulic fracture in 3D domain is utilized to study the initiation and propagation 

of hydraulic fractures. 3D 8-node hexahedron elements are used. The displacement in thickness 

direction (x-direction in Figure 5.3) is fixed with zero value in order to simulate the plane strain 

condition under which the KGD hydraulic fracture is developed. The compressibility effects are 

considered by simulating the wellbore using 1D elements, which are connected to the zero-

thickness interface elements discretizing the hydraulic fracture. As shown in Figure 5.3, there are 

two nodes in the x-direction. The thickness in the x-direction is 1 m. To make all the variables 

uniformly distributed in the x-direction, a wellbore with flow rate of Q0/2 is used at each of the 

two nodes at the boundary of zero-thickness elements. Table 5.1 gives the input parameters. 

 
Figure 5.3 Connection of 1D elements for wellbore to the zero-thickness interface element in 3D. 

The red bar and circles indicate the 1D elements and their corresponding nodes; the white color 

shows the zero-thickness interface elements; the light blue color shows the 8-node hexahedron 

elements after deformation. The dark nodes connect the 1D element representing the wellbore to 

the zero-thickness element representing the hydraulic fracture.  

 

For comparison purpose, the KGD hydraulic fracture without considering wellbore 

compressibility effects is also simulated. Figure 5.4 gives the aperture, fluid pressure and fracture 
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half-length evolution as a function of time. The aperture and net pressure profiles at different 

injection times are plotted in Figure 5.5. The numerical results when no compressibility effects 

exist match well with the asymptotic analytical solutions. As we know from both numerical 

simulations and asymptotic analytical solutions for the cases without compressibility effects, the 

fluid pressure at the injection point is infinite large at the very beginning of the injection; it then 

gradually decreases as the fracture length grows. 

Table 5.1 Wellbore parameters, rock and fluid properties used for the KGD hydraulic fracture.  

Poisson’s ratio, ν             0.15 

Young’s modulus, E          3.88 × 10
10

 Pa 

Fracture toughness, KIC       1.0 × 10
6
 Pa.m

1/2
 

Tensile strength, Tn             1.0 × 10
6
 Pa 

Energy release rate, GIC      25.2 N/m 

Confining stress,           10.0 × 10
6
 Pa 

 

Compressibility of wellbore, c 1.0 × 10
-9

 Pa
-1

 

Length of wellbore, L    1.0 m 

Diameter of wellbore, 2r   0.12 m 

 

Fluid viscosity, µ              1.0 cp 

Injection rate, Q0 (half-wing)  0.001 m
2
/s  

 

Dimensionless toughness, κ     0.513 

Note: Fracture toughness, KIC , and dimensionless toughness κ are not input parameters for 

CZM, they are calculated for reader’s convenience.  

 

After considering the compressibility effects, a linear pressurization stage exists before 

the break down happens, as shown in Figure 5.4 (b). There is no propagation of the hydraulic 

fracture for the majority part of the pressurization stage. The slope of the curve during the linear 

pressurization on the fluid pressure vs. time plot can be calculated according to Eq. (5.29) when 

no fluid enters the fracture: 

 

 
w

Q tp

t Ac





. (5.64) 

Q(t) is the injection rate at the inlet of wellbore, and has unit of m
2
/s. The slop is 

calculated as 4.42 × 10
7
 Pa/s based on data in Table 5.1. From numerical simulation, it is 
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calculated as 4.40 × 10
7
 Pa/s. The fluid flux entering from the wellbore to the hydraulic fracture 

is illustrated in Figure 5.6. As shown, at the time close to break down, there is a jump in the fluid 

flux (≈ 12.5 × 10
-4

 m
2
/s), which is 2.5 times higher than the given injection rate at the inlet of 

wellbore (5.0 × 10
-4

 m
2
/s). The jump in fluid flux is apparently caused by the compressibility 

effects. A similar phenomenon is also observed in laboratory experiments (Hu and Ghassemi 

2018a; Wu et al. 2008).   

 
(a)  

 
(b)  

Figure 5.4 Hydraulic fracture variables plotted as a function of time. (a) Aperture at the fluid inlet 

point of the hydraulic fracture; (b) fluid pressure at the fluid inlet point of the hydraulic fracture; 

(c) fracture half-length. The fluid inlet point connects the 1D element for wellbore to the 3D zero-

thickness interface element for hydraulic fracture as indicated by the black circles in Figure 5.3. 

(continued) 
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(c) 

Figure 5.4 (continued). (Caption shown on previous page.) 

 

 
(a)  

 
(b) 

Figure 5.5 Aperture and net pressure profiles plotted along the fracture length at different time.  
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Figure 5.6 Fluid flux entering the hydraulic fracture from the wellbore as a function of time.  

 

5.5.2 Thermo-poroelastic consolidation  

Thermo-poroelastic consolidation is a typical fully coupled problem, which involves 

solid deformation, fluid flow and heat transfer in saturated porous media. Aboustit et al. (1982) 

studied a 1D thermoelastic consolidation problem using a coupled finite element model without 

considering convection effect. Based on the results from Aboustit, Noorishad et al. (1984), Lewis 

et al. (1986), Gatmiri and Delage (1997) and Gao and Ghassemi (2016) performed code-to-code 

verification. Analytical solutions for the 1D thermoelastic consolidation are provided in Bai 

(2005). The geometry of the problem is shown in Figure 5.7. Table 5.2 gives the input data. A 

surface traction of 1 N is applied on the top surface, with a surface temperature of 50 °C and a 

pore pressure of 0 Pa. The initial temperature of the saturated soil is 0 °C. The soil column is 

insulated and sealed everywhere, except at the top surface. 3D 8-node hexahedron elements are 

utilized in our simulation. 
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Figure 5.7 Geometry and boundary conditions of the 1D thermo-poroelastic consolidation problem.  

 

Table 5.2 Basic input parameters for thermoelastic consolidation. 

Porosity, ϕ             0.20  

Young’s modulus, E          6000.0 Pa 

Poisson’s ratio, ν          0.40 

Volumetric thermal expansion coefficient, αm  9.0×10
-7

 

Matrix heat capacity, ρC        167.20×10
3
 J/m

3
 °C 

Thermal conductivity, kT
        0.836 kJ/m s °C 

Permeability, k/μ           4.0×10
-6

 m/s 

Biot’s coefficient, α         1.0 

Initial temperature, Tini         0 °C 

Surface temperature, T0        50.0 °C 

Surface load            1.0 Pa 

 

Numerical results from our FEM model are compared with those obtained from analytical 

solutions. The settlements at different locations are plotted as a function of time in Figure 5.8. 

The model first experiences continuous settlement (contraction). Initially, the settlement caused 

by drainage of fluid (effective stress increase) and compression of the solid matrix is larger than 

the expansion due to increase of temperature in the region close to surface on which a higher 

temperature is applied. As the temperature diffuses further into the domain, it gradually rebounds 

(expansion) and reaches a final status. Figure 5.9 and Figure 5.10 shows separately the pore 

pressure and temperature at different locations. As illustrated, they all have a good match with 

analytical solutions. 

7 m

F

F = 1 Pa

T = 50 °C

p = 0 Pa

T = 0 °C

Z

X
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Figure 5.8 Settlement at different locations plotted as a function of time. 

 

 
Figure 5.9 Pore pressure at different locations plotted as function of time.  

 

 
Figure 5.10 Temperature at different locations plotted as function of time. 
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5.5.3 Stabilization of convection-dominated flow  

A simple example is adopted to illustrate the SUPG stabilization technique in convection-

dominated flow. The 1D heat transfer problem (Figure 5.11) is governed by the following 

equation: 

 
. (5.65) 

 

 

Figure 5.11 Illustration of the 1D heat transfer problem. 

 

The analytical solution for this 1D problem is given as (Carslaw and Jaeger 1959): 

 
. (5.66) 

100 equal-size linear elements (3D 8-node hexahedron) are used in spatial discretization 

from x = 0 to x = 1 m. The Crank-Nicolson method (θ = 0.5) is performed in time integration. κ = 

0.0001 W/m·°C and u = 1 m/s are assumed. 

Figure 5.12 gives the temperature profiles at time = 0.6 s for the convection-dominated 

heat flow problem. As illustrated, the SUPG stabilization technique reduces the numerical 

oscillations a lot though it does not completely eliminate the oscillations at the fluid front (as is 

the case in other studies). 
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(a) 

 
(b) 

Figure 5.12 Temperature profiles of the convection-dominated heat flow at time = 0.6 s: (a) without 

the use of SUPG stabilization; (b) with the use of SUPG stabilization. The analytical solution is for κ 

= 0.001 since κ = 0.0001 is too small to yield results from analytical solutions.  

 

5.5.4 Heat transport in fractured porous rock  

To simulate fractures (newly created or pre-existing) in a porous rock, several ways are 

usually adopted, as illustrated in Figure 5.13. The first method is to discretize the fractures using 

1D or 2D element types and then superimpose them onto the standard continuum element edges 

(boundary edge of 2D element) or surfaces (boundary surface of 3D element) (Segura and Carol 

2004), respectively. Since the elements representing the fracture are superimposed on to the 

continuum element, the top and bottom surfaces of the fracture are not explicitly simulated. It is 

difficult to model the mechanical behaviors (opening or sliding) of a fracture when this method 
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is utilized. The second way to model a fracture is to use standard continuum elements which are 

the same as those used for the porous matrix but with different properties for the “solid”, fluid 

flow and heat transfer (Gao and Ghassemi 2016). Usually some equivalent approaches should be 

adopted to obtain those properties. For example, an equivalent permeability should be generated 

for elements representing fractures. The third way is to explicitly model the fractures through 

zero-thickness elements (Segura and Carol 2004; Gao and Ghassemi 2018). Through zero-

thickness element, the mechanical behavior of the discontinuity can be well described. There are 

also other methods to account fractures in continuum elements. Interested readers are referred to 

Wang and Ghassemi (2012), Huang and Ghassemi (2015) and Cheng et al. (2019) for further 

reading. In this section, we focus on the second and third approaches, and analyze the differences 

between them based on simulations of heat transport in a fracture. 

 

(a)                                           (b)                                       (c) 

Figure 5.13 Three different ways to simulate fractures in a porous medium: (a) elements 

representing fractures are superimposed onto the boundary of continuum elements; (b) continuum 

element which is the same as that used for porous media but with different properties; (c) zero 

thickness element. Red color indicates the fracture.  

 

(1) Usage of continuum element in simulating fracture 
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A classical 2D heat transfer problem in a fractured porous rock has been presented in 

Gringarten et al. (1975) and Cheng et al. (2001). A vertical plane representing the fracture 

penetrates the entire height of a reservoir that has constant height and infinite horizontal extent. 

The reservoir is insulated at the top and bottom. The heat conduction in the surrounding rock is 

simplified to be one dimensional. Based on these assumptions, the problem is formed as a 

coupling of 1D convection-diffusion heat transport along the fracture and 1D heat conduction in 

the direction perpendicular to the fracture (Figure 5.14). To obtain an analytical solution of this 

problem, it is further assumed that the facture aperture is constant; the rock matrix is 

impermeable; all the mechanical, fluid and thermal properties are constant. Lauwerier (1955) 

derived analytical solutions for heat transfer between two reservoir formations. If one of the 

formations is treated as a fracture (by modifying formation parameters), the analytical solutions 

could also be used in the fractured porous medium as shown in Figure 5.14. 

 
Figure 5.14 Illustration of heat transport in a fractured porous medium.  

 

On the fracture surface, an equilibrium of heat flux between rock matrix and fracture is 

satisfied in the equation given by Gringarten et al. (1975), Cheng et al. (2001). To obtain an 

analytical solution, it is also assumed that the temperature is continuous across the fracture 

surface. In other words, the temperature in fracture equals to the temperature on the surface of 

rock matrix. As we will illustrate in the following, the continuity of temperature across fracture 

Y

X b
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1D heat 

transfer in 
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surface could be satisfied when we treat the fracture as a “special porous medium” but with 

different properties; a discontinuity in temperature could exist when a convection boundary 

condition between fracture and rock matrix is used instead. We first used a standard continuum 

element (3D 8-node hexahedron element in this study) to model fracture in this fractured porous 

medium. The 2D problem (Figure 5.14) is simulated through a 3D model that has uniform 

distributions of parameters in the direction perpendicular to the 2D plane (xy plane in Figure 

5.14). Table 5.3 gives the input parameters for the thermal related properties and the geometry of 

the model. 

Table 5.3 Geometry and thermal properties for the fractured porous medium. 

Geometry of model       1 × 1 × 0.25 m (length/width/height) 

Fracture length         1 m 

Fracture half-width, b/2     1 × 10
-3

 m 

 

Thermal conductivity of rock, k
T
   1 J/m s °C 

Heat capacity of rock, cr      900 J/kg °C  

Density of rock, ρr       2650 kg/m
3
 

 

Heat capacity of fluid, cf     4200 J/kg °C  

Density of fluid, ρf       1000 kg/m
3
 

Velocity of fluid, vx       1 × 10
-4

 m/s 

 

Initial temperature, T0      0 °C 

Temperature of injection fluid, Tinj  1 °C 

 

Figure 5.15 gives the temperature distribution along the fracture surface at different 

injection time. In the numerical simulation, the fracture surface is also the surface of the 

continuum elements for rock matrix since the 8-node hexahedron element is used to represent the 

fracture. Through this treatment, both the temperature and the heat flux are continuous at the 

fracture surfaces. The temperature at several discrete points in rock matrix is plotted as a 

function of time in Figure 5.16. These points are located along a line that is parallel to the 

fracture surface and is 0.2 meters away from it. As shown, the temperature in both the fracture 
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and the rock matrix matches well with analytical solutions as provided in Lauwerier (1955) and 

Cheng et al. (2001). 

 
Figure 5.15 Temperature distribution along the fracture surface at different injection time. The 

fracture surface is also the surface of continuum element since the fracture is simulated using 8-

node hexahedron element.  

 

 
Figure 5.16 Temperature distribution at discrete points plotted as a function of time. The points are 

located in the rock matrix and are 0.2 meters away from the fracture. Their coordinates are given 

in the figure.  

 

(2) Using the zero-thickness element for simulating flow and heat transport in a fracture 

When continuum elements are used to represent fractures, the degrees of freedom for the 

temperature in the rock matrix and for the fracture are the same and are shared at nodes 

connecting the fracture and rock matrix (Figure 5.13 (b)). However, as shown in Figure 5.2 and 

Figure 5.13 (c), when zero-thickness elements are used, the degrees of freedom for the 
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temperature in the rock matrix and for it in the fracture are on different nodes; thus they have 

different degrees of freedom for temperature (the degrees of freedom for fluid pressure are 

treated in the same way and are also different). The treatment of adopting different nodes for the 

rock matrix and for the fracture allows discontinuity in temperature and pressure across the 

fracture surface. The condition that the heat flux (and fluid flux) is in equilibrium between the 

fracture and the rock matrix can be satisfied when the zero-thickness elements are utilized to 

represent the fracture. However, the temperature would be discontinuous across the interface 

elements since the temperature continuity and heat flux equilibrium cannot coexist at the same 

time at the interface. If fractures are treated as the interior boundary, this means a boundary 

condition of the first kind (Dirichlet boundary) and a boundary condition of the third kind (mixed 

boundary) (Bergman et al. 2011) cannot be satisfied simultaneously at the interface; only the 

“convective surface boundary condition” (mixed boundary) should be used to maintain the 

equilibrium of heat flux at the interface in numerical models. 

In transient heat conduction problems, the convective surface boundary condition exists 

when convective heat flow is off the surface of rock matrix (Bergman et al. 2011), as shown in 

Figure 5.17. When fractures are treated as interior boundaries in numerical models, the 

convection surface condition should also be applicable at the interface that connects fractures 

with the rock matrix. A simple transient heat conduction example is used to demonstrate the 

usage of zero-thickness element to simulate the convection surface condition at the interface. 

Figure 5.17 illustrates a 1D transient heat conduction problem in a semi-infinite solid, 

which extends to infinity in all but one direction, and has a single identifiable surface. The 

convective surface condition exists at the identifiable surface. In the numerical simulation, a 3D 

model with finite length in x direction (Figure 5.17) is utilized to simulate the semi-infinite 
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problem. The single identifiable surface for the semi-infinite solid is represented through a zero-

thickness element, which is bounded by 8-node hexahedron continuum elements. Half of the 

model on either side of the zero-thickness element is treated approximately as a semi-infinite 

solid. The analytical solution for this problem is provided in Bergman et al. (2011). The 

followings are the boundary conditions (when fractures are treated as interior boundaries) at the 

interface: 

 

 

 

(5.67) 

In the numerical simulation, convective heat transfer coefficient, h, is 100 W/m
2
·°C; heat 

conduction of rock, k
T
, 3 W/m·°C; heat capacity of rock, cr, 900 J/kg·°C; rock density, ρ, 2650 

kg/m
3
; initial temperature, Ti, 0 °C; temperature of convective fluid at the interface, Tf, 1 °C. 

Figure 5.18 illustrates the distribution of temperature along the line perpendicular to the interface 

(x direction in Figure 5.17) at different time. As shown, numerical results match well with 

analytical solutions. Temperature discontinuity exists at the interface. As time goes by, the 

temperature on the surface of rock matrix, T(x, t) at x = 0 m, gradually approaches the 

temperature of convective fluid (Tf). 

 
Figure 5.17 Illustration of convection surface condition and the corresponding numerical model to 

simulate the convection surface condition using a zero-thickness element. 3D hexahedron element is 

utilized to simulate the solid part of the 1D problem. The red color indicates the zero-thickness 

element where the convection surface condition is located.  
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Figure 5.18 Temperature distribution along the line perpendicular to the interface (x direction in 

Figure 5.17) at different time. 

 

Compared to the aforementioned methods (superposition method and continuum element 

method) to simulate fractures, the zero-thickness element is much more flexible and effective to 

handle coupled thermo-hydro-mechanical processes. It can simulate mechanical opening and 

shearing (Gao and Ghassemi, 2018); it can also be used to describe heat convective boundary 

conditions which is often encountered in practical applications. When the superposition method 

or continuum element method is used, the aperture size is usually determined through empirical 

equations and the discontinuity in temperature or pore pressure across an interface cannot be 

realized. 

Convective heat transfer coefficient, h, is a fundamental parameter in numerical analyses 

related to rock-fracture heat transfer. Though much effort has been spent on measuring it through 

experiments, it is still a challenging task to obtain typical values for a rock-fracture interaction 

system (Zhao and Tso 1993). Problems of convective heat transfer are complex because the 

coefficient depends on fluid properties, as well as the surface geometry and flow conditions on 

the solid-liquid interface (Bergman et al. 2011). In fractured porous media, many factors could 

influence the convective heat transfer, for example, fluid flow velocity, fracture geometry, 

fracture surface roughness, and so on. The same problem as that shown in Figure 5.14 is studied 
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here to analyze the influence of convective heat transfer coefficient on heat transfer in a fracture 

in porous rock. The geometry of the model, fluid and thermal related properties are the same as 

those provided in Table 5.3. 

Figure 5.19 illustrates the temperature profile in the fracture for different convective heat 

transfer coefficients. Carslaw and Jaeger (1959) give the solutions for heat transfer in 1D, which 

corresponds to h = 0, i.e., no heat flux through the interface connecting fracture and rock matrix. 

The solution provided by Cheng (2001) could be utilized when fractures are treated as a porous 

medium but with different properties than the surrounding matrix. With such a treatment, both 

heat flux equilibrium and temperature continuity are satisfied at the interface; since the 

temperature is continuous at the interface (temperature in the fracture equals to that on the 

surface of rock matrix), a maximum heat flux through the interface is achieved. As shown in 

Figure 5.19, when h = 10000 W/m
2
·°C, results from numerical simulations can approach the 

solution provided by Cheng et al. (2001); numerical results are not sensitive to h when its value 

is larger than a certain number, e.g. 100 W/m
2
·°C in this case, which yields results very close to 

the solution derived by Cheng et al. (2001). It should be noticed that the solution derived by 

Cheng et al. (2001) assumes the temperature is continuous across the interface; in other words, 

the temperature in fracture is equal to that on the surface of porous medium (fracture surface).  
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(a) 

 
(b) 

Figure 5.19 Temperature profiles within fracture for different convective heat transfer coefficient 

(h) at time = 3000 seconds (a) and at time = 7000 seconds (b). The unit for h is W/m
2
·°C. Discrete 

points are from analytical solutions, lines are from numerical simulations.  

 

5.6 Numerical simulations of a lab-scale EGS 

Based on the proposed model, a series of numerical simulations of a lab-scale enhanced 

(or engineered) geothermal system (EGS) are carried out. The main objectives are to gain a 

better understanding of the hydraulic and thermal related properties of hydraulically induced 

fractures. Experimental results can be found in detail in Hu et al. (2016); Hu and Ghassemi 

(2017, 2018b, 2018a). In the following sections, a stepwise pressurization test is performed first. 

The experiment is designed to obtain information regarding the integrity of the tested block 

sample and to validate its permeability. Then, the initiation and propagation of hydraulic fracture 



212 

in a block sample are modeled. Afterwards, a more complex experiment involving cold water 

circulation in a hot, hydraulically fractured block sample is simulated and discussed. 

5.6.1 Stepwise constant pressure injection 

A brief description about the lab-scale EGS system is given here. A 13 inches cubical 

granite block was drilled with 5 wells, as shown in Figure 5.20. The injection has a depth of 7.5 

inches with a diameter of 0.78 inch. The open-hole section at the bottom has a length of 2.0 

inches, as indicated by the red color. Four production wells were drilled 3.5 inches away from 

the injection well with a depth of 9.0 inches and a diameter of 0.4 inch. The open-hole sections 

of the production wells have a length of 5.0 inches, which is indicated by the blue color in Figure 

5.20. 

The actual fracturing and circulation experiments were performed on block of Sierra-

White granite with an injection well and 4 production well (a five-spot). Before the step-wise 

pressurization test, the rock block was saturated through 0.002 mol/L NaCl solution. The same 

solution was used during injection. For each pressurization step, the pressure was kept constant 

for 3 minutes. 

The four production wells were fully open during the pressurization. The laboratory 

results for the stepped pressurization are given in Table 5.4. The block permeability was 

measured in the laboratory to be 518 nD. The experimental results indicate the integrity of the 

rock block and the injection system before hydraulic fracturing. Actually, the rock blocks are 

carefully chosen to not contain visible cracks so as to study the impact of fracturing. 

A trial and error method was used to match the numerical results with the laboratory test 

ones. The basic mechanical and fluid parameters used in this study are listed in Table 5.5. The 

properties for Westerly granite are also given for comparison. The viscosity of the injected water 
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is 0.89 cP, which is the viscosity of water at about 25 °C. Biot’s effective stress coefficient and 

undrained Poisson’s ratio are estimated as the same as those for Westerly granite.  

    

(a)                                                                                          (b) 

Figure 5.20 (a) Discretized grid model. 8-node hexahedron element is used; (b) Production and 

injection wells in the tested block. The red color indicates open-hole section of the one injection 

well; the blue color indicates open-hole sections of four production wells. Unit: m. 

 

Table 5.4 Experimental results of stepped constant pressure injection. (Hu et al., 2017) 

Time slice (mins)  Pressure (psi)  Pressure (Pa)  Flow rate (m
3
/s) 

0 - 3      50     3.45E+05  6.04E-11 

3 - 6      100    6.89E+05  1.55E-10 

6 - 9      150    1.03E+06  2.25E-10 

9 - 12      200    1.38E+06  2.81E-10 

12 - 15     250    1.72E+06  3.36E-10 

15 - 18     300    2.07E+06  3.88E-10 

18 - 21     350    2.41E+06  4.35E-10 

21 - 24     400    2.76E+06  4.81E-10 

 

A series of simulations using different permeability are performed. Results for 

permeability being 595 nD, 680 nD and 765 nD are shown in Figure 5.21. As illustrated, the 

injection rate is relatively higher at the beginning of each injection stage due to an abrupt 

increase of injection pressure; then a stable injection rate is reached. The numerical simulation 

with a permeability of 680 nD matches well with the laboratory data. This value is close to that 

measured in laboratory (518 nD). The numerical simulations also indicate that the developed 

numerical model is correctly set up for the rock block experiments.  
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Table 5.5 Mechanical and fluid properties for granite in this study and for Westerly granite.  

             Granite in this study       Westerly granite 

Biot’s effective stress coefficient:  0.47 (from  Westerly granite)     0.47 

Drained Poisson’s Ratio, ν:          0.25            0.25 

Undrained Poisson’s Ratio, νu:     0.34 (from  Westerly granite)     0.34 

Young’s Modulus, E:           6.50 × 10
10

 Pa  (9427452 psi)     3.75 × 10
10

 Pa 

Density, ρ:            2.65 g/m
3 

Tensile strength, T:              8.83 × 10
6
 Pa  (1280 psi) 

Porosity, φ:           0.8 %            1% 

 

Permeability, k:                518 nD            4.0 × 10
-4

 mD 

viscosity, μ:           0.89 cP 

 

 

 
(a) 

 
(b)  

Figure 5.21 Flow rate plotted as a function of time for the cases with permeability equal to 595 nD 

(a), 680 nD (b), 765 nD (c). (continued) 
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(c) 

Figure 5.21 (continued). (Caption shown on previous page.) 

 

5.6.2 Initiation and propagation of hydraulic fracture 

To obtain high conductivity flow paths and economical production rate, hydraulic 

fracturing is usually performed during the development of an EGS system. The lab-scale 

hydraulic fracturing was performed in laboratory in the previously mentioned block samples. 

The block samples with the created hydraulic fracture were used in the next step to analyze the 

extraction of thermal energy. Essentially the main procedures involved in the development of an 

EGS system in field are realized in laboratory. They are the creation of a geothermal reservoir 

through hydraulic fracturing and the extraction of the thermal energy from the created fracture. 

In this study, we simulate one of the hydraulic fracturing tests. Details about the 

laboratory setup and the corresponding experimental data can be found in Hu and Ghassemi 

(2018a). The same geometry as those provided in Figure 5.20 is used. The rock and fluid 

properties are the same as those given in Table 5.5. The fracture toughness KIC and its 

corresponding energy release rate GIC are 2.0 MPa.m
1/2

 and 57.7 N/m, respectively. The injection 

rate is 8.33 × 10
-9

 m
3
/s. The injection well length and diameter are 0.17 m (6.75 inch) and 0.0198 

m (0.78 inch), respectively. The length and diameter for each of the four production wells are 

0.19 m (7.50 inch) and 0.0099 m (0.39 inch), respectively. The compressibility parameter c of 
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the wellbore is 9.20 × 10
-10

 Pa
-1

, which can be calculated from the experimental records provided 

in Hu and Ghassemi (2018a). 

To prevent the hydraulic fracture from propagating to the block sample surface, the pump 

was stopped when its pressure drop reached a preset value of 0.28 MPa (40 psi); the initially 

closed production well were opened when the had rapid increase of pressure (0.07 MPa/s) or the 

pressure reached a value of 1.38 MPa. In the numerical simulation, the compressibility effects of 

the production wells are considered through the connection of the nodes of production wells to 

the 1D wellbore elements using the same scheme shown in Figure 5.3. 

Figure 5.22 illustrates the injection pressure plotted as a function of time. The slop of the 

curve at the pressurization stage is 1.73 × 10
5
 Pa/s. As shown, the results from the numerical 

simulation match well with those from the laboratory experiment. At t = 182 s, the injection is 

ceased and the hydraulic fracture touches the production wells. After shut-in, the injection 

pressure from the numerical simulation drops to a constant value larger than the applied vertical 

stress. In the laboratory experiment, the pressure at the injection well gradually decreases as time 

goes by and fluid diffuses into the rock matrix.  

 
Figure 5.22 Comparison of injection pressure from the numerical simulation to those from the 

laboratory experiment.  
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The geometry, loading conditions and input parameters in the numerical simulation are 

symmetric to the injection point. The created hydraulic fracture is in penny-shape. The fracture 

radius, aperture and fluid pressure at the node of injection wellbore that connects the wellbore 

elements to the zero-thickness elements are plotted as a function of time in Figure 5.23. The 

hydraulic fracture starts propagating at t ≈ 177 s. Before shut-in, the aperture increases and the 

injection pressure decreases; the propagation of the hydraulic fracture lasts for about 5 seconds. 

After shut-in, the hydraulic fracture propagates for an additional 3.5 cm in about 2 seconds; the 

injection pressure and aperture finally reach constant values. 

From both the numerical simulation and laboratory records, it is suggested that the 

propagation of hydraulic fracture continues for about 7 seconds; the pressurization stage before 

fracture propagation takes a large portion of the total injection time. The total energy during 

injection can be calculated using the following equation 

 0

injt

inW pqdt   (5.68) 

where q is the injection rate, p the injection pressure. Through calculations, it is determined that 

the total input energy before the initiation of hydraulic fracture at t ≈ 177 s is about 22.4 J. A 

penny-shaped fracture would consume the surface energy of 22.4 J after propagating 0.35 m in 

radius, using the energy release rate of 57.7 N/m (corresponding to KIC = 2 MPa.m
1/2

). It should 

be noted that the edges of the cubic block sample is just 0.33 m. After injection is ceased at t = 

182 s, the hydraulic fracture continues to propagate (for about 2 seconds) and the aperture 

decreases dramatically (Figure 5.23). Figure 5.24 illustrates the fracture extent at t = 182 s and t= 

192 s. The red line indicates the fracture front obtained from laboratory by cutting the block 

sample into slabs and mapping the hydraulic fracture (Hu and Ghassemi 2018a). The numerical 

simulation produces a penny-shaped hydraulic fracture since the geometry, boundary conditions 
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and input parameters are symmetric with respect to the injection well. In the laboratory 

experiment, many factors such as rock heterogeneity, loading and constraining conditions, could 

make the hydraulic fracture propagate asymmetrically, as indicated by the fracture footprint 

obtained from laboratory. 

 
(a) 

 
(b) 

Figure 5.23 Fracture radius, aperture and fluid pressure at the injection well node connecting the 

zero-thickness element to the wellbore element plotted as a function of time. (a) distribution of 

variables in the complete numerical simulation duration; (b) simulation time from 160 second to 

200 second, during which break down occurs and the hydraulic fracture touches the production 

wells. The vertical dot line in (b) indicates the time (t = 182 s) at which the injection is ceased.  
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(a) 

 
(b) 

Figure 5.24 Fracture footprint indicated through the aperture size atdifferent time from the 

numerical simulation. (a) fracture footprint at t = 182 s when the injection is just ceased and the 

hydraulic fracture touches the four production wells; (b) fracture footprint at t = 192 s when the 

injection pressure is stable after shutin. The redline gives the fracture geometry obtained from the 

laboratory experiment.  

 

5.6.3 Thermal circulation 

Characteristics of mechanical, hydraulic and thermal properties of fractures are essential 

for evaluating and predicting the performance of an EGS system. Lab-scale experiments were 

designed and conducted to study the thermal-hydro-mechanical properties of hydraulically 

induced fractures. Related data were recorded in detail during the experiments. For example, the 
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injection rate, injection pressure and temperature were recorded at the injection well; the fluid 

temperature and accumulated fluid volume were also obtained at each production well. Detailed 

records regarding the experiments can be found in Hu and Ghassemi (2018b). To investigate the 

mechanisms behind observed phenomena related to fluid flow and heat transfer in a 

hydraulically created fracture, numerical simulations are performed. 

The size of the granite block and the well configurations are the same as those provided 

in Figure 5.20. A hydraulic fracture was created first at the room temperature. Then the rock 

block was heated to a nearly uniform temperature of 69 °C. After that cold water was injected 

into the created fracture through the open-hole section of the injection well; the heated water was 

produced through the production wells. The injection well, hydraulically created fracture, 

production wells and block rock are assembled together as a circulation system. We focus on the 

thermal circulation part of the experiments. 

The geometry of the hydraulically created fracture is shown in Figure 5.25, as indicated 

by the red color. The fracture geometry is somewhat planar and was reconstructed by cutting the 

block and also by analyzing the AE record (Hu and Ghassemi 2018b). The fracture intersects the 

open-hole section of the left and bottom production wells. From laboratory records, the recovery 

rate of the injected fluid is more than 97.5%. The produced fluid from the left and bottom 

production well is 14.8% and 82.8%, respectively. The fluid produced from the other two 

production wells is less than 1.0% due to the lack of connectivity with the hydraulic fracture. 

Since the recovery rate is 97.5%, it is considered that the leak-off effect during water circulation 

is negligible. Based on this consideration, the rock block is simulated through thermo-

mechanical elements (rather than thermo-poromechanical) which have degrees of freedom for 

displacements and temperature but not for pore pressure. This is justified in view of the small 
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pore pressure variation due to thermal perturbations in granitic rocks (Ghassemi and Zhang, 

2004; Tao and Ghassemi, 2011). The hydraulic fracture is simulated using the proposed thermo-

hydro-mechanical interface elements as shown in Figure 5.2. The basic input parameters are the 

same as those provided in Table 5.5. 

The temperature of water at the injection location was recorded in laboratory experiments 

(Figure 5.26) and is given as boundary conditions for the numerical simulations. In the 

laboratory, through pre-cooling of the injection water and by placing a long section of the 

injection tubing into an ice water tank, the temperature of the injection water was maintained at 

zero Celsius before entering the rock block. The injection water was heated up when flowing 

from the inlet to the open-hole section at the bottom of the injection well. Since the temperature 

was recorded in the open-hole section of the wells, the recorded temperature in the injection well 

is larger than that at the inlet (close to zero Celsius). Initially the flow rate was relatively slow (≈ 

4 ml/min), the injection water was heated up to the temperature of rock block (69 °C) till it 

reached the bottom. Later on the injection rate was increased; the injection water was heated up 

to relatively lower temperatures. As illustrated in Figure 5.26, the temperature at the injection 

location (open-hole section at the bottom) gradually decreases from near 70 °C to an 

approximate constant value of 19 °C as time goes by. The recorded temperature at the open-hole 

section in the injection well is used as the temperature boundary condition at the intersection 

location between the created hydraulic fracture and the injection well. The process of heating up 

the injected water before reaching the intersection location is not simulated in this study. The 

injection rate at the intersection location is given in Figure 5.27.  
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(a) 

 
(b) 

Figure 5.25 (a) The distritribution of the created hydraulic fracture in the rock block; (b) Geometry 

of the hydraulically created fracture. The red color on the plane indicates the created hydraulic 

fracture, which intersects the open-hole section of the left and bottom production wells. (The 

geometry is reconstructed based on Figure 4 in Hu and Ghassemi (2018b).) 
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Figure 5.26 Laboratory recorded temperature plotted as a function of time for the injection well 

and production wells. The total circulation time is around 8000 s; the temperature drop in the 

injection well is 52.6 °C, in bottom and right production well is 23.8 °C and 10.0 °C, respectively. 

 

 
Figure 5.27 Injection rate plotted as a function of time. 

 

The convective heat transfer coefficient is also an input parameter for the interface 

elements for these simulations. Its value depends on many factors. Usually a range of the values 

could be obtained if special experiments are designed to evaluate the coefficient (Zhao and Tso 

1993). In this study, a trial and error method is used to match the experimental data with respect 

to fluid pressure at the injection well, and the temperature in the production wells. Two different 

convective heat transfer coefficients (100 W/(m
2
.K) and 500 W/(m

2
.K)) are adopted. The value 

of convective heat transfer coefficient determines the amount of heat flux exchanged between the 

hydraulic fracture and the rock surrounding the fracture. 
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Figure 5.28 illustrates the aperture size of the hydraulic fracture from numerical 

simulations at the location intersecting the injection well. The simulation generates a larger 

aperture size when using smaller convective heat transfer coefficient (100 W/(m
2
.K)). The 

smaller the coefficient, the weaker the heat flux exchange and thus the lower the contraction of 

the surrounding rock. The aperture initially increases with time; it then reaches an almost 

constant value after the temperature in the hydraulic fracture is stable. The injection pressure 

from numerical simulations is plotted as a function of time in Figure 5.29. The pressure curves 

corresponding to different convective heat transfer coefficients have the same trends but with 

different values. For each injection step, the pressure reaches a maximum value in the beginning; 

it then gradually decreases. The overall trends of the pressure curves are observed as that the 

injection pressure initially increases until it reaches a maximum value and then gradually 

decreases to an almost constant value. The decrease of pressure is caused by the effect of cooling 

on the rock surrounding the hydraulic fracture since continuously circulating of cold water 

makes surrounding rock contract and thus generates larger aperture size. From Figure 5.28 and 

Figure 5.29, it is also demonstrated that the response of the fluid pressure is very sensitive to the 

mechanical and thermal properties of the rock. Less than 5 μm difference in aperture size causes 

a fluid pressure change of nearly 5 MPa at the injection well. 

The temperature in the left and lower production wells is shown in Figure 5.30 and 

Figure 5.31, respectively. The simulation using convective heat transfer coefficient of 500 

W/(m
2
.K) yielded results close to the experimental data. 
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Figure 5.28 Aperture at the injection well plotted as a function of time using convective heat 

transfer coefficient, h, equal to 100 W/(m
2
.K) (a) and 500 W/(m

2
.K) (b), respectively. 

 

 
Figure 5.29 Injection pressure plotted as a function of time using convective heat transfer 

coefficient, h, equal to 100 W/(m
2
.K) (a) and 500 W/(m

2
.K) (b), respectively. 

 

 
Figure 5.30 Temperature of fluid from the left production well plotted as a function of time using 

convective heat transfer coefficient, h, equal to 100 W/(m
2
.K) (a) and 500 W/(m

2
.K) (b), 

respectively. 
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Figure 5.31 Temperature of fluid from the bottom production well plotted as a function of time 

using convective heat transfer coefficient, h, equal to 100 W/(m
2
.K) (a) and 500 W/(m

2
.K) (b), 

respectively.  

 

Although the numerical results do not exactly match the experimental data, good 

agreement has been achieved. The differences in pressure is mostly caused by the near wellbore 

tortuosity and the complex fracture morphology and roughness which are very difficult to 

reproduce numerically or even to describe in empirical equations (Zhao and Tso, 1993).  

Although a range of input parameters might yield similar results, reliable and physically 

plausible input parameters are confined within a more limited range. For example, the convective 

heat transfer coefficient could be around 500 W/(m
2
.K); however, it could not be close to 10 

W/(m
2
.K) or 1000 W/(m

2
.K) since using these parameters would produce numerical results that 

vary greatly with the experimental data for reasonable values of other input parameters. 

5.7 Conclusions 

To simulate the coupled thermo-hydro-mechanical processes in fractured porous media, 

the governing equations for porous media and discontinuities are given. The mechanical 

constitutive law of discontinuities is built based on CZM, which can be used to simulate both 

shear and tensile failures. Fluid flow in discontinuities is governed by the commonly used “cubic 

law”. For heat transport in fractured porous media, the convective heat transfer coefficient, h, is 

introduced; temperature drop is allowed across the interface between fracture and porous 
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medium. The compressibility effects of the wellbore are also considered by introducing the fluid 

flow in wellbore. Through temporal and spatial discretization based on finite element method, a 

3D fully coupled thermal-hydro-mechanical model for fractured porous media is developed. A 

special zero-thickness interface element is proposed to simulate the behaviors related to 

discontinuities. It has degrees of freedom of displacement, fluid pressure and temperature, and 

can be used to simulate either pre-existing fractures or newly developing fractures. The nonlinear 

system equations are solved by Newton-Raphson method. Numerical examples are presented to 

verify and illustrate the application of this model. The initiation and propagation of a KGD 

hydraulic fracture in 3D domain are studied. The compressibility effects of wellbore are taken 

into account. Excellent agreements have been achieved through the comparison of numerical 

results with analytical solutions for the 1D thermo-poroelastic consolidation. The heat transfer 

between fracture and porous medium is analyzed in detail. It is demonstrated that the convective 

heat transfer coefficient equal to zero, h = 0, corresponds to insulated heat transport in fractures; 

when it larger than a certain value, the temperature tends to be continuous across the interface 

between fracture and porous medium. Three lab-scale EGS experiments are studied using the 

proposed model. The first one investigates the permeability of the tested block sample. 

Numerical results match well with the experimental data when the permeability used in the 

simulation is close to that measured in laboratory. The second one investigates the initiation and 

propagation of the hydraulic fracture in a granite rock block. To model the linear pressurization 

stage before hydraulic fracture propagation, the wellbore is simulated explicitly through 1D 

elements. The last one studies the cold water flow through the newly created fracture in a block 

sample, which is heated to 70 °C. It is found that the responses of the fractured rock sample are 

very sensitive to mechanical, hydraulic and thermal properties. Two scenarios with h = 100 
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W/(m
2
.K) and h = 500 W/(m

2
.K) are considered separately. Numerical results demonstrate that 

the difference in aperture size at the injection point is less than 5 μm; however, the difference in 

injection pressure is larger than 5 MPa between the two scenarios. 
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6 Pore pressure and stress distribution around a hydraulic fracture in 

heterogeneous rock  

Abstract 

One of the most significant characteristics of unconventional petroleum bearing 

formations is their heterogeneity, which affects the stress distribution, hydraulic fracture 

propagation and also fluid flow. This study focuses on the stress and pore pressure 

redistributions during hydraulic stimulation in a heterogeneous poroelastic rock. Lognormal 

random distributions of Young’s modulus and permeability are generated to simulate the 

heterogeneous distributions of material properties. A 3D fully coupled poroelastic model based 

on the finite element method is presented utilizing a displacement-pressure formulation. In order 

to verify the model, numerical results are compared with analytical solutions showing excellent 

agreements. The effects of heterogeneities on stress and pore pressure distributions around a 

penny-shaped fracture in poroelastic rock are then analyzed. Results indicate that the stress- and 

pore pressure distributions are more complex in a heterogeneous reservoir than in a 

homogeneous one. The spatial extent of stress reorientation during hydraulic stimulations is a 

function of time and is continuously changing due to the diffusion of pore pressure in the 

heterogeneous system. In contrast to the stress distributions in homogeneous media, irregular 

distributions of stresses and pore pressure are observed. Due to the change of material properties, 

shear stresses and nonuniform deformations are generated. The induced shear stresses in 

heterogeneous rock cause the initial horizontal principal stresses to rotate out of horizontal 

planes. 
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6.1 Introduction 

Hydraulic fracturing is an essential technology to achieve economic production in 

unconventional hydrocarbon reservoirs; these include tight gas sands, shale gas and coalbed 

methane. One of the most significant characteristics of shale source rock is the heterogeneity of 

reservoir properties, which affect the stress distribution, hydraulic fracture propagation and also 

fluid flow. However, to our knowledge the impact of heterogeneities on stress and pore pressure 

distribution around a hydraulic fracture has not been studied. In contrast, the induced stresses 

around pressurized fractures in an elastic or poroelastic homogeneous medium are well described 

in the literature (Kumar and Ghassemi 2015; Rawal and Ghassemi 2011; Sesetty and Ghassemi 

2015; Warpinski and Branagan 1989). 

Vandamme et al. (1989) and Ghassemi and Roegiers (1996) studied 2D and 3D 

poroelastic effects on hydraulic fracturing. Gordeyev (1993) derived analytical expression for the 

width of a 3D fracture in homogeneous poroelastic media. Zhou and Ghassemi (2011) used a 

fully coupled poroelastic displacement discontinuity (DD) method to study the response of a 

natural fracture in poroelastic media while Ghassemi and Zhou (2011) investigated the impact of 

thermo-poroelastic effects on fracture width and injection pressure. The transient response of a 

uniformly pressurized fracture has been quantified by considering a pressurized Griffith crack in 

poroelastic and thermo-poroelastic media (Detournay and Cheng 1991; Ghassemi and Zhang 

2006). Ge and Ghassemi (2008) calculated the injection-induced stress using a thermo-

poroelastic model. The potential failure regions around the pressurized fracture were evaluated. 

Although extensive work, both theoretical and experimental, has been carried out on fluid 

flow in heterogeneous porous media (Durlofsky 1991; Guerillot et al. 1990; Warren and Price 

1961), analysis of stress and pore pressure distributions in a heterogeneous poroelastic rock is 
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rarely available. Hydraulic fracturing inevitably alters the stress distribution and fluid flow paths. 

Investigation of stress redistribution and fluid migration during hydraulic fracturing under 

heterogeneous reservoir conditions with natural fractures (Safari and Ghassemi 2015; Wang and 

Ghassemi 2012) will improve our understanding and will help technology development to 

optimize stimulation design. 

The purpose of this study is to provide insight into the influence of heterogeneities in 

reservoir rock properties on the stress and pore pressure distributions during hydraulic fracturing. 

The spatial extent of stress-reorientation (horizontal principal stresses rotate a certain degree but 

less than 90°) and stress-reversal (horizontal principal stresses rotate 90°) are analyzed to 

illustrate the alteration of in-situ stresses. Sensitivity analyses are performed through variations 

of material properties which are used to characterize a poroelastic rock, e.g. Biot’s effective 

stress coefficient, Young’s modulus, drained- and undrained Poisson’s ratios. The drained- and 

undrained material properties reflect two limiting behaviors of poroelastic rocks. The situation 

where the applied loads and deformations are slow relative to the time scale of fluid diffusion is 

called a drained response. The undrained response occurs when the fluid diffusion time scale is 

too short to allow alterations in the fluid mass content (Rice and Cleary 1976). The drained- and 

undrained Poisson’s ratios are evaluated under drained- and undrained experimental conditions, 

respectively. 

A 3D numerical model based on the finite element method (FEM) is developed and 

utilized. Numerical solutions are compared with analytical ones developed by Sneddon and 

Elliot (1946) for a penny shape crack in an infinite, 3D elastic medium. The stress- and pore 

pressure distributions are illustrated for both homogenous and heterogeneous scenarios. 
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6.2 Problem description and methodology  

6.2.1 Problem description  

Usually the information about subsurface rock properties is incomplete. One of the most 

important problems associated with reservoir characterization is that of determining the nature of 

heterogeneities that inevitably occur in formations. Theoretical and experimental investigations 

have provided reasonable descriptions of the physical processes that are involved in hydraulic 

fracturing. However, the uncertainty about the distributions of natural fractures, in-situ stresses 

and formation properties such as Young’s modulus and permeability, leads to uncertainty in 

estimating or predicting the stress redistribution and the fluid flow during hydraulic fracturing. In 

this paper, we investigate the influence of heterogeneous distributions of Young’s modulus and 

permeability on the reservoir rock during hydraulic fracturing. Intact rocks have higher Young’s 

moduli than the rock masses consisting of the same intact materials but with discontinuities such 

as natural fractures. Also, the permeability of intact rocks is generally much smaller than that of 

rock masses. Young’s modulus and permeability are both affected by the presence of 

discontinuities and one could establish correlations between the two parameters, however, we 

consider them as independent. 

A challenging aspect of dealing with reservoir heterogeneity is that it is possible to 

compute behaviors based on specific reservoir heterogeneity and physical models, but it is not 

possible to specify the in-situ distribution of reservoir heterogeneity (Warren and Price 1961). A 

simple way to investigate the behavior of hydraulic fracturing in heterogeneous reservoirs is to 

perform stochastic (Monte Carlo) simulations (Fenton and Griffiths 2008). In this work, we first 

discuss the generation of random fields of Young’s modulus and permeability. Then, the response 

of each geostatistical realization is simulated using a coupled fluid flow and geomechanical 
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model. A realization of a random variable is the value generated from a stochastic simulation. 

Synthetic examples are studied to analyze the linkage between the degree of heterogeneity and 

the corresponding rock responses in terms of pore pressure and stress distributions. 

6.2.2 Generation of random fields  

The normal (or Gaussian) distribution is a widely used continuous probability 

distribution. Its probability density function can be characterized by a mean value μ and a 

variance σ
2
. When the normal distribution is utilized to represent material properties, negative 

values may be generated (Fenton and Griffiths 2008), which do not have physical meaning. A 

simple way, commonly adopted in practice, is to use the lognormal distribution. 

In our current study, only the Young’s modulus and permeability are considered to be 

spatially random properties and are assumed to follow a log-normal distribution. An exponential 

semivariogram function γ(L) is used to specify the spatial correlation in observations measured at 

sample locations (Deutsch and Journel 1992), 

 
 (6.1) 

where L = lag distance, a = effective range of the variogram, C0 = sill value. Also, several 

methods for generating a Gaussian random field, which is completely characterized by the mean 

and covariance values, can be found in Fenton and Griffiths (2008). To simplify the problem, the 

heterogeneous fields are assumed to be isotropic, that is, the correlation structure in both the 

horizontal and vertical directions is assumed to be the same. The assumption of isotropy 

admittedly has its limitations. Reservoirs often exhibit anisotropic characteristics, but in this 

study we focus on heterogeneous distributions of material properties. The role of anisotropy in 

stimulation has been considered by (Sesetty and Ghassemi 2016). 
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The unconditional Gaussian random field is commonly referred to as spatially correlated 

random field. A random field that preserves certain known data at specific points is called a 

conditional random field (Fenton and Griffiths 2008). For unconditional simulations, the mean 

values of Young’s modulus and permeability are constant. The standard deviations are varied to 

evaluate the effects of input variability on the physical responses of a reservoir. The parameters 

of the transformed log normal Gaussian random filed are obtained from the following equation 

(Fenton and Griffiths 2008): 

 
 (6.2) 

 
 (6.3) 

where σ and μ are variance and mean of the normal distribution, σln and μln are variance and 

mean for the lognormal distribution. 

The actual values are transformed by scaling with respect to the unit-variance Gaussian 

random field G(x) according to 

 
 (6.4) 

where Gi is the value at the ith element of a zero-mean, unit-variance Gaussian random field 

G(x). 

6.2.3 Poroelastic model  

The coupled deformation/diffusion processes are characterized by the theory of 

poroelasticity introduced by Biot (1941). Rice and Cleary (1976) have recast Biot’s theory in 

terms of physical concepts. The equations governing the responses of fluid-infiltrated porous 

solids are expressed as: 
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(6.5) 

where the indices take the values 1, 2 and 3, and repeated indices imply summation. The 

constitutive equations are expressed in terms of the total stress σij, the pore pressure p, and their 

respective conjugate quantities, the solid strain εij and variation of fluid volume per unit 

reference pore volume ζ. The basic material constants are: the shear modulus G, the drained- and 

undrained Poisson’s ratios v and vu, and the Biot’s effective stress coefficient α. B is the 

Skempton coefficient: 

 
 

(6.6) 

Linear poroelastic processes are described by the constitutive equations, Darcy’s law, the 

equilibrium equations and the continuity equations. A set of five material constants, G, ν, νu, α 

and κ are needed to fully characterize a linear isotropic poroelastic system. These equations are 

combined into field equations in terms of ui and p which consist of an elasticity equation with a 

fluid coupling term, 

  
(6.7) 

and a diffusion equation with a solid coupling term, 

  
(6.8) 

where κ is the permeability coefficient, which is equal to k/μ, k is the intrinsic permeability, and 

μ is the fluid dynamic viscosity, φ is the source density (the rate of injected fluid volume per unit 
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volume of the porous solid), fi = ρfgi is the body force per unit volume of fluid, Fi is the body 

force per unit volume of the bulk material, and M is Biot’s Modulus: 

 
 

(6.9) 

The diffusion of pore pressure is coupled with the rate of change of the volumetric strain. 

The response of a pressurized fracture can be obtained by superposition of two transient 

solutions corresponding to two non-zero boundary conditions on the fracture surface (Carter and 

Booker 1982). These two fundamental loading modes are 

Mode 1 

 
 

(6.10) 

Mode 2 

 
 

(6.11) 

where x, y, z correspond to the coordinates of the surface of the pressurized fracture, H(t) denotes 

the Heaviside step function. The initial conditions for both modes are stress free and zero pore 

pressure everywhere. Figure 6.1 illustrates the decomposed boundary conditions. 
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Figure 6.1 Load decomposition for a pressurized fracture in a poroelastic rock:  mode 1 (stress 

loading) is represented by a unit normal stress, σn , applied on the fracture surface; mode 2 (pore 

pressure loading) is represented by a unit pore pressure, p, (equal to σn ) applied on the fracture 

surface.  

 

The responses of the model such as stress distribution, pore pressure distribution and 

aperture opening can be obtained in terms of response functions F1 and F2 for modes 1 and 2, 

respectively (Carter and Booker 1982; Detournay and Cheng 1991). Considering the existence of 

far-field stress S0 normal to the fracture surface and pore pressure p0 (Figure 6.2), the response 

due to applied constant hydraulic pressure pf can be found by superposition of the responses of 

mode 1 and mode 2: 

 
 (6.12) 

Following the Galerkin procedure and neglecting the existence of body forces, Eqs. (6.7) 

and (6.8) lead to the pair of equilibrium and continuity equations: 

 

 

 

(6.13) 

Linear interpolation in time using the Crank-Nicolson approximation yields: 
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(6.14) 

In which u and p are the vectors of the nodal displacements and nodal pore pressure. θ is the 

Crank-Nicolson approximation parameter, which is set to be 1 in this study so that the discretized 

equations are unconditional stable and numerical oscillations can be smoothed out (Smith and 

Griffiths 2004). Δt is the time step. Δf is the applied external force on nodes. ΔQ is the 

source/sink term. ptn-1 is the nodal pore pressure component from the previous time step. Other 

matrices are presented as follows: 

 

 

 

 

 

(6.15) 

where [D] is the material elastic matrix, [B] is the strain-displacement matrix, and m = 

[1,1,1,0,0,0]
T
, [Np] is the shape function for pore pressure. 

6.3 Model verification  

A penny-shaped fracture under uniform pressurization in 3D domain is considered 

(Figure 6.2). With appropriate change of the minor to major axis ratio, an elliptic fracture or 

Griffith crack can be modeled. A uniform compressive stress and pore pressure field is initially 

assumed in the entire poroelastic domain. The initial minimum horizontal stress Shmin is normal 

to the fracture surface. The initial pore pressure is p0. At time t = 0, a constant pressure pf is 

applied on the surface of fracture with a magnitude larger than Shmin. The pressurized boundary 

of the fracture wall is decomposed into two non-zero boundary conditions as mentioned before. 
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To verify the poroelastic model, a fully loaded mode 1 penny shaped fracture is modeled. 

The short- and long-term asymptotic profiles of the fracture aperture can be obtained according 

to the elastic solution (Sneddon 1946): 

 
 

(6.16) 

where pnet is the net pressure, which is defined as the treatment pressure minus the in-situ 

minimum principal stress, equal to pf - Shmin, R the radius of the fracture, v Poisson’s ratio, G 

shear modulus, w(r) fracture half width, and r radial coordinate. Substituting undrained and 

drained Poisson’s ratio into the above equation, the short- and long-term aperture profiles can be 

found. The short- and long-term responses give the bounding limits of the transient responses of 

the pressurized fracture (Rice and Cleary 1976). For the short-term (t ≈ 0) response, a poroelastic 

medium behaviors as an elastic material with the same shear modulus G and undrained Poisson’s 

ratio νu. The long-term (t = ∞) response is represented by an elastic response with the drained 

Poisson’s ratio ν. 

Figure 6.3 shows the mode 1 (stress loading) transient fracture opening profiles. 

Dimensionless time t* = ct/R
2
 is used for transient evolution of the fracture profile. For 

comparison, an elastic FEM simulation using a drained Poisson’s ratio is also included. As 

illustrated in the figure, the FEM poroelastic results approach these asymptotic limits (short- and 

long-term responses). The long-term poroelastic results overlap with the elastic solution using 

drained Poisson’s ratio. A single curve is formed when each of the fracture profiles is normalized 

by their maximum values (Figure 6.4). The transient poroelastic responses of the pressurized 

fracture agree well with the asymptotic solutions calculated based on Eq. (6.16), which verifies 

the applicability of the presented poroelastic model and its corresponding FEM implementation. 
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Figure 6.2 A 3D mesh for the numerical simulation domain: (a) Side view of the domain interior 

showing the circular fracture in red; (b) boundary conditions for the pressurized fracture in (a) 

showing a vertical section in the YZ-plane.  

 

 
Figure 6.3 Fracture width vs. radial distance for a penny-shaped fracture under mode 1 (or stress) 

loading. Comparison of numerical and analytical results for elastic and poroelastic cases. The very 

short time poroelastic results correspond to undrained rock response. The long term poroelastic 

results correspond to drained response which equal that of a purely elastic rock.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

w
(r

)*
G

/(
p

n
et

*
R

)

r/R

Elastic Analytical (Drained Poisson's Ratio)

Elastic Analytical (Undrained Poisson's Ratio)

Elastic FEM (Drained Poisson's Ratio)

PoroElas FEM Mode 1 (Dimensionless Time = 1.3E-6)

PoroElas FEM Mode 1 (Dimensionless Time = 0.027)

PoroElas FEM Mode 1 (Dimensionless Time = 5.7)

(a) (b) sv

shmin shmin

pf - Shmin

p0

pf – p0

sv



248 

 
Figure 6.4 Normalized mode 1 fracture width vs. radial distance for a penny-shaped fracture. The 

profile of the normalized fracture aperture is independent of time and material properties.  

 

6.4 Numerical simulations  

In the following sections, the total response of the poroelastic model is found by a linear 

combination of the responses of mode 1 (stress loading) and mode 2 (pore pressure loading) 

according to Eq. (6.12). Homogeneous elastic properties are first considered. Then the analysis is 

extended to more general heterogeneous scenarios. 

6.4.1 Homogeneous case 

The opening of the fracture and the poroelastic effects during hydraulic stimulation 

induce stresses around the stimulated region (Ghassemi et al. 2013; Rawal and Ghassemi 2011; 

Safari and Ghassemi 2015). Consider that a penny-shaped fracture in a rock with mechanical 

properties of Weber sandstone (Rice and Cleary 1976) is uniformly pressurized. The radius of 

the fracture is 80 m and the basic input parameters for the homogeneous case are listed in Table 

6.1. We assume the stress gradients are 1.0 psi/ft for Sv, 0.8 psi/ft for SHmax, 0.7 psi/ft for Shmin, 

and the fluid pressure gradient is 0.433 psi/ft, yielding the values listed in Table 6.1 for a depth 

of 6000 ft. 

Figure 6.5 illustrates the induced total stress and pore pressure distributions along a line 

(OA) perpendicular to the fracture surface passing through the center of the fracture. On the 
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fracture surface, the fluid pressure (Pf) is kept at 36 MPa; the induced fluid pressure (ΔP = Pf – 

P0) is 18 MPa, based on the assumption that Pf = Pnet + Shmin on the fracture surface; The induced 

minimum horizontal stress (ΔSyy) is maintained at 7 MPa, which is equal to the applied net 

pressure. At the beginning of pressurization (t = 0.02 s and t = 7 mins), the induced pore pressure 

(ΔP) is larger than the induced horizontal and vertical stresses (ΔSxx, ΔSyy, and ΔSzz) on the 

fracture surface; the induced pore pressure (ΔP) is less than the induced minimum horizontal 

stress (ΔSyy) from where L/R > 0.4. As time goes by, the pore pressure gradually diffuses further 

into the formation. When t = 24 hours, the induced pore pressure is larger than the induced 

horizontal and vertical stresses (ΔSxx, ΔSyy, and ΔSzz) in the entire numerical domain. 

Table 6.1 Basic input parameters for the homogeneous case.  

Geometry of models        640×800×640 m (length/width/height) 

Poisson’s ratio, v        0.15 

Undrained Poisson’s ratio, vu     0.29 

Biot’s effective stress coefficient, α   0.7 

Young’s modulus, E  

 (Homogeneous Case)       2.76×10
10

Pa 

Permeability (Homogeneous Case), k  5.0 md 

Fluid dynamic viscosity, μ     2.0×10
-4

 Pa.s 

 

Initial stress state:  

Vertical stress, Sv        41MPa 

Max. Hori. Stress, SHmax      33MPa 

Min. Hori. Stress, Shmin      29MPa 

Initial pore pressure, P0      18MPa 

Net pressure, Pf - Shmin       7MPa 

 

The shear stresses are shown in Figure 6.6, and are close to zero in the homogeneous 

poroelastic rock during the entire process of pressurization. The oscillations in Figure 6.6(b) and 

Figure 6.6(c) are of the magnitude of 10
-13

 MPa, and can be considered as numerical error. 
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Figure 6.5 Induced total (sum of mode 1 and mode 2) stresses and pore pressure along a line (OA) 

(top figure) perpendicular to the fracture surface, passing through the center of the fracture: (a) t = 

0.02s; (b) t = 7 mins; (c) t = 24 hrs. 
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Figure 6.6 Induced (total) shear stresses along the line OA (see the top of Figure 6.5) perpendicular 

to the fracture surface passing through the center of the fracture: (a) ΔSxy; (b) ΔSyz; (c) ΔSzx.  

 

(a) 

(b) 

(c) 
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Figure 6.7 illustrates the orientations of the minimum principal stresses at t = 7 mins and t 

= 24 hours. Black lines indicate the directions of the minimum principal stress at points within 

the domain. The color contour represents the rotation angle of the minimum principal stresses 

from their original orientations and is symmetric to the pressurized fracture (due to the 

symmetric boundary conditions adopted here). As can be seen, stress-reversal regions, where the 

minimum principal stresses rotate 90°, exist at t = 7 mins in the areas extended away from the 

fracture surface. This phenomenon is consistent with Figure 6.5b, and will be analyzed in the 

Discussion section. After 24 hours of pressurization, no stress-reversal regions exist. The 

maximum rotation angle is around 30°. The regions with relatively a large rotation angle are 

close to the fracture tips where the stress singularity exists.  

 

Figure 6.7 Symmetrical distributions of reorientation angle (R-angle) of the minimum principal 

stress in a plane cut through the center of the fracture (the central plane parallel to the XY plane in 

Figure 6.2): (a) t = 7 mins; (b) t = 24 hours. The small dashes indicate the orientation of the 

minimum principal stress at those locations. (continued) 

 

(a) 
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Figure 6.7 (continued). (Caption shown on previous page.)  

 

As can be seen from Figure 6.5, the induced stress component in the y-direction 

(direction of the initial minimum horizontal stress) is always larger than the component in the x-

direction (direction of the initial maximum horizontal stress) and the extent of  the region of 

stress-reorientation and stress-reversal (stress-reversal indicates that the principal stresses rotate 

90°) largely depends on the initial in-situ stress contrast and the applied net pressure. When the 

initial in-situ stress contrast (Sxx – Syy) is larger than the generated stress contrast (ΔSyy – ΔSxx), 

which is a function of net pressure, the minimum principal stress is still in the y-direction and 

there is no stress-reversal in the vicinity of the fracture surfaces. However, a reoriented-stress 

region exists around the fracture tips. The generated stress contrast (ΔSyy – ΔSxx) is shown in 

Figure 6.8. The red dashed line in Fig. 8 indicates the initial in-situ stress contrast (Sxx – Syy). At t 

= 0.02 s and 7 mins, we have (ΔSyy – ΔSxx) > (Sxx – Syy), so stress-reversal regions exist in areas 

(b) 
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extending away from the fracture surface (Figure 6.7a). At t = 24 hours, there are no stress-

reversal regions ((ΔSyy – ΔSxx) < (Sxx – Syy)) as pore pressure diffuses further into the formation. 

The stress-reversal phenomenon is discussed further in the Discussion section. 

 

Figure 6.8 Generated stress contrast (ΔSyy – ΔSxx) at different pressurization time along the line OA 

(see the top of Figure 6.5) through the center of the fracture and perpendicular to it (homogeneous 

rock scenario). 

 

6.4.2 Heterogeneous case  

As mentioned before, five material constants are needed to fully characterize a linear 

isotropic poroelastic system. In this work, we use E, ν, νu, α and κ for this purpose. Each of these 

parameters and their combinations can be considered as randomly distributed variables in the 

poroelastic model. As we know, flooding a porous rock will cause it to expand. When the 

expansion is constrained, a confining pressure is generated as a function of α and ν (Cheng et al. 

1993; Engelder and Fischer 1994). Thus, nonuniform distributions of α and ν can generate 

heterogeneous stress fields. Also, the variation of Young’s modulus alters the stiffness matrix in 

stress-strain relationship so the calculated stresses also experience alterations. The long-time 

response (t = ∞) of a poroelastic rock is similar to the response of an elastic material with 

drained Young’s modulus and Poisson’s ratio. The undrained moduli control the rock behavior 

during short times (t ≈ 0). 

Initial in-situ stress contrast (Sxx – Syy) 



255 

To illustrate the influence of heterogeneity, example simulations using Young’s modulus 

and permeability as random variables are presented and discussed in detail. The same procedure 

could be used with other parameters treated as random variables. Log normal distribution is 

adopted here. Statistical values for the assumed random variables are presented in Table 6.2. 

Figure 6.9 and Figure 6.10 show the 3D random distributions of the Young’s modulus and 

permeability, respectively. 

Table 6.2 Statistical values for the assumed random variables.  

        Young’s modulus (Pa)  Permeability (md) 

Input Data 

Mean value      2.76E+10     5.00 

Variation value     5.52E+09     1.00 

Output Data 

Arithmetic average    2.74E+10     4.95 

Geometric average    2.71E+10     4.90 

Harmonic average    2.67E+10     4.84 

Max. value      4.87E+10     8.83 

Min. value      1.42E+10     2.57 

 

 
Figure 6.9 Random distribution of Young’s modulus (Pa). 
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Figure 6.10 Random distribution of permeability (md). 

 

Figure 6.11 illustrates the induced total stresses and pore pressure along a line 

perpendicular to the fracture surface, passing through the center of the fracture. Comparison with 

Figure 6.5 shows that the normal stresses in heterogeneous rock (Young’s modulus and 

permeability heterogeneity) have almost the same distributions as those in homogeneous rock. 

The shear stresses are given in Figure 6.12. As can be seen, they are one order of magnitude 

larger than those in the homogeneous case. When the shear stress components (Sxy, Syz, Szx) are 

negligible compared to normal stresses  components (Sxx, Syy, Szz), the normal stresses are also 

principal stresses. In the heterogeneous case, the induced shear stresses cause the directions of 

local principal stresses to become heterogeneous (see the reorientation of the minimum principal 

stress (Figure 6.13)). In the homogeneous case, the deformation of the model is uniform so no 

shear stresses (or very small shear stresses) are generated. The shear stresses are generated 

primarily where different materials come into contact (material interfaces). The higher the 

contrast of material properties along the interface, the larger the generated shear stresses. We will 

discuss these phenomena in the following section. In addition, the fluctuation of shear stresses is 

a function of time and is thus related to the diffusion of pore pressure. This is shown in Figure 

6.12 for shear stresses at t = 0.02 s, t = 7 min and t = 24 hours, respectively.  
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Figure 6.11 Induced total stresses and pore pressure along the line OA (see the top of Figure 5) 

perpendicular to the fracture surface, passing through the center of the fracture, for the 

heterogeneous case: (a) t = 0.02s; (b) t = 7 mins; (c) t = 24 hrs.   
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Figure 6.12 Variation of induced shear stresses along the line OA (see the top of Figure 6.5) 

perpendicular to the fracture surface, passing through the center of the fracture, for the 

heterogeneous case: (a) Sxy; (b) Syz; (c) Szx.   

 

 

(a) 
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(c) 
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Figure 6.13 Unsymmetrical distributions of reorientation angle (R-angle) of the minimum principal 

stress for the heterogeneous medium from a top view slice cutting through the center of the 

fracture: (a) t = 7 mins; (b) t = 24 hours.   

 

(a) 

(b) 
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Initially, the minimum principal stress is the horizontal stress (Syy). The black lines in 

Figure 6.13 show the directions of the minimum principal stresses located in a horizontal plane. 

After applying hydraulic pressure to the fracture surfaces, we can observe that some regions of 

the horizontal plane do not have black lines. This indicates that in certain areas the minimum 

principal stresses are no longer horizontal. In the homogeneous case, the minimum principal 

stresses remain in the horizontal direction everywhere, although they rotate by a certain angle 

depending on the position with respect to the pressurized fracture (Figure 6.7). The contours in 

Figure 6.13 illustrate the rotation angle of minimum principal stresses in the horizontal plane. 

The value of the rotation angle has a complex distribution and is not symmetric with respect to 

the pressurized fracture. The rotation angle gradually decreases as time elapses, due to the 

diffusion of pore pressure into the formation, which causes the induced stress-contrast (ΔSyy – 

ΔSxx) to gradually decrease as shown in Figure 6.8. 

6.5 Discussion 

The importance of understanding stress redistributions during hydraulic stimulation lies 

in the fact that stresses predominantly control the fracture propagation. Much effort has been 

devoted to the analyses of stress redistribution around a hydraulic fracture based on the 

assumption of homogeneous rock properties, ignoring the inherently heterogeneous nature of 

unconventional reservoirs. As has been demonstrated in previous sections, stress redistributions 

(magnitude and direction) in heterogeneous poroelastic rocks are much different from those in 

homogeneous systems. Although the normal stress components in the two different cases are 

nearly the same, the shear stresses are larger and are non-uniformly distributed in the 

heterogeneous case (Figure 6.12). The reasons for the observed trends can be explained using a 

relatively simple simulation as described below. 



261 

6.5.1 Influence of Young’s modulus 

Consider a 1.2m x 1.2m x 1.2m cube of rock as shown in Figure 6.14. An interior cubical 

sub-region of size 0.6 m  0.4 m  0.6 m (interior zone) is considered to have poroelastic 

properties different from the rest of the larger cube (exterior zone). Then, the left side of the cube 

is subjected to a fluid pressure of 36 MPa with the traction acting in the y-direction (Figure 

6.14b). The solid and fluid displacements are set to zero on all other boundaries. The whole 

simulation domain is divided into cubic elements of size 0.1 m (Figure 6.14). The material 

properties used for the exterior elements are the same as those used in the homogeneous case 

(Table 6.1) while the properties of the interior zone are varied and the resulting stress and pore 

pressure distributions are simulated. To evaluate the influence of Young’s modulus on the 

resulting stresses, we lower the elastic properties of the interior cubical sub-region during 

different simulation runs such that the Young’s modulus ranges from an initial base case value of 

2.76×10
10

 Pa, to 90%, 70%, 50%, 30% and 10% of the base case value. For the elements in the 

exterior zone, the Young’s modulus is kept at the initial value.  

 
Figure 6.14 (a) A 3D model of a simple heterogeneous system showing a cube of rock with an 

interior zone having different properties than the rest of the body. Elements with different Young’s 

moduli are shown in purple (interior zone). Red color indicates the exterior zone; (b) A section of 

the 3D model showing the central section parallel to the yz-plane and the boundary conditions. 

(continued) 

 

(a) 
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Figure 6.14 (continued). (Caption shown on previous page.) 

 

The following results are obtained at t = 7 min (the small model reaches steady state after 

7 minutes of pressurization with a uniform pore pressure of 36 MPa). Figure 6.15 shows the 

displacements in the x- and y-direction on the central horizontal plane. In the case shown, the 

Young’s modulus of the elements in the central part (marked by the red dashed lines) is 50% of 

that for the surrounding elements providing for a larger mode 2 response (dilation) in the interior 

zone. As expected, the displacement field (and strain) is not uniform. The elements with a lower 

Young’s modulus tend to contract more in the x-direction (due to the system dilation in the y-

direction in response to the pore pressure increase). The same phenomenon exists for 

displacement in the xz-plane because the material properties are symmetrically distributed (with 

respect to the y-axis). 

Figure 6.16 shows the distribution of induced shear stresses ΔSxy on two orthogonal 

planes. Induced shear stresses, ΔSxy, are observed at the interface separating zones with different 

Young’s modulus. 

A sensitivity analyses on the effects of Young’s modulus is presented next. Six different 

scenarios are considered. In the base case the same Young’s modulus values are assigned to the 

exterior and interior zones. In the other five scenarios, the interior zone has a Young’s modulus 
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equal to 10%, 30%, 50%, 70% and 90% of the base case. The induced total normal- and shear 

stresses along the line yy’ (illustrated in Figure 6.16) are presented in Figure 6.17 and Figure 

6.18, respectively. 

The elements with smaller Young’s modulus are located from 0.4 m to 0.8 m along the 

line yy’. The induced stress components ΔSxx, ΔSyy and ΔSzz show variations between y = 0.4 m 

and 0.8 m. The maximum variations for ΔSxx, ΔSyy and ΔSzz are 0.7 MPa, 0.6MPa and 1 MPa, 

respectively. Because of the change of Young’s modulus at these locations, the deformation is 

nonuniform (Figure 6.15 and Figure 6.19). The magnitudes of the variations are usually less than 

1 MPa, even for the extreme scenario (Eweak/Eoriginal = 0.1), which are rather small when 

compared with their values in the base case. 

 
Figure 6.15 Displacements in x- and y-direction on a central horizontal plane: (a) displacement in x-

direction; (b) displacement in y-direction. (Area encircled by red dash lines has 50% of initial 

Young’s module.) (Unit: m). (continued) 
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Figure 6.15 (continued). (Caption shown on previous page.) 

 

 

 
Figure 6.16 Distribution of ΔSxy on two orthogonal slices. (Unit: Pa). 

 

X

Y

Z

dis-y

-2.0E-05

-4.4E-05

-6.9E-05

-9.3E-05

-1.2E-04

-1.4E-04

-1.7E-04

-1.9E-04

-2.2E-04

-2.4E-04

(b) 

y 

y’ 



265 

 

 

 

Figure 6.17 Induced normal stresses along the line yy’ for cases with different Young’s modulus 

between y = 0.4 m and y = 0.8 m: (a) ΔSxx; (b) ΔSyy; (c) ΔSzz. 

 

(a) 
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Figure 6.18 Induced shear stresses along the line yy’ for cases with different Young’s modulus 

between y = 0.4 m and y = 0.8 m: (a) ΔSxy; (b) ΔSyz; (c) ΔSzx. 
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Figure 6.19 Displacement in x direction along the line yy’. 

 

The magnitude of the induced shear stress, ΔSxy, varies in the range of 0.5 ~ 2 MPa 

between y = 0.4 m and y = 0.8 m. For Syz and Szx, the variations are close to zero. Due to the 

symmetric distribution of material properties with respect to the y- axis, the stress distributions 

along lines parallel to the y-direction exhibit the same patterns. 

From Figure 6.19, it is observed that displacements in the x-direction along the line yy’ 

are negative except at y = 0.4 m and y = 0.8 m, where the two corners of the weak zone (Figure 

6.15) are located. However, as can be seen from Figure 6.15a, the x-displacements in the weak 

zone are in the positive x-direction beyond the line yy’ and the weak zone is contracting during 

pressurization. The net response (mode 1 plus mode 2) is a contraction because of the relatively 

larger dilation in the y-direction towards the loaded surface due to pore pressure increase. 

The distributions of the induced total stress ΔSyy on a central horizontal plane are 

presented in Figure 6.20 for Mode 1, Mode 2 and Mode 1+2. The interior weak zone encircled 

by the red dashed lines has a Young’s modulus equal to 50% of the surrounding elements. For 

the homogeneous distribution of Young’s modulus, the induced stresses are distributed 

uniformly in the entire domain, as illustrated in Figure 6.17, Figure 6.18 and Figure 6.19 for the 

case with uniform E. In the heterogeneous case, Mode 1 loading generates smaller induced total 
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stress component ΔSyy in the weak zone compared with the induced stresses in exterior elements; 

Mode 2 has larger ΔSyy in the weak zone. Combining Mode 1 and Mode 2, we observe from 

Figure 6.20 (c) that the interior weak zone has a larger ΔSyy. We notice from Figure 6.15 that the 

weak zone is under contraction in the x-direction during pressurization. These behaviors are 

different from those of an elastic (in contract to poroelastic) medium, which only act like mode 1 

loading. 

Because of the spatial variation of Young’s modulus, non-uniform deformations and 

shear stresses are generated at material interfaces. In addition to the change of mechanical 

properties, such as Young’s modulus, discontinuities (e.g., natural fractures) can also induce 

heterogeneous stress redistributions when their mechanical properties are different from their 

surrounding materials. This simple example illustrates some underlying physical processes that 

lead to the complex stress response observed in the stress field around a pressurized crack 

considered in the previous section. 

 

 

Figure 6.20 Induced total stress ΔSyy (compression positive) on a central horizontal plane: (a) Mode 

1; (b) Mode 2; (c) Mode 1+2. (Unit: MPa). (continued) 
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Figure 6.20 (continued). (Caption shown on previous page.) 

 

6.5.2 Influence of Biot’s effective stress coefficient 

Instead of altering the Young’s modulus, consider gradually changing Biot’s effective 

stress coefficient, α, from 0.1 to 0.9 for the elements in the central region while keeping that of 

the surrounding elements equal to 0.5. Figure 6.21 illustrates the total normal stresses along the 

line yy’. The value in the legend indicates α for the elements in the central zone. As can be seen, 

the normal stresses are increased for larger α, and decreased for smaller α. The variations of ΔSxx, 

ΔSyy, and ΔSzz are in the range of 1.5 MPa ~ 3 MPa, 0.5 MPa ~ 0.8 MPa, and 1 MPa ~ 2 MPa, 

respectively. Injection into a porous medium causes it to dilate (Cheng et al. 1993). When the 

expansion is constrained, confining stresses will be generated as a function of Biot’s effective 

stress coefficient: 

 
 (6.17) 

The induced stresses vary in different zones when α changes form one zone to another. 
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Figure 6.21 Induced normal stresses along the line yy’ (see Figure 20) due to the change of the Biot 

effective stress coefficient α between y = 0.4 m and y = 0.8 m: (a) ΔSxx; (b) ΔSyy; (c) ΔSzz. 

 

(a) 

(b) 

(c) 
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In addition to the induced stress variations, the induced displacements also vary in 

different zones and at the interfaces of the materials with different α. The displacement 

component in the x-direction along the line yy’ is plotted in Figure 6.22; it can be seen that it has 

a uniform distribution when α = 0.5. When α > 0.5 for elements in the central zone, it tends to 

expand; when α < 0.5, it tends to contract. These are consistent with the changes of normal 

stresses. Figure 6.23 shows the shear stress distributions along the line yy’. Shear stresses in the 

range of 1 MPa ~ 2 MPa develop along the interfaces of materials with different α. 

 
Figure 6.22 Displacement in the x-direction along the line yy’ (see Figure 6.20) for different Biot’s 

effective stress coefficients in the central zone. 

 

 

Figure 6.23 Induced shear stresses along the line yy’ (see Figure 20) for cases using different Biot 

effective stress coefficient between y = 0.4 m and y = 0.8 m: (a) ΔSxy; (b) ΔSyz; (c) ΔSzx. (continued) 

 

Alteration of Biot’s Coefficient 

(a) 
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Figure 6.23 (continued). (Caption shown on previous page.) 

 

6.5.3 Influence of drained and undrained Poisson’s ratio  

According to Eq. (6.17), the induced normal stresses are also a function of drained 

Poisson’s ratio, ν. The range for ν is 0 ≤ ν ≤ νu. If we assume ν = 0.25 for the elements in the 

central part of the model and ν = 0.15 for the surrounding elements, the maximum variations of 

normal and shear stresses are 0.3 MPa and 0.2 MPa, respectively. When the diffusion of fluid 

pressure reaches a steady state in a poroelastic rock, the rock’s mechanical respons is the same as 

that of an elastic material with the same drained Poisson’s ratio. The undrained Poisson’s ratio 

influences the poroelastic behavior in transient states. The range of undrained Poisson’s ratio 

(b) 

(c) 
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values is relatively small. Assuming νu = 0.4 for the elements in the central zone of the model 

and νu = 0.29 for the surrounding elements, the maximum perturbations of normal and shear 

stresses at t = 0.02s are 0.6 MPa and 0.2 MPa, respectively, so that the difference in the induced 

stresses at material interfaces are small. 

An interesting phenomenon is illustrated in Figure 6.8. The induced stress contrast (ΔSyy 

– ΔSxx) due to pressurization of the fracture is less than the original in-situ horizontal stress 

difference in a region close to the fracture surface (in this case L/R < 0.3). This indicates that the 

maximum horizontal stress, Sxx, will always be larger than the minimum horizontal stress, Syy; 

there will be no stress reversal in regions close to the fracture surface. This is in contrast to 

predictions that are based on an elastic formulation without consideration of the pore pressure 

diffusion effects on rock deformation (and stresses). In an elastic solution to the problem, ΔSxx is 

always less than ΔSyy; so that (ΔSyy – ΔSxx) > 0 causing the principal stresses to rotate by 90° 

provided that the induced stress contrast is larger than the background in-situ stress contrast, Sxx 

– Syy. 

The induced stress contrast, ΔSyy – ΔSxx, on fracture surface in a poroelastic rock can also 

be estimated from the solution to the 1-D problem (Figure 6.24) of fluid pressure loading of an 

infinite half-space (Cheng 2016). The pressure loading condition can also be decomposed into 

modes 1 and 2. Using the analytical solution for the 1-D fluid pressure loading with the same 

parameters as in Table 6.1, the induced stresses are obtained and plotted in Figure 6.25. As can 

be seen, the induced stress contrast, ΔSyy – ΔSxx, on the pressure loading surface is -5 MPa, which 

is almost the same as our numerical results for pressurized penny-shape fracture when t = 0.02 s 

and t = 7 mins. 
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Figure 6.24 1-D fluid pressure loading condition on pressurized fracture surface. 

 

 
Figure 6.25 Induced stresses and pore pressure for 1-D fluid pressure loading. ΔSyy equals to the 

applied net pressure during the process of fluid pressure diffusion. 

 

Rocks generally exhibit heterogeneous and anisotropic characteristics. Both of these 

characteristics could influence the stress- and pore pressure distributions during hydraulic 

fracturing. Our current model can be used to generate heterogeneous-isotropic parameters. The 

role of anisotropic rock properties on hydraulic fracturing has been considered in Sesetty and 

Ghassemi (2016). More effort is needed to improve the model of this paper to consider rock 
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anisotropy and is left for future work. In real situations, material properties, such as Young’s 

modulus and permeability, could vary by a factor of two and more, especially when 

discontinuities (e.g. joints, natural fractures) exist. These sudden changes in material properties 

could be explicitly incorporated into the generated random fields. 

Complex processes are involved in hydraulic stimulations, especially when the 

heterogeneous characteristics of geological formations are considered. For the sake of simplicity, 

some simplifying assumptions have been made, which may need to be improved when dealing 

with a real system, and are left for future research. 

6.6 Conclusions 

A fully coupled 3D poroelastic model based on FEM has been developed to analyze the 

stress- and pore pressure distributions around a pressurized fracture in heterogeneous porous 

media. The heterogeneous distributions of Young’s modulus and permeability are generated 

based on lognormal random distribution. Good agreement has been achieved between the 

analytical solutions and numerical results. Comparison of the pressurized fracture simulation 

results for a heterogeneous medium with those in a homogeneous one indicates that the normal 

stress component are almost the same in the two cases, but shear stresses in the heterogeneous 

media are significantly larger and vary as a function of time, and thus are related with the 

diffusion of pore pressure. Our analyses show that shear stresses develop along the interfaces of 

materials with different properties (e.g., Young’s modulus). Although normal stresses experience 

variations along the interfaces, their magnitudes are smaller than the generated shear stresses and 

much smaller than their initial values. Due to the spatial variation in material properties, shear 

stresses and nonuniform deformations are generated in a poroelastic rock surrounding a 

pressurized crack. The induced shear stresses in heterogeneous rock cause the initially horizontal 
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principal stresses to rotate out of horizontal planes, which may potentially influence the 

propagation direction of subsequent fractures. As the pore pressure diffuses into formation, the 

stress reversal regions gradually disappear and the rotation angles of principal stresses decrease. 

The induced horizontal stress differential caused by the pressurization of the fracture is less than 

the original in-situ horizontal stress differential in a region close to the fracture surface. As a 

result, the maximum horizontal stress remains larger than the minimum horizontal stress, and 

there will be no stress reversal in regions close to the fracture surface. This is in contrast to 

predictions based on an elastic formulation without consideration of the pore pressure diffusion 

effects on rock deformation. 
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7 3D Thermo-poromechanical simulation of Fenton Hill HDR experiment  

Abstract 

Hydraulic stimulation using in geothermal reservoirs involve strong coupling among 

pressurization and motion of pore pressure, transport of heat, change of in-situ stresses and rock 

deformation. In this work, a fully coupled thermal-hydro-mechanical model is built to study EGS 

stimulation. Excellent agreements have been achieved through the comparison of numerical 

results with both analytical solutions and results from published work. Damage mechanics is 

utilized to simulate joint opening and material failures. Joint aperture is a key parameter, which 

controls the injection volume and flow-back volume during injection and venting operations. 

Semi-analytical equations are utilized to capture the main characteristics of it. A pressurization 

test at the Phase I Fenton Hill geothermal reservoir is studied. The results from numerical 

simulations match well with field records. The influence of mesh size on simulation results is 

also analyzed. The maximum difference is 2 MPa for bottom-hole pressures from models with 

different mesh size. Four scenarios are proposed to analyze the mechanisms involved in repeated 

injection-venting experiments. It is found that the stiffness of joint, a key parameter used in 

aperture calculation, controls the flow-back volume and trapped fluid pressure during venting 

operations. Considering the size dependent characteristic of joint stiffness and hysteresis 

behaviors observed during injection and venting, a parameter related to stiffness is gradually 

changed after each injection-venting treatment in the 3rd scenario. Based on the results from 

numerical simulations, it is concluded that the 3rd scenario best fits the field observations. 

7.1 Introduction 

The coupled thermo-hydro-mechanical (THM) processes in porous and fractured media 

are associated with a wide range of applications. These include solute transport of nuclear waste 
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repository through rock mass, geothermal energy extraction, fluid injection induced earthquake, 

injection stimulation of petroleum reservoirs with water colder than in-situ fluids, and so on. All 

of these problems involves strong coupling among pressurization and motion of pore pressure, 

transport of heat, change of in-situ stresses and deformation of the porous media. 

Since Biot (1941) proposed the theory of poroelasticity in a fluid-saturated isothermal 

porous media, extensive and excellent efforts have been spent to extend the theory to investigate 

a wide variety of mechanical phenomena. Rice and Cleary (1976) have recast Biot’s theory in 

terms with straightforward physical concepts. A substantial literature exists to extend the well-

known isothermal theory to include the thermal effects (Schiffman, 1971; Booker and Savvidou, 

1984, 1985; Kurashige, 1989; McTigue, 1990). The governing equations derived in these papers 

are different only in detail (McTigue, 1986). Both analytic and numerical methods are developed 

to demonstrate solutions for coupled heat transfer, changes of fluid pressure, deformation and 

alteration of in-situ stresses in a linearly elastic, non-isothermal porous medium. 

Analytical solutions have the advantages of being stable, accurate and efficient. They are 

commonly used in parametric studies and verification of numerical models. However, when 

complex geometries and material non-linearity, or sophisticated coupled processes are involved, 

numerical solutions are needed. In this work we present a coupled thero-poromechanical finite 

element method (FEM) with continuum damage mechanics for studying reservoir stimulation 

considering the presence of natural fractures. 

The standard Galerkin finite element method is used to discretize governing equations. A 

continuum damage approach is described to analyze the joint reactivation (or failure) processes. 

Numerical examples are provided in the last part to verify the model. Finally, the field case from 

Phase I Fenton Hill geothermal reservoir is studied. 
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7.2 Methodology 

By extending Rice and Cleary (1976) or Cleary (1977) theory, McTigue (1986) and 

Kurashige (1989) developed a thermoelastic theory for fluid-saturated porous media. The quasi-

linear and quasi-static theory assumes constant material properties and neglects the inelastic 

terms. The thermo-poroelastic governing equations used here can be found in Chapter 4. 

7.2.1 Finite Element Implementation 

The finite element method (FEM) is perhaps the most widely used numerical method in 

science and engineering fields. This is largely due to its flexibility to treat material heterogeneity, 

non-linear deformability (eg. plasticity), complex boundary conditions, and so on (Jing and 

Hudson 2002). In this work, approximation of the displacement, pressure and temperature fields 

within each element through spatial interpolation functions (shape functions), and the discretized 

thermo-poroelastic formulae are based on standard Galerkin method. 

Using the matrix and vector notation, the approximated fields can be expressed as 

 

uu N u  

pp  N p  

TT  N T  

(7.1) 

where u = [ux, uy, uz]
T
, p, and T are displacement, pore pressure and temperatures variables. 

In this study, the Crank-Nicolson type of approximation is used to discretize the temporal 

domain. After discretization and the Galerkin process are completed, the following equations are 

obtained (Lee and Ghassemi 2009; Wang and Ghassemi 2012): 
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(7.2) 

where θ is a scalar parameter which can vary between 0.5 and 1.0. The explicit expressions of 

the above matrices are provided in the following: 
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(7.3) 

7.2.2 Damage mechanics 

The well-known ‘Goodman joint element’ has been widely implemented in FEM codes to 

represent rock fractures. However, numerical ill-conditioning may arise due to large aspect ratios 

of joint elements and the continuum assumptions (Jing and Hudson 2002). The treatment of 

fractures and fracture growth remains the most important limiting factor in the application of 

FEM in geomechanics. Special algorithms have been proposed to overcome this disadvantage. 

The developments of damage mechanics provide an alternative way to simulate discontinuities or 

fracture growth. Kachanov (1958) first introduced the concept of damage as a ‘load-bearing area 

reduction’. Based on the theory of damage mechanics, the stress-strain response and failure 

evolution can be derived for a material with a given set of elastic properties and defect 
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population (Ashby and Sammis 1990). In this study, we will concentrate on the simplest, “scalar 

damage” (Lee and Ghassemi 2009). 

Within the framework of damage mechanics, we have the stress-strain equation in the 

form 

 
 1ij ijkl klD     (7.4) 

where σij is the stress tensor, εkl is the strain tensor, Dijkl is the forth-order elastic stiffness tensor, 

and ω is the scalar damage variable, which grows from 0 for the intact material to 1 for the fully 

damaged material during damage evolution. 

The loading/unloading conditions are defined according to the Kuhn-Tucker relations 

(Simo and Ju 1987) in terms of the damage loading function f and the rate of the history variable, 

  

 
0,     0,     0f f     (7.5) 

The damage loading function is defined as 

 
 ,f       (7.6) 

Different definitions of equivalent strain,  , are proposed by researchers. For quasi-

brittle materials like concrete, rock and ceramics, a popular choice is that suggested by Mazars 

(1986), which is based on the norm of the positive part of the strain tensor: 

 
 

3
2

1

i

i

 


   (7.7) 

where εi is the principal strain,   is the MacAulay brackets defined such that 
i i   if εi > 0 

and 0i   otherwise. 

For quasi-brittle materials, which have a relatively high ratio of compressive to tensile 

strength, Mazars (1986) introduced two damage parameters, ωt and ωc, that are calculated based 
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on two different damage evolution functions, gt and gc, using a same equivalent strain,  . Under 

uniaxial conditions, ω = ωt for traction and ω = ωc for compression. For multiaxial case, the 

damage, ω, is computed based on a combination of ωt and ωc: 
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where εi are the principal strains, εti are the principal strains calculated from positive principal 

stresses, β is the shear parameter. 

The damage evolution functions are proposed in the form (Mazars 1986): 
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 (7.9) 

where ε0 is the initial damage threshold and At, Bt, Ac, and Bc are characteristic parameters of the 

material, which are identified from uniaxial tensile and compressive tests, respectively. 

Figure 7.1 illustrates a typical stress-strain curve of the damage model during a numerical 

1D tension-compression experiment. The idealized specimen is first under tension up to the 

initial elastic threshold (path O-A); continuous loading leads to damage, along path A-B; reverse 

loading is then applied, making the curve return to point O along B-O; subsequent compressive 

loading would reach the elastic threshold C; peak strength is arrived at the point D; along D-E, 

progressive damage is produced, and ultimate failure is occurred at point E. It could be observed 

that the isotropic elastic damage model could reproduce the strain softening behavior under 

tension, and could also capture the hardening and softening behaviors under compression. The 

path B-O-C indicates the stiffness recovery during the transition from tensile loading to 
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compressive loading. The stiffness recovery is due to the closure of tensile microcracks under 

compression. 

Figure 7.2 shows the damage evolution corresponding to the uniaxial tension-

compression test. No damage occurs during elastic deformation (path O-A); progressive tensile 

damage is induced along path A-B; during unloading path B-O’, damage does not change; path 

O’’-C indicates compressive damage due to the previous tensile failure; progressive compressive 

damage is generated along path C-D-E; path F-G has strain larger than the ultimate failure point 

E, and thus has damage value equal to 1, which implies complete failure. 

 
Figure 7.1 Stress-strain curve for a 1D tension-compression test. 

 

 
Figure 7.2 Damage evolution curve for an uniaxial tension-compression test. 
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The performance of the damage model for compressive tests under different confining 

pressure is also demonstrated in Figure 7.3. Though the damage evolution functions are derived 

based on uniaxial tensile and compressive tests, the main characteristics of the hardening and 

softening behaviors of quasibrittle materials are captured. 

 

 
Figure 7.3 Stress-strain curves of compressive tests under different confining pressure. 

 

According to Mazars’ damage model (Mazars 1986), it is considered that the tensile 

failure is caused by microcracks that are created directly by extensions in the same direction as 

stresses; for compressive failure, the extensions are transmitted by the Poisson’s effect and are in 

the directions perpendicular to stresses. 

Progressive damage due to the generation of defects has to be treated as strain softening, 

which is a typical behavior observed in many brittle heterogeneous materials, such as rocks, 

concretes, etc (Pijaudier-Cabot and Bazant 1987). Strain softening induces localization of 

dissipative processes into narrow bands, which makes finite element solutions exhibit strong 

spurious mesh sensitivity and become unobjective with regard to the mesh size. Objectivity 

could be restored by various treatments (Jirásek and Bauer 2012). 
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7.3 Code verification 

Several numerical examples are presented to verify the model and to illustrate some 

typical thermo-poromechanical phenomena. Terzaghi’s poroealstic consolidation, Mandel 

problem and thermoelastic consolidation problem are used to verify the coupled model.  

7.3.1 Terzaghi’s consolidation  

Consider a fluid-filled poroelastic layer of thickness h, resting on a rigid impermeable 

base. A constant normal traction of magnitude P is suddenly applied on the upper surface of the 

layer under drained conditions. Initially, an excess pore pressure is induced as a result of the 

Skempton’s effect and the poroelastic layer deforms as an elastic one with undrained moduli. As 

time goes by, the pore fluid drains out at the upper surface. Eventually, the poroelastic layer acts 

as a medium with drained moduli. 

The boundary conditions are listed as following: 

 

𝜎𝑥𝑥 = −𝐻(𝑡)𝑃      𝑥 = 0 

𝑝 = 0    𝑥 = 0   ∀ 𝑡 
𝜕𝑝

𝜕𝑥
= 0    𝑥 = ℎ   ∀ 𝑡 

𝑢𝑥 = 0    𝑥 = ℎ   ∀ 𝑡 

(7.10) 

 

The detailed solution of the Terzaghi’s one-dimensional consolidation problem can be 

found in Jaeger et al. (2009), here we list the final solutions: 

𝑝(𝑥, 𝑡) =
𝐵(1 + 𝜈𝑢)

3(1 − 𝜈𝑢)
(−𝑃) ∑

4

𝑚𝜋
𝑚  𝑜𝑑𝑑

(𝑠𝑖𝑛
𝑚𝜋

2ℎ
𝑥) 𝑒−𝑐(

𝑚𝜋
2ℎ

)
2
𝑡
 

or 

𝑝(𝑥, 𝑡)

𝑝0
= 1 −∑(−1)𝑛 {𝑒𝑟𝑓𝑐 [

2𝑛ℎ + 𝑧

(4𝑘𝑡/𝜇𝑆)1/2
] + 𝑒𝑟𝑓𝑐 [

2(𝑛 + 1)ℎ − 𝑧

(4𝑘𝑡/𝜇𝑆)1/2
]}

∞

𝑛=0

 

(7.11) 
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𝑤(𝑧, 𝑡) =
𝑃

(𝜆 + 2𝐺)
[(𝑧 − ℎ)

+
𝛼2𝑀ℎ

(𝜆 + 2𝐺 + 𝛼2𝑀)
∑

8

𝑛2𝜋2
𝑐𝑜𝑠 (

𝑛𝜋𝑧

2ℎ
) × 𝑒𝑥𝑝 (

−𝑛2𝜋2𝑘𝑡

4𝜇𝑆ℎ2
)

∞

𝑛=1,3,…

] 

(7.12) 

In the finite element solution, the one-dimensional consolidation problem is solved using 

a three-dimensional model. A single column of elements are used in simulation. The problem 

domain is discretized using 10×10×10 (in the x, y and z directions) 8-node isoparametric 

hexahedron elements. The four lateral boundaries are impermeable and have no lateral 

displacement but can have vertical displacements; the bottom surface is frictionless and 

impermeable; the top surface is frictionless and exposed to drained condition (zero pore pressure 

in this study). Table 7.1 lists the basic input parameters for this problem. 

Table 7.1 Basic input parameters for Terzaghi 1-D consolidation.  

Geometry of the model      10×10×10 m (length/width/height) 

Number of elements       10×10×10 (length/width/height) 

Shear modulus, G       1.2×10
10

 Pa 

Poisson’s Ratio, v       0.15 

Undrained Poisson’s Ratio, vu   0.29 

Biot’s effective stress coefficient, α  1.0 

Permeability, k         0.5 md 

Fluid viscosity, μ       3.0×10
-4

 Pa.s 

Load           1.0×10
6
 Pa 

 

Figure 7.4 shows the comparison between the analytical solution and the numerical 

solution for the distribution of pore pressure. The displacement history at different depth is 

plotted in Figure 7.5. It could be observed that good agreements have been achieved.  



290 

 
Figure 7.4 Terzaghi’s problem: comparison of analytical and numerical solution for the pore 

pressure distribution. 

 

 
Figure 7.5 Terzaghi’s problem: history of displacement for analytical and numerical solutions. 

 

7.3.2 Mandel’s problem  

As mentioned before, the coupled theory produces essential differences compared with 

the uncoupled one. Among them is the classical work of Mandel and Cryer which demonstrated 

that the inhomogeneous diffusion equation for the pore pressure based on theory of poroelasticity 

could be responsible for a non-monotonic pressure response for a saturated porous specimen 

under constant boundary conditions.  

Mandel’s problem involves an infinitely long rectangular specimen sandwiched between 

two rigid, frictionless, impermeable plates (Figure 7.6). A constant vertical force of 2F is applied 
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to the rigid plates. The lateral surfaces are traction free and exposed to zero pore pressure. The 

analytical solution could be found in Cheng and Detournay (1988), here we list the solutions for 

pore pressure and displacement: 

𝑝(𝑥, 𝑡) =
2𝐹𝐵(1 + 𝜈𝑢)

3𝑎
∑

𝑠𝑖𝑛𝛼𝑖
𝛼𝑖 − 𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖

∞

𝑖=1

(𝑐𝑜𝑠
𝛼𝑖𝑥

𝑎
− 𝑐𝑜𝑠𝛼𝑖) exp (−𝛼𝑖

2𝑐𝑡/𝑎2) (7.13) 

 

𝑢𝑥(𝑥, 𝑡) = [
𝐹𝜈

2𝐺𝑎
−
𝐹𝜈𝑢
𝐺𝑎

∑
𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖

𝛼𝑖 − 𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖

∞

𝑖=1

exp (−𝛼𝑖
2𝑐𝑡/𝑎2)] 𝑥

+
𝐹

𝐺
∑

𝑐𝑜𝑠𝛼𝑖
𝛼𝑖 − 𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖

𝑠𝑖𝑛
𝛼𝑖𝑥

𝑎

∞

𝑖=1

exp (−𝛼𝑖
2𝑐𝑡/𝑎2) 

(7.14) 

where  𝑡𝑎𝑛𝛼𝑖 =
1−𝜈

𝜈𝑢−𝜈
𝛼𝑖. 

 
Figure 7.6 Mandel’s problem. 

 

Referring to Figure 7.6, the axis of material symmetry is the z-axis. Plane strain 

conditions are assumed in the y-direction (perpendicular to the paper). A three dimensional 

domain is used to simulate the two-dimensional problem with proper boundary conditions to 

ensure the plane strain condition in y-direction. We take the advantage of quarter symmetry 

about the x and z axes to build the FEM model. A cubic of 1×1×1 m (length/width/height) is 

discretized using 10×2×5 (in the x, y and z directions) 8-node isoparametric brick elements. The 

basic input parameters are provided in Table 7.2. 

x
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Table 7.2 Basic input parameters for Mandel’s problem. 

Geometry of models    1×1×1 m (length/width/height) 

Number of elements    10×2×5 (length/width/height) 

Shear modulus     1.2×10
10

 Pa 

Poisson’s Ratio     0.15 

Undrained Poisson’s Ratio 0.29 

Biot’s coefficient    1 

Permeability      0.005 md 

Fluid viscosity     3.0×10
-4

 Pa.s 

Load  (F)      1.0×10
6
 Pa m 

 

The distribution of pore pressure in the horizontal direction (x-direction) is illustrated in 

Figure 7.7. As can be seen from it, excellent agreements have been achieved between the 

analytical and numerical solutions. The distribution of ux in the horizontal direction (x-direction) 

is plotted in Figure 7.8. Again, the analytical solution agrees well with the numerical results. 

 
Figure 7.7 Mandel’s problem: comparison of analytical and numerical solution for the pore 

pressure distribution. 
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Figure 7.8 Mandel’s problem: comparison of analytical and numerical solution for the 

displacement distribution. 

 

7.3.3 Thermoelastic consolidation  

Few analytical solutions are available for fully coupled thermal-poro-elastic problems. 

The code-to-code comparison, however, provides a way to verify our model. Aboustit et al. 

(1982) studied a 1-D thermoelastic consolidation problem using a coupled finite element model 

without considering convection effect. Based on the results from Aboustit, Noorishad et al. 

(1984), Lewis et al. (1986), and Gatmiri and Delage (1997) performed code-to-code verification. 

Table 7.3 gives the input data used in this problem. Again, 3-D 8-node hexahedron elements are 

utilized in our simulation. A surface traction of unity is applied on the top surface, with a surface 

temperature of 50 °C. The initial temperature of the saturated soil is 0 °C. The soil column is 

insulated and sealed everywhere, except at the top surface. 

Figure 7.9 gives the results from Aboustit et al. (1982) and Noorishad et al. (1984) along 

with our solution of the same problem. A nearly perfect agreement is achieved between 

Noorishad’s and ours. Noorishad suggested that the slight discrepancy between Aboustit’s and 

their solutions was due to their solution scheme, under which the temperature solution lags one 

step behind the hydro-mechanical calculation. However, our fully coupled solution, based on 

Newton Raphson iteration, indicates that one step lag may not be the reason. 
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Table 7.3 Basic input parameters for thermoelastic consolidation. 

Porosity, ϕ         0.20  

Young’s modulus, E      6000.0 Pa 

Poisson’s ratio, ν      0.40 

Volumetric thermal expansion coefficient, αm 9.0×10
-7

 

Matrix heat capacity, ρC    167.20×10
3
 J/m

3
 °C 

Thermal conductivity, k
T
    836.0 J/m s °C 

Permeability, k/μ       4.0×10
-6

 m/s 

Biot’s coefficient, α     1.0 

Initial temperature, Tini     0 °C 

Surface temperature, T0    50.0 °C 

Surface load        1.0 Pa 
 

 
Figure 7.9 Surface settlement plotted as a function of time for thermoelastic consolidation. 

 

7.4 Fluid injection at Phase 1 Fenton Hill geothermal reservoir 

As an application of the fully coupled thermo-poromechanical model, the Hot Dry Rock 

(HDR) geothermal system at Fenton Hill, New Mexico, is studied. In 1974, the world’s first 

HDR geothermal reservoir was under construction, which is referred to as the Phase I reservoir. 

From 1978 to 1980, major flow tests were performed, including a 9-month continuous 

circulation test. Then, a deeper and hotter geothermal reservoir was constructed at the same site, 

which is referred to as the Phase II reservoir (Brown et al., 2012). In this study, attention is 

focused on the Phase I reservoir. 

The principal objective of the Phase I reservoir was to assess the technical feasibility of 

the enhanced geothermal system concept in hot dry rock (Brown et al., 2012). Multiple 
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pressurization and venting experiments were performed over a fresh open-hole interval (Zone 7) 

from 6499 to 6702 ft (1980 m to 2042 m) at the bottom of GT-2 borehole after stage 2 drilling. 

Field observations indicated that the opening pressure for the stimulated joints was as high as 

2500 psi (17 MPa). After some calculation, the inclined angle of the two joints was estimated as 

70°. Based on pressure records, it was considered that the applied hydraulic pressure was 

opening two pre-existing joints, intersecting the borehole, rather than fracturing intact rock 

(Brown et al., 2012). Table 7.4 gives the input parameters used in this study for Phase I Fenton 

Hill geothermal reservoir. 

After several years of exploration, it was suggested that all Fenton Hill “fractures” were 

actually pre-existing but resealed joints that were being reopened during hydraulic stimulations 

(Brown et al., 2012). Pressure testing of the open-hole interval (Zone 7) at GT-2 borehole found 

no evidence of hydraulic fracturing. During a very brief test, the injection pressure experienced a 

sharp rise and then an abrupt leveling off at about 2500 psi (17 MPa) before shut-in. The data has 

been interpreted to indicate joints were opened at or below a pressure around 2500 psi (17 MPa). 

Four injection-venting experiments were also performed in the open-hole interval (Zone 

7) at GT-2 borehole. The first three experiments injected 11,000, 20,000 and 36,000 gal. of water 

(corresponding to 41.64, 75.71 and 136.27 m
3
), at a maximum injection pressure of 2500 psi (17 

MPa) and a maximum and a maximum flow rate of 4BPM (10.6 L/s). Observation indicated that 

much less than half of the injected fluid was recovered in each of the three subsequent tests. In 

the fourth injection, treated fluid using cross-linked polymer mixed with sand was adopted. 4500 

gal. (17.03 m
3
) of treated fluid was pumped at a rate of 9 BPM (23.9 L/s). The pumping pressure 

was as high as 2950 psi (20.34 MPa) during the treatment. In less than an hour, over 90% of the 
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injected fluid was recovered. Another 8% was recovered from continued venting (Brown et al., 

2012). These observations provoked a great deal of discussion. 

Table 7.4 Model parameters for Phase I Fenton Hill geothermal reservoir. 

Rock Properties 

Young’s modulus, E        6.0×10
10

 Pa 

Poisson’s ratio, v        0.25 

Undrained Poisson’s ratio, vu     0.33 

Biot’s effective stress coefficient, α   0.5 

Rock density, ρrock        2.7×10
3
 kg/m

3
 

Tensile strength of intact rock    6.0×10
6
 Pa 

 

Hydraulic Properties 

Porosity, φ          0.0001 

Permeability, k         0.15 md 

Viscosity, μ          3.0×10
-4

 kg/(m s) 

Density of fluid, ρf        1.0×10
3
 kg/m

3 

 

Thermal Properties 

Volumetric thermal expansion coefficient of matrix, αm 2.4×10
-5

 1/°C 

Volumetric thermal expansion coefficient of fluid, αf 2.1×10
-4

 1/°C 

Thermal conductivity of rock, κ
T

r   3.0 J/(m s °C) 

Thermal conductivity of fluid, κ
T

r   0.6 J/(m s °C) 

Heat capacity of rock, Cr      900 J/(kg °C) 

Heat capacity of fluid, Cf      4200 J/(kg °C) 

 

Stress and Temperature States 

Vertical stress, Sv        53 MPa 

Max. horizontal stress, SHmax     44 MPa 

Min. Horizontal stress, Shmin     34 MPa 

Initial pore pressure, Pini      19.6 MPa 

Reservoir temperature, Tini     146 °C 

Injection fluid temperature, Tinj    66 °C 

 

In this study, we use our coupled model to simulate this pressure behavior and analyze 

the mechanisms involved. The method utilized to update joint permeability during reactivation is 

first presented. Two field examples are then adopted as examples to illustrate the performance of 

the model. The first is a pressure-stimulation test, during which some 105 gal. of fluid was 

injected in the open-hole interval (Zone 7) at GT-2 borehole for about 1 minute (p. 72, Brown et 

al., 2012). We then demonstrate the model responses during four injection-venting operations 

and try to analyze the mechanisms involved in these treatments. 
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7.4.1 Permeability of natural fracture (joint) 

The opening of joints during fluid injection is simulated using the previously proposed 

damage model. Initially, the joint is assumed to be in sealed conditions with a same permeability 

of intact rock. The tensile strength of the sealed joint is set at a low value (600 Pa), which is 

assumed to be the tensile strength of the joint-filling material. Whenever the joint is opened by 

injected fluid, the aperture of joint would be altered as a function of effective normal stress 

(Willis-Richards et al., 1996) 

 

0

1 '/
s res

nref

a
a a a

 
  


 (7.15) 

where σ’ is the effective normal stress acting on joint surface, a0 is the aperture of joint under 

zero effective stress, σnref is the effective normal stress applied to make aperture to be a0/(1+β), 

ares is residual aperture at high effective stress, as is the aperture change caused by shear dilation, 

as = U tan(ϕdil), U is shear displacement of joint, ϕdil is shear dilation angle. Aperture, a, is 

plotted as a function of β and σ’ in Figure 7.10. 

For fully open fractures, the effective normal stress is zero and the fracture asperities are 

no longer in contact. Under such circumstance, the value of joint aperture is chosen as the 

maximum one between the initial aperture a0 and the aperture change calculated from element 

deformation. Finally, the joint permeability is calculated based on the well-known “cubic law” 

(Willis-Richards et al., 1996) 

 

2

12

a
k   (7.16) 
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Figure 7.10 Aperture plotted as a function of β and σ’. (a0 = 100 × 10

-6
 m, σnref = 1.0 × 10

7
 Pa, ares = 

0.1 × 10
-6

 m)  

 

Evolution of joint aperture and permeability under pressurization is a complex process. 

Joint aperture is a key parameter that controls the injection volume and flow-back volume during 

injection and venting operations. Semi-analytical equations are utilized to capture the main 

characteristics of it. As mentioned before, different assumptions are proposed regarding the 

mechanisms involved in repeated pumping and venting operations. In this study, three scenarios 

are considered based on different assumptions. 

7.4.2 A pressure-stimulation test 

The simulation domain size is 200 m by 300 m by 300 m in x, y, and z directions, 

respectively (Figure 7.11). The x direction is aligned with the direction of minimum horizontal 

principal stress. In order to analyze the influence of mesh size on the simulations, two different 

grid models are built. They are meshed using different element sizes in the y-z cross-section. The 

joints, found in Zone 7 of GT-2 borehole at depth around 2000 m, are explicitly represented by 

elements in our model (Figure 7.11a). The elements containing the joint, we call them joint 

elements, have a thickness of 0.1 m (joint aperture is much smaller than the element thickness.). 

Though smaller thickness of joint elements could be adopted, it is not computationally economic 

to do so. As shown in Figure 7.11, the joint plane has a dip angle of 70 degree, and strikes 
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parallel to the y direction. One model has 60 by 60 elements on the joint plane, and another has 

30 by 30 elements. The joint parameters used in the first pressure-stimulation test are a0 = 100 × 

10
-6

 m, σnref = 1.0 × 10
7
 Pa, ϕdil = 3°, ares = 0, β = 200.  

 
(a) 

 
(b) 

 
(c) 

Figure 7.11 Grid model and discretized joint plane with different element mesh size. (a) grid model 

(200 m×300 m×300 m), red color indicates joint elements; (b) coarse mesh for joint plane, element 

size is 10 m; (c) finer mesh for joint plane, element size is 5 m. 

 

Figure 7.12 illustrates the bottom-hole pressure (BHP) plotted as a function of time using 

a coarse mesh with 31×30×30 elements in x, y and z directions, respectively. As can been seen, 

there is an initial sharp rise in pressure during the first 15 seconds of injection. And then a 

leveling off of BHP is observed at about 37 MPa during the injection treatment. Then the BHP 

gradually decreases to the initial bottom-hole pressure (19.6 MPa) after shut-in. For the finer 

mesh with 31×60×60 elements in x, y and z directions, a similar profile of BHP vs. time is 

observed (Figure 7.13). The pressure plateau is at about 38 MPa during the injection stage. This 

pressure behavior, a sharp rise followed by an abrupt “flattening out”, matches the field 

observation very well, which indicates the appropriateness of the proposed model. The red dash 

lines in Figure 7.12 and Figure 7.13 are from field records. Through comparison, it is considered 

that a reasonable match is achieved. The maximum difference of bottom-hole pressure caused by 

mesh size is around 2 MPa, and should be acceptable in practical application.  
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(a) 

 
(b) 

Figure 7.12 Bottom-hole pressure plotted as a function of time using a coarse mesh, 31×30×30 

elements are respectively used in x, y, and z directions. (a) pressure profile during first 2 mins; (b) 

pressure profile over 70 mins.  

 

 
(a) 

 
(b) 

Figure 7.13 Bottom-hole pressure plotted as a function of time using a finer mesh, 31×60×60 

elements are respectively used in x, y, and z directions. (a) pressure profile during first 2 mins; (b) 

pressure profile over 70 mins. 

 

7.4.3 Injection-venting experiments 

After the first pressure test, four injection-venting experiments were performed at the 

same site. Three scenarios are proposed in order to match the field records. 

(1) Scenario #1 

The joint parameters used are a0 = 100 × 10
-6

 m, σnref = 1.0 × 10
7
 Pa, ϕdil = 3°, ares = 0.1 × 

10
-6

 m, β = 80. The size of simulation domain is 200 m by 500 m by 500 m with 31×50×50 

elements in x, y, and z directions, respectively. Four injection-venting operations are simulated. 

A shut-in period of 60 mins exists after each of the injections (41.64, 75.71, 136.27 and 17.03 

m
3
) of water. After shut-in, one hour venting operation is performed, and the corresponding 
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flow-back volumes are calculated for each injection. The injection rate for the first three 

operations is 7.9 L/s. The last injection has a rate of 23.9 L/s. 

We assume the natural fracture is initially sealed, and its initial permeability is the same 

as the matrix permeability. After reactivation, the fracture aperture increases due to shearing and 

opening. Its permeability is then determined by Eqs. (7.15) and (7.16). During venting stages, the 

flow-back volumes largely depend on the size of aperture or the equivalent permeability. We 

first consider the case with ares = 0.1 × 10
-6

 m during injection, shut-in, and venting operations 

(case 1). We then change the residual aperture, ares, into 5 × 10
-6

 m (case 2) and 1 × 10
-5

 m (case 

3) in the last venting treatment in order to evaluate the sensitivity of recovery ratio to aperture 

size. Figure 7.14 illustrates aperture, a, plotted as a function of effective normal stress for the 

three cases. 

 
Figure 7.14 Aperture plotted as a function of effective normal stress for three cases in scenario #1. 

 

Bottom-hole pressure (BHP) is plotted as a function of time in Figure 7.15. Four 

sequential injection-shut-in-venting treatments are separated by red dash lines. Pressure 

perturbation happens during injection operations. The 1
st
 and 4

th
 treatments have larger pressure 

drop than the 2
nd

 and 3
rd

 treatments during shut-in operations. This could be due to the smaller 

injected volume during the 1
st
 and 4

th
 injection treatments. 
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Figure 7.15 Bottom-hole pressure plotted as a function of time for the four injection-venting 

treatments (β = 80).  

 

Table 7.5 gives the flow-back volumes at the end of each venting operation. The smallest 

aperture size and its corresponding equivalent permeability are also given. 7.7×10
-7

 m is the 

calculated smallest aperture size, which is also the aperture size for the joint element containing 

wellbore. 

Table 7.5 Flow-back volume and permeability at the end of each venting for scenario #1. 

Treatment 1
st
 2

nd
 3

rd
 4

th
 

Flow-back ratio 7% 22% 40% 23% 

Perm (md) 50 50 46 50 

Aperture (m) 7.8×10
-7

  7.7×10
-7

 7.7×10
-7

 7.7×10
-7

 

 

If we set the residual aperture as 5.0 × 10
-6

 m (case 2), which is 1/6 of the maximum 

aperture during the 4th injection, the flow-back ratio is calculated as 137%. When 1× 10
-5

 m is 

used (case 3), the flow-back ratio is 171%. In the last treatment, the flow-back volume is larger 

than the injection volume. This indicates that fluid in the 3
rd

 treatment flows back during the 

venting in the 4th treatment. 

(2) Scenario #2 

Instead of changing the residual aperture in the last venting treatment, we try to match 

field observations by making the joint “softer”. In scenario #2 β is decreased from 80 to 20 and 

all the other parameters are kept as those used previously. The aperture size is plotted as a 
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function of β in Figure 7.10. The larger of β, the stiffer of the joint. The joint parameters used are 

a0 = 100 × 10
-6

 m, σnref = 1.0 × 10
7
 Pa, ϕdil = 3°, ares = 0.1 × 10

-6
 m, β = 20. 

The recovery ratio of injected fluid and the smallest aperture size at the end of each 

venting are listed in Table 7.6. The recovery ratio increases compared with the cases with β = 80 

in scenario #1. In the last venting operation, the recovery ratio is 84%, which is close to the field 

observation of 90%. 

Table 7.6 Flow-back volume and permeability at the end of each venting for scenario #2, β = 20. 

Treatment 1
st
 2

nd
 3

rd
 4

th
 

Flow-back ratio 31% 35% 45% 84% 

Perm (md) 768 763 754 756 

Aperture (m) 3.0×10
-6

  3.0×10
-6

 3.0×10
-6

 3.0× 10
-6

 

 

Figure 7.16 illustrates the aperture distribution along a line passing through an injection 

point and parallel to the direction of maximum horizontal stress, at the end of each injection. The 

3rd injection cycle generates the largest aperture. The largest aperture in the end of 4th injection 

is 5.5 × 10
-5

 m. The fluid pressure distribution along the line at the end of each venting is shown 

in Figure 7.17. As can been see from it, high fluid pressure is trapped in the joint in the end of 

venting.  

 
Figure 7.16 Aperture distribution along a line passing through an injection point and parallel to the 

direction of maximum horizontal stress (β = 20).  
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Figure 7.17 Fluid pressure distribution at the end of each venting treatment along a line passing 

through an injection point and parallel to the direction of maximum horizontal stress (β = 20).  

 

(3) Scenario #3 

From published field experiments, it is found that natural fractures underground tends to 

be softer during injection-venting treatments (Jung 1989). In our model, the stiffer or softer 

behavior of a joint is related to β. If we assume the joint becomes softer during each injection-

venting operation, β should decrease from a higher value in the first treatment to smaller values 

in subsequent treatments. Also, we should remember the stiffness of joint is size dependent, the 

larger of a joint, the softer of its stiffness. 

In scenario #3, β decreases from 80 to 20: β = 80 for the 1
st
 injection-venting treatment; β 

= 60 for the 2
nd

 injection-venting treatment; β = 40 for the 3
rd

 injection-venting treatment; β = 20 

for the 4
th

 injection-venting treatment. All the other parameters are kept as those used before. 

The fluid pressure trapped in the joint at the end of each venting is presented in Figure 

7.18. The 1st treatment has the largest trapped pressure. The 2
nd

 treatment also has a larger 

trapped pressure than the 3
rd

 treatment. In contrast, the 3
rd

 treatment has the largest trapped 

pressure in scenario #2 with β = 20; the 1
st
 treatment has the lowest trapped pressure. Also, all 

the trapped pressures for the first three venting operations in scenario #3 are larger than those in 

scenario #2.  
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Figure 7.18 Fluid pressure distribution at the end of each venting treatment along a line passing 

through an injection point and parallel to the direction of maximum horizontal stress.  

 

Table 7.7 summaries the recovery ratio, the smallest aperture size and its corresponding 

equivalent permeability for each treatment. As can be seen from it, the recovery ratio is very 

close to field observations. 

Table 7.7 Flow-back volume and permeability at the end of each venting for scenario #3. 

Treatment 1
st
 2

nd
 3

rd
 4

th
 

Flow-back ratio 7% 26% 45% 91% 

Perm (md) 51 88 195 759 

Aperture (m) 7.9 ×10
-7

  1.0 × 10
-6

 1.5× 10
-6

 3.0× 10
-6

 

 

(4) Scenario #4 

It is well known that joint stiffness depends on the size of the joint. The following simple 

linear equation is used to represent joint stiffness as a function of the size: 

 
 1 0

1 1

1 0

x R
R R

 
 


  


 (7.17) 

where β0, β1, R0, R1 are input parameters, x is the radius of reactivation zone. 

Based on previous simulations, we find that the radius of reactivation zone ranges from 

100 m to 200 m. In this scenario, R0 and R1 are chose as 100 and 200, respectively. β0 and β1 are 

chose as 400, and 20. Table 7.8 summaries the recovery ratio, the smallest aperture size and its 
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corresponding equivalent permeability for each treatment. As can be seen from it, the recovery 

ratio increases after each treatment. We do not have perfect matches with the field observations. 

It is reasonable because the factors that influence the flow-back volume are not completely 

considered in the simulations. 

Table 7.8 Flow-back volume and permeability at the end of each venting for scenario #4. 

Treatment 1
st
 2

nd
 3

rd
 4

th
 

Flow-back ratio 3% 30% 54% 72% 

Perm (md) 5.9 31 327 327 

Aperture (m) 2.7 ×10
-7

  6.2 × 10
-7

 2.0× 10
-6

 2.0× 10
-6

 

 

7.5 Conclusions 

A fully coupled thermal-hydro-mechanical model is developed. Numerical examples are 

presented to verify and illustrate the application of this model. Excellent agreements have been 

achieved through the comparison of numerical results with both analytical solutions and results 

from published work. The reopening of joints is simulated based on damage mechanics. 

Evolution of joint aperture and permeability controls the injection volume and flow-back volume 

during injection and venting operations. Semi-analytical equations are utilized to capture the 

main characteristics of it. A pressurization test at Phase I Fenton Hill geothermal reservoir is 

used to evaluate our model. Numerical results from our model match well with field records 

according to the pressure profile characteristics. The influence of mesh size on simulation results 

is also analyzed. The maximum differences of bottom-hole pressure caused by mesh size is 

around 2 MPa. Three scenarios are proposed to evaluate the mechanisms involved in the 

repeated injection-venting experiments. It is found that the stiffness of joint, a key parameter 

used in aperture calculation, controls the flow-back volume and trapped fluid pressure during 

venting operations. Considering the size dependent characteristic of joint stiffness and hysteresis 

behaviors observed during injection and venting, a parameter related to stiffness is gradually 



307 

changed after each injection-venting treatment in the 3
rd

 scenario. Based on the results from 

numerical simulations, it is concluded that the 3
rd

 scenario best fits the field observations. 

 

References 

Aboustit, B., Advani, S., Lee, J. et al. 1982. Finite element evaluations of thermo-elastic 

consolidation. In The 23rd US Symposium on Rock Mechanics (USRMS). 

Ashby, M. F. and Sammis, C. G. 1990. The damage mechanics of brittle solids in compression. 

Pure and Applied Geophysics 133 (3): 489-521. http://dx.doi.org/10.1007/bf00878002. 

Biot, M. A. 1941. General theory of three‐ dimensional consolidation. Journal of Applied 

Physics 12 (2): 155-164. 

Booker, J. R. and Savvidou, C. 1984. Consolidation around a spherical heat source. International 

Journal of Solids and Structures 20 (11–12): 1079-1090. http://dx.doi.org/10.1016/0020-

7683(84)90091-X. 

Booker, J. R. and Savvidou, C. 1985. Consolidation around a point heat source. International 

Journal for Numerical and Analytical Methods in Geomechanics 9 (2): 173-184. 

http://dx.doi.org/10.1002/nag.1610090206. 

Brown, D. W., Duchane, D. V., Heiken, G. et al. 2012. Mining the earth's heat: hot dry rock 

geothermal energy. Heidelberg: Springer Science & Business Media. 

Cheng, A. H. D. and Detournay, E. 1988. A direct boundary element method for plane strain 

poroelasticity. International Journal for Numerical and Analytical Methods in 

Geomechanics 12 (5): 551-572. 

Cleary, M. P. 1977. Fundamental solutions for a fluid-saturated porous solid. International 

Journal of Solids and Structures 13 (9): 785-806. http://dx.doi.org/10.1016/0020-

7683(77)90065-8. 

de Borst, R. 2002. Fracture in quasi-brittle materials: a review of continuum damage-based 

approaches. Engineering Fracture Mechanics 69 (2): 95-112. 

http://dx.doi.org/10.1016/S0013-7944(01)00082-0. 



308 

Gatmiri, B. and Delage, P. 1997. A formulation of fully coupled thermal–hydraulic–mechanical 

behaviour of saturated porous media—numerical approach. International Journal for 

Numerical and Analytical Methods in Geomechanics 21 (3): 199-225. 

http://dx.doi.org/10.1002/(sici)1096-9853(199703)21:3<199::aid-nag865>3.0.co;2-m. 

Jaeger, J. C., Cook, N. G. W., and Zimmerman, R. (2007). Fundamentals of Rock Mechanics 

(Fourth ed.). Malden, MA: Wiley-Blackwell Publishing. 

Jing, L. and Hudson, J. A. 2002. Numerical methods in rock mechanics. International Journal of 

Rock Mechanics and Mining Sciences 39 (4): 409-427. http://dx.doi.org/10.1016/S1365-

1609(02)00065-5. 

Jirásek, M. and Bauer, M. 2012. Numerical aspects of the crack band approach. Computers & 

Structures 110–111: 60-78. http://dx.doi.org/10.1016/j.compstruc.2012.06.006. 

Jung, R. 1989. Hydraulic in situ investigations of an artificial fracture in the Falkenberg granite. 

International Journal of Rock Mechanics and Mining Sciences & Geomechanics 

Abstracts 26 (3): 301-308. http://dx.doi.org/10.1016/0148-9062(89)91978-5. 

Kachanov, L. 1958. Time of the rupture process under creep conditions. Isv. Akad. Nauk. SSR. 

Otd Tekh. Nauk 8: 26-31. 

Kurashige, M. 1989. A thermoelastic theory of fluid-filled porous materials. International 

Journal of Solids and Structures 25 (9): 1039-1052. http://dx.doi.org/10.1016/0020-

7683(89)90020-6. 

Lee, S. H. and Ghassemi, A. 2009. Thermo-poroelastic Finite Element Analysis of Rock 

Deformation And Damage. Paper ARMA-09-121 presented at the The 43rd US Rock 

Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, Asheville, 

NC, 28 June-1 July 2009. 

Lewis, R. W., Majorana, C. E. and Schrefler, B. A. 1986. A coupled finite element model for the 

consolidation of nonisothermal elastoplastic porous media. Transport in Porous Media 1 

(2): 155-178. http://dx.doi.org/10.1007/bf00714690. 

Mazars, J. 1986. A description of micro- and macroscale damage of concrete structures. 

Engineering Fracture Mechanics 25 (5): 729-737. http://dx.doi.org/10.1016/0013-

7944(86)90036-6. 



309 

McTigue, D. 1986. Thermoelastic response of fluid‐ saturated porous rock. Journal of 

Geophysical Research: Solid Earth (1978–2012) 91 (B9): 9533-9542. 

McTigue, D. 1990. Flow to a heated borehole in porous, thermoelastic rock: Analysis. Water 

Resources Research 26 (8): 1763-1774. 

Noorishad, J., Tsang, C. F. and Witherspoon, P. A. 1984. Coupled thermal-hydraulic-mechanical 

phenomena in saturated fractured porous rocks: Numerical approach. Journal of 

Geophysical Research: Solid Earth 89 (B12): 10365-10373. 

http://dx.doi.org/10.1029/JB089iB12p10365. 

Pijaudier-Cabot, G. and Bazant, Z. P. 1987. Nonlocal damage theory. Journal of Engineering 

Mechanics 113 (10): 1512-1533. 

Rice, J. R. and Cleary, M. P. 1976. Some basic stress diffusion solutions for fluid saturated 

elastic porous media with compressible constituents. Reviews of Geophysics 14 (2): 227-

241. 

Schiffman, R. L. 1971. A thermoelastic theory of consolidation. Environmental and Geophysical 

Heat Transfer 4: 78-84. 

Simo, J. C. and Ju, J. W. 1987. Strain- and stress-based continuum damage models—I. 

Formulation. International Journal of Solids and Structures 23 (7): 821-840. 

http://dx.doi.org/10.1016/0020-7683(87)90083-7. 

Willis-Richards, J., Watanabe, K. and Takahashi, H. 1996. Progress toward a stochastic rock 

mechanics model of engineered geothermal systems. Journal of Geophysical Research: 

Solid Earth 101 (B8): 17481-17496. http://dx.doi.org/10.1029/96jb00882. 

 

  



310 

8 Summary and future work  

8.1 Summary 

In this dissertation, the coupled processes of fluid flow, heat transport and geomechanics 

are studied based on the theories of thermo-poromechanics, fracture mechanics and fluid 

mechanics. The governing equations for fractured porous rock, fluid flow and heat transport in 

fractures, and fluid flow in wellbores are discretized through the finite element method (FEM). 

Special hydro-mechanical and thermo-hydro-mechanical zero-thickness interface elements are 

developed to model the fully coupled processes in discontinuities, such as newly created 

hydraulic fractures, pre-existing fractures and joints. Typical finite element types suitable to 

model the coupled phenomena are implemented into a parallel computation framework. 

Numerical examples are utilized to verify the proposed models and to illustrate the physical 

mechanisms that are important in multi-physics and multi-scale analyses. Several laboratory 

experiments are also used to validate the proposed numerical model. Multiple applications are 

investigated and discussed. 

8.2 Future work 

There are still many aspects that could be extended based on the current studies in this 

dissertation.  

Simulations of hydraulic fracturing in 3D based on finite element method need a large 

number of elements to discretize the rock matrix surrounding the hydraulic fractures. Adaptive 

mesh or remeshing techniques could be used to decrease the number of elements tremendously 

since relatively smaller elements are needed only near fracture tips and elements with larger size 

could be used in the regions away from the fracture tips. When remeshing or adaptive mesh 

techniques are implemented, hydraulic fractures propagating in nonplanar manner could be 
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realized. Investigation of multiple fracture propagation and the interaction between them could 

be possible.  

As discussed in Chapter 2, when hydraulic fractures propagate close to the formation 

interface, the slippage along the interfaces could act as an efficient way to stop fracture height 

growth. The shear failure (or mixed failure mode) should be considered in CZM in order to 

model the slippage of interfaces. With this improvement, more complex problems could be 

simulated. The interaction between hydraulic fracture and natural fracture shares the same 

physical mechanisms as those involved in slippage and/or opening of formation interfaces. 

The model provided in Chapter 2 could be improved to consider the fracture propagation 

in a poroelastic medium. Poroelastic model can effectively handle the pore pressure and stress 

evolutions during both fluid injection and production. A better understanding of the change of 

pore pressure and stresses benefits the optimization of drilling, production and re-fracturing. 
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