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1. INTRODUCTION

Text-based queries are commonly used for Internet searches. Searching for
images on the Internet is gaining interest. Currently, many images in the Internet have
been indexed with a few keywords either manually or automatically. For example, the
URL http://www.cs.okstate.edu/~bem/graphics/teapot.jpg would have keywords
graphics, teapot, and okstate. In Internet search engines such as Google, when a keyword
‘teapot’ is entered to search images in the database, this URL could be retrieved.

A picture cannot be explained completely by keywords. Retrieval of images
based on pictorial queries is gaining interest as multimedia image libraries are increasing
day-by-day. This is a challenging task because two pictures can be considered similar
even if their resolutions and lighting conditions are different. Even if all the images are
resized to the same resolution, comparing millions of images pixel-by-pixel is a daunting
task and is computationally prohibitive. Typically, features based on color, shape, and
texture are identified to describe the content of an image. It is envisioned that such
features will be extracted from most of the images available in the web, and stored in a
database. When an image is queried, the same features are extracted from the queried
image and these features then are compared with the features of the images present in the
database. Images with features closest to the features of the queried image are retrieved.
This is called content-based image retrieval (CBIR).

Another application of CBIR is for quick retrieval of similar images in a large
image database based on a sample image. For example, NASA has a large image

database of satellite remote-sensing images. A researcher might want to buy a set of



images similar to a sample image with desired texture characteristics.

1.1. Content-based Image Retrieval

Image color, shape of an object in the image, and image texture are all features
that can describe the content of an image (Smeulders et al., 2000). To describe image
color, histogram features are extracted. The histogram describes the distribution of pixel
values (gray-levels) in an image (Gonzales and Woods, 1993). However for many
applications, users want to retrieve similar images irrespective of color and lighting
conditions. The shape of a predominant object in an image can be a valuable feature for
retrieving images. This is complicated because the prominent object first must be
identified in each and every image. A segmentation algorithm can identify objects in an
image. Although there are several segmentation algorithms available, the input
parameters for the algorithms must be fine-tuned for each type of image to achieve good
segmentation. In an image retrieval application, there are several type of images
encountered. Also object in each image differ from image to image. Typically,
segmentation algorithms are also computationally intensive. Due to these factors,
identifying a predominant object in an image is complex. Image texture has been used
successfully to retrieve images (Manjunath and Ma, 1996; Li and Castelli, 1997).

Texture is primarily related to the frequency content of an image. An image from
the spatial domain can be converted to the frequency domain using the Fourier transform
(FT). The spatial domain (original image) contains complete spatial information, but the
frequency information is not obvious. The FT identifies all spectral components of an

image; however it does not contain spatial information. The FT analyzes the image



globally rather than locally. Gabor filters (Manjunath and Ma, 1996) can analyze the
image in both the spatial and the frequency domains. Principal component analysis
(Johnson, 1996) can be used to preprocess the correlated set of textural features into a
smaller set of new uncorrelated features called principal components. Various similarity
measures such as Euclidean distance, Manhattan distance, Mahalanobis distance, can be
used to retrieve the similar images in the database. These similarity measures are defined

in the “Materials & Methods” chapter (Chapter 3).

1.2. Objectives

A Gabor filter was implemented to extract textural features. The objective of this study
was to compare similarity measures for image retrieval based on textural features
extracted from a Gabor filter. Principal component analysis was used as a preprocessing
step for reducing the dimension of textural features. This preprocessing step was
evaluated based on accuracy of image retrieval and computation time. Various
normalization techniques were applied before implementing Minkowsky similarity
measures. The effects of normalization of textural features before applying similarity

measures were evaluated.



2. REVIEW OF LITERATURE

2.1. Spatial Domain

A gray-scale digital image can be represented as a two-dimensional matrix, f (i, j),
where 1 and j indicate the rows and columns of the image. Figure 1 shows a digital image
of the earth. The resolution of this image is 200 x 200. Each element in this matrix is
called picture element, which is shortened as a pixel. If a part of this image is zoomed,
the matrix representation can be seen clearly (Figure 1). The pixel value represents the
gray-scale (intensity). In a photographic (analog) image, the gray tones are continuous.
When this image is digitized using a scanner, the gray tones are quantized into discrete
gray-levels. An 8-bit quantization would produce 28=256 gray-levels. An 8-bit image
matrix, f, will have values ranging from 0-255, where 0 represents ‘black’ and 255

represents ‘white’.

Column

Column

(}

30

0

Row

60

130

65

108)

Figure 1. A representation of a digital image (Adapted from Smith, 1997)

A color image can be represented by a 3-D matrix, which is an extension of a 2-D gray-



scale image. The third dimension consists of three colors such as ‘red’, ‘green’, and
‘blue’ (RGB). The three primary light colors, RGB, can be mixed to produce millions of

colors. In this study, only gray-scale images are considered.

2.2. Frequency Domain

This matrix type of image representation using gray-level values is called spatial domain
representation. An image also can be represented by the Fourier or frequency domain
that is useful in many image processing applications. In December 1807, a French
mathematician, Jean B. Joseph Fourier published a revolutionary concept that periodic
functions could be represented as a weighted sum of sines and cosines. Figure 2 shows a
function that is the sum of 4 sine functions with 4 distinct frequencies f1, f2, f3, 4. Note
that f1>f2>f3>f4. A frequency represents rate of change or number of cycles per unit
distance. The top function has a higher frequency than other functions.

Similar to a spatial domain having spatial axes x and y, the Fourier domain has
frequency axes u and v. For simplicity, let us consider a one-dimensional function. The
function at the bottom of Figure 2 can be considered as one row of an image whose
values represents gray-levels. If Fourier transform (FT) of this function is taken, nonzero
values will be obtained only at 4 points in the frequency axis at f1, f2, f3, f4. The value
of those points would be the same as the amplitude of those sine functions. Therefore FT
decomposes an image into its frequency components. A one-dimensional FT identifies
frequency components in 1-D signals. An image can be considered as a 2-D signal. A

2-D FT converts an image from the 2-D spatial domain to 2-D Fourier domain, which 1s

given by:



4

Figure 2. Demonstration of Fourier idea. The function at the bottom is the sum of four sine

functions above it (Adapted from Gonzales and Woods, 2002).

lMlNl

| LYY )
MN y=0f(x, y)exp( 127Z(M + ND 2.1)

where: f (x,y) is the pixel value of the image, f at coordinates (x,y),

F(u,v)=

F is the FT of the image with new coordinates (u,v),



j is the imaginary number = -1, and
M x N is the resolution of the image f.
A 2-D FT consists of u, v axes, which are also defined as horizontal and vertical

frequency axes. Figure 3 shows an image and its FT.

Frequency Domain

Spatial Domain

Figure 3. Image representation in spatial and frequency domains.

The central part of the Fourier-transformed image represents lowest frequency
content, whereas the corners of the image represent the highest frequency content image.
Let ‘F’ be the FT of the image. The central value, represent zero frequency or a constant,
is the mean value of all gray-level values of the image in the spatial domain, B. A high
frequency of the image represents fast-changing details, which is fine texture, whereas
low frequency content represents coarse texture.

The basis or kernel functions of FT are complex exponentials (sinusoids). As
sines and cosines are infinite in length, FT analyzes the signal globally. Another way of
understanding the FT is that the FT coefficients give the correlation of the image with

cosines and sines of various frequencies. A higher coefficient indicates the higher
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presence of that frequency in the image, and vice versa.

FT coefficients are complex; they have both real and imaginary parts.
Commonly, the magnitude and phase are calculated. In FT literature, the magnitude and
phase matrix is called magnitude and phase spectrum, respectively. The FT of a real
image is a complex conjugate and therefore one half of the FT image is alone required
and the other half is redundant.

FT does not lose any information. There is an inverse Fourier transform (IFT),
which can convert frequency domain back to the spatial domain. The IFT operation is

given by:

flx,y)= Efnu,v)exp[ j2n(-‘3+ﬂ)) (2.2)

u=0 v=0 N

2.3. Linear Space Invariant filter

A digital filter can be used to filter certain frequency content in an image. For instance, a
high-pass filter attenuates low frequency content and passes high frequency content of an
image. The converse is true for a low-pass filter. A band-pass filter passes only a certain

band of frequencies. A digital filter is called a linear filter when it satisfies the following

conditions:
H(f+g) = H()+H(g) (2.3)
H(cf) = cH(f) (2.4)

where: H(f) and H(g) are the outputs of a linear filter on images f and g, respectively, and

C 1S a constant.



Equation 2.3 defines the additivity property; if two images were added and passed
through the filter, the output image is equal to the sum of the filtered first image and the
filtered second image. This implies that the property of the filter is independent of the
input image. Equation 2.4 defines the homogeneity property; if the input image is scaled,
the output image is also scaled by the same factor. Equations 2.3 and 2.4 can be
combined into one equation, as follows:

H(cf+dg) = cH()+dH(g) (2.5)

A space-invariant filter means that the filter characteristics do not vary with the
location within the image. A linear space-invariant (LSI) filter can be completely
characterized by the impulse response. The impulse response is the response of the filter

to an impulse (Figure 4). An impulse is a matrix with a value 1 at the center and O at all

other places.

Impulse —— A LSI filter ————> Impulse response, h(x,y)

Figure 4. Impulse response of a LSI filter.

The output image of the LSI filter is given by the convolution of the impulse
response of the filter with the input image (Figure 5).
g =h**f (2.6)
where: g is the output image from the filter, fis the input image to the filter, % is the

impulse response of the filter, and ** is the two-dimensional convolution operation.



Inputimage ———> A LSI filter, h(x,y) — Output Image
f(x,y) g(x.y)=f(x,y) ® h(x,y)

Figure 5. Convolution operation.

The concept of the convolution can be seen in image or signal processing
textbooks such as Oppenheim and Schafer (1991). The convolution operation is
conducted in the spatial domain. Convolution is computationally intensive and is
explained in Appendix A. Convolution in a spatial domain is equivalent to multiplication
in the frequency domain. Therefore, convolution is usually implemented in the frequency
domain. If we take the FT of the impulse response of a filter, we get frequency response

of the filter. The frequency response indicates how the frequency content in the input

image is attenuated or magnified.

Figure 6. Frequency response of a low-pass filter (Adapted from Gonzalez and Woods, 2002).
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Figure 6 shows the frequency response of a Gaussian-shaped, low-pass filter.

When this filter response is multiplied with frequency content of an image, the low
frequency (central portion) is passed whereas the high frequency is attenuated.
Convolution in the spatial domain (Eqn. 2.5) is equivalent to the following equation in
the frequency domain.
G(u,v) = H(u,v).F(u,v) 2.7
Where G = FT of the output image, g

H = frequency response of the LSI filter, which is FT of impulse response, &

F = FT of the input image, f.
If we take the IFT of the resultant, we would get the filtered image (Figure 7). The basic

steps of implementing a filter are shown in Figure 7.

Input image A LSI filter
f(x.y) h(x,y)
FT FT
F(u,v) H(u,v)

Pointwise Multiplication

4

TFT

U

Output
image g(x,y)

Figure 7. Basic steps of implementing a filter
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2.4. Gabor Filter

The spatial domain (original image) contains complete spatial information, but the
frequency information is not obvious. The FT identifies all spectral components of an
image; however, it does not contain spatial information. As previously indicated, FT
analyzes the image globally rather than locally. In order to obtain spatial localization of
frequency components, the image must be analyzed locally. To meet this requirement,
short-time Fourier transform (STFT) was introduced. An image was localized spatially
by multiplying the image by a window. A window is a two-dimensional function that is
multiplied pointwise (element-by-element) to the image. By multiplying an image with a
window, the specific region in the image can be given more weight than other regions.
The resultant image then is Fourier-transformed to get the frequency component of that
spatial-localized image. Various windows including rectangular, triangular, or Gaussian
can be used. When the window is a Gaussian, the STFT is also known as the Gabor
Transform, from its inventor’s name, Dennis Gabor (Misiti et al., 1996). Gabor
transform is implemented by a bank of band-pass filters; the name “Gabor filter” is
commonly used in the literature.

Manjunath and Ma (1996) designed Gabor filters in the spatial domain. By
specifying the number of orientations and scales, their algorithm divides the FT space by
the filter frequency responses of a bank of band-pass filters. Mean and standard
deviation of the filtered images were used as features. Manjunath and Ma (1996)
demonstrated the application of a Gabor filter for image retrieval. Details and

implementation of a Gabor filter are explained in the next section, 3.1.
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3. MATERIALS & METHODS

3.1. Gabor filter
The algorithm for the Gabor filter described in Manjunath and Ma (1996) was

implemented as part of this research in Matlab 6.1. (Mathworks, Natick, MA). The

band-pass filters are designed in the spatial domain, as given by:

where: h(x,y) is the impulse response of the band-pass filter

x’ and y’ are oriented/ rotated coordinates

x'=a™" (xcos (—n{{)-}- ysin (_n{r_)) (3.2)
K K

'—a "l — 1 E _nj_[_ 33

y'=a ( xsm(K)+ycos(KD (3.3)

where: K = number of orientations
S = number of scales
m=0,1,2,.., S-1

n=0,1,2,. K-1

e [ U, )—E (3.4)
Ul

where: Uy, — center frequency of Gaussian of the largest scale (m=K-1) along u-axis
U, - center frequency of Gaussian of the smallest scale (m=0) along u-axis

The variance of Gaussian in the frequency domain was selected such that all bank

13



filters covers most of the frequency spectrum.

o = (a-1)U, (3.5)
“ (a+1)v2In2
2
tan(i-) U,,—21n(20")
2K U, (3.6)
o, = .
\/ (2n2)’ o7
211’12———2——
U, '

Then, the variance of Gaussians in the spatial domain is given by:

1
O'x = ——1— ’ O-y =
270, 2ro, 3.7

The kernel function of FT is a complex exponential (Eqn. 2.1), whereas the kernel
function of a Gabor filter is a Gaussian function modulated by a complex exponential
(Eqn. 3.1). An interesting property of the Gaussian is that the FT of the Gaussian is also
a Gaussian (Oppenheim and Schafer, 1991). Therefore, the Gaussian window is
continuous in both spatial and frequency domain. When the Gaussian filter is rotated in
the spatial domain (Eqn. 3.2, Eqn. 3.3), the Gaussian in the frequency domain is also
rotated. The Variances of Gaussians in spatial and frequency domains are inversely
related (Eqn. 3.7). When a Gaussian is modulated (multiplied) by a complex exponential
in the spatial domain, the Gaussian in the frequency domain is shifted (added to) by the
phase of the exponential. To illustrate Gabor filter design, a Gabor filter of 3 scales and 4
orientations is designed.

Figure 8 shows the Gabor filters for orientation 1 and 3 scales. The first row in

Figure 8 represents the coarse scale, whereas the last row represents the fine scale, and

14



the middle row represents the medium scale. The first and second columns represent real
and imaginary parts of the impulse response of the Gabor filter; whereas, the third

column represents the frequency response of the Gabor filter.

v VN

TG P

A . -
J -

Figure 8. Impulse and frequency response of Gabor filter (K=3; S=3; n=0; m=0,1,2).

The following observations can be made from Figure 8.

1. Both impulse and frequency responses are Gaussian shaped.

2. The impulse response is a Gaussian modulated by an exponential. The real
part is the Gaussian modulated by a cosine, whereas the imaginary part is the
Gaussian modulated by a sine.

3 The frequency response is also a Gaussian, but shifted by the amount equal to
the frequency of the exponential which modulated the impulse response.

4. The variance of Gaussian in the frequency domain is inversely related to the

15



variance of the Gaussian in the spatial domain.

5. The variance of the Gaussian in the spatial domain for coarse scale (row 1) is

largest, whereas that for fine scale (row 3) is smallest.

6. The variance of the Gaussian in the frequency domain for the coarse scale

(row 1) is smallest, and the center of the Gaussian is closer to the center of the
FT image. Therefore, this filter captures the low frequency content of the
image.

7. The variance of the Gaussian in the frequency domain increases in log to the

base 2 scale, as the scale or the central frequency of the Gaussian increases
(from row 1 to row 3). This is to simulate human vision system, which is
more sensitive to low frequency content than high frequency content.
Therefore the bandwidth of the band-pass filter increases, as the central
frequency increases.

The third column in Figure 8 is the image display of the frequency response of the
Gabor filters. The gray-level corresponds to the amplitude of the frequency response.
Another way of visualizing is to look at 3-D mesh plot. Figures 9-11 show the frequency
response for coarse, medium, and fine scale. These frequency responses are band-pass in

nature. The response shape is Gaussian and the surface is smooth.
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Figure 10. Frequency response of the Gabor filter (K=3; $=3; n=0; m=1)
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Figure 11. Frequency response of the Gabor filter (K=3; S=3; n=0; m=2)

The peak amplitude for coarse scale is higher than that for fine scale. The filters
are designed such that the volume under the Gaussian for any scale and orientation is

same, so that equal weight is given for all textural scale and orientation. The scale (s=1)

would capture coarse texture, whereas the scale (s=3) would capture fine texture features.
Similar to Figure 8, the Gabor filters for 3 other orientations are given in Figures

12-14. All these filters would constitute a bank of band-pass filters, which would cover

half of the frequency space. Figure 14 shows the frequency responses of all filters in the

same image. Note that the coarse scale filters are bright, however the bandwidth is small.
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Figure 13. Impulse and frequency response of Gabor filter (K=3; $=3; n=2; m=0,1,2).
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Figure 14. Frequency coverage by Gabor filters (K=3, S=3) .

Whereas, the fine scale filters are not bright and their bandwidth is large. All filters have
the same volume under each Gaussian.

Manjunath and Ma (1996) designed bank of band-pass filters (K=6; S=4) such
that the half-peak of each Gaussian touches the neighboring Gaussian (Figure 15). Note
that the filters cover only half of the frequency space, as the other half is redundant. This

is because FT of a real image is conjugate symmetric.

Q.6

0.5~

0.4

0.3

-0.2 : : - - .
“De -0.4 -0.2 o 0.2 0.4 0.6

Figure 15. Gabor filters (K=6; $=4). Adapted from Manjunath and Ma (1996).
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- -Fi-giire 16. Basic steps of filtering us'i‘t‘l'g a Gabor filter.
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Figure 16 shows the basic steps of filtering using Gabor filters, similar to Figure
7. If a particular location in the filtered image is bright, then that particular location has
more texture corresponding to that frequency band and orientation.

The mean of the filtered image represents the amount of texture described by that
frequency band and orientation present in the original image. The variance of the filtered
image would describe the variability of that texture from pixel to pixel in the image. The

mean and the variance of the filtered images provide a description of textural distribution

at various scales and orientations.
3.2. Similarity Measures

3.2.1. Minkowsky Distance

Basic distance measures commonly are used for similarity searches. Minkowsky

distance (L) is defined as (Saastamoinen et al., 2002)

1
N 1
Lp(x’ y)Z(lei — i Ip)p (3.8)
i=1

where x and y are vectors. This is also commonly known as L, norm.

When p=1, this distance is called “Manhattan” distance. When p=2, this distance
is called as “Euclidean distance”. Manhattan distance gives equal importance to all
features. As the value of ‘p’ increases, the weight of a large difference between the
values of a feature increases. Therefore, Euclidean distance gives more weight to the
features whose differences are large. When p goes to infinity, the Minkowsky norm will

identify the largest (maximum) difference between all features.

22



3.2.2. Mahalanobis Distance

Minkowsky distance does not take into account the magnitude differences and covariance
(relationship) among features. To overcome this limitation, Mahalanobis distance is
introduced (Johnson, 1998). The Mahalanobis distance between the two vectors x and y

is given by:

d* = (x-y)Z'(x-y)' 3.9

where: d = Mahalanobis distance
X= [XI X2 X3 ... XN],
Y=I[yi1y2¥s3... yn}, and

2 = covariance matrix

Note that x and y are (1 x N) vectors representing N textural features extracted from two

different images. The size of the covariance matrix is (N x N).

Mahalanobis distance can be explained graphically (Fig. 17). For simplicity, let us
consider that there are 2 features and therefore the size of x and y vectors are (1 x 2).
There are ‘n’ observations or images and the objective is to determine the Euclidean and
Mahalanobis distances from the mean or cluster center. Therefore, y is represented by
the cluster center, which is marked by a ‘cross’ in the Figure 17. Observe that there is
some relationship between the two features. In general feature 1 increases, when feature

2 increases. Therefore, the 2 features are correlated to some degree.
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Figure 17. Illustration of differences between Euclidean and Mahalanobis distances

The Euclidean distance contours are circular, as this distance measure does not take into
account of these relationships among the features, which are described by the covariance
matrix. Therefore, the Euclidean distance would indicate that observations A and B in
Figure 17 are equidistant from the cluster center. Mahalanobis distance takes into
account the correlation between the features, and the contours of distances for this
example are elliptical. ~ All observations on this elliptic contour are equidistant from the
cluster center. Mahalanobis distances are calculated based on the unit of standard
deviation, and therefore this distance measure removes the effect of magnitude
differences between features and correlation among features. Mahalanobis distance

would clearly identify that observation ‘B’ is far different from ‘A’, with respect to the

cluster center.
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3.3. Normalization
Some features may be of a larger magnitude/range and these get more weight than
features of lower magnitude/range. Aksoy and Haralick (2001) conducted various

feature normalizations to improve Minkowsky measures.

3.3.1. Linear scaling to unit range (minmax)
One simple way is to linearly normalize the range of each feature to (0,1), as given by:

~ x-1 (3.10)

where x is the transformed variable, and u and 1 are the upper and lower bounds of the
original variable x. This is also known as ‘minmax’ normalization. This normalization

is not robust.

3.3.2. Linear scaling to unit variance (meanstd)
The other more common method is normalizing each feature to zero mean and unit

standard deviation.

~ X—HU

X = 3.11
c (3.11)

where W is the mean and 6 is the standard deviation of x. This is also known as

‘meanstd’ normalization. This normalization is not very robust.

3.3.3. Rank normalization

Given a feature for all images x, x», ..., X,, the order statistics or rank Xy X2)» - --» X(a) 18

determined. Then, each image’s feature value is replaced by its corresponding rank.
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This is repeated for all the features. This procedure uniformly maps all feature values to
the [0, n] range. If more than one image has the same feature value, the average rank
then is assigned to those images. Aksoy and Haralick (2000) further scaled the ranks to
[0, 1] range. Because all features were normalized already to [0, n] range, further linear
scaling to [0, 1] will not affect the performance of image retrieval. Therefore this step

was not performed in this study.

3.3.4. Transformation to a Uniform [0, 1] random variable
A feature ‘x’ can be considered a random variable. The empirical cumulative

distribution function F(x) can be defined as
F(x) = (number of images having value <=x)/(total number of images) (3.12)

By setting the transformed variable, x=F (x), the new variable will be distributed

uniformly in the [0, 1] range (Papoulis, 1991).

3.3.5. Fitting a Normal (4, & ) density

The features can be assumed to be distributed normally with probability density function

(PDF) given by:

—(x;é:)z (3.13)
e 2

fx)=

The two parameters for this distributions are |4 ( mean) and o (standard deviation). They

can be estimated by sample average x ands.
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=l (3.14)

By using the set of training images, mean and standard deviation for each feature are
calculated. Then, the cumulative probability density function (CDF), which is the
probability that a single observation falls in the normal distribution defined by N(u, 6°) in
the region [-oo, X], is calculated by

Ie 27 gt (3.15)

—o0

” 1
F(x|u,0%)=
o227

These CDF values then are assigned to the corresponding values of the features. Note
that probability ranges from [0, 1] and therefore the values are transformed to range [O,

1], assuming a normal distribution function.

3.3.6. Fitting a Lognormal (4, o) density

A lognormal distribution becomes a normal distribution when natural logarithm of the
distribution is taken. Therefore, all features are transformed simply by natural logarithm,
and then a normal distribution is fitted, as explained in section 3.3.5. The CDF values

then are used as transformed variables.

3.3.7. Fitting an Exponential (1) density

The exponential PDF is given by:
1 X

f(x)=—e# (3.16)
y7;

The mean p is estimated by sample average. Some statistics books refer i as A in the
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context of exponential distribution. The CDF is calculated by:

X

F(x|p)=1-e¢ * (3.17)

Therefore, each value then is transformed by the above equation. The transformed values

will be in the range of [0, 1].

3.3.8. Fitting an Gamma (¢, p) density

A gamma PDF is given by:

wl

a-1

f(x)= xe (3.18)

1
B°T(a)
where: o, B are parameters of the gamma distribution and I" is a gamma function,

defined by:

[(a) = [et™ds (3.19)
0

The parameters o, [ are first estimated using training image database by (Aksoy and

Haralick, 2000):

—2
- X
a=—_
s (3.20)
-2
- N
B=2;
x
The CDF then can be determined by:
|
F(x|a,p)=— t“ e Pdt (3.21)
B F(a)i

The CDF values then are used as transformed variables, which is in the range of [0, 1].
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3.4. Principal component analysis

All the above similarity measures do not work well when the features are highly
correlated. The features can be preprocessed to reduce the dimensionality by principal
component analysis (PCA).

Catalan and Gedeon (1999) have used principal component analysis (PCA) to
reduce the dimensions of the feature space. PCA is based on Eigenvector
decomposition. PCA involves a mathematical procedure that transforms a set of
correlated features into a new smaller set of uncorrelated features called principal
components (Johnson, 1998).

Let ‘x’ be the feature vector of an image, given by:

N

where: p = number of textural features extracted. We assume that this vector has a
multivariate normal distribution.

Let ‘XA’ be the feature matrix of size (N x p),

X1t Xi2 -t Xqp (3.22)
X21 Xz2 -+ X
XA=|"2 "= T
Lxm Xn2 -0 Xnp

where: p = number of textural features extracted,
N = number of images,
X = value of the k™ texture feature on the r' image for r=1,...,N and k=1,...,p

The mean of all features can be calculated and stored as a mean vector:
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n= . (3.23)

where i is the mean of the k™ feature of N images, which is the mean of the k™ column

of XA.
The relationships between the features can be measured by the covariances and/or the
correlations. Covariance of x; and xi: 6j; = Cov(x;, Xk) = E((X;-pi)(Xx-Mk)] ; where E(.)

stands for estimate of a variable, which is the mean.

Covariance of x; and x; (variance of x;): E[(xi-m)2]= Gii

The covariance matrix can be arranged as:

Ou Oz O] (3.24)
= = Cov(x)=E[(x-p)x-pyl=| 1 O O
| Op1 Op2 -+ Opp |

Note that the covariance matrix is symmetric, i.e., Ojx = Ok;
Correlation coefficient of x; and xy is given by:
Pu = Tk
The correlation matrix is given by:

[ 1 Pz e pyp
P = Corr(x)= p.21 1 p?p o

[ Ppt Pz o0 T
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Note that correlation values always range from —1 to +1. The value of +1 indicates a
perfect positive linear relationship between 2 variables, whereas —1 indicates a perfect
negative linear relationship. The value of 0 indicates no relationship between those 2
variables.

Eigenvalues are also known as characteristic roots. Eigenvalues of Z are the roots

of the polynomial equation defined by
|=-M|=0 (3.26)

where I is an identity matrix.

If p=2 features, then the determinants are the roots of

|:011 Gi2 _[}\- 0] _ [011 -A O12
O21 O22 0 A O21 G2 — A
= (0'11 —7»)(022 —}»)—0210'12

=A? — MC11 + O22) = (021012 — 011022) =0

_O11+02 \/(0'11 + O22 )2 +4(021612 — G11022) (3.27)
2

A

In general, the eigenvalues are the p roots of
CIA? + CAP + AP + L+ cph + Cpy1 = O where ¢ denote constants.
As X is a symmetric matrix, the eigenvalues are real numbers and can be ordered from
largest to smallest as Ay 2 A, > ... 2A,. The sum of all eigenvalues represents the total
variance explained by all original variables.

Each eigenvalue of X has a corresponding nonzero vector a, called an eigenvector,

that satisfies
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Ta=Aa. (3.28)
PCA involves a mathematical procedure that transforms a set of correlated

features into a new smaller set of uncorrelated variables called principal components

(Johnson, 1996). When variables are highly correlated, they can often be represented

just as well with a smaller set of variables. These new variables are linear combinations

of the original variables.
Characteristics of the principal components:

e Uncorrelated
e The first principal component accounts for as much variability in the data as possible

e Each successive principal component accounts for as much variability in the data as

possible
The first principal component can be calculated by:
yr = ai(x —p) (3.29)
where: a, is chosen so that Var[g; (X — )] is maximized over all vectors a;
satisfying @ja,;=1. Note that aja,=1 so a; is the first eigenvector normalized to have a
length of 1. The maximum value of the variance is A; (largest eigenvalue) and it occurs

when a, is the corresponding eigenvector of X. Since the variance of Y1 = a; (X —p) is

being maximized, the new variable y, will explain as much variability of x as possible.

The second principal component is given by:
Y2 = ax(X - ) (3.30)

where a; is chosen so that Var[as(x — n)] is maximized over all vectors a, that
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are uncorrelated with a, and satisfying @asa,=1. Uncorrelated means that a, and a, are
orthogonal (i.e., @@, = 0). The maximum value is A (2™ largest eigenvalue) and it
occurs when a; is the corresponding eigenvector of 2.

Third, fourth, and further principal components can be found similarly to the first

and second principal components. It can be shown that since the eigenvectors are

orthogonal, the principal components are orthogonal.

3.4.1. Principal component scores
For each image, we need to calculate the k™ principal component value or score as:
Y = ak(Xr — 1) (3.31)
These principal component scores will be used instead of the original feature set.

PCA can be done on the correlation matrix, instead of the covariance matrix.
Note that the correlation coefficient is a unitless measure. Using P is equivalent to
performing PCA using features that are normalized to zero mean and unit standard
deviation. As the magnitude of each texture feature is different from that of other

features, PCA will be done on the covariance matrix.

3.4.2. Determining the Number of Principal Components
It is desirable to find the smallest number of principal components that explains most of

the variability explained by original features. The smallest number of principal

components (d) is selected so that new PCs account for y% of the variability such that

d
3 Aq i A> Y (3.32)
g=1 i=1
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Note that the numerator in the above term represents the variances explained by first ‘d’

PCs, whereas the denominator represents the total variance explained by all original

variables or all PCs.

3.4.3.

1.

Steps in implementation of PCA

For every image in the database, textural features were extracted

A feature matrix (Eqn. 3.22) is arranged such that each row represents an image
and each column represents a feature.

A correlation matrix (Eqn. 3.24) describing the relationship between features is
calculated from the feature matrix.

An eigenvalue decomposition of the correlation matrix is done using Equation

3.26.

For each eigenvalue, a corresponding eigenvector is calculated using Equation
3.28.

Based on eigenvalues, only the first few eigenvectors are selected such that they
explain 99% of total variance of all original variables (Eqn. 3.32).

Then, principal component (PC) scores are calculated using Equation 3.31.

The above steps are done offline, and the following data are stored:

Mean vector of all features
Selected first few Eigenvectors
PC scores for all images in the database.

When a test image is presented for retrieving similar images in the database, the

following steps are performed.
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1. Textural features are extracted from the test image.

2. PC scores are calculated using Equation 3.31, eigenvector, and mean vector.

3. Similarity measures are calculated between the PC scores of test images and every
image in the image database.

4. The top 15 images with smallest distances are retrieved.

3.5. Evaluation Procedure

To evaluate the similarity measure, an image database was required. Initial
studies on textural analysis have used computer-generated texture patterns. It is better to
evaluate naturally occurring textures instead of computer-generated patterns. Brodatz
(1966) published a photographic album consisting of 112 images of naturally occurring
textures such as grass, stones, pebbles, cork, clouds, water, mesh, wood, etc. Some
images from the Brodatz album are illustrated in Figures 18-21. The Brodatz album is a
well-established standard or benchmark for testing texture analysis algorithms (Payne et
al., 1999). These photographic images were digitized to a resolution of 1024x1024 using
a scanner.

As seen from Figures 18-21, these are naturally occurring textures and therefore
most images are not uniform. These images (1024x1024) were divided into 16 sub-
images of size (256x256). Randomly one sub-image was chosen for testing purposes.
The other fifteen sub-images for each image were stored in the training image database.
This resulted in 1620 sub-images in the training database and 112 sub-images in the
testing database. The 112 images in the testing database were presented one-by-one, and

retrieval performance was evaluated. The top 15 images were retrieved. If the retrieval
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was perfect, the remaining 15 sub-images should have been retrieved for the test image.
The percentage of correct retrievals for the top 1 retrieval to top 15 retrievals was
calculated. The average percentage of correct retrieval for all 112 test images then was

calculated and plotted. Based on this evaluation, similarity measures were compared.
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igure 21. An image of a cork from Brodatz album.
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4. RESULTS & DISCUSSION

4.1. Minkowsky Distance Measure

4.1.1. Without normalization
Average percent correct retrievals were plotted against number of retrievals for various p
values for Minkowsky distance measure (Eqn. 3.8). This measure is called Manhattan

and Euclidean distance, when p value is equal to 1 and 2, respectively.
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Figure 22. Performance of Minkowsky distance measure without normalization.

For each number of image retrieval, say 10, top 10 retrievals for every test image were
considered. For each test image, percentage of images correctly retrieved was calculated.
Then, the average of percent correct retrieval for all test images (n=112) was calculated.
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Similarly, average percent correct retrievals were calculated for other number of
retrievals from 1 to 15. For users, performance of an image retrieval system for top few
correct matches is more important than further matches. Minkowsky index, p, affected
the performance of image retrieval slightly (Fig. 22). When p=0.5, the average percent
correct retrievals were the highest for all top retrievals except for top 1% retrieval.
Therefore, a p-value of 0.5 gave the best result. Average percent correct retrieval was

greater than 90% up to top 5 retrievals for p-value of 0.5.

4.1.2. Normalization to unit range

Textural features first were normalized by minmax operation (Eqn. 3.10), and
Minkowsky distance measure then was used for image retrieval. As before, 4 different p-
values were used. Performance was greater than 90% for up to top 8 retrievals. Minmax
normalization has improved the performance compared to ‘without’ normalization. This
is to be expected since this minmax operation normalizes all features to unit range and
gives equal weight to all textural features. Performance was similar for all p-values (Fig.
23). The least computation time was found when p value is equal to 1. For other p-
values, power operation in Equation 3.8. increased the computation time. Therefore, the

p-value of 1 can be used for this distance measure.

4.1.3. Linear scaling to unit variance
Textural features were normalized to zero mean and unit variance and Minkowsky
distance measure then was used for image retrieval (Fig. 24). For this normalization also,

p-values did not considerably affect the image retrieval performance.
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Up to top 3 retrievals, p-values of 0.5 and 1.0 produced higher average percent retrievals
than other p-values. Therefore, p-value of 1 can be used for this normalization, as the
computation time was the least. Performance of ‘meanstd’ normalization was better than

‘without’ normalization, but was similar to ‘minmax’ normalization.

4.1.4. Rank normalization

Ranks were used in Minkowsky distance measure instead of raw textural features.
Performance was similar to ‘minmax’ and ‘meanstd’ normalizations. The p-values of 0.5
and | performed better than other p-values (Fig. 25). Therefore, p-value of 1 was better
for this normalization as computation time was the least for this p-value. Average

percent correct retrieval was greater than 90% for up to top 8 retrievals.
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Figure 25. Performance of Minkowsky distance measure with ‘rank’ normalization.
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4.1.5. Transformation to a Uniform [0, 1] random variable

Textural features were normalized to a uniform [0, 1] random variable using empirical
cumulative distribution as transformation function (Eqn. 3.12). The p-value of 0.5
performed slightly better than other p-values (Fig. 26). The performance of this
transformation was similar to that of other three normalizations (Sections 4.1.2-4.1.5).
The average percent correct retrieval was greater than 90% for up to top 8 retrievals. The
computation time for this transformation was higher than other simple normalizations

like ‘minmax’ or ‘meanstd’. Therefore, simple normalizations were preferred rather than

this transformation.
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Figure 26. Performance of Minkowsky distance measure with ‘uniform’ transformation.

4.1.6. Fitting a Normal Density

Each feature was fitted to a normal distribution and the probability of the distribution less
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than or equal to that value was used as a transformed variable. After transformation,
Minkowsky distance with different p-values was used to retrieve top 15 images for all
test images. Average percent correct retrieval is shown in Figure 27. Among all p-values,
the p-value of 1 performed the best. Average percent correct retrievals were greater than

90% for up to top 8 retrievals.
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Figure 27. Performance of Minkowsky distance with normalization using normal distribution.

4.1.7. Fitting a LogNormal Density

After taking natural logarithm of textural features, a normal density was fitted. The
performance was similar to other normalizations (Fig. 28). Even though, p-value of 0.5
performed slightly better than p-value of 1, the later value might be preferred due to its

low computation time. Average percent correct retrievals were greater than 90% for up

to top 8 retrievals.
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4.1.8. Fitting an Exponential Density

Each feature was fitted to an exponential distribution and the probability of the

distribution less than or equal to that value was used as a transformed variable. After

transformation, Minkowsky distance with different p-values was used to retrieve top 15

images for all test images. Average percent correct retrieval is shown in Figure 29. Even

though, p-value of 0.5 performed slightly better than p-value of 1, the later value might

be preferred due to its low computation time. Average percent correct retrievals were

greater than 90% for up to top 8 retrievals.
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Figure 30. Performance of Minkowsky distance with normalization using gamma distribution.
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4.1.9. Fitting a Gamma Density

Each feature was fitted to a gamma distribution and the probability of the distribution less
than or equal to that value was used as a transformed variable. After transformation,
Minkowsky distance with different p-values was used to retrieve top 15 images for all
test images. Average percent correct retrieval is shown in Figure 30. Even though, p-
value of 0.5 performed slightly better than p-value of 1, the later value might be preferred
due to its low computation time. Average percent correct retrievals were greater than

90% for up to top 8 retrievals.

4.1.10. Principal Component Analysis
The covariance of the feature matrix was calculated (Eqn. 3.24) and eigenvalue
decomposition was performed (Eqns. 3.26 and 3.27). The scree plot, which is a graph of
percent variation explained by each PC, is shown in Figure 31. The first principal
component explained 48.39% of all variations described by 48 textural features. The
second, third, and fourth PCs explained 14.16, 12.86, 6.80, and 3.57 of all variations,
respectively. Further PCs explained lesser and lesser variance. Figure 32 shows the
cumulative percent variation explained by PCs. For instance, if 4 PCS were retained, we
would keep 82.21% of information explained by 48 features. PCA is a dimensionality
reduction technique. In some cases, the information lost could be the noise present in
original features.

Principal components are linear combinations of original features. Weights are
called eigenvectors. Figure 33 shows the eigenvectors for PC1 and PC2. Note that the

length (norm) of eigenvectors is 1. Eigenvector 1 is orthogonal to Eigenvector 2.
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Sometimes, eigenvectors give a misleading picture because all eigenvectors are
normalized to unit length. In reality, eigenvector 1 is more useful than eigenvector 2.
The usefulness of each eigenvector is given by its eigenvalue. Therefore, eigenvector can
be scaled by the square root of its eigenvalue to produce a loading vector. The length of
the loading vector is the eigenvalue, which is the variance explained by that PC. Figure
34 shows the loading vectors for PC1 and PC2. Note that the magnitude of loading
vector 1 is larger than loading vector 2. Still, loading vectors 1 and 2 are orthogonal.

To determine the number of principal components, scree plot or Eqn. 3.32 can be
used. The scree plot shows the graph levels off after 4 PCs and therefore 4 PCs can be

used for image retrieval. Four PCs explain 82.21% of all variations. If 99% of variation
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is desired, then 17 PCS are required (Eqn. 3.32). Image retrieval results were reported

separately, when number of PCs used was 4 and 17.

Loading vector coeffcients

Textural Features

Figure 34. Loading vectors for PC1 and PC2.

When 4 PCS were used, the average percent correct retrievals were less than 80% (Fig.
35). This shows that the information lost was useful for image retrievals. When 17 PCs
were used, the average percent correct retrievals were improved (Fig. 36). However, the
performance was poorer than other normalization techniques. Preprocessing of textural

features by principal component analysis was not suitable for Gabor features for image

retrieval application.
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Figure 36. Minkowsky measure with PCA preprocessing with 17 PCs.
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4.2. Mahalanobis Distance

Mahalanobis distance does not require any normalization, as this measure incorporates

covariance matrix in the calculation (Eqn. 3.9). Figure 21 shows the performance of
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Mahalanobis distance measure without any normalization of Gabor textural features.

Figure 36. Performance of Mahalanobis distance measure

Average percent correct retrieval was plotted against the number of image retrievals.

The average correct percent retrievals were greater than 85% for up to top 6 retrievals

(Fig. 36). Average percent correct retrieval was greater than 90% for only up to top 2

retrievals. Performance of Mahalanobis distance measure was poorer than that of

Minkowsky distance measure with various normalizations.
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4.3. Comparison of Similarity Measures

Average percent correct retrieval was greater than 90% for only up to top 2 retrievals for
Mahalanobis distance and the computation time was 0.24 s. Minkowsky distance
performed better than Mahalanobis distance. Average percent correct retrievals with
greater than 90% were obtained for up to top 8 retrievals for many normalization methods
(Table 1). As expected, the computation time was the least for Minkowsky distance
without any normalization as there was no preprocessing of features involved in the
calculation. Manhattan distance (p=1) with ‘minmax’ normalization had the least
computation times, only next to no normalization. At the same time, performance of the
Manhattan distance with ‘minmax’ normalization was one of the best with average
percent correct retrieval greater than 90% for up to top 8 retrievals. Fitting various
density functions such as normal, exponential, lognormal, gamma, or uniform did not
improve the accuracy of image retrieval. Preprocessing of features by PCA reduced the
accuracy of image retrieval. Therefore, Manhattan distance with ‘minmax’ normalization
performed the best for image retrieval in Brodatz image database.

Manhattan distance with ‘minmax’ normalization achieved an average percent
correct retrieval of 82.16% for top 15 retrievals. Manjunath and Ma (1996) included all
test images in the training image database and reported an average percent correct
retrieval of 74.37%. Hatipoglu et al. (2000) also included all test images in training
image database and achieved an average percent correct retrieval of 81.3% for top 16
retrievals using textural features extracted by complex wavelet transform. Huang and
Chang (1999) used orthogonal wavelet transform and discrete cosine transform to extract

textural features from images in Brodatz album and reported an average percent correct
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retrieval of 71% for top 15 retrievals. Zhou et al. (2001) extracted textural features using
local Fourier transform and reported an average percent correct retrieval of 72% for top
15 retrievals. Xu et al. (2000) divided each image in the Brodatz album into 9 non-
overlapping sub-images and reported an average percent correct retrieval of 83% for top
9 retrievals using textural features extracted by multi resolution simultaneous
autoregressive model and Bhattacharya similarity measure. This study (Manhattan
distance with ‘minmax’ normalization) achieved an average percent correct retrieval of
89.78% for top 9 retrievals. Guo et al. (2001) divided each image in the Brodatz album
into 49 non-overlapping sub-images and used first 33 sub-images in the training image
database and the last 16 sub-images in the test image database. They reported an average
percent correct retrieval of 87.61% for top 15 retrievals, which is higher than what is
reported in this study. However, Guo et al. (2001) algorithm retrieved top 15 images out
of possible 33 correct images available in the training image database. In contrast, this
study retrieved top 15 images out of possible 15 correct images available in the training
image database. Studies by Guo et al. (2001) and Xu et al. (2000) are not directly
comparable to this study, as those studied had not divided the images in to 16 sub-
images. The image retrieval performance achieved in this study is higher than the image

retrieval performances reported in the literature (Table. 2).
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Table 1. Effect of normalization of features for Minkowsky distance on performance of image retrieval.

Time (s) No. of top retrievals with > 90% accuracy
Normalization
p=05 p=1.0 p=1.5 p=2.0 p=05S p=10 p=15 p=2.0

None 0.19 0.16 0.24 0.15 5 3 1 1
Minmax 0.22 0.18 0.27 0.19 8 8 8 7
Meanstd 0.23 0.20 0.29 0.20 8 8 8 7
Rank 0.26 0.23 0.32 0.25 7 8 7 6
Normal 0.66 0.65 0.74 0.64 8 8 7 5
Lognormal 0.69 0.69 0.77 0.68 8 8 7 7
Exponential 0.54 0.54 0.62 0.53 8 8 7 7
Gamma 2.56 244 2.50 242 8 8 7 6
Unifom 13.39 13.30 13.25 13.04 7 8 7 6
PCA -4 PCs 4.16 4.01 4.01 3.99 0 0 0 0
PCA - 17 PCs 4.60 4.32 4.12 4.14 0 1 1 0
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Table 2. Comparison of performance of image retrieval with literature.

Reference Textur-al Feature Similarity Preprocessing Numbe'r of Average %
Extraction Method Measure Top Retrievals correct retrieval

This study Gabor filter Manhattan minmax 15 82.16%

Manjunath and Ma (1996)  Adaptive Gabor filter Manhattan meanstd 15 74.37%

Hatipoglu et al. (2000) Complex wavelet transform Euclidean none 16 81.30%
Huang and Chang (1999) Discrete cosine transform Manhattan meanstd 15 71%
Zhou et al. (2001) Local Fourier transform Manhattan none 15 72%
Xu et al. (2000) Autoregressive model Bhattacharya none 9 83%

Guo et al. (2001) Support vector machines Boundary distance rank 15 87.61%
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4.4. Graphical User Interface

A graphical user interface (GUI) was built so that the user can open a test image and
visualize the retrieved images. The user can select Mahalanobis or Minkowsky distance
measure. If Minkowsky distance measure was selected, the user had an option to enter
any p-value and any normalization techniques. Distance versus number of images
retrieved was plotted and shown in the GUI. Under each image, ID of image retrieved

was displayed.

4.4.1. Testing with Brodatz image database
Some examples of successful image retrievals were shown in Figures 37-41. These
figures demonstrate that the Gabor filter can retrieve similar textural images, even though

there were small differences existed between test image and retrieved images.

Figure 37. Image retriecval for test image of wood grain
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Figure 41. Image retrieval for test image of bark of a tree.
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Figure 42 shows a test image of ice crystals on an automobile, where there was a failure.
Images of beach sand in the training database were retrieved along with correct images.
To show the similarity of textures, original beach sand image (Fig. 43) and ice crystals on
an automobile image (Fig. 44) were shown. Figure 45 shows the image retrieval results
for a test image of varied swinging of light bulb, where there was a complete failure,
except top 1¥ retrieval. Original image of light bulb (Fig. 46) was divided into 16 sub-
images and one sub-image was randomly selected as test image. Note that the texture

was not uniform in this image (Fig. 46), resulting in retrieval failure. Image retrieval
failures due to non-uniformities in texture also were found for images shown in Figures
47 and 48. Poor results were found for test images shown in Figures 49 and 50. The

wrongly retrieved images had similar texture, but the negative of the test image.

-
.y

Figure 42. Image retrieval for test image of ice crystals on an automobile.
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Figure 44. Original image of beach sand.
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Figure 46. Original image of varied swinging of light bulb.
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Figure 48. Original image of abstract effect of swinging lights.
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Fignre 49. Image retrieval failure for the test image of handmade paper.
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4.4.2. Testing with new textural images

To test the algorithm with new textural images, a new image database was created with
1480 distinct textural images collected from the website
http://astronomy.swin.edu.au/~pbourke/texture/. Gabor features were extracted from
each image and stored offline. The user can open any one image as a test image and
retrieve similar images from the database. As each image was distinct from other images
in the database, it was difficult to evaluate objectively. The performance can be
evaluated only visually, which is subjective. As the test image also was present in the
training image database, invariably the same queried image was correctly retrieved as top
1* retrieval with a distance of 0. Figure 50 shows the results of image retrieval, when a

square textural pattern image was given as the test image. The retrieved images also had

square or rectangular or line patterns.

Figure 50. Image retrieval for a real test imnage of square textural pattern.
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When an image with a horizontal line pattern was presented as the test image, the
retrieved images also had horizontal line patterns (Figure 51). Figure 52 shows the
retrieval results, when an image of pebbles was presented. Most of the retrieved images
had similar pebble patterns. Similar results were obtained for two other test images
(Figures 53 and 54). Figure 55 shows the image retrieval results, when an image of a tree
was presented. It was interesting to see that the top 7 retrieved images also contained a
tree. There were no more tree images in the training image database and therefore other
irrelevant images were retrieved. Obviously, a large training image database would
improve the results and users were also typically more interested in top few retrievals.
Note that color, lighting, and size of the image did not influence the retrieved results.

Images were retrieved based on textural content alone.

Figure 51. Image retrieval for a real test image of horizontal line textural pattern.
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Figure 55. Image retrieval for a test image of a tree.
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4.4.3. Testing with new non-textural images

An image database was created with few real images collected from the Internet using a
‘Google’ search. Textural images were also included in this database. Figure 56 shows
the image retrieval results when an image of a sword was queried. Images retrieved as
top 2™ and top 3™ were similar, but slightly different. Top 5™ and 6" retrieved images
were aeroplanes. The reason these images were retrieved was because the angle of the

planes and swords was similar. Top 7™ retrieved image was a textural image with an

angle similar to the angle of the sword.

Figure 56. Image retrieval for a real test image of a sword.

The image retrieval result for a test image of a plane (Figure 57) was similar to those for

the sword (Figure 56). Top 3 retrieved image was a failure.
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Figure 57. Image retrieval for a real test image of an aeroplane.

Figure 58 shows the retrieved image results for a queried image of a vertical sword.
Images of the Statue of Liberty were also retrieved, as the image of the Statue of Liberty
also had a predominantly vertical structure. When an image of the American flag was
queried (Figure 59), top 2 retrievals were correct. Top 5™ retrieved image was also
correct. Other retrieved images were not similar. It should be noted that there were only
3 images of American flag in the database. When an image of the Statue of Liberty was
queried (Figure 60), top 3 retrievals were correct and top 4™ and 5% retrievals had some
vertical components. When an image of a cat was queried (Figure 61), top 3 retrievals

were correct and others were failures.
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Figure 61. Image retrieval for a real test image of a cat.
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Results could be improved, if there had been more images in the training database. Also,
images were retrieved based on texture alone. Performances can be improved, if color

and other features are also incorporated in addition to texture.
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S. CONCLUSIONS

Similarity measures for content-based image retrieval using texture were studied. A
Gabor filter was implemented to extract textural features from images. These textural
features then were used to retrieve images. Minkowsky distance measure performed
better than Mahalanobis distance measure. Preprocessing by PCA did not work well for
this application. Normalization of textural features for Minkowsky distance measure
improved the performance. However, all normalizations performed similarly. Therefore,
the simplest normalization technique ‘minmax,” which linearly scales all textural features
to unit range [0, 1] can be used. Minkowsky index (p-value) did not affect the
performance of image retrieval considerably. Manhattan distance (p=1) had the least
computation time and therefore can be selected. The best similarity measure for image
retrieval based on textural content usin g Gabor features was the Manhattan distance with
‘minmax’ normalization. Average percent correct retrieval was greater than 90% for up
to top 8 retrievals. The image retrieval performance achieved in this study is higher than
the image retrieval performances reported in the literature. A graphical user interface
was developed to visualize the results.

For retrieving real images, performance can be improved by incorporating other features
like color, in addition to texture. The ‘minmax’ normalization is not robust. A more
robust normalization must be identified to improve the accuracy in retrieving real
images. Scaling and rotation of images affect Gabor textural features. If the training

image database contains zoomed or rotated images of the queried image, similarity
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measures based on Gabor textural features will not retrieve those images. Rotational-
invariant and scale-invariant textural features must be extracted to improve the

robustness of image retrieval.
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Appendix A
Convolution
The output or filtered image can be obtained by convolving the impulse response of the
filter with the input image. Impulse responses of filters used in various image processing
operations are usually symmetric. The convolution of image f of size M x N with a filter
impulse response of m x n is given by:
a b

g(x,y):ZZLW(S=I)JC(X+S=)’+E) (A1)

s=—al=—
where: g(x,y) is the value of the filtered image at (x,y),

a=(m-1)/2,

b= (n-1)/2, and

s and t are temporary variables.

To generate a complete filtered image, this equation must be applied to x=0,1,2..., M-1
and y=0,1,2,..., N-1.

This convolution operation can be explained graphically (Figure Al). In this
example, the size of the impulse response is 3 x 3 (i.e., m=n=3; a=b=1). This impulse
response is also commonly called a filter mask or convolution kernel. The convolution
process consists of simply moving the mask over the image pixel-by-pixel. At each point
(x,y), the response g(x,y) is given by a sum of products of the filter coefficients and the
corresponding image pixels in the area covered by the mask (Gonzalez and Woods,

2002). The output is given by:

g(x,y)=w=L=-Df(x=Ly-D+w(=L0)f(x—1y)+..

19



+w(0,0) f(x, y) +...+ w(1,0) f (x +1, y) +wl,D) f(x+1,y+1)

Note that w(0,0) coincides with f(x,y).
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Figure A1. Illustration of convolution (Adapted from Gonzalez and Woods, 2002).
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