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ABSTRACT 

In applications, such as Web clicks and environmental monitoring, data are in the form 

of a stream, each of which is an infinite sequence of data points with explicit or implicit 

timestamps and has special characteristics, such as transiency, uncertainty, dynamic 

data distribution, multi-dimensionality, asynchronous data arrival, dynamic 

relationships, and schema heterogeneity of data from different sources. In those 

applications, outliers do exist due to many reasons including human error, instrument 

error, catastrophe, and malicious behavior.  Being able to detect outliers effectively is 

critical to many data management and mining tasks.  However, not much research has 

been conducted to discover outliers in data stream applications, especially for those 

involving multi-dimensionality, related, heterogeneous, and asynchronous streams. 

In this dissertation, two innovative outlier detection algorithms, Orion and Wadjet, 

which take all the data streams’ characteristics into consideration are presented. Orion is 

designed for applications where data are from single stream. It looks for a projected 

dimension that reveals the outlier nature of multi-dimensional data points with the help 

of an evolutionary algorithm, and  identifies a data point as an outlier if it resides in a 

low density region in that dimension. Wadjet is designed for applications where data are 

from multiple, heterogeneous, and asynchronous streams. It has two phases: in the first 

phase, it processes each stream independently like Orion, and in the second phase, it 

captures and continuously evaluates the cross-correlation, if any, among the data points 

from multiple streams, and identifies a data point as an outlier if its value does not 

conform to the captured cross-correlation. 
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Extensive theoretical and empirical analyses have been conducted to evaluate the 

performance of Orion and Wadjet using real and synthetic datasets. The evaluation 

results show that both algorithms have better accuracy and execution time than the 

state-of-art techniques when applied to homogeneous data stream applications. The 

results also show that Wadjet is effective in detecting outliers in heterogeneous data 

streams which cannot be handled by existing algorithms.  
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CHAPTER I 

INTRODUCTION 

1. Objective 

The objective of this research is to develop efficient and accurate outlier detection 

techniques for single and multiple data streams that address the following 

characteristics:  

i. The transiency of data items in data streams; 

ii. The uncertainty of data items in data streams; 

iii. The infiniteness of data streams; 

iv. Dynamic data distribution of data streams; 

v. Multi-dimensionality of data points; 

vi. Dynamic cross-correlation among heterogeneous data points. 

In the following sections, we present the background of data streams (Section 2) and 

outliers (Section 3), the significance of outlier detection (Section 4) and the major 

challenges of outlier detection for data streams (Section 5). 

2. Data Streams and Applications 

In this era of information, the data assimilation process has changed significantly. The 

applications like web clicks, network traffic monitoring, environmental sensor 

monitoring, etc. generate a sequence of data records in an orderly fashion. The 
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emerging popularity of this type of applications secured a name for the data model 

called Data Streams. A data stream is an infinite sequence of data points ordered by 

explicit or implicit timestamps. A data stream is further characterized by continuous 

arrival [1], unbounded volume [1], time-varying [2], real-time [3], high arrival rate [4], 

uncertainty, drifting concepts [2] and multi-dimensionality. Not all applications share 

all the properties but most of them share one important property in that in all cases a 

data stream is an ordered sequence of data points. Formally a data stream is a tuple 

      where   is a sequence of the data points                 and   is an 

associated sequence of the timestamps                 [5]. 

Environment monitoring is a very popular application of data streams, where a group of 

sensors is placed together to monitor environmental attributes like temperature, 

humidity, wind speed, and soil moisture. The group of sensors is accompanied by a 

radio transmitter. The sensors measure the environmental attributes at a regular interval 

and send them to a base station using a radio transmitter [6]. The base station further 

processes the data. In these kinds of application, each sensor produces a sequence of 

data points with associated timestamps. In an environmental monitoring situation, these 

data are important for a specific amount of time and hence we see the transiency of data 

points. The data points are transmitted over a radio channel; such transmissions are 

susceptible to corruption and interference, which cause the data values to become 

uncertain. Additionally, the distribution of data points changes over time. For example, 

the data distribution of temperature during the night is different from that during the day 

(usually the temperature during the night time is lower than that of the daytime). Last 
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but not least, these applications are envisioned for an infinite amount of time, hence 

produce infinite data points. 

Another popular data stream application is network traffic monitoring. A typical 

network consists of a group of hosts, few switches and routers. In order to maintain 

quality of service and reliability, the network instruments are continuously monitored. 

Each network equipment reports a group of attribute values to the monitoring station 

For example, a router reports, source address, destination address, protocol name, 

packet size, etc; a host reports source address, packet size, application id, etc; a switch 

reports source mac address, destination mac address, etc. to the base station for 

monitoring purposes. Hence, each item produces a data stream consisting of multiple 

attribute values [7]. In this application, each data point has an associated timestamp and 

is produced online. The number of data points is infinite since the monitoring is a never-

ending process. The distribution of network traffic also changes based on the busy and 

idle time of the network. Moreover, the data points from multiple sources are 

asynchronous and heterogeneous in nature since each item reports a different set of 

attribute values. 

3. Outliers 

An outlier is a data point which is significantly different from other data points in the 

dataset or does not conform to the expected normal behavior or conforms well to a 

defined abnormal behavior [8, 9]. In this definition, the phrases “significantly 

different,” “does not conform to the expected normal behavior,” and “conforms well to 

a defined abnormal behavior” are very subjective and deserve intelligent scrutiny; 
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therefore the definition of outlier bears some vagueness. Outliers are often mentioned as 

anomalous data points; an anomalous data point is one that does not conform to the 

expected normal behavior. The data points that are not outliers are often called inliers; 

we use the term inlier to represent a data point which conforms well to the expected 

normal behavior. Outliers in different domains are different in nature from one another. 

An outlier in a credit card transaction is very different from an outlier in meteorological 

data. Hence, different applications have their own definitions of outliers.  

Outliers may appear in a dataset for numerous reasons, like malicious activity, 

instrumental error, setup error, changes of environment, human error, and catastrophe. 

Regardless of the reason behind outliers, they may be interesting to the user because 

they carry some different information for the user than regular data. Some people define 

outliers as problems, some people define them as interesting items; but in any case, they 

are unavoidable [9, 10]. In brief, outliers are interesting and take different forms in 

different types of applications. Chandola et al. [9] classified outliers into three major 

categories as follows. 

Definition 1. Type I Outliers 

Isolated individual data points in a dataset are termed as Type I outliers. By definition 

they are the simplest type and very easy to identify. Intuitively they are far from other 

data points in the dataset in terms of attribute values. 

Definition 2. Type II Outliers 

A data point is isolated with respect to the context. Typically, data in this type of dataset 

has other contextual attributes (e.g., time and location). An outlier is far from other data 
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points in the same context in terms of value. This is a little bit different from a Type I 

outlier; a Type I outlier is a data point isolated from all the other data points in the 

dataset. A Type II outlier was first investigated in time series data in the late seventies. 

Barnett & Lewis [10] defined Type II outliers as the Additive Outliers (AO) for time 

series data. The good thing about additive outliers is that they do not influence the other 

data points in the context, hence they are easy to identify [5].  

Definition 3. Type III Outliers 

A particular group of data points appear as outliers with respect to the entire dataset. No 

data point in a small subset is an outlier with respect to the other points in the subset, 

but as a group, they are the outliers. For contextual data like time series, the entire 

dataset forms a sequence, hence a particular subsequence is an outlier with respect to 

the entire sequence. Barnett & Lewis [10] called them Innovations Outliers (IO) for 

time series data. The bad thing about innovations outliers is that they influence other 

data points of the same context and try to hide themselves; therefore it is difficult to 

identify innovations outliers. 

A data stream has one temporal context with each data point; so it might have a type II 

or type III outlier but never a type I outlier. This is because data streams are considered 

as infinite series and the processing has to be online. Therefore at any particular 

moment, only a subset of the entire dataset is present, and so a data point cannot be an 

outlier with respect to an entire dataset. Regardless of the type of outliers, outlier 

detection is a popular branch of application. We discuss the problem of outlier detection 

and its significance in the next section.  
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4. Significance of Outlier Detection 

Outlier detection refers to the problem of identifying the outliers in a dataset. Since the 

definition of outliers is vague and application-dependent, a formal method for outlier 

detection is not yet developed. By definition, an outlier detection technique takes a 

dataset as input and outputs the outliers. Despite the vagueness of outliers, several 

approaches are popular for outlier detection based on the state of the input data. The 

first approach is called the supervised approach where the outlier detection technique 

assumes the availability of labeled data [11]. A supervised technique collects 

knowledge from labeled data and applies the collected knowledge to unlabeled data for 

outlier detection. The second approach is called the semi-supervised approach which 

requires only the inliers or the outliers to be labeled. Both of these approaches are less 

popular due to the lack of labeled datasets. The third and final approach is called the 

unsupervised approach which does not require any type of labeling, hence, is very 

popular for outlier detection. However, unsupervised techniques often suffer from 

higher false alarms [12].  

Outliers are less intuitive than regular data points and trigger the curiosity of a user to 

investigate their causes, hence outlier detection in a dataset is an important part of the 

data assimilation process [6]. Different applications perform outlier detection for 

different purposes. One of the most popular purposes is intrusion detection. Typically 

intrusion causes outliers, hence the presence of outliers is a good sign of an intrusion. 

Other important purposes include novelty detection (e.g. for medical and public health 

data), damage detection (e.g. for sensor data), fault detection (e.g. for time series data), 

and data cleaning, [9]. Outlier detection for data streams has a wide range of 
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applications and its potential is limitless. Practically every monitoring system requires 

online outlier detection in order to detect abnormalities on-the-fly. In this section, we 

discuss some examples of outlier detection in two types of applications: single and 

multiple streams. 

Outlier detection technique for single streams is appropriate where data points from one 

stream are independent from those from other streams. In that case each stream can be 

processed independently and therefore we call it single stream application. Typical 

applications of outlier detection for single stream include fraud detection, fault 

detection, error detection, etc. Fraud detection refers to the problem of detecting 

unauthorized transactions in bank accounts, credit cards, insurance agencies, cell phone 

companies, etc. Here one stream refers to the transactions from one user. This type of 

applications carries independent streams because transactions from one user are 

independent of transactions from other users. By definition, fraudulent transactions are 

significantly different from regular transactions and, hence, can be identified by outlier 

detection. Many of these applications are becoming online nowadays where transactions 

are monitored on-the-fly. Outlier detection for single data stream has a great potential in 

this area where transactions are monitored and fraudulent activities are detected on-the-

fly. Basu and Meckesheimer [13] proposed the use of outlier detection for data streams 

to detect instrument faults. Practically this approach can be used in any industry where 

machine condition can be monitored on-the-fly. Each machine produces one stream 

consisting of the machine status, and the machine statuses from multiple machines are 

independent of each other. A malfunction of any instrument can be detected by outlier 

detection and, therefore, serious damage due to a catastrophic fault can be avoided. The 
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offline store and process approach detects faults offline, in which case true faults may 

go undetected for some time and may have severe consequences. Multiple weather 

stations are installed in different geographical locations where each station measures 

meteorological attributes. Weather stations are too far from one another that they often 

show very little correlation and are processed as independent streams [14, 15]. These 

stations are often located in remote places that are hard to monitor directly. They may 

produce erroneous values for numerous reasons, such as instrument fault, abrupt 

behavior, and erroneous setup [15]. Outlier detection is one way of detecting erroneous 

values.  

A multiple streams application has more than one stream where data points from one 

stream are related to those from all of some of the other streams; in other words, there 

are some relationships among some or all streams. Network intrusion detection is an 

important application of outlier detection for related streams [9]. Traffic status at 

different network devices is continuously monitored; and a data stream is produced 

from each device that gives birth to a multiple data streams application [16]. Babu et al. 

[7] proposed the idea of network monitoring using data streams. A network monitoring 

application collects network packets, packet traces, active measurements of packet 

delay, throughput, router configuration data, etc. in order to maintain quality of service 

or identify potential threats. The data collected from multiple instruments (router, 

switch, host, etc.) in a network are highly related to each other and, therefore, can be 

monitored together for potential threats. An outlier detection algorithm can be used to 

detect any significant deviation of attribute values which may indicate an intrusion or 

fault. For example, a significant increase of incoming requests can be seen as a potential 
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denial of service attack. Outlier detection for related data streams has a good potential 

in patient health monitoring applications where a patient’s critical body part is 

continuously monitored. In this kind of applications, an outlier may occur because of 

several reasons like patient condition, instrument error or reading error. Moreover, 

many data in this area take the form of time series, such as Electrocardiograms (ECG) 

and Electroencephalograms (EEG) where a combination of multiple time series needs to 

be monitored in order to detect patient condition [17]. Environment monitoring within a 

small region using a sensor network has become very popular in the last decade [6]. 

Each sensor produces a sequence of data points with timestamps and sends it to some 

centralized server for storage and analysis. Typically these sensors are not far from each 

other and data points from one sensor are highly correlated with data points from other 

sensors. Like all other data acquisition processes, these sensors are not outlier resistant. 

Outlier detection for related data streams is a practical way of monitoring these sensors 

in critical applications. 

5. Issues of Outlier Detection in Data Streams 

Data streams are new compared to the regular data model. Their characteristics 

introduce new issues for outlier detection techniques. In this section, we discuss these 

issues.  

Transient 

Data points are transient in a data stream [1, 18]. A particular data point is important for 

a specific amount of time, after which it is discarded or archived [1, 19, 20, 21]. 

Therefore it is important to keep the data point moving [22]; otherwise it may lose its 
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importance. However popular outlier detection techniques rely on the store-and-process 

paradigm [23, 24, 25], where the entire dataset is stored in the first phase to construct an 

outlier detection model, and each data point is compared to the model or other data 

points  in the second phase to detect outliers among them. These approaches hold the 

data points for a long period of time and do not detect outliers as they arrive; so for 

streaming data, these two phase algorithms are inappropriate. A new outlier detection 

scheme has to be developed that processes data points online.  

Requirement 1. An outlier detection technique cannot hold the entire dataset 

indefinitely and compare each data point    to the other data points to detect the outlier-

ness of   ; rather the outlier-ness of    should be decided immediately once    arrives.  

Notion of Time 

Unlike regular data, stream data include a notion of time. Each data point has a 

timestamp associated with it. The association can be explicit (where time is a data 

attribute) or implicit (when the exact time is not important, but the order of data items is 

important) [1]. The timestamp gives the temporal context for each data point; thus each 

data point needs to be processed based on its own temporal context. Outlier detection is 

no exception; by definition, a data point is an outlier if it has a significantly different 

value compared to other data points; but if we take temporal context into consideration, 

a data point must be compared to the other data points with the same temporal context 

(Type II outlier). Typical outlier detection techniques do not consider the temporal 

context of the data points [23, 25], rather they compare a data point to the entire dataset; 

this approach is inherently flawed for data streams since the outlier-ness of a data point 

can only be detected by comparing it with the data points seen so far. A temperature of 
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100ᵒF may not look like an outlier if we consider the temperatures of an entire year, but 

it would certainly look like an outlier if we consider the temperatures of winter days 

only. In order to detect outliers meaningfully, an appropriate temporal context has to be 

selected first (if not given by the user) and then, every data point has to be processed 

based on its temporal context. Moreover an out-of-order data point should be processed 

based on its temporal context [22] as well.  

Requirement 2. A data point has to be compared with the other data points with 

the same temporal context (occurred within the time period which is semantically 

related to the timestamp of the data point). 

Notion of Infinity 

Data streams are seen as infinite sequences of data points as they keep coming from a 

data source indefinitely. The most significant implication of the notion of infinity is that 

at any particular time, the entire dataset is not available, i.e., a random access to the 

entire dataset is not possible for outlier detection [1]. Many outlier detection techniques 

store the entire dataset first and find the outliers later [10]. An outlier detection 

technique for data streams cannot store all the data points seen so far because the 

number of data points is infinite; rather it should store only the summary of the data 

points seen so far using finite memory/resource and detect outliers based on the 

summary. For example, for outlier detection techniques that determine whether a data 

point    is an outlier based on   ’s neighbor data points, in order to compute the 

neighbors, a data density function should be used instead of relying on the availability 

of the entire dataset and using the pairwise distances of all the data points in the dataset. 

On top of this, the data density function has to be computed incrementally. Thus an 
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outlier detection model has to be incremental and cannot assume the availability of the 

entire dataset.  

Requirement 3. In order to detect the outlier-ness of a data point   , the outlier 

detection technique should compare    with the summary of the other data points, 

instead of directly comparing    to the other data points. In addition, the summary 

should be computed incrementally. 

Arrival Rate 

Data points are continuously coming from a data source. The arrival rate might be fixed 

or variable but every application must finish processing before the next data point 

arrives [4], i.e., if the outlier detection is a binary classification task, then the 

classification has to be done before the next data point comes. If the outlier detection 

technique fails to process a data point before the next one arrives, the result is flooding. 

Typical outlier detection techniques compare each data point to all other data points in 

the dataset in order to detect outliers. If the dataset size is too large, these approaches 

would require a vast amount of time and may not be able to keep up with the arrival 

rate. A reasonable accuracy can be achieved if the data point is compared to a much 

smaller subset and the size of the subset should be decided based on the available 

processing time. A similar idea is also applicable to outlier detection model construction 

[26]. Hence the outlier detection time is bounded by the arrival rate of data streams. 

Requirement 4. The set of data points or the summary of the data points, to which 

the current data point is compared to detect outlier-ness, should be adjusted based on 

the available processing time. 
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In some data stream applications like sensor networks, the data arrival rate is not fixed 

[26], but varies over time. In this kind of applications, the available processing time 

between every two consecutive data points is not the same. If a long period of time is 

available, the accuracy of outlier detection could be excelled utilizing the time before 

the next data point arrives; if a short period of time is available, the data point needs to 

be processed before the next data point arrives which may compromise outlier detection 

accuracy [26]. Hence the processing has to be adaptive. 

Requirement 5. In case of dynamic arrival rate, the set of data points or summary 

of the data points, to which the current data point is compared to detect outlier-ness, 

should be adjusted dynamically based on the available processing time. 

Concept Drift 

The data distribution in a data stream changes over time [2]. This might happen because 

of changes in environments, changes of trends, etc. This phenomenon is known as 

concept-drift [2]. Many outlier detection techniques use data distribution to identify 

abnormal behavior [10]. Since data distribution for data streams changes over time, 

outliers detected for one data distribution might not be the same for another data 

distribution. For example, the distribution of traffic in a traffic monitoring system 

during the mornings may be entirely different from the distribution during the evenings; 

therefore, any assumption about data distribution may lead to incorrect results. Many 

statistical and machine learning based techniques assume a fixed data distribution for 

outlier detection [10, 27, 28]; they use a training data set to construct the outlier 

detection model and later detect outliers based on the model. The problem with this 

approach is that the training data set represents a fixed data distribution which may 
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produce meaningful results for some time, but if a concept drift occurs, the same 

training data set (or the same outlier detection model) may no longer produce 

meaningful results. 

Requirement 6. An outlier detection technique for data streams should not 

assume any kind of fixed data distribution. 

Uncertainty 

Data points in a data stream are further characterized by their uncertainty. Data sources 

such as sensors in a sensor network are exposed to an open environment. They are 

vulnerable to external events. The unreliability of the data points in a streaming 

environment is one of the key challenges for working with data streams [29]. Here the 

general term uncertain is used to describe any element that cannot be relied upon with 

complete confidence; however it has many facets like Uncertainty (the fact is uncertain, 

i.e., the attribute value cannot be measured with sufficient confidence), Imprecision (the 

information is not as specific as it should be), Vagueness (including elements that are 

inherently vague), Inconsistency (more than one mutually exclusive assertion), and 

Ambiguity (lack of complete semantics) [30]. On the contrary, existing outlier detection 

techniques assume data points’ values to be correct; therefore, the dissimilarity between 

two data points can be easily measured by distance (Euclidian or Manhattan) or cosine 

similarity. However, distance or cosine similarity fails to measure the 

similarity/dissimilarity between two data points if they are uncertain; and thus outlier 

detection schemes that use such measure of similarity would inherently fail to detect 

outliers for data streams [22, 29]. 
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Requirement 7. An outlier detection technique for data streams should use a 

similarity metric that can measure the similarity between two uncertain data points. 

Moreover the uncertainty may arise because some data points could be entirely missing 

or out-of-date in a data stream which is referred to as imperfection by Stonebraker et al. 

[22]. Data points may arrive late or even entirely fail to arrive in a data streaming 

environment. An outlier detection technique must process the existing data regardless of 

the fate of the failed data points. Consider an example where a senor produces one data 

point every hour and an outlier detection technique that requires previous three hours of 

data to decide the outlier-ness of the current data point. Now if the previous two hours 

of data failed to arrive before the current data point, the fate of the current data point 

must be decided based on whatever data to which the technique has access (i.e., the 

current data point and the data point that arrived three hours ago since other two data 

points in the middle are missing). The problem can be worse if a data point arrives out-

of-date. In that case the out-of-date data point must be processed based on its own 

temporal context. To the best of our knowledge, no existing outlier detection technique 

processes out-of-date data based on their temporal context. Comparing a data point with 

other data points having different temporal contexts to identify outliers would produce 

erroneous results. For example, if the two missing data points arrive some time later, the 

outlier detection technique needs to process them based on the three hours of data points 

that are supposed to arrive before them. 

Requirement 8. The outlier-ness of an out-of-order data point should be decided 

by comparing it with the data points that have the same temporal context as that of the 

out-of-order data point. 
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Multi-dimensionality 

Although multi-dimensionality is not a data stream specific issue, it is worth discussing 

because of its impacts on outlier detection. Measuring the similarity of a data point to 

other data points in the dataset is a crucial part of outlier detection because an unusual 

data point must have very few data points that are similar to it in the dataset. Many 

outlier detection techniques use Euclidian or Manhattan distance to measure the 

similarity between data points [31, 32], but Euclidian distance becomes qualitatively 

meaningless to represent such similarity and causes instability of nearest neighbor for a 

high number of dimensions [33, 34]. This is because the distance between two similar 

data points and the distance between two non-similar data points are approximately 

equal for a high number of dimensions, which in turn makes distance-based outlier 

detection algorithms less effective. Furthermore, many algorithms use data density 

function, but the multi-dimensional data density space grows exponentially with the 

number of dimensions; hence data density function cannot be computed easily [35]. 

Arguably, outlier detection in a multi-dimensional data stream can be seen as outlier 

detection in a set of single dimensional data streams, but this approach is fundamentally 

flawed because it handles all dimensions independently and fails to address the 

correlation among dimensions. 

Requirement 9. An outlier detection technique for data streams should use a 

similarity metric that can measure the similarity among the data points with a large 

number of dimensions. 
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A successful outlier detection technique for single data stream should address the 

aforementioned requirements. For related data streams, besides those requirements, 

additional ones arise, which we discuss in the next paragraphs. 

Cross-correlation 

Multiple data streams produce multiple data points with explicit or implicit timestamps. 

Some outlier detection techniques assume that data points from multiple data streams 

should be close to one another [32, 36] and a data point is an outlier if it is far from 

other data points from other streams at any point in time. This definition is too 

restrictive because in many applications, such as Chlorine monitoring and temperature 

monitoring in the same building, data points from different streams are cross-correlated 

although their values could be far from one another [37]. A data point is considered to 

be an outlier if it violates the expected cross-correlation (nonconformist to other 

values). The temperatures from different cities from different states could be very 

different from one another but they could be related. In order to detect outliers, the 

outlier detection technique should find the cross-correlation among the data points from 

different data streams and compare them to the data points based on their 

explored/expected cross-correlations. 

Requirement 10. The outlier detection technique should be capable of detecting 

outliers that are non-conformist to the other data points with respect to their relationship 

with other data points. 

Asynchronous Data Points 

Data sources in a multiple data streams application may be independent of one another; 

and thus they may generate data points with different arrival rates. These data points are 
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asynchronous [38]. In order to identify whether a data point is an outlier or not, the 

outlier detection technique has to choose an appropriate temporal context not only for 

the same stream but also for other streams. The data point with a predefined temporal 

context can be compared with other data points with the same temporal context in other 

streams for outlier detection. Since data points do not arrive synchronously, it is not 

only difficult to choose an appropriate temporal context from all data streams, but also, 

at a particular timestamp, some data points from some data streams may be present 

while those from other data streams may not, and thus might be considered as missing 

data. To the best of our knowledge, no existing outlier detection technique is designed 

to tackle this kind of missing data. 

Requirement 11. The outlier-ness of a data point should be decided as it arrives, 

minimizing the effect of missing data due to asynchronous processing. 

Furthermore, the asynchronous behavior of multiple data streams hinders synchronous 

processing. Some outlier detection schemes for data streams assume all data points from 

multiple data streams to arrive together [32, 39] and then process them together to 

detect an outlier. However, in practical situations, it is difficult to achieve 

synchronization for different data sources [6]. Moreover the processing of a data point 

cannot be delayed and wait for other data points from other data streams to arrive. 

Therefore the data points from multiple data streams may need to be processed and 

outliers may need to be detected asynchronously. However, in that case it would be 

extremely difficult to exploit the cross-correlations among the data points from multiple 

streams. If an outlier detection technique ignores the cross-correlations completely, it 
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will fail to exploit the advantage of having multiple data streams, and might produce 

less accurate results. 

Requirement 12. The outlier detection technique should have the capability of 

learning cross-correlation among streams and detecting outliers based on the learned 

cross-correlation asynchronously. 

Dynamic Relationship 

The cross-correlations among the data points from multiple data streams may vary over 

time and this dynamic relationship is due to two phenomena: (1) asynchronous behavior 

and (2) concept drift. The data point from multiple data streams have temporal 

correlations which may vary with the varying time differences among the data points. 

Imagine two temperature sensors are mounted in a close proximity to detect 

temperatures. One sensor produces one data point every 3 hours and another sensor 

produces one data point every 5 hours. The time difference between the most recent 

data points from the two sensors may vary from 0 to 3 hours. In that case the temporal 

correlations among them also vary over time. However typical outlier detection relies 

on comparing a data point to its cross-correlated data points; if the relationship changes 

over time, the cross-correlation among the data points from multiple streams has to be 

monitored continuously.  

Concept drift is the second driving factor for dynamic relationship. If concept drifts 

occur independently in multiple data streams, the correlations among the data points 

from multiple streams vary as well. Thus the relationships among the data points 

become dynamic. 
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Requirement 13. An outlier detection technique for multiple streams should 

continuously monitor their cross-correlation and compare a data point with only other 

cross-correlated data points to decide its outlier-ness. 

Heterogeneous Schemas 

In a multiple data streams application, different data streams might have different 

schemas [38]. Comparing multiple data points with different schemas is a complicated 

problem and the definition of outlier is even vaguer in that case. By definition, a data 

point is an outlier if it is a non-conformist compared to other data points, that is, if it has 

a value considerably different from those of other data points. However, if we consider 

a heterogeneous set of data points where all data points have different attributes, it 

becomes intrinsically difficult to identify which data point is a non-conformist. Imagine 

two data streams with one producing temperature and another producing humidity of 

any location. The direct comparison of temperature to humidity does not make sense 

and, hence, neither of them can be detected as an outlier on the basis of the other. 

Nonetheless, it is perceivable that temperature and humidity might have a correlation 

between them and the observed values of temperature and humidity might violate the 

predefined or previously traced/predefined correlation and, therefore, one of them is an 

outlier. Although intuitively this kind of heterogeneous comparison may produce 

meaningful outliers, it requires a new definition of outliers unlike what we have seen 

before. 

Requirement 14. An outlier detection technique for multiple data streams should 

be able to compare data points with the same or different schemas in order to detect 

outliers. 
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Any effective outlier detection technique for data streams has to meet the above 

requirements. While research on other topics for data streams has been proposed, such 

as system design [40, 41], query processing [19, 42, 43, 44], and data mining [2, 45, 

46], very little research has been done for outlier detection. To fill the gap, in this 

dissertation, we propose two outlier detection techniques for single and multiple data 

streams, called Orion and Wadjet.  

6. Contribution 

Outlier detection is an integral part of any data acquisition process. Due to the lack of a 

true online outlier detection technique, real applications often use offline outlier 

detection techniques or manual processes [6]. The outlier detection techniques that exist 

in the literature mostly deal with the regular data model, which are not suitable for 

outlier detection in data streams. A very few outlier detection techniques for data 

streams exist in the literature [26, 31, 36, 47, 48]; but they either do not consider all the 

issues for data streams or require extensive human interventions. Some outlier detection 

techniques for multiple streams assume all the data points at any specific time period 

from multiple streams are equal which we find too restrictive. In this work, we propose 

two outlier detection techniques which tackle the issues of data streams. The first 

technique, Orion, is designed for single data stream and the second technique, Wadjet, 

is designed for multiple data streams. Both of our outlier detection techniques address 

the research issues regarding their respective data streams. 

Orion is designed for single stream; however Orion is also applicable for the application 

with multiple streams where each of them is independent from one another.  For each 



22 

 

stream, when a data point arrives, Orion identifies the data point to be an outlier if it is 

considerably different from the other data points Orion already received from the same 

stream. As data points are multi-dimensional, to detect outliers, Orion uses the concept 

of projected dimension (called  -dimension). Orion finds an appropriate  -dimension 

along which the outlier nature of a data point would be revealed and computes a data 

density function along that dimension. The data density function used is computed 

online and incrementally and considers the uncertainty, transiency, temporal relation 

among the data points and varying data distribution. Orion identifies a data point to be 

an outlier if it is considerably different from other data points along any  -dimension. 

The second technique, Wadjet, is designed for multiple streams where the data points 

from one stream may or may be related to those from the other streams (we call it cross-

correlation). Wadjet captures the cross-correlation among the data points from multiple 

streams that arrive at the same time. A data point is considered as an outlier if it shows 

non-conformist behavior to the other cross-correlated data points. Wadjet computes the 

cross-correlation among the available data points at any point in time; hence it works 

for an asynchronous set of data points from different streams. Wadjet is a two-phase 

algorithm: in the first phase, it uses Orion and detects outliers based on the temporal 

correlations of data points from the same stream, and in the second phase, it detects 

outliers based on the cross-correlations, if any, among the multiple streams. Wadjet 

continuously monitors the cross-correlations among the streams to effectively handle 

the dynamic relationships among the streams. 
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To the best of our knowledge, no technique for data stream outlier detection existing in 

the literature considers all the issues of data streams like our techniques, Orion and 

Wadjet.  

In this dissertation, we also present the complexity analysis in terms of . time and space 

for Orion and Wadjet. , In addition, we report extensive experimental studies comparing 

our proposed techniques with the state of the art algorithms in terms of accuracy and 

execution time using real and synthetic datasets. In almost all cases, irrespective of 

datasets, Orion and Wadjet outperform existing techniques. 

7. Organization 

The rest of the dissertation is organized as follows: Chapter II reviews the existing work 

related to outlier detection with a focus on data streams. Chapter III describes our 

approaches and their implementations. Chapter IV presents the analytical results as well 

as the experimental results studying the performance of our approaches. Finally Chapter 

V provides conclusions and future research directions. 
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CHAPTER II 

LITERATURE REVIEW OF OUTLIER DETECTION 

TECHNIQUES 

Data stream management is a relatively recent research area compared to outlier 

detection; very few of the existing outlier detection techniques address the dynamic 

characteristics of data streams. Most of the outlier detection techniques for data streams 

are adopted from the ones for regular data. In this chapter we present some of the 

existing outlier detection techniques for data streams as well as regular data. These 

existing techniques can be classified into six categories: distance-based, density-based, 

sliding windows-based, auto-regression-based, statistics-based, and clustering-based. 

We discuss each of these categories with its state of the art representative techniques in 

this section. 

1. Distance-Based Outlier Detection Techniques 

Distance-based outlier detection techniques use distance to measure the similarity 

between two data points. A data point is defined as an outlier if it does not have enough 

similar data points. 

1.1. Knorr and Ng’s Distance-Based Outlier Detection 

The first distance-based outlier detection technique was proposed by Knorr and Ng 

[23]and is very popular for outlier detection. According to Knorr and Ng [23, 49], a data 

point   is called      -outlier if   has a smaller number of neighbor data points within 

a radius   than a user-defined minimum number of neighbors  . The data point is called 
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a distance-based outlier with respect to the radius   and the number of neighbor data 

points   [23, 49]. According to these techniques, an outlier has fewer than   number of 

neighbor data points within the radius  . 
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Figure 1. A typical distance-based outlier 

Figure 1 illustrates the distance-based outlier technique where         are seven data 

points. For     and a given    each data point in Figure 1 has at least 2 neighbor data 

points within the radius   except   ; hence    is called a      -outlier or distance-

based outlier. The distance-based definition of outliers is very popular and unifies 

statistics based outlier detection using proper choice   and   [31]; because it does not 

assume any specific kind of data distribution [5, 23].  

This technique does not always require pair-wise distances; it can also be defined based 

on data distribution or probability density distribution of data values. Knorr and Ng [49] 

showed the relationship between distance-based outliers and data distribution. Instead 

of computing the true neighbor count of a data point, this approach computes the 

neighbor density obtained from the data distribution. Given a data distribution function 

(in short, data distribution)       a data point   with value   and a radius    the 
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neighbor density        is defined as        ∫       
   

   
. The data point   is an 

outlier if the neighbor density is lower than the user-defined neighbor density  ; hence, 

  is an outlier if           . The data point is a distance-based outlier based on the 

given data distribution. In most cases the values   and   are taken as user-defined 

parameters. 

v
x
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Figure 2. Distance-based outlier detection using data distribution function 

Figure 2 shows the basic idea of distance-based outliers based on the data distribution 

function. We integrate the data distribution function      from     to     to obtain 

the neighbor density within the specified radius. By comparing the obtained neighbor 

density with the user-defined maximum density  , we identify the outliers. The 

maximum and minimum density could be 1 and 0.  

1.2. Detecting Current Outliers: Continuous Outlier Detection over Time-

Series Data Streams (DB-Outlier)  

DB-Outlier is a continuous distance-based outlier detection algorithm proposed by 

Ishida and Kitagawa [32]. This algorithm detects distance-based outliers given user-

defined distance   and minimum neighbor count  ; a data point is an outlier if it has 
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fewer than   neighbors within distance  . DB-Outlier adopts the idea of cell-based 

outlier detection proposed by Knorr, Ng and Tucakov [50] and takes the cell based 

outlier detection to the next level called “cell based outlier detection for data streams.” 

This algorithm assumes multiple data streams for outlier detection, compares the data 

points across the data streams and detects distance-based outliers.  

If the number of data streams is  , it assumes there exist   data points   
    

      
  at 

any particular point in time  . Each stream produces one data point at time  , 

  
    

      
  are the data points from streams   

    
      

  respectively. To detect the 

outliers   
  is compared to all   

 , where       and    , so outliers have been 

detected among   
    

      
 . We will discuss the DB-outlier in a step-by-step manner. 

Step 1: DB-Outlier constructs a   dimensional grid structure in a  -dimensional 

hyperspace where each cell has a diagonal of size 
 

 
 (length of a side   

 

   
).  

           are called axes and each cell in the grid is represented by            
 where 

   is the value of  -th axis   .  

Step 2: DB-Outlier defines two types of neighbor of a cell called    and   .    

neighbors are adjacent cells. The maximum distance between two data points within the 

same cell is  . DB-Outlier defines    in a similar fashion.    includes all data points 

within the cells that can be within   distance from a cell. 

Step 3: At    , DB-Outlier distributes the data points into appropriate cells based on 

their values. The number of data points at any particular cell is defined by  . The 
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number of data point in    neighbor cells is denoted by    and the number of data 

points in    neighbor cell is represented by   . 

Step 4: In this step, DB-Outlier colors the cells based on the number of data points each 

cell and its    and    neighbors have. A cell is colored red if     where   is the 

minimum neighbor count defined by the user. A cell is colored pink if        

unless it was marked red before. A cell is colored yellow if           and not 

already otherwise. Rest of the cells is colored as white. Interesting remarks can be made 

based on the color of the cell. No data point belongs to red and pink cells are outlier 

because they have more than   neighbors within  . All the data points belong to yellow 

cells are outliers because they don’t have   number of outliers within  .  

Step 5: The rest of the data points (data points that belong to white cells) can be outliers 

or inliers. DB-Outlier calculates the distance between a data point    and each of the 

data points   that belong to    neighbor cells of the cell to which    resides. If    is the 

number of data points   that has the distance lower than  , then    is an outlier if 

          ; otherwise it is an inlier. 

Step 6: DB-Outlier uses differential processing to detect the outliers in subsequent time 

steps (for    ). Ishida and Kitagawa [18] argue that data values for streams do not 

change very often, but rather they are stationary. Every time a set of data points arrives 

DB-Outlier identifies the data points that changed from the previous data points and 

process them. 
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Step 7: DB-Outlier re-distributes the data points into the cells again and re-color the cell 

based on its new   ,    neighbors and find the outliers within the data points the values 

of which have changed.  

DB-Outlier processes a set of data points coming from multiple data streams all 

together and detects the outliers among them based on their pair-wise distances. This is 

online processing of data streams as they come by and only when their data points are 

changed from the previous time step; thus the processing is incremental. DB-Outlier 

does not store any data point for future processing, thus it maintains transiency of data 

streams as well. DB-Outlier processes round by round and the previous data rounds may 

affect efficiency but does not affect accuracy, thus the concept drift of a single data 

stream may not affect DB-Outlier. 

Although DB-Outlier maintains the transiency very well, it never exploits temporal 

correlations among the data points for accuracy. Interestingly, DB-Outlier is not 

affected by concept drift of a single stream. This is because it identifies whether a data 

point    is an outlier by comparing it with other data points from other data streams 

only. So if a concept drift occurs in one stream, it could be different from data points 

from other streams, in that case it is not necessarily an outlier.  

The biggest assumption DB-Outlier makes is fixed arrival rate. DB-Outlier assumes all 

data points from all streams come together and they have the same arrival rate. This 

assumption requires synchronization among the data streams which is very difficult to 

achieve and maintain [6]. This kind of architecture is popular among some sensor 
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networks but, in general, it is difficult to maintain synchronization for distributed 

objects. 

DB-Outlier incorporates multi-dimensional objects but Euclidian distance for multi-

dimensional data is not very effective to discriminate inliers from outliers. Moreover, 

DB-Outlier works for homogeneous data streams only as it does not work with data 

points of different data types. DB-Outlier does not address the uncertainty either since it 

asserts full confidence on every data point. The implicit assumption for DB-Outlier is 

that every data point from multiple streams should have the same value. However, this 

assumption is very restrictive for data streams. Data points from data streams could be 

correlated but may not be exactly the same. Moreover, due to dynamic distribution of 

data streams, the relation among the data points from multiple streams changes over 

time. Hence this kind of rigid assumption on data points makes the application of this 

technique limited. 

1.3. Efficient Algorithms for Mining Outliers from Large Data Sets (EAMO) 

EAMO is a distance-based outlier detection approach, however instead of specifying the 

distance and minimum nearest neighbor  , it defines the outliers differently [51]. Given 

a value for minimum nearest neighbor  , for each data point EAMO finds the distance 

for the  -th nearest neighbor. The top   data points with the highest distance for the  -

th nearest neighbor are identified as outliers. Instead of using a nested loop algorithm to 

find the top   outliers, EAMO proposed an efficient partition based algorithm for 

outlier detection. The next following paragraphs discuss EAMO in a step by step 

fashion. 
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Step 1: EAMO partitions the entire dataset into small groups using the clustering 

algorithm BIRCH [52]. Each group is called a partition,  . 

Step 2: EAMO computes the  -th nearest neighbor distance for each data point in each 

partition. The distance to the  -th nearest neighbor for data point   is denoted by 

        . Once the          is computed for all data points in a partition, EAMO 

computes the upper and lower bound P.upper and P.lower for the  -th nearest neighbor 

of each partition   such that                  and                  where   

is a data point in a partition. 

Step 3: EAMO identifies the candidate partitions that may contain outliers in this step. 

Let us assume           is the lower bound for the   outliers having the maximum  -

th nearest neighbor distance. So the partitions with the upper bounds smaller than 

          cannot contain any outliers; hence, the candidate partitions are only the 

partitions that have upper bounds greater than          ,  meaning the partitions with 

                 . The           can be calculated from the lower bound of a 

partition such that                         where    is the  -th partition and    

has at least   data points. 

Step 4: EAMO processes the data points in the candidate partitions only. In order to 

compute the          for data point   in candidate partition  , EAMO needs to 

consider only the neighboring partitions that are within distance        . Thus, 

EAMO considers each candidate partition in batch and finds the top   outliers having 

the maximum  -th nearest neighbor distance. 
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Instead of relying on two independent parameters, neighbor distance and minimum 

neighbor count, EAMO relies on the  -th nearest neighbor distance. This approach is a 

little bit difficult for traditional distance-based outliers. In many cases, working with 

two independent parameters like neighbor distance and minimum neighbor count for 

distance-based outliers is very difficult. Hence, EAMO solves that problem.  

The efficient partition based algorithm is significantly faster than the traditional nested 

loop algorithm. EAMO is flexible enough to incorporate any kind of distance function 

and clustering algorithm. 

This algorithm is not designed for data streams and it is hard to re-engineer this 

algorithm to make it work for data streams. This is because this algorithm requires 

multiple passes through the datasets, hence it is not suitable for outlier detection for data 

streams.  In addition, this algorithm does not handle other data streams issues like 

transiency, concept drift, infiniteness, etc. Hence it is completely inapplicable for data 

streams.  

Moreover, EAMO uses a popular distance metric, such as Euclidian and Manhattan 

distance, to partition the data points. However, Euclidian and Manhattan distances are 

useless for outlier detection for high dimensional space, hence EAMO can only work 

for a small number of dimensions. 

1.4. Distance-Based Outlier Detection for Data Streams (DBOD-DS) 

Sadik and Gruenwald proposed a distance-based outlier detection technique, DBOD-

DS, for data streams [47]. To identify whether a data point    is an outlier, DBOD-DS, 

instead of computing the neighbor count for     uses a data density function to capture 
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the trends of the data points and calculates the neighbor density of   . The neighbor 

density of a data point in data streams is analogous to the neighbor count of a data point 

in regular (non-stream) data. They designed an effective data density function that 

handles transiency, uncertainty, concept drift and infiniteness of data streams. DBOD-

DS consists of the following steps: 

Step 1: DBOD-DS creates a data density function which is updated as each new data 

point arrives. DBOD-DS computes the neighbor density of the data point    within the 

user defined distance   by integrating the data density function within distance   . 

Step 2: DBOD-DS identifies    as an outlier if   ’s r neighbor density is smaller than 

the user defined minimum neighbor density; otherwise DBOD-DS identifiers    as an 

inlier. 

Step 3: DBOD-DS updates the existing data density function so that it always 

represents the most recent trend of the data. DBOD-DS computes the kernel value of    

using a kernel function, which distributes the weight of occurrence of    into its 

neighboring values. 

Step 4: DBOD-DS updates the existing data density function by adding the kernel value 

of    to the existing data density function. In order to give the highest weight to the 

most recent data point, DBOD-DS decays the weight of the older data points in the data 

density function and adds the new kernel value of    to the data density function. 

Although DBOD-DS addresses all the characteristics of data streams, it is designed for 

single dimensional data only. In does not work for multi-dimensional data points. 
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Moreover, it assumes multiple data streams to be always independent of one another 

and, hence, cannot be applicable to related data streams. 

1.5. Advantages 

The underlying idea of distance-based outlier detection techniques is to separate a data 

point which has very few data points within a close proximity from other data points. 

According to Hawkins’ definition [53] an “outlier would be an observation which 

deviates so much from other observations as to arouse suspicions that it was generated 

by a different mechanism.” The definition of distance-based outliers matches Hawkins’ 

definition very well.  

Any discordancy test for outlier detection can be modeled using distance-based outliers 

[23], which means any statistical technique can be replaced by a distance-based outlier 

detection technique. Knorr and Ng also proved that distance-based outlier detection 

techniques can generalize auto-regression-based outlier detection techniques as well 

[23]. Thus, a distance-based outlier detection technique can be changed to any other 

technique by changing its two parameters, radius and neighbor density. Many 

approaches use a distance-based outlier detection technique as a basis and perform 

additional tasks for suitable data representation [32, 54] and knowledge discovery [36, 

55]. 

1.6. Disadvantages 

The first drawback of distance-based outlier techniques is that they require the concept 

of distance/proximity within two data points like clustering algorithms where data 

points are clustered into some groups based on the similarities between them [56, 57], 
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but clustering techniques analyze data with respect to a global view, whereas the 

distance-based approaches consider the nearest data points. The second and very 

important drawback is that the performance of distance-based outlier detection 

techniques relies on the user-defined radius   and neighbor count/density  .  

Distance-based outlier detection works for only a small number of data dimensions 

[58]. For a large number of data dimensions, the distance between two data points fails 

to measure the similarity among the data points and hence, distance becomes unusable 

for similarity measurement [34, 58]. Zheng pointed out that this phenomenon is true 

regardless of definition of local neighborhood or  -nearest neighbor and neither of them 

makes any sense for high dimensional data [58]. Practically, the degree of outlier-ness 

based on distance metric in a high dimensional space is the same for all data points. 

Thus distance-based outlier detection has no use for high dimensional datasets. 

Distance-based outlier detection was designed for regular data and is not suitable for 

data streams due to two reasons. First, it requires at least two passes for distance 

calculation or data distribution function calculation; therefore, we cannot use distance-

based approaches incrementally for unbounded data streams. Second, distance-based 

outlier detection based on a data distribution function accommodates the uncertainty 

issue of data, but it assumes a fixed data distribution; thus is cannot be used directly for 

a dynamically changing environment like data streams. 

2. Density-Based Outlier Detection Techniques  

As reviewed in Section 1, distance-based outlier detection is very popular and 

statistically sound but it requires two user-defined parameters,   and  . These two 
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parameters vary a lot based on data; if the data points are far from one another, the 

radius   becomes large and the neighbor count   becomes small and vice versa. It is 

often becomes difficult for the user to adjust the parameters without having explicit 

knowledge about the dataset or the algorithm. To tackle the problem of user-defined 

parameters, density-based outlier detection techniques were proposed.  Below we 

review the representative ones.  

2.1. LOCI: Fast Outlier Detection Using the Local Correlation Integral  

Papadimitriou et al. proposed LOCI, a density-based outlier detection technique [26]. 

LOCI uses a multi granularity based deviation factor (MDEF) for outlier detection.  

MDEF is computed by comparing the neighbor count of a data point   to the average 

neighbor count of all the data points in a local neighborhood of  . If    has a very few 

neighbors and the other data points in its local neighborhood have significantly more 

neighbors, then   is very likely to be an outlier; but if all the other data points have very 

few neighbors as well, then it is probably the common trend of the dataset, and thus   is 

not an outlier. Based on this fact, Papadimitriou et al. proposed a multi granularity 

based deviation factor [25, 59] which calculates the deviation of a data point. LOCI 

identifies    as an outlier if the MDEF value of   is three standard deviations apart 

from the average MDEF value of all the data points in the local neighborhood of  . The 

MDEF value of   depends upon the neighbor count of   and the average neighbor 

counts of all the data points; thus the radius does not affect the MDEF value very much 

[25, 59].  LOCI consists of the following steps: 

Step 1: For a data point  , LOCI computes its number of neighbors. 
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Step 2: Given a local neighborhood radius  , LOCI computes the MDEF value of    by 

comparing the neighbor count of   to the average neighbor count of the data points in 

the local neighborhood of  . 

Step 3: If the MDEF value of   is three standard deviations of MDEF apart from 0,   

is identified as an outlier. 

Step 4: If a data point is not identified as an outlier in Step 3, LOCI repeats Steps 2 and 

3 with a different neighborhood radius  . This process continues until all neighborhood 

radiuses are checked. LOCI stops processing    once it is identified as an outlier for any 

neighborhood radius  . 

LOCI is not designed for data stream applications; hence it does not address the 

transiency and temporal relationship among the data points. All the data points are 

treated equally and the temporal dimension is completely ignored in LOCI. LOCI is not 

a single-pass algorithm; so LOCI is not online or incremental. 

LOCI does not address data uncertainty or concept drift. Once a neighborhood is 

established, the MDEF values of all the data points of a neighborhood are calculated 

based on the established neighborhood; therefore LOCI assumes a constant data 

distribution. Due to the above disadvantages, LOCI is not directly applicable to data 

streams. 

2.2. LOF: Identifying Density-Based Local Outliers 

Like LOCI, LOF [24] also uses the local density information in order to adjust the 

common trend of the data points. Instead of computing the neighbor count of  , LOF 
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computes the distance from    to the  -th nearest neighbor of   , which is called  -

distance, for outlier detection. LOF defines reachability distance from  -distance which 

is not sensitive to statistical fluctuations of distances of data points from  . LOF 

computes the local reachability density of   by comparing the reachability distance of   

to the reachability density of other data points within a neighborhood. Local 

reachability density is further used to measure the outlier-ness of a data point. The step-

by-step procedure of LOF is as follows: 

Step 1: For each data point  , LOF computes the  -distance of   ,  -distance ( ), for a 

given value of  , which is defined as the distance between   and its  -the nearest 

neighbor. 

Step 2: LOF computes the reachability distance of   with respect to other data points 

within its  -distance. The reachability distance between   and any other data point   is 

the Euclidian distance between   and   or the  -distance of   if the  -distance of   is 

greater than the Euclidian distance between   and  . 

Step 3: For each data point   , LOF computes its local reachability density  ,        , 

which is defined as follows:  

             
(∑                           )

|          |
 

where            is the number of data points within  -distance of   and         . 

The local reachability density of   represents average reachability distance of    within 

its local neighborhood. 
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Step 4: For each data point   , LOF computes its LOF value, which is the average 

relative local reachability density and is defined as  

             
(∑

            
                        )

|          |
 

Step 5: According to definition of the LOF, if   is deep inside the group of data points, 

its LOF value is close to 1 and therefore is very unlikely to be an outlier, and if   is an 

outlier, its LOF value should be considerably higher than 1. Thus based on the 

application, the user has to choose the cut-off limit for the LOF and a data point is 

identified as an outlier if it has a higher LOF value than the user-defined LOF value. 

Although this algorithm defines the outlier-ness of a data point based on its local 

density only, it requires multiple passes through the dataset ( -distance, reachability 

distance, local reachability density and LOF all require multiple passes); hence  it is not 

applicable for data streams as it would require the entire dataset to be available after the 

first pass.. Moreover, this approach also ignores the other data stream characteristics 

like uncertainty, concept drift, and infiniteness.  The success of this algorithm depends 

on the effectiveness of the distance function that measures the similarity between data 

points. 

2.3. Online Outlier Detection for Data Streams (A-ODDS) 

A-ODDS is a density based outlier detection technique proposed by Sadik and 

Gruenwald [60]. A-ODDS makes use of two concepts Global Density Factor (GDF) and 

Local Density Factor (LDF) in order to detect the outlier-ness of a data point. The GDF 

of a data point    is the relative deviation of neighbor density of    with respect to the 
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average neighbor density of all data points and the LDF of     is the relative deviation 

of neighbor density of    with respect to the average neighbor density of the data points 

within the current concept. Since data streams are characterized by concept drift, A-

ODDS also includes an approach to detect concept drifts. The data points within two 

consecutive concept drifts are considered as the data points that belong to the same 

concept. The details of the algorithm are as follows: 

Step 1: When a data point    arrives, A-ODDS computes its neighbor density using the 

data density function discussed in the DBOD-DS algorithm (Section 1.4). 

Step 2: A-ODDS computes   's global deviation factor,          where the global 

deviation factor of a data point is defined as the relative deviation of the neighbor 

density of a data point from the average neighbor density of all history data points with 

respect to the average neighbor density of all history data points. 

Step 3: A-ODDS decides whether a concept drift has occurred or not. If a concept drift 

has occurred,  A-ODDS  updates the average neighbor density of the data points that 

belong to the same data distribution and computes the LDF of   , else it computes the 

LDF using the existing average neighbor density.  

Step 4: A-ODDS computes the standard deviations of GDF and LDF. If the GDF or 

LDF value of    is greater than three standard deviations, A-ODDS identifies    as an 

outlier.  

Step 5: A-ODDS updates the global average neighbor density and local average 

neighbor density using the neighbor density. 
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This approach shares the same drawbacks as DBOD-DS. The data density function and 

concept drift detection only work for single dimensional data streams. If the number of 

dimensions becomes large, this approach would not work. However, A-ODDS 

addresses other important characteristics of data streams: transiency, notion of time and 

infinity, uncertainty, and concept drift. 

2.4. Advantages 

Density-based outlier detection techniques are more sophisticated than distance-based 

outlier detection techniques. Density-based outlier detection techniques consider the 

local density of the data points. The local density of a group of data points is high if the 

data points are dense compared to the local density of data points that are sparse. This 

enables the techniques to work for a wide range of datasets. This is because, regardless 

of the size and sparseness of the data points in a dataset, density-based techniques work 

with a subset of data points that belong to a local neighborhood of a data point    (a set 

of data points that are in a close proximity from   ). Thus, density-based approaches are 

applicable for many datasets and local density factor is adjusted according the 

sparseness of a dataset.  

Moreover, these density-based approaches work even if the sparseness of the data 

points varies across the dataset. This is because the outlier-ness of a data point is 

detected based on the local neighbor of data points only. So, if a dataset consist of 

several groups of data points and the sparse-ness of each group t varies, the density-

based approaches determine the outlier-ness of a data point based one the sparse-ness of 

the data points that belong to the nearest group from the data point. 
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2.5. Disadvantages 

Density-based approaches are computationally more expensive compared to distance 

based approaches. This is because density-based approaches require local neighborhood 

computation which needs pair-wise distances between every pair of data points. On the 

top of that, neighbor density or reachability distance of    is compared to those of all 

other data points that are within local neighborhood of   . Hence, density-based 

approaches are computationally expensive. Moreover, popular density based approaches 

such as LOCI and LOF require multiple passes over the dataset; thus, it is difficult to re-

engineer them for data streams. This is because multi-pass algorithms are not suitable 

for data stream outlier detection due to unavailability of entire dataset. 

Moreover, one required step of the density-based approaches is computing the local 

neighborhood of a data point. Computing the local neighborhood requires Euclidian 

distance computation. If the number of dimensions becomes large, the Euclidean 

distance stops working as a similarity metric. In that case local neighborhood does not 

possess any significance and hence density based approaches collapse. 

3. Sliding Windows-Based Outlier Detection Techniques 

3.1. Overview of the Techniques 

A sliding window holds the most recent subset of the data points [31]. It is temporary 

data storage for the data points in a data stream. At any time a sliding window can hold 

a fixed amount w of data points; typically the size w is defined by the user.  
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Figure 3. A typical sliding window 

The oldest data point in the sliding window is removed as a new data point enters. 

Figure 3 shows a typical sliding window of size   where the newest data point is    

and oldest data points is     . As the data point,      comes in the oldest data point 

     goes out. Once the data points are stored in the temporary storage, the application 

can access them randomly. So the applications that use sliding windows have a small 

subset of data for random access. Typically a sliding window based outlier detection 

technique identifies the outliers inside the window. More precisely, the data point which 

is identified as an outlier by a sliding window based technique does not conform to the 

other residents of the sliding window.  

Once random access to a subset of the entire dataset is available, any random access 

algorithm can be used to detect outliers in that subset. Some outlier detection techniques 

for data streams use a sliding window and detect the outliers inside the window [13, 31, 

36] using multi-pass algorithms. The algorithms may run periodically [54] or for every 

round [13]. In the next sections, we describe these algorithms. 

3.2. Detecting Distance-based Outliers in Streams of Data (STORM) 

Angiulli and Fassetti proposed a sliding window based outlier detection technique 

called STream OutlieR Miner (STORM) [31, 54]. STORM finds the distance based 
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outliers in the sliding window. The difference between STORM and a typical distance-

based outlier detection technique is that STORM finds the outliers within a sliding 

window in lieu of an entire dataset. STORM consists of the following steps: 

Step 1: As a new data point    comes in STORM creates a new data stream object that 

corresponds to    and stores the data stream object in the sliding window. If the sliding 

window is full, STORM discards the oldest data stream object and stores the newly 

created data stream object. The size of the sliding window is chosen by the user which 

represents the most interesting current subset of the data. 

Step 2: STORM finds all the data stream objects in the sliding window within the 

radius   from the newly created data stream object. STORM maintains a list of 

references to all the preceding data stream objects within the radius   inside the newly 

created data stream object. Every data stream object has a counter which counts the 

number of succeeding data stream objects within the radius   inside the sliding window.  

Step 3: Some of the data stream objects are chosen as pivot objects. A pivot objects has 

all the properties of a data stream object along with a list of distances from the pivot 

object to all other data stream objects in the sliding window. The pivot objects offer 

efficient range search. 

Step 4: If the newly created data stream object is a pivot object, then a list of distances 

to all other data stream objects is created inside the pivot object. All the other pivot 

objects are updated upon creating a new data stream object. 

Step 5: The outlier detection subroutine is invoked periodically based on a user-defined 

frequency to check each data stream object in the sliding window to see if it is an 
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outlier. For each data stream object, the outlier detection subroutine calculates the 

number of preceding data stream objects and the number of succeeding data stream 

objects. If the sum of these two numbers is greater than the user-defined minimum 

neighbor count of a data stream object, the data stream object is identified as an outlier; 

hence its corresponding data point is an outlier. 

STORM considers the temporal characteristics of a data point in a data stream. Each 

data point remains in the sliding window for a fixed amount of time. As a data point is 

identified as an outlier compared to all the other data points in the sliding window, 

STORM automatically assumes all the data points in the sliding window are equally 

related; hence STORM addresses the temporal relationship of the data points as well.  

STORM is not a true online incremental algorithm. STORM stores a subset of the data 

stream inside a sliding window and invokes the outlier detection subroutine 

periodically. Hence the fate of a data point is not confirmed as soon as the data point 

comes in. If the user mistakenly chooses the frequency of outlier detection greater than 

the sliding window size, some data points may be discarded without being checked for 

their outlier-ness.  

STORM does not consider the uncertainty of the data points. STORM does not assume 

any data distribution; hence the concept drift of the data stream does not affect the 

algorithm directly, but the choice of the sliding window size should be such that the 

sliding window can accommodate all the data points in the current concept. Since the 

sliding window size is independent of the concept drift in this approach, we can 

conclude that STORM does not address the concept drift. Since STORM is not a true 
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online and incremental technique and does not address the issues of uncertainty and 

concept drift, it is not suitable for data stream applications. 

STORM uses Euclidean distance in order to measure the similarity between data points. 

Thus, if the number of dimensions grows, Euclidean distance fails to represent the 

similarity among the data points and, hence, STORM would fail to identify outliers. 

Therefore, STORM is not suitable for multi-dimensional data points. 

3.3. Automatic Outlier Detection for Time Series: An Application to Sensor 

Data (ODTS) 

Basu and Meckesheimer [13] proposed an outlier detection algorithm for time series 

when the data points are difficult to model. They argue that the data points closer in 

time are more likely to be correlated. Hence they try to use the data points which are 

closer to each other to identify the outliers inside the sliding window. The algorithm is 

discussed here in brief; for our convenience we name the algorithm ODTS. 

Step 1: ODTS maintains a sliding window of a user-defined size to hold a finite subset 

of the data points for outlier detection. As each data point    comes in, ODTS computes 

the median of the data points in the sliding window. 

Step 2: ODTS computes the absolute value of the distance between the median data 

point and   . If this distance is greater than the user-defined maximum distance 

threshold,    is identified as an outlier and ODTS replaces    in the sliding window 

with the median data point. 

ODTS is a true online incremental algorithm and a very simple approach for outlier 

detection when it is difficult to model the data. The computational complexity is linear 
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with respect to the sliding window; hence it provides a very good result within a very 

short time. As ODTS maintains a sliding window, only recent data points are stored in 

the sliding window; hence ODTS addresses the temporal characteristics of data streams. 

Since only the recent data points participate in the outlier detection, it accommodates 

the temporal relationship as well.  

ODTS asserts each data point with full confidence; hence ODTS does not accommodate 

the uncertainty of data streams. Although the sliding window summarizes the recent 

data rounds, it has no relation with the data distribution; as a result concept drift is also 

ignored in ODTS.  

ODTS is designed for single dimensional data points. ODTS can only work for multi-

dimensional data points if it considers individual dimensions separately. However, in 

that case it would fail to identify the outliers with infrequent combinations of 

dimensional values. Therefore ODTS is not suitable for multi-dimensional data streams 

either. 

3.4. Online Outlier Detection in Sensor Data Using Non-Parametric Models 

(ODSD) 

Subramaniam et al. [36] proposed an in-network outlier detection technique for 

hierarchical sensor networks. For convenience we name the algorithm, ODSD. ODSD is 

also based on density-based outliers. It identifies the outliers within the sliding windows 

of the individual sensors. ODSD assumes that the sensors are arranged in a hierarchical 

fashion. At the bottom level the children nodes identify the outliers in their respective 

sliding windows. In the second level the parent nodes identify the outliers in their 
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respective sliding windows. The sliding windows of the first level parent nodes 

accommodate the data coming from the respective children nodes. The next levels’ 

parents work in a similar fashion. At the top level, the leader node collects data from all 

the sensor nodes and finds the outliers. The algorithm is discussed step-by-step here. 

Step 1: The bottom level sensors store data in their respective sliding windows as soon 

as they collect data. The size of the sliding windows is defined by the user. 

Step 2: Each sensor samples its sliding window and constructs a data distribution 

function for the sliding window. The neighbor density of the newly collected data point 

  is computed by integrating the data distribution function within a user-defined radius. 

If the neighbor density is lower than the user-defined minimum neighbor density, 

ODSD identifies   as an outlier. ODSD uses a kernel density estimator for data 

distribution computation; therefore, instead of increasing the frequency of occurrence of 

a value by 1, ODSD increases the frequency of occurrence of a value by  , and 

increases the frequency of occurrence of other values by a fraction of    . 

Step 3: All the base level sensors report the collected data to their respective parent 

nodes. A parent node constructs a new sliding window sampling all the data points 

received from its children nodes. Finally the parent node identifies the outliers using a 

similar algorithm to the one that the children nodes used for their outlier detection. All 

nodes use the LOCI algorithm to detect outliers. In the second level the parent node has 

to check only the data points that are marked as an outlier by the children nodes. 

Step 4: ODSD goes up in the hierarchy using the same technique described in Step 3 

until it reaches the top level.   is an outlier if the top level node identifies it as an 
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outlier. In order to reduce the communication cost, each sensor reports the data to the 

parent node when the data distribution changes instead of reporting the data every time. 

The data distribution is monitored by each sensor; the newly obtained data distribution 

is compared with the previous data distribution using Jenson-Shannon divergence [36]. 

If the distance (based on Jenson-Shannon divergence) between the two distributions 

goes beyond a user specified value, the child node reports data to the parent node. 

The major advantages of ODSD are that it is a decentralized, in-network and online 

outlier detection technique. Since ODSD does not assert each sample data point with 

full confidence but rather distributes the probability of occurrence of a value to the 

neighbor values, ODSD addresses the uncertainty issue of data streams. 

The algorithm uses a random sampling technique to sample the data points from the 

sliding windows of the leaf nodes. The sample size and the window size (the same sizes 

for all sensors) are both the user-defined parameters and the random sample algorithm 

samples the data points from the sliding window regardless of concept drift. Hence the 

obtained data distribution function may contain the data points from multiple data 

distributions if concept drifts occur. Therefore, the obtained data distribution may not 

always reflect the current data distribution.  

The outlier detection algorithm at each level is linear with respect to the window size. 

Hence, for a multi-level sensor network, outlier detection takes place at different levels 

and the overall time complexity is the sliding window size times the number of levels of 

the sensor network. Furthermore there is a communication involved between two levels 

of nodes. The communication time is very high compared to the computational time. 
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Typically the sensor network communication is lossy [61]. ODSD requires extensive 

levels of communication among the sensor nodes. The higher level of communication, 

the higher level of error is introduced. Hence the success of this approach is still in 

question. ODSD works for single dimension data only. ODSD also uses a data density 

function, but if the number of dimensions grows, the density space grows exponentially 

with it. Hence, constructing a multi-dimensional data density function is not scalable at 

all. Thus, ODSD’s application would be very limited to a small number of dimensions 

only.  

ODSD also considers cross-correlation among the data points from multiple streams, 

but only for equality, meaning the values of the data points from multiple streams have 

to be equal. This assumption does not hold in many practical applications such as 

environmental monitoring [15], chlorine content monitoring [48], etc. and hence, ODSD 

is very limited in real applications. Finally, ODSD assumes synchronous and 

homogeneous data points from multiple streams which are even more restrictive. 

3.5. Incremental Outlier Detection in Data Streams Using Local Correlation 

Integral (Stream LOCI) 

Stream LOCI [62] is an outlier detection technique based on LOCI [59] (Section 2.1). 

LOCI is a density based outlier detection technique that considers the local density of a 

data point   to compute the MDEF of  . MDEF defines the outlier-ness of a data point. 

Stream LOCI modified LOCI in order to make it suitable for data streams. Stream 

LOCI introduces a sliding window to hold the most recent subset of the data points. 

Once a new data point   arrives, Stream LOCI updates the sliding window by replacing 

the oldest data point in the sliding window with   and adjusting the neighbor density of 
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  accordingly. Then it applies the same sequence of steps as LOCI does and detects 

outliers within the sliding window. 

This is a very typical approach for detecting outliers for data streams by modifying 

outlier detection techniques for regular data points using a sliding window. However, 

this approach fails to illustrate the effective size of the sliding window as the size is 

decided on an ad-hoc basis. Moreover, Stream LOCI inherits other problems from 

LOCI such as its ineffectiveness for multi-dimensional data points. 

3.6. Advantages  

The three sliding window-based techniques discussed in this section have a few 

common advantages. A sliding window can be manipulated as each data point comes in, 

so the updating process of a sliding window is online and incremental. In general the 

update procedure requires discarding an old data point and storing a new one; hence the 

update process is computationally efficient. At the same time a sliding window contains 

the most recent subset of the dataset; so a sliding window based technique identifies the 

outliers based on the recent subset and addresses the temporal characteristic of data 

streams. 

3.7. Disadvantages 

The choice of outliers in a sliding window is very much dependent on the current 

residents of the sliding window. An outlier of a sliding window can appear as an inlier 

for a different choice of data points for the sliding window. This problem is severe for 

data streams because they change over time and an outlier for a particular window may 

appear as an inlier in another window; hence the notion of an outlier in a data stream 
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with respect to a window is not very concrete. Figure 4 illustrates this point. In Figure 4 

(a) the sliding window contains the data points from    to     . The data point      

seems to be an outlier with respect to the other data points in the sliding window 

because it is far from them, but in Figure 4(b) the data point      seems like an inlier 

because in Figure 4(b) the data point      does not look far away with respect to the 

other residents of the sliding window. In summary, the outliers in a sliding window are 

very subjective to the residents of the sliding window; therefore, selecting the residents 

of a sliding window is the most challenging part of a sliding window based approach. 

sliding window

time

v
a

lu
e

Dt

Dt+1

Dt+2

Dt+3

Dt+4

Dt+5

Dt+6

Dt+7

Dt+8

Dt+9

Dt+10

(a)

sliding window

time

v
a

lu
e

Dt

Dt+1

Dt+2

Dt+3

Dt+4

Dt+5

Dt+6

Dt+7

Dt+8

Dt+9

Dt+10

(b)
 

Figure 4. Choice of data points for the sliding window 

In brief, the accuracy of a sliding window based technique depends on the size of the 

sliding window, how often the outliers are detected in the sliding window, etc. [61]. So 

far these parameters are selected by the user on an ad-hoc basis. Nevertheless, an inlier 
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can be shown as an outlier by changing the window size [13, 61]; thus an outlier 

detection technique which uses a sliding window works well if the window size is 

chosen appropriately. Moreover, each technique interprets the window size in its own 

way. For example, the significance of the sliding window in the technique proposed by 

Basu and Meckesheimer [13] is very different from that in the technique proposed by 

Anguiulli and Fassetti [31] or Subramaniam et al. [36]. Consequently the optimal 

performance for each algorithm requires a different sized sliding window (e.g., the 

optimal performance for [13]  can be achieved when the sliding window size is small 

but the optimal performance for [31] can be achieved when the sliding window size is 

very large). In most cases the sliding window size selection requires either the details 

about the technique or ad-hoc trial and error modifications.  

4. Auto-Regression-Based Outlier Detection Techniques 

4.1. Overview of the Techniques 

Auto-regression-based techniques for outlier detection are very popular for time series 

outlier detection [10]. Some outlier detection techniques for data streams adopt auto-

regression [63, 64, 65]. Most of the auto-regression based techniques work similarly in 

that they establish a model based on the data points received so far. As each data point 

comes in, it is compared with the established model and a metric is obtained based on 

the comparison (e.g., distance from estimated value, variance, maximum likelihood 

ratio, etc.). The metric often represents the outlier-ness of the data point. If the 

established metric for the data point goes beyond a certain limit (aka cut-off limit), the 

data point is identified as an outlier. 
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Figure 5 shows a flowchart for a typical auto-regression based technique. Different 

techniques use different metrics and comparison methods [10]. Most popular 

approaches for time series data compare the data points with the predicted values. At 

each time step, the model predicts a data value called the predicted value and receives a 

value called the true value. If the distance between the predicted value and the true 

value is greater than the cut-off limit, the data point is called an outlier. Myriad ways 

are available for building auto-regression models [66, 67] and various approaches 

design their own auto-regression models according to their data patterns (e.g., linear, 

quadratic and harmonic) and applications of data streams. In the next three sections we 

discuss three auto-regression based techniques for outlier detection in detail. 

Compare the data point with the 

established model and get the metric

Is computed metric 

greater than cut-off 

limit?

The data point is an outlier

Yes

No

A new data point 

arrives

The data point is not an outlier

 

Figure 5. A flowchart for a typical auto-regression-based technique 
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4.2. A Kalman Filter-Based Approach for Outlier Detection in Sensor 

Networks (KFOD) 

Shuai et al. [63] proposed an in-network outlier detection technique, called KFOD,  for 

sensor networks. They assume the reading of a sensor has a temporal dependency. 

KFOD has two modules: (1) state transition module and (2) measuring module. The 

state transition module uses a first order auto-regression [66] model which uses the least 

squares method for coefficient approximation and the measuring module uses the other 

sensor readings to exploit spatial correlations. KFOD consists of the following steps:  

Step 1: As each data point is obtained by a sensor, the sensor invokes the state 

transition module that estimates the current reading based on the previous readings 

using the first order auto-regression model [66]. 

Step 2: Each sensor collects the readings from its neighbor sensors. The measuring 

module measures the current reading of the sensor using the neighbor sensors’ readings. 

They use inverse distance weighting (IDW) where the weight is inversely proportional 

to the distance of the neighbor sensors to measure the sensor reading from the neighbor 

sensors’ readings [63].  

Step 3: The two values collected from Step 1 (the approximated reading based on the 

previous readings) and Step 2 (the approximate reading based on the neighbor sensors’ 

readings) are combined to produce the ultimate approximated value for the sensor. If the 

distance between the true value and the predicted value is greater than the user defined 

threshold, the data point is identified as an outlier. 
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KFOD is an online technique for outlier detection. It never stores the history data points 

but rather adjusts the coefficient of the modules based on the data points when they 

arrive; hence KFOD is incremental. KFOD discards a data point after updating the 

coefficients with it value; thus it preserves the transiency of the data points. KFOD uses 

the temporal relationship among the data points to update the coefficients.  

KFOD does not assume any fixed data distribution and uses only the current data round 

and the next to the current data round. Hence, this approach is not vulnerable to concept 

drift; but the relation between the successive data rounds is kept fixed; thus, it does not 

address concept drift. KFOD does not address the uncertainty of data streams. 

KFOD uses the first order auto-regression model to estimate the current reading. The 

efficiency of the first order auto-regression model is limited to linear trends. i.e., it 

works for linear changes of the data points; it fails to model more complicated relations 

among the data points. In addition, the relation between the consecutive data points of a 

data stream changes over time which is very difficult to model using the first order 

auto-regression; because the first order regression can only model linear changes. If 

relation between data points is quadratic or harmonic, the first order regression would 

not be able to model that. 

KFOD assumes implicit communication among the neighbor sensors which is not 

possible in every sensor network. The spatial relationship among the sensors is hard to 

model because spatial modeling requires extensive knowledge and the relationship 

among the sensors. Moreover, the threshold selection for the maximum allowable 

distance between the predicted value and the true value depends on the accuracy of the 
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auto-regression model, the spatial relationship among the sensors and the combination 

of the outputs of the two modules. Hence, it is difficult for the user to select an 

appropriate threshold distance without trial and error. 

4.3. Malicious Node Detection in Wireless Sensor Networks Using an Auto-

regression Technique (ART) 

Curiac et al. [64] proposed an auto-regression based anomaly detection technique for 

wireless sensor networks. They argued that the true values measured by a sensor have a 

deterministic component instead of a truly random component; therefore they used a 

time series analysis approach to explore the deterministic component of the values. The 

entire approach is executed in the base station and upon receiving a new data point, the 

base station compares the received data point with the predicted value. A data point is 

an outlier if the difference between the data point and the predicted value is greater than 

the user-defined threshold. We name this approach ART for our convenience. ART uses 

the fourth order auto-regression model [66] and consists of the following steps:  

Step 1: As each data point is received at the base station, the auto-regression 

coefficients are updated recursively using the least squares method. 

Step 2: ART predicts the current reading using the auto-regression model built inside 

the base station. The base station constructs an individual auto-regression model for 

each sensor and maintains an individual distance threshold for each sensor. 

Step 3: The predicted value is compared with the obtained value. If the absolute 

distance between them is greater than the user-defined distance threshold, the sensor 

node is detected as an anomalous sensor node.  
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ART is an online, incremental approach for outlier detection for sensor networks. It also 

addresses the transiency characteristic of the data points. The temporal relationships 

among the data points are exploited by the fourth order auto-regression model but the 

coefficients are selected based on the entire history which does not necessarily reflect 

the updated relationships among the data points. The use of the entire history data 

points for coefficient selection does not reflect the recent trend of a data stream; thus 

ART does not address concept drift. 

ART does not address the uncertainty of data streams. ART is also very similar to 

KFOD in that it is not vulnerable to concept drift but it does not directly address 

concept drift either. 

Data streams are defined as infinite sequences of data points; hence one fixed threshold 

may not be appropriate for the entire life-time of data streams. Moreover, it is difficult 

to establish an individual threshold for each sensor. 

4.4. Adaptive Methods for Activity Monitoring of Streaming Data (AMSD) 

Puttagunta and Kalpakis [65] proposed a forgetting factor based recursive least squares 

algorithm for adaptive incremental model construction. This approach is very similar to 

the previous approaches except it identifies the changes of trends as well as outliers. We 

call it AMSD. AMSD works as follows: 

Step 1: As a new data point is received, it is stored in a sliding window, the size of 

which is decided by the user. Once AMSD receives enough data points, it starts 

building an auto-regression model. The coefficients of the auto-regression model are 
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updated using the recursive least squares method as each data point is received. A 

predicted value is estimated before changing the coefficients.  

Step 2: The absolute difference between the estimated value and the true value is 

computed. If the distance is greater than the maximum error threshold, the data point is 

identified as an outlier. If the distance is lower than the minimum error threshold, the 

data point is identified as an inlier. If the distance is in-between the minimum error 

threshold and the maximum error threshold, the data point is identified as a potential 

outlier. The potential outliers are stored in a window. 

Step 3: For a potential outlier, if a change-of-point is detected within the previous   

data rounds, the potential outlier is not an outlier.   is a user-defined parameter which 

outliers represents the minimum size of the change detection window. The number of 

potential outliers is computed within the last   data rounds.  

Step 4: If the number of potential outliers is lower than the maximum number of error 

overshoot, a user defined threshold, the data point is identified as an outlier. Once a data 

point is identified as an outlier, the latest update of the coefficients is discarded. 

Step 5: If the number of potential outliers is greater than the user-defined threshold 

(maximum number of error overshoot) or the coefficients of the auto-regression model 

change beyond a user-defined threshold, AMSD identifies that a change has occurred 

and the first point of the window is identified as a change point and the rest are 

unmarked. A fresh auto-regression model is started from the change point. 

AMSD is an online, incremental algorithm for anomaly detection. AMSD 

accommodates the transiency and the temporal relationships among the data points but 
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it does not address the uncertainty. AMSD is capable of detecting the change of data 

and uses only the data points from the current concept; hence it accommodates concept 

drift pretty well. 

AMSD has at least twelve user-defined parameters and most of them do not have any 

physical interpretation to a user unless the user knows the algorithm and the application 

very well. It is very difficult for a user to select an appropriate value for each of them. 

Hence the success of this approach is questionable for real applications.  

4.5. Advantages 

Auto-regression-based techniques are typically computationally inexpensive. Most of 

the time the complexity of the model depends upon the history data used, the number of 

components in the auto-regression model and the number of data dimensions. Auto-

regression based techniques are very appealing because of their affordable 

computational complexity. Moreover data stream applications are bounded by the 

arrival rate, i.e., every computation has to be done before the next data point comes in 

[4]. The efficient computation of an auto-regression based technique offers very 

lucrative execution time for each data round which makes auto-regression based 

techniques very good candidates for outlier detection for data streams or time series. 

In some applications an outlier is replaced by an estimated value [13, 61]. An auto-

regression based technique automatically provides an estimated value as a product. 

Moreover, a good auto-regression-based approach addresses the dynamic nature of the 

data points in a data stream which makes auto-regression based approaches very 
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popular for data prediction [68, 69]. They offer significant advantages over other 

techniques if the application requires a predicted value for an outlying data point. 

4.6. Disadvantages 

The success of an auto-regression model depends on the quality of the auto-regression 

model and the data pattern. If the data pattern shows linear changes, a linear auto-

regression model would perform better; and if the data pattern shows harmonic changes, 

a harmonic auto-regression model would perform better [64]. Hence it is not easy to 

decide an appropriate auto-regression model without knowledge of the data pattern [64]. 

Moreover, the data pattern in a data stream is not constant [61]. Sometimes the data 

pattern in a data stream shows a linear trend, while it may show non-linear at other 

points of time. Hence any assumption about the data trend may not be appropriate 

forever for data streams. The explicit assumption about the data trends makes an auto-

regression model less appealing for data streams. 

Another noticeable flaw of auto-regression based techniques is their magic cut-off 

limits. The magic cut-off limit not only depends upon the data values but also depends 

upon the auto-regression model chosen and the efficacy of the auto-regression model. If 

the accuracy of the auto-regression model is very good, a small cut-off limit is good 

enough to differentiate outliers from inliers, whereas a large cut-off limit is necessary 

for a poorly performing auto-regression model. In most cases, the cut-off limit is 

expected as a user-defined parameter [63, 64, 65] and the parameter selection is not a 

trivial task for the users. 
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A multi-dimensional auto-regression technique is even harder to design. If the number 

of dimensions grows, it requires an extremely high number of data points to find an 

effective auto-regression model for multi-dimensional data streams. Hence, auto-

regression-based approaches have limited applicability for multi-dimensional data 

streams. 

5. Statistical Outlier Detection Techniques 

5.1. Overview of the Techniques 

Techniques based on statistic [10, 70, 71] and machine learning [27, 28] assume a fixed 

probability distribution for data values. Typically the data distribution is obtained by a 

training dataset and as each data point comes in, the data point is compared with the 

mean [10] or box plot [70] of the obtained data distribution. A data point is identified as 

an outlier if it is in the low probability region of the data distribution. It should be noted 

that although there are some techniques available in the literature, researchers from 

other disciplines like medical science and chemistry often use statistical based 

techniques.  

5.2. Informal Identification of Outliers in Medical Data (IDMD) 

Laurikkala et al. [70] studied the box plot based outlier detection technique, which we 

call IDMD, for vertigo and female urinary incontinence data. This technique is not 

directly used for data stream applications and consists of the following steps: 

Step 1: The entire dataset (all data points in the dataset) is used to compute the five 

numbers: lower extreme (minimum possible value), lower quartile (75% of the data 
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points are higher than lower quartile), median, upper quartile (75% of the data point are 

smaller than upper quartile) and upper extreme (maximum possible value). 

Step 2: IDMS defines two thresholds: (1) the lower threshold and (2) the upper 

threshold. The lower threshold = lower quartile – 1.5 x (upper quartile – lower quartile) 

and the upper threshold = upper quartile + 1.5 x (upper quartile – lower quartile).  

Step 3: The data point is revisited and is identified as an outlier if its data value is 

smaller than the lower threshold or greater than the upper threshold. 

IDMD is not designed for data stream applications. The algorithm is not online and 

requires at least two passes of the entire dataset for outlier detection. It is not 

incremental either as it requires the entire dataset for outlier detection. IDMD requires 

each data point to be present in the system until it finishes the first pass; so it does not 

preserve the transiency. Moreover, IDMD treats each data point similarly; thus it does 

not address the temporal relationship. It does not assume any data distribution but 

summarizes the data distribution using the five variables presented in Step 2 and 

assumes that the entire dataset follows the same characteristics; so it ignores concept 

drift as well. Since this approach is not designed for data streams,  it does not address 

any of their issues.  

5.3. Detection of Outliers in Reference Distributions: Performance of Horn's 

Algorithm 

Solberg and Lahti [71] conducted a study to evaluate Horn’s algorithm for outlier 

detection. Horn’s algorithm is very similar to the previous algorithm IDMD, except that 
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it constructs a Gaussian distribution instead of calculating five numbers for the box plot. 

This algorithm has the following steps: 

Step 1: The entire dataset is used to approximate the Gaussian data distribution with the 

presence of outliers in the dataset based on the maximum likelihood method. 

Step 2: A lower threshold and an upper threshold are established using the same 

formula discussed in Step 2 in Section 5.2. 

Step 3: Each data point is revisited to identify outliers. A data point is an outlier if it 

goes beyond either the upper threshold or the lower threshold.  

Horn’s algorithm is not designed for data streams; hence it does not address any of their 

characteristics. Even for regular data, Horn’s algorithm does not perform as well as 

expected. Solberg and Lahti [71] argued that this is because every dataset cannot be 

summarized by the Gaussian data distribution; and Horn’s algorithm only works if a 

dataset can be summarized by the Gaussian data distribution.  

5.4. Anomaly Detection over Noisy Data Using Learned Probability 

Distribution (Eskin’s Algorithm) 

Eskin [27] proposed an anomaly detection algorithm for noisy data based on 

expectation maximization. This method assumes that the percentage of outliers is very 

low compared to that of inliers. It assumes that a dataset is a mixture of two types of 

data, inliers and outliers. Eskin’s algorithm computes the data distribution which is 

composed of the inliers’ distribution and the outliers’ distribution. A data point is an 

outlier if it conforms to the outliers’ distribution or does not conform to the inliers’ 

distribution. The details of Eskin’s algorithm are discussed step-by-step here: 
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Step 1: At the beginning Eskin’s algorithm assumes that every data point is an inlier 

and uses a machine learning method (Naïve Bayes or Maximum Entropy) to model the 

probability distribution of the dataset. Initially, the probability distribution for outliers is 

a prior probability distribution since all the data points are assumed to be inliers. 

Step 2: Each data point is revisited to compute the logarithm of the maximum 

likelihood of the two cases: (1) when the data point is an outlier and (2) when the data 

point is an inlier.  

Step 3: A data point is moved into the set of outliers if the logarithm of the maximum 

likelihood when the data point is an inlier is lower than the logarithm of the maximum 

likelihood when the data point is an outlier.  

Step 4: If a data point is moved into the outlier set, the data distribution of the outliers 

and inliers are recomputed from the remaining set of outliers and inliers.  

Eskin’s algorithm addresses the uncertainty of the data points, but does not address 

other issues of data streams. It requires multiple passes over the data to identify outliers 

and, thus, is not suitable for data streams.  

Eskin’s algorithm does not consider the transiency or the temporal characteristic of data 

streams. It works with the entire dataset at a time. Eskin’s algorithm assumes all data 

are available at any point of time; thus it cannot be applicable for data streams. This is 

because no store-and-process algorithm is applicable for data streams. Eskin’s 

algorithm does not address concept drift and its implementation is not incremental.  
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Moreover, Eskin’s algorithm requires the data distributions of the outliers and the 

inliers to be recomputed each time the set of outliers and the set of inliers change. It 

requires many passes over the dataset. The complexity increases with the size of the 

dataset; therefore, Eskin’s algorithm is not useful for a very large dataset. 

5.5. Advantages 

Statistical techniques often require very small time complexity for detecting outliers. 

Once a probability distribution is established, these techniques compare a data point 

with the distribution; hence they can detect outliers very fast. If the data points follow a 

fixed distribution, these techniques can successfully identify outliers with respect to the 

obtained data distribution. 

5.6. Disadvantages 

Data streams are highly dynamic in nature and their distribution changes over time [2]. 

No fixed data distribution is good enough for an entire data stream; hence summarizing 

dynamic data streams with static data distributions produces questionable results. 

Data points in a data stream have temporal correlations with each other. Statistical 

techniques ignore such correlations when generating the data distribution. Statistical 

techniques do not consider all the characteristics of data streams like concept drift, 

transiency, and temporal relationship; moreover they are not online and incremental; 

therefore they are not applicable for data stream applications. 
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6. Cluster-Based Outlier Detection Techniques 

6.1. Overview of the Techniques 

Many clustering techniques based on machine leaning produce outliers as a byproduct 

of the clustering techniques [9]. A clustering approach establishes a way of measuring 

distance (popular distances are the Euclidean distance, Manhattan distance, 

Mahalanobis distance and Edit distance) between two data points. The data points are 

grouped into some clusters based on the distances among them. A user-defined 

threshold is used for cluster selection for each data point. A data point is identified as an 

outlier if it does not fit any of the obtained clusters. A cluster-based outlier detection 

technique often uses supervised or semi-supervised approaches for cluster formation 

[56] and dynamically measures the compactness/goodness of the obtained clusters. 

distance

outlier

 

Figure 6. A typical clustering-based outlier detection technique 

Figure 6 demonstrates the overall idea of a clustering based outlier detection approach. 

In this Figure 6 the isolated data point is called an outlier and the clusters are formed 

based on the distances among the data points. Some techniques cluster the subsequences 

of data points instead of clustering individual data [72, 73]; these techniques are 

particularly popular for time series data. 
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6.2. AnyOut: Anytime Outlier Detection on Streaming Data 

AnyOut is a clustering based outlier detection scheme [26]. Unlike other clustering 

based algorithms where outliers are detected as a byproduct of the underlying clustering 

algorithm, AnyOut is specifically designed for outlier detection. Moreover, AnyOut can 

handle dynamic arrival rate effectively. Hence, it only processes a data point until the 

next data point arrived.  AnyOut consists of the following steps: 

Step 1: AnyOut creates a hierarchy of clusters from data points of a data stream. 

AnyOut creates a tree of clusters where the root node represents the entire cluster 

storing all data points. Each node other than the root node represents a cluster with finer 

granularity compared to its parent node. Each node including the root node contains the 

distribution of data points of corresponding cluster.  

Step 2: As each data point arrives, AnyOut compares the data point with the root node 

first and detects the outlier-ness of the data point based on the data distribution in the 

root node. AnyOut computes the outlier-ness of a data point based on the distance of the 

data point to the mean of the data points in the cluster. Assent et al. [26] offered an 

alternative outlier-ness based on the assumption that the data points in a cluster has a 

multi-dimensional Gaussian distribution. AnyOut keeps track of the distribution of the 

data points in a cluster and the outlier-ness of a data point is measured in terms of its 

density. 

Step 3: If time permits, AnyOut compares the data point with the appropriate child 

nodes (defined shortly) of the root node and identifies the outlier-ness of the data point 

with respect to the child node. Each child node represents a cluster; the cluster which is 
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closest to the data point is chosen as the appropriate child node. This process continues 

until the next data point arrives. At any point in time, AnyOut outputs the outliner-ness 

of a data point based on the most specific cluster with which it is already compared. 

Step 4: Based on the application, AnyOut can choose an appropriate cut-off limit for 

binary decision; if an application does not require binary decision (whether a data point 

is outlier or inlier) AnyOut is capable of outputting the outlier-ness of every data point. 

Although AnyOut addresses dynamic arrival rate, it fails to adjust the transiency of the 

data points in the data streaming environment. Data points never expired from their 

hierarchical clusters. Hence an outlier may be detected as an inlier based on the history 

data points that are irrelevant to the current data point based on the temporal context. 

AnyOut does not assume any uncertainty in the data points; hence it cannot handle the 

uncertainty of the data points.  

Since clusters never expire, AnyOut is not adaptive to dynamic distribution and, thus, 

cannot handle concept drift. Moreover, AnyOut computes the outlier-ness of a data 

point based on the distance of the data point from the mean of the data points in a 

cluster. If the number of dimensions grows, distance metric is useless as an outlier 

metric. Similarly, in order to construct an effective data distribution function for high 

dimensional data points, any algorithm would require an enormous number of data 

points, which is practically impossible in many applications. Thus the effective-ness of 

AnyOut’s outlier metric is questionable. 
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6.3. ADMIT: Anomaly-Based Data Mining for Intrusions 

ADMIT is a cluster based anomaly detection in a sequence of data [56]. ADMIT has 

two major phases: the training phase and testing phase. In the training phase, ADMIT 

learns from the history data, and in the testing phase, ADMIT detects the anomalous 

sequences.  

Step 1: ADMIT assumes that a training dataset is available to train the regular behavior. 

The entire sequence of data is divided into small subsequences and a dynamic clustering 

algorithm is used to cluster the small subsequences.  

Step 2: The dynamic clustering algorithm is a modified version of the k-mean 

clustering algorithm. The modified dynamic clustering algorithm does not require any 

predefined value for k, nor does it choose the initial clusters randomly. It starts with the 

first subsequence as a cluster and puts all the other subsequences into the cluster if the 

distance between the subsequence and the cluster center is lower than the user-defined 

threshold. At every pass it starts with a new subsequence and puts close subsequences 

into the newly formed cluster. Step 2 completes when each subsequence belongs to a 

cluster.  

Step 3: This step comprises the cluster pruning. In this step the fitness of the clusters 

are measured and modified. ADMIT splits a cluster into multiple clusters if the cluster 

contains more than the user-defined number of subsequences. ADMIT splits the cluster 

using the dynamic clustering algorithm discussed in Step 2, but in this case, the user-

defined threshold is increased by 1. ADMIT merges two clusters if the distance between 

the clusters’ centers is lower than the user-defined threshold. 
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Step 4: Once the training phase is complete, ADMIT is ready for online testing. For 

each subsequence, ADMIT finds the nearest cluster. If the distance between the 

subsequence and the nearest cluster’s center is greater than the user-defined threshold, 

the subsequence is identified as a possible outlier.  

Step 5: If the last n subsequences are possible outliers, then ADMIT computes the 

average/weighted/decayed-weighted minimum distances of the last n subsequences and 

assigns a rating for each subsequence. If the rating is greater than the user-defined 

threshold, the subsequences are identified as an anomalous behavior. The subsequences 

are further clustered to determine the type of anomalous behavior. 

ADMIT is an online algorithm for detecting anomalous behavior but its training phase 

is not online. The training phase requires a dataset without outliers which may not be 

possible in every situation. As each subsequence comes in, ADMIT checks the 

subsequence and classifies it as either an outlier or inlier, thus it preserves the 

transiency of the data points. Moreover, ADMIT processes a subsequence in lieu of 

individual data points; so it implicitly assumes the temporal relationships among the 

successive data points. 

ADMIT clusters the history subsequences; it assumes that the future behaviors of the 

subsequences are the same as the history subsequences; but this is not true for data 

streams. Concept drift is a well-known phenomenon in data stream applications; 

assuming a fixed data distribution is not suitable for data stream applications. Finally, 

ADMIT does not address the uncertainty of data. Essentially, ADMIT is not appropriate 

for data stream applications. 
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6.4. A Machine Leaning Approach to Anomaly Detection (CLAD) 

CLAD is a clustering based outlier detection algorithm that finds local and global 

outliers [57]. CLAD is originally designed for outlier detection unlike other clustering 

based techniques that produce outliers as a byproduct. CLAD is based on a fixed cluster 

width which is selected automatically by itself. The technique is discussed step-by-step 

here. 

Step 1: CLAD uses the fixed cluster width for data point selection of a cluster. CLAD 

uses a non-deterministic algorithm for cluster width selection. CLAD randomly selects 

1% of the data points. It computes the pair-wise distances between two data points 

among the chosen data points and finds the smallest 1% of the pair-wise distances. The 

average distance of the minimum 1% is chosen as a cluster width. 

Step 2: CLAD creates the clusters on-the-fly. A data point is placed into a cluster if it is 

within the cluster width of any previously created clusters; otherwise CLAD creates a 

new cluster for the data point and the data point is selected as a centroid of the newly 

formed cluster. CLAD uses the Euclidian distance between two data points. 

Step 3: Once all the clusters are formed, CLAD computes two metrics for each cluster: 

the number of data points in a cluster and the average distance of the cluster from all 

other clusters. CLAD also computes the average inter-cluster distances among all the 

clusters. A cluster is distant if the average distance of the cluster from all other clusters 

(the second metric) is greater than the sum of the average inter-cluster distances and the 

standard deviation of the inter cluster distances.  
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Step 4: A cluster is sparse if it has fewer data points than the lower limit where the 

lower limit is computed by subtracting the median absolute deviation of the number of 

data points in a cluster from the average number of data points in a cluster. A data 

cluster is dense if it has more data points than the upper limit where the upper limit is 

computed by adding the average number of data points in a cluster to the mean absolute 

deviation of the number of data points in a cluster. The entire cluster is identified as an 

outlier if it is distant and sparse or dense. 

CLAD is not designed for data streams. It requires more than one pass over the entire 

dataset for clustering and outlier detection. As a consequence, it does not address the 

transiency and the temporal characteristic of data points. It does not tackle the other 

issues like uncertainty and concept drift for data streams and its implementation is 

neither online nor incremental. Therefore, CLAD is not applicable for data streams. 

6.5. Advantages 

Clustering-based outlier detection approaches are appealing because of their power of 

sorting similar data points into a group. A data point which is grouped with many other 

data points is less likely to be an outlier; hence an outlier identified by a clustering-

based technique is usually far from other data points; therefore it produces fewer false 

alarms.  

An important characteristic of clusters is that cluster formation is incremental [9, 56], 

hence clustering-based outlier detection techniques are also incremental. In some cases 

clusters are not only incremental but also dynamically adjustable, and so the techniques 
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dynamically adjust the clusters based on data and detect outliers based on the obtained 

clusters. 

6.6. Disadvantages 

Outliers are the byproduct of the clustering techniques [74, 75]; hence the techniques 

are not optimized for outlier detection. This is an effective and popular argument 

against the clustering-based outlier detection techniques [9, 32]. The cluster formation 

step requires a particular choice of distance function and a threshold which groups the 

data points into a cluster. The choices of the distance function and threshold affect the 

outlier detection and require explicit knowledge about the application domains.  

An outlier can be an inlier if it is accompanied by a sufficient number of data points; 

hence clustering-based outlier detection techniques cannot identify the outliers which 

are close to the regular data points. Besides this, these techniques cannot identify the 

outliers that form a different cluster with a sufficient number of data points in it. 

Moreover, the time series clustering based outlier detection techniques that are 

optimized for outlier detection [72, 76] fail to address concept drift. They require a 

training phase, build a model and compare each temporal sequence with the captured 

model. The techniques assume that the trend in the dataset is fixed, which is not true for 

data streams. Furthermore, looking from the data streams’ perspective, the clustering 

based outlier detection algorithms do not deal with the uncertainty and the temporal 

characteristics of data stream applications. 

The biggest flaw of clustering based algorithms is similarity measurement. The popular 

distance functions, such as Euclidian distance and Manhattan distance, fail to portray 
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the similarity among the data points. This is because as the number of dimensions 

grows, all data points become equidistance. Thus the distance between an outlier and an 

inlier is no different than that between two inliers. Thus, clustering-based techniques 

fail to point out the outliers. 

7. Feature Comparison of Existing Outlier Detection Techniques 

We have presented the state-of-the-art outlier detection techniques in the previous 

sections.  None of the discussed techniques deal with all the characteristics of data 

streams: online incremental processing, uncertainty, temporal relations among the data 

points, concept drift, transiency, multi-dimensionality, asynchronous arrival rate and 

heterogeneous schema of data points. To fill this gap, in this dissertation, two 

innovative outlier detection algorithms, Orion and Wadjet, which take all the data 

streams’ characteristics into consideration are presented. Orion is designed for 

applications where data are single streams which are not related with each other.  In 

order to detect outlier efficiently for multi-dimensional data points, Orion looks for a 

projected dimension that reveals the outlier nature of data points with the help of an 

evolutionary algorithm, and  identifies a data point as an outlier if it resides in a low 

density region in that dimension. Wadjet is designed for applications where data are 

heterogeneous and asynchronous streams which may or may not be related with each 

other. It has two phases: in the first phase, it processes each data point independently 

like Orion and detects the outliers based the temporal correlation of the data points; and 

in the second phase, it captures and continuously evaluates the cross-correlations, if 

any, among the data points from multiple streams, and identifies a data point as an 
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outlier if its value does not conform to the captured cross-correlation. A data point is 

identified as an outlier in Wadjet if it is identified as an outlier in any of its two  phases. 

In Table 1 we present a feature comparison study of the techniques discussed in this 

chapter in contrast to the data streams’ issues discussed in Chapter I, Section 5. The 

explanation for each cell is in the corresponding algorithm discussion section. ‘Yes’ in a 

cell means the algorithm listed at the left addresses the issue listed at the top, and ‘No’ 

means the algorithm ignores the issue.  
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Table 1. Feature comparison of the outlier detection techniques 
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DB-Outlier 

[32] 

Yes No Yes Yes Fixed No Yes No No No No No 

EAMO [51] No No No No No No No No No No No No 

DBOD-DS 

[47] 

Yes Yes Yes Yes Fixed Yes Yes No No No No No 

LOCI [59] No No No No No No No No No No No No 

LOF [24] No No No No No No No No No No No No 

A-ODDS [60] Yes Yes Yes Yes Fixed Yes Yes No No No No No 

STORM [54] Yes Yes No Yes Fixed No No No No No No No 

ODTS [13] Yes Yes Yes Yes Fixed No No No No No No No 

ODSD [36] Yes Yes Yes Yes Fixed Yes No No No No No No 

Stream LOCI 

[62] 

Yes Yes Yes Yes Fixed No No No No No No No 

KFOD [63] Yes Yes Yes Yes Fixed No No No No No No No 

ART [64] Yes Yes Yes Yes Fixed No No No No No No No 

AMSD [65] Yes Yes Yes Yes Fixed No Yes No No No No No 

IDMD [70] No No No No Fixed No No No No No No No 

Horn’s 

Algorithm [71] 

No No No No Fixed Yes No No No No No No 

Eskin’s 

Algorithm [27] 

No No No No Fixed Yes No No No No No No 

AnyOut [26] No No Yes Yes Dyna

mic 

No No No No No No No 

ADMIT [56] Yes Yes No No No No No No No No No No 

CLAD [57] No No No No No No No No No No No No 

Orion Yes Yes Yes Yes Fixed Yes Yes Yes No No No No 

Wadjet Yes Yes Yes Yes Fixed Yes Yes Yes Yes Yes Yes Yes 
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CHAPTER III 

THE PROPOSED TECHNIQUES: ORION AND WADJET 

This chapter presents both of our outlier detection techniques, Orion and Wadjet, for 

single and multiple data streams.  

1. Outlier Detection for Single Streams 

In the single data streams model, data points from one single stream are independent of 

those from another single stream. They have no cross-correlation and therefore 

comparing them to each other is not meaningful. Hence in case of single data streams 

we identify outliers in a stream based on the data points from that stream only. In the 

single data streams model, a Data Stream   is an infinite set of data points,   

{  
 |     where a data point   

  is a set of attribute values with an explicit or implicit 

timestamp   from data stream  . Formally a data point is   
        where   is a  -

tuple, each value of which corresponds to one attribute, and   is the timestamp for the 

data point. A data point   
  is an outlier if it is significantly different from other data 

points     
 |     . Figure 7 shows a set of data streams where a sequence of data 

points is produced from an independent source (represented by a double circle) and the 

outlier detection component receives one data point (  
 ) at a time and marks it as an 

outlier (  
 ) if it is deviated from the other data points, or an inlier (  

 ) otherwise, and 

that outlier/inlier is continued for further processing.  
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The general idea of our outlier detection method is as follows.  We summarize the set of 

data points received so far. The summary will capture the overall trend of the data 

points from the same stream. Once a new data point arrives, it is compared to the 

summary and the value(s) of our outlier metric(s) are computed. If the value(s) for the 

outlier metric(s) does not fit the notion of normality, then the newly arrived data point is 

identified as an outlier, otherwise an inlier. The summary of the obtained data points is 

updated incrementally for detecting outliers for future data points. We call our outlier 

detection technique for independent streams, Orion. 
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Figure 7. Single data stream model 

1.1. Motivation of Orion 

Before going into the workflow of Orion, we would like to discuss the motivation of 

Orion in this section. We start with the motivation of multi-dimensional outlier 

detection which is the primary motivation of Orion and move forward with other 

motivations for Orion. We have already developed outlier detection algorithms for data 

streams, DBOD-DS [47] and A-ODDS [60], but those algorithms are very specific for 

single dimensional streams. If we apply a single dimensional outlier detection algorithm 

for each individual data dimension separately in multidimensional data streams, we can 

identify outliers that have considerably different values in that dimension compared to 
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those of other data points, but we will not be able to capture the outliers that have 

considerably different combinations of attribute (dimensional) values.  

X
2

X1

Z
a

D0

Z b

 

Figure 8. Multi-dimensional outliers 

Figure 8 illustrates the idea of multi-dimensional outliers. In this figure, each dot 

represents a two dimensional data point. Consider the data point    which looks as it is 

a distant one from the rest of the data points. However, if we consider two dimensions 

   and    separately, the value of    along    is not much different from the values of 

other data points along   , and the same is true along    as well. Therefore, considering 

one single dimension alone like    or    may not produce any meaningful result. 

Consequently, outlier detection algorithms like DBOD-DS and A-ODDS would not be 

capable of detecting outliers like   . Therefore those two techniques cannot detect 

outliers in multi-dimensional streams - a gap that our proposed algorithm, Orion, aims 

to fill. Orion detects a data point as an outlier if the data point has a drastically different 

value or combination of attribute values compared to other data points. 
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One straightforward solution for multi-dimensional outlier detection would be 

designing a multi-dimensional data density function. However the density space grows 

exponentially with the number of dimensions and thus such function is not scalable. 

Interestingly, we can create an artificial dimension, which we call projected dimension 

(p-dimension), by linearly combining data dimensions and detect outliers by applying a 

single dimensional data density function along that  -dimension, computed from the 

data points projected on that  -dimension. Since the  -dimension considers all data 

dimensions, it can detect outliers that would have been missed if only individual data 

dimensions were used. As an example, Figure 8 shows    and    as two  -dimensions 

each of which is a linear combination of two data dimensions,    and   . Now, 

although    may not look like an outlier if we consider the value of    on    or on    

only, it certainly looks like an outlier if we consider the value of                 the  -

dimension   . This is because    captures the correlation between    and   , and any 

combination of attribute values that violates the correlation of    and    can be 

observed by looking at the projected dimension   . Theoretically there are infinitely 

many such  -dimensions, but Orion needs to find only one  -dimension specific to a 

particular data point    along which we can identify whether    is considerably 

different from other data points.  

So the first motivation for Orion is to find the  -dimenison specific to    that reveals 

the outlier-ness of   . The second motivation of Orion is to avoid using a distance 

metric to measure the similarity among the data points. If we avoid using a distance 

metric and use a data point specific  -dimension to determine the outlier-ness of   , the 

 -dimension that reveals the outlier-ness of a data point varies for each data point and 
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also varies over time. Thus the third motivation is to find the appropriate  -dimension 

adaptively for a particular    that reveals the outlier-ness of   . The outlier-ness of    is 

captured by the outlier metric which leads to the last but not the least motivation of 

avoiding using any specific threshold for the outlier metric to distinguish    from 

inliers. The details of Orion are presented in the next section. 

1.2. Overview of Orion 

Orion processes each data point from one stream individually. To identify whether a 

data point    is an outlier, Orion goes through three phases: (1) finding an appropriate 

 -dimension for    , (2) computing the outlier metrics for   , and (3) determining if    

is an outlier, based on the outlier metrics. To find an appropriate  -dimension, Orion 

uses an Evolutionary Algorithm (EA) because EA can effectively optimize any 

objective function and is adaptive to the change of environment [77]. Every data point 

   has a value along a  -dimension. If this value has much fewer neighbors than the 

values of other data points, then    has either a considerably different value or 

combination of attribute values compared to other data points and, thus, is very likely an 

outlier. Therefore the goal of the evolutionary algorithm is to search for the  -

dimensions along one of which    has the minimum number of neighbors. Orion starts 

with an initial set of  -dimensions; however this set may not include the  -dimension 

that would incur the minimum number of neighbors for   . Therefore, Orion gradually 

modifies this set by adding new  -dimensions and removing old  -dimensions. The new 

ones will most likely incur fewer neighbors for    compared to the old ones. This 
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process is also adaptive to concept drift as the set is also modified if a concept drift 

occurs. 

The appropriateness of a  -dimension is measured by its ability to incur a minimum 

neighbor count for a data point along that  -dimension. However, the neighbor 

computation requires storing the entire set of data points which is impossible for data 

streams. To solve this problem, Orion approximates the neighbor count with the help of 

a neighbor density function as proposed in Section 1.3.2 (Chapter III). As each data 

point    arrives, Orion picks the  -dimension that has the smallest neighbor density 

from the existing  -dimensions as it would better reveal the outlier-ness of    compared 

to other  -dimensions.  

Orion then computes the outlier metrics for    along that  -dimension in order to 

determine whether it is an outlier or inlier. Two popular metrics are neighbor density 

(ND) [47, 49] and  -distance [24]. If a data point is considerably different from other 

data points, it would have much fewer neighbor data points, and thus a smaller ND, 

compared to other data points. The  -distance is the minimum distance that includes the 

  number of neighbors [24]. If a data point is considerably different from other data 

points, it would require a larger distance to include the same number of neighbors. 

Consequently an outlier would have a smaller ND and a larger  -distance compared to 

an inlier. Orion uses both ND and  -distance in order to detect outliers. However, ND 

and  -distance computations require random access to the entire dataset (to compute 

pair-wise distances between the data points) and do not consider the temporal 

relationship and uncertainty among the data points. Orion solves all three problems by 

computing ND and  -distance using our proposed data density function that explicitly 
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addresses the temporal relationship and uncertainty in data streams without random 

access to the entire dataset. The modified definitions of ND and  -distance for data 

streams are discussed in Definition 4 and Definition 7.  

After computing the ND and  -distance of   , Orion uses co-clustering [78] to identify 

whether the ND is considerably low and the  -distance is considerably high, compared 

to other data points. Co-clustering clusters a set of data points based on multiple 

attributes where each attribute is clustered into a specific number of groups based on the 

values of that attribute only. Orion clusters the data points based on the NDs and  -

distances into three groups: small, average, and large. The data points that belong to the 

clusters with a small ND and large  -distance are identified as outliers. Table 2 presents 

the list of symbols used in this paper and the rest of this section discusses Orion in 

details.  

Table 2. List of symbols 

Symbol Interpretation 

   ,      A set of p-dimensions for data points that are most likely to be 

inliers (   ) and outliers (    ) 

     a set of p-dimensions, (          ), a working set of  -

dimension at  , (       or        ) 

          
     

 -dimensional vectors, the transpose of the vector   is written as   , 
the transpose of   and   is    and    

      -th component of vector  . The same for   and   

   a data point at time   

       dimensional data value vector for data point    

        the value of    along  -dimension   ,                 

          data density function along  -dimension     up to time   

  user defined neighbor density for  -distance 

  the number of dimensions 

  user defined neighbor distance 

   
 scaled neighbor distance for dimension   ,    

     
   

  Current timestamp; timestamp starts at 0, increased by 1 

   a  -dimension along vector   
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   a random variable along  -dimension     

   the mean vector up to time  .    
 

   
∑     

 
    

   the covariance matrix of attribute values up to time  .    
 

 
∑                    

 
    

   standard deviation along  -dimension    

    
 bin width along  -dimension    

1.3. Evolutionary Algorithm 

Every evolutionary algorithm has two major parts in it: (1) the objective of the 

evolutionary algorithm and (2) the model of evolution [79].  

1.3.1. Objective of Evolutionary Algorithm 

The objective of Orion’s evolutionary algorithm is to find a set of  -dimensions, one of 

which would incur the minimum Neighbor Density (ND) for a data point. The ND of a 

data point in a data stream is analogous to the neighbor count of a data point in a finite 

set of data points [49 , 54]. For a finite set of data points, the neighbor count represents 

the number of data points occurring within a given distance from the data point   . ND 

represents the percentage of data points occurring within a given distance from   . ND 

is our approximation of neighbor count for a data point in a data stream. We calculate 

the ND of    from the data density function (defined in Section 1.3.2).  

Definition 4. The neighbor density of a data point    along a  -dimension    is 

defined as the percentage of neighbors of     within the scaled neighbor distance    
.  

Formally, 

      
(      

)  ∫             

           

           

 (1) 
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where           is the data density function discussed in Section 1.3.2. 

The small ND of a data point along any  -dimension is a good indicator of the outlier-

ness for that data point [77] because it indicates that the data point is isolated from other 

data points in that  -dimension. In order to estimate whether a data point is an outlier, it 

is sufficient to find a  -dimension    along which it has a low ND [77] compared to 

other data points. The  -dimension with the minimum neighbor density reveals the most 

outlier nature of a data point.  

Definition 5. The Minimum Density Dimension (MDD) for a data point    is the  -

dimension along which    has the minimum neighbor density compared to all other  -

dimensions. Formally,  

          |       
(      

)        
(      

)     (2) 

Theoretically each data point has an MDD, but practically many data points may share 

the same MDD (data points with the same value have the same MDD). Computing such 

 -dimension for every data point is a difficult optimization problem. The objective of 

the evolutionary algorithm is to find a set of  -dimensions one of which is MDD for   . 

We choose evolutionary algorithm over deterministic algorithm for two reasons: (1) no 

close form exists for the optimum  -dimension and the co-efficients of each data 

dimension vary for each optimal  -dimension, which makes greedy or simulated 

annealing algorithm very challenging for this optimization, and (2) evolutionary 

algorithm is very adaptive to the change of data distribution [79]. Moreover, given a 

proper model of evaluation, an evolutionary algorithm can optimize any function 

without its closed form [79]. 
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Other component analysis techniques like PCA and MCA do not guarantee the resultant 

 -dimension to have minimum neighbor density compared to other  -dimensions. 

Figure 9 illustrates the idea with an example where each dot represents a data point and  

   to                    . Each of these outliers is far from other data points in a two 

dimensional space.  
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Figure 9. PCA and MCA with other  -dimensions 

The principal component (PC) and the minor component (MC) of the data points are 

shown as dotted lines in Figure 9. Now consider the outlier   . The minimum neighbor 

density of    lies along  -dimension   , but not on the PC or MC. Similarly, we can 

consider   ,   ,   ,   , and   ;  the minimum neighbor density of each of them lies 

along   ,   ,   ,   , and   . Neither PC nor MC can yield the minimum neighbor 

density for all of them; this is because the principal component and minor component 

are fixed for a dataset, where the     is different for each of data point. Hence, 
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finding the appropriate  -dimension with the evolutionary algorithm is more 

appropriate than using the other component analysis model like PCA or MCA. 

1.3.2. Model of Evolution 

The model of evaluation of the evolutionary algorithm has three components: (1) the 

population set, (2) the fitness function, and (3) the population modification. 

1.3.2.1. Population Set 

Orion starts with an initial set of  -dimensions   called the population set (it can be 

chosen randomly [79]; we use eigenvectors of covariance matrix as the initial set and 

the size of the population set is the same as the number of data dimensions).       -

dimension in   is called a population.   is divided into two sets     and     . Two sets 

are necessary for applications like outlier detection because inliers occur more often 

than outliers [12], and the  -dimensions that have low NDs for inliers may not have low 

NDs for outliers. Since the number of inliers is much higher than the number of outliers, 

the  -dimensions that produce low NDs for inliers will dominate the entire population; 

thus Orion would fail to find a  -dimension that incurs low ND for an outlier. To avoid 

such situation Orion randomly divides the initial set of  -dimensions   into two 

separate sets,     and     . The  -dimensions in     produce the minimum neighbor 

density for the data points that are surrounded by many other data points and thus are 

likely inliers, and the  -dimensions in      produce the minimum neighbor density for 

the data points that are not surrounded by other data points and thus are likely outliers. 

In order to find the data points that are surrounded by many other data points, we 

propose the concept of absolute normalized deviation. 
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Definition 6. The Absolute normalized Deviation (AD) of a data point    along a p-

dimension    is defined by the absolute distance between the value of    and the mean 

in scale of standard deviation along   . Formally,  

    
     

|           |

  
 

|           |

  
 (3) 

Lemma 1. For any arbitrary  -dimension    and data point   , the maximum value 

of     
     is         

       √            
             where   

   
            and    is a constant. 

Proof.     
     would be maximized if     

    
  is maximized since     

      . 

It is computed as: 

    
    

   (
|           |

  
)

 

 

  
(           )

 
 

      
 

(   )
 
 

     
 where           

 

     
    according to Extended Cauchy-Schwarz inequality        

            
     and     

    
  is maximized when equality is 

achieved [19] 

    
      √            

             

and the maximum value of     
     is attained if      

           .  
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Heuristically, if the value of a data point    is far from the mean value along a  -

dimension,    will most likely have a smaller neighbor density along that  -dimension 

compared to other  -dimensions. The  -dimensions in     and      are modified based 

on the data points the maximum ADs of which are lower than the average maximum 

AD and greater than the average maximum AD. Once a data point arrives, the 

evolutionary algorithm chooses either     or      based on the value of the maximum 

AD of    and loads it into the working set   .  

1.3.2.2. The Fitness Function 

The fitness of an evolutionary algorithm decides which set of populations will be 

chosen or discarded for future steps. We calculate the neighbor density of    for each  -

dimension and sort the  -dimensions into descending order; and the rank of a  -

dimension is its fitness value for that particular   . We do so because the minimum 

value of ND of    along any possible  -dimension is unknown; hence it is difficult to 

measure the goodness of an ND along any existing  -dimension with respect to the 

minimum ND. According to Lemma 2, the smaller the angle between a  -dimension    

and the optimal  -dimension, the smaller ND    produces compared to other  -

dimensions and vice versa. Therefore the    that induces the smallest ND must have the 

smallest angle with the optimal  -dimension, hence, has the highest fitness. So for the 

current working set   , the  -dimension which has the smallest ND has fitness |  |, 

the  -dimension which has the largest ND has fitness 1, and the remaining  -

dimensions have fitness between |  | and 1. The overall fitness of a  -dimension is the 

average fitness value of that  -dimension for all history data points. The fitness values 
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of all  -dimensions of    are updated at every time period and a new dimension is 

created and an old one is deleted (called the evolutionary step) randomly.  

Lemma 2. The neighbor density along a  -dimension increases with the increase of 

the angle between the  -dimension and optimal  -dimension. 

Proof. Let,              meaning         
(        

)        
(      

)     . 

Let    be a  -dimension and        . 

      
(      

)  ∫             
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will argue why the result is extendable to variable weights] 
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The neighbor density would be minimum if          
       

              is 

minimum for each data point; and so          
       

              would be 

minimum if       and       are maximum. According to the definition of Epanechnikov 

Kernel the maximum value of       and       is 1; in that case the minimum neighbor 

density would be 0.  

       
        

     
  

(| ||  |         )

     
 [   is the angle of   &   ] 

 

 
 |  |        

 
 [since   is a unit vector and neighbor distance and bandwidth are 

equal for all  -dimensions] 

      would be maximum if       is maximum. Thus, the optimal  -dimension has 

maximum      , thus      is parallel to   ; and as the angle between    and   

increases        decreases. So, the       decreases as the angle between      and    

increases. The same is also true for      . So, the neighbor density increases as the angle 
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between      and    increases. Since the total neighbor density is the sum of the 

neighbor density induced by each data point, the weight does not influence the neighbor 

density induced by a data point. Moreover, the weight of a data points does not play any 

role for dimension selection since the weight is equal along all dimensions for one data 

point.  

1.3.2.3. The Population Modification 

The next components of the evolutionary algorithm are the selection of existing 

populations with high fitness ( -dimensions) and the design of new populations from 

them. Orion creates new populations using crossover and cultivation and removes 

existing populations with low fitness using deletion. 

Crossover. Crossover finds two populations (two  -dimensions) called parent 

populations with high fitness and creates a new population that performs even better 

than the parent populations. Two populations are selected based on the rank selection 

scheme [18] which sorts the  -dimensions based on their fitness values in descending 

order. The first  -dimension has the highest probability of being selected and the last  -

dimension has the lowest probability of being selected. Once two  -dimensions are 

selected, a new  -dimension (  ) is produced from the combination of the two parent  -

dimensions. According to Lemma 3, the linear combination of two  -dimensions 

produces a new  -dimension which produces smaller neighbor density compared to the 

parents. Since    and    are two parents  -dimensions where   and   are two unit 

vectors along them, the new    will have a unit vector    which is computed using the 

following Equation (4): 



94 

 

     {
                                 

                       
 (4) 

          are randomly chosen values for each crossover. The random initialization of 

the  -th component is often called mutation. Mutation is necessary because a simple 

linear combination of    and    searches for MDD globally. Mutation introduces a new 

value to one dimension and helps the evolutionary algorithm get out of local optimum.  
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Figure 10. Linear combination of two  -dimensions 

 

Lemma 3. A linear combination of two parents  -dimensions produces a new  -

dimension better than at least one parent  -dimension. 

Proof. Let    and    be two  -dimensions and      be the optimal  -dimension for    

(Figure 10). The new  -dimension    is created from the linear combination of    and 

  . Let a new  -dimension    be created from    and   .    would be in the vector 

space created by    and   . If    and    are in two different sides of      then      is 

also in the same vector space. The dimension that produces the maximum angle with 

     and lies in that same vector space is either    or    and all other  -dimensions 

must produce a smaller angle with     ; hence       and/or      . If    and    lie 

on the same side of     , let the  -dimension that creates the minimum (maximum) 



95 

 

angle with      be     (  ).  Any  -dimension created by the linear combination of 

   and          produce a smaller angle with      compared with the angle between 

           , hence       (this is also true if      is not in the same plane). Thus in 

both cases    creates a smaller angle with      compared to its parents   and    and 

thus produces smaller neighbor density compared to its parents (according to Lemma 

2). Hence the resultant  -dimension produced from the linear combination of two parent 

 -dimensions induces smaller neighbor density than its parents. 

Figure 11 shows the crossover algorithm. This algorithm selects two  -dimensions 

randomly from the working set    using the rankSelect function (lines 1-2). After two 

parent populations          are selected, the new  -dimension    is created in lines 4-

7. Finally the new  -dimension    is added to   . 

Cultivation: In practical applications many data points have similar values and hence 

similar MDDs; therefore we can calculate the MDD of the current data point and keep 

that MDD for future use. In this way Orion has a higher chance of finding MDD for 

future data points. According to Lemma 1,     
            is the vector along 

which the data point    has maximum AD. If we create a  -dimension along   and 

insert it into the p-dimension set   , it might induce minimum ND for future data 

points; otherwise it will eventually be deleted.  

Deletion: As we create new  -dimensions using crossover or cultivation and insert them 

into   , we also delete old  -dimensions from    using the rank selection scheme 

(Figure 11). The ones with lower fitness will have a higher chance of being removed 

compared to the ones with higher fitness. 
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procedure Crossover(Population Set   ) 

1    ← rankSelect (  ) 

2    ← rankSelect (     ) 

3   ← rand(0, 1) 
4              
5 k ← rand(0, | |   ) 
6 c[k] ← rand(-1, 1) // mutation 

7         

8               

end procedure 

function rankSelect(  ) 

9 list ← empty 

10 for all       

11   list.add(  , fitness(  )) 

12 list ← sort(list) // sort dsc order 

13 wheel ← rand(0, 
|   | |   |   

 
)// a random value  

14 index ← rand(0, |list|-1) 

15 while(wheel > 0) 

16   wheel ← wheel – (|list| - index) 

17   index ← (index + 1) mod |list|; 

18 select ← list[index] 

end function 

Figure 11. Crossover and Selection 

1.4. Computation of Outlier Metrics 

Orion uses the versions of ND and  -distance [24] which we have modified for data 

streams where they are computed from our data density function. The use of  -distance 

along with ND plays an important role in outlier identification: if the ND of an outlier is 

accidentally big (because of masking effect [24]),  -distance does not shorten 

proportionally and, hence, the outlier can be identified with the help of  -distance. 

However  -distance adds additional error as well: a true outlier might not have a small 

 -distance because of error and ND can be used to detect it. Thus in order to classify a 

data point as an outlier, Orion analyzes both ND and  -distance. Since we already 
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discussed the modified ND in Definition 1, here we only discuss the modified  -

distance for data streams followed by the proposed data density function. 

1.4.1. k-Distance 

We adopt the concept of  -distance [24] but modify it for data streams. In [24] the  -

distance of a data point is the minimum distance from a data point to its  -th nearest 

neighbor. So for a meaningful choice of  , the  -distance of a data point reveals how 

different it is compared to the majority of the data points in terms of distance. Since we 

deal with data streams, we use neighbor density, instead of neighbor count, as  . We 

calculate the  -distance of a data point along one  -dimension. Since each  -dimension 

has a different dispersion,  -distance becomes very  -dimension specific. In order to 

make our  -distance independent of the  -dimension, we scale the obtained distance 

with respect to the maximum dispersion along the  -dimension. 

Definition 7. The  -distance of a data point    along    is the minimum relative 

distance that has   neighbor density along   . Formally,  

       
               

             

(5) 

  
 

   

       
 |     (           

)      

where    
 is the dispersion of values along    and calculated as data points arrive. 

A data point would require a large area to cover the same   if it is considerably different 

from the rest of the data points and vice versa. Thus, the  -distance of an outlier is large 

compared to that of an inlier. 
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1.4.2. Data Density Function 

Our proposed data density function is based on a kernel probability density estimator. 

Several techniques exist in the literature to estimate data density function like histogram 

[55, 80], wavelet [81] and kernel estimation [36]. Among those techniques we chose the 

kernel probability density estimator (kernel estimator in short) for our approach. We 

shall justify our choice in the next few paragraphs. 

The kernel estimator estimates the data density function based on the data values. For 

each data value   the kernel estimator increases the frequency of occurrence of   by    

and increases the frequency of occurrence of each of the other values by a fraction of 

     which fits our requirements excellently. Due to data uncertainty, when we 

receive a data point   with value  , we cannot assert the data value with full 

confidence; therefore we cannot increase the frequency of occurrence of   by 1. Since 

the value   is uncertain, the data value   might be induced by data values other than  . 

Thus to address the uncertainty of data streams, we do not increase the frequency of 

occurrence of   by 1. The kernel estimator increases the frequency of occurrence of   

by    and distributes the rest of the frequency of occurrence (    ) into the other data 

values which are close to the value  . Formally, if              are   sample one 

dimensional data points, their respective values are              and the data density 

function      is defined by Equation (6) where      is called the kernel function.    

can be a scalar or vector.  

     
 

 
∑       

 

   

 
(6) 
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The kernel function is responsible for distributing the frequency of occurrence induced 

by the data value   . Various researchers have proposed various kernel functions (e.g., 

Uniform kernel function, Triangle kernel function, Epanechnikov kernel function, 

Normal kernel function etc. [82]). Different kernel functions distribute the frequency of 

occurrence differently. Interestingly, the choice of a kernel function does not affect the 

data distribution function very much [36, 82]. Typically a kernel function distributes the 

frequency of occurrence into the neighbor data values which reside within a range 

called bandwidth ( ) (Normal kernel function distributes the probability of occurrence 

from    to    [82]). A kernel function along with the bandwith ( ) is denoted by 

      where              . Although the choice of the kernel function is not very 

significant, the choice of the bandwidth is very important for data distribution 

estimation. A detailed discussion about the choice of kernel function and bandwidth 

selection can be found in [82]. In our approach we chose a data-based approach for 

bandwidth selection. Scott’s rule provides a data-based bandwidth selection where 

        
 ⁄  where   is the standard deviation and   is the number of data points 

used for data distribution estimation [36]. 

In a kernel estimator the frequency of occurrence is distributed into an equal number of 

neighbor values for each data point, but in a variable kernel estimator the frequency of 

occurrence is distributed into different numbers of neighbor values for each data point. 

Hence at any specific point of time, if the data points are close to each other (in terms of 

value), the bandwidth becomes small, and if the data points are far (in terms of value) 

from each other, the bandwidth becomes large. Let              be our data points 

with values              at times                , and our corresponding 
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bandwidths be            . The data distribution function      at time   becomes 

Equation (7) where       is the data distribution function at time  . In our approach we 

use the variable kernel estimator. 

      
 

 
∑   

      

 

   

 
(7) 

The use of the variable kernel estimator is twofold: first, the variable kernel estimator 

offers a variable bandwidth for each data point and the bandwidth can be computed on-

the-fly using Scott’s rule for each data point, and second, the variable kernel selects the 

bandwidth based on the recent data values only. 

We modify the variable kernel estimator to address the temporal characteristic of a data 

stream. Recent data points are more interesting than old data points; therefore, when we 

estimate the data distribution function we need to consider the freshness of data points. 

Heuristically, the recent data items should have more weight than the old data points 

[65, 66, 83]. Here weight is defined as how a data point contributes to the data 

distribution function; thus, in our data distribution function, instead of giving all data 

points the same weight, we weight them according to their freshness. The most recent 

data point receives the highest weight while the oldest one receives the lowest weight. 

Exponential forgetting is a weight assigning scheme which gives more weight to the 

recent data points and less weight to the old data points, and the weight is decreased 

exponentially from present to past [84]. According to exponential forgetting, the 

relative weights among two consecutive data points are constant, called forgetting factor 

  where      . Among the two consecutive data points, the recent data point 

receives weight 1 and the old one receives weight  . In case of a series of data points, at 



101 

 

any particular time the most recent data point receives weight 1 and all other data points 

receive the weights according to their relative positions to the most recent data point. If 

             are the data points with data values              at times        

          respectively, the corresponding weights are                . We weight 

the kernel function with an exponential forgetting factor. Adding the exponential 

forgetting factor   to Equation (2), the data distribution function becomes Equation (8) 

where ∑      
    is the total weight. Another advantage of using the exponential 

forgetting factor is that it can be computed incrementally [84] which eases the on-the-

fly implementation for data streams. 

      
∑        

       
   

∑      
   

 
(8) 

      is the data density function we have available at any time   which represents the 

current data distribution of a data stream [5].  

Orion computes the data density function (DDF) of the data point    along every  -

dimension in the set  . When a data point arrives, Orion updates the DDFs of all  -

dimensions. Each  -dimension has a DDF based on the data points arrived after its 

creation. The DDF of a  -dimension is the DDF proposed in Equation (8). It is based on 

the projection of the data values on a  -dimension. For any  -dimension    the 

proposed DDF is defined by Equation (9). 

          
∑             

            
 
   

∑        
   

 (9) 
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where   is the timestamp when    is created and       is the bandwidth along   . The 

DDF does not assume any particular fixed/standard data distribution, but is adjusted on-

the-fly. In addition, it uses a variable bandwidth for the kernel estimator which eases the 

online incremental implementation and makes the DDF adaptive to the dispersion of the 

data points. 

1.4.2.1. Data Density Function Implementation 

The kernel estimator requires a large amount of computation. Binned implementation is 

a popular, fast implementation for the kernel estimator [85]. In this approach the entire 

range of data points is divided into some equally spaced bins and data are distributed 

into bins according to their data values. Each bin has a representing value and all the 

data points in a bin are represented by the representing value. The key idea is that most 

values are naturally close to each other and binned implementation reduces the number 

of evaluations; but this popular binned implementation still requires multiple passes of 

the data points and cannot be computed incrementally. 

In our approach we divide the entire range of data values into equally spaced bins. A 

representing value is selected for each bin (           in Figure 12). Instead of binning 

the data points for each bin, we store the value of the data density function       of the 

representing value   , cumulative data density function       and the derivative of the 

data density function       .      ,       and        are stored for each representing 

value   .      ,       and        are the sum of the kernel estimations, sum of the 

cumulative kernel estimations and the sum of the derivative of the kernel estimations 

for all the data points received, respectively. The kernel function, the cumulative kernel 

function and the derivative of the kernel function for each representing value are 
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computed on-the-fly and added to the previous sums; hence this is an online 

incremental implementation. 

b0 b1 b2 b3 b4

x

fT(x)

 

Figure 12. Binned implementation of kernel estimator 

Figure 12 shows the binned implementation of our proposed probability density 

function. By carefully selecting the bin width we can assume each bin to be a trapezoid 

as shown in Figure 12 and we can approximate the probability of occurrence of a data 

value within a bin. The top of the trapezoid is a straight line (shown in Figure 12 as the 

dotted line touching the probability density function) and we store the passing point as 

well as the derivative; hence using the straight line equation of the line we can estimate 

the probability of occurrence of any data value within a bin.  

Practically it is impossible to know the entire range of values for all possible  -

dimensions, hence we do not assume to have the entire range of data values for each 

possible dimension. Therefore, instead of creating a static set of bins, we create a bin 

whenever necessary, that is whenever the DDF of that particular bin is updated. In order 

to create bins dynamically we approximate the value of the bin width for each  -

dimension    from its variance   . The bin width should be such that the average error 
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value is minimum; Section 1.7.2 provides a detailed discussion about bin width 

selection for our approach.  

1 procedure update(dataItem d, timestamp t) 

2             ; // s1 is the sum of data value and λ 
is our forgetting factor 

3              ; // s2 is the sum of the square of the 

data value 

4            ; // ω is the total data weight 
5          ; // µ1 the first moment 
6          ; // µ2 the second moment 
7     √       

 ; // σ is the standard deviation 

8           
 ⁄ ; // h is the bandwidth 

9               ; // c is the cell count 
10                   ; // b is the middle cell 
11   for       –    to      , // i is the index of the 

cell, where       and                  . 
//    is the representing value of the bin/cell(  ) 

and αi and βi are the starting value and the end 

value of the bin. 

// distance between two consecutive time stamp is 1. 

12                                                          ; 
13    if (           is not discontinuous at    

14          
         (  –              )    

                    ; 
15    else 

16        
         (  –              )    

       –             
                       

17                     ; 
18                                    
19   end for 

20 end procedure 

Figure 13. Update data density function 

Figure 13 shows the online incremental update algorithms for our proposed data density 

function. The update algorithm updates the DDF as each data point comes for every  -

dimension. The update algorithm takes a data point and its timestamp as input. It starts 

by updating the weighted summation (lines 2-3), where    is the weighted summation of 
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the data values and    is the weighted summation of the square of the data values. The 

  in line 4 is the total weight of the data.    and    are required to calculate the current 

standard deviation   and hence the bandwidth  . In line 9 we calculate the number of 

cells we need to update. Some kernel functions update the values in the range from    

to    (e.g., Normal kernel function [82]); in that case we restrict it to          and 

        , which represent the minimum and maximum allowable values for a data 

point, respectively. Now for each bin we update the sum of the kernel function and the 

latest timestamp when the bin is updated. If the kernel function is continuous at the 

representing point    then we store the derivative of the kernel function at   ; otherwise 

we store the gradient from the starting point    to the end point    of the bin. The 

probability lookup algorithm is fairly simple; it finds the appropriate bin which contains 

the sum of the kernel function values. Finally the probability is achieved by dividing the 

sum of the kernel function values by the sum of the weights.  

1.5. Outlier Detection 

A data point is an outlier if it has a considerably small neighbor density (ND) or a large 

 -distance compared to the normal data points. However the definition of “considerably 

small/large” is application-dependent and no well accepted definition of “considerably 

small/large” exists in literature [10, 12]. Orion solves the problem by quantizing the 

values of ND (and also of  -distance) into three groups: (1) small, (2) average and (3) 

large where they represent the three sets of data points with small, average and large 

neighbor density ( -distance), respectively. Instead of using user-defined thresholds for 

small, average and large for ND or  -distance, Orion quantizes them using the concept 

of co-clustering [78].  
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Co-clustering clusters the data points into three clusters based on their NDs and three 

clusters based on the  -distances; hence the total number of clusters with a unique 

combination of ND and  -distance is nine (three times three). We initialize the cluster 

centers with the minimum (for small), average (for average) and maximum (for large) 

values, and the cluster centers are updated with the arrival of every new data point. In 

this way we avoid using any user-specified threshold for the boundaries of small, 

average and large and let the boundaries emerge from co-clustering.  
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Figure 14. Neighbor density/k-distance space 

Orion creates nine blocks for nine clusters in a two-dimensional space (Figure 14a) 

where the ND goes along the horizontal axis and  -distance goes along the vertical axis. 

Each block is a cluster and has a cluster center defined by a tuple (ND,  -distance). 

Blocks              share a common ND and different  -distances as their centers, 

and              share different NDs and a common  -distance (other blocks are 

defined similarly). As a data point arrives and its ND and  -distance are calculated, 

Orion finds the appropriate block based on its ND and  -distance, updates the 

corresponding centers, and determines whether it is an outlier or inlier based on the 

block properties. 
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   and    correspond to the blocks where every data point has a small ND and 

small/average  -distance compared to other data points. If the ND is small, the data 

point has very few neighbor data points and can be an outlier; however the  -distance is 

also small/average which shows most of the data points can be reached within a 

small/average distance. These data points are on the periphery of a group of data points 

(A and C in Figure 14b). Every data point belonging to this block will be identified as 

an outlier if it is more inclined to the vertical axis compared to the horizontal axis since 

those data points have large  -distance and small ND.    is an ideal case of outliers 

where every data point has a small ND and a large  -distance value, hence it is 

identified as an outlier (O in Figure 14b). Blocks    and    have average ND and 

small/average  -distance. The NDs of the data points belonging to these blocks 

represent the normal behavior of the data and the  -distances represent a close 

(  )/typical (  ) proximity to other data points. Data points belonging to          are 

identified as inliers (E in Figure 14b).    shows a large  -distance with average ND; 

this may happen because of the masking effect [24] where a group of outliers cluster 

together and far from the rest of the data points. Thus    is considered as an outlier 

block (D in Figure 14b). Blocks    and    consist of ideal inliers that have a large ND 

and small/average  -distance. Finally    is an invalid block because a data point that 

simultaneously has a large ND and large  -distance is impossible to exist. If a data 

point has large ND which means it has plenty of data points in its close proximity, thus 

it would require a small  -distance to incorporate   percents of the data points. Any 

data point belonging to    is invalid and therefore can be considered as an inlier or 

outlier. 
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function detectOutlier(nDen, kDist, hCenters, vCenters) 

1 dist ← MAX 

2 (h, v) ← (-1, -1) 

3 for i = 1 to 3 

4   for j = 1 to 3 

5     lDist ← |nDen–hCenters[i]|+|kDist–vCenters[j]| 

6     if(lDist < dist) 

7       dist ← lDist 

8       (h, v) ← (i, j) 

9 update(hCenters[h], nDen) 

10 update(vCenters[v], kDist) 

11 if((h,v) =                     ) 

12   detectOutlier ← false 

13 else if((h,v) =               ) 

14   detectOutlier ← true 

15 else if((h,v) =         ) 

16 
  if(cosine((0, 1), (nDen, kDist)) > cosine((0, 1), 

(hCenters[1], vCenters[3])) 

17     detectOutlier ← true 

18   else 

19     detectOutlier ← false 

end function 

function cosine(               ) 

20 
cosine ← 

         

√  
    

 √  
    

 
 

end function 

Figure 15. Outlier detection algorithm 

Figure 15 shows the outlier detection algorithm detectOutlier. Orion invokes this 

algorithm once it computes the ND and  -distance for the newly arrived data point. 

detectOutlier compares the ND and  -distance with all cluster centers (lines 3-8) and 

finds the closest cluster center. Once the closest cluster center is found, detectOutlier 

updates it and identifies whether the data point is an outlier or not based on which block 

the data point belongs to. If the data point belongs to any of the blocks                 , 

it is identified as an inlier (lines 11-12); if it belongs to any of             , it is 

identified as an outlier. If the data point belongs to           it is identified as an outlier 
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if it is more inclined to the vertical axis (lines 16-17); otherwise it is identified as an 

inlier. 

1.6. The Orion Algorithm 

Orion consists of two stages: the initialization stage to initialize the data structures and 

learn the parameters, and the incremental stage to determine whether a newly arrived 

data point is an inlier or outlier.  

1.6.1. Initialization Stage 

Orion initializes all of its data structures (mean    and covariance   ) and learns the 

required parameters for the data density function from the bootstrapping rounds which 

are the first few rounds of data specified by the user. The first step of initialization is the 

forgetting factor selection. Brailsford et al. [84] proposed a method for forgetting factor 

selection which is discussed in Section 1.7.1. In the second step Orion creates a set of  -

dimensions   as the eigenvectors of the covariance matrix    and partitions   into two 

sets     and      randomly. The reason Orion chooses eigenvectors because they are 

along the maximum variance of the attributes. Once the dimension set   is populated, 

Orion updates the data density functions along all the  -dimensions in   and calculates 

the ND and  -distance for all bootstrapping rounds. Finally Orion initializes the cluster 

centers for co-clustering: small as 0 (minimum value), large as 1 (maximum value) and 

average as mean (average ND/ -distance value of the data points in the bootstrapping 

rounds). Orion then moves to the incremental stage. 
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1.6.2. Incremental Stage 

Orion processes every data point online and incrementally. Once a new data point     

arrives, the algorithm ProcessData shown in Figure 16 is invoked. It takes   , user-

defined neighbor distance   and   for  -distance as input, identifies whether    is an 

outlier or inlier and updates its internal data structures for future use. Figure 17 

accompanies Figure 16 to show the flow diagram of Orion. 

procedure ProcessData(Data point   , neighbor distance 

 ,  )  

1    
 

   
     

 

   
     // update mean 

2    
   

 
                          

3     
                  

            // Lemma 1 

4 if(    
                 )             

5 else        // find appropriate set 

6          
   

 
          

 

 
     

       

7               {      
(      

) |      //   
     

  
8 sortedList←sort(densityList)//Asc-order 

9                    //choose item within ND 
10             

(      
)  

11               
        

12 
if(detectOutlier(nDen, kDist, hCenters, vCenters)) 

isOutlier ← true  

13 else isOutlier ← false 

14 for all       updateFitness(  )  

15    ← evolve(        )  

16 for all      updateDensity(      )  

17 return isOutlier 

end procedure 

Figure 16 ProcessData Procedure 
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for that p-dimension
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Orion updates the data density 

function for Ain and Aout

End

This part of Orion is used to update the 

fitness value of At and data density function 

of Ain and Aout; and independent of Outlier 

detection

 

Figure 17. Work flow of Orion 

At first, Orion computes the maximum deviation distance for the newly arrived data 

point (Figure 17). The corresponding operation can be found is lines 1-3 in Figure 16 

where ProcessData starts with updating the mean    and covariance matrix    (lines 1-

2) and computes the maximum AD (line 3). If the maximum AD is smaller than the 

average maximum AD,          , ProcessData selects the set     and stores it in the 

working set   ; otherwise it selects      for the working set    (lines 4-7, the top 

decision box in Figure 17). ProcessData selects one  -dimension from    which incurs 

the smallest ND (lines 6-9) and calculates the ND and the  -distance of    along that  -
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dimension (lines 10-11), which is also shown in the flow diagram of Orion.    is 

identified as an outlier if it has a considerably low neighbor density and considerably 

high  -distance compared to the normal data points using the detectOutlier function in 

line 12. The detectOutlier function examines the cluster to which    belongs; if it is an 

outlier cluster, detectOutlier identifies the    as an outlier; otherwise inlier (the bottom 

decision box in Figure 17). In the next step, Orion updates the existing data structures 

for future processing (the shaded region in Figure 17). ProcessData then sorts the  -

dimensions into ascending order based on the NDs of the data point    along those 

dimensions. Orion updates the fitness (rank) of the selected  -dimensions and performs 

the evolutionary steps by adding a new dimension to    and removing an old one from 

   (line 15). Finally ProcessData updates the data density function along every  -

dimension in   which is a union of the sets     and      (line 16) for future use. At this 

point the processing of    is complete and Orion moves to the next data point. 

1.7. Parameter Selection 

In the course of the description of Orion we have proposed the use of the parameters 

forgetting factor λ, bin width and initial population without giving an idea about how 

those parameters are selected. In this section we describe the parameter selection 

strategy for each parameter. 

1.7.1. λ Selection 

Data points have a temporal characteristic in a data stream. Data points are interesting 

for a specific amount of time. Moreover, data points have a temporal dimension and 

they are correlated with respect to time. The data points which are close to a given data 
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point   are more correlated to   than the data points which are far from  . Heuristically, 

we weight the data items with an exponential forgetting factor λ (     ), which 

implies that the recent data points will receive higher weights than the old data points. If 

the value selected is close to 1, the data distribution function will remember more 

history than the data distribution functions where the value is close to 0. The value 0 

implies that only the current data point is used for the data distribution function while 

the value 1 implies a complete history where all previous data points will be used for 

the data distribution function. Intuitively, the more history the user wants, the larger the 

  should be. One important factor for an appropriate λ selection is the correlation 

between consecutive data points. Intuitively, data collected more frequently tend to be 

more correlated to each other. Above all, it is a highly application-dependent parameter 

in time series analysis or data streams. To select an appropriate forgetting factor, we 

adopt the static forgetting factor selection method proposed by [84]. The   selection is 

based on a bootstrapping method; therefore, it requires an initial dataset to select an 

appropriate  . This model portrays the time series as an auto-regression model with a 

forgetting factor. A part of the initial dataset is used to train the auto-regression model 

and the rest is used for error estimation. According to the method, the   which gives the 

minimum error is the right choice for  . Madsen [66] pointed out that for an auto-

regressive model,    should be greater than 0.75 where c is the number of components 

in the model; therefore it is sufficient to consider the values which are greater than 0.75. 

Brailsford et al. use a first order linear model for their approximation, and so do we. 

The next section discusses the selection method for another important parameter for our 

approach named bin width. 
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1.7.2. Bin Width Selection 

Bin width is an important parameter for the correctness of the data density function. 

Instead of exactly representing the data density function, our binned implementation 

approximates the data density function. The bin width should be such that the average 

error is minimum. This section presents the maximum error bound for a specific choice 

of bin width and provides a guideline for bin width selection. 

Let us say      is the actual data density function and       is the approximate data 

density function for a dimension by our binned implementation where   is a random 

variable. At point   our approximate frequency of occurrence is       and true 

frequency of occurrence is     ; therefore the error induced at point   is      

|           |. Here,       
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value for the nearest bin and    is the data value. For the sake of simplicity we omit the 

exponential forgetting factor from the following error analysis. 
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    is the error induced by the data value   , where    

       
       

   
              

  
      . The total error can be minimized by minimizing 

   
    [5]. 

   
        

          
              

  
       

  
 

   
[  (

    

  
)

 

   (
    

  
)

 

      [ 
       

  
 ]] 

  
 

   
 
                               

  
 

   
 
                              

  
 

   
 
                      

   
 

   
        

If the random variable   goes to the bin where   is the representing value, the average 

error in the bin is defined by    

   
 for data value    as follows:  
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 is the average error in a bin induced due to approximation. From Equation (10) we 

can see the induced error is independent of the bin location. Therefore, each bin would 

have an equal average error. The error will be minimized if we minimize the average 

error. Hence, the minimum error occurs when 
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    if     or     . Obviously, the average error is 

minimum when the bin width is zero. We can reduce the error by choosing a bin width 

much smaller than the bandwidth [5]. If the bin width is greater than the bandwidth, 

only one bin’s frequency of occurrence will be updated. In that case if we consider one 

bin as one histogram, then the kernel estimation is turned into the histogram based 

approach [5].  

Minimizing the bin width increases the number of bins; hence the greater the number of 

bins the lower the error. Fan and Marron [85] mentioned that four hundred bins is often 

optimal, fewer than four hundred bins often deteriorates the quality of the results and 
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more than four hundred bins offers very little improvement. In our technique we use the 

optimal four hundred bins.  

In our implementation we do not assume to have the entire range of data values for each 

possible dimension. Therefore, instead of creating a static set of bins, we create a bin 

whenever necessary, that is whenever the DDF of that particular bin is updated. In order 

to create bins dynamically we approximate the value of the bin width for each 

dimension    from the variance   . According to Chebyshev’s inequality [59], 

regardless of the data distribution, more than 90% of data points are within six standard 

deviations away from the mean. Hence we choose the optimal four hundred bins for six 

standard deviations (bin width     
  √         ) for any  -dimension. 

We embed the λ and bin width selections in our approach. Hence our approach does not 

require the user to select these two parameters; rather our approach automatically 

chooses the appropriate values for them.  

1.7.3. Initial Population Selection 

The strength of the evolutionary algorithm is that it can start from any random set of 

solutions [79]. So theoretically we can start from any random set of  -dimensions. 

However, in our case we compute the covariance matrix using the bootstrapping dataset 

and compute the eigenvectors from the covariance matrix and initialize our initial 

population set with eigenvectors. We randomly divide the set of eigenvectors into two 

sets and put them in     and     . The use of eigenvectors has one advantage over 

random population initialization in that it ensures all the starting  -dimensions to be 

independent of one another and there would be at least one  -dimension along which 
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the data points are far from their mean (because according to Lemma 1, a data point is 

furthest from its mean along the eigenvector corresponding to the minimum 

eigenvalue). Therefore, if future data points are similar to bootstrapping data points, 

then they might incur minimum neighbor density along that  -dimension. 

2. Outlier Detection for Multiple Data Streams 

Multiple data streams consist of a set of data streams where each data stream produces 

an infinite sequence of data points accompanied with explicit or implicit timestamps 

and data points from different streams may or may not be correlated. These data points 

may have two kinds of correlations: one is called temporal correlation where data points 

from the same stream are correlated and one is called cross correlation where data 

points from different streams are correlated. Outlier detection for single streams 

compares a data point in a stream with respect to the history data points from that same 

stream in order to identify whether the data point is an outlier. In case of multiple data 

streams, such identification can be done either by (1) comparing the data point with the 

history data points from the same stream that carries the data point, (2) comparing the 

data point with the data points from the other correlated streams, or (3) using a 

combination of both (1) and (2). The opportunity of having multiple data streams to 

compare allows richer semantics across the data streams to be taken into consideration 

which would lead to better detection accuracy. Our algorithm, which is discussed in 

detail in Section 2, uses Option (3) so that it can take advantage of both Options (1) and 

(2).   
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Figure 18 shows a generic outlier detection methodology with multiple streams. Each 

data source produces a sequence of data points and sends them to the outlier detection 

component. The streams produced by multiple data sources can be homogeneous or 

heterogeneous, synchronous or asynchronous, and some or all of them may be 

correlated. For each data point received, the outlier detection component identifies 

whether it is an outlier or inlier and releases it for further processing (Figure 18). 
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Figure 18. A generic multiple data streams model with outlier detection 

We propose the idea of two-phase outlier detection that exploits the temporal and cross 

correlations among data points. In the first phase, outliers would be detected based on 

the data points from only one stream using Orion for single streams; and in the second 

phase, outliers would be detected based on the data points from all correlated streams.  

Figure 19 depicts the idea of two-phase outlier detection. In the first phase, a data point 

  
  (     -th data point from the  -th stream) is identified as an outlier if it is 

considerably different from other data points from the same stream or an inlier 

otherwise. For the data points that were not found to be outliers in the first phase, they 

will be sent to the second phase for further detection. In this phase, a data point is 

identified to be an outlier if it violates the expected cross correlations among the data 
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points in the streams that have cross-correlation with the stream from which the data 

point comes. In the second phase, we process the group of correlated data points 

together that arrive at the same point in time in order to detect outliers among them. In 

summary, a data point is said to be an outlier if it violates any of the correlations 

(temporal correlation in the first phase or cross correlation in the second phase). 
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Figure 19. Two-phase outlier detection for multiple data streams 

The second phase requires a novel idea of outlier detection that can compare data points 

from multiple streams to identify outliers. This is because data points from multiple 

streams could be very different from one another and their values may not be directly 

comparable. Moreover, the asynchronous and dynamic nature of multiple streams make 

it difficult to learn the cross correlation. On top of that, the notion of outlier in 

heterogeneous streams is yet to be defined. Since the second phase tries to exploit cross 

correlation among the data points from multiple streams and we may or may not have 

more than one correlated data points at any point in time, instead of processing one data 

point only, we have to process a set of correlated data points where each of them may 

be originated from multiple streams. We called our algorithm Wadjet. 
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2.1. Overview of Wadjet 

Wadjet is composed of two phases. In the first phase, Wadjet uses Orion to detect 

outliers based on individual data streams. The data points that are identified as outliers 

are stored in the set of outliers; otherwise they are stored in the set of inliers. In the 

second phase, Wadjet further processes the set of inliers. It captures the cross 

correlations, if any, among the data points (that are in the set of inliers) from multiple 

streams. Each stream produces a sequence of data points, and two random data points 

which are picked from two different streams may not have the same cross-correlation; 

thus we need to compute the cross-correlation among the data points. However, 

theoretically we can compute the cross-correlation between any two data points chosen 

from two different streams. Imagine two sensors    and    producing temperature 

readings at every hour, such as   
    

    
      

  and   
    

    
      

 . We can 

compute the cross-correlation between any pair of their data points (  
    

 ) where   and 

  can be any value. Hence, the theoretical possible cross-correlation pair could be 

infinite (because each data stream can produce an infinite amount of data points). 

Practically, it is impossible to compute an infinite number of possible cross-

correlations; and therefore, it is necessary to define the context for each stream under 

which the cross-correlation would be captured. Consider   data streams, each of which 

produces a sequence of data points.    
    

      
  ,    

    
      

   and 

   
    

      
   are data points from streams 1, 2 and n, respectively, where   

 
 is the 

data point at time i from stream j. The cross-correlation between   
  and   

  is not the 

same as the cross-correlation between   
  and   

 . Therefore, we need to identify the 

data points from the streams whose cross-correlation would be captured. Ideally, we 
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should select the data points in such a way that the cross-correlation is maximized, 

which raises the problem of time series alignment [86]. A time series alignment 

algorithm aligns two series in such a way that they exhibit maximum correlation; 

however, existing time series alignment algorithms require the availability of the entire 

set or a large subset of data points [86, 87], which is not possible in data streams.  

Wadjet captures the cross-correlations among the data points that arrive simultaneously. 

Figure 20 shows the flowchart of Wadjet. Wadjet starts collecting all available data 

points from the streams and starts detecting outliers among them. Tracking cross-

correlations among time series is an active research area [48, 86]. A number of outlier 

detection techniques also track multiple streams for outlier detection [32, 39, 88]; 

however, they assume that all the data points from multiple streams have the same value 

(a form of cross-correlation), and hence, any data point which breaks that assumption is 

identified as an outlier. We believe this assumption is too restrictive and the existence 

of correlation is unknown and dynamic. In order to compute the cross-correlations 

among the data points from multiple streams, we compute the correlation matrix that 

has the pair-wise correlations of all attributes of all data points from all streams.  

Wadjet compares one attribute value to the other correlated attribute values to detect 

outliers. However, not all attributes are significantly correlated with other attributes. 

Therefore, comparing one attribute value to an uncorrelated attribute value would not 

produce any meaningful result. Thus, Wadjet needs to find the set of correlated 

attributes and compare their values to measure their similarity and detect outliers. Each 

set of correlated attributes is called a cluster.  
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Once Wadjet computes the cross-correlation between the attributes, Wadjet groups the 

significantly correlated attributes of the same set of data points into clusters. Two 

attributes are called correlated if their coefficient of determination (coefficient of 

determination between two attributes is the square of Pearson correlation between them 

[89]) is not significantly different from the perfect coefficient of determination (which 

is 1). We use coefficient of determination because if two attributes have the perfect 

coefficient of determination, the variation of one attribute can perfectly be explained by 

the second attribute. The perfect coefficient of determination also implies that there 

exists a linear function between them. If two attributes   and   have perfect coefficient 

of determination, they can be represented as a linear function of one another such as 

      , where   and   are two regression coefficients [90].  

In order to group the attributes into clusters, Wadjet starts with an empty cluster. One 

attribute is chosen randomly and placed in the empty cluster. This attribute is called the 

cluster head. Wadjet chooses the first attribute randomly so that every attribute has an 

equal chance of being a cluster head. Once the cluster head is chosen, for each attribute 

other than the one already in the cluster, Wadjet checks whether the attribute has a 

significant correlation with the cluster head; if yes, then the attribute is added to the 

newly formed cluster. This process continues until no more attribute can be added to the 

newly formed cluster. Wadjet continues the same cluster formation process with the 

remaining set of attributes that do not belong to any cluster already formed. 

The objective of the cluster formation step of Wadjet is to identify a set of attributes that 

are correlated. Once Wadjet can identify the set of correlated attributes, it can compare 

the attribute values with each other to identify outliers. Our clustering scheme ensures 
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that each attribute in a cluster is significantly correlated with the cluster head. This is 

necessary because outlier detection relies on similarity measurement between two data 

points. However, computing similarity between two attributes is very difficult if their 

values are not equal but correlated. Thus, we need to make them equal in order to 

measure the similarity between two attributes. In order to make them equal, all the 

attributes in a cluster must be correlated to one attribute, so that their values can be 

made equal (we call this “equating the values”). In our clustering scheme, all the 

attributes in one cluster is significantly correlated with the cluster head, thus we can 

equate the attributes of a cluster to the cluster head using a linear regression function. 

By construction, each attribute in a cluster has a significant correlation with the cluster 

head. By definition, if two attributes are significantly correlated, there exists a linear 

regression function between them. If a cluster has five attributes,            , and    

and    is the cluster head, then    can be represented as a function of   ; similarly it 

can be represented as a function of      , and    as well. We can compute four 

different values of   , each computed using one of         , and   . Each of these 

values is called the expected value of    obtained from    where        ; we call this 

“equating the value of    to   .” Theoretically,    has five different values four of 

them are computed by equating other attributes and one of them is the value of   ; and 

all of them must be the same. Therefore, all the values from    to    are now equal and 

Wadjet can easily measure the similarity between them. Thus, we solve the problem of 

similarity measurement among the attributes of a cluster by equating them to the cluster 

head.  
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For each cluster, Wadjet computes the expected values of the cluster head by equating 

each of the attributes in that cluster with the cluster head. If any of the expected values 

of the cluster head is significantly different from other expected values, the attribute is 

most likely an outlier. This is because based on our obtained correlation, all of these 

values (expected values and the obtained value) should be equal. Since, one value is not 

equal, it is non-conformist to our obtained correlation and thus it is very likely an 

outlier. Wadjet identifies the data point which contains that attribute as an outlier.  

Wadjet identifies the outliers for each cluster separately because the attributes in a 

cluster is significantly correlated with the cluster head. Thus each attribute is compared 

with only its correlated set of attributes. Two attributes from two different clusters may 

not be correlated at all and, therefore, comparing them to detect outliers would not 

produce any meaningful result. Therefore, Wadjet compares each attribute with the 

other attributes in the same cluster only.  

Figure 20 shows the flow diagram of Wadjet. In the first step, Wadjet executes Orion 

for each data point and identifies the sets of outliers and inliers. Wadjet further 

processes the set of inliers to update the cross-correlation matrix. In the following step, 

Wadjet clusters the attributes and equates the attribute values to their respective cluster 

head values. Finally, Wadjet identifies the outliers from each cluster by finding 

significantly different attribute values (compared to other attribute values in the same 

cluster) and adds the outliers to the previously constructed set of outliers. Wadjet 

continues this process until no cluster left for processing. The details of Wadjet are 

explained in the next few sections. 
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Figure 20. Flowchart of Wadjet 
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2.2. Cross-correlation Computation 

In order to detect outliers from multiple streams, Wadjet makes use of the cross-

correlation among the data points from multiple streams. Each stream is an infinite 

sequence of data points; hence, computing the cross-correlation between all pairs of 

data points is impossible. Selecting an appropriate context is a major challenge of 

computing the cross-correlation among the data points. The second problem associated 

with cross-correlation computation is the representation of cross-correlation. We will 

discuss both of them in the next two sections. 

2.2.1. Context Selection 

We select an appropriate context for the data points, among which we compute the 

cross-correlation. Then, we propose the selection of data points based on time. In the 

time-based approach, time is quantized and each quantum is separated by a    amount 

of time (the vertical lines in Figure 21). The data points that arrive within one quantum 

of time are grouped together. We compute the cross-correlation among the streams 

based on the data points arriving at the same quantum of time. We choose    as the 

smallest time difference between two consecutive data points from one stream because 

such choice of    ensures that there will be no two data points from the same stream 

within   .  

Although this model is very restrictive, it is effective in tracking dynamically changing 

cross-correlations among the data points, and a suitable data structure can easily be 

established. Of course this approach would miss some cross-correlations among the data 

points with any time difference greater than   ; however, if we want to capture those 

cross-correlations and compare the data points based on them, the processing of at least 
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one of the data points has to be delayed for a time duration greater than    as well. In 

this model, the processing of any data point is delayed no more than   .  
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Figure 21. Temporal context for cross correlation 

2.2.2. Cross-Correlation Representation 

Wadjet captures the cross-correlations between the data points arriving within    from 

all streams. Since    is the minimum time between two consecutive data points from 

any stream, each stream can have at most one data point within  . Wadjet captures the 

cross-correlation between the data points by capturing the cross-correlation between 

their attributes. Each data point can have multiple attributes; hence Wadjet captures the 

pair-wise cross-correlation between all pair of attributes. Wadjet uses the Pearson 

correlation matrix [91] that has the pair-wise correlations of all attributes of all data 

points from all streams in order to compute the cross-correlations among the data 

points. As each data point consists of multiple attributes, computing the Pearson 

correlation between two data points is impossible since the Pearson correlation is 

defined between two random variables. Instead of computing the Pearson correlation 
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between two data points, Wadjet computes the Pearson correlation between a pair of 

attributes. This correlation matrix has 
     

 
 entries, where   is the number of 

dimensions and   is the number of streams. Depending on the values of these two 

parameters, this matrix can be large; however, this matrix can be computed 

incrementally and in parallel.  

Wadjet uses the West algorithm [92] to compute the covariance matrix,     and 

computes the Pearson correlation matrix from the covariance matrix. The West 

algorithm computes the covariance matrix online. As a set of data points arrives, Wadjet 

updates the covariance matrix and the Pearson correlation matrix using Equation (11).  

            
          

√                 
 

(11) 

where    and    are two attributes,            is the covariance between    and   , 

            is the Pearson correlation between    and    and         and         

are the variances of    and      respectively. 

2.3. Attribute Value Equating 

Wadjet identifies the outliers based on the cross-correlations of attributes among the 

data points. Practically, not all attributes are correlated with each other. Therefore, 

Wadjet needs to find attributes that are correlated. Wadjet clusters the attributes based 

on Pearson correlation and equates the values of attributes within the cluster. Moreover, 

comparing two cross-correlated values is very difficult unless they are equal. Wadjet 

equates two attribute values using linear regression and later compares them to each 
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other to test whether they are different or not. In this section we discuss both of them in 

details. 

2.3.1. Attribute Clustering 

In order to find the correlated attributes, Wadjet assembles the attributes into clusters. 

For a multi-dimensional data point, each of its attributes are treated individually for 

clustering purposes. The attribute clustering is necessary because not all attributes are 

correlated to each other. The attribute clustering step groups the correlated set of 

attributes into one cluster. Later, Wadjet can compare the attribute values with each 

other inside a cluster to detect outliers. In the first step, Wadjet creates an empty cluster 

and chooses an attribute randomly and makes the attribute as the cluster head of a 

cluster; at this point this cluster has only one attribute, which is the cluster head, in it. In 

the second step, for each remaining attribute, Wadjet puts it into the same cluster 

created in the first step if it has a strong Pearson correlation with the cluster head. For 

those attributes that do not belong to that cluster, Wadjet repeats the two steps to form 

clusters for them until no attribute is left for clustering. In order to measure whether a 

Pearson correlation between two attributes is strong or not, Wadjet computes their 

coefficient of determination (often called   ). Given two random variables, the 

coefficient of determination is the square of Pearson correlation between them [89]. The 

coefficient of determination illustrates how much of the variance of a random variable 

can be explained using another random variable. So if two random variables,    and   , 

have the coefficient of determination as 0.80, then 80% of the variance of    can be 

explained using   . If    and    are perfectly correlated, then the coefficient of 

determination would be 1 and there would be a linear regression function (       
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  where   and   are regression coefficients) between    and    [89]. If the coefficient 

of determination is smaller than 1, there still exists a linear regression between    and 

   but some data points would be deviated from the regression line. Wadjet calls two 

attributes strongly correlated if their coefficient of determination is not significantly 

different from 1 with a given confidence level.  

2.3.2. Regression Function Computation 

Once the cluster formation is complete, Wadjet equates each of the attribute values that 

belong to same cluster to the cluster head value. This is because all the attributes in a 

cluster are correlated but their values may not be equal. Comparing two unequal values 

to measure their similarity is impossible unless their values are equated to a common 

value. Wadjet uses a regression function to equate the attribute values to the cluster 

head in a cluster. By design, all attributes in a cluster are strongly correlated with the 

cluster head. If a cluster consists of three attributes,   ,    and    where    is the 

cluster head, there exist two linear regression functions between         and        . 

The strong correlation between    and    ensures that there exists a linear regression 

function between    and   ; thus    and    can be represented as           
     

       
         

 where       
,       

 are called regression coefficients and        
     

is the linear regression function that equates    and   . Once we apply the linear 

regression function, each        
     becomes an independent observation of    

calculated from   . The values of the regression coefficients are given in Equations (12) 

and (13) [93]. 
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 (12) 

      
                 

          (13) 

where          and          represent the mean values of    and   , respectively. 

The variance and covariance values can be readily found from the covariance matrix  . 

Wadjet computes the regression coefficients       
 and       

 for the regression 

function between each attribute,   , of a cluster and its cluster head   . 

2.4. Outlier Detection 

Once Wadjet equates all the attribute values in each cluster to the cluster head value, all 

the attribute values including the cluster head value are expected to be equal. The set of 

values obtained after equating the attribute values of a cluster to their cluster head is 

called equivalent values. Consider a cluster consisting of four attributes   ,   ,   , and 

   with the attribute values   ,   ,   , and    , respectively, and    being the cluster 

head. After equating the attribute values of   ,    and   , Wadjet would have four 

different values       
    ,       

    ,       
     and    in that cluster; these values are 

called equivalent values. These are four independent observations of    obtained from 

  ,   ,    and   . Hence, each cluster of attributes has a similar set of equivalent 

values. By design, equivalent values in a cluster are supposed to be equal; so if one of 

them is significantly different from the rest of the equivalent values, then that equivalent 

value is most likely an outlier; and therefore, the originating data point containing that 

attribute value is called an outlier. In order to detect whether or not an equivalent value 

is significantly different from other equivalent values in the same cluster, Wadjet uses a 
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statistical significance test. Theoretically, once the regression function is found, for 

         and    after equating, we can expect           
            

     

       
    . If            

            
            

     and        
     is 

significantly different from           
    , and        

     then we call    an outlying 

value for the attribute    and if      
 , then data point   

  is called an outlier. 

In order to detect whether an equivalent value is significantly different from the other 

equivalent values in the same cluster, Wadjet computes the nearest neighbor for each 

equivalent value in that cluster. According to Lemma 4, if an equivalent value is 

significantly different from its nearest neighbor (which is also an equivalent value), it 

would be significantly different from the rest of the equivalent values; thus it is 

sufficient to prove that a value is significantly different from its nearest neighbor. 

Lemma 4. If an equivalent attribute value is significantly different from its nearest 

neighbor, it is significantly different from the rest of the equivalent values. 

Proof. Let a cluster be composed of three attribute values   ,    and    with    being 

the nearest neighbor of   . Here we prove that if    is significantly different from   , 

then it is also significantly different from   .    and    would be significantly different 

if √   
|     |

   

      , where    
 is the estimated standard deviation of attribute   , 

    the degree of freedom (number of parameters that can be independently varied), 

      
 

 
    

    

 
  the critical value obtained from the student-t distribution where 

    
                  

   
,      is the Gamma function;    would be significantly 

different from    if √   
|     |

   

      . Since both    and    are obtained from a 
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linear regression of the same order, their degree of freedom is equal. With     being the 

nearest neighbor of   , we have |     |  |     |, hence √   
|     |

   

 √   

|     |

   

      , therefore    is significantly different from   . Hence, if an equivalent 

attribute is significantly different from its nearest neighbor, it is also significantly 

different from the rest of the equivalent values. 

A data point is identified as an outlier if it is identified as an outlier in the first phase or 

in the second phase of Wadjet. This is because the data point is nonconformist to either 

other data points from the same stream carrying the data point or other data points from 

the multiple streams arriving at the same time point. 

If any cluster contains fewer than three attributes, then Wadjet skips that cluster. This is 

because if a cluster has two attributes and they are significantly different from one 

another, it is impossible to identify which one of them is an outlier and which one of 

them is not. In that case the correlation between any of these two attributes with other 

attributes is not strong enough for one attribute to be compared with the others to detect 

the outlier-ness of that attribute. Thus Wadjet cannot identify the outlier-ness of those 

attributes based on the cross-correlation, but the outlier-ness of the associated data point 

can still be identified using Orion. 

2.5. The Wadjet Algorithm 

Figure 22 shows our algorithm Wadjet. The algorithm is invoked once a set of data 

points     arrive at any point in time T. Wadjet then executes Orion for each data point 
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   in      (lines 4-11). If a data point is identified as an outlier by Orion, Wadjet adds 

it to the outliers  set (line 7). 

detectOutlier(Set of Data Points   , neighbor distance  , 
percentage of neighbors  , cross-correlation matrix     ) 

1 notOutlier ←     
2 outliers ←     
3 attributes ←     

4 
for each   

  in    //   
  is  -th data point from  -th 

stream 

5   isOutlier ← ProcessData(  
 ,  ,  )// execute Orion  

6   if (isOutlier) 

7     outliers.add(  
 ) 

8   else 

9     notOutlier.add(  
 ) 

10     attributes.addAll(  
 ) 

11 end for 

12                                               
13 clusters ←     // start with empty set of clusters 
14 do  

15   cluster ←   // begin with empty cluster 

16 
  cluster.head ← random(attributes) // choose 

cluster head 

17   attributes.remove(cluster.head) 

18   for each attr in attributes 

19     if (attr is correlated with cluster.head) 

20       attributes.remove(attr) 

21   end for 

22   clusters.add(cluster) 

23 until (attributes is empty) 

24 for each cluster in clusters 

25 
  for each attr in cluster equate (attr, 

cluster.head) 

26 

  for each attr in cluster 

findNearestNeighbor(attr) // find the nearest 

neighbor 

27   if (isDifferent(attr, nearestNeighbor(attr))) 

28       
  ← findDataPoint (attr) 

29     if(!outliers.contains(  
 )) outliers.add(  

 ) 

30 end for 

31 return outliers 

end procedure 

Figure 22. The Wadjet Algorithm 
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Once Wadjet completes executing Orion for each data point, Wadjet collects all the 

attributes of the data points that are not outliers (line 10). In the next step Wadjet 

updates the Pearson correlation matrix in line 12 and clusters the attributes based on 

their coefficient of determination (lines 19-21). In the next step for each cluster, Wadjet 

equates all the attribute values in the cluster and finds the nearest neighbor of each 

attribute value. If an attribute value is significantly different from its nearest neighbor 

then Wadjet finds the associated data point with that attribute (lines 27-29). If the data 

point is not already identified as an outlier, it is added to the set of outlier, outliers. 

Finally Wadjet returns the set of outliers in line 31. 

2.6. Confidence Interval Parameter Selection 

Wadjet needs one additional parameter, called confidence interval, besides those 

required by Orion. The confidence interval parameter is used for the significance test 

when Wadjet decides whether an attribute is significantly different from its nearest 

neighbor or whether an attribute is significantly correlated with a cluster head or not. In 

this section we discuss the value selection for this parameter. 

Confidence interval is the measure of reliability of the comparison. It is a user defined 

parameter. Wadjet compares one attribute value to its nearest neighbor attribute value. 

If the attribute value is significantly different from its nearest neighbor, Wadjet 

identifies the associated data point as an outlier. If the confidence interval is large the 

two attribute values has to be very far from one another. If the confidence interval is 

small, a small distance between two attribute values can make the attribute values 

different from one another. 95% confidence interval is very popular in literature and is 
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considered reliable enough for many applications [91]. In case of Wadjet, if the 

confidence interval is high, in order to detect a data point as an outlier, the attribute 

value of that data point has to be significantly different from those of the other data 

points and Wadjet would only consider the attributes that are highly correlated. Thus for 

a high confidence interval, it is very unlikely that Wadjet would create any false alarm, 

thus the precision of Wadjet should be high. However, the high precision comes with 

the cost of low recall. In that case Wadjet may miss some outliers that are not too far 

from their related attributes. Confidence interval can be seen as a tradeoff between 

precision and recall for Wadjet. 

Since Wadjet is a two-phase outlier detection technique, we recommend using a high 

confidence interval. This is because a data point is identified as an outlier if it is 

identified as an outlier in any of the two phases. Hence, we want to minimize the false 

alarms (maximize precision) in both phases so that the total number of false alarms can 

be minimized. 
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CHAPTER IV 

PERFORMANCE ANALYSIS 

This chapter presents the theoretical and empirical analysis of our techniques, Orion and 

Wadjet, evaluating their performance in terms of accuracy and execution time. The 

empirical analysis is conducted using both real and synthetic datasets.  We present the 

theoretical analysis first followed by the details of our simulation model and 

experimental results. 

1. Theoretical Analysis 

In this section we discuss the time and space complexity of Orion and Wadjet.  

1.1. Complexity Analysis for Orion 

1.1.1. Time Complexity of Orion 

The complexity of Orion is divided into two parts: 1) outlier detection and 2) update.  

The outlier detection part includes everything starting from an arrival of a data point to 

the final decision about the outlier-ness of that data point (which includes appropriate  -

dimension finding, outlier metrics computation and co-clustering to classify the data 

point). In this section, we present the time complexity of each part individually and the 

total complexity of Orion, which is the sum of the complexity of all three parts. The 

complexity of Orion is analyzed based on the amount of time Orion would take to 

execute for one data point with respect to the number of dimensions and number of bins 

for each dimension. Since Orion is executed for every data point and the number of data 
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is potentially infinite, we do not analyze Orion with respect to the number of data 

points. 

1.1.1.1. Time Complexity of the Outlier Detection Part 

On the arrival of a new data point   , Orion chooses the set of  -dimensions along 

which the neighbor density and  -distance of    would be computed, which is in either  

    or     . Orion computes the maximum absolute normalized deviation 

(        
      in Section 1.3.2) of   ; the maximum absolute normalized deviation 

of    later is compared with the average maximum absolute normalized deviation of all 

history data points. The maximum absolute normalized deviation requires inverting the 

covariance matrix. If the number of data dimensions is  , the time complexity of the 

matrix inversion is       using a simple matrix inversion algorithm.  There exists a 

complex algorithm that reduces the time complexity to           [94]. We use the 

simple matrix inversion algorithm because of its ease of implementation and for the 

purpose of complexity analysis here. Thus Orion needs       to compute the 

maximum deviation and choose between     and     . Once     or      is chosen, 

Orion finds the appropriate  -dimensions in it. Finding the appropriate  -dimension 

requires neighbor density computation for every existing  -dimension. Hence, we 

discuss the time complexity of neighbor density computation first, followed by the time 

complexity of finding appropriate  -dimensions. 

In order to identify whether     is an outlier, Orion computes its neighbor density of for 

each existing  -dimension in   . The neighbor density is computed from the binned 

implementation of the data density function where each bin stores the cumulative data 
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density function          . Orion needs to find the bordering bins and computes the 

neighbor density using Equation (14) 

       
(      

)  ∫             
           

           
  (14) 

       (           
)       (           

)   

where           is the data density function,       is the cumulative data density 

function, and    
 is the neighbor distance along  -dimension    at time  . Since the 

neighbor density computation requires to lookup two cumulative data density functions 

and subtracts one from another, the computation complexity of computing the neighbor 

density is     . However, we have to compute the neighbor density for    -

dimensions (here we are assuming the number of  -dimensions is the same as the 

number of data dimensions because in our experiments, we choose the number of 

population to be the same as the number of data dimensions). Hence, in order to find the 

 -dimension with the smallest neighbor density we have to iterate over all  -dimensions 

once. Thus the total time complexity of finding the  -dimension with the smallest 

neighbor density is     . Wadjet needs to find the minimum neighbor densities 

obtained from    -dimensions which Wadjet finds along with the computation of 

neighbor density with the same      time complexity. 

Once Orion finds the  -dimension, it computes the  -distance along that dimension. 

The  -distance is a monotonically increasing function of   because if   increases, the 

distance that includes   percent of the data points also increases. Hence Orion uses 

binary search to find the appropriate  -distance for a given  . If          is the total 
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number of bins along a  -dimension, the time complexity of  -distance computation is 

                . 

Finally, when both the neighbor density (ND) and  -distance of a data point are 

obtained, they are used to classify   .  The classification task consists of computing the 

distances from the data point represented by ND and  -distance to the cluster centers of 

the co-clusters (lines 3-5, Figure 16, Chapter 3, Section 1.6.2). Since we have a constant 

nine clusters, the classification task takes      time. Thus the total time complexity of 

detecting the outlier-ness of a data point is                    . 

1.1.1.2. Time Complexity of the Update Part 

In the update algorithm, Orion updates the set of  -dimensions and their fitness, creates 

a new  -dimension and discards an old  -dimension. Once Orion computes the 

neighbor density for all  -dimensions, Orion sorts them in ascending order. If we have 

 

 
   -dimensions in each of     and      the time complexity of sorting them is 

          . Once the  -dimensions are sorted, Orion updates the fitness of each  -

dimension. Updating the fitness of a dimension takes a constant time because it just 

updates a fixed number of values which is the mean fitness. Hence, the total time to 

update the fitness values of all  -dimensions is     . 

In the next step, Orion discards an old dimension and chooses two well fit  -dimensions 

and creates a new  -dimension. Finding the poorly performing  -dimensions or well 

performing  -dimension uses the roulette wheel algorithm [79]. The roulette wheel 

algorithm picks a  -dimension randomly where the  -dimension with the highest fitness 

has the highest probability of being chosen. The time complexity of the roulette wheel 
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algorithm is      because it evaluates the fitness of each  -dimension sequentially. 

Thus, our  -dimension calculation algorithm takes      time where   is the number 

of  -dimensions. This is because we track the fitness value of each dimension in     

and     . The new  -dimension calculation also requires      time because Orion 

needs to calculate   coefficients for   data dimensions. 

Orion updates the data density function for all  -dimensions in     and     . In order to 

update one  -dimension Orion has to traverse all the bins of that dimension. Hence 

updating one  -dimension takes             amount of time, where          is the 

number of bins for a  -dimension. Thus the total time to update all bins for all  -

dimensions is              . Totally, the time complexity of the update part is 

                     . 

Considering both the outlier detection and update parts of the Orion algorithm as shown 

in Figure 16 in Chapter 3, the total time complexity of Orion to identify whether a data 

point is an outlier is the sum of the complexity of those two parts, which is      

                                   

1.1.2. Space Complexity of Orion 

Orion stores    -dimensions. For each dimension Orion stores its number of bins, 

which is represented by         . For each bin Orion stores 5 different variables: last 

update timestamp, data density function, derivative of the data density function, 

cumulative data density function, and bin’s representative value. For each  -dimension 

Orion also stores its fitness value. Hence the total amount of storage required is 

              + 1). Moreover, Orion requires a constant amount of space for co-
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clustering that stores a constant number of variables (the 9 cluster centers). Thus the 

total space complexity is                     , thus the space complexity is 

              (disregarding the lower order terms and constants). 

1.2. Complexity Analysis for Wadjet 

In this section we present the time and storage complexity of Wadjet. Since Wadjet 

includes Orion as the first step, we omit the complexity discussion of Orion and only 

discuss how we derive the time and storage complexity of the second phase of Wadjet. 

Then, we show the total time and storage complexity of Wadjet that includes both 

phases. The time complexity of Wadjet is analyzed based on the time the algorithm 

would take to execute once with respect to the number of dimensions and streams and 

the number of bins for each dimension.  

1.2.1. Time Complexity of Wadjet 

In the second phase of Wadjet, to detect whether a data point is an outlier, Wadjet 

updates the cross-correlation matrix. The cross-correlation matrix contains the Pearson 

correlation between all pair of attributes. In case of homogeneous data streams, if we 

have   streams with   dimensions for each stream, then the total number of attributes 

would be    and the matrix has      entries. For heterogeneous data streams, if we   

streams with   ,   , …,    dimensions, the total number of attributes would be 

          . Without losing any generality we can assume the average number 

of dimensions for each streams in case of heterogeneous streams is   
          

 
; 

hence the total number of attributes is   . Thus in both cases the total number of 

attributes is    where   is the number of streams and   is the average number of 
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dimensions for each stream. The cross-correlation matrix requires      entries for pair-

wise correlation computation. In the worst case each entry of the matrix needs to be 

updated. Hence the time complexity of updating the cross-correlation matrix is 

       . After updating the cross-correlation matrix, Wadjet clusters the attributes 

into clusters. Our clustering algorithm finds the set of cross-correlated attributes for 

each attribute. Hence in the worst case, Wadjet needs to check      cross-correlations. 

So, the time complexity of the clustering algorithm is also        . 

Once the clusters have been formed, Wadjet computes the regression function and the 

equivalent value for each attribute in the cluster, which takes a constant time e; hence in 

the worst case the total number of regression and equivalent values we need to compute 

is   . Thus the time complexity for computing the equivalent values for all attributes is 

     . In the last step, Wadjet computes the nearest neighbor for each attribute’s 

equivalent value which, in the worst case, takes all pair-wise distance computations 

with a time complexity of        . 

In the following part Wadjet tests whether an attribute value is significantly different 

from the other attribute values in the cluster. The test requires constant time complexity 

because it involves critical value lookup and computation of the difference between one 

attribute value and its nearest neighbor. Moreover, since the previous step is performed 

for each attribute, the total number of tests performed is   . Once an attribute is 

identified as an outlier Wadjet finds the corresponding data point and marks it as an 

outlier as well. The last step requires a constant time because finding a data point given 

one attribute is a trivial lookup procedure.  Therefore, the total time complexity for the 

second step of Wadjet is            which is         .  
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In the first phase, Wadjet executes Orion for each data point from a stream. Thus the 

total time complexity of Wadjet is   times the time complexity of Orion where   is the 

number of streams. The time complexity of the first phase of Wadjet is        

                                  . Thus, the total time complexity of 

Wadjet becomes                                               . 

Disregarding the lower order terms, the time complexity of Wadjet becomes 

                     . 

1.2.2. Space complexity of Wadjet 

The space complexity of the second step of Wadjet is very straightforward. The only 

thing we store is the cross-correlation matrix. The cross-correlation matrix captures the 

cross-correlation between all pairs of attributes. For   data streams with average   

attributes each, the total number of attributes is  . Thus the total number of pairs 

possible is     . Thus the cross-correlation matrix needs to have      entries. 

However, correlation is symmetric relation, means the correlation between   and   is 

the same as the correlation between   and  . Thus the cross-correlation matrix needs to 

have half of      entries. So, the number of entries in this matrix is 
    

 
. Thus the 

space complexity for the second step is        .  Including the first step of Wadjet 

which runs Orion for each stream, the total space complexity of Wadjet is         

          .  

2. Experimental Analysis 

We have conducted an extensive set of simulation experiments to study the performance 

of our techniques and compare it with that of existing techniques. In this section, we 
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present the simulation model and the experimental results that we have obtained. We 

have performed empirical studies for both of our algorithms. We divide our 

experimental analysis section into two parts (1) experimental analysis for Orion and (2) 

experimental analysis for Wadjet. 

2.1. Experimental Analysis for Orion 

2.1.1. Simulation Model 

The goal of the simulation model is to demonstrate the effectiveness of Orion. The 

details of our simulation model are discussed in this section. 

2.1.1.1. Software Description 

In the simulation model, we mimic a centralized data stream architecture where there is 

one base station and a number of data sources each of which produces one data stream. . 

Each data source obtains a data value at a fixed time interval and sends it to the base 

station. The base station receives one data point at a time and processes it. We execute 

one outlier detection algorithm at a time at the virtual base station for outlier detection.  

The entire simulation model is built on the Java platform (Sun Developer Network 

2010) and we run the simulation using JAVA version 1.6.2. JAVA is running on Red 

Hat Linux Enterprise 5 (OU Supercomputer Resources 2009). The base station 

processes each data source in an individual thread/core. 

2.1.1.2. Hardware Description 

We use the cluster supercomputer at the University of Oklahoma to run our simulation 

model [95]. Each computing core is a 2.0 GHz Pentium4 Xeon E5405/2.66GHz 

Pentium4 Xeon E5345/2.40 Pentium4 XeonMP E7340 [95]. Each computing node has 
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16GB of main memory and eight computing cores. The comparison is fair since each 

technique is run on the same machine. 

2.1.1.3. Datasets 

We perform our experiments based on both real and synthetic datasets. Our real datasets 

are collected from UCI Machine learning repository [96]. In this section we will 

describe each of our datasets. 

2.1.1.3.1. KDD Cup 99 Data 

Network security is becoming very important. Outlier detection is a popular way for 

detecting network intrusion. We use KDD’99 data in order to show the efficacy of our 

algorithm. This dataset is captured in the DARPA’98 IDS evaluation program [97]. The 

dataset consists of 4 gigabytes of compressed TPC dump data of 7 weeks of network 

traffic (approximately 5 million connection records of 100 bytes each). A single 

connection record contains 41 features and is labeled as either normal or an attack. In 

our experiments, we mark the data points that are labeled as normal as regular data 

points and those that are marked as attack as outliers. 

2.1.1.3.2. Vicon Physical Action Data 

The data collection took place in the Essex robotic arena [96]. Seven male and three 

female subjects were involved in a scenario such as physical fighting in 20 different 

experiments. Throughout the 20 experiments each subject has to perform 10 normal and 

10 aggressive activities in random locations. Human subjects perform normal or 

attacking activities and the locations of the different body parts are measured at a 

regular interval. Each data point has a timestamp attached with it and the data points are 
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temporally correlated. Each data point has 27 attributes. Each physical activity data has 

been recorded separately. The data points from normal actions are marked as normal 

and the data points from aggressive activities are marked as outliers. In our experiments 

we try to find the data points that correspond to aggressive activities. 

2.1.1.3.3. Australian Sign Language Data 

This dataset consists of a sample of signs of Australian Sign Language [96]. The dataset 

is the raw measurement from a Nintendo PowerGlove which is interfaced to a Silicon 

Graphics 4D/35G workstation with PowerGlove Serial Interface. The position 

information is calculated on the basis of ultra sound emission from the emitters to the 

microphone. There are two emitters in a glove and three microphone receivers. Total 

four pieces of information is collected: (1) left/right, (2) up/down, (3) backward/forward 

and (4) roll of palm. All the positions are calibrated with respect to a fixed calibration 

point. The measurements from five individual participants have been collected. Since 

outlier detection is very similar to the task of classification with skewed distribution of 

the classes, we measure the performance of our technique from the classification task. 

The dataset consists of a set of signs represented as time series of aforementioned four 

pieces of data. We choose one sign at random (the data point representing that sign is 

called inliers) and some data points from a second sign are mixed as outliers. Our goal 

here is to use an outlier detection technique to separate the data points into two classes. 

2.1.1.3.4. EMG Physical Action Data 

The EMG Physical Action dataset is similar to the Vicon Physical Action dataset in 

many respects except that its data points were collected from eight different locations of 
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a human body unlike the Vicon Physical Action dataset where data is collected from 

twenty-seven different locations of a human body [96].  

2.1.1.3.5. Irrigation Data 

The California Irrigation Management Information System (CIMIS) manages a network 

of over 120 automated weather stations in California [15]. Each weather station collects 

data every minute and calculates hourly and daily values. The data are analyzed and 

stored in the CIMIS database and publicly available. The measured attributes are solar 

radiation, net radiation, air temperature, vapor pressure, wind speed, result wind, 

precipitation, relative humidity, dew point, and soil temperature. For our experiments, 

we use the data collected from 1998 to 2011 and implant the random synthesized 

outliers. On average each station has 50,000 rounds of data (total 5,550,000 data rounds 

for all stations together). From now on we shall refer to this dataset as irrigation data. 

2.1.1.3.6. Synthetic Data 

We create another dataset synthetically in order to perform a vast array of experiments. 

Our synthetic dataset resembles real life data. Each data source has a fixed 100 

dimensions unless otherwise specified; and some of the dimensions (randomly selected) 

are linearly correlated. Each dimension has three components in it: (1) trend component, 

(2) harmonic component and (3) noise component. The trend component changes the 

trend of the dimension over a long period of time. The harmonic component adds 

periodicity to the attribute value. Finally the noise component adds random or Gaussian 

noise to the attribute value. We generate 50 data sources (50,000 data rounds for each 

source), all of which have the same number of dimensions. We synthetically implant the 



150 

 

outliers by changing a set of attribute values by adding/subtracting a set of random 

numbers to/from them. 

2.1.1.4. Competitive Algorithms 

We compare Orion with two existing algorithms. The first algorithm is called Stream 

LOCI [62]. LOCI was first proposed by Papadimitriou et al. [59]. LOCI computes the 

deviation of neighbor count, called Multi granularity Deviation Factor (MDEF), of 

every data point from the average neighbor count of data points which are within a 

certain radius of the data point. LOCI calculates the MDEF of a data point for multiple 

radiuses. A data point is identified as an outlier if its MDEF value is three standard 

deviations apart from its mean. Lu et al. [62] extends the idea for data streams. They 

assume a sliding window of user defined size   and execute the LOCI algorithm for the 

sliding window. They also optimize the process of inserting a data point into the sliding 

window and deleting a data point from the sliding window as well. We name the 

technique Stream LOCI. Stream LOCI works for multi-dimensional data points, but 

measures the similarity between data points using Euclidian distance.  

The second algorithm is A-ODDS [60] which is designed for single dimensional data 

streams. Still, we can see a multi-dimensional data stream as a collection of some single 

dimensional data streams and finds the outliers for each dimension individually. In case 

of multi-dimensional data streams we execute one A-ODDS for each dimension and 

detect outliers. A data point is identified as an outlier if any of its dimensions is 

identified as an outlier by A-ODDS. For A-ODDS and Orion, we use the first 100 data 

points for bootstrapping purposes for all experiments unless otherwise specified. 
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2.1.1.5. Simulation Parameters 

We study the impacts of Orion’s parameters on its performance. The range of values 

and the default value of each parameter is presented in Table 3. The default values are 

chosen based on the characteristics of the datasets (for the number of rounds and 

number of dimensions parameters) and existing literature (for the neighbor distance, k, 

percentage of outliers, and bin count parameters). The default value of the population 

count is same as the number of data dimensions. For every experiment, when the impact 

of a parameter is under study, we vary its value within its range and fix the other 

parameters at their default values. 

We only perform the parameter study for two datasets, irrigation data and synthetic 

data. This is because we cannot vary the parameters such as number of dimensions, 

percentage of outliers, etc. for other datasets. Thus we choose the irrigation data and 

synthetic data as the representative datasets and perform all of parameters studies based 

on them. However, we report the overall performance for all datasets.  
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Table 3. List of parameters for Orion 

Name 

Irrigation data Synthetic data KDD’ 99 

Range of 

Values 

Default 

value 

Range of 

Values 
Default Value 

Range of 

Values 

Default 

value 

Neighbor distance 0 – 50 10 0 – 50 10 0 – 50 10 

  0 – 0.25 0.05 0 - 0.25 0.05 0 – 0.25 0.05 

Percentage of 

Outliers 
1 -10 5 1- 10 5 N/A N/A 

Number of data 

dimensions 
N/A N/A 10 – 100 100 46 46 

Population count 5 – 50 10 5 – 50 25 46 46 

Bin count 50 -500 400 50 -500 400 400 400 

Bootstrap size 50 – 500 100 100 – 1,000 100 100 100 

Data rounds 
5,000 – 

40,000 
40,000 5,000 – 50,000 50,000 400,000 400,000 

 Vicon Physical Action EMG Physical Action Australian sign language 

Neighbor distance 0 – 50 10 0 – 50 10 0 – 50 10 

  0 – 0.25 0.05 0 - 0.25 0.05 0 – 0.25 0.05 

Percentage of 

Outliers 
5% 5% 5% 5% 5% 5% 

Number of data 

dimensions 
27 27 8 8 22 22 

Population count 27 27 8 8 22 22 

Bin count 400 400 400 400 400 400 

Bootstrap size 100 100 100 100 100 100 

Data rounds 4,000 4,000 10,000 10,000 1,500 1,500 
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2.1.1.6. Performance Metrics 

Table 4. Confusion matrix 

 Actual outliers Actual inliers 

Predicted outliers True positive (TP) False positive (FP) 

Predicted inliers False negative (FN) True negative (TN) 

We present the accuracy of each studied algorithm based on the four following 

performance metrics: Precision, Recall, Jaccard Coefficient and Receiver Operator 

Characteristic Curve. All the performance metrics are based on the confusion matrix 

shown in Table 4 where a true positive (TP) is a real outlier that is identified as an 

outlier, a true negative (TN) is an inlier that is identified as an inlier, a false positive 

(FP) is an inlier that is identified as an outlier, and a false negative (FN) is an outlier 

that is identified as an inlier. A good outlier detection technique is the one which 

maximizes the true positives and minimizes the false negatives and false positives. In 

case of outlier detection we ignore true negative; this is because outliers are 

significantly outnumbered by inliers. Thus, the number of true negatives is very high 

compared to the number of true positives. Incorporation of the number of true negatives 

would deteriorate the quality of the results. Consider the case where we have a dataset 

with 95% inliers and 5% outliers and an algorithm that identifies everything as an inlier.  

If we consider the accuracy based on both true negatives and positives, the accuracy of 

that algorithm would be 95%; but in reality, the algorithm is useless. Hence, we ignore 

true negatives from our results. 

Precision 

Precision (           
  

     
) is a popular performance metric for outlier detection 

[31, 36, 64]. Precision is a ratio of the correct identifications to the total identifications. 
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Statistically, it implies the amount of correct identifications i.e., precision resembles the 

correctness of the classifying task. Intuitively, an optimal classifier is the one which has 

the highest precision. The highest possible precision is 1 where there is no false 

classification [5]. 

Recall 

Precision only shows the correctness of the results but it does not reflect the 

completeness of the results; therefore precision is always accompanied with recall 

(         
  

     
) to demonstrate the correctness and completeness of an algorithm. 

Recall is the ratio between the number of identified outliers and the total number of 

outliers. Statistically, it represents the completeness of the classification task. An 

optimal algorithm should be able to identify all the outliers existing in a dataset; hence 

the optimal recall is 1. The best algorithm should have the highest precision and recall, 

but practically, many algorithms do a trade-off between precision and recall, i.e., if 

precision increases, recall decreases and vice versa. 

Jaccard Coefficient (JC) 

Precision and recall represent two important concepts, but it is often possible to 

maximize one value by minimizing the other. Hence, it is very difficult to evaluate the 

performance of an algorithm based on two different metrics. Basu and Meckesheimer 

[13] proposed the Jaccard Coefficient (JC) to overcome the shortcomings. JC is the ratio 

of true positives and the summation of false negatives, false positives and true positives 

(   
  

        
). Therefore, JC increases with the increase of correct positive 

classifications and decreases with the increase of wrong classifications. JC does not 
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consider the true negatives which are not necessary for the domain of outlier detection 

because the number of inliers is significantly larger than the number of outliers; hence 

any performance metric that considers only true negatives fails to depict the differences 

between the competitive algorithms vividly. Jaccard Coefficient is a more appropriate 

metric to evaluate the performance of outlier detection algorithms. 

Execution time 

The study of execution time of an outlier detection algorithm is important for data 

stream applications. Data stream outlier detection algorithms have to be online and the 

processing of a data point must be finished before the next data point arrives. Thus if 

the execution time of an algorithm is greater than the time difference between two 

consecutive data points in a data stream application, the outlier detection algorithm 

would not be applicable for that application. This is because if an algorithm cannot 

finish processing a data point before the next one arrives, the result would be flooding. 

Thus, execution time is one important metric that defines the applicability of an outlier 

detection algorithm for data streams. Execution time is reported in milliseconds in all 

our experiments. 

2.1.2. Experimental Results 

2.1.2.1. Overall Performance Comparison 

The overall performance comparison is done by fixing all the parameters’ values at their 

respective default values. The outliers are detected for individual datasets by each 

algorithm for each stream. The interpretation of one stream is dataset specific: a stream 

is either a station in the irrigation data, a physical action in the Vicon and EMG data, a 

sign in the Australian sign language data, or a source of the synthetic data . The 
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KDD’99 data consists of one stream only. The average performance results are 

presented in this section. They are computed from all the performance results collected 

from each stream. 

2.1.2.1.1. Precision 

Table 5. Precisions of all three algorithms for all datasets 

 Orion Stream LOCI A-ODDS 

KDD’99 0.69 0.64 0.26 

Vicon Physical Action 1.00 0.001 0.44 

Australian Sign 0.69 0.38 0.22 

EMG Physical Action 1.00 0.06 0.78 

Irrigation data 0.76 0.73 0.14 

Synthetic data 0.99 0.26 0.37 

Table 5 shows the average precisions for all datasets for the three studied algorithms. 

Irrespective of the datasets, Orion always performs better than the other two competing 

algorithms. Orion shows near perfect precision for the Vicon Physical Action, EMG 

Physical Action and Synthetic datasets. Data points in these three datasets are strongly 

correlated and less sparse compared to the data points in the other three datasets. 

Therefore, no (or almost no) inlier has a significantly small neighbor density or large  -

distance and thus is never misidentified as an outlier. But in the KDD’99, Australian 

sign and Irrigation datasets, the data points are relatively sparse compared to the other 

three datasets and some inliers have quite small neighbor density and/or large  -

distance and are  misclassified as outliers.  

One interesting thing to point out here is that Stream LOCI completely fails to detect 

outliers for the Vicon and EMG physical action datasets. Although the data points in 

these two datasets are not too sparse, Stream LOCI is unable to measure the similarity 
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among the data points using Euclidian distance for these two datasets and, therefore, 

fails to identify outliers correctly. 

A-ODDS only considers each dimension individually; therefore, it completely fails to 

incorporate the correlation among the dimensions. If one attribute value of an outlier is 

different enough to distinguish itself from the rest of the data points, then it can easily 

be detected as an outlier. A-ODDS shows better precision on the EMG physical action; 

this is because in this dataset, for some outliers, a data point can be detected as an 

outlier just by examining one attribute value only.  

2.1.2.1.2. Recall 

Table 6 shows the recall values of Orion, Stream LOCI and A-ODDS for all six 

datasets. Orion has better recall value compared to Stream LOCI for all six datasets. A-

ODDS shows better recall value compared to Stream LOCI in two datasets: Vicon 

Physical Action and Synthetic datasets. 

Orion starts with an initial set of  -dimensions that may not incur the minimum 

neighbor density for the current data point. Gradually Orion adds new  -dimensions and 

removes old  -dimensions so that the current set of  -dimensions incur the minimum 

neighbor density for the current data point. If Orion fails to find an appropriate  -

dimension for a data point that has the minimum neighbor density, the data point may 

not be identified as an outlier. In the Australian sign language dataset, the data points 

are not only sparse, but also changing very fast. Hence Orion sometimes fails to find the 

appropriate  -dimension and therefore fails to identify some outliers, thus, shows a 

smaller recall value compared to other datasets. 
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Stream LOCI performs comparatively poor in terms of recall for all six datasets. Since 

all of these datasets possess multi-dimensional data, Euclidian distance fails to identify 

the dissimilarity between inliers and outliers and, hence, plenty of outliers are identified 

as inliers, which results in a poor recall. A-ODDS shows strong recall values for all 

datasets except KDD’99. This is because the outliers in the KDD’99 datasets cannot be 

detected just by looking at one single attribute, rather it is the combination of attribute 

values that makes a data point an outlier. Hence A-ODDS shows a poor recall value for 

this dataset. In other datasets, the outliers have either an infrequent attribute value or an 

infrequent combination of attribute values. A-ODDS detects outliers in the former case, 

but fails to identify any outlier in latter case. 

Table 6. Recalls of all three algorithms for all datasets 

 Orion Stream LOCI A-ODDS 

KDD’99 0.92 0.34 0.16 

Vicon Physical Action 1.00 0.003 0.98 

Australian Sign 0.67 0.34 0.66 

EMG Physical Action 0.93 0.02 0.88 

Irrigation data 0.70 0.33 0.84 

Synthetic data 0.86 0.10 0.96 

2.1.2.1.3. Jaccard Coefficient 

Table 7 shows the average Jaccard Coefficient (JC) of all the algorithms for all the 

datasets. Orion shows better JC compared to Stream LOCI and A-ODDS for all six 

datasets. Orion has perfect JC for the Vicon Physical Action dataset, i.e., Orion 

identifies all the outliers without any false alarm at all. The JC of Orion for the 

Australian sign and irrigation datasets is comparatively small compared to the JC of 

other four datasets due to a smaller recall of Orion for these two datasets. 
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Stream LOCI performs poorly compared to Orion in all datasets. Stream LOCI shows 

poor JC for spatial data such as the Vicon and EMG Physical Action data. In case of 

spatial data, Stream LOCI fails to measure the similarity between two data points using 

the Euclidian distance, hence shows poor accuracy overall. A-ODDS also shows a 

smaller JC compared to Orion due to its inapplicability to multi-dimensional datasets. 

A-ODDS only performs well for the EMG Physical Action dataset where an outlier can 

be detected just by looking at one attribute value. 

Table 7. Jaccard Coefficients for all three algorithms for all datasets 

 Orion Stream LOCI A-ODDS 

KDD’99 0.65 0.28 0.12 

Vicon Physical Action 1.00 0.001 0.43 

Australian Sign 0.51 0.21 0.20 

EMG Physical Action 0.93 0.01 0.70 

Irrigation data 0.55 0.30 0.13 

Synthetic data 0.86 0.05 0.36 

2.1.2.1.4. Execution Time 

Table 8 shows the execution time in milliseconds for Orion, Stream LOCI and A-

ODDS. Orion has better execution time compared to Stream LOCI for all datasets 

except the EMG physical action dataset. The EMG physical action dataset has a small 

number of dimensions; hence Stream LOCI shows superior execution time for the EMG 

physical action dataset. This is because for a small number dimensions, Euclidean 

distance computation between two data points takes short time. Moreover, Euclidean 

distance is very effective for a small number of dimensions; hence, Stream LOCI can 

identify the outliers while considering small local neighborhood for outlier detection. 

So, it can skip the search of outliers in large local neighborhood. Therefore, the 

execution time for Stream LOCI is shorter than that of Orion. However the execution 
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time increases significantly for Stream LOCI for other datasets. The execution time of 

Orion for high dimensional data is always better than that of Stream LOCI. 

A-ODDS shows better execution time compared to Orion. However, the execution time 

of both of these algorithms is very competitive and, in the Australian sign, Irrigation 

and Synthetic datasets, Orion shows better execution time compared to A-ODDS.   

Moreover, Orion offers much better accuracy compared to A-ODDS. 

The maximum execution time we receive in our experiments is 4.34 milliseconds which 

is practically good enough for many data stream applications including environmental 

monitoring [6]. In these applications the arrival rate is in the order of seconds and the 

arrival rate more frequent than that is practically useless [6]. In these applications, we 

have an adequate amount of time to execute Orion and detect their outliers. 

Table 8. Execution time (in ms) of all algorithms for all datasets 

 Orion Stream LOCI A-ODDS 

KDD’99 1.25 2.81 0.40 

Vicon Physical Action 4.34 6.85 0.87 

Australian Sign 0.15 0.56 0.55 

EMG Physical Action 0.78 0.18 0.07 

Irrigation data 0.25 3.48 0.65 

Synthetic data 1.58 3.27 1.76 

We have discussed our overall results based on the real and synthetic datasets. In order 

to perform further analysis we have to manipulate different parameters of the datasets 

which is impossible with the four real datasets we obtain from the UCI machine 

learning repository [96]. Therefore for further analysis we only use two datasets: (1) 

irrigation data where the data points are real and we synthesize the outliers, and (2) 

synthetic data where we simulate real world time series data with an appropriate set of 

outliers. 
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2.1.2.2. Impact of Neighbor Distance 

2.1.2.2.1. Precision 

Figures 23 and 24 portray the impact of neighbor distance on precision. Neighbor 

distance is used to calculate the neighbor density of a data point. If the neighbor 

distance is small, the obtained neighbor densities of all data points are comparatively 

small compared to the case if the neighbor density is large. Neighbor distance depicts 

how far Orion should look to find a neighbor of a data point. Typically, for any given 

neighbor distance, outliers would have a significantly smaller neighbor density 

compared to inliers. Therefore, Orion would be able to separate outliers from inliers. 

For a smaller or larger neighbor distance, the induced neighbor density of both inliers 

and outliers is shortened or lengthened appropriately. Thus, Orion shows little impact 

with respect to neighbor distance.  

 

Figure 23. Impact of neighbor distance on precision for the irrigation data 
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Figure 24. Impact of neighbor distance on precision for the synthetic data 
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Since Stream LOCI does not require neighbor distance, the precision of Stream LOCI 

shows no sensitivity with respect to neighbor distance. 

2.1.2.2.2. Recall 

Although the precision of Orion shows no sensitivity with respect to neighbor distance, 

the recall of Orion shows some sensitivity with respect to neighbor distance (Figures 25 

and 26). Larger neighbor distance induces greater neighbor density for both inliers and 

outliers. Hence the neighbor density of outliers increases with the neighbor distance. As 

the neighbor density increases some outliers have large enough neighbor density so that 

they can be considered as inliers. Thus Orion misclassifies them as inliers; hence Orion 

fails to reveal some outliers and its recall  decreases with the increase of neighbor 

distance. 

 

Figure 25. Impact of neighbor distance on recall for the irrigation data 
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A similar result pattern is also visible with A-ODDS. A-ODDS also computes GDF and 

LDF based on neighbor distance. If the neighbor distance increases it fails to separate 

the outliers from inliers and shows the overall drop of recall value.  

 

Figure 26. Impact of neighbor distance on recall for the synthetic data 
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Orion’s worst JC is much better than the average JC of Stream LOCI (51% better for 

irrigation data and 1110% better for synthetic data). Figures 27 and 28 show the change 

of JC for all three algorithms for the irrigation and synthetic data. 

The JC and recall of A-ODDS show a similar pattern. The JC of A-ODDS starts to 

increase with the increase of neighbor distance. This increase of JC is induced by the 

increase of precision of A-ODDS. Since precision increases with the increase of 

neighbor distance, JC increases as well and then after that, precision starts to decrease 

with the increase of neighbor distance. The JC of Stream LOCI remains unchanged with 

respect to the change of neighbor density; this is because it does not require neighbor 

density as input. 

 

Figure 27. Impact of neighbor distance on Jaccard Coefficient for the irrigation 

data 
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Figure 28. Impact of neighbor distance on Jaccard Coefficient for the synthetic 

data 
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Figure 29. Impact of neighbor distance on execution time for the irrigation data 

 

Figure 30. Impact of neighbor distance on execution time for the synthetic data 
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2.1.2.3. Impact of   

The second most important parameter for Orion is  . The parameter   dictates the 

percentage of neighbors of a data point that we need to look for so that we can tell 

whether the data point is far from rest of the data points. For each data point, Orion 

computes the distance that includes   percent of the data points, which we call  -

distance. If a data point requires a small  -distance to include   percent of data points it 

is certainly surrounded by lots of other data points and is unlikely to be an outlier. 

Conversely, if a data point requires a large  -distance to include   percent of data 

points, then the data point may be isolated from other data points and, hence, is most 

likely an outlier. This section presents the study of the sensitivity of the three outlier 

detection algorithms with respect to  . 

2.1.2.3.1. Precision 

Figures 31 and 32 show the impact of   on precision for the irrigation and synthetic 

data. The precision of Orion for the irrigation data decreases with the increase of  . This 

is because as the value of   increases each data point has to have a longer  -distance to 

include   percent of the data points. Some inliers that are along the periphery of a group 

of data points also needs to have a larger distance to include   percent of the data and 

hence they look like outliers. Thus Orion creates some false alarms and therefore its 

precision decreases with the increase of  . 
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Figure 31. Impact of k on precision for the irrigation data 

However, Figure 32 does not show any sensitivity in any algorithm with respect to   at 

all for the synthetic dataset. This is because in this dataset we have less noise compared 

to the irrigation data and hence the outliers are easily identified by Orion. Although the 

 -distance increases with the increase of  , the k-distances of inliers and outliers 

increase proportionately and thus  they have no impact on  the precision of Orion. 

Meanwhile, since A-ODDS and Stream LOCI do not require   as an input parameter, 

they are not sensitive  to  . 
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Figure 32. Impact of k on the precision for the synthetic data 

2.1.2.3.2. Recall 

Conversely, the recall of Orion increases a little bit with the increase of  . Figure 33 

shows the impact of   on the recall of Orion. The recall increases with the increase of   

because, for a large  , it becomes extremely difficult for outliers to have smaller  -

distances and thus outliers cannot blend with inliers. Hence, the recall value increases 

with the increase of  . The increase of the recall value with the increase of   is 

consistent for both the irrigation data (Figure 33) and synthetic data (Figure 34). Since 

A-ODDS and Stream LOCI do not require   as an input parameter, they show no 

sensitivity in terms of recall for varying  . 
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Figure 33. Impact of k on the recall for the irrigation data 

 

Figure 34. Impact of k on precision for the synthetic data 
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the increase of  . This is because the precision decreases with the increase of  , which 

also decreases the JC; however the recall increases with the increase of  , which  

increases the JC a little bit. Therefore, the overall trend of JC is almost constant at the 

beginning, and decreases a little bit after that, while the recall stops increasing after 

      ; but the change is very insignificant. 

 

Figure 35. Impact of k on Jaccard Coefficient for the irrigation data 

The JC of Orion for the synthetic data shows an opposite trend compared to that for the 

irrigation data (Figure 35).  With the synthetic data, the JC of Orion increases with the 
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the recall increases a little bit with the increase of  , JC increases with the increase of  . 

However, the increase is very insignificant for the synthetic data as well. Like the 
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LOCI show no variation with respect to the change of  . 
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Figure 36. Impact of k on the Jaccard Coefficient for the synthetic data 

2.1.2.3.4. Execution Time 

The  -distance computation takes                 amount of time, which is a constant 

with respect to the value of  . Thus the impact of changing   is not visible in the 

execution time of Orion. Thus, Orion shows almost a constant execution time with 

respect to the change of  . This trend is persistent for both the irrigation data (Figure 

37) and synthetic data (Figure 38). The execution times of A-ODDS and Stream LOCI 

are not impacted by the change of k either because they do not require   as an input 
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Figure 37. Impact of k on the execution time for the irrigation data 

 

Figure 38. Impact of k on the execution time for the synthetic data 
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of inliers [9]. A high percentage of outliers destroys the underlying trends of the data. In 

this section we study the performance of the competitive algorithms with respect to the 

percentage of outliers. 

2.1.2.4.1. Precision 

Figures 39 and 40 show the impacts of the percentage of outliers on the precision of 

Orion, A-ODDS and Streams LOCI. The precision increases with the increase of the 

percentage of outliers in Orion and Stream LOCI. This is because both the algorithms 

create some false alarms. The data points that are a little bit far from the other data 

points are mistakenly identified as outliers. All the algorithms create these false alarms. 

The number of false alarms remains the same regardless of the number of outliers. 

Hence if the number of outliers increases, the ratio of false alarms to true outliers 

becomes small and, hence, the precision increases with the increase of the percentage of 

outliers.  

Moreover, the percentage of outliers has a secondary impact on our co-clustering 

approach. As the number of outliers increases, the number of data points that have small 

neighbor density and large  -distance also increases (this is because outliers have small 

neighbor density and large  -distance). A large number of data points with small 

neighbor density and large  -distance shifts the cluster centers toward smaller neighbor 

density and larger  -distance. Hence, Orion becomes more pessimistic; meaning it 

would identify a data point as an outlier if it has very small neighbor density and large 

 -distance and, therefore, the number of false alarms decreases (from 15% to 1%) with 

the increase of percentage of outliers. 
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Figure 39. Impact of the percentage of outliers on the precision for the irrigation 

data 

 

Figure 40. Impact of the percentage of outliers on the precision for the synthetic 

data 
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are approximately the same regardless of the percentage of outliers. However, if it can 

correctly identify all the outliers, its rate of change of precision should be proportional. 

But that is not the case we find in Figures 39 and 40. This is because the correctness of 

detecting new outliers is different in Orion, A-ODDS and Stream LOCI. Thus the 

precision increases in all three algorithms but the rate of increase is different in all of 

them. 

2.1.2.4.2. Recall 

 

Figure 41. Impact of the percentage of outliers on the recall for the irrigation data 

The recall of Orion decreases as the percentage of outliers increases (Figures 41 and 

42). As the percentage of outliers increases, the number of outliers increases; and the 

number of data points with small neighbor density and large  -distance increases as 
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density. Therefore, it fails to identify those outliers which are not very far from other 

data points. Hence, we see the decrease of recall in Orion with the increase of 

percentage of outliers. 

 

Figure 42. Impact of the percentage of outliers on the recall for the synthetic data 

Interestingly, A-ODDS and Stream LOCI show no variation with respect to the change 

of the percentage of outliers because they do not have the clustering step and hence they 
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outliers, the JC remains almost the same with respect to the change of the percentage of 

outliers. 

 

Figure 43. Impact of the percentage of outliers on the Jaccard Coefficient for the 

irrigation data 

The JC of Orion also decreases with the increase of the percentage of outliers for the 

synthetic data (Figure 44). This decrease is induced by the recall. The JC of Orion for 
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approaches 10%, outliers replace those inliers in the identified set of outliers; hence, the 

JC of A-ODDS increases with the increase of percentage of outliers. 

 

Figure 44. Impact of the percentage of outliers on the Jaccard Coefficient for the 

synthetic data 

The impact of percentage of outliers on JC of Stream LOCI is insignificant. The JC of 

Stream LOCI remains almost constant with the increase of percentage of outliers. This 

is because as the number of outliers increases, the ratio between the number of 

identified outliers by Stream LOCI and the total number of outliers remain same. 

Hence, the JC of Stream LOCI remains the same with respect to the increase of 

percentage of outliers. 
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and updating the data density function) do not depend upon the outlier-ness of a data 

point. Regardless the outlier-ness of a data point, Orion performs these steps and they 

require an equal amount of time. Thus, the execution time of Orion remains fixed with 

respect to the change of percentage of outliers. The execution times of A-ODDS and 

Stream LOCI decrease when the percentage of outliers increases (Figures 45 and 46). 

Since A-ODDS considers each dimension independently and once it finds an outlier in 

one dimension, it discards the processing of the other dimensions, and thus its execution 

time decreases as the percentage of outliers increases (Figure 46). Stream LOCI does 

not consider each dimension independently but considers multiple radiuses for MDEF. 

As the percentage of outliers grows, Stream LOCI can detect outliers for a smaller 

radius, abandons its execution for a larger radius and, therefore, shows a better 

execution time for a larger percentage of outliers (Figure 46). 

 

Figure 45. Impact of the percentage of outliers on the execution time for the 

irrigation data 
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Figure 46. Impact of the percentage of outliers on the execution time for the 

synthetic data 
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2.1.2.5.1. Precision 

 

Figure 47. Impact of the number of dimensions on the precision for the synthetic 

data 

Orion performs better than the other two algorithms in terms of precision regardless of 

the number of dimensions as shown in  Figure 47. Orion’s precision shows no variation 
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data points using Euclidean distance; as the number of dimensions increases, Stream 
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Hence, none of them is effective for outlier detection for data with a large number of 

dimensions. 

2.1.2.5.2. Recall 

The recall of Orion increases with the increase of the number of dimensions (Figure 

48). As the number of dimensions increases the multi-dimensional space grows 

exponentially and it becomes easier to find an appropriate  -dimension for outliers. 

Therefore Orion can successfully find the appropriate  -dimensions for outliers and its 

recall increases with the number of dimensions. The recall of A-ODDS also increases as 

well. This is because our outliers are generated randomly and A-ODDS checks each 

dimensions independently. If the number of dimensions increases, it becomes more 

likely that A-ODDS can find abnormality in one dimension of the data points and hence 

its recall increases a little bit. 

 

Figure 48. Impact of the number of dimensions on the recall for the synthetic data 
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However, the recall of Stream LOCI decreases exponentially again. This is because as 

the number of dimensions grows, Euclidian distance completely fails to measure the 

similarity between data points; and thus, outliers and inliers all look similar and all are 

equidistance from one another. Thus the recall of Stream LOCI decreases with the 

increase of the number of dimensions. 

2.1.2.5.3. Jaccard Coefficient 

 

Figure 49. Impact of the number of dimensions on the Jaccard Coefficient for the 

synthetic data 

Figure 49 shows the impact of the number of dimensions on the JC of all three 

algorithms. Overall the JC of Orion shows no impact, while the JCs of A-ODDS and 

Stream LOCI decrease exponentially with the linear increase of the number of 

dimensions, and thus are not suitable for outlier detection for multi-dimensional data 

streams. 
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2.1.2.5.4. Execution Time 

Although Orion can successfully detect outliers regardless of the number of dimensions, 

its execution time grows in a cubic way with the linear increase of the number of 

dimensions. According to our theoretical analysis in Section 1.1.1.1, the time 

complexity of Orion was cubic with respect to number of dimensions. We can see the 

similar increase of execution time with respect to number of dimensions. The cubic time 

complexity is induced by the matrix inversion which is required to compute the 

maximum absolute normalized deviation. However, its execution time for up to 100 

dimensions is easily tractable. Stream LOCI and A-ODDS also show a similar trend: the 

execution time increases with the increase of number of dimension. The execution time 

of Stream LOCI increases because as the number of dimensions increases, the Euclidian 

distance computation time increases linearly with the linear increase of number of 

dimensions. So, the execution time of Stream LOCI increases linearly with respect to 

number of dimensions.  

A-ODDS considers each dimension individually and executes outlier detection 

independently. As the number of dimensions increases, A-ODDS needs to consider 

more dimensions, therefore, the execution time of A-ODDS increases with the increase 

of number of dimensions. 
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Figure 50. Impact of the number of dimensions on execution time for the synthetic 

data 
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2.1.2.6.1. Precision 

 

Figure 51. Impact of population count on precision for the irrigation data 
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Figure 52. Impact of population count on precision for the synthetic data 

However, Figure 52 shows that none of the algorithms is sensitive to the   population 

count in terms of precision for the synthetic data. This is because the synthetic data has 

less noise compared to the irrigation data, there exists no  -dimension that reveals any 

inlier as an outlier and thus the precision remains constant for the synthetic dataset. 
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Figure 53. Impact of population count on recall for the irrigation data 

 

Figure 54. Impact of population count on recall for the synthetic data 
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2.1.2.6.3. Jaccard Coefficient 

 

Figure 55. Impact of population count on Jaccard Coefficient for the irrigation 

data 

 

Figure 56. Impact of population count on Jaccard Coefficient for the synthetic 

data 
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Since the precision of Orion decreases a little bit and its recall increases a little bit with 

the increase of the population count, the JC of Orion remains constant with respect to 

the change of population count (Figure 55). However, the JC of Orion for the synthetic 

data increases logarithmically with the increase of the population count (Figure 56). 

This is because the precision of Orion is constant and the recall increases with respect to 

the increase of the population count, thus the JC increases as well. 

2.1.2.6.4. Execution Time 

 

Figure 57. Impact of population count on execution time for the irrigation data 
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Hence the execution time also increases linearly with the increase of the population 

count. This is a trend that is consistent across the datasets (Figures 57 and 58). 

 

Figure 58. Impact of population count on execution time for the synthetic data 

2.1.2.7. Impact of Bin Count 
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2.1.2.7.1. Precision 

Figures 59 and 60 show the impact of bin count on precision. If the bin count is small, 

the accuracy of the data density function is poor. The accuracy of the data density 

function increases with the increase of number of bins up to 400 hundred bins. In our 

case we see that the precision decreases a little bit (Figure 59) with the increase of bin 

count for the irrigation data and remains the same for the synthetic data (Figure 60). 

However, the change of precision with respect to bin count for the irrigation data is very 

insignificant. For a small bin count, the proposed data density function becomes less 

accurate and some inliers that are a little bit apart from other data points share the same 

bins; thus they are not identified as outliers. As the bin count increases and the data 

density function becomes more accurate, those inliers appear like outliers and hence 

Orion misclassified them as outliers. 

 

Figure 59. Impact of bin count on precision for the irrigation data 
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Figure 60. Impact of bin count on precision for the synthetic data 

2.1.2.7.2. Recall 

 

Figure 61. Impact of bin count on recall for the irrigation data 
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themselves in the mass of inliers. In case of a small bin count, the outliers easily share 

the same bin with the inliers and hide themselves. So the recall increases with the 

increase of bin count. This trend is consistent across the datasets (Figures 61 and 62). 

 

Figure 62. Impact of bin count on recall for the synthetic data 

2.1.2.7.3. Jaccard Coefficient 
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Figure 63. Impact of bin count on Jaccard Coefficient for the irrigation data 

 

Figure 64. Impact of bin count on Jaccard Coefficient for the synthetic data 
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2.1.2.7.4. Execution Time 

 

Figure 65. Impact of bin count on execution time for the irrigation data 

 

Figure 66. Impact of bin count on execution time for the synthetic data 
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the number of bins, the execution time of Orion remains unchanged when the bin count 

changes. 

2.1.2.8. Impact of Bootstrapping Size 

Orion uses a set of data points to learn the forgetting factor and initializes the cluster 

centers. Hence we perform a study to show how the number of bootstrapping rounds 

impacts the performance of Orion. 

2.1.2.8.1. Precision 

 

Figure 67. Impact of bootstrapping size on precision for the irrigation data 
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the datasets (Figures 67 and 68). Stream LOCI and A-ODDS remain unchanged since 

they do not use bootstrapping data points at all. 

 

Figure 68. Impact of bootstrapping size on precision for the synthetic data 

2.1.2.8.2. Recall 

 

Figure 69. Impact of bootstrapping size on recall for the irrigation data 
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Figure 70. Impact of bootstrapping size on recall for the synthetic data 
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Figure 71. Impact of bootstrapping size on Jaccard Coefficient for the irrigation 

data 

 

Figure 72. Impact of bootstrapping size on Jaccard Coefficient for the synthetic 

data 
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Figure 73. Impact of bootstrapping size on execution time for the irrigation data 

 

Figure 74. Impact of bootstrapping size on execution time for the synthetic data 
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it is hard to predict the behavior of an algorithm in case of data streams. This study 

reveals the impacts of number of data rounds on the performance of all three 

algorithms. 

2.1.2.9.1. Precision 

 

Figure 75. Impact of number of data rounds on precision for the irrigation data 
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Figure 76. Impact of number of data rounds on precision for the synthetic data 
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Figure 77. Impact of number of data rounds on recall for the irrigation data 

 

Figure 78. Impact of number of data rounds on recall for the synthetic data 
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does not misclassify many inliers as outliers. Thus, the recall of Orion shows no 

sensitivity with respect to change of number of rounds for the synthetic dataset. 

2.1.2.9.3. Jaccard Coefficient 

Overall the number of data points has no impact on the JCs of all three algorithms 

(Figures 79 and 80). Thus the performance of all three algorithms does not change when 

the number of data points changes.   

2.1.2.9.4. Execution Time 

The execution times of all three algorithms remain constant with respect to the change 

of the number of data rounds (Figures 81 and 82); hence, it can be concluded that all 

three algorithms are well suited for infinite data streams. 

 

Figure 79. Impact of number of data rounds on Jaccard Coefficient for the 

irrigation data 
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Figure 80. Impact of number of data rounds on Jaccard Coefficient for the 

synthetic data 

 

Figure 81. Impact of number of data rounds on execution time for the irrigation 

data 
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Figure 82. Impact of number of data rounds on execution time for the synthetic 

data 
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distribution, Exponential distribution and Uniform distribution. The distribution of the 

data points in this dataset does not changes over time and it has no harmonic component 

to simulate gradual concept drift. We call this dataset a no concept drift dataset.  

We also synthesize a third dataset that simulates abrupt concept drift. In this dataset, the 

data points starts with an initial distribution. After a certain time (randomly chosen) the 

distribution of data points changes from its previous distribution to a new distribution 

randomly chosen from the Gaussian distribution, Triangular distribution, Beta 

distribution, Exponential distribution and Uniform distribution. This random change of 

distributions happens at a randomly chosen time interval. This dataset is a 

representative dataset for abrupt concept drift. Thus, in this experiment we execute all 

three algorithms for these three datasets and record accuracy (precision, recall, Jaccard 

Coefficient) and execution time. 

2.1.2.10.1. Precision 

 

Figure 83. Impact of Concept drift on precision for the synthetic data 
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Figure 83 presents the impacts of concept drift on the precision of Orion, A-ODDS and 

Stream LOCI. One of the objective of Orion is to be able to detect outliers despite the 

presence of concept drifts. The precision of Orion for the no concept drift data is the 

same as its precision  for the abrupt concept drift data. In the no concept drift data, it is 

easier for Orion to find an appropriate  -dimension. Since there is no concept drift, the 

distribution of data never changes and hence, Orion can work with the same set of  -

dimensions. The precision of Orion for the abrupt concept drift data is the same as its 

precision for the no concept drift data. Thus, we can conclude that abrupt concept drift 

has no impact on the precision of Orion. This is because once the distribution of the 

data points changes, Orion adaptively changes its  -dimensions so that the existing set 

of  -dimensions can reveal the outlier-ness of the data points. Hence, Orion can be 

adaptive well with the sudden change of concepts. Finally, the precision of Orion for the 

gradual concept drift data is a little bit better than its precision for the no concept drift 

data and the abrupt concept drift data; but the increase of precision for the gradual 

concept drift data is not statistically significant. Thus, we can conclude the precision of 

Orion is not affected by any type of concept drift. 

The precision of Stream LOCI is significantly affected by the concept drift. Stream 

LOCI uses a sliding window to capture the recent subset of the data points. Hence, if 

there is no concept drift, the sliding window always contains the data points from the 

same distribution. Therefore, Stream LOCI can separate outliers from inliers easily. In 

case of abrupt concept drift, the sliding window of Stream LOCI contains data points 

from more than one group. In that case, if one group is not significantly outnumbered 

by another, Stream LOCI can separate them and detect outliers from individual groups 
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(this is because it is a density based approach; it works with local neighborhood only). 

Once an abrupt concept drift occurs, the sliding window of Stream LOCI gradually fills 

with the data points from the new concept. At the beginning, the data points from the 

new concept appear as outliers with respect to the data points from the old distribution. 

Hence, Stream LOCI creates some false alarms. Thus the precision of Stream LOCI for 

the abrupt concept drift data is smaller than that for the no concept drift data. Stream 

LOCI performs worse in terms of precision for gradual concept drift. In case of gradual 

concept drift, the data points are continuously changing, but with a tiny amount. Thus, 

the sliding window of Stream LOCI is composed of the data points where each of them 

(data points) has little different data distribution compared to the other data points. 

Unfortunately, Stream LOCI cannot handle this kind of data and therefore, its precision 

is the lowest for the gradual concept drift data (Figure 83). 

The precision of A-ODDS is a little high for gradual concept drift compared to the cases 

of no concept drift and abrupt concept drift. In a dataset with gradual concept drift, A-

ODDS can successfully detect the local data points and identify the outliers [60]. For no 

concept drift data, the GDF and LDF of A-ODDS become the same and hence it only 

detects outliers on the global context. The precision of A-ODDS is higher for the abrupt 

concept drift data compared to the no concept drift data because in that case, GDF and 

LDF become different again and A-ODDS can then detect outliers from the global and 

local contexts. However, irrespective of the dataset, Orion shows its supremacy over 

Stream LOCI and A-ODDS in terms of precision. 
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2.1.2.10.2. Recall 

Figure 84 shows the impact of concept drift on recall. The recall of Orion is the same 

for three cases: no, gradual and abrupt concept drift. Orion can detect an outlier if it 

contains an appropriate  -dimension that reveals the outlier-ness of the data point. In all 

three cases, Orion can readily find the appropriate  -dimensions for outlying instances 

that reveal their outlier nature. Since our evolutionary algorithm adaptively modifies the 

set of  -dimensions, Orion always have an appropriate  -dimension that can reveal an 

outlier. Therefore, the recall of Orion is not affected by concept drift; thus, our design 

goal, which is to design an appropriate outlier detection technique the performance of 

which is not affected by concept drift, is achieved. Moreover, Orion outperforms both 

Stream LOCI and A-ODDS for all types of concept drifts in terms of recall. 

 

Figure 84. Impact of Concept drift on recall for the synthetic data 
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of which is slightly different from the rest. Therefore, Stream LOCI confuses inliers 

with outliers and cannot find outliers. The recall of A-ODDS for the gradual concept 

drift data is higher than its recall for the no concept drift data and the abrupt concept 

drift data. This is because once A-ODDS can identify the local context for LDF, it can 

easily identify the outliers that are non-conformist to the local data points.  

2.1.2.10.3. Jaccard Coefficient 

Figure 85 shows the accuracy in terms of Jaccard Coefficient of Orion, Stream LOCI 

and A-ODDS with respect to different types of concept drift data. Since the precision 

and recall of Orion are not affected by concept drift, JC is not affected by concept drift 

either. We have discussed our reasoning for such insensitivity of Orion in terms of 

accuracy for all types of concept drifts. This experiment confirms that Orion can 

successfully handle concept drift. Compared with the gradual and abrupt concept drift 

data, Stream LOCI has a higher precision and recall, and thus also has a higher JC, for  

the no concept drift data. The JC of A-ODDS is for gradual concept drift is higher than 

the JC of A-ODDS for no concept drift and abrupt concept drift (we have discussed our 

reasoning in previous two sections). Therefore, A-ODDS is particularly suitable for 

gradual concept drift data. 

Finally, Orion is superior to both Stream LOCI and A-ODDS in terms of accuracy for 

all three metrics. On average, Orion has 225% and 173% better JC than Stream and A-

ODDS. 



215 

 

 

Figure 85. Impact of Concept drift on JC for the synthetic data 
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concept drift data, the maximum distance between two data points is always very high, 

thus Stream LOCI has to compute the MDEF value for lots of radiuses. Thus the 

execution time of Stream LOCI is large for gradual concept drift (Figure 86). The 

execution time of A-ODDS is also unaffected by concept drift. 

 

Figure 86. Impact of Concept drift on execution time for the synthetic data 

2.1.2.11. Conclusions on Experimental Results for Orion 

Our conclusions from the experimental evaluations that we have presented in the 

previous sections are as follows: 

- Orion performs better than the existing state-of-the-art outlier detection 

algorithms for real applications like network intrusion detection, Physical Action 

classification, and erroneous sensor reading detection. The diversity of the 

datasets shows the applicability of Orion for a wide range of applications. 

- Orion not only possesses better accuracy compared to the exiting outlier 

detection techniques, but also has better or competitive execution time. 
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- The impact of neighbor distance (a parameter of Orion) on accuracy is very 

small. Thus the user has much liberty in choosing an appropriate value for this 

parameter. Even if the user chooses a value that is not optimal, Orion is still 

capable of detecting outliers.  

- The second most important parameter for Orion is   that is used to compute  -

distance. The impact of   is also very insiginificant. Many outlier detection 

techniques are very sensitive to the choice of their parameters, especially 

distance based outlier detection techniques [9, 58]. The idea of density based 

outlier detection evolved in order to eliminate this drawback of distance based 

outlier detection. In our case, the sensitivity of accuracy of Orion to k is 

negligible. Therefore, it becomes easier for the user to choose an appropriate k 

value for Orion. 

- The execution time of Orion is also insensitive to neighbor distance and  . Thus, 

Orion is applicable to many applications regardless of their values of neighbor 

distance and  . 

- We have examined the accuracy and execution time of Orion for the cases 

where the percentage of outliers is in the range of 1-10%. 10% is considered a 

very high percentage of outliers, where the typical percentage of outliers lies 

between 0.001-5% [98]. Our experimental results show that the accuracy of 

Orion is superior to the state of the art outlier detection techniques regardless of 

the percentage of outliers. 
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- Orion is a multi-dimensional outlier detection technique. The accuracy of Orion 

is affected by the number of dimensions at all. The outlier detection technique 

Stream LOCI does not work well for high number of dimensions. This is 

because Stream LOCI uses Euclidian distance to measure the similarity among 

the data points, but Euclidian distance cannot measure the similarity if the 

number of dimensions is high. Thus our choice of avoiding Euclidean distance is 

well-justified.  

- The execution time of Orion increases in a cubic way with the linear increase of 

number of dimensions as opposed to exponential increases suggested by multi-

dimensional data density functions. 

- The accuracy of Orion is small for a very small number of  -dimensions (aka 

population count). But once the number of  -dimensions increases a little bit, 

the accuracy becomes insensitive to the number of  -dimensions. We propose a 

heuristic in which we keep the same number of  -dimensions  as the number of 

data dimensions. This heuristics produces optimum results for Orion. Hence, we 

recommend users to follow this heuristics for all applications. 

- The optimal number of bin width is established from literature [5]. We use 400 

bins for six standard deviation dispersion. According to our experiments, 400 

bins for six standard deviations always produce optimal results. Thus, users are 

recommended not to modify the bin count. 

- Orion does not require a huge set of bootstrapping rounds to initialize itself. The 

number of bootstrapping rounds typically varies between 100-500. In a typical 
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application like irrigation, 100 data points constitute 0.2% of the datasets. 

Moreover, a data stream is considered as an infinite set of data points; hence, 

100 data points is negligible for an infinite set of data points. 

- The accuracy and execution of Orion remain unchanged with respect to the 

number of data points. Since data streams are envisioned for an infinite set of 

data points, it is important to have constant accuracy and execution time with 

respect to the number of data points. Thus the effectiveness of Orion for data 

streams is once again validated by its constant accuracy and execution time with 

respect to the change of the number of data points. 

- Orion can successfully handle both gradual concept drifts and abrupt concept 

drifts. Handling concept drifts was one of the design goals of Orion and our 

experiments studying the impacts of concept drifts show that we have achieved 

this design goal. 

2.2. Experimental Analysis for Wadjet 

2.2.1. Simulation Model 

We use the same simulation model as we have described for Orion in Section 2.1.1. 

Thus we omit the description of the simulation model in this section. 

2.2.1.1. Datasets 

2.2.1.1.1. Synthetic Dataset 

We use the same synthetic dataset that we have discussed in Section 2.1.1.3.6 for Orion.  
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2.2.1.1.2. Sensor Scope Dataset 

Sensor Scope is an environmental monitoring system based on a wireless sensor 

network [6]. Sensor Scope is aimed for outdoor deployment. Barrenetxea et al. [6] 

deployed six different sensor networks starting from the EPFL’s campus to a high 

mountain site. We have collected the data from their largest deployment at the EPFL’s 

campus. Each environment monitoring station is composed of multiple sensors 

monitoring ambient temperature, surface temperature, solar radiation, relative humidity, 

soil moisture, watermark, rain meter wind speed and wind direction. However, not all 

sensors from all stations report all the data. Thus some stations may report less data than 

others. This give rise of heterogeneous schemas for data streams. Moreover, the 

monitoring stations are very close to each other (within the campus of the EPFL); hence 

the data from one station is strongly correlated with the data from another station. In our 

experiments we collected data from 97 stations, each of which has roughly 40K to 400K 

data points and 3 to 7 dimensions. 

2.2.1.2. Competitive Algorithms 

DB-Outlier is a continuous distance based outlier proposed by Ishida and Kitagawa 

[32]. DB-Outlier is based on a popular distance based outlier detection technique 

proposed by Knorr et al. [50]. We choose DB-Outlier as a representative technique of 

multiple related data streams. In the literature, there exists only a handful set of outlier 

detection techniques that work for multiple related streams [32, 48, 86, 100]. However, 

none of them works for multi-dimensional data points except DB-Outlier. Moreover, 

distance based outlier detection is superior compared to other outlier detection schemes 

in terms of accuracy [101]. Thus, we choose to compare Wadjet with DB-Outlier. DB-
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Outlier detects distance-based outliers given a user-defined distance   and minimum 

neighbor count  ; a data point is an outlier if it has fewer than   neighbors within a 

distance  . DB-Outlier adopts the idea of  the cell based outlier detection proposed by 

Knorr, Ng and Tucakov [50] and takes the cell based outlier detection to the next level 

for data streams. This algorithm assumes multiple data streams for outlier detection and 

compares the data points across the data streams and detects distance based outliers. If 

the number of data streams is N, it assumes there exist   data streams           . At 

any particular point in time  , each stream produces one data point. So at time  , 

           produces   
    

      
  where   

  is a  -dimensional data point. To detect 

the outliers   
  is compared to all   

 , where       and    , so outliers are detected 

among   
    

      
 . DB-Outlier compares the data point of a stream to the data points 

of other streams. If a data point has fewer than k neighbors within a distance k, the data 

point is identified as an outlier. 

2.2.1.3. Simulation Parameters 

We study the impacts of changing various parameters on the performance of Wadjet. 

The range of values of the default value of each parameter are presented in Table 9. 

Wadjet executes Orion in its first phase. Therefore, Wadjet has the same set of 

parameters as Orion. The list of parameters we have studied for Orion is also valid for 

Wadjet. The impacts of the parameters in the first phase of Wadjet are the  same as their 

impacts on Orion. Therefore, conducting experiments again based on those parameters 

would be redundant to what we have studied for Orion in Section 2.1.2. In order to 

avoid the repetition of the study of the same set of parameters we omit those parameter 

studies from this section and include only the studies of the additional set of parameters 
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for Wadjet that are not present in Orion. Although the number of dimensions and the 

percentage of outliers appear in the studies conducted  for Orion, we also include them 

in the studies for Wadjet;  this is because they have different impacts on the second 

phase of Wadjet. The default values of the percentage of outlier and confidence interval 

parameters are chosen based on literature [91, 98]; and the default values of the  number 

of streams and number of dimensions parameters are chosen based on the average 

number of data streams and number of dimensions found in various datasets in the UCI 

machine learning repository [96]. For every experiment, when the impact of a parameter 

is under study, we vary its value within its range and fix the other parameters at their 

default values.  

Table 9. List of parameters studied for Wadjet 

Name 

Synthetic data Sensor Scope data 

Range of 

Values 

Default 

Value 

Range of 

Values 

Default 

Value 

Number of streams 20 - 50 50 97 97 

Number of dimensions 50 -100 100 4 - 10 4 – 10 

Percentage of outliers 1 -10 5 5% 5% 

Confidence interval 97 – 100 99.5 97 – 100 99.5 

2.2.2. Experimental Results 

In this section we present our experimental results for Wadjet. We start with an overall 

performance of both algorithms and then present the detailed studies of the parameters. 

2.2.2.1. Overall Performance 

2.2.2.1.1. Precision 

Table 10 shows the precision of Wadjet and DB-Outlier for the synthetic and sensor 

scope datasets. The sensor scope data has heterogeneous schemas, but DB-Outlier  does 

not deal with heterogeneous schemas; thus we cannot report any result for DB-Outlier 
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for this dataset. To the best of our knowledge, no existing outlier detection technique 

works for heterogeneous schemas. DB-Outlier performs really poorly compared to 

Wadjet for the synthetic data because DB-Outlier is not really designed for data streams 

where data points have different values but are correlated. DB-outlier assumes that data 

points from multiple streams are the same or equal. Any data point which is 

significantly different from the other data points is identified as an outlier. However, in 

our synthetic data set, data points are not equal, rather they are correlated. Thus when 

DB-Outlier tries to find the outliers based on the assumption that they are equal, it 

makes lots of mistakes and identifies lots of inliers as outliers. Thus the precision of 

DB-Outlier is very poor. Unfortunately, we have not come across any existing 

algorithm that deals with data points that are not the same but correlated. Hence our 

algorithm is the first one that addresses this problem. However, in order to give the 

reader an impression of what happens if the equality assumption does not hold, we 

compare our algorithm with DB-Outlier. 

Table 10. Precision of Wadjet and DB-Outlier 

 Synthetic data Sensor Scope data 

Wadjet 0.94 0.99 

DB-Outlier 0.05 N/A 

On the contrary the precision of our algorithm is very good. Wadjet can detect outliers 

with 94% precision for the synthetic data and 99% precision for the sensor scope data. 

These are very good precision since Wadjet identifies a data point as an outlier if it is 

identified as an outlier in either Phase 1 or Phase 2; thus two levels of error can 

accumulate while we are considering the precision of Wadjet. 
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2.2.2.1.2. Recall 

DB-Outlier assumes that the data points from multiple streams are equal and it 

identifies a data point as an outlier if it does not have enough neighbors. However, in 

our dataset, the data points from multiple data streams are not equal and thus almost all 

data points have a very few neighbors. According to the definition of distance based 

outliers, these data points (data points with small sets of neighbors) are outliers. Thus, 

DB-Outlier identifies them as outliers and produces lots of false alarms; however the 

true outliers are also far from the other data points. Hence, DB-Outlier successfully 

detects all the outliers (Table 11), and thus it has a better recall than Wadjet. However, 

the 100% recall of DB-Outlier comes with the cost of a very poor precision. 

Table 11. Recall of Wadjet and DB-Outlier 

 Synthetic data Sensor Scope data 

Wadjet 0.99 0.67 

DB-Outlier 1.00 N/A 

Wadjet shows a very high recall for the synthetic data. This is because Wadjet detects 

outliers in two phases. In the first phase it identifies the outliers that are nonconformist 

to the other data points from the same streams. In the second phase, it identifies the 

outliers that are nonconformist to the other data points from the other correlated 

streams. Hence after these two phases all the outliers are essentially filtered by Wadjet. 

Thus Wadjet almost identifies 100% of the outliers for the synthetic data. Unlike DB-

Outlier, Wadjet makes very few mistakes while identifying all the outliers. 

The recall value of Wadjet for the sensor scope data is also very promising. It can 

approximately detect 67% of the outliers. Interestingly the recall for the synthetic data is 

much higher than the recall for the sensor scope data. This is because the sensor scope 
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data are heterogeneous in nature. The temperature data from all sensors are more 

correlated than the temperature from one sensor and the wind speed from another 

sensor. Since the sensor scope data produces a heterogeneous set of attributes, Wadjet 

often fails to find the cross-correlation and thus fails to identify outliers. 

2.2.2.1.3. Jaccard Coefficient 

Since Jaccard Coefficient is the combination of precision and recall, DB-Outlier shows 

a very poor performance in terms of Jaccard Coefficient as well. Although DB-Outlier 

identifies all the outliers in the dataset, it makes lots of false positives as well (Table 

12). Thus the reliability of the algorithm is significantly poor. Hence the Jaccard 

Coefficient of the algorithm is poor as well. 

Table 12. Jaccard Coefficient of Wadjet and DB-Outlier 

 Synthetic data Sensor Scope data 

Wadjet 0.93 0.67 

DB-Outlier 0.05 N/A 

Wadjet can identify most of the outliers without making a lot of mistakes like DB-

Outlier for the synthetic dataset. Hence the reliability and completeness of the algorithm 

are very good for outlier detection for heterogeneous data streams. The JC of Wadjet for 

the sensor scope data is also very promising. The identified set of outliers has 67% in 

common with the true set of outliers. 

2.2.2.1.4. Execution Time 

Wadjet offers not only better accuracy, but also competitive execution time (Table 13). 

The execution time of Wadjet is very appealing since Wadjet is processing 50 different 

data points from 50 different data sources where each data point has 100 dimensions. 

On the average, Wadjet takes 0.000936 milliseconds to process one attribute. Thus the 
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processing time is very suitable for data stream applications. The execution time of 

Wadjet for the sensor scope data is significantly small, 0.01 milliseconds. Our further 

experiment suggests that Wadjet is able to cluster only 10.58% of the attributes. This is 

because due to the heterogeneous nature of the attributes, many attributes fail to form a 

cluster. Once Wadjet fails to form a cluster for an attribute it does not compute the 

linear regression function for that attribute and skips the outlier detection test. Hence the 

execution time of Wadjet improves significantly. 

Table 13. Execution time (in ms) of Wadjet and DB-Outlier 

 Synthetic data Sensor Scope data 

Wadjet 4.68 0.03 

DB-Outlier 3.61 N/A 

Since the sensor scope data is a real dataset, we do not have much control over this 

dataset in terms of change of parameter values. So, for our parameter studies, we use the 

synthetic dataset alone. 

2.2.2.2. Impact of Number of Streams 

2.2.2.2.1. Precision  

Figure 87 shows the impacts of the number of data streams on the precision of both 

Wadjet and DB-Outlier. As we are increasing the number of data streams, we are 

actually adding more and more data streams to detect outliers in Wadjet. If the newly 

added data streams are cross-correlated, the number of correlated attribute would 

increase. If the number of correlated attributes increases, the number of correlated 

attributes of any particular attribute would also increase. Hence, if the number of 

streams is large each cluster would have more attributes compared to that if the number 

of streams is small. However, in order to detect an outlier, an attribute value is 
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compared to its nearest neighbor. Therefore, the total number of attributes in a cluster 

does not influence the decision of outlier-ness of a data point. Therefore, the precision 

of Wadjet remains the same. If the newly added streams are not correlated the cluster 

size would not be impacted by the additional data streams. In that case the precision 

would not be impacted either. Hence, in both cases the precision of Wadjet remain 

unchanged.  

 

Figure 87. Impact of number of data streams on precision for the synthetic data 

Interestingly, the precision of DB-Outlier is also unchanged with respect to the number 

of streams. In case of DB-Outlier, the number of data points is the same as the number 

of streams; but these data points are not equal, rather they are correlated. Hence, they 

are far from each other in terms of value. Thus, if the number of data points increases, 

DB-Outlier also misclassifies inliers as outliers. Therefore, the precision of DB-Outliers 

also remains unchanged. However, the precision of DB-Outlier is significantly smaller 
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than that of Wadjet. The precision of Wadjet is twenty times higher than the precision 

of DB-Outlier. 

2.2.2.2.2. Recall 

 

Figure 88. Impact of number of data streams on recall for the synthetic data 

Figure 88 presents the impacts of the number of data streams on the recall of both 

Wadjet and DB-Outlier. In Figure 88, the graph for recall of Wadjet and the graph for 

recall of DB-Outlier superimpose one another. Thus, it is difficult to separate the recall 

of DB-Outlier from that of Wadjet from Figure 88. Interestingly, both Wadjet and DB-

Outlier show excellent recall values for this dataset. 

As the number of streams increases we add more streams to the experiments. Adding 

more streams means adding more attributes. Therefore, Wadjet would be able to find 

more correlated attributes if the newly added streams are cross-correlated. Hence, 

adding more attributes might increase the size of clusters. However, in order to detect 

significantly different attributes, an attribute value is compared to its nearest neighbor. 
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Thus, having more attributes in the same cluster does not increase the accuracy of 

outlier detection. Therefore, we see that the recall of Wadjet remains unchanged with 

respect to varying the number of streams. 

The recall of DB-Outlier is approximately 1, meaning DB-Outlier can successfully 

detect all the outliers. Having more data points means having more similar or dissimilar 

data points. If the data points from the newly added streams are similar (in terms of 

Euclidian distance), they are not outliers and thus do not impact the recall. If the data 

points from the newly added streams are dissimilar (in terms of Euclidian distance), 

they might be inliers or outliers. In either case, DB-Outlier identifies the data points as 

outliers. Hence, the recall of DB-Outlier may increase with the increase of number of 

streams. However, the recall is already 100% even for a small number of data streams, 

thus adding more streams does not increase the accuracy of DB-Outlier in terms of 

recall. Practically, the recall of Wadjet and DB-Outlier is the same for different 

numbers of data streams. 

2.2.2.2.3. Jaccard Coefficient 

Since the precision and recall remain unchanged, the JC remains unchanged with 

respect to the number of data streams as well (Figure 89). According to Figure 89, the 

accuracy of Wadjet and DB-Outlier is insensitive to the change of the number of 

streams. The JC of Wadjet is unchanged with respect to the change of the number of 

streams. This result implies that we can add as many data streams as we want to detect 

outliers using Wadjet without affecting its JC at all. This result also implies that Wadjet 

is well scalable with respect to the number of streams in terms of accuracy (precision, 

recall and JC).  
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Figure 89. Impact of number of data streams on Jaccard Coefficient for the 

synthetic data 

The JC of DB-Outlier also remains unchanged with respect to the change of number of 

streams; but the JC of Wadjet is twenty times higher than the JC of DB-Outlier.  

2.2.2.2.4. Execution Time 

Although the precision, recall and JC remain unchanged, the execution time shows 

some variation with respect to the change of the number of streams. As the number of 

streams increases, the size of the covariance matrix that finds the cross-correlation 

increases as well. Hence, it takes more time to process that cross-correlation matrix and 

thus eventually the algorithm takes longer time to finish. However, the execution time 

increases linearly with the increase of the number of streams. Our theoretical analysis 

shows that the time complexity of Wadjet is quadratic with respect to the number of 

streams. However, our experimental results show that the execution time increases 

linearly with the increase of the number of streams. This inconsistency between the 
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increases quadratically with the increase of the number of streams; but we do not see 

the quadratic increase of execution time because the effect of the number of stream is 

not prominent up to 50 streams. Hence, if we perform experiments with a very large 

number of streams, we might confirm our theoretical analysis. In future work we will 

experiment with even a large number of data streams. On the other hand, the execution 

time of DB-Outlier is somewhat random. This is because we simulate our data streams 

as asynchronous streams and therefore not all data points from all streams are present at 

the same period of time. So the execution time of DB-Outliers changes sporadically 

(Figure 90). 

 

Figure 90. Impact of number of data streams on execution time for the synthetic 

data 

2.2.2.3. Impact of Number of Dimensions 

We aim to design our algorithm such that it is scalable to a large number of dimensions 

without negatively affecting its accuracy. Hence, for validation of whether our goal has 

20 25 30 35 40 45 50
2

4

6

8

10

12

14

Number of Data Streams

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Number of Data Streams

 

 

Wadjet DB-outlier



232 

 

been reached, here we perform studies that reveal the impacts of the number of 

dimensions on Wadjet and DB-Outlier. 

2.2.2.3.1. Precision 

The precision of Wadjet and DB-Outlier is not sensitive to the number of dimensions. 

However, this result can be misleading since the precision of DB-Outlier is so small that 

it is hardly recognizable if the number of dimensions has any impact on it. However, the 

precision of Wadjet remains immune to the change of the number of dimensions (Figure 

91). This result is very interesting because if the number of dimensions increases for 

each stream, the total number of attributes increases as well. Now, there can only be two 

cases: (1) the new attributes are correlated and (2) the new attributes are not correlated.  

If the new attributes are correlated, they would be placed in a cluster and equate to the 

cluster head. If the attribute value is an outlier, it would be significantly different from 

the rest of the attribute values in the cluster. It is possible that two such outlier attribute 

values may appear close to each other. In that case, Wadjet would fail to identify them 

as outliers; otherwise Wadjet would capture them as outliers. The chance of being close 

to each other for two outliers is very small and increases with the increase of the 

number of dimensions. Thus the precision of Wadjet may decrease a little bit, but we 

hardly notice any change in precision with the increase of the number of dimensions. 

Now, if the new attributes are not correlated, they would not be a part of a cluster and 

therefore, would not be detected as outliers. Any data point identified as an inlier cannot 

affect the precision of Wadjet since it is the ratio of the identified set of outliers and the 
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true set of outliers. Therefore, in the second case, the precision of Wadjet remains 

unchanged. 

The precision of DB-Outlier is also unchanged with respect to the change of the number 

of dimensions. This result is a little misleading because the precision of DB-Outlier is 

already very small and further deterioration of precision cannot be noticed in the result. 

Since DB-Outlier assumes that all data points are equal, if they are not, DB-Outlier 

identifies them as outliers. Hence, we see that the precision of DB-Outlier is so small. 

Moreover, if the number of dimensions increases, the quality of similarity measurement 

(in terms of Euclidian distance) of DB-Outlier deteriorates. However, the effect of that 

is not noticeable for such low precision of DB-Outlier. 

 

Figure 91. Impact of number of dimensions on precision for the synthetic data 

2.2.2.3.2. Recall 

Figure 92 shows the impact of the number of dimensions on recall. The graph of recall 

for Wadjet superimposes the graph of recall for DB-Outlier in Figure 92. Hence, it is 

difficult to identify them separately.  
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Figure 92. Impact of number of dimensions on recall for the synthetic data 

We argued that as the number of dimensions increases, DB-Outlier would fail to 

measure the similarity among the data points, and more outliers should disguise among 

the inliers and thus we expected the decrease of recall of DB-Outlier with the increase 

of the number of dimensions. Interestingly, we do not see that result in Figure 92. The 

recall of DB-Outlier is almost constant with respect to the change of the number of 

dimensions. This is because all data points satisfy the outlier criteria of DB-Outlier. 

DB-Outlier assumes the data values for all data points to be equal, but in our dataset, 

they are not equal. Hence, the distance between any two data points is very large; so all 

data points are outliers for DB-Outlier. Therefore, the recall of DB-Outlier is very high. 

The recall of Wadjet is also very high. Since Wadjet uses a two phase outlier detection, 

most of the outliers are correctly identified in the two phases of Wadjet. According to 

the experiments presented in Section 2.1.2.5.2 (the impact of the number of dimensions 

on Orion), the first phase of Wadjet can detect approximately 85-90% of the outliers. 

Since the recall of Wadjet is 100%, the rest of the outliers 10-15% are detected in the 
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second phase. Interestingly, the recall of Orion and Wadjet is not sensitive to the change 

of the number of dimensions. Thus, none of the two phases of Wadjet is actually 

sensitive to the change of the number of dimensions.  

In our experimental results in Figure 92, we do not see any sensitivity with respect to 

the change of the number of dimensions. However, arguably if the number of 

dimensions increases, it is very likely that the cluster size would be increased and some 

attributes may find new correlated attributes. Therefore, the outlier-ness of some 

attributes would have been revealed which might be missed if there are not enough 

attributes. However, this theoretical conjecture is not supported by our experimental 

results in Figure 92.  This is because almost 85-90% of the outliers are already detected 

in the first phase and the second phase contributes the rest. Therefore, any change of the 

recall with respect to the number of dimensions becomes insignificant for Wadjet. 

2.2.2.3.3. Jaccard Coefficient 

Since the precision and recall remain unchanged for both Wadjet and DB-Outlier, the 

JC of both algorithms remains unaffected with respect to the number of dimensions as 

well (Figure 93). The detailed discussion of the results for unchanged precision and 

recall with respect to the number of dimensions is presented in the previous two 

Sections 2.2.2.3.1 and 2.2.2.3.2. Therefore, we do not provide the same reasoning in 

this section again. 
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Figure 93. Impact of number of dimensions on Jaccard Coefficient for the 

synthetic data 

2.2.2.3.4. Execution Time 

The execution time of Wadjet is affected by the number of dimensions (Figure 94). As 

the number of dimensions increases, the size of the cross-correlation matrix increases as 

well. Wadjet has to process a bigger cross-correlation matrix that eventually increases 

its execution time. According to our theoretical analysis, the time complexity of Wadjet 

is cubic with respect to the number of dimensions. According to Figure 94, the increase 

of execution time is linear to the increase of the number of dimensions. Once reason for 

this behavior might be the effect of the number of dimensions is not prominent for such 

a small number of dimensions. Hence, the increase of execution time is linear with 

respect to the number of dimensions. 

The execution time of DB-Outlier increases linearly with the increase of the number of 

dimensions in Figure 94. This is because DB-Outlier distributes the data points into grid 

cells and measures the similarity using Euclidian distance. Finding the appropriate grid 
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cell for a   dimensional data point requires   number of comparisons; and Euclidian 

distance computation requires   difference computations along all dimensions. Both of 

these algorithms require linear time with respect to the number of dimensions. Hence, 

the execution time of DB-Outlier increases linearly with the increase of the number of 

dimensions. The average execution times of Wadjet and DB-Outlier are 2.4 ms and 2.8 

ms, respectively. Hence, on average the execution time of Wadjet is 14.28% smaller 

than that of DB-Outlier. 

 

Figure 94. Impact of number of dimensions on execution time for the synthetic 

data 

2.2.2.4. Impact of Percentage of Outliers 

In this section we study the impacts of the percentage of outliers on the performance of 

the two algorithms.  

2.2.2.4.1. Precision 

Figure 96 shows the impact of percentage of outliers on precision. The precision of both 

DB-Outlier and Wadjet increases with the increase of percentage of outliers. DB-Outlier 
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assumes all data points from different data streams to be equal; however, in our dataset, 

the data points from different streams are not equal, rather correlated. Therefore, DB-

Outlier detects all the data points as outliers. Hence, as the number of outliers increases 

in the dataset, DB-Outlier is able to find more outliers. Thus the precision of DB-Outlier 

increases with the increase of the percentage of outliers. A further investigation shows 

that the precision of DB-Outlier is almost equal to the percentage of outliers. This is 

because the precision is defined as true positives divided by the total detected positives. 

Since the recall of DB-Outlier is 100% (Figure 97), all the outliers are also identified as 

outliers; on top of that all inliers are identified as outliers as well. Thus the precision 

becomes the number of outliers divided by the total number of data points, which is the 

same as the percentage of outliers. Thus, the precision of DB-Outlier is the same as the 

percentage of outliers. 

The precision of Wadjet also increases when the percentage of outliers increases as 

shown in Figure 96. According to Figure 40, the first phase of Wadjet is sensitive to the 

percentage of outliers; as the percentage of outliers increases the precision of the first 

phase increases as well. We observe a similar trend for the second phase as well. Hence, 

the precision of Wadjet increases with the increase of the percentage of outliers. In the 

first phase, the increase of precision with the increase of the percentage of outliers is 

due to the shift of the cluster centers. In the second phase, the number of false positives 

increases with the increase of the percentage of outliers (the total number of false 

positives for 1% of the outliers is 317 and it increases to 664 if the percentage of 

outliers becomes 10%). Therefore, the precision should decrease; but the increase of 

true positives is much higher than the increase of false positives (Figure 95). Therefore, 
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as the percentage of outlier increases, the number of true positives outnumbers the 

number of false positives and we see the increase of precision for the second phase of 

Wadjet. Thus, based on the results of the two phases, the precision of Wadjet increases 

with the increase of the percentage of outliers. 

 

Figure 95. Impact of percentage of outliers on true positives and false positives for 

the second phase of Wadjet in synthetic dataset 

Moreover, regardless the percentage of outliers, Wadjet significantly outperforms DB-

Outlier in terms of precision. 
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Figure 96. Impact of percentage of outliers on precision for the synthetic data 

2.2.2.4.2. Recall 

Although the precision of Wadjet and DB-Outlier increases with the increase of the 

percentage of outliers, the recall of both algorithm remains unchanged with respect to 

the percentage of outliers (Figure 97). DB-Outlier identifies all the data points as 

outliers, hence for any percentage of outliers, the recall of DB-Outlier is 100%.  

Our algorithm detects outliers in two phases. Based on the results we presented in 

Figure 42, the recall of the first phase decreases with the increase of the percentage of 

outliers. The recall of Orion (the first phase of Wadjet) becomes as low as 70%. Thus, 

although the first phase missed some outliers, the second phase successfully identifies 

those outliers and the recall of Wadjet is close to 100%. 
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Figure 97. Impact of percentage of outliers on recall for the synthetic data 

2.2.2.4.3. Jaccard Coefficient 

Figure 98 shows the impacts of the percentage of outliers on JC for both Wadjet and 

DB-Outlier. The change of the JC of Wadjet with respect to the change of the 

percentage of outliers is as expected. The precision of Wadjet increases and its recall 

remains unchanged with respect to the change of the percentage of outliers; thus, the JC 

increases a little bit due to the increase of precision of Wadjet. The same conclusion 

also holds for DB-Outlier: the JC of DB-Outlier increases with the increase of the 

percentage of outliers. Since we have already discussed the results in the last two 

Sections 2.2.2.4.1 and 2.2.2.4.2, we omit the discussion here.  

2.2.2.4.4. Execution Time 
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outliers are detected in the first phase and they never really pass through the second 

phase. Figure 100 shows the number of data points processed in the second phase of 

Wadjet. As the percentage of outlier increases, the first phase detects many of them and 

the second phase does not process them at all. Thus if the percentage of outliers 

increases, the second phase has to process less data and therefore, the execution time of 

the second phase reduces. However, the execution time of the first phase remains 

unchanged. Thus the execution time decreases with the increase of the percentage of 

outliers (Figure 99).  

 

Figure 98. Impact of percentage of outliers on Jaccard Coefficient for the synthetic 

data 

The execution time of DB-Outlier also decreases with the increase of the percentage of 

outliers. If a lot of data points are outliers, they are placed themselves in the yellow 

cells. Based on the algorithm, the data points in the yellow cells are outliers, we do not 

need to process them further, which reduces the computation significantly. Therefore 

the execution time decreases with the increase of the percentage of outliers. 
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Figure 99. Impact of percentage of outliers on execution time for the synthetic data 

 

Figure 100. Impact of percentage of outliers on total number of data processed in 

the second phase of Wadjet 
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the confidence interval increases we would be more confident on the precision. The 

recall may decrease a little bit but the precision will increase with the increase of 

confidence interval. In this section we present the impact of confidence interval on 

Wadjet. Since DB-Outlier does not require the confidence interval as a parameter, the 

performance of DB-Outlier remains unchanged with respect to the change of the 

confidence interval. 

2.2.2.5.1. Precision 

In our experimental study, we find that our precision is insensitive to the change of the 

confidence interval (Figure 101). The first phase of Wadjet does not require the 

confidence interval as a parameter, and therefore, the confidence interval has no impact 

on the first phase. The second phase of Wadjet uses the confidence interval as a 

parameter. Thus the second phase of Wadjet might have some impact with respect to 

the change of the confidence interval. This result could be misleading because the 

precision value is already very high for even 97.5% confidence level. Thus there is not 

much room to increase the precision anymore. Hence the precision of Wadjet appears 

insensitive to the confidence interval. 

Since DB-Outlier does not use the confidence interval as a parameter, its precision 

remains unchanged with respect to the change of the confidence interval. Moreover, the 

precision of Wadjet is almost twenty times of the precision of DB-Outlier for any 

confidence interval. 
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Figure 101. Impact of confidence interval on precision for the synthetic data 

2.2.2.5.2. Recall 

Like precision, the recall of Wadjet also remains unchanged with respect to the change 

of the confidence level (Figure 102). According to our discussion in Section 2.6 in 

Chapter 3, if the confidence interval increases, the results become more reliable and 

Wadjet would be able to detect few outliers. As we have discussed before, the 

confidence interval does not affect the accuracy of the first phase of Wadjet, it only 

affects the second phase. In our results we observe an unchanged recall value for 

Wadjet in Figure 102. This is because a lot of outliers are actually captured in the first 

phase. Therefore, even though the second phase fails to detect some outliers, the impact 

of that failure is insignificant in the total recall in Figure 102. In order to illustrate the 

idea, we add the impact of the confidence interval on the recall of the second phase only 

in Figure 103. The recall of the second phase decreases with the increase of the 

confidence interval as our hypothesis (the recall would decrease with the increase of 
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confidence interval) has predicted but the effect of change of the combined recall is 

very insignificant. 

 

Figure 102. Impact of confidence interval on recall for the synthetic data 

 

Figure 103. Impact of confidence interval on the second phase of Wadjet for the 

synthetic dataset 
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DB-Outlier does not use the confidence interval as a parameter and thus its recall  r is 

unaffected with respect to the change of the confidence interval. 

2.2.2.5.3. Jaccard Coefficient 

Since precision and recall remain unchanged with respect to the change of the 

confidence level, the JC also remains unchanged with respect to the change of the 

confidence level (Figure 104). 

 

Figure 104. Impact of confidence interval on Jaccard Coefficient for the synthetic 

data 
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attributes are not processed further for outlier detection. Therefore, the execution time is 

reduced a little bit. Hence, the execution time of Wadjet decreases a little bit with the 

increase of the confidence interval. Since DB-Outlier does not take the confidence 

interval as a parameter, its execution time remains unaffected with respect to the change 

of the confidence interval. 

 

Figure 105. Impact of confidence interval on execution time for the synthetic data 

2.2.2.6. Conclusions on Experimental Results for 
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Our conclusions from the experimental evaluations presented in the previous sections 
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- DB-Outlier is also inapplicable for a dataset where data points are multi-

dimensional and the number of dimensions is large.  

- Our algorithm, Wadjet, is applicable and effective in both cases. Moreover, 

Wadjet does not assume data points from multiple streams to be equal. Hence, 

the applicability of Wadjet is much broader compared to the existing outlier 

detection technique. 

- Wadjet scales well with respect to the number of streams in terms of accuracy. 

As the accuracy (precision, recall, and JC) of Wadjet is not affected by the 

number streams, Wadjet is able to handle a large number of streams without 

affecting its accuracy. 

- Wadjet is perfectly applicable for the heterogeneous dataset that we have 

obtained from the SensorScope project [6] where the existing outlier detection 

technique fails to work. 

- Wadjet can handle multi-dimensional data points. Wadjet scales well with 

respect to the number of dimensions in terms of accuracy. We have performed 

experiments with 100 dimensional data points and this high number of 

dimensions does not affect the accuracy of Wadjet at all.  

- Both the number of streams and number of dimensions affect the execution 

time. The execution time increases with the increase of either  number of 

streams or number of dimensions. Thus, adding more streams or dimensions 

may require more computational resources for Wadjet. 
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- The JC of Wadjet increases with the increase of percentage of outliers. Even if a 

dataset has a large number of outliers, Wadjet can detect them. In an application 

like intrusion detection, corrupting lots of data points by an intruder would not 

weaken the accuracy of Wadjet. 

- Interestingly, the higher percentage of outlier reduces the execution time due to 

our two phase outlier detection scheme. The first phase is insensitive to the 

percentage of outliers and detects many of them; thus the first phase reduces the 

burden on the second phase and the overall execution time improves with the 

increase of percentage of outliers. 

- The accuracy (precision, recall and JC) of Wadjet is not very sensitive to the 

selection of the confidence interval. Thus, the user has freedom to choose an 

appropriate confidence interval from a wide range of values.  

- The execution time of Wadjet increases with the decrease of the confidence 

interval. Therefore, the user must consider the execution time before choosing 

an appropriate confidence interval. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

In this dissertation, we have proposed two outlier detection techniques for data streams, 

called Orion and Wadjet. The first algorithm, Orion, has been designed to detect outliers 

in single data streams that are independent of each other. There are a lot of data stream 

applications where data sources are so different and so far from one another that there is 

hardly any relationship among them [15]. Examples of such applications are 

environmental monitoring for a large area [15], physical action separation [96], and 

carbon sequestration [14]. Orion treats each data stream individually and detects its  

outliers based on the temporal correlations among the data points from same stream. 

Orion addresses the following characteristics of data streams: transiency, notion of time, 

notion of infinity, uncertainty, concept drift, and multidimensionality. 

Our second algorithm, Wadjet, has been designed to detect outliers in multiple data 

streams which may or may not be related to each other.  In some applications, such as 

environmental monitoring in a small area [6] and chlorine measurement [48], the data 

points from multiple streams are not independent of one another. To increase accuracy, 

Wadjet exploits the cross-correlations, if any, among the data points from multiple 

streams and identifies a data point in a data stream as an outlier if it is nonconformist to 

either the temporal correlation with the data points from the same stream or the cross-

correlations with the data points from other streams. Outlier detection for asynchronous 

heterogeneous data streams is a relatively new area. To the best of our knowledge, 
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Wadjet is the first algorithm that works with a set of heterogeneous data streams that 

can be asynchronous in nature. 

We have conducted a complexity analysis to evaluate the time and space complexity of 

Orion and Wadjet.  By means of simulation and using both real and synthetic datasets, 

we have performed comprehensive experiments to compare Orion with the two existing 

algorithm, A-OODS and Stream LOCI, for single data streams and compare Wadjet 

with the existing algorithm, DB-Outlier, for multiple data streams.  The comparison 

studies are based on execution time, precision, recall and Jaccard Coefficient. In the 

following sections, we first summarize the performance evaluation results and then 

discuss our future research. 

1. Summary of the Performance Evaluation Results 

1.1. Summary of the Results of Orion 

Outlier detection for multi-dimensional data streams is a relatively new area of research. 

Outlier detection for multi-dimensional data streams possesses critical challenges. 

Outlier detection requires similarity measurements among the data points. Popular 

similarity measurement techniques such as distance metrics are incapable of dealing 

with multi-dimensional data due to the curse of dimensionality. This is a significant 

challenge since more and more data are becoming multi-dimensional every day. Hence, 

tracking outliers for multi-dimensional data is very challenging. 

In this dissertation we have proposed an effective and efficient outlier detection 

technique for multi-dimensional independent data streams, Orion. We use a data density 
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function along a projected dimension that reveals the outlier nature of a data point. The 

summary of Orion is as follows: 

- Orion is an effective and efficient Outlier detection technique for multi-

dimensional data streams. 

- In order to detect outliers, we do not need to analyze the data points from a 

multi-dimensional perspective; rather, we can analyze a data point from a single 

dimensional perspective that reveals the outlier nature of the data points. 

- We have shown the effectiveness of an evolutionary algorithm in the area of 

data streams. To the best of our knowledge, Orion is the first algorithm that uses 

an evolutionary algorithm for data streams. Orion validates the proposition that 

an evolutionary algorithm has good prospects in the area of data streams 

analysis. 

- Orion uses two outlier metrics to detect outliers. The rationale behind the usage 

of two outlier metrics instead of one is that if one outlier metric fails to reveal 

the outlier-ness of a data point, the other can be helpful in revealing the outlier-

ness of that data point. 

- Time complexity of Orion is cubic with respect to the number of dimensions 

which is much better compared to exponential time complexity of multi-

dimensional data density function. 
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- The space complexity of Orion is linear with respect to number of dimensions 

which is way better than the exponential space complexity of multi-dimensional 

hyperspace.  

- Neither time nor space is sensitive to number of data points. The memory usage 

of Orion is limited although the number of data points is infinite. 

- Orion performs better than existing state-of-the-art outlier detection algorithms, 

Stream LOCI and A-ODDS, for real applications like network intrusion 

detection, physical action classification, and erroneous sensor reading detection. 

The diversity of the datasets shows the applicability of Orion for a wide range of 

applications. 

- Orion not only possesses better accuracy but also has better or competitive 

execution time compared to exiting outlier detection techniques. 

- The impact of neighbor distance (a parameter of Orion) on Orion’s accuracy is 

insignificant. Thus the user has much liberty while choosing an appropriate 

value for the parameter. Even if the user chooses a neighbor distance value that 

is not optimal, Orion is still capable of detecting outliers.  

- The second most important parameter of Orion is    which is used to compute 

 -distance. The impact of   is also very insignificant. Many outlier detection 

techniques are very sensitive to the choice of values of their parameters, 

especially distance based outlier detection techniques [9, 58]. The idea of 

density based outlier detection evolved in order to eliminate this drawback of 

distance based outlier detection. In our case, the sensitivity of accuracy of Orion 



255 

 

to this k parameter is negligible. Therefore, it is easier for the user to choose an 

appropriate value for k for Orion. 

- The execution time of Orion is also insensitive to neighbor distance and  . Thus, 

Orion is applicable to many applications regardless of their values of neighbor 

distance and  . 

- We have examined the accuracy of execution time of Orion for 1-10% of 

outliers. 10% is considered a very high percentage of outliers, where the typical 

percentage of outliers lies between 0.001-5% [98]. Our experimental results 

show that the accuracy of Orion is superior to that of the state-of-art outlier 

detection techniques regardless of the percentage of outliers. 

- Orion is multi-dimensional outlier detection technique. The accuracy of Orion is 

not affected by the number of dimensions. The existing outlier detection 

technique Stream LOCI does not work for a high number of dimensions. This is 

because Stream LOCI uses Euclidian distance to measure the similarity among 

the data points, but Euclidian distance cannot measure the similarity if the 

number of dimensions is high. Thus our choice of avoiding Euclidean distance is 

well justified.  

- The accuracy of Orion is low for a very small number of  -dimensions (aka 

population count); but once the number of  -dimensions increases a little bit, the 

accuracy becomes insensitive to the number of  -dimensions. We propose a 

heuristic in which we keep the same number of  -dimensions as the number of 
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data dimensions. This heuristics produces optimum results for Orion. Hence, we 

recommend users to follow this heuristics for all applications. 

- The optimal number of bin width is established from literature [5]. We use 400 

bins for six standard deviation dispersion. According to our experiments, 400 

bins for six standard deviations always produce optimal results. Thus, users are 

recommended not modify the bin count. 

- Orion does not require a huge set of bootstrapping rounds to initialize it. The 

number of bootstrapping rounds typically varies between 100-500. In a typical 

application like irrigation data, 100 data points constitute 0.2% of the datasets. 

Moreover, a data stream is considered as an infinite set of data points; hence, 

100 data points is negligible for an infinite set of data points. 

- The accuracy and execution of Orion remain unchanged with respect to the 

number of data points. Since data streams are envisioned for an infinite set of 

data points, it is important to have constant accuracy and execution time with 

respect to the number of data points. Thus the effectiveness of Orion for data 

streams is once again validated by its constant accuracy and execution time with 

respect to the change of the number of data points. 

- Experiments studying the impacts of concept drift show that Orion is unaffected 

by concept drift and can handle both gradual and abrupt concept drifts 

effectively without affecting its accuracy or execution time. 
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1.2. Summary of the Results of Wadjet 

Wadjet is designed for multiple data streams that may or may not be correlated. Unlike 

other approaches, Wadjet does not assume equality correlation among the data points 

from multiple streams. Moreover, in the first step, Wadjet identifies the cross-

correlations among the data points. Once Wadjet finds significant cross-correlations, 

then it tries to detect outliers based on those correlations. Below is a summary of the 

key contributions of Wadjet. 

- To the best of our knowledge, Wadjet is the only outlier detection technique for 

multiple data streams that does not assume equality correlation among the data 

points from different streams. 

- Wadjet works for asynchronous data points which is very important because 

synchronization is hard to achieve in many practical applications. 

- Wadjet does not assume any fixed cross-correlation among the data points, 

rather it identifies the cross-correlation, if any. 

- One big advantage of Wadjet is that Wadjet does not assume any relationship 

among the data points blindly, rather it explores the cross-correlation among the 

data points and detects the outlier-ness of a data point by comparing it to its 

cross-correlated data points only. 

- Wadjet is the only outlier detection technique that detects an outlier based on 

both temporal correlation of a data point to the other data points from the same 

stream and cross-correlation of a data point to the other data points from the 

other data streams. 
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- Outlier detection for heterogeneous schemas is a novel problem. No existing 

algorithm works with a set of data points from multiple heterogeneous data 

streams. 

- The time complexity of Wadjet is quadratic with respect to the number of 

streams and cubic with respect to the average number of dimensions in a stream. 

The space complexity of Wadjet is quadratic with respect to both the number of 

streams and number of dimensions. 

- Both time and space complexity of Wadjet are independent of the number of 

data points. Hence, the memory and time usage of Wadjet do not depend upon 

the number of data points in a stream. 

- The state of the art outlier detection technique DB-Outlier is not applicable to a 

dataset where data points from multiple streams are not equal, but correlated. 

DB-Outlier is also inapplicable for a dataset where data points are multi-

dimensional and the number of dimensions is large.  

- Wadjet is applicable and effective in both above cases. Moreover, Wadjet does 

not assume data points from multiple streams to be equal. Hence, the 

applicability of Wadjet is much broader compared to the existing outlier 

detection technique. 

- Wadjet is perfectly applicable for the heterogeneous dataset that we have 

obtained from the SensorScope project [6] where the existing outlier detection 

fails to work. 
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- Wadjet scales well with respect to the number of streams in terms of accuracy. 

As the accuracy (precision, recall, and JC) of Wadjet is not affected by the 

number streams, Wadjet is able to handle a large number of streams without 

affecting its accuracy. 

- Wadjet can handle multi-dimensional data points. Wadjet scales well with 

respect to the number of dimensions in terms of accuracy. We have performed 

experiment with 100 dimensional data points and this high number of 

dimensions does not negatively affect the accuracy of Wadjet.  

- Both the number of streams and number of dimensions affect the execution 

time. The execution time increases with the increase of either number of streams 

or number of dimensions. Thus, adding more streams or dimensions may require 

more computational resources for Wadjet. 

- The JC of Wadjet increases with the increase of percentage of outliers. Even if a 

dataset has a large number of outliers, Wadjet can detect them. In an application 

like intrusion detection, corrupting lots of data points by an intruder would not 

weaken the accuracy of Wadjet. 

- Interestingly, a high percentage of outliers reduces the execution time due  to 

our two phase outlier detection scheme. The first phase is insensitive to the 

percentage of outliers and detects many of them; thus the first phase reduces the 

burden on the second phase and the overall execution time improves with the 

increase of percentage of outliers. 
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- The accuracy (precision, recall and JC) of Wadjet is not very sensitive to the 

selection of the confidence interval. Thus, the user has freedom to choose an 

appropriate confidence interval from a wide range of values.  

- The execution time of Wadjet increases with the decrease of the confidence 

interval. Therefore, the user must consider the execution time before choosing 

an appropriate confidence interval. 

2. Future Research 

Orion is a very effective outlier detection technique for multi-dimensional independent 

data streams. Although it is well scalable in terms of accuracy, its execution time 

increases with the increase of dimensions. In our future work we plan to design a more 

scalable version of Orion in terms of execution time. 

Orion assumes a fixed arrival rate for all data points from the same stream. However, 

this assumption could be restrictive in real applications. Thus in our future work we 

would like to make our algorithm adaptive to the dynamic arrival rate of data streams. 

Wadjet is just the first effort for outlier detection for heterogeneous data streams that 

may or may not be correlated. The type of cross-correlation we explored in Wadjet is 

very limited and hence in our future work we would like to explore more complex 

cross-correlations among the data points from multiple streams. 

Wadjet deals with a cross-correlation matrix that captures the cross-correlations among 

all attributes in all streams. The computation of the cross-correlation matrix is the 



261 

 

bottleneck of Wadjet. In our future work we plan to design a more efficient approach to 

capture cross-correlations. 

Our experiments are limited within the scope of large datasets. Each of our streams has 

approximately 50K data points and we use 100 streams. In future, we would like to 

conduct our experiment with Big data where we can use a larger number of 

heterogeneous streams. 
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