
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ONLINE DETECTION OF OUTLIERS FOR DATA STREAMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

MD. SHIBLEE SADIK

Norman, Oklahoma

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215222056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ONLINE DETECTION OF OUTLIERS FOR DATA STREAMS

A DISSERTATION APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY

 Dr. Le Gruenwald, Chair

 Dr. Sudarshan Dhall

Dr. Changwook Kim

Dr. Scott Moses

Dr. Sridhar Radhakrishnan

© Copyright by MD. SHIBLEE SADIK 2013

All Rights Reserved.

iv

TABLE OF CONTENTS

Chapter I INTRODUCTION .. 1

1. Objective .. 1

2. Data Streams and Applications ... 1

3. Outliers .. 3

4. Significance of Outlier Detection .. 6

5. Issues of Outlier Detection in Data Streams .. 9

6. Contribution ... 21

7. Organization .. 23

Chapter II LITERATURE REVIEW OF OUTLIER DETECTION TECHNIQUES 24

1. Distance-Based Outlier Detection Techniques .. 24

1.1. Knorr and Ng’s Distance-Based Outlier Detection 24

1.2. Detecting Current Outliers: Continuous Outlier Detection over Time-Series

Data Streams (DB-Outlier) ... 26

1.3. Efficient Algorithms for Mining Outliers from Large Data Sets (EAMO) . 30

1.4. Distance-Based Outlier Detection for Data Streams (DBOD-DS) 32

1.5. Advantages ... 34

1.6. Disadvantages .. 34

2. Density-Based Outlier Detection Techniques ... 35

2.1. LOCI: Fast Outlier Detection Using the Local Correlation Integral 36

2.2. LOF: Identifying Density-Based Local Outliers .. 37

2.3. Online Outlier Detection for Data Streams (A-ODDS) 39

2.4. Advantages ... 41

2.5. Disadvantages .. 42

3. Sliding Windows-Based Outlier Detection Techniques 42

3.1. Overview of the Techniques .. 42

3.2. Detecting Distance-based Outliers in Streams of Data (STORM) 43

3.3. Automatic Outlier Detection for Time Series: An Application to Sensor Data

(ODTS) ... 46

3.4. Online Outlier Detection in Sensor Data Using Non-Parametric Models

(ODSD) ... 47

v

3.5. Incremental Outlier Detection in Data Streams Using Local Correlation

Integral (Stream LOCI) .. 50

3.6. Advantages ... 51

3.7. Disadvantages .. 51

4. Auto-Regression-Based Outlier Detection Techniques 53

4.1. Overview of the Techniques .. 53

4.2. A Kalman Filter-Based Approach for Outlier Detection in Sensor Networks

(KFOD) ... 55

4.3. Malicious Node Detection in Wireless Sensor Networks Using an Auto-

regression Technique (ART) .. 57

4.4. Adaptive Methods for Activity Monitoring of Streaming Data (AMSD) 58

4.5. Advantages ... 60

4.6. Disadvantages .. 61

5. Statistical Outlier Detection Techniques ... 62

5.1. Overview of the Techniques .. 62

5.2. Informal Identification of Outliers in Medical Data (IDMD) 62

5.3. Detection of Outliers in Reference Distributions: Performance of Horn's

Algorithm ... 63

5.4. Anomaly Detection over Noisy Data Using Learned Probability Distribution

(Eskin’s Algorithm) .. 64

5.5. Advantages ... 66

5.6. Disadvantages .. 66

6. Cluster-Based Outlier Detection Techniques .. 67

6.1. Overview of the Techniques .. 67

6.2. AnyOut: Anytime Outlier Detection on Streaming Data 68

6.3. ADMIT: Anomaly-Based Data Mining for Intrusions 70

6.4. A Machine Leaning Approach to Anomaly Detection (CLAD) 72

6.5. Advantages ... 73

6.6. Disadvantages .. 74

7. Feature Comparison of Existing Outlier Detection Techniques 75

Chapter III THE PROPOSED TECHNIQUES: ORION AND WADJET 78

1. Outlier Detection for Single Streams .. 78

vi

1.1. Motivation of Orion ... 79

1.2. Overview of Orion ... 82

1.3. Evolutionary Algorithm ... 85

1.3.1. Objective of Evolutionary Algorithm ... 85

1.3.2. Model of Evolution ... 88

1.3.2.1. Population Set ... 88

1.3.2.2. The Fitness Function ... 90

1.3.2.3. The Population Modification .. 93

1.4. Computation of Outlier Metrics ... 96

1.4.1. k-Distance ... 97

1.4.2. Data Density Function .. 98

1.4.2.1. Data Density Function Implementation .. 102

1.5. Outlier Detection .. 105

1.6. The Orion Algorithm .. 109

1.6.1. Initialization Stage .. 109

1.6.2. Incremental Stage ... 110

1.7. Parameter Selection .. 112

1.7.1. λ Selection ... 112

1.7.2. Bin Width Selection .. 114

1.7.3. Initial Population Selection ... 117

2. Outlier Detection for Multiple Data Streams .. 118

2.1. Overview of Wadjet ... 121

2.2. Cross-correlation Computation .. 127

2.2.1. Context Selection .. 127

2.2.2. Cross-Correlation Representation ... 128

2.3. Attribute Value Equating ... 129

2.3.1. Attribute Clustering .. 130

2.3.2. Regression Function Computation.. 131

2.4. Outlier Detection .. 132

2.5. The Wadjet Algorithm ... 134

2.6. Confidence Interval Parameter Selection ... 136

vii

Chapter IV PERFORMANCE ANALYSIS ... 138

1. Theoretical Analysis .. 138

1.1. Complexity Analysis for Orion .. 138

1.1.1. Time Complexity of Orion ... 138

1.1.1.1. Time Complexity of the Outlier Detection Part 139

1.1.1.2. Time Complexity of the Update Part .. 141

1.1.2. Space Complexity of Orion .. 142

1.2. Complexity Analysis for Wadjet .. 143

1.2.1. Time Complexity of Wadjet ... 143

1.2.2. Space complexity of Wadjet ... 145

2. Experimental Analysis ... 145

2.1. Experimental Analysis for Orion ... 146

2.1.1. Simulation Model ... 146

2.1.1.1. Software Description... 146

2.1.1.2. Hardware Description ... 146

2.1.1.3. Datasets ... 147

2.1.1.3.1. KDD Cup 99 Data .. 147

2.1.1.3.2. Vicon Physical Action Data ... 147

2.1.1.3.3. Australian Sign Language Data .. 148

2.1.1.3.4. EMG Physical Action Data .. 148

2.1.1.3.5. Irrigation Data ... 149

2.1.1.3.6. Synthetic Data... 149

2.1.1.4. Competitive Algorithms .. 150

2.1.1.5. Simulation Parameters .. 151

2.1.1.6. Performance Metrics ... 153

2.1.2. Experimental Results .. 155

2.1.2.1. Overall Performance Comparison ... 155

2.1.2.1.1. Precision ... 156

2.1.2.1.2. Recall .. 157

2.1.2.1.3. Jaccard Coefficient ... 158

2.1.2.1.4. Execution Time... 159

viii

2.1.2.2. Impact of Neighbor Distance .. 161

2.1.2.2.1. Precision ... 161

2.1.2.2.2. Recall .. 163

2.1.2.2.3. Jaccard Coefficient ... 164

2.1.2.2.4. Execution Time... 166

2.1.2.3. Impact of .. 168

2.1.2.3.1. Precision ... 168

2.1.2.3.2. Recall .. 170

2.1.2.3.3. Jaccard Coefficient ... 171

2.1.2.3.4. Execution Time... 173

2.1.2.4. Impact of Percentage of Outliers .. 174

2.1.2.4.1. Precision ... 175

2.1.2.4.2. Recall .. 177

2.1.2.4.3. Jaccard Coefficient ... 178

2.1.2.4.4. Execution Time... 180

2.1.2.5. Impact of Number of Dimensions ... 182

2.1.2.5.1. Precision ... 183

2.1.2.5.2. Recall .. 184

2.1.2.5.3. Jaccard Coefficient ... 185

2.1.2.5.4. Execution Time... 186

2.1.2.6. Impact of Population Count .. 187

2.1.2.6.1. Precision ... 188

2.1.2.6.2. Recall .. 189

2.1.2.6.3. Jaccard Coefficient ... 191

2.1.2.6.4. Execution Time... 192

2.1.2.7. Impact of Bin Count .. 193

2.1.2.7.1. Precision ... 194

2.1.2.7.2. Recall .. 195

2.1.2.7.3. Jaccard Coefficient ... 196

2.1.2.7.4. Execution Time... 198

2.1.2.8. Impact of Bootstrapping Size .. 199

ix

2.1.2.8.1. Precision ... 199

2.1.2.8.2. Recall .. 200

2.1.2.8.3. Jaccard Coefficient ... 201

2.1.2.8.4. Execution Time... 201

2.1.2.9. Impact of Number of Data Rounds ... 203

2.1.2.9.1. Precision ... 204

2.1.2.9.2. Recall .. 205

2.1.2.9.3. Jaccard Coefficient ... 207

2.1.2.9.4. Execution Time... 207

2.1.2.10. Impact of Concept Drift .. 209

2.1.2.10.1. Precision ... 210

2.1.2.10.2. Recall .. 213

2.1.2.10.3. Jaccard Coefficient ... 214

2.1.2.10.4. Execution Time ... 215

2.1.2.11. Conclusions on Experimental Results for Orion 216

2.2. Experimental Analysis for Wadjet ... 219

2.2.1. Simulation Model ... 219

2.2.1.1. Datasets ... 219

2.2.1.1.1. Synthetic Dataset .. 219

2.2.1.1.2. Sensor Scope Dataset.. 220

2.2.1.2. Competitive Algorithms .. 220

2.2.1.3. Simulation Parameters .. 221

2.2.2. Experimental Results .. 222

2.2.2.1. Overall Performance ... 222

2.2.2.1.1. Precision ... 222

2.2.2.1.2. Recall .. 224

2.2.2.1.3. Jaccard Coefficient ... 225

2.2.2.1.4. Execution Time... 225

2.2.2.2. Impact of Number of Streams ... 226

2.2.2.2.1. Precision ... 226

2.2.2.2.2. Recall .. 228

x

2.2.2.2.3. Jaccard Coefficient ... 229

2.2.2.2.4. Execution Time... 230

2.2.2.3. Impact of Number of Dimensions ... 231

2.2.2.3.1. Precision ... 232

2.2.2.3.2. Recall .. 233

2.2.2.3.3. Jaccard Coefficient ... 235

2.2.2.3.4. Execution Time... 236

2.2.2.4. Impact of Percentage of Outliers .. 237

2.2.2.4.1. Precision ... 237

2.2.2.4.2. Recall .. 240

2.2.2.4.3. Jaccard Coefficient ... 241

2.2.2.4.4. Execution Time... 241

2.2.2.5. Impact of Confidence Interval .. 243

2.2.2.5.1. Precision ... 244

2.2.2.5.2. Recall .. 245

2.2.2.5.3. Jaccard Coefficient ... 247

2.2.2.5.4. Execution Time... 247

2.2.2.6. Conclusions on Experimental Results for Wadjet 248

Chapter V CONCLUSIONS AND FUTURE WORK ... 251

1. Summary of the Performance Evaluation Results ... 252

1.1. Summary of the Results of Orion ... 252

1.2. Summary of the Results of Wadjet .. 257

2. Future Research ... 260

REFERENCES ... 262

xi

LIST OF TABLES

Table 1. Feature comparison of the outlier detection techniques 77

Table 2. List of symbols ... 84

Table 3. List of parameters for Orion ... 152

Table 4. Confusion matrix .. 153

Table 5. Precisions of all three algorithms for all datasets ... 156

Table 6. Recalls of all three algorithms for all datasets ... 158

Table 7. Jaccard Coefficients for all three algorithms for all datasets 159

Table 8. Execution time (in ms) of all algorithms for all datasets 160

Table 9. List of parameters studied for Wadjet .. 222

Table 10. Precision of Wadjet and DB-Outlier .. 223

Table 11. Recall of Wadjet and DB-Outlier ... 224

Table 12. Jaccard Coefficient of Wadjet and DB-Outlier .. 225

Table 13. Execution time (in ms) of Wadjet and DB-Outlier 226

xii

LIST OF FIGURES

Figure 1. A typical distance-based outlier .. 25

Figure 2. Distance-based outlier detection using data distribution function 26

Figure 3. A typical sliding window .. 43

Figure 4. Choice of data points for the sliding window ... 52

Figure 5. A flowchart for a typical auto-regression-based technique 54

Figure 6. A typical clustering-based outlier detection technique 67

Figure 7. Single data stream model .. 79

Figure 8. Multi-dimensional outliers .. 80

Figure 9. PCA and MCA with other -dimensions .. 87

Figure 10. Linear combination of two -dimensions ... 94

Figure 11. Crossover and Selection .. 96

Figure 12. Binned implementation of kernel estimator .. 103

Figure 13. Update data density function ... 104

Figure 14. Neighbor density/k-distance space .. 106

Figure 15. Outlier detection algorithm ... 108

Figure 16 ProcessData Procedure ... 110

Figure 17. Work flow of Orion ... 111

Figure 18. A generic multiple data streams model with outlier detection 119

Figure 19. Two-phase outlier detection for multiple data streams 120

Figure 20. Flowchart of Wadjet .. 126

Figure 21. Temporal context for cross correlation ... 128

Figure 22. The Wadjet Algorithm .. 135

Figure 23. Impact of neighbor distance on precision for the irrigation data 161

Figure 24. Impact of neighbor distance on precision for the synthetic data 162

Figure 25. Impact of neighbor distance on recall for the irrigation data 163

Figure 26. Impact of neighbor distance on recall for the synthetic data 164

Figure 27. Impact of neighbor distance on Jaccard Coefficient for the irrigation data 165

Figure 28. Impact of neighbor distance on Jaccard Coefficient for the synthetic data 166

Figure 29. Impact of neighbor distance on execution time for the irrigation data 167

Figure 30. Impact of neighbor distance on execution time for the synthetic data 167

Figure 31. Impact of k on precision for the irrigation data .. 169

Figure 32. Impact of k on the precision for the synthetic data 170

Figure 33. Impact of k on the recall for the irrigation data .. 171

Figure 34. Impact of k on precision for the synthetic data ... 171

Figure 35. Impact of k on Jaccard Coefficient for the irrigation data 172

Figure 36. Impact of k on the Jaccard Coefficient for the synthetic data 173

Figure 37. Impact of k on the execution time for the irrigation data 174

Figure 38. Impact of k on the execution time for the synthetic data 174

xiii

Figure 39. Impact of the percentage of outliers on the precision for the irrigation data

 .. 176

Figure 40. Impact of the percentage of outliers on the precision for the synthetic data

 .. 176

Figure 41. Impact of the percentage of outliers on the recall for the irrigation data 177

Figure 42. Impact of the percentage of outliers on the recall for the synthetic data 178

Figure 43. Impact of the percentage of outliers on the Jaccard Coefficient for the

irrigation data .. 179

Figure 44. Impact of the percentage of outliers on the Jaccard Coefficient for the

synthetic data .. 180

Figure 45. Impact of the percentage of outliers on the execution time for the irrigation

data ... 181

Figure 46. Impact of the percentage of outliers on the execution time for the synthetic

data ... 182

Figure 47. Impact of the number of dimensions on the precision for the synthetic data

 .. 183

Figure 48. Impact of the number of dimensions on the recall for the synthetic data ... 184

Figure 49. Impact of the number of dimensions on the Jaccard Coefficient for the

synthetic data .. 185

Figure 50. Impact of the number of dimensions on execution time for the synthetic data

 .. 187

Figure 51. Impact of population count on precision for the irrigation data 188

Figure 52. Impact of population count on precision for the synthetic data 189

Figure 53. Impact of population count on recall for the irrigation data 190

Figure 54. Impact of population count on recall for the synthetic data 190

Figure 55. Impact of population count on Jaccard Coefficient for the irrigation data . 191

Figure 56. Impact of population count on Jaccard Coefficient for the synthetic data .. 191

Figure 57. Impact of population count on execution time for the irrigation data 192

Figure 58. Impact of population count on execution time for the synthetic data 193

Figure 59. Impact of bin count on precision for the irrigation data 194

Figure 60. Impact of bin count on precision for the synthetic data 195

Figure 61. Impact of bin count on recall for the irrigation data 195

Figure 62. Impact of bin count on recall for the synthetic data 196

Figure 63. Impact of bin count on Jaccard Coefficient for the irrigation data 197

Figure 64. Impact of bin count on Jaccard Coefficient for the synthetic data 197

Figure 65. Impact of bin count on execution time for the irrigation data 198

Figure 66. Impact of bin count on execution time for the synthetic data 198

Figure 67. Impact of bootstrapping size on precision for the irrigation data 199

Figure 68. Impact of bootstrapping size on precision for the synthetic data 200

Figure 69. Impact of bootstrapping size on recall for the irrigation data 200

xiv

Figure 70. Impact of bootstrapping size on recall for the synthetic data 201

Figure 71. Impact of bootstrapping size on Jaccard Coefficient for the irrigation data 202

Figure 72. Impact of bootstrapping size on Jaccard Coefficient for the synthetic data 202

Figure 73. Impact of bootstrapping size on execution time for the irrigation data 203

Figure 74. Impact of bootstrapping size on execution time for the synthetic data 203

Figure 75. Impact of number of data rounds on precision for the irrigation data 204

Figure 76. Impact of number of data rounds on precision for the synthetic data 205

Figure 77. Impact of number of data rounds on recall for the irrigation data 206

Figure 78. Impact of number of data rounds on recall for the synthetic data 206

Figure 79. Impact of number of data rounds on Jaccard Coefficient for the irrigation

data ... 207

Figure 80. Impact of number of data rounds on Jaccard Coefficient for the synthetic

data ... 208

Figure 81. Impact of number of data rounds on execution time for the irrigation data 208

Figure 82. Impact of number of data rounds on execution time for the synthetic data 209

Figure 83. Impact of Concept drift on precision for the synthetic data 210

Figure 84. Impact of Concept drift on recall for the synthetic data 213

Figure 85. Impact of Concept drift on JC for the synthetic data 215

Figure 86. Impact of Concept drift on execution time for the synthetic data 216

Figure 87. Impact of number of data streams on precision for the synthetic data 227

Figure 88. Impact of number of data streams on recall for the synthetic data 228

Figure 89. Impact of number of data streams on Jaccard Coefficient for the synthetic

data ... 230

Figure 90. Impact of number of data streams on execution time for the synthetic data

 .. 231

Figure 91. Impact of number of dimensions on precision for the synthetic data 233

Figure 92. Impact of number of dimensions on recall for the synthetic data 234

Figure 93. Impact of number of dimensions on Jaccard Coefficient for the synthetic data

 .. 236

Figure 94. Impact of number of dimensions on execution time for the synthetic data 237

Figure 95. Impact of percentage of outliers on true positives and false positives for the

second phase of Wadjet in synthetic dataset .. 239

Figure 96. Impact of percentage of outliers on precision for the synthetic data 240

Figure 97. Impact of percentage of outliers on recall for the synthetic data 241

Figure 98. Impact of percentage of outliers on Jaccard Coefficient for the synthetic data

 .. 242

Figure 99. Impact of percentage of outliers on execution time for the synthetic data . 243

Figure 100. Impact of percentage of outliers on total number of data processed in the

second phase of Wadjet .. 243

Figure 101. Impact of confidence interval on precision for the synthetic data 245

xv

Figure 102. Impact of confidence interval on recall for the synthetic data 246

Figure 103. Impact of confidence interval on the second phase of Wadjet for the

synthetic dataset .. 246

Figure 104. Impact of confidence interval on Jaccard Coefficient for the synthetic data

 .. 247

Figure 105. Impact of confidence interval on execution time for the synthetic data ... 248

xvi

ABSTRACT

In applications, such as Web clicks and environmental monitoring, data are in the form

of a stream, each of which is an infinite sequence of data points with explicit or implicit

timestamps and has special characteristics, such as transiency, uncertainty, dynamic

data distribution, multi-dimensionality, asynchronous data arrival, dynamic

relationships, and schema heterogeneity of data from different sources. In those

applications, outliers do exist due to many reasons including human error, instrument

error, catastrophe, and malicious behavior. Being able to detect outliers effectively is

critical to many data management and mining tasks. However, not much research has

been conducted to discover outliers in data stream applications, especially for those

involving multi-dimensionality, related, heterogeneous, and asynchronous streams.

In this dissertation, two innovative outlier detection algorithms, Orion and Wadjet,

which take all the data streams’ characteristics into consideration are presented. Orion is

designed for applications where data are from single stream. It looks for a projected

dimension that reveals the outlier nature of multi-dimensional data points with the help

of an evolutionary algorithm, and identifies a data point as an outlier if it resides in a

low density region in that dimension. Wadjet is designed for applications where data are

from multiple, heterogeneous, and asynchronous streams. It has two phases: in the first

phase, it processes each stream independently like Orion, and in the second phase, it

captures and continuously evaluates the cross-correlation, if any, among the data points

from multiple streams, and identifies a data point as an outlier if its value does not

conform to the captured cross-correlation.

xvii

Extensive theoretical and empirical analyses have been conducted to evaluate the

performance of Orion and Wadjet using real and synthetic datasets. The evaluation

results show that both algorithms have better accuracy and execution time than the

state-of-art techniques when applied to homogeneous data stream applications. The

results also show that Wadjet is effective in detecting outliers in heterogeneous data

streams which cannot be handled by existing algorithms.

1

CHAPTER I

INTRODUCTION

1. Objective

The objective of this research is to develop efficient and accurate outlier detection

techniques for single and multiple data streams that address the following

characteristics:

i. The transiency of data items in data streams;

ii. The uncertainty of data items in data streams;

iii. The infiniteness of data streams;

iv. Dynamic data distribution of data streams;

v. Multi-dimensionality of data points;

vi. Dynamic cross-correlation among heterogeneous data points.

In the following sections, we present the background of data streams (Section 2) and

outliers (Section 3), the significance of outlier detection (Section 4) and the major

challenges of outlier detection for data streams (Section 5).

2. Data Streams and Applications

In this era of information, the data assimilation process has changed significantly. The

applications like web clicks, network traffic monitoring, environmental sensor

monitoring, etc. generate a sequence of data records in an orderly fashion. The

2

emerging popularity of this type of applications secured a name for the data model

called Data Streams. A data stream is an infinite sequence of data points ordered by

explicit or implicit timestamps. A data stream is further characterized by continuous

arrival [1], unbounded volume [1], time-varying [2], real-time [3], high arrival rate [4],

uncertainty, drifting concepts [2] and multi-dimensionality. Not all applications share

all the properties but most of them share one important property in that in all cases a

data stream is an ordered sequence of data points. Formally a data stream is a tuple

 where is a sequence of the data points and is an

associated sequence of the timestamps [5].

Environment monitoring is a very popular application of data streams, where a group of

sensors is placed together to monitor environmental attributes like temperature,

humidity, wind speed, and soil moisture. The group of sensors is accompanied by a

radio transmitter. The sensors measure the environmental attributes at a regular interval

and send them to a base station using a radio transmitter [6]. The base station further

processes the data. In these kinds of application, each sensor produces a sequence of

data points with associated timestamps. In an environmental monitoring situation, these

data are important for a specific amount of time and hence we see the transiency of data

points. The data points are transmitted over a radio channel; such transmissions are

susceptible to corruption and interference, which cause the data values to become

uncertain. Additionally, the distribution of data points changes over time. For example,

the data distribution of temperature during the night is different from that during the day

(usually the temperature during the night time is lower than that of the daytime). Last

3

but not least, these applications are envisioned for an infinite amount of time, hence

produce infinite data points.

Another popular data stream application is network traffic monitoring. A typical

network consists of a group of hosts, few switches and routers. In order to maintain

quality of service and reliability, the network instruments are continuously monitored.

Each network equipment reports a group of attribute values to the monitoring station

For example, a router reports, source address, destination address, protocol name,

packet size, etc; a host reports source address, packet size, application id, etc; a switch

reports source mac address, destination mac address, etc. to the base station for

monitoring purposes. Hence, each item produces a data stream consisting of multiple

attribute values [7]. In this application, each data point has an associated timestamp and

is produced online. The number of data points is infinite since the monitoring is a never-

ending process. The distribution of network traffic also changes based on the busy and

idle time of the network. Moreover, the data points from multiple sources are

asynchronous and heterogeneous in nature since each item reports a different set of

attribute values.

3. Outliers

An outlier is a data point which is significantly different from other data points in the

dataset or does not conform to the expected normal behavior or conforms well to a

defined abnormal behavior [8, 9]. In this definition, the phrases “significantly

different,” “does not conform to the expected normal behavior,” and “conforms well to

a defined abnormal behavior” are very subjective and deserve intelligent scrutiny;

4

therefore the definition of outlier bears some vagueness. Outliers are often mentioned as

anomalous data points; an anomalous data point is one that does not conform to the

expected normal behavior. The data points that are not outliers are often called inliers;

we use the term inlier to represent a data point which conforms well to the expected

normal behavior. Outliers in different domains are different in nature from one another.

An outlier in a credit card transaction is very different from an outlier in meteorological

data. Hence, different applications have their own definitions of outliers.

Outliers may appear in a dataset for numerous reasons, like malicious activity,

instrumental error, setup error, changes of environment, human error, and catastrophe.

Regardless of the reason behind outliers, they may be interesting to the user because

they carry some different information for the user than regular data. Some people define

outliers as problems, some people define them as interesting items; but in any case, they

are unavoidable [9, 10]. In brief, outliers are interesting and take different forms in

different types of applications. Chandola et al. [9] classified outliers into three major

categories as follows.

Definition 1. Type I Outliers

Isolated individual data points in a dataset are termed as Type I outliers. By definition

they are the simplest type and very easy to identify. Intuitively they are far from other

data points in the dataset in terms of attribute values.

Definition 2. Type II Outliers

A data point is isolated with respect to the context. Typically, data in this type of dataset

has other contextual attributes (e.g., time and location). An outlier is far from other data

5

points in the same context in terms of value. This is a little bit different from a Type I

outlier; a Type I outlier is a data point isolated from all the other data points in the

dataset. A Type II outlier was first investigated in time series data in the late seventies.

Barnett & Lewis [10] defined Type II outliers as the Additive Outliers (AO) for time

series data. The good thing about additive outliers is that they do not influence the other

data points in the context, hence they are easy to identify [5].

Definition 3. Type III Outliers

A particular group of data points appear as outliers with respect to the entire dataset. No

data point in a small subset is an outlier with respect to the other points in the subset,

but as a group, they are the outliers. For contextual data like time series, the entire

dataset forms a sequence, hence a particular subsequence is an outlier with respect to

the entire sequence. Barnett & Lewis [10] called them Innovations Outliers (IO) for

time series data. The bad thing about innovations outliers is that they influence other

data points of the same context and try to hide themselves; therefore it is difficult to

identify innovations outliers.

A data stream has one temporal context with each data point; so it might have a type II

or type III outlier but never a type I outlier. This is because data streams are considered

as infinite series and the processing has to be online. Therefore at any particular

moment, only a subset of the entire dataset is present, and so a data point cannot be an

outlier with respect to an entire dataset. Regardless of the type of outliers, outlier

detection is a popular branch of application. We discuss the problem of outlier detection

and its significance in the next section.

6

4. Significance of Outlier Detection

Outlier detection refers to the problem of identifying the outliers in a dataset. Since the

definition of outliers is vague and application-dependent, a formal method for outlier

detection is not yet developed. By definition, an outlier detection technique takes a

dataset as input and outputs the outliers. Despite the vagueness of outliers, several

approaches are popular for outlier detection based on the state of the input data. The

first approach is called the supervised approach where the outlier detection technique

assumes the availability of labeled data [11]. A supervised technique collects

knowledge from labeled data and applies the collected knowledge to unlabeled data for

outlier detection. The second approach is called the semi-supervised approach which

requires only the inliers or the outliers to be labeled. Both of these approaches are less

popular due to the lack of labeled datasets. The third and final approach is called the

unsupervised approach which does not require any type of labeling, hence, is very

popular for outlier detection. However, unsupervised techniques often suffer from

higher false alarms [12].

Outliers are less intuitive than regular data points and trigger the curiosity of a user to

investigate their causes, hence outlier detection in a dataset is an important part of the

data assimilation process [6]. Different applications perform outlier detection for

different purposes. One of the most popular purposes is intrusion detection. Typically

intrusion causes outliers, hence the presence of outliers is a good sign of an intrusion.

Other important purposes include novelty detection (e.g. for medical and public health

data), damage detection (e.g. for sensor data), fault detection (e.g. for time series data),

and data cleaning, [9]. Outlier detection for data streams has a wide range of

7

applications and its potential is limitless. Practically every monitoring system requires

online outlier detection in order to detect abnormalities on-the-fly. In this section, we

discuss some examples of outlier detection in two types of applications: single and

multiple streams.

Outlier detection technique for single streams is appropriate where data points from one

stream are independent from those from other streams. In that case each stream can be

processed independently and therefore we call it single stream application. Typical

applications of outlier detection for single stream include fraud detection, fault

detection, error detection, etc. Fraud detection refers to the problem of detecting

unauthorized transactions in bank accounts, credit cards, insurance agencies, cell phone

companies, etc. Here one stream refers to the transactions from one user. This type of

applications carries independent streams because transactions from one user are

independent of transactions from other users. By definition, fraudulent transactions are

significantly different from regular transactions and, hence, can be identified by outlier

detection. Many of these applications are becoming online nowadays where transactions

are monitored on-the-fly. Outlier detection for single data stream has a great potential in

this area where transactions are monitored and fraudulent activities are detected on-the-

fly. Basu and Meckesheimer [13] proposed the use of outlier detection for data streams

to detect instrument faults. Practically this approach can be used in any industry where

machine condition can be monitored on-the-fly. Each machine produces one stream

consisting of the machine status, and the machine statuses from multiple machines are

independent of each other. A malfunction of any instrument can be detected by outlier

detection and, therefore, serious damage due to a catastrophic fault can be avoided. The

8

offline store and process approach detects faults offline, in which case true faults may

go undetected for some time and may have severe consequences. Multiple weather

stations are installed in different geographical locations where each station measures

meteorological attributes. Weather stations are too far from one another that they often

show very little correlation and are processed as independent streams [14, 15]. These

stations are often located in remote places that are hard to monitor directly. They may

produce erroneous values for numerous reasons, such as instrument fault, abrupt

behavior, and erroneous setup [15]. Outlier detection is one way of detecting erroneous

values.

A multiple streams application has more than one stream where data points from one

stream are related to those from all of some of the other streams; in other words, there

are some relationships among some or all streams. Network intrusion detection is an

important application of outlier detection for related streams [9]. Traffic status at

different network devices is continuously monitored; and a data stream is produced

from each device that gives birth to a multiple data streams application [16]. Babu et al.

[7] proposed the idea of network monitoring using data streams. A network monitoring

application collects network packets, packet traces, active measurements of packet

delay, throughput, router configuration data, etc. in order to maintain quality of service

or identify potential threats. The data collected from multiple instruments (router,

switch, host, etc.) in a network are highly related to each other and, therefore, can be

monitored together for potential threats. An outlier detection algorithm can be used to

detect any significant deviation of attribute values which may indicate an intrusion or

fault. For example, a significant increase of incoming requests can be seen as a potential

9

denial of service attack. Outlier detection for related data streams has a good potential

in patient health monitoring applications where a patient’s critical body part is

continuously monitored. In this kind of applications, an outlier may occur because of

several reasons like patient condition, instrument error or reading error. Moreover,

many data in this area take the form of time series, such as Electrocardiograms (ECG)

and Electroencephalograms (EEG) where a combination of multiple time series needs to

be monitored in order to detect patient condition [17]. Environment monitoring within a

small region using a sensor network has become very popular in the last decade [6].

Each sensor produces a sequence of data points with timestamps and sends it to some

centralized server for storage and analysis. Typically these sensors are not far from each

other and data points from one sensor are highly correlated with data points from other

sensors. Like all other data acquisition processes, these sensors are not outlier resistant.

Outlier detection for related data streams is a practical way of monitoring these sensors

in critical applications.

5. Issues of Outlier Detection in Data Streams

Data streams are new compared to the regular data model. Their characteristics

introduce new issues for outlier detection techniques. In this section, we discuss these

issues.

Transient

Data points are transient in a data stream [1, 18]. A particular data point is important for

a specific amount of time, after which it is discarded or archived [1, 19, 20, 21].

Therefore it is important to keep the data point moving [22]; otherwise it may lose its

10

importance. However popular outlier detection techniques rely on the store-and-process

paradigm [23, 24, 25], where the entire dataset is stored in the first phase to construct an

outlier detection model, and each data point is compared to the model or other data

points in the second phase to detect outliers among them. These approaches hold the

data points for a long period of time and do not detect outliers as they arrive; so for

streaming data, these two phase algorithms are inappropriate. A new outlier detection

scheme has to be developed that processes data points online.

Requirement 1. An outlier detection technique cannot hold the entire dataset

indefinitely and compare each data point to the other data points to detect the outlier-

ness of ; rather the outlier-ness of should be decided immediately once arrives.

Notion of Time

Unlike regular data, stream data include a notion of time. Each data point has a

timestamp associated with it. The association can be explicit (where time is a data

attribute) or implicit (when the exact time is not important, but the order of data items is

important) [1]. The timestamp gives the temporal context for each data point; thus each

data point needs to be processed based on its own temporal context. Outlier detection is

no exception; by definition, a data point is an outlier if it has a significantly different

value compared to other data points; but if we take temporal context into consideration,

a data point must be compared to the other data points with the same temporal context

(Type II outlier). Typical outlier detection techniques do not consider the temporal

context of the data points [23, 25], rather they compare a data point to the entire dataset;

this approach is inherently flawed for data streams since the outlier-ness of a data point

can only be detected by comparing it with the data points seen so far. A temperature of

11

100ᵒF may not look like an outlier if we consider the temperatures of an entire year, but

it would certainly look like an outlier if we consider the temperatures of winter days

only. In order to detect outliers meaningfully, an appropriate temporal context has to be

selected first (if not given by the user) and then, every data point has to be processed

based on its temporal context. Moreover an out-of-order data point should be processed

based on its temporal context [22] as well.

Requirement 2. A data point has to be compared with the other data points with

the same temporal context (occurred within the time period which is semantically

related to the timestamp of the data point).

Notion of Infinity

Data streams are seen as infinite sequences of data points as they keep coming from a

data source indefinitely. The most significant implication of the notion of infinity is that

at any particular time, the entire dataset is not available, i.e., a random access to the

entire dataset is not possible for outlier detection [1]. Many outlier detection techniques

store the entire dataset first and find the outliers later [10]. An outlier detection

technique for data streams cannot store all the data points seen so far because the

number of data points is infinite; rather it should store only the summary of the data

points seen so far using finite memory/resource and detect outliers based on the

summary. For example, for outlier detection techniques that determine whether a data

point is an outlier based on ’s neighbor data points, in order to compute the

neighbors, a data density function should be used instead of relying on the availability

of the entire dataset and using the pairwise distances of all the data points in the dataset.

On top of this, the data density function has to be computed incrementally. Thus an

12

outlier detection model has to be incremental and cannot assume the availability of the

entire dataset.

Requirement 3. In order to detect the outlier-ness of a data point , the outlier

detection technique should compare with the summary of the other data points,

instead of directly comparing to the other data points. In addition, the summary

should be computed incrementally.

Arrival Rate

Data points are continuously coming from a data source. The arrival rate might be fixed

or variable but every application must finish processing before the next data point

arrives [4], i.e., if the outlier detection is a binary classification task, then the

classification has to be done before the next data point comes. If the outlier detection

technique fails to process a data point before the next one arrives, the result is flooding.

Typical outlier detection techniques compare each data point to all other data points in

the dataset in order to detect outliers. If the dataset size is too large, these approaches

would require a vast amount of time and may not be able to keep up with the arrival

rate. A reasonable accuracy can be achieved if the data point is compared to a much

smaller subset and the size of the subset should be decided based on the available

processing time. A similar idea is also applicable to outlier detection model construction

[26]. Hence the outlier detection time is bounded by the arrival rate of data streams.

Requirement 4. The set of data points or the summary of the data points, to which

the current data point is compared to detect outlier-ness, should be adjusted based on

the available processing time.

13

In some data stream applications like sensor networks, the data arrival rate is not fixed

[26], but varies over time. In this kind of applications, the available processing time

between every two consecutive data points is not the same. If a long period of time is

available, the accuracy of outlier detection could be excelled utilizing the time before

the next data point arrives; if a short period of time is available, the data point needs to

be processed before the next data point arrives which may compromise outlier detection

accuracy [26]. Hence the processing has to be adaptive.

Requirement 5. In case of dynamic arrival rate, the set of data points or summary

of the data points, to which the current data point is compared to detect outlier-ness,

should be adjusted dynamically based on the available processing time.

Concept Drift

The data distribution in a data stream changes over time [2]. This might happen because

of changes in environments, changes of trends, etc. This phenomenon is known as

concept-drift [2]. Many outlier detection techniques use data distribution to identify

abnormal behavior [10]. Since data distribution for data streams changes over time,

outliers detected for one data distribution might not be the same for another data

distribution. For example, the distribution of traffic in a traffic monitoring system

during the mornings may be entirely different from the distribution during the evenings;

therefore, any assumption about data distribution may lead to incorrect results. Many

statistical and machine learning based techniques assume a fixed data distribution for

outlier detection [10, 27, 28]; they use a training data set to construct the outlier

detection model and later detect outliers based on the model. The problem with this

approach is that the training data set represents a fixed data distribution which may

14

produce meaningful results for some time, but if a concept drift occurs, the same

training data set (or the same outlier detection model) may no longer produce

meaningful results.

Requirement 6. An outlier detection technique for data streams should not

assume any kind of fixed data distribution.

Uncertainty

Data points in a data stream are further characterized by their uncertainty. Data sources

such as sensors in a sensor network are exposed to an open environment. They are

vulnerable to external events. The unreliability of the data points in a streaming

environment is one of the key challenges for working with data streams [29]. Here the

general term uncertain is used to describe any element that cannot be relied upon with

complete confidence; however it has many facets like Uncertainty (the fact is uncertain,

i.e., the attribute value cannot be measured with sufficient confidence), Imprecision (the

information is not as specific as it should be), Vagueness (including elements that are

inherently vague), Inconsistency (more than one mutually exclusive assertion), and

Ambiguity (lack of complete semantics) [30]. On the contrary, existing outlier detection

techniques assume data points’ values to be correct; therefore, the dissimilarity between

two data points can be easily measured by distance (Euclidian or Manhattan) or cosine

similarity. However, distance or cosine similarity fails to measure the

similarity/dissimilarity between two data points if they are uncertain; and thus outlier

detection schemes that use such measure of similarity would inherently fail to detect

outliers for data streams [22, 29].

15

Requirement 7. An outlier detection technique for data streams should use a

similarity metric that can measure the similarity between two uncertain data points.

Moreover the uncertainty may arise because some data points could be entirely missing

or out-of-date in a data stream which is referred to as imperfection by Stonebraker et al.

[22]. Data points may arrive late or even entirely fail to arrive in a data streaming

environment. An outlier detection technique must process the existing data regardless of

the fate of the failed data points. Consider an example where a senor produces one data

point every hour and an outlier detection technique that requires previous three hours of

data to decide the outlier-ness of the current data point. Now if the previous two hours

of data failed to arrive before the current data point, the fate of the current data point

must be decided based on whatever data to which the technique has access (i.e., the

current data point and the data point that arrived three hours ago since other two data

points in the middle are missing). The problem can be worse if a data point arrives out-

of-date. In that case the out-of-date data point must be processed based on its own

temporal context. To the best of our knowledge, no existing outlier detection technique

processes out-of-date data based on their temporal context. Comparing a data point with

other data points having different temporal contexts to identify outliers would produce

erroneous results. For example, if the two missing data points arrive some time later, the

outlier detection technique needs to process them based on the three hours of data points

that are supposed to arrive before them.

Requirement 8. The outlier-ness of an out-of-order data point should be decided

by comparing it with the data points that have the same temporal context as that of the

out-of-order data point.

16

Multi-dimensionality

Although multi-dimensionality is not a data stream specific issue, it is worth discussing

because of its impacts on outlier detection. Measuring the similarity of a data point to

other data points in the dataset is a crucial part of outlier detection because an unusual

data point must have very few data points that are similar to it in the dataset. Many

outlier detection techniques use Euclidian or Manhattan distance to measure the

similarity between data points [31, 32], but Euclidian distance becomes qualitatively

meaningless to represent such similarity and causes instability of nearest neighbor for a

high number of dimensions [33, 34]. This is because the distance between two similar

data points and the distance between two non-similar data points are approximately

equal for a high number of dimensions, which in turn makes distance-based outlier

detection algorithms less effective. Furthermore, many algorithms use data density

function, but the multi-dimensional data density space grows exponentially with the

number of dimensions; hence data density function cannot be computed easily [35].

Arguably, outlier detection in a multi-dimensional data stream can be seen as outlier

detection in a set of single dimensional data streams, but this approach is fundamentally

flawed because it handles all dimensions independently and fails to address the

correlation among dimensions.

Requirement 9. An outlier detection technique for data streams should use a

similarity metric that can measure the similarity among the data points with a large

number of dimensions.

17

A successful outlier detection technique for single data stream should address the

aforementioned requirements. For related data streams, besides those requirements,

additional ones arise, which we discuss in the next paragraphs.

Cross-correlation

Multiple data streams produce multiple data points with explicit or implicit timestamps.

Some outlier detection techniques assume that data points from multiple data streams

should be close to one another [32, 36] and a data point is an outlier if it is far from

other data points from other streams at any point in time. This definition is too

restrictive because in many applications, such as Chlorine monitoring and temperature

monitoring in the same building, data points from different streams are cross-correlated

although their values could be far from one another [37]. A data point is considered to

be an outlier if it violates the expected cross-correlation (nonconformist to other

values). The temperatures from different cities from different states could be very

different from one another but they could be related. In order to detect outliers, the

outlier detection technique should find the cross-correlation among the data points from

different data streams and compare them to the data points based on their

explored/expected cross-correlations.

Requirement 10. The outlier detection technique should be capable of detecting

outliers that are non-conformist to the other data points with respect to their relationship

with other data points.

Asynchronous Data Points

Data sources in a multiple data streams application may be independent of one another;

and thus they may generate data points with different arrival rates. These data points are

18

asynchronous [38]. In order to identify whether a data point is an outlier or not, the

outlier detection technique has to choose an appropriate temporal context not only for

the same stream but also for other streams. The data point with a predefined temporal

context can be compared with other data points with the same temporal context in other

streams for outlier detection. Since data points do not arrive synchronously, it is not

only difficult to choose an appropriate temporal context from all data streams, but also,

at a particular timestamp, some data points from some data streams may be present

while those from other data streams may not, and thus might be considered as missing

data. To the best of our knowledge, no existing outlier detection technique is designed

to tackle this kind of missing data.

Requirement 11. The outlier-ness of a data point should be decided as it arrives,

minimizing the effect of missing data due to asynchronous processing.

Furthermore, the asynchronous behavior of multiple data streams hinders synchronous

processing. Some outlier detection schemes for data streams assume all data points from

multiple data streams to arrive together [32, 39] and then process them together to

detect an outlier. However, in practical situations, it is difficult to achieve

synchronization for different data sources [6]. Moreover the processing of a data point

cannot be delayed and wait for other data points from other data streams to arrive.

Therefore the data points from multiple data streams may need to be processed and

outliers may need to be detected asynchronously. However, in that case it would be

extremely difficult to exploit the cross-correlations among the data points from multiple

streams. If an outlier detection technique ignores the cross-correlations completely, it

19

will fail to exploit the advantage of having multiple data streams, and might produce

less accurate results.

Requirement 12. The outlier detection technique should have the capability of

learning cross-correlation among streams and detecting outliers based on the learned

cross-correlation asynchronously.

Dynamic Relationship

The cross-correlations among the data points from multiple data streams may vary over

time and this dynamic relationship is due to two phenomena: (1) asynchronous behavior

and (2) concept drift. The data point from multiple data streams have temporal

correlations which may vary with the varying time differences among the data points.

Imagine two temperature sensors are mounted in a close proximity to detect

temperatures. One sensor produces one data point every 3 hours and another sensor

produces one data point every 5 hours. The time difference between the most recent

data points from the two sensors may vary from 0 to 3 hours. In that case the temporal

correlations among them also vary over time. However typical outlier detection relies

on comparing a data point to its cross-correlated data points; if the relationship changes

over time, the cross-correlation among the data points from multiple streams has to be

monitored continuously.

Concept drift is the second driving factor for dynamic relationship. If concept drifts

occur independently in multiple data streams, the correlations among the data points

from multiple streams vary as well. Thus the relationships among the data points

become dynamic.

20

Requirement 13. An outlier detection technique for multiple streams should

continuously monitor their cross-correlation and compare a data point with only other

cross-correlated data points to decide its outlier-ness.

Heterogeneous Schemas

In a multiple data streams application, different data streams might have different

schemas [38]. Comparing multiple data points with different schemas is a complicated

problem and the definition of outlier is even vaguer in that case. By definition, a data

point is an outlier if it is a non-conformist compared to other data points, that is, if it has

a value considerably different from those of other data points. However, if we consider

a heterogeneous set of data points where all data points have different attributes, it

becomes intrinsically difficult to identify which data point is a non-conformist. Imagine

two data streams with one producing temperature and another producing humidity of

any location. The direct comparison of temperature to humidity does not make sense

and, hence, neither of them can be detected as an outlier on the basis of the other.

Nonetheless, it is perceivable that temperature and humidity might have a correlation

between them and the observed values of temperature and humidity might violate the

predefined or previously traced/predefined correlation and, therefore, one of them is an

outlier. Although intuitively this kind of heterogeneous comparison may produce

meaningful outliers, it requires a new definition of outliers unlike what we have seen

before.

Requirement 14. An outlier detection technique for multiple data streams should

be able to compare data points with the same or different schemas in order to detect

outliers.

21

Any effective outlier detection technique for data streams has to meet the above

requirements. While research on other topics for data streams has been proposed, such

as system design [40, 41], query processing [19, 42, 43, 44], and data mining [2, 45,

46], very little research has been done for outlier detection. To fill the gap, in this

dissertation, we propose two outlier detection techniques for single and multiple data

streams, called Orion and Wadjet.

6. Contribution

Outlier detection is an integral part of any data acquisition process. Due to the lack of a

true online outlier detection technique, real applications often use offline outlier

detection techniques or manual processes [6]. The outlier detection techniques that exist

in the literature mostly deal with the regular data model, which are not suitable for

outlier detection in data streams. A very few outlier detection techniques for data

streams exist in the literature [26, 31, 36, 47, 48]; but they either do not consider all the

issues for data streams or require extensive human interventions. Some outlier detection

techniques for multiple streams assume all the data points at any specific time period

from multiple streams are equal which we find too restrictive. In this work, we propose

two outlier detection techniques which tackle the issues of data streams. The first

technique, Orion, is designed for single data stream and the second technique, Wadjet,

is designed for multiple data streams. Both of our outlier detection techniques address

the research issues regarding their respective data streams.

Orion is designed for single stream; however Orion is also applicable for the application

with multiple streams where each of them is independent from one another. For each

22

stream, when a data point arrives, Orion identifies the data point to be an outlier if it is

considerably different from the other data points Orion already received from the same

stream. As data points are multi-dimensional, to detect outliers, Orion uses the concept

of projected dimension (called -dimension). Orion finds an appropriate -dimension

along which the outlier nature of a data point would be revealed and computes a data

density function along that dimension. The data density function used is computed

online and incrementally and considers the uncertainty, transiency, temporal relation

among the data points and varying data distribution. Orion identifies a data point to be

an outlier if it is considerably different from other data points along any -dimension.

The second technique, Wadjet, is designed for multiple streams where the data points

from one stream may or may be related to those from the other streams (we call it cross-

correlation). Wadjet captures the cross-correlation among the data points from multiple

streams that arrive at the same time. A data point is considered as an outlier if it shows

non-conformist behavior to the other cross-correlated data points. Wadjet computes the

cross-correlation among the available data points at any point in time; hence it works

for an asynchronous set of data points from different streams. Wadjet is a two-phase

algorithm: in the first phase, it uses Orion and detects outliers based on the temporal

correlations of data points from the same stream, and in the second phase, it detects

outliers based on the cross-correlations, if any, among the multiple streams. Wadjet

continuously monitors the cross-correlations among the streams to effectively handle

the dynamic relationships among the streams.

23

To the best of our knowledge, no technique for data stream outlier detection existing in

the literature considers all the issues of data streams like our techniques, Orion and

Wadjet.

In this dissertation, we also present the complexity analysis in terms of . time and space

for Orion and Wadjet. , In addition, we report extensive experimental studies comparing

our proposed techniques with the state of the art algorithms in terms of accuracy and

execution time using real and synthetic datasets. In almost all cases, irrespective of

datasets, Orion and Wadjet outperform existing techniques.

7. Organization

The rest of the dissertation is organized as follows: Chapter II reviews the existing work

related to outlier detection with a focus on data streams. Chapter III describes our

approaches and their implementations. Chapter IV presents the analytical results as well

as the experimental results studying the performance of our approaches. Finally Chapter

V provides conclusions and future research directions.

24

CHAPTER II

LITERATURE REVIEW OF OUTLIER DETECTION

TECHNIQUES

Data stream management is a relatively recent research area compared to outlier

detection; very few of the existing outlier detection techniques address the dynamic

characteristics of data streams. Most of the outlier detection techniques for data streams

are adopted from the ones for regular data. In this chapter we present some of the

existing outlier detection techniques for data streams as well as regular data. These

existing techniques can be classified into six categories: distance-based, density-based,

sliding windows-based, auto-regression-based, statistics-based, and clustering-based.

We discuss each of these categories with its state of the art representative techniques in

this section.

1. Distance-Based Outlier Detection Techniques

Distance-based outlier detection techniques use distance to measure the similarity

between two data points. A data point is defined as an outlier if it does not have enough

similar data points.

1.1. Knorr and Ng’s Distance-Based Outlier Detection

The first distance-based outlier detection technique was proposed by Knorr and Ng

[23]and is very popular for outlier detection. According to Knorr and Ng [23, 49], a data

point is called -outlier if has a smaller number of neighbor data points within

a radius than a user-defined minimum number of neighbors . The data point is called

25

a distance-based outlier with respect to the radius and the number of neighbor data

points [23, 49]. According to these techniques, an outlier has fewer than number of

neighbor data points within the radius .

r

d1

d2

d3d4

d5d6

d7

Figure 1. A typical distance-based outlier

Figure 1 illustrates the distance-based outlier technique where are seven data

points. For and a given each data point in Figure 1 has at least 2 neighbor data

points within the radius except ; hence is called a -outlier or distance-

based outlier. The distance-based definition of outliers is very popular and unifies

statistics based outlier detection using proper choice and [31]; because it does not

assume any specific kind of data distribution [5, 23].

This technique does not always require pair-wise distances; it can also be defined based

on data distribution or probability density distribution of data values. Knorr and Ng [49]

showed the relationship between distance-based outliers and data distribution. Instead

of computing the true neighbor count of a data point, this approach computes the

neighbor density obtained from the data distribution. Given a data distribution function

(in short, data distribution) a data point with value and a radius the

26

neighbor density is defined as ∫

. The data point is an

outlier if the neighbor density is lower than the user-defined neighbor density ; hence,

 is an outlier if . The data point is a distance-based outlier based on the

given data distribution. In most cases the values and are taken as user-defined

parameters.

v
x

f(x)

r r

Figure 2. Distance-based outlier detection using data distribution function

Figure 2 shows the basic idea of distance-based outliers based on the data distribution

function. We integrate the data distribution function from to to obtain

the neighbor density within the specified radius. By comparing the obtained neighbor

density with the user-defined maximum density , we identify the outliers. The

maximum and minimum density could be 1 and 0.

1.2. Detecting Current Outliers: Continuous Outlier Detection over Time-

Series Data Streams (DB-Outlier)

DB-Outlier is a continuous distance-based outlier detection algorithm proposed by

Ishida and Kitagawa [32]. This algorithm detects distance-based outliers given user-

defined distance and minimum neighbor count ; a data point is an outlier if it has

27

fewer than neighbors within distance . DB-Outlier adopts the idea of cell-based

outlier detection proposed by Knorr, Ng and Tucakov [50] and takes the cell based

outlier detection to the next level called “cell based outlier detection for data streams.”

This algorithm assumes multiple data streams for outlier detection, compares the data

points across the data streams and detects distance-based outliers.

If the number of data streams is , it assumes there exist data points

 at

any particular point in time . Each stream produces one data point at time ,

 are the data points from streams

 respectively. To detect the

outliers
 is compared to all

 , where and , so outliers have been

detected among

 . We will discuss the DB-outlier in a step-by-step manner.

Step 1: DB-Outlier constructs a dimensional grid structure in a -dimensional

hyperspace where each cell has a diagonal of size

 (length of a side

).

 are called axes and each cell in the grid is represented by
 where

 is the value of -th axis .

Step 2: DB-Outlier defines two types of neighbor of a cell called and .

neighbors are adjacent cells. The maximum distance between two data points within the

same cell is . DB-Outlier defines in a similar fashion. includes all data points

within the cells that can be within distance from a cell.

Step 3: At , DB-Outlier distributes the data points into appropriate cells based on

their values. The number of data points at any particular cell is defined by . The

28

number of data point in neighbor cells is denoted by and the number of data

points in neighbor cell is represented by .

Step 4: In this step, DB-Outlier colors the cells based on the number of data points each

cell and its and neighbors have. A cell is colored red if where is the

minimum neighbor count defined by the user. A cell is colored pink if

unless it was marked red before. A cell is colored yellow if and not

already otherwise. Rest of the cells is colored as white. Interesting remarks can be made

based on the color of the cell. No data point belongs to red and pink cells are outlier

because they have more than neighbors within . All the data points belong to yellow

cells are outliers because they don’t have number of outliers within .

Step 5: The rest of the data points (data points that belong to white cells) can be outliers

or inliers. DB-Outlier calculates the distance between a data point and each of the

data points that belong to neighbor cells of the cell to which resides. If is the

number of data points that has the distance lower than , then is an outlier if

 ; otherwise it is an inlier.

Step 6: DB-Outlier uses differential processing to detect the outliers in subsequent time

steps (for). Ishida and Kitagawa [18] argue that data values for streams do not

change very often, but rather they are stationary. Every time a set of data points arrives

DB-Outlier identifies the data points that changed from the previous data points and

process them.

29

Step 7: DB-Outlier re-distributes the data points into the cells again and re-color the cell

based on its new , neighbors and find the outliers within the data points the values

of which have changed.

DB-Outlier processes a set of data points coming from multiple data streams all

together and detects the outliers among them based on their pair-wise distances. This is

online processing of data streams as they come by and only when their data points are

changed from the previous time step; thus the processing is incremental. DB-Outlier

does not store any data point for future processing, thus it maintains transiency of data

streams as well. DB-Outlier processes round by round and the previous data rounds may

affect efficiency but does not affect accuracy, thus the concept drift of a single data

stream may not affect DB-Outlier.

Although DB-Outlier maintains the transiency very well, it never exploits temporal

correlations among the data points for accuracy. Interestingly, DB-Outlier is not

affected by concept drift of a single stream. This is because it identifies whether a data

point is an outlier by comparing it with other data points from other data streams

only. So if a concept drift occurs in one stream, it could be different from data points

from other streams, in that case it is not necessarily an outlier.

The biggest assumption DB-Outlier makes is fixed arrival rate. DB-Outlier assumes all

data points from all streams come together and they have the same arrival rate. This

assumption requires synchronization among the data streams which is very difficult to

achieve and maintain [6]. This kind of architecture is popular among some sensor

30

networks but, in general, it is difficult to maintain synchronization for distributed

objects.

DB-Outlier incorporates multi-dimensional objects but Euclidian distance for multi-

dimensional data is not very effective to discriminate inliers from outliers. Moreover,

DB-Outlier works for homogeneous data streams only as it does not work with data

points of different data types. DB-Outlier does not address the uncertainty either since it

asserts full confidence on every data point. The implicit assumption for DB-Outlier is

that every data point from multiple streams should have the same value. However, this

assumption is very restrictive for data streams. Data points from data streams could be

correlated but may not be exactly the same. Moreover, due to dynamic distribution of

data streams, the relation among the data points from multiple streams changes over

time. Hence this kind of rigid assumption on data points makes the application of this

technique limited.

1.3. Efficient Algorithms for Mining Outliers from Large Data Sets (EAMO)

EAMO is a distance-based outlier detection approach, however instead of specifying the

distance and minimum nearest neighbor , it defines the outliers differently [51]. Given

a value for minimum nearest neighbor , for each data point EAMO finds the distance

for the -th nearest neighbor. The top data points with the highest distance for the -

th nearest neighbor are identified as outliers. Instead of using a nested loop algorithm to

find the top outliers, EAMO proposed an efficient partition based algorithm for

outlier detection. The next following paragraphs discuss EAMO in a step by step

fashion.

31

Step 1: EAMO partitions the entire dataset into small groups using the clustering

algorithm BIRCH [52]. Each group is called a partition, .

Step 2: EAMO computes the -th nearest neighbor distance for each data point in each

partition. The distance to the -th nearest neighbor for data point is denoted by

 . Once the is computed for all data points in a partition, EAMO

computes the upper and lower bound P.upper and P.lower for the -th nearest neighbor

of each partition such that and where

is a data point in a partition.

Step 3: EAMO identifies the candidate partitions that may contain outliers in this step.

Let us assume is the lower bound for the outliers having the maximum -

th nearest neighbor distance. So the partitions with the upper bounds smaller than

 cannot contain any outliers; hence, the candidate partitions are only the

partitions that have upper bounds greater than , meaning the partitions with

 . The can be calculated from the lower bound of a

partition such that where is the -th partition and

has at least data points.

Step 4: EAMO processes the data points in the candidate partitions only. In order to

compute the for data point in candidate partition , EAMO needs to

consider only the neighboring partitions that are within distance . Thus,

EAMO considers each candidate partition in batch and finds the top outliers having

the maximum -th nearest neighbor distance.

32

Instead of relying on two independent parameters, neighbor distance and minimum

neighbor count, EAMO relies on the -th nearest neighbor distance. This approach is a

little bit difficult for traditional distance-based outliers. In many cases, working with

two independent parameters like neighbor distance and minimum neighbor count for

distance-based outliers is very difficult. Hence, EAMO solves that problem.

The efficient partition based algorithm is significantly faster than the traditional nested

loop algorithm. EAMO is flexible enough to incorporate any kind of distance function

and clustering algorithm.

This algorithm is not designed for data streams and it is hard to re-engineer this

algorithm to make it work for data streams. This is because this algorithm requires

multiple passes through the datasets, hence it is not suitable for outlier detection for data

streams. In addition, this algorithm does not handle other data streams issues like

transiency, concept drift, infiniteness, etc. Hence it is completely inapplicable for data

streams.

Moreover, EAMO uses a popular distance metric, such as Euclidian and Manhattan

distance, to partition the data points. However, Euclidian and Manhattan distances are

useless for outlier detection for high dimensional space, hence EAMO can only work

for a small number of dimensions.

1.4. Distance-Based Outlier Detection for Data Streams (DBOD-DS)

Sadik and Gruenwald proposed a distance-based outlier detection technique, DBOD-

DS, for data streams [47]. To identify whether a data point is an outlier, DBOD-DS,

instead of computing the neighbor count for uses a data density function to capture

33

the trends of the data points and calculates the neighbor density of . The neighbor

density of a data point in data streams is analogous to the neighbor count of a data point

in regular (non-stream) data. They designed an effective data density function that

handles transiency, uncertainty, concept drift and infiniteness of data streams. DBOD-

DS consists of the following steps:

Step 1: DBOD-DS creates a data density function which is updated as each new data

point arrives. DBOD-DS computes the neighbor density of the data point within the

user defined distance by integrating the data density function within distance .

Step 2: DBOD-DS identifies as an outlier if ’s r neighbor density is smaller than

the user defined minimum neighbor density; otherwise DBOD-DS identifiers as an

inlier.

Step 3: DBOD-DS updates the existing data density function so that it always

represents the most recent trend of the data. DBOD-DS computes the kernel value of

using a kernel function, which distributes the weight of occurrence of into its

neighboring values.

Step 4: DBOD-DS updates the existing data density function by adding the kernel value

of to the existing data density function. In order to give the highest weight to the

most recent data point, DBOD-DS decays the weight of the older data points in the data

density function and adds the new kernel value of to the data density function.

Although DBOD-DS addresses all the characteristics of data streams, it is designed for

single dimensional data only. In does not work for multi-dimensional data points.

34

Moreover, it assumes multiple data streams to be always independent of one another

and, hence, cannot be applicable to related data streams.

1.5. Advantages

The underlying idea of distance-based outlier detection techniques is to separate a data

point which has very few data points within a close proximity from other data points.

According to Hawkins’ definition [53] an “outlier would be an observation which

deviates so much from other observations as to arouse suspicions that it was generated

by a different mechanism.” The definition of distance-based outliers matches Hawkins’

definition very well.

Any discordancy test for outlier detection can be modeled using distance-based outliers

[23], which means any statistical technique can be replaced by a distance-based outlier

detection technique. Knorr and Ng also proved that distance-based outlier detection

techniques can generalize auto-regression-based outlier detection techniques as well

[23]. Thus, a distance-based outlier detection technique can be changed to any other

technique by changing its two parameters, radius and neighbor density. Many

approaches use a distance-based outlier detection technique as a basis and perform

additional tasks for suitable data representation [32, 54] and knowledge discovery [36,

55].

1.6. Disadvantages

The first drawback of distance-based outlier techniques is that they require the concept

of distance/proximity within two data points like clustering algorithms where data

points are clustered into some groups based on the similarities between them [56, 57],

35

but clustering techniques analyze data with respect to a global view, whereas the

distance-based approaches consider the nearest data points. The second and very

important drawback is that the performance of distance-based outlier detection

techniques relies on the user-defined radius and neighbor count/density .

Distance-based outlier detection works for only a small number of data dimensions

[58]. For a large number of data dimensions, the distance between two data points fails

to measure the similarity among the data points and hence, distance becomes unusable

for similarity measurement [34, 58]. Zheng pointed out that this phenomenon is true

regardless of definition of local neighborhood or -nearest neighbor and neither of them

makes any sense for high dimensional data [58]. Practically, the degree of outlier-ness

based on distance metric in a high dimensional space is the same for all data points.

Thus distance-based outlier detection has no use for high dimensional datasets.

Distance-based outlier detection was designed for regular data and is not suitable for

data streams due to two reasons. First, it requires at least two passes for distance

calculation or data distribution function calculation; therefore, we cannot use distance-

based approaches incrementally for unbounded data streams. Second, distance-based

outlier detection based on a data distribution function accommodates the uncertainty

issue of data, but it assumes a fixed data distribution; thus is cannot be used directly for

a dynamically changing environment like data streams.

2. Density-Based Outlier Detection Techniques

As reviewed in Section 1, distance-based outlier detection is very popular and

statistically sound but it requires two user-defined parameters, and . These two

36

parameters vary a lot based on data; if the data points are far from one another, the

radius becomes large and the neighbor count becomes small and vice versa. It is

often becomes difficult for the user to adjust the parameters without having explicit

knowledge about the dataset or the algorithm. To tackle the problem of user-defined

parameters, density-based outlier detection techniques were proposed. Below we

review the representative ones.

2.1. LOCI: Fast Outlier Detection Using the Local Correlation Integral

Papadimitriou et al. proposed LOCI, a density-based outlier detection technique [26].

LOCI uses a multi granularity based deviation factor (MDEF) for outlier detection.

MDEF is computed by comparing the neighbor count of a data point to the average

neighbor count of all the data points in a local neighborhood of . If has a very few

neighbors and the other data points in its local neighborhood have significantly more

neighbors, then is very likely to be an outlier; but if all the other data points have very

few neighbors as well, then it is probably the common trend of the dataset, and thus is

not an outlier. Based on this fact, Papadimitriou et al. proposed a multi granularity

based deviation factor [25, 59] which calculates the deviation of a data point. LOCI

identifies as an outlier if the MDEF value of is three standard deviations apart

from the average MDEF value of all the data points in the local neighborhood of . The

MDEF value of depends upon the neighbor count of and the average neighbor

counts of all the data points; thus the radius does not affect the MDEF value very much

[25, 59]. LOCI consists of the following steps:

Step 1: For a data point , LOCI computes its number of neighbors.

37

Step 2: Given a local neighborhood radius , LOCI computes the MDEF value of by

comparing the neighbor count of to the average neighbor count of the data points in

the local neighborhood of .

Step 3: If the MDEF value of is three standard deviations of MDEF apart from 0,

is identified as an outlier.

Step 4: If a data point is not identified as an outlier in Step 3, LOCI repeats Steps 2 and

3 with a different neighborhood radius . This process continues until all neighborhood

radiuses are checked. LOCI stops processing once it is identified as an outlier for any

neighborhood radius .

LOCI is not designed for data stream applications; hence it does not address the

transiency and temporal relationship among the data points. All the data points are

treated equally and the temporal dimension is completely ignored in LOCI. LOCI is not

a single-pass algorithm; so LOCI is not online or incremental.

LOCI does not address data uncertainty or concept drift. Once a neighborhood is

established, the MDEF values of all the data points of a neighborhood are calculated

based on the established neighborhood; therefore LOCI assumes a constant data

distribution. Due to the above disadvantages, LOCI is not directly applicable to data

streams.

2.2. LOF: Identifying Density-Based Local Outliers

Like LOCI, LOF [24] also uses the local density information in order to adjust the

common trend of the data points. Instead of computing the neighbor count of , LOF

38

computes the distance from to the -th nearest neighbor of , which is called -

distance, for outlier detection. LOF defines reachability distance from -distance which

is not sensitive to statistical fluctuations of distances of data points from . LOF

computes the local reachability density of by comparing the reachability distance of

to the reachability density of other data points within a neighborhood. Local

reachability density is further used to measure the outlier-ness of a data point. The step-

by-step procedure of LOF is as follows:

Step 1: For each data point , LOF computes the -distance of , -distance (), for a

given value of , which is defined as the distance between and its -the nearest

neighbor.

Step 2: LOF computes the reachability distance of with respect to other data points

within its -distance. The reachability distance between and any other data point is

the Euclidian distance between and or the -distance of if the -distance of is

greater than the Euclidian distance between and .

Step 3: For each data point , LOF computes its local reachability density , ,

which is defined as follows:

(∑)

| |

where is the number of data points within -distance of and .

The local reachability density of represents average reachability distance of within

its local neighborhood.

39

Step 4: For each data point , LOF computes its LOF value, which is the average

relative local reachability density and is defined as

(∑

)

| |

Step 5: According to definition of the LOF, if is deep inside the group of data points,

its LOF value is close to 1 and therefore is very unlikely to be an outlier, and if is an

outlier, its LOF value should be considerably higher than 1. Thus based on the

application, the user has to choose the cut-off limit for the LOF and a data point is

identified as an outlier if it has a higher LOF value than the user-defined LOF value.

Although this algorithm defines the outlier-ness of a data point based on its local

density only, it requires multiple passes through the dataset (-distance, reachability

distance, local reachability density and LOF all require multiple passes); hence it is not

applicable for data streams as it would require the entire dataset to be available after the

first pass.. Moreover, this approach also ignores the other data stream characteristics

like uncertainty, concept drift, and infiniteness. The success of this algorithm depends

on the effectiveness of the distance function that measures the similarity between data

points.

2.3. Online Outlier Detection for Data Streams (A-ODDS)

A-ODDS is a density based outlier detection technique proposed by Sadik and

Gruenwald [60]. A-ODDS makes use of two concepts Global Density Factor (GDF) and

Local Density Factor (LDF) in order to detect the outlier-ness of a data point. The GDF

of a data point is the relative deviation of neighbor density of with respect to the

40

average neighbor density of all data points and the LDF of is the relative deviation

of neighbor density of with respect to the average neighbor density of the data points

within the current concept. Since data streams are characterized by concept drift, A-

ODDS also includes an approach to detect concept drifts. The data points within two

consecutive concept drifts are considered as the data points that belong to the same

concept. The details of the algorithm are as follows:

Step 1: When a data point arrives, A-ODDS computes its neighbor density using the

data density function discussed in the DBOD-DS algorithm (Section 1.4).

Step 2: A-ODDS computes 's global deviation factor, where the global

deviation factor of a data point is defined as the relative deviation of the neighbor

density of a data point from the average neighbor density of all history data points with

respect to the average neighbor density of all history data points.

Step 3: A-ODDS decides whether a concept drift has occurred or not. If a concept drift

has occurred, A-ODDS updates the average neighbor density of the data points that

belong to the same data distribution and computes the LDF of , else it computes the

LDF using the existing average neighbor density.

Step 4: A-ODDS computes the standard deviations of GDF and LDF. If the GDF or

LDF value of is greater than three standard deviations, A-ODDS identifies as an

outlier.

Step 5: A-ODDS updates the global average neighbor density and local average

neighbor density using the neighbor density.

41

This approach shares the same drawbacks as DBOD-DS. The data density function and

concept drift detection only work for single dimensional data streams. If the number of

dimensions becomes large, this approach would not work. However, A-ODDS

addresses other important characteristics of data streams: transiency, notion of time and

infinity, uncertainty, and concept drift.

2.4. Advantages

Density-based outlier detection techniques are more sophisticated than distance-based

outlier detection techniques. Density-based outlier detection techniques consider the

local density of the data points. The local density of a group of data points is high if the

data points are dense compared to the local density of data points that are sparse. This

enables the techniques to work for a wide range of datasets. This is because, regardless

of the size and sparseness of the data points in a dataset, density-based techniques work

with a subset of data points that belong to a local neighborhood of a data point (a set

of data points that are in a close proximity from). Thus, density-based approaches are

applicable for many datasets and local density factor is adjusted according the

sparseness of a dataset.

Moreover, these density-based approaches work even if the sparseness of the data

points varies across the dataset. This is because the outlier-ness of a data point is

detected based on the local neighbor of data points only. So, if a dataset consist of

several groups of data points and the sparse-ness of each group t varies, the density-

based approaches determine the outlier-ness of a data point based one the sparse-ness of

the data points that belong to the nearest group from the data point.

42

2.5. Disadvantages

Density-based approaches are computationally more expensive compared to distance

based approaches. This is because density-based approaches require local neighborhood

computation which needs pair-wise distances between every pair of data points. On the

top of that, neighbor density or reachability distance of is compared to those of all

other data points that are within local neighborhood of . Hence, density-based

approaches are computationally expensive. Moreover, popular density based approaches

such as LOCI and LOF require multiple passes over the dataset; thus, it is difficult to re-

engineer them for data streams. This is because multi-pass algorithms are not suitable

for data stream outlier detection due to unavailability of entire dataset.

Moreover, one required step of the density-based approaches is computing the local

neighborhood of a data point. Computing the local neighborhood requires Euclidian

distance computation. If the number of dimensions becomes large, the Euclidean

distance stops working as a similarity metric. In that case local neighborhood does not

possess any significance and hence density based approaches collapse.

3. Sliding Windows-Based Outlier Detection Techniques

3.1. Overview of the Techniques

A sliding window holds the most recent subset of the data points [31]. It is temporary

data storage for the data points in a data stream. At any time a sliding window can hold

a fixed amount w of data points; typically the size w is defined by the user.

43

Dt Dt-1 Dt-2 Dt-w

Dt+1

Dt-w

… … ...

Figure 3. A typical sliding window

The oldest data point in the sliding window is removed as a new data point enters.

Figure 3 shows a typical sliding window of size where the newest data point is

and oldest data points is . As the data point, comes in the oldest data point

 goes out. Once the data points are stored in the temporary storage, the application

can access them randomly. So the applications that use sliding windows have a small

subset of data for random access. Typically a sliding window based outlier detection

technique identifies the outliers inside the window. More precisely, the data point which

is identified as an outlier by a sliding window based technique does not conform to the

other residents of the sliding window.

Once random access to a subset of the entire dataset is available, any random access

algorithm can be used to detect outliers in that subset. Some outlier detection techniques

for data streams use a sliding window and detect the outliers inside the window [13, 31,

36] using multi-pass algorithms. The algorithms may run periodically [54] or for every

round [13]. In the next sections, we describe these algorithms.

3.2. Detecting Distance-based Outliers in Streams of Data (STORM)

Angiulli and Fassetti proposed a sliding window based outlier detection technique

called STream OutlieR Miner (STORM) [31, 54]. STORM finds the distance based

44

outliers in the sliding window. The difference between STORM and a typical distance-

based outlier detection technique is that STORM finds the outliers within a sliding

window in lieu of an entire dataset. STORM consists of the following steps:

Step 1: As a new data point comes in STORM creates a new data stream object that

corresponds to and stores the data stream object in the sliding window. If the sliding

window is full, STORM discards the oldest data stream object and stores the newly

created data stream object. The size of the sliding window is chosen by the user which

represents the most interesting current subset of the data.

Step 2: STORM finds all the data stream objects in the sliding window within the

radius from the newly created data stream object. STORM maintains a list of

references to all the preceding data stream objects within the radius inside the newly

created data stream object. Every data stream object has a counter which counts the

number of succeeding data stream objects within the radius inside the sliding window.

Step 3: Some of the data stream objects are chosen as pivot objects. A pivot objects has

all the properties of a data stream object along with a list of distances from the pivot

object to all other data stream objects in the sliding window. The pivot objects offer

efficient range search.

Step 4: If the newly created data stream object is a pivot object, then a list of distances

to all other data stream objects is created inside the pivot object. All the other pivot

objects are updated upon creating a new data stream object.

Step 5: The outlier detection subroutine is invoked periodically based on a user-defined

frequency to check each data stream object in the sliding window to see if it is an

45

outlier. For each data stream object, the outlier detection subroutine calculates the

number of preceding data stream objects and the number of succeeding data stream

objects. If the sum of these two numbers is greater than the user-defined minimum

neighbor count of a data stream object, the data stream object is identified as an outlier;

hence its corresponding data point is an outlier.

STORM considers the temporal characteristics of a data point in a data stream. Each

data point remains in the sliding window for a fixed amount of time. As a data point is

identified as an outlier compared to all the other data points in the sliding window,

STORM automatically assumes all the data points in the sliding window are equally

related; hence STORM addresses the temporal relationship of the data points as well.

STORM is not a true online incremental algorithm. STORM stores a subset of the data

stream inside a sliding window and invokes the outlier detection subroutine

periodically. Hence the fate of a data point is not confirmed as soon as the data point

comes in. If the user mistakenly chooses the frequency of outlier detection greater than

the sliding window size, some data points may be discarded without being checked for

their outlier-ness.

STORM does not consider the uncertainty of the data points. STORM does not assume

any data distribution; hence the concept drift of the data stream does not affect the

algorithm directly, but the choice of the sliding window size should be such that the

sliding window can accommodate all the data points in the current concept. Since the

sliding window size is independent of the concept drift in this approach, we can

conclude that STORM does not address the concept drift. Since STORM is not a true

46

online and incremental technique and does not address the issues of uncertainty and

concept drift, it is not suitable for data stream applications.

STORM uses Euclidean distance in order to measure the similarity between data points.

Thus, if the number of dimensions grows, Euclidean distance fails to represent the

similarity among the data points and, hence, STORM would fail to identify outliers.

Therefore, STORM is not suitable for multi-dimensional data points.

3.3. Automatic Outlier Detection for Time Series: An Application to Sensor

Data (ODTS)

Basu and Meckesheimer [13] proposed an outlier detection algorithm for time series

when the data points are difficult to model. They argue that the data points closer in

time are more likely to be correlated. Hence they try to use the data points which are

closer to each other to identify the outliers inside the sliding window. The algorithm is

discussed here in brief; for our convenience we name the algorithm ODTS.

Step 1: ODTS maintains a sliding window of a user-defined size to hold a finite subset

of the data points for outlier detection. As each data point comes in, ODTS computes

the median of the data points in the sliding window.

Step 2: ODTS computes the absolute value of the distance between the median data

point and . If this distance is greater than the user-defined maximum distance

threshold, is identified as an outlier and ODTS replaces in the sliding window

with the median data point.

ODTS is a true online incremental algorithm and a very simple approach for outlier

detection when it is difficult to model the data. The computational complexity is linear

47

with respect to the sliding window; hence it provides a very good result within a very

short time. As ODTS maintains a sliding window, only recent data points are stored in

the sliding window; hence ODTS addresses the temporal characteristics of data streams.

Since only the recent data points participate in the outlier detection, it accommodates

the temporal relationship as well.

ODTS asserts each data point with full confidence; hence ODTS does not accommodate

the uncertainty of data streams. Although the sliding window summarizes the recent

data rounds, it has no relation with the data distribution; as a result concept drift is also

ignored in ODTS.

ODTS is designed for single dimensional data points. ODTS can only work for multi-

dimensional data points if it considers individual dimensions separately. However, in

that case it would fail to identify the outliers with infrequent combinations of

dimensional values. Therefore ODTS is not suitable for multi-dimensional data streams

either.

3.4. Online Outlier Detection in Sensor Data Using Non-Parametric Models

(ODSD)

Subramaniam et al. [36] proposed an in-network outlier detection technique for

hierarchical sensor networks. For convenience we name the algorithm, ODSD. ODSD is

also based on density-based outliers. It identifies the outliers within the sliding windows

of the individual sensors. ODSD assumes that the sensors are arranged in a hierarchical

fashion. At the bottom level the children nodes identify the outliers in their respective

sliding windows. In the second level the parent nodes identify the outliers in their

48

respective sliding windows. The sliding windows of the first level parent nodes

accommodate the data coming from the respective children nodes. The next levels’

parents work in a similar fashion. At the top level, the leader node collects data from all

the sensor nodes and finds the outliers. The algorithm is discussed step-by-step here.

Step 1: The bottom level sensors store data in their respective sliding windows as soon

as they collect data. The size of the sliding windows is defined by the user.

Step 2: Each sensor samples its sliding window and constructs a data distribution

function for the sliding window. The neighbor density of the newly collected data point

 is computed by integrating the data distribution function within a user-defined radius.

If the neighbor density is lower than the user-defined minimum neighbor density,

ODSD identifies as an outlier. ODSD uses a kernel density estimator for data

distribution computation; therefore, instead of increasing the frequency of occurrence of

a value by 1, ODSD increases the frequency of occurrence of a value by , and

increases the frequency of occurrence of other values by a fraction of .

Step 3: All the base level sensors report the collected data to their respective parent

nodes. A parent node constructs a new sliding window sampling all the data points

received from its children nodes. Finally the parent node identifies the outliers using a

similar algorithm to the one that the children nodes used for their outlier detection. All

nodes use the LOCI algorithm to detect outliers. In the second level the parent node has

to check only the data points that are marked as an outlier by the children nodes.

Step 4: ODSD goes up in the hierarchy using the same technique described in Step 3

until it reaches the top level. is an outlier if the top level node identifies it as an

49

outlier. In order to reduce the communication cost, each sensor reports the data to the

parent node when the data distribution changes instead of reporting the data every time.

The data distribution is monitored by each sensor; the newly obtained data distribution

is compared with the previous data distribution using Jenson-Shannon divergence [36].

If the distance (based on Jenson-Shannon divergence) between the two distributions

goes beyond a user specified value, the child node reports data to the parent node.

The major advantages of ODSD are that it is a decentralized, in-network and online

outlier detection technique. Since ODSD does not assert each sample data point with

full confidence but rather distributes the probability of occurrence of a value to the

neighbor values, ODSD addresses the uncertainty issue of data streams.

The algorithm uses a random sampling technique to sample the data points from the

sliding windows of the leaf nodes. The sample size and the window size (the same sizes

for all sensors) are both the user-defined parameters and the random sample algorithm

samples the data points from the sliding window regardless of concept drift. Hence the

obtained data distribution function may contain the data points from multiple data

distributions if concept drifts occur. Therefore, the obtained data distribution may not

always reflect the current data distribution.

The outlier detection algorithm at each level is linear with respect to the window size.

Hence, for a multi-level sensor network, outlier detection takes place at different levels

and the overall time complexity is the sliding window size times the number of levels of

the sensor network. Furthermore there is a communication involved between two levels

of nodes. The communication time is very high compared to the computational time.

50

Typically the sensor network communication is lossy [61]. ODSD requires extensive

levels of communication among the sensor nodes. The higher level of communication,

the higher level of error is introduced. Hence the success of this approach is still in

question. ODSD works for single dimension data only. ODSD also uses a data density

function, but if the number of dimensions grows, the density space grows exponentially

with it. Hence, constructing a multi-dimensional data density function is not scalable at

all. Thus, ODSD’s application would be very limited to a small number of dimensions

only.

ODSD also considers cross-correlation among the data points from multiple streams,

but only for equality, meaning the values of the data points from multiple streams have

to be equal. This assumption does not hold in many practical applications such as

environmental monitoring [15], chlorine content monitoring [48], etc. and hence, ODSD

is very limited in real applications. Finally, ODSD assumes synchronous and

homogeneous data points from multiple streams which are even more restrictive.

3.5. Incremental Outlier Detection in Data Streams Using Local Correlation

Integral (Stream LOCI)

Stream LOCI [62] is an outlier detection technique based on LOCI [59] (Section 2.1).

LOCI is a density based outlier detection technique that considers the local density of a

data point to compute the MDEF of . MDEF defines the outlier-ness of a data point.

Stream LOCI modified LOCI in order to make it suitable for data streams. Stream

LOCI introduces a sliding window to hold the most recent subset of the data points.

Once a new data point arrives, Stream LOCI updates the sliding window by replacing

the oldest data point in the sliding window with and adjusting the neighbor density of

51

 accordingly. Then it applies the same sequence of steps as LOCI does and detects

outliers within the sliding window.

This is a very typical approach for detecting outliers for data streams by modifying

outlier detection techniques for regular data points using a sliding window. However,

this approach fails to illustrate the effective size of the sliding window as the size is

decided on an ad-hoc basis. Moreover, Stream LOCI inherits other problems from

LOCI such as its ineffectiveness for multi-dimensional data points.

3.6. Advantages

The three sliding window-based techniques discussed in this section have a few

common advantages. A sliding window can be manipulated as each data point comes in,

so the updating process of a sliding window is online and incremental. In general the

update procedure requires discarding an old data point and storing a new one; hence the

update process is computationally efficient. At the same time a sliding window contains

the most recent subset of the dataset; so a sliding window based technique identifies the

outliers based on the recent subset and addresses the temporal characteristic of data

streams.

3.7. Disadvantages

The choice of outliers in a sliding window is very much dependent on the current

residents of the sliding window. An outlier of a sliding window can appear as an inlier

for a different choice of data points for the sliding window. This problem is severe for

data streams because they change over time and an outlier for a particular window may

appear as an inlier in another window; hence the notion of an outlier in a data stream

52

with respect to a window is not very concrete. Figure 4 illustrates this point. In Figure 4

(a) the sliding window contains the data points from to . The data point

seems to be an outlier with respect to the other data points in the sliding window

because it is far from them, but in Figure 4(b) the data point seems like an inlier

because in Figure 4(b) the data point does not look far away with respect to the

other residents of the sliding window. In summary, the outliers in a sliding window are

very subjective to the residents of the sliding window; therefore, selecting the residents

of a sliding window is the most challenging part of a sliding window based approach.

sliding window

time

v
a

lu
e

Dt

Dt+1

Dt+2

Dt+3

Dt+4

Dt+5

Dt+6

Dt+7

Dt+8

Dt+9

Dt+10

(a)

sliding window

time

v
a

lu
e

Dt

Dt+1

Dt+2

Dt+3

Dt+4

Dt+5

Dt+6

Dt+7

Dt+8

Dt+9

Dt+10

(b)

Figure 4. Choice of data points for the sliding window

In brief, the accuracy of a sliding window based technique depends on the size of the

sliding window, how often the outliers are detected in the sliding window, etc. [61]. So

far these parameters are selected by the user on an ad-hoc basis. Nevertheless, an inlier

53

can be shown as an outlier by changing the window size [13, 61]; thus an outlier

detection technique which uses a sliding window works well if the window size is

chosen appropriately. Moreover, each technique interprets the window size in its own

way. For example, the significance of the sliding window in the technique proposed by

Basu and Meckesheimer [13] is very different from that in the technique proposed by

Anguiulli and Fassetti [31] or Subramaniam et al. [36]. Consequently the optimal

performance for each algorithm requires a different sized sliding window (e.g., the

optimal performance for [13] can be achieved when the sliding window size is small

but the optimal performance for [31] can be achieved when the sliding window size is

very large). In most cases the sliding window size selection requires either the details

about the technique or ad-hoc trial and error modifications.

4. Auto-Regression-Based Outlier Detection Techniques

4.1. Overview of the Techniques

Auto-regression-based techniques for outlier detection are very popular for time series

outlier detection [10]. Some outlier detection techniques for data streams adopt auto-

regression [63, 64, 65]. Most of the auto-regression based techniques work similarly in

that they establish a model based on the data points received so far. As each data point

comes in, it is compared with the established model and a metric is obtained based on

the comparison (e.g., distance from estimated value, variance, maximum likelihood

ratio, etc.). The metric often represents the outlier-ness of the data point. If the

established metric for the data point goes beyond a certain limit (aka cut-off limit), the

data point is identified as an outlier.

54

Figure 5 shows a flowchart for a typical auto-regression based technique. Different

techniques use different metrics and comparison methods [10]. Most popular

approaches for time series data compare the data points with the predicted values. At

each time step, the model predicts a data value called the predicted value and receives a

value called the true value. If the distance between the predicted value and the true

value is greater than the cut-off limit, the data point is called an outlier. Myriad ways

are available for building auto-regression models [66, 67] and various approaches

design their own auto-regression models according to their data patterns (e.g., linear,

quadratic and harmonic) and applications of data streams. In the next three sections we

discuss three auto-regression based techniques for outlier detection in detail.

Compare the data point with the

established model and get the metric

Is computed metric

greater than cut-off

limit?

The data point is an outlier

Yes

No

A new data point

arrives

The data point is not an outlier

Figure 5. A flowchart for a typical auto-regression-based technique

55

4.2. A Kalman Filter-Based Approach for Outlier Detection in Sensor

Networks (KFOD)

Shuai et al. [63] proposed an in-network outlier detection technique, called KFOD, for

sensor networks. They assume the reading of a sensor has a temporal dependency.

KFOD has two modules: (1) state transition module and (2) measuring module. The

state transition module uses a first order auto-regression [66] model which uses the least

squares method for coefficient approximation and the measuring module uses the other

sensor readings to exploit spatial correlations. KFOD consists of the following steps:

Step 1: As each data point is obtained by a sensor, the sensor invokes the state

transition module that estimates the current reading based on the previous readings

using the first order auto-regression model [66].

Step 2: Each sensor collects the readings from its neighbor sensors. The measuring

module measures the current reading of the sensor using the neighbor sensors’ readings.

They use inverse distance weighting (IDW) where the weight is inversely proportional

to the distance of the neighbor sensors to measure the sensor reading from the neighbor

sensors’ readings [63].

Step 3: The two values collected from Step 1 (the approximated reading based on the

previous readings) and Step 2 (the approximate reading based on the neighbor sensors’

readings) are combined to produce the ultimate approximated value for the sensor. If the

distance between the true value and the predicted value is greater than the user defined

threshold, the data point is identified as an outlier.

56

KFOD is an online technique for outlier detection. It never stores the history data points

but rather adjusts the coefficient of the modules based on the data points when they

arrive; hence KFOD is incremental. KFOD discards a data point after updating the

coefficients with it value; thus it preserves the transiency of the data points. KFOD uses

the temporal relationship among the data points to update the coefficients.

KFOD does not assume any fixed data distribution and uses only the current data round

and the next to the current data round. Hence, this approach is not vulnerable to concept

drift; but the relation between the successive data rounds is kept fixed; thus, it does not

address concept drift. KFOD does not address the uncertainty of data streams.

KFOD uses the first order auto-regression model to estimate the current reading. The

efficiency of the first order auto-regression model is limited to linear trends. i.e., it

works for linear changes of the data points; it fails to model more complicated relations

among the data points. In addition, the relation between the consecutive data points of a

data stream changes over time which is very difficult to model using the first order

auto-regression; because the first order regression can only model linear changes. If

relation between data points is quadratic or harmonic, the first order regression would

not be able to model that.

KFOD assumes implicit communication among the neighbor sensors which is not

possible in every sensor network. The spatial relationship among the sensors is hard to

model because spatial modeling requires extensive knowledge and the relationship

among the sensors. Moreover, the threshold selection for the maximum allowable

distance between the predicted value and the true value depends on the accuracy of the

57

auto-regression model, the spatial relationship among the sensors and the combination

of the outputs of the two modules. Hence, it is difficult for the user to select an

appropriate threshold distance without trial and error.

4.3. Malicious Node Detection in Wireless Sensor Networks Using an Auto-

regression Technique (ART)

Curiac et al. [64] proposed an auto-regression based anomaly detection technique for

wireless sensor networks. They argued that the true values measured by a sensor have a

deterministic component instead of a truly random component; therefore they used a

time series analysis approach to explore the deterministic component of the values. The

entire approach is executed in the base station and upon receiving a new data point, the

base station compares the received data point with the predicted value. A data point is

an outlier if the difference between the data point and the predicted value is greater than

the user-defined threshold. We name this approach ART for our convenience. ART uses

the fourth order auto-regression model [66] and consists of the following steps:

Step 1: As each data point is received at the base station, the auto-regression

coefficients are updated recursively using the least squares method.

Step 2: ART predicts the current reading using the auto-regression model built inside

the base station. The base station constructs an individual auto-regression model for

each sensor and maintains an individual distance threshold for each sensor.

Step 3: The predicted value is compared with the obtained value. If the absolute

distance between them is greater than the user-defined distance threshold, the sensor

node is detected as an anomalous sensor node.

58

ART is an online, incremental approach for outlier detection for sensor networks. It also

addresses the transiency characteristic of the data points. The temporal relationships

among the data points are exploited by the fourth order auto-regression model but the

coefficients are selected based on the entire history which does not necessarily reflect

the updated relationships among the data points. The use of the entire history data

points for coefficient selection does not reflect the recent trend of a data stream; thus

ART does not address concept drift.

ART does not address the uncertainty of data streams. ART is also very similar to

KFOD in that it is not vulnerable to concept drift but it does not directly address

concept drift either.

Data streams are defined as infinite sequences of data points; hence one fixed threshold

may not be appropriate for the entire life-time of data streams. Moreover, it is difficult

to establish an individual threshold for each sensor.

4.4. Adaptive Methods for Activity Monitoring of Streaming Data (AMSD)

Puttagunta and Kalpakis [65] proposed a forgetting factor based recursive least squares

algorithm for adaptive incremental model construction. This approach is very similar to

the previous approaches except it identifies the changes of trends as well as outliers. We

call it AMSD. AMSD works as follows:

Step 1: As a new data point is received, it is stored in a sliding window, the size of

which is decided by the user. Once AMSD receives enough data points, it starts

building an auto-regression model. The coefficients of the auto-regression model are

59

updated using the recursive least squares method as each data point is received. A

predicted value is estimated before changing the coefficients.

Step 2: The absolute difference between the estimated value and the true value is

computed. If the distance is greater than the maximum error threshold, the data point is

identified as an outlier. If the distance is lower than the minimum error threshold, the

data point is identified as an inlier. If the distance is in-between the minimum error

threshold and the maximum error threshold, the data point is identified as a potential

outlier. The potential outliers are stored in a window.

Step 3: For a potential outlier, if a change-of-point is detected within the previous

data rounds, the potential outlier is not an outlier. is a user-defined parameter which

outliers represents the minimum size of the change detection window. The number of

potential outliers is computed within the last data rounds.

Step 4: If the number of potential outliers is lower than the maximum number of error

overshoot, a user defined threshold, the data point is identified as an outlier. Once a data

point is identified as an outlier, the latest update of the coefficients is discarded.

Step 5: If the number of potential outliers is greater than the user-defined threshold

(maximum number of error overshoot) or the coefficients of the auto-regression model

change beyond a user-defined threshold, AMSD identifies that a change has occurred

and the first point of the window is identified as a change point and the rest are

unmarked. A fresh auto-regression model is started from the change point.

AMSD is an online, incremental algorithm for anomaly detection. AMSD

accommodates the transiency and the temporal relationships among the data points but

60

it does not address the uncertainty. AMSD is capable of detecting the change of data

and uses only the data points from the current concept; hence it accommodates concept

drift pretty well.

AMSD has at least twelve user-defined parameters and most of them do not have any

physical interpretation to a user unless the user knows the algorithm and the application

very well. It is very difficult for a user to select an appropriate value for each of them.

Hence the success of this approach is questionable for real applications.

4.5. Advantages

Auto-regression-based techniques are typically computationally inexpensive. Most of

the time the complexity of the model depends upon the history data used, the number of

components in the auto-regression model and the number of data dimensions. Auto-

regression based techniques are very appealing because of their affordable

computational complexity. Moreover data stream applications are bounded by the

arrival rate, i.e., every computation has to be done before the next data point comes in

[4]. The efficient computation of an auto-regression based technique offers very

lucrative execution time for each data round which makes auto-regression based

techniques very good candidates for outlier detection for data streams or time series.

In some applications an outlier is replaced by an estimated value [13, 61]. An auto-

regression based technique automatically provides an estimated value as a product.

Moreover, a good auto-regression-based approach addresses the dynamic nature of the

data points in a data stream which makes auto-regression based approaches very

61

popular for data prediction [68, 69]. They offer significant advantages over other

techniques if the application requires a predicted value for an outlying data point.

4.6. Disadvantages

The success of an auto-regression model depends on the quality of the auto-regression

model and the data pattern. If the data pattern shows linear changes, a linear auto-

regression model would perform better; and if the data pattern shows harmonic changes,

a harmonic auto-regression model would perform better [64]. Hence it is not easy to

decide an appropriate auto-regression model without knowledge of the data pattern [64].

Moreover, the data pattern in a data stream is not constant [61]. Sometimes the data

pattern in a data stream shows a linear trend, while it may show non-linear at other

points of time. Hence any assumption about the data trend may not be appropriate

forever for data streams. The explicit assumption about the data trends makes an auto-

regression model less appealing for data streams.

Another noticeable flaw of auto-regression based techniques is their magic cut-off

limits. The magic cut-off limit not only depends upon the data values but also depends

upon the auto-regression model chosen and the efficacy of the auto-regression model. If

the accuracy of the auto-regression model is very good, a small cut-off limit is good

enough to differentiate outliers from inliers, whereas a large cut-off limit is necessary

for a poorly performing auto-regression model. In most cases, the cut-off limit is

expected as a user-defined parameter [63, 64, 65] and the parameter selection is not a

trivial task for the users.

62

A multi-dimensional auto-regression technique is even harder to design. If the number

of dimensions grows, it requires an extremely high number of data points to find an

effective auto-regression model for multi-dimensional data streams. Hence, auto-

regression-based approaches have limited applicability for multi-dimensional data

streams.

5. Statistical Outlier Detection Techniques

5.1. Overview of the Techniques

Techniques based on statistic [10, 70, 71] and machine learning [27, 28] assume a fixed

probability distribution for data values. Typically the data distribution is obtained by a

training dataset and as each data point comes in, the data point is compared with the

mean [10] or box plot [70] of the obtained data distribution. A data point is identified as

an outlier if it is in the low probability region of the data distribution. It should be noted

that although there are some techniques available in the literature, researchers from

other disciplines like medical science and chemistry often use statistical based

techniques.

5.2. Informal Identification of Outliers in Medical Data (IDMD)

Laurikkala et al. [70] studied the box plot based outlier detection technique, which we

call IDMD, for vertigo and female urinary incontinence data. This technique is not

directly used for data stream applications and consists of the following steps:

Step 1: The entire dataset (all data points in the dataset) is used to compute the five

numbers: lower extreme (minimum possible value), lower quartile (75% of the data

63

points are higher than lower quartile), median, upper quartile (75% of the data point are

smaller than upper quartile) and upper extreme (maximum possible value).

Step 2: IDMS defines two thresholds: (1) the lower threshold and (2) the upper

threshold. The lower threshold = lower quartile – 1.5 x (upper quartile – lower quartile)

and the upper threshold = upper quartile + 1.5 x (upper quartile – lower quartile).

Step 3: The data point is revisited and is identified as an outlier if its data value is

smaller than the lower threshold or greater than the upper threshold.

IDMD is not designed for data stream applications. The algorithm is not online and

requires at least two passes of the entire dataset for outlier detection. It is not

incremental either as it requires the entire dataset for outlier detection. IDMD requires

each data point to be present in the system until it finishes the first pass; so it does not

preserve the transiency. Moreover, IDMD treats each data point similarly; thus it does

not address the temporal relationship. It does not assume any data distribution but

summarizes the data distribution using the five variables presented in Step 2 and

assumes that the entire dataset follows the same characteristics; so it ignores concept

drift as well. Since this approach is not designed for data streams, it does not address

any of their issues.

5.3. Detection of Outliers in Reference Distributions: Performance of Horn's

Algorithm

Solberg and Lahti [71] conducted a study to evaluate Horn’s algorithm for outlier

detection. Horn’s algorithm is very similar to the previous algorithm IDMD, except that

64

it constructs a Gaussian distribution instead of calculating five numbers for the box plot.

This algorithm has the following steps:

Step 1: The entire dataset is used to approximate the Gaussian data distribution with the

presence of outliers in the dataset based on the maximum likelihood method.

Step 2: A lower threshold and an upper threshold are established using the same

formula discussed in Step 2 in Section 5.2.

Step 3: Each data point is revisited to identify outliers. A data point is an outlier if it

goes beyond either the upper threshold or the lower threshold.

Horn’s algorithm is not designed for data streams; hence it does not address any of their

characteristics. Even for regular data, Horn’s algorithm does not perform as well as

expected. Solberg and Lahti [71] argued that this is because every dataset cannot be

summarized by the Gaussian data distribution; and Horn’s algorithm only works if a

dataset can be summarized by the Gaussian data distribution.

5.4. Anomaly Detection over Noisy Data Using Learned Probability

Distribution (Eskin’s Algorithm)

Eskin [27] proposed an anomaly detection algorithm for noisy data based on

expectation maximization. This method assumes that the percentage of outliers is very

low compared to that of inliers. It assumes that a dataset is a mixture of two types of

data, inliers and outliers. Eskin’s algorithm computes the data distribution which is

composed of the inliers’ distribution and the outliers’ distribution. A data point is an

outlier if it conforms to the outliers’ distribution or does not conform to the inliers’

distribution. The details of Eskin’s algorithm are discussed step-by-step here:

65

Step 1: At the beginning Eskin’s algorithm assumes that every data point is an inlier

and uses a machine learning method (Naïve Bayes or Maximum Entropy) to model the

probability distribution of the dataset. Initially, the probability distribution for outliers is

a prior probability distribution since all the data points are assumed to be inliers.

Step 2: Each data point is revisited to compute the logarithm of the maximum

likelihood of the two cases: (1) when the data point is an outlier and (2) when the data

point is an inlier.

Step 3: A data point is moved into the set of outliers if the logarithm of the maximum

likelihood when the data point is an inlier is lower than the logarithm of the maximum

likelihood when the data point is an outlier.

Step 4: If a data point is moved into the outlier set, the data distribution of the outliers

and inliers are recomputed from the remaining set of outliers and inliers.

Eskin’s algorithm addresses the uncertainty of the data points, but does not address

other issues of data streams. It requires multiple passes over the data to identify outliers

and, thus, is not suitable for data streams.

Eskin’s algorithm does not consider the transiency or the temporal characteristic of data

streams. It works with the entire dataset at a time. Eskin’s algorithm assumes all data

are available at any point of time; thus it cannot be applicable for data streams. This is

because no store-and-process algorithm is applicable for data streams. Eskin’s

algorithm does not address concept drift and its implementation is not incremental.

66

Moreover, Eskin’s algorithm requires the data distributions of the outliers and the

inliers to be recomputed each time the set of outliers and the set of inliers change. It

requires many passes over the dataset. The complexity increases with the size of the

dataset; therefore, Eskin’s algorithm is not useful for a very large dataset.

5.5. Advantages

Statistical techniques often require very small time complexity for detecting outliers.

Once a probability distribution is established, these techniques compare a data point

with the distribution; hence they can detect outliers very fast. If the data points follow a

fixed distribution, these techniques can successfully identify outliers with respect to the

obtained data distribution.

5.6. Disadvantages

Data streams are highly dynamic in nature and their distribution changes over time [2].

No fixed data distribution is good enough for an entire data stream; hence summarizing

dynamic data streams with static data distributions produces questionable results.

Data points in a data stream have temporal correlations with each other. Statistical

techniques ignore such correlations when generating the data distribution. Statistical

techniques do not consider all the characteristics of data streams like concept drift,

transiency, and temporal relationship; moreover they are not online and incremental;

therefore they are not applicable for data stream applications.

67

6. Cluster-Based Outlier Detection Techniques

6.1. Overview of the Techniques

Many clustering techniques based on machine leaning produce outliers as a byproduct

of the clustering techniques [9]. A clustering approach establishes a way of measuring

distance (popular distances are the Euclidean distance, Manhattan distance,

Mahalanobis distance and Edit distance) between two data points. The data points are

grouped into some clusters based on the distances among them. A user-defined

threshold is used for cluster selection for each data point. A data point is identified as an

outlier if it does not fit any of the obtained clusters. A cluster-based outlier detection

technique often uses supervised or semi-supervised approaches for cluster formation

[56] and dynamically measures the compactness/goodness of the obtained clusters.

distance

outlier

Figure 6. A typical clustering-based outlier detection technique

Figure 6 demonstrates the overall idea of a clustering based outlier detection approach.

In this Figure 6 the isolated data point is called an outlier and the clusters are formed

based on the distances among the data points. Some techniques cluster the subsequences

of data points instead of clustering individual data [72, 73]; these techniques are

particularly popular for time series data.

68

6.2. AnyOut: Anytime Outlier Detection on Streaming Data

AnyOut is a clustering based outlier detection scheme [26]. Unlike other clustering

based algorithms where outliers are detected as a byproduct of the underlying clustering

algorithm, AnyOut is specifically designed for outlier detection. Moreover, AnyOut can

handle dynamic arrival rate effectively. Hence, it only processes a data point until the

next data point arrived. AnyOut consists of the following steps:

Step 1: AnyOut creates a hierarchy of clusters from data points of a data stream.

AnyOut creates a tree of clusters where the root node represents the entire cluster

storing all data points. Each node other than the root node represents a cluster with finer

granularity compared to its parent node. Each node including the root node contains the

distribution of data points of corresponding cluster.

Step 2: As each data point arrives, AnyOut compares the data point with the root node

first and detects the outlier-ness of the data point based on the data distribution in the

root node. AnyOut computes the outlier-ness of a data point based on the distance of the

data point to the mean of the data points in the cluster. Assent et al. [26] offered an

alternative outlier-ness based on the assumption that the data points in a cluster has a

multi-dimensional Gaussian distribution. AnyOut keeps track of the distribution of the

data points in a cluster and the outlier-ness of a data point is measured in terms of its

density.

Step 3: If time permits, AnyOut compares the data point with the appropriate child

nodes (defined shortly) of the root node and identifies the outlier-ness of the data point

with respect to the child node. Each child node represents a cluster; the cluster which is

69

closest to the data point is chosen as the appropriate child node. This process continues

until the next data point arrives. At any point in time, AnyOut outputs the outliner-ness

of a data point based on the most specific cluster with which it is already compared.

Step 4: Based on the application, AnyOut can choose an appropriate cut-off limit for

binary decision; if an application does not require binary decision (whether a data point

is outlier or inlier) AnyOut is capable of outputting the outlier-ness of every data point.

Although AnyOut addresses dynamic arrival rate, it fails to adjust the transiency of the

data points in the data streaming environment. Data points never expired from their

hierarchical clusters. Hence an outlier may be detected as an inlier based on the history

data points that are irrelevant to the current data point based on the temporal context.

AnyOut does not assume any uncertainty in the data points; hence it cannot handle the

uncertainty of the data points.

Since clusters never expire, AnyOut is not adaptive to dynamic distribution and, thus,

cannot handle concept drift. Moreover, AnyOut computes the outlier-ness of a data

point based on the distance of the data point from the mean of the data points in a

cluster. If the number of dimensions grows, distance metric is useless as an outlier

metric. Similarly, in order to construct an effective data distribution function for high

dimensional data points, any algorithm would require an enormous number of data

points, which is practically impossible in many applications. Thus the effective-ness of

AnyOut’s outlier metric is questionable.

70

6.3. ADMIT: Anomaly-Based Data Mining for Intrusions

ADMIT is a cluster based anomaly detection in a sequence of data [56]. ADMIT has

two major phases: the training phase and testing phase. In the training phase, ADMIT

learns from the history data, and in the testing phase, ADMIT detects the anomalous

sequences.

Step 1: ADMIT assumes that a training dataset is available to train the regular behavior.

The entire sequence of data is divided into small subsequences and a dynamic clustering

algorithm is used to cluster the small subsequences.

Step 2: The dynamic clustering algorithm is a modified version of the k-mean

clustering algorithm. The modified dynamic clustering algorithm does not require any

predefined value for k, nor does it choose the initial clusters randomly. It starts with the

first subsequence as a cluster and puts all the other subsequences into the cluster if the

distance between the subsequence and the cluster center is lower than the user-defined

threshold. At every pass it starts with a new subsequence and puts close subsequences

into the newly formed cluster. Step 2 completes when each subsequence belongs to a

cluster.

Step 3: This step comprises the cluster pruning. In this step the fitness of the clusters

are measured and modified. ADMIT splits a cluster into multiple clusters if the cluster

contains more than the user-defined number of subsequences. ADMIT splits the cluster

using the dynamic clustering algorithm discussed in Step 2, but in this case, the user-

defined threshold is increased by 1. ADMIT merges two clusters if the distance between

the clusters’ centers is lower than the user-defined threshold.

71

Step 4: Once the training phase is complete, ADMIT is ready for online testing. For

each subsequence, ADMIT finds the nearest cluster. If the distance between the

subsequence and the nearest cluster’s center is greater than the user-defined threshold,

the subsequence is identified as a possible outlier.

Step 5: If the last n subsequences are possible outliers, then ADMIT computes the

average/weighted/decayed-weighted minimum distances of the last n subsequences and

assigns a rating for each subsequence. If the rating is greater than the user-defined

threshold, the subsequences are identified as an anomalous behavior. The subsequences

are further clustered to determine the type of anomalous behavior.

ADMIT is an online algorithm for detecting anomalous behavior but its training phase

is not online. The training phase requires a dataset without outliers which may not be

possible in every situation. As each subsequence comes in, ADMIT checks the

subsequence and classifies it as either an outlier or inlier, thus it preserves the

transiency of the data points. Moreover, ADMIT processes a subsequence in lieu of

individual data points; so it implicitly assumes the temporal relationships among the

successive data points.

ADMIT clusters the history subsequences; it assumes that the future behaviors of the

subsequences are the same as the history subsequences; but this is not true for data

streams. Concept drift is a well-known phenomenon in data stream applications;

assuming a fixed data distribution is not suitable for data stream applications. Finally,

ADMIT does not address the uncertainty of data. Essentially, ADMIT is not appropriate

for data stream applications.

72

6.4. A Machine Leaning Approach to Anomaly Detection (CLAD)

CLAD is a clustering based outlier detection algorithm that finds local and global

outliers [57]. CLAD is originally designed for outlier detection unlike other clustering

based techniques that produce outliers as a byproduct. CLAD is based on a fixed cluster

width which is selected automatically by itself. The technique is discussed step-by-step

here.

Step 1: CLAD uses the fixed cluster width for data point selection of a cluster. CLAD

uses a non-deterministic algorithm for cluster width selection. CLAD randomly selects

1% of the data points. It computes the pair-wise distances between two data points

among the chosen data points and finds the smallest 1% of the pair-wise distances. The

average distance of the minimum 1% is chosen as a cluster width.

Step 2: CLAD creates the clusters on-the-fly. A data point is placed into a cluster if it is

within the cluster width of any previously created clusters; otherwise CLAD creates a

new cluster for the data point and the data point is selected as a centroid of the newly

formed cluster. CLAD uses the Euclidian distance between two data points.

Step 3: Once all the clusters are formed, CLAD computes two metrics for each cluster:

the number of data points in a cluster and the average distance of the cluster from all

other clusters. CLAD also computes the average inter-cluster distances among all the

clusters. A cluster is distant if the average distance of the cluster from all other clusters

(the second metric) is greater than the sum of the average inter-cluster distances and the

standard deviation of the inter cluster distances.

73

Step 4: A cluster is sparse if it has fewer data points than the lower limit where the

lower limit is computed by subtracting the median absolute deviation of the number of

data points in a cluster from the average number of data points in a cluster. A data

cluster is dense if it has more data points than the upper limit where the upper limit is

computed by adding the average number of data points in a cluster to the mean absolute

deviation of the number of data points in a cluster. The entire cluster is identified as an

outlier if it is distant and sparse or dense.

CLAD is not designed for data streams. It requires more than one pass over the entire

dataset for clustering and outlier detection. As a consequence, it does not address the

transiency and the temporal characteristic of data points. It does not tackle the other

issues like uncertainty and concept drift for data streams and its implementation is

neither online nor incremental. Therefore, CLAD is not applicable for data streams.

6.5. Advantages

Clustering-based outlier detection approaches are appealing because of their power of

sorting similar data points into a group. A data point which is grouped with many other

data points is less likely to be an outlier; hence an outlier identified by a clustering-

based technique is usually far from other data points; therefore it produces fewer false

alarms.

An important characteristic of clusters is that cluster formation is incremental [9, 56],

hence clustering-based outlier detection techniques are also incremental. In some cases

clusters are not only incremental but also dynamically adjustable, and so the techniques

74

dynamically adjust the clusters based on data and detect outliers based on the obtained

clusters.

6.6. Disadvantages

Outliers are the byproduct of the clustering techniques [74, 75]; hence the techniques

are not optimized for outlier detection. This is an effective and popular argument

against the clustering-based outlier detection techniques [9, 32]. The cluster formation

step requires a particular choice of distance function and a threshold which groups the

data points into a cluster. The choices of the distance function and threshold affect the

outlier detection and require explicit knowledge about the application domains.

An outlier can be an inlier if it is accompanied by a sufficient number of data points;

hence clustering-based outlier detection techniques cannot identify the outliers which

are close to the regular data points. Besides this, these techniques cannot identify the

outliers that form a different cluster with a sufficient number of data points in it.

Moreover, the time series clustering based outlier detection techniques that are

optimized for outlier detection [72, 76] fail to address concept drift. They require a

training phase, build a model and compare each temporal sequence with the captured

model. The techniques assume that the trend in the dataset is fixed, which is not true for

data streams. Furthermore, looking from the data streams’ perspective, the clustering

based outlier detection algorithms do not deal with the uncertainty and the temporal

characteristics of data stream applications.

The biggest flaw of clustering based algorithms is similarity measurement. The popular

distance functions, such as Euclidian distance and Manhattan distance, fail to portray

75

the similarity among the data points. This is because as the number of dimensions

grows, all data points become equidistance. Thus the distance between an outlier and an

inlier is no different than that between two inliers. Thus, clustering-based techniques

fail to point out the outliers.

7. Feature Comparison of Existing Outlier Detection Techniques

We have presented the state-of-the-art outlier detection techniques in the previous

sections. None of the discussed techniques deal with all the characteristics of data

streams: online incremental processing, uncertainty, temporal relations among the data

points, concept drift, transiency, multi-dimensionality, asynchronous arrival rate and

heterogeneous schema of data points. To fill this gap, in this dissertation, two

innovative outlier detection algorithms, Orion and Wadjet, which take all the data

streams’ characteristics into consideration are presented. Orion is designed for

applications where data are single streams which are not related with each other. In

order to detect outlier efficiently for multi-dimensional data points, Orion looks for a

projected dimension that reveals the outlier nature of data points with the help of an

evolutionary algorithm, and identifies a data point as an outlier if it resides in a low

density region in that dimension. Wadjet is designed for applications where data are

heterogeneous and asynchronous streams which may or may not be related with each

other. It has two phases: in the first phase, it processes each data point independently

like Orion and detects the outliers based the temporal correlation of the data points; and

in the second phase, it captures and continuously evaluates the cross-correlations, if

any, among the data points from multiple streams, and identifies a data point as an

76

outlier if its value does not conform to the captured cross-correlation. A data point is

identified as an outlier in Wadjet if it is identified as an outlier in any of its two phases.

In Table 1 we present a feature comparison study of the techniques discussed in this

chapter in contrast to the data streams’ issues discussed in Chapter I, Section 5. The

explanation for each cell is in the corresponding algorithm discussion section. ‘Yes’ in a

cell means the algorithm listed at the left addresses the issue listed at the top, and ‘No’

means the algorithm ignores the issue.

77

Table 1. Feature comparison of the outlier detection techniques

 Trans

iency

Tempor

al

relation

ship

Onlin

e

Incre

mental

Arriva

l rate

Uncert

ainty

Conce

pt

driftin

g

Multi-

dimen

sionali

ty

Cross-

correl

ation

Async

hrono

us

Dyna

mic

relatio

nship

Heterog

eneous

Schema

DB-Outlier

[32]

Yes No Yes Yes Fixed No Yes No No No No No

EAMO [51] No No No No No No No No No No No No

DBOD-DS

[47]

Yes Yes Yes Yes Fixed Yes Yes No No No No No

LOCI [59] No No No No No No No No No No No No

LOF [24] No No No No No No No No No No No No

A-ODDS [60] Yes Yes Yes Yes Fixed Yes Yes No No No No No

STORM [54] Yes Yes No Yes Fixed No No No No No No No

ODTS [13] Yes Yes Yes Yes Fixed No No No No No No No

ODSD [36] Yes Yes Yes Yes Fixed Yes No No No No No No

Stream LOCI

[62]

Yes Yes Yes Yes Fixed No No No No No No No

KFOD [63] Yes Yes Yes Yes Fixed No No No No No No No

ART [64] Yes Yes Yes Yes Fixed No No No No No No No

AMSD [65] Yes Yes Yes Yes Fixed No Yes No No No No No

IDMD [70] No No No No Fixed No No No No No No No

Horn’s

Algorithm [71]

No No No No Fixed Yes No No No No No No

Eskin’s

Algorithm [27]

No No No No Fixed Yes No No No No No No

AnyOut [26] No No Yes Yes Dyna

mic

No No No No No No No

ADMIT [56] Yes Yes No No No No No No No No No No

CLAD [57] No No No No No No No No No No No No

Orion Yes Yes Yes Yes Fixed Yes Yes Yes No No No No

Wadjet Yes Yes Yes Yes Fixed Yes Yes Yes Yes Yes Yes Yes

78

CHAPTER III

THE PROPOSED TECHNIQUES: ORION AND WADJET

This chapter presents both of our outlier detection techniques, Orion and Wadjet, for

single and multiple data streams.

1. Outlier Detection for Single Streams

In the single data streams model, data points from one single stream are independent of

those from another single stream. They have no cross-correlation and therefore

comparing them to each other is not meaningful. Hence in case of single data streams

we identify outliers in a stream based on the data points from that stream only. In the

single data streams model, a Data Stream is an infinite set of data points,

{
 | where a data point

 is a set of attribute values with an explicit or implicit

timestamp from data stream . Formally a data point is
 where is a -

tuple, each value of which corresponds to one attribute, and is the timestamp for the

data point. A data point
 is an outlier if it is significantly different from other data

points
 | . Figure 7 shows a set of data streams where a sequence of data

points is produced from an independent source (represented by a double circle) and the

outlier detection component receives one data point (
) at a time and marks it as an

outlier (
) if it is deviated from the other data points, or an inlier (

) otherwise, and

that outlier/inlier is continued for further processing.

79

The general idea of our outlier detection method is as follows. We summarize the set of

data points received so far. The summary will capture the overall trend of the data

points from the same stream. Once a new data point arrives, it is compared to the

summary and the value(s) of our outlier metric(s) are computed. If the value(s) for the

outlier metric(s) does not fit the notion of normality, then the newly arrived data point is

identified as an outlier, otherwise an inlier. The summary of the obtained data points is

updated incrementally for detecting outliers for future data points. We call our outlier

detection technique for independent streams, Orion.

Dt
1

Dt-1
1

D1
1 Further processing

Data

source 1

Dt
2

D1
2

Further processing
Data

source 2

Dt
n

Dt-1
n

D1
n Further processing

Data

source n

O
u
tl

ie
r

D
et

ec
ti

o
n

It
1

I1
1

Ot-1
1

O
u
tl

ie
r

D
et

ec
ti

o
n

It
2

I1
2

O
u
tl

ie
r

D
et

ec
ti

o
n

I1
n

Ot
n

It-1
n

Figure 7. Single data stream model

1.1. Motivation of Orion

Before going into the workflow of Orion, we would like to discuss the motivation of

Orion in this section. We start with the motivation of multi-dimensional outlier

detection which is the primary motivation of Orion and move forward with other

motivations for Orion. We have already developed outlier detection algorithms for data

streams, DBOD-DS [47] and A-ODDS [60], but those algorithms are very specific for

single dimensional streams. If we apply a single dimensional outlier detection algorithm

for each individual data dimension separately in multidimensional data streams, we can

identify outliers that have considerably different values in that dimension compared to

80

those of other data points, but we will not be able to capture the outliers that have

considerably different combinations of attribute (dimensional) values.

X
2

X1

Z
a

D0

Z b

Figure 8. Multi-dimensional outliers

Figure 8 illustrates the idea of multi-dimensional outliers. In this figure, each dot

represents a two dimensional data point. Consider the data point which looks as it is

a distant one from the rest of the data points. However, if we consider two dimensions

 and separately, the value of along is not much different from the values of

other data points along , and the same is true along as well. Therefore, considering

one single dimension alone like or may not produce any meaningful result.

Consequently, outlier detection algorithms like DBOD-DS and A-ODDS would not be

capable of detecting outliers like . Therefore those two techniques cannot detect

outliers in multi-dimensional streams - a gap that our proposed algorithm, Orion, aims

to fill. Orion detects a data point as an outlier if the data point has a drastically different

value or combination of attribute values compared to other data points.

81

One straightforward solution for multi-dimensional outlier detection would be

designing a multi-dimensional data density function. However the density space grows

exponentially with the number of dimensions and thus such function is not scalable.

Interestingly, we can create an artificial dimension, which we call projected dimension

(p-dimension), by linearly combining data dimensions and detect outliers by applying a

single dimensional data density function along that -dimension, computed from the

data points projected on that -dimension. Since the -dimension considers all data

dimensions, it can detect outliers that would have been missed if only individual data

dimensions were used. As an example, Figure 8 shows and as two -dimensions

each of which is a linear combination of two data dimensions, and . Now,

although may not look like an outlier if we consider the value of on or on

only, it certainly looks like an outlier if we consider the value of the -

dimension . This is because captures the correlation between and , and any

combination of attribute values that violates the correlation of and can be

observed by looking at the projected dimension . Theoretically there are infinitely

many such -dimensions, but Orion needs to find only one -dimension specific to a

particular data point along which we can identify whether is considerably

different from other data points.

So the first motivation for Orion is to find the -dimenison specific to that reveals

the outlier-ness of . The second motivation of Orion is to avoid using a distance

metric to measure the similarity among the data points. If we avoid using a distance

metric and use a data point specific -dimension to determine the outlier-ness of , the

 -dimension that reveals the outlier-ness of a data point varies for each data point and

82

also varies over time. Thus the third motivation is to find the appropriate -dimension

adaptively for a particular that reveals the outlier-ness of . The outlier-ness of is

captured by the outlier metric which leads to the last but not the least motivation of

avoiding using any specific threshold for the outlier metric to distinguish from

inliers. The details of Orion are presented in the next section.

1.2. Overview of Orion

Orion processes each data point from one stream individually. To identify whether a

data point is an outlier, Orion goes through three phases: (1) finding an appropriate

 -dimension for , (2) computing the outlier metrics for , and (3) determining if

is an outlier, based on the outlier metrics. To find an appropriate -dimension, Orion

uses an Evolutionary Algorithm (EA) because EA can effectively optimize any

objective function and is adaptive to the change of environment [77]. Every data point

 has a value along a -dimension. If this value has much fewer neighbors than the

values of other data points, then has either a considerably different value or

combination of attribute values compared to other data points and, thus, is very likely an

outlier. Therefore the goal of the evolutionary algorithm is to search for the -

dimensions along one of which has the minimum number of neighbors. Orion starts

with an initial set of -dimensions; however this set may not include the -dimension

that would incur the minimum number of neighbors for . Therefore, Orion gradually

modifies this set by adding new -dimensions and removing old -dimensions. The new

ones will most likely incur fewer neighbors for compared to the old ones. This

83

process is also adaptive to concept drift as the set is also modified if a concept drift

occurs.

The appropriateness of a -dimension is measured by its ability to incur a minimum

neighbor count for a data point along that -dimension. However, the neighbor

computation requires storing the entire set of data points which is impossible for data

streams. To solve this problem, Orion approximates the neighbor count with the help of

a neighbor density function as proposed in Section 1.3.2 (Chapter III). As each data

point arrives, Orion picks the -dimension that has the smallest neighbor density

from the existing -dimensions as it would better reveal the outlier-ness of compared

to other -dimensions.

Orion then computes the outlier metrics for along that -dimension in order to

determine whether it is an outlier or inlier. Two popular metrics are neighbor density

(ND) [47, 49] and -distance [24]. If a data point is considerably different from other

data points, it would have much fewer neighbor data points, and thus a smaller ND,

compared to other data points. The -distance is the minimum distance that includes the

 number of neighbors [24]. If a data point is considerably different from other data

points, it would require a larger distance to include the same number of neighbors.

Consequently an outlier would have a smaller ND and a larger -distance compared to

an inlier. Orion uses both ND and -distance in order to detect outliers. However, ND

and -distance computations require random access to the entire dataset (to compute

pair-wise distances between the data points) and do not consider the temporal

relationship and uncertainty among the data points. Orion solves all three problems by

computing ND and -distance using our proposed data density function that explicitly

84

addresses the temporal relationship and uncertainty in data streams without random

access to the entire dataset. The modified definitions of ND and -distance for data

streams are discussed in Definition 4 and Definition 7.

After computing the ND and -distance of , Orion uses co-clustering [78] to identify

whether the ND is considerably low and the -distance is considerably high, compared

to other data points. Co-clustering clusters a set of data points based on multiple

attributes where each attribute is clustered into a specific number of groups based on the

values of that attribute only. Orion clusters the data points based on the NDs and -

distances into three groups: small, average, and large. The data points that belong to the

clusters with a small ND and large -distance are identified as outliers. Table 2 presents

the list of symbols used in this paper and the rest of this section discusses Orion in

details.

Table 2. List of symbols

Symbol Interpretation

 , A set of p-dimensions for data points that are most likely to be

inliers () and outliers ()

 a set of p-dimensions, (), a working set of -

dimension at , (or)

 -dimensional vectors, the transpose of the vector is written as ,
the transpose of and is and

 -th component of vector . The same for and

 a data point at time

 dimensional data value vector for data point

 the value of along -dimension ,

 data density function along -dimension up to time

 user defined neighbor density for -distance

 the number of dimensions

 user defined neighbor distance

 scaled neighbor distance for dimension ,

 Current timestamp; timestamp starts at 0, increased by 1

 a -dimension along vector

85

 a random variable along -dimension

 the mean vector up to time .

∑

 the covariance matrix of attribute values up to time .

∑

 standard deviation along -dimension

 bin width along -dimension

1.3. Evolutionary Algorithm

Every evolutionary algorithm has two major parts in it: (1) the objective of the

evolutionary algorithm and (2) the model of evolution [79].

1.3.1. Objective of Evolutionary Algorithm

The objective of Orion’s evolutionary algorithm is to find a set of -dimensions, one of

which would incur the minimum Neighbor Density (ND) for a data point. The ND of a

data point in a data stream is analogous to the neighbor count of a data point in a finite

set of data points [49 , 54]. For a finite set of data points, the neighbor count represents

the number of data points occurring within a given distance from the data point . ND

represents the percentage of data points occurring within a given distance from . ND

is our approximation of neighbor count for a data point in a data stream. We calculate

the ND of from the data density function (defined in Section 1.3.2).

Definition 4. The neighbor density of a data point along a -dimension is

defined as the percentage of neighbors of within the scaled neighbor distance
.

Formally,

(

) ∫

 (1)

86

where is the data density function discussed in Section 1.3.2.

The small ND of a data point along any -dimension is a good indicator of the outlier-

ness for that data point [77] because it indicates that the data point is isolated from other

data points in that -dimension. In order to estimate whether a data point is an outlier, it

is sufficient to find a -dimension along which it has a low ND [77] compared to

other data points. The -dimension with the minimum neighbor density reveals the most

outlier nature of a data point.

Definition 5. The Minimum Density Dimension (MDD) for a data point is the -

dimension along which has the minimum neighbor density compared to all other -

dimensions. Formally,

 |
(

)
(

) (2)

Theoretically each data point has an MDD, but practically many data points may share

the same MDD (data points with the same value have the same MDD). Computing such

 -dimension for every data point is a difficult optimization problem. The objective of

the evolutionary algorithm is to find a set of -dimensions one of which is MDD for .

We choose evolutionary algorithm over deterministic algorithm for two reasons: (1) no

close form exists for the optimum -dimension and the co-efficients of each data

dimension vary for each optimal -dimension, which makes greedy or simulated

annealing algorithm very challenging for this optimization, and (2) evolutionary

algorithm is very adaptive to the change of data distribution [79]. Moreover, given a

proper model of evaluation, an evolutionary algorithm can optimize any function

without its closed form [79].

87

Other component analysis techniques like PCA and MCA do not guarantee the resultant

 -dimension to have minimum neighbor density compared to other -dimensions.

Figure 9 illustrates the idea with an example where each dot represents a data point and

 to . Each of these outliers is far from other data points in a two

dimensional space.

X
2

X1

Z
b

D0

D1

D2

D3

D4

D5

M
C

Z
a

Z c

Zd

Z
e

Z
f

P
C

Figure 9. PCA and MCA with other -dimensions

The principal component (PC) and the minor component (MC) of the data points are

shown as dotted lines in Figure 9. Now consider the outlier . The minimum neighbor

density of lies along -dimension , but not on the PC or MC. Similarly, we can

consider , , , , and ; the minimum neighbor density of each of them lies

along , , , , and . Neither PC nor MC can yield the minimum neighbor

density for all of them; this is because the principal component and minor component

are fixed for a dataset, where the is different for each of data point. Hence,

88

finding the appropriate -dimension with the evolutionary algorithm is more

appropriate than using the other component analysis model like PCA or MCA.

1.3.2. Model of Evolution

The model of evaluation of the evolutionary algorithm has three components: (1) the

population set, (2) the fitness function, and (3) the population modification.

1.3.2.1. Population Set

Orion starts with an initial set of -dimensions called the population set (it can be

chosen randomly [79]; we use eigenvectors of covariance matrix as the initial set and

the size of the population set is the same as the number of data dimensions). -

dimension in is called a population. is divided into two sets and . Two sets

are necessary for applications like outlier detection because inliers occur more often

than outliers [12], and the -dimensions that have low NDs for inliers may not have low

NDs for outliers. Since the number of inliers is much higher than the number of outliers,

the -dimensions that produce low NDs for inliers will dominate the entire population;

thus Orion would fail to find a -dimension that incurs low ND for an outlier. To avoid

such situation Orion randomly divides the initial set of -dimensions into two

separate sets, and . The -dimensions in produce the minimum neighbor

density for the data points that are surrounded by many other data points and thus are

likely inliers, and the -dimensions in produce the minimum neighbor density for

the data points that are not surrounded by other data points and thus are likely outliers.

In order to find the data points that are surrounded by many other data points, we

propose the concept of absolute normalized deviation.

89

Definition 6. The Absolute normalized Deviation (AD) of a data point along a p-

dimension is defined by the absolute distance between the value of and the mean

in scale of standard deviation along . Formally,

| |

| |

 (3)

Lemma 1. For any arbitrary -dimension and data point , the maximum value

of
 is

 √
 where

 and is a constant.

Proof.
 would be maximized if

 is maximized since

 .

It is computed as:

 (
| |

)

()

()

 where

 according to Extended Cauchy-Schwarz inequality

 and

 is maximized when equality is

achieved [19]

 √

and the maximum value of
 is attained if

 .

90

Heuristically, if the value of a data point is far from the mean value along a -

dimension, will most likely have a smaller neighbor density along that -dimension

compared to other -dimensions. The -dimensions in and are modified based

on the data points the maximum ADs of which are lower than the average maximum

AD and greater than the average maximum AD. Once a data point arrives, the

evolutionary algorithm chooses either or based on the value of the maximum

AD of and loads it into the working set .

1.3.2.2. The Fitness Function

The fitness of an evolutionary algorithm decides which set of populations will be

chosen or discarded for future steps. We calculate the neighbor density of for each -

dimension and sort the -dimensions into descending order; and the rank of a -

dimension is its fitness value for that particular . We do so because the minimum

value of ND of along any possible -dimension is unknown; hence it is difficult to

measure the goodness of an ND along any existing -dimension with respect to the

minimum ND. According to Lemma 2, the smaller the angle between a -dimension

and the optimal -dimension, the smaller ND produces compared to other -

dimensions and vice versa. Therefore the that induces the smallest ND must have the

smallest angle with the optimal -dimension, hence, has the highest fitness. So for the

current working set , the -dimension which has the smallest ND has fitness | |,

the -dimension which has the largest ND has fitness 1, and the remaining -

dimensions have fitness between | | and 1. The overall fitness of a -dimension is the

average fitness value of that -dimension for all history data points. The fitness values

91

of all -dimensions of are updated at every time period and a new dimension is

created and an old one is deleted (called the evolutionary step) randomly.

Lemma 2. The neighbor density along a -dimension increases with the increase of

the angle between the -dimension and optimal -dimension.

Proof. Let, meaning
(

)
(

) .

Let be a -dimension and .

(

) ∫

 ∫

∑

∑

 [Expanding DDF]

 ∫

∑

 [for the sake of simplicity let

us assume that all history data points have equal weight, later we

will argue why the result is extendable to variable weights]

∑ ∫

∑ ∫

((

)

)

 [using

Epanechnikov Kernel]

∑

 ∫

 ()

 ()

 [

]

92

∑

 [

]

 [where]

∑

 [

]

 [where

 &

]

∑

The neighbor density would be minimum if

 is

minimum for each data point; and so

 would be

minimum if and are maximum. According to the definition of Epanechnikov

Kernel the maximum value of and is 1; in that case the minimum neighbor

density would be 0.

(| || |)

 [is the angle of &]

 | |

 [since is a unit vector and neighbor distance and bandwidth are

equal for all -dimensions]

 would be maximum if is maximum. Thus, the optimal -dimension has

maximum , thus is parallel to ; and as the angle between and

increases decreases. So, the decreases as the angle between and

increases. The same is also true for . So, the neighbor density increases as the angle

93

between and increases. Since the total neighbor density is the sum of the

neighbor density induced by each data point, the weight does not influence the neighbor

density induced by a data point. Moreover, the weight of a data points does not play any

role for dimension selection since the weight is equal along all dimensions for one data

point.

1.3.2.3. The Population Modification

The next components of the evolutionary algorithm are the selection of existing

populations with high fitness (-dimensions) and the design of new populations from

them. Orion creates new populations using crossover and cultivation and removes

existing populations with low fitness using deletion.

Crossover. Crossover finds two populations (two -dimensions) called parent

populations with high fitness and creates a new population that performs even better

than the parent populations. Two populations are selected based on the rank selection

scheme [18] which sorts the -dimensions based on their fitness values in descending

order. The first -dimension has the highest probability of being selected and the last -

dimension has the lowest probability of being selected. Once two -dimensions are

selected, a new -dimension () is produced from the combination of the two parent -

dimensions. According to Lemma 3, the linear combination of two -dimensions

produces a new -dimension which produces smaller neighbor density compared to the

parents. Since and are two parents -dimensions where and are two unit

vectors along them, the new will have a unit vector which is computed using the

following Equation (4):

94

 {

 (4)

 are randomly chosen values for each crossover. The random initialization of

the -th component is often called mutation. Mutation is necessary because a simple

linear combination of and searches for MDD globally. Mutation introduces a new

value to one dimension and helps the evolutionary algorithm get out of local optimum.

Za

Z b

Zopt Za

Zb

Zopt

ZcZc

θa

θb

θc

θa

θb

θc

Figure 10. Linear combination of two -dimensions

Lemma 3. A linear combination of two parents -dimensions produces a new -

dimension better than at least one parent -dimension.

Proof. Let and be two -dimensions and be the optimal -dimension for

(Figure 10). The new -dimension is created from the linear combination of and

 . Let a new -dimension be created from and . would be in the vector

space created by and . If and are in two different sides of then is

also in the same vector space. The dimension that produces the maximum angle with

 and lies in that same vector space is either or and all other -dimensions

must produce a smaller angle with ; hence and/or . If and lie

on the same side of , let the -dimension that creates the minimum (maximum)

95

angle with be (). Any -dimension created by the linear combination of

 and produce a smaller angle with compared with the angle between

 , hence (this is also true if is not in the same plane). Thus in

both cases creates a smaller angle with compared to its parents and and

thus produces smaller neighbor density compared to its parents (according to Lemma

2). Hence the resultant -dimension produced from the linear combination of two parent

 -dimensions induces smaller neighbor density than its parents.

Figure 11 shows the crossover algorithm. This algorithm selects two -dimensions

randomly from the working set using the rankSelect function (lines 1-2). After two

parent populations are selected, the new -dimension is created in lines 4-

7. Finally the new -dimension is added to .

Cultivation: In practical applications many data points have similar values and hence

similar MDDs; therefore we can calculate the MDD of the current data point and keep

that MDD for future use. In this way Orion has a higher chance of finding MDD for

future data points. According to Lemma 1,
 is the vector along

which the data point has maximum AD. If we create a -dimension along and

insert it into the p-dimension set , it might induce minimum ND for future data

points; otherwise it will eventually be deleted.

Deletion: As we create new -dimensions using crossover or cultivation and insert them

into , we also delete old -dimensions from using the rank selection scheme

(Figure 11). The ones with lower fitness will have a higher chance of being removed

compared to the ones with higher fitness.

96

procedure Crossover(Population Set)

1 ← rankSelect ()

2 ← rankSelect ()

3 ← rand(0, 1)
4
5 k ← rand(0, | |)
6 c[k] ← rand(-1, 1) // mutation

7

8

end procedure

function rankSelect()

9 list ← empty

10 for all

11 list.add(, fitness())

12 list ← sort(list) // sort dsc order

13 wheel ← rand(0,
| | | |

)// a random value

14 index ← rand(0, |list|-1)

15 while(wheel > 0)

16 wheel ← wheel – (|list| - index)

17 index ← (index + 1) mod |list|;

18 select ← list[index]

end function

Figure 11. Crossover and Selection

1.4. Computation of Outlier Metrics

Orion uses the versions of ND and -distance [24] which we have modified for data

streams where they are computed from our data density function. The use of -distance

along with ND plays an important role in outlier identification: if the ND of an outlier is

accidentally big (because of masking effect [24]), -distance does not shorten

proportionally and, hence, the outlier can be identified with the help of -distance.

However -distance adds additional error as well: a true outlier might not have a small

 -distance because of error and ND can be used to detect it. Thus in order to classify a

data point as an outlier, Orion analyzes both ND and -distance. Since we already

97

discussed the modified ND in Definition 1, here we only discuss the modified -

distance for data streams followed by the proposed data density function.

1.4.1. k-Distance

We adopt the concept of -distance [24] but modify it for data streams. In [24] the -

distance of a data point is the minimum distance from a data point to its -th nearest

neighbor. So for a meaningful choice of , the -distance of a data point reveals how

different it is compared to the majority of the data points in terms of distance. Since we

deal with data streams, we use neighbor density, instead of neighbor count, as . We

calculate the -distance of a data point along one -dimension. Since each -dimension

has a different dispersion, -distance becomes very -dimension specific. In order to

make our -distance independent of the -dimension, we scale the obtained distance

with respect to the maximum dispersion along the -dimension.

Definition 7. The -distance of a data point along is the minimum relative

distance that has neighbor density along . Formally,

(5)

 | (

)

where
 is the dispersion of values along and calculated as data points arrive.

A data point would require a large area to cover the same if it is considerably different

from the rest of the data points and vice versa. Thus, the -distance of an outlier is large

compared to that of an inlier.

98

1.4.2. Data Density Function

Our proposed data density function is based on a kernel probability density estimator.

Several techniques exist in the literature to estimate data density function like histogram

[55, 80], wavelet [81] and kernel estimation [36]. Among those techniques we chose the

kernel probability density estimator (kernel estimator in short) for our approach. We

shall justify our choice in the next few paragraphs.

The kernel estimator estimates the data density function based on the data values. For

each data value the kernel estimator increases the frequency of occurrence of by

and increases the frequency of occurrence of each of the other values by a fraction of

 which fits our requirements excellently. Due to data uncertainty, when we

receive a data point with value , we cannot assert the data value with full

confidence; therefore we cannot increase the frequency of occurrence of by 1. Since

the value is uncertain, the data value might be induced by data values other than .

Thus to address the uncertainty of data streams, we do not increase the frequency of

occurrence of by 1. The kernel estimator increases the frequency of occurrence of

by and distributes the rest of the frequency of occurrence () into the other data

values which are close to the value . Formally, if are sample one

dimensional data points, their respective values are and the data density

function is defined by Equation (6) where is called the kernel function.

can be a scalar or vector.

∑

(6)

99

The kernel function is responsible for distributing the frequency of occurrence induced

by the data value . Various researchers have proposed various kernel functions (e.g.,

Uniform kernel function, Triangle kernel function, Epanechnikov kernel function,

Normal kernel function etc. [82]). Different kernel functions distribute the frequency of

occurrence differently. Interestingly, the choice of a kernel function does not affect the

data distribution function very much [36, 82]. Typically a kernel function distributes the

frequency of occurrence into the neighbor data values which reside within a range

called bandwidth () (Normal kernel function distributes the probability of occurrence

from to [82]). A kernel function along with the bandwith () is denoted by

 where . Although the choice of the kernel function is not very

significant, the choice of the bandwidth is very important for data distribution

estimation. A detailed discussion about the choice of kernel function and bandwidth

selection can be found in [82]. In our approach we chose a data-based approach for

bandwidth selection. Scott’s rule provides a data-based bandwidth selection where

 ⁄ where is the standard deviation and is the number of data points

used for data distribution estimation [36].

In a kernel estimator the frequency of occurrence is distributed into an equal number of

neighbor values for each data point, but in a variable kernel estimator the frequency of

occurrence is distributed into different numbers of neighbor values for each data point.

Hence at any specific point of time, if the data points are close to each other (in terms of

value), the bandwidth becomes small, and if the data points are far (in terms of value)

from each other, the bandwidth becomes large. Let be our data points

with values at times , and our corresponding

100

bandwidths be . The data distribution function at time becomes

Equation (7) where is the data distribution function at time . In our approach we

use the variable kernel estimator.

∑

(7)

The use of the variable kernel estimator is twofold: first, the variable kernel estimator

offers a variable bandwidth for each data point and the bandwidth can be computed on-

the-fly using Scott’s rule for each data point, and second, the variable kernel selects the

bandwidth based on the recent data values only.

We modify the variable kernel estimator to address the temporal characteristic of a data

stream. Recent data points are more interesting than old data points; therefore, when we

estimate the data distribution function we need to consider the freshness of data points.

Heuristically, the recent data items should have more weight than the old data points

[65, 66, 83]. Here weight is defined as how a data point contributes to the data

distribution function; thus, in our data distribution function, instead of giving all data

points the same weight, we weight them according to their freshness. The most recent

data point receives the highest weight while the oldest one receives the lowest weight.

Exponential forgetting is a weight assigning scheme which gives more weight to the

recent data points and less weight to the old data points, and the weight is decreased

exponentially from present to past [84]. According to exponential forgetting, the

relative weights among two consecutive data points are constant, called forgetting factor

 where . Among the two consecutive data points, the recent data point

receives weight 1 and the old one receives weight . In case of a series of data points, at

101

any particular time the most recent data point receives weight 1 and all other data points

receive the weights according to their relative positions to the most recent data point. If

 are the data points with data values at times

 respectively, the corresponding weights are . We weight

the kernel function with an exponential forgetting factor. Adding the exponential

forgetting factor to Equation (2), the data distribution function becomes Equation (8)

where ∑
 is the total weight. Another advantage of using the exponential

forgetting factor is that it can be computed incrementally [84] which eases the on-the-

fly implementation for data streams.

∑

∑

(8)

 is the data density function we have available at any time which represents the

current data distribution of a data stream [5].

Orion computes the data density function (DDF) of the data point along every -

dimension in the set . When a data point arrives, Orion updates the DDFs of all -

dimensions. Each -dimension has a DDF based on the data points arrived after its

creation. The DDF of a -dimension is the DDF proposed in Equation (8). It is based on

the projection of the data values on a -dimension. For any -dimension the

proposed DDF is defined by Equation (9).

∑

∑

 (9)

102

where is the timestamp when is created and is the bandwidth along . The

DDF does not assume any particular fixed/standard data distribution, but is adjusted on-

the-fly. In addition, it uses a variable bandwidth for the kernel estimator which eases the

online incremental implementation and makes the DDF adaptive to the dispersion of the

data points.

1.4.2.1. Data Density Function Implementation

The kernel estimator requires a large amount of computation. Binned implementation is

a popular, fast implementation for the kernel estimator [85]. In this approach the entire

range of data points is divided into some equally spaced bins and data are distributed

into bins according to their data values. Each bin has a representing value and all the

data points in a bin are represented by the representing value. The key idea is that most

values are naturally close to each other and binned implementation reduces the number

of evaluations; but this popular binned implementation still requires multiple passes of

the data points and cannot be computed incrementally.

In our approach we divide the entire range of data values into equally spaced bins. A

representing value is selected for each bin (in Figure 12). Instead of binning

the data points for each bin, we store the value of the data density function of the

representing value , cumulative data density function and the derivative of the

data density function . , and are stored for each representing

value . , and are the sum of the kernel estimations, sum of the

cumulative kernel estimations and the sum of the derivative of the kernel estimations

for all the data points received, respectively. The kernel function, the cumulative kernel

function and the derivative of the kernel function for each representing value are

103

computed on-the-fly and added to the previous sums; hence this is an online

incremental implementation.

b0 b1 b2 b3 b4

x

fT(x)

Figure 12. Binned implementation of kernel estimator

Figure 12 shows the binned implementation of our proposed probability density

function. By carefully selecting the bin width we can assume each bin to be a trapezoid

as shown in Figure 12 and we can approximate the probability of occurrence of a data

value within a bin. The top of the trapezoid is a straight line (shown in Figure 12 as the

dotted line touching the probability density function) and we store the passing point as

well as the derivative; hence using the straight line equation of the line we can estimate

the probability of occurrence of any data value within a bin.

Practically it is impossible to know the entire range of values for all possible -

dimensions, hence we do not assume to have the entire range of data values for each

possible dimension. Therefore, instead of creating a static set of bins, we create a bin

whenever necessary, that is whenever the DDF of that particular bin is updated. In order

to create bins dynamically we approximate the value of the bin width for each -

dimension from its variance . The bin width should be such that the average error

104

value is minimum; Section 1.7.2 provides a detailed discussion about bin width

selection for our approach.

1 procedure update(dataItem d, timestamp t)

2 ; // s1 is the sum of data value and λ
is our forgetting factor

3 ; // s2 is the sum of the square of the

data value

4 ; // ω is the total data weight
5 ; // µ1 the first moment
6 ; // µ2 the second moment
7 √

 ; // σ is the standard deviation

8
 ⁄ ; // h is the bandwidth

9 ; // c is the cell count
10 ; // b is the middle cell
11 for – to , // i is the index of the

cell, where and .
// is the representing value of the bin/cell()

and αi and βi are the starting value and the end

value of the bin.

// distance between two consecutive time stamp is 1.

12 ;
13 if (is not discontinuous at

14
 (–)

 ;
15 else

16
 (–)

 –

17 ;
18
19 end for

20 end procedure

Figure 13. Update data density function

Figure 13 shows the online incremental update algorithms for our proposed data density

function. The update algorithm updates the DDF as each data point comes for every -

dimension. The update algorithm takes a data point and its timestamp as input. It starts

by updating the weighted summation (lines 2-3), where is the weighted summation of

105

the data values and is the weighted summation of the square of the data values. The

 in line 4 is the total weight of the data. and are required to calculate the current

standard deviation and hence the bandwidth . In line 9 we calculate the number of

cells we need to update. Some kernel functions update the values in the range from

to (e.g., Normal kernel function [82]); in that case we restrict it to and

 , which represent the minimum and maximum allowable values for a data

point, respectively. Now for each bin we update the sum of the kernel function and the

latest timestamp when the bin is updated. If the kernel function is continuous at the

representing point then we store the derivative of the kernel function at ; otherwise

we store the gradient from the starting point to the end point of the bin. The

probability lookup algorithm is fairly simple; it finds the appropriate bin which contains

the sum of the kernel function values. Finally the probability is achieved by dividing the

sum of the kernel function values by the sum of the weights.

1.5. Outlier Detection

A data point is an outlier if it has a considerably small neighbor density (ND) or a large

 -distance compared to the normal data points. However the definition of “considerably

small/large” is application-dependent and no well accepted definition of “considerably

small/large” exists in literature [10, 12]. Orion solves the problem by quantizing the

values of ND (and also of -distance) into three groups: (1) small, (2) average and (3)

large where they represent the three sets of data points with small, average and large

neighbor density (-distance), respectively. Instead of using user-defined thresholds for

small, average and large for ND or -distance, Orion quantizes them using the concept

of co-clustering [78].

106

Co-clustering clusters the data points into three clusters based on their NDs and three

clusters based on the -distances; hence the total number of clusters with a unique

combination of ND and -distance is nine (three times three). We initialize the cluster

centers with the minimum (for small), average (for average) and maximum (for large)

values, and the cluster centers are updated with the arrival of every new data point. In

this way we avoid using any user-specified threshold for the boundaries of small,

average and large and let the boundaries emerge from co-clustering.

Neighbor density

k-
d

is
ta

n
ce

B3(small,

large)

B8(large,

average)

B5(average,

average)

B2(small,

average)

B9(large,

large)

B6(average,

large)

B7(large,

small)

B4(average,

small)

B1(small,

small)

X
2

X1

A

C

O

D

(a) (b)

E

Figure 14. Neighbor density/k-distance space

Orion creates nine blocks for nine clusters in a two-dimensional space (Figure 14a)

where the ND goes along the horizontal axis and -distance goes along the vertical axis.

Each block is a cluster and has a cluster center defined by a tuple (ND, -distance).

Blocks share a common ND and different -distances as their centers,

and share different NDs and a common -distance (other blocks are

defined similarly). As a data point arrives and its ND and -distance are calculated,

Orion finds the appropriate block based on its ND and -distance, updates the

corresponding centers, and determines whether it is an outlier or inlier based on the

block properties.

107

 and correspond to the blocks where every data point has a small ND and

small/average -distance compared to other data points. If the ND is small, the data

point has very few neighbor data points and can be an outlier; however the -distance is

also small/average which shows most of the data points can be reached within a

small/average distance. These data points are on the periphery of a group of data points

(A and C in Figure 14b). Every data point belonging to this block will be identified as

an outlier if it is more inclined to the vertical axis compared to the horizontal axis since

those data points have large -distance and small ND. is an ideal case of outliers

where every data point has a small ND and a large -distance value, hence it is

identified as an outlier (O in Figure 14b). Blocks and have average ND and

small/average -distance. The NDs of the data points belonging to these blocks

represent the normal behavior of the data and the -distances represent a close

()/typical () proximity to other data points. Data points belonging to are

identified as inliers (E in Figure 14b). shows a large -distance with average ND;

this may happen because of the masking effect [24] where a group of outliers cluster

together and far from the rest of the data points. Thus is considered as an outlier

block (D in Figure 14b). Blocks and consist of ideal inliers that have a large ND

and small/average -distance. Finally is an invalid block because a data point that

simultaneously has a large ND and large -distance is impossible to exist. If a data

point has large ND which means it has plenty of data points in its close proximity, thus

it would require a small -distance to incorporate percents of the data points. Any

data point belonging to is invalid and therefore can be considered as an inlier or

outlier.

108

function detectOutlier(nDen, kDist, hCenters, vCenters)

1 dist ← MAX

2 (h, v) ← (-1, -1)

3 for i = 1 to 3

4 for j = 1 to 3

5 lDist ← |nDen–hCenters[i]|+|kDist–vCenters[j]|

6 if(lDist < dist)

7 dist ← lDist

8 (h, v) ← (i, j)

9 update(hCenters[h], nDen)

10 update(vCenters[v], kDist)

11 if((h,v) =)

12 detectOutlier ← false

13 else if((h,v) =)

14 detectOutlier ← true

15 else if((h,v) =)

16
 if(cosine((0, 1), (nDen, kDist)) > cosine((0, 1),

(hCenters[1], vCenters[3]))

17 detectOutlier ← true

18 else

19 detectOutlier ← false

end function

function cosine()

20
cosine ←

√

 √

end function

Figure 15. Outlier detection algorithm

Figure 15 shows the outlier detection algorithm detectOutlier. Orion invokes this

algorithm once it computes the ND and -distance for the newly arrived data point.

detectOutlier compares the ND and -distance with all cluster centers (lines 3-8) and

finds the closest cluster center. Once the closest cluster center is found, detectOutlier

updates it and identifies whether the data point is an outlier or not based on which block

the data point belongs to. If the data point belongs to any of the blocks ,

it is identified as an inlier (lines 11-12); if it belongs to any of , it is

identified as an outlier. If the data point belongs to it is identified as an outlier

109

if it is more inclined to the vertical axis (lines 16-17); otherwise it is identified as an

inlier.

1.6. The Orion Algorithm

Orion consists of two stages: the initialization stage to initialize the data structures and

learn the parameters, and the incremental stage to determine whether a newly arrived

data point is an inlier or outlier.

1.6.1. Initialization Stage

Orion initializes all of its data structures (mean and covariance) and learns the

required parameters for the data density function from the bootstrapping rounds which

are the first few rounds of data specified by the user. The first step of initialization is the

forgetting factor selection. Brailsford et al. [84] proposed a method for forgetting factor

selection which is discussed in Section 1.7.1. In the second step Orion creates a set of -

dimensions as the eigenvectors of the covariance matrix and partitions into two

sets and randomly. The reason Orion chooses eigenvectors because they are

along the maximum variance of the attributes. Once the dimension set is populated,

Orion updates the data density functions along all the -dimensions in and calculates

the ND and -distance for all bootstrapping rounds. Finally Orion initializes the cluster

centers for co-clustering: small as 0 (minimum value), large as 1 (maximum value) and

average as mean (average ND/ -distance value of the data points in the bootstrapping

rounds). Orion then moves to the incremental stage.

110

1.6.2. Incremental Stage

Orion processes every data point online and incrementally. Once a new data point

arrives, the algorithm ProcessData shown in Figure 16 is invoked. It takes , user-

defined neighbor distance and for -distance as input, identifies whether is an

outlier or inlier and updates its internal data structures for future use. Figure 17

accompanies Figure 16 to show the flow diagram of Orion.

procedure ProcessData(Data point , neighbor distance

 ,)

1

 // update mean

2

3

 // Lemma 1

4 if(
)

5 else // find appropriate set

6

7 {
(

) | //

8 sortedList←sort(densityList)//Asc-order

9 //choose item within ND
10

(
)

11

12
if(detectOutlier(nDen, kDist, hCenters, vCenters))

isOutlier ← true

13 else isOutlier ← false

14 for all updateFitness()

15 ← evolve()

16 for all updateDensity()

17 return isOutlier

end procedure

Figure 16 ProcessData Procedure

111

New data, Dt

point arrives

New data, Dt

point arrives

Compute maximum deviation

distance

Maximum deviation distance >

average deviation distance
At ← AinAt ← Aout noyes

Find the p-dimension

with smallest neighbor

density within At

Compute the neighbor

density and k-distance

for that p-dimension

Cluster Dt based on neighbor

density and k-distance

Does Dt

belong to

outlier cluster
yes no

Mark Dt as

outlier

Mark Dt as

inlier

Orion updates the fitness of each p-

dimension in At

Orion executes evolve for At

Orion updates the data density

function for Ain and Aout

End

This part of Orion is used to update the

fitness value of At and data density function

of Ain and Aout; and independent of Outlier

detection

Figure 17. Work flow of Orion

At first, Orion computes the maximum deviation distance for the newly arrived data

point (Figure 17). The corresponding operation can be found is lines 1-3 in Figure 16

where ProcessData starts with updating the mean and covariance matrix (lines 1-

2) and computes the maximum AD (line 3). If the maximum AD is smaller than the

average maximum AD, , ProcessData selects the set and stores it in the

working set ; otherwise it selects for the working set (lines 4-7, the top

decision box in Figure 17). ProcessData selects one -dimension from which incurs

the smallest ND (lines 6-9) and calculates the ND and the -distance of along that -

112

dimension (lines 10-11), which is also shown in the flow diagram of Orion. is

identified as an outlier if it has a considerably low neighbor density and considerably

high -distance compared to the normal data points using the detectOutlier function in

line 12. The detectOutlier function examines the cluster to which belongs; if it is an

outlier cluster, detectOutlier identifies the as an outlier; otherwise inlier (the bottom

decision box in Figure 17). In the next step, Orion updates the existing data structures

for future processing (the shaded region in Figure 17). ProcessData then sorts the -

dimensions into ascending order based on the NDs of the data point along those

dimensions. Orion updates the fitness (rank) of the selected -dimensions and performs

the evolutionary steps by adding a new dimension to and removing an old one from

 (line 15). Finally ProcessData updates the data density function along every -

dimension in which is a union of the sets and (line 16) for future use. At this

point the processing of is complete and Orion moves to the next data point.

1.7. Parameter Selection

In the course of the description of Orion we have proposed the use of the parameters

forgetting factor λ, bin width and initial population without giving an idea about how

those parameters are selected. In this section we describe the parameter selection

strategy for each parameter.

1.7.1. λ Selection

Data points have a temporal characteristic in a data stream. Data points are interesting

for a specific amount of time. Moreover, data points have a temporal dimension and

they are correlated with respect to time. The data points which are close to a given data

113

point are more correlated to than the data points which are far from . Heuristically,

we weight the data items with an exponential forgetting factor λ (), which

implies that the recent data points will receive higher weights than the old data points. If

the value selected is close to 1, the data distribution function will remember more

history than the data distribution functions where the value is close to 0. The value 0

implies that only the current data point is used for the data distribution function while

the value 1 implies a complete history where all previous data points will be used for

the data distribution function. Intuitively, the more history the user wants, the larger the

 should be. One important factor for an appropriate λ selection is the correlation

between consecutive data points. Intuitively, data collected more frequently tend to be

more correlated to each other. Above all, it is a highly application-dependent parameter

in time series analysis or data streams. To select an appropriate forgetting factor, we

adopt the static forgetting factor selection method proposed by [84]. The selection is

based on a bootstrapping method; therefore, it requires an initial dataset to select an

appropriate . This model portrays the time series as an auto-regression model with a

forgetting factor. A part of the initial dataset is used to train the auto-regression model

and the rest is used for error estimation. According to the method, the which gives the

minimum error is the right choice for . Madsen [66] pointed out that for an auto-

regressive model, should be greater than 0.75 where c is the number of components

in the model; therefore it is sufficient to consider the values which are greater than 0.75.

Brailsford et al. use a first order linear model for their approximation, and so do we.

The next section discusses the selection method for another important parameter for our

approach named bin width.

114

1.7.2. Bin Width Selection

Bin width is an important parameter for the correctness of the data density function.

Instead of exactly representing the data density function, our binned implementation

approximates the data density function. The bin width should be such that the average

error is minimum. This section presents the maximum error bound for a specific choice

of bin width and provides a guideline for bin width selection.

Let us say is the actual data density function and is the approximate data

density function for a dimension by our binned implementation where is a random

variable. At point our approximate frequency of occurrence is and true

frequency of occurrence is ; therefore the error induced at point is

| |. Here,

∑

 and

∑ [

]
 where is the representing

value for the nearest bin and is the data value. For the sake of simplicity we omit the

exponential forgetting factor from the following error analysis.

 |

∑

∑[

]

|

 |

∑[

]

|

∑|

 |

115

∑|

 |

Here
 is the error induced by the data value , where

 . The total error can be minimized by minimizing

 [5].

[(

)

 (

)

 [

]]

If the random variable goes to the bin where is the representing value, the average

error in the bin is defined by

 for data value as follows:

∫

116

 (

) (

)∫

 (

) (

) [

]

 (

) where is the bin width

and therefore,

 (

)

(10)

 is the average error in a bin induced due to approximation. From Equation (10) we

can see the induced error is independent of the bin location. Therefore, each bin would

have an equal average error. The error will be minimized if we minimize the average

error. Hence, the minimum error occurs when

(

) .

(

)

(

)

 therefore,

 if or . Obviously, the average error is

minimum when the bin width is zero. We can reduce the error by choosing a bin width

much smaller than the bandwidth [5]. If the bin width is greater than the bandwidth,

only one bin’s frequency of occurrence will be updated. In that case if we consider one

bin as one histogram, then the kernel estimation is turned into the histogram based

approach [5].

Minimizing the bin width increases the number of bins; hence the greater the number of

bins the lower the error. Fan and Marron [85] mentioned that four hundred bins is often

optimal, fewer than four hundred bins often deteriorates the quality of the results and

117

more than four hundred bins offers very little improvement. In our technique we use the

optimal four hundred bins.

In our implementation we do not assume to have the entire range of data values for each

possible dimension. Therefore, instead of creating a static set of bins, we create a bin

whenever necessary, that is whenever the DDF of that particular bin is updated. In order

to create bins dynamically we approximate the value of the bin width for each

dimension from the variance . According to Chebyshev’s inequality [59],

regardless of the data distribution, more than 90% of data points are within six standard

deviations away from the mean. Hence we choose the optimal four hundred bins for six

standard deviations (bin width
 √) for any -dimension.

We embed the λ and bin width selections in our approach. Hence our approach does not

require the user to select these two parameters; rather our approach automatically

chooses the appropriate values for them.

1.7.3. Initial Population Selection

The strength of the evolutionary algorithm is that it can start from any random set of

solutions [79]. So theoretically we can start from any random set of -dimensions.

However, in our case we compute the covariance matrix using the bootstrapping dataset

and compute the eigenvectors from the covariance matrix and initialize our initial

population set with eigenvectors. We randomly divide the set of eigenvectors into two

sets and put them in and . The use of eigenvectors has one advantage over

random population initialization in that it ensures all the starting -dimensions to be

independent of one another and there would be at least one -dimension along which

118

the data points are far from their mean (because according to Lemma 1, a data point is

furthest from its mean along the eigenvector corresponding to the minimum

eigenvalue). Therefore, if future data points are similar to bootstrapping data points,

then they might incur minimum neighbor density along that -dimension.

2. Outlier Detection for Multiple Data Streams

Multiple data streams consist of a set of data streams where each data stream produces

an infinite sequence of data points accompanied with explicit or implicit timestamps

and data points from different streams may or may not be correlated. These data points

may have two kinds of correlations: one is called temporal correlation where data points

from the same stream are correlated and one is called cross correlation where data

points from different streams are correlated. Outlier detection for single streams

compares a data point in a stream with respect to the history data points from that same

stream in order to identify whether the data point is an outlier. In case of multiple data

streams, such identification can be done either by (1) comparing the data point with the

history data points from the same stream that carries the data point, (2) comparing the

data point with the data points from the other correlated streams, or (3) using a

combination of both (1) and (2). The opportunity of having multiple data streams to

compare allows richer semantics across the data streams to be taken into consideration

which would lead to better detection accuracy. Our algorithm, which is discussed in

detail in Section 2, uses Option (3) so that it can take advantage of both Options (1) and

(2).

119

Figure 18 shows a generic outlier detection methodology with multiple streams. Each

data source produces a sequence of data points and sends them to the outlier detection

component. The streams produced by multiple data sources can be homogeneous or

heterogeneous, synchronous or asynchronous, and some or all of them may be

correlated. For each data point received, the outlier detection component identifies

whether it is an outlier or inlier and releases it for further processing (Figure 18).

Dt
1

Dt-1
1

D1
1

Further processingIt
1

I1
1

Ot-1
1

Data

source 1

Dt
2

D1
2

Further processing
O

u
tl

ie
r

D
et

ec
ti

o
n

It
2

Data

source 2

Dt
n

Dt-1
n

D1
n

Further processingI1
n

Data

source n

O1
2

Ot
n

It-1
n

Figure 18. A generic multiple data streams model with outlier detection

We propose the idea of two-phase outlier detection that exploits the temporal and cross

correlations among data points. In the first phase, outliers would be detected based on

the data points from only one stream using Orion for single streams; and in the second

phase, outliers would be detected based on the data points from all correlated streams.

Figure 19 depicts the idea of two-phase outlier detection. In the first phase, a data point

 (-th data point from the -th stream) is identified as an outlier if it is

considerably different from other data points from the same stream or an inlier

otherwise. For the data points that were not found to be outliers in the first phase, they

will be sent to the second phase for further detection. In this phase, a data point is

identified to be an outlier if it violates the expected cross correlations among the data

120

points in the streams that have cross-correlation with the stream from which the data

point comes. In the second phase, we process the group of correlated data points

together that arrive at the same point in time in order to detect outliers among them. In

summary, a data point is said to be an outlier if it violates any of the correlations

(temporal correlation in the first phase or cross correlation in the second phase).

Dt
1

Dt-1
1

D1
1 Further processingIt

1
I1

1
Ot-1

1Data

source 1

Dt
2

D1
2 Further processing

O
u

tl
ie

r
D

et
ec

ti
o

n

It
2Data

source 2

Dt
n

Dt-1
n

D1
n Further processingI1

nData

source n

O1
2

Ot
n

It-1
n

O
u

tl
ie

r

D
et

ec
ti

o
n

It
1

I1
1

Ot-1
1

O
u

tl
ie

r

D
et

ec
ti

o
n

It
2

I1
2

O
u

tl
ie

r

D
et

ec
ti

o
n

I1
n

Ot
n

It-1
n

Figure 19. Two-phase outlier detection for multiple data streams

The second phase requires a novel idea of outlier detection that can compare data points

from multiple streams to identify outliers. This is because data points from multiple

streams could be very different from one another and their values may not be directly

comparable. Moreover, the asynchronous and dynamic nature of multiple streams make

it difficult to learn the cross correlation. On top of that, the notion of outlier in

heterogeneous streams is yet to be defined. Since the second phase tries to exploit cross

correlation among the data points from multiple streams and we may or may not have

more than one correlated data points at any point in time, instead of processing one data

point only, we have to process a set of correlated data points where each of them may

be originated from multiple streams. We called our algorithm Wadjet.

121

2.1. Overview of Wadjet

Wadjet is composed of two phases. In the first phase, Wadjet uses Orion to detect

outliers based on individual data streams. The data points that are identified as outliers

are stored in the set of outliers; otherwise they are stored in the set of inliers. In the

second phase, Wadjet further processes the set of inliers. It captures the cross

correlations, if any, among the data points (that are in the set of inliers) from multiple

streams. Each stream produces a sequence of data points, and two random data points

which are picked from two different streams may not have the same cross-correlation;

thus we need to compute the cross-correlation among the data points. However,

theoretically we can compute the cross-correlation between any two data points chosen

from two different streams. Imagine two sensors and producing temperature

readings at every hour, such as

 and

 . We can

compute the cross-correlation between any pair of their data points (

) where and

 can be any value. Hence, the theoretical possible cross-correlation pair could be

infinite (because each data stream can produce an infinite amount of data points).

Practically, it is impossible to compute an infinite number of possible cross-

correlations; and therefore, it is necessary to define the context for each stream under

which the cross-correlation would be captured. Consider data streams, each of which

produces a sequence of data points.

 ,

 and

 are data points from streams 1, 2 and n, respectively, where

 is the

data point at time i from stream j. The cross-correlation between
 and

 is not the

same as the cross-correlation between
 and

 . Therefore, we need to identify the

data points from the streams whose cross-correlation would be captured. Ideally, we

122

should select the data points in such a way that the cross-correlation is maximized,

which raises the problem of time series alignment [86]. A time series alignment

algorithm aligns two series in such a way that they exhibit maximum correlation;

however, existing time series alignment algorithms require the availability of the entire

set or a large subset of data points [86, 87], which is not possible in data streams.

Wadjet captures the cross-correlations among the data points that arrive simultaneously.

Figure 20 shows the flowchart of Wadjet. Wadjet starts collecting all available data

points from the streams and starts detecting outliers among them. Tracking cross-

correlations among time series is an active research area [48, 86]. A number of outlier

detection techniques also track multiple streams for outlier detection [32, 39, 88];

however, they assume that all the data points from multiple streams have the same value

(a form of cross-correlation), and hence, any data point which breaks that assumption is

identified as an outlier. We believe this assumption is too restrictive and the existence

of correlation is unknown and dynamic. In order to compute the cross-correlations

among the data points from multiple streams, we compute the correlation matrix that

has the pair-wise correlations of all attributes of all data points from all streams.

Wadjet compares one attribute value to the other correlated attribute values to detect

outliers. However, not all attributes are significantly correlated with other attributes.

Therefore, comparing one attribute value to an uncorrelated attribute value would not

produce any meaningful result. Thus, Wadjet needs to find the set of correlated

attributes and compare their values to measure their similarity and detect outliers. Each

set of correlated attributes is called a cluster.

123

Once Wadjet computes the cross-correlation between the attributes, Wadjet groups the

significantly correlated attributes of the same set of data points into clusters. Two

attributes are called correlated if their coefficient of determination (coefficient of

determination between two attributes is the square of Pearson correlation between them

[89]) is not significantly different from the perfect coefficient of determination (which

is 1). We use coefficient of determination because if two attributes have the perfect

coefficient of determination, the variation of one attribute can perfectly be explained by

the second attribute. The perfect coefficient of determination also implies that there

exists a linear function between them. If two attributes and have perfect coefficient

of determination, they can be represented as a linear function of one another such as

 , where and are two regression coefficients [90].

In order to group the attributes into clusters, Wadjet starts with an empty cluster. One

attribute is chosen randomly and placed in the empty cluster. This attribute is called the

cluster head. Wadjet chooses the first attribute randomly so that every attribute has an

equal chance of being a cluster head. Once the cluster head is chosen, for each attribute

other than the one already in the cluster, Wadjet checks whether the attribute has a

significant correlation with the cluster head; if yes, then the attribute is added to the

newly formed cluster. This process continues until no more attribute can be added to the

newly formed cluster. Wadjet continues the same cluster formation process with the

remaining set of attributes that do not belong to any cluster already formed.

The objective of the cluster formation step of Wadjet is to identify a set of attributes that

are correlated. Once Wadjet can identify the set of correlated attributes, it can compare

the attribute values with each other to identify outliers. Our clustering scheme ensures

124

that each attribute in a cluster is significantly correlated with the cluster head. This is

necessary because outlier detection relies on similarity measurement between two data

points. However, computing similarity between two attributes is very difficult if their

values are not equal but correlated. Thus, we need to make them equal in order to

measure the similarity between two attributes. In order to make them equal, all the

attributes in a cluster must be correlated to one attribute, so that their values can be

made equal (we call this “equating the values”). In our clustering scheme, all the

attributes in one cluster is significantly correlated with the cluster head, thus we can

equate the attributes of a cluster to the cluster head using a linear regression function.

By construction, each attribute in a cluster has a significant correlation with the cluster

head. By definition, if two attributes are significantly correlated, there exists a linear

regression function between them. If a cluster has five attributes, , and

and is the cluster head, then can be represented as a function of ; similarly it

can be represented as a function of , and as well. We can compute four

different values of , each computed using one of , and . Each of these

values is called the expected value of obtained from where ; we call this

“equating the value of to .” Theoretically, has five different values four of

them are computed by equating other attributes and one of them is the value of ; and

all of them must be the same. Therefore, all the values from to are now equal and

Wadjet can easily measure the similarity between them. Thus, we solve the problem of

similarity measurement among the attributes of a cluster by equating them to the cluster

head.

125

For each cluster, Wadjet computes the expected values of the cluster head by equating

each of the attributes in that cluster with the cluster head. If any of the expected values

of the cluster head is significantly different from other expected values, the attribute is

most likely an outlier. This is because based on our obtained correlation, all of these

values (expected values and the obtained value) should be equal. Since, one value is not

equal, it is non-conformist to our obtained correlation and thus it is very likely an

outlier. Wadjet identifies the data point which contains that attribute as an outlier.

Wadjet identifies the outliers for each cluster separately because the attributes in a

cluster is significantly correlated with the cluster head. Thus each attribute is compared

with only its correlated set of attributes. Two attributes from two different clusters may

not be correlated at all and, therefore, comparing them to detect outliers would not

produce any meaningful result. Therefore, Wadjet compares each attribute with the

other attributes in the same cluster only.

Figure 20 shows the flow diagram of Wadjet. In the first step, Wadjet executes Orion

for each data point and identifies the sets of outliers and inliers. Wadjet further

processes the set of inliers to update the cross-correlation matrix. In the following step,

Wadjet clusters the attributes and equates the attribute values to their respective cluster

head values. Finally, Wadjet identifies the outliers from each cluster by finding

significantly different attribute values (compared to other attribute values in the same

cluster) and adds the outliers to the previously constructed set of outliers. Wadjet

continues this process until no cluster left for processing. The details of Wadjet are

explained in the next few sections.

126

Collect a set of all data

points, St, from all streams

Outliers ← {}

Inliers ← {}

Obtain the first data

point Dt
i

St←St - Dt
i

Execute Orion on Dt
i

Is Dt
i
 an

outlier?

Inliers ← Inliers Dt
i

Outliers ← Outliers Dt
i

Is St empty?

No

Yes
No

Extract all the attributes from inlier

data points

Yes

Update cross-correlation matrix

Cluster all the attributes and store it

into set of clusters, C

Find the first cluster ci; and find the

regression function and apply the

regression function for each attribute

value except cluster head

Is any attribute value

significantly different from its

nearest neighbor

C←C - ci

No

Is C empty?

No

End

Yes

Identify the associated data points

{Dt
i}Yes

Outliers ← Outliers {Dt
i}

Figure 20. Flowchart of Wadjet

127

2.2. Cross-correlation Computation

In order to detect outliers from multiple streams, Wadjet makes use of the cross-

correlation among the data points from multiple streams. Each stream is an infinite

sequence of data points; hence, computing the cross-correlation between all pairs of

data points is impossible. Selecting an appropriate context is a major challenge of

computing the cross-correlation among the data points. The second problem associated

with cross-correlation computation is the representation of cross-correlation. We will

discuss both of them in the next two sections.

2.2.1. Context Selection

We select an appropriate context for the data points, among which we compute the

cross-correlation. Then, we propose the selection of data points based on time. In the

time-based approach, time is quantized and each quantum is separated by a amount

of time (the vertical lines in Figure 21). The data points that arrive within one quantum

of time are grouped together. We compute the cross-correlation among the streams

based on the data points arriving at the same quantum of time. We choose as the

smallest time difference between two consecutive data points from one stream because

such choice of ensures that there will be no two data points from the same stream

within .

Although this model is very restrictive, it is effective in tracking dynamically changing

cross-correlations among the data points, and a suitable data structure can easily be

established. Of course this approach would miss some cross-correlations among the data

points with any time difference greater than ; however, if we want to capture those

cross-correlations and compare the data points based on them, the processing of at least

128

one of the data points has to be delayed for a time duration greater than as well. In

this model, the processing of any data point is delayed no more than .

D1
1Data

source 1
D2

1D3
1D4

1D5
1D6

1

D1
2Data

source 2
D2

2D3
2D4

2D5
2

D1
nData

source n
D2

nD3
nD4

nD5
n

Δt

0123456789101112

time

Figure 21. Temporal context for cross correlation

2.2.2. Cross-Correlation Representation

Wadjet captures the cross-correlations between the data points arriving within from

all streams. Since is the minimum time between two consecutive data points from

any stream, each stream can have at most one data point within . Wadjet captures the

cross-correlation between the data points by capturing the cross-correlation between

their attributes. Each data point can have multiple attributes; hence Wadjet captures the

pair-wise cross-correlation between all pair of attributes. Wadjet uses the Pearson

correlation matrix [91] that has the pair-wise correlations of all attributes of all data

points from all streams in order to compute the cross-correlations among the data

points. As each data point consists of multiple attributes, computing the Pearson

correlation between two data points is impossible since the Pearson correlation is

defined between two random variables. Instead of computing the Pearson correlation

129

between two data points, Wadjet computes the Pearson correlation between a pair of

attributes. This correlation matrix has

 entries, where is the number of

dimensions and is the number of streams. Depending on the values of these two

parameters, this matrix can be large; however, this matrix can be computed

incrementally and in parallel.

Wadjet uses the West algorithm [92] to compute the covariance matrix, and

computes the Pearson correlation matrix from the covariance matrix. The West

algorithm computes the covariance matrix online. As a set of data points arrives, Wadjet

updates the covariance matrix and the Pearson correlation matrix using Equation (11).

√

(11)

where and are two attributes, is the covariance between and ,

 is the Pearson correlation between and and and

are the variances of and respectively.

2.3. Attribute Value Equating

Wadjet identifies the outliers based on the cross-correlations of attributes among the

data points. Practically, not all attributes are correlated with each other. Therefore,

Wadjet needs to find attributes that are correlated. Wadjet clusters the attributes based

on Pearson correlation and equates the values of attributes within the cluster. Moreover,

comparing two cross-correlated values is very difficult unless they are equal. Wadjet

equates two attribute values using linear regression and later compares them to each

130

other to test whether they are different or not. In this section we discuss both of them in

details.

2.3.1. Attribute Clustering

In order to find the correlated attributes, Wadjet assembles the attributes into clusters.

For a multi-dimensional data point, each of its attributes are treated individually for

clustering purposes. The attribute clustering is necessary because not all attributes are

correlated to each other. The attribute clustering step groups the correlated set of

attributes into one cluster. Later, Wadjet can compare the attribute values with each

other inside a cluster to detect outliers. In the first step, Wadjet creates an empty cluster

and chooses an attribute randomly and makes the attribute as the cluster head of a

cluster; at this point this cluster has only one attribute, which is the cluster head, in it. In

the second step, for each remaining attribute, Wadjet puts it into the same cluster

created in the first step if it has a strong Pearson correlation with the cluster head. For

those attributes that do not belong to that cluster, Wadjet repeats the two steps to form

clusters for them until no attribute is left for clustering. In order to measure whether a

Pearson correlation between two attributes is strong or not, Wadjet computes their

coefficient of determination (often called). Given two random variables, the

coefficient of determination is the square of Pearson correlation between them [89]. The

coefficient of determination illustrates how much of the variance of a random variable

can be explained using another random variable. So if two random variables, and ,

have the coefficient of determination as 0.80, then 80% of the variance of can be

explained using . If and are perfectly correlated, then the coefficient of

determination would be 1 and there would be a linear regression function (

131

 where and are regression coefficients) between and [89]. If the coefficient

of determination is smaller than 1, there still exists a linear regression between and

 but some data points would be deviated from the regression line. Wadjet calls two

attributes strongly correlated if their coefficient of determination is not significantly

different from 1 with a given confidence level.

2.3.2. Regression Function Computation

Once the cluster formation is complete, Wadjet equates each of the attribute values that

belong to same cluster to the cluster head value. This is because all the attributes in a

cluster are correlated but their values may not be equal. Comparing two unequal values

to measure their similarity is impossible unless their values are equated to a common

value. Wadjet uses a regression function to equate the attribute values to the cluster

head in a cluster. By design, all attributes in a cluster are strongly correlated with the

cluster head. If a cluster consists of three attributes, , and where is the

cluster head, there exist two linear regression functions between and .

The strong correlation between and ensures that there exists a linear regression

function between and ; thus and can be represented as

 where
,

 are called regression coefficients and

is the linear regression function that equates and . Once we apply the linear

regression function, each
 becomes an independent observation of

calculated from . The values of the regression coefficients are given in Equations (12)

and (13) [93].

132

 (12)

 (13)

where and represent the mean values of and , respectively.

The variance and covariance values can be readily found from the covariance matrix .

Wadjet computes the regression coefficients
 and

 for the regression

function between each attribute, , of a cluster and its cluster head .

2.4. Outlier Detection

Once Wadjet equates all the attribute values in each cluster to the cluster head value, all

the attribute values including the cluster head value are expected to be equal. The set of

values obtained after equating the attribute values of a cluster to their cluster head is

called equivalent values. Consider a cluster consisting of four attributes , , , and

 with the attribute values , , , and , respectively, and being the cluster

head. After equating the attribute values of , and , Wadjet would have four

different values
 ,

 ,
 and in that cluster; these values are

called equivalent values. These are four independent observations of obtained from

 , , and . Hence, each cluster of attributes has a similar set of equivalent

values. By design, equivalent values in a cluster are supposed to be equal; so if one of

them is significantly different from the rest of the equivalent values, then that equivalent

value is most likely an outlier; and therefore, the originating data point containing that

attribute value is called an outlier. In order to detect whether or not an equivalent value

is significantly different from other equivalent values in the same cluster, Wadjet uses a

133

statistical significance test. Theoretically, once the regression function is found, for

 and after equating, we can expect

 . If

 and
 is

significantly different from
 , and

 then we call an outlying

value for the attribute and if
 , then data point

 is called an outlier.

In order to detect whether an equivalent value is significantly different from the other

equivalent values in the same cluster, Wadjet computes the nearest neighbor for each

equivalent value in that cluster. According to Lemma 4, if an equivalent value is

significantly different from its nearest neighbor (which is also an equivalent value), it

would be significantly different from the rest of the equivalent values; thus it is

sufficient to prove that a value is significantly different from its nearest neighbor.

Lemma 4. If an equivalent attribute value is significantly different from its nearest

neighbor, it is significantly different from the rest of the equivalent values.

Proof. Let a cluster be composed of three attribute values , and with being

the nearest neighbor of . Here we prove that if is significantly different from ,

then it is also significantly different from . and would be significantly different

if √
| |

 , where
 is the estimated standard deviation of attribute ,

 the degree of freedom (number of parameters that can be independently varied),

 the critical value obtained from the student-t distribution where

, is the Gamma function; would be significantly

different from if √
| |

 . Since both and are obtained from a

134

linear regression of the same order, their degree of freedom is equal. With being the

nearest neighbor of , we have | | | |, hence √
| |

 √

| |

 , therefore is significantly different from . Hence, if an equivalent

attribute is significantly different from its nearest neighbor, it is also significantly

different from the rest of the equivalent values.

A data point is identified as an outlier if it is identified as an outlier in the first phase or

in the second phase of Wadjet. This is because the data point is nonconformist to either

other data points from the same stream carrying the data point or other data points from

the multiple streams arriving at the same time point.

If any cluster contains fewer than three attributes, then Wadjet skips that cluster. This is

because if a cluster has two attributes and they are significantly different from one

another, it is impossible to identify which one of them is an outlier and which one of

them is not. In that case the correlation between any of these two attributes with other

attributes is not strong enough for one attribute to be compared with the others to detect

the outlier-ness of that attribute. Thus Wadjet cannot identify the outlier-ness of those

attributes based on the cross-correlation, but the outlier-ness of the associated data point

can still be identified using Orion.

2.5. The Wadjet Algorithm

Figure 22 shows our algorithm Wadjet. The algorithm is invoked once a set of data

points arrive at any point in time T. Wadjet then executes Orion for each data point

135

 in (lines 4-11). If a data point is identified as an outlier by Orion, Wadjet adds

it to the outliers set (line 7).

detectOutlier(Set of Data Points , neighbor distance ,
percentage of neighbors , cross-correlation matrix)

1 notOutlier ←
2 outliers ←
3 attributes ←

4
for each

 in //
 is -th data point from -th

stream

5 isOutlier ← ProcessData(
 , ,)// execute Orion

6 if (isOutlier)

7 outliers.add(
)

8 else

9 notOutlier.add(
)

10 attributes.addAll(
)

11 end for

12
13 clusters ← // start with empty set of clusters
14 do

15 cluster ← // begin with empty cluster

16
 cluster.head ← random(attributes) // choose

cluster head

17 attributes.remove(cluster.head)

18 for each attr in attributes

19 if (attr is correlated with cluster.head)

20 attributes.remove(attr)

21 end for

22 clusters.add(cluster)

23 until (attributes is empty)

24 for each cluster in clusters

25
 for each attr in cluster equate (attr,

cluster.head)

26

 for each attr in cluster

findNearestNeighbor(attr) // find the nearest

neighbor

27 if (isDifferent(attr, nearestNeighbor(attr)))

28
 ← findDataPoint (attr)

29 if(!outliers.contains(
)) outliers.add(

)

30 end for

31 return outliers

end procedure

Figure 22. The Wadjet Algorithm

136

Once Wadjet completes executing Orion for each data point, Wadjet collects all the

attributes of the data points that are not outliers (line 10). In the next step Wadjet

updates the Pearson correlation matrix in line 12 and clusters the attributes based on

their coefficient of determination (lines 19-21). In the next step for each cluster, Wadjet

equates all the attribute values in the cluster and finds the nearest neighbor of each

attribute value. If an attribute value is significantly different from its nearest neighbor

then Wadjet finds the associated data point with that attribute (lines 27-29). If the data

point is not already identified as an outlier, it is added to the set of outlier, outliers.

Finally Wadjet returns the set of outliers in line 31.

2.6. Confidence Interval Parameter Selection

Wadjet needs one additional parameter, called confidence interval, besides those

required by Orion. The confidence interval parameter is used for the significance test

when Wadjet decides whether an attribute is significantly different from its nearest

neighbor or whether an attribute is significantly correlated with a cluster head or not. In

this section we discuss the value selection for this parameter.

Confidence interval is the measure of reliability of the comparison. It is a user defined

parameter. Wadjet compares one attribute value to its nearest neighbor attribute value.

If the attribute value is significantly different from its nearest neighbor, Wadjet

identifies the associated data point as an outlier. If the confidence interval is large the

two attribute values has to be very far from one another. If the confidence interval is

small, a small distance between two attribute values can make the attribute values

different from one another. 95% confidence interval is very popular in literature and is

137

considered reliable enough for many applications [91]. In case of Wadjet, if the

confidence interval is high, in order to detect a data point as an outlier, the attribute

value of that data point has to be significantly different from those of the other data

points and Wadjet would only consider the attributes that are highly correlated. Thus for

a high confidence interval, it is very unlikely that Wadjet would create any false alarm,

thus the precision of Wadjet should be high. However, the high precision comes with

the cost of low recall. In that case Wadjet may miss some outliers that are not too far

from their related attributes. Confidence interval can be seen as a tradeoff between

precision and recall for Wadjet.

Since Wadjet is a two-phase outlier detection technique, we recommend using a high

confidence interval. This is because a data point is identified as an outlier if it is

identified as an outlier in any of the two phases. Hence, we want to minimize the false

alarms (maximize precision) in both phases so that the total number of false alarms can

be minimized.

138

CHAPTER IV

PERFORMANCE ANALYSIS

This chapter presents the theoretical and empirical analysis of our techniques, Orion and

Wadjet, evaluating their performance in terms of accuracy and execution time. The

empirical analysis is conducted using both real and synthetic datasets. We present the

theoretical analysis first followed by the details of our simulation model and

experimental results.

1. Theoretical Analysis

In this section we discuss the time and space complexity of Orion and Wadjet.

1.1. Complexity Analysis for Orion

1.1.1. Time Complexity of Orion

The complexity of Orion is divided into two parts: 1) outlier detection and 2) update.

The outlier detection part includes everything starting from an arrival of a data point to

the final decision about the outlier-ness of that data point (which includes appropriate -

dimension finding, outlier metrics computation and co-clustering to classify the data

point). In this section, we present the time complexity of each part individually and the

total complexity of Orion, which is the sum of the complexity of all three parts. The

complexity of Orion is analyzed based on the amount of time Orion would take to

execute for one data point with respect to the number of dimensions and number of bins

for each dimension. Since Orion is executed for every data point and the number of data

139

is potentially infinite, we do not analyze Orion with respect to the number of data

points.

1.1.1.1. Time Complexity of the Outlier Detection Part

On the arrival of a new data point , Orion chooses the set of -dimensions along

which the neighbor density and -distance of would be computed, which is in either

 or . Orion computes the maximum absolute normalized deviation

(
 in Section 1.3.2) of ; the maximum absolute normalized deviation

of later is compared with the average maximum absolute normalized deviation of all

history data points. The maximum absolute normalized deviation requires inverting the

covariance matrix. If the number of data dimensions is , the time complexity of the

matrix inversion is using a simple matrix inversion algorithm. There exists a

complex algorithm that reduces the time complexity to [94]. We use the

simple matrix inversion algorithm because of its ease of implementation and for the

purpose of complexity analysis here. Thus Orion needs to compute the

maximum deviation and choose between and . Once or is chosen,

Orion finds the appropriate -dimensions in it. Finding the appropriate -dimension

requires neighbor density computation for every existing -dimension. Hence, we

discuss the time complexity of neighbor density computation first, followed by the time

complexity of finding appropriate -dimensions.

In order to identify whether is an outlier, Orion computes its neighbor density of for

each existing -dimension in . The neighbor density is computed from the binned

implementation of the data density function where each bin stores the cumulative data

140

density function . Orion needs to find the bordering bins and computes the

neighbor density using Equation (14)

(

) ∫

 (14)

 (
) (

)

where is the data density function, is the cumulative data density

function, and
 is the neighbor distance along -dimension at time . Since the

neighbor density computation requires to lookup two cumulative data density functions

and subtracts one from another, the computation complexity of computing the neighbor

density is . However, we have to compute the neighbor density for -

dimensions (here we are assuming the number of -dimensions is the same as the

number of data dimensions because in our experiments, we choose the number of

population to be the same as the number of data dimensions). Hence, in order to find the

 -dimension with the smallest neighbor density we have to iterate over all -dimensions

once. Thus the total time complexity of finding the -dimension with the smallest

neighbor density is . Wadjet needs to find the minimum neighbor densities

obtained from -dimensions which Wadjet finds along with the computation of

neighbor density with the same time complexity.

Once Orion finds the -dimension, it computes the -distance along that dimension.

The -distance is a monotonically increasing function of because if increases, the

distance that includes percent of the data points also increases. Hence Orion uses

binary search to find the appropriate -distance for a given . If is the total

141

number of bins along a -dimension, the time complexity of -distance computation is

 .

Finally, when both the neighbor density (ND) and -distance of a data point are

obtained, they are used to classify . The classification task consists of computing the

distances from the data point represented by ND and -distance to the cluster centers of

the co-clusters (lines 3-5, Figure 16, Chapter 3, Section 1.6.2). Since we have a constant

nine clusters, the classification task takes time. Thus the total time complexity of

detecting the outlier-ness of a data point is .

1.1.1.2. Time Complexity of the Update Part

In the update algorithm, Orion updates the set of -dimensions and their fitness, creates

a new -dimension and discards an old -dimension. Once Orion computes the

neighbor density for all -dimensions, Orion sorts them in ascending order. If we have

 -dimensions in each of and the time complexity of sorting them is

 . Once the -dimensions are sorted, Orion updates the fitness of each -

dimension. Updating the fitness of a dimension takes a constant time because it just

updates a fixed number of values which is the mean fitness. Hence, the total time to

update the fitness values of all -dimensions is .

In the next step, Orion discards an old dimension and chooses two well fit -dimensions

and creates a new -dimension. Finding the poorly performing -dimensions or well

performing -dimension uses the roulette wheel algorithm [79]. The roulette wheel

algorithm picks a -dimension randomly where the -dimension with the highest fitness

has the highest probability of being chosen. The time complexity of the roulette wheel

142

algorithm is because it evaluates the fitness of each -dimension sequentially.

Thus, our -dimension calculation algorithm takes time where is the number

of -dimensions. This is because we track the fitness value of each dimension in

and . The new -dimension calculation also requires time because Orion

needs to calculate coefficients for data dimensions.

Orion updates the data density function for all -dimensions in and . In order to

update one -dimension Orion has to traverse all the bins of that dimension. Hence

updating one -dimension takes amount of time, where is the

number of bins for a -dimension. Thus the total time to update all bins for all -

dimensions is . Totally, the time complexity of the update part is

 .

Considering both the outlier detection and update parts of the Orion algorithm as shown

in Figure 16 in Chapter 3, the total time complexity of Orion to identify whether a data

point is an outlier is the sum of the complexity of those two parts, which is

1.1.2. Space Complexity of Orion

Orion stores -dimensions. For each dimension Orion stores its number of bins,

which is represented by . For each bin Orion stores 5 different variables: last

update timestamp, data density function, derivative of the data density function,

cumulative data density function, and bin’s representative value. For each -dimension

Orion also stores its fitness value. Hence the total amount of storage required is

 + 1). Moreover, Orion requires a constant amount of space for co-

143

clustering that stores a constant number of variables (the 9 cluster centers). Thus the

total space complexity is , thus the space complexity is

 (disregarding the lower order terms and constants).

1.2. Complexity Analysis for Wadjet

In this section we present the time and storage complexity of Wadjet. Since Wadjet

includes Orion as the first step, we omit the complexity discussion of Orion and only

discuss how we derive the time and storage complexity of the second phase of Wadjet.

Then, we show the total time and storage complexity of Wadjet that includes both

phases. The time complexity of Wadjet is analyzed based on the time the algorithm

would take to execute once with respect to the number of dimensions and streams and

the number of bins for each dimension.

1.2.1. Time Complexity of Wadjet

In the second phase of Wadjet, to detect whether a data point is an outlier, Wadjet

updates the cross-correlation matrix. The cross-correlation matrix contains the Pearson

correlation between all pair of attributes. In case of homogeneous data streams, if we

have streams with dimensions for each stream, then the total number of attributes

would be and the matrix has entries. For heterogeneous data streams, if we

streams with , , …, dimensions, the total number of attributes would be

 . Without losing any generality we can assume the average number

of dimensions for each streams in case of heterogeneous streams is

;

hence the total number of attributes is . Thus in both cases the total number of

attributes is where is the number of streams and is the average number of

144

dimensions for each stream. The cross-correlation matrix requires entries for pair-

wise correlation computation. In the worst case each entry of the matrix needs to be

updated. Hence the time complexity of updating the cross-correlation matrix is

 . After updating the cross-correlation matrix, Wadjet clusters the attributes

into clusters. Our clustering algorithm finds the set of cross-correlated attributes for

each attribute. Hence in the worst case, Wadjet needs to check cross-correlations.

So, the time complexity of the clustering algorithm is also .

Once the clusters have been formed, Wadjet computes the regression function and the

equivalent value for each attribute in the cluster, which takes a constant time e; hence in

the worst case the total number of regression and equivalent values we need to compute

is . Thus the time complexity for computing the equivalent values for all attributes is

 . In the last step, Wadjet computes the nearest neighbor for each attribute’s

equivalent value which, in the worst case, takes all pair-wise distance computations

with a time complexity of .

In the following part Wadjet tests whether an attribute value is significantly different

from the other attribute values in the cluster. The test requires constant time complexity

because it involves critical value lookup and computation of the difference between one

attribute value and its nearest neighbor. Moreover, since the previous step is performed

for each attribute, the total number of tests performed is . Once an attribute is

identified as an outlier Wadjet finds the corresponding data point and marks it as an

outlier as well. The last step requires a constant time because finding a data point given

one attribute is a trivial lookup procedure. Therefore, the total time complexity for the

second step of Wadjet is which is .

145

In the first phase, Wadjet executes Orion for each data point from a stream. Thus the

total time complexity of Wadjet is times the time complexity of Orion where is the

number of streams. The time complexity of the first phase of Wadjet is

 . Thus, the total time complexity of

Wadjet becomes .

Disregarding the lower order terms, the time complexity of Wadjet becomes

 .

1.2.2. Space complexity of Wadjet

The space complexity of the second step of Wadjet is very straightforward. The only

thing we store is the cross-correlation matrix. The cross-correlation matrix captures the

cross-correlation between all pairs of attributes. For data streams with average

attributes each, the total number of attributes is . Thus the total number of pairs

possible is . Thus the cross-correlation matrix needs to have entries.

However, correlation is symmetric relation, means the correlation between and is

the same as the correlation between and . Thus the cross-correlation matrix needs to

have half of entries. So, the number of entries in this matrix is

. Thus the

space complexity for the second step is . Including the first step of Wadjet

which runs Orion for each stream, the total space complexity of Wadjet is

 .

2. Experimental Analysis

We have conducted an extensive set of simulation experiments to study the performance

of our techniques and compare it with that of existing techniques. In this section, we

146

present the simulation model and the experimental results that we have obtained. We

have performed empirical studies for both of our algorithms. We divide our

experimental analysis section into two parts (1) experimental analysis for Orion and (2)

experimental analysis for Wadjet.

2.1. Experimental Analysis for Orion

2.1.1. Simulation Model

The goal of the simulation model is to demonstrate the effectiveness of Orion. The

details of our simulation model are discussed in this section.

2.1.1.1. Software Description

In the simulation model, we mimic a centralized data stream architecture where there is

one base station and a number of data sources each of which produces one data stream. .

Each data source obtains a data value at a fixed time interval and sends it to the base

station. The base station receives one data point at a time and processes it. We execute

one outlier detection algorithm at a time at the virtual base station for outlier detection.

The entire simulation model is built on the Java platform (Sun Developer Network

2010) and we run the simulation using JAVA version 1.6.2. JAVA is running on Red

Hat Linux Enterprise 5 (OU Supercomputer Resources 2009). The base station

processes each data source in an individual thread/core.

2.1.1.2. Hardware Description

We use the cluster supercomputer at the University of Oklahoma to run our simulation

model [95]. Each computing core is a 2.0 GHz Pentium4 Xeon E5405/2.66GHz

Pentium4 Xeon E5345/2.40 Pentium4 XeonMP E7340 [95]. Each computing node has

147

16GB of main memory and eight computing cores. The comparison is fair since each

technique is run on the same machine.

2.1.1.3. Datasets

We perform our experiments based on both real and synthetic datasets. Our real datasets

are collected from UCI Machine learning repository [96]. In this section we will

describe each of our datasets.

2.1.1.3.1. KDD Cup 99 Data

Network security is becoming very important. Outlier detection is a popular way for

detecting network intrusion. We use KDD’99 data in order to show the efficacy of our

algorithm. This dataset is captured in the DARPA’98 IDS evaluation program [97]. The

dataset consists of 4 gigabytes of compressed TPC dump data of 7 weeks of network

traffic (approximately 5 million connection records of 100 bytes each). A single

connection record contains 41 features and is labeled as either normal or an attack. In

our experiments, we mark the data points that are labeled as normal as regular data

points and those that are marked as attack as outliers.

2.1.1.3.2. Vicon Physical Action Data

The data collection took place in the Essex robotic arena [96]. Seven male and three

female subjects were involved in a scenario such as physical fighting in 20 different

experiments. Throughout the 20 experiments each subject has to perform 10 normal and

10 aggressive activities in random locations. Human subjects perform normal or

attacking activities and the locations of the different body parts are measured at a

regular interval. Each data point has a timestamp attached with it and the data points are

148

temporally correlated. Each data point has 27 attributes. Each physical activity data has

been recorded separately. The data points from normal actions are marked as normal

and the data points from aggressive activities are marked as outliers. In our experiments

we try to find the data points that correspond to aggressive activities.

2.1.1.3.3. Australian Sign Language Data

This dataset consists of a sample of signs of Australian Sign Language [96]. The dataset

is the raw measurement from a Nintendo PowerGlove which is interfaced to a Silicon

Graphics 4D/35G workstation with PowerGlove Serial Interface. The position

information is calculated on the basis of ultra sound emission from the emitters to the

microphone. There are two emitters in a glove and three microphone receivers. Total

four pieces of information is collected: (1) left/right, (2) up/down, (3) backward/forward

and (4) roll of palm. All the positions are calibrated with respect to a fixed calibration

point. The measurements from five individual participants have been collected. Since

outlier detection is very similar to the task of classification with skewed distribution of

the classes, we measure the performance of our technique from the classification task.

The dataset consists of a set of signs represented as time series of aforementioned four

pieces of data. We choose one sign at random (the data point representing that sign is

called inliers) and some data points from a second sign are mixed as outliers. Our goal

here is to use an outlier detection technique to separate the data points into two classes.

2.1.1.3.4. EMG Physical Action Data

The EMG Physical Action dataset is similar to the Vicon Physical Action dataset in

many respects except that its data points were collected from eight different locations of

149

a human body unlike the Vicon Physical Action dataset where data is collected from

twenty-seven different locations of a human body [96].

2.1.1.3.5. Irrigation Data

The California Irrigation Management Information System (CIMIS) manages a network

of over 120 automated weather stations in California [15]. Each weather station collects

data every minute and calculates hourly and daily values. The data are analyzed and

stored in the CIMIS database and publicly available. The measured attributes are solar

radiation, net radiation, air temperature, vapor pressure, wind speed, result wind,

precipitation, relative humidity, dew point, and soil temperature. For our experiments,

we use the data collected from 1998 to 2011 and implant the random synthesized

outliers. On average each station has 50,000 rounds of data (total 5,550,000 data rounds

for all stations together). From now on we shall refer to this dataset as irrigation data.

2.1.1.3.6. Synthetic Data

We create another dataset synthetically in order to perform a vast array of experiments.

Our synthetic dataset resembles real life data. Each data source has a fixed 100

dimensions unless otherwise specified; and some of the dimensions (randomly selected)

are linearly correlated. Each dimension has three components in it: (1) trend component,

(2) harmonic component and (3) noise component. The trend component changes the

trend of the dimension over a long period of time. The harmonic component adds

periodicity to the attribute value. Finally the noise component adds random or Gaussian

noise to the attribute value. We generate 50 data sources (50,000 data rounds for each

source), all of which have the same number of dimensions. We synthetically implant the

150

outliers by changing a set of attribute values by adding/subtracting a set of random

numbers to/from them.

2.1.1.4. Competitive Algorithms

We compare Orion with two existing algorithms. The first algorithm is called Stream

LOCI [62]. LOCI was first proposed by Papadimitriou et al. [59]. LOCI computes the

deviation of neighbor count, called Multi granularity Deviation Factor (MDEF), of

every data point from the average neighbor count of data points which are within a

certain radius of the data point. LOCI calculates the MDEF of a data point for multiple

radiuses. A data point is identified as an outlier if its MDEF value is three standard

deviations apart from its mean. Lu et al. [62] extends the idea for data streams. They

assume a sliding window of user defined size and execute the LOCI algorithm for the

sliding window. They also optimize the process of inserting a data point into the sliding

window and deleting a data point from the sliding window as well. We name the

technique Stream LOCI. Stream LOCI works for multi-dimensional data points, but

measures the similarity between data points using Euclidian distance.

The second algorithm is A-ODDS [60] which is designed for single dimensional data

streams. Still, we can see a multi-dimensional data stream as a collection of some single

dimensional data streams and finds the outliers for each dimension individually. In case

of multi-dimensional data streams we execute one A-ODDS for each dimension and

detect outliers. A data point is identified as an outlier if any of its dimensions is

identified as an outlier by A-ODDS. For A-ODDS and Orion, we use the first 100 data

points for bootstrapping purposes for all experiments unless otherwise specified.

151

2.1.1.5. Simulation Parameters

We study the impacts of Orion’s parameters on its performance. The range of values

and the default value of each parameter is presented in Table 3. The default values are

chosen based on the characteristics of the datasets (for the number of rounds and

number of dimensions parameters) and existing literature (for the neighbor distance, k,

percentage of outliers, and bin count parameters). The default value of the population

count is same as the number of data dimensions. For every experiment, when the impact

of a parameter is under study, we vary its value within its range and fix the other

parameters at their default values.

We only perform the parameter study for two datasets, irrigation data and synthetic

data. This is because we cannot vary the parameters such as number of dimensions,

percentage of outliers, etc. for other datasets. Thus we choose the irrigation data and

synthetic data as the representative datasets and perform all of parameters studies based

on them. However, we report the overall performance for all datasets.

152

Table 3. List of parameters for Orion

Name

Irrigation data Synthetic data KDD’ 99

Range of

Values

Default

value

Range of

Values
Default Value

Range of

Values

Default

value

Neighbor distance 0 – 50 10 0 – 50 10 0 – 50 10

 0 – 0.25 0.05 0 - 0.25 0.05 0 – 0.25 0.05

Percentage of

Outliers
1 -10 5 1- 10 5 N/A N/A

Number of data

dimensions
N/A N/A 10 – 100 100 46 46

Population count 5 – 50 10 5 – 50 25 46 46

Bin count 50 -500 400 50 -500 400 400 400

Bootstrap size 50 – 500 100 100 – 1,000 100 100 100

Data rounds
5,000 –

40,000
40,000 5,000 – 50,000 50,000 400,000 400,000

 Vicon Physical Action EMG Physical Action Australian sign language

Neighbor distance 0 – 50 10 0 – 50 10 0 – 50 10

 0 – 0.25 0.05 0 - 0.25 0.05 0 – 0.25 0.05

Percentage of

Outliers
5% 5% 5% 5% 5% 5%

Number of data

dimensions
27 27 8 8 22 22

Population count 27 27 8 8 22 22

Bin count 400 400 400 400 400 400

Bootstrap size 100 100 100 100 100 100

Data rounds 4,000 4,000 10,000 10,000 1,500 1,500

153

2.1.1.6. Performance Metrics

Table 4. Confusion matrix

 Actual outliers Actual inliers

Predicted outliers True positive (TP) False positive (FP)

Predicted inliers False negative (FN) True negative (TN)

We present the accuracy of each studied algorithm based on the four following

performance metrics: Precision, Recall, Jaccard Coefficient and Receiver Operator

Characteristic Curve. All the performance metrics are based on the confusion matrix

shown in Table 4 where a true positive (TP) is a real outlier that is identified as an

outlier, a true negative (TN) is an inlier that is identified as an inlier, a false positive

(FP) is an inlier that is identified as an outlier, and a false negative (FN) is an outlier

that is identified as an inlier. A good outlier detection technique is the one which

maximizes the true positives and minimizes the false negatives and false positives. In

case of outlier detection we ignore true negative; this is because outliers are

significantly outnumbered by inliers. Thus, the number of true negatives is very high

compared to the number of true positives. Incorporation of the number of true negatives

would deteriorate the quality of the results. Consider the case where we have a dataset

with 95% inliers and 5% outliers and an algorithm that identifies everything as an inlier.

If we consider the accuracy based on both true negatives and positives, the accuracy of

that algorithm would be 95%; but in reality, the algorithm is useless. Hence, we ignore

true negatives from our results.

Precision

Precision (

) is a popular performance metric for outlier detection

[31, 36, 64]. Precision is a ratio of the correct identifications to the total identifications.

154

Statistically, it implies the amount of correct identifications i.e., precision resembles the

correctness of the classifying task. Intuitively, an optimal classifier is the one which has

the highest precision. The highest possible precision is 1 where there is no false

classification [5].

Recall

Precision only shows the correctness of the results but it does not reflect the

completeness of the results; therefore precision is always accompanied with recall

(

) to demonstrate the correctness and completeness of an algorithm.

Recall is the ratio between the number of identified outliers and the total number of

outliers. Statistically, it represents the completeness of the classification task. An

optimal algorithm should be able to identify all the outliers existing in a dataset; hence

the optimal recall is 1. The best algorithm should have the highest precision and recall,

but practically, many algorithms do a trade-off between precision and recall, i.e., if

precision increases, recall decreases and vice versa.

Jaccard Coefficient (JC)

Precision and recall represent two important concepts, but it is often possible to

maximize one value by minimizing the other. Hence, it is very difficult to evaluate the

performance of an algorithm based on two different metrics. Basu and Meckesheimer

[13] proposed the Jaccard Coefficient (JC) to overcome the shortcomings. JC is the ratio

of true positives and the summation of false negatives, false positives and true positives

(

). Therefore, JC increases with the increase of correct positive

classifications and decreases with the increase of wrong classifications. JC does not

155

consider the true negatives which are not necessary for the domain of outlier detection

because the number of inliers is significantly larger than the number of outliers; hence

any performance metric that considers only true negatives fails to depict the differences

between the competitive algorithms vividly. Jaccard Coefficient is a more appropriate

metric to evaluate the performance of outlier detection algorithms.

Execution time

The study of execution time of an outlier detection algorithm is important for data

stream applications. Data stream outlier detection algorithms have to be online and the

processing of a data point must be finished before the next data point arrives. Thus if

the execution time of an algorithm is greater than the time difference between two

consecutive data points in a data stream application, the outlier detection algorithm

would not be applicable for that application. This is because if an algorithm cannot

finish processing a data point before the next one arrives, the result would be flooding.

Thus, execution time is one important metric that defines the applicability of an outlier

detection algorithm for data streams. Execution time is reported in milliseconds in all

our experiments.

2.1.2. Experimental Results

2.1.2.1. Overall Performance Comparison

The overall performance comparison is done by fixing all the parameters’ values at their

respective default values. The outliers are detected for individual datasets by each

algorithm for each stream. The interpretation of one stream is dataset specific: a stream

is either a station in the irrigation data, a physical action in the Vicon and EMG data, a

sign in the Australian sign language data, or a source of the synthetic data . The

156

KDD’99 data consists of one stream only. The average performance results are

presented in this section. They are computed from all the performance results collected

from each stream.

2.1.2.1.1. Precision

Table 5. Precisions of all three algorithms for all datasets

 Orion Stream LOCI A-ODDS

KDD’99 0.69 0.64 0.26

Vicon Physical Action 1.00 0.001 0.44

Australian Sign 0.69 0.38 0.22

EMG Physical Action 1.00 0.06 0.78

Irrigation data 0.76 0.73 0.14

Synthetic data 0.99 0.26 0.37

Table 5 shows the average precisions for all datasets for the three studied algorithms.

Irrespective of the datasets, Orion always performs better than the other two competing

algorithms. Orion shows near perfect precision for the Vicon Physical Action, EMG

Physical Action and Synthetic datasets. Data points in these three datasets are strongly

correlated and less sparse compared to the data points in the other three datasets.

Therefore, no (or almost no) inlier has a significantly small neighbor density or large -

distance and thus is never misidentified as an outlier. But in the KDD’99, Australian

sign and Irrigation datasets, the data points are relatively sparse compared to the other

three datasets and some inliers have quite small neighbor density and/or large -

distance and are misclassified as outliers.

One interesting thing to point out here is that Stream LOCI completely fails to detect

outliers for the Vicon and EMG physical action datasets. Although the data points in

these two datasets are not too sparse, Stream LOCI is unable to measure the similarity

157

among the data points using Euclidian distance for these two datasets and, therefore,

fails to identify outliers correctly.

A-ODDS only considers each dimension individually; therefore, it completely fails to

incorporate the correlation among the dimensions. If one attribute value of an outlier is

different enough to distinguish itself from the rest of the data points, then it can easily

be detected as an outlier. A-ODDS shows better precision on the EMG physical action;

this is because in this dataset, for some outliers, a data point can be detected as an

outlier just by examining one attribute value only.

2.1.2.1.2. Recall

Table 6 shows the recall values of Orion, Stream LOCI and A-ODDS for all six

datasets. Orion has better recall value compared to Stream LOCI for all six datasets. A-

ODDS shows better recall value compared to Stream LOCI in two datasets: Vicon

Physical Action and Synthetic datasets.

Orion starts with an initial set of -dimensions that may not incur the minimum

neighbor density for the current data point. Gradually Orion adds new -dimensions and

removes old -dimensions so that the current set of -dimensions incur the minimum

neighbor density for the current data point. If Orion fails to find an appropriate -

dimension for a data point that has the minimum neighbor density, the data point may

not be identified as an outlier. In the Australian sign language dataset, the data points

are not only sparse, but also changing very fast. Hence Orion sometimes fails to find the

appropriate -dimension and therefore fails to identify some outliers, thus, shows a

smaller recall value compared to other datasets.

158

Stream LOCI performs comparatively poor in terms of recall for all six datasets. Since

all of these datasets possess multi-dimensional data, Euclidian distance fails to identify

the dissimilarity between inliers and outliers and, hence, plenty of outliers are identified

as inliers, which results in a poor recall. A-ODDS shows strong recall values for all

datasets except KDD’99. This is because the outliers in the KDD’99 datasets cannot be

detected just by looking at one single attribute, rather it is the combination of attribute

values that makes a data point an outlier. Hence A-ODDS shows a poor recall value for

this dataset. In other datasets, the outliers have either an infrequent attribute value or an

infrequent combination of attribute values. A-ODDS detects outliers in the former case,

but fails to identify any outlier in latter case.

Table 6. Recalls of all three algorithms for all datasets

 Orion Stream LOCI A-ODDS

KDD’99 0.92 0.34 0.16

Vicon Physical Action 1.00 0.003 0.98

Australian Sign 0.67 0.34 0.66

EMG Physical Action 0.93 0.02 0.88

Irrigation data 0.70 0.33 0.84

Synthetic data 0.86 0.10 0.96

2.1.2.1.3. Jaccard Coefficient

Table 7 shows the average Jaccard Coefficient (JC) of all the algorithms for all the

datasets. Orion shows better JC compared to Stream LOCI and A-ODDS for all six

datasets. Orion has perfect JC for the Vicon Physical Action dataset, i.e., Orion

identifies all the outliers without any false alarm at all. The JC of Orion for the

Australian sign and irrigation datasets is comparatively small compared to the JC of

other four datasets due to a smaller recall of Orion for these two datasets.

159

Stream LOCI performs poorly compared to Orion in all datasets. Stream LOCI shows

poor JC for spatial data such as the Vicon and EMG Physical Action data. In case of

spatial data, Stream LOCI fails to measure the similarity between two data points using

the Euclidian distance, hence shows poor accuracy overall. A-ODDS also shows a

smaller JC compared to Orion due to its inapplicability to multi-dimensional datasets.

A-ODDS only performs well for the EMG Physical Action dataset where an outlier can

be detected just by looking at one attribute value.

Table 7. Jaccard Coefficients for all three algorithms for all datasets

 Orion Stream LOCI A-ODDS

KDD’99 0.65 0.28 0.12

Vicon Physical Action 1.00 0.001 0.43

Australian Sign 0.51 0.21 0.20

EMG Physical Action 0.93 0.01 0.70

Irrigation data 0.55 0.30 0.13

Synthetic data 0.86 0.05 0.36

2.1.2.1.4. Execution Time

Table 8 shows the execution time in milliseconds for Orion, Stream LOCI and A-

ODDS. Orion has better execution time compared to Stream LOCI for all datasets

except the EMG physical action dataset. The EMG physical action dataset has a small

number of dimensions; hence Stream LOCI shows superior execution time for the EMG

physical action dataset. This is because for a small number dimensions, Euclidean

distance computation between two data points takes short time. Moreover, Euclidean

distance is very effective for a small number of dimensions; hence, Stream LOCI can

identify the outliers while considering small local neighborhood for outlier detection.

So, it can skip the search of outliers in large local neighborhood. Therefore, the

execution time for Stream LOCI is shorter than that of Orion. However the execution

160

time increases significantly for Stream LOCI for other datasets. The execution time of

Orion for high dimensional data is always better than that of Stream LOCI.

A-ODDS shows better execution time compared to Orion. However, the execution time

of both of these algorithms is very competitive and, in the Australian sign, Irrigation

and Synthetic datasets, Orion shows better execution time compared to A-ODDS.

Moreover, Orion offers much better accuracy compared to A-ODDS.

The maximum execution time we receive in our experiments is 4.34 milliseconds which

is practically good enough for many data stream applications including environmental

monitoring [6]. In these applications the arrival rate is in the order of seconds and the

arrival rate more frequent than that is practically useless [6]. In these applications, we

have an adequate amount of time to execute Orion and detect their outliers.

Table 8. Execution time (in ms) of all algorithms for all datasets

 Orion Stream LOCI A-ODDS

KDD’99 1.25 2.81 0.40

Vicon Physical Action 4.34 6.85 0.87

Australian Sign 0.15 0.56 0.55

EMG Physical Action 0.78 0.18 0.07

Irrigation data 0.25 3.48 0.65

Synthetic data 1.58 3.27 1.76

We have discussed our overall results based on the real and synthetic datasets. In order

to perform further analysis we have to manipulate different parameters of the datasets

which is impossible with the four real datasets we obtain from the UCI machine

learning repository [96]. Therefore for further analysis we only use two datasets: (1)

irrigation data where the data points are real and we synthesize the outliers, and (2)

synthetic data where we simulate real world time series data with an appropriate set of

outliers.

161

2.1.2.2. Impact of Neighbor Distance

2.1.2.2.1. Precision

Figures 23 and 24 portray the impact of neighbor distance on precision. Neighbor

distance is used to calculate the neighbor density of a data point. If the neighbor

distance is small, the obtained neighbor densities of all data points are comparatively

small compared to the case if the neighbor density is large. Neighbor distance depicts

how far Orion should look to find a neighbor of a data point. Typically, for any given

neighbor distance, outliers would have a significantly smaller neighbor density

compared to inliers. Therefore, Orion would be able to separate outliers from inliers.

For a smaller or larger neighbor distance, the induced neighbor density of both inliers

and outliers is shortened or lengthened appropriately. Thus, Orion shows little impact

with respect to neighbor distance.

Figure 23. Impact of neighbor distance on precision for the irrigation data

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbor Distance

P
re

c
is

io
n

Precision vs. Neighbor Distance

Orion A-ODDS Stream LOCI

162

Figure 24. Impact of neighbor distance on precision for the synthetic data

In both irrigation data and synthetic data, neighbor density has very little impact on

Orion. This is particularly useful since Orion cannot be fooled by choosing neighbor

distance wrongly. Interestingly A-ODDS also uses neighbor distance to compute its

global deviation factor (GDF) and local deviation factor (LDF). A-ODDS shows a great

deal sensitivity with respect to neighbor distance. The precision is small at the

beginning when neighbor distance is small. As neighbor distance increases precision

increases as well. This is because for small neighbor distances, some inliers (the data

points that are in the periphery of a cluster) also have very small GDF and LDF values

and, therefore, are identified as outliers. As neighbor distance increases, those data

points blend with regular inliers and the precision reaches its peak value. If we increase

the neighbor distance even further, the precision starts to decrease again. This is

because in that case outliers are also having large neighbor density. Thus the precision

start to decrease again.

5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbor Distance

P
re

c
is

io
n

Precision vs. Neighbor Distance

Orion A-ODDS Stream LOCI

163

Since Stream LOCI does not require neighbor distance, the precision of Stream LOCI

shows no sensitivity with respect to neighbor distance.

2.1.2.2.2. Recall

Although the precision of Orion shows no sensitivity with respect to neighbor distance,

the recall of Orion shows some sensitivity with respect to neighbor distance (Figures 25

and 26). Larger neighbor distance induces greater neighbor density for both inliers and

outliers. Hence the neighbor density of outliers increases with the neighbor distance. As

the neighbor density increases some outliers have large enough neighbor density so that

they can be considered as inliers. Thus Orion misclassifies them as inliers; hence Orion

fails to reveal some outliers and its recall decreases with the increase of neighbor

distance.

Figure 25. Impact of neighbor distance on recall for the irrigation data

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbor Distance

R
e
c
a
ll

Recall vs. Neighbor Distance

Orion A-ODDS Stream LOCI

164

A similar result pattern is also visible with A-ODDS. A-ODDS also computes GDF and

LDF based on neighbor distance. If the neighbor distance increases it fails to separate

the outliers from inliers and shows the overall drop of recall value.

Figure 26. Impact of neighbor distance on recall for the synthetic data

However, since Stream LOCI does not require neighbor distance as input, it does not

show any sensitivity with respect to neighbor distance at all. The sensitivity of recall

with respect to neighbor distance for both the irrigation data and synthetic data is the

same.

2.1.2.2.3. Jaccard Coefficient

Jaccard Coefficient (JC) is the combination of both precision and recall values. Since

the precision of Orion remains the same and the recall of Orion decreases with the

increase of neighbor distance, the JC of Orion decreases a little as well. The decrease of

JC is induced by some false negatives where Orion fails to identify some outliers.

However, the JC of Orion is still much better than those of A-ODDS and Stream LOCI.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Neighbor Distance

R
e
c
a
ll

Recall vs. Neighbor Distance

Orion A-ODDS Stream LOCI

165

Orion’s worst JC is much better than the average JC of Stream LOCI (51% better for

irrigation data and 1110% better for synthetic data). Figures 27 and 28 show the change

of JC for all three algorithms for the irrigation and synthetic data.

The JC and recall of A-ODDS show a similar pattern. The JC of A-ODDS starts to

increase with the increase of neighbor distance. This increase of JC is induced by the

increase of precision of A-ODDS. Since precision increases with the increase of

neighbor distance, JC increases as well and then after that, precision starts to decrease

with the increase of neighbor distance. The JC of Stream LOCI remains unchanged with

respect to the change of neighbor density; this is because it does not require neighbor

density as input.

Figure 27. Impact of neighbor distance on Jaccard Coefficient for the irrigation

data

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbor Distance

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. Neighbor Distance

Orion A-ODDS Stream LOCI

166

Figure 28. Impact of neighbor distance on Jaccard Coefficient for the synthetic

data

2.1.2.2.4. Execution Time

Figure 29 shows the impact of neighbor distance on execution time for the irrigation

data. Orion does not show any variation with respect to change of neighbor distance.

This is because our neighbor density computation algorithm takes a constant time.

Hence the time required to compute the neighbor density from a given neighbor

distance is the same regardless of the value of neighbor distance and, thus, the execution

time of Orion remains unchanged with respect to neighbor distance. Figure 29 shows

the same results for the synthetic data.

However, the execution time of A-ODDS increases linearly with the increase of

neighbor distance. This is because the GDF and LDF computation times in A-ODDS

increase linearly with the increase of neighbor distance. Hence, as the neighbor distance

increases the execution time of A-ODDS also increases.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbor Distance

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. Neighbor Distance

Orion A-ODDS Stream LOCI

167

Figure 29. Impact of neighbor distance on execution time for the irrigation data

Figure 30. Impact of neighbor distance on execution time for the synthetic data

Like other performance metrics, the execution time of Stream LOCI remains unchanged

with respect to change of neighbor distance.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

Neighbor Distance

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Neighbor Distance

Orion A-ODDS Stream LOCI

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

Neighbor Distance

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Neighbor Distance

Orion A-ODDS Stream LOCI

168

2.1.2.3. Impact of

The second most important parameter for Orion is . The parameter dictates the

percentage of neighbors of a data point that we need to look for so that we can tell

whether the data point is far from rest of the data points. For each data point, Orion

computes the distance that includes percent of the data points, which we call -

distance. If a data point requires a small -distance to include percent of data points it

is certainly surrounded by lots of other data points and is unlikely to be an outlier.

Conversely, if a data point requires a large -distance to include percent of data

points, then the data point may be isolated from other data points and, hence, is most

likely an outlier. This section presents the study of the sensitivity of the three outlier

detection algorithms with respect to .

2.1.2.3.1. Precision

Figures 31 and 32 show the impact of on precision for the irrigation and synthetic

data. The precision of Orion for the irrigation data decreases with the increase of . This

is because as the value of increases each data point has to have a longer -distance to

include percent of the data points. Some inliers that are along the periphery of a group

of data points also needs to have a larger distance to include percent of the data and

hence they look like outliers. Thus Orion creates some false alarms and therefore its

precision decreases with the increase of .

169

Figure 31. Impact of k on precision for the irrigation data

However, Figure 32 does not show any sensitivity in any algorithm with respect to at

all for the synthetic dataset. This is because in this dataset we have less noise compared

to the irrigation data and hence the outliers are easily identified by Orion. Although the

 -distance increases with the increase of , the k-distances of inliers and outliers

increase proportionately and thus they have no impact on the precision of Orion.

Meanwhile, since A-ODDS and Stream LOCI do not require as an input parameter,

they are not sensitive to .

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

P
re

c
is

io
n

Precision vs. k

Orion A-ODDS Stream LOCI

170

Figure 32. Impact of k on the precision for the synthetic data

2.1.2.3.2. Recall

Conversely, the recall of Orion increases a little bit with the increase of . Figure 33

shows the impact of on the recall of Orion. The recall increases with the increase of

because, for a large , it becomes extremely difficult for outliers to have smaller -

distances and thus outliers cannot blend with inliers. Hence, the recall value increases

with the increase of . The increase of the recall value with the increase of is

consistent for both the irrigation data (Figure 33) and synthetic data (Figure 34). Since

A-ODDS and Stream LOCI do not require as an input parameter, they show no

sensitivity in terms of recall for varying .

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

P
re

c
is

io
n

Precision vs. k

Orion A-ODDS Stream LOCI

171

Figure 33. Impact of k on the recall for the irrigation data

Figure 34. Impact of k on precision for the synthetic data

2.1.2.3.3. Jaccard Coefficient

The Jaccard coefficient (JC) of Orion shows a more interesting trend with respect to the

change of for the irrigation data (Figure 35). The JC almost decreases a little bit with

0 0.05 0.1 0.15 0.2 0.25

0.4

0.5

0.6

0.7

0.8

0.9

1

k

R
e
c
a
ll

Recall vs. k

Orion A-ODDS Stream LOCI

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

R
e
c
a
ll

Recall vs. k

Orion A-ODDS Stream LOCI

172

the increase of . This is because the precision decreases with the increase of , which

also decreases the JC; however the recall increases with the increase of , which

increases the JC a little bit. Therefore, the overall trend of JC is almost constant at the

beginning, and decreases a little bit after that, while the recall stops increasing after

 ; but the change is very insignificant.

Figure 35. Impact of k on Jaccard Coefficient for the irrigation data

The JC of Orion for the synthetic data shows an opposite trend compared to that for the

irrigation data (Figure 35). With the synthetic data, the JC of Orion increases with the

increase of . This is because the precision shows no impact for the synthetic data and

the recall increases a little bit with the increase of , JC increases with the increase of .

However, the increase is very insignificant for the synthetic data as well. Like the

precision and recall of A-ODDS and Stream LOCI, the JC of A-ODDS and Stream

LOCI show no variation with respect to the change of .

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. k

Orion A-ODDS Stream LOCI

173

Figure 36. Impact of k on the Jaccard Coefficient for the synthetic data

2.1.2.3.4. Execution Time

The -distance computation takes amount of time, which is a constant

with respect to the value of . Thus the impact of changing is not visible in the

execution time of Orion. Thus, Orion shows almost a constant execution time with

respect to the change of . This trend is persistent for both the irrigation data (Figure

37) and synthetic data (Figure 38). The execution times of A-ODDS and Stream LOCI

are not impacted by the change of k either because they do not require as an input

parameter.

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. k

Orion A-ODDS Stream LOCI

174

Figure 37. Impact of k on the execution time for the irrigation data

Figure 38. Impact of k on the execution time for the synthetic data

2.1.2.4. Impact of Percentage of Outliers

The impact of percentage of outliers is very important for the performance study. Many

algorithms assume the percentage of outliers to be very low compared to the percentage

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

k

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. k

Orion A-ODDS Stream LOCI

0 0.05 0.1 0.15 0.2 0.25
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

k

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. k

Orion A-ODDS Stream LOCI

175

of inliers [9]. A high percentage of outliers destroys the underlying trends of the data. In

this section we study the performance of the competitive algorithms with respect to the

percentage of outliers.

2.1.2.4.1. Precision

Figures 39 and 40 show the impacts of the percentage of outliers on the precision of

Orion, A-ODDS and Streams LOCI. The precision increases with the increase of the

percentage of outliers in Orion and Stream LOCI. This is because both the algorithms

create some false alarms. The data points that are a little bit far from the other data

points are mistakenly identified as outliers. All the algorithms create these false alarms.

The number of false alarms remains the same regardless of the number of outliers.

Hence if the number of outliers increases, the ratio of false alarms to true outliers

becomes small and, hence, the precision increases with the increase of the percentage of

outliers.

Moreover, the percentage of outliers has a secondary impact on our co-clustering

approach. As the number of outliers increases, the number of data points that have small

neighbor density and large -distance also increases (this is because outliers have small

neighbor density and large -distance). A large number of data points with small

neighbor density and large -distance shifts the cluster centers toward smaller neighbor

density and larger -distance. Hence, Orion becomes more pessimistic; meaning it

would identify a data point as an outlier if it has very small neighbor density and large

 -distance and, therefore, the number of false alarms decreases (from 15% to 1%) with

the increase of percentage of outliers.

176

Figure 39. Impact of the percentage of outliers on the precision for the irrigation

data

Figure 40. Impact of the percentage of outliers on the precision for the synthetic

data

A-ODDS does not show any sensitivity with respect to the change of the percentage of

outliers. This is because the rates of true outliers and misclassified outliers of A-ODDS

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

P
re

c
is

io
n

Precision vs. percentage of Outliers

Orion A-ODDS Stream LOCI

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

P
re

c
is

io
n

Precision vs. Percentage of Outliers

Orion A-ODDS Stream LOCI

177

are approximately the same regardless of the percentage of outliers. However, if it can

correctly identify all the outliers, its rate of change of precision should be proportional.

But that is not the case we find in Figures 39 and 40. This is because the correctness of

detecting new outliers is different in Orion, A-ODDS and Stream LOCI. Thus the

precision increases in all three algorithms but the rate of increase is different in all of

them.

2.1.2.4.2. Recall

Figure 41. Impact of the percentage of outliers on the recall for the irrigation data

The recall of Orion decreases as the percentage of outliers increases (Figures 41 and

42). As the percentage of outliers increases, the number of outliers increases; and the

number of data points with small neighbor density and large -distance increases as

well. The large number of data points with small neighbor density and large -distance

shift the cluster centers and Orion becomes pessimistic, meaning it does not identify a

data point as an outlier unless it has very high -distance and very small neighbor

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

R
e
c
a
ll

Recall vs. percentage of Outliers

Orion A-ODDS Stream LOCI

178

density. Therefore, it fails to identify those outliers which are not very far from other

data points. Hence, we see the decrease of recall in Orion with the increase of

percentage of outliers.

Figure 42. Impact of the percentage of outliers on the recall for the synthetic data

Interestingly, A-ODDS and Stream LOCI show no variation with respect to the change

of the percentage of outliers because they do not have the clustering step and hence they

do not group the outliers together. However, we conduct our experiments with up to

10% of the data points as outliers, which is a rather high percentage of outliers since a

typical percentage of outliers is assumed to be within 0.001 – 5% [98] and the recall of

Orion is always better than those of A-ODDS and Stream LOCI.

2.1.2.4.3. Jaccard Coefficient

The impact of the percentage of outliers on the JC of Orion is very interesting. The JC

increases a little bit but the change of JC is very insignificant (Figure 43). Since the

precision increases and the recall decreases with the increase of the percentage of

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

R
e
c
a
ll

Recall vs. Percentage of Outliers

Orion A-ODDS Stream LOCI

179

outliers, the JC remains almost the same with respect to the change of the percentage of

outliers.

Figure 43. Impact of the percentage of outliers on the Jaccard Coefficient for the

irrigation data

The JC of Orion also decreases with the increase of the percentage of outliers for the

synthetic data (Figure 44). This decrease is induced by the recall. The JC of Orion for

the synthetic data is more vivid compared to that for the irrigation data. In the synthetic

data, the recall decrease is more comparable to the increase of the precision and, thus,

overall the JC decreases with the increase of the percentage of outliers. A-ODDS show

the change of JC with respect the change of percentage of outliers. The JC of A-ODDS

increases when the percentage of outliers increases. This is because A-ODDS assumes

that data points with GDF and LDF higher than three standard deviations are outliers.

Theoretically, approximately 10% of the data points have GDF or LDF higher than

three standard deviations [60]. If a dataset has less than 10% of outliers, many inliers

satisfy the outlier criteria and are identified as outliers. As the percentage of outliers

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. percentage of Outliers

Orion A-ODDS Stream LOCI

180

approaches 10%, outliers replace those inliers in the identified set of outliers; hence, the

JC of A-ODDS increases with the increase of percentage of outliers.

Figure 44. Impact of the percentage of outliers on the Jaccard Coefficient for the

synthetic data

The impact of percentage of outliers on JC of Stream LOCI is insignificant. The JC of

Stream LOCI remains almost constant with the increase of percentage of outliers. This

is because as the number of outliers increases, the ratio between the number of

identified outliers by Stream LOCI and the total number of outliers remain same.

Hence, the JC of Stream LOCI remains the same with respect to the increase of

percentage of outliers.

2.1.2.4.4. Execution Time

Orion shows no variation of execution time with respect to the change of the percentage

of outliers. This is because the number of tasks Orion performs (finding appropriate -

dimension, computing outlier metrics, co-clustering data points, updating fitness values

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

JC vs. Percentage of Outliers

Orion A-ODDS Stream LOCI

181

and updating the data density function) do not depend upon the outlier-ness of a data

point. Regardless the outlier-ness of a data point, Orion performs these steps and they

require an equal amount of time. Thus, the execution time of Orion remains fixed with

respect to the change of percentage of outliers. The execution times of A-ODDS and

Stream LOCI decrease when the percentage of outliers increases (Figures 45 and 46).

Since A-ODDS considers each dimension independently and once it finds an outlier in

one dimension, it discards the processing of the other dimensions, and thus its execution

time decreases as the percentage of outliers increases (Figure 46). Stream LOCI does

not consider each dimension independently but considers multiple radiuses for MDEF.

As the percentage of outliers grows, Stream LOCI can detect outliers for a smaller

radius, abandons its execution for a larger radius and, therefore, shows a better

execution time for a larger percentage of outliers (Figure 46).

Figure 45. Impact of the percentage of outliers on the execution time for the

irrigation data

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Percentage of Outliers

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Percentage of Outliers

Orion A-ODDS Stream LOCI

182

Figure 46. Impact of the percentage of outliers on the execution time for the

synthetic data

2.1.2.5. Impact of Number of Dimensions

We designed Orion for multi-dimensional data streams. As the number of data

dimensions grows, it becomes extremely difficult to measure the similarity between

data points and hence detecting outliers becomes a difficult task. Therefore, in this

experiment, we study the impact of number of dimensions on the accuracy and

execution time of all three algorithms. In this experiment we only use the synthetic data

since we can only change the number of dimensions for the synthetic data. The number

of dimensions is fixed for the irrigation data and hence we omit the irrigation data for

this experiment.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Percentage of Outliers

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Percentage of Outliers

Orion A-ODDS Stream LOCI

183

2.1.2.5.1. Precision

Figure 47. Impact of the number of dimensions on the precision for the synthetic

data

Orion performs better than the other two algorithms in terms of precision regardless of

the number of dimensions as shown in Figure 47. Orion’s precision shows no variation

at all when the number of dimensions changes. This is because whenever a data point is

detected as an outlier in Orion, it is indeed an outlier with respect to at least one -

dimension. Hence the number of dimensions does not impact Orion’s precision.

However, the precisions of A-ODDS and Stream LOCI decrease exponentially with the

increase of the number of dimensions. Stream LOCI measures the similarity among the

data points using Euclidean distance; as the number of dimensions increases, Stream

LOCI fail to measure the similarity among the data points using Euclidian distance; and

therefore the precision of Stream LOCI decreases exponentially with the linear increase

of number of dimensions. A-ODDS does not consider multiple dimensions at all.

10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension count

P
re

c
is

io
n

Precision vs. dimension count

Orion A-ODDS Stream LOCI

184

Hence, none of them is effective for outlier detection for data with a large number of

dimensions.

2.1.2.5.2. Recall

The recall of Orion increases with the increase of the number of dimensions (Figure

48). As the number of dimensions increases the multi-dimensional space grows

exponentially and it becomes easier to find an appropriate -dimension for outliers.

Therefore Orion can successfully find the appropriate -dimensions for outliers and its

recall increases with the number of dimensions. The recall of A-ODDS also increases as

well. This is because our outliers are generated randomly and A-ODDS checks each

dimensions independently. If the number of dimensions increases, it becomes more

likely that A-ODDS can find abnormality in one dimension of the data points and hence

its recall increases a little bit.

Figure 48. Impact of the number of dimensions on the recall for the synthetic data

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension count

R
e
c
a
ll

Recall vs. dimension count

Orion A-ODDS Stream LOCI

185

However, the recall of Stream LOCI decreases exponentially again. This is because as

the number of dimensions grows, Euclidian distance completely fails to measure the

similarity between data points; and thus, outliers and inliers all look similar and all are

equidistance from one another. Thus the recall of Stream LOCI decreases with the

increase of the number of dimensions.

2.1.2.5.3. Jaccard Coefficient

Figure 49. Impact of the number of dimensions on the Jaccard Coefficient for the

synthetic data

Figure 49 shows the impact of the number of dimensions on the JC of all three

algorithms. Overall the JC of Orion shows no impact, while the JCs of A-ODDS and

Stream LOCI decrease exponentially with the linear increase of the number of

dimensions, and thus are not suitable for outlier detection for multi-dimensional data

streams.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension count

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

JC vs. dimension count

Orion A-ODDS Stream LOCI

186

2.1.2.5.4. Execution Time

Although Orion can successfully detect outliers regardless of the number of dimensions,

its execution time grows in a cubic way with the linear increase of the number of

dimensions. According to our theoretical analysis in Section 1.1.1.1, the time

complexity of Orion was cubic with respect to number of dimensions. We can see the

similar increase of execution time with respect to number of dimensions. The cubic time

complexity is induced by the matrix inversion which is required to compute the

maximum absolute normalized deviation. However, its execution time for up to 100

dimensions is easily tractable. Stream LOCI and A-ODDS also show a similar trend: the

execution time increases with the increase of number of dimension. The execution time

of Stream LOCI increases because as the number of dimensions increases, the Euclidian

distance computation time increases linearly with the linear increase of number of

dimensions. So, the execution time of Stream LOCI increases linearly with respect to

number of dimensions.

A-ODDS considers each dimension individually and executes outlier detection

independently. As the number of dimensions increases, A-ODDS needs to consider

more dimensions, therefore, the execution time of A-ODDS increases with the increase

of number of dimensions.

187

Figure 50. Impact of the number of dimensions on execution time for the synthetic

data

2.1.2.6. Impact of Population Count

Orion is an evolutionary algorithm, in which it starts with an initial set of solutions for

optimal minimum density dimensions and gradually improves the solutions using an

objective function [79]. At any point in time a fixed number of -dimensions are

present in the system and each -dimension is a population. The total number of -

dimensions present in the system is called population count. In this section we study the

impact of population count. Since A-ODDS and Stream LOCI do not require this

parameter, their performance remains unchanged when the population count changes.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Dimension count

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. dimension count

Orion A-ODDS Stream LOCI

188

2.1.2.6.1. Precision

Figure 51. Impact of population count on precision for the irrigation data

Figures 51 and 52 show the impact of the population count on the precision.

Interestingly, the precision of Orion decreases with the increase of the population count

(Figure 51). This is a very counter-intuitive result. Since for many evolutionary

algorithms, accuracy increases with the increase of population count, as the number of

population increases Orion would more likely find an appropriate -dimension that

reveals the outlier-ness of the data point under investigation. However, as the

population count increases Orion not only reveals the outlier-ness of the outlier, but also

reveals the outlier-ness of the inliers. So, if an inlier is a little far from the other data

points, Orion can easily find the -dimension for that data point and identify it as an

outlier. Thus the precision starts to decrease a little bit at the beginning and eventually

reaches a stable value.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Population count

P
re

c
is

io
n

Precision vs. Population count

Orion A-ODDS Stream LOCI

189

Figure 52. Impact of population count on precision for the synthetic data

However, Figure 52 shows that none of the algorithms is sensitive to the population

count in terms of precision for the synthetic data. This is because the synthetic data has

less noise compared to the irrigation data, there exists no -dimension that reveals any

inlier as an outlier and thus the precision remains constant for the synthetic dataset.

2.1.2.6.2. Recall

The impact on recall with respect to the change of population count is very intuitive

(Figures 53 and 54). As the number of populations increases, Orion is more likely to

find an appropriate -dimension for outliers. Therefore, the recall increases with the

increase of population count. This relationship is consistent across the datasets, hence

we see the same result for both the irrigation data (Figure 53) and synthetic data (Figure

54).

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population count

P
re

c
is

io
n

Precision vs. Population count

Orion A-ODDS Stream LOCI

190

Figure 53. Impact of population count on recall for the irrigation data

Figure 54. Impact of population count on recall for the synthetic data

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Population count

R
e
c
a
ll

Recall vs. Population count

Orion A-ODDS Stream LOCI

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Population count

R
e
c
a
ll

Recall vs. Population count

Orion A-ODDS Stream LOCI

191

2.1.2.6.3. Jaccard Coefficient

Figure 55. Impact of population count on Jaccard Coefficient for the irrigation

data

Figure 56. Impact of population count on Jaccard Coefficient for the synthetic

data

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population count

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. Population count

Orion A-ODDS Stream LOCI

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population count

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

JC vs. Population count

Orion A-ODDS Stream LOCI

192

Since the precision of Orion decreases a little bit and its recall increases a little bit with

the increase of the population count, the JC of Orion remains constant with respect to

the change of population count (Figure 55). However, the JC of Orion for the synthetic

data increases logarithmically with the increase of the population count (Figure 56).

This is because the precision of Orion is constant and the recall increases with respect to

the increase of the population count, thus the JC increases as well.

2.1.2.6.4. Execution Time

Figure 57. Impact of population count on execution time for the irrigation data

The execution time of Orion increases linearly with the linear increase of the population

count (Figures 57 and 58). This is because as the number of populations increases,

Orion has to compute the neighbor density for each -dimension which takes a constant

time and update each -dimension as well, which also takes a similar amount of time.

Thus overall the complexity increases linearly with the increase of the population count.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

Population count

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Population count

Orion A-ODDS Stream LOCI

193

Hence the execution time also increases linearly with the increase of the population

count. This is a trend that is consistent across the datasets (Figures 57 and 58).

Figure 58. Impact of population count on execution time for the synthetic data

2.1.2.7. Impact of Bin Count

We use a binned implementation for our data density function. Moreover, we argue that

more than 90% percent of the data points are within 6 standard deviations and hence it

is sufficient to create 400 hundred bins for 6 standard deviations for any -dimension.

However, as the heuristic of 400 hundred bins for 6 standard deviation dispersion

produces great result [85]; we vary the value of the number of bins and study the impact

of the bin count. This section presents the study of bin count for the irrigation and

synthetic data. Since A-ODDS and Stream LOCI do not require this parameter, they

remain unchanged throughout the experiments.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

Population count

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Population count

Orion A-ODDS Stream LOCI

194

2.1.2.7.1. Precision

Figures 59 and 60 show the impact of bin count on precision. If the bin count is small,

the accuracy of the data density function is poor. The accuracy of the data density

function increases with the increase of number of bins up to 400 hundred bins. In our

case we see that the precision decreases a little bit (Figure 59) with the increase of bin

count for the irrigation data and remains the same for the synthetic data (Figure 60).

However, the change of precision with respect to bin count for the irrigation data is very

insignificant. For a small bin count, the proposed data density function becomes less

accurate and some inliers that are a little bit apart from other data points share the same

bins; thus they are not identified as outliers. As the bin count increases and the data

density function becomes more accurate, those inliers appear like outliers and hence

Orion misclassified them as outliers.

Figure 59. Impact of bin count on precision for the irrigation data

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bin count

P
re

c
is

io
n

Precision vs. bin count

Orion A-ODDS Stream LOCI

195

Figure 60. Impact of bin count on precision for the synthetic data

2.1.2.7.2. Recall

Figure 61. Impact of bin count on recall for the irrigation data

The recall of Orion increases with the increase of bin count. If the number of bins

increases, the data density function becomes more accurate and outliers fail to hide

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bin count

P
re

c
is

io
n

Precision vs. bin count

Orion A-ODDS Stream LOCI

50 100 150 200 250 300 350 400 450 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Bin count

R
e
c
a
ll

Recall vs. bin count

Orion A-ODDS Stream LOCI

196

themselves in the mass of inliers. In case of a small bin count, the outliers easily share

the same bin with the inliers and hide themselves. So the recall increases with the

increase of bin count. This trend is consistent across the datasets (Figures 61 and 62).

Figure 62. Impact of bin count on recall for the synthetic data

2.1.2.7.3. Jaccard Coefficient

The impact of bin count on the JC for the irrigation data is portrayed in Figure 63.

According to Figure 63, bin count has no impact on JC. This is because the precision of

Orion decreases a little bit and its recall increases a little bit with the increase of bin

count. These two balance each other out and the JC remains constant with respect to the

change of bin count. However the JC of Orion for the synthetic data increases with the

increase of bin count (Figure 64). This is because the precision of Orion for the

synthetic data does not show any variation, while the recall increases with the increase

of bin count. Thus JC increases with the increase of bin count as well.

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Bin count

R
e
c
a
ll

Recall vs. bin count

Orion A-ODDS Stream LOCI

197

Figure 63. Impact of bin count on Jaccard Coefficient for the irrigation data

Figure 64. Impact of bin count on Jaccard Coefficient for the synthetic data

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bin count

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. bin count

Orion A-ODDS Stream LOCI

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bin count

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. bin count

Orion A-ODDS Stream LOCI

198

2.1.2.7.4. Execution Time

Figure 65. Impact of bin count on execution time for the irrigation data

Figure 66. Impact of bin count on execution time for the synthetic data

Figures 65 and 66 show the impact of bin count on execution time. Since our neighbor

density computation and -distance computation times are almost similar regardless of

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

Bin count

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. bin count

Orion A-ODDS Stream LOCI

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

Bin count

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. bin count

Orion A-ODDS Stream LOCI

199

the number of bins, the execution time of Orion remains unchanged when the bin count

changes.

2.1.2.8. Impact of Bootstrapping Size

Orion uses a set of data points to learn the forgetting factor and initializes the cluster

centers. Hence we perform a study to show how the number of bootstrapping rounds

impacts the performance of Orion.

2.1.2.8.1. Precision

Figure 67. Impact of bootstrapping size on precision for the irrigation data

The precision of Orion almost does not change regardless of the number of

bootstrapping rounds (Figures 67 and 68). This is because Orion can learn the forgetting

factor from a small set of data points, adding more data points to the bootstrapping

rounds does not help Orion to perform better. Hence we observe an almost constant

precision with respect to the change of the bootstrapping size. This is consistent for both

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bootstrapping size

P
re

c
is

io
n

Precision vs. bootstrapping size

Orion A-ODDS Stream LOCI

200

the datasets (Figures 67 and 68). Stream LOCI and A-ODDS remain unchanged since

they do not use bootstrapping data points at all.

Figure 68. Impact of bootstrapping size on precision for the synthetic data

2.1.2.8.2. Recall

Figure 69. Impact of bootstrapping size on recall for the irrigation data

100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bootstrapping size

P
re

c
is

io
n

Precision vs. bootstrapping size

Orion A-ODDS Stream LOCI

50 100 150 200 250 300 350 400 450 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Bootstrapping size

R
e
c
a
ll

Recall vs. bootstrapping size

Orion A-ODDS Stream LOCI

201

Figure 70. Impact of bootstrapping size on recall for the synthetic data

We observe the similar pattern in terms of recall as well (Figures 69 and 70). The recall

of Orion is insensitive to the change of the bootstrapping size.

2.1.2.8.3. Jaccard Coefficient

Since the precision and recall remain unchanged, the Jaccard coefficient remains

unchanged as well (Figures 71 and 72) when the bootstrapping size changes. This is

useful since the user can choose a small bootstrapping size and detect the outlier-ness of

all data points after that.

2.1.2.8.4. Execution Time

Finally like with other performance metrics, the execution time is not impacted by the

bootstrapping size (Figures 73 and 74). Since we measure the execution time as the time

to detect the outlier-ness of a data point which is independent of the bootstrapping size,

we see no impact of the bootstrapping size on the execution time.

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bootstrapping size

R
e
c
a
ll

Recall vs. bootstrapping size

Orion A-ODDS Stream LOCI

202

Figure 71. Impact of bootstrapping size on Jaccard Coefficient for the irrigation

data

Figure 72. Impact of bootstrapping size on Jaccard Coefficient for the synthetic

data

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bootstrapping size

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. bootstrapping size

Orion A-ODDS Stream LOCI

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bootstrapping size

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. bootstrapping size

Orion A-ODDS Stream LOCI

203

Figure 73. Impact of bootstrapping size on execution time for the irrigation data

Figure 74. Impact of bootstrapping size on execution time for the synthetic data

2.1.2.9. Impact of Number of Data Rounds

A data stream is an infinite sequence of data points; therefore it is important for any

outlier detection technique to perform well for a large number of data points; otherwise

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

Bootstrapping size

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. bootstrapping size

Orion A-ODDS Stream LOCI

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

Bootstrapping size

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. bootstrapping size

Orion A-ODDS Stream LOCI

204

it is hard to predict the behavior of an algorithm in case of data streams. This study

reveals the impacts of number of data rounds on the performance of all three

algorithms.

2.1.2.9.1. Precision

Figure 75. Impact of number of data rounds on precision for the irrigation data

Figures 75 and 76 show the impacts of number of data rounds on the precision of all

three algorithms for the irrigation and synthetic datasets. The precision of Orion

increases as the number of data rounds increases. This is because at the beginning, the

co-clustering algorithm does not know where to draw the line between high, average

and low neighbor density and -distance. Hence at the beginning Orion identifies some

inliers as outliers. But as time passes more data points come in, Orion learns the centers

of the clusters in our co-clustering algorithm and stops misclassifying inliers as outliers.

Thus the precision increases as the number of data points increases.

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of rounds

P
re

c
is

io
n

Precision vs. Number of Rounds

Orion A-ODDS Stream LOCI

205

Figure 76. Impact of number of data rounds on precision for the synthetic data

The precision of A-ODDS and Stream LOCI remains unchanged irrespective of the

number of data points. This is because none of them relies on the old data points very

much. Stream LOCI uses a sliding window and A-ODDS uses the forgetting factor to

decay the weights of older data points compared to newer data points. Thus they are

insensitive to the number of data points.

2.1.2.9.2. Recall

The recall of Orion for the irrigation data changes a little bit with the change of the

number of data rounds (Figure 77). At the beginning when the number of data points is

very small, the recall of Orion changes a little bit, but it quickly stabilizes. This is only

for the irrigation data since it has a lot of noise in it, and therefore Orion takes some

time to stabilize the co-clusters. Once the co-clusters are fixed, the impact of number of

data points is not visible for any of the performance.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rounds

P
re

c
is

io
n

Precision vs. Number of Rounds

Orion A-ODDS Stream LOCI

206

Figure 77. Impact of number of data rounds on recall for the irrigation data

Figure 78. Impact of number of data rounds on recall for the synthetic data

Moreover, the recall of Orion for the synthetic dataset remains the same with respect to

the change of the number of data points (Figure 78). This is because Orion can quickly

learn the cluster centers of the co-clustering step. As Orion learns the cluster centers , it

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rounds

R
e
c
a
ll

Recall vs. Number of Rounds

Orion A-ODDS Stream LOCI

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rounds

R
e
c
a
ll

Recall vs. Number of Rounds

Orion A-ODDS Stream LOCI

207

does not misclassify many inliers as outliers. Thus, the recall of Orion shows no

sensitivity with respect to change of number of rounds for the synthetic dataset.

2.1.2.9.3. Jaccard Coefficient

Overall the number of data points has no impact on the JCs of all three algorithms

(Figures 79 and 80). Thus the performance of all three algorithms does not change when

the number of data points changes.

2.1.2.9.4. Execution Time

The execution times of all three algorithms remain constant with respect to the change

of the number of data rounds (Figures 81 and 82); hence, it can be concluded that all

three algorithms are well suited for infinite data streams.

Figure 79. Impact of number of data rounds on Jaccard Coefficient for the

irrigation data

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rounds

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. Number of Rounds

Orion A-ODDS Stream LOCI

208

Figure 80. Impact of number of data rounds on Jaccard Coefficient for the

synthetic data

Figure 81. Impact of number of data rounds on execution time for the irrigation

data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rounds

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

JC vs. Number of Rounds

Orion A-ODDS Stream LOCI

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of rounds

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Number of Rounds

Orion A-ODDS Stream LOCI

209

Figure 82. Impact of number of data rounds on execution time for the synthetic

data

2.1.2.10. Impact of Concept Drift

In this section, we present the study of impacts of concept drift on the accuracy and

execution time of Orion, A-ODDS and Stream LOCI. Tsymbal argues that there are two

types of concept drifts that occur in real world [99]: gradual concept drift and abrupt

concept drift. Gradual concept drift refers to the problem where the value of an item

gradually changes over time such as machine wear and tear, environment temperature,

etc. Abrupt concept drift refers to the problem where the value of an item changes

suddenly. Not only that, the distribution family of the value may changes suddenly as

well such as credit card transactions and salary of an employee [99]. Our synthetic

dataset contains a harmonic component which gradually changes the attribute values.

Hence, our synthetic dataset is used as a representative dataset for gradual concept drift.

We create a separate dataset, where data points are distributed from a randomly chosen

distribution type among the Gaussian distribution, Triangular distribution, Beta

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

1

1.5

2

2.5

3

3.5

Number of rounds

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Number of Rounds

Orion A-ODDS Stream LOCI

210

distribution, Exponential distribution and Uniform distribution. The distribution of the

data points in this dataset does not changes over time and it has no harmonic component

to simulate gradual concept drift. We call this dataset a no concept drift dataset.

We also synthesize a third dataset that simulates abrupt concept drift. In this dataset, the

data points starts with an initial distribution. After a certain time (randomly chosen) the

distribution of data points changes from its previous distribution to a new distribution

randomly chosen from the Gaussian distribution, Triangular distribution, Beta

distribution, Exponential distribution and Uniform distribution. This random change of

distributions happens at a randomly chosen time interval. This dataset is a

representative dataset for abrupt concept drift. Thus, in this experiment we execute all

three algorithms for these three datasets and record accuracy (precision, recall, Jaccard

Coefficient) and execution time.

2.1.2.10.1. Precision

Figure 83. Impact of Concept drift on precision for the synthetic data

0
.9

6

0
.9

9

0
.9

4

0
.2

8

0
.3

7

0
.3

4

0
.8

6

0
.2

6

0
.5

2

0.00

0.20

0.40

0.60

0.80

1.00

No concept drift Gradual concept

drift

Abrupt concept

drift

P
re

ci
si

o
n

Dataset with no, gradual, and abrupt concept drift

Precision with respect to concept drift

Orion A-ODDS Stream LOCI

211

Figure 83 presents the impacts of concept drift on the precision of Orion, A-ODDS and

Stream LOCI. One of the objective of Orion is to be able to detect outliers despite the

presence of concept drifts. The precision of Orion for the no concept drift data is the

same as its precision for the abrupt concept drift data. In the no concept drift data, it is

easier for Orion to find an appropriate -dimension. Since there is no concept drift, the

distribution of data never changes and hence, Orion can work with the same set of -

dimensions. The precision of Orion for the abrupt concept drift data is the same as its

precision for the no concept drift data. Thus, we can conclude that abrupt concept drift

has no impact on the precision of Orion. This is because once the distribution of the

data points changes, Orion adaptively changes its -dimensions so that the existing set

of -dimensions can reveal the outlier-ness of the data points. Hence, Orion can be

adaptive well with the sudden change of concepts. Finally, the precision of Orion for the

gradual concept drift data is a little bit better than its precision for the no concept drift

data and the abrupt concept drift data; but the increase of precision for the gradual

concept drift data is not statistically significant. Thus, we can conclude the precision of

Orion is not affected by any type of concept drift.

The precision of Stream LOCI is significantly affected by the concept drift. Stream

LOCI uses a sliding window to capture the recent subset of the data points. Hence, if

there is no concept drift, the sliding window always contains the data points from the

same distribution. Therefore, Stream LOCI can separate outliers from inliers easily. In

case of abrupt concept drift, the sliding window of Stream LOCI contains data points

from more than one group. In that case, if one group is not significantly outnumbered

by another, Stream LOCI can separate them and detect outliers from individual groups

212

(this is because it is a density based approach; it works with local neighborhood only).

Once an abrupt concept drift occurs, the sliding window of Stream LOCI gradually fills

with the data points from the new concept. At the beginning, the data points from the

new concept appear as outliers with respect to the data points from the old distribution.

Hence, Stream LOCI creates some false alarms. Thus the precision of Stream LOCI for

the abrupt concept drift data is smaller than that for the no concept drift data. Stream

LOCI performs worse in terms of precision for gradual concept drift. In case of gradual

concept drift, the data points are continuously changing, but with a tiny amount. Thus,

the sliding window of Stream LOCI is composed of the data points where each of them

(data points) has little different data distribution compared to the other data points.

Unfortunately, Stream LOCI cannot handle this kind of data and therefore, its precision

is the lowest for the gradual concept drift data (Figure 83).

The precision of A-ODDS is a little high for gradual concept drift compared to the cases

of no concept drift and abrupt concept drift. In a dataset with gradual concept drift, A-

ODDS can successfully detect the local data points and identify the outliers [60]. For no

concept drift data, the GDF and LDF of A-ODDS become the same and hence it only

detects outliers on the global context. The precision of A-ODDS is higher for the abrupt

concept drift data compared to the no concept drift data because in that case, GDF and

LDF become different again and A-ODDS can then detect outliers from the global and

local contexts. However, irrespective of the dataset, Orion shows its supremacy over

Stream LOCI and A-ODDS in terms of precision.

213

2.1.2.10.2. Recall

Figure 84 shows the impact of concept drift on recall. The recall of Orion is the same

for three cases: no, gradual and abrupt concept drift. Orion can detect an outlier if it

contains an appropriate -dimension that reveals the outlier-ness of the data point. In all

three cases, Orion can readily find the appropriate -dimensions for outlying instances

that reveal their outlier nature. Since our evolutionary algorithm adaptively modifies the

set of -dimensions, Orion always have an appropriate -dimension that can reveal an

outlier. Therefore, the recall of Orion is not affected by concept drift; thus, our design

goal, which is to design an appropriate outlier detection technique the performance of

which is not affected by concept drift, is achieved. Moreover, Orion outperforms both

Stream LOCI and A-ODDS for all types of concept drifts in terms of recall.

Figure 84. Impact of Concept drift on recall for the synthetic data

According to Figure 84, the recall of Stream LOCI is affected by concept drift. The

recall of Stream LOCI is the lowest for the gradual concept drift data. As we have

discussed before, the sliding window of Stream LOCI contains a set of data points, each

0
.9

6

0
.8

6

0
.9

6

0
.8

2
 0
.9

6

0
.8

4

0
.4

7

0
.1

0
 0

.4
6

0.00

0.20

0.40

0.60

0.80

1.00

No concept drift Gradual concept

drift

Abrupt concept

drift

R
ec

al
l

Dataset with no, gradual, and abrupt concept drift

Recall with respect to concept drift

Orion A-ODDS Stream LOCI

214

of which is slightly different from the rest. Therefore, Stream LOCI confuses inliers

with outliers and cannot find outliers. The recall of A-ODDS for the gradual concept

drift data is higher than its recall for the no concept drift data and the abrupt concept

drift data. This is because once A-ODDS can identify the local context for LDF, it can

easily identify the outliers that are non-conformist to the local data points.

2.1.2.10.3. Jaccard Coefficient

Figure 85 shows the accuracy in terms of Jaccard Coefficient of Orion, Stream LOCI

and A-ODDS with respect to different types of concept drift data. Since the precision

and recall of Orion are not affected by concept drift, JC is not affected by concept drift

either. We have discussed our reasoning for such insensitivity of Orion in terms of

accuracy for all types of concept drifts. This experiment confirms that Orion can

successfully handle concept drift. Compared with the gradual and abrupt concept drift

data, Stream LOCI has a higher precision and recall, and thus also has a higher JC, for

the no concept drift data. The JC of A-ODDS is for gradual concept drift is higher than

the JC of A-ODDS for no concept drift and abrupt concept drift (we have discussed our

reasoning in previous two sections). Therefore, A-ODDS is particularly suitable for

gradual concept drift data.

Finally, Orion is superior to both Stream LOCI and A-ODDS in terms of accuracy for

all three metrics. On average, Orion has 225% and 173% better JC than Stream and A-

ODDS.

215

Figure 85. Impact of Concept drift on JC for the synthetic data

2.1.2.10.4. Execution Time

Figure 86 shows the effectiveness of Orion in terms of execution time. The execution

times of Orion for all three types of concept drift are similar. This is because Orion

adaptively changes the set of -dimensions regardless of the existence of the concept

drift. Thus, the time complexity of Orion is not affected by the existence of concept

drift. Hence, the execution times of the Orion are also very similar for three types of

concept drift.

The execution time of Stream LOCI is the highest for gradual concept drift compared to

other two types of concept drifts. This result can be easily explained. Stream LOCI

computes the MDEF of each data point for a choice of radius; however, Stream LOCI

does not take radius as a user input, rather it computes the MDEF value for all possible

radiuses starting from the minimum distance to the maximum distance between two

data points. If the MDEF value of a data point for any radius is beyond three standard

deviations, the data point is identified as an outlier. Hence, in case of the gradual

0
.8

8

0
.8

6

0
.8

9

0
.2

7

0
.3

7

0
.3

3
 0
.4

5

0
.0

5

0
.3

1

0.00

0.20

0.40

0.60

0.80

1.00

No concept drift Gradual concept

drift

Abrupt concept

drift

Ja
cc

ar
d

 C
o

ef
fi

ci
en

t

Dataset with no, gradual, and abrupt concept drift

JC with respect to concept drift

Orion A-ODDS Stream LOCI

216

concept drift data, the maximum distance between two data points is always very high,

thus Stream LOCI has to compute the MDEF value for lots of radiuses. Thus the

execution time of Stream LOCI is large for gradual concept drift (Figure 86). The

execution time of A-ODDS is also unaffected by concept drift.

Figure 86. Impact of Concept drift on execution time for the synthetic data

2.1.2.11. Conclusions on Experimental Results for Orion

Our conclusions from the experimental evaluations that we have presented in the

previous sections are as follows:

- Orion performs better than the existing state-of-the-art outlier detection

algorithms for real applications like network intrusion detection, Physical Action

classification, and erroneous sensor reading detection. The diversity of the

datasets shows the applicability of Orion for a wide range of applications.

- Orion not only possesses better accuracy compared to the exiting outlier

detection techniques, but also has better or competitive execution time.

1
.3

5

1
.5

8

1
.1

3
 1

.7
7

1
.7

6

1
.7

7

0
.8

9

3
.2

7

1
.4

8

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

No concept drift Gradual concept

drift

Abrupt concept

drift

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Dataset with no, gradual, and abrupt concept drift

Execution time with respect to concept drift

Orion A-ODDS Stream LOCI

217

- The impact of neighbor distance (a parameter of Orion) on accuracy is very

small. Thus the user has much liberty in choosing an appropriate value for this

parameter. Even if the user chooses a value that is not optimal, Orion is still

capable of detecting outliers.

- The second most important parameter for Orion is that is used to compute -

distance. The impact of is also very insiginificant. Many outlier detection

techniques are very sensitive to the choice of their parameters, especially

distance based outlier detection techniques [9, 58]. The idea of density based

outlier detection evolved in order to eliminate this drawback of distance based

outlier detection. In our case, the sensitivity of accuracy of Orion to k is

negligible. Therefore, it becomes easier for the user to choose an appropriate k

value for Orion.

- The execution time of Orion is also insensitive to neighbor distance and . Thus,

Orion is applicable to many applications regardless of their values of neighbor

distance and .

- We have examined the accuracy and execution time of Orion for the cases

where the percentage of outliers is in the range of 1-10%. 10% is considered a

very high percentage of outliers, where the typical percentage of outliers lies

between 0.001-5% [98]. Our experimental results show that the accuracy of

Orion is superior to the state of the art outlier detection techniques regardless of

the percentage of outliers.

218

- Orion is a multi-dimensional outlier detection technique. The accuracy of Orion

is affected by the number of dimensions at all. The outlier detection technique

Stream LOCI does not work well for high number of dimensions. This is

because Stream LOCI uses Euclidian distance to measure the similarity among

the data points, but Euclidian distance cannot measure the similarity if the

number of dimensions is high. Thus our choice of avoiding Euclidean distance is

well-justified.

- The execution time of Orion increases in a cubic way with the linear increase of

number of dimensions as opposed to exponential increases suggested by multi-

dimensional data density functions.

- The accuracy of Orion is small for a very small number of -dimensions (aka

population count). But once the number of -dimensions increases a little bit,

the accuracy becomes insensitive to the number of -dimensions. We propose a

heuristic in which we keep the same number of -dimensions as the number of

data dimensions. This heuristics produces optimum results for Orion. Hence, we

recommend users to follow this heuristics for all applications.

- The optimal number of bin width is established from literature [5]. We use 400

bins for six standard deviation dispersion. According to our experiments, 400

bins for six standard deviations always produce optimal results. Thus, users are

recommended not to modify the bin count.

- Orion does not require a huge set of bootstrapping rounds to initialize itself. The

number of bootstrapping rounds typically varies between 100-500. In a typical

219

application like irrigation, 100 data points constitute 0.2% of the datasets.

Moreover, a data stream is considered as an infinite set of data points; hence,

100 data points is negligible for an infinite set of data points.

- The accuracy and execution of Orion remain unchanged with respect to the

number of data points. Since data streams are envisioned for an infinite set of

data points, it is important to have constant accuracy and execution time with

respect to the number of data points. Thus the effectiveness of Orion for data

streams is once again validated by its constant accuracy and execution time with

respect to the change of the number of data points.

- Orion can successfully handle both gradual concept drifts and abrupt concept

drifts. Handling concept drifts was one of the design goals of Orion and our

experiments studying the impacts of concept drifts show that we have achieved

this design goal.

2.2. Experimental Analysis for Wadjet

2.2.1. Simulation Model

We use the same simulation model as we have described for Orion in Section 2.1.1.

Thus we omit the description of the simulation model in this section.

2.2.1.1. Datasets

2.2.1.1.1. Synthetic Dataset

We use the same synthetic dataset that we have discussed in Section 2.1.1.3.6 for Orion.

220

2.2.1.1.2. Sensor Scope Dataset

Sensor Scope is an environmental monitoring system based on a wireless sensor

network [6]. Sensor Scope is aimed for outdoor deployment. Barrenetxea et al. [6]

deployed six different sensor networks starting from the EPFL’s campus to a high

mountain site. We have collected the data from their largest deployment at the EPFL’s

campus. Each environment monitoring station is composed of multiple sensors

monitoring ambient temperature, surface temperature, solar radiation, relative humidity,

soil moisture, watermark, rain meter wind speed and wind direction. However, not all

sensors from all stations report all the data. Thus some stations may report less data than

others. This give rise of heterogeneous schemas for data streams. Moreover, the

monitoring stations are very close to each other (within the campus of the EPFL); hence

the data from one station is strongly correlated with the data from another station. In our

experiments we collected data from 97 stations, each of which has roughly 40K to 400K

data points and 3 to 7 dimensions.

2.2.1.2. Competitive Algorithms

DB-Outlier is a continuous distance based outlier proposed by Ishida and Kitagawa

[32]. DB-Outlier is based on a popular distance based outlier detection technique

proposed by Knorr et al. [50]. We choose DB-Outlier as a representative technique of

multiple related data streams. In the literature, there exists only a handful set of outlier

detection techniques that work for multiple related streams [32, 48, 86, 100]. However,

none of them works for multi-dimensional data points except DB-Outlier. Moreover,

distance based outlier detection is superior compared to other outlier detection schemes

in terms of accuracy [101]. Thus, we choose to compare Wadjet with DB-Outlier. DB-

221

Outlier detects distance-based outliers given a user-defined distance and minimum

neighbor count ; a data point is an outlier if it has fewer than neighbors within a

distance . DB-Outlier adopts the idea of the cell based outlier detection proposed by

Knorr, Ng and Tucakov [50] and takes the cell based outlier detection to the next level

for data streams. This algorithm assumes multiple data streams for outlier detection and

compares the data points across the data streams and detects distance based outliers. If

the number of data streams is N, it assumes there exist data streams . At

any particular point in time , each stream produces one data point. So at time ,

 produces

 where

 is a -dimensional data point. To detect

the outliers
 is compared to all

 , where and , so outliers are detected

among

 . DB-Outlier compares the data point of a stream to the data points

of other streams. If a data point has fewer than k neighbors within a distance k, the data

point is identified as an outlier.

2.2.1.3. Simulation Parameters

We study the impacts of changing various parameters on the performance of Wadjet.

The range of values of the default value of each parameter are presented in Table 9.

Wadjet executes Orion in its first phase. Therefore, Wadjet has the same set of

parameters as Orion. The list of parameters we have studied for Orion is also valid for

Wadjet. The impacts of the parameters in the first phase of Wadjet are the same as their

impacts on Orion. Therefore, conducting experiments again based on those parameters

would be redundant to what we have studied for Orion in Section 2.1.2. In order to

avoid the repetition of the study of the same set of parameters we omit those parameter

studies from this section and include only the studies of the additional set of parameters

222

for Wadjet that are not present in Orion. Although the number of dimensions and the

percentage of outliers appear in the studies conducted for Orion, we also include them

in the studies for Wadjet; this is because they have different impacts on the second

phase of Wadjet. The default values of the percentage of outlier and confidence interval

parameters are chosen based on literature [91, 98]; and the default values of the number

of streams and number of dimensions parameters are chosen based on the average

number of data streams and number of dimensions found in various datasets in the UCI

machine learning repository [96]. For every experiment, when the impact of a parameter

is under study, we vary its value within its range and fix the other parameters at their

default values.

Table 9. List of parameters studied for Wadjet

Name

Synthetic data Sensor Scope data

Range of

Values

Default

Value

Range of

Values

Default

Value

Number of streams 20 - 50 50 97 97

Number of dimensions 50 -100 100 4 - 10 4 – 10

Percentage of outliers 1 -10 5 5% 5%

Confidence interval 97 – 100 99.5 97 – 100 99.5

2.2.2. Experimental Results

In this section we present our experimental results for Wadjet. We start with an overall

performance of both algorithms and then present the detailed studies of the parameters.

2.2.2.1. Overall Performance

2.2.2.1.1. Precision

Table 10 shows the precision of Wadjet and DB-Outlier for the synthetic and sensor

scope datasets. The sensor scope data has heterogeneous schemas, but DB-Outlier does

not deal with heterogeneous schemas; thus we cannot report any result for DB-Outlier

223

for this dataset. To the best of our knowledge, no existing outlier detection technique

works for heterogeneous schemas. DB-Outlier performs really poorly compared to

Wadjet for the synthetic data because DB-Outlier is not really designed for data streams

where data points have different values but are correlated. DB-outlier assumes that data

points from multiple streams are the same or equal. Any data point which is

significantly different from the other data points is identified as an outlier. However, in

our synthetic data set, data points are not equal, rather they are correlated. Thus when

DB-Outlier tries to find the outliers based on the assumption that they are equal, it

makes lots of mistakes and identifies lots of inliers as outliers. Thus the precision of

DB-Outlier is very poor. Unfortunately, we have not come across any existing

algorithm that deals with data points that are not the same but correlated. Hence our

algorithm is the first one that addresses this problem. However, in order to give the

reader an impression of what happens if the equality assumption does not hold, we

compare our algorithm with DB-Outlier.

Table 10. Precision of Wadjet and DB-Outlier

 Synthetic data Sensor Scope data

Wadjet 0.94 0.99

DB-Outlier 0.05 N/A

On the contrary the precision of our algorithm is very good. Wadjet can detect outliers

with 94% precision for the synthetic data and 99% precision for the sensor scope data.

These are very good precision since Wadjet identifies a data point as an outlier if it is

identified as an outlier in either Phase 1 or Phase 2; thus two levels of error can

accumulate while we are considering the precision of Wadjet.

224

2.2.2.1.2. Recall

DB-Outlier assumes that the data points from multiple streams are equal and it

identifies a data point as an outlier if it does not have enough neighbors. However, in

our dataset, the data points from multiple data streams are not equal and thus almost all

data points have a very few neighbors. According to the definition of distance based

outliers, these data points (data points with small sets of neighbors) are outliers. Thus,

DB-Outlier identifies them as outliers and produces lots of false alarms; however the

true outliers are also far from the other data points. Hence, DB-Outlier successfully

detects all the outliers (Table 11), and thus it has a better recall than Wadjet. However,

the 100% recall of DB-Outlier comes with the cost of a very poor precision.

Table 11. Recall of Wadjet and DB-Outlier

 Synthetic data Sensor Scope data

Wadjet 0.99 0.67

DB-Outlier 1.00 N/A

Wadjet shows a very high recall for the synthetic data. This is because Wadjet detects

outliers in two phases. In the first phase it identifies the outliers that are nonconformist

to the other data points from the same streams. In the second phase, it identifies the

outliers that are nonconformist to the other data points from the other correlated

streams. Hence after these two phases all the outliers are essentially filtered by Wadjet.

Thus Wadjet almost identifies 100% of the outliers for the synthetic data. Unlike DB-

Outlier, Wadjet makes very few mistakes while identifying all the outliers.

The recall value of Wadjet for the sensor scope data is also very promising. It can

approximately detect 67% of the outliers. Interestingly the recall for the synthetic data is

much higher than the recall for the sensor scope data. This is because the sensor scope

225

data are heterogeneous in nature. The temperature data from all sensors are more

correlated than the temperature from one sensor and the wind speed from another

sensor. Since the sensor scope data produces a heterogeneous set of attributes, Wadjet

often fails to find the cross-correlation and thus fails to identify outliers.

2.2.2.1.3. Jaccard Coefficient

Since Jaccard Coefficient is the combination of precision and recall, DB-Outlier shows

a very poor performance in terms of Jaccard Coefficient as well. Although DB-Outlier

identifies all the outliers in the dataset, it makes lots of false positives as well (Table

12). Thus the reliability of the algorithm is significantly poor. Hence the Jaccard

Coefficient of the algorithm is poor as well.

Table 12. Jaccard Coefficient of Wadjet and DB-Outlier

 Synthetic data Sensor Scope data

Wadjet 0.93 0.67

DB-Outlier 0.05 N/A

Wadjet can identify most of the outliers without making a lot of mistakes like DB-

Outlier for the synthetic dataset. Hence the reliability and completeness of the algorithm

are very good for outlier detection for heterogeneous data streams. The JC of Wadjet for

the sensor scope data is also very promising. The identified set of outliers has 67% in

common with the true set of outliers.

2.2.2.1.4. Execution Time

Wadjet offers not only better accuracy, but also competitive execution time (Table 13).

The execution time of Wadjet is very appealing since Wadjet is processing 50 different

data points from 50 different data sources where each data point has 100 dimensions.

On the average, Wadjet takes 0.000936 milliseconds to process one attribute. Thus the

226

processing time is very suitable for data stream applications. The execution time of

Wadjet for the sensor scope data is significantly small, 0.01 milliseconds. Our further

experiment suggests that Wadjet is able to cluster only 10.58% of the attributes. This is

because due to the heterogeneous nature of the attributes, many attributes fail to form a

cluster. Once Wadjet fails to form a cluster for an attribute it does not compute the

linear regression function for that attribute and skips the outlier detection test. Hence the

execution time of Wadjet improves significantly.

Table 13. Execution time (in ms) of Wadjet and DB-Outlier

 Synthetic data Sensor Scope data

Wadjet 4.68 0.03

DB-Outlier 3.61 N/A

Since the sensor scope data is a real dataset, we do not have much control over this

dataset in terms of change of parameter values. So, for our parameter studies, we use the

synthetic dataset alone.

2.2.2.2. Impact of Number of Streams

2.2.2.2.1. Precision

Figure 87 shows the impacts of the number of data streams on the precision of both

Wadjet and DB-Outlier. As we are increasing the number of data streams, we are

actually adding more and more data streams to detect outliers in Wadjet. If the newly

added data streams are cross-correlated, the number of correlated attribute would

increase. If the number of correlated attributes increases, the number of correlated

attributes of any particular attribute would also increase. Hence, if the number of

streams is large each cluster would have more attributes compared to that if the number

of streams is small. However, in order to detect an outlier, an attribute value is

227

compared to its nearest neighbor. Therefore, the total number of attributes in a cluster

does not influence the decision of outlier-ness of a data point. Therefore, the precision

of Wadjet remains the same. If the newly added streams are not correlated the cluster

size would not be impacted by the additional data streams. In that case the precision

would not be impacted either. Hence, in both cases the precision of Wadjet remain

unchanged.

Figure 87. Impact of number of data streams on precision for the synthetic data

Interestingly, the precision of DB-Outlier is also unchanged with respect to the number

of streams. In case of DB-Outlier, the number of data points is the same as the number

of streams; but these data points are not equal, rather they are correlated. Hence, they

are far from each other in terms of value. Thus, if the number of data points increases,

DB-Outlier also misclassifies inliers as outliers. Therefore, the precision of DB-Outliers

also remains unchanged. However, the precision of DB-Outlier is significantly smaller

20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Data Streams

P
re

c
is

io
n

Precision vs. Number of Data Streams

Wadjet DB-outlier

228

than that of Wadjet. The precision of Wadjet is twenty times higher than the precision

of DB-Outlier.

2.2.2.2.2. Recall

Figure 88. Impact of number of data streams on recall for the synthetic data

Figure 88 presents the impacts of the number of data streams on the recall of both

Wadjet and DB-Outlier. In Figure 88, the graph for recall of Wadjet and the graph for

recall of DB-Outlier superimpose one another. Thus, it is difficult to separate the recall

of DB-Outlier from that of Wadjet from Figure 88. Interestingly, both Wadjet and DB-

Outlier show excellent recall values for this dataset.

As the number of streams increases we add more streams to the experiments. Adding

more streams means adding more attributes. Therefore, Wadjet would be able to find

more correlated attributes if the newly added streams are cross-correlated. Hence,

adding more attributes might increase the size of clusters. However, in order to detect

significantly different attributes, an attribute value is compared to its nearest neighbor.

20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Data Streams

R
e
c
a
ll

Recall vs. Number of Data Streams

Wadjet DB-outlier

229

Thus, having more attributes in the same cluster does not increase the accuracy of

outlier detection. Therefore, we see that the recall of Wadjet remains unchanged with

respect to varying the number of streams.

The recall of DB-Outlier is approximately 1, meaning DB-Outlier can successfully

detect all the outliers. Having more data points means having more similar or dissimilar

data points. If the data points from the newly added streams are similar (in terms of

Euclidian distance), they are not outliers and thus do not impact the recall. If the data

points from the newly added streams are dissimilar (in terms of Euclidian distance),

they might be inliers or outliers. In either case, DB-Outlier identifies the data points as

outliers. Hence, the recall of DB-Outlier may increase with the increase of number of

streams. However, the recall is already 100% even for a small number of data streams,

thus adding more streams does not increase the accuracy of DB-Outlier in terms of

recall. Practically, the recall of Wadjet and DB-Outlier is the same for different

numbers of data streams.

2.2.2.2.3. Jaccard Coefficient

Since the precision and recall remain unchanged, the JC remains unchanged with

respect to the number of data streams as well (Figure 89). According to Figure 89, the

accuracy of Wadjet and DB-Outlier is insensitive to the change of the number of

streams. The JC of Wadjet is unchanged with respect to the change of the number of

streams. This result implies that we can add as many data streams as we want to detect

outliers using Wadjet without affecting its JC at all. This result also implies that Wadjet

is well scalable with respect to the number of streams in terms of accuracy (precision,

recall and JC).

230

Figure 89. Impact of number of data streams on Jaccard Coefficient for the

synthetic data

The JC of DB-Outlier also remains unchanged with respect to the change of number of

streams; but the JC of Wadjet is twenty times higher than the JC of DB-Outlier.

2.2.2.2.4. Execution Time

Although the precision, recall and JC remain unchanged, the execution time shows

some variation with respect to the change of the number of streams. As the number of

streams increases, the size of the covariance matrix that finds the cross-correlation

increases as well. Hence, it takes more time to process that cross-correlation matrix and

thus eventually the algorithm takes longer time to finish. However, the execution time

increases linearly with the increase of the number of streams. Our theoretical analysis

shows that the time complexity of Wadjet is quadratic with respect to the number of

streams. However, our experimental results show that the execution time increases

linearly with the increase of the number of streams. This inconsistency between the

theoretical and empirical analyses can only be explained if the execution time truly

20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Data Streams

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. Number of Data Streams

Wadjet DB-outlier

231

increases quadratically with the increase of the number of streams; but we do not see

the quadratic increase of execution time because the effect of the number of stream is

not prominent up to 50 streams. Hence, if we perform experiments with a very large

number of streams, we might confirm our theoretical analysis. In future work we will

experiment with even a large number of data streams. On the other hand, the execution

time of DB-Outlier is somewhat random. This is because we simulate our data streams

as asynchronous streams and therefore not all data points from all streams are present at

the same period of time. So the execution time of DB-Outliers changes sporadically

(Figure 90).

Figure 90. Impact of number of data streams on execution time for the synthetic

data

2.2.2.3. Impact of Number of Dimensions

We aim to design our algorithm such that it is scalable to a large number of dimensions

without negatively affecting its accuracy. Hence, for validation of whether our goal has

20 25 30 35 40 45 50
2

4

6

8

10

12

14

Number of Data Streams

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Number of Data Streams

Wadjet DB-outlier

232

been reached, here we perform studies that reveal the impacts of the number of

dimensions on Wadjet and DB-Outlier.

2.2.2.3.1. Precision

The precision of Wadjet and DB-Outlier is not sensitive to the number of dimensions.

However, this result can be misleading since the precision of DB-Outlier is so small that

it is hardly recognizable if the number of dimensions has any impact on it. However, the

precision of Wadjet remains immune to the change of the number of dimensions (Figure

91). This result is very interesting because if the number of dimensions increases for

each stream, the total number of attributes increases as well. Now, there can only be two

cases: (1) the new attributes are correlated and (2) the new attributes are not correlated.

If the new attributes are correlated, they would be placed in a cluster and equate to the

cluster head. If the attribute value is an outlier, it would be significantly different from

the rest of the attribute values in the cluster. It is possible that two such outlier attribute

values may appear close to each other. In that case, Wadjet would fail to identify them

as outliers; otherwise Wadjet would capture them as outliers. The chance of being close

to each other for two outliers is very small and increases with the increase of the

number of dimensions. Thus the precision of Wadjet may decrease a little bit, but we

hardly notice any change in precision with the increase of the number of dimensions.

Now, if the new attributes are not correlated, they would not be a part of a cluster and

therefore, would not be detected as outliers. Any data point identified as an inlier cannot

affect the precision of Wadjet since it is the ratio of the identified set of outliers and the

233

true set of outliers. Therefore, in the second case, the precision of Wadjet remains

unchanged.

The precision of DB-Outlier is also unchanged with respect to the change of the number

of dimensions. This result is a little misleading because the precision of DB-Outlier is

already very small and further deterioration of precision cannot be noticed in the result.

Since DB-Outlier assumes that all data points are equal, if they are not, DB-Outlier

identifies them as outliers. Hence, we see that the precision of DB-Outlier is so small.

Moreover, if the number of dimensions increases, the quality of similarity measurement

(in terms of Euclidian distance) of DB-Outlier deteriorates. However, the effect of that

is not noticeable for such low precision of DB-Outlier.

Figure 91. Impact of number of dimensions on precision for the synthetic data

2.2.2.3.2. Recall

Figure 92 shows the impact of the number of dimensions on recall. The graph of recall

for Wadjet superimposes the graph of recall for DB-Outlier in Figure 92. Hence, it is

difficult to identify them separately.

50 55 60 65 70 75 80 85 90 95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Dimensions

P
re

c
is

io
n

Precision vs. Number of Dimensions

Wadjet DB-outlier

234

Figure 92. Impact of number of dimensions on recall for the synthetic data

We argued that as the number of dimensions increases, DB-Outlier would fail to

measure the similarity among the data points, and more outliers should disguise among

the inliers and thus we expected the decrease of recall of DB-Outlier with the increase

of the number of dimensions. Interestingly, we do not see that result in Figure 92. The

recall of DB-Outlier is almost constant with respect to the change of the number of

dimensions. This is because all data points satisfy the outlier criteria of DB-Outlier.

DB-Outlier assumes the data values for all data points to be equal, but in our dataset,

they are not equal. Hence, the distance between any two data points is very large; so all

data points are outliers for DB-Outlier. Therefore, the recall of DB-Outlier is very high.

The recall of Wadjet is also very high. Since Wadjet uses a two phase outlier detection,

most of the outliers are correctly identified in the two phases of Wadjet. According to

the experiments presented in Section 2.1.2.5.2 (the impact of the number of dimensions

on Orion), the first phase of Wadjet can detect approximately 85-90% of the outliers.

Since the recall of Wadjet is 100%, the rest of the outliers 10-15% are detected in the

50 55 60 65 70 75 80 85 90 95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Dimensions

R
e
c
a
ll

Recall vs. Number of Dimensions

Wadjet DB-outlier

235

second phase. Interestingly, the recall of Orion and Wadjet is not sensitive to the change

of the number of dimensions. Thus, none of the two phases of Wadjet is actually

sensitive to the change of the number of dimensions.

In our experimental results in Figure 92, we do not see any sensitivity with respect to

the change of the number of dimensions. However, arguably if the number of

dimensions increases, it is very likely that the cluster size would be increased and some

attributes may find new correlated attributes. Therefore, the outlier-ness of some

attributes would have been revealed which might be missed if there are not enough

attributes. However, this theoretical conjecture is not supported by our experimental

results in Figure 92. This is because almost 85-90% of the outliers are already detected

in the first phase and the second phase contributes the rest. Therefore, any change of the

recall with respect to the number of dimensions becomes insignificant for Wadjet.

2.2.2.3.3. Jaccard Coefficient

Since the precision and recall remain unchanged for both Wadjet and DB-Outlier, the

JC of both algorithms remains unaffected with respect to the number of dimensions as

well (Figure 93). The detailed discussion of the results for unchanged precision and

recall with respect to the number of dimensions is presented in the previous two

Sections 2.2.2.3.1 and 2.2.2.3.2. Therefore, we do not provide the same reasoning in

this section again.

236

Figure 93. Impact of number of dimensions on Jaccard Coefficient for the

synthetic data

2.2.2.3.4. Execution Time

The execution time of Wadjet is affected by the number of dimensions (Figure 94). As

the number of dimensions increases, the size of the cross-correlation matrix increases as

well. Wadjet has to process a bigger cross-correlation matrix that eventually increases

its execution time. According to our theoretical analysis, the time complexity of Wadjet

is cubic with respect to the number of dimensions. According to Figure 94, the increase

of execution time is linear to the increase of the number of dimensions. Once reason for

this behavior might be the effect of the number of dimensions is not prominent for such

a small number of dimensions. Hence, the increase of execution time is linear with

respect to the number of dimensions.

The execution time of DB-Outlier increases linearly with the increase of the number of

dimensions in Figure 94. This is because DB-Outlier distributes the data points into grid

cells and measures the similarity using Euclidian distance. Finding the appropriate grid

50 55 60 65 70 75 80 85 90 95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Dimensions

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. Number of Dimensions

Wadjet DB-outlier

237

cell for a dimensional data point requires number of comparisons; and Euclidian

distance computation requires difference computations along all dimensions. Both of

these algorithms require linear time with respect to the number of dimensions. Hence,

the execution time of DB-Outlier increases linearly with the increase of the number of

dimensions. The average execution times of Wadjet and DB-Outlier are 2.4 ms and 2.8

ms, respectively. Hence, on average the execution time of Wadjet is 14.28% smaller

than that of DB-Outlier.

Figure 94. Impact of number of dimensions on execution time for the synthetic

data

2.2.2.4. Impact of Percentage of Outliers

In this section we study the impacts of the percentage of outliers on the performance of

the two algorithms.

2.2.2.4.1. Precision

Figure 96 shows the impact of percentage of outliers on precision. The precision of both

DB-Outlier and Wadjet increases with the increase of percentage of outliers. DB-Outlier

50 55 60 65 70 75 80 85 90 95
0

1

2

3

4

5

Number of Dimensions

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Number of Dimensions

Wadjet DB-outlier

238

assumes all data points from different data streams to be equal; however, in our dataset,

the data points from different streams are not equal, rather correlated. Therefore, DB-

Outlier detects all the data points as outliers. Hence, as the number of outliers increases

in the dataset, DB-Outlier is able to find more outliers. Thus the precision of DB-Outlier

increases with the increase of the percentage of outliers. A further investigation shows

that the precision of DB-Outlier is almost equal to the percentage of outliers. This is

because the precision is defined as true positives divided by the total detected positives.

Since the recall of DB-Outlier is 100% (Figure 97), all the outliers are also identified as

outliers; on top of that all inliers are identified as outliers as well. Thus the precision

becomes the number of outliers divided by the total number of data points, which is the

same as the percentage of outliers. Thus, the precision of DB-Outlier is the same as the

percentage of outliers.

The precision of Wadjet also increases when the percentage of outliers increases as

shown in Figure 96. According to Figure 40, the first phase of Wadjet is sensitive to the

percentage of outliers; as the percentage of outliers increases the precision of the first

phase increases as well. We observe a similar trend for the second phase as well. Hence,

the precision of Wadjet increases with the increase of the percentage of outliers. In the

first phase, the increase of precision with the increase of the percentage of outliers is

due to the shift of the cluster centers. In the second phase, the number of false positives

increases with the increase of the percentage of outliers (the total number of false

positives for 1% of the outliers is 317 and it increases to 664 if the percentage of

outliers becomes 10%). Therefore, the precision should decrease; but the increase of

true positives is much higher than the increase of false positives (Figure 95). Therefore,

239

as the percentage of outlier increases, the number of true positives outnumbers the

number of false positives and we see the increase of precision for the second phase of

Wadjet. Thus, based on the results of the two phases, the precision of Wadjet increases

with the increase of the percentage of outliers.

Figure 95. Impact of percentage of outliers on true positives and false positives for

the second phase of Wadjet in synthetic dataset

Moreover, regardless the percentage of outliers, Wadjet significantly outperforms DB-

Outlier in terms of precision.

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

Percentage of Outliers

N
u
m

b
e
r

o
f

d
a
ta

 p
o
in

ts

True positives and false positives for second phase of Wadjet

with respect to percentage of outliers

False positives True positives

240

Figure 96. Impact of percentage of outliers on precision for the synthetic data

2.2.2.4.2. Recall

Although the precision of Wadjet and DB-Outlier increases with the increase of the

percentage of outliers, the recall of both algorithm remains unchanged with respect to

the percentage of outliers (Figure 97). DB-Outlier identifies all the data points as

outliers, hence for any percentage of outliers, the recall of DB-Outlier is 100%.

Our algorithm detects outliers in two phases. Based on the results we presented in

Figure 42, the recall of the first phase decreases with the increase of the percentage of

outliers. The recall of Orion (the first phase of Wadjet) becomes as low as 70%. Thus,

although the first phase missed some outliers, the second phase successfully identifies

those outliers and the recall of Wadjet is close to 100%.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

P
re

c
is

io
n

Precision vs. Percentage of Outliers

Wadjet DB-outlier

241

Figure 97. Impact of percentage of outliers on recall for the synthetic data

2.2.2.4.3. Jaccard Coefficient

Figure 98 shows the impacts of the percentage of outliers on JC for both Wadjet and

DB-Outlier. The change of the JC of Wadjet with respect to the change of the

percentage of outliers is as expected. The precision of Wadjet increases and its recall

remains unchanged with respect to the change of the percentage of outliers; thus, the JC

increases a little bit due to the increase of precision of Wadjet. The same conclusion

also holds for DB-Outlier: the JC of DB-Outlier increases with the increase of the

percentage of outliers. Since we have already discussed the results in the last two

Sections 2.2.2.4.1 and 2.2.2.4.2, we omit the discussion here.

2.2.2.4.4. Execution Time

The execution time of Wadjet drastically reduces as the percentage of outliers increases

(Figure 99). The execution time of the first phase is unaffected by the percentage of

outliers (Figure 46). Hence, the reduction of execution time must be induced by the

second phase of Wadjet. This is because as the percentage of outliers increases, many

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

R
e
c
a
ll

Recall vs. Percentage of Outliers

Wadjet DB-outlier

242

outliers are detected in the first phase and they never really pass through the second

phase. Figure 100 shows the number of data points processed in the second phase of

Wadjet. As the percentage of outlier increases, the first phase detects many of them and

the second phase does not process them at all. Thus if the percentage of outliers

increases, the second phase has to process less data and therefore, the execution time of

the second phase reduces. However, the execution time of the first phase remains

unchanged. Thus the execution time decreases with the increase of the percentage of

outliers (Figure 99).

Figure 98. Impact of percentage of outliers on Jaccard Coefficient for the synthetic

data

The execution time of DB-Outlier also decreases with the increase of the percentage of

outliers. If a lot of data points are outliers, they are placed themselves in the yellow

cells. Based on the algorithm, the data points in the yellow cells are outliers, we do not

need to process them further, which reduces the computation significantly. Therefore

the execution time decreases with the increase of the percentage of outliers.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Outliers

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. Percentage of Outliers

Wadjet DB-outlier

243

Figure 99. Impact of percentage of outliers on execution time for the synthetic data

Figure 100. Impact of percentage of outliers on total number of data processed in

the second phase of Wadjet

2.2.2.5. Impact of Confidence Interval

The only additional parameter we need for Wadjet besides the parameters of Orion is

confidence interval. Confidence interval reveals how confident we are on our results. If

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Percentage of Outliers

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Percentage of Outliers

Wadjet DB-outlier

1 2 3 4 5 6 7 8 9 10
2.25

2.3

2.35

2.4
x 10

6

Percentage of Outliers

N
u
m

b
e
r

o
f

d
a
ta

 p
o
in

t
p
ro

c
e
s
s
e
d

The number of data point processed in the second phase

of Wadjet with respect to percentage of outliers

244

the confidence interval increases we would be more confident on the precision. The

recall may decrease a little bit but the precision will increase with the increase of

confidence interval. In this section we present the impact of confidence interval on

Wadjet. Since DB-Outlier does not require the confidence interval as a parameter, the

performance of DB-Outlier remains unchanged with respect to the change of the

confidence interval.

2.2.2.5.1. Precision

In our experimental study, we find that our precision is insensitive to the change of the

confidence interval (Figure 101). The first phase of Wadjet does not require the

confidence interval as a parameter, and therefore, the confidence interval has no impact

on the first phase. The second phase of Wadjet uses the confidence interval as a

parameter. Thus the second phase of Wadjet might have some impact with respect to

the change of the confidence interval. This result could be misleading because the

precision value is already very high for even 97.5% confidence level. Thus there is not

much room to increase the precision anymore. Hence the precision of Wadjet appears

insensitive to the confidence interval.

Since DB-Outlier does not use the confidence interval as a parameter, its precision

remains unchanged with respect to the change of the confidence interval. Moreover, the

precision of Wadjet is almost twenty times of the precision of DB-Outlier for any

confidence interval.

245

Figure 101. Impact of confidence interval on precision for the synthetic data

2.2.2.5.2. Recall

Like precision, the recall of Wadjet also remains unchanged with respect to the change

of the confidence level (Figure 102). According to our discussion in Section 2.6 in

Chapter 3, if the confidence interval increases, the results become more reliable and

Wadjet would be able to detect few outliers. As we have discussed before, the

confidence interval does not affect the accuracy of the first phase of Wadjet, it only

affects the second phase. In our results we observe an unchanged recall value for

Wadjet in Figure 102. This is because a lot of outliers are actually captured in the first

phase. Therefore, even though the second phase fails to detect some outliers, the impact

of that failure is insignificant in the total recall in Figure 102. In order to illustrate the

idea, we add the impact of the confidence interval on the recall of the second phase only

in Figure 103. The recall of the second phase decreases with the increase of the

confidence interval as our hypothesis (the recall would decrease with the increase of

97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence Interval

P
re

c
is

io
n

Precision vs. Confidence Interval

Wadjet DB-outlier

246

confidence interval) has predicted but the effect of change of the combined recall is

very insignificant.

Figure 102. Impact of confidence interval on recall for the synthetic data

Figure 103. Impact of confidence interval on the second phase of Wadjet for the

synthetic dataset

97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence Interval

R
e
c
a
ll

Recall vs. Confidence Interval

Wadjet DB-outlier

97.8 98 98.2 98.4 98.6 98.8 99 99.2 99.4 99.6 99.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence interval

R
e
c
a
ll

Recall for second phase of Wadjet

with respect to confidence interval

247

DB-Outlier does not use the confidence interval as a parameter and thus its recall r is

unaffected with respect to the change of the confidence interval.

2.2.2.5.3. Jaccard Coefficient

Since precision and recall remain unchanged with respect to the change of the

confidence level, the JC also remains unchanged with respect to the change of the

confidence level (Figure 104).

Figure 104. Impact of confidence interval on Jaccard Coefficient for the synthetic

data

2.2.2.5.4. Execution Time

Although with respect to the change of the confidence interval, the precision, recall and

JC remain unchanged, the execution time shows some sensitivity (Figure 105). This is

because as the confidence interval becomes large, two attributes can form a cluster only

if they are highly correlated (meaning their Pearson correlation coefficient is close to 1)

and hence, the number of attributes in a cluster becomes smaller. Thus, if the number of

attributes in a s small, Wadjet finds lots of clusters with single attributes. Those

97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence Interval

J
a
c
c
a
rd

 C
o
e
ff

ic
ie

n
t

Jaccard Coefficient vs. Confidence Interval

Wadjet DB-outlier

248

attributes are not processed further for outlier detection. Therefore, the execution time is

reduced a little bit. Hence, the execution time of Wadjet decreases a little bit with the

increase of the confidence interval. Since DB-Outlier does not take the confidence

interval as a parameter, its execution time remains unaffected with respect to the change

of the confidence interval.

Figure 105. Impact of confidence interval on execution time for the synthetic data

2.2.2.6. Conclusions on Experimental Results for

Wadjet

Our conclusions from the experimental evaluations presented in the previous sections

for Wadjet are as follows:

- The state of the art outlier detection technique DB-Outlier is not applicable to a

dataset where data points from multiple streams are not equal, but rather

correlated.

97.5 98 98.5 99 99.5 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Confidence Interval

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Execution time vs. Confidence Interval

Wadjet DB-outlier

249

- DB-Outlier is also inapplicable for a dataset where data points are multi-

dimensional and the number of dimensions is large.

- Our algorithm, Wadjet, is applicable and effective in both cases. Moreover,

Wadjet does not assume data points from multiple streams to be equal. Hence,

the applicability of Wadjet is much broader compared to the existing outlier

detection technique.

- Wadjet scales well with respect to the number of streams in terms of accuracy.

As the accuracy (precision, recall, and JC) of Wadjet is not affected by the

number streams, Wadjet is able to handle a large number of streams without

affecting its accuracy.

- Wadjet is perfectly applicable for the heterogeneous dataset that we have

obtained from the SensorScope project [6] where the existing outlier detection

technique fails to work.

- Wadjet can handle multi-dimensional data points. Wadjet scales well with

respect to the number of dimensions in terms of accuracy. We have performed

experiments with 100 dimensional data points and this high number of

dimensions does not affect the accuracy of Wadjet at all.

- Both the number of streams and number of dimensions affect the execution

time. The execution time increases with the increase of either number of

streams or number of dimensions. Thus, adding more streams or dimensions

may require more computational resources for Wadjet.

250

- The JC of Wadjet increases with the increase of percentage of outliers. Even if a

dataset has a large number of outliers, Wadjet can detect them. In an application

like intrusion detection, corrupting lots of data points by an intruder would not

weaken the accuracy of Wadjet.

- Interestingly, the higher percentage of outlier reduces the execution time due to

our two phase outlier detection scheme. The first phase is insensitive to the

percentage of outliers and detects many of them; thus the first phase reduces the

burden on the second phase and the overall execution time improves with the

increase of percentage of outliers.

- The accuracy (precision, recall and JC) of Wadjet is not very sensitive to the

selection of the confidence interval. Thus, the user has freedom to choose an

appropriate confidence interval from a wide range of values.

- The execution time of Wadjet increases with the decrease of the confidence

interval. Therefore, the user must consider the execution time before choosing

an appropriate confidence interval.

251

CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have proposed two outlier detection techniques for data streams,

called Orion and Wadjet. The first algorithm, Orion, has been designed to detect outliers

in single data streams that are independent of each other. There are a lot of data stream

applications where data sources are so different and so far from one another that there is

hardly any relationship among them [15]. Examples of such applications are

environmental monitoring for a large area [15], physical action separation [96], and

carbon sequestration [14]. Orion treats each data stream individually and detects its

outliers based on the temporal correlations among the data points from same stream.

Orion addresses the following characteristics of data streams: transiency, notion of time,

notion of infinity, uncertainty, concept drift, and multidimensionality.

Our second algorithm, Wadjet, has been designed to detect outliers in multiple data

streams which may or may not be related to each other. In some applications, such as

environmental monitoring in a small area [6] and chlorine measurement [48], the data

points from multiple streams are not independent of one another. To increase accuracy,

Wadjet exploits the cross-correlations, if any, among the data points from multiple

streams and identifies a data point in a data stream as an outlier if it is nonconformist to

either the temporal correlation with the data points from the same stream or the cross-

correlations with the data points from other streams. Outlier detection for asynchronous

heterogeneous data streams is a relatively new area. To the best of our knowledge,

252

Wadjet is the first algorithm that works with a set of heterogeneous data streams that

can be asynchronous in nature.

We have conducted a complexity analysis to evaluate the time and space complexity of

Orion and Wadjet. By means of simulation and using both real and synthetic datasets,

we have performed comprehensive experiments to compare Orion with the two existing

algorithm, A-OODS and Stream LOCI, for single data streams and compare Wadjet

with the existing algorithm, DB-Outlier, for multiple data streams. The comparison

studies are based on execution time, precision, recall and Jaccard Coefficient. In the

following sections, we first summarize the performance evaluation results and then

discuss our future research.

1. Summary of the Performance Evaluation Results

1.1. Summary of the Results of Orion

Outlier detection for multi-dimensional data streams is a relatively new area of research.

Outlier detection for multi-dimensional data streams possesses critical challenges.

Outlier detection requires similarity measurements among the data points. Popular

similarity measurement techniques such as distance metrics are incapable of dealing

with multi-dimensional data due to the curse of dimensionality. This is a significant

challenge since more and more data are becoming multi-dimensional every day. Hence,

tracking outliers for multi-dimensional data is very challenging.

In this dissertation we have proposed an effective and efficient outlier detection

technique for multi-dimensional independent data streams, Orion. We use a data density

253

function along a projected dimension that reveals the outlier nature of a data point. The

summary of Orion is as follows:

- Orion is an effective and efficient Outlier detection technique for multi-

dimensional data streams.

- In order to detect outliers, we do not need to analyze the data points from a

multi-dimensional perspective; rather, we can analyze a data point from a single

dimensional perspective that reveals the outlier nature of the data points.

- We have shown the effectiveness of an evolutionary algorithm in the area of

data streams. To the best of our knowledge, Orion is the first algorithm that uses

an evolutionary algorithm for data streams. Orion validates the proposition that

an evolutionary algorithm has good prospects in the area of data streams

analysis.

- Orion uses two outlier metrics to detect outliers. The rationale behind the usage

of two outlier metrics instead of one is that if one outlier metric fails to reveal

the outlier-ness of a data point, the other can be helpful in revealing the outlier-

ness of that data point.

- Time complexity of Orion is cubic with respect to the number of dimensions

which is much better compared to exponential time complexity of multi-

dimensional data density function.

254

- The space complexity of Orion is linear with respect to number of dimensions

which is way better than the exponential space complexity of multi-dimensional

hyperspace.

- Neither time nor space is sensitive to number of data points. The memory usage

of Orion is limited although the number of data points is infinite.

- Orion performs better than existing state-of-the-art outlier detection algorithms,

Stream LOCI and A-ODDS, for real applications like network intrusion

detection, physical action classification, and erroneous sensor reading detection.

The diversity of the datasets shows the applicability of Orion for a wide range of

applications.

- Orion not only possesses better accuracy but also has better or competitive

execution time compared to exiting outlier detection techniques.

- The impact of neighbor distance (a parameter of Orion) on Orion’s accuracy is

insignificant. Thus the user has much liberty while choosing an appropriate

value for the parameter. Even if the user chooses a neighbor distance value that

is not optimal, Orion is still capable of detecting outliers.

- The second most important parameter of Orion is which is used to compute

 -distance. The impact of is also very insignificant. Many outlier detection

techniques are very sensitive to the choice of values of their parameters,

especially distance based outlier detection techniques [9, 58]. The idea of

density based outlier detection evolved in order to eliminate this drawback of

distance based outlier detection. In our case, the sensitivity of accuracy of Orion

255

to this k parameter is negligible. Therefore, it is easier for the user to choose an

appropriate value for k for Orion.

- The execution time of Orion is also insensitive to neighbor distance and . Thus,

Orion is applicable to many applications regardless of their values of neighbor

distance and .

- We have examined the accuracy of execution time of Orion for 1-10% of

outliers. 10% is considered a very high percentage of outliers, where the typical

percentage of outliers lies between 0.001-5% [98]. Our experimental results

show that the accuracy of Orion is superior to that of the state-of-art outlier

detection techniques regardless of the percentage of outliers.

- Orion is multi-dimensional outlier detection technique. The accuracy of Orion is

not affected by the number of dimensions. The existing outlier detection

technique Stream LOCI does not work for a high number of dimensions. This is

because Stream LOCI uses Euclidian distance to measure the similarity among

the data points, but Euclidian distance cannot measure the similarity if the

number of dimensions is high. Thus our choice of avoiding Euclidean distance is

well justified.

- The accuracy of Orion is low for a very small number of -dimensions (aka

population count); but once the number of -dimensions increases a little bit, the

accuracy becomes insensitive to the number of -dimensions. We propose a

heuristic in which we keep the same number of -dimensions as the number of

256

data dimensions. This heuristics produces optimum results for Orion. Hence, we

recommend users to follow this heuristics for all applications.

- The optimal number of bin width is established from literature [5]. We use 400

bins for six standard deviation dispersion. According to our experiments, 400

bins for six standard deviations always produce optimal results. Thus, users are

recommended not modify the bin count.

- Orion does not require a huge set of bootstrapping rounds to initialize it. The

number of bootstrapping rounds typically varies between 100-500. In a typical

application like irrigation data, 100 data points constitute 0.2% of the datasets.

Moreover, a data stream is considered as an infinite set of data points; hence,

100 data points is negligible for an infinite set of data points.

- The accuracy and execution of Orion remain unchanged with respect to the

number of data points. Since data streams are envisioned for an infinite set of

data points, it is important to have constant accuracy and execution time with

respect to the number of data points. Thus the effectiveness of Orion for data

streams is once again validated by its constant accuracy and execution time with

respect to the change of the number of data points.

- Experiments studying the impacts of concept drift show that Orion is unaffected

by concept drift and can handle both gradual and abrupt concept drifts

effectively without affecting its accuracy or execution time.

257

1.2. Summary of the Results of Wadjet

Wadjet is designed for multiple data streams that may or may not be correlated. Unlike

other approaches, Wadjet does not assume equality correlation among the data points

from multiple streams. Moreover, in the first step, Wadjet identifies the cross-

correlations among the data points. Once Wadjet finds significant cross-correlations,

then it tries to detect outliers based on those correlations. Below is a summary of the

key contributions of Wadjet.

- To the best of our knowledge, Wadjet is the only outlier detection technique for

multiple data streams that does not assume equality correlation among the data

points from different streams.

- Wadjet works for asynchronous data points which is very important because

synchronization is hard to achieve in many practical applications.

- Wadjet does not assume any fixed cross-correlation among the data points,

rather it identifies the cross-correlation, if any.

- One big advantage of Wadjet is that Wadjet does not assume any relationship

among the data points blindly, rather it explores the cross-correlation among the

data points and detects the outlier-ness of a data point by comparing it to its

cross-correlated data points only.

- Wadjet is the only outlier detection technique that detects an outlier based on

both temporal correlation of a data point to the other data points from the same

stream and cross-correlation of a data point to the other data points from the

other data streams.

258

- Outlier detection for heterogeneous schemas is a novel problem. No existing

algorithm works with a set of data points from multiple heterogeneous data

streams.

- The time complexity of Wadjet is quadratic with respect to the number of

streams and cubic with respect to the average number of dimensions in a stream.

The space complexity of Wadjet is quadratic with respect to both the number of

streams and number of dimensions.

- Both time and space complexity of Wadjet are independent of the number of

data points. Hence, the memory and time usage of Wadjet do not depend upon

the number of data points in a stream.

- The state of the art outlier detection technique DB-Outlier is not applicable to a

dataset where data points from multiple streams are not equal, but correlated.

DB-Outlier is also inapplicable for a dataset where data points are multi-

dimensional and the number of dimensions is large.

- Wadjet is applicable and effective in both above cases. Moreover, Wadjet does

not assume data points from multiple streams to be equal. Hence, the

applicability of Wadjet is much broader compared to the existing outlier

detection technique.

- Wadjet is perfectly applicable for the heterogeneous dataset that we have

obtained from the SensorScope project [6] where the existing outlier detection

fails to work.

259

- Wadjet scales well with respect to the number of streams in terms of accuracy.

As the accuracy (precision, recall, and JC) of Wadjet is not affected by the

number streams, Wadjet is able to handle a large number of streams without

affecting its accuracy.

- Wadjet can handle multi-dimensional data points. Wadjet scales well with

respect to the number of dimensions in terms of accuracy. We have performed

experiment with 100 dimensional data points and this high number of

dimensions does not negatively affect the accuracy of Wadjet.

- Both the number of streams and number of dimensions affect the execution

time. The execution time increases with the increase of either number of streams

or number of dimensions. Thus, adding more streams or dimensions may require

more computational resources for Wadjet.

- The JC of Wadjet increases with the increase of percentage of outliers. Even if a

dataset has a large number of outliers, Wadjet can detect them. In an application

like intrusion detection, corrupting lots of data points by an intruder would not

weaken the accuracy of Wadjet.

- Interestingly, a high percentage of outliers reduces the execution time due to

our two phase outlier detection scheme. The first phase is insensitive to the

percentage of outliers and detects many of them; thus the first phase reduces the

burden on the second phase and the overall execution time improves with the

increase of percentage of outliers.

260

- The accuracy (precision, recall and JC) of Wadjet is not very sensitive to the

selection of the confidence interval. Thus, the user has freedom to choose an

appropriate confidence interval from a wide range of values.

- The execution time of Wadjet increases with the decrease of the confidence

interval. Therefore, the user must consider the execution time before choosing

an appropriate confidence interval.

2. Future Research

Orion is a very effective outlier detection technique for multi-dimensional independent

data streams. Although it is well scalable in terms of accuracy, its execution time

increases with the increase of dimensions. In our future work we plan to design a more

scalable version of Orion in terms of execution time.

Orion assumes a fixed arrival rate for all data points from the same stream. However,

this assumption could be restrictive in real applications. Thus in our future work we

would like to make our algorithm adaptive to the dynamic arrival rate of data streams.

Wadjet is just the first effort for outlier detection for heterogeneous data streams that

may or may not be correlated. The type of cross-correlation we explored in Wadjet is

very limited and hence in our future work we would like to explore more complex

cross-correlations among the data points from multiple streams.

Wadjet deals with a cross-correlation matrix that captures the cross-correlations among

all attributes in all streams. The computation of the cross-correlation matrix is the

261

bottleneck of Wadjet. In our future work we plan to design a more efficient approach to

capture cross-correlations.

Our experiments are limited within the scope of large datasets. Each of our streams has

approximately 50K data points and we use 100 streams. In future, we would like to

conduct our experiment with Big data where we can use a larger number of

heterogeneous streams.

262

REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, "Models and Issues in

Data Stream Systems," in 21st ACM Symposium on Principles of Database

Systems, pp. 1-16, 2002.

[2] N. Jiang and L. Gruenwald, "Research Issues in Data Stream Association Rule

Mining," ACM SIGMOD Record, pp. 14-19, 2006.

[3] L. Golab and T. M. Özsu, "Issues in Data Stream Management," ACM SIGMOD

Record, pp. 5-14, 2003.

[4] B. Liu, Classifying Data Streams Using a Concept Drifting Indicator, Norman:

University of Oklahoma Thesis Library, 2006.

[5] S. Sadik, Outlier Detection for Data Streams, Norman, Oklahoma: The University

of Oklahoma, 2010.

[6] G. Barrenetxea, F. Ingelrest, G. Schaefer and M. Vetterli, "The Hitchhiker's Guide

to Successful Wireless Sensor Network Deployments," in the 6th ACM

Conference on Embedded Networked Sensor Systems, Raleigh, pp. 43-56, 2008.

[7] S. Babu, L. Subramanian and J. Widom, "A Data Stream Management System for

Network Traffic Management," in Workshop on Network-Related Data

Management, Santa Barbara, California, 2001.

[8] V. Hodge and J. Austin, "A Survey of Outlier Detection Methodologies,"

Artificial Intelligence Review, vol. 22, pp. 85-126, October 2004.

[9] V. Chandola, A. Banerjee and V. Kumar, "Anomaly Detection: A Survey," ACM

Computing Surveys, vol. 41, pp. 1-58, July 2009.

[10] V. Barnett and T. Lewis, Outliers in Statistical Data, New York: John Wiley &

Sons, Inc.,, 1994.

[11] B. Z. J. L. Naoki Abe, "Outlier Detection by Active Learning," in 12th ACM

SIGKDD international conference on Knowledge discovery and data mining,

Philadelphia, pp. 504-509, 2006.

263

[12] V. Chandola, A. Banarjee and V. Kumar, "Outlier Detection : A Survey,"

University of Minnesota, Minneapolis, 2007.

[13] S. Basu and M. Meckesheimer, "Automatic Outlier Detection for Time Series: An

Application to Sensor Data," Knowledge and Information System, pp. 137-154,

2006.

[14] J. Xiao, Q. Zhuang, D. D. Baldocchi, B. E. Law, A. D. Richardson, J. Chen, R.

Oren, G. Starr, A. Noormets, S. Ma, S. B. Verma, S. Wharton, S. C. Wofsy, P. V.

Bolstadm and S. P. Burns, "Estimation of net ecosystem carbon exchange for the

conterminous United States by combining MODIS and AmeriFlux data,"

Agricultural and Forest Meteorology, vol. 148, no. 11, pp. 1827-1847, 2008.

[15] "CIMIS Data," 2009. [Online]. Available:

http://wwwcimis.water.ca.gov/cimis/data.jsp. [Accessed 14 April 2010].

[16] S. Stolfo, W. Fan, W. Lee, A. Prodromidis and P. Chan, "Cost-based modeling for

fraud and intrusion detection: results from the JAM project," in DARPA

Information Survivability Conference and Exposition, pp. 130-144, 2000.

[17] J. Lin, E. Keogh, A. Fu and H. Herle, "Approximations to Magic: Finding

Unusual Medical Time Series," in Computer-Based Medical Systems, p. 329,

2005.

[18] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M.

Stonebraker, N. Tatbul and S. Zdonik, "Monitoring Streams: A New Class of

Data Management Applications," in the 28th international conference on Very

Large Data Bases, Hong Kong, pp. 215-226, 2002.

[19] A. Arasu, S. Babu and J. Widom, "An Abstract Semantics and Concrete

Language for Continuous Queries over Streams and Relations,"

dbpubs.stanford.edu:8090/pub/2002-57, Palo Alto, 2002.

[20] N. A. Chaudhry, "Introduction to Stream Data Management," in Stream Data

Management, Advances in Database Systems, Springer, 2006, pp. 1-13.

[21] W. Lindner and J. Meier, "Towards a Secure Data Stream Management System,"

Lecture Notes in Computer Science, pp. 114-128, 2006.

[22] M. Stonebraker, U. Çetintemel and S. Zdonik, "The 8 Requirements of Real-time

Stream Processing," ACM SIGMOD Record, vol. 34, no. December, pp. 42-47,

264

2005.

[23] E. M. Knorr and R. T. Ng, "A Unified Approach for Mining Outliers," in the 1997

conference of the Centre for Advanced Studies on Collaborative research,

Toronto, p. 11, 1997.

[24] M. Breunig, H.-P. Kriegel, R. Ng and J. Sander, "LOF: Identifying Density-Based

Local Outliers," in 2000 ACM SIGMOD International Conference on

Management of Data, pp. 93-104, 2000.

[25] S. Papadimitriou, H. Kitagawa, P. B. Gibbons and C. Faloutsos, "LOCI: Fast

Outlier Detection Using the Local Correlation Integral," Intel Research

Laboratory, Pittsburgh, 2002.

[26] I. Assent, P. Kranen, C. Baldauf and T. Seidl, "AnyOut: Anytime Outlier

Detection on Streaming Data," in Database Systems for Advanced Applications,

vol. 7238, S. Lee, Z. Peng, X. Zhou, Y. Moon, R. Unland and J. Yoo, Eds.,

Springer Berlin / Heidelberg, 2012, pp. 228-242.

[27] E. Eskin, "Anomaly Detection over Noisy Data using Learned Probability

Distributions," in Seventeenth International Conference on Machine Learning,

San Francisco, pp. 255-262, 2000.

[28] D. Agarwal, "An Empirical Bayes Approach to Detect Anomalies in Dynamic

Multidimensional Arrays," in 5th IEEE International Conference on Data

Mining, Washington DC, pp. 26-33, 2005.

[29] N. Tatbul, "Streaming Data Integration: Challenges and Opportunities," in IEEE

ICDE International Workshop on New Trends in Information Integration, Long

Beach, CA, pp. 155-158 , 2010.

[30] A. Motro, "Management of Uncertainty in Database Systems," in Modern

Database Systems: The Object Model, Interoperability, and Beyond, New York,

ACM Press/Addison-Wesley Publishing Co., 1995, pp. 457-476.

[31] F. Angiulli and F. Fassetti, "Distance-based outlier queries in data streams: the

novel task and algorithms," Data Mining and Knowledge Discovery, vol. 20, no.

2, pp. 290-324, 2010.

[32] K. Ishida and H. Kitagawa, "Detecting Current Outliers: Continuous Outlier

Detection over Time-Series Data Streams," in Lecture Notes in Computer

265

Science, Berlin , Springer Berlin / Heidelberg, 2008, pp. 255-268.

[33] K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft, "When Is ''Nearest

Neighbor'' Meaningful?," in Proceedings of the 7th International Conference on

Database Theory, London, UK, pp. 217-235, 1999.

[34] C. Aggarwal, A. Hinneburg and D. Keim, "On the Surprising Behavior of

Distance Metrics in High Dimensional Spaces," in Proceedings of the 8th

International Conference on Database Theory, London, UK, pp. 420-434, 2001.

[35] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and

Visualization, New York: John Wiley & Sons Inc., 1992.

[36] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki and D.

Gunopulos, "Online Outlier Detection in Sensor Data Using Non-parametric

Models," in 32nd international conference on Very large data bases, Seoul, pp.

187-198, 2006.

[37] S. Papadimitriou, J. Sun and C. Faloutsos, "Streaming pattern discovery in

multiple time-series," in VLDB Endowment, Trondheim, Norway, pp. 697 -708,

2005.

[38] W. Wu and L. Gruenwald, "Research issues in mining multiple data streams," in

Proceedings of the First International Workshop on Novel Data, Washington,

DC, pp. 56-60, 2010.

[39] C. Franke and M. Gertz, "ORDEN: Outlier Region Detection and Exploration in

Sensor Networks," in 35th SIGMOD international conference on Management of

data, Rhode Island, pp. 1075-1078, 2009.

[40] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H.

Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing and S.

B. Zdonik, "the Design of the Borealis Stream Processing Engine," in the 2nd

Biennial Conference on Innovative Data Systems Research, Asilomar, pp. 277-

289, 2005.

[41] L. Gurgen, C. Roncancio, C. Labbé, A. Bottaro and V. Olive, "SStreaMWare: A

Service Oriented Middleware for Heterogeneous Sensor Data Management," in

the 5th international conference on Pervasive services, Sorrento, pp. 121-130,

2008.

266

[42] A. Dobra, M. Garofalakis, J. Gehrke and R. Rastogi, "Sketch-Based Multi-query

Processing over Data Streams," Advances in Database Technology, Lecture Notes

in Computer Science, pp. 551-568, 2004.

[43] J.-H. Hwang, S. Cha, U. Cetintemel and S. Zdonik, "Borealis-R: A Replication-

Transparent Stream Processing System for Wide-Area Monitoring Applications,"

in the 2008 ACM SIGMOD International Conference on Management of Data,

pp. 1303-1306, 2008.

[44] J. Krämer and B. Seeger, "Semantics and Implementation of Continuous Sliding

Window Queries Over Data Streams," ACM Transactions on Database Systems,

vol. 34, no. April, pp. 1-49, 2009.

[45] B. Mozafari, H. Thakkar and C. Zaniolo, "Verifying and Mining Frequent

Patterns from Large Windows over Data Streams," in the 2008 IEEE 24th

International Conference on Data Engineering, pp. 179-188, 2008.

[46] Y. Kim and U. Kim, "WSFI-Mine: Mining Frequent Patterns in Data Streams,"

Advances in Neural Networks, Lecture Notes in Computer Science, pp. 845-852,

2009.

[47] S. Sadik and L. Gruenwald, "DBOD-DS: Distance Based Outlier Detection for

Data Streams," in 21st International Conference on Database and Expert Systems

Applications, Bilbao, Spain, pp. 122-136, 2010.

[48] S. Papadimitriou, J. Sun and C. Faloutsos, "Streaming pattern discovery in

multiple time-series," in 31st international conference on Very large data bases,

pp. 697-708, 2005.

[49] E. M. Knorr and R. T. Ng, "Algorithms for Mining Distance-Based Outliers in

Large Datasets," in 24rd International Conference on Very Large Data Bases, pp.

392-403, 1998.

[50] E. Knorr, R. Ng and V. Tucakov, "Distance-based outliers: algorithms and

applications," the International Journal on Very Large Data Bases, vol. 8, no. 3,

pp. 237-253, 2000.

[51] S. Ramaswamy, R. Rastogi and K. Shim, "Efficient Algorithms for Mining

Outliers from Large Data Sets," in the 2000 ACM SIGMOD international

conference on Management of data, Dallas, Texas, USA, pp. 427-438, 2000.

267

[52] T. Zhang, R. Ramakrishnan and M. Livny, "BIRCH: An Efficient Data Clustering

Method for Very Large Databases," in 1996 ACM SIGMOD international

conference on Management of data, Montreal, Canada, pp. 103-114 , 1996.

[53] D. M. Hawkins, Identification of Outliers, London: Chapman and Hall Ltd, 1980.

[54] F. Angiulli and F. Fassetti, "Detecting Distance-based Outliers in Streams of

Data," in Sixteenth ACM conference on Conference on information and

knowledge management, Lisbon, pp. 811-820, 2007.

[55] B. Sheng, Q. Li, W. Mao and W. Jin, "Outlier Detection in Sensor Networks," in

8th ACM international symposium on Mobile ad hoc networking and computing,

Montreal, pp. 219-228, 2007.

[56] K. Sequeira and M. Zaki, "ADMIT: Anomaly-based Data Mining for Intrusions,"

in Eighth ACM SIGKDD international conference on Knowledge discovery and

data mining, Edmonton; Alberta, pp. 386-395, 2002.

[57] P. K. Chan, M. V. Mahony and M. H. Arshad, "A Machine Learning Approach to

Anomaly Detection," Florida Institute of Technology, Melbourne, 2003.

[58] J. Zhang, "Advancement of Outlier Detection: A Survey," ICST Transactions on

Scalabale Information Systems, vol. 13, no. 01, 2013.

[59] S. Papadimitriou, H. Kitagawa, P. B. Gibbons and C. Faloutsos, "LOCI: Fast

Outlier Detection Using the Local Correlation," in 19th International Conference

on Data Engineering, Bangalore, pp. 315-326, 2003.

[60] S. Sadik and L. Gruenwald, "Online outlier detection for data streams," in

Proceedings of the 15th Symposium on International Database Engineering &

Applications, Lisboa, Portugal, pp. 88-96, 2011.

[61] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi, E.

Kohler, G. Pottie, M. Hansen and M. Srivastava, "Sensor Network Data Fault

Types," ACM Transactions on Sensor Networks, vol. 5, no. May, pp. 1-29, 2009.

[62] X. Lu, T. Yang, Z. Liao, M. Elahi, W. Liu and H. Wang, "Incremental outlier

detection in data streams using local correlation integral," in Proceedings of the

2009 ACM symposium on Applied Computing, New York, NY, USA, pp. 1520-

1521, 2009.

[63] M. Shuai, K. Xie, G. Chen, X. Ma and G. Song, "A Kalman Filter Based

268

Approach for Outlier Detection in Sensor Networks," in 2008 International

Conference on Computer Science and Software Engineering, pp. 154-157, 2008.

[64] D.-I. Curiac, O. Banias, F. Dragan, C. Volosencu and O. Dranga, "Malicious

Node Detection in Wireless Sensor Networks Using an Autoregression

Technique," in Third international conference on Networking and Services, pp.

83-89, 2007.

[65] V. Puttagunta and K. Kalpakis, "Adaptive Methods for Activity Monitoring of

Streaming Data," in International Conference on Machine Learning and

Applications, Las Vegas, pp. 197-203, 2002.

[66] H. Madsen, Time Series Analysis, Boca Raton: Chapman & Hall/CRC, 2008.

[67] S. Efromovich, Nonparametric Curve Estimation – Methods, Theory, and

Applications, New York: Springer-Verlag New York Inc., 1999.

[68] I. C. Oh, Forecasting Volatility, Norman: University of Oklahoma Thesis Library,

2004.

[69] N. N. Vijayakumar and B. Plale, "Missing Event Prediction in Sensor Data

Streams Using Kalman Filters," in Knowledge Discovery from Sensor Data, Boca

Raton, CRC Press, 2009, pp. 149-170.

[70] J. Laurikkala, M. Juhola and E. Kentala, "Informal Identification of Outliers in

Medical Data," in Fifth International Workshop on Intelligent Data Analysis in

Medicine and Pharmacology, Berlin, pp. 20-24, 2000.

[71] H. E. Solberg and A. Lahti, "Detection of Outliers in Reference Distributions:

Performance of Horn's Algorithm," General Clinical Chemistry, pp. 2326-2332,

2005.

[72] S. Ando and E. Suzuki, "Detection of Unique Temporal Segments by Information

Theoretic Meta-clustering," in 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, Paris, pp. 59-68, 2009.

[73] R. Blender, K. Fraedrich and F. Lunkeit, "Identification of Cyclone-track

Regimes in the North Atlantic," Quarterly Journal of the Royal Meteorological

Society, pp. 565-579, 1997.

[74] R. T. Ng and J. Han, "Efficient and Effective Clustering Methods for Spatial Data

Mining," in 20th International Conference on Very Large Data Bases, pp. 144-

269

155, 1994.

[75] G. Sheikholeslami, S. Chatterjee and A. Zhang, "WaveCluster: A Multi-

Resolution Clustering Approach for Very Large Spatial Databases," in 24rd

International Conference on Very Large Data Bases, pp. 428-439, 1998.

[76] W. Lee and D. Xiang, "Information-Theoretic Measures for Anomaly Detection,"

in Proceedings of the 2001 IEEE Symposium on Security and Privacy, p. 130,

2001.

[77] C. Aggarwal and P. Yu, "Outlier detection for high dimensional data," in 2001

ACM SIGMOD international conference on Management of data, Santa Barbara,

CA, USA, pp. 37-46, 2001.

[78] I. Mechelen, H.-H. Bock and P. D. Boeck, "Two-mode Clustering Methods: A

Structured Overview," Statistical Methods in Medical Research, vol. 3, no. 5, pp.

363-394, October 2004.

[79] D. Ashlock, "Designing Simple Evolutionary Algorithms," in Evolutionary

Computation for Modeling and Optimization, Guelph, Ontario, Springer, 2006,

pp. 33-65.

[80] S. Guha and N. Koudas, "Approximating a Data Stream for Querying and

Estimation: Algorithms and Performance Evaluation," in 18th International

Conference on Data Engineering., pp. 567-576, 2002.

[81] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. Strauss, "Surfing Wavelets on

Streams: One-Pass Summaries for Approximate Aggregate Queries," in 27th

International Conference on Very Large Data Bases, pp. 79-88, 2001.

[82] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and

Visualization, New York: John Wiley. &. Sons, Inc., 1992.

[83] L. Gruenwald, H. Chok and M. Aboukhamis, "Using Data Mining to Estimate

Missing Sensor Data," in the Seventh IEEE International Conference on Data

Mining Workshops, pp. 207-212, 2007.

[84] T. J. Brailsford, J. H. Penm and D. R. Terrell, "Selecting the Forgetting Factor in

Subset Autoregressive Modelling," Journal of Time Series Analysis, pp. 629-650,

2002.

[85] J. Fan and J. S. Marron, "Fast Implementations of Nonparametric Curve

270

Estimators," Journal of Computational and Graphical Statistics, pp. 35-56, 1994.

[86] S. Papadimitriou, J. Sun and P. Yu, "Local Correlation Tracking in Time Series,"

in Sixth International Conference on Data Mining, pp. 456-465, 2006.

[87] Y. Zhu and D. Shasha, "StatStream: statistical monitoring of thousands of data

streams in real time," in 28th international conference on Very Large Data, Hong

Kong, China, pp. 358-369, 2002.

[88] S. Burdakis and A. Deligiannakis, "Detecting Outliers in Sensor Networks Using

the Geometric Approach," in IEEE 28th International Conference on Data

Engineering, Arlington, Virginia USA, pp. 1108-1119, 2012.

[89] R. Taylor, "Interpretation of the Correlation Coefficient: A Basic Review,"

Journal of Diagnostic Medical Sonography, vol. 6, no. 1, pp. 35-39, 1990.

[90] V. Cangelosi, Basic Statistics: A Real World Approach, West, 1983.

[91] R. Johnson and D. Wichern, Applied Multivariate Statistical Analysis, Prentice

Hall, 2007.

[92] D. H. West, "Updating mean and variance estimates: an improved method,"

Communications of ACM, vol. 22, no. September, pp. 532-535, 1979.

[93] M. Kutner, C. Nachtsheim, J. Neter and W. Li, Applied Linear Statistical Models,

Boston: McGraw-Hill, 2005.

[94] D. Coppersmith and S. Winograd, "Matrix multiplication via arithmetic

progressions," in the nineteenth annual ACM symposium on Theory of computing,

New York, New York, USA, pp. 1-6, 1987.

[95] "OU Supercomputer Resources," 2009. [Online]. Available:

http://www.oscer.ou.edu/resources.php. [Accessed 17 May 2010].

[96] A. Frank and A. Asuncion, UCI Machine Learning Repository, Irvine, California:

University of California, Irvine, 2010.

[97] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. Mcclung, D. Weber, S.

Webster, D. Wyschogrod, R. Cunningham and M. Zissman, "Evaluating Intrusion

Detection Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation,"

in 2000 DARPA Information Survivability Conference and Exposition, pp. 12-26,

2000.

271

[98] A. Lazarevic and V. Kumar, "Feature bagging for outlier detection," in ACM

SIGKDD international conference on Knowledge discovery in data mining, pp.

157-166, 2005.

[99] A. Tsymbal, "The problem of concept drift: definitions and related work,"

Department of Computer Science, Trinity College Dublin, Dublin, Ireland, 2004.

[100] C. Franke and M. Gertz, "Detection and Exploration of Outlier Regions in Sensor

Data Streams," in 2008 IEEE International Conference on Data Mining

Workshops, Washington, DC, pp. 375-384, 2008.

[101] V. Niennattrakul, E. Keogh and C. A. Ratanamahatana, "Data Editing Techniques

to Allow the Application of Distance-Based Outlier Detection to Streams," in the

2010 IEEE International Conference on Data Mining, Washington, DC, USA, pp.

947-952, 2010.

[102] R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W.

Ebisuzaki, M. Kanamitsu, V. Kousky, H. v. d. Dool, R. Jenne and M. Fiorino,

"The NCEP–NCAR 50-Year Reanalysis," Bulletin of the American

Meteorological Society, pp. 247-267, 2001.

[103] E. Keogh, J. Lin and W. Truppel, "Clustering of Time Series Subsequences is

Meaningless: Implications for Previous and Future Research," in Third IEEE

International Conference on Data Mining, p. 115 , 2003.

[104] W. P. Elderton and N. L. Johnson, System of Frequency Curves, London:

Cambridge University Press, 1969.

[105] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C.

Olston, J. Rosenstein and R. Varma, "Query Processing, Resource Management,

and Approximation ina Data Stream Management System," Stanford InfoLab,

2002.

[106] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,

W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss and M. A. Shah,

"TelegraphCQ: Continuous Dataflow Processing," in Proceedings of the 2003

ACM SIGMOD international conference on Management of data, San Diego, p.

668, 2003.

[107] C. C. Aggarwal, J. Han, J. Wang and P. S. Yu, "On Demand Classification of

Data Streams," in Proceedings of the tenth ACM SIGKDD international

272

conference on Knowledge discovery and data mining, Seattle, pp. 503-508, 2004.

[108] G. Hulten, L. Spencer and P. Domingos, "Mining Time-changing Data Streams,"

in Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, San Francisco, pp. 97-106, 2001.

[109] M. Last, "Online Classification of Nonstationary Data Streams," Intelligent Data

Analysis, vol. 6, no. April, pp. 129-147, 2002.

[110] D. J. Abadi, D. P. Carney, U. Cetintemel, M. F. Cherniack, C. Convey, C. Erwin,

E. Galvez, M. Hatoun, A. S. Maskey, A. Rasin, A. Singer, M. R. Stonebraker, N.

Tatbul, Y. Xing, R. Yan and S. B. Zdonik, "Aurora: A Data Stream Management

System," in Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, San Diego, p. 666, 2003.

[111] I. Botan, G. Alonso, P. M. Fischer, D. Kossmann and N. Tatbul, "Flexible and

Scalable Storage Management for Data-intensive Stream Processing," in the 12th

International Conference on Extending Database Technology: Advances in

Database Technology, Saint Petersburg, pp. 934-945, 2009.

[112] M. Cammert, J. Kramer, B. Seeger and S. Vaupel, "A Cost-Based Approach to

Adaptive Resource Management in Data Stream Systems," IEEE Transactions on

Knowledge and Data Engineering, pp. 230-245, 2008.

[113] S. Chen, H. Wang, S. Zhou and P. S. Yu, "Stop Chasing Trends: Discovering

High Order Models in Evolving Data," in the 2008 IEEE 24th International

Conference on Data Engineering, pp. 923-932, 2008.

[114] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu and M. Doo, "SPADE: The System S

Declarative Stream Processing Engine," in the 2008 ACM SIGMOD international

conference on Management of data, pp. 1123-1134, 2008.

[115] C. Heinz, J. Kramer, T. Riemenschneider and B. Seeger, "Toward Simulation-

Based Optimization in Data Stream Management Systems," in the 2008 IEEE

24th International Conference on Data Engineering, pp. 1580-1583, 2008.

