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PREFACE 

This paper deals with certain classes of subsets of a real linear 

space. The basic definitions and notation are given in Chapter O. Chapter 

I deals with the basic properties of inverse starlike sets and it is dem-

onstrated·tnat the inverse starlike property is preserved under many of the 

operations and transformations in a linear space. The inverse star en~ 

velope and star envelope of a set are defined in Chapter II; it is proved 

that many of the properties of the inverse star envelope are determined by 

the given set. Certain inverse starlike (starlike) sets may be represented 

as the inverse star (star) envelope of a set of relative extreme: points, 

an extension of the Krein-Milman Theorem. Chapter III contains a discussion 

of a metric space of starlike sets. Chapter IV deals with the class of all 

starlike subsets and it is shown that this class of sets satisfies all the 

requirements for a vector space except additive inverses; a restricted 

cancellation law is proved. Finally in Chapter IV it is shown that, for 

a particular order relation on the class of starlike sets, this class is 

a complete complemented lattice whi~h is not distributive and not modular. 

In Chapter Va generalization of convexity is given which includes 

convex, projectively convex, starlike, inverse starlike, property P3, cone, 

and flat as special cases. Several properties of this generalization are 

tp,en determined. Also a theorem due to Brunn [ 3 J (numbers in square 

brackets refer to the bibliography at the end of the paper) is generalized. 
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Finally Chapter VI is a summary of the paper and lists several un­

solved and partially solved problems that have been raised in the course 

of thE; investigation. 
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CHAPI'ER 0 

DEFINITIONS AND NorATION 

The setting for the results of this paper is a real linear space as 

defined by Day [6]; several results are given in special linear spaces 

and these definitions also come from Day. The symbol Lis used to denote 

the linear space, elements of Lare denoted by lower case Latin letters, 

subsets of Lare denoted b¥ capital Latin letters, and real numbers are 

denoted by lower case Greek letters with the exception that in some in-

stances subscripts are denoted by lower case Latin letters. 

The following notation is used for :portions of the line through elements 

u and v of L: uv = Ia.u + (1 -a.)v: O~a..:5:.11 and oouv = ta.u + (1 -a.)v: 

a,~ i 1 The line through u and v is denoted by L(u, v) and )uv( = uv '\ lu, v} 

is the open segment between u and v where'\ denotes set difference. 

A subset S of Lis: 

flat if for each x and yins, L(x,y) is contained in S; 

convex if for each x and yin S, xy is contained in S; 

starlike from a if for each x in S, ax is contained in S; 

a cone with vertex at a if for each x in S, axlJcoxa is contained ins; 

:projectively convex if for each x and y in S, either xy or ooxyLJroyx is 

contained in S (see Hare [s] ); 
P3 (or S has property P) if for each x, y, and z in S, at least one of 

th~ segments xy, yz, or xz is contained in S (see Valentine [14] ) . 
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The symbol En refers ton-dimensional Euclidean space with the usual 

topology. 

2 

For a subset S of L, C(S) denotes the set complement of S. The convex 

hull of Sis denoted by k(S) and core(S) is the core of S. If Lis a linear 

topological space (LTS) and Sis a subset of L, then s0 denotes the interior 

of Sand Sis the closure of S. The boundary of Sis symbolized by bdry(S). 

It is assumed that all sets considered are contained in some real 

linear space L. 



CHAPI'ER I 

GENERAL PROPERTIES OF STARLIKE AND INVERSE STARLIKE SETS 

Motz kin has defined a subset S of L to be inverse starlike from 
.. 

an element a of L if for each x in S, CDxa is contained in s. 1 ;i:n the plane 

the inversion of a starlike set in the unit circle has the property of being 

inverse starlike from the origin which accounts for the use of the term 

inverse starlike. 

The notion of an inverse starlike set is not completely foreign or new 

to mathematical research. For example, distortion the.orems in the theory 

of complex variables deal with simple mappings of the exterior of the unit 

ci:rcle which is an inverse starlike set (see Bieberbach [ 1] ) . Other 

results are obtained for sets which are the complements of star like sets. 

It will be proved later that indeed the complement of a starlike set is 

inverse star like. Recently, Lax, Morawetz, and Phillips [10] published 

results they obtained concerning solutions of the wave equation in the 

_exterior of a starlike set. These are just a few of the examples of the 

use of inverse starlike and starlike sets in the literature. 

The p1,ll'pose of this chapter is to develop several basic properties of 

invers~. starlike sets. Many of the theorems hold also for starlike sets 

and may be proved in the same fashion by merely changing the requirement on 

the scalars. The first result relates starlike sets to inverse starlike sets. 

1The author had defined this notion and developed several properties of 
such sets prior to learning of P:rofessor Motzkin's work at the Symposium on 
Convexity, Seattle, Washington, June, 1961. 
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Theorem 1: Let a subset S of L be such that a belongs to S. Then S 

is starlike from a if, and only if, C(S) is inverse starlike from a. 

Proof: First assume that S is star like from a and let x be an element 

of C (s). Then 00 xa is contained fo C (S) since, if there is an element y of 

coxa which belongs to S, ay would be contained in S; but x belongs to ay 

contradicting that xis in C(S). Thus C(S) is inverse starlike from a. 

Next suppose that C(S) is inverse starlike from a and let x belong 

to S. Then PY assumption a belongs to S, and ax must be contained in S 

since if there is an element y of ax which belongs to C(S), ooya would be 

contained in C(S); hut xis an element of ():)ya which contradicts that xis 

in S. Hence Sis starlike from a. 

A set is convex if, and only if, it is starlike from every point of 

the set, which proves the following corollary to Theorem 1. 

Corollary: If K is inverse starlike from every point of C(K), then 

C (K) is convex. 

The following group of theorems demonstrates that the property of 

being inverse starlike is quite a dominant property since it is preserved 

under many of the set operations. 

Theorem 2: Let s be 
a, 

;inverse starlike from a for each a. in some index 

set ~- Then Q s and u s are inverse star like from a·. 
a, a, a, 

. 1 Q . Proof: First it is proved that s is inverse starlike from a. 
a, 

Let x be in · II S . Then xis in S for each a. in~ and since each SN 
a, a, a, ,,,, 



:i,.s inverse star like from a, it follows that CX)Xa is contained in S for a, 

each a, in/':,. Thus ooxa is contained in Q s which proves that Q s a, a, 

is inverse star like from a. 

Now consider u s a, a, Let x be an element of u s . a, a, Then xis in 

S~ for some~ int:,, and since S~ is inverse starlike from a, it follows 

that OJxa is contained in S~. Hence ooxa is contained in 

proves that LJ S is inverse star like from a. a, a, 

'-a:] Sa, which 
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Corollary: Let {sn1 be a sequence of subset$ of L. Then lim sup S 
n 

and lim inf S are inverse starlike from a provided that each S is inverse n n 

starlike from a. 

Proof: This corollary follows immediately from Theorem 2 and the fact 
oc l)o 

that lim sup s = n us and lim inf s = n K=' n~K n n 
on s. 
k=I 11=\S n 

Theorem 3: Let Hand K be subsets of Land suppose that His inverse 

starlike from a and K is inverse starlike from b. Let a, be a real number. 

Then a,H is inverse starlike from a,a and H + K is inverse starlike from a+ b. 

Proof: It will first be proved that a,H = { a,x : x e HJ is inverse 

starlike from a,~. Let y be an element of a,H and write y = a,x for some x 

in H. Let "A. ~l. Then f'.(a,x) + (1 - "'A.)(a,a) = a,("'/1.x + (1 "'A.)a) which belongs 

to a,H since "'/1.x + (1 - "'A.)a belongs to H. Hence a,H is inverse starlike from a,a. 

Next it will be proved that H + K is inverse starlike from a+ b. Let 

z be an element of H + K; then z x + y for some x in H and y in K. Let 

"'/1.~l. Then "'/1.z + (1 - "'A.)(a + b) = "'/1.(x + y) + (1 - "'A.)(a + b) = "'/1.x + (1 - "'A.)a + 

"'/1.y + (1 - "'A.)b which belongs to B; + K since "'/1.x + (1 - "'/1.)a is in Hand 

"'/1.y + (1 - "'A.)b is in K. Thus H + K is :i,.nverse starlike from a+ b. 



It should be pointed out that the singleton {a} is inverse starlike 

from a. Using t~is observation one may obtain the following corollary to 

'J'heorem 3. 

Corollary: Let H be inverse starlike from a and let b belong to L. 

Then the translate H +bis inverse starlike from a+ b. 

Theorem 4: L~t Land L' be linear spaces and let f be a linear 

transformation of L into L'. If a subset S of Lis inverse starlike from 

a, then f(S) is inverse starlike from f(a) in L'. 

Proof: Let y be an element of f(S). Then there is an element x of S 
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so that y::; f(x). Let i\~l. Then i\y + (1 - )l.)f(a)::: )l.f(x) + (1 - i\)f(a) = 

f(i\x + (1 - i\)a) which oelo)lgs to f(S) s;tnce NC+ (1 - i\)a is in S. Hence 

f(S) is inverse starlike from f(a). 

Corollary:l: Let L be a linear subspace of Land suppose a subset 
0 

S of 1 is inverse starlike from a. Then the subset S of 1/1 given by 
0 0 

is inverse starlike from a+ 1 in 1/L. 
0 0 

An affine transformation f of the linear space 1 to the linear space 

L' is defined by f(x) = g(x) + c where g is a linear transformation of L 

into L' and c is an element of L'. Using the corollary to Theorem 3 one 

may obtain the followi)lg second corollary to Theorem 4. 

Corollary 2: Let f be an affine transformation of L into L' and let 

a subse~ S of L be inverse starlike from a. Then the subset f(S) of L' 
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is inverse starlike from f(a). 

If L is a real linear space for each a., in some index set 6., then Tf a., a., 

is defined to be the set of functions x on 6. so that X E L for all a, in 6. a., a., 

and (±)L is the subset of 1T L consisting of those functions x for a., a., a., a., 

which x 
a, 0 except for a finite number of a, in 6.. Each of the sets IT L 

a, a, 

and ~ La., is a linear spi3-ce (see Day [6], page 5). Let K CL for each 
a, a, 

a., in 6.. 'J:hen TI K a., a., and 

x EK and x = 0 exGept for a finite number of a, a, a., a, 

\ (x ) ,, : l a, 0.,ED 

'l'heorem 5: Let L be a linear space for each a, in some index set 6., a, 

and for each a, in 6. let K be a subset of L which is inverse starlike from a, a, 

O, the origin of La.,. Then 1:,f Ka, is inverse starlike from O in the direct 

product space 1J La, and W Ka, is inverse starlike from O in the direct 

sum space (±) L. 
a, (:t, 

Proof: Let x = (x ) A belong to TI 1
K and 'JI. :?:'..l. Then 'Jl.x + (1 - 'Jl.)0 a., a, ELl a, a., 

('Jl.x ) ~A which belongs to TI K since 'Jl.x is in K for each a., in 6.. Thus a, a., <:;Ll a a . a., a., 

'fr- K is inverse starlike from O in 1'f" L. 
a, ~ a., a., 

Next consider an element y = (ya.,)a,EL. of ~ Ka., and 'Jl.:2:.1. Then by 

L a., 

definition ya.,= 0 for all but a finite number of the a., in 6. and 11.Y = (Aya.,)a.,E6. 

is in (±) K since 11,y is in K for each a., in 6.. Therefore © K is a., a., a, a., a., a., 

inverse starlike from O in (±) L . 
a, a, 

T)'.leorem 6: Let the subset S of L be inverse starlike from 0. Then 

the core of Sis also inverse starlike from O or is empty. 

Proof: If core(S) is not empty, then let x be an element of core(S) 



and ex, >-1. Now for each yin L there is a positive number E(y) so that 

x + "A.y is in S for l"A.I < e(y). Now S is inverse starlike from O which 

implies that ax+ a"A.y is in S. Alqo ax is in core(S) since for each yin 

L there is a positive number E1 (y) ~ E(y)/a so that ax+ "J,,.y is in S for 

l"A.I < E1 (y). Hence core(S) is inverse starlike from 0. 

The corollary to Theorem 3 and the fact that the core of a set is 

preserved under translation prove the following corollary to Theorem 6. 

Corollary; If Sis inverse starlike from a, then core(S) is inverse 

starlike from a. 

Theorem 7: Let K be a suoset of the linear topological space Land 

suppose K is inverse starlike from a. Then K0 is inverse starlike from a 

or is empty and K is inverse starlike from a. 

Proof: It is first proved that K0 is inverse starlike from a. Let x 
-...-,. 

be an element of K0 and a ~l. Then there is~ neighborhood U of x so that 
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U is contained in K and au + (1 - a)a CaK + (1 - a)aC K. But au + (1 - a)a 

is open and ax+ (1 - cx,)a is an element of aU + (1 - a)a which implies that 

ax+ (1 - a)a is in K0 . Therefore K0 is inverse starlike from a. 

Next consider the closure of Kand let x belong to Kand a~l. Then 

xis either a point or a limit point of K. If xis in K, then CDxa is 

contained in K. Hence let x be a limit point of K, so that there exists a 

seg_uence of points l xn 1 converging to x and where x is in K for each 
n 

positive integer n. 

n and the seq_uence 

Also ax + (1 - a)a is in K for each positive integer 
n 

[cx.xn + (l - a)a} converges to ax + (1 - a)a which must 



9 

be in K. Hence K is inverse starlike from a. 

The image of an inverse starlike set under a linear transformation 

has been considered. It seems natural to consider the image of an inverse 
r .., 

starlike set under other types of transformations. Hare L 8 J has proved 

in his thesis that the image of a projectively convex set under a projective 

transformation is again projectively convex, A similar result may be proved 

for inverse starlike sets for a transformation with an order separation 

property. 

Let a, b, x, and y be elements of L. Then the pair (a,b) order separates 

tri.e pair (x,y) provided x is on ab and, y is on CDba. 

Theorem 8: Let T be a 1-1 map of L onto L which maps lines onto lines 

and is such that (a,b) order separates (x,y) if, and only if, (T(a),T(b)) 

order sepa;rates (T(x),T(y)) and T(O) = O. If the subset K of Lis inverse 

starlike from O, then T(K) is also inverse starlike from 0. 

Proof: Let T(x) belong to T(K) and a>l. It must be shown that aT(x) 

is in T(K). The mapping Tis onto and hence there is a yin L so that T(y) 

aT(x). Assume by way of contradiction that T(y) is not in T(K). Then cer-

tainly y is not in K. Since T maps lines onto lines and is 1-1, y is on 

L(O,x) because T(y) is on L(O,T(x)). Furthermore either y is on Ox or on 

CDOx; for if y is on OJxO, T(y) would be in T(K) contradicting the assump-

tion that T(y) is not in T(K). Now ax is in K which implies that T(ax) is 

in T(K) and since T maps lines onto lines T(ax) must be on L(O,T(x)). In­

deed it can be shown that T(ax) is on COT(x)O. Let 13 >a. Then (O,a.x) 

order separates (x,l3x) which implies that (O,T(a,x)) order separates 
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(T(x),T(~x)) and thus T(ax) is on COT(x)O. There are two cases to consider: 

Case I: Assume that y is on Ox, Then (o,x) order separates (y,ax) 

which implies that (O,T(x)) order separates (T(y),T(ax)) and hence that T(;0 

is on OT(x) which contradicts that T(y) = aT(x) where a>l. 

Case II: Assume that y is on mox. Then (y,x) order separates (o,a.x) 

which implies that (T(y),T(x)) order separates (O,T(ax)) and hence that 0 

is on T(y)T(x) which again contradicts that T(y) = aT(x) with o:.>l. 

In each possible case a contradiction is reached and hence the hypothesis 

that T(y) is not in T(K) is untenable which implies that T(y) = aT(x) is in 

T(K). Therefore T(K) is inverse starlike from 0. 

For a given Li.near space L, let L::ft denote· the linear space of all 

linear functionals on L. If K is a subset of L, then the subset K11 of ei= 
1( r * defined by K = L f EL : f(x) L -1 for each x in K 1 is called the polar 

set of K. Similarly if H is contained in L# , H11 = [x E L : f(x) ~ -1 for 

each f in H 5. 

Theorem 9: Let the subset Kofa linear space L be inverse starlike 

from 0. Th~n K11 is inverse starlike from O in{!* . Likewise if His inverse 

starlike from O in L#, then H is inverse starlike from O in L. 
1! 

Proof: It is proved that K11 is inverse starlike from 0. It is known 

already that O is in K1! and that K11 is convex (see Day [ 6 J , page 17). 

Let f belong to K1! and a,~ 1. Then (e:x.f) (x) = o:.f (x) = f (cx.x) ~ ~l for each 

x in K since a.xis in K. Therefore K11 is inverse starlike from 0. 

A similar argument 1DB-Y be used to show that H is inverse starlike 
1( 

from 0. 



A set which is convex, inverse starlike from O, and contains O is 

clearly a convex cone. This establishes the following corollary. 

Corollary 1: 
1( 

The sets K and H are convex cones with vertices at 0 
1( 

in the spaces 1:/t and L, respectively. 

A theorem of Day [6], page 20, may be used to obtain a second 

corollary. 
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Corollary 2: Let K be inverse starlike from O in the locally convex 

linear topological space L. Then (Krr)rr is the smallest weakly-closed cone 

in L containing K. 

The term smallest is used here in the sense that if C is any weakly­

closed cone in L containing K, then C also contains (Krr\. A similar result 

for (E~)rr follows also for an inverse starlike subset Hof :c+ 

The next three theorems relate inverse starlike setp and flats. The 

first result characterizes flats in terms of inverse starlike sets, and is 

motivated by the theorem of Hare [8] in which he proved that a set Sis 

flat if, and only if, snK is projectively convex for every projectively 

convex set K. 

Theorem 10: Let S be contained in Land suppose that if K is inverse 

starl;Lke from a, :then S nK is also inverse starlike from a (K -and a not fixed). 

Tben S is flat. Conversely, if S is flat and a belongs to S, then S nK is 

inverse 9tarlike from a, 
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Proof: First assume that Sil K is inverse star like for each inverse 

ste.rlike set K in L and show that S is flat, Let x and y belong to s; then 

it must be shown that mxy LJ CDyxLJxy is conti:lined in S. Now ooxy is 

inverse starlike from -;f which implies that CDxyns is inverse starlike from 

y. Also x is in a::;xyns so that COxy is contained in coxyns and hence 

in S. Likewise it may be shown that ooyx is contained in S. It remains 

to be proved that xy is contained in S. Let w be a point on ooxy. Then 

coxw is inverse starlike from w and hence by hypothesis coxwns is inverse 

star like from W; but X is in CX)xwns so that mxw is contained in s. Fur-

thermorexy is contained in mxw since if z = ex,x + (1 - a,)y is on xy with 

0 <ex, <land w = ox + (1 - o)y with a >l, then z ~x + (1 - ~)w where~= 

(a - a,)/(o - 1) >l, which implies that z is on coxw. Thus xy is contained 

in Sand it has been proved that Sis flat. 

Conversely, let S be flat, a belong to S, K be inverse starlike from 

a, and show that snK is inverse starlike from a. Let x be in snK. Then 

mxa is conts.ined in S since x and a are in Sand L(x,a) is contained in S. 

Also c;oxa is contained in K since K is inverse starlike from a. Hence coxa 

is contained in snK which proves that snK is inverse starlike from a. 

Theorem 11: Let the subset K of L be inverse star like from O. Then 

0 is a core point of Kif, and only if, K = L. 

Proof: Clearly if K = L, then O is a core point of K. Hence assume 

that O is a core point of Kand show K = L. Already K is contained in L so 

that it must be shown that Lis contained in K. Let y belong to L. Then 

there is a positive m:u:nber E(y) so that O + 'Jl.y is in K for I ?s.j < E(y). In-

deed one may choose O < 11. < 1 and have 1//1. > 1. Then K is inverse star like 
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from O implies that ( 1/'r.) (11.y) y is in K which proves that Lis a subset 

of K. Therefore K = L. 

The core and the interior of a set are generally different. The fol-

lowing example in the plane (see Figure 1) .shows that this is true also for 

invE;:rse star like sets. The set S is ind:j_cated by the shaded portion of the 

plane and S is inverse starlike from (o,o). The point (4,4), which is the 

point at wl;lich the circle is tangent to y = x, is a core point but not an 

interior point of S. 

y 

/ 
/ 

/ 

/ 
y = 3 - 2 

/ -----+----·-------------·-·----~ X 

Figure 1 

The corollary to Theorem 3 and the fact that the core is preserved 

under translation prove the following more general result. 



14 

Corollary: Let Koe ipverse starlike from a in L. Then a is a core 

point of Kif, and only if, K ~ L. 

Theorem 12: Let the subset K of L be inverse starlike from O and be 

symmetric. Then kCK) is a subspace of L. 

Proof:- If xis in~, then-xis in Kand (1/2)x + (1/2)(-x) = 0 must 

belong to k(K). As has been observed before for a set which is convex, 

inverse starlike, and contains O, it must follow that k(K) is a convex cone. 

Thus k(K) + k(K) and A.k(K) are contained in k(K) for A.~0. But K is sym-

metric j hence if x is in k (K) and )I,< 0, then -x ;Ls in k (K) and -A.> 0 so that 

A.X = (-A.)(-x) is in k(K). It has been proved that k(K) is closed under 

scalar multiplication and· sums and :i,.s therefore a subspace of L. 

A subset S of Lis called mid-point convex if for each pair of elements 

x and y of S, then (1/2 )x + (1/2 )y is also in S. Obviously a set which is 

convex il? also m:i;d-point con,vex; a set which is convex is also starlike from 

each point of the set. Hence the notions of mid-point convex and star like 

are generaliz:!3,t;ions of convexity. A subset S of L satisfies condition X 

from the· point a of L provided that for each x in S there is a number a.> 1 

so that o:,x + (1 - a.)a is in S. Again it is clear that if Sis inverse star-

like from a, then S sati$fies condition X from a, so that condition Xis 

a generalization of the inverse starlike property. The next group of theorems 

relates the properties of convex, mid-point convex, starlike, condition X, 

and inverse starlike. 

Theorem 13: Let the s1-1.bset S of L be star like from O and assume that 
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for each line P through 0, Pns is an open segment. Then S satisfies condi-

tion X from O. 

Proof: Let x belone1j to S and let P be) the J,ine through O and x. Then 

Pns is an open segment cop.taining O and x. Therefore there is a number )'.. > 1 

so that )'..xis in S. Hence S satisfie9 condition X from 0, 

A set Sis called linearly closed if for every line P, Pns is closed 

in the line topo:J.o~;r for P. 

Theorem, 14; Let tbe subset S pf L be linearly closed and mid-point 

convex. Then Sis convex. 

Proo-fr Usin,g the hypothesis that S is mid-point convex, one cari prove 
~ 

that for each x and y in s, (r/2n)x + (1 - r/2n)y is in S for all positive 

integers T and n and for which Os; r ~-2n. Since the set of such numbers 

·r/2n is dense in the interval [0,1] and since the line topology for L(x,y) 

is equivalent to the real line topology, it follows that the set of points 

(r/2n)x + (1 ... r/2,n,)y is dense in the interval xy. Thus since S is linearly 

closed, xyC S and hence S is convex. 

The following modification of Theorem 14 can be proved l;>y using the 

same argQmep.t as above. 

Theorem 15: Let the subset S of L contain O, be linearly ciosed for 

lines pa-s·s·ing·throu.gh O, and a;ssume that ftDr each line P through o, it is 

true that Fns is mid ... po:i;nt convex. Then S is starli~e frOl\1 0. 
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Theorem 16: Let the subset S of L be such that for every line P through 

O, Pns is linearly closed a.nd mid-point convex. Assume further that S 

satisfies condition X from O. Then Sis inverse starlike from 0. 

Proof: Let x belong to S and a;> l; then it must be shown that a,x is 

in S. Let ·p be the l;i.ne through Q a,nd x. Since S satisf;ies condition X, 

tnere is a number "'- > 1 so that :>,.x is in S, If "),.. ::;: a., then a,x is in S. If 

~>a, then, a1;1 in Theorem l-4 (since Pns ;i.s linearly closed -and mid-point 

convex), x()\.x;) must be contained in Sand hence a,x in S since a,x is on x(~. 

Now assume that "),..<CJ, and that for each f3 LCX., f3x is not in S. Then N = 

{ "),.. : "),.. > i, NC E S 1 is not empty and thus "),..' = sup l "),.. : "),.. > 1, "),..x E S} is 

finite since N ;is bounded apove by a.. But :rns is l;i.nearty closed so that 

"),..'x is in Sand thus there is a numl:ler "),..11 >l so that ~ 11 ("),..'x) is in S and 

"),..11 '):...' > "),..' contradict in~ tnat ~' = 9up N. Therefore there is a m1mber f3 La, 

so tbat f3x ;i.s in S and tp.e case for "),..>a, 6Gcurs again. In any case it has 

Qeen proved that ~xis in Sand thus Sis inverse starlike from 0. 

Corollary: If i:p. addition to the bypothesis of Theorem 16, it is 

assumed that Q is ins, then Sis a cone. 

Theorem 17: Let the subset K of L be convex. Tb,en K + KC K if, and 

only if, K is inverse starlike from 0. 

Proof: Assume that K + KC Kand s-now that K is inverse starlike from 

O. Let x belong to K and a, ~l. Since K + K CK, nx is in K for n = 1, 2, 

Let n < a;<n where 1 2 nl ar,i.d n2 are _positive ·integers. Then n1x and n2x are 

in K andK ;implies· that a. - n1 (1 
a, .,, nl)n X is in convex n2x + - ::;: a,x 

n2 - nl n2 - n1 1 

K. Thus K is inverse star like from 0. 
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NE~xt assume that K is ;inverse star like and show K + Kr·~ K. Let x and 

y be in K. 'J;'hen (1/2)x + (1/2)y is in K s;i..nce K is convex and 2 [(1/2)x + 

(1/2)y J = x + ry is in K s;i.nce K is inverse starlike. Therefore K + KCK. 

Corollary; If K is star like from O and K + K (__ K, then K is a convex 

cone with vertex at Q, 

Theorem 18: Let the subset K of L containing O be ;inverse starlike 

from O and mid-point convex. Then K is a convex cone. 

Proof: First it ;i..s proved that K + K is contained in K. Let x and y 

belong to K. Then (1/2)K + (1/2)KC=K implies that (1/2)x + (1/2)y is in K. 

Hence 2 ~l/2)x + (1/2)y] = x + y is in .K since K is inverse starlike. There­

fore K + K is contained in K. 

Next it is proved that AX is coi:itained in K for )\. ?0. If "),.. .:C. l, then 

NCC K since K is inverse starJ..ike from O. Hence coni,=lider O < "- < 1. There 

is an integer n so that 1/2n ~ "),... If xis in K, then (1/2n)x is in K 

since K is mid~point convex and O is in K. Also there exists a number a~l 

so that 0,(1/2n) = "),.. apd ]:lence a(l/2n)x = f\X is in K since K is inverse star-

like from 0, Therefore K is a convex cone. 

A real bilinear transformation (see Taylor [13] , page 322) on LXL 

is a mappin,g B of LXL into the real numbers so that B(q,x + l3y, z) = ex,B(x,z) + 

13B(y,z) and B(x, ~y + !3z) F q,B(x,y) + 13B(x,z) for all real numbers ex, and 13 

and all x, y, and z in L. Associated with each bilinear form Bis the 

quadratic form Q defined py Q(x) F B(x,x) for each x in L. Hare [s] has 

proved that the set of points at which a quadratic form is positive (non-
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negative, non-positive, negative) is a projectively convex set. Certain 

subsets of L defined by a quadratic form are inverse starlike. 

Theorem 19: Let Q be the real quadratic form associated with the bi­

linear form B. The set K = l x 6 L : Q (x) 2:: 0 5 if;l inverse starl:l.ke from 

each po:i,nt a of L for wh:i,ch Q(a)LO and B(x,a)::::;O for each x in K. 

Proof: First observe that a real bilinear form is syrwnetric so that 

B(x,a) = B(a,x). LE:lt x 'oe in Kand a.~l; let a l:J.ave t'.p.e property that Q(a)~O 

and B(x,a) :::;_ 0 for all x in K. Then Q(a.x + (1 - a.)a) c: B(a.x + (1 - a.)a, 

a.x + (1 - a.)a) = a.2B(x,x) + (1 - a.) 2~(a,a) ~ 2a.(1 - a.)B(x,a) = a.2Q(x) + 

(1 - a./Q(a) + 2a.(l - a.)B(x,a) wh;i.ch is greater than or eq\lal to 0. Thus 

K is inverse starlik~ from a. 

Hare's result an9- Theorem 19 naturally raise the question that if a 

set is projectively convex and not convex, is it ;inverse starlike from 13ome 

poi:o.t? The following figure gives an example in. the plane of a projectively 

convex set which is not inverse starlike from any point. 

\ 
Figure 2 
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The quadratic form Q is called a positive quadratic form provided that 

Q(x) 2. 0 for all x in L. One is led then to investigate the set S i= [x E L 

Q(x) = 03 and obtain the following result. 

l'heorem 20: Let Q be the: quadratic form at,=,soc:i,ated with the bilinear 

form B and assume that Q is positive. Then S = l x E L : Q(x) = o} is a 

subspaoe of L. 

Proof: Observe that Q(O) = 0 so that O is in S. Let x and y be in S 

and let a and~ be any real numbers. Then Q(ax + ~y) = 2a~B(x,y) since 

Q(x) = Q(y) ~ 0. Now sinGe Q is positive, Q(ax + ~y)LO for all choices of 

x, y, a, and~' but 2a~~(x,y) may be vositive or negative depending on tpe 

choice of~ and~ whioh implies that B(x,y) = 0 for all x and yin S. Thus 

Q(ax + ~y) ;::, 0 and 4ence S ;i.s a subspace of L. 

A po~itive definite qua~ratic fqrm is a positive quadratic form Q for 

which Q(x) = 0 iin.pHes that x = 0. One may consider certain sets associated 

with a pos:i.tive definite quao.ratic form. For example, l x E L : Q(x)~a 5 
or f x EL: Q(x)zo:,1 or 1x e L: a:::;:Q(x):::::~} are sets associated with Q. 

So far aa the author is aqle to de~ermine, the properties that these sets 

have is 'unsolved. 



CHAPI'ER II 

THE INVERSE STAR ENVELOPE OF A SET 

The convex hull of a subset S of the linear space Lis defined to be 

the intersection of' all convex subsets of L containing S; it is the smallest 

convex i;iet c;ontaining S, Stoker [12] use;3 the notion of characteristic 

cone of a set, which is the smallest cone with a given vertex which contains 

the set. The purpose of this ch?pter is to define the inverse star envelope 

of a set, that is, the smallest inverse starlike set (from a given point) 

whicn contains the set, and to develop the properties of this envelope. It 

will be observed that many of the properties of the inverse star envelope of 

a set Sare determined by vroperties of S. Many analogous results may be 

obtained for tAe star envelope of a given set, the star envelope being the 

$mallest starlike set (from some given p9int) which contains the set. 

The following definitions f9r the star envelope and the inverse star 

envelope will be used. The~ envelope of a set S from the point a is 

denoted by Sa and is defined by Sa= lJ8xa. (This notation will not be . XE. 

confusing if one remembers that l.ower case Greek letters are used for scalars 

and lower case Latin letters for elements of L.) The inverse star envelope 

of a set S from the point a is denoted by CT)Sa and is defined by CDSa = 

x~S c:oxa. Clearly tne star envelope of Sis starlike from a and the inverse 

star envelope of Sis inverse starlike from a; also these are the smallest 

(in the sense of set inclusion) such sets containing S. 

~o 
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The first grou~ of theorems gives results concerning set operations in 

L for the inverse star envelope. 

Theorem 21: lf AC B, then CDAa C coBa. 

Proof: Let x be in coAa. Then there is an element y of A so that x 

is on mya. But ACB implies that y is in Band hE;mce ex;ya C mBa. Thus 

x belongs to c:cBa and it follows that CDAa C coBa. 

TJ;ieorem 22: Let 

Then co( ~ scx.)1:1 ::::, 

q be a subset 
CX, 

LJ cos a and 
CX, CX, 

of L for each ex. in some index set 6. 

co( n s )a C n(cos a). 
CX, CX, CX, CX, 

Proof: first consider the union of the sets S and let x belong to 
CX, 

co( ~ Scx;)a. Hence x is on cosa for some element s of LJ S . But then 
CX, CX, 

s must belong to S~ for some~ in 6 and OJsa is contained in coS~a which 

implies that xis in COS~a. Thµs x belongs to ~ OJScx.a and it follows 

that co( y Scx.)i:i C ~ ( co Sex.a). Next show inclusion the other way. 

Let y belong to U ( cos a). Then y belongs to CDSAa for some ~ in 6 
CX, CX, I-' 

and hence there is an element z of S~ so that y is on coza. Now z is in 

LJ S which implies that mia C co( LJ S )a and thus that y belongs 
CX, CX, a, CX, 

to OJ ( ~ Sex. )a, Therefore it has been proved that m ( ~ s )a == · U (cos a). 
CX, q., CX, 

Next co~sider the intersection of the sets S . 
CX, 

cos a for all a, in I::!., Uence by Theorem 21, 
CX, 

co( n a, 

ex. in 6 and it must then follow that m( Q Sa.)a C 

Clearly n s cs C 
CX, CX, CX, 

Sa,)a C CD Sex.a for all 

Q CDS ex.a. 

An example in :m1 wl:rich shows in the latter c;ase that inclusion may be 

proper is thE) following. Let Sn= [ 0, 1/n J for n = 1, 2 , · · · and let 

a ::.: 0. Then 
Oo n s == 1 o 1 9 o th1;1 t 

h "'"' n l 
(X) ( n s ) 0 == l O 1 but ms O == [ 0' co) 

n,,,, n n 
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00 

for each positive integer n and hence ,D, OJSnO:;: [ O, Q;)). 

Theorem 23: Let S qe a subset of L. Then Cf CDSa) C coC(S)a. 

Proof: Let x belong to C( CD Sa). Then S C msa implies that x is in 

C(S). But C(S) is contained in· COC(S)a so that x must belong to coc(s)a. 

Thus C( oosa) C c;oC(S)a. 

Set inclusion in Theorem 23 may be proper as is demonstrated by the 

followingex:ample in the plane. Let S = £(x,y): O~x~l, y = l - x1 and 

a= (0,0). Then (X)Sa = l(x,y): xzO, y~O, y~l - x} so that C( COSa) 

is not even inverse starlike from a. However, coc(S)a = E2 . 

T~eorem 24: Let S be a subset of L. Then cok(S)a = k( oosa) and 

k(S)a == k(Sa). 

Proof: Let x belong to a:;>k(S)a. Then there is an element y of k(S) 

so that x is on c;oya and hence x "' i\y + (1 - 7'.)a for some i\ 2:1. Furthermore 
n n 

since y is in kts), y = E m.y. 
i=l J. 1 

where y. is in S and · ·E a,, = 1, a,,~ 0 for 
1 . 1 1 1 . . 1= 

w 
' 

i = 1, 2, 
.. ~ . , n, 

. n n 
The~ ·x = i\ E a,.y. + (1 - i\)a = Ea,, (i\y. + (1 - i\)a) 

. 1 1 1 . 1 1 . 1 
1= 1= 

which must belon~ to k( CO Sa) since r..y. + (1 - r..)a is in COSa for eacb 
1 

i = 1, 2, · · ·., n. Thus C:Ok(S)a Ck( oosa). 
n 

Next let z belong to k(cosa). Then z = E a,.y. where 
. 1 1 1_ 
1= 

n 
E<:X.i=l,a,i~O, 

i=,l 

and y. is in CDSa for i:;: 1, 2, ···, n. ·F-b.rthermqre y. = r...w. + (1 - A..)a 
1 1 1 1 1 

where A{?:'.. l and wi is in S f.or each i :;: 1, 2, , n. Then z "" 

n 
E a,,(i\.'w. + (1 - i\1.)a) 

i;::,::l 1 1 1 

n 
:;:; E ( a, : i\ :w-. + a, . ( 1 - i\i) a ) . 

i=l 1 1 1 1 . 

n 
Let a, = E a, :')>... ; then 

. 1 1 1 1= 
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n n 
1 - ex.= ~ cx..(1 - /\..) and hence z =a.~ (0,,.A../c:x.)w. + (1 - c:x.)a which belongs 

i=l + 1 i=l 1 1 1 

n 
to COk(S)a since Q.~l and I: (q.,,'J,..,/0,,)w. is in k(S). Therefore C:Ok(S)a 

i=l 1 1 1 

k( CD Se,). 

A similar argument will show that k(S)a = k(Sa). 

The fact that the convex hull of a set is convex is used to prove the 

following corollaries to Theorem 24. 

Corollary 1: If Sis c9nvex, then COSa is also convex. 

Corollary 2: If Sis inverse starlike (starlike) from a, then k(S) is 

inverse star like (starl;i.ke} from a. 

The next gro~p of t~eorems concerns the algebraic operations on sets 

in L. 

Theorem 25: Let S be a subset of Land let ex, be. any non-zero real 

nu,mber, Then co(c:x.S )a = ex.( CO Sb) where a.b = a. 

Proof; Let :x belong to 00 (q.S )a. Then x = '1i(cx.y) + (1 - "-)a wl1ere /1. ~ 1 

and y is in S. Then A.(cx.y) + (1 - /1.)a = cx.(A.y) + (1 - 'J,..)cx.b = cx.(/1.y + (1 - 'J,..)b) 

which belong$ to cx.(COSb) since ">,,y + (1 -7'.)b is in COSb. Thus co(cx.S)aC 

a,( CO Sb}. 

Next let z belong to ex,(.C:OSb). Then z = cx.('J,..w + (1 - 'J,..)b) where w be-

1ongs to Sand "-~L Furthermpre z == Ar(cx.w) t (1 - 'J,..)a,b = 'J,..(c:x,w) + (1 - 'J,..)a 

whicn be)-ongs to co(c:x.S)a. Therefore it has been proved that ro(c:x.S)a = 

c:x. ( 00 Sb)', 
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Theorem 26: Let Sand T be subsets of L. Then co(S + T)a C C:OSb + 

C:OTc where b + c "'a. 

Proof: Let x beJ.ong to co(S + T)a. Then x ::; A.(s + t) + (1 - /\.)a where 

s belongs to S, t belongs to T, and A.~l. Then x:;:: A.S + i,.t + (1 - A.)(b + c) ~ 

(A.s + (1 - ;..)b) + (11,t + (1 - )l.)c) wnich belongs to m Sb + co Tc. Therefore 

co(S + T)a C COSb + COTc. 

That·inclusion may indeed be proper is demonstrated by the following 

examples in the plane. Let S = 1(1,0)} and T = 1(0,1)3 and a"' (o,o). 

Then co(s + T)a :i,s a half-line but rosa + COTa = l(x,y) : x ~l, y~15. 

One natura;t.ly seeks condj,.tions under.which eg_uality wou,ld hold in 

Theorem 26. A pl;l.rtial solutio:n to t~is problem is given in the next theorem. 

Theorem 27: Let Sand T be cones with vertices at band c, respectively. 

Then c;o(s + T)(b + c) = CPSb + corrc. 

Proof: Using the result o{ Theorem 26, one needs only to prove that -
COS1:)J + COTc C: co(S + T)(b + c). Since S and T are cones with vertices at 

b and c, it follows that co Sb ::; S and CO'l'c = T so that (X)Sb + COTc = 

S + T. Furthermore S + T C 00 (S + T) (b + c) which impl;i.es that CX) Sb + 

COTc Ceo($+ 'r)(b + c). Therefore COSb + OOTc = oo(S + '.L')(b + c). 

'l'he cunverse of the l;l.bove theorem ;Ls·not true. The following example 

. E1 . t t S d T ~· h t b t f' h" h (S T)2b in· gives· wo se s aµ · w~,ic are no cones· u or w 1c (X) + = 

CO Sb + {X)Tb. Let S [0,1] e.nd T = [0,2] . Tben S + T = [0,3] and 

c:o(S + T)O = mSO + COTO= [o, oo) but S and T are not cones. 

The !:letting f'or 'this next group o;f theorems is a linear topologiGal 
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space and it will again be Ob$erved that many properties of the set carry 

over to tl).e inverse star envelope of the set. 

Theorem 28; Let S be a subf:iet of a LTS. Then ms 0 a C(cosa) 0 . 

Proof: 0 Let x belong to ms a. Then x = 11,y + (1 - "A.)a where 11,~l and 

. . so y is in · . Furtnermore there exists a neighborhood U of y so that uc=s. 

Also "A.y + (1 - "A.)a belongs to ~U + (1 - 11,)a which is a neighborhood of 

"A.y + (1 - 11,)a and is contained in mSa, Therefore x belongs to ( oosa) 0 

wb,ich proves that cos 0 a C( COSa) 0 • 

'rhe fact that S = s0 if S is ap open subset of L is used to obtain the 

following corollary to Theorem 28, 

Corollary: If Sis an open subset of L, then COSa is also open. 

That set inclusion in Theorem 28 may indeed, be proper is demonstrated 

by the following example in E1 . Let S = { 1·1 and a = O. Then s0 = ¢ so 

that cos 0 o = ¢ bui;, ( coso) 0 = (1, co). A sharper result, however, can be 

proved for the closure operation. 

Theorem 29: Let S be a SUbf;let of a LTS. Then e:osa oosa. 

Proof': Let x belong to OJ Sa. Then x = /1.Y + ( 1 - 11,)a where "A.~ l and 

y is sowe element of S. Now yin S implies that there is a sequence of 

points y (n = l, 2, ···) of S converging toy. Then the points "A.y + (1 - 11,)a 
n n 

form a sequence of' poin,ts of CO Sa which conver&;es to 11,y + ( l - 11,)a = x and 

which must therefore be:)..ong to 00 Sa. Tht,i,s cos'a C co Sa. 
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Next let u belong to OOSa. · Then there exists a sequence of points u 
n 

(n = 1, 2, · · ·) of COSa converging to u. Also u =Ax + (1 - A )a where n n n n 

A ~l and x oelongs to S. Solvi:p.g for x n n n one obtains x = (1/A )u + n n n 

( 1 - 1/11,.;) a. Furthermore O < 1/">-.n ~ 1 for each positive integer n so that 

by the Balzano- Weierstrass theorem there exists a subsequence, say ll/An,1, 

which converges to soine number a. with O ~a.~ 1. Therefore the sequence of 

J?Oints x , = (l/A , )u ,· + (1 - 1/r. , )a must converge to a.u + (1 - a.)a which n n n n 

is in S since xn, is in S for each n'. Now then if a./. O, u = (1/a.)(a.u + 

(1 - a.)a) + (1 - 1/a.)a w',hich implies "that u belopgs to cosa since ·1/a. :?. 1. 

If ex. = 0, then th,e sequence f xn ,1 converges to a which implies that the 

sequence of points u, = A ,x , + (1 - A ,)a converges to a. Since limits n n n n 

of sequenGes in Lare µnique, u = a. Also the sequence txn,1 converges 

to a so that a i$ in S whic4 implies that a = u belongs to co Sa. Therefore 

it has been :r;,roved that C:O Sa = oosa. 

Corollary; J;-f the subset S of a linear topological space is cJ..osed, 

then 00 Sa is also closed. 

Theorem 30: Let the subset S of the LTS L be connected. Then COSa 

is also connected. 

Proof: As-e!urne by way of contradiction that 00 Sa is not connected. 

Then oosa = ALJB wnere A and B are mutually separated and non-empty. Now 

CO Sa = US coxa and each COxa is connected so that either Cbxa CA or 
XE · 

ooxaCB. Thl,J,s A= LJoox'a and B = LJco~"a v:here x' runs through all x' 

ins for·whicl). (X)x'aCAand likewise for x". Then·snA f .¢ and sn;s f ¢. 

Since A f ¢, there exists an x' in S so that cox'aCA. Likewise it can 
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be proved that snB f ¢, But now SC OOSa implies that S = (snA) LJ(snB) 

which are mutually separai;ed and non-empty, contradicting that Sis connected. 

Therefore 0) Sa is connected. 

Theorem 31: Let A be a dense subset of S in the LTS L. Then mAa is 

dense in OOSa. 

Proof: It must be shown that every point of C:OSa is either a point 

or limit point of OOAa. Hence let y belong to COSa. T;hen y a:,x + (1 - a:,)a 

where x is in S and a:,~ l. Now x in S implies that x is either a point or 

limit point of A; If x is in A, then y is in mAa. Hence assume that x 

is a limit point of A and let l. xn 1 be a seq_uence Of points of A conyerging 

to x. Then the seq_uence [ a,xn + (1 - a:,}a} is a seq_uence of points of ooAa 

converging to ccx + (1 ..;. a,)a = y. Therefore OJAa is a dense subset of CO Sa. 

It seems that perhap$ a closed inverse starlike set should be the in-

verse star envelope of ;i.ts bo1J.ndary. The next theorem shows that this is 

true in certain cases. 

Theorem 32: Let K be a closed subset of the LTS L which is inverse 

starlike from a and so that a is not in K. If Bis the boundary of K, then 

K ::;; COBa. 

Proof: Since K is closed, BCK and by Theorem 21 it follows that 

OOBa C mKa K. Hence let x belong to K. The point a is not in K implies 

there exists a nei&;;hborhood U of a so that unK = ¢. Conseq_uently, since 

x is in K and a is not in K, ax must intersect the boundary B in at least 

one point p. Then p =ax+ (1 - a)a for some number O<a ~l, But 
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x = (1/a)p + (1 - 1/~)a and 1/a 2 1 implies that x belongs to coBa. There-

fore K = co Ba. 

It is not true in ~eneral that if a set is connected, then its boundary 

is also connected. This statement is true for certain inverse starlike sets. 

Theorem 33: Let K be a connected set which is inverse starlike from a 

in the LTS Land assume that a is not in K. Then the boundary B of K is 

connected. 

Proof: AssUJ;:tJ.e by way of contradiction that Bis not connected and 

write B = MlJN where Mand N are mutually separated, non-empty, and both 

closed since B is closed. By Theorems 32 and 22, K = COBa = coMa lJcoNa. 

Furthermore coMa and coNa are both closed by the corollary to Theorem 29. 

It will be shown next that indeed C:OMa n co Na ¢. Assume the contrary 

and let z belong to COMa n OONa. Then z = a,m + (1 - a)a and z = ~n + (1 - ~ )a 

where m belongs to M, n belongs to N, ex,~ 1, and ~ ~ 1. It may be assumed 

without loss of· generality that ~ ~ex, (see Figure 3). Thus aznM f ¢ and 

aznN f ¢ si,nce m is in aznM and n is in aznN. Now either the open seg­

ment )mn{ is contained in K0 or mn is contained in B since n is in Band 

m = (~/a)n + (l - ~/a)a wit'h ~/a ~ 1 which implies that mn CK. If )rrin( is 

contained in K0 and pis on )mn(, then there exists a neighborhood U of p 

so that UCK. If p =an+ (1 - cr)a and m =En+ (1 - E)a, cr>l and E>l, 

then m belongs to (E/cr)U + (l - E/cr)aC K0 which contradicts that m belongs 

to B. Also if mn CB then M and N must have corm;non points since they are 

both closed and mn is a copneoted subset of B containing points of the sep­

arated ,:fets M and N. This is a contradiction that MnN === ¢. In either case 
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a cqntradiction has been reached so that c;oMa ncoNa = ¢. But this implies 

that K, ·and h,ence :K, is not connected. But the hypothesis was that K is 

connected. Tll!=!ref0re the assumption that B is not connected is untenable 

and it must follow that Bis connected. 

Figure 3 

An inverse starl;:tke i;m'bset of a normed line1;1r space is unbounded. 

Stoker [ 12 J made a study of u.nboµnded convex sets in E3 and proved that 

the boundary of an unbounded convex set with interior points in E3 is empty 

or is ho~eomorphic to either two parallel planes, the surface of an infinite 

right circular cylinder, or a plane. If in addition it is assumed that the 

set is inverse starlike, the nature of the boundary may be restricted even 

further. 

Theorem 34: Let K be a closed GOnvex set in En which has interior 

points and is inverse starlike from the origin but does not contain the 

origin. Then the boundary B of K is ho~eomorphic to a hyperplane. 

~: Let (x1, ···, xn) be the re~resentation for points in En and 

let O = (o, o, ··•, o). It may be assumed without loss of generality that 
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the coordinate system for En has been chosen so tnat the point (o, ···, o, A) 

· · K0 · th -. > 0 ( F . 4 ) is ;i,n . w1 · · , ..... · see · 1gu.re . Let H be the hyperplane defined by xn = a 

with O< a<')\.. Let (b 1, b2 , · · ·, 

f of bdry(K) onto H by f(b 1, b2 , 

b ) belong to bdry(K). Define the mapping 
n 

mapping f and its inverse are continuous since a sphere of radius E about 

(bl' b2' 
... b ) will project into a sphere of radius E about (bl' 

... b 
' ' n-1' n 

It is proved next that f is 1-1. Let (bl' b2' b ) belong to bdry(K). n 

Then since (o, o, o, A.) is . Ko in , there exists a sphere U about 

u 

(o,o,a) 

/ 

//// 

"-------;,'-----/ 

Figure 4 

a). 
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(o, O, ···, O, 71.) so that UCK0 • Also S = Q)~(ULJ(b1, b2 , ···, bn)) 0 J OC 

Ko . K . since +s convex, Furthermore (b 1, b2, ···, bn-l' abn) belongs to S 

for all a> 1 since the 9egment joining the origin to (b1 , b2 , · · ·, -bn-l' abn) 

intersects the set k(ULJ(b1 , b2 , ···, bn))°CK0 • Hence a:;rnume there exists 

a :i;ioint (b 1, b2 , · · ·, .b 1 , b') of bdry(K) different from (b 1, b2 , · · ·, b ) 
n- n · n 

with b' < b . ·n n Then T = k(ULJ(b 1, b2 , \i-l' b;) LJ(2b 1 , 2b2 , ' .. , 2bn)) 0 c 

K0 since K is convex and furthermore (b 1, b2 , ···, bn) belongs to coTO 

contradieti:p.g that (b 1, b2 , · · ·, bn) is in bdry(K). Therefore the line 

through (l:J 1 , b2 , · · ·, bn) and (b1 , b2 , · · ·, bn-l' o) intersects the bdry(K) 

only at one point which proves that f is 1~1. 

It is proved next that f is onto H. Let (h1, h2 , ···, hn-l' cr) belong 

to Hand let (ah1, ah2 , ···, ~hn~l' aa + (1 - a)7'.) be a point of the segment 

joining {hl-' h2 , · · ·, nn-l' a) to (o, O, '· ·, O, 11.) with O <a< 1 and inside 

the sphere U. Then {l/0,) (an1, ah2 , · · ·, ahn .. l' aa + (1 - a)11.) = 

{h1, h2 , ··•, hn-l' a+ (-1 + 1/a)~) bel-ongs to K. If the line M through 

the points (~1, h2 , ···, hn-l' cr) arid (h1, h2, ···, hn-l' a+ (-1 + l/a)71.) 

is not contained :i,.n K, then it intersect·$ the bdry(K) at some point. Hence 

assume that the line Mis contained in K. Then k(MLJ(o, o, ···, o, 11.))CK 

since K is convex. But this implies that O is in K si:p.ce O belongs to 

k(MLJ(O, o, · · ·, · 0:, 71.)) C~ contradicting that O does not belong to K. Thus 

the line· M must intersect bdry(K) at some point which proves that f is onto H. 

Therefore His pomeomorphic with bdry(K). 

There are many sufficient conditions that may be imposed on a set S to 

in9ure that a~S <DSa -~ L. For example, if S l:ias an interior point or a core 

point, then 4 Q)Sa = L. Also if s aE contains at least three points of every 
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line through the origin, t)J.en the above equality is again satisfied since 

in the segment mxa, the three points may be varied so as to include all 

of the line through the collinear points. An unsolved problem is to char-

acterize in some way, or to find a necessary and sufficient condition on, 

the set S so that US CDSa = L. The follow:j'..ng theorem is a result in this 
aE 

direction. 

Theorem 35: The subset S of L is flat if, and only if, US CD Sa = S. 
aE 

Proof: Assume first t4at S if flat. Then for every x in Sand a in S, 

L(a,x)CS and since CD:icaCL(a,x), coxaCS which implies that a~S CDSaCS. 

Also SC c:oSa for each a in S so that SC LJS CDSa. Therefore US CDSa = S. 
aE aE 

Next S\lppose that S = LJS CD Sa and show that S is flat. Hence let x . . aE 

and y belong to Sand prove that L(x,y) CDxy LJ CDyxLJxy CS. Since S = 

LJS CDSa, COxy LJ myx CS. It remains to be proved that xy is contained 
aE 

in S. Let u be on CXJxy; then u is in S so that CDxuC U8 COSa = S. 
aE 

xyCc:oxu so that xyCS. Therefore L(x,y)CS which implies that Sis 

flat. 

But 

A point p of a set Sis called an extreme point of S if pis contained 

in no open segment contained in S. The Krein-Milman theorem (see Day [6], 
page 78) states t:hat a compact convex set is equal to the convex hull of its 

extreme points. A similar result can be proved for starlike and inverse 

star like sets in terms of the star envelope and inverse star envelope using 

the notion of relative extreme points defined by Klee [9 J . Let L denote 

a linear topological space and let X and Z be subsets of L. A point z in Z 

is said to be extreme in Z relative to X provtded z does not lie in any open 
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segment )xz'( determined by distinct points x of X and z' of Z. The set 

of all such relative extreme points will be denoted by exXZ. When Z is 

convex, a point z of Z is an extreme point of Zin the usual sense if, and 

only if, z belongs to exZZ. 

Theorem 36, Let S be a closed subset of the LTS L which is starlike 

from a and suppose S contains no ray emanating from a. Then S 

Proof: Certainly ·(exaS)aC S since S is starlike from a. 

X be in Sand show x is in (ex S)a. Let P cc ax LJ coxa be the a 

x emanating from a. Then Pnc(s) f ¢ since S contains no ray 

(ex S)a. 
a 

Hence let 

ray through 

emanating from 

a. Let Q be the closure of Blic(s). The set Qns f ¢ since if Qns = ¢, 

then p :;a (snP)LJQ and SIIP is closed and Q is closed so that p is the union 

of separated :;,ets 9ontradicting that Pis connected. Thus let p belong to 

Then pis in ex S because if p does not belong to ex S, then there 
a a 

i(:l an element y of S so that p itl on the open segment )ay( which implies 

that p is in the interior (with respect to the line topology) of S nP. But 

then p cannot belong to Q which contradicts that p is in Q ns. Now ap LS 

since pis in Sand Sis starlike from a. Also xis on ap since if xis 

not on ap, then there is a number a,> 1 so that x = a,p + (1 a,)a which im-

plies that pis on the open segm~nt )ax( again contradicting that pis in Q. 

Hence xis on ap which proves that S = (exaS)a. 

Theorem 37: Let S be a closed subset of the LTS L which is inverse star-

like from a and suppose a belongs to C(S). Then S = CD(ex E)a where E = 
a 

LJ { cl(ax IIC (S)) : x € S} and cl(ax nc (S)) denotes the closure of ax nc (S) 

in the line topology for L(a,x). 



Proof: Let p be different from.a, and belong to ex E. Then pis not in 
a 

E s:i,nce :i,f p belongs to E, p must belong to )ax ( (le (S) for some element x 

of S. But )ax(nc(s) is an open segment, since S is closed and )ax(nc(S) 

is non-empty, and p on this open segment contradicts that pis in ex E. 
a 

Hence pis a limit point (in the line topology) of axJ1c(s) for some x in S. 

But then p must belong to $ since S is closed so that cx:;,pa CS. Therefore 

O)(ex E)a c· S. a -

Next let x belong to S. Now axl!S is a closed segment since Sis closed. 

Thus axns = px and it must be proved that pis in ex E. If p does not be­
a 

long to ex E, then there exists an element w of E so that pis on )aw( CE. a 

Since pis in S, w is also in S, Thus ap CE and aw CE with ap = cl(axnc(s)) 

and aw :;: cl(axnc (S)) implies that p = w, a contradiction. Therefore p 

belongs to ex E wJ1ich proves that S = co(ex E)a. a a 

Theorem 37 is used to prove the following theorem for the inverse star 

envelope of the intersection of sets. 

Theorem 38: Let A and B be non-empty closed subsets of a LTS so that 

coAa CDBa and a does not belong to A[lB. Then AflB f ¢ and CDAa = COBa 

Proof: Since ALJB is closed and a does not belong to ALJB, there exists 

a neighborhood U of a so that un(ALJB) = ¢. Henoe roAa = OOBa is closed 

by the corollary to Theorem 29 and contains no ray emanating from a. Thus 

by Theorem 37 (X)Aa LJ l ropa : p E exaE} where E = LJ l cl(axflc (s)) : 

X E S}. 
Now AnB CA implies that CD (A nB)E!. C ct;JAa. It remains to be proved 
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that coAa C co(AnB)a. lience let x belong to COAa. Then there exists 

an element p o;f exaE so that x is on oopa. Also p belongs to AnB since 

if p does not belong to AnB, then either p does not belong to A or p does 

not belong tv B. If p does not belong to A, then since p is in ooAa there 

exists a number O<a,<l so that a,p + (1 - a,)a is in AC CDAa which contra-

diets that pis in ex E. A similar argument will hold if p does not belong 
a 

to B. Hence p is in AnB which implies that AnB 'f ¢ and further that x 

belongs to OJ(AnB)a since x is on copa. This completes the proof that 

COAa = co(AnB)a. 

This theorem is not true for sets A and B which are not closed and for 

which a belongs to AlJB as is demonstrated by the following sets in the 

plane. Let A l_ (x,y) 

{(x,y) 

2 
X 

2 2 + y r and r is a rational number with 

0 s. r :s: 1 } and B x2 + y2 ;= r 2 and r is an irrational number with 

0 < r < 1 or r = 0} 

f ( 0, 0 ) } and clearly 

Tl).en COAa "' WBa = E2 where a = (O,O) but AnB = 
. 2 

co(AnB)a f E . 

Convex sets may be characterized 
n 

in the following manner: A set Sis 

convex if, and only if, 8 = t I: CX,.X. 
i=l l l 

n 
:a,.~0, I:a,. 

l ic::l l 
1, xi E S} ; the index 

n is not f'ixed. Hence the convex hull of any set K may be represented by 
n 

k(K) = ) I: CX,.X. 
l i=l l l 

tive integer. The 

n 

(X,i 2: 0' I: (X,. 

i=l l 

1, xi E K} where again n may be any posi-

final result of this chapter gives a similar characteriza-

tion for the star envelope and the inverse star envelope of a convex set. 

n 
Let S be a convex subset of L. Then Sa = \ I: a, .x. + L . l l l 

Theorem 39: 

(1 - a,)13. 
n 

9,. ~ 0, I: a,. = a, < 1, x. E S} and 
l i=l l - l 

i= 

n 
COSa = l I: a,ix. + (1 - a,)a 

i=el l 



Proof: Onlr the proof for CDSa is given; the proof for Sa is very sim-

ilar and will be omitted. 
n 

The first argument demonstrates that the set K = 

{ r; t;X,.X. + (1 - cx.)a : ex..~ 0, 
irl l l l 

~ ex.. ::,: ex. ~l, x. € S 1 is inverse starlike 
. l i i J l:;=: 

n 
from a. Let y = r: a,.x. + (1 - a,)a belong to Kand let 13 ~l. Then 

. 1 ;L J., 
;L= 

l3y + ( 1 - 13 )a = 
n 
r: 13cx..x. + 13(1 - ~)a+ (1 - 13)a 

i=l ;I. J,. 

n 
r: 13cx..x. + (1 - l3cx.)a which 

i=l l l 

belongs to K. Hence~ is inverse starlike from a. 

Since cx:>Sa is the smallest inverse starlike set containing S and since 

K is an··;:Lnverse starlike set containing S, it follows that C:OSaCK. The 
n 

next argument demonstrates that K C cosa. Let y = r: cx..x. + (1 - cx.)a 
. l i i 

belong to K. Then y = (cx.y)/cx. 

n 

l= 

n 
=a,~ (cx../cx.)x. + (1 - a,)a belongs to c:oSa 

. 1 l l. 
J.= 

since r: (cx../cx.)x~ belongs to Sand Sis convex. Thus K = cosa. 
. 1 ],. +-J.:;::: 



CHAPTER III 

A METRIC SPACE OF STARLIKE SETS 

In order to prove the Blaschke selection theorem, which asserts that 

n 
the class of closed convex subsets of a closed bounded convex set of E can 

be made into a compact metric space, Egglestori [ 7 J (page 59) develops a 

metric space of bounded convex sets. The purpose of this chapter is to 

develop in a similar fashion a metric space of closed bounded starlike 

sets, which will, of course, inQlude all closed bounded convex sets. A 

theorem for starlike sets analogous to the Blaschke selection theorem for 

convex sets cannot be proved in the same manner, however, since not all the 

theorems leading ,UP to the Blaschke selection theorem carry over to starlike 

sets. 

The se,tting for the results of this chapter is a normed linear space L 

where the norm of an element ;x: of L is denoted oy Ii x II and the distance 

from x to y is II x - y II . 

Let S(R) denote a sphere of radius R whose center is the origin and let 

0-. denote the class of closed sets contained in S(R). The distance from a 

[ II X - y II y E Y} and a 

called a a-neighborhood of Y. 

point x to a set "i is defined l:;ly p (x, Y) = inf 

set of the form U(Y,cr):;: 1_x: p(x,)'.)<cr} is 

The metric for Cl is defined as follows. Let x1 and x2 be elements of 

and let 0 1 b.e the greatE;st lower bound o{ positive numbers o such that 

U(X1, cr) =:)X2 and let 02 be the greatest lower "bound of positive numbers a 
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such that U(X2 ,cr) :::::JX1 . The distance oetween x 1 and x2 is 6(X1,x2 ) = cr1 + cr2 . 

It can be ~roved that this distance fµnction satisfies all the conditions for 

a metric. 

A sequeni;:e t Xi 1 of members of Q is said to converge to a member X 

of Q (or X. tenq1;1 to X) provided that b.(X. ,X) tends to O as i tends to co. 
1 1 

The reF3ults of this chapter are concerned with the subclass j of Cl 

of all closed suosets of S(R) which are starlike from some point of S(R). 

Theorem 40: In the metric space Cl if Xi tends to X, Xi is starlike 

from a., and a. tends to a, then Xis starlike from a, 
1 1 

Proof: !f Xis not starlike from a, then there exists an element x of 

X so that ax is not contained in X. Hence there exists an element x of ax 
0 

which is not in X, The set Xis closed which implies that there exists a 

neigpborhood U(x0 ,cr) so that U(x0 ,cr)nx = ¢. Since Xi tends to X and ai 

tends to a, it is possible to c)'.).oose i large enou~h so that II ai - a II < cr/2 

and A(Xi,X) < cr/2. Then there is an element x I of Xi so that II x 1 - x II < cr/2. 

Hence there exists a;n element :x:' of a.x' so that llx - x' ll<cr/2. But then 
0 1 0 0 

also for each y of X, II y .;. x' II> cr/2 since x' is in U(x ,cr) and this con-o · 0 0 

tradic;:tpi that b.(Xi,X) < cr/2, Therefore the assumption that X is not starlike 

from a leads to a contradiction which proves that Xis starlike from a. 

Let ,S,' be the class of all elements S of J for which s0 f. ¢. 

Theorem 41: Let Xi tend to X where Xi and X belong to 1', with Xi 

2 I 
star like from ai which tends to a. Let D be a ,.member of /cl. which is also 

starlike from a and assume a belongs to (xnn) 0 • Then xinD tends to xnn. 
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Proof: It is proved that for every positive number E there exist inte-

gers Mand N so tl).at 

(1) U(X!JD,E)=:)X.nD 
l 

for each integer i :?. M and 

(2) U(X. nD, E) =:)XnD 
l 

for 

Suppose by way of contradiction that (1) is false. Then there exist 

an E > O, a seq_uence of posi"\;ive integers i. tending to co, and a sequence 
J 

{ pj} so that pj belongs to Xi .n D and for every j and for every x in xnD, 
J 

I/ x - p j II > E. There exists a subsequence of l p j} which converges and it 

may be assumed that p. tends top without loss of generality, Furthermore 
J 

pis in D since Dis closed and each pj belongs to 1). Since Xi tends to X 

and pj belongs to Xi, :j..t follows that p belopgs to X and hence that p be­
j 

longs to xnD. :\3u,t for the given E there exists a sufficiently large integer 

j so that II p. - p II < E which is a contradiction since for every X in xnD, 
J 

II x - P. I/ > E. Therefore (1) \s tru,e, 
J 

Suppose by way of contradiction that (2) is false. Then there exist a 

sequence of positive integers ij tending to co and a sequence of points pj 

of xnD SQ that for every :x; in X. n D, II x - p. II > E for j = 1, 2, .... 
!:I... J 

J 
Again it may be assurn.ed without loss of generality that pj tends top which 

belongs to xnD, since xnD is compact. By hypothesis a belongs to (xnD) 0 • 

If p = a, then one may choose another point q of (xnD) 0 and proceed with 

the same argument. Now let r be on ap and be such that II p - r I[< E/2 (see 

Figure 5). The point r may be chosen so that r belongs to D0 since a belongs 

0 
to D; also r belongs to X. The~ there exists a positive nw;nber a so that 

U(r,o-)CD. There exists a positive ip.teger N1 1;,o that for every integer 

i ~J;il1 , 6(Xi,X) < a and thus if ij ~ N1 , there exists an element r j of Xi. so 
J 

that II rJ. - r ll < 0. Now r. belongs to xi .n D sj_nce II rJ. - r II < 0 and 
J J 
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U(r,cr)C:O. Furthermore JI p - rj II< a+ E/2 < 3E/4 since U(r,cr)CU(p,E). 

A positive integer M may be chosen large enough so that for every j ~M, 

II J?j - P 11 < E/4. Then for an integer j satisfying j ~Mand ij 2: N1, 

II Pj - rj ll<E since 11:Pj - rj II"" II Pj - P + P - rj II~ II Pj - PII + 

II P - r. II <E. But this contradiGts that for ev(;;ry x in X. , II x - pJ.11 > E. 
J l. 

J 
Therefore (2) must be true. 

The theorem now follows from the definition of the metric for (\ . 

U (r, a) 

p 

a 

figure 5 

The a-neighborhood of any Gonvex subset of a normed linea,r space is 

again convex. The final theorem of this chapter shows that this is also 

true for starlike sets. 

Theorem 42: lf the subset Sofa normed linear space is starlike from 

a and a> 0, t'.p.en U (S, a) is star like from a. 

Proof: Let x belong to U(S,cr); it muf;lt be proved that ax is contai.ned 

in U(S, a). Since xis in U(S,cr), there exists an element y of S so that 

II x - y II < cr, and y in S implies that ay is contained in S. Let x' 



cx.x + (1 - ex,)a be on ax (O ~ex, ::;,1) and for the sa:µie value of ex, let y' ;= 

cx.y + (1 - cx.)a. Then, II x' - y' II = lia,x + (1 - cx.)a - ex,y - (1 - cx.)a I/= 
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II cx.(x - y) II == CX, llx - yj/ < ex.er< a whicp impl;ies that x' belongs to U(S,cr). 

Therefor~ U(S,cr) ;is starlike from a. 

The er-neighborhood of an inverse starlike set need not be inverse star-

like andthe same is true fQJ'.' l)rojectively convex sets. The following ex-, 

ample in the plane is projectively convex and inverse starlike from the ori-

gin but no q..;,neighborhood of it has either of these properties. Let S = 

l (x, 0) ; Ix I z. 1} . 



CHAPI'ER IV 

A SEMIGROUP AND A LATTICE OF STARLIKE SETS 

In Theorem 3 it was proved that if His inverse starlike from a and K 

is inverse starlike from b, then H + K is inverse starlike from a+ b. A 

similar result holds for starlike sets. The first purpose of this chapter 

is to develop a commutative semigroup of starlike sets with an identity, a 

non-trivial set of units, a separation theorem, and a restricted cancellation 

law. Final],y a complete complemented 11;1.ttice of star like sets is obtained. 

Most of the results of this chapter hold also for inverse starlike sets; this 

is not true, however, for the separation theorem and the cancellation law, 

Let I be the class of all starlike subsets of a linear space Land let 

,l be the suoclass of !. XL consistiµg of all ordered pairs (S,a) for which 

Sis starlike from a. Define (S,a)rv(S,b) if Sis starlike from both a and 

b. This rv is an equivalence relation since it is easily verified that _it 

is reflexive, symmetric, and transitive. Hence rv partitions ;Q. into equi-

valence classes which are denoted by (s,a)*, and the collection of all such 

Q-M:. equivalence classes is denoted by /~ 

A sum operation + ;is defined in J,t- by (s1,a)'* + (s2 ,b)* = (s1 + s 2 ,a + b)*. 

The addition operation ;is well-defined since if (S1,a) and (s1,a') are any 

two representatives of (s1,a)* and if (S2 ,b) and (s2 ,b 1 ) are any two repre­

sentatives of (S2 ,b)*, then (s1 + s 2 ,a + b)* = (S1 + s2,a 1 + b 1 )* since 

i\ + s2 is star like from both a + b and a' + b'. The collection !* is closed 
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under the addition operation and furthermore it is easily shown to be asso-

ciative and conwiutative, and that (o,o)* is the additive identity. 

The group of µnits for J* is the set of singletons (a,a)* and (a,a)* + 

(-a, -a( = (o,o)*. The linear space L is hence isomorphil".! to the group of 

h_ units of /J. 

If S is starlike from a and i\ is real, then A.8 is starlike from ;\a, 

which may be proved similarly to Theorem 3. This result suggests the fol­

lowing definition for a scalar product in J*. Let (S,a)* belong to /cl~and 

')-.. be realj define A.(S,a)* = (i\S,f\,a)*'", This operation is well-defined since 

if (S,a) and (S,a 1 ) are two representatives from (S,a)*, then (i\S,A.a)* = 

((\,S,i\a')* since i\S is starlike from both i\a and i\a 1 • This operation also 

enjoys the usual properties for a scalar product in a vector space: 

a ~S,a)* + ('r,b)1 = a,(S,a)* + 0,(T,b)* 

(a+ f3)(s,a)* =;: a(S,a)* + f3(S,a)* 

(af3)(S,a)* = a~(S,a)*] 

l(S,a)~ = (s,a)*. 

It seems desirable to make ~he convention that the empty set¢ is star­

like from no point and to define (¢,¢)* = £(¢,¢)1, (¢,¢)* + (S,b)* = (¢,¢)'*, 

and i\(¢,¢'f =; (¢,¢)*. These definitions are consistent with the above pro-

perties of addition and scalar multiplication. 

Q* . 
Hence /d is a commutative semigroup under addition with an identity, 

a non-trivial set of units, and 4.tr is furnished with a scalar multiplication. 

2* 
With the operations of addition and scalar multiplication thus defined, /cl. 

satisfies all the requirements for a vector space e4cept for additive inverses. 

Theorem 43: The space J*is homomorphic to the subclass J:= 1._(s,o)}. 
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Proof: - Tbe homomorpM,e;ml:J. of J*to J;is defined by h[(s,a)*] = (S-a,o)*. 

It must be proved that the function thus defined is indeed a homomorphism. 

If (S, a)* and (T, b )*" are in .4*, then h ~$,a)* + (T, b )j = h [(s+T, a+b )j = 

h [(s, a)*] + h ~T, b t] ; and if a, is (S+T-a~p,o)* ;:;;: (S-a,o)* + (T-b,O)* 

real, then h[a(S,,si.)j = h[(aS,aa)*J = (a,8--a,a,o)* = a(S-a,o)* = ah [(s,a)*] 

Therefore his a homomorphism. 

The class J:has the same properties as Al*and furthermore is closed 

under t:p.e operations of addition and scalar multiplication. Hence ,4~ is a 

suostruct1;1.re of J'*. 
The cancellation law for addition does not hold even for very simple 

starlike sets as the followin~ examples demonstr0te. Let s 1 = i_(O,y) 

0 5- y .< m } LJ l (:~c, 0) 

t (1,y) : l:S y < cP 5 
: O 5 x < a:, S , s 2 = l (x, O) : O 5:_ x < oo} , and s 3 = 

LJ f (x, 1) : 1~ x~ 2} . Then s 1 + s3 = l (x,y) : 

15:_x<co, l~y<;:'.CO} "'s2 :Jr s 3, bµt s1 f s 2 . Eowever, a restricted can­

cellation law can be proved using the following separation theorem. The 

setting for this theorem :j.s En. 

Theorem 44: (Separation Theorem) Let S be a closed subset of En which 

is starlike from a and let p belong to c(s). Then there exists a set H 

containing p whicn. is homeomorphic to a hyperplane and so that Hns = ¢. 

Proof: If p does not belong to k(S), then the separation theorem for 

closed convex sets (see Day [ 6 J , pa~e 22) assures the existence of such 

a hyperplane. 

If p belongs to k(S), then let Ube a sphere of radius E and center 

at p so that ufls = ¢ .. It may be assumed without loss of generality that 



the coordinate system for E~ has been chosen so that a z O and p = (o, ··· ,o,a), 

that is, p is on the xn-axis with a> 0. Let H' be the hyperplane defined 

oy xn z a (see Figure 6). Next consider the set co(unH 1 )0 = ~ (x1 , 

> ( I ) ( 2 • . . 2 ) 1/2 1· f x2l· + . . . 2 > 2 d 1· f xn _ a 6; x 1 + + xn-l + xn-l - E an xn 2 a 

X ) 
n 

2 . . . 2 < 2} h" h 4 x1 + + xn-l E w ic is ctosed and convex by Theorems 29 and 2 • 

The bdry( ooCunH')o) = I (xl, ' .. , xn) : xn = (cr/E)(xi + ... + x!_1) 1/ 2 if 

2 2 d 1· f x2
1 + · · · 2 2 1 d · th d · d + xn-l 2:. E an xn = cr + xn-l < E j an 1s e es1re 

set ;H. Certainly if H = bdry( 00 (un:ij' )0), then Hn S = ¢ since if there is 

an elem1::1I,1t X in Hns, then Oxnu contains a point of S, contradicting that 

uns = ¢. T):le set H is homeomorphic with tlle hyperplane H' given by xn = a 

and the homeq111orphis:m is defined by f(z) :::i z if z belongs to unH 1 and f(z) = 

w if z belongs to H\UnH 1 where w is the perpendicular projection of z onto 

H'. More precisely the function f may be defined at each point z = 

' xn-1' cr). 

Figure 6 
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Theorem 45: Let A, B, and C oe subsets of L = En with A compact and 

starlike from a; assume~ and Care closed and starlike from band c, respec-

tively. If A+ B =A+ C, then B = C. 

Proof: There are two cases and in each case it is assumed that Bf C 

and shown that A+ Bf A+ C. 

Case I: Suppose there ex:i,sts an element p of B \ C such that p does 

not belong to k(C). By translation take p = 0. There exists an element f 

of 1* so that f(O) = 0 and f(z) >0 for every z in k(C) (see Day [ 6 J, page 22). 

Sinc(:l f is Gontinuous on the compact set A, t:tiere exists an element u cif A 

so that f(u) = inf { f(z) : z E A} . Suppose u belongs to A + C. Then there 

exist elements a' of A and c 1 of C so that u = a 1 + c'. Thus f(u) = f(a' + c') 

f(a') + f(c') > f(u) + 0 = f(u), a contradiction. Hence u does not belong 

to A+ C. ~ut u = u + 0 belongs to A+ B. Therefore if Bf C, then A+ Bf 

A+ C. 

Case II: Su:ppose for every pin B\C, p belongs also to k(C). Let p 

belong to B \ C, Again by translation take p = 0. By Theorem 44 there exists 

a set H containing O which is homeomorphic to a hyperplane H' and so that 

k(H)nc = ¢. The set H1 may be chosen to contain O and not c since O does 

not belong to C and cf 0. Then there exists an element f of 1* so that 

H' = l z E L : f(z) 0}. ;Let g be the homeomorphism of H' to Hand let 

h be a homeomorphism of L onto L so that h(z) = g(z) for each z in H with 

h(O) 0 and so that h transforms [ z : f(z) > 0} 1-1 onto L \k(H) and 

l z : f(z) <0} 1-1 onto k(H)\H. 

A new vector space structure is introduced on L by defining x EE> y = 
hr-l(x) + h-l(y) J and :>-.*x = h~h-l(x)] w):J.ere X ar,td y are in Land;>-. is real. 

It is necessary to verify that Lis indeed a vector space using these op-



erations, T~e addition$ is a function defined on L)(L to Land * is a 

function defined on ~ XL to L where R is the space of real numbers. Further-

more: 

( 1) (x EF> y) EF> z ::; h ~ -l (x © y) + h -l ( z) J = h [ { h -l (h (h -l (:x) + h -l (y)))} + 

h-1(z)] = h[(h-1 (x) + h-1 (y)) + h-1 (z)]::; h~-1 (x) + (h-1 (y) + h-1 (z))J 

h~-1 (x) + lh-1 [h(h-\y) + h-1 (z))]}J = h~-1 (x) + h-1 (y (f) z)] = 
X Ef) (y EB z); 

(2) x EB y = h ~ -l(x) + h-1 (y)J = h ~ -1(y) + h-1 (x)J = y EB x; 

(3) :?{EBO::; h§-1 (x) + b-1 (a)] == h[h-1 (x) + aJ:::; h[h-1 (x)J = x; 

(4) x EB (-l~x):;,;: h §"\x) + h-1 (-1*:id] = hG-1 (x) - h-1 (x)J = h(O) = o; 

(5) A*(x$y) =h[A.h-1 (xEBy)] = h~(h-1 (:x) +h-1 (y)D = 

h[Al;l,-1 (x) t ",h-l(y)] :;; hch-l(A.*X) + h-l(A.*Y)];:;; A.*X @;\*Yj 

(6) (A.+ µ)*x = h[(:>-. + µ)h- 1 (x)J = h[Xti-1 (x) + µh- 1 (x)J = 

h[h -1(A.*" x) + h -l(µ*" x)] = A.* x $ µ * x; 

(7) A.*(µ;it-x)::; ;\*h(µh-1 (x)) = h[:>-.o.-1 (h(µh- 1 (x)))] = h[{:>-.µ)h- 1 (x)] = 

(A.µ)*x; 

(8) l*~::; h(lh-1 (x)) = h(h-1 (x)) = x. 

Conse~uently, the collection of elements of L furnished with the op-

erations EB and * is a vector space which will hereafter be denoted by h(L). 

The next argument 9hows that h(L) can be furnished with a. topology for which 

the operations EB apd * are continuous. 

There exists a neighborhood basis 'Ll. of O for L which satisfies the 

cond;itions a-f of' §4(2), page 11 of Day [ 6 J . Let h( ~) = l h(U) : U E °U.). 
It is next shown that h(tl) satisfies the conditions a-f and is hence 

a neighborhood basis of O for h(L). 

(a) If x belongs to t4e i~tersection of all sets h(U), then x belongs to 
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h(U) for each U in "U. which implies that h -l(x) belongs to U for every U in 

!'I I -1( ) LA. and hence h x = 0 so that x = O. 

(b) If U and V are i:p. U , then there exists an element W of "ll so that 

wcunv. Hence h(W)Ch(unv)Ch(u)nh(V). 

( c) If U belongs to °Ll and I a,j < 1, then a,U CU. Hence a,* h (U) C h(U) since 

if h(x) is in h(U), then a,*h(x) = h(a,x) is in h(U) because a,x is in U. 

(d) If U belongs to 1J,. , then there t;:Xists an element V of "ll so that 

V + VCU. Hence h(V) El:) h(V)C h(U) s:i,nce if h(x) and h(y) belong to h(V), 

it follows that h(x) EE>h(y) = h(x + y) belongs to h(U) because x + y is 

in V + VCU. 

(e) The point O is a core point of each U in LA. which means that for each 

y in L there exists E (y) > 0 so that 11.y is in U for I 11.J < E (y). Hence for 

ei3-ch h(y) in h(L) there exists E(h(y)) = E(y) so that \*h(y) is in h(U) 

for 111.J < E(h(y)) since \*h(y) c;o h("-y) which belongs to h(U) since 11.y be-

longs to U. 

(f) Each U in LA. is convex in Land hence each h(U) is convex in h(L). Let 

h(x) and 1:l(;y) belong to h(U) and O~a,_:s;l, Then a,*h(x) $ (1 - a,)*h(y) 

h(a,x) EB h((l - a,)y) = h(c;x.x + (1 - a,)y) which belongs to h(U) since a,x + 

(1 - a,)y belongs to U. 

Consequently,. :i."4 has been proved that h(L) is a locally convex linear 

topological space with the opel;'ations © and *" and the neighborhood basis 

h( °\..A). 

The set A is compact and Band Care closed in L so that h(A) is compact 

and h(B) and h(C) are closed in h(L) since his a homeomorphism. Also h(B) 

and h(C) are star1ike from h(b) and h(c), respectively. In order to show 

that h(B) is starl;lke from h(b), let x belong to h(B) and o;:;a.:;: 1. Then 



a*X Ef> (1 - a)*b.{b) = h(ah-1 (x)) Ef)h({l - a)b) = hrh-l(x) + (1 - a)b] 

which belongs to h(B) since h-1 (x) is in Band Bis starlike from b. A 

similar argument will prove that h(C) is starlike from h(c). 

Consider the function F of h(L) into the real numbers defined by 

F(x) = f(h-1(x)). The function Fis linear on h(L) since if x and y belong 

to h(L), then F(x EB y) = f(h""1 (x EB y)) = f[h-1(h(h-1 (x) + h-1(y)))] = 

f(h-1(x) + h-1 (y)) = f(h-1(x)) + f(h-1(y)) = F(x) + F(y); also if a is real, 

then F(a*x) :;:: f(p.-1(a*x)) = f(h-1 (h(~h-1 (x)))) "'f(ah-1 (x)) = af(h-1 (x)) = 

a.F(x). -1 Furthermore Fi~ continuous since f and h are continuous so that 

F belongs to h(L)*. It follows that F(z) = 0 for every z in H; also F(z) > 0 

if, and only if, z belongs to L\k(H) and F(z)< 0 if, and only if, z belongs 

to k(H) 0 . 

The remainder of the argument is now similar to Case I. The set A is 

compact in h(L) sinqe h is a homeomorphism_. The function F is continuous on 

the compact set A in h(L) so that there exists an element u of A for which 

F(u) = inf l F(z) : z e A} . Assume that u belongs to A EB C; then there 

are elements a 1 of A and c' of C so that u = a' EB c'. Hence F(u) 

F(a' EB c') =;!!"(a')+ F(c') > F(u) + 0 since cnk(H) ""¢ and soc' belongs 

to L \k(H). This is a contradict:j..on and therefore u doe:s not belong to 

A©C. But u = u EE) 0 "belongs to A E9 B s:j..nce O is in B. Hence A EBB f A EB C 

which implies that A+ Bf A+ C since his 1-1 and onto. 

This completes the proof of Theorem 45. 

The kernel of a set is the collection of points from which the set is 

star like. Brunn [ 3 J proved that the kernel for closed sets in the plane 

is closed and convex. This result will be proved in Chapter V for a general 
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LTS. The kernel of a set$ is denoted by ker(S). 

Using the notion of the kernel, one is able to define an order relation< 

is easily verified that the order relation< i,s reflexive, transitive, and 
,-

antisymmetric. 

With thE;il ordel'.l relation thus defi,ned J.* is a lattice (see Birkhoff [ 2 J ) . 
'l'he notation (S,a)*V(T;b)*' is used for the least upper bound of (S,a)* and 

(T,b)*, and (S,a)* /\('l',b)* for their greatest lower bound. 

The least upper bo1,1nd of (S,a)*° and (T,b)*" :Ls given by (s,a)*V(T,b)°* 

(K,c)* where c bel1;mgs to ker(S)LJker(T) and K = LJ t_PX : x E sLJT, 

p E ker (s) Uker (T)} . Note thi3.t ker (s) LJker(T) C ker (K) and hence 

k(ker(s)Ul\:er(T))Cker(K) since the kernel is convex, but eg_uality may 

not hold as the following e~ample in the plane demonstrates: 

Figure 7 
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There are two cases for the greatest lower bound. If ker(s)nker(T) = ¢, 

then (S,a)*" /\(rr,b)*;:,; (¢,¢)*. If ker(s)n~er(T) 'f ¢ and C belongs to 

ker(s)nker(T), tµen (S,a,)* /\(T,b)* = (snT,c)*. 

The lattice A.*has a least element (¢,¢)* and a greatest element (L,a)* 

since for every element (S,b)* of A*, (¢,¢}*" < (S,b)°*" < (L,a)*. 

Theorem 46: The lattice l.t* is complemented. 

Proof; The complement of (L,a)* is (¢,¢)* and conversely. Hence let 

(S,a)* be a member of )t and suppose S 'f Land S /- ¢. Let p be any point 

of C (S). Since C (S) is inverse starli):{e from a by Theorem 1, copa is also 

contained in C(S). There exists a ray M emanating from p so that M 'f copa 

and Mnker(S) ,::,: ¢ sin~e if for every -r;ay M emanating from p, Mnker(S) f ¢, 

every line through p would intersect ker(S) on each side so that p would 

belong to ker(S) s:j..nce ker(S) is convex; but this contradicts that p belongs 

to C (S). Let q be any ;i:>oi.ni:i different from p on l1 and set S 1 :::, C ( co pq). 

Then ter(S 1 ) =Mand it follows that (S 1 ,p)* is tpe complement of (S,a)~. 

Certainly ($,a)* /\(8 1 ,p)* = (¢,¢)'* since ker(s)nker(S1) = ¢. Then it must 

be proved that (S,a)*V(s 1 ,w)* "" (L,a)*. If x be;J.ongs to S 1 , then x belongs 

to K (referringto the notat;ion used above in descri"bing the least upper 

bound). If x is in C (S 1 ), tp.en the U,;ne through a and x intersects C (S') 

only at x (since a a;p,d Mare not collinear) and consequently there exists an 

element z of S' so that xis on az whi¢h implies again that x belongs to K. 

Since L = s 1 LJc(s 1 ), it follows that L =Kand that {s,at°V(S',p)*" = (L,a)*'. 

It should be observed that the complement constructed above is by no 

means unique since there are an infinite number of choices for the ray M. 
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In a dist;rib'utive lattice cornplernents are unique (see Birkhoff [ 2 J , page 

75) and hence the lattice J..* is not distributive. 

The lattice 1* is not modular as is s:\J.own by the following examples. 

Let s 2 ;::: l(x,1): -2~x~2} LJ l(x,y): -l~xsl, lx\~y~1}, s 1 = ker(s2 ) 

{(x,1): -1:-s;x~l}, and s 3 = {(x,~1): -l~x$1} Then (s 1,a)*< (s2 ,b}*° 

and (s1,a)*V [(s2 ,b)* ;\(s3,c)*] = (s 1,alV(¢,¢y+ = (s 1,a)* but 

[(s 1 ,a)* V(s2 ,bf] j\(s3,c)"* = (S2 ,b)* /\(s3,cf = (¢,¢)-'k" (see Figure 8). 
y 

X 

Figure 8 

Consider now an intin~te collection of elements of J*, say l (Sa,,aa,)j 

where a is in some index set 6. Denote the least upper bound of this col-

lection by 

(1) 

U l_PX ! X E 

(2) 

(3) 

'J(s ,a )*" and its greatest lower bound by ~(S,..,,a,J*. Then: 
'O'.,O'., u,U, 

V(s ,a )* = (K,c)* where c belongs to LJ ker(S ) and K = 
O'., O'.,CJ, O'., O'., 

u S , p E 
O'., O'., 

LJ ker(S )} ; 
O'., O'., 

~ (S0,,aa, )* = ( n S , a)* if n ker (S ) f 
O'., a, O'., ' O'., 

¢ and a belongs to n ker (s ) ; 
O'., O'., ' 

= (¢,¢)* if O ker(S ) = ¢. 
O'., O'., 

Therefore the lattice J* is qomplete (see Birkhoff [ 2 J , page 17). 

The propert;l..es of the lattice J.11: lm;l.y be summarized as follows: ,J'*" is 

a complete complemented lattice which is not distributive and not modular. 



CHAPrER V 

A GENEB.ALIZATION OF CONVEXITY 

V-1: Introduction 

All of the results so far have been for inverse starlike and starlike 

sets with a few references to convex sets, projectively convex sets, sets 

with property P3, cones, and flats. The purpose of this chapter is to give 

a definition which will include all of the above definitions as special cases 

and then to develop several basic results for this more general notion. 

In order to make such a definition, it is necessary to consider care-

fully the definitions of convex, starlike, inverse starlike, property P3, 

projectively convex, cone, and flat. In all cases either two or three 

points are chosen; f9r some sets one of these points is fixed and others 

are arbitrary. Also a certain portion of the line or lines joining these 

points is required to be contained in the set. ~ence the principle features 

of these sets are the choice of a finite number of points and the use of 

linear segments. Keeping these features in mind one is able to arrive at 

the definition given below. 

Let A k = l a 1 , · · ·, 
n-k denote a set of k fixed points and let X = X 

l xl, · '·' xn-k} (n 2: k) denote any set of n-k points. Let T represent a 

collection of the following types of linear segments: uv, couv, and unions 

of such segments where u and v are in L and may be any a. ( i ~ k) or any 
l 

X, (i ~ n-k). 
l 
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Definition: A subset S of L has property Pr (A\X;T) provided that for 
n 

every subset X ~ { x1 , · · ·, xn-k5 of S\A\ at least r distinct segments 

of types Tare in S. 

There are several variations that could be made in the definition. The 

finite character of Ak and X might be omitted and curves or continua or 

some other set w;:ed instead of linear segments. Such (3.n alteration would 

certainly be more general and constitute a research problem within itself. 

Also instead of requiring that at least r distinct segments of types T be 

in S, one might require exa~tly r or at most r segments of types T to be in 

Sand these alterations lead also to some interesting problems. 

In their paper "Helly's Theorem and Its Relatives" (which has not yet 

been published and which the author le<'l.rned of only recently) Danzer, Grunbaum, 

and Klee [5 J outline the following scheme for generalizing convexity: In 

a set X a family X of sets is given together with a function~ which assigns 

to each element F of£ a family ~F of subsets of X. A subset K of Xis 

called ~-convex provided that K contains at least one member of ~F whenever 

F is contained in K and F belongs to£. 

The generalization o:f convexity defined above is a special case of 

~-convex. In this case Xis the linear space L. If for example the sub-

set K of L has property P~(A\X;T), then the family,! = l X = \x1 , · · ·, xn-k1 

XC K\Ak 5 and the function ~ assigns to each X in ,E the family of all 

possible segments of types T. The set K has property P1 (A\X;T) provided 
n 

that K contains at least one segment of type T. 

It should be observed that if a subset S has property Pr(Ak;X;T), then 
n 

S also has property Ps(A\X;T) if 1~ s~ r. Consequently all of the results 
n 
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are proved for sets which have property P1 (A\X;T) and for convenience the 
n 

k notation w:i,11 be modi:fied to P (A ;X_;T). 
n 

Now then it ts possible to express the previous notions of convexity, 

etc., in terms of property P (Ak;X;T): 
n 

(1) Convex: P2 (¢;X;x1x2 ) 

(2) Projectively convex: P2 (¢;x;x1x2 , cox1x2 LJoox2x1 ) 

(3) Property P3 ; P3 (¢;X;xixj) 

(4) Starlike from a: P2 (a;x;ax) 

(5) Inverse starlike from a: P2 (a;x; coxa) 

(6) Cqne with vertex at a: P2 (a;x;axLJ coxa) 

(7) Flat: P2 (¢;X;x1x2 LJcox1x2 LJ cox2x1 ) 

V-2: Sets With Property P (Ak;X;T) 
n 

The first group of theorems develops tl').e basiG properties of sets with 

property P (Ak;X;T). Then several speGial cases for the general property 
n 

will be considered. The proofs are given only for the segments of types 

uv and 00 uv s:i,nce all other types are unions of these and hence uv and couv 

are the basic :i,ngredi1:mt13 that must be considered. 

Theorem 47: k Let the subset S of L have property P (A ;X;T) and ex, be 
n 

any real number. Then a.S has property P (aAk;a.X;T). 
n 

Proof: Let yl' ··•, yn-k be elements of a.S\aAk. Then there exist 

1 t f S \Ak so that y1 Al e emen s x1, , xn-k o = a.x 1, , yn-k = a.xn-k· so 

there exist elements u and v of AkLJx so that either uv, oouv, or a union 

of suGh segments is in S. But ~(uv) = (a.u)(a.v) and a.( CX)uv) oo(a.u)(a.v) 

so that if uv CS, then ex, (µv) C a.S and if couv CS, then ex, ( oouv) C a.S and 



likewise for upions. Hence cxS has property P (a,Ak;~x;T). 
n 

Theorem 48: Let the subset S of L have property P (Ak;X;T) and c belong 
n 

to L. Then o + S has property P (c+Ak;c+X;T), 
n 

Proof: Let y1 , , .. , yn-k be elements of (c+S)'\(c+Ak). Then there 

exists a set X ::a 1 x1 , · · ·, xn-k} C S \Ak so that y1 == c + x1 , , Yn-k 

c + xn-k" Also there exist elements u and v of AkLJx so that either uv, 

couv, or a union of su~h se~ents is iµ S. But (c- + u)(c + v) C + UV and 

oo(c + u)(c +v):;: c + oouv so that if uvCS, then (c + u)(c + v)cc + S 

and if couv CS, then co(c + u) (c + v) C c + S and J..ikewise for unions. 

Hence c + S has the des:i,red property. 

Theorem 49: Let S be a subset of the linear space L1 and let f be a 

linear transform,ation of 11 into a linear space L2 . If S has property 

Pn(Ak;X;T), then f(S) has property Pn(f(Ak);f(X);T). 

Proof: Let y 1, yn-k be elements of f(S)\f'(Ak). Then there exists 

a set X:::: fx1, ···, xn-kjC S\Ak so that y1 == f(x 1 ), ···, yn-k == f(xn-k), 

Also there e:x;ist elements u and v of AkLJX so that either uv or couv (or 

a union of such segments) is contained in S. But f(uv):::: f(u)f(v) and 

f( oouv) = c;of(u)f(v) so that if uvCS then f(u)f(v)Cf(S), and if couvCS 

then cof(u)f(v)Cf(S). Therefore f(S) has the desired property. 

Theo);'em 50: k 
Let the subset Shave property Pn(A ;X;T). Then the in-

tersection of S wi tn, a flat M has thi13 same property ~rovided A k CS nM. 

Proof: Let x1 , ... , xn-k be elements of (S nM) \Ak. Then x 1 , ... , xn-k 

belong to S \Ak so that there ex:i,st elements u and v of AkLJx so that either 
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uv or couv is in S. Since Mis fiat, uv or couv is also contained in M 

which proves that snM has the stated property. 

Theorem 51; Let each of the sets s 1 , 

Then LJ S. has property P (Ak;X;T). 

S have property P (Ak;X;T). 
m n 

i=I ], rrJP. 

} 
'm k 

Proof: Let X - f. x1 , ... , x C LJ S \ A There are mn - k - l mn-k i=1 i · 

points in X and mn - k > m(n - ~ ) which implies that at least n - k of the 

k points of X are in some Si. But Si has property Pn(A ;X;T) so that at 
m 

least one segment of type T :Ls in Si. and hence in LJ S.. Therefore 
i =I l 

has property~ (Ak;X;T). mp 

m us. 
i=I l 

Obviously the number of sets in Theorem 51 must be restricted to be 

finite. The ques~io:p of intersections of qets with property Pn(Ak;X;T) must 

be raised. However, it seems that no conclusions may be drawn here as is 

demonstrated by the following examples. Let s1 be a set in E2 consisting 

of three lines parallel to the x-axis and let s2 be a set consisting of three 

lines parallel to tb,e y .. axis. Then s 1n s2 consists of nine isolated points 

but each of the sets has property P4(¢;X;xixj). 

k Theorem 52: Let t'p.e l;jlUbset Shave property Pn(A ;X;T). Then COSO 

also has property P (Ak;x;T). 
n 

Proof: Let fy1, ···, yn-k} ;::: Y ccoso\Ak. Then there exists a 

set fx1, ···, xn-kl =XCS\Ak so that y, = a,.x., o:,. >l, i = 1, · · ·, n-k. 
l l l l ~ 

Then there are elements u and. v of xLJAk so that uv or couv is contained 

in S. In order to complete the proof, it appears to be best to consider all 

of the possibilities for u a:µd v. 



Case l: S'\J.ppose a .x. CS. 
J ;I. 

Let z = l3a, + (1 - 13)y. = 13a. + 
J l J 

Then it will be proved that ajyiC coSO. 

(1 - j3)c;x,.x. be on a.y. w:i,th 0~13 ~l. Then 
l J,, J l 

z = cr(Eaj + (1-. e)xi) where cr = (1 - ~)a.i + 13 and E 13/cr with cr~l and 

OsE~l wh;i.ch implies that z belongs to coSO. Thus a . y. C 00 SO. 
J l 

Case II: Suppose x .x. CS. It will be proved that y .y. C ooSO. Let 
l J l J 

z ,:; l3y. + ( 1 - 13 )y. = 13a.. x. + ( 1 - 13 )c;x,J.XJ. with O ,s; 13 ~ 1. Then z = cr (EX. + 
l J l l l 

(1 - e)x.) where o = (1 -13)a.. + l3a.. >land E = j3i;x,1./cr, OSE~l, which implies J . J l -

that z belongs to OOSO. Hence yiyj CooSO. A similar argument will take 

care of the case a.a .. 
l J 

Case III: Suppose oox~aj CS. It w;i.11 be proved that ooyiaj C ooSO. 

Let z = l3y, + (1 - 13)a. = l3a..x. + (1 - 13)a. be on coy.a. with 13 ~ 1. Then 
l J l l J l J 

z = cr(exi + (1 - E)aj) where cr,::; j3a,i + l- - 13 ~ 1 and E = l - cr(l - 13) ~ 1 

wb,ic;h implies that z belongs to COSQ. Hence coy.a. C ooSO. 
. l J 

CaE!e ;EV: Suppose ooaix.C S. It will be proved that ooa.y.C ooso. . J . l J 

Let z:;:: l3a. + (1 -13)y. :;= 13a. + (1 -13)0..x. be on ooa1 .. yJ. witb.13~1. Then 
l ... J l J J 

z = cr(eai + (1 - e)x) w):).e;re o :,:: (1 - 13)a.j + 13 4 1 and E "' f3/cr ~ 1 which 

implies that z l;lelongs to <X?SO. Hence coaiyj C OOSO. 

Case V: Suppose cox .x. CS. 
l J 

Let z = j3y. + (1 - 13)y. = 13~.x. + (1 - 13)c;x,.x. be 
1 J l l J J . 

z = cr(ex. + (1 - e)x.) where cr = (1 - j3)a.. + l3a.. 
l J J i 

on oo y i y j with 13 ~ 1. Then 

~ 1 and E = 13a.) cr ~ 1 which 

implies that z belongs to ooso. Hence ooyiyj C ooSO. 

These five cases represent all possibilities for the basic segments uv 

and oouv. In each case it has been proved that ooSO has property 

k 
P (A ;X;T). 

n 

Corollary; Let S :have property P (A\X;T). 
n 

Then ooSa also has 



property P (Ak;X;T). 
n 

Proof: It is first proved that o;:, Sa e;::: oo (S - a )0 + a. 
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Let z = 

a.s + (1 - a.)a belong to o;:, Sa where s is in S and a.~ 1. Then z = a.(s - a) + a 

wh:;i.ch belopgs to oo (S - a )0 + a so tn.at co Sa C co (S - a )o + a. Let u = 

a.(s - a)+ a pelQmg.to o:i(s a)O + a wheres ;Ls in Sand a.~l. Then u = 

a.s + (1 - o:,)a wb,ich b~J,.ongs to ooSa. 'J;herefore ooSa = oo(S - a)o + a. 

The set S has prpperty P (Ak·X·T) so that S - a has property 
n ' , 

k P (A -a;X-a;T) by Theorem 48. By Theorem 52 oo(S - a)O has property n 
k 

P (A -a;X-a;T). Again by Theorem 48 it follows that oo(S - a)O + a = rosa n 

has property Pn(Ak; 4;T). 

V-3: Some Special Cases of Sets with Property Pn(Ak;x;T) 

The remainder of the results in this chapter deal with sets with pro­

perty Pn(Ak;X;T) in which the Tis specifically de$cribed, The next group 

of theorems concerns sets with property Pn(¢;X;xixj) and the notation will 

be shortened to Pn since tb,is property generalizes property P3 . 

Theorem 53: Let the subset S of L have property P. 
n 

union of n - 1 or fewer sets A. with A. starlike from a .. 
1 1 . l 

Pr9of: Let a 1 belong to Sand define A1 = 

Tb.en .S is the 

X E S, a1xC S}. 
i-1 

Assume tpat a. 1 and A. 1 have been defined. Let a. belong to 
1- 1- + S \ LJAk and 

. 1<~1 

define Ai = LJ { aix : x E S, aix CS}. Clearly each of the sets Ai is 

starlike frQ~ ai. 
.,,. 

n~1 

It must pe proved that S = .LJ A. where r < n - 1. 
'"' l -

Assume by way of 

contradiction that there exists an element x of s\ LJA. and consider the 
i"CO\ l 

n points a1, ···, an-l' x of S. If a.xcs, then x belong13 to A .. contra-
l l 
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Yl-1 

dieting that X is in s\ u A .• 
1,:i J.. 

If a.i;l.. CS, then (if j > i) a. belongs to A. 
J.. J J . J.. 

j-1 

contradicting that aJ. belongs to s\ LJ Ak. But this contradicts that S has 
1<~1 

y-

property Pn. Therefore S = .LJ A; where r:;; n - l. 
l=I ,,,. 

If each of the sets A. of Theorem 53 contains no ray emanating from a. 
J.. J.. 

and if Sis closed, then each set A. is the star envelope of its relative 
J.. 

extreme. points by Theorem 36. 

Corol11;J.ry: Let the subset Sofa LTS be closed, have property P, and n 

assume that each of the sets Ai of Theorem 53 contains no ray emanating from 

Tb.en S 
.., . 

== LJ ( ex A. )a .. 
i=I ai J.. J.. 

Valentine [14] has proved that under certain conditions a set with 

property P3 is the union of three or fewer convex sets. It seems likely 

that a set with property P is the union of nor fewer convex sets, although 
n 

this has not yet been proved. Theorem 53 is a result in this direction. 

A set which is convex also has property Pn, Furthermore a set is 

convex if, and only if, the intersection of every line with the set is 

either empty or connected. A similar property can be proved for sets with 

p:roperty Pn. 

Theorem 54: Let the subset S of L have property P and let M be a line 
n 

in L. Then :rxins consists of at most n - l segments. 

Proof: lf Mns contain~ at least n components, then a point may be 

chosen from each of these components· and thus contradict that S has property 

P. 
n 
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A closed bounded set is convex .. if, and only if, for every two boundary 

points x and y, xy is contained in the set. A problem yet to be solved ts 

to prove that a closed bounded set S has property Pn if, and only if, for 

every n boundary points x1 , 

in S. 

, xn, at least one segment xixj is contained 

Theorem 55: ~et the subset S of L have property P and let M be convex. 
n 

Then S + M also has property P. 
n 

Proof: Let y1, ···, yn be elements of S + M. Then yi = si + mi where 

s. is in Sand m. is in M for i = 11 ···, n. There exist elements s. and 
1 1 1 

sj so that sisj CS since S has property P . For the same i and j, m.m. CM 
n 1 J · 

since Mis convex. Furthermore yiyj 

(s. + m.)(s. + m.)Cs.s. + m.m.CS 
. 1 1 J J 1 J 1 J 

(s. + m. )(s. + m.)C S + M since 
1 1 J J 

+ M. Therefore S + M has property P. n 

The next few results are for sets with property P contained in a LTS 
n 

and describe the nature of the components of such a set. 

Theorem 56: Let the subset Sofa LTS have property P. 
n 

Then S has 

at most n - 1 components which have property P. If S has exactly n - 1 
n 

components, each component is convex. 

Proof: Suppose by way of contradiction that S has more than n - 1 

1, , n, is a component of S. Let 

j, x.x.CS since S has property P. 
1 J n 

x. belong to B .. Then for some i and 
1 1 

But then B. LJB. Ux.x. is, a connected 
1 J 1 J 

subset of S contradicting that B. and B. are components of S, Therefore 
1 J 

S has at most n - 1 components. Obviously each component has property P 
n 
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Assume that S has exactly n - 1 components B1, · ··, Bn-l' Let x. and 
l 

Yi· belong to B. and let x. belong to B. for j ~ 1, ···, n-1 and j f i. Then 
l J J 

x.x. and y.~. are not contained in S since B1, ···, Bn-l are components of 
l J l J 

S. Therefore x.y.C:S and hence is in B. which proves that Bi. is convex. 
l l l 

Theorem 57: Let the set Sin a LTS have property P. 
n 

If S has exactly 

n - r components, then each component has property Pr+l and at least one of 

the components has property P. 
r 

Proof: Let S ::;: B LJB u .. 'UB 
l 2 n-r 

where B1, ···, B are the components 
n-r 

of S. Let x1 , ···, xr+l be elements of 

r+2, · · ·, n. Then if x1y j CS for some 

Bk and let yi belong to Bi for i = 

i and j, BkLJB.LJx.y. is a connected 
J l J 

subset of S contradicting that Bk and Bj are components of S. Also if 

y.y.C:S for some ;i. and j, then B.LJB.LJy.y, is a connected subset of S con-
i J l J l J 

tradicting tb.at l3i and Bj are cowponents of S. Therefore xixjCS for some 

i and j and hence x 1xj C Bk sinc13 Bk is a component of S. Hence Bk has 

property P 1 . 
r+ 

Now suppose that none of the components B. has property p Then for 
l r 

each there exist points x~ of Bi, so that i i is not Bi, j = 1, ' r, X/k J 

contained in B. 
l 

for any j and k. Consider the set X l x~, 
1 

::;: x2, 

1 2 2 3 4 
x~-r1 of n J?Oints of s. Also none of the X r' xl, x2, xl, xl, seg-

ments with end-points in Xis contained in S which contradicts that S has 

property Pn. Therefore at least one of then~ r components has property Pr. 

Corollary: 

n - 2 components. 

Let S have property P (n > 3) and suppose S has exactly 
n 

Then at least one of the components is convex. 



The a-neighborhood of a convex set in a normed linear space is again 

convex. This property carries over to sets with property P. 
n 

Theorem 58: Let the subset Sofa normed linear space L have property 

P and cr>O. Then U(S,cr) alf:lo has property P . 
n n 

Proof: Let x1, , x be elements of U(S,cr). Then there exist points 
n 

, n. 

Case I: Assu,me that all of y1, , yn are distinct. Then since S 

has p;roperty P 
n 

$0 that y .y. CS. For the same i and 
l J 

j, it will be proved that x.x.CU(S,cr). 
l J 

Let x = a,x 1. + (1 -a,)x. be on x.x. 
. J l J 

with o::;;a,~1. The pointy= a,y. + (1 - a.)y. (for t):J.e same a,) belongs to S. 
. . l J 

Furthermore II x -YII = II a,x. + (1 -a,)x. -a,y. - (1 -a,)y.11 = 
l J l . J 

II a,(xi -y;i.) + (1 -a,)(xj -yj)II < a,cr+ (1-a,)cr= crwhichimplies that 

x belongs to U(S,cr). Therefore U(S,cr) has property Pn. 

Case II: Suppose that y1, , y are not all distinct and assume 
n 

that Yi= yj for some if j. Assume further that it is not possible to 

choose an element yj of S so that y 1 l yj and II x j - yj II < cr; if this is 

possible for each pair that are equal, then Case I occurs again. Thus 

Also x. and x. belong to U(y.,cr) which is convex so 
l J l 

Therefore U(S,cr) has property P. 
n 

The complement of a convex set is inverse starlike from each point of 

the convex set. The question of the nature of the complement of a set with 

property l? has not been answered. The following theorem, however, does 
n 

give an answer for n = 3. 



Theorem 59: Let the subset S of L have property P3. Then C(S) has 

property P2 (¢;x;x1x2 , Q)xixj). 

Proof: 
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nor CO x2x1 is in C (S). Then there is a number a with O <a< 1 so that ax1 + 

(1 - a,)x2 = y is in S. Also there exist numbers j3 and 13 1 both greater than 

one so that j3x1 + (1 - j3)x2 = z is in Sand j3 1 x2 + (1 - j3 1 )x1 = z' is in S. 

The three points y, z, and z' are in S so that either yz, yz', or zz' is 

containe·d in S. But this cannot be since x1 is on yz, x2 is on yz 1 , and x1 

is on zz' and x1 and x2 are in C(S). This is a contrq.diction and thus C(S) 

has the desired property. 

The converse of Theorem 59 is not true since if C(S) is the unit disc 

in the plane, then C(S) has property P2 (¢;X;x1x2 , coxixj). However S does 

not have property P3, 

This completes all results concerning property P. The next few theorems 
n 

deal with property P (Ak;X;a.x.). The first result characterizes such sets 
n 1 J 

in terms of stq.rlike sets. 

k Let the subset S of L have property P (A ;X;a.x.). 
n 1 J 

Theorem 60: Then 

Sis the union of k starlike sets and a finite set of n - k - 1 or fewer 

points, 

Proof: Let Ai = l x E S : aix CS} for i = 1, · · ·, k. Clearly each 
K 

set A. is star like from a.. Assume by way of contradiction that S \ LJ A. 
l l ,~, l 

contains at least n - k points x1, · ··, xn-k' If a . x . C S for some i and j, 
l J , K 

then x. belongs to A. contradicting that x. 
J l J 

is in S \ LJA.. But this con-
i"' l 

tradicts that p has property P (Ak;x;a.x.). 
n 1 J 

I( 

Therefore S \ LJ A. contains at 
i=I l 



most n - k - 1 points. 

Theorem 61: Let the subset Sofa LTS have property P (Ak;X;a.x.). 
n 1 J 

Then S has at most k non-degenerate components. 

The- proof of Theorem 61 i$ very similar to that for Theorem 56 and will 

be omitted. 

A subset S of En is said to have then-point property if for every 

element p of k(S), there exist n points q1 , q of Sand n non-negative , n 

n n [ J ···, a for which Z a. = 1 so that p = Z a.q .. Bunt 4 has 
n . 1 1 . 1 i1 

l= 1= 
proved that a subset S of En which has at most n components has then-point 

property. Theorems 56 and 61 state that sets which have property Pn or 

property Pn(Ak;X;aixj) have a finite nlll!+ber of components. Consequently a 

sµb:;rnt S of Ep-l which l).as property Pn or property Pn(A\X;aix} has the 

n-point property. 

Theorem 62: Let the subset$ be either open or closed in a linear 

k topological space and have property Pn(A ;x;aixj). Assume S has exactly 

k components B1, ···, Bk where am belopgs to Bm' m = 1, 

starlike from a . 
m 

k. Then Bm is 

Proof: Let x belong to B and assume that ax is not captained in B. m m m 

Then there is an element z :::, aa + (1 - a)x of ax witb, O<a<l so that z m · m 

does not belong to Bm. If Sis open, then there is a neighborhood U of x 

so that z does not belong to U and amxnu is a segment since Bm is open and 

U may be chosen in ;Bm. Let x1 , .•. , xn-k-l be points on amxnu. Then neither 

a.xCS (j = 1, ···, k), a.x. CS (j = 1, 
J J l 

k and i = 1, n-k-1), 



amxcs, no:r amxj cs (j 

property Pn(Ak;x;a1xj). 

= 1, n-k-1) w~ich contradicts that S has 

Thus Bm is starlike from am form= 1, ···, k. 

Next suppose that Sis closed. Hence B is closed form= 1, m 
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k. 

Again suppose that am_2{ is not contained in Bm and let z be defined as above. 

Since B is closed, there exists a neighborhood U of z so that unB = ¢. m m 

The point xis a l;i.mit point of Bm and, if Bm is non-degenerate, there exists 

a sequence of distinct points s of B which converges to x. The segments r m · 

as. converge to ax. Consequently there exists a sequence of points z. m J · m J 

where z. belongs to a s. and so that { z.} converges to z. Also there 
J m J J 

exists a positive integer N so that if r > N, then zr belongs to U. Consider 

then - k points sN~l' ···, sN+n-k of Bm. Then a.s is not contained in S 
J r 

for j = 1, ···, k and r = N+l, ···, N~n-k which contradicts that S has pro­

k perty P (A ;X;a.x.). Hence again B is starlike from a form= 1, ···, k. n 1 J m m 

The following example in the plane demonstrates that it is necessary 

to require the set in Theorem 62 to be ei~her open or closed. Let S = 

l (x, y) : 0 s; x ~ 11 0 < y < 1} LJ t (x, y) 2 ~ x s 3, 0 < y ~ 1 } LJ { ( 0, 0), ( 1, 0), 

(2,0), (3,0)}. Let a1 = (O,O) and a2 ::;:: (2,0). Then S has property 

P5(a1a2;X;aixj) and has exactly two components but neither component is 

starlike from a .. 
l 

The a-neighborhood of a starlike set is starlike. It is not possible 

to prove that the a-neighborhood of a set with property P (Ak;X;a.x.) also 
n 1 J 

has this property as the following example in the plane demonstrates. Let 

S:::;: f (x,O): Osx.::;:11 LJ {(0,1)} and a= (o,o). Then S has property 

P3 (a;X;ax1 ) but the a-neighborhood of S for a= 1/3 does not have this pro-

perty. I.t does ·follow, however, that if S has property P (Ak;X;a.x:), then 
· n 1 J 



the cr-neighborhood of Sis the union of n - 1 or fewer starlike sets by 

Theorem 60. 

The next several theorems prove that sets which have property P (A\X;T) 
n 

for some other special choices of T can be decomposed into sets which are 

starlike or inverse starlike and extend further the results established in 

Theorems 53 and 60. 

Theorem 63: Let the subset S of L have property P (¢;x;x.x. LJcox.x.). 
n l J l J 

Then Sis the union of n - 1 or fewer starlike sets. 

Proof: Obviously a set which has property P (¢;X;x.x. LJcox.x.) also 
n i J i J 

has property P. Therefore the result follows from Theorem 53. 
n 

Theorem 64: Let the subset S of L have property P (A\X; cox.a.). Then 
n i J 

Sis the union of k inverse starlike sets and, 1;:1. finite set of n - k - 1 or 

fewer points. 

Proof: 

i 1, k. Clearly each set A. is inverse starlike from a .. Suppose 
l l 
~ 

by way of contradiction that S \ LJ A. consists of at least n - k points 
j.,;c\ l 

xl, ' xn-k · If cox. a.CS, then x. belongs to A. contradicting that x. 
l J l J l 

K 

is in S \ LJ A .. 
ic:\ l 

Thus oox.a. is not contained in S for i = 1, · · ·, n - k 
l J 

and j = 1, · · · , k . 
k 

But this contradicts that S has property P (A ;X; (X)x.a.). 
n i J 

K 

Therefore S \ LJ A. contains at most n - k - 1 points. 
i=I l 

Theorem 65: Let the subset S of L have property P (a;X; CD ax.). 
n i 

Then 

Sis the union of a cone with vertex at a and a set of at most n - 2 points. 

Proof: It is first proved that S has property P (a;X; ax. LJ (X)X. a LJ C0 ax.). 
n i l i 
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Hence let x1 , ·· ·, xn-l be elem~nts of S. Then coax.CS for some i. 
l 

Let 

Y1, · · ·, yn-l be points on ooaxi. Then for some j, roay.C s. 
J 

But 

axi LJooxi a Cooay j CS which proves that S has the stated property. 

Let A == { x E;: S : ax LJ roxa CS} which is clearly a cone with vertex 

at a. As$ume by way of contradiction that S \A contains at least n - 1 

If coaz. CS, then as was proved above az. LJ coz.aCS 
l l l 

which implies that z. i$ in A, a contradiction. But this contradicts that 
l 

S has property P (a;X; 00 ax.). Therefore S \ A contains at most n - 2 points. n · i 

It is not possible to decompo$e a set which has property P (A \x; 00 a .x.) 
n i J 

for k;?: 2 into a finite number of star like and inverse star like sets as is 

proved by the following example in the plane. Let A== t (x,y) X ~ -1, 

x+l~y~-x-1},B:c:i 1_(x,y):x~l,-x+l::;y..5x 1},cm l(l/m,y) 

(1/m) - 1$y~ (-1/m) + 1}, and Dm;::; t(-1/m,y) : (1/m) - l~y ~(-1/m) + 1} 
00 00 

with m == 2, 3, ···. Then define S == ALJBLJ(LJc )LJ(LJ:P) and a 1 = (-1,0) 
rn:2. m wi":l. m 

and a2 = (1,0). Tµen S has property P (A2 ;X; roa.x.) (see Figure 9), 
n i J 

(-1:?[\ ' 
--

/ 

/ 
/ 

' 

x-=1/m 

F:i,.gure 9 



Theorem 66: Let S have property P (Ak ;X; a. x. LJ oo x .ai). Then S is 
n · 1 J J 

the union of k cones and a finite set of n - k - 1 or fewer points. 

Proof: Let Ai= l x E S : aix LJooxai CS} for i = 1, · · ·, k and 

Clearly each set A. is a cone with vertex at a .. 
l l 

K 
Assume by way of contradiction that S \ LJ A. contains at least n - k points 

l=I l 

x 1, , x k" lf a.x. LJoox.a.C S for some i ~nd j, then x. belongs to 
n- 1 J J 1 J 

. K 

A. contradicting that x. is in S \ LJA .. But this contradicts that S has 
l J j: I J. 

propert:y P (Ak;X;a.x.LJoox.s..). Therefore s\ lJA. contains at most n - k - 1 
n l J J l i=I l 

points. 

V-4: A Generalization of a Theorem Due to Brunn 

It has already been pointed out that the set of points from which a 

closed set in E2 is starlike is closed and convex (see Brunn [ 3 J ) . The 

followj_ng theorem, which will be used to generalize this result, proves 

that ~r~nn's result is true for any linear topological space. 

Theorem 67: Let A be a closed subset of a linear topological space. 

Then ker(A) is closed and· convex. 

Proof: Let K = ker(A). It is first proved that K is convex. Hence 

let a and b belong to~ and let c ex.a + ( 1 - ex. )b be on ab with O < ex.< 1. It 

must be proved tbat A is staJ;like from c. Let x belong to A and prove cxCA. 

Since a and b belong to K, ax CA, bx CA, and ab CA so that c belongs to 

A. Let d = ac + (1 - o-)x be on ex with O<cr<l. The segment bxCA implies 

that y = pb + (1 - p)x belongs to A for O < p < 1. Thus ay CA for every y 

on bx since A is starlike from a. Let p = o(l - cx.)/(1 - crcx.) with 1 - acx. f 0 

since O <ex.< 1 and O <a< l; also thj_s value of p satisfies O < p < 1. Then 
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cr(l - a,) ( cr(l - c;c,)) Y = 1 0 b + 1 - 1 · x and d = cra,a + (1 ..., cra,)y. Therefore d is - a, - cra, 

on ay since O < cra, < 1 so that d is in A and. hence ex CA. But this implies 

that A is starlike from c and that c belongs to K. Therefore K is convex. 

Next it is proved that~ is closed. Let p be a limit point of Kand 

show that p belongs to K, that is, show A is starlike from p. Let x belong 

to A. The space Lis Hausdorff so there exists an infinite sequence of 

distinct points of K, say { pi} , which converges to p. Then p. in K implies 
l 

that pixc::A since pi is in K for i = 1, 2, ···. Thus the sequence of seg­

ments pix converges to px which implies that px CA since A is closed. Thus 

A is starlike from p so that p belongs to K which proves that K is closed. 

It should be noted that in Theorem 67 the vroofs that K is convex and 

K is closed are independent. 

The ~ernel of a set Smay be described as the set of points a of S so 

that S has property P2 (a;x;ax). A natural generalization of the notion of 

the kernel could be described as the set of points a of S (or of L) so that 

S has property PP(a;X;T). ~he final two theorems of this chapter show that 

for special choices of T this generalized kernel for closed sets is also 

closed and convex. 

Theorem 68: Let S be a closed subset of a LTS. Then the subset 

K la€ S : S has property Pn(a;X;axi)} is closed and copvex. 

Proof: It is first proved that if Kt¢, then S has exactly one non-

degenerate component, Assu;m.e that S has two non-degenerate components A1 

and A2 and assume A1 nK f ¢. Let a belong to A1 nK and x1, . '', xn-l belong 

~hen clearly ax. is not contained in S for any i and j which con-
1 . 
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tradicts that$ has property Pn(a;X;ax1). Furthermore, if K f ¢, then S 

has exactly one non-degenerate component since for an element a of K there 

ex:i,ste an element x of S so that x /= a and axCS. Also it is clear that 

Scan have no more than n - 2 degenerate compone~ts since the contrary 

would contradict that S has property P (a;X;ax.) for some a in K. Therefore 
n :i,. 

S = A LJ{ b1, · · ·, bm} , m ~ n - 2, where A ·:j.s the non-degenerate component 

of S. Obviously KCA. 

It is next proved that K = ker(A), and sinoe A is closed, the conclusion 

will follow from Theorem 67. Let a belong to K, x belong to A, and prove 

ax CA. Let l T,Jk1 be a sequence of neighborhoods of x closing down on x. 

Assume that ali of the sets Uk are distinct and for each positive integer 

k 1 t k · · '· k b 1 t f U nA Th h k th . t e x1, , xn-l e e emen s o k , · en for eac . · ere exis s an 

element x~ so that ax~CA since A has property P (a;X;ax. ). Also the sequence 
1 l n i 

of such points x1 converges to x ask tends to co, Since A is closed, and 

since thfi:! segments ax~ converge to ax, ax CA. Therefore A is star like from 
. l 

a which proves that K Cker (A). Obviously if a belongs to ker (A), then a 

belongs to K. Therefore K ~ ker(A) and by Theorem 67 it follows that K is 

closed and convex. 

It is necessary in Theorem 68 to assume that Sis closed as the fol­

lowing example in the plane proves. Let S = i {x,y) : 0 < x < 1, 0 < y < l} LJ 
1(1/2,0), (1/4,o)}. Then far n>2, K = S which is neither closed nor convex. 

Theorem 69: Let S be a closed subset of a LTS. Then the subset H = 

[a€ L: S has property Pn(a;X; cox1a)} is closed and convex. 

Proof: It is first proved that His convex. Assume that H contains 
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more than o;ne point. Let a and b be elements of ij and let c =~a+ (1 - ~)b 

with 0<~<1. Let :x;1, ···, xn-l be el.ements of S. Then it must be proved 

that there is a positive integer i::;, n-1 (30 tpat oox. c CS or that y = 
J. 

crxi + (1 ., o)c belongs to S for cr ~l. There ex;i.sts a;n xk (1::; k~n-1) so 

that o::>xkaCS; that is, z = cx.xk + (1 - cx.)a belongs to S for cx.~l. It will 

be proved that Q)xkccs. 

The next arg-µment demonstrates that for each z on coxka, cozbCS. 

Certainly z is a lim~t point of coxka in the li;ne topology on coxka. Hence 

let the sequence of points l\ of co xka converge to z. Next partition the 

set of positive integers as follows: I 1 = ti, ···, n-1}, I 2 = tn-rt-1, 

2(n-1)} , · · ·, Im= l n+(m-1), · · ·, m(n-1)} Then for every positive 

integer in, there is a positive integer i in I so that COP· bCS. Also rn m i 

since l pi ·1 converges to z, 
m 

rn l Epi + (1 - E)b} converges to Ez + (1 - e)b 
rn 

for E ~ 1 which must belong to S since Sis closed. Thi,;i.s co zb CS for each 

z on coxka. 

If a. 2': J., z =:: cx.xk + (1 - °'.)13- belongs to S 1;3.nd if e ~ 1, ez + (1 - e )b 

belongs to Sas was proved above. In particular let q., = cr/(~ + (1 - A.)cr)~l 

and e ~A.+ (l - A.)cr ~ 1. Then ez + (l. - e)b = crxt + (1 - cr)c which belongs 

to S. Therefone His convex. 

It is next proved that~ is closed. Let q be a limit point of H with 

[ qiJ a sequepce of points of H cop.verging to q. Again let { x1, · · ·, xn-l1 

X be elements of S and show there is some xk so that cx;:ni:kq CS. For each 

~ there is an xi of X so that coxi ~CS for rn = 1, 2, • · i. Since Xis 
m m 

fi:n.ite there exists some xk of X so that coxk~C S for infinitely many of 

the points of { ~ 1 , sa-y for l ~.1 . )3ut 
;i,. 

hence 1.. a.xk + (1, - ex.)~.} converges 

l ~ \ also converges to q and 
i 

to cx.xk -r1- (1 - cx.)q, ex.~ 1, which must 
:I, 
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belong to S since Sis closed. Therefore q belongs to H which proves that 

His closed. 

V-5: An Ordering for the Classes of Subsets With Property P (Ak;X;T) 
n 

Property Pn(Ak;X;T) determines a class or collection of subsets of L, 

namely the class of subsets of L which have this particular property. Hence 

with each property p (Ak;x;T) is associated 
n a class of subsets of L which 

will be denoted by Pn(Ak;X;T). The collection of all such classes may be 

ordered by inclusion. For example, i3"3 (¢;X;xixj) C ~4 (¢;x;xix). The problem 

naturally arises as, to the precise nature of this order relation--can it be 

described in terms of then, k, Ak, and T? If P (Ak·X·T) and P (Bp·X·T') 
n ' ' m ' ' 

are two such classes of sets, and if BPCAk, n-k~m-p, and either T'CT 

or each segment of type T' includes a segment of type T, then P (BP;x;T')C: m 

P (Ak;X;T). The converse of this statement seems also to be true although 
n 

the problem has not yet been fµlly investigated. All such classes of sets 

for which n = 2 have been determined and the remainder of this chapter is 

devoted to the description and ordering of these classes. 

Consider first the classes of sets with property P2 (¢;X;T). There are 

31 possible choic~s for the types of segments T. However, only 7 of these 

yield distinct classes of sets and these 7 possibilities are: 

(1) xlx2 (5) xlx2, oox.x. 
J. J 

(2) coxixj (6) xlx2, ex:> xl x2 LJ CO x2xl 

(3) x1x2 U ooxixj (7) x1x2 LJ ooxixj, co x1 x2Uco x2x1. 

(4) xlx2 LJ ooxlx2 LJ cox2xl 

The lattice structure for these seven classes using the inclusion order 

relation is given in Figure 10. 
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finally consid~r the other possibility for n = 2, namely P2 (a;x;T). 

There are 127 pqss;i.b).t;:J cl:loices for 'I' ;in t'.Q.is case. However, only 14 of 

these y::Leld diet;i,nqt cl.asses o;f' i:lets and they are: 

(1) ax (8) roax, C0X!=1. 

(2) CX)Xa (9) ooax, ax LJ c,oxa 

(3) ax LJ coxa (10) coxa, ax LJ coax 

(4) ax LJ a::> ax LJ c;:o xa (11) ax LJooax, ax LJ roxa 

(5) ax, coax (12) ax LJ coxa, coax U coxa 

(6) ax, coxe. (13) ax, coax, coxa 

(7) ax, ro xa LJ co ax (;t.4) ax LJ roax, axLJ coxa, coxa LJ coax. 

The lattice structu;re for these 14 classes using the inclusion order 

relation is given in Figure 11. 

For property P3(¢;X;T) there are 25ll - l possible choices for T and, 

of course,not all ~f these yield distinct Qlasses of sets. A more economical 

technique has yet to be fou~d for determining the distinct possible classes 

for n >2. 



CllAPrER VI 

SU~Y AND VNSOLVED ~OBLEMS 

~he prirns,ry purpose qf this paper has been to develqp, ani in some 

cases exten9,, properties of certain classes of subsets o:(' a lip.ear space. 

The class of inverse si;:,arli~e sets nas been rather tnorcn,ighly investigated. 

A metric ~pae~ of ~tar;Li~e sets w&s discussed. The class of all E;ltarli~e 

suosets of a l;i.ne!;l,:r; space was- i;fhown to have an. adc;:l,.:l.tiqn anq. sci;,.lar multi-

plication o;peration which ba.ve all t'.µe propE;?irt~es ofl a vecto:r space addition 

and scalar mul:i;:,:iplicati,on except. ;for additive ::1-nverse:;; an,d ev:e:n a restricted 

cancellation law. An ord~r relation wi;,.s ~efined on the class of ali sta:r-

like $Ubsete of L and w;Lth th.is oraering, the c;lass was shown to Pe a com-

pJ,ete compl.€;!mente<J. J,attice which is not distr::\.butive and npt modular. Finally 

a not;i.on of generalized conve~ity was defined wh,i~h ;i.ncludes convex, pro-

ject;i.vel-y convex, sta:r"l.ike, inverse starlike, property P3, cope, and flat 

a1i as !;ipecial ca!;lef?. Baf;l:i,c theorems were proved for this generalizatiop. 

and it was shown that many of these classes of sets consist of sets wh;i.ch 

are the union of starli~e and inversE) 1,tarli'k;e sets. A theorem of Erunn 

was generalized to some special classes of sets determined by the gener-

alized qpnvex property. 

Througlrnu,t tb.e paper seve:r;'al references have been rni:i.de to prpblems 

that were µp.sol,ved or only partially solved. Th~ purpose o:f this chapter 

is to b;ri:p.g together aJ0,9- summarizE;? these queetion.s ana.. .others which have 
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been raised in conn~ctiQn with this research, 

The propE;,rties of certain S\i1.bset9 determin~d byr a qµadratic form are 

discufiised si.t the ei;i.d of Chapter II. 'l'be q1+estion is raised ccmcerning the 

properties of certain other subsi:;:ts determined by a :positive definite quadra-

tic forrn. 

A partial solution is given to the proplem of conditions under which 

oo(S -h T)a ;::: CO Sb<+ co Tc 'where b: + c = a in Theor1:;m 27. A necessary and 

sufficient condit:i,ol;l. on S to insure that a~S CDSa =; Ii remains to be deter­

mined. S:Lmilar problems arise in conni;,ct:Lon with Theorems 22, 23, E)..nd 28. 

Variations in the definition of property P:(Ak;X;T) such as omitting 

the finite character of A k and X and UJ,1ing otber than linear $egments poses 

a problem for further resi:;:arch. 

k The intersectiqn and surn of sets with property P (A ;X;T) remain to be n . 

characterized. 
. . k 

The tovqlogical properties o;f sets with prope11ty Pn (A ;X;'l') 

such as the qlosu.re anq. interior have not been determined. Can a set which 

has property Pn be expref;lsed as the union of nor fewer convex sets? 

closed set Sin a LTS ha$ the property that for every n points x1 , 

If a 

J X n 

on the, boundary, then at least one segment xixjc=s, does Shave property Pn? 

If S has property P (A\X;T), then what property, if any, does C(S) have? 
n 

Can a set which has property p (¢;x; OJx.x.) be decomposed into E). union of 
n J. J 

a finite nu,mber of starlike or inverse starlike sets? 

The nature of the ordering of the classes Pn(Ak;X;T) has not been fully 

investigated and a techn:i,qui;, has pot been determined for finding alJ., the 

distinct classes for property Pn(A\X;T) for a given value of n. 

Property B (Ak;X;T) generalizes convexity. A similar generalization n . 

for convex functiqns can be made and the properties pf such functions in-



vestigated, 

J;f f is ~ fµ:nct:i.cm defined on t;:he reals i;;o the r:eals, anµ if K :::; 

i (x,y) : y ~f(x), x >O} is inverse starl:i.ke from (o,o), then f is sub-

addit:i.ve. The properties of functions for which K has other properties 

k 
f (A ;X;T) ar~ n9t known. n . 
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