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PREFACE

This paper deals with certain classes of subsets of a real linear
space. The basic definitions and notation are given in Chapter 0. Chapter
I deals with the basic properties of inverse starlike sets and it is dem-
onstrated that the inverse starlike property is preserved under many of the
operations and transformations in a linear space. The inverse star en-
velope and star envelope of a set are defined in Chapter II; it is proved
that many of the properties of the inverse star envelope are determined by
the given set. Certain inverse starlike (starlike) sets may be represented
as the inverse star (star) envelope of a set of relative extreme points,
an extension of the Krein-Milman Theorem. Chapter III contains a discussion
of a metric space of starlike sets. Chapter IV deals with the class of all
starlike subsets and it is shown that this-class of sets satisfiles all the
requirements for a vector space except additive inverses; a restricted
cancellation law is proved. Finally in Chapter IV it is shown that, for
a particular order relation on the class of starlike sets, this class is
a complete complemented lattice which is not distributive and not modular.

In Chapter V a generalization of convexity is given which includes
convex, projectively convex, starlike, inverse starlike, property P3, cone,
and flat as special cases. ©Several properties of thils generalization are
then determined. Also a theorem due to Brunn { 3 ] (numbers in square

brackets refer to the bibliography at the end of the paper) is generalized.
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Finally Chapter VI is a summary of the paper and lists several un-
solved and partially solved problems that have been raised in the course
of the investigation.

I wish to express my sincere thanks to the members of my advisory
'Peommittee for their help in planning my program of study; to Dr. L. Wayne
Johnson, Chairman of the Mathematics Department, for my graduate assistant-
ship and for his wise counsel;, and to Professor E. K. McLachlan for his kind
assistance and guidance in the preparation of this thesis. Indebtedness
is also acknowledged to the faculty at Louisiana Tech for their encourag-
ing me to begin graduate study and for a good foundation in the subject.
Finally I want to express my deepest appreciation to my parents for their
support and encouragement, and especially to my wife, Jerrie, without whose
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CHAPTER O
DEFINITIONS AND NOTATION

The setting for the results of this paper is a real linear space as
defined by Day [6] ; several results are given in special linear spaces
and these definitions also come from Day. The symbol L is used to denote
the linear space, elements of L are denoted by lower case Latin letters,
subsets of L are denoted by capital Latin letters, and real numbers are
denoted by lower case Greek letters with the exception that in some in-
stances subscripts are denoted by lower case Latin letters.

The following notation is used for portions of the line through elements
uand v of L: uv = %au + (1 - a)v OS(LS]} and oouv = iau + (1 -a)v
GJQIE . The line through uand v is denoted by L{u,v) and )uv( = uv\\\{g,v}
is the open segment between u and v where \\ denotes set difference.

A subset S of L is:

flat if for each x and y in S, L(x,y) is contained in S;
convex 1f for each x and y in S, xy 1s contained in S;

starlike from a 1if for each x in S, ax is contained in 53;

a cone with vertex at a if for each x in S, ax|Jooxa is contained in S;

projectively convex 1if for each x and y in S, either xy or coxyl Jooyx is

contained in S (see Hare [8] );

P or S has property P if for each x, y, and z in S, at least one of

)

the segments xy, yz, or xz is contained in S (see Valentine @ﬁ] ).



The symbol En refers to n-dimensional Euclidean space with the usual
topology.

For a subset S of L, C(S) denotes the set complement of S. The convex
hull of S is denoted by k(S) and core(S) is the core of S. If L is a linear
topological space (LTS) and S is a subset of L, then s° denotes the interior
of S and S is the closure of S. The boundary of S is symbolized by bdry(S).

It is assumed that all sets considered are contained in some real

linear space L,



CHAPTER I

GENERAL FROPERTIES OF STARLIKE AND INVERSE STARLIKE SETS

Motzkin [l%] has defined a subset S of L to be inverse starlike from
an element a of L if for each x in S, ooxa is contained in S.1 In the plane
the inversion of a starlike set in the unit circle has the property of being
inverse starlike from the origin which accounts for the use of the term
inverse starlike.

The notion of an inverse starlike set is not completely foreign or new
to mathematical research. For example, distortion theorems in the theory
of complex variables deal with simple mappings of the exterior of the unit
circlg which is an inverse starlike set (see Bieberbach [1] ). Other
resultq are obtained for sets which are the complements of starlike sets.

It will be proved later that indeed the complement of a starlike set is
inverse starlike, Recently, Lax, Morawetz, anlehillips [}d} published
results they obtained concerning solutions of thé wave equation in the
exterior of a starlike set. These are just a few of the examples of the
use of inverse starlike and starlike sets in the literatﬁre.

The purpose of this chapter is to develop several basic properties of
inverse starlike sets. Many of the theorems hold also for starlike sets
and may be proved in the same fashion by merely changing the requirement on

the scalars, The first result relates starlike sets to inverse starlike sets.

lThe author had defined this notion and developed several properties of
such sets prior to learning of Professor Motzkin's work at the Sym@osium on
Convexity, Seattle, Washington, June, 1961,
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Theorem 1: Let a subset 5 of L be such that a belongs to S. Then S
is starlike from a if, and only if, C(S) is inverse starlike from a.

Pron: First assume that S is starlike from a and let x be an element

of C(S). Then ©Oxa is contained iniC(S) since, if there is an element y of
Ccoxa which belongs to S, ay would be contained in S; but x belongs to ay
contradicting that x is in C(S). Thus C(S) is inverse starlike from a.

Next suppose that C(S) is inverse starlike from a and let x belong
to S. Then by assumption a belongs to S, and ax must be contained in S
since if there is an element y of ax which belongs to C(S), ooya would be
contained in C(8); bu£ x 1s an element of Qoya which contradicts that x is

in S. Hence S is starlike from a.

A set 1s convex if, and only if, it is starlike from every point of

the set, which proves the following corollary to Theorem 1,

Corollary: If K is inverse starlike from every point of C(K), then

C(K) is convex.

The following group of theorems demonstrates that the property of
belng inverse starlike is quite a dominant property since it is preserved

under many of the set operations.

Théorem 2: Let S@ be inverse'starlike from a for each a in some index
set A. Then (1 S and LJ S are inverse starlike from a.
@ a & Ta :
R
Proof: First 1t is proved that E]_ Sa is inverse starlike from a.

Let x be in '[] Sa’ Then x 1s in S@ for each a in A and since each Sd



is inverse starlike from a, it follows that ooxa is contained in SOb for
each o in A. Thus o©oxa is contained in Ej SOb which proves that ED %x
is inverse starlike from a.

Now consider kg Sa‘ Let x be an element of kg S@. Then x is in

S, for some B in A, and since S  is inverse starlike from a, it follows

P P

that ooxa is contained in S.,. Hence oOxa is contained in EJ Sm which

B

proves that EJ S@ is inverse starlike from a.

Corollary: Let {Sﬁ} be a sequence of subsets of L. Then lim sup Sn
and lim inf Sn are inverse starlike from a provided that each Sn is inverse

starlike from a.

Proof: This corollary follows immediately from Theorem 2 and the fact

Ns._.

w

oo

Do
that lim sup Sn = r]LJS and lim inf Sn =
n=

k=t k 1

-3

=<
0

Theorem 3: Let H and K be subsets of L and suppose that H is inverse
starlike from a and K is inverse starlike from b. Let o be a real number.
Then oH is inverse starlike from asa and H + K is inverse starlike from a + b.

E{ggﬁ; It will first be proved that ol = {mx T X € H} is inverse
starlike from aa. Let y be an element of aH and write y = ax for some x
in H. Let A2>1. Then Alax) + (1 - A)(aa) = a(dx + (1 - A)a) which belongs
to o since Ax + (1 - A)a belongs to H. Hence oH is inverse starlike from aa.

Next it will be proved that H + K is invefse starlike from a + b. Let
z be an element'of H+ K; then 2 = x + y for some x in H and y in K. Let
A2L1. Then Mz + (L -A)(a +b) =Alx +y) + (L -A)(a +b) =2 + (L - N)a +
Ay + (1 - A)b which belongs to H + K since Ax + (1 - A)a is in H and

Ay +‘(l - A)b is in K. Thus H + K is inverse starlike frbm a .+ b.



It should be pointed out that the singleton {a} is inverse starlike
from a. Using this observation one may obtain the following corocllary to

Theorem 3.

Coro}lary: Let H be inverse starlike from a and let b belong to L.

Then the translate H + b is inverse starlike from a + b.

Theorem 4: Iet L and L' be linear spaces and let f be a linear
transformation of L into L'. If a subset S of L is inverse starlike from
a, then f(8) is inverse starlike from f(a) in L'.

E{ggi; Let y be an element of f£(S). Then there is an element x of S
so that y = f(x). Let A21. Then Ay + (L - A)f(a) = AMf(x) + (1 - AN)f(a) =
f(Ax + (L - A)a) which belongs to £(S) since Ax + (L - A)a is in S. Hence
f(8) is inverse starlike from f(a).

Corollary:l: Let LO be a linear subspace of L and suppose a subset
S of L is inverse starlike from a. Then the subset SO of L/LO given by

S = {x + L :xe€ SE is inverse starlike from a + L in L/L .
o o} o} o

An affine transformation f of the linear space L to the linear space
L' is defined by f(x) = g(x) + ¢ where g is a linear transformation of L
intc L' and ¢ is an element of L'. Using the corollary to Theorem 3 one

may obtain the following second corollary to Theorem k.

Corollary 2: Let f be an affine transformation of L into L' and let

a subset S of I be inverse starlike from a. Then the subset £(S) of L'



is inverse starlike from f(a).

If LOL is a real linear space for each o in some index set A, then Wg' Qm
is defined to be the set of functions x on A so that X, € Id for all a in A
and g;fgm is the subset of qu Id consisting of those functions x for
which X, = O except for a finite number of o in A. Each of the seté Téi LOL
and g; Hm is a linear space (see Day [6] , bage 5). Let Kﬁ}::Id for each
o in A. Then ”l;r K, = {(Xou)oneA tx_ € KO:g and (@ K = i(xa)%& s

xOL € K& and xOL = 0 except for a finite number of « in A} .

Theorem 5: Let LOL be a linear space for each o in some index set A,
and for each o« in A let K& be a subset of Ld which is inverse starlike from
0, the origin of Id' Then LF K& is inverse starlike from O in fhe direct

product space Wé Id and (;) Ka is inverse starlike from O in the direct

sum space L .
pee @ 1,

]

Proof: Let x = (x ) belong to V1 K and A21. Then Mx + (1 - A)O
— a ‘e a a
(KXOL)OLEA which belongs to [ml K& since XXG is in K& for each o in A. Thus
[l K ids inverse starlike from O in {{' L .
o g o AN o

Next consider an element y = (ym)aea of g? KOL and A>1., Then by

definition v, = O for all but a finite number of the o in A and Ay = (Ayd)meA

is in @ K_ since Ay_ is in K for each o in A. Therefore @ K_ is
o o o g &

inverse starlike from O in & L._.
o a
Theorem é} Let the subset S of L be inverse starlike from O. Then
the core of S is also inverse starlike from O or is empty.

Proof: If core(S) is not empty, then let x be an element of core(9)



and o 21. Now for each y in L there is a positive number e(y) so that

x + Ay is in 8 for |A|<e(y). Now S is inverse starlike from O which
implies that ax + aAy is in S. Also ax is in core(S) since for each y in
L there is a positive number el(y) = e(y)/@ sO that ax + Ay is in S for

N < el(y). Hence core(S8) is inverse starlike from O.

The corollary to Theorem 3 and the fact that the core of a set is

preserved under translation prove the following corollary to Theorem 6.

Corollary: If S 1s inverse starlike from a, then core(S) is dinverse

starlike from a.

Theorem 7: Let X be a subset of the linear topological space L and
suppose K 1is inverse starlike from a. Then K° is inverse starlike from a
or is empty and K'is inverse starlike from a.

EEQEE: It is first proved that K® is inverse starlike from a. Let x
be an element of KO and a 21, Tﬁen there 1s a neighborhood U of x so that
U is contained in K and oU + (1 - a)a(C oK + (1 - a)aCCK. But alU + (1 - a)a
is open and ax + (1 - a)a is an element of aU + (1 - a)a which implies that
ax + (1 - a)a is in KO. Therefore KO is inverse starlike from a.

Next conslder the closure of K and let x belong to K and a>1. Then
X 1s elther a point or a limit point of K. If x is in K, then ooxa is
contained in K. Hence let x be a limit point of K, so that there exists a
sequence of points gxn% converging to x and where X is in K for each
positive integer n. Also ax, + (1 - a)a is in K for each positive integer

n and the sequence {&xn + (1 - a)a} converges to ax + (1 - a)a which must



be in K. Hence K is inverse starlike from a.

The image of an inverse starlike set under a linear transformation
has been considered. It seems natural to consider the image of an inverse
starlike set under other types of transformations. Hare [8] has proved
in his thesis that the image of a projectively convex set under a proJjective
transformation is again projectively convex, A similar result may be proved
for inverse starlike sets for a transformation with an order separation
property.

let a, b, x, and y be elements of L. Then the pair (a,b) order separates

the pair (X,y) provided x is on ab and y is on OOba.

Theorem 8: ILet T be a 1-1 map of L onto L which maps lines onto lines
and is such that (a,b) order separates (x,y) if, and only if, (T(a),T(b))
order separates (T(x),T(y)) and T(0) = 0. If the subset K of L is inverse
starlike from O, then T(K) is also inverse starlike from O.

Proof: Let T(x) belong to T(K) and o >1. It must be shown that oT(x)
is in T(K). The mapping T is onto and hence there is a y in L so that T(y) =
oT(x). Assume by way of contradiction that T(y) is not in T(K). Then cer-
tainly y is not in K. Since T maps lines onto lines and i1s 1-1, y is on
L(O,x) because T(y) is on L(O,T(X)). Furthermore either y is on Ox or on
0x; for if y is on @0x0, T(y) would be in T(K) contradicting the assump-
tion that T(y) is not in T(K). Now ax is in K which implies that T(ax) is
in T(K) and since T maps lines onto lines T(ax) must be on L(0,T(x)). In-
deed it can be shown that T(ax) is on ©OT(x)0. Let B>a. Then (0,ax)

order separates (x,Bx) which implies that (0,T(ax)) order separates



(T(x),T(Bx)) and thus T(ax) is on OOT(x)0. There are two cases to consider:

Case I: Assume that y is on Ox. Then (0,x) order separates (y,ax)
which implies that (0,T(x)) order separates (T(y),T(ax)) and hence that T(y)
is on OT(x) which contradicts that T(y) = aT(x) where a >1.

Case II: Assume that y is on CoOx. Then (y,x) order separates (0,ax)
which implies that (T(y),T(x)) order separates (0,T(ax)) and hence that 0
is on T(y)T(x) which again contradicts that T(y) = aT(x) with o >1.

In each possible case a contradiction is reached and hence the hypothesis
that T(y) is not in T(K) is untenable which implies that T(y) = oT(x) is in
T(K). Therefore T(K) is inverse starlike from O.

s

For a given linear space L, let denote the linear space of all

linear functionals on L. If K is a subset of L, then the subset Kﬁ of f&
. 4 3+ . N
defined by K = {f e L : f(x)>-1 for each x in ng is called the polar
Sid

set of K. Similarly if H is contained in L° , Hﬁ = {x e L : f(x)>-1 for

each f in H_§.

Theorem 9: Let the subset K of a linear space L be inverse starlike

from O. Then Kﬁ is inverse starlike from O in ﬂi

Likewise if H is inverse
starlike from O in ﬂ# , then Hﬁ is inverse starlike from O in L.
Proof: It is proved that Kﬁ ig inverse starlike from O. It 1s known
. . 7T T .
already that O is in K and that K is convex (see Day [6] , bage 17).
Let f belong to K and a>1. Then (af)(x) = af (x) = f£(ax) > -1 for each
x in K since ax is in K. Therefore Kﬁ is inverse starlike from O.

A similar argument may be used to show that Hﬁ is inverse starlike

from O.
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A set which is convex, inverse starlike from O, and contains O is

clearly a convex cone. This establishes the following corollary.

Corollary 1l: The sets K" and P.[T are convex cones with vertices at O
- J

in the spaces ﬁ#- and L, respectively.

A theorem of Day [6] , page 20, may be used to obtain a second

corollary.

Corollary 2: Let K be inverse starlike from O in the locally convex
linear topological space L. Then (Kﬂ)ﬂ is the smallest weakly-closed cone

in L containing K.

The term smallest is used here in the sense that if C is any weakly-
closed cone in L containing K, then C also contains (Kﬁ)ﬂ. A gimilar result
for (Hﬁ)jt follows also for an inverse starlike subset H of ﬂ¢ .

The next three theprems relate inverse starlike sets and flats. The
first result characterizes flats in terms of inverse starlike sets, and is
motivated by the theorem of Haré [8] in which he proved that a set S is

flat if, and only if, S(}K is projectively convex for every projectively

convex set K.

Theorem 10: Let S be contained in L and suppose that if K is inverse
starlike from a, then S(WK is ‘also inverse starlike from a (K and a not fixed).
Then S is flat. Conversely, if S is flat and a belongs to S, then SfWK is

inverse starlike from a.
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Proof: First assume that SrWK is inverse starlike for each inverse

starlike set K in L and show that 5 is flat, Letx and y belong to 3; then
1t must be shown that CCKyFLJCoyXLny is contained in 5. Now QOxy is
inverse starlike from y which implies that Oaxy(ws is inverse starlike from
y. Also x 1is in Ooxy(WS so that <©@oxy is contained in oaxyfws and hence
in 85, ILikewise it may be shown that ooyx 1s contained in S. It remains
to be proved that xy is contained in S, ILet w be a point on ©ooxy. Then
COxw 1s inverse starlike from w and hence by hypothesis ODXW(WS is inverse
starlike from w; but x is in COXW(WS so that coxw is contained in S. Fur-
thérmore“xy is contained in ooxw since if z = ax * (1 - @)y is on xy with
O0<a<land w = ox + (L - o)y with 0>1, then z = Bx + (1 - B)w where B =
(0 - &)/(G - 1) > 1, which implies that z is on ©oOxw. Thus xy is contained
in S and it has been proved that S is flat.

Conversely, let S be flat, a belong to S, K be inverse starlike from
a, and show that S(WK is inverse starlike from a. Let x be in S(}K. Then
coxa is contained in S since x and a are in S and L(x,a) is contained in S.
Also Ooxa is contained in K since K is inverse starlike from a. Hence «@Oxa

is contained in S(WK which proves that S(}K is inverse starlike from a.

Theorem‘ll: Let the subset K of L be inverse starlike from O. Then
-0 is a core point of K if, and only if, K = L.

Proof: Clearly if K = L, then O is a core point of K. Hence assume
that O is a core point of K and show K = L. Already K is contained in L so
that it must be shown that L is contained in K. ILet y belong to L. Then
there is a positive number e(y) so that 0 + Ay is in K for A< e(y). In-

deed one may choose 0<A <1 and have l/k >1. Then K is inverse starlike
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from O implies that (l/X)(Xy) =y 1s in K which proves that L is a subset

of K. Therefore K = L.

The core and the interior of a set are generally different. The fol-
lowing example in the plane (see Figure 1) shows that this is true also for
inverse starlike sets, The set S i1s indicated by the shaded portion of the
plane and S is inverse starlike from (0,0). The point (4,4), which is the
point at which the circle is tangent to y = x, is a core point but not an

interior point of S.

T/

Figure 1

The corollary to Theorem 3 and the fact that the core is preserved

under translation prove the following more general result.



Corollary: Let K be inverse starlike from a in L, Then a is a core

point of K if, and only if, K = L.

Theqrem 12: Let the subset K of L be inverse starlike from O and be
symmetric. Then k(K) is a subspace of L.

Proof: If x is in X, then -x is in K and (1/2)x + (1/2)(~=x) = 0 must
belong to k(K). As has been observed before for a set which is convex,
inverse starlike, and contains 0, it must follow that k(K) is a convex cone.
Thus k(K) + k(K) and Ak(K) are contained in k(K) for A>0. But K is sym-
metric; hence if x is in k(K) and A<0, then -x is in k(X) and -A>0 so that
A = (-N)(=x) is in k(K). It has been proved that k(K) is closed under

scalar multiplication and sums and is therefore a subspace of L.

A subset 8 of L is called mid-point convex if for each palr of elements
x and y of S, then (1/2)x + (1/2)y is also in S. Obviously a set which is
convex is also mid-point convex; a set which is convex is also starlike from
each point of the set. Hence the notions of mid-point convex and starlike
are generalizations of convexlity. A subset S5 of L satisfies chdition X
from the point a of L provided that for each x in 8 there is a number a>1
so that ax + (l - a)a is in 8. Again it is clear that if S is inverse star-
like from a, then S satisfies condition ¥ from a, so that condition X is
a generalization of the inverse starlike property. The next group of theorems
relates the properties of convex, mid-point convex, starlike, conditibn X,

and inverse starlike.

Theorem 13: Let the subset S of L be starlike from O and assume that
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for each line P through O, P(WS is an open segment. Then S satisfies condi-
tion X from O,

Proof: Let x belong to S and let P be the line through O and x. Then
P(WS is an open segment containing O and x. Therefore there is a number A>1

so that Ax 1s in S. Hence S satisfies condition X from O,

A set 8§ 1s called linearly closed if for every line P, PrWS is closed

in the line topology for P.

Theorem‘lh: Let the subset S of L be linearly closed and mid-point
convex. Then S is convex.

EEQQE} Using the hypothesis that S is mid-point convex, one can prove
that for each x and y in S, (r/En)x + (1 - r/2n)y is in S for all positive
integers r and n and for which O:gr:QEn. Since the set of such numbers
E/En is dense in the interval [b,lj and since the line topology for L(x,y)
is equivalent to the real line topology, it follows that the set of points
(r/2n)x + (1 - r/2n)y is dense in the interval xy. Thus since S is linearly

closed, xy(C S and hence 5 is convex.

The following modification of Theorem 14 can be proved by using the

same argument as above.

Theorem_l5: Let the subset S of L contain 0, be linearly closed for
lines passing through O, and gssume that for each line P through O, it is

true that Pf\S is mid-point-convex. Then S is starlike from O.
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Theorem 16: Let the subset S of L be such that for every line P through
0, P(WS is linearly closed and mid-point convex. Assume further that S
satisfies condition X from 0. Then S is inverse starlike from O.

Eﬁggi} Let x belong to 5 and o >1; then it must be shown that ax is
in 8. Tet P be the line through 0 and x. Since S satisfies condition X,
there 1s a number A >1 so that Ax is in 8, If A = o, then ax is in S. If
A>a, then as in Theorem 1L (since P(WS is linearly closed and mid—point
convex), x(xx) must be contained in S and hence ax in S since ax is on x(x@.
Now assume that A<ao and that for each f>a, Bx is not in S. Then N =
{%.: AN>1, Ax € S% is not empty and thus A' = sup %:k T A>Ll, Ax € S} is
finite since N 1s bounded above by a. But P(WS is linearly closed so that
A'x is in S and thus there is a number A" >1 so that A'(A'x) is in S and
A'N'>A' contradicting that A' = sup N. Therefore there is a number BX>a
so that fx is in 8 and the case for A>a occurs again. In any case it has

heen proved that wx is 1n S and thus S is inverse starlike from O.

Corollary: If in addition to the hypothesis of Theorem 16, it is

assumed that O is in S, then S is a cone.

Theorem 17: Let the subset K of L be convex. Then K + KC_K if, and
only if, K is inverse starlike from O.
Proof: Assume that K + KC_ K and show that K is inverse starlike from

. 0. Let x belong to K and a21. Since K + K(CK, nx is in K for n = 1, 2,

Let nl<:aw<n2 where oy and n, are positive ‘integers. Then nX and n X are
in K and K convex implies that ——2fn x + (1 - =254 x = ox is in
Ny = 0 2 n, - 10y 1

K. Thus K is inverse starlike from O.
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Next assume that K is inverse starlike and show K +'K”ij. Let x and
y be in K. Then (1/2)x + (1/2)y is in K since K is convex and 21(1/2)x +

(l/2)yJ = x 4+ ¥y 1s in K since K is inverse starlike. Therefore K + K( XK.

Corollarys: If K is starlike from O and K + KT K, then K is a convex

cone with vertex at O,

Theorem 18: Let the subset K of L containing O be inverse starlike
from O and mid-point convex. Then K is a convex cone.

Proof: First it is proved that K + K is contained in K. Let x and y

belong to K. Then (1/2)K + (1/2)K(_K implies that (1/2)x + (1/2)y is in K.
Hence 2 Bl/E)x + (l/Q)yJ =X + y 1is in,K since K 1s inverse starlike. There-
fore K + K 1s contained in XK.

Next it is proved that MK is contained in K for A20. If A>1, then
MK (K since K is inverse starlike from O. Hence consider O<A <1. There
is an . integer n so that 1/2n <M If x is in X, then (l/2n)x is in K
since K is mid-point convex and O is in K. Also there exigts a number a 21
so that a(l/2n) = A apd hence a(l/En)x = Ax 1s in K since K is inverse star-

like from 0. Therefore K is a convex cone.

A real bilinear transformation (see Taylor @3] , page 322) on L><L
is a mapping B of LXL into the real numbers so that Blax + By, z) = aB(x,z) +
BB(y,z) and B(x, ay + Bz) = aB(x,y) + BB(x,z) for all real numbers o and B
and all x, y, and z in L. Assoclated with each bilinear form B is the
quadratic form Q defined by Q(x) = B(x,x) for each x in L. Hare [8] has

proved that the set of points at which a quadratic form 1s positive (non-
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negative, non-positive, negative) is a projectively convex set. Certain

subsets of L defined by a quadratic form are inverse starlike.

Theorem 19: Let Q be the real gquadratic form associated with the bi-
linear form B. The set K = {x e L Z(J} is inverse starlike from
each point a of L for which Q(a)>0 and B(x,a) O for each x in K.

Proof: First observe that a real bilinear fbrm is symmetric so that

B(x,

a) = B(a,x). Let x be in XK and a>1l; let a have the property that Q(a)>o0
and B(x,2)< 0 for all x in K. Then Qax + (1 - a)a) = Blax + (1 - a)a,
(

1 - «)a) = a2B(x,x) + (1 - «)°B(a,a) + 2a(L - a)B(x,a) = a2a(x) +
)2

ax +
(1 - a)Q(a) + 2a(l - a)B(x,a) which is greater than or egual to O. Thus

K is inverse starlike from a.

Hare's result and Theorem 19 naturally raise the guestion that if a
set 1s projectively convex and not convex, 1s it inverse starlike from some
point? The following figure gives an example in the plane of a projectively

convex set which is not inverse starlike from any point.

Figure 2
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The quadratic form @ is called a positive quadratic form provided that
Q(x)>0 for all x in L. One is led then to investigate the set S = {x e L

Q(x) = d} and obtain the following result.

Theorem 20: Let Q be the quadratic form associated with the bilinear
form B and assume that Q 1s positive. Then S = %x e L :Qx) = O}' is a
subspace of L.

’ Ezggiz Observe that Q(0) = 0 so that Q0 is in S. ILet x and y be in 8
and let o and B be any real numbers. Then Q(ax + By) = 2aBB(x,y) since
Q(x) = Q(y) = 0. Now since Q is positive, Q(ax + By)>0 for all choices of
X, y, &, and B, but EaBB(x,y) may be positive or negative depending on the
choice of o and B which implies that B(x,y) = 0 for all x and y in S. Thus

Q(ax + By) = O and henee S is a subspace of L.

A positive definite quadratic form is a positive quadratic form Q for
which Q(x) = O implies that x = 0. One may consider certain sets assoclated
with a positive definite quadratic.form. For example, ix e L : Q(X)Sﬁl%
or {x e L : Q(X)E:@E or %x e L : ang(x)g;B}' are sets associated with Q.
So far as the author 1s able to determine, the properties that these sets

have is unsolved.



CHAFTER IT
THE INVERSE STAR ENVELOPE OF A SET

The convex hull of a subset S of the linear space L is defined to be
the intersection of all convex subsets of L containing S; it is the smallest
convex set containing S, ©Stoker {}é} uses the notion of characteristic
cone of a set, which is the smallest cone with a given vertex which contains
the gset. The purpose of this chapter is to define the inverse star envelope'
of a set, that is, the smallest inverse starlike set (from a given point)
which contains the set, and to develop the properties of this envelope. It
will be observed that many of the properties of the inverse star envelope of
a set S are determined by properties of S. Many analogous results may be
obtained for the star envelope of a given set, the star envelope being the
smallest starlike set (from some given point) which contains the set.

The following definitions for the star envelope and the inverse star

envelope will be used. The star envelope of a set S from the point a is

denoted by Sa and is defined by Sa = Jgéxa. (This notation will not be
confusing if one remembers that lower case Greek letters are used for scalars

and lower case Latin letters for elements of L.) The inverse star envelope

of a set S from the point a is denoted by OSa and is defined by Ca0Sa =
x%é ooxa. Clearly the star envelope of S is starlike from a and the inverse
star envelope of S is inverse starlike from a; also these are the smallest

(in the sense of set inclusion) such sets containing S.

20
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The first group of theorems gives results concerning set operations in

L for the inverse star envelope.

Theorem 21: If AT B, then <cla (T OBa.
Proof: Let x be in <CoAa. Then there is an element y of A so that x
is on cooya. But ACTB implies that y is in B and hence o¢cya (. <oBa. Thus

% belongs to QCBa and it follows that @OAa (. Q0OBa.

Theo_r_em 22t Let S‘oc be a subset of L for each o in some index set A.
Then o %LJ Soc>‘a = (Lmj co8_a and o Q Soc)a o @( OOSoca)'

Proof; First consider the union of the sets Soc and let x belong to

ao( 9 Soc)a' Hence x is on ¢osa for some element s of L&J SOL. But then

for some B in A and QDsa is contained in S a which

p
a. Thus x belongs to g ODSOLa and it follows

s must belong to SB

implies that x is in ODSB
that Q S&)a - g (ooSOLa). Next show inclusion the other way.

Let y belong to %LJ (OOSOLa). Then y belongs to @»S,a for some B in A

B
and hence there i1s an element z of SB so that y is on 0za. Now z is in
%LJ SOL which implies that coza @ %LJ S&‘)a and thus that y belongs
to @l %@J Sa)a. Therefore it has been proved that co( Q boc)a = g (CDSoca)'
Next consider the intersection of the sets Soc' Clearly Q s Cs
S a for all @ in A, Hence by Theorem 21, a( Q S&)a C o8 a for all

@ in A apnd it must then follow that @ Q Sa)a - m ODSOLa.

2]

An example in E,l which shows in the latter case that inclusion may be

proper is the following. Let Sn = [O, l/n} for n =1, 2, "°" and let

it

oo 2.5
a=0. Then [l8 = §o} so tnat e [18,)0 o} put ws 0= [o, )
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o
for each positive integer n and hence (x GDSnO = [O, ).
n=

Theorem 23: Let S be a subset of L. Then C( @Sa) (C ®C(S)a.
Proof: Let x belong to C( coSa). Then S (C ooSa implies that x is in
¢(8). But ¢(3) is contained in .ODC(S)a so that x must belong to COC(S)a.

Thus C( Sa) ( ooC(S)a.

Set inclusion in Theorem 23 may be proper as is demonstrated by the
following example in the plane. Let S = {(x,y) : 0<x<l, y=1 - Xi% and
a = (0,0). Then ©0Sa = {(x,y) : x20, y20, y>21 - x} so that C( cosSa)

is not even inverse starlike from a. However, ooC(s)a = E2.

Theorem 2h: Let S be a subset of L. Then ook(S)a = k(ocoSa) and
k(S)a = k(Sa).
Proof: Let x belong to opk(S)a. Then there is an element y of k(S)

so that x is on oya and hence x = Ay + (1 - A)a for some A >1. Furthermore

, n n
since y is in k(8), y = Z .y, where y, is in S and T« = 1, a.> 0 for
. 11 1 . i 1
i=1 ‘ i=1
tf B N v n n :
i=1,2,*", n. Thenx=A2 .y, + (L -A)a= Za,(Ay., + (1 -AN)a)
i=1 * T i=1 * 7

which must belong to k( ©0Sa) since xyi + (1 - A)a is in ©0S8a for each

i=1,2, "", n. Thus Ok(S)a Ck(o0Sa).

n n
Next let z belong to k(COSa). Then z = X %Yy where X @, = 1, @iz(L
i=1 i=1
and v is in @Sa for i = 1, 2, "', n. TFlrthermore v; = kiwi + (1 - ki)a
where AHIZI,and LA is in S for each 1 = 1, 2, """, n. Then z =
n n n
i§lai(xiwi + (1 - hi)a) = i%l(aihiwi ¥ @i(l - xi)a). Let o = iilaihi; then
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oM

n
l wa= Z ai(l - ki) and hence z = o

(@ N, /a)w, + (1 ~ a)a which belongs
i=1 L -

i=1
n

to COk(S)a since w>1 and X (N /a)w, is in k(S). Therefore @k(S)a =
i=1

k( cosa).

A similar argument will show that k(S)a = k(Sa).

The fact that the convex hull of a set i1s convex is used to prove the

following corollaries to Theorem 24.
Corollary 1l: If S is convex, then Q0Sa is alsoc convex.

CQrollary 2: If S is inverse starlike (starlike) from a, then k(s) is

inverse starlike (starlike) from a.

The next group of theorems concerns the algebraic operations on sets

in L.

Theorem 25: Let S be a subset of L and let o be any non-zero real
nunber. Then oo(aS)a = a( COSb) where ab = a.

Proof: Let x belong to @ (aS)a. Then x = A(ay) + (L - N)a where N 21
and y is in 8. Then Aloy) + (1 - A)a = a{ry) + (L - A)ob = a(Ay + (L - M)Db)
which belongs to a( COSb) since Ay + (1 - A)b is in ©OSb. Thus oo(aS)a C
a{ cOSb).

Next let z belong to a{ ©COSb). Then z = a(Aw + (1 - A)b) where w be-
longs to S and A2 1. Furthermore z = Alaw) + (1 - N)ab = Maw) + (1 - N)a

which belongs to o(aS)a. Therefore it has been proved that oo (asS)a =

a( Cosb).
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Theorem 26: Let S and T be subsets of L. Then (S + T)a (— OSb +
CTc where b + ¢ = a.

Proof: Let x belong to o0(8 + T)a. Then x = A(s + t) + (1 - A)a where
s belongs to S, t belongs to T, and A>1. Then x = As + At + (L = A)(b +¢) =

(As + (L =A)b) + (At + (L - A)c) which belongs to COSb + ©OTc. Therefore

co(S + T)a (T @Sb + ©OTe.

That inclusion may indeed be proper is demonstrated by the following
examples in the plane. TLet 8 = %(1,0)}‘ and T = {(O,l)} and a = (0,0).
Then (S8 + T)a is a half-line but COSa + COTa = i(x,y) : x>1, yz_l} .

One naturally seeks conditions under which equality would hold in

Theorem 26. A partial solution to this problem is given in the next theorem.

Theorem 27: ILet S and T be cones with vertices at b and c, respectively.
Then oO(S + T)(b + ¢) = @Sb + ooTe.

Ezggiz Using the result of Theorem 26, one needs only to prove that
Q@Sb + OTe (C (S + T)(b + ¢). Since S and T are cones with vertices at
b and ¢, it follows that COSb = S and QOTc = T so that 0OSb + OTec =
S + T. Furthermore S + T (C co(S + T)(b + ¢) which implies that COSb +

Te (Coo(8 + T)(b + ¢). Therefore QSb + o©Te = oS + T)(b + c).

The converse of the above theorem is not true. The following example
in El gives two sets S5 and T which are not cones but for which (S + T)2b =
QSb + COTb. Let S = [O,l:l and T = [0,2] . Then s + T = [0,3] and
(S + T)0 = @S0 + COTO = [0, 00) but S and T are not cones.

The setting for this next group of theorems is a linear topological



25

space and it will again be observed that many properties of the set carry

over to the inverse star envelope of the set.

Theorem 28: Let S be a subset of a LIS. Then c0S% (C(cosSa)’.

Proof: Let x belong to OOSOa. Then x = Ay + (1 - A)a where A >1 and
y is in SO. Furthermore there exists a neighborhood U of y so that UCS.
Also Ay + (1 - A)a belongs to AU + (1 - A)a which is a neighborhood of
Ay + (1 - h)a and is contained in Q0Ba, Therefore x belongs to (CK)Sa)O
which proves that 008% (—( c0sa)’.

The fact that S = 50 if S5 1s an open subset of L is used to obtain the

following corollary to Theorem 28,
Corollary: If S is an open subset of L, then O0Sa is also open.

That set inclusion in Theorem 28 may indeed be proper is demonstrated
oy the following example in El. Let 5 = { l} and a = 0. Then s° = ¢ 50
that ODSOO = ¢ but ( OOSO)O = (l, Q). A sharper result, however, can be

proved for the closure operation.

Theorem 29: Iet S be a subset of a ITS. Then ©0Sa = 00Sa.
Proof: Let x belong to @Sa. Then x = Ay + (1 - A)a where A >1 and
vy is some element of S, Now y in §'implies that there is a sequence of
points y_ (n=1,2, "°") of S converging to y. Then the points Ay, o+ (1L - N)a

form a sequence of points of COSa which converges to Ay + (1 ~AN)a = x and

which must therefore belong to OO0Sa. Thus o0Sa C_ o0oSa.
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Next let u belong to ‘®08a. Then there exists a sequence of points u
(n=1,2, "°") of 0OSa converging to u. Also wo=AX (1 - xn)a where
A, 21 and x belongs to S. Solving for x one obtains x = (l/?x.n)un +
(1 - l/Kh)a. Furthermore O<l/}\_.n < 1 for each positive integer n so that
by the Bolzano- Weierstrass theorem there exists a subsequence, say {l/kn;k ,
which converges to some number o with C<a £1l. Therefore ﬁhe sequence of
points X 4 = (l/kn,)un,f+ (1 - l/kn')a must converge to au + {1 - a)a which
is in S since x_ , is in 8 for each n'. Now then if o £ 0, u=(1/a){ou +
(1 - a)a) + (1 - L/a)a which implies that u belongs to oo0Sa since 1/a > 1.
If o = 0, then the sequence {Xn'} converges to a which implies that the
sequence of points Uy = xn,xn, + (1 - xn,)a converges to a. Since limits
of sequences in L are unique, u = a. Also the sequence {an% converges

to a so that a is in S which implies that a = u belongs to oo Sa. Therefore

it has been proved that 08 = 00%a.

Corollary; If the subset S of a linear topological space is closed,

then 00 Sa 1s also closed.

Theorem 30: Let the subset 8 of the LTS L be connected. Then OOSa
is also connected.

Proof: Assume by way of contradiction that COSa 1s not connected.
Then GOSa = ALJB where A and B are mutually separated and non-empty. Now
Sa = x%é Qo Xa and each QOxa is connected so that either ©Oxa (A or
ooxa (_B. Thus A = LJODx'a and B = LJ03¥”a Where x' runs through all x'
in § for which 00x'a(CA and likewise for x". Then'S[A #'§ and s(1B £ 9.

Since A # @, there exists an x' in § so that ox'a(CA. Likewise it can
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be proved that S[1B # #. But now S (T ©0Sa implies that 5 = (s[1a)|J(s(B)
which are mutually separated and non-empty, contradicting that S is connected.

Therefore Q0Sa is connected.

Theorem 31: Let A be a dense subset of S in the LTS L. Then CQOAa is
dense in QOSa.

E{ggi; It must be shown that every point of G0Sa is either a point
or limit point of COAa. Hence let y belong to C0Sa. Then y = ax # (1 - a)a
where x is 1in S and a>1. Now x in S implies that x is either a point or
limit point of A. If x is in A, then y is in OOAa. Hence assume that x
is a limit point of A and let z:xn} be a sequence of pbints of A converging
to x. Then the sequence i:axn + (1 - m)a} is 'a sequence of points of 0©0Aa

converging to ax 4 (I = m)a = y. Therefore @Aa is a dense subset of COBSa.

It seems that perhaps a closed inverse starlike set should be the in-
verse star envelope of its boundary. The next theorem shows that this is

true in certain cases.

Theorem 32: Let K be a closed subset of the ITS L which is inverse
starlike from a and so that a is not in K. If B is the boundary of K, then
K = 00Ba.

239923 Since K is closed, BCK and by Theorem 21 it follows that
00Ba (C ooKa = K. Hence let x belong to K. The point a is not in K implies
tﬁere exists a neighborhood U of a so that U(]K = ¢. Consequently, since
x is in K and a is not in K, ax must intersect the boundary B in at least

one point p. Then p = ax + (1 - m)a for some number 0<a <1, But
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x = (Lfa)p + (1 - 1/a)a and 1/ > 1 implies that x belongs to 0OBa. There-

fore K = @Ba.

It is not true in general that if a set is connected, then its boundary

1s also connected. This statement is true for certain inverse starlike sets.

Theorem 33: Let K be a connected set which is inverse starlike from a
in the LTS L and assume that a is not in K. Then the boundary B of K is
connected.

Proofs Assume by way of contradiction that B is not connected and

write B = MLJN where M and N are mutually separated, non-empty, and both
closed since B is closed. By Theorems 32 and 22, K = 00OBa = OMa LJCONa.
Furthermore 0OMa and OONa are both closed by the corollary to Theorem 29.
It will be shown next that indeed aoMa (| oNa = ). Assume the contrary
and let z belong to CoMallcoNa. Then z = am + (1 - a)a and z = Bn + (1 - B)a
where m belongs to M, n belongs to N, aw>1, and B2>1. It may be assumed
without loss of generality that B2a (see Figure 3). Thus azr1M # ¢ and
az[ 1N % @ since m is in az(}M,and n is in az()N. Now either the open seg-
ment )m( is contained in K° or mn is contained -in B since n is in B and

m = (B/a)n + (1 - B/a)a with B/a =1 which implies that mn (C K. If )mn{ is
contained in KO and p is on )mn(, then there exists a neighborhood U of p
so that UC K. If p=on+ (1 -c)aandm=c¢en+ (L - €)a, 0>1 and €>1,
then m belongs to (e/G)U + (1 - e/G)aC: KO which contradicts that m belongs
to B. Alsoc if mm(_ B then M and N must have common points since they are

both closed and mn is a connected subset of B containing points of the sep-

arated sets M and N. This 1s a contradiction that M(WN = ¢. In either case



29

a contradiction has been reached so that QDMa[ﬁh}DNa = ¢. But this implies
that KZ and hence K, is not connected. But the hypothesis was that K is
connected. Therefore the assumption that B is not connected is untenable

and it must follow that B is connected.

Figure 3

An inverse starlike subset of a normed linear space is unbounded.
Stoker [IE:J made a study of unbounded convex sets in E3 and proved that
3

the boundary of an unbounded convex set with interior points in E- is empty
or 1s homeomorphic to either two parallel planes, the surface of an infinite
right circular cylinder, or a plane. If in addition it is assumed that the

set is inverse starlike, the nature of the boundary may be restricted even

further.

Tbeorem 34: Let K be a closed convex set in En which has interior
points and is inverse starlike from the origin but does not contain the
origin. Then the boundary B of K is homeomorphic to a hyperplane.

Proof: Let (Xl, Y, Xn) be the representation for points in B and

let 0 = (0, 0, **', 0). Tt may be assumed without loss of generality that



the coordinate system for E" has been chosen so that the point (0, "7, 0, A)
is in K° with A>0 (see Figure 4). Let H be the hyperplane defined by x =0

b

with 0<o<A. ILet (b ", bn) belong to bdry(K). Define the mapping

1’ T2’
f of bdry(K) onto H by f(bl, by, "7, bn) = (bl, b, T, b, 6). This

mapping f and its inverse are continuous since a sphere of radius € about

(bl, b, - bn) will project into a sphere of radius € about (bl’ ey b 15 o).
It is proved next that £ is 1-1. Iet (bl’ b2, e, bn) belong to bdry(K).
Then since (0, 0, ", 0, A) is in Ko, there exists a sphere U about
X
3
(2bl,2b2,2b3)
14
(O:O: 0) !
/"/
e
% /
yd X
/! 1
yd
*2

Figure 4
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(0, 0, “**, 0, N) so that UCCK®. Also s = <1>@(U[J(bl, by, 7 bn))o} 0

KO since K 1s convex, Furthermore (bl’ b " bn_l, mbn) belongs to S

2)
for all a>1 since the segment joining the origin to (bl’ bg, "','bn_l, @bn)
intersects the set k(U[J(bl, by, T, bn))oC:jKO. Hence assume there exists
a point (bl, by, T, b s bg) of bdry(K) different from.(bl, by, "7, bn)

s ‘ ‘ ‘e e o)
with b!<b . Then T = k(ULJ(bl, b, > Py_1s bé)Lj(gbl, 2b,, s 2bn)) -

KO since K ig convex and furthermore (b Yy bn) belongs to @TO

1’ bE’

contradicting that (b,, b Ty bn) is in bdry(K). Therefore the line

1’ T2’

" bn) and (bl, by, 7T, b s o) intersects the bdry(K)

through (b b n-1

-l) 2)
only at one point which proves that f is 1-1.

It is proved next that f is onto H. Let (h,, h h o) belong

> by, e .

to H and let (@hl, ah,, "7, ah ), @0+ (L - a)\) be a point of the segment
joining (hl, by, 7T, By s o) to (0, 0, ", 0, A) with 0<a <1 and inside

o» 7Ty ah g, a0+ (L - a)r) =

1 By T, b, 0 (-1 + 1/a)N) belongs to K. If the line M through

the points (h., h

the sphere U. Then (l/@)(@hl, ah
(h

h o+ (-1 + 1/a)A)

1’ Moo Y hn—l’ G) and (hl’ hE’ Yy n-1’

is not contéined in K, then it intersects the bdry(K) at some point. Hence
assume that the line M is contained in K. Then k(M[J(O, o, '*°, 0, AM)CK

since K 1s-convex. But this implies that 0 is in K since 5-belongs to

k(MLJ(O, 0, ', 0, A))(CK contradicting that O does not belong to K. Thus
the line M must intersect bdry(K) at some point which proves that f is onto H.

Therefore H is homeomorphic with bdry(K).

There are many Sufficient conditions that may be imposed on a set S to

insure that ;Eé @Pa .= L. For example, if S has an interior point or a core

It

point, then a%% @da L. Also if S contains at least three polnts of every
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line through the origin, then the above equality is again satisfied since
in the segment GoOxa, the three points may be varied so as to include all
of the line through the collinear points. An unsolved problem is to char-
acterize in some way, or to find a necessary and sufficient condition on,
the set S so that a%é QBa = L. The following theorem is a result in this

direction.

Theorem_35: The subset S of L is flat if, and only if, a%é QSa = S.
Proof: Assume first that S if flat. Then for every x in S and a in S,
L(a,x) (S and since ooxa (T L(a,x), coxa (S which implies that a%é @ SaCs.
Also S (. ooSa for each a in S so that SC::JEé OSa. Therefore JEE QOSa = S.
Next suppose that S = a%é 00Sa and show that S is flat. Hence let x
and y belong to S and prove that L(X,y) = ijylvjojnyjxy(::S. Since S =
a%é Q0Ba, CQoxy LJoayx(ZZS. It remains to be proved that xy is contained
in 8. Tet u be on COxy; then u is in S so that Ooxu(::JEé COBa = 5. But

xy . ooxu so that xy (S, Therefore L(x,y)(::S which implies that S is

flat.

A point p of a set S is called an extreme point of S if p is contained
in no open segment contained in S. The Krein-Milman theorem (see Day [6] s
page 78) states that a compact convex set is equal to the convex hull of its
extreme points. A similar result can be proved for starlike and inverse
starlike sets in termé‘of the star envelope and. inverse star envelope using
the notion of relative extreme points defined by Klee [9] . Iet L denote
a linear topological SPacé and let X and Z be subsets of L. A point z in Z

is said to be extreme in Z relative to X provided z does not lie in any open
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segment )xz'( determined by distinct points x of X and z' of Z. The set
of all such relative extreme points will be denoted by exXZ. When 7 is

convex, a point z of Z 1s an extreme point of 72 in the usual sense if, and

only 1f, z belongs to ex,Z.

Z
Theorem‘36: Let S be a closed subset of the ITS L which 1s starlike

from a and suppose S contains no ray emanating from a. Then S = (ean)a.
Proof: Certainly (ean)a(::S since S is starlike from a, Hence let

X be in S and show x is in (ean)a, Let P = ax [Jcoxa be the ray through

X emanating from a. Then P{|C(S) # ¢ since S contains no ray emanating from

a. Let Q be the closure of P(WC(S). The set Q(WS £ ¢ since if Qs = g,

then P = (SrWP)LJQ and S(]P is closed and @ is closed so that P is the union

of separated sets contradicting that P is connected. Thus let p belong to

Q(WS. Then p is in ean because if p does not belong to ean, then there

is an element y of 5 so that p is on the open segment )ay( which implies

that p is in the interior (with respect to the line topology) of SfWP. But

then p canriot belong to Q which contradicts that p is in Qf]S. Now ap(_S

since p 1s in S and S is starlike ffom a. Also x is on ap since if x is

not on ap, then there is a number o >1 so that x = ap + (1 - a)a which im-

plies that p is on the open segment )ax( again contradicting that p is in Q.

Hence x is on ap which proves that S = (ean)a.

Theorem 37: Let S be a closed subset of the ITS L which is inverse star-
like from a and suppose a belongs to C(S). Then S = cp(exaE)a where E =
LJ{CI(&X[WC(S)) 1 x € SE and cl(axf\C(S)) denotes the closure of ax| |C(S)

in the line topology for L(a,x).
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Proof: Let p be different from'a and belong to exaE. Then p is not in
E since if p belongs to E, p must belong to )ax([1C(S) for some element x
of S. But )ax([]C(S) is an open segment, since S is closed and )ax([1C(S)
is non-empty, and p on this open segment contradicts that p is in exaE.
Hence p is a limit point (invthe line topology) of ax[ |C{S) for some x in S.
But then p must belong to S since S is closed so that copa (T S. Therefore
CD(exaE)a(::S.

Next let x belong to 8. Now axfWS is a closed segment since S is closed.
Thus ax()S = px and it must be proved that p is in exaE. If p does not be-
long to exaE, then there exists an element w of E so that p is on )aw((::E.
Since p is in S, w is also in S, Thus ap (_E and aw (" E with ap = cl(ax()C(8))
and aw = cl(ax(}C(S)) implies that p = w, a contradiction. Therefore p

belongs to ex E which proves that S = Co(exaE)a.

Theorem 37 i1s used to prove the following theorem for the inverse star

envelope of the intersection of sets.

Theorem 38: Iet A and B be non-empty closed subsets of a LTS so that
(OBa = COBa and a does not belong to A[ JB. Then A[ )B # # and COAa = COBa =
CD(A(WB)&.

Proof: Since ALJB is closed and a does not belong to ALJB, there exists
a neighborhood U of a so that U(W(ALJB) = ¢. Hence @Aa = Q0Ba 1s closed
by the corollary to Theorem 29 and contains no ray emanating from a. Thus
by Theorem 37 COAa = || {oopa 1 p e exaE}' where E = LJ{?l(axfWC(S)) :

X € S}.

Now A[)B(CA implies that co(A[)B)a (T coAa. It remains to be proved
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that ooha (—co(A[)B)a. Hence let x belong to QOAa. Then there exists
an element p of exaE s0 that x is on @opa. Also p belongs to A(WB since
if p does not belong to AfWB, then either p does not belong to A or p does
not belong to B. If p does not belong to A, then since p is in GDAa there
exists a number 0<a <1 so that ap + (1L - a)a is in A ( <Aa which contra-
dicts that p is in exaE. A similar argument will hold if p does not belong
to B. Hence p is in A[)B which implies that ANB # @ and further that x
belongs to CO(A(WB)a since x is on ¢ppa. This completes the proof that

QOAa = CD(AmB)a.

This theorem is not true for sets A and B which are not closed and for
which a belongs to ALJB as 1s demonstrated by the following sets in the

rlane. ILet A = {(X,y) : X2 + y2 = r2 and r 1s a rational number with

()gx‘g];% and B = {(x,y) : x2 + y2 = r2 and r is an irrational number with

0<r<lorr = o} . Then Aa = WBa = E- where a = (0,0) but A[)B =
{(O;O)}"and clearly co(a()B)a # e

Convex sets may be characterized in the following manner: A set S is

n n
convex if, and only if, S = { by ST miz.o, Za, =1, X, € S_E; the index

i=1 + i=1 +

n is not fixed. Hence the convex hull of any set K may be represented by
n n .

k(X) = Za.x, t 0,20, Za, =1, x, € K;g where again n may be any posi-
501 T 1 i so1 T i

tive integer. The final result of this chapter gives a similar characteriza-

tion for the star envelope and the inverse star envelope of a convex setb.

n
Theorem 39: Tet S be a convex subset of L. Then Sa = {' Z mixi +
‘ i=1

n n
(L -a)a : o, 20, Zou.=o&_<_l,x.€8} and c08a={>:oux.+(1-oo)a:
- i - i 121 iTi
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n
a,20, I q ==@Zl,xie S}.

Proof': Only the proof for ®OSa is given; the proof for Sa is very sim-
ilar and will be omitted. The first argument demonstrates that the set XK =

n n
{ Tax, + (1l -a)a :a, 20, Za, =ao2l, x, € S-E is inverse starlike
jop T4 i jop T i

n
froma. Lety = Z ax, + (1 - a)a belong to K and let B 21. Then
‘1

i
n n
z B@ix, +B(1 -a)a + (1 -B)a % Ba.x., + (1 - Ba)a which

i . ivi
i i=1

By + (1 - B)a =
i

1
belongs to K. Hence K is inverse starlike from a.
Since ©0Sa is the smallest inverse starlike set containing S and since

K is an-inverse starlike set containing S, it follows that CoSa(_ K. The

a.x. + (1 - a)a

next argument demonstrates that K CC coSa. Let y = ;%
1

i

M3

belong to K. Then y = (ay)/a = a (mi/a)xi + (1 - a)a belongs to CoOSa

1

H™MB

i
n

since Z (@i/m)xi belongs tp 8 and S is convex. Thus K = COSa.
i=1



CHAPTER IIX
A METRIC SPACE OF STARLIKE SETS

In order to prove the Blaschke selection theorem, which asserts that
the class of closed convex subsets of a closed bounded convex set of E can
be made into»a compact metric space, Eggleston [7:} (page 59) develops a
metric space of bounded convex sets, The purpose of this chapter is to
develop in a similar fashion a métric space of closed bounded starlike
sets, which will, of course, include all closed bounded convex sets. A
theorem for starlike sets analogous to the Blaschke selectioh theorem for
convex sets cannot be proved in the same manner, however, sinée not all the
theorems leading up to the Blaschke selection theorem carry over to starlike
sets.

The setting for the results of this chapter is a normed linear space L
where the norm of an element x of L is denoted by | x| and the distance
from x to y is |x - v -

| Let S(R) denote a sphere of radius R whose cénter is the origin and let
N denote the class of closed sets contained in S{(R). The distance from a
point x to a set Y is defined by p(x,Y) = inf { Ix -yl :ve Y} and a
set of the form U(Y,o) = ix : p(x,¥)<<of§ is called a o-neighborhood of Y.
The metric for (L is defined as follows. Let Xl and X2 be elements of Ok

and let ol be the greatest lower bound of positive numbers ¢ such that

U(Xl,o):)X2 and let o, be the greatest lower bound of positive numbers o

2

37
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such that U(Xg,o) X,. The distance between X, and X, is A(Xl,Xg) = 0, + 9.
It can be proved that this distance function satisfies all the conditions for
a metric.

A sequence {.Xi}‘ of members of (l_is said to converge to a member X
of (l (or X, tends to X) provided that A(Xi,X) tends to O as i tends to o.

The results of this chapter are concerned with the subclass ,X of CL

of all closed subsets of S(R) which are starlike from some point of S(R).

Theorem 40: In the metric space (l if Xi tends to X, Xi is starlike
from a, and a; tends to a, then X is starlike from a,

Proof: TIf X is not starlike from a, then there exists an element x of
X so that ax 1s not contained in X. Hence there exists an element X of ax
which is not in X. The set X is closed which implies that there exists a

neighborhood U(Xo,o) so that U(XO,O)(WX = . Since X, tends to X and ay

i
tends to a, it is possible to choose i large enough so that ]Iai -al < a/2
and A(Xi,X)<<0/2. Then there is an element x' of X; so that [ x' - x| < a/2.
Hence there exists an element xé of aix‘ so that ]1xo - xé | <o/2. But then
also for each y of X, ||y - xé|l> g/2 since x! is in U(XO,U) and this con-

tradicts that A(_X_i,X) <g/2. Therefore the assumption that X is not starlike

from a leads to a contradiction which proves that X is starlike from a.
i
Let ,& be the class of all elements S of A for which S° £ 0.
¥
Theorem 41: Let Xi tend to X where Xi and X belong to A , with Xi

starlike from ai which tends to a. Let D be a member of /K which is also

starlike from a and assume a belongs to (X(}D)O. Then Xi(TD tends to X(TD.
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EEQQE; It is proved that for every positive number ¢ there exist inte-
gers M and N so that
(1) U(XﬂD,e)DXiﬂD for each integer i >M and
() U(xiﬂD,e)jxﬂD for each i>N.

Suppose by way of contradiction that (1) is false. Then there exist
an € >0, a sedquence of positive integers ij tending to oo, and a sequence
{:pj} so that p!j belongs to Xi.(WD and for every J and for every x in Xf}D,
| x - P, l| >e. There exists a gubsequence of %:pj}— which converges and it
may be assumed that p!j tends to p without loss of generality. Furthermore
p is in D since D is closed and each pj belongs to D. Since Xi tends to X
and p!j belongs to Xi.’ it follows that p belopgs to X and hence that p be-
longs to Xwa. But gor the given € there exists a sufficiently large integer
J so that Ilpj - p|f<ie which is a contradiction since for every x in X(}D,
I x - pj||> €. Therefore (1) is true.

Suﬁpose by way of contradiction that (2) is false. Then there exist a
sequence of positive integers ij tending to ©o and a sequence of points p!j
of X[ 1D so that for every ¥ in Xi.(WD, ” X - pj|l> € for j =1, 2,

Again it may be assumed without lgss of generality that p!j tends to p which
belongs to Xf}D, since Xf]D is compact. By hypothesis a belongs to (Xf}D)O.
If p = a, then one may choose another point g of (x{p)° and proceed with
the same argument. Now let r be on ap and be such that || p - r |[<e/2 (see
Figure 5). The point r may be chosen so that r belongs to D° since a belongs
to DO; also r belongs to X. Then there exists a positive number o so that
U(r,0) CCD. There exists a positive integer Nl so that for every integer
i2N,, A(Xi,X)<io and thus if iJZZNl, there exists an element rs of X; so

that || ry - r| <o. Now r; belongs to Xy (1D since || Ty - r| < o and
J
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U(r,0) CD. Furthermore || p - TS | < o+ ¢/2 <3¢/t since U(r,o) CU(p,e).

A positive integer M may be chosen large enough so that for every j>M,

l Py - p||<i€/h. Then for an integer j satisfying j>M and ijzlﬂl,
25 -~ ryli<e since f[py -l = |lp; -p+p -zl < py-pf +
| p - T || <e. But this contradicts that for every x in X | x - ij > €.

J
Therefore (2) must be true.

The theorem now follows from the definition of the metric for CL.

Figure 5

The o-neighborhood of any convex subset of a normed linear space is
again convex. The final theorem of this chapter shows that this is also

true for starlike sets.

Theqrem 4p: TIf the subset S of a normed linear space is starlike from
a and 0>0, then U(S,0) is starlike from a.

Proof:. Let x belong ta U(8,0); it must be proved that ax is contained
in U(S,0). Since x is in U(S,0), there exists an element y of S so that

H X -3 H<<0, and y in S implies that ay 1s contained in 8. Let x' =
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ax + (1 - a)a be on ax (0<a £1) and for the same value of a let y' =
ay + (1 - a)a. Then || x' - y' | = JJox + (L -a)a - ay - (L - a)a || =
| o(x -¥)Il = allx - yll < ao<o which implies that x' belongs to U(S,o).

Therefore U(S,o0) is starlike from a.

The o-neighborhoocd of an inverse starlike set need not be inverse star-
like and the same is true for projectively convex sets. The following ex-
ample in the plane is projectively convex and inverse starlike from the ori-

gin but no o-neighborhood of it has either of these properties. ILet S =

{(X,O) : IXI Zl} .



CHAPTER IV
A SEMIGROUP AND A IATTICE OF STARLIKE SETS

In Theorem 3 it was proved that if H is inverse starlike from a and K
is inverse starlike from b, then H + K is inverse starlike from a + b. A
similar result holds for starlike sets. The first purpose of this chapter
is to develop a commutative semigroup of starlike sets with an identity, a
non-trivial set of units, a separation theorem, and a restricted cancellation
law. Finally a complete complemented lattice of starlike sets 1s obtained.
Most of the results of this chapter hold also for inverse starlike sets; this
is not true, however, for the separation theorem and the cancellation law.
Let ;X be the class of all starlike subsets of a linear space L and let
A. be the subclass of X_Xﬁhconsisting of all ordered pairs (S,a) for which
S 1s starlike from a. Define (S,a)rV(S,b)bif S is starlike from both a and
b. This ~v is an equivalence relation since 1t is easily verified that it
is reflexive, symmetric, and transitive. Hence ~ partitions AS into equi-
valence classes which are denoted by (S,a)”, and the collection of all such
equivalence classes is denoted by ,5f.

A sum operation + is defined in &f'by (Sl,aj* + (82,b)* = (Sl +5.,a +b)F.

2
The addition operation is well-defined since if (Sl,a) and (Sl,a') are any
two representatives of (Sl,a)* and if (SE’b) and (SE,b') are any two repre-
sentatives of (SE’b)*’ then (Sl + 85,8 + b)* = (Sl +8,,a" + ') since

*
Sl + 82 is starlike from both a + b and a' + b!', The collection 2& is closed

L2
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under the addition operation and furthermore it is easily shown to be asso-
ciative and commutative, and that (0,0)* is the additive identity.

The group of units for /i* is the set of singletons (a,a) and (a,a)* +
(—a,—a)* = (0,0)*. The linear space L is hence isomorphic to the group of
units of ,8*.

If S is starlike from a and A 1s real, then AS is starlike from Aa,
which may be proved similarly to Theorem 3. This result suggests the fol-
lowing definition for a scalar product in 3&. Let (S,a)* belong to A&*and
A be real; define A(S,a)" = (AS,Aa)*. This operation is well-defined since
if (S,a) and (S,a') are two representatives from (S,a)*, then (kS,Xa)* =
(hS,Xa')* since AS is starlike from both Aa and Aa'. This operation also
enjoys the usual properties for a scalar product in a vector space:

o [(5,a)° + (1,0)] = a(s,a) + a(r,n)"

(@ + B)(8,a) = a(s,a)" + B(s,a)"

(aB)(S,2)* = a[ﬁ(s,a)*}

1(s,a)" = (8,a)".

It seems desirable to make the convention that the empty set ¢ is star-
like from no point and to define (§,$)" = {(¢,¢)}', 8,8 + (8,0)* = (g,8)°,
and X(¢,¢)* = (¢,¢)*. These definitions are consistent with the above pro-
perties of addition and scalar multiplication.

Hence A&*is a commutafive semigroup under addition with an identity,

a non-trivial set Qf units, and Zr_is furnished with a scalar multiplication.
With the operations of addition and scalar multiplication thus defined, lf

satisfies all the requirements for a vector space except for additive inverses.

* ¥
Theorem 43: The space ;X is homomorphic to the subclass Xo== {(S,O)}'.
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Proof: The homomorphism h of A*to A&Zis defined by h [(S,a)*} = (S-a,O)*.
It must be proved that t,heb function thus defined is indeed a homomorphism.
If (S,2)* and (T,b)* are in ).(*, then h l:(S,a)* + (T,b)’j = h[(S+T,a+b)ﬂ =
L [(S,a)*:l +h l:(T,b)*jl ; and if o is

(aS-aa,0)* = a(5-a,0)* = ah [(S,a)*j] .

(S4T-a-b,0)* = (5-a,0)" + (T-b,0)"
real, then h@,(s,a)’j = h[(ms,ma)*}

Therefore h is a homomorphism.

i

The class /&t has the same properties as A*and furthermore is closed
under the operations of addition and scalar multiplication. Hence A: is a
substructure of J*.

The cancellation law for addition does not hold even for very simple
starlike sets as the following examples demonstrate., Let Sl = {(O,y) :
0Sy.<oo} U {(X,O) : OSXA<oo‘§, 8, = {(X,O) : 0<x <oo}, and 8, =
{(l,y) : l§y<qo} U{(x,l) : l<x< 2} . Then 8, + 83 = Sk(x,y) :

l<x<om , 1Ly < Oo} = 82 + S but Sl ;é Sg' However, a restricted can-

3’

cellation law can be proved using the following separation theorem. The

setting for this theorem is En.

_Thgaor“em‘lklk: (Separation Theorem) Let S be a closed subset of E” which
is starlike from a and let p belong to C(S). Then there exists a set H
containing p which is homeomorphic to a hyperplane and so that HﬂS = 525

Proof: If p does not belong to k(8), then the s.eparation theorem for
closed convex sets (see Day [6] , page 22) assures the existence of such

a hyperplane.
If p belongs to k(S), then let U be a sphere of radius ¢ and center

at p so that Ij_ﬂs = 525 It may.be assumed without loss of generality that
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the coordinate system for E” has been chosen so that a = O and p= (0, "°",0,0),
that is, p is on the xn—axis with 0>0. ILet H' be the hyperplane defined

by x =0 (see Figure 6). Next consider the set oo(T[)H!)O = z(xl, Ty Xn) :

2 . 2 \1/2 2 ... 2 2
> . : .
X _.(cr/e.)(xl + Xn—l) if x) + +x  (2¢€ and x >0 if
xi + T 4 Xi—l< ee} which is closed and convex by Theorems 29 and 2k,
= .. 2 . 2 \1/2
: ' - . . _ .. .
The bdry( oo (U[H')0) {(xl, s Xn) X (cr/c—:)(xl + + Xn—l) if
2 ce 2 2 _ . 2 e 2 2 . .
X, + t X 9 2E€ and x = o if X + + X 1< € } and 1s the desired

set H. Certainly if H = bdry( oo (T[)H')0), then H[)S = § since if there is
an element x in HﬂS, then 0x[|T contains a point of S, contradicting that
I—I—ﬂS = ¢ The set H is homeomorphic with the hyperplane H' given by Xn = 0
and the homeomorphism is defined by f(z) = z if z belongs to TME! and £(z) =

w 1f 2z belongs to H\TjﬂH' where w is the perpendicular projection of z onto

H'. More precisely the function f may be defined at each point z =
(Xl: Y Xn) of H by f(z) = (le i) R o)
4
/
yd W
/s
// X
/ 1
ya
s
Figure 6
X
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Theorem 45: Let A, B, and C be subsets of L = o with A compact and
starlike from a; assume B and C are closed and starlike from b and c, respec-
tively., If A + B = A + C, then B = C.

Proof: There are two cases and in each case it is assumed that B # C
and shown that A + B # A + C.

Case I: OSuppose there exists an element p of B\\C sucp that p does
not belong to k(C). By translation take p = 0. There exists an element f
of 1" so that £(0) = 0 and £(z)>0 for every z in k(C) (see Day [6.], page 22).
Since f is continuous on the compact set A, there exists an element uw of A
so that f(u) = inf {:f(z) Tz e.A} . Suppose u belongs to A + C. Then there
exist elements a' of A and c¢' of C so that u=a' + c¢'. Thus f(u) = f(a' + c') =
f(a') + fc') > f(u) + 0 = £(u), a contradiction. Hence u does not belong
to A+ C. But u=u+ O belongs to A + B. Therefore if B % C, then A + B %
A+ C.

Case II: - Suppose for every p in B\\C, p belongs also to k(C). Let p
belong to B\\C. Again by translation take p = 0. By Theorem 4L there exists
a set H containing O which is homeomorphic to a hyperplane H' and so that
k(H)fWC = ¢. The set H' may be chosen to contain O and not ¢ since O does
not belong to C and ¢ % 0. Then there exists an eleﬁent f of 1L¥ so that
H' = {z eL: f(z) = O} . Let g be the homeomorphism of H' to H and let
h be a homeomorphism of L onto L so that h(z) = g(z) for each z in H with
h(0) = 0 and so that h transforms {z : f(z)>0} 1-1 onto L\ k(H) and
{ Z 3 f(z)<o} 1-1 onto k(H)\H.

A new vector space structure is introduced on L by defining x @y =
hEﬁ_l(X) + h-l(y)] and A*x = h[}h-l(x)] where x and y are in L and A is real.

It is necessary to verify that L 1s indeed a vector space using these op-
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erations. The addition @ is a function defined on LXL to L and » is a
function defined on RXL to L where R is the space of real numbers. TFurther-
more:

(1) xey)ez-ap (xey) +n ()] = n [{h ) + T+
8 @)] = n[(a7H6) + 07N ¢ n @) = m + (107Hy) + v 7H2))] -

h[h (x) + b~ (y@z)] =

®
2) x@y=np7E) + 17 @] - np ) s 0T 0] = v e
)

)

)

D"
N

}_J

=
ny
.
Py
be
—”
+
~
=
]
'_.l
|
=
—~
=
!
'_.l
N
<
—”
+
[n3
'
'_.l
N
N
—”
L,
[N
[
il

il

=

@

O
il

hEl—l(X) + h_l(O)] = h[h-l(x) + oJ. = h[h_l(x)] = X;

x® (-1ex) = n 7 (x) + 7 (axx)] = n[a 7)< 7)) = m(0) = 05
*(xoy) =0 o) = nhe ) +

n|An "t (x) + %,h-l(y)J = h[h_l(%.*x) ; h'l(x*y)]

6) v+ e = 2[00+ a7 )] = npw )+ un )] -

h[}l_l(}\,aﬁx) + h_l(p*x)] =Axx@unx;

(7) Ax(uxx) = Axn(un™ (x)) = n[w " @) ] - h[w)h'l(x)] =
(M) = x;

(8) 1xx = n(1h (x)) = h(h T(x)) = x.

h'l(y))] =

= AN*¥Xx @ N¥y;

Consequently, the collection of elements of L furnished with the op-
erations @ and % 1is a vector space which will hereafter be denoted by h(L).
The next argument shows that h(L) can be furnished with a topology for which
the operations @ and % are continuous.

There exists a neighborhood basis il of 0 for L which satisfiles the
conditions a-f of §L4(2), page 1l of Day [6;]. Let (W) = ih. : Ue TXE.
It is next shown that h{9\ ) satisfies the conditions a-f and is hence
a neighborhood basis of 0 for h(L).

(a) If x velongs to the intersection of all sets h(U), then x belongs to
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h(U) for each U in U\ which implies that h‘l(x) belongs to U for every U in
2\ and hence h—'l(x) = 0 so that x = 0.

(v) If U and V are in GU\ , then there exists an element W of 2\ so that
WC U1V, Eence n(W)C n(UNV)C n(U)n(v).

(¢c) If U belongs to A and {oo] <1, then aU(CU. Hence a*%h(U)C h(U) since
if h(x) ié in h(U), then axh(x) = h(ax) is in h(U) because ax is in U.

(d) If U belongs to 1k, then there exists an element V of A\ so that

V + VCCU. Hence h(V) ® (V) h(U) sincé if h(x) and h(y) belong to h(V),
it follows that h(x) ®h(y) = h(x + y) belongs to h(U) because x + y is

in V + VCU.

(e) The point O is a core point of each U in OU\ which means that for_ each
y in L there exists e(y)>0 so that Ay is in U for |A| <e(y). Hence for
each h(y) in h(L) there exists e(h(y)) = e(y) so that A*h(y) is in h(U)
for [A] <e(h(y)) since Axh(y) = h(\y) which belongs to h(U) since Ay be-
longs to U.

(f) Each U in )\ is convex in L and hence each h(U) is convex in h(L). Let
h(x) and h(y) belong to h(U) and 0<a<l. Then axh(x) @ (1L - a)xh(y) =
h(ax) @ h((1 - a)y) = h(ax + (1 - a)y) which belongs to h(U) since ax +

(1 - o)y belongs to U.

Consequently,: it has been proved that h(L) is a locally convex iinear
topological space with the operations @ and x and the neighborhood basis
n(W).

The set A is compact ahd B and C are cloged in L so that h(A) is compact
and h(B) and h(C) are closed in h(L) since h is a homeomorphism. Also h(B)
and h(C) are starlike from h(b) and h(c), respectively. In order to show

that h(B) is starlike from h(b), let x belong to h(B) and 0<a<1l. Then
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a*¥x @ (1 - a)*h(p) = h(onh-l(X)) ®@h((1L - a)p) = h@h—l(x) + (1 - on)b}
which belongs to h(B) since h’l(x) is in B and B is starlike from b. A
similar argument will prove that h(C) i1s starlike from h(c).

Consider the function F of h(L) into the real numbers defined by
F(x) = f(h-l(x)). The function F is linear on h(L) since if x and y belong
to n(L), then Flx @y) = 2(a7 (x @ 3)) = £[a7 (™ (x) + 17 ()))] =
P x) + 0 7Hy)) = £ ) + 27N (y)) = F(x) + F(y); also if a is real,
then Flaxx) = £(h ™ (axx)) = £(a " (n(ah ™ (x)))) = flan ™ (x)) = af (a7 (x)) =
oF (x). Furthermore F is continuous since f and h—l are continuous so that
F belongs to h(L)*. It follows that F(z) = O for every z in H; also F(z)>0
if, and only if, z belongs to L\k(H) and F(z)< 0 if, and only if, z belongs
to x(1)°.

The remainder of the argument is now similar to Case I. The set A is
compact in h(L) since h is a homeomorphism, The function F is continuous on
the compact set A in h(L) so that there exists an element u of A for which
F(u) = inf %:F(Z) 1z e.A} . Assume that u belongs to A @ C; then there
are elements a' of A and c¢' of C so that u = a' @ c¢'. Hence F(u) =
Fla'®c') =F(a') + F(e') > F(u) + 0 since C[\k(H) = ¢ and so c¢' belongs
to L\\k(H). This is a contradiction and therefore u does not belong to
FA@C. But u = u® 0 bhelongs to A @® B since O is in B. Hence A @ B 74 A®C
which implies that A + B # A + C since h is 1-1 and onto.

This completes the proof of Theorem 45.

The kernel of a set 1s the collection of points from which the set is
starlike. Brunn [3i} proved that the kernel for closed sets in the plane

is closed and convex, This result will be proved in Chapter V for a general
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ITS. The kernel of a set S is denoted by ker(S).
Using the notion of the kernel, one is able to define an order relation f;

on A*vy (sl,a)*g (sg,b)" provided that §,(T S, and ker(S;)(C ker (S Tt

2)'

is easily verified that the order relation < is reflexive, transitive, and
antisymmetric,

*

With the order relation thus defined A is a lattice (see Birkhoff [2] ).
The notation (S,aye\/(T,b)* is used for the least upper bound of (S,a)” and

(T,0)¥, and (S,ayk/\(T,bf% for their greatest lower bound.

The least upper bound of (S,a)* and (T,b)* is given by (S,a) \/(T,b)" =
(X,c)* where ¢ belongs to ker(S)LJker(T) and K = Ljilpx : x ¢ sUr,
D€ ker(S)ijer(T)} . Note that ker(S)|Jker(T)C ker(K) and hence
k(ker(S)LJker(T))C::ker(K) since the kernel is convex, but equality may

not hold as the following example in the plane demonstrates:
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There are two cases for the greatest lower bound. If ker(S)fwker(T) = ¢,
then (8,a)* A(T,b)S = (B,6YF. If ker(s)\ker(T) # ¢ and c belongs to
ker (S){ker(T), then (S,a)*,&(T,b)* = (SfWT,c)*

The lattice AF has a least element ;zS 525)* and a greatest element (L,a)"

*
since for every element * of A& < (s, b) (L,a)*

Theorem L6: The lattice /&Tis complemented.

Proof: The complement of (L,a)* is (§,8)° and conversely. Hence let
(S,a)* be a member of A&*and suppose S % L and 5 % ¢. Let p be any point
of C(S). Since C(S) is inverse starlike frbm a by Theorem 1, copa is also
contained in C(S). There exists a ray M emanating from p so that M % 00 pa
and M{ker(S) = § since if for every ray M emanating from p, M[ker(S) # @&,
every line through p would intersect ker(S) on each side so that p would
belong to ker(S) since ker(S) is convex; but this contradicts that p beloﬁgs
to C(S). Let q be any point different from p on M and set st = ODPQ).
Then ker(S') = M and it follows that (S',p)* is the complement of (S,a)*
Certainly (S,a)X A(5',2)" = (g, $)* since ker(S)(\ker(S') = #. Then it must
be proved that (S,af*\/(s‘,p)* = (L,a)*. If x belongs to S', then x belongs
to K (referring’to the notation used above in describing the least upper
bound). If x is in C(S'), then the line through a énd x intersects C(S')
only at x (since a and M are not collinear) and consequently there exists an
element z of S' so that x is on az which implies again that x belongs to K.
Since L = 8'[Jc(8'), it follows that L = K and that (S,a)" \/(S',p)¥ = (L,a)"
It should be observed that the complement constructed above 1s by no

means unique since there are an infinite number of choices for the ray M.
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In a distributive lattice complements are unique (see Birkhoff [2] , bage
75) and hence the lattice A* is not distributive.

The- lattice /&* is not modular as 1s shown by the following ‘examples.
Let S, = i(x,l) : -egxge} U {L(x,y) : -l<xgl, [x]gygl} , 8y = ker(Sg) =
{(x,l) : -l<xg 1} , and S = {(x, -1) ¢ -l<xg 1} . Then (sl,a)*g (sg,b)*
and (5,,a)°/ [(sg,b)*/\(sg,c)*} = (5, V(@) = (5,,3)% but

[(Sl,a)* \/(Sg,b)*] /\(53;0)* = (Sg,b)* /\(SB,C)* = (¢,¢)* (see Figure 8).
y

Figure 8

Consider now an infinite collection of elements of A*, say E(Sa,aa)’(}

where o is in some index set A. Denote the least upper bound of this col-

lection by V(S ,a Y and its greatest lower bound by é\(sa,a )X, Then:

o’ %
(1) V(s )
U{px rxe Us ,pel) ker(sa)} :
(2) ¥ = ([) s ,a) if [)wer(s ) # ¢ and a belongs to () ker(s_);
(3) o) = BB 1 [rer(s) = 4.

*
Therefore the lattice A& is complete (see Birkhoff [2:’ , bage 17).

o4

(K,c)* where ¢ belongs to %‘J ker(SOL) and K =

{x\(sot.’aoo
é\(S a

* /jx- .
The propertiles of the lattice A.{ may be summarized as follows: is

a complete complemented lattice which is not distributive and not modular.



CHAPTER V
A GENERALIZATION OF CONVEXITY

V-1: Introduction

A1l of the results so far have been for inverse starlike and starlike
sets with a few references to convex sets, projectively convex sets, sets
with property P3, cones, and flats. The purpose of this chapter is to give
a definition which will include all of the above definitions as special cases
and then to develop several basic results for this more general notion.

In order to make such a definition, it is necessary to consider care-
fully the definitions of convex, starlike, inverse starlike, property P3,
projectively convex, cone, and flat. In all cases either two or three
points are chosen; for some sets one of these points is fixed and others
are arbitrary. Also a certain portion of the line or lines Joining these
pointé is regquired to be contained in the set. Hence the principle features
of these sets are the choice of a finite number of points and the use of
linear segments. Keeping these features in mind one is able to arrive at
the definition given below.

Let AF = {al, Tty ak§ denote a set of k fixed points and let X = G
{Xl, e, Xn—k} (n >k) denote any set of n-k points. Let T represent a
collection of the following types of linear.segments: uv, oouv, and unions

of such segments where u and v are in L and may be any a, (i< k) or any

X4 (i<n-k).

53
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k;X;T) provided that for

Definition: A subset S of L has property PE(A
every subset X = -{xl, ey, Xn—k} of S\\Ak, at least r distinct segments

of types T are in 3,

There are several variations that could be made in the definition., The
finite character of Ak and X might be omitted and curves or continua or
some other set used instead of linear segments. Such an alteration would
certainly be more general and constitute a research problem within itself.
Also instead of requiring that at least r distinct segments of types T be
in S, one might require exactly r or at most r segments of types T to be in
S and these alterations lead also to some interesting problems.

In their paper "Helly's Theorem and Its Relatives” (which has not yet
been published and which the author learned of only recently) Danzer, Grunbaum,
and Klee [—5] outline the following scheme for generalizing convexity: In
a set X a famlly ¥ of sets 1s given together with a function n which assigns
to each element F of’E a family n¥F of subsets of X. A subset K of X is
called m-convex provided that K contains at least one member of nF whenever
F is contained in K and F belongs to F.

The generalization of convexity defined above is a special case of
n-convex. In this case X is the linear space L. If for example the sub-

k

. 1 . e
set K of L has property Pn(A ;X;T), then the famllyvg = %.X = {Xl’ s Xn_k}
E

XC::K\\Ak.} and the function 7 assigns to each X in F the family of all

k

1 .
possible segments of types T. The set K has property Pn(A ;X;T) provided

that K contains at least one segment of type T.

k
It should be observed that if a subset S has property PE(A‘;X;T), then

k

S also has property P;(A ;X;T) if 1<s<r. Consequently all of the results
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are proved for sets which have property Pi(Ak;X;T) and for convenience the
notation will be modified to Pn(Ak;X;T).

Now then it is possible to express the previous notions of convexity,
etc., in terms of property Pn(Ak;X;T):

(1) Convex: P2(¢;X;xlx2)

(2) Projectively convex: P2(¢;X;xlx2, O X X, Ljooxexl)

(3) Property P3: P3(¢;X;xixj)

(4) Starlike from a: P, (a;x;ax)

Al

(5) Inverse starlike from a: Pe(a;x; coxa)

(6) Cone with vertex at a: P_(a;x;ax|) coxa)

o
(7) Flat: P2(¢;X;xlx2 Joox %, Ljooxexl)
V-2: Sets With Property Pn(Ak;X;T)

The first group of thecrems develops the basic properties of sets with

k ).

property Pn(A ;X;T Then several special cases for the general property

will be considered. The proofs are given only for the segments of types
uv and oouv since all other types are unions of these and hence uv and oouv

are the basic ingredients that must be considered.

Theorem &7: Let the subset S of L have property Pn(Ak;X;T) and o be

k

any real number. Then aS has property Pn(aA ;0X;T).

Proof': Iet ¥is tr, Ik be elements of mS\\aAk. Then there exist

elements x b'e of S‘\Ak 50 that y, = ox

1’ 7 Tn-k

there exist elements u and v of AKLJX so that either uv, oouv, or a union

s Yk T ax . Also

1’ n-k

of such segments is in S. But o(uv) = (ou)(av) and o couv) = oolou)(av)

so that if uv (S, then o(uv) CaS and if oouv(C S, then a( couv) CaS and
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likewise for unions. Hence aS has property Pn(@Ak;@X;T)‘

Theorem h8: Let the subset S of L have property Ph(Ak;X;T) and c belong

to L. Then ¢ + S has property Pn(c+Ak;c+X;T),

Proof: Let y,, be elements of (c+S)\\(c+Ak). Then there

LY
. e k
exists a set X = {xl, , Xn4k} S\ A" so that Y, = ¢+ X,

s Yk

c + Xk Also there exist elements u and v of AkLJX g0 that either uv,

couv, or a union of such segments is in S. But (¢ + u)(c + v) = ¢ + uv and
oo(c + w)(c +v) = c + oouv so that if uwwv (S, then (c + u)(c + v)Cc + 8
and if ouv (S, then oolc + u)(c + V)C: ¢ + S and likewise for unions.

Hence c¢ + S has the desired property.

Theorem 49: Iet S be a subget of the linear space Ll and let f be a

linear transformation of Ll into a linear space Lg' If S has property

Pn(Ak;X;T), then £(S) has property Pn(f(Ak);f(X);T),

Proof: Let Yy T, Yok be elements of f(S)\\f(Ak). Then there exists

... K B . _
a set X = {Xl’ s Xn-k} C s\ A" so that y, = f(Xl)’ » Vo T f(xn—k)’

Also there exist elements u and v of AkLJX so that either uv or oouv (or
a union of such segments) is contained in S. But f(uv) = f(u)f(v) and
f{oouv) = cof(u)f(v) so that if uv(C S then f(u)f(v)C £(S), and if ocouv (S

then oof(u)f(v)C f(S). Therefore f(S) has the desired property.

Theorem 50: Let the subset S have property Pn(Ak;X;T). Then the in-
tersection of S with a flat M has this same property provided Ak(::sfﬁm.

Proof: Let x,, 7, x be elements of (Sr]M)\\Ak. Then x T, X

n-k
belong to S\\Ak so that there exist elements u and v of AkLJX so that either

1’ n-k
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uv or oouv is in S. Since M is flat, uv or c©ouv is also contained in M

which proves that S(]M has the stated property.

Theorem 51: Let each of the sets S,, "'°, S _have property Pn(Ak

k
;XT).

;%;T).

m
Then jj Si has property Pmn(A

=1

m .
Proof: Let X = {Xl’ e, an—k:} - .LJij\Ak. There are mn - k

- 1=t
points in X and mn - k>m(n - k ) which implies that at least n - k of the

k

points of X are in some Si' But Si has property Pn(A ;X;T) s0 that at

least one segment of type T is in Si and hence in LJ S

m
.. Therefore S,
i=v 1 igi 1
k

has property Pmn(A ;X;T).

Obviously the number of sets in Theorem 51 must be restricted to be
finite. The quesfion of intersections of sets with property Pn(Ak;X;T) must
be raised. However, it seems that no conclusions may be drawn here as is
demonstrated by the following examples. Let Sl be a set in E2 consisting
of three lines parallel to the x-axis and let 82 be a set consisting of three
lines parallel to the y~axis. Then Slf]S2 consists of nine isolated points
but each of the sets has property P4(¢;X;xixj).

Theorem 52: Let the subset S have property Pn(Ak;X;T). Then @S0

K.,
)X)T)'

also has property Pn(A
Proof: Let i:yl, T, yn—k}' =Y C:fOOSO\\Ak. Then there exists a
e k . ce
set Jx, T, xn_k} = XS\ A" so that y, = w.x., @, 21, 1 =1, 77, n-k.
Then there are elements u and v of XL)AK so that uv or oouv 1s contained

in 8. In order to complete the proof, it appears to be best to consider all

of the possibilities for u and v.
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Case I: Suppose ax; (CS. Then it will be proved that ay;C 0080.
Let = .+ (1 - , = . - i
et z BaJ ( B)yl BaJ + (1 B)or,ixi be on 8,7 with 0<B <1. Then

B/o with 0>1 and

7 = c(eaj + (1 - e)xi) where ¢ = (1 - B)mi + B and €
0<e< 1 which implies that z belongs to @S0. Thus ajyi 0030,

Case Il: Suppose xixJ.C 5. It will be proved that yiij 0S50, Let
z = By, + (1L - B)yj = Ba,x, + (1 - B)or,J.x{j with 0<B<1l. Then z = o(exi +
(1 - e)xj) where o = (1 - B)or,j + Ba, >1 and € = o, /o, 0<e<l, which implies
that z belongs to ©0S0. Hence yiyj C 0080, A similar argument will take
care of the case a.a,.

1

Case III: Suppose OoxiaJ.CS. It will be proved that ooyiaJ.C S0,

= 1 ~ = - i >
Let 2 Byi + ( B)aj Bmixi + (l B)aj be on ooyiaJ with B> 1. Then
z=o(exi+ (1 —e)aj)where c:Bo&i+l -B>lande=1-0(1l -B) =21
which implies that z belongs to 00S0. Hence aayiaj C o0 S80.

Case IV: Suppose ooaiij::S. It will be proved that Oaaiyjc:: 00 S0.
Tet z = Ba, + (1 - . = Pa, + (1 - o.x, be on a.y. wit >1. Then

Bay + (1 - Bly; = Bay + (1 - Blax, 2y, with 8

7 = o(eai + (1 - e)xj) where o = (1 - B)ooj +B8 21 and € = B/o > 1 which
implies that z belongs to 00S0. Hence ooaiyj C_ as0.

Case V: ©Suppose OOXinCS. It will be proved that OQyiyJ.C @ S0.

= » - = - i >
Let z Byi + (l B)yj Baixi + (1 B)ajxj be on ooyiyj with B>1. Then
7 = o(exi + (1 - e)xj) where ¢ = (1 - B)ooj + Boy >1 and € = Booi/c >1 which
implies that z belongs to ©0©S50. Hence ooyiyj C o0 B0.

These five cases represent all possibilities for the basic segments uv
and oouv, In each case it has been proved that ©0S0 has property

k ).

P (AX,T

L

Corollary: Let S have property Pn(Ak;X;T). Then ©oSa also has
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k
;X3T).

property Pn(A
Proof: Tt is first proved that ©0Sa = (S - a)0 +a. Let z =
as + (1 - a)a belong to @oSa where s is in S and o >1. Then z = as - a) + a
which belongs to oo (S - a)0 + a so that wda (C (S - a)0 +a. Let u-=
a(s - a) + a belong 50 o(S - a)0 + a where s is in S and w21. Then u =
as + (1 - @)a which belongs to ooSa. Therefore 8Sa = oS - 2)0 + a.
The set S has property Pn(Ak;X;T) so that S - a has property
Pn(Ak—a;X-a;T) by Theorem 48. By Theorem 52 (S - a)0 has property

k . .
-a;X-a;T). Again by Theorem 48 it follows that @o(S - a)0 + a = @Sa

has property Pn(Ak;X;T).

B (A

V-3: Some Special Cases of Sets with Property Pn(Ak;X;T)

The remainder of the results in this chapter deal with sets with pro-
perty Pn(Ak;X;T) in which the T is specifically described, The next group
of theorems concerns sets with property Pn(¢;X;xixj) and the notation will

be shortened to Pn since this property generalizes property Pj.

Theorem 53: Let the subset S of L have property Pn' Then S5 1s the

union of n - 1 or fewer sets Ai with Ai starlike from a;-

Proof: Let ay belong to S and define Al = lyy{alx 1 X €8, a;x(::S<}.
i1
Assume that a5 and Ai 1 have been defined. Let a; belong to 8 \ UA, and
- - : . K=\
define Ai = Lj{aix !t X e 3, aixc:ES}. Clearly each of the sets Ai is

starlike from a;.-
¢
It must be proved that 8 = [J Ai where r<n - 1. Assume by way of
P
n-i
contradiction that there exists an element x of S\ lJ:Ai and consider the
=)

n points a Y a 17 % of 5. If aix(::S, then x belongs to Ai contra-

l)
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n-
dicting that x is in S\\_LJAi. If aiaj(::S, then (if j>1i) aj belongs to Ai
1=t :
3=t
contradicting that a!j belongs to s\ LJ Ak' But this contradicts that S has
K=

.
property‘Pn. Therefore S = ‘LJAi where r<n - 1.
: ¥4

If each of the sets Ai of Theorem 53 contains no ray emanating from a;
and if S is closed, then each set Ai is the star envelope of its relative

extreme points by Theorem 36.

Corollary: Let the subset S of a'IES be closed, have property Pn’ and

assume that each of the sets Ai of Theorem 53 contains no ray emanating from
v :

ai. Then S = &A(exaiAi)ai.

Valentine [lh] has proved that under certain conditions a set with
property P3 1s the union of three or fewer convex sets. It seems likely
that a set with property Pn is the union of n or fewer convex sets, although
this has not yet been proved. Theorem 53 is a result in this direction.

A set which is convex also has property Pn’ Furthermore a set is
convex 1f, and only if, the intersection of every line with the set is
either empty or connected. A similar property can be proved for sets with

property Pn.

Theorem 54t Let the subset S of L have property Pn and let M be a line
in L. Then Mr]S consists of at most n - 1 segments.

Egggiz If MrWS contains at least n components, then a point may be
chosen from each of these components: and thus contradict that S has property

P .
n
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A closed bounded set is convex. if, and only if, for every two boundary
points x and y, xy 1s contained in the set. A problem yet to be solved is
to prove that a closed bounded set S has property Pn if, and only if, for

every n boundary points x T, X s at least one segment XX, is contained
' J

l)

in S.

Theorem 55: Let the subset S of L have property Pn and let M be convex.
Then S + M also has property Pn'

Proof: Let ¥y Ty, Yy be elements of S + M. Then Yy =8 vy where
=N is in S and m, is in M for 1 = 1, """, n. There exist elements N and
Sj so that sisj (S since S has property Pn' For the same i and J, miij:jM
since M is convex. Furthermore Vi = (s. + mi)(sj + mj)C:jS + M since

1

(si + mi)(sj + mj)C: 5:5, + miij::S + M. Therefore 5 + M has property P .
The next few results are for sets with property Pn contained in a LTS

and describe the nature of the components of such a set.

Theorem 56: Let the subset S of a LTS have property Pn' Then S has
at most n - 1 components which have property Pn° If S has exactly n - 1
components, each component is convex.

Proof': Suppose by way of contradiction that S has more than n - 1
components and write S = BlLJBQLJ"'LJBn[J(S \\Q{Bi) where each B,, 1 =
1, "°7, n, is a component of S. Let X, belong to Bi‘ Then for some I and
J xin (S since S has property Pn’ But then BiLJBjLinxj is. a éonnected
subset of S contradicting that Bi and Bj are components of S. Therefore

S has at most n - 1 components. Obviously each component has property Pn'
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Assume that S has exactly n - 1 components Bl’ T, Bn—l‘ Let X, and
y; belong to B; and let x, belong to By for J = 1, **", n-l and j # i. Then
x.x. and yixj are not contained in S since Bl’ T, Bn-l are components of

1d
5. Therefore xiin::S and hence is in Bj which proves that Bi is convex.

Theorem 57: Let the set 8 in a ITS have property Pn’ If S has exactly
n- - r components, then each component has property Pr+l and at least one of

the components has property Pr'

Proof: ILet S = BlLJBgLJ LJBn—r where B, , B _. are the components

17 > X be elements of Bk

r+2, "', n. Then if xiij::S for some i and j, BkLJBjLinyj is a connected

of 5. Let x and let Vs belong to Bi for 1 =

subset of S contradicting that Bk and Bj are components of S. Also if
yiij::S for some i and Js then BiLJBjLinyj is a connected subset of S con-~
tradicting that Bi and Bj are components of S. Therefore xinC::S for some
1 and J and hence xiij::Bk since Bk is a component of S. Hence Bk has
property Pr+l'

Now suppose that none of the components Bi has property P_. Then for
j=1, "°", r, so that x x; is not

contained in Bi for any j and k. Consider the set X = xi, X5 e,

each Bi’ there exist points x3 of B,

l)

o B N

xl, Xg, Xg, X3, Xu, e, Xn_r_} of n points of S. '‘Alsc none of the seg-
1 2 1 1 1
ments with end-points in X is contained in S which contradicts that S has

property Pn. Therefore at least one of the n - r components has property Pr'

Corollary: Let S have property P, (n>3) and suppose S has exactly

n - 2 components. Then at legst one of the components 1s convex.
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The o-neighborhood of a convex set in a normed linear space 1s again

convex., This property carries over to sets with property Pn'

Theorem 58: Let the subset S of a normed linear space L have property
P and 0>0. Then U(S,0) also has property P .

Proof: TLet x o, X be elements of U(S,G). Then there exist points

l)
Yy U, v, of S so that ][Xi - yill <ogfori=1, """, n.
Case I: Assume that all of Yy» Ty, y, are distinct. Then since S

has property Pn there exist 1 and j so that yiij::S. For the same 1 and

tt

j, it will be proved that xiijU(S,c). Let x = ax, + (1L - ou)xj be on X%
with 0<a<1l. The point y = ay, + (1 - a)yj (for the same o) belongs to S.
Furthermore || x - y|| = || ax, + (1 - a)xj -ay, - (1 - m)yjH =
I ou(xi - yi) + (1 - ou)(xj - yj)ll < a0 + (1 - a)o = o which implies that
x belongs to U(S,0). Therefore U(S,0) has property P.

Case II:; Suppose that Yy Y, vy, are not all distinct and assume
that v = yj Tor some 1 % J. Assume further that it is not possible to
choose an element y3 of S so that Y5 # y3 and || xj - yé || < o; if this is
possible for each pair that are equal, then Case I occurs again. Thus

U(yi,c)fws = {yi% . Also Xy and xj belong to U(yi,c) which is convex so

that xiij::U(yi,c)C:U(S,c). Therefore U(S,0) has property P.

The complement of a convex set is inverse starlike from each point of
the convex set. The gquestion of the nature of the complement of a set with
property Pn has not been answered. The following theorem, however, does

glve an answer for n = 3.
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Theorem 59: Let the subset S of L have property P Then C{S) has

3"
property P2(¢;X;xlx2, ogxixj).

belong to C(S) and assume that neither x.x OOXlX

Proof': Let xl‘and bie 1%07

2 0

nor OOXEXl is in C(S). Then there is a number o with 0<a <1l so that axl +

(1 - a)Xé = y 18 in 3. Also there exist numbers B and B' both greater than

one so that px, + (1 - B)x2 =z is in S and B'x, + (1 - B")Xl = z' is in S.
The three points y, z, and z' are in S so that either yz, yz', or zz' is

contained in S. But this cannot be since x, is on yz, x, is on yz', and x

1 2 1

is on zz!' and X and X, are in C(S). This is a contradiction and thus C(S)

has the desired property.

The converse of Theorem 59 is not true since if C(S) is the unit disc
in the plane, then C(S) has property P2(¢;X;xlx2, ogxixj). However S does
not have property Pg,

This completes all results concerning property Pn' The next few theorems

deal with property Pn(Ak;X;ain). The first result characterizes such sets

in terms of starlike sets.

Theprem‘60: Lef the subset S of L have property Pn(Ak;X;aixj). Then
S 1s the union of k starlike sets and a finite set of n - k - 1 or fewer
points,

Proof: Iet A, = {x €S aix:C:Sj} for 1 =1, "°', k. Clearly each
set Ai is starlike from a;- Assume by way of contradiction that S\\!J‘Ai

contains at least n - k points x X . If ainC::S for some i and J,

1’ 7 "n-k
' K
then Xj belongs to Ai contradicting that xj is in S \ LJA But this con-

= L

K
tradicts that S has property Pn(Ak;X;aixj). Therefore S\\ LJAi contains at
i=\
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most n - k - 1 points.

Theorem 61: Let the subset S of a LTS have property Pn(Ak;X;aixj).

Then S has at most k non-degenerate components.,

The proof of Theorem 61 is very similar to that for Theorem 56 and will
be omitted.

A subset S of EV is saild to have the n-point property if for every

element p of k(S), there exist n points dqs e, a, of S and n non-negative
n n
numbers & T, @, for which Z @, = 1 so that p= Z @y Bunt [M—] has

i=1 i=1
proved that a subset S of E" which has at most n components has the n-point

property. Theorems 56 and 61 state that sets which have property P or
property Pn(Ak;X;aixj) have a finite number of components. Consequently a
subset S of 7 vhich has property P or property Pn(Ak;X;aixj) has the

n-point propefty.

Theorem.62: Let the subset 38 be either open or closed in a linear
topological space and have property Pn(Ak;X;aixj). Assume S has exactly
k components B.s e, Bk where ay belongs to Bm, m=1, "°", k. Then Bm is
starlike from a -

Proof: Let x belong to Bm and assume that a X is not contained in Bm‘
Then there is an element z = aa + (1 - a)x of a X with 0<a <1l so that z
does not belong to Bm. If S is open, then there is a neighborhood U of x
so that z does not belong to U and amerU is a segment since Bm is open and
X

U may be chosen in Bm. Let x be points on amerU. Then neither

1’ 7 "n-k-1
aJ_xCS (j =1, "7, k), ajxiCS (3=1, """, kand i =1, """, nk-1),
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amx(::S, nor amgj(::s (3 =1, """, nk-1) which contradicts that S has
property Pn(Ak;X;aixj). Thus B is starlike from g, for m = 1, k.

Next suppose that S is closed. Hence Bm is closed for m = 1, "°°, k.
Again suppose that a X is not contained in Bm and let z be defined as above.
Since Bm is closed, there existsla neighborheced U of z so that UrWBm = ¢.

The point x is a limit point of Bm and, if Bm is non-degenerate, there exists
a sequence of distinct points s, of Bm which converges to x. The segments
ams!j converge to a X. Censequently there exists a sequence of points Zj
where Zj belongs to ams!j and so that -{zj}' converges to z. Also there

exists a positive integer N so that if r >N, then Z., belongs to U. Consider

the n - k points Syel? SN+n—k of Bm' Then ajsr is not contained in S
for =1, 7", kand r = N+1, "°", N+n-k which contradicts that S has pro-
perty Pn(Ak;X;ain). Hence again Bm is starlike from a form=1, "7, k.

The following example in the plane demonstrates that 1t 1s necessary
to require the set in Theorem 62 to0 be either open or closed. Let S =
) Gey) & 0sx<, o<y <1} U {(x,y) L 2<xg3, 0<y<I | U{(o,o), (1,0),

(2,0), (3,0)}. Let a. = (0,0) and a

1 = (2,0). Then S has property

2
P5(ala2;X;aixj) and has exactly two components but neither component is
starlike from a,.

The ag-neighborhood of a starlike set i1s starlike. It is not possible
to prove that the o-neighborhood of a set with property Pn(Ak;X;aixj) also
has this property as the following example in the plane demonstrates. Let
S = {(X,O) : Oszcg]_} U {(O,l)} and a = (0,0). Then S has property

P3(a;X;axi) but the o-neighborhood of S for o = 1/3 does not héve this pro-

. . k
perty. It does follow, however, that i1f S has property Pn(A ;X;aixj), then
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the og-neighborhood of S is the union of n - 1 or fewer starlike sets by
Theorem 60.

k
3X5T)

The next several theorems prove that sets which have property Pn(A
for some other special choices of T can be decomposed into sets which are

starlike or inverse starlike and extend further the results established in

Theorems 53 and 60.

Theorem 63: Let the subset S of L have property Pn(¢;X;xixj LJOOXin)-
Then S is the union of n - 1 or fewer starlike sets.
Proof: Obviously a set which has property Pn(¢;X5xixj LJoaxixj) also

has property Pn’ Therefore the result follows from Theorem 53.

Theorem 64: Let the subset S of L have property Pn(Ak;XJ Ooxiaj). Then
S ig the union of k inverse starlike sets and a finite set of n -~k - 1 or
Tewer points.
Proof: Let A, = {x € S : OOxa C::S}' where Ak = {a T, a % and
———— * i . M i - d l) b k.
i=1, """, k. Clearly each set Ai is inverse starlike from ay- Suppose
1)
by way of contradiction that S5 \ LJAi consists of at least n - k points
=
Xl) 2 n_k'

K
is in 8 \_LJAi. Thus ijiaj is not contained in S for i =1, """, n - k

i=1

X If ooxiaj(::S, then X, belongs to Aj contradicting that X,

and j =1, "°7, k. But this contradicts that S has property Pn(Ak;X; ojxiaj).

K
Therefore S5 \ UAi contains at most n - kK - 1 points.
it

Theorem 65: Let the subset S of L have property Pn(a;X; ooaxi). Then
S is the union of a cone with vertex at a and a set of at most n - 2 points.

Proof: It is first proved that S has property Pn(a;X;axi LJooxia|vJooaxi).
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Hence let x X be elements of 3. Then ooaxi(::S for some i. Let

gy e .
¥ys Yy Yn1 be points on el P Then for some j, ooaij: 5. But
axi qugxia(::ooaij::S which proves that S has the stated property.

Let A = {x €S ¢ ax LjogxaC::S} which is clearly a cone with vertex
at a. Assume by way of contradiction that S\\A contains at least n - 1

polints =z If Qoazi(::s, then as was proved above az; LJ ooziaC:S

y 8 Z -
which implies that Zs is in A, a contradiction. But thils contradicts that

S has property Pn(a;X; ODaxi). Therefore S\\A contains at most n - 2 points.

It is not possible to decompose a set which has property Pn(Ak;X; oaaixj)
for k22 into a finite number of starlike and inverse starlike sets as 1s
proved by the following example in the plane. Let A = {(x,y) 1 x< -1,

X + 1<y <-x - l}, B = {(x,y) s x>1, x + 1<y<x - l%, C, = {(l/m,y)

Wa/my) + (/m) - 1<y <(1/m) + 13

2, 3, """, Then define S = AUBU(DCm)U(ODm) and a; = (-1,0)
) m=2 m=1

1

(1/m) - 1<y<(-1/m) + 1} , and D_

il

with m

(1,0). Then S has property P (AE;X; a.x.) (see Figure 9).
I ¥ 173

and a2 ‘

y = x-1

Figure 9
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Theo 66: Let S Fox; i
he‘rem e have property Pn(A ,X,aixj[ujoaxjai). Then S is
the union of k cones and a finite set of n - k - 1 or fewer points.
Proof: Iet A, = %x €85 :ax UooxaiCS} for i =1, *°°, k and
k ce
where A" = {al, , ak§ . Clearly each set Ai is a cone with vertex at 8.
K
Assume by way of contradiction that S \ LJAi contains at least n - k pocints
1=1

X If aixj LJOOxjaiC::S for some 1 and j, then Xj belongs to

. e X, -
K
Ai contradicting that Xj is in 8 \ LJAi. But this contradicts that S has
=1
K
property Pn(Ak;X;ainlleSXjai)' Therefore S \ LJAi contains at most n - k - 1
i=1

points.

V-4: A Generalization of a Theorem Due to Brunn

It has already been pointed out that the set of points from which a
closed set in E2 is starlike is closed and convex (see Brunn [j3} ). The
following theorem, which will be used to generalize this result, proves

that Brunn's result is true for any linear topological space.

Theorem 67: Let A be a closed subset of a linear topological space.
Then ker(A) is closed and convex.

Proof: Let K = ker(A). It is first proved that K is convex. Hence
let a and b belong to X and let ¢ = aa + (1 - )b be on ab with 0<a<l. It
must be proved that A is starlike from c¢. Let x belong to A and prove cx (CA.
Since a and b belong to K, ax (C A, bx (A, and ab(_ A so that ¢ belongs to
A. Tet d = oc + (1 - 0)x be on cx with 0<o<1l. The segment bx(C A implies
that y = pb + (1 - p)x belongs to A for 0<p<1l, Thus ay (A for every y
on bx since A is starlike from a. Let p = o(1 - a)/{1 - ow) with 1 - ow # O

since O0<a <l and 0<o<1; also this value of p satisfies O<p<1l. Then
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gll - -
= —%—t—zgg-b + (1 - géét—gglﬁx and 4 = ooa + (1 - ox)y. Therefore d is

on ay since O<oa<1l so that d is in A and hence cx C_A. But this implies
that A is starlike from c and that c belongs to K. Therefore K is convex.
Next 1t is proved that K is clogsed. Let p be a Llimit point of K and
show tha®t p belongs to K, that is, show A is starlike from p. Let x belong
to A. The space L is Hausdorff so there exists an infinite sequence of
distinct points of K, say %;pi} , which converges to p. Then pi in K implies
that piXC:A since P is in X for 1 = 1, 2, "°°. Thus the sequence of seg-
ments pix converges to px which implies that px (_ A since A is closed. Thus

A is starlike from p so that p belongs to K which proves that XK is closed.

It should be noted that in Theorem 67 the proofs that K is convex and
K 1s closed are independent.

The kernel of a set S may be described as the set of points a of 5 so
that S has property P2(a;x;ax). A natural generalization of the notion of
the kernel could be described as the set of points a of S (or of L) so that
S has property Pn(a;X;T). The final two theorems of this chapter show that
for special choices of T this generalized kernel for closed sets is also

closed and convex,

Theorem 68: Let S be a closed subset of a LTS. Then the subset
K = {a € S : S has property Pn(a;X;aXi)} is closed and convex.

Proof: It is first proved that if K # {§, then S has exactly one non-
degenerate component. Assume that S has two non-degenerate components Al
and Ay and assume Alr)K # #. Let a belong to Alr)K and X, e, X1 belong

to A2. Then clearly axy is not contained in S for any 1 and j which con-
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tradicts that S has property Pn(a;X;axi). Furthermore, if K # ¢, then S
has exactly one non-degenerate component since for an element a of K there
exists an element x of S so that x # a and ax(C_S. Also it is clear that
S can have no more than n - 2 degenerate components since the contrary
would contradict that S has property Pn(a;X;axi) for some a in K. Therefore
S =A Lj{bl, tty bm} , mg<n - 2, where A is the non-degenerate component
of S. Obviocusly K(A.

It is next proved that K = ker(A), and since A is closed, the conclusion
will follow from Theorem 67. Let a belong to K, x belong to A, and prove
ax A, Let {Uk} be a sequence of neighborhoods of x closing down on Xx.
Assume that all of the sets Uk are distinct and for each positive integer
k let X?’,.'F5:XE-1 be elements of kaWA, Then for each k there exists an
element x? so that ax?(::A since A has property Pn(a;X;aXi). Also the sequence
of such points x? converges to x as k tends to ¢p. Since A is closed, and
since the segments ax? converge to ax, ax(C A. Therefore A 1s starlike from
a which proves that K Cker(A). Obviously if a belongs to ker(A), then a

belongs to K. Therefore K = ker(A) and by Theorem 67 it follows that K is

closed and convex,

It is necessary in Theorem 68 to assume that S is closed as the fol-
lowing example in the plane proves. Let S = {bgy):o<x<l,o<y<iku

{(1/2,0), (1/4,0)}'. Then for n>2, K = S which is neither closed nor convex.

Theorem 69: ILet S be a closed subset of a ITS. Then the subset H =
{a € L : S has property Pn(a;X; ogxia)}- is closed and convex.

Proof: It is first proved that H is convex. Assume that H contains
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more than one point. Let a and b be elements of H and let ¢ = Aa + (1 - ?\,)b

with O<A <1, ILet X5 e, xn-l be elements of 3. Then it must be proved

that there is a positive integer i< n-1 so that ooxicCS or that y =

ox; + (L - o)c belongs to 8 for o>1. There exists an x, (1<k<n-1) so

k

that cox, a(CZ8; that is, z = ax_ + (1 - a)a belongs to S for a>1. It will

k
be proved that Ooxkc S,

The next argument demonstrates that for each z on cox,a, ©ozb(S.

k
Certainly z is a limit point of ooxka in the line topology on ooxka. Hence
let the sequence of points Py of ooxka converge to z. Next partition the
set of positive integers as followss Il = {l, T, n—l} ’ IE = SLn+l, ey,
E(n—l)} , T, L= {n+(m-l), ey m(n—l)} , '°’. Then for every positive

integer m, there is a positive integer im in Im s0 that 0Py b (8. Also
since {p% converges to z, {ep. + (1 - e)b} converges to ez + (1 - e)b
i i

for € >1 which must belong to 3 since S is closed. Thus zb(_ S for each

Z 0on COXka.

If o>1, z = ax, + (1L - a)a belongs to S and if 6 >1, 6z + (1 - 6)b

k
belongs to S as was proved above. In particular let a = o/ (A + (1L - A)a)>1

and 6 = A + (L - A)o > 1. Then 6z + (L - 8)b = 0%, + (1 - o)c which belongs

to 3. Therefore H is convex.

It is next proved that H is closed. Let g be a limit point of H with
{qi} a sequence of points of H co‘n‘verging to g. Again let {Xl’ ey, Xn-l} =
X be elements of S and show there is some Xk so that ooxkqCS. For each

a, there is an Xy of X so that 0 X, q‘mCS form=1, 2, '**. Since X is
m m

finite there exists some x, of X so that ooxkqmc 5 for infinitely many of

k
the points of {qm} , say for {qm§ . But {qu also converges to ¢ and
‘ i 1

+ (1 - a)g, w>1, which must

hence iocxk + (1 - oc)q_mi} convergés to cnxk
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belong to S since S is closed. Therefore g belongs to H which proves that

H is closed.

V-5: An Ordering for the Classes of Subsets With Property Pn(Ak;X;T)
Property Pn(Ak;X;T) determines a class or collection of subsets of L,

namely the class of subsets of L which have this particular property. Hence

with each property Pn(Ak;X;T) is associated a class of subsets of L which

will be denoted by'ﬁﬁ(Ak;X;T). The collection of all such classes may be

ordered by inclusion. For example, §5(¢;X;xixj)C: Eﬂ(¢;X;Xin)’ The problem

naturally arises as to the precise nature of this order relation--can it be

described in terms of the n, k, AY, and T? If ﬁn(AK;X;T) end B_(3°;%;1")

are two such ¢lasses of sets, and if BpC::Ak, n-k >m-p, and either T'C"T

or each segment of type T' includes a segment of type T, then ?ﬁ(Bp;X;T‘)C:

— k...
Pn(A 3X;T).

The converse of this statement seems also to be true although
the problem has not yet been fully investigated. All such classes of sets
for which n = 2 have been determined and the remainder of this chapter is
devoted to the description and ordering of these classes.

Consider first the classes of sets with property P2(¢;X;T). There are

31 possible choices for the types of segments T. However, only 7 of these

yield distinect classes of sets and these 7 possibilities are:

(1) X %, (5) %1%y, OOXiX,

(2) O %X (6) X %55 QoxlXE[J QO X X

(3) X X, UOOXlXJ (7) X %, LJooxin, agxlngJggxgxl.
(k) X1%o U COX %, U O X Xy

The lattice structure for these seven classes using the inclusion order

relation is given in Figure 10.
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Finally consider the other possibility for n = 2, namely P_(a;x;T).

2
There are 127 possible choices for T in this case, However, only 1k of

these yield distinct classes of sets and they are:

(1) ax (8) woax, ocoxa

(2) oxa (9) coax, ax choxa

(3) ax ] coxa (10)  coxa, ax |]ooax

(&) ax|Jooax |Jcoxa (11) ax|Jooax, ax |Jooxa

(5) ax, coax (12) ax|Jooxa, oax|]coxa

(6) ax, ooxa (13) ax, ooax, Oxa

(1) ax, ooxa |Jmeax (1h) ax |Jooax, ax|Jooxa, ooxa|]wax.

The lattice structure for these 14 classes using the inclusion order
relation is given in Figure 11.

For property P3(¢;X;T) there are 2511 ~ 1 possible choices for T and,
of coursesnot all of these yield distinct classes of sets. A more economical
technique has yet to be found for determining the distinct possible classes

for n>2.



CHAPTER VI
SUMMARY AND UNSOLVED PROBLEMS

The primary purpose of this paper has been to develop, and in some
cases exbtend, properfies of certain classes of subsets of a linear space,
The class of inverse starlike sefs has been rather thoroughly investigated.
A metric space of starlike sets was discussed. The class of all starlike
subsets of a linear space was shown to have an addition and scalar multi-
plication operation which have all the properties of a vector space addition
and scalar multiplication except for additive inverses and even a restricted
cancellation law. An order relation was defined on the class of all star-
like subsets of L and with this ordering, the class was shown to be a com-
plete complemented lattice which is‘th distributive and not modular. Finally
a notion of generalized convexity was defined which includes convex,vpro—

Jectively convex, starlike, inverse starlike, property P cone, and flat

37
all as gpecial cases. Basic theorems were proved for this generalization
and it was shown that many of these classes of sets consist of sets which
are the union of starlike and inverse starlike sets. A theorem of Brunn
was generalized to some special classes of sets determined by the gener-
alized gonvex property.

Throughout the paper several references have been made to problems

that were wunsolved or only partially solved. The purpose of this chapter

is to bring together and summarize these questions and others which have

76
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been raised in connection with this research,

The properties of certain subsets determined by a quadratic form are
discussed at the end of Chapter II. The question is raised concerning the
properties of certain other subsets determined by a positive definite quadra-
tic form.

A partial solution is given to the proplem of conditions under which

(S + T)a = OOSBZ+- o Tc where b:+ ¢ = a in Theorem 27. A necessary and
sufficient condition on S to insure that JEJ 00S8a = L remains to be deter-
mined. Similar problems arise in connection with Theorems 22, 23, and 28.

k;X;T) such as omitting

Variations in the definition of property P;(A
the finite character of Ak and X and using other than linear segments poses
a problem for further research.

The intersection and sum of sets with property Pn(Ak;X;T) remain to be
characterized. The topological properties of‘sets with propenty Pn(Ak;X;T)
such as the q¢losure and interior have not been determined. Can a set which

has property Pn be expressed as the union of n or fewer convex sets? If a

X

closed set § in a LT® has the property that for every n pbints Xq5 Yy, n

on the boundary, then at least one segment xiij::S, does S have property Pn?

If S has property Pn(Ak

;X;T), then what property, if any, does c(sS) have?
Can a set which has property Pn(¢;X; ooxixj) be decomposed into a union of
a finite number of starlike_or inverse starlike sets ?

The nature of the ordering of the classes fﬁ(Ak;X;T) has not been fully
investigated and a technique has'not been determined for finding all the
distinct classes for property Pn(Ak;X;T) for a given value of n.

Property Pn(Ak;XgT) generalizes convexity. A similar generalization

for convex functions can be made and the properties of such functions in-



vestigated,

If £ is a function defined on the reals to the reals, and if K =
{(x,y) : y2f(x), }c>()} is inverse starlike from (0,0), then f is sub-
additive. The properties of functions for which K has other properties

Pn(Ak;X;T) are npt known.
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