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CHAPTER I 

INTRODUCTION 

Problem Definition 

One of the significant works in antenna theory has been published by 

Chu (2), He managed to show the physical limitations of omni-directional 

radiators by making use of the spherical-wave functions, Extensions of 

Chu's work have been carried out on a.wide va;rietY of subjects by several 

authors (4,6,8), However, none of the results have been applied to any 

actual practical antennas, This is because the mechanical configurations 

of most practical antennas can not be well described in terms of spheri­

cal boundaries; therefore, examples where the spherical..,wave functions 

have been applied to actual practical radiators are extremely rare. This 

would appear to be an omission on the part of the theory, in comparison 

with specific actual radiators. 

Objectives.and Procei;lures 

This study is .intended to accomplish two objectives, The first 

objective is to obtain a spherical~wave expansion for the solution of a 

practical radiator. The second objective is to explore the consequences 

of the work of Chu (2) and others when applied to practical radiators by 

ma~ing use o:f the spherical ... wave expansion of the radiator, 

For the first objective, the half..,wave dipole has been selected as 

an example of a practical radiator and an attempt was made to expand its 
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field, solution ~n the spherical .. wave functions. The half-wave dipole was 

selected pecause it is an efficient radiator which is often used, and, as 

a consequence, its physical properties are well known. Also its solution 

in cylindrical .coordinates when a simisoidal cu;rrent distribution is 

assumed is well .known. 

For the.,second object~ve, the directive gain, the .radiation imped­

ance, the stored energy, and the quaH ty factor of a half ... wave dipole 

have been evaluated by making use of the spherical-wave expansion and the 

results are compare~ with those which are expected from the work of Chu 

(2) and qthers (4,6,8). 

Findings 

As .an effective tool for exploring the consequences of the work of 

Chu (2) and others (4,6,8) when applied to practical radiators, the 

spherical-~ave expansion fc;ir the fields of a half;wave dipole has been 

obtained. In doing this~ it is found that it takes an infinite number of 

terms of the sphericai ... wave functions to represent the field of the .half­

wave dipole. 

On the basis of the work-of L. J. Chu (2) FJ.nd R, F, Hlgrington·(8), 

large modes of order n > ka (a is radius of an antenna) in a spherical­

wave expansion associate only with the supergain, As .it has been·ob-. 

served in Chapter III, howeve~, modes of order n > ka in the sphe•ical­

wave expansion are necessacy to represent th~ .fields of a half-wave 

dipole; although the directive gain for a,half,wave dipole is only about 

1. 64 as . compared with the normal gain 5, 60 fq;r an antenna when cutoff 

mode N = k.a = _kA./4. When tlw c1:1-toff ll10de N > kA./ 4, the. normal gain GN 

for an antenna pf half-length A./4 becomes (8): 



N:>k~ 
l 

n=l 
(2n + 1) > 

N<k~ 
-4 
l 

n=l 
(2n + 1) 

Therefore, it is believed that the nox.mal gain for an antenna of half-

length A/4 is larger than wnat has been expected from equations of Chu 
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(2) and Harrington ($); physical realization of supergain antenna becomes 

more difficult. 

Though it might be less practiq.l in some degree, the spherical-wave 

expansions for the field of linear antennas have. also been obtained. 

As an application of the spherical-wave expansion, Collin and 

Rothschild's (4) and Fante's (6) methods for the quality factor have been 

studied, In doing this, it has been found that the method of Pante gives 

more appropriate results for the quality factor for a half-wave dipole. 

It is of course well known that the current distribution on an 

actual half-wave dipole is not exactly sinusoidal. Consequently~ the 

ties bet~een the theoretical and physical measurement become even more 

difficult to determine. However, th~ .half-wave dipole is realized in 

practtce to a more exact degree than most other structures, Hence, it is 

believed that the spherical~wave expansion developed in this study is a 

tool of .some.value in exploring the physical consequences of the theory 

associated with the spherical~wave functions. 

Organization 

' 
The rest of this study is organized in the following manner. Chap-

ter II is mainly devoted to finding a spherical-wave expansion of the 

half-wave dipole with sinusoidal current distribution, It is shown that 

the well known classical far-field solution is obtained from the 



spherical-wave e~pa~sion, The conve~gence of the spherical-wave expan- . 

sion is also studied. 

In Chapter III, the more eompac~ and useful form of the spherical­

wave expansion for a half-wave dipole is obtained by making use of the 

results of Chapter II, The directive gain and the .radiation impedance 

are evaluated by using the. sphe:r:lcal-wave expansion to compare the 

results with the well-known values for a half-wave dipole. 

In Chapter IV, the-spherical-wave expansion for a half-wave.dipole 

is applied to the eval4ation of the quality factor a~d the result.is 

checked for any direct relationship of the quality factor to the 

reciprocal bandwidth. 

The summary and the .conclusion are given in Chapter V. 

4 



CHAPTER IJ 

A SPHERICAL~WAVE EXPANSION FOR THE FIELDS OF A 

HALF-WAVE DIPOLE -- (1) 

Introduction 

The main purpose of this chapter is to obtain a spherical-wave 

expansion for the fields of a half-wave dipole. In the first part of 

this chapter, the summary of the well known classical solution for a 

half-wave dipole is given and in the r~st of the chapter, the spherical-

wave expansions for the sqlution is obtained for the near~field and the 

far-field of the dipole and its behavior is studied. 

Class~cal Solution for a Half-Wave 

Dipole Antenna 

The geometry for a half-wave dipole antenna and its radiation field 

are shown in Figure l~ It i$ assumed that .the width of the ant~nna is 

infinitesimally thin and the antenna ha$ sinusoidal current distribution 

such as 

where 

where 

I = I0 sin ~(l - Z) 4 

/\ A. --<Z<-4- -4 



x 

Figure 1. 

z 

(d, cp, z) 

(R, e, cj>) 

z 

Cylin~ical and Spherical Coordinate 
Geometry for a Half-Wave Dipole 

6 



l 0 = maximµm value of the current, 

27f 
k = ."f"'" :;: wave number, and 

A = wave length. 

Then the well-known solution for the half-wave dipole antenna in 

cylindrical cqordinates is given: 

where 

~ikr 1 -ikr2 ikIO A A 
E [ (Z + -) e + (Z - -) e ] d = 4Tiwe: 4 r 1 4 r 2 

iI 0 -ikr ~ikr2 
H (e 1 + e ) t ::: 41Td 

= imaginary number, 

(ll = k(e:µ)-1/2 

= angular frequency, 

l -9 e: = 361T x 10 f ~rads/meter 

= permittivity for free space, 

-7 
µ = 4 x 10 henry/meter, 

= permeability for free sp~ce, 

z - R cos e, and 

cd = R sin e, 

7 

(2 .1) 

(2. 2) 

(2. 3) 

E2 and Ed denote the d- and the z-directional component of the electric 

field of the h~lf-wave dipole, respectively, H¢ denotes the ¢-directional 

component of the magnetiG-field of the dipole. 
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Next, the field solution in terms of spherical coordinates-is ob-

tained. This is done by combining Eqt1,ations (2.1) through (2.3) with the 

following equations:. 

Ee ;:::; - E z sin a + Ed cos a (2. 4) 

ER;::: Ez Cb$ 6 + Ed sin e (2,5) 

Hqi ;::: Hq, (2.6) 

where E6 _and ER stand for thee~ and the R~directional component of the 

electtic field of a h1;1.lf.;wave dipole, respectively. 

Performing the in!iicated c9mputatibn, one obtains 

ikI0 R + ~cos a ~;i.kr1 ikl0 R - ,r cos a .. ikr2 

Ee ) e ) 
e 

(2.7) ::c ........,_ 
C R s:i.n e + 4'lTWe ( . R sin e ' 41Twe r~ r2 

, (2.8) 

. (2. 9) 

As it is seen in the aboye equations,. one may expect to obtain a 

spherical-wave.exp~nsion for Ea'.~R' and Hqi, respect~vely, if it is pos-. 
-:i.kr1 ~:i.kr2 

sible to expand e /~1 and e /r2 in terms of the spherical-~ave 

func~ions, 

Transformation Equations 

Indeed, it is well known that the following equations are very well 
-i~r1 ~ikr2 

sati~fied by e /r1 and e /r2 in the region of R ~ A/4 in 



Figure 1: 

...,..,...__.._;;:: -
00 

ik }; , (Zn + l) jn (k i) Pn (cos e) h~2) (kR) 
n:;;O 

00 

9 

' (2.10) 

-ikr L _e __ = -
ik l (2n + 1) jn(k i) Pn(Cc;>S(7T - 8)) h~2)(kR) • (2.11) 

n"'O 

Equation (2.11) is rewritten by making use o:f the following equations: 

and. 

Pn(-,cos 8) = (-1)~ p~(cos.0) 

The res'4lt is: 

00 

---z:;i - ik l (-1).n (2n + 1) jn(k t) prt(cos 8) h~2)(kR) , (2.12) 
n;:;O 

where. 
• . >.. 
Jn(1' 4) :=,spherical aessel function of the.first kind, 

Pn(cos.e) =Legendre fu,nction, and 

h~Z)(kR) .,... _spherical Hankel func~ion of the second kind. 

If Y(n) is defined as 

(2 .13) 

it beCOJneS 

-ikr2 00 

_e __ = ~ ik l Y(n) 
r2 n==O 

(2,14) 

and 



00 ---- - ik l n 
(-1) Y(n) 

n=O 

A Spherical-Wave Expansion for the Fields of a 

Half ~Wave Dipole in the R~gion of R > ~ 

10 

(2.15) 

Now it is ready to expand Equations (2.7) throl.lgh (2,9) in the 

spherical-wave functions. Substituting Equations (2,14) and (2.15) back 

into Equations (2, 9), (2. 7), and (2. 8), a spherical-wave expansion is ob­

tained for the field of a half-+wave d:i.pble in the region of· R > A/ 4, The 

tesults are: 

kI0 r 2 00 

( -1).n Y(n·.· .. ) \' Y( ) +FR sin Q l .n 
n=O 

(2,16) 

8 CXl 

l Y(n), 
n=O 

(2 .17) 

(2.18) 

The above equations for H~, E8, and ER are rewrittn in terms of the odd 

and the even modes of the spheric~l-wave functions. The results are: 

op yr 1 Iak(rl - ;r2) 
\' ii;n,< . 8 + , ' 411" 

OQ y (n) l R . 8 ,(2,19) l R' sin n:even ' 

L kI oo .!,. I oo 

Ee = (J;.)2 _Q_ l Y~n)e· ,. (~)2 _40 l 
e: 211" s1n ~ n:even n;odd 

sin n:odd . 

(cos S)Y(n) 
R sin e ,(2,20) 

.(2.21) 
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A Spherical~Wave Expansion for the .fields of a 
. A. 

Half-Wave Dipole, in the Region of R < 4 

-ikr1 
It is well known that in the region R < A/ 4 of Figure 1, e /r 1 

and e-ikr2;r2 are represented by the following equations:· 

where 

-ikr 1 . 
e 
---- = - ik 

.. ikr2 
e 
----- c -

l n (-1) · A(n) 
n=O 

ik l A(n) 
n;i:;O 

A(n) = (2n + l)h (2) (k .4A.)P (cos e) j (kR) n n n 

(2. 22) 

(2. 23) 

(2. 24) 

For the region of R < A./4, a spherical-wave expansion for the field of a 

half-wave dipole is obtained by substituting Equations (2,22) and (2.23) 

back into Equations (2.7), (2.8), and (2.9), The results are: 

kI 0 r 1 oo n kI 0 r 2 00 

HA, = ·4TI R sin e l (,·l) A(n) + 4 R · e l A(n) 
~ n=O .ir sin n=O 

(2.25) 

! kl R + i cos e 00 ~ kIO R - ~ cos e 00 

Ee = (~}2 4iro . l ( ... l)n A(n) + (µ£) 'T,;""" R sin e l A(n), 
~ R iin e n=O qir n=O 

(2.26) 

(2. 27) 

The above equations.for H~, Ee, and ER are rewritten in terms of the odd 

and the even modes of the spherical-wave functions: 
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00 

\ A(n) 
l R , 8 ,(2.28) 

n:odd sin 

.!.. kl 00 

E = (!L)2 ~ \ A(P) . 
-8 £ 2TI l S1iiB ~ 

n:even 

(cos ~)A(n) 
R sin 8 

The Continuity of the Spherical-Wave 

A. A. Expansions fpr R < 4 and R > 4 

,(2.29) 

.(2.30) 

Setting R = A/4 and equating Equation (2,19) to Equation (2.28), 

Equation (2,20) to Equation (2.29), and Equation (2.21) to Equation 

(2.30), it is easily seen that the .spherical-wave expansions for R > A/4 

and R ~ A./4, are continuous at R = A./4. 

The Far-Field Solution for a Half-Wave Dipole 

It is well known that the ;fa:r-field so.lution :!;or a half-wave dipole 

is given by the following equations: 

iI0 e-ikR cos(!2 cos 8) 
lint H. 
R-roo ~ = ~ R sin 8 

lim E 
R~00 e 

7f 
e -ikR q>s C2 cos 8) 

= iio60 'R sin e 

lim E ::::: . 0 
R+oo R 

(2.31) 

(2.32) 

(2.33) 

In this section it ·will be shown that the above far-field equations 

are also obtainable by ID\iking use of the sphe;rical-wave expansion for a 
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half-wave dipole. First, the far~field properties of the following 

equations are studied, From Equations (2.lQ) and (2.12), it is obtained 

that 

where 

lirn e 
-ikr ' 2 oq 

_._...._:::: - ik. l T (n) ~!.:. h~ 2 ) (kR). R-+oc:i 
n=O 

-ikr 
1. l lID ...,e __ = _ 

R+i:xi r l 

00 

ik I (-l)n T(n) ~,!.: h~2 ) (kR) 
n;::O 

T (n) ;:: (2n + l) jn (k i) Pn (cos 8) 

(2.35) 

(2.36) 

In figure 1, as R goes to infinity, it is easily noticed that r 1 and r 2 

are, approximated as 

t. r 1 f: R + 4 cos e (2. 37) 

A r 2 ;:: R - 4 cos e ( 2. 38) 

It is also wen known that the ~ankel function of the second kind is 

asyrnptotiGally given by 

h (Z) (kR) 
n 

when R approaches infinity., 

-ikR 
::: (i· )n+l e _,k..,..R-.- (2.39) 

Now substituting Equations (2.37), (2,3&), and (2,39) back into 

Equations (2,34) and (2.~S), it follows 

-ik (R - 41. cos e) 
-ikR 00 _e _______ = e l 

R R n=O 

and 

(i)n T(n) (2' 40) 
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-ik(R + ~cos e) -ikR 00 

_e _______ _,. = e . l ( ... i)n T(n) 

R R n=O 
(2,41) 

From the above.two equations, one obtains 

"k A e l 4 cos QO 

I n e = (i) · T (n) (2,42) 
n=O 

/.. e -ik 4 cos QO 

e = l (-i}n T (n) (2 '43) 
n::oQ 

Now it is ready to demonstrate that Equations (2.31), (2,32), and (2,33) 

are obtained from Equations (2~16}, (2.17)~ and (2,18). Substituting 

Equations (2,37) through (2.39) back into Equations (2.16), (2.17), and 

(2.18), one obtains 

lim H 
R+QO cp 

1 . I -ikR 
lim E 

..,_ 1 
(µ) 2 (__..Q.) e - R sin a R~00 e e: 47f 

1 . I -ikR lim E _ 2 1 0 
Ct) C16'fi~ e { R-+rxi R - ' R2 

QO 

{ l 

(-i)nT(n) + I 
ni;:Q 

(-i)n T(n) + 

(i) n T (n)} 

QO 

I (i)n T(n)} 
n=O n=O 

QO QO 

l (·i)n T(n) - I (i)n T(n)} 
n:;::Q n;::Q 

' (2,44) 

' (2,45) 

' (2,46) 

By making use of the results of Equations (2,42) and (2.43) in Equations 

(2.44), (2.45), and (2.46), it is expressed that 

/.. A n 
iI0 e'"'ikR il< 4 cos e -ik 4 cos e iI0 e-ikR cosc2 cos e) 

lim H - [e . + e ] R-+oo ~ - 4i R sin e · = 27f R sin e 
(2.47) 
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. µ -21 iI0 e~ikR ik A4. cos 8 -ik 4A cos 0 
hm E ( ) [ ] 
R+oo 8 = E' ~ R sin e e + e 

e .. ikR 1 cos(; cos 8) 

= iio60 R sin 8 ' (2.48) 

l 'I . kR 'k ;\ 8 2 l, 0 e -1 l.. ';f CPS 
Um E = (µ) , -- [e 
R+QO R - E 167T R 

"k ;\ 8 -J,. 4 cos' 
- e ] 

• (2,49) 

As R approaches infinity, 

-ikR .. ikR e e 
, 2 < < _.,..,.R-· -

R 

therefore, it is concluded that 

l:Lm E « lim H 
R+eo · R R.+oo ·~ 

and 

lim E « lim E 
R.+oo R R~ 8 

Therefore, from Equations (2.47), (2.48), and (2.4~), one obtains 

iio "ikR 
7T 

8) lim cos(! cos 
H~ 

e = 2 sin R+oo R 8 
(2. 50) 

~ikR ( 7T 8) 
lim cos 2 cos 

Ee iI060 
e 

R..+IXl 
=! R sin 8 

(2.51) 

lim E - 0 
R+Po R - (2.52) 



Equations (2,50), (2,51), and (2,52) are exactly the same as Equations 

(2.31}, (2.32), and (2.33), respectively. Thus it is proved that the 

16 

spherical"'.'wave expansion which i~ obtained as Equations (2 .16), (2 .17), 

and (2.18) is satisfied with well known c!ass~cal far-field solutions for 

a half-~ave dipole. Therefore, the proper behavior of the expansion has 

been demonstrated. 

Convergence of the Spherical..,Wave Expansion 

in the Far-Field 

It has been found that, in general, a spherical-wave expansion re-

quires an infinite number of terms of the spherical-wave functions to 

represent th,e fi.elds of a half-wave dipole. Therefore, it may be of 

interest to study how fast the sphe'X'iGal~wave e:x;pansion converges to the 

radiation field. 

From Equations (2.44) i;i.nd (2,45), it is found that 

and 

co . _ u 0. e"'ikR llm H ~ 
R+00 <P - 211' R sin e l 

lim E 
R+O? ·· El 

n:even 

iI0 -ikR co 

( i)n T(n) · e ~ ;:: 21T R sine l 
n;::O 

(i)n T(n) 

(-l)n T(2n) , 

(2.53) 

(2.54) 

In the preceding section, it has been proved that Equations (2,44), 

(2.45), and (2.46) are equal t<:? Equations (2.31), (2.32), and (2,33), 

respectively, Since Equations (2.53} a:Qd (2,?4) are rewdtten from 

Equations (2.44) and (2.45), 
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iI0 e -ikR l co n iI0 e-ikR cos(¥- cos 6) 
2 · · R s~n e l (-l) T(Zn) = 2 · R · sin e 

n=O 

and 

-ikR co 

(iI060) e R si! 6 l (-l)rt T(2n) = 
n=O 

TI" •. 
-ikR cos(-2 cos e) e , ------R sin e 

The above t~o eqµations lead to 

TI". 
cos C-z cos e) · = _ __,,,,_,,__ 

sin e • (2.55) 

At e = tr/2,, E,ql\at~on (2~55) becomes 

(2.56) 

Therefore, the convergence of the spherical-wave expansion is studied by 

checking how fast the left-hand side of Equation (2•56) appro~ches th,e 

value .LO •. Keeping this in minc;I, th~. f~rst few ter!I_ls of Equation (2 .. 56) 

are calcµlated and examined to see if their total is close enough.to 1.Q. 

It .is w~U kno.wn that 

= ~-l)n (2n - l)!! 
.I (2n)il ! J ... (2.57} 

where ,. . 

nil 
[ncn .. 4), ••• 3.1 for n:.odd 

= 1:i (n"'.2) ••.• 4~ 2 for p: even, 

01! =.l, and 

(-1}! ! :; ,1. 

By making use .of Equaticm (2.57), Equation (2.56) is rewritten in th,e 
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following form: 

00 00 

(-l)2n(4n+i). (!.) (2n-:l).! ! 
· · J 2n 2 (Zn) ! I 

00 

'i (2n,.l)!! . 7f 
= L (4n+l) C2n)!! JznCz) = 

n:;::O 

00 

l H(n) 
n=O 

(2.58) 

(2,59) 

Calculating H(n) .for n = O, 1, 2, 3,: 

H(O) = joC;) = 0. 6366197724 

H(l) 5 . (7f) ;:;: 2 J2 2 = 0.3435426348 

(2.60) 

H(2) 27 . (7f) = - J -8 4 2 = 0.0194170804 

H(3) 65 . (7f) 
= T6' J6 2 = 0.0004149267 

Substituting Etg.iation (2.60) back into Eq~tion (2.58), the following 

values for l H(n) are found: 
n=O 

H(O) = 0.6366197724 

H(O) + H(l) = Q.9~01Q24072 
(2.61) 

H(O) + H(l) + H(2) = 0.9995794876 

H(O) + H(l) + H(2) + H(3) = 0,9999944143 

It .is apparent from the above result~ that the spherical-wave expansion 

cqnverges very rapidly, and the first three terms of the exapnsion should 



be qu~te adequate tq represent the field to the degree that co4ld be 

confirmed by physical measurement, 
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CHAPTER III 

A SPHERICAL-WAVE EXPANSlON FOR THE FIELDS QF A 

HALF-WAVE DIPOLE -- (2) 

·Introduction 

The antenna's radiation field may be divi9ed into two regions, One 

is the region o~ts~de the smallest imaginary sphere which can enclose the 

antenna. The other is the region inside the smallest imaginary sphere 

which can enc~ose the anten~a. These two regions are illustrated in 

Figure 2. The out~ide region will be called Region A and the inside 

region. will be called Region B. 

Region. A 

Region B 

Figure 2. The Smallest Imaginary 
Sphere Which can 
Enclose the Antenna 

""' 
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According to L. J. Chu (2), the radiation field of ~n antenna which 

has.a transverse magnetic field is represen'lied by.the following equations 

in the Region A: 

00 

H<I> = l 
n=O 

(3~1) 

! oo h( 2)(kR} 
i (li) 2 l A n(n+l)P (cos 8) n kR 

E n=O n n 
(3,2). 

1 
- 00 

E i· C¥-) 2 \ A P1 (cos 8) l d kRhn( 2) (kR) (3, 3.) e = ... n;O n n kR cl, CkR) 

where 

P (cos 8) ::; Legendre function, ·n 

1 
6) sin e d 

Pn(cos e) P (cos ::; 

d(cos e) n 

= Associated Legendre function, and 

h( 2)(kR) =Spherical Hankel function of the second kind. 
n 

An are the coefficients which should be calculated by making use of the 

boundary conditions or by some other well known results that have been 

obtained for the antenna. 

It is well known.that the field.of the ¢lectric dipole which is 

shown in Figure 3. is represented by the single .term of the spherical-wave 

functi0n: 



where 
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Al 
k3P 

= 
47Tv'JIF 

p = QOL' 

q = electdc charge, 

i :;:: *.=.current, and 

Qo = effective v~lue Of q. 

z 

(R, e, ~) 

x 

f:i,gure 3, Electric Dipole of Length L 

The purposes of this· chapter are: 

(1) to find the coeffiqients An for a half ... wave dipole and for 

linear radiators with assumed sinusoidal current distribution; 

(2) to insure the proper behavior of the obtained sp~erical wave 

expansion; 

(3) to check.the convergence of the wave expansion; and 
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(4) to discuss the spherical wave expans~on's relation to the 

th,eory.Qf Chu (2) and Harrington (8). 

Finding the Coefficients An 

In the preceding chapter, it was.demonstrated th,at·Equations (2.16), 
. . 

(2.17), and, (2.18) behave properiy as the electromagnetic field solution 

for a half-wave 4ipole antenna.· Therefore, it is possible to determine 

the coef;ficients An.by equating ~quation (2.18) and.Equation (~.2). Th~n 

it.is fqu;nd that 

1 
2 90 

i (.\0 l A n(n+l)P (cos 9) e .0 n n 
n= 

FTo~ the above equation, the coefficients An are obtained: 

kl [ ( -.l)n - l] (2J1 + 1) Jn(7f2) 
An= i (~) o · n(n +'l) 

Equation (3.S) also can be rewritt~n as 

A = n 

0 

ikI0 . (2n + 1) Jn C!) 
4n(n + 1) 

for n:odd 

for n:even 

h~2) (kR) 

kR 

(3.4) 

(3.5) 

(3.6) 

Substituting Equat.ion (3. 6) bacl~ intq Equation (3, l) through Equatic;>n 

(3. 3) 1 th:~n the field equat~ons . for a. half-wave dipole antenna bec;ome 

ik I 09 

H.i. = -~ l X (n}h~Z) (kR) 
"' n:odd ·· 

(3.7) 
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.!. kl 00 

ER = - (µ)2 _o l Y(n) 
E 4 dd kR n:<:D 

(3. 8) 

and 

1 
µ 2 kIO 00 1 d (2) 

E 8 = Cr) T Z: x Cn) kif d (kR) [kRh (kR) 
· n:odd n 

(3.9) 

where 

(2.13) 

7T 
(2n + 1) Jn (2) 1 

X(n) = ( • l) P (cos S) n n + . n · (3,10) 

Thus using Equation (2.18), new spherical-wave expansion for the field in 

Region A of a half-wave dipole is obtained. 

Convergence of the Expansion 

The conve:rgen,ce of the new spherical-wave·expansi9n is checked in 

the following pages, 

From Equation (5,7) through Equation (3.9), it is apparent that the 

new spheriyal-wave expansion consists of an infinite number of terms of 

the spherical functions. Hqw, then, does this expansion converge? To 

examine the conver~ence. of Equations (3. 7) and (3.9), the .class.ical far­

field solution for a half,.wave dipole is used. It is: 

IO -ikR 7T 
8) lim cos c2 .cos 

H~ i e = R sin R-+<x> 2 e (2.31) 

lim 
.!. r -ikR cos(I cos 8) 

E i (H.)2 -2. e 
R-+oo 

.,.. 
R sin e e ~ 2 



Since the maximum field intensity occurs at 8 = tr/2, the normalized 

values of. the field intensity bec9me 1. 0 at· this·. angle; that is 

and 

lim H 
R+oo ¢ 

I 0 .-ikR . e 
1 -2 __,,R,.....-

lim E. 
R+oo · 8 

= 

8 7f . 
= 2 

= 

TI 
8 = 2 

'IT 
cos(z cos 8) 

sin 8 

TI cos(z cos 8) 

sin 8 

= 1.0 

8 = 7f 
2 

7f 
8 = 2 

= 1.0 

Next, Equations (3.7) and (3,9) are used to evaluate 

lim H 
R+oo ¢ 

I -ikR 
i C20) _e_R_ 

, and 

lim E 
R+oo 8 
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(3.11) 

(3.12) 

Recall that as R approaches infinity, the Hankel func'f;.ion h~2 ) (kR) 

is asymptotically rep;resented as 

..-ikR 
h~2) (kR) ::: (i)n+l _e.....,,.k_R_ 

and using this result, it follows, in the far-field, 

n+3 
d (2) 2 -ikR .......,.,._,,.,. [kRhn · (kR)] ::: i(-1) e · d(kR} 

(2.39) 

(3013) 

Substitutin~ Equations (2.3!:)) and (3~13) back into Equations (3.7) and 

(3,9), respectively, 



lim 
R-+<x> H~ 

lim E 
R-+<x> e 

I 
= i cf) 

-ikR e 
00 

l R niodd 

-ikR e 
00 

l' 

n+3. 
-2-

(-1) X(n) 

n+3 
2 

(-1) X(n) 
R n:odd 
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(3,14) 

(3.15) 

Equations (3.14) and (3 .15) are the far-field representation of the . 

spherical-wave expansion for a half-wave dipole, Dividing the both sides 
I · -ikR 

of Equation (3, 14) by i Cf) e R. , it is obtained that 

lim H 
R-+<x> . ~ 

-ikR e 
R 

= 

n+3 
OQ -
\' 1T . 2 
l 2 (-1) X(n) 

n:odd 
(3,16) 

µ 1/2 Io e-ikR it 
and dividing Equaticm (3.15) by i (e:) 2 R. , is also obtained 

that 

lim E 
R+c;o e n+3 

00 -
\' 1T 2 

= l 2 (-1) X(n) 
n:qdd 

If Equations (3,16) and (3.17) are compared with Equations (3,12) and 

(3,13}, it is found that; 

n+3 
00 -
\' 1T . 2 
l 2 (-1) X(n) = 

n:odd 

1T cos(2 cos 8) 

sin e (3,18) 

At e = 'JT/2, the right side of the above equation becomes 1,0 and it 
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follows 

n+3 r ; C-l)T [X(n)] 1T :;: 1,0 
n:odd e = 2 

(3. H>) 

From Equation (3.19)~ it will be noted that a measure qf the number of 

terms in the spher;ical ... wave expansion which is required to represent the 

field might be obtained by determ.inJng how rapidly the value of unity is 

approached. This has been achieved through the following procedure. 

First, it is required to know how the associated Legendre function 

P1(0) is represented. Fortunatelyi it is well known that n 

n-1 
(-l)T ,n! 

2n- l . en - l , ) 2 
2· 

a 

for n:.odd 

(3.20) 

for n:even 

Therefore, substituting Equa~ion (3.20) back into Equation (3,19), it 

becomes· 

00 00 

I ; C-l)n+l,M(n) :;:: r ~(n) - 1.0 
n:odd n:odd 

(3.21) 

where it is d.efined that 

1T n+l 
E (n) = 2 ( - l) M (n) (3.22} 

and 

(2n+l) n! j:n c;) 
M(n) = ----.......---..,......... 

n(n+~) 2n-l cn;i1)2 
(3.23) 
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Performing the indicated computations for the E(n), the following values 

are obtained: 

E(l) 31f . ('1") 
= T Ji 2 = 0,9549296588 

E (3) 71f . (1f) = -J. -16 3 2 = 0.0441573HO 

(3.24) 

E (S) = .!.!!. . ( .!) 
32 J5 2 = 0,0009020484 

E (7) 
757f . 1f 0;0000099328 c: 256 J 7 C2) -

To observe how fast Equation (3,21) approaches unity, one substi-

tutes Equation (3,24) back into Equation (3.~1) and the following partial 

sums are obtained: 

E(l) - 0.9549296588 

E(l) + E(3) = 0.99908698 

(3.25) 

E(l) + E(3) + E(5) = 0.9999899182 

E(l) + E(S) + E(S) t E(7) = Q.9999998510 

It is readily appa,;ren,t from the above results that the spherical-

wave expansion converges quite rapidly and that the first two terms 

should be quite adequate to represent the field that could be confirmed 

by physical measurf:'lment, 

It has·been seen in Equation (2.61) that the spherical-wave expan-

sion which is found in page ll needs three terms to represent the field. 

Therefore, one can say that the spherical-wave expansion given in pages 

23 and 24 converges more rapidly, 



Directive Ga~n 

In the preceding pages, the coefficients An were obtained as Equa­

tion (3,6). By ~ubstituting Equation (3.6) back into Equation (3,1) 

29 

through Equation (3.3), a sphericahwave e:x;p~nsion for a half-wave dipole 

antenna.was found.as Equations (3.7) through (3.9), Now the general 

equation.s for the directive gain and the .radiation impedance of an 

anten11a will be obtained by making use of Equation (3.1) through Equation 

(3.~). Then, substituting An into the derived equations, it is demon­

strated that the results are the same as those optained from the clas~ . . . - ~ 

sical field solutions fOr a, half-wave dipole, 

where 

The definition for the directive gain is given as 

I li.m El 2 
R-rco 

G(e) = -----...------
1 ~ llim El2 . e de d~ 41T 'I R+oo s J.,n 

(3. 26) 

and u , u6, and u~ are unit vec~Qrs~ whose direction is toward increasing 

R, e, and~' respectively. Recall that when.R approaches infinity, 

h <2J (kR) is as~ptotically represented as 
n 

Therefore, 

lim h (2) (kR) 
R-+eo n 

-ikR n+l 
= (i)n+l e kR = (-1) 2 

n+l 

-ikR e 
kR 

lim d [kRh_n(2)(kR)] 
R-+eo d (kR) 

-2- -ikR 
::: -i(-1) e 
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Substituting the above two equatibns back into Equations (3,1) and (3.2) '· 

respectively, one obtains 

and 

1. n+3 "kR 
- 00 f -1 

~!:ER;:: i C%) 2 l (-1) Art n(n+l) Pn(cos.e) _e_.,... 
n=O (kR) 2 

l;i.m E. 
R+oo e 

l oo ~· . l -ikR 
= (µ}2 l (-1) An Pn· (cqs e), e kR 

E· n=O 

As R goes to infinity, it is observed that 

-ikR .-ikR e · e · 
« kR 

(kR) 2 

th.erefore. if 1im E is compared with lim E it is concluded that , R-+eo R · R-+llO e ' 

therefore, t~e magnitude of~!.: E(e, $)becomes, 

llim E(e ~)I = llim. E ·I R.+co ' R-+o11 e 

(3.27) 

(3.28) 

(3.29) 

By 11\akin~ use of ,Equa~ion (3.29) in Equation (3,26), the directive gain 

is expressed in terms of Ee. The result is: 

(3.30) 

de d~ 

Using Equei.tion (3. 28), the numerator of Equation (3. 30) becomes 
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1 
2 n+l 2 

(!!.)2 
-ikR CX> 

2 e l (-1) A 1 
8) kR P (cos 

e: nc;Q n n 

[Jo 
n+l ei] [L 

n+l ai] jJ 1 T 1 (-1)2 * 1 = CE") 22 (-1} A P (cos A P ·(cos 
k R n n n n 

(3. 32) 

* where An indicates complex conjugate of An' Using Equation (3,32), the 

denominator of Equation (3.30) is 

1 ~ llim E 12 sin 
41f 'f R+oo · 8 8 d8 M 

[ 
n+l 

i 1 27f 7f 00 T 
= -4 (!!.) -2 .··2 I d~ /. z: .. ( .. 1) A 

7f e:. k R O 0 n=O n 

[ E (-1) n;l A~ P!(cos 8)] sin 8 d8 
nc;O 

[ 

CX> 

. l 
n=O 

n+l l 
(-l}T ,\; r! (cos e~ sin e de (3;33) 

However, from the orthogonality of the· associated Legendre functions, it 

is well .known that 

7f 

J. P1(cos 8) P1(cos 6) sin 8 de = 
0 n · m 

2n{n+1! 
2n+l 

0 

for n=m 

(3,34) 
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There£ore, making use 0£ the results of the above, 

1T [ 00 J ' l 
O ·. n=O 

[ 
n+l 

00 -

2 * 1 • l ("" l) A P (cos 
n=O n n 

sin e de 

00 

= l (-1.)n+l jAnj2 2n(n+ll 
n=O 2n+l 

(3' 35) 

Finally, substituting Equation (3.35) back into Equation (3.33), the 

denominator of Equation (3.30) betomes 

L ¢ llim E I 47T R-+oo e sin e de d(/l 

(3.36) 

By maidng use of Equations (3.32) and (3.36) in Equation (3,30), the 

dire~tive gain for an angle e is expressed as 

[ 

00 n;l 1 J [ co n;l. * 1 l (~l) A P (cos 6) I (-1) A P (cos 
0 n n 0 n n 

n= n= . . . 

G (6) = ....... --------------------...--00 

l (-l)n+l jA 12 n(n+l) 
n:;O · n 2n+l. 

(3.37) 

Since the directive gain is usu~lly measured at the angle e = 7T/2, it may 

be convenient to obtain the expression for G(7r/2). Setting e = 1T/2 in 

Equation (3.37}, G(7T/2} is given by 

(3.38) 



SubstHuting Equation (3.19) back into Equation (3.38), G(1T/2) finally 

becomes 

This is the final form of equation for the directive gain of an antenna 

at the angle e = 1T/2, Therefore, if the proper coefficients A are n 

available, then G(1T/2) of any antenna is readily evaluated. 

The Directive Gain for a Half~Wave Dipole 

33 

By making use of Equation (3.39) with Equation (3.6), it is now pos~ 

sible to evaluate the directive gain for ;:i. half-wave dipole. 

In Equation (3,6), the coefficients An for a half-wave dipole are 

found as 

A = n 

ikl0 (2n+l) Jn(;) 
.,. . '4n Cri+ 1) . . 

0 

for n:odd 

for n;even 

Then, by making use of the above values, the numerator and the 

denominator of Equation (3.39) become 
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llO nl An ikI0 00 

l (-l)n { l n 
n-1 (n-1 1) 2 = - (4""") (-1) M(n)} 

n=O 2· 2· n:odd 
(3,40) 

* 00 nl A ikI 00 

l (-l)n n (_..Q.) { l n 
2n~l cn;l ! ) 2 "' (-1) M(n)} 

n=O 4 n:odd 
(3.41) 

and 

00 kl 00 

l (-l)n+l IA. 12 n~n+l} = ( 40)2 { l (-l)n+l 2n+l [" (TI)]2} , 
n=O · · n n+l n:Qdd n(n+l) ln 2· 

(3,42) 

Substituting Equat~ons (3.40), (3.,41), and (3.42) back into Equation 

(3.39), then the directive gain GH(TI/2) of a half-wave dipole is 

expressed by the following equation: 

l f(n) 
n:odd 

where it is defined that 

and 

D(n) = (-l)n M(n) 

f(n) "' (-l)n+l 2n+l [j (!.)]2 
n(n+l) n 2 

Performing the indicated computat~on for D(n) and f(n), 

(3' 43) 

(3.44) 

(3,45) 
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D (1) = 3 . ('IT) 
~2J1'2 = - 0.6079271019 

0(3) = 7 . (7T) 
- 8 J3 2 = - 0.0281114173 

D(S) ::;: u . (7T) 
-rrJs! = - 0.0005748348 

D(7) 
75 1T . 

(3.46) = - 128 j7(2) := - o.00000637324 

f (1) 3 [. ('!T) 2 = - J ...... 2 l 2 = 0.2463835742 

f (3) = tl U3C;)]2 = 0.0006020966 

f (S) 
11 . 7T 2 = tr [J 5 (5)] = 0. 0000002563 

(3.47) 

Frqm Equ~q::iqn (3. 46), 

00 

l D(n) :;: D(l) + D(3) + 0(5) + D(7) + • • • ::: 0.6366196774 
n:qdd 

(3. 48) 

therefore~ the numerator of Eqµation (3.43) 'becomes 

CJdd D(n)]
2 

• [D(l) + D(3) + D(!;) + D(7) + • • ·] 2 z 0.4052846137. 

(3. 49} 

From Equation (3.47), the dep.omipator of Equation (3.43) is given as 

00 

l f(n) = f(l) + f(3) + f(S) + f(7) + • • '::: 0.2469859271.(3.50) 
n:odd 

In Equations (3.48), (3,49}~ and (3.50}, only first few terms of the 

series are used, bec~use it has been proved that the spherical-wave 



expansion converges very rapidly, an4 the first few terms are quite 

adequatE'. to represent the.fields bf.a half-wave dipole~ 

Now, Equat~ons (3.49) and (3,50) give ~s the directive gain of a 

half-wave gipple as 

co 
!- 2 

l D(n) 
_::.n:od-Q. · 
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GH (;} = --00---- = 1, 640~218$8 (3.51) 

l f(n) 
n:odd 

It is easily recognizable that the value given in Equation (3.51) is 

egua+ to the value of the directive gain which is ob.tain_ecj by ml:l.king use 

of a classical fiel4 solution for a half~wave dipole. 

Radiation Power and Radiation Impedance 

Assuming that there is an imaginary sphere enclosing the whole . 

. antenna system, the sphere has-radius a and its surface is S, Then; the 

radiation power W out of the surface S will be expressed by the real part 

of the su~face integral of the complex Poyntin~ vector P = (E ··~ Fr*). 

W =real part·of J 
s 

-· _,. 
(E ;x: l{ ) • n dS (3. 52) 

_,. 
where ii is a unit vec;tor.wh,ich is normal to the surface S, and H is 

conjugate of H. 
For a ha+f-wave dipole, the electric field consists of the 

R-directional compqnent and the a-directional cqmponent; and the magnetic 

fiel<;l has only the <!>-directional component; that is, 

(3. 53) 
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(3.54) 

where uR, u8 , and u$ are unit vectors, whose direction is toward in­

creasing R, e, and $ qf tlw spherical coordinates, respectively. It also 

should be noted that ii = uR. Th.en, the surface integral of the complex 

Poynting vector is expressed as 

Applying uR.x u$ :c: - u8 , u6 x u$ = ~, u8 • uR = O, and uR • uR = 1 to 

Equation (3.55}, it becomes 
. ' 

* * 2TI TI * 2 f (ExH) •ndS=f E8 H,,_dS=f f E8 H,i,a sineded~. (3.56) 
s s ~ 0 0 ~ 

By making use of Equations (3.1) and (3i3) in Equation (3.56), the sur-

face integral of the complex Poynting vector is given in terms of the 

spherical-wave functions and the coefficients A . The procedures are . . . n 

given in the following: 

J -' -* -CE x H ) • n dS 
s 

1 

= i (~)'2 2n / { I A P1 (cos e) -k1a [a(:R) [kR hn( 2) (kR)]]R=a} 
E 0 n=O n n 

Applying E,quation (3.34) to Equation (3.57), it becomes 

I (E x H *) • ii dS 
s 

l 

= (~)2':; n~O jAnl2 n~~:i) {i[p h~2) (p)]' [p h~2) (p)]-.1r}p=ka 

. (3.57) 

(3. 58) 
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where 

p = kR 

and 

From the definition of the spherical Hankel function of the second kind, 

one obtain.s 

where 

jn(p) = spherical Bessel function of the first kind, and 

n (p) = spherical Bessel function of the second kind. 
n 

' 

Making us~ of Equation (3.59), one obtains 

(3.59) 

{i [" h. (2) (")] ' [" h ( 2) (") ] *} = { 2 [ . ( ) ' ( ) . ' ( ) ( ) ] } ~ n ~ ~ n ~ p=ka P ln P nn P - ln P nn P p=ka 

(3.60) 

However, from the recursion formula, it is weU known that 

(3.61) 

Substituting Equation (3,61) back into Equation (3,60), one finds 

{i[p h( 2)(p)]'[p h(Z)(p))*} 
n · n · p=ka 

(3.62) 

Finally, applying Equation (3,62) to Equation (3~58), 
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1 

J 
s 

- -* -
(E x H ) • n dS 

- QO 

"' (µ)2 ~. l 1Anl2 n(n+l) + 
E ~2 n~o 2n+1 

(3.63) 

As it is defined in Equation (3.52)~ the radiation power Wis the real 

part of the surface integral of the complex Poynting vector; therefore, 

from Equation (3.63), 

(3.64) 

This is the general equation for the radiation power when the field equa-

tions are expressed in te:nns of the spherical-wave functions. 

Radi,ation Impedance for a Half•Wave Dipole 

For a half-wave dipole, it is found that, from Equation (3,6), 

for n:odd 

0 for n:even 

th,erefore, substituting the above result into Equation (3.64), the power 

radiated from a half-wave dipole is expressed as 

(3.65) 

Defining the radiation impedance RH of a hq.lf-wave dipole to be 



then; from Equatton (3.65), 

00 

307T2{ l . 
n:ocld 

00 

f(n)} 

The· f (n) .is df;l{ined in I;quatton (3 .. 45) and l f (n) is evaluated in 
n:odd 
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Equation (3. SO); th~refore, by maldng use of ~quation (3. 50), one obtains 

l\i. = (307T 2) (0. 2469859~71) "' 73.12960179 (3,66) 

It is .easily recognizable th;at the value giVE;'n in Equation (3.66) is 

equal to the value of the radiation impedance which is obtained by.making 

use of the classical field soiutibn for a.half..,.wave dipole. 

Spherical-Wave Expans:i,on for the Field 

of .Linear Antennas· 

In the preceding sections, the proper behaviors of the spherical­

wave expansion for a half-wave.dipole ha~ been insured in man)f·ways~ 

In this section, it w~ll be shown that the method which is used to 

obtain the spherical-wave e~pansion for a.half-wave dipole is applicable 

to finding the sphe;r;ical wave expansion for. the fields of linear antennas. 

Let's asslillile that the antenna has the C\lr~ent.distribution which is 

expressed by the following equation: 

A. 
I = I 0 sin k (m 4 - z) 

where. 



r0 = maximum value of the current, 

27T k = X-' A = wavelength, and 

m = number of the half ... wave lengths along the antenna. 

Then, the field equations of the antenna are given (~7): 

-ikr1 
e } 

rl 

-ikI [z - C-k2lll)] .-ikr2 
= 0 { (-l)m --.--..: ......... K'_,.. _,e __ 

Ed 47TW£ d r2 

[z ,.. (7Tmk) -;ikrl 
2 e } --a-..... ---- r 1 

where,d = R sin a and z = R cos a (see Figure 1). 
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(3.67) 

From. Equation (2.5), the R .. directional component of the electric 

field becomes 

-ikr1 
t e } . (3.68) 

rl 

A -ikr 
For the antenna whose half-length is equal to 4 m, e 2;r2 and 

-ikr 
e 1;r1 are given by 

-ikr2 00 

y (m) (n) e ik l :::: 

r2 n=O 
(3.69) 

and 

-ikr1 

.... e--= - ik l 
rl n::;O 

(-l)n y(m) (n) (3. 70) 

where 
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By maki~g use of these two equations, ER is expressed. in terms of the 

spheri~al ... wave func~ions: 

E = R 

Equating this result with Equation (3.2), 

I0 km [_ (~l)m + (-1)n] 2n+l A 
An "' - i' 8 · n(n+l.) jn(k 4 m) 

This ·result _will .be rewritten in the foll9wing way. 

(i) When m is odd: 

IQ km 2n+l 
jn ct m) for n:od~ 

4i 11·c~+f) 

A = n 

0 

(ii) W4en m is even:. 

0 for n:odd 

A "' n 
r0 km 2n+l 

jn CI m) for n;even ... 4i n(n+l) 

(3. 71) 

(3 •. 72) 

(3. 73) 

(3.74) 

It is easy.to recognize that the coefficients An for a.half-wave dipole 

antenna are,i obtained by setting m ;:; .1 in Equation (3. 73). 
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Discµssion 

In Equations (3.51) and:(3.66), the directive gain GH(;) and radia­

tion impedance RH of a half ...;.wave dipole an~enna are obtained as 

RH= 73.12960179 

It is readily appareJ?.t that these yq.lues are equal to those.of the well 

known classical results for a ha~f-'wave dipole ant~nna, Thus, the proper 

behavior of Equation (3.7) through Equation (3,9) is insured. Therefore, 

one can say. that a spherical-wave e)l:pansion .for the fields of a half-wave 

dipole has been qerived. Its coefficients are: 

A = n 

0 

ikr0 (2n+l) 
4n(n+l) jn(!) 

and the ;field equations are: 

for n:odd 

for n:even 

H~ = -
ikl. "" 
~ I ~(n) h(2)CkR) 

n:odd · 

l kl 00 

E "' c.B.) 2 _o l x (n) .LL [Rh C2) (kR)] 
8 e 4 n:odd kR dR n 

E = -R 

1 - kl. 00 
11 2 0 \ C-z) 4 t. TCn) 

n:odd 

h (2) (kR) 
n 

kR 
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From the above equations, one may say that it takes an infinite number of 

terms of a spherical-wave expansion to represent the field of a half-wave 

dipole. On the ,other hand, it .has been shown that these equations con-

verge very rapidly to the classical results in the far-radiation field, 

Indeed, the first two terms are quite adequate for representing the field 

to the degree .that could be confirmed by actual measurement, 

On the basis of the work of L. J, Chu (2) and R. F. Harrington (8), 

large modes of order n > ka (a is radius of an antenna) in a spherical-

wave expansion associate only with thesupergain. As .it has been ob-. 

served in the preceding sections, however, mode::; of order n > ka in the 

spherical-wave expansion are necessary t<? represent the fields of a half-

wave dipole; although the directive gain for a half-wave dipole is only. 

about l,64 as compared with the normal gain 5,60 for an antenna when 

cutoff mode N =.ka = k A/4, When the cutoff mode N > k A/4,' the normal 

gain GN for an antenna of half- length A/ 4 becomes· (8) : 

N > k i 
4 

l (2n + 1) > 
n=l 

A N < k...,... 
~ 4 
l 

n=l 
(2n + 1) 

Therefore, it is believed that the normal gain for an antenna of half-

length.A/4 is larger than what has been expected from equations of Chu 

(2) and Harrington (8); physical realization of a supergain antenna 

becomes more difficult. 



CHAPTER IV 

APPLICATION OF THE SPHERICAL-WAVE EXPANSION TO 

THE EVALUATION OF QUALITY FACTOR 

Introduction 

The quality factor Q of an antenna is defined as 

where 

2w max[W , W ] m e 
Q; --~.,.......---

PR 

PR = the total radiqte4 power, 

Wm= time average magnetic stored energy, and 

W ; time average electric stored energy, e 

and Taylor's supergain ratio y is defined as 

where 

where 

CQ 

f IF Cu) 12 du 
-oo 

'( = 
k~ 

J IFCu) 1 2 du 
-k.Q, 

1 
F(u) = J g(p) eipu dp 

-1 

g(p) = current distribution along an antenna, and 

.Q, = half-length of an antenna, 
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The quality fact~r Q and the supergain ratip y have been used as a measure 

of the physical limitations of an antenna; that is, high Q and high y 

have been associated with an excess amount of stored energy in the near 

field and with a very limited bandwi~th. coilins and Rothschild (4), 

however, demonstrated that supergain'ratio y does not have a direct re­

lationship with the .stored energy of the antenna, and Rhode (23) recently 

showed that the supergain ratio y is not equal to Q + 1 in the case of 

planar aperture antennas. ~efore the publication .of Rhode ts studyJ the 

supergairi ratio y .had oeen de$cribed as equal to ·Q + 1 without insured 

proof. Therefore, it is apparent that there exists some ambiguity in the 

supergain ratio y as a measure of the physical limitation of an antenna. 

However, because of its c+ear physical definition, the quality factor Q 

is considered as a less ambiguous measure of the physical limitation of 

an antenna. 

Tpe general equations for the quality factor Q have. been given in 

several for~s by Chu (2), Harrington (9), Collin and Rothschild (4), and 

Pante (6). Their equations for the quality factor Qare represented in 

terms of the spherical-wave functions. But because the mechanical con­

figurations of most practical antennas can not be well described by 

spherical boundaries, the examples where the fields of actual practical 

antennas are expanded in terms of the spherica1 functions are extremely 

rare. Consequently none of the equations for quality factor Q have been 

applied to any practical antennas, However since a spherical-wave expan­

sion fbr the fields .of a half-wave dipole has been obtained in Chapters 

II and III, it is now possible, for the first time, to evaluate the 

quality factor Q for a practical radiator. In doing this one may also be 

able to examine the reciprocal relationship between the frequency 
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bandwidth and the quality factor Q of an antenna, The existence or the 

none~istence,of a reciprocal relationship between.the frequency bandwidth 

and the quality factor Q has been.debated, but there are not any accepted 

answers yet •. 

In this·chapter, the sphericalwwave expansion for the field of an 

infinitesimally thin half .. wave dipole is used as a tool to explore the 

consequences of the ~ork of Collin and Rothsc~ild (4), and Pante (6). 

For this purpose, their.methods are used to evaluate the quality factor Q 

for an infinitesimally thin half-wave dipole. and then th,e reciprocal 

relationship between the qua.lity factor Q ~d the freqµency bandwdith 

will be studied. 

General Equation for the Quality Factor Q 

Collin and Rbthschild' s Method 

As it has been me~tioned in Chapter III~ the radiation field of an 

antenn~, which has a transverse magnetic field, is represented by the 

following equations in Region A of Figure 2. 

H = ·· .. ~ 
(3 .1) 

»owever Collin and Rothschild (4) obtained their quality factor ~ for 

the nth spherical mode without the.coefficients An' They used the 



following equations instead of Equations (3.1), (3.2), and (3.3). 

d P (cos 8) 
H = sin 8 n ·. [kR h(2) (kR)] 
~ R d(cos 8) n 

k sin 
iwe:R 

8 d Pn(cqs 8) d[kR h~2 )(kR)] 
d(cos 8) d(kR) 
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and by assuming that there is not any ~tor~d energy in Region B of Fig­

ure 2, they obtained the quality factor for the nth mode as. 

3 
o. = ka - [(ka) + (n+l) ka] [j 2 (ka) + n2 (ka)] 
~ · 2 n n 

_ (ka) 3 ['2 (k ) + 2 (k )] 2 ln+l a nn+l a 

+ zn2+3 (ka) 2 [J" (ka) J. 1 li'ka) (k ) (k ) ] n n+ ~ + nn a nn+l a 

In the fallowing pages, a quality factor Q will be obtained by following 

the Col1in and Rothschild's (4) method but Equations (3.1), (3.2), and 

(3.3) are.to be used. 

When the field solutions·for the ante~na are represented by Equa­

tions (3.1), (3.2), and (3.3), t~e time-average complex Poynting vector 

is obtained from the result of IZquation (3. 63): 

• n dS = PR + 2w(W - W ) m e 

1 

+ i cl:.)2 ~ I IA 12 n(~+l) {[p jn.(p)][-dd.P (p jn(p)] 
e: k2 n=O n 2n+l 

( 4 .1) 
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wh~re Sis the surface of the smallest.imaginary sphere of radtu::; a which 

can enclose the antenna, and n is a unit vector whose, direction is nqrmal 

to t~e surface of the sphere. 

From the.real part of Equation (4.1), the total time-average. 

radiated power PR is obtained: 

1 
00 00 

P = (J;.)2 .21T l IA 12 n,Cn+lJ = 2µ1f3w l IA 12 n(n+l) (4 , 2) 
R E k2 n=O n 2n+l k n=O n 2n+l 

From the imaginary part of Equation (4.1), the difference between the 

time-average magnetip and.the electric energy is given: 
! 

00 

µ'IT \ 
Wm - we = ~ L 

k n=O 
IA 12 n(p+l) 

n 2n+l 

The total time-a'\(erage·:reactive ene,rgy stored in the region outside 

of the imaginary sphere is repre~en.ted by the following equation (4), 

(6) • 

00 21T 1f 
w + w = {/ J f c.S4. IE1 2 + 4µ lttl 2) R2 sin 6 de d</J dR} -
m e a O O 

00 p 

{j cR dR} ' 
a 

(4,4) 
where 

PR = real part of } ~ (H x If) • n ds, 
1 R-+oo 

- 00 

= (µ)2~ I· IA 12 n(n+ll and 
·£. k2 n=O n 2n+l ' 

1 

C i:: (Eµ) 
- 2 

Subs~ituting the following equa'l;ions: 
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into Equation (4.4), then it becowes 

00 27f 
w + w = m e {f J 

a 0 
f 1f ~ I · I 2 € I 12 µ I 12 2 C4 ER + 4 Ee + 4 H<f> . ) R sin e de d<t> dR} 

0 

( 4. 5) 

From Equations (3.1), (3,2), (3,3), and (;3,34) 

7f 00 

J ~ IH 12 sine de=! I k2 IA 12 2ntn+1) • {hn(2)(p)}{hn(2)(p)}* ' 
0 4 <f> 4 n=O n 2n+l 

7f 

f ~ IE 12 sin 
O 4 R 

00 2 
e de =·4µ I IA 12 2[n(n+l~l 

n 2n+l n=O 

(4.6) 

[h( 2) (P)] [h( 2) (P))* 
{ n 2 n }, 

p 
( 4. 7) 

7f 00 IA 12 
J f 1Eel 2 sine de= t l ~ 2~~~~l) 
O n=O p ( 4. 8) 

• {~ [P h~2)(P))}{~ [h~2)(P)]*} 

where 

p = kR. 

~ubstitu.ting Equations (4.6), (4.7), and (4.8) into Equation (4.5), then 

integrating with respect to <f>, one finds 
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00 00 

W + W = JJ7T3 l IA 12 n(n+l) • {j {[l + n(n+l)]P2 h(2)(p) [h(2)(p)]* 
m e k n=O n 2n+l ka 2 n n 

+[ad. CP h(2)(p))][--dd CP h(2)CP))*] - e} dp (4.9) 
p n p n 

For th.e integral part of the above equation, Collin and Rothschild (4) 

bbt~ined the following result: 

00 

f {(l + n(~+l)]p2 h~2)(p)[h~2)(p))*!Q 
ka 

+ [.e._d (p h(2)(p))][-dd (p h(2)(p))*] - 2} dp 
p n p n · 

(4.10) 

where 

j~ (P) 

(4 .11) 

Substituting Equation (4.10) into Equation (4.9), then the total reactive 

energy stored outside of the sphere is given by the following equation: 

00 

(W + w ) "" ~ l I A 12 n (n+ 1 J 
m e k3 n=O n 2n+l 

• {2p - (p)3 [[jn(p)J2 + [nn(P)]2 - jn-1 (p) jn+l (p) 

(4.12) 
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Previously, in Equation (4.3), 

00 

w - w = e l IA 12 n(n+l~ 
m e k3 n=O n 2n+l 

Substituting the following two relations 

and 

into Equation (4,3), there results 

00 

w - w = e l IA 12 n,(n,+1) 
m e k3 n=O n 2n+l 

• {ka[j~(ka) + n~(ka)] + (ka) 2 Un(ka) j~(ka) +nn(ka) n~(ka)]} 

(4.13) 

Subtracting Equation (4.13) fro~ Equation (4,12): 

00 

2W = (W + W) - (W - W) = ~· l IA 12 n(n+l) 
e m e m e k~ n=O n 2n+l 

• {2ka - [(ka) 3 + 2ka][j~(ka) + n~(ka)] 

- 2(ka) 2 (j (ka) j'(ka) + n (ka) n'(ka)]} n ·· n n . n (4,14) 

This equation will be further. simplified for the numerical Cl:!-lculations 

by making use of the following recursion forml,llas: 



J. 1 (ka) = 2j;+ 1 J. .Cka) · (k ) n- a n - Jn+l a 

nn_ 1 Cka) = 2n+l n (kfl) - n 1(ka) ka n n+ . 

.... 
By making use of the above equ,ations, one.obtains 

:::: (ka) 2 (2n+l) [jn (ka) jn+l (ka~ + nn(ka) nn+l (ka)] 

- (ka) 3 [j ~+ 1 (!\a) + n~+ 1 (kl;l.)] 
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(4.15) 

(4.16) 

Substituting Equations (4.15) and (4.16) back into Equation (4.14), it 

follows· 

- (ka) 3 [J. 2 (ka) 2 (k ) J n+l + nn+l a 

00 

+ (~a) 2 (2n~3) [jn(ka) jn+l(ka) + nn(ka) nn+l(ka)]} A I S(n) 
n=O 

From Equation (4.2), it is defined that 

00 00 

P = 2µTiw L: · IA 12 ;nCp+l) ~ l PR(n) 
R ~3 n=O n 2p+l n~o 

( 4. 1 7) 

( 4. 18) 
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Therefore, making use of Equations (4.17) and (4.18), quality factor Q 

may be ~i ven by . 

qQ 

l. S(n) 
2w we n=O .......... __ ,,_ 

PR 
Q = 

Equation (4.19) is rewritten as 

where 

Q(n) = S(n) 
PR(n) 

3 
= ka - r'k;) + ka(n+l)] [j~(ka) + n~(ka)] 

(4.19) 

' (4, 20) 

(4,21) 

. It -s}\0uld be noted that Q(n). is Q~ of Equa~ion (8) in CoU~:i:1 and 

Rothschild's paper (4); Equation (4.20) for Q has exacqy the same form 

a,s tqe equation for Q of ·which Chu found (2), 
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Quality Factor Q for an Infinitesimally 

Thin Half~Wave Dipole 

It has been found that the coefficients A fo;r an infinitesimally 
n 

thin half-wave dipole are given by 

A :::; . n . 

- ikI0 (2n~l) jn(!} 
4n'cn+l) 

0 

for n:odd 

(3' 6) 

for n:even 

The quality factor Q for an infinitesimally thin half-w~ve dipole is 

found by substituting Equation (3,6) into Equation (4.20) and by setting 

ka :::; rr/2, This results in 

~ ~ 

, c 2n + l) [ . rr ] 2 [ ) ) \' f ( ) [ c ) ] 
l n(n+l} Jn(z) .Q(n kai;:rr/2 l n Q n kac:rr/2 

n:odd n:odd Q :; -------------......... -- = ___ .,..... __ ._.,.,. __ _ 
~ ~ 

\' . 2n+l . .rr. 2 
1., n(n+l) [Jn(2Jl 

n:odd 
l f(n) 

n:odd 

where f (n) and Q(n) are defined in 13quation (3.45} "l.nd in Equation 

(4.21), respectively. 

In Equations (3.47) and (3.50), it was calculated that 

f(l) = 0,2463835742 

f (3) = Q.0006020966 

f (5) c: 0.0000002563 

(4.22) 

(3. 4 7) 



56 

and 

00 

l f(n) = f(l) + f(3) + f(5) + • • • "' 0,2469859271 • (3.50) 
n;odd 

After the indicated colllputa;t;ion of Equation (4,21}~ the numerical values 

for Q(n) were evaluated as 

[Q(l)] 1T = 0.8946320478 
ka=2 

[Q(3)] 1T = 51,96120934 
ka::;i2 

[Q(S)] 1T = 4.124372 x 104 
ka=2 

[Q(7)] 1T = 1.771002 x io8 

ka=z 

( 4' 23) 

For the computation of [Q(n)]ka:;:?T/ 2 ' n .::_ S, the following equation is 

used.: 

( 4' 24) 

Beqmse, when n .::_ 5, it is apparent that (see Appendix A) 

and (4' 25) 
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therefore, using Equation (4.25) in Equa~ion (4.21), one.obtains Equation 

(4.24). 

Frbm Equations (3.47) and (4.23), 

f(l) [Q(l)] ;: 0.220423 
le .7f a:;:2 

f(3) [Q(3)] ::; 0.031286 7f ka:::2 
( 4' 26) 

f(S) [Q(5)) = 0. 010571 7f 
ka2 

f (7) [Q(7)] = 0.005525 7f 
lc;;t:;:~ 

. . 
Finally, from Equc:i.tions (3.,50) and (4,25), one obta:lns the quality factor 

Q for t~e infinite~imally thin half~~ave dipole. This results in 

00 

I f(n) [Q(n)]ka~7f/2 
Q "' n:odd 

p, 

I f (n) 
n;odcl. 

0,267805 1 084 
o. 246~86 :;: .. ' (4.27) 

The values of the spherical Bessel functions, jn(7r/2) and nn(7r/2), which 

have.been used in the above computation of Qare given in Appendix A. 
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Relation Between the Reciprocal Bandwidth and 

the Quality Factor Q 

By making use of Collin and Rothschild's (4) method and the 

spherical-wave functiop for the infinitesimaUy thin half-wave dipole, 

the quality facto?,' Q is evaluated as .1.08, However, these values should 

not be interpreted as the reciprocal bandwidth of the antenna; because, 

for the half-wave dipQle antenna, it is found (see Appendix C) that the 

reciprocal bandwiQth l/B is given by 

1 4.76 for radius A. - = of .2b0 B 

1 6.67 for radius A 
3= of raoo 

whe:re.B is the bandwidth between half,,,power points. The smaller the 

:radius of the dipole becomes, the larger the quantity l/B becomes; and 

the qu~ntity l/B app:roaches oo fqr an infinitesimally thin half-wave 

dipole. 

Fante (6) suggested the following equation for the recipl,'ocal band­

width of an antenna: 

_Bl~ [Q· t + Q. + F(w)) ou. ln 
(4.28) 

where 

aE 
F (w) = ~ I {~ (E90 • "woo dr.l} 

n PR m a 

Wout =the larger of W or W which is stored outside of the. m e .· 
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smallest imaginary sphere which can enclose the antenna, 

Win :;; the larger of W or W which is stored inside of the smallest m e 

PR 

n 

dn 

E 
00 

imaginary sphere which can enclose the antenna, 

= power radiated from 

:;; (.l:!.) 1/2 = 
8 

::;: sin e de 

= Clim E) 
R-+<;>Q 

120 

d~, 

R 
-ikR e 

1f, 

and 

the antenna, 

As it is easily recognized from the above definition, the Qout is equal 

to the Q of Equation (4.20). 

For the infinitesimally thin half~wave dipole, from Equations (3.29) 

and (3.15), one obtains 

-* oE 
00 

~= ... i 
d(I) 

( 4. 29) 

n+3 
k 1o 00 2 

(T) (4) l (-1) X(n) u8 
w e n:odd 

(4,30) 

By making u~e of the orthogonality cif the associated Legendre function, 

a'E 2'1T 1f oE* 
¢ (E()C) • -:iw "I>) dn = J f E • aw 09

. sin e de d~ 
\? 0 0 00 

09 

l ( _ 1) n.i- 3 2 2n + 1 . [j n ( ~2)] 2 
n:odd n(n+l 

(4.31) 

Since Equation (4.31) is real, 

( 4' 32) 

that is, F (w) = 0, Therefore, from Equation ( 4. 28), for an 
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infinitesimally thin half..,.wave dipole, 

( 4. 33) 

From EqliatioJl (4.27), Qout::; 1 1 084, l:l,nd it is shown in Equati0n (B,23) of 

Appendix B that Q. -r 00 ; the:refore. 1n · · · 

From Equation (4.33) and (4.34), one obtains 

(4.35) 

Thus applying the sphe.rical-'wave expansion for the field of a half..,.wave 

dipole to the equation of Fante (6), it has been demonstrated that there 

exists the recip:rocal relationship between the ,quality factor and.the 

bandwidth. of half-power points. 

In conclusion, by making use of the spherical-wave expansion for the 

field of an infinitesimally thin half-wave dipole as an exploring tool, 

the method of Collin and Rothschild (4) and the equation of Fante (6) 

have been applied to find the quaH tY factor Q. It .has been found that 

the direct appU.catlon qf the method of Collin and Rothschild (4) does 

not give the appropriate.value of the qua,Jity factor for an infinitesi-

mally thin half-wave dipole, This is qecause of the method of Collin and 

Rothschild that does does not take account of the energy in the region 

inside of the smallest imaginary sphere which can enclose the antenna, 

and the energy stored in this region is n<;>t neglibible for an infinitesi-

mally thin half~wave dipole, On the <;>ther hand, it has been shown that 

the equation of Pante (6) gives proper value for the quality factor, 

Thus it is founc;l·that there e#sts the reciprocal relationship between 
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the frequency bandwidth and the quality factor, 

For the antenna with non~vanishing radius, it is difficult to 

evaluate.the stored energy in~ide of the smallest imaginary sphere which 

can enclose the antenna, Therefore, the exact quantity of the quality 

factor is not obtained. 



CHAPTER V 

SUMMARY AND CONCLUSION 

As an effyctive tool for exploring the consequences of the theory of 

supergain radiators when applied to practicq.l radiators, a spherical-wave 

e~pansion for the fields of a half-wave dipole has been obtained. It has 

been presented that the precise values for the directive gain and the 

radiation impedance of a half•wave dipole have been obtained by using the 

spherical-wave e~pansion, By doing this; the proper.behavior of the 

spherical-wave expansiqn has been assured. It has been found that the 

spherical-wave expansion takes an infinite number of terms of the 

sph,erical-wave functions to represent the fields of a.half~wave dipole; 

however, the spherical-wave expansion for a half.;.wave dipole converges 

quite rapidly to the results in the far-field, It is 11lso founci that the 

first three terms .of the spherical•wave expansion are quite adequate for 

representing the field to the· degree th.at can be confirmed by actual 

measurement. 

On the basis of the work of L. J. Chu (2) and R. F. Harrington , (8), 

large modes of order n > ka (a is radius of an antenna) in a spherical• 

w~ve expansion associate only with the supergain, As it has been ob­

served in Chapter III~ however, modes of order n > ka in the spherica1-

wave expi:insion are neces:rnry to represent the fiel\is of a half-wave 

dipole; although the ,directive gain for a half-wave dipole is only·about 

1,64 as compared with the normal gain S',60 for an antenna when cutoff 
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mode N = ka = k A/4. When the cutQff mode N > k A/4, the normal gain GN 

for an antenna of half- length A/ 4 becomes (8) : 

A N A N > k 4 < k -- .· 4 
GN = l (2n+l) > l (2n+l) 

ni=l ni:::l 

Therefore, it is believed that the normal gain for an antenna of half-

length A/ 4 is larger than what has been expected from equations of Chu 

(2) and Harrin~ton (8); physical realizat;ion ,of a supergain antenna be­

comes more difficult. 

The technique which was used to obtain the spherical-wave expansion 

for a ,half-wave dipole has been applied to obtain the spherical-wave ex-

pans ions. for the fields of the linear. radiators with assumed sinusoidal 

current distribution. Consequentl,y, the spherical-wave expansions for a 

full-wave and a higher-number-waves dipole have been.obtained. 

As an example for exploring the consequence of the theory of svper­

gain radiators when it is applied to the practical radiator, the 

spherical-:-wave expansion for th~· fields of the half-wave dipole was used 

to evaluate the quality factor Q by·ma~ing use of the equations of Collin 

and Rothschild (4), and Pante (6), A sroall quantity of the quality 

factor Q was obtained when the equation of Collin ;;i.nd Rothschild was 

usec;L This is not what was expected, because the quality factor Q for 

the half-wave dipole with assumed sinusoidal current is to be 00 (27). On 

the .other hand, the equation of Pante (6) gives oo· to the quality factor 

Q, Therefore, one may say that there.exists direct.relationship between 

the quality factor Q and the reciprocal bandwidth of the half""wave 

dipole, Because i,t is found that the. reciprocal bandwicj.th of the infini-

tesimally ,thin half""."wave dipole is oo, 
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It.is, of course, well known that the cµrrent distribution on an 

actual half-wave dipole. is not exactly ·.sinusoidal. Consequently 1 the 

ties between the theqretical and physical measurement become even more 

difficult to determipe. However, a half~wave dipole is physically 

realized iri pract~ce tq a more precise peg+ee than most of the.other 

structures. Henc~, it .is pelieved that the spherical~wave e:>1;pan-!?ion. 

w~ich has been.deve:j.oped in this studyis an effective tool for exploring 

the .physical consequences . of th,e theqry ~hi ch is associated. with the 

spherical~wave functions. 
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APPENDIX A 

NUM;ERICAL VALUES OF THE SPHERICAL BESSEL 

FUNCTIONS j (7T2) AND n (2!.2) . n n 
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jo c;) c::: 0.6366197724 

j 1 c;) = 0.40$2847346 

j 2 c;) = Q.1374170539 

j 3CI) = 0.0321273340 

j 4 c;) = 0.0057532090 

j 5 c;.) ';= 0,0008361254 

j6 c;) i:: 0.0001021358 

j 7 c;) = 0.0000107920 
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no ( 21.) = 0 2 

nl ( 7T) = - 6. 366197724 x 10- 1 
2 

'IT 
n2 C2) = - 1.215854204 

n3 ( 11') 
2 = - 3.2:$3564360 

n4 (!.) = - l.31~400284 x 10 2 

ns (!.) 
2 = - 7,236250341 x 10 

'IT 
4.935474020 x 102 n6 (-) = -2 

Il7 c!.) 
2 = - 4.012263947 x 103 

n8 cI) = - 3.782075100 x 104 

Ilg ( 7T) 
2 = - 4.053041802 x 105 

nlO (~) = - 4.864647695 x 106 



The numerical values for jn c;) and nn Cf) have been calcl,llated by. 

making use of the following equati,on (21): 

and 

n (z) n. 

[n] 
= l ~ · (-l)r(n+2r)! . 

l 2r sin 
n'IT 

(z - -) 2 z r=O (2r) !(n-2r) !(2z) 

[(n-1)}--
~ _ __.__.(_-....,1 ) .... r .... C .... n_+_2 r_+_l..._) ..... !. _,,,,..._....,.. mr 
l - - - 2r+l cos (z - ~) 

r=Q (2r+l)!(n-2r·l)l(2z) 
+ 

[E.] 
= - l ~ (-l)r(n+~:r) 1 .. cos 

z l 2r 
mr 

(z - p 
r=O (2r)! (n-2r)!(2z) 

[ (n;l)] 

l 
r=O 

r 
( ... 1) (n+2r+l} ! sin (z _ mr~ 

2r+l 2 
(2r+~)! (n-2r-1)!(2z) 

where [b] is the maximum integer which does not exceed b, 
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APPENDIX B 

ELECTRIC ENERGY STORED INSIDE OF THE SMALLEST 

IMAGINARY SPHERE WHICH CAN ENCLOSE AN 

INFINITESIMALLY THIN HALF-WAVE 

DIPOLE 

7') 
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In the previous chapters, the field solution for the infinitesimally 

thin half-wave dipole,has been expanded into an infinite series of 

spherical-wave functions. In this section, the .electric energy stored 

inside of the smallest imaginary sphere which can enclose the infinitesi-

mally thin half-wave dipole will be obtained by making use of the follow-. 

ing spherical-wave expansion for the .region of R < A/4: 

n:even 

where 

A(n) 
sin e 

00 

l 
n:odd 

Csos · e)A(nl 
sin e (2' 29} 

(2.30) 

(2. 24) 

e: - _.;i< Therefore, the electric energy density 4 E • E for the inside of the 

imaginary sphere becomes. 

£ E • E* = £ E • E"' e: E E* 
4 4 e e + 4 · R • R (B .1) 

Hence, the.total electric energy stored inside the imaginary sphere of 

radius A/ 4 will be obtained from the following equation: 

A 
4 2'IT 

= J J 
0 0 

A 
4 2'IT 

= J J 
0 0 

'IT 
J £'f 

0 4 
.... E* R2 sin e de d~ dR 

(B.2) 
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It is well known that the Legendre and the assqciated Legendre functions 

give the following results for the d.ef ini te integrals (7) : 

7T 

J P (cos 8) Pk (cos 8) sin 8 d8 
0 

n 

7T 

f cos 82 P (cos 8) Pk(cos 8) 
0 z - cos 8 i:i 

= 

2 
2ii+T 

0 

(n+rn) !. 
(n~rn) !rn 

0 

for n=k 

for n=k 

for n~k 

for n=::k 

where Qk (z) is the Legendre function of the .second kind. 

7T 8 J cos P. (cos 8) Pk (cos 8) sin 8 d8 
0 1 2 8 n - cos 

7T 1 
= f 8 Pn(cos.8) Pk(cos 8) sin 8 d8 = 2Pn(l) Q.k(l) 1 - cos 0 

n < k and n '/::.k 

By making use of Equation (2. 26) , it follows 

(B. 3) 

(B.5) 

(B.6) 
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* * kI TI oo oo A (n) 
• Ee sin e de = £4 c2· 0 ) 2 f { l A~n)e}·{ l ~ e}sin e de 

· . 7f 0 n:even sin n:even sin 

00 00 * { l (cos e)A(n)} • { l (c:s ~)Aetn)} sine de 
n:odd R sin e n:odd . sin . 

µkI 0 
2 

* 7f 00 

A'n~ } 
00 

'cos 8)A Cn)i f { l • { I sin 8 d8 32 sin 8 sin 8 
0 n:even. n:oQ.d 

µ~IO 
2 

* 7f "" A (n)} 
00 

(cos e)A,n)i f { l . { I sin e de (~' 7) 32 sin e R sin e 
0 n:even n:odd 

By making use of Equaticm (B. 4), the first integral of Equati<;m (B. 7) 

becomes 

kI TI oo oo * 
!±. (_Q.)2 f { \ A~n) }{ \ A_ (n~} sin e d e 
4 2TI 0 l s1rr e l sin n:even n:even 

00 

=.oo I (B.8) 
n:even 

Using Equations (B.3) and (~.4), the second integral of Equation (B.7) 

becomes, 

2 
µI 0 TI. "" "" f { \ {(cos ~)A(n)}{ \ 
~ · L R sin e l o n:odd · n:odd 

* (cos e)A (n)} sine de 
R sin e 

2 00 00 * 
= µIo / 1 { l A(n) }{ l A/n)} sin e d e 

64 o sin2 e n:odd R n:odd 

µI 2 TI oo oo * 
- _Q_ f · { l A~n) H I \~ (n)} sin e de 

64 o n:odd n:odd 

µI 2 oo (jn(kR)] 2 
"' 00 C_Q_) { I (2n+U 2 h~2 ) CI) 2 2 J 

64 n:odd R 

µI 2 00 [jn(kR)] 2 
- _o_ .. { \ (2n+l) h (2) (!.) 2 } 

32 n:~dd n 2 R2 · 
(B,9) 
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The third and fourth integrals of Equation (B,7) are combined, and then, 

by making use of Equation (B.6), one obtains 

00 * 
ASn) }{ l (cos B)A Cn)} sine de 
sin e n·.odd R sin e n:even 

2 µkl TI oo * oo 
.. ·. o f . { l A (n) }{ l (c~s ~)A~n)} sin e de 
32TI O sin 8 · dd Sln n:even n:o 

2 µk!O . TI oo oo 

= - 32TI f . { l l (2n+l) (2t+l) 
o n:even t:odd 

(cos B) P (cos e) Pt(cos e) j (kR) j t (kR) n n 
R } sin e ae 

. 2 sin e 

2 µkI 0 00 00 

:::: - IX> [ 16TI ]{ l l (2n+ 1) (2t+ 1) 
n:even · t:odd 

• [j c!.J jt c;) TI TI j (kR) j t (kR) 
,. nn C2) nt C2J] 

n 
R . } · n 2 (B.10) 

From Equatio!ls (lL 8) ~ (a. 9), and (B, 10), one obtains 

TI kl 2 oo 
f : E8 • E; sin 6 de = 00 (!) 2~ { l (2n+1) 2 h~2 ) (~·) 2 [jn(kR)] 2 
O n:even 

µJ 2 oo [jn(kR)] 2 
+ oo ( 6 ~ ) { l ( 2n + 1) 2 h~ 2) ( IJ 2 2 } 

n;odd R 

µ102 oo [jn(kR)]2 
- "32 { l (2n+ 1) h~2 ) c;) 2 2 } 

n:odd R 

2 
µkI0 ~ 

- oo[ . ]{ L 16TI n:even 

00 

l (2n+l) (2t+l) 
t:odd 

(B.11) 
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By making use of Equation (B.3), the following result is obtained: 

7T µI 2 oo 
f : ER • E; sin 8 d8 ;:: ( 3~ ) l , (B, 12) 
0 n:odd 

From Equations (B,11) and (B.12) 

n:even 

00 

l 
n:odd 

00 µkI02 
- oo( 167T ) l 

n;even 

00 

l 
t:od.d 

(2n+ 1) (2t+ 1) 

(B. 13) 

Substituting Equation (B.13) into Equation (B,2) and then integrating 

with respect to ~' 

2 7T 

. µI oo 
wln ;:: oo[_Q_] { l 

e .87Tk 
2 2 2 2 2 2 

(2n+i) • [(j (7T)) + (n (7T)) ] J [jn(p)] p dp} n 2 n 2 0 n:even 
7T 

µI 2 oo 2 
0 \' 2 .7T2 7f2/ 2 + ""[---'-]{ l (2n+l) • [(Jn(-2)) + (nnC-z)) ] [jn(p)] dp} 

64k n:odd 0 

2 µIO oo 

- ""[16 kH I . 
n:even 

where 

00 

I , (2n+ 1) (2t+ 1) 
t:odd: 

p ::.:: kR 

(B,14) 
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It is well known that the spherical Bessel functions j (P) have positive 
n 

71' . 
values in the range 0 ;_ P ;_ 2' Therefore, it can be said.that the 

following three definite integrals exceed zero. That is: 

and 

when 

Thus one may say: 

00 

l' 
n:even 

7T 

2 . 2 2 J [jn (P)] p · dp > 0 
0 

7T 

2 
f [jn (P)) 2 dp > 0 

0 

IJl' 
jn(P) > o for O ! p ;_ 2 

'IT 
j t (P) > 0 for 0 ;_ p ,;. 2 

2 
• f [jn(P) jt(p)] p dp > 0 

0 

(B .15) 

(B.16) 

(B .17) 

(B.20) 

Using the aqove three equations in Equation (B.14}~ it is concludec;l that 

electric energy stored inside of the.smallest imaginary sphere which can 
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enclose . the infinitesimally thin half-wave dipole approaches 00 ; t:Q,at is"· 

Win -+ 00 

e 
(B, 21) 

From fiqua~ions (4,2) and (3.6), t~e tot;al powerradiatec;l from the half-

wave.di~ole is 

µ7fw~o2 
PR= Bk 

00 

t '(n+p [. (!.' 12 
l n nt ) Jn 2;.r 

n:odd · 
(B.22) 

and PR is finite. Therefore, the quality factor Qin.for the energy 

stored inside of the smaUest imaginary sphere .which can enclose the 

infinitesimally thin half.-wave dipole.is obtained as: 

2w wi'n 
e 

Q. = -..p-· -· -+ 00 
in, R 

(B.23) 



APPENDIX C 

NORMALIZE,D JNPUT AOMITTANCE FOR NEAR HALF-WAVE · 

DIPOLES WirH RADIUS OF A/200 AND A/1000 

AND THEIR BANDWIDTH 



R-/!:.. 4 

0,75 

0.80 

0. 85 

0.90 

0.93 

0.95 

LO 

1.05 

1.10 

where 

TABLE I 

THE INPUT IMPEDANCE z=R+iX AND THE NORMALIZED ADMITTANCE JYJ 
FOR NEAR HALF-WAVE DIPOLE WITH, RAbIUS OF ~/200 

R(st) X(Q) R2 + X2 JYJ 

41.52 -117. 63 15560. 727 0.521 

47.52 - 85.08 9496.757 0.667 

54.55 - 52,89 57,51.275 0.857 

61, 99 - 20.76 4273.738 0.994 

65.0 0 4ns.o 1.0 

70.53 11.53 5107.422 0.910 

80.19 44,40 8401.796 0.709 

n.24 78, 09 . 14422,786 0,541 

103.93 112.98 23565,925 0.423 
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WN 

1.240 

1.163 

1.094 

1.030 

1.0 

0.979 

0.930 

0.886 

0.845 

Sourc~: H. Uchida, and Y, M1,1shiake, Chotanpa Kuchusen (VHF Antenna). 
Tokyo: Koropasha Inc 1 , 196.6, · 
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Figure 4. Bandwidth B for·the Half-Wave Dipole With Radius 
A/200 
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LO 

1.05 

1.1 

where 

TA~LE II 

THE INPUT IMPEDANCE z==R+iX AND THE NORMALIZED ADMITTANCE !YI 
FOR NEAR HALF'-WAV!l DIPOLE WITfl RADIUS OF A/1000 

R(O) X(Q) R2 + X2 IYI 

39.97 -195,21 39704.S4S 0.346 

45.87 -146.34 23519,453 0.450 

52.66 - 98,48 12471.386 0.617 

60.28 - 51,11 6245.911 0,872 

68.84 - 3,78 4753,234 1.0 

78,57 44.11 811$1937 0.765 

89.74 93.03 16707.849 0.533 

102,62 143,55 176.458 0.391 
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WN 

1.267 

1.188 

l.ll8 

1.056 

1.0 

0.950 

0,905 

0,864 

Sourc~: H. Uchida, and Y, Mushiake~ Chotanpa Kl.lchusen (~ Ant~nna). 
Tokyo; Koronli!-sha Inc. , 1966. 
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