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CHAPTER 1
INTRODUCTION
Problem Definition

One of the significant works in antenna theory has been published by
Chu (2). He managed to show the physical limitations of omni-directional
radiators by making use of the spherical-wave functions, Extensions of
Chu's work have been carried out on a wide variety of subjects by several
authors (4,6,8), However, none of the results have been applied to any
actual practical antennas, This is because the mechanical configurations
of most practical antennas can not be well described in terms of spheri-
cal boundaries; therefore, examples wﬁere the spherical-wave functions
have been applied to actual practical radiators are extremely rare. This
would appear to be an omission on the part of the theory, in comparison

with specific actual radiators.
Objectives .and Procedures

This study is intended to accomplish two objectives. The first
objective is to obtain a spherical-wave expansion for the solution of a
practical radiator.’ The second objective is to explore the consequences
of the work of Chu (2) and .others when applied to practical radiators by
making use of the spherical-wave expansion of the radiator.

For the first objective, the half-wave dipole has been selected as

an example of a practical radiator and an attempt was made to expand its



field solution in the spherical-wave fungtions, The half-wave dipole was
selected because it is an efficient radiator which is often used.and, as
a consequence, its physical properties are well known. Also its selution
in cylindrical coordinates when a sinusoidal current distribution is
assumed is well known.

For the second objective, the directive gain, the radiation imped-
ance, the stored energy, and the quality factor of a half-wave dipole
have been evaluated by making use of the spherical-wave expansion and the
results are compared with those which are expected from the work of Chu

(2) and others (4,6,8).
Findings

As an effective tool for exploring the consequences of the work of
Chu (2) and others (4,6,8) when applied to practical radiators, the
spherical-wave expansion for the fields of a half-wave dipole has been
obtainedq In doing this, it is found that it takes an infinite number of
terms of the spherical-wave functions to represent the field of the half-
wave dipole.

On the basis of the work.of L. J; Chu (2) and R. F, Harrington- (8),
large modes of order n > ka (a is radius of an antenna) in a spherical-
wave expansion associate only with the supergain, As it has been ob-.
served in Chapter III, however, modes .of Qrdgr n > ka in the spheyical-
wave expansion are necessary to represent thé,fields of a half-wave
dipole; although the directive gain for a half-wave dipole is only about
1.64 as .compared with the normal gain 5,60 for an antenna when cutoff
mode N = ka = kA/4. When the cutoff modg N » kA/4, the normal gain GN

for an antenna of half-length A/4 becomes (8):



N> k%:- N<ki
Gy = Y (@2n+1)> ) (2n+ 1)
n=1 n=1

Therefore, it is believed that the normal gain for an antenna of half-
length A/4 is.larger than what has been expected from equations of Chu
(2) and Harrington (8); physical realization of .supergain antenna becomes
more difficult,

Though it might be less practical in some degree, the spherical-wave
expansions for the field of linear antennas have also been obtained.

As an application of the spherical-wave expansion, Collin and
Rothschild's (4) and Fante's (6) methods for the quality factor have been
studied, In doing this, it has been found that the method of Fante gives
more appropriate results for the quality factor for a half-wave dipole.

It is of course well known that the current distribution on an
actual half-wave dipole is not exactly sinusoidal. <Consequently, the
ties between the theoretical and physical measurement become even more
difficult to determihe. However, the half-wave dipole is realized in
practice to a more exact degree than most other structures. Hence, it is
believed that the spherical-wave expansion developed in this study is a
tool of some,vaiﬁe in exploring the physical consequences of the theory

associated with the spherical~wave functioms.
Organization

The rest of this study is organized in the following manner. Chap-
ter II is mainly devoted to finding a spherical-wave expansion of the
half-wave dipole with sinusoidal current distribution, It is shown that

the well known classical far-field solution is obtained from the



spherical-wave expansion, The convergence of the spherical-wave expan-
sion is -also studied.

In Chapter III, the more compact and useful form of the spherical-
wave expansion for a half-wave dipole is obtained by making use of the
results of Chapter II, The directive gain and the radiation impedance
are evaluated by using the,spherical-wave expansion to compare the
results with the well-known values for a half-wave dipole.

In Chapter IV,:the;spherical-wave expansion for a half-wave dipole
is applied to the evaluation of the quality factor and the result is
checked for any direct relationship of the quality factor to the
reciprocal bandwidth,

The summary and the conclusion are given in Chapter V.



CHAPTER I1

A SPHERICAL-WAVE EXPANSION FOR THE FIELDS OF A

HALF-WAVE DIPOLE ~-- (1)
Introduction

The main purpose of this chapter is to obtain a spherical-wave
expansion for the fields of a half-wave dipole, In the first part of
this chapter, the summary of the well known classical solution for a
half-wave dipole is given and in the rest of the chapter, the spherical-
wave expansions for the sqolution is obtained for the near-field and the

far-field of the dipple and its behavior is studied.

Classical Solution for a Half-Wave

Dipole Antenna

The geometry for a half-wave dipole antenna and its radiation field
are shown in Figure 1, It is assumed that the width of the antenna is
infinitesimally thin ana the antenna has sinusoidal current distribution
such as-

I =1, sin kGi - 7)
0 ! ?
where

-giiag

where
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Figure 1. Cylindrical and Spherical Coordinate
Geometry for a Half-Wave Dipole



I0 = maximum value of the current,
k =t%£ = wave number, and
A = wave length.

Then the well-known solution for the half-wave dipole antenna in

cylindrical coordinates is given:

ikIO e-lkrl e-lkrz
E = - ' ( =+ ) ) (2°1)
Z 4mwe T T
1 2
iklo N e-lkrl | N e—lkr2
Ed=m€[(z+z)—~?r+ (Z.—Z‘) ‘1‘2 ] » (2.2)
il -ikr ~ikKT
0 . 1 2
H¢ T (e + e ) s (2.3)
where
i z‘/:_l_,
= imaginary number,
w = k(eu)'l/2
= angular frequency,
_ 1 -9 _
€ = zz— X 10 © farads/meter
= permittivity for free space,
=4 x1077 henry/meter,

permeability for free space,

n

Z =R cos 6, and

fa%)
f

R sin 6,

EZ and Ed denote the d- and the z-directional component of the electric

field of the half-wave dipole, respectively, H¢ denotes the ¢-directional

component of the magnetic-field of the dipole.



Next, the field solution in terms of spherical coordinates is ob-
tained. This is done by combining Equations (2.1) through (2.3) with the

following equations:

Ee - EZ sin 0 + Ed cos 6 s (2.4)
ER = Ez cos 0 + Ed sin 8 s (2.5)
H = 2.

where Ee and ER stand for the 0- and the R-directional component of the
electric field of a half-wave dipole, respectively.

Performing the indicated computation, one obtains

ikI, R + A-cos ) —1kri ikI, R X s 8 ’1kr2

= L () & N S ) & (2.7)

‘0 dmwe - R sin © rl 4dmwe R sin 8 r2 g ‘

ikly o e—lkrl e—lkr2
B mmme @R CF T, > (2.8)
. -iky . ~ikr

” 1IOr1 e 1 \ 110r2 o 2 2.9)

47rR s1zn 8 T )

= u -
) 47R sin 8 Ty 5

As it is seen in the above equations, one may expect to obtain a

spherical-wave expansion for Egs Ep s
-ikr -ikY
sible to expand e /rl and e /r2 in terms of the spherical-wave

, and H , respectively, if it is pos-.

functions,
Transformation Equations

Indeed, it is well known that the following equations are very well

satisfied by e /r1 and e 2/r2 in the region of R » A/4 in



Figure 1:
'ikrz o0 .
. Y
E*;;_- ==k § (4 1) 5 (kP p(cos ) héz)(kR) , (2.10)
n=0 ’
~ikr
e Y 2 —_— (2)
T ik ngo (2n + 1) 3 (k§) p_feos(r - 0] h{Pary  (2.11)

Equation (2.11) is rewritten by making use of the following equations:
pn[cos(n - 8)] = pn(- cos 8)
and
= n ,
pn(—‘cos 8) = (-1) pn(cos,e)

The result is:

~ikr

EL;r—i-= -ik § D" @2n+ 1D i, & %9 p, (cos 6) hﬁz)(kR) , (2.12)
1 n=0
where
i %g = spherical Bessel function of the first kind,
p,(cos.8) = Legendre function, and
hgz)(kR) = spherical Hankel function of the second kind.

If Y(n) is defined as
. A (2)
Y(n) = (2n + 1) j(k 7) p,(cos 8) h " (kR) > (2.13)

it becomes

—ikr2 -
E"?'"' = - ik )} Y(n) (2.14)
2 n=0

and
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= - ik 7 DY) (2.15)
1 n=0

A Spherical~Wave Expaﬁsion for the Fields of a

Half-Wave Dipole in the Region of R >'%

Now it is ready to expand Equations (2,7) through (2.9) in the
spherical-wave functions. Substituting Equations (2.14) and (2.15) back
into Equations (2,9), (2.7), and (2.8), a spherical-wave expansion is ob-
tained for the field of a half-wave dipble in the region of R > A/4., The

results are:

K o7y % ny. . Mo T .
Hy = g wees L DT Y0 ¢ Z Y, 216

1 A ‘ A o
u-ﬁ-kIORi—"TCOSG“’ kI R - =cos 8

By = & 7 Rsin 0 24 (-1 Y(n) ’ (Pa O R 2in 6 nEO v
(2.17)

Tk, e
= B2 - nZO [-1)" - 1] Y—ﬁ%—)— . (2.18)

The above equations for H¢, EG’ and ER are rewrittn in terms of the odd

and the even modes of the spherical-wave functions. The results are:

i Wl S ok Tl S O NS I )

b 4m n'éven Rsin 6 G n‘odd R sin 6 **°°

u %‘ Ky 2 Y(n) U %’ Lo °z° (cos 6)Y(n’
E, = ()7 50— pie - () Leos 9)Y(n) »(2.20)
8 E T pieven i1 6 € 4 n:odd R sin ©
-]:- I o0
_ U2 0 Y(n

Ep=- B2 7 ] el .(2.21)
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A Spherical-Wave Expansion for the Fields of a

Half-Wave Dipole in the Regibn of R < %
_ —ikrl
It is well known that in the region R < A/4 of Figure 1, e /r1
-ikr ' '
and e /r2 are represented by the following equations: -
—ikr1 -
9-3;-—- =~ ik ] 1" Am) , (2.22)
1 n=0
e"ikrz 0
- = - ik } A(n) , (2.23)
2 n=0
where
A@) = (20 + DB & Bp (cos 6)5. (kR) (2.24)
v n 2Py In ’ )

For the region of R < A/4, a spherical-wave expansion for the field of a
half—wave dipole is obtained by substituting Equations (2,22) and (2.23)

back into Equations (2.7), (2.8), and (2.9), The results are:

kI 1 s n kI t
Hy = o Tsms L (D AW+ g psips LA, (2.29)
n=0 n=0
1 A 1 A
= kI, R+ =+ ¢cos 6§ = kI, R - ~=cos 6
- (2 0 4 n w270 4
Ee - (E9 4 R sin 8 Z (-1)" A(n) + ce) 4 R sin 8 z A(n),
n=0 . n=0
(2.26)
1
=%kI, =
2 0 : A
s 7P I e 4 e

The above equations. for H¢, Ee, and ER are rewritten in terms of the odd

and thegéven modes of the spherical-wave functions:
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Ik(r, + 1) = . Ik(r, - 1.) o
- i 7 A, 0 2 Al s
¢ 4m R sin 6 : 4 R sin 6
n:even n:odd
1 %‘klo = Am). %’Io v (cos 8)A(n)
- ety Lk ol S _7 - ) n
Ee - (e) 2n z sin 8 (g) 4 z "R sin 8 »(2.29)
n:even n:odd
by
"0 A
Epe- O 7 ] —éﬁl . (2.30)
n:odd

The Continuity of the Spherical-Wave

Expansions for R <« %-and R > %

Setting R = A/4 and equating Equation (2.19) to Equation (2.28),
Equation (2,20) to Equation (2.29), and Equation (2.21) to Equation
(2.30), it is easily seen that the spherical-wave expansions for R > A/4

and R < A/4, are continuous at R = A/4.
The Far-Field Solution for a Half-Wave Dipole

It is well known that the far-field solution for a half-wave dipole

is given by the following equations:

\ . T
lim 1I0 e—;kR cosﬁi cos 6)

R By ST TR TSRO . (3D
ikR cos (5 cos 6)
lim . e- - )
Rro g = 11080 T sin © , (2.32)
lim
R ER =0 : (2.33)

In this section it will be shown that the above far-field equations

are-also ohtainable by making use of the spherical-wave expansion for a
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half-wave dipole. First, the far-field properties of the following

equations are studied, From Equations (2.10) and (2.12), it is obtained

that
-ikr -
lim e . lim , (2
Row —F—— = - ik L T(m) oo hIE ) (kR) (2.34)
2 n=0
-ikry %
1i . 1i 2
pom S = ik LD T g n(? Ry (2.35)
n=0
where
. A
T(n) = (2n + 1) j (k 7) p,(cos 8) . (2.36)

In Figure 1, as R goes to infinity, it is easily noticed that ry and r,

are approximated as

A
r1 ® R+ T £os G s (2.37)
f, % R - > cos 6 (2.38)
9 ® T €O . .

It is als¢ well known that the Hankel function of the second kind is
asymptetically given by
-1kR
(2) _ i D*l e
hn, (kR) ® (1) —Eﬁ_ > (2039)
when R approaches infinity.
| Now-substituting Equations (2.37), (2.38), and (2.39) back into
Equations (2.34) and (2,35), it follows

. A
-ik(R - T cos 8) -ikR

e € a1
S — ()™ T(n) , (2.40)
R L

1

and
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-ik (R + %-cos 8)

e g 1R ® n
T r = S b (-1)" T(n) . (2.41)
=0

From the above two equations, one obtains

ik %-cos 8 % '
e = 7 "1 , (2.42)

-ik %—cos B =S
‘ T T . (2.43)

n=0

e

Now it-is ready to demonstrate that Equations. (2.31), (2.32), and (2.33)
are obtained from Equations (2,16), (2.17), and (2.18). Substituting
Equations (2.37) through (2.39) back into Equations (2.16), (2,17), and

(2.18), one obtains

Lim g eIk e g °
e M = G e L (DT TM e LT TmE L, (2240
4 L n=0
lim w71l oI n =
pow Bg = (T v {nzo (-i)" T(n) + nZO W' TM)? , (2.45)
lim %'iIo e'ikR « n o0 n
Row R = @ (157 *;?”"{ngo (-1)" T(n) - nZO L)' T} . (2.46)

By making use of the results of Eduations (2.42) and (2.43) in Equations

(2.44), (2.45), and (2.46), it is expressed that

. . iy A A . . T
lim - 110 e"lkR : ik Z-cos 0 . e—ik T cos 9] _ 1I0 e—lkR cos(2 cos 0)
R~ ¢ ~ Zrn R sin 6 -°© " 2r "R sin ©

(2.47)



1. ., A Y
lim - (393-110 e-1kR [elk 7 oS ] . e-1k 7 cos e]
R¥w.78 ~ ¢/ 4m R sin b
. il
~ikR cos(xs cos 8)
= 11,60 S — 2
0 R sin 6
1, oy vr A cr A
lim e (Hai-llo e—1kR [elk T cos ] ) e—1k z-cos‘e]
R+ “R ~ € lér R
-ikR

= : e i (L
= —1511O (—EE——J 51n(2 cos 9)

As R approaches infinity,

e-ikR e—ikR
— << ;
R? R
therefore, it is concluded that
lim lim
Row ER <° Row g 2
and
lim lim
Rereo ER'<< R Ee,

Therefore, from Equations (2.47), (2.48), and (2.49), one obtains

. . m
lim 1IO ewlkR cos(a-cos 8)

R~ H¢ =3 R sin 6 !
ikR co (W‘cos 8)
Limp gy go 020
R+« 7@ 0 R sin © ’
lim _
R+ ER ~ 0

15

(2.48)

. (2.49)

(2.50)

(2.51)

(2.52)
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Equations (2,50), (2.51), and (2.52) are exaectly the same as Equations
(2.31), (2.32), and (2.33), respectively. Thus it is proved that the
sphericalewave expansion which is obtaingd as Equations (2.16), (2.17),
and (2.18) is satisfied with well known classical far-field solutions for
a half-wave dipole. Therefore, the proper behavior of the expansion has

been demonstrated.

Convergence of the Spherical-Wave Expansion

in the Far-Field

It has been found that, in general, a spherical-wave expansion re-
quires an infinite number of terms of the spherical-wave functions to
represent the fields of a half-wave dipole., Therefore, it may be of
interest to study how fast the spherical-wave expansion converges to the
radiation field,

* From Equations (2.44) and (2.45), it is found that-
iI0 e~i’kR w il e-ikR @

1" T() = 5— I D" Ten)

lim ‘
2r R sin ©

Row By = T BT L

nieven n=0
(2.53)
and
p:eVen
) e—ikR %0 n
= (11,60) 7= HZO (-1)" T(2n) : (2.54)

In the preceding section, it has been proved that Equations (2.44),
(2.45), and (2.46) are equal to Equations (2.31), (2.32), and (2.33),
Tespectively, Since Equations (2.53) and (2.54) are rewritten from

Equations (2.44) and (2.45),
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s T . - . . s 'Tl’_
lIO e-lkR 1 ; (_1)n r(2n) - i, o ikR cos(2 cos 6)
2 R sing & T2 R sin 6 g
n=0
and
. -ikR o -ikR cos (% cos 8)
: e 1 n s € T2
(11,60) __i__.giﬁfﬁ.nzo (-1)" T(2n) = (11060) = T
The above two equations lead to
-
o . P (cos 8) cos{s cos 8) -
n : . Ty F2n _ ~2,
Zb (-1)7 Gn+ 1) 3, (3 —<33 T sin 0 (2.55)
At 6 = m/2, Equation (2,55) becomes
I DY (n+1) 3, (3 p, (0) = 1.0 . (2.56)
2n°2° "2n '

=0

Therefore, the convergence of the spherical-wave expansion is studied by
checking how fast the left-hand side of Equation (2.56) approaches.the

value 1.0. Keeping this in mind, the first few terms of Equation (2.56)
are calculated and examined to see 1f their thal is close enough to 1.0.

It is well known that

D" (n - D1

Pon(®) = 5371 (2.57)
where
n(ﬁ»Z),,.S.l for n:odd
nl! = \
n(n-2)...4.2 for n:even,
ol! =1, and
-1} = 1.

By making use of Equation (2.57), Equation (2.56) is rewritten in the



following form:

o0

18

=]

n . . m (2n 1)”
J D Uni, B, 0) = [ (17 P ane)j, (% ST
n=0 ‘ n=0
ot (2n-1)!1
= 1 Untl) ~Et i @ = Z H(n) (2.58)
n;O e
where
(2.59)
Calculating H(n) for n =0, 1, 2, 3,:
H(0) = Jo(gﬂ = 0,6366197724 ,
H(1) = 2 §.(5) = 0.3435426348
(1) = 73,03 =0.34 ’
(2.60)
H(2) = Z%ij4(ga = 0,0194170804 ,
65 . 7. _
H(3) = 77 jg(3) = 0.0004149267

Substituting Equation (2.60) back into Equﬁtion»(2.58), the following

vduﬁzkr.Z»Hmjam:&mm:v

n=0

H(0)

H(0)

H(0)

H(0)

R

4

+

0,6366197724 )
H(1) = 0.9801624072 s
(2.61)
H(1) + H(2) = 0.9995794876 R
H(1) + H(2) + H(3) = 0.9999944143

It is apparent from the above results that the. spherical-wave expansion

converges very -rapidly, and the first three terms of the exapnsion should



be quite adequate to represent the field to the degree that could be

confirmed by physical measurement,
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CHAPTER III

A SPHERICAL-WAVE EXPANSION FOR THE FIELDS QF A

HALF-WAVE DIPOLE -- (2)
‘Introduction

The antenna's,radiation field may be divided into two regions, One
is the region outside the smallest imaginary sphere which can enclose the
antenna. Thg other is the region inside the smallest imaginary sphere
which can enclose the antenna. These two regions are illustrated in
Figure 2. The outside region will be called Region A and the inside

region will be called Region B.

Region A

Region{B

Figure 2. The Smallest Imaginary
Sphere Which can
Enclose the Antenna

“An
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According to L. J. Chu (2), the radiation field of an antenna which
has a transverse magnetic field is represenﬁed by the following equations

in the Region A:

H¢ = nzo A P~ (cos e)héz)(kR) , (3.1)
U %’ . h£2)(kR)
Ep=-1@ nEO A n(@+1)P (cos 8) ——m— (3.2)

1
By =1 (B nzo Anpiccos 8) T%'&'(‘dﬁ)“ PRy, (.3

where -
Pn(cos_e) = Legendre function,
Pl(cos 8) = sin B S P_(cos 0)
n =S d(cos 8) n 95 °
= Associated Legendre function, and
hiz)(kR) = Spherical Hankel function of the second kind.

Anvare the coefficients which should be calculated‘by making use of the
boundary'conditions or by some other well known results that have been
obtained for the antenna.

It is well known that-the field of the electric dipole which is-

shown in Figure 3 is represented by the single term of the spherical-wave

function:
1 2
H, = AP} (cos 0)h{? (R) ,
o = h£2) (kR)
Bp = -2 &% AP, (cos 8) g ,
1

1 . (2)
e, kRh“ (kR) ,

TR 1 d
Eg =1 @7 AjP1(cos 8) 17 IRy
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where

Kp

L ynvie

jav)
f

= QOL,

electric charge,

0
]

[N
kL

dq _
Tt .¢urrent, and

effective value of q.

L
(o]
n

(R, 8, ¢)

Y
<

Figure 3, Electric Dipole of Length L

The purposes of this chapter are:

(1) to find the coefficients A for a half-wave dipole and for
linear radiators with assumed sinusoidal current distribution;

(2) to insure the proper behavior of the obtained spherical wave
expansion;

(3) to check the convergence of the wave expansion; and
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(4) to discuss the spherical wave expansion's relation to the

theory .of Chu (2) and Harrington (8).
Finding the Coefficients Ay

In the preceding chapter, it was demonstrated that Equations (2.16),
(2.17), and (2.18) behavé properly as the electromagnetic field solution
for a half-wave dipole antenna., Therefore, it is possible to determine
the coefficients An by equating Equation (2.18) and.Equation (3.2). Then

it is found that

1 (2)
2,70 n Y{(n . 2 n
G2 §oren" -1 H e s B2 ] An@me)P (cos 6) e .
n=0 n=0
(3.4)
From the above.equation, the coefficients An are obtained:
kIp [-D"-11 (2n+ 1) J 3
Anv= 1 8 ) n(n +'1) (3.5)
Equation (3.5) also can be rewritten as
- ikl (2n + 1) J. & .
TG T D) , for n:odd
A = (3.6)
n
L Q for n:even

Substituting Equation (3.6) back inte Equatien (3,1) through Equation

(3.3), then the field equations for a. half-wave dipole antenna become

ikl %
H = - —20 X(n)hlgz) (kR) , (3.7 -

¢ 4 n:odd
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1
_kI 00
_ U2 0 Y (n
Ep=- @ 3 n:gdd “éﬁl ; (3-8)
and
E, = cﬁ)%ﬁ I oxm b4 e ) (3.9)
® e 4 n:odd KR d(kR) n ’ o
where
Y(n) = (2n+ 1) j_ (3 P_(cos 8) h{? (kR) , (2.13)
(2n + 1) J (19
X() = —7m +,1? 2 Pi(cqs 8) : (3.10)

Thus using Equation (2.18), new spherical-wave expansion for the field in

Region A of a half-wave dipole is obtained.
Convergence of the Expansion

The convergence of the new spherical-wave expansion is checked in
the following pages.

From Equation (3,7) through Equation (3.9), it is apparent that the
new spherical-wave expansion consists of an infinite number of terms of.
the spherical functions, How, then, does this expansion converge? To
examine the convergence of Equations (3.7) and (3.9), the classical far-

field solution for a half-wave dipole is used. It is:

. m
lim g Eg_e—lkR cos(i-cos 9) 2.31)
R ¢ 7 2 R sin 9 ’ ’
1 I -ikR cos(ﬂ-cos 8)
lim E. =i (BDZ Oe 2 (2.32)
Re 79 ° e’ 2 R sin ’
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Since the maximum field intensity occurs at 6 = /2, the normalized

values of the field intensity become 1.0 at this-angle; that is

lim - 1T -
R Hg cosQZ cos 8)
= ‘ . = 1.0 s (3.11)
. I0 e‘lkR sin 6 o= L
im— - - 2
2 R o= I
2
and
lim E ‘ —cos (-T-T— cos e)—
R+ .70 2
: = = 1.0 (3.12)
. 1, . sin 6 _
1 (l-l_)‘-;)- Eg. e-lkR _ _ 0 = 2
e’ 2 R g ==
-2

Next, Equations (3.7) ‘and (3.9) are used to evaluate

lim lim
R0 H¢ R g
» and :
I -ikR 1 .
i (529‘ R i (Hai-ig_e—;kR
€ 2 R

Recall that as R approaches infinity, the Hankel function héz)(kR)

is asymptotically represented as

-ikR
(2) . D+l e "
hn (kR) = (i) R s (2.39)
and using this result, it follows, in thetfar—field,
n+3
d 2 . 2 -ikR
a-mﬁ_[k}zhr(1 JR)] = i(-1) 2 et , (3.13)

Substituting Equations (2.39) and (3,13) back into Equations (3,7) and

(3a9),»respéctive1y,



26

in I, o-ikR = P_*2’.3_
Roo g = (—) I ° xm) , (3.14)
n:edd
1 . n+3
; 5 -ikR = ==
éilﬁ Eg =1 (‘)2('—) = T ?oxm . (3.15)
n:odd

Equations (3.14) and (3.15) are the far-field representation of the

spherical-wave‘ekpansion for a half-wave dipole. Dividing the both sides
I, 1kR
of Equation (3.14) by i (—29

, it is obtained that

lim
Rowo H oo 1‘%‘1
- = I FC1Tx@m o, (3.16)
I -ikR n:odd
i () S5
2 R
0.1/2 I jikR
and dividing Equation (3.15) by i ( -) '—-TT——, it is also obtained
that.
lim
R+ 6 - 2
= ] Z6DT Xm0 (3.17)
1 . n:qedd 2
= I  -ikR T
€ 2 R

If Equations (3.16) and (3.17) are compared with Equations (3.12) and

(3.13), it is found that

n+3 ' m
® 5 COS(? cos 8)
I 71D ° X@m) = — (3.18)
n:odd

At 6 = 1/2, the right side of the above equation becomes 1.0 and it
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follows

n+3
o0

de% (-1) 2 [X(n)]e = 1,0 . (3.19)
n:o

=T
2

From Equation (3.19), it will be noted that a measure of the number of
terms in the spherical-~wave ekpansion which is required to represent the
field might beuobtainednby determining how rapidly the value of unity is
approached. This has been achieved through the following procedure.
Firsf, it is required to know how the associated Legendre function

Pi(O) is represented. Fortunately, it is well known .that

2 _.nl

n-1 .n-1,.2
2" (&5

for n:odd

P (0) = 1 (3.20)

h-O . for n:even

Therefore, substituting Equation.(3.20) back into Equation (3.19), it

becomes -

I 2D Mm = I E@ = 1.0 (3.21)
n;odd : n:odd

where it is defined that

)n+1

E(n) = 5 (-1)7" M(n) . , (3.22)

and

(2n+1) n! .jn(-’z’-)

n(ne1) 2770 (202

M(n) = (3.23)
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Performing the indicated computatiens for the E(n), the following values

‘are obtained:

3r o, W ‘
E(1) = Z—-Jl(iﬂ = 0,9549296588
S5 -
E(3) = 7 §5(3) = 0.0441573110
| (3.24)
E(5) = 1%1 j5() = 0,0009020484
E(7) = %%g-j7(§< = 0.0000099328

To observe how fast Equation (3.21) approaches unity, one substi-
tutes Equation (3,24) back into Equation (3.21) and the following partial

sums are obtained:

E(1) = 0.9549296588
E(1) + E(3) = 0.99908698
(3.25)
E(1) + E(3) + E(5) =.0.9999899182
E(l) + E(3) + E(5) + E(7) = 0.9999998510 .

It is readily apparent frqm the above results that the spherical-
wave expansion converges quite rapidly and that the first two terms
should be quite adequate to represent the field that could be confirmed
by‘physical méasurement,

It has‘been seen in Equation (2.61) that the spherical-wave expan-
sion which is found in page 1] needs three terms to represent the field.
Therefore, one can say that the spherical-wave expansion given in pages

23 and 24 converges more rapidly,
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Directive Gain

In the preceding pages, the coefficients An were obtained as Equa-
tion (3,6). By substituting Equation (3.6) back into Equation (3.1)
through Equation (3.3), a spherical-wave expansion for a half-wave dipole
antenna.was found.as‘Equations (3.7) through (3.9). Now the general
equations for the directive gain and the radiation impedance of an
antenna will be obtained by making use of Equation (3.1) through Equation
(3.3}, Then, substituting An into the derived equations, it is demon-
strated that the results are the same as those obtained from the clas-
sical field solutions for a. half-wave dipole.

The definition for the directive gain is given as.

lim -E-“‘Z
R->co
G(8) = - (3.26)
1 lim = .
=% | Rre El sin 6 de d¢

where

E = ER up * Ee‘ue + E¢ u¢

and u , ﬁé, and u¢ are unit vectors, whose direction is toward increasing
R, 6, and ¢, respectively. Recall that when R approaches infinity,

héz)(kR) is asymptotically represented as

. 1
, -ikR = LikR
lim | (2) py o (s B*l e 0 T2 e

R->c0 hn (kR) (l) : ER - ( 1) kR

Therefore,

n+1l

lim _ d (2) . 2
R I(KR). [thn (kR)] = -i(-1) e

~-ikR
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Substituting the above two equatibns back into Equations (3.1) and (3.2),

respectively, one obtains

and

é— oo —-il—- e-ikR
%- z (-1) An n(n+1) Pn(cos;e) —5
n=0 (kR)
1. n+l - .
T — -1kR
1,2 ) 1 L et
= (D) nZO (-1) A, P_(cos 8) —qm—

As R goes to infinity, it is observed that

1im

therefore, if Rovco

therefore, the magnitude of

ER is .compared with

e—ikR e—ikR
<< 3
(kR)2 kR
lim

R->o0

1lim lim .
Roco ER] < R Ee' ;

lim

Roven E(8, ¢) becomes.

lim
R0

lim
Ry Ee’

E(6, ¢)l =

, (3.27)

(3.28)

Ee, it is concluded that

(3.29)

By making use of Equation (3.29) in Equation (3.26), the directive gain

is expressed in terms of E

The result is:

g
1im E \2
G(e) = R 2
1 + |[1im .
z;;Sﬁ Row Eg| siné do d¢

Using Equation (3.28), the numerator .of Equation (3.30) becomes

(3.30)
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1 2 n+l 2
in o |2 _ Hai-fliig f (-1) z A Plicos ) (3.31)
Ree ~6| (s kR n n °
. n=0
o n+1l ' - n+l
p, 1 2 1 2 .* .1
= (D) == J (-1 A P (cos8) ||} (-1 A_ P (cos 6)

€ k2R2 n=0 n'n n=0 n'n

(3.32)

*
whereAAn indicates complex conjugate of An’ Using Equation (3.32), the

denominator of Equation (3.30) is

1 lim .. |2
v - Ee‘ sin 6 d6 d¢
1 U 1 fzn f E n;1 1
== (=) 5=/ d¢ (-1) A_ P (cos 6)
41 ‘e k2R2 0 0 ne n n
- n+l
7T ox 1 .
. Y (-1) © A_ P (cos 8) | sin & dé
n=0 n n
- © n+l
1 ‘ 2 1
= (Hﬂ —— I (-1 A_ P (cos 6)
& 2k%R? "0 | n=0 non
N n#+ _
: 2 % 1 .
. Y- A_ P (cos 8)| sin 6 de¢ . (3.33)
n=0 n n . :

However, from the orthogonality of the associated Legendre functions, it
is well known that

r-zn n+1_ for n=m
2n+1
o1 1

[ P (cos 68) P_(cos 6) sin & d6 = < (3.34)
0 n m :

0 for n#m
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Therefore, making use of the results of the above,

m E] I-l:-];- 0 .r_lf_l..
*
f o1 1 D 2 Pl(cos 8) | - Yo(-1) 2 Pl(cos 8) | sin 6 de
0 | n=0 nn n=0 n'n
T n+1 2 2n(n+1)
- nZO -1) 'An‘ 2n+1 (3.35)

Finally, substituting Equation (3.35) back into Equation (3.33), the

denominator of Equation (3.30) betomes

%
1 lim . oy 1 140+l 2 n(n+l)
79 |Row Eel sin ©.d9 do = (D) 5 L GO A =
R™ n=0
(3.36)

By making use of Equations (3.32) and (3.36) in Equation (3.30), the

directive gain for an angle 6 is expressed as

frrime.

- n+l o n+l
2 1 2 * 1
L (~1) Al Pn(cos ) Fo-D A Pn(cos )
n=0 |_n=0
G(6) = = ~ S— :
n+1 2 n(n+1)
LoD A S
n=0

(3.37)

Since the directive gain is usually measured at the angle 6 = /2, it may
be convenient to obtain the expression for G(m/2). Setting 6 = 7/2 in

Equation (3.37), G(m/2) is given by

w DL . oml
A ooml
I en?oapio | e oA po
65 = — — _ PPeva . (3.38)
SN+l 2 n(n+l1
ZO -1 An} 2n+1
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Substituting Equation (3.19) back into Equation (3.38), G(m/2) finally

becomes
E n n! A [ § n n! A;
(-1) v (-1 —
n=0 P (“21') n=0 M &hn?
G(gg = . — (3.39)
n+l 2 n(n+1)
nZO -0 An' 2n+l

This is the final form of equation for the directive gain of an antenna

at the angle 6 = n/2, Therefore, if the proper coefficients An are

available, then G(n/2) of any antenna is readily evaluated.

The Directive Gain for a Half-Wave Dipole

By making use of Equation (3.39) with Equation (3.6), it is now pos-

sible to evaluate the directive gain for a half-wave dipole.

In Equation (3,6), the coefficients An for a half-wave dipole are

found as

a m
ikIy (2n+1) J) (3)

- T for n:odd

(3.6)

for n;even

Then, by making use of the above values, the numerator and the

denominator of Equation (3.39) become
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E 1 n! An ikIO E n
(-1) = - () 1 -1)" M)} , (3.40)
n=0 -1 (E;ll)z 4 n:odd
OZO -n" Illl An_l 5 = (izlo)'{ io (-7 M(n)} s (3.41)
n=0 2" , n:odd
and
o kI o
n+l 2 n(n+l) _ 0,2 n+l 2n+1 s Taq2
nZO -1 An} 2n+l = {n:odd (-1) n(n+1) (1,17

(3.42)

Substituting Equations (3.40), (3.41), and (3.42) back into Equation
(3.39), then the directive gain GH(ﬂ/Z) of a half-wave dipole is

expressed by the following equation:

2
) (-l)n-MCn):} ) D(n):l
n:odd n:odd
63 = — - = —— . (3.43)
n+l 2n+l T2
n:gdd -0 n(n+1) [Jn(§9] n:gdd £
where it is defined that
| D@ = D M(n) : (3.44)
and
Fm = (D™ B 15,317 . (3.45)

Performing the indicated computation for D(n) and f(n),
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D(1) = - 5 j;(x) = - 0.6079271019
7 . .m
D(3) = - giz( = - 0.0281114173
11 T
D(5) = - Iz is(® - 0.0005748348
75 . T
D(7) = - 755 3,(z) ;= - 0,00000637324 . (3.46)
- S (N2
£1) =5 [5; G = 0.2463835742
7 . M2

£(3) = 15 [i5(x)]° = 0.0006020966

£(5) = T [3s@1% = 0.0000002563
(3.47)

From Equation (3.46),
J D) = D(1) + D(3) +D(5) + D(7) + - » + = - 0.6366196774 ;
n:odd : '
: (3.48)
therefore, the numerator of Equation (3.43) becomes
. 2
§ D) | = [DC1) + D(3) + D(5) + D(7) + + - +1% = 0.4052846137 |
n:odd

(3.49)

From Equation (3.47), the'denominator of Equation (3.43) is given as

Z f(n) = £(1) + £(3) + £(5) + £(7) + - - » = 0.2469859271.(3.50)
n:odd .
In Equations (3.48), (3.49), and (3.50), only first few terms of the

series are used, because it has been proved that the spherical-wave
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expansion converges very rapidly, and the first few terms are quite
adequate to represent the fields of.a half-wave dipole,
Now, Equationsv(3.49) and (3.50) give us the directive gain of a.

half-wave dipole as

- . — 2
I Db
i _n:odd -
Gy = — — = 1,640921888 (3.51)
! f(n)
n:odd

It is easily recognizable that the value given in Equation (3.51) is
equal to the value of the directive gain which is obtained by making use

of a classical field solution for a half-wave dipole.
Radiation Power and Radiation Impedance

Assuming that there is an imaginary sphere enclosing the whole
_antenna system, the sphere has -radius a and its surface is S, Then, the
radiation power W out of the surface S will be expressed by the real part

— *

of the surface integral of the complek Poynting vector P = ExH).
_— ¥ —
W= real part-of [ (E xH) * n ds , (3.52)
'S

— ' -
where n is a unit vector which is normal to the surface S, and H 1is
conjugate of H,

For a half-wave dipole, the electric field consists of the
R~directionaltcompqnent and the 6-directional component; and the magnetic

field has only the ¢-directional component; that is,

E = By O + By 1, , (3.53)
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H=H, u (3.54)

are unit vectors, whose direction is toward in-

¢

creasing R, 6, and ¢ of the spherical coordinates, respectively. It also

where ﬁk, Eé, and u

should be noted that H'=-ﬁk. Then, the surface integral of the complex

Poynting vector is ekpressed as
U — - - - —_ -
fs ExH) - -nds = js [(Bp up + By ) x (H¢ u¢)]. up dS . (3.55)

Applying Up X u¢ = - U, Uy X u¢ = Up, Uy * Up = 0, and uy * u, =1 to

R R
Equation (3.55), it becomes

(ExH) *n =
fs (ExH) - 1nds Is Eg H,

2r 7 « 9
=[] | EgH, a” sin 6 do d¢. (3.56)
¢
0 o0
By making use of Equations (3.1) and (3,3) in Equation (3.56), the sur-
face integral of the complex Poynting vector is given in terms of the.

spherical-wave functions and the coefficients A,- The procedures are

given in the following:

[ ®xH)-nds

S
- i (Ha%'zn fTT { E A PlCcoské)vl— [ [kR 1% (kR)1T._ .}
2 0 nto m ono 7 ka MAKR) n R=a
S A Plicos 6) 3= (kR h{P (kmy1p_ 3 2% sin o do . (3.57)

Applying Equation (3,34) to Equation (3.57), it becomes

] ExH) -7ds

1
- ? —1 I [A |2 2 e 12 031710 n{P 0014 (3.58)
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where
p = kR
and

o héz)(q)]' = %;-[o hﬁz)(o)]

From the definition of the spherical Hankel function of the.second kind,

one obtains

(2) . .
h2™ () = 3, () - 1 n (p) ; (3.59)
where
jn(p) = spherical Bessel function of the first kind, and
nn(p) = spherical Bessel function of the second kind.

Making use of Equation (3.59), one ob%ains
e nP @171 b 173, = 671,60 nie) - 346 ny @)}
+ilfe J@)]' e 3]+ [e ny ()] e n (0]}, - (3.60)
However, from the recursion formula, it is well known that
3 (e) i) = il(e) n (o) = ig- : (3.61)
Substituting Equation (3,61) back into Equation (3.60), one finds
{ife héz)(p)]'[p héz)(p)]*}p=ka
=1+ ille j )1"le 3 ()] * [o np ()] [0 my (@13 4, - (3:62)

Finally, applying Equation (3,62) to Equation (3,58),
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1 1
T R Ezg_“’ 2 n(n+l w24 v 2 n(n+1)
[QExE) -Ras= @75 T a2k i@ 1 ja )" 2
+ {0 5,10 5,7 + [o ny(@)]'[0 n ()1}, 4, (3.63)

As it is defined in Equation (3.52), the radiation power W is the real
part of the surface integral of the complei Poynting vector; therefore,

from Equation (3.63),
2 n(n+l) . (3.64)

This is the general equation for the radiation power when the field equa-

tions are expressed in terms of the spherical-wave functions.
Radiation Impedance for a Half-Wave Dipole

For a half-wave dipole, it is found that, from Equation (3.6),

, (1) § B

( 7 ) n(n+1) for n:odd

0 : for n:even ;

therefore, substituting the above result into Equation (3.64), the power
radiated from a half-wave dipole is expresséd as
1
T

W=t B2 ap’ il n%ﬁj}) GBI L (3.65)

n:odd

Defining the radiation impedance RH of a half-wave dipole to be
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W
R, =
H 2 ?
(1)
then, from Equation (3.65),
2, v 20+l L. Tyq2, 2, v
R, = 30n°{ 7§ winry Un @17 = 30m7d Y £(n)}
H n:odd nintl R n:odd

The f(n) is defined in Equation (3.45) and z f(n) is evaldated in
n:odd
Equation - (3.50); therefore, by making use of Equation (3.50), one obtains

Ry = (307°) (0.2469859271) = 73,12060179 . (3.66)

It is easily recognizable that the value given in Equation (3.66) is
equal to the value of the radiation impedance which is obtained by making

use of the classical field solution for a half-wave dipole.

Spherical-Wave Expansion for the Field

of Linear Antennas

In the preceding sections, the proper behaviors of the spherical-
wave "expansion for a half-waveldipole has been insured in many ways.

In this section, it will be shown that the method which is used to
obtain the spherical-wave expansion for a half-wave dipole is applicable
to finding the spherical wave expansion for the fields of linear antennas.

Let's assume that the antenna has the current distribution which is

expressed by the following equation:

. A :
I-= I0 sin k (m T- z) s

where

>
-



—
H

0
2m
k = = A = wavelength, and
m = number of the half-wave lengths along the antenna.
Then, the field equations of the antenha are given (27):
7 ikI —1kr2v -ikrl
E, = 4ww2.{(_1)m : 3 - " T >
2 1
. mTm ~ikr mm, -ikr
E, = o {(-n" [z - Gple 2 _ [z + GP) ¢
d 7 4dnwe d T —d T
' 2 1
il ~ikr -ikr
_ 0 m 1 2
Hy = - grg (D7 e - e } ,
where d = R sin 6 and z = R cos 6 (see Figure 1).

maximum value of the current,

41

(3.67)

From Equation (2.5), the R-directional component of the electric

field becomes

R

-ikr
For the antenna whose half-length is equal to -+ m, e 2/r2 and

-ikr
e /r1

and

where

E, = E
z

ikIO %-m _ e-lkr2 e-1kr1
°°Se+Edsme=m'§(T){('l) T *

y)

are given by
-ikr
e 2 . o (m)
—— = ik Y YU (m)
2 n=0
-ikr
' )
EF——=-ik ] DY@ ,
r ’
1 n=0

(3.69)

(3.70)
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Y™ @) = (2ne1) j (k Fm p,(cos &) h1D kR)

By making use of these two equations, Ep is expressed in terms of the

spherical-wave functions:

1 m n
B =i 2 ezo fo fm [CH)_+ 1] Y™ () (3.71)
R e’ i 8 kR * ‘
n=0
Equating this result with Equation (3,2),
Iy km [-D"+ (-7
. __0 2n+l . A
Ay = i8 " n(n+l) Inlk 4 m) ’ (3.72)

This result will be rewritten in the following way,

(i) When m is odd:

FI,O, km on+l (1
7 n+l) ‘n'Z

m) for n:odd

AL =1 (3.73)
o :

(ii) When m is even: .

("
0 for n:odd

A =< (3.74)

IO km 2okl Glln) for n:even
T AT nm+) a2 M '

-

It is-easy to recognize that the coefficients An for a half-wave dipole

antenna are obtained by setting m =,1 in Equation (3.73).
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Discussion

Ll .
H(EQ and radia-

tion impedance Ry of a half-wave dipole antenna are obtained as

In Equations (3.51) and.(3.66), the directive gain G

m .
Gy(3) = 1.640021888 o

R

4 = 73.12960179

It is readily apparent that these values are equal to those of the well
known classical results faor a half-wave dipolée antenna. Thus, the proper
behavior of Equation (3.7) through Equation (3,9) is insured. Therefore,
one can say.that:a spherical-wave expansion for the fields of a half-wave
dipole has been derived. Its coefficients are:

/"
iho (2n+1)

- __ZETE:TT__.jn(gﬁ for n:odd,

.

0 for n:even

and the field equations are:

ikI, w
Ho= - o= 1 oxm @ ow ;
n:odd '
' U %kIO czo 1 d (2)
E = (&= — X( ) T— [Rh kR)] )
9 (e) 4 n:odd IR 9R n (
L1 n{2) (kR)

o n
Ep=- @ =— [ T -
R € 4 -odd kR
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From the above equations, one may say that it takes an infinite number of
terms of a spherical-wave expansion to represent the field of a half-waye
dipole. On the other hand, it has been shown that these equations con-
verge very rapidly to the classical results in the far-radiation field.
Indeed, the first two terms are quite adequate for representing the field
to the degree that could be confirmed by actual measuyrement,

On the basis of the work of L. J, Chu (2) and R. F. Harrington. (8),
large modes of order n > ka (a is radius of an antenna) in a spherical-
wave expansion associate only with the supergain. As it has been ob-.
served in the preceding sections, however, modes of order n > ka in the
spherical-wave expansion are necessary to represent the fields of a half-
wave dipole; although the directive gain for a half-wave dipole is only
about 1.64 as compared with the normal gain 5,60 for an antenna when
cutoff mode N = ka = k A/4, When the cutoff mode N > k A/4,fthe normal
gain GN for an antenna of half-length A/4 becomes (8):

N->k% N

<k
G= L (m+1)> ] (m+1)
: n=1 n=1

B>

Therefore, it is believed that the normal gain for an antenna of half-
length .A/4 is larger than what has been expected from equations of Chu
(2) and Harrington (8); physical realization of a supergain antenna

becomes more difficult,



CHAPTER 1V

APPLICATION OF THE SPHERICAL-WAVE EXPANSION TO

THE EVALUATION OF QUALITY FACTOR
Infroduction
The quality factor Q of an antenna is defined as

2w max[wm, W

]

Q = S
‘R
where
PR = the total radiated power,
Wm = time average magnetic stored energy, and
We = time average electric stored energy,

and Taylor's supergain ratio y is defined as

o0

f ]F(u)|2 du
Y_: k£ o 2 )
[ [F@|® du
-k
where
1 ipu
Fu) = [ g(p) et dp ,
-1
where

g(p) = current distribution along an antenna, and

L = half-length of an antenna.
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The quality factor Q and the supergain ratip vy have been used as a measure
of the physical limitations of an.antenna; that‘is, high Q and high ¥y
have been associated with an excess amount oflstored energy in the near
field and with a very limited bandwidth, Collins and Rothschild (4),
however, demonstrated that supergaipjratio YSdoes not have a direct re-
lationship with the stored energy of the antenna, and Rhode (23) recently
showed. that the supergain ratio vy iS'not‘equa1 to Q + 1 in the case of
planar aperture antennas. ?efore'the'pUbliéation~of”Rhode'5‘study; the
supergain ratio y had been described as equal to Q + 1 without insured
proof. Therefore, it is apparent that there exists some ambiguity in the
supergain ratio y as a measure of the physical limitation of an antenna.
However, because of its clear physical definition, the quality factor Q
is considered as a less ambiguous measure of the physical limitation of
.an antenna.

The general equations for the quality factor Q have been given in
several forms by Chu (2), Harrington (9), Collin and Rothschild (4), and
Fante (6). Their equations for the quality factor Q are represented in
terms of the spherical-wave functions. But because the mechanical con-
figurations of most practical antennas can not be well described by
spherical boundaries, the examples where the fields of actual practical
antennas are expanded in terms of the spherical functions are extremely
rare. Consequently none of the equations for quality factor Q have been
applied to any practical antennas. However since a spherical-wave expan-
sion for the fields of a half-wave dipole has been obtained in Chapters
IT and III, it is.now possible, for the first time, to evaluate the
quality factor Q for a practical radiator. In doing this one may also be

able to examine the reciprocal relationship between the frequency
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bandwidth and the quality factor Q of an antenna, The existence or the
nonexistence of a reciprocal relationship between .the frequency bandwidth
and  the quality factor Q has been.debated, but there are not any accepted
answers yet.

In this chapter, the spherical-wave expansion for the field of an
infinitesimally thin half-wave dipole is used as a tool to explore the
consequences of the work of Collin and Rothschild (4), and Fante (6).

For this puipose, their methods are used to evaluate the quality factor Q
for an infinitesimally thin half-wave dipole.and then the reciprocal
relationship between the quality factor Q and the ffequency bandwdith

will be studied.

General Equation for the Quality Factor Q --

Collin and Rbthschild's Method

As it has been mentioned in Chapter III, the radiation field of an
antenna, which has a transverse magnetic field, is represented by the

followiﬁg equations in Region A of Figure 2.

_ 3 1, (2) ~
H¢ = nZO A, P (cos 0) h "’ (kR) ,  (3.1)
Ep=-1 @ nZO A n(n+ 1) P (cos 8) — g ;o (3.2)
L,
By =i (97 nzo A_ Pl (cos o) i‘i'd"t%i’)‘ R PR L (5.3)

However Collin and Rothschild (4) obtained their quality factor Qn for

the nth spherical mode without the coefficients An° They used the
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following equations instead of Equations (3.1), (3.2), and (3.3).

d Pn(CQs )

_ sin 6 (2)
H¢ TR d(cos 6) [kR hy” (kR)] ’
e Eéz-ﬁiigll P_(cos 8) [kR h{?) (kR)] ,

e (2)
_ ksino d P_(cos 8) d[kR h "/ (kR)]
6 = " TimeR  d(cos &) d(kR) ’

and by assuming that there is not any gtored energy in Region B of Fig-
ure 2, they obtained the quality factor for the nth mode as .
(ka)® 2 2
Q, = ka - (84 (n+1) ka][52(ka) + n(ka)]

3 .
_-LE%l_ [ji+l(ka) + nﬁ+1cka)]

. 2121*_‘3 (ka)2 [jn(ka) jn+1(ka) +.nn(ka) nn+1(ka)]

In the following pages, a quality factor Q will be obtained by following
the Collin and Rothschild's (4) method but Equations (3.1), (3.2), and
(3.3) are to be used.

When the field solutions for the antenna are represented by Equa-
tions (3.1), (3.2), and (3.3), the time-average complex Poynting vector

is obtained from the result of Equation (3.63):

1

14 = = - . Z2m % 2 n(n+l
2§ ExT) -Tds=py + a0 - W) = B2 E | |a|?2lerl)
k™ n=0
1 o
. w7 2m 2 n(n+1 . d . .
N I L R O N CEROY (4.1)

B CERGI - NI N
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where S is the surface of the smallest imaginary sphere of radius a which
can enclose the antenna, and n is. a unit vector whose direction is normal

to the surface of the sphere.

From the real part of Equation (4.1), the total time-average

radiated power Pp is obtained:

1 .
_oowzZ2r g 2 n(n+l) _ 2umw v 2 n(n+1)
PR B (E) k2 nZO ‘Anl 2n+1 ‘k3 n-z':O lAnl on+l . (4.2)

From the imaginary part of Equation (4.1), the difference between the

time-average magnetic and the electric energy is given:

Wo- W =P-of |a_|? 2pl)

kit
“m e k3 n=0 n 2n+1

Clo 3@ G Sy eN] * [o n IS (0 neN] Ly, (4.5)

The total time-average reactive energy stored in the region outside
of the imaginary sphere is represented by the following equation (4},

(6).

P2 T e 2w 2y o2 s = PR
wm+we=‘{jf [ G IE["+ £ |H[) R" sin 0 de d¢ dR} - {f —dR},
a o0 0 a

(4.4)
where
1 — ok —
PR = real part of-§-¢ (ExH) - ndS,
1 Roee
_P_-Z-H_w 2 n(n+1)
= & K2 ZO |AnI el » nd
L
2
¢ = (eu) .

Substituting the following equations:
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into Equation (4.4), then it becomes

?

L £ 2 € 2 2y 2
Wos W= 1f [ [ G e lT + 7 IEl +%|H¢| ) R sin 6 d6 d¢ dR}
a 0 ©

) PR‘
- {fa-c——dR} . (4,5)

From Equations (S,l), (3.2), (3.3), and (3,34)

™ 0 .
i 2 . _p 2 2 2n(n+l) . (2) 5 (2) *
104 i,1% sin 6 do = & Zok I -ﬁ:—-l—l {010 01",

(4.6)

{[hgz)co)][hﬁz)co)l*

™ w 2
€ 2 . _op 2 2[n(n+1)]° |
fo y IERl sin 6 df = = Z lAnl

4 =0 2n+1 p2
(4.7)
Te. 2 . U T | n]2 2n(n+1)
fo Z'IEGI sin 6 d6 = Z-nzo > TS|
) P (4.8)

g o P g 1P 017

where

p = kR.

Substituting Equations (4.6), (4.7), and (4.8) into Equation (4.5), then

integrating with respect to ¢, one finds

f

4
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W W =BT ] |a |2 nind) {f A e G SO R RO

n 2n+1
* [%3'(0 héz)(p))][gg (o héz)(o))*] -2y do (4.9)

For the integral part of the above equation, Collin and Rothschild (4)
obtained the following result:

J 1w ¢+ 200152 1B 0y P 031"
a

+

S ¢ P EN1gs ¢ nP e’ - 23 b

)

2 - (p)s{[jn(p)]z e I (0317 - 5, 1) i, ()

i

no 1) n (e} - ()73 (0) 3le) + n (o) n!(0))

- ) {[5,01° + [, 0I1°H o , (4.10)
where
_ d j, (e)
jple) = [——33"—"ﬂ :
(4.11)
d n_(p)
nl(p) = ["r"rg‘;-——]

Substituting Equation (4.10) into Equation (4.9), then the total reactive

energy stored outside of the sphere is given by the following equation:

_um T 2 n(n+l)
(wm * we) T3 Z lAn| 2n+1

n=0

c 20 - )% 13,0017 + In 017 - G () 3, (0)
-n 0 n )] - (o) [pe) Ji(e) + 0 (e) np(e)]

- ) (03,617 + [n @11 . . (4.12)
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Previously, in Equation (4.3),

_ km T 2 n{n+]
W - we N 13 HZO lAn| 2n+1 -

* e Jpe1le jo0I1" + o ny(e)1le np(PI]") ) 4y

Substituting the following two relations

[ 3,10 3,031 = 0 32(0) + 0% §_(0) 31(0)

and

[o ny()10 0y (1" = o n2(e) + 0 n () nl(p)

into Equation (4,3), there results

_ um S 2 n(n+1)
Wy - We = 13 nZO IAnI 2n+l

+ (kaljhka) + ni(ka)] + (ka)® [ (k) j(ka) + n (ka) n}(ke)]}

(4.13)
Subtracting Equation (4.13) from Equation (4,12):
- _um. v 2 n(n+l
Mo = My + W) - (W - W) = ;? Z !An[ ’EHITL
n=0
3 npal 2
+ {2ka - [(ka)"~ + 2ka][Jn(ka) + nn(ka)]
¢ (ka)® [, g ka) j,, (ka) + n ) (ka) 0, (ka)]
- 2(ka)” (j (ka) j!(ka) + n_(ka) n!(ka)]} . (4.14)

This equation will be further simplified for the numerical calculations

by making use of the following recursion formulas:
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jGka) = B k@) - ) (ka) ,

n _,(ka) = 2£+1 (ka) - n_,, (ka) ,
jnca) = E= 3 (ka) - ., (ka) ,
nﬁ(ka) =-%Efnana) —~nn+l(ka)

L)
By making use of the above equations, one obtains

(ka)® [5,_y(ka) iy, (ke) + n__,(ka) n ) (ka)]
= (ka)? (2n+1) [jy(ka) §p,,(ka) + n (ka) mp,, (ka)]

- (ka)® [j n+l(ka) n’, | (ka)] , (4.15)

2(ka)2 [jn(ka) jﬂ(ka) + nn(ka) nﬂ(ka)] = 2(ka) n [ji(ka) + nﬁ(ka)]

- 2(ka)? [pka) o, (ka) + n (ka) 0, (k)] . (4.16)

Substituting Equations (4.15) and (4,16) back into Equation (4.14), it

followsv
HTW i 2 n(n+l1 » 3 .2 2
20 Wy = = ngo lAnl -éE:Tl - {2ka - [(ka)” + 2ka(nt1)][j_(ka) + n_(ka)]

- (@)’ [32,  (ka) + 1Cka)]
+ (ka)?(2n43) [j(ka) ., (ka) + n (ka) n_, (ka)]} A ZO S(n)
n_
(4.17)
From Equation (4.2), it is defined that

‘ 2T ot 2 n{n+1’ v

P. = A . A P . 4,18

SR IR CEC



54

Therefore, making use of Equations (4.17) and (4.18), quality factor Q

may be given by .

2w‘we nZO >t
Q= B = — , . (4.19)
k ) Pr(n)
n=0

Equation (4.19) is rewritten as

Zimm)JQ% Z Pl Q) LIl % A )

Q= = n* — : s, (4.20)
I P Z Pp(n) Z a_|? 9%%}%1
n=0 n=0 n=0

where

3
ka - [L&%lp + ka(n+1)][jﬁ(ka) + ni(ka)]

(ka) [32,, (ka) + n2, (ka)]

(ka )2(2n+3

-+

)[J (ka) Jn+1(ka) +n, (ka) nn+1(ka)] . (4,21)

It should be noted that Q(n) is Q, of Equation (8) in Collin and
Rothschild's paper (4); Equation (4.20) for Q has exactly the same form

as the equation for Q of -which Chu found (2),



55

Quality Factor Q for an Infinitesimally

Thin Half-Wave Dipole

It has been foﬁnd that the coefficients An for an infinitesimally

thin half-wave dipole are given by

s .o
- ik, (2n+1) Jn(ii
4n(n+1) '

for n:odd
A = (3 u6)

0 for n:;even
L

The quality factor Q for an infinitesimally thin half-wave dipole is
found by substituting Equation (3.6) into Equation (4,20) and by setting

ka = n/2, This results in

v (2n+1) ot
- nzédd n(n+1) lin @1’ [Q(n)]ka=w/2 ] n;gdd £ QM 1y, 0y
T 2n+1 o ’
n:zd n(n+1) . ( ] n:gdd )

(4.22)

where f(n) and Q(n) are defined in Equation (3.45) and in Equation
(4.21), respectively.

In Equations (3.47) and (3.50), it was calculated that
£(1) = 0,2463835742
£(3) = 0.0006020966

£(5) = 0.0000002563

(3.47)
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and

[=<]

T} f(m) = £(1) + £(3) + £(5) + - + + ~ 0,2469859271 . (3.50)
n:odd

After the indicated computation of Equation (4.21), the numerical values

for Q(n) were evaluated as

[Q(1)] . = 0.8946320478
ka=-2—
[Q(3)] = 51.96120934
7 (4.23)
[Q(5)] = 4.124372 x 10°
k a=—2—
[Q(M] = 1.771002 x 10°
ka.'-'—‘?

For the computation of [Q(n)]kazw/z’ n > 5, the following equation is

used:
[Q(n)] o " %-- [(%93 + %Jn(n+1)][nn(%g]2

T3

- & 2L

1%+ GESDn G & . @.24)

Because, when n > 5, it is apparent that (see Appendix A)

5,17 << [n, D1 ,
[y 17 << Iny,, 17 ,
and (4.25)

LTy ™ ™ ™ .
@ 3@ <@ np ) ’
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therefore, using Equation (4.25) in Equation (4.21), one obtains Equation

(4.24).

From Equations (3.47) and (4.23),

£(1)[Q(D)]

kav=

2

£(3) [Q(3)]

£(5)[Q(5)]

£(7)[Q(7N)]

i}

B}

]

u

0.220423

0.031286

(4.26)

0.010571

0,005525

Finally, from Equations (3.50) and (4,25), one obtains the quality factor

Q for the infinitesimally thin half-wave dipole.

oo

L fmI

n:odd _

This results in

QM) ypen/2

Q=

yr—
[o0]

)

n;odd

0.267805

Frrsey——————

0.246986

= 1,084

f(n)

(4.27)

The values of the spherical Bessel functiens, jn(w/z) and nn(w/Z), which

have been used in the above computation of Q are given in Appendix A.
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' Relation Between the Reciprocal Bandwidth and

the Quality Factor Q

By making use of Collin and Rothschild's (4) method and the
spherical-wave function for the infinitesimally thin half-wave dipole,
the quality factor Q is evaluated as.1.08, However, these values should
not be interpreted as the reciprocal bandwidth of the antenné; because,
for the half-wave dipole antenna, if is . found (see Appendix C) that the

reciprocal bandwidth 1/B is given by

1 . A

g = 4.76 for radius of o0 >
L. 6.67 for radius of =i

B . 1000 : ’

where B is the bandwidth between half-power points, The smaller the.
radius of the dipole becomes, the larger the quantity 1/B becomes; and
the quantity 1/B approaches = for an infinitesimally thin half-wave
dipole.

Fante (6) suggested the following equation for the reciprocal band-

width of an antenna:

1 . _ :
B [Qout Qi F(w)] s (4.28)
where
o _ 2w Wout
Qodt B PR
Q 2w W1n
in Pk

H

. 8E
FW = g1, O, ¢ g 4ol

out

=
1}

the larger of Wm or We which is stored outside of the.



59

smallest imaginary sphere which can enclose the antenna,

Win = the larger of Wm or We which is stored inside of the smallest
imaginary sphere which can enclose the antemna,

PR = power radiated from the antenna,

n = (591/2 = 120 m,

d2 = sin 6 de d¢, and

E. - Goe ® i

As it is easily recognized from the above definition, the Q is equal

out
to the Q of Equation (4.20).
For the infinitesimally thin half-wave dipole, from Equations'(3.29)

and (3.15), one obtains

I N n+3 ’
- .k 0 W -
Bl I D7 xm » 429
5E,, I pd L
o . k ol
iR I e xmE . (4.30)
; we n:odd

By making use of the orthogonality of the associated Legendre function,

_ 9 9E*
§ €, 5o da-= j f . * 5o sin 6 de d¢
) T ™3 AL 5y (4.31)
wse 4 n:odd | n(n+l n-‘2
Since Equation (4.31) is real,
I E, 5 da) =0 ; (4.32)

that is, F(w) = 0. Therefore, from Equation (4,28), for an
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infinitesimally thin half-wave dipole,

= [Quy * Q] : (4.33)

o=

From Equation (4.27), Q

out 1,084, and it is shown in Equation (B.23) of

Appendix B that-Qin ~+ =, therefore,
QQut * Qi v . (4.34)

From Equation (4.33) and (4.34), one obtains

(4.35)

.

be-

Thus applying the spherical-wave expansion for the field of a half-wave
dipole to the equation of Fante (6), it has been demonstrated that there
exists the . reciprocal relationship between the quality factor and the
bandwidth . of half-power points.

In conclusion, by making use of the spherical-wave expansion for the
field of an infinitesimally thin half-wave dipole as an exploring tool,
the method of Collin and Rothschild (4) and the equation of Fante (6j
have been applied to find the quality factor Q. It has been found that
the direct application of the method of Collin and Rothschild (4) does
not give the appropriaté‘value of the quality factor for an infinitesi-
mally thin half-wave dipole, This is because of the method of Collin and
Rothschild that does does not take account of the energy in the region
iﬁSide of the.smallest‘imaginary sphere which can enclose the antenna,
and the energy stored in this region is nét neglibible for an infinitesi-
mally thin. half-wave dipole; On the other hand, it has been shown that
the equation of Fante (6) gives proper value for the quality factor.

Thus it is found that there exists the reciprocal relationship between
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the frequency bandwidth and the quality factor,

For the antenna with non-vanishing radius, it is difficult to
evaluate the stored energy inside of the smallest imaginary sphere which
can enclose the antenna., Therefore, the exact quantity of the quality

factor is not obtained.



CHAPTER V
SUMMARY AND CONCLUSION

As an effective tool for exploring the consequences of the theory of
supergain radiatdrsvwhen applied to practical radiators, a spherical-wave
expansion for the fields of a half-wave dipole haé been obtained. It has
been presented that the precise values for the directive gain and the
radiation impedance of a half-wave dipole have been obtained by using the
spherical—wave expansion, By doing this; the proper behavior of the
spherical-wave expansign has been assured, It has been found that the
spherical-wave expansion takes an infinite number of terms of the
spherical-wave functions to represent the fields of a half-wave dipole;
however, the spherical—wave expansion for a half-wave dipole converges
quite rapidly to the results in.the far-field. It is also found that the
first three terms of the spherical-wave expansion are quite adequate for
representing the field to the degree that can be confirmed by actual
measurement.

On the basis of the work of L. J. Chu. (2) and R. F. Harrington (8),
large modes of order n > ka (a is radius of an antenna) in a spherical-~
wdve expansion aséociate ohly with the supergain, As it has been ob-.
Served in . Chapter III, however, mpdes of order n > ka in the spherical-
wave expansion are necessary to represent the fields of a half-wave
dipole; although the directive gain for a half-wave dipole is only about

1.64 as compared with the nermal gain 5.60 for an antenna when cutoff

(S0
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mode N = ka = k A/4. When the cutoff mode N > k A/4, the normal gain GN

for an antenna of half-length A/4 becomes (8):

A A
N>-k'ZT. Nf_kz
Gy = 1 (+l) > ] (2n+1)
n=1 n=1

Therefore, it is believed that the normal gain for an antenna of half-
length A/4 is larger than what has been expected from equations of Chu
(2) and Harrington (8); physical realizationyof'a supergain antenna be-
comes more difficult,

The technique'which was used to obtain the spherical-wave expansion
for a half-wave dipole has been applied to obtain the spherical-wave ex-
pansions. for the fields of the linear radiators with assumed sinusoidal
current distribution, Consequently, the spherical-wave expansions for a
full-wave and a higher-number—waves dipole have been .obtained.

As an example for exploring the consequence of the theory of syper-
gain radiators when it is applied to the practical radiator, the
spherical-wave expansion for.the-fields of the half-wave dipole was used
to evaluate the quality factor Q by 'making use of the equations of Collin
and Rothschild (4), and Fante (6). A small quantityvof the quality
factqer was obtained when the equation of Colliﬂ and Rothschild-was
used. This: is not what was expected,'because the quality factor Q for
the half-wave dipole with assumed sinuseidal current is to be « (27). On
the other hand, the equation of Fante (6) gives = to the quality factor
Q. Thereforé, one may say thaf there .exists direct relationship between
the quality factor Q and the reciprocal bandwidth of the half-wave
dipole. Because it is found that the reciprocal bandwidth of the infini-

tesimally thin half-wave dipdle is o,
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It is, of course, well known that the current distribution on an
actual half-wave dipole.is not exactly -sinusoidal. Consequently, the
ties between the theoretical and physical measurement become even more
difficult to determine. However, a half-wave dipole is physically
realized in practice to a more precise degree than most of the other
structures. Hence, it is believed that the spherical-wave expansion
which has been .developed in this study is an effective tool for exploring
the physical consequences of the theary which is associated with the

spherical-wave functions.
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APPENDIX A

NUMERICAL VALUES OF THE SPHERICAL BESSEL

FUNCTIONS jn(-"zT-) AND nn(%-)



ig(3
i,
33
i3
i,
ig (5

"

i7@

n

(]

N

fl

H

0.6366197724
0.4052847346
0.1374170539
0.0321273340
0.0657532090
0.0008361234
096001021358

0.0000107920
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m
N4

i

#

6.366197724

1.215854204

3.233564360

1.319400284
7.236250341
4.935474020
4.012263947
3.782075100
4.053041802

4,864647695

10

10

10

10

10

10

10

10
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The numerical values for jn(ga and nn(gi have been calculated by

making use of the following equation (21):

n
24 r
i2) =2 (1) (n+2r) ! — sin (z - 3&
r=0 (2r)!(n-2r)!(2z)
[Lﬂll)ﬂ" .
g (-l)r(n+2r+1)' nm
+ , e 05 G - 59
r=0  (2r+l)!(n-2r-1)!(22)“T :
and
1
2 T
nn(z) = - %- (1) (n+2r)£f~— cos (z - %EJ

r=0 (21)! (n-21)! (22)°F

l)y

. % (vl)r(n+2r+1)! sin (z - %ﬂﬂ

=0 (2r+1)! (n-2r-1) 1 (22) 2%

where [b] is the maximum integer which does not exceed b.



APPENDIX B

ELECTRIC ENERGY STORED INSIDE OF THE SMALLEST
IMAGINARY SPHERE WHICH CAN ENCLOSE AN
INFINITESIMALLY THIN HALF-WAVE

DIPOLE
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In the previous .chapters, the field solution for the infinitesimally
thin half-wave dipole has been expanded into an infinite series of
spherical-wave functions. In this section, the electric energy stored
inside of the smallest imaginary sphere which can enclose the infinitesi-
mally thin half-wave dipole will be obtained by making use of the follow-.

ing spherical-wave expansion for the region of-R < A/4:

1 : 1
= kI © - I ©
M 2 0 A(n .2 .0 (cos 8)A(n
e @ G I g @T o 1 LesEll ) ooy
n:even n:odd
1l o
_ 2 0 A(n)
Ep=- O (P | , (2.30)
R £ 4 n:odd R
Ed) =0 ’
where
A(m) = (2n+1) W3 (@) P (cos 8) i (kR 2.24)
m) = (2n+1) b ¥ () P (c i (KR) L (2.24)

£ =-—

-
Therefore, the electric energy density - E *« E for the inside of the

>

imaginary sphere becomes.

- .E*_e. E'* EE *
E | —ZEG * Eg +-z‘- R ER . (B.1)

Him

Hence, the total electric energy stored inside the imaginary sphere of

radius A/4 will be obtained from the following equation:

A
in 4 21 7 e = % 2
we=ff f 7E E R" sin 6 deo d¢ dR
0 0 O
A
¥ 2m o«

£ * 2 .
, Z-ER ER) R™ sin. 6 d6 d¢ dR . (B.2)

it
—
S
S
~
~jm
tr1
[a ]
.
tr1
+
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It is well known that the Legendre and the associated Legendre functions.

give the following results for the definite integrals (7):

~

2 -
m for n=k
m
[ P_(cos 8) P, (cos 6) sin .6 d6 = - (B.3)
o " k
0 for n=k
(N
(’}n+m)! 1
TH:ETEH for nsk
T Pg(cos 0) Pﬁ(cos )
> sin 6 d6 = { (B.4)
0 1 -~ cos™ 6
0 for n=k
_

fﬂ cos 6

2

_ J Pn(cos 8) Pk(cos 8) sin 8 do = 2Pn(z) Qk(z), n<k ,
0z - cos™ 6

(B.5)
where Q (z) is the Legendre function of the second kind.
T cos © .
[ === P_(cos 8) P, (cos 6) sin.6 do
2 n k
01 - cos™ B
" 1
= jo T cos g Pn(c0s.8) Pylcos 0) sin 6 do = 2P (1) Q (1)
n<kandn#k . (B.6)

By making use of Equation (2.26), it follows
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*
m kI T o A_(n)
€ L _ £ 0,2 A(n) .. n .
/ 7 Eo EQ sin 6 d6 = 7 (EF_D f {7 in e} { _z < e}51n 6 de
0 0 n:even n:even
I 2 m o] (o) *
0 (cos B8)A(n) (cos 6)A (n) .
+——[ 1] —tel} o [ ) - } sin.6 dé
64 0 n:odd R sin @ n:odd R sin ©
UkI 2 m ] oo *
: ( ) - ) .
e ad F) js\iﬁ ) @iin)@ ®)) sin 6 a0
0 n:even. n:odd
ukIOZ m | v A*(n) : T (cos 8)A(n
- —32—-"'f { z m} . { z _R—s-iTie_l} sin 6 d6 (B.7)
0 n:even n:odd

By making use of Equation (B.4), the first integral of Equation (B.7)

becomés
4 27 0 . sin 9 sin 6° °™
n:even. n:even
w Koo 2 . (2) 12 .. 2
== (PG 1 (D" TR G (kR]T . (B.8)
n:even

Using Equations (B.3) and (B.4), the second integral of Equation (B.7)

becomés~
2
UIO fﬁ'{ E {(cos e!A!n)}{ E (cos e)A*(n)} sin 6 de
64 0 n:odd R sin 6 n:odd R sin 6 .
ul 2 T o © *
= 62 12 {1 £i%l4{ ) éﬁ££l} sin 6 d 6
0 sin” 6 n:odd n:odd
2

ul ul © e © *
- ——O—-f { ) %ﬁ}{ ) AREL} sin 6 de
0 n:odd n:odd

2 2

i e A [5, (kR)]

° (=2 1 ] o2 DG B
64 n:odd ' R

2 . 2

I ® [, (kR)]
0 - (2)  m,2 'n

o —— Z (2n+1) h “ (5) ¢ ———} .
32 n:odd no2 R

1]

(B.9)
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The third and fourth integrals of Equation (B,7) are combined, and then,

by making use of Equation (B.6), one obtains

B v A@m S (cos 0)A (), .
f { Z sin e}{n'gdd 'R sin 6 } sin 6 do

ukI ™ * ©
0 : A {n); (cos 8)A(n), _.
< J IR .Z, g{;‘g}{ .Z R Sin 0 } sin. 6 do
0 n:even : n:odd

ukI 2

m
) I (2n+1) (2t+1)
0 n:even t:odd

=] ©0

il

PG PG PG 227D

. (cos 6) P (cos 6) Pt(GQS ?) Jp(kR) 3, (kR)

> R } sin 6 d6
sin” ©
: ukIO2 % © »
= - m[-ig;—ﬂ{ ) L (2n+1) (2t+1)
‘ n:even - t:odd
j_(kR) j_(kR)
C i3 3¢ ¢ 0 @) 0 P . (B.10)

From Equations (B.8), (B.9), and (B.10), one obtains

T kI 2 ©

[ 2B, -Eysinodo=ody —={ ] )’ 0PD? [ o)
0 - n:even

. 2
2w [5, (kR)]
R TG O R o e (M

n;odd - R

. 2
nl.” o [J,kR)]
Y } (2n+1) hrclz) (%)2 —nRZ }

ukI © ©

0 14 ) J (2n+1) (2t+1)
n:even t:odd

1
8
—
=
o2
3}

3y (kR) 3 (KR)
1,3 3@ *+ @ n, P 2rp— . 1D
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By making use of Equation (B.3), the following result is obtained: .

2 . 2
™ e % ) UIO ® \ (2) [Jn(kR)]
fo 7 Ep * Ep sin 8 d8 = (=) n;gdd (2n+1) b ° — - (B.12)
From Equations (B.11) and (B.12)
T £ * £ *
fo (7 Eg * Eq * 7 Eg * Eg) sin o de
u kIO-2 ot 2 Toy2 To 2 2
=P I )T G, G [, (kR)]
n:even
2
ul © [i, (kR)]
b () L Cne1)? 16,7 + ()7
iR
- () (2n+1) (2t+1)
Lom n;even t:odd
i (kR) j_(kR)
5, 3@ + 3 0 G| T : (B.13)

Substituting Equation (B.13) into Equation (B.2) and then integrating

with respect to ¢,

2 R
. nl oo 2
W= elmlt I @) - 1GNP 15,0017 07 do}
, ‘ n:even. ' 0
2 I
rI, ® ; ' 2
+ <ley l{nigdd (20e1)? - 1G5+ 3N [ @)1 60
2 [>] o]
- m[ ]{  (2n+1) (2t+1)
ek n: gven t gdd
n
2
ENCOENC RN RN fo,[anp) 3. (0)] do} (B.14)
where

p = kR
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It is well known that the spherical Bessel functions jn(p) have positive
values in the range 0 < p :_%y Therefore, it can be said that the

following three definite integrals exceed zero. That is:

m
z
fo [jn(o)]2 0% do > 0 , (B,15)
n
2 2
fo»[in(o)] do > 0 , (B.16)
and .
r
2
[ 3. i ()] p do >0 , . (B.17)
0 n t
when
J(o)>0foroioi% R

Thus one may say:

3

oo

2
1 @)® 16,7+ @71 [ 1,617 >0, (8.18)

T ened? [G.@2 ¢ (@3 fz [3.(0)1% dp > 0, (B.19)
nelag N+, Jn 59 nn.z 0 Jn P p ’ . .‘

n‘gven t%dd.(zml)(zt*l) ENC) jt(g') * nn(%) n, (3]
2
. fo [5,0) 3.(p)] p do > 0 ' (5.20)

Using the above three equations in Equation (B.14), it is concluded that

electric energy stored inside of the smallest imaginary sphere which can
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enclose the infinitesimally thin half-wave dipole approaches «; that is,
Wo>r e . (B.21)

From Equations (4.2) and (3.6), the total power radiated from the half-

wave dipole is

Twl 2
il 2n+l

v .
R 8k n:gdd n(n+l) [Jn(Z)

2
] s (B.22)
and PR is finite. Therefore, the quality factor Qin'for the energy

stored inside of the smallest imaginary sphere which can enclose the

infinitesimally thin half-wave dipole is obtained as:

2 wzn
Q. = > y (B.23)



APPENDIX C

NORMALIZED INPUT ADMITTANCE FOR NEAR HALF-WAVE -
DIPOLES WITH RADIUS OF A/200 AND /1000

AND THEIR BANDWIDTH

nnN



THE INPUT IMPEDANCE z=R+iX AND THE NORMALIZED ADMITTANCE |Y|

TABLE I

FOR NEAR HALF-WAVE DIPOLE WITH RADIUS OF A/200

81

2 2

A
27 R() - X(®) R® + X Y| uy
0.75 41.52 -117.63 15560.727 0.521 1.240
0.80 47,52 - 85.08 9496.757 0.667 1.163
0.85 54,35 - 52,89 5751.275 0.857 1.094
0.90 61,99 - 20.76 4273,738 0.994 1.030
0.93 65.0 0 4225.0 1.0 1.0
0.95 70,53 11.53 5107.422 0.910 0.979
1.0 80.19 44,40 8401,796 0.709 0.930
1.05 91.24 78,09 - 14422,786 0.541 0.886
1.10 103,93 112.98 23565.925 0.423 0.845
where
1
4225,0 42
0,93
wy = [=%7]
l/z
Source: H. Uchida, and Y, Mushiake, Chotanpa Kuchusen (VHF Antenna).

Tokyo: Koronasha Inc,, 1966,
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Figure 4. Bandwidth B for the Half-Wave Dipole With Radius
A/200
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TABLE 11

THE INPUT IMPEDANCE z=R+iX AND THE NORMALIZED ADMITTANCE |Y|
FOR NEAR HALF-WAVE DIPOLE WITH RADIUS OF A/1000

2 2

b5 ~R(@) X(2) R” + X Y| oy
0.75 39.97 -195,21 39704,545 0,346 1,267
0.80 45,87 -146.34 23519,453 0.450 1.188
0.85 52.66 - 98,48 12471.386 0.617 1,118
0.90 60.28 - 51,11 6245,911 0,872 1.056
0.95 68. 84 - 3.78 4753,234 1.0 1.0
1.0 78,57 44,11 8118,937 0.765 0.950
1.05 89.74 93.03 16707.849 0.533 0.905
1.1 102,62 143,55 176,458 0.391 0.864
where
1
IYI - [47"53.‘23‘.4]2
RE + x2
0.95
Wy [——;wﬂ .
/7

Source: H. Uchida, and Y, Mushiake, Chotanpa Kuchusen (VHE Antenna).
Tokyo: Koronasha Inc., 1966.
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Figure 5. Bandwidth B for the Half-Wave Dipole With Radius

A/1000
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