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PREFACE 

This dissertation demonstrates that mispricing of the S&P 500 futures contract 

can result from structural dissimilanties between the. New York Stock Exchange and 
' . 

the Chicago Mercantile Exchange. These related markets are linked through the 

agency of stock index arbitrage. 

Methodologies based upon the emerging science of nonlinear dynamics and 

system simulation are used to support this proposition. Because of the underlying 

deterministic (as oppo&ed to a stochastic) slant of the methodologies, it is possible to 

generate policy implications regarding the regulation of the financial markets. The 

conclusions from this dissertation can be used to support a free market regulatory 

stance. 

I wish to express my deep gratitude to Dr. Timothy Krehbiel who was my 

thesis adviser for a testing two years. His contribution goes well beyond the 

boundaries of this dissertation. My thanks also go to the rest of my thesis committee 

for being helpful and supportive of this research and to Dr. Joe Mize for his 
) ,, -

encouragement and assistance with the simulation methodology. To my dear friend 

and fellow graduate student Doug Kern whose compassion is blind to the distinctions 

of color, culture and CJ,"eed, I dedicate this dissertation. 
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CHAPTER I 

INTRODUCTION 

The Standard and Poor's 500 (S&P 500) futures contract was introduced in 

1982 at the Chicago Mercantile Exchange. Since then the trading volume on the 

contract has steadily increased and today represents two thirds of all index futures 

trading. The S&P 500 futures contract provides unique advantages for institutional 

investors who wish to hedge diversified holdings and for those who choose to 

speculate on broad market movements. For such purposes the index futures contract 

and the underlying stock basket are perfect substitutes and the priCing of the futures 

contract would reflect this fa(:t. Empirical analysis of the S&P 500 futures contract by 

Modest and Sundaresan (1983), Cornell and French (1983), Figlewski (1984(a), 

1984(b)), Merrick (1987), Arditti, Ayadin, Mattu and Rigsbee (1986), MacKinlay'and 

Ramaswamy (1987) document significant and sustained devi~tion of the index futures 

price from its theoretical value. Extending these findings, Arditti etal. (1986), 

Merrick (1989), Finnerty and Park (1988) show that index arbitrage could have been 

profitable through these periods., Yadav and Pope (1990) corroborate these results by 

finding evidence of mispricing in the UK Financial Times Stock Exchange (FTSE -

1 00) stock index futures contract traded on the London International Financial Futures 

Exchange as well. 
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Extensive mispricing was also observed during the period of the 1987 stock 

market crash when computerized stock index arbitrage was believed by many to have 

destabilized the stock market1• Such fmdings of sustained mispricing and the 

availability of a "free lunch". by way of risk free arbitrage trades are not consistent-

with the hypothesis of market efficiency.·F~ll~wing the stock market crash of 1987 

policy-makers focused upon the cash arid futures market linkages and many 

commissions were appointed to examine the events surrounding the crash period2• 

2 

Academic interest has also been drawn to the mispricing anomaly and there have been 

attempts to statistically arialyze and model the process generating the index futures 

mispricing3• Brennan ~d Schwartz (1990) use a Brownian Bridge process to 

represent the evolving arbitrage opportunity (mispricing) for a trader. At the same 

time they recognize that the Markov nature of the Brownian Bridge process is not 

consistent with the observed serial correlation or path dependence in the mispricing 

series. 

This dissertation is in the form of two essays that investigate the issue of index 

futures mispricing. The first essay titled_ "Does the S&P 500 Mispricing Series 

Exhibit Nonlinear Serial Dependence" (Chapter 2) takes a completely different tack 

1 Mr. Charles Schwab in an article in the Wall Street Journal of April 25, 1989 
states: "When program trading is roiling the water, there is no safe haven. At such times 
the futures market drives the stock rriarket ... " "To regain the confidence of individual 
investors, policy makers and the security industry need to take the lead in corralling the 
destructive aspects of program trading." 

2 Mackay (1988) summarizes the recommendation of the many commissions set up 
to investigate the crash. · 

3 MacKinlay and Ramaswamy (1988); Brennan and Schwartz (1990); Yadav and 
Pope (1990) represent som·e of this work. 
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from previous studies by hypothesizing and testing for the existence of nonlinear time 

dependence in the S&P 500 futures mispricing series. The presence of such nonlinear 

structure in the mispricing series would be consistent with a deterministic as opposed 

to a stochastic explanation for the mispricing anomaly. Nonlinearities are also a 

necessary condition for the existenCe of dete~inistic chaos. Systems in chaos display 

time paths that appear random even ·to many statistical tests. The observed irregular 

fluctuations in index futures mispricing, levels and the steep discounts observed during 
' - ' 

the crash period are typical of a system displaying chaotic dynamics. A procedure to 

test for nonlinear structure developed by Brock, Dechert and Schienkman (BDS) 

(1986) is applied in this study. In addition to testing; for nonlinear structure this essay 

also identifies some aspects of market microstructure that can generate chaotic 

dynamics in the mispricing series. 

The second essay titled "Market Microstructure Issues in the Mispricing of the 

S&P 500 Futures Contract" (Chapter 3), builds upon the first through a computer 

simulation of the role of differential trading delays in producing the observed 

mispricing dynamics. The System Dynamics simulation methodology based upon 

DYNAMO is used for this purpose. The use of a simulation methodology presupposes 

an endogenous view of system behavior. The literature review in Chapter 3 · 

establishes the justification for use of the simulation methodology for the study of 

nonlinear systems in general and market microstt;ucture issues in particular. 

Differential trading delays are shown to be a potential cause of the overshootings and 

path dependence that have been identified in the mispricing series. 



Chapter 4 both summarizes and links together the results from the two essays. 

The benefits and limitations of the simulation methodology are discussed and the 

conclusions draw out the policy implications that follow from this research. 

4 



CHAPTER II 

DOES THE S&P 500 FUTURES MISPRICING SERIES 

EXHIBIT NONLINEAR SERIAL 

DEPENDENCE? 

Theoretical Background 

Index futures mispricing is defined as the difference between the market price 

of the index futures contract and its theoretical value: 

f(t) = S(t). exp.(r-d)(T-t) (1) 

The right hand side of equation (1) expresses the fair (theoretical) futures price as the 

cost of carrying the index basket of stocks to maturity. Here f(t) is the theoretical 

value of the index futures contract at timet. S(t) is the level of the underlying index 

at timet; 'r' represents the risk free interest rate and 'd' is the dividend rate on the 

underlying basket of stock. Both rates are assumed constant for the duration of the 

futures contract. T is the maturity date of the futures contract. 

In a continuous efficient market and in the absence of transaction costs, there 

should be no deviation of the index futures ppce from its theoretical value. Any 

deviation would result in a profitable, risk free, arbitrage c;>pportunity. For instance, if 

F(t), the futures price is greater than f(t), its theoretical value, the appropriate 

arbitrage action would be to sell the index futures contract and buy the underlying 

5 
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basket of stocks. The stock purchase is financed by borrowing at the risk free rate. 

The riskless arbitrage profit would then amount to F(t) - S(t) exp. (r-d)(T -t) 

The opposite arbitrage action, purchasing the index futures contract and selling 

the underlying index basket of stock, would occur if the index futures price is below 

its theoretic~ value. In this case, the sale proceeds are, assumed to be invested at the 

risk free rate thereby providing an arbitrage profit of S(t) exp (r-d)(T-t) - F(t). 

Introducing transactions costs into the model provides bounds within which 

arbitrage would not be profitable. Since such costs depend upon the size of the 

arbitrage trade, the practice has been to express the index futures mispricing and the 

associated transaction costs as a percentage of the index value. If ~T denotes the 

percentage mispricing at time t for the contract expiring in time period T, then its 

value is given by; 

F t,T-s ( t) exp (r -d) (T-t) 

s ( t) 

The corresponding transaction costs bounds would be determined by 

IMt,TI= (Ts+Is+Tf+If) 

where 

Ts = Percentage round trip stock commission 

T r = Percentage round trip futures commission 

Is = Percentage market impact in stocks and 

Ir = Percentage market impact in futures 



The market impact costs should be' negligible in an efficiently functioning 

market since the demand for both the stock basket and the related futures contract 

would be perfectly elastic at the full information price. 

Literature Review 

Empirical Findings on Index Futures Mispricing 

7 

The existence of transactions costs would imply that mispricing within 

transaction cost bounds would still be consistent with market efficiency. However 

index futures mispricing in excess of transactions cost bounds have been observed 

throughout the history of the S&P 500 futures contract. In an early study, using data 

for the June and December '1982 contracts, Modest and Sundaresan (1983) conclude 

that the futures price violates the theoretical bounds if market participants were 

assumed to have full use of short sale proceeds. Even so, as Figlewski (1984a) notes, 

well diversified institutional investors need not resort to short sales to take advantage 

of profitable arbitrage opportunities. Evidence of mispricing for different time periods 

has also been documented by other researchers including Figlewski (1984(a), 

1984(b)), Merrick (1987, 1989) and Finnerty and Park (1988). Figlewski (1984a) 

examines the various reasons put forward to explain the empirical observations of 

index futures mispricing and concludes that .. "the (futures) discount represented a 

situation of disequilibrium - a transitory phenomenon caused by unfamiliarity with the 

new markets and institutional inertia in developing systems to take advantage of the 

opportunities presented." (p.43). Merrick (1987) examines the implications of 

observed index futures mispricing for institutions who hedge their stock portfolios 
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with stock index futures. Mispricing of the futures contract will affect the optimal 

hedge ratio for such investors. Merrick (1989) attempts to demonstrate the 

profitability of arbitrage related program trading strategies. Yadav and Pope (1988) 

extend the .. "broad consensus that observed mispricing is often sufficient to span the 

transaction cost bounds and offer arbitrage possibilities .. " to the analysis of the U.K 

FTSE 100 futures contract traded on the London International Financial Futures 

Exchange. (p.573). Yadav and Pope (1988) explicitly consider transactions costs 

while computing the mispricing of the futures contract and conclude that the 

mispricing is too large to be accounted for by transactions-costs. In the most recent 

and comprehensive study yet of the extent of mispricing in the S&P 500 futures 

contract, MacKinlay and Ramaswamy (1988) compute intra-day mispricing levels at 

15 minute intervals. The price histories studied stretch from 1983 through 1987. 

Transaction cost boundaries are conservatively estimated at +0.6 percent and -0.6 

percent of the cash index. Their results show that over the 16 contracts examined, the 

average mispricing amounted to 0.12 percent of the index value, with a high for the 

December 1986 contract of 0. 78 perc~nt. The authors record that out of 26070 

observations over all contracts there were 3149 upper bound transactions cost 

violations and 602 lower bound transactions cost violations. On average, therefore, 

the transaction cost bounds were violated 14.3 percent of the time. 

A number of reasons have been put forward to explain the mispricing puzzle. 

Almost all of these can be seen as variants of the transaction cost argument, that in 

some way transaction costs are greater or that index arbitrage is riskier, than is 

assumed by the cost of carry model. These include the beneficial tax timing option 
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that is available only to the spot position and not the futures position, Cornell and 

French (1983); the real world stochasticity of dividend and interest rates, in violation 

of the constant dividend and interest rate assumptions of the pricing model, (Cox, 

Ingersoll and Ross (1981)) and the difficulty of tracking the S&P 500 index with only 

a subset of stocks (Figlewski (1984a)). 

In conflict with these explanations is the observation by Rubinstein (1987) that 

arbitrageurs comprise large institutional investors with broad based portfolio holdings. 

Institutional investors are not affected by tax considerations nor are they constrained 

to track the index with only a subset of stocks. A subsequent empirical study by 

Cornell (1985) designed to follow up on the Cornell and French (1983) paper failed to 

find supporting evidence for the tax argument. 

The observed mispricing could result from using a misspecified pricing model. 

The cost of carry pricing model used in computing the theoretical forward price could 

be misspecified due to factors such as stochastic interest rates and the daily marking 

to market for the futures contract (Cox, Ingersoll and Ross (1981); Jarrow and 

Oldfield ( 1981); French ( 1983)). 

If the stochasticity of interest rates is a factor in the mispricing of the index 

futures contract, then the same extent of mispricing should be observed in the case of 

other financial instruments that have futures contracts traded as well. An investigation 

of mispricing in the foreign exchange futures contract by Cornell and Reinganum 

(1981) does not support this explanation. Simulation of the impact of stochastic 

interest rates and marking to market on equilibrium stock index futures price by 

Modest (1984) showed that this effect would be minimal. These studies suggest that 



the observed mispricing is related to market features specific to the S&P 500 index 

futures contract. 

10 

Yadav al\d Pope (1990) argue that transactions costs may well be lower than is 

commonly estimated. In an efficient market, it would be the transaction costs of the 

lowest cost trader that would be binding and not those of the marginal operator with 

the highest cost. It should also be recogn~zed that arbitrageurs have the option to 

reverse their positions even prior to expiration if the mispricing level overshoots and 

changes sign. Such overshootings have the potential to increase arbitrage profits 

because the only cost of an early unwinding is the market impact cost of closing the 

futures position. The market impact cost should be negligible in an efficient market. 

Mac.Kinlay and Ramaswamy (1988) show that such overshootings have been common 

in the history of the contract. This factor could induce arbitrage trades at levels of 

mispricing within transactions cost bounds. 

In reality stocks do not trade continuously and the stock index value often 

reflects stale prices. The existence of stale prices or nonsynchronous trading can cause 

autocorrelations in the index prices. As Harris (1989) points out, "If the 

nonsynchronous trading problem is ignored, spurious conclusions about volatility, 

market efficiency, and the relation between the futures and the cash market can be 

obtained and arbitrage opportunities can be falsely identified." (p. 78). However, an 

empirical investigation by Harris (1989) of the October 1987 S&P 500 stock futures 

basis show that "portfolio returns are autocorrelated even after the effects of 

nonsynchronous trading are explicitly removed." (p. 78). Mac.Kinlay and Ramaswamy 
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(1988) come to a similar conclusion using intraday prices for the period September 

1983 through June 1987. 

The stock market crash of 1987, followed by the minibreak of 1989, 

graphically underscored the importance of index futures mispricing in the overall 

functioning of the market. It also served. to bring the issue of index arbitrage into the 

focus of the public and the policy makers. On both occasions, the S&P 500 futures 

contract was observed to trade at a considerable discount, .not only to the theoretical 

value but also to the S&P 500 index itself. Such a phenomenon should be a near 

impossibility in an efficient market. Specifically, for such a large discount to occur, 

given the cost of carry pricing relation, the expected dividend earnings from holding 

the index basket of stocks should exceed. the interest cost, thereby enabling a negative 

cost of carry for the arbitrage transaction. 

The stock market crash and the resulting public outcry against computer based 

index arbitrage, led to a number of studies1 that focused upon the nexus between 
; 

index arbitrage and stock market volatility. The results from these studies document 

the association between severe market volatility and the S&P 500 futures mispricing. 

The formulation of a regulatory framework to stabilize markets would be improved by 

analysis, understanding and modeling of index futures mispricing. 

1 Mackay (1988) 
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Modeling Index Futures Mispricing: 

Randomness vs Determinism 

In a recent paper, Stoll and Whaley (1990) demonstrate that if the cost of 

carry pricing model were to hold there should be no' evidence of either linear or 

nonlinear serial dependence in the mispricing series. The path of mispricing 

observations should be random. The empirical observations to date, however, contrast 

sharply with the theoretical extensions. 

The MacKinlay and Ramaswamy (1988) paper takes the first step toward 

examining the statistical characteristics of the mispricing series. Some of their 

observations relevant to this research paper can be summarized as follows: 

(1) The mispricing series display sharp reversals with a tendency for the mispricing 

levels to stay above or below zero for considerable periods of time. 

(2) The series was found to be extremely autocorrelated. In this context, MacKinlay 

and Ramaswamy (1988) suggest that the option to unwind arbitrage positions 

prematurely (prior to maturity) brings about the observed path dependence in the data. 

(3) The mispricing series does not appear to fluctuate randomly around zero. 

MacKinlay and Ramaswamy (1988) conclude ~eir study, by recommending that 

future research should aim at modeling the arbitrage process and the mispricing 

series. 

In a recent study, using the same data, Brennan and Schwartz ( 1990) use a 

Brownian Bridge process to represent the evolving arbitrage opportunity (mispricing) 

in order to determine optimal arbitrage strategies for a trader. The authors note, 

however, that the Markov (path independent) nature of the Brownian Bridge would 
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not be in accordance with the observed path dependence in the mispricing series. In 

their conclusion Brennan and Schwartz (1990) observe that the .. "real challenge 

remains to endogenize (emphasis added) the stochastic behavior of the simple 

arbitrage opportunity given the nature of transaction costs and the structure of the 

market." (p. s.22). An endogenous explanation would require a deterministic as 

opposed to a stochastic view of the intermarket linkages and the arbitrage process. As 

Yadav and Pope (1990) point out, "It is difficult to select a stochastic process to 

model "mispricing" .... when the empirical evidence by MacKinlay and Ramaswamy 

(1987) indicates that the mispricing series is path dependent." (p.577). 

The Hypothesis of Nonlinear Dependence 

The objective of this research is to test for the presence of nonlinear 

dependencies in the S&P 500 mispricing series. Findings of nonlinear, low 

dimensional structure in the data series has some significant implications for the 

modeling of the mispricing series. 

(1) Nonlinear dependence is a necessary condition for the existence of deterministic 

chaos which is commonly interpreted to be the random appearing trajectory of a 

purely deterministic system (Savit (1988)). The observed irregular fluctuations of the 

index futures mispricing series suggest a chaotic (deterministic) explanation to the 

dynamic behavior of index futures mispricing. 

(2) A low order (deterministic) dimensional reading as opposed to a large or infinite 

(random) dimensional series would suggest that the irregular fluctuations in the 

mispricing series have a deterministic (structural) explanation. A finding of a large or 



infinite dimension, on the other hand, would imply that the dynamic behavior of the 

mispricing series is caused by very many factors and the appropriate modeling 

approach would be to determine the stochastic process that best explains its dynamic 

features. 

14 

(3) Nonlinearities are also a necessary condition for catastrophes. A catastrophe in 

this context according to Rahn (1981) represents a sudden change in the state of a 

system in response to a smooth change in the parameters of the independent variables. 

An example would be a sudden change from a bull market to a bear market (stock 

market crash) that cannot be associated with discontinuous changes in any of the 

relevant environmental parameters. It is precisely this kind of turning point that 

modelers find difficult to forecast and, as Forrester (1987) points out, may well be a 

characteristic of nonlinear systems. 

The case for the existence of nonlinear dependencies in the index futures 

mispricing series can be made using a mix of empirical findings and observations of 

market microstructure. There have been a series of research studies that document the 

evidence of nonlinear dependence in ,economic and financial data. Brock (1988) 

surveys some of this work. Scheinkman and LeBaron (1989) examine a time history 

of daily returns on the value' weighted portfolio provided by CRSP, and conclude that 

the portfolio returns in the sample exhibit nonlinear dependence across time. Of 

particular interest to the present research project is a study by Blank (1990), which 

fmds strong evidence of nonlinear ~ependence and deterministic chaos in the S&P 500 

futures price series. Such fmdings of nonlinear dependence in stock and futures 
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market data motivate, in part, this attempt to test for nonlinearities in the S&P 500 

futures mispricing series as well. 

Chaotic fluctuations could arise in the mispricing series due to the widely 

differing microstructure of the futures market and the stock market. Arbitrage serves 

to couple these two very different markets. The index futures market and the stock 

market differ functionally due to their methods of trading: an open outcry system in 

the Chicago Mercantile Exchange as compared to the specialist system that operates in 

the New York Stock Exch~ge. Information is quickly and fully reflected in futures 
' . 

market prices even if it involves large discontinuous jumps. In contrast, the specialist 

system is designed to cushion shocks, siow down price changes and maintain 

continuity in price movements2• Stoll and Whaley (1990) conclude that the S&P 500 

futures price leads the index by as much as ten minutes. It would appear that price 

discovery takes place in the futures market and the information is carried via arbitrage 

to the stock market. Because of the difference in the microstructure of the two 

markets, an arbitrageur, while responding to a mispricing, is likely to face a delay in 

putting through the stock market leg of the arbitrage. The immediate response in the 

mispricing level would be only partial, reflecting the change in the futures price 

alone. With more than one arbitrageur in the market, the partial response in the 

mispricing level may induce further arbitrage activity and could actually result in the 

overshooting of the arbitrage bounds. 

2 Report of the Committee on Market Volatility and Investor Confidence. (1990): 
New York Stock Exchange Publication 
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The existence of the uptick rule in the stock market and its absence in the 

futures market is another microstructure difference which may induce a delay in the 

response of the stock market price to arbitrage. The existence of the rule has been 

cited by Edwards (1988) as one factor that exacerbated the market crash. The uptick 

rule restricts short sales on a stock below the price at which the last sale was effected. 

The purpose of this rule is to prevent panic selling in a declining market. It also 

serves as a deterrent against any bear raids3• In the context of futures mispricing, the 

uptick rule effectively delays the stock market leg of an arbitrage trade in an 

asymmetric manner: the time delay will be greater when the index futures is trading 

at a discount to the spot index because the appropriate arbitrage response in this case 

requires the purchase of the futures contract in the CME and the short sale of the 

underlying basket of stocks in the NYSE. The delays that arise in executing the stock 

market leg of an arbitrage trade, for both of the above reasons, are capable of causing 

chaotic fluctuations and instabilities in the observed mispricing series. 

The observation made above, that response delays within coupled nonlinear 

systems can cause chaotic fluctuations in observed time histories of system variables, 

is well established in system dynamics literature. 

Rasmussen and Mosekilde (1988) use system simulation to show how chaotic 

behavior can arise in a firm that allocates its resources between production and 

marketing depending upon its order backlog/inventory of finished goods. Faced with a 

backlog of orders, the company would shift its resources to production. If the 

inventory build up becomes excessive, the company would transfer resources to 

3 Report of the Committee on Market Volatility and Investor Confidence. (1990) 
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marketing so as to drum up sales. Nonlinear responses in this model are coupled with 

delays in generating production/sales in order to achieve a desired inventory. This 

results in irregular cyclical variation in sales. When select system parameters such as 

the customer defect rate are changed, the entire system shifts into chaos. The 

arbitrageurs' response to perceived mispricing is analogous to the foregoing 

description of a typical firm's response to unsatisfactory levels of inventory. In both 

cases a perfectly rational response by participants when channeled through a system 

characterized by nonlinearities and adjustment delays can cause very complex 

dynamical behavior. 

Sterman (1989) investigated the capital investment decisions of experimental 

subjects operating in a simple multiplier accelerator (nonlinear) economy. Here too 

the time delay between capital investment and generation of production capacity 

generates instabilities and chaos in system levels. 

Using a Kaldor type .business cycle model, Lorenz (1987) showed that the 

coupling of three regularly oscillating economic sectors can lead to irregular chaotic 

behavior in the entire system. The comparison here would be to the coupling of the 

dissimilar futures and cash markets by arbitrage activity. 

Modeling of predator prey relationships in ecology4 provide the clearest 

picture of the route to' nonlinearities and chaotic fluctuations in the population level of 

the two species. There is a natural equilibrating mechanism at work since an overly 

4 Robert Pool (1989), "Ecologists Flirt with Chaos," Science vol.243, January, (310-
313) 

Johan Swart (1990), "A System Dynamics Approach to Predator-Prey Modeling," 
System Dynamics Review, 6:1, (94-110) 
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large predator population would decimate the population level of prey. The shortage 

of food would in time reduce the predator population enabling the prey to flourish 

once again. Surprisingly however, the population levels of the predator and prey 

oscillate continuously and never reach a long term equilibrium. The different gestation 

periods of the two species introduces a differential delay in the population adjustment 

mechanism causing continuous irregular. cycles in the populations. The differential 

trading delays in the futures and the stock markets is analogous to the differential 

gestation periods of the predator/prey populations. 

These studies iqentify two characteristics common to many systems that can 

occur together and bring about chaotic dynamics in the time values of the system 

variables: 

(1) When two or more dissimilar systems characterized by nonlinear 

relationships among variables are coupled through some form of feedback linkage. 

(2) When there are time delays in adjusting to system changes. 

The market for the S&P 500 futures contract and the stock market are 

structurally dissimilar systems and arbitrage activity links the two. This fact in 
' ~ 

combination with system delays in putting through arbitrage trades could Ca.use chaotic 

fluctuations in the mispricing series., An empirical verification of nonlinear 

dependence and a low order dimension in the mispricing series would indicate that 

endogenous factors and system microstructure are one likely source of observed 

futures mispricing. Nonlinearities are a necessary condition for the generation of 

chaotic dynamics. 
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Methodology 

This paper follows the testing procedure first laid out by Brock, Dechert and 

Scheinkman (BDS) (1986). The test relies on two concepts of dynamical systems; 

attractors and dimension. This section begins with a review of these relevant 

concepts. 

The Concept of an Attractor 

An attractor is a set of points towards which the dynamical path of a system 

will converge. An attractor is a useful concept because it can be visualized as a 

geometric form. A formal definition of an attractor is found in Ramsey (1990): 

11 An attractor is a compact set A, such that the limit set of the orbit {Xu} or { x1}, as n 

or t - > oo is A, for almost all initial conditions within a neighborhood of A. 11 (p.125) 

An attractor can have different forms: a single point, a limit or periodic orbit, 

a torus (doughnut shaped attractor), or a strange (chaotic) attractor. The form of the 

attractor according to Radzicki (1990)_can be used to classify dynamical systems: 

(1) Linear dynamical systems h~ve restricted time paths. The attractor for 

linear dynamical systems is always a single point. 
' ' 

(2) Nonlinear dynamical systems on the other hand correspond to all four 

forms of attractors of which the strange attractor alone is associated with 

deterministic chaos. Nonlinearity is therefore a necessary but not a sufficient 

condition for chaos. Dynamical systems represented by torus shaped attractors 

display time paths that are aperiodic as in the case of chaotic attractors. 
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However sensitive dependence on initial conditions are characteristic only of 

chaotic attractors. 

The Concept of Dimension 

The aim of modeling is to represent the given data set with only a few 

dimensions or degrees of freedom. In mathematical terms a single point is said to 

have dimension zero, a line has dimension one, a square has tWo dimensions and a 

solid is three dimensional. A random series by definition cannot be modeled with a 

finite number of variables. It is said to have an infinite number of dimensions. 

The most popular method of determining the dimension of a data series is the 

correlation dimension attributed to Grassberger and Procaccia (1983). 

Cm , the correlation integral is a measure of the number of points in embedded space ' 
,, 

m ' whose distance between each other is less than a predetermined length ' L '. N is 

the number of observations in the sample. Y1 and YJ are vector valued observations 

One difficulty with this procedure is that' the number of available observations 

decreases with each increase in embedding dimension. With an embedding dimension 

of 10 for instance a continuous set of ten original observations would denote a single 

point in ten dimensions. This would mean that a data series as large as 1000 

observations will provide only 100 data points in ten dimensions. It is important 
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therefore to have a sufficiently large data set in order to estimate the Grassberger-

Proccacia correlation dimension. 

The dimension of the dynamical system is determined by first estimating the 

slope of the regression line of log Cm (L) versus log (L) for each embedded dimension 

' m '.The value of the slope where it stabilizes as the embedding dimension is 

increased gives the estimate of the correlation dimension. If the data is generated by a 

random process, then the slope would continually increase with the embedding 

dimension ' m '. This fact is made use of by Brock and Dechert (1986) to develop a 

test for serial independence in a data series5• 

The Brock Dechert' Schienkman (BDS) 

Procedure and Statistic 

If the data series is independently, identically distributed (iid), then the 

dimension ' d ' would never stabilize at any embedding dimension ' m ' but would 

scale upward as ' m ' is increased. The test statistic for independence based upon the 

correlation dimension is then given by: 

The statistic B (m, L, N) converges to a normal distribution with zero mean 

and variance V. The variance V can also be consistently estimated from the sample 

data as V (m, L, N). Dividing the statistic by the estimate of the standard deviation 

gives: 

5 For a derivation of the statistic and its properties see Brock, Dechert and 
Scheinkman (1986). 
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W(m,L,N) = B(m,L,n) I V(m,L,n)0 5 

The W statistic converges to a normal distribution with unit variance, i.e., N 

(0, 1), which implies that inference based upon the standard normal distribution is 

possible. Rejecting the null hypothesis provides evidence of serial dependence in the 

data. 

The alternate hypothesis can imply either linear or nonlinear dependence in the 

data series. To eliminate the possibility of linear dependence, the methodology used 

(Scheinkman and LeBaron (1989); Brock, Hsieh and LeBaron (1991)) is to first fit an 

autoregressive (AR) process to the data and test the residuals from such a fit using the 

BDS statistic. A rejection by the BDS test applied to the filtered data would then 

support the hypothesis of nonlinear serial dependence in the mispricing series. 

Testing Procedure. (1) Take the individual mispricing series (Y J and compute 

the BDS statistic for various embedding dimensions. 6 Determine whether the null 

hypothesis of iid innovations is rejected in favor of the alternate hypothesis of serial 

dependence in the data series. 

(2) For the same raw series (YJ fit· the best linear autoregressive model to the 

data. Denote the number of lags as L. 

(3) Filter the raw series using the autoregressive filter of lag (L) and extract 

the residuals. Designate filtered residuals so obtained as Ut~ 

6 This study uses a computer algorithm to determine the correlation integral and the 
BDS statistic for every embedding dimension. The software was provided by Dr. William 
Brock of the University of Wisconsin (Madison). His assistance is gratefully 
acknowledged. 
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(4) Compute the BDS statistic for the filtered residuals Ut. Rejection of the 

null hypothesis would support the alternative of nonlinear serial dependence in the 

mispricing series. 

(5) As a control measure, scramble the residuals Ut to eliminate any nonlinear 

structure. Denote the scrambled series St. Compute the BDS statistic for St. The null 

hypothesis of iid innovations should fail 'to be rejected in this case. 

' 

(6) For the raw series, regress the Ln Cm(L) against the Ln(L) for each 

embedding dimension (m). Denote the value of the slope of each regression line as 

'd'. Plot the slope 'd' against the embedding dimension 'm' and determine whether 

the slope stabilizes (becomes horizontal) at any point. The value of the slope at this 

point is the correlation dimension of the data series. If the series is random (infinite 

or large dimension) the slope would never stabilize at any point but would instead 

scale upward with every increase in 'm'. On the other hand, the finding of a low 

order correlation dimension in combination with a finding of nonlinearity is evidence 

supporting the hypothesis of chaotic structure in the mispricing series. 

Data 

The data for this study have been obtained from, and is used with the 

permission of, MacKinlay and Ramaswamy (1987,1988). Each data series represents 

the futures mispricing for the S&P 500 futures contract which is computed as the 

difference between the S&P 500 index futures price and the theoretical forward price. 

It is expressed as a percentage of the index value. The data series starts with the 

September 1983 S&P 500 contract and follows the December, March, June, 



24 

September cycle with the last series relating to the June 1987 S&P 500 contract. Each 

of the series has approximately 1600 observations. The stock index quotes are time 

stamped approximately one minute apart while the futures are time stamped 

transaction data. MacKinlay and Ramaswamy (1987, 1988) use the futures quotes at 

fifteen minute intervals to compute the mispricing series. The cost of carry is 

computed using the daily dividend yield of the value weighted index of all NYSE 

stocks supplied by the Center for Research in Security Prices as a proxy for the 

dividend yield on the S&P 500. The daily interest rates on certificates of deposit is 

the remaining input used to compute the theoretical forward price and the mispricing 

series. 

The futures mispricing has been computed through the entire calendar period, 

September 1983 through June 1987 using futures prices from the nearest contract at 

any point. The nearest contract is also the most frequently traded contract. 

Observations for the June 1984 mispricing series, for example, use prices from 

commencement of trading on March 16, 1984 the day after expiry of the March 1984 

contract. This makes it possible to link the mispricing observations into a single, 

continuous data series stretching across contract periods as illustrated in Figure 1. 

JAN FEB MAR APR MAY JUNE ruLY AUG SEP 

NEARBY SERIES March Contract 

NEARBY SERIES June Contract 

Figure 1. Construction of Nearby Series 
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The June 1987 mispricing series with 1675 observations is used for computing 

the BDS statistic and the combined March and June 1987 mispricing series with 3348 

observations is used for estimating the Grassberger - Procaccia correlation dimension 

which requires a larger number of data points. Combining the June 1987 mispricing 

series with the preceding March 1987 series serves this purpose. At the same time 

with only one contract rollover, the risk of importing excessive noise into the data is 

kept to a minimum. The June 1987 mispricing series is chosen because it is the latest 

series available. Persistance of arbitrage opportunities-in the June 1987 mispricing 

series cannot be attributed to market immaturity which might have been the case when 

the S&P 500 futures contract first started trading. Index arbitrage strategies using 

computerized programs were well in place there is no evidence of a lack of arbitrage 

capital during this period. 

Results 

Identifying Nonlinear Dependence 

The testing procedure described in the methodology section are performed on 

the June 1987 contract which is the most recent data series available. 

Table 1 gives the results of the BDS test for independence. The lengths used 

for the BDS test are defined as various proportions of the standard deviation of the 

series. The results of the test for independence is reported for embedding dimensions 

1 through 4. The null hypothesis of an independent, identically distributed times series 

can be rejected at the 5% level if the W statistic value exceeds 1.96. As can be 

observed from the last column of Table 1, the null is rejected in every case; this 



TABLE 1 

BDS STATISTICS FOR THE JUNE 1987 
MISPRICING SERIES 
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LENGTH 
(STD.DEV) 

EMBEDDING 
DIMENSION 

BDS 
B(m.L.N) 

STD.DEV 
ffiDS) 

WSTATISTIC 
BDS/SD 

0.50 
0.50 
0.50 
0.40 
0.40 
0.40 
0.30 
0.30 
0.30 
0.20 
0.20 
0.20 

2.00 
3.00 
4.00 
2.00 
3.00 
4.00 
2.00 
3.00 
4.00 
2.00 
3.00 
4.00 

1.3950 
1.2620 
0.8510 
0.9790 
0.7110 
0.3880 
0.6280 
0.3560 
0.1510 
0.2960 
0.1130 
0.0330 

0.0300 
0.0230 

. 0.0130 
0.0200 
0.0120 
0.0060 
0.0120 
0.0060 
0.0020 
0.0060 
0.0020 
0.0004 

46.49 
54.93 
64.52 
48.76 
58.00 
69.10 
51.05 
61.57 
74.19 
53.41 
65.67 
82.43 

supports the alternate· hypothesis of serial dependence in the mispricing innovations. 

In order to eliminate the possibility of linear dependence in the mispricing 

series, the procedure adopted is to fit the best AR process to the data. The AR order 

is determined using Parzen's Criterion Autoregressive Transfer Function (CAT) 

criterion. The CAT criterion chooses th~ order that results asymptotically in the 

spectral estimator that is closest in the sense of the integrated relative mean square 

error to the true AR (co) transfer function. For the June 1987 mispricing series, the 

CAT criterion finds an AR order of 10 to be the best linear fit to the data. 

Table 2 gives the AR values and the corresponding lags. The residuals 

obtained using this AR filter are used for the second stage of the testing. 
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TABLE 2 

AUTOREGRESSIVE LAGS AND COEFFICIENTS 

LAGS 1 
COEFFICIENT -0.349 

LAGS 6 
COEFFICIENT -0.056 

2 
-0.089 

7 
-0.030 

3 
,-0.119 

8 
-0.024 

TABLE 3 

4 
-0.031 

9 
-;-0.038 

5 
-0.060 

10 
-0.071 

BDS STATISTIC FOR FILTERED RESIDUALS 

LENGTH 
(STD.DEy) 
0.50 
0.50 
0.50 
0.40 
0.40 
0.40 
0.30 
0.30 
0.30 
0.20 
0.20 
0.20 
0.10 
0.10 
0.10 

EMBEDDING 
DIMENSION 
2.00 
3.00 
4.00 
2.00 
3.00 
4.00 
2.00 
3.00 
4.00 
2.00 
:too 
4.00 

'2.00 
3.00 
4.00 

BDS 
B(m.L.N) 
0.3225 
0.3462 
0.2519 
0.2074 
0.1743 
0.0987 
0.1214 
0.0761 
0.0322 
0.0581 ' 
0.0283 
0.0100 
0.0179 
0.0050 
0.0010 

STD.DEV 
CBDS) 
0.0585 
0.0534 
0.0365 
0.0421 
0.0311 
0.0172 
0.0260' 
0.0146 
0.0061 
0.0130 
0.0050 
0.0014 
0.0035 
0.0007 
0.0001 

W STATISTIC 
BDS/SD 
5.51 
6.49 
6.89 
4.92 
5.61 
5.74 
4.65 
5.23 
5.27 
4.48 
5.67 
6.91 
5.10 
7.24 
9.33 

Table 3 shows the results of the BDS test for the filtered residuals using the 

linear filter. Even though the value of theW statistic in every case is lower than the 
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raw series, the null hypothesis of iid innovations is clearly rejected supporting the 

alternate hypothesis of nonlinear dependence in the mispricing series. 

As a further. control the filtered residuals are scrambled to eliminate any 

deterministic structure. The BDS test should fail to reject the null hypothesis of a 

random iid series. This proves to be the case as evidenced by the W ·statistics for the 

scrambled series shown in Table' 4. 

TABLE 4 

BDS STATISTICS,FOR SCRAMBLED RESIDUALS 

LENGTH EMBEDDING BDS STD.DEV W STATISTIC 
CSTD.DEV> DIMENSION BCm.L,:N) CBDS) BDS/SD 
0.5 2.0 -0:0057 0.0610 -0.09 
0.5 3.0 0.0037 0.0577 0.06 
0.5 4.0 0.0157 0.0409 0.38 
0.4 2.0 -0.0021 0.0417 -0.05 
0.4 3.0 0.0006 0.0307 0.02 
0.4 4.0 0.0048 0.0170 0.28 
0.3 3.0 0.0036 0.0150 0.24 
0.3 .. 4.0 0.0016 0.0064 0.25 
0.2 2.0 0.0037 0.0125 0.29 
0.2 3.0 0.0032 0.0047 0.69 
0.2 4.0 0.0020 0.0013 1.49 

As can be seen the null hypothesis of iid innovations is not rejected in all cases. The 

wide difference in the value of the W statistic for the filtered residuals series as 

compared to the scrambled residuals further supports the hypothesis of nonlinear 

structure in the mispricing series. Recently, it has been shown that the BDS statistic 

may not have adequate power against the ARCH I GARCH formulations which are 

nonlinear stochastic processes. (Brock, Hsieh and LeBaron (1991)). An ARCH 



process was fitted to the June 1987 mispricing series and the results of applying the 

BDS procedure to the residuals show that the null hypothesis of independence is 

rejected in three out of five cases. 7 This strengthens the case for nonlinear 

determinism in the S&P 500 mispricing series. 

Identifying the Correlation Dimension . 

A finding of low order dimension would be strong evidence in favor of a 

deterministic explanation for the persistence of index futures mispricing. The 

objective here is to identify the Grassberger-Proccacia correlation dimension by 

searching across 15 embedded dimensions. The combined March and June 1987 

mispricing series is used for this purpose. 

29 

Table 5 shows the results of the regression of Ln(Cm) against Ln(L) for 15 

embedding dimensions. The X coefficients are the slope of the regression line which 

provides an excellent fit as evidenced by the regression coefficient (R2) which in all 

cases is greater than 0.9. The value of the X coefficient (slope of regression line) 

where it stabilizes is the correlation dimension of the mispricing series. As can be 

observed from Table 5, the slope coefficient increases for initial embedded 

dimensions and then the rate of increase decreases around a value of 6 even as the 

embedded dimension is increased. 

Figure 2 shows a plot of the slope coefficient of the regression equations 

against the embedding dimension. The 45 degree line represents the theoretical plot of 

a random process which is shown for comparison. As explained earlier, for a· random 

7 Vaidyanathan and Krehbiel (forthcoming 1992); The Journal of Futures Markets. 
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TABLE 5 

ESTIMATING- THE CORRELATION DIMENSION 
MARCH + JUNE 1987 MISPRICING SERIES 

EMB.DIM 1 2 3 4 5 
SLOPE COEFF. 0.970 1.860 2.730 3.620 4.580 
STD ERROR 0.002 0.008 0.014 0.022 0.038 
RSQUARED 0.999- 0.998 0.997 0.996 0.993 

EMB. DIM 6 7 g 9 10 
SLOPE COEFF. 5.230 5.630 6.020 6.30 6.500 
STD ERROR 0.059 0.042 0.039 0.040 0.056 
RSQUARED 0.990 0.996 0.997 0.997 0.995 

EMB. DIM 11 12 13 14 15 
SLOPE COEFF. 6.580 6.660 6.660 6.730 6.960 
STD ERROR 0.056 0.068 0.081 0.093 0.122 
RSQUARED 0.991 0.987 0.981 0.976 0.967 

process the slope coefficient would increase continuously with an increase in the 

embedding dimension. The slope coefficient for a deterministic process on the other 

hand would stabilize at some point as the embedded dimension is increased. The value 

of the slope coefficient where it stabilizes is the correlation dimension of the series. 

For the combined mispricing series, the slope coefficient stabilizes at around a value 

of 6 consistent with a low order nonlinear deterministic process. This strengthens the 

case for a deterministic explanation to the mispricing anomaly as opposed to a 

stochastic approach that had been adopted earlier. 

The value of the correlation dimension obtained here has to be viewed with 

caution however. Empirical estimates are sensitive to sample size and the presence of 

noise in the data set. Results from Ramsey and Yuan (1989) indicate that dimension 
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CORRELATION DIMENSION 
MISPRICING SERIES MARCH+JUNE 1987 B 15 .-----------------------------------------------~~ .... 

~ 

..... 
..:l 
...... 10 

1 .a 3 5 7 • 11 12 13 15 

EMBEDDING DIMENSION 

-a- RANDOM SERIES ~SLOPE OF REGRESSION LINE 

Figure 2. Identifying the Correlation Dimension 

estimates are biased downward for random noise and biased upward for attractors. As 

Sayers (1990) states, ... "a correlation dimension estimate of 0.214 could imply an 

actual correlation dimension value of as high as 1.68." (p.185).' The emphasis of this 

paper is limited to the issue of whether a deterministic explanation exists for the 

mispricing puzzle. The finding of a low order correlation dimension as opposed to the 

precise determination of the correlation dimension is sufficient to support the 

hypothesis of nonlinear dependence in the mispricing series. 



CHAPTER ill 

MARKET MICROSTRUCTURE ISSUES IN THE 

MISPRICING OF THE S&P 500 

FUTURES CONTRACT 

Background 

This essay applies simulation techniques to examine the impact of select 

market microstructural features such as trading delays on the arbitrage process. A 

number of researchers have observed that the S&P 500 futures contract has been 

significantly mispriced in the past and attempts have also been made to model the 

mispricing series1• Along the same lines researchers have also noted that the 

differences in the microstructure of the futures market with its speedy open outcry 

method of trading as opposed to th~ slower specialist oriented NYSE system causes 

information to be incorporated earlier in the futures prices2• This brings about a 

change in the S&P 500 futures price which causes it to be mispriced relative to the 

cash index value. The mispricing is corrected when the information is transmitted 

through the process of index arbitrage to the stock market. The object here is to study 

1 Modest and Sundaresan (1983); Cornell and French (1983); Figlewski (1984a), 
MacKinlay and Ramaswamy (1988); Yadav and Pope (1990); Brennan and Schwartz 
(1990). These papers among others are reviewed in the previous essay. 

2 Garbade and Silber (1983); Ng (1987); Kawaller, Koch and Koch (1987); Herbst, 
McCormack and West (1987); Stoll and Whaley (1990). 
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the process of adjustment to an observed mispricing by developing a simulated 

arbitrage system that incorporates the differential trading delays in the futures and the 

stock market. 

The foregoing essay brought out some aspects of the mispricing of the S&P 

500 futures contract that motivates the current investigation. Evidence obtained from 

applying the BDS methodology to the mispricing series s,upports the hypothesis of 

nonlinear dependence in the data. Separately the Grassberger-Procaccia measure of 

the correlation dimension suggests the possibility of a deterministic explanation for the 

process that generates the index futures mispricing. This essay builds upon these 

results by hypothesizing an endogenous explanation to the mispricing puzzle, i.e., 

structural features of the futures and the stock market, namely, the trading delays are 

capable of shifting the system behavior from one of speedy elimination of mispricing 

to a chaotic system in which mispricing' persists. 

Simulation is the methodology of choice for such research since it is 

impossible to conduct a controlled experiment in real world markets that will focus 

upon the effect of microstructural differences upon the arbitrage process. 

Furthermore, the nonlinearity inherent in real world systems (Forrester (1987)) and 

the absence of closed form solutions to, most nonlinear systems (Radzici (1990)) 

makes simulation the only way of analyzing the behavior of such systems. 

Because of these advantages, simulation'techniques have been applied to many 

other studies of market microstructure as well: Cohen, Maier, Schwartz and 

Whitcomb (1984) adopt a simulation methodology to examine various market 

stabilization policies including the role of the specialist. As the authors observe, 
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"Simulation has been used because the complexity of actual security markets makes it 

virtually impossible to infer meaningful ceteris paribus relationships using the 

mathematics of comparative statics or standard multivariate statistical tests. In our 

simulated environment, we have been able to contrast runs, that are, by construction 

identical except for whether or not there is a market maker and if so whether he is a 

pure stabilizer or a speculating stabilizer." (p. 190). Cohen etal (1984) also point out 

that the simulation methodology provides the closest possible approximation in market 

studies to the laboratory experimental methodology pursued in the pure sciences. By 

doing so it offers a way to experiment with different policy options prior to their 

adoption. 

Literature Review 

Simulation in Chaotic Systems and Financial Markets 

Simulation techniques have gained increasing popularity during the last two 

decades primarily due to the exponential increase in computing power. This new 

found capability has allowed researchers to simulate the behavior of complex 

nonlinear systems that had until recently been ignored. The difficulties encountered by 

researchers in most part stem from the mathematical intractability of nonlinear 

equations which in almost all cases do not possess unique or exact solutions. It is now 

recognized that nonlinear relationships among variables are the norm in social systems 

because there exists inherent physical, social and psychological limits that constrain 

the behavior of the elements within them (Forrester (1987)). The lack of unique 

solution paths for nonlinear systems is in some ways an advantage. The current 
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academic interest in nonlinear dynamics and deterministic chaos is motivated by the 

recognition that nonlinear systems are capable of depicting a wide range of behaviors 

as select parametric values are changed (Mosekilde, etal. (1988)). Consequently, 

nonlinear models afford researchers ways to simulate evolutionary and adaptive 

systems that change their behavior over time. Radzicki (1990) makes this reasoning 

clear when he states that " ..... the evolutionary behavior of nonlinear socioeconomic 

systems can only be revealed through computer simulation for in almost all instances, 

they do not possess exact analytical solutions·. The reason for this lack of 

mathematical elegance is that, unlike most linear models, nonlinear patterns cannot be 

broken down into p~eces that are solved and then added together to reveal the 

behavior of the whole. Much to the contrary their behavior can only be uncovered 

through examinations involving their entire structure as a unit. This is another way of 

saying that the behavior of nonlinear systems is something more that just the sum of 

the behavior of their parts." (p. 60). 

Early work on nonlinear systems. by Lorenz (1963), May (1976) and 

Fiegenbaum (1983) involved the simulation of select nonlinear functions and systems 

of equations as a means of understanding their behavior. One of the surprising results 

of these simulations was the nonrepetitive and unpredictable time paths of variables 

that were generated by such deterministic functions. The term deterministic chaos was 

used to describe the apparently random behavior of purely deterministic functions. 

(Baumol and Benha~ib (1990)). Interest in nonlinear dynamics rose when Fiegenbaum 

(1983) demonstrated that the route to chaos for nonlinear functions was through a 

series of bifurcations. For some parametric values the system converges to a single 
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point called an attractor. As the parametric value is, increased the system becomes 

unstable and shifts to a new attractor by doubling the number of points visited by the 

system. The series of bifurcations continues as the tunable parameter is increased until 

the system shifts to a chaotic attractor, a behavior mode whose true period is infinite 

since the behavior never repeats itself. At the same time t.,e motion is bounded and 

appears to have a certain recurrence. An important characteristic of a system in a 

chaotic mode is that two trajectories (with st3rting points that are infinitesimally apart) 

very soon evolve in a completely different manner. This sensitivity to initial 

conditions of chaotic systems makes point prediction of future system states 

impossible even though the equations of motion are described by perfectly 

deterministic and specified parameters. Fiegenbaum (1983) then went on to 

demonstrate that the bifurcation route to chaos possesses certain invariant 

characteristics and is the same for a universal class of functions that have a single 

peak or maxima. 

The four graphs (Figur~s 3,4,5; and 6) shown below reproduce the 

Fiegenbaum (1983) cascade of bifurcations for the nonlinear function X(n + 1) = 

F(X(n)) = 4bX(n)(l-X(n)) where O<X < 1. For an initial value of the tunable 

parameter b = 0.1 the dynamic path converges to a: singl~ p<>int. When b = 0.8 the 

system shifts attractors and cycles between two points. At b = 0.88 the system 

bifurcates and cycles between four points. This process continues until the system 

shifts to a chaotic attractor shown in Figure 6 at b = 0.9936. 

The recognition that nonlinear systems can exhibit chaotic behavior led 

researchers to empirically investigate a wide collection of data sets for evidence of 
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nonlinear structure and deterministic chaos. In the general area of financial markets 

such empirical research includes Scheinkman and LeBaron (1989) on stock returns, 

Hsieh (1989) on foreign exchange rates, Blank (1990) on futures prices, Barnett and 

Chen (1987) on monetary aggregates, Frank and Stengos (1989) on gold and silver 

returns and Larrain (1991) on Treasury Bill rates. Much of this empirical research is 

reviewed in the previous essay. 

A finding of nonlinear dependence in a data serfes, or even the detection of a 

chaotic attractor, says nothing about the precise deterministic or structural element in 

a real financial or other social system that is responsible for driving the system into a 

chaotic mode. In other·words, from the viewpoint of understanding and control, it 

becomes necessary to ask what particular structural parameter/scan be capable of 

shifting a system such as the stock market, for instance, into a chaotic phase. In this 
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context Radzicki (1990) notes that II ••• the study of how a system can change its 
" 

behavior from one mode to another, including from a non-chaotic mode to a chaotic 
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mode is considered as important as chaos itself. 11 (p. 67). This genre of experimental 

research is now fairly widespread. Rasmussen and Mosekilde (1988) use a simulation 

model to show that chaos can: arise in a firm that shifts its resources between 

production and marketing in response to inventory levels. Lorenz (1989) demonstrates 

that the coupling of three regularly oscillating economic sectors can bring about 

chaotic behavior in the entire system. Sterman (1989) shows how the investment 

decisions of experimental subjects operating in a simple multiplier-accelerator 

economy are capable of generating the complex bifurcation structure found in 

nonlinear systems. In doing so Sterman (1989) follows a two step approach~ In the 

first stage experimental subjects make investment decisions in a laboratory setting 



39 

ITERATION OF X(n+1) - F(X(n)) - 4bX(n} (1-X(n)) 
~ABLE PARAMETER (b) - 0.88 

l?ER:I:O:O (n) 

Figure 5. Four Point Cycle 

which reflect the decision rules (heuristics) used by managers in day-to-day 

investment decisions. The estimated decision rules so obtained are formalized and 

used in the second stage as an input to a computer simulation model. Repeated 

simulation under different conditions showed that 11 approximately 40% yield a variety 

of dynamics including limit cycles, period multiples and chaos. 11 (Sterman (1989), p. 

1). 

Shaffer (1991) extends this form of experimental simulation to the stock 

market and focuses upon the factors responsible for the stock market crash of October 

1987. His study illustrates the application of simulation techniques to nonlinear 

systems in general and the stock market in particular. Shaffer (1991) puts forward the 

hypothesis that the steep drop in stock prices on Black Monday 1987 may have been 

the consequence of a sharp increase in volatility and not the reverse. The argument is 
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built up as follows: A sharp increase in volatility would lead investors to demand 

greater returns consequent to the increased risk of their portfolios. Existing stock 

prices would appear overvalued under this changed scenario thus bringing about a 

discontinuous fall in stock prices overall. Such a discontinuous jump in volatility is a 

possibility in a chaotic market which by definition is extremely sensitive to small 

changes in parameters. Shaffer generates a chaotic ~ath of stock prices using a 

declining marginal efficiency of investment curve in combination with a fixed 

dividend payout ratio. Within certain parametric, regions, the level of volatility in this 

model is found to be quite sensitive to small changes in structural parameters. 

Interestingly enough the changes in volatility are found to be of a magnitude sufficient 

to cause the stock market crash. 
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In developing the model Shaffer (1991) notes that in order to analyze crash 

behavior the researcher must explicitly " ... probe inside the 'black box' of volatility 

and try to understand volatility as an endogenous variable." (p. 202). This approach 

contrasts sharply with the stochastic view of stock prices wherein volatility is 

exogenous to the model. Shaffer (1991)justifies the endogenous approach as follows: 

"To begin with, it is formally incorrect to model the stock market as purely random. 

Each transaction along with its price is the result of conscious decisions by a buyer 

and seller. Conventional microeconomic theory treats such decisions as the outcome 

of an optimization process and hence as ~eterministic. Stochastic models have been 

applied to describe this process because of their tractability and because they closely 

approximate the observed patterns of price movements over time. However when 

there is a question of causal factors, a deterministic model must be sought." (p.203). 

A similar argument can be made to justify the endogenous approach that is 

used in this study to examine the problem of index futures mispricing. Focusing upon 

specific microstructural issues allows the researcher to identify the separate market 

features that can shift the arbitrage system to a chaotic mode. The findings of 
' ' 

nonlinear dependence and a low order correlation dimension relative to the mispricing 

observations tilts the balance toward a deterministic as opposed to a stochastic 

explanation for the mispricing puzzle. 

The simulation approach to problems in finance are not limited to 

investigations of nonlinear or chaotic systems but have been used by researchers in 

the field of market microstructure as well. There have been two major reasons for 

adopting the simulation methodology to research questions relating to market 
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microstructure. The first has to do with the complexity of financial markets which 

makes formal mathematical modeling and theorizing extremely difficult. This is even 

more true for studies of market dynamics as compared to static or even comparative 

static analysis. The second motivation is due to the fact that it is impossible to 

conduct controlled experiments under ceteris paribus conditions in real world financial 

markets. Research into market microstructure that has utilized the simulation 

methodology include an early paper by Garman (1976) who is credited with coining 

the term 'market microstructure'. Garman's (1976) simulation approach compared the 

bid-ask spread in a market dominated by a central market maker with that of a double 

auction market system. Cohen, Maier, et al. (1978) investigate serial correlation 

patterns in stock returns in the absence of stabilizers, arbitrageurs or large market 

traders. Their model simulates an atomistic continuous auction market. 

Many simulation studies in the area of market microstructure have examined 

the monopoly status of the stock exchange specialist and the profitability of that 

function. Hakansson, Beja and Kale (1981) for instance examine the feasibility of 

automating the function of the specialist. Cohen, Maier et al. (1983) note that the 

positive profits earned by stock exchange specialist is derived partly from the bid-ask 

spread and commissions and that nothing definite can be said about the profitability of 

the stabilization function per se. Their experimental simulation system allows them to 

separate the components of a specialist's earnings and investigate the profitability of 

stabilization alone. The simulation model is also used to investigate the experimental 

impact on the bid-ask spreads faced by an investor consequent to the adoption of 

different policy options. These include the benefits from tightening or loosening the 
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stabilization constraints that are binding on the specialist; the result of denying 

monopoly knowledge of the order book to the specialist; and the gains from 

substituting a mechanical stabilizer in lieu of the stock exchange specialist. Cohen, 

Maier et al. (1983) conclude from their simulation runs that the specialist's activity 

reduces bid-ask spreads and quite surprisingly that pure stabilization combined with 

knowledge of the order book leads to a greater improvement in the bid-ask spreads. 

Cohen et al. (1983) also identify various issues relating to securities markets that are 

especially amenable to modeling through simulation: " In general we find that 

simulation is a useful tool for dealing with a variety of complex, interrelated issues 

concerning the functioning of a securities market. ... [T]he (simulation) model should 

yield additional insights into areas which do not lend themselves to pure mathematical 

analysis, for instance the dynamic adjustments of stock prices to informational change 

when traders reactions are not instantaneous; the relationship between stock prices 

and option price movements when arbitrage mechanisms are imperfect; or the effect 
'' 

of a stock's order flow and trading characteristics of interlinking various markets 

that have different features." (p. 190: emphasis added). The very same 

microstructural features identified by Cohen etal. (1983) are the focus of this study as 

well. 

' This essay examines the dynamical repercussions of a delayed trading response 

in the stock market upon mispricing levels. This delay is the consequence of linking 

the open outcry trading system of the futures exchange with the specialist dominated 

stock exchange through arbitrage mechanisms. This reasoning is in agreement with 

the conclusions of Cohen, Hawawini, etal. (1980) who identify the frictions in the 
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trading process (price adjustment delays) as causing the observed serial correlation in 

individual stock price returns as well as in market index returns. The authors also cite 

specialist intervention to ensure an orderly continuous market as being one of the 

factors that causes a delay in the adjustment of prices. 

Simulation Methodology Using System Dynamics 

A formal methodology of simulating complex systems currently known as 

system dynamics was developed at the Massachusetts Institute of Technology by Jay 

W. Forrester. This methodology utilized concepts from control engineering, 

cybernetics and organizational theory and includes a library of symbols and the rules 

for connecting them. (Meadows (1984)). Together these constitute a map of the 

dynamical system. The system portrait so developed highlights the interconnectedness 

of the system variables and guides the development of the algebraic equations that 

represent these relationships. Forrester's contribution included the development of a 

simulation language (DYNAMO) which is used to code the symbols from the 

feedback diagram into algebraic equations. Morecroft (1988) summarizes Forrester's 

contribution to the field of system dynamics by stating: "Forrester's reshaping of 

methods from control engineering led to a visual representation of feedback systems, 

and through simulations to a visual representation of feedback dynamics. These 

graphics provide a conduit for a policymaker's knowledge and a basis for policy 

debate." Over the last two decades, the system dynamics simulation methodology has 

been applied to a wide range of managerial, economic and social problems. Some of 

the better known applications include a world model (Meadows and Meadows (1972, 



1974)) that examined the time paths and interrelations between world population, 

resource utilization, pollution and economic growth; a model of urban growth and 

decay (Forrester (1969)); a simulation of the problems of heroin addiction in a large 

city (Levin, Hirsch and Roberts (1975)); an examination of the fluctuation of 

commodity prices (Meadows (1970)); the causes of business cycles (Mass (1975)); 

economic development (Meadows, Behren, Meadows et 31. (1974)) and various 

corporate policy studies (Roberts (1978), Lyneis (1980)). More recently system 

dynamics has been used in modelling chaotic fluctuations in the inventory and 

production cycles of a firm (Rasmussen ·and Mosekilde (1988)); in the study of self 

organizing and evolutionary systems (Radzicki (1990)) and the spread of the AIDS 

epidemic (Ahlgren and Stein (1990). 
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The primary orientation of the system dynamics paradigm is toward the 

understanding of system behavior as an outcome of the underlying system structure 

made up of interrelated feedback loops. The relationships between the system 

variables are very often nonlinear reflecting the ~merging nonlinear view of complex 

natural and social systems (Forrester (1987)). The system dynamics slant is toward an 

endogenous explanation of the dynamic behavior of the system and there are benefits 

to maintaining such a view. If the causes of problematic system behavior can be found 

within the causal feedback loops that make up the. system structure of the system, then 

therein will also lie the remedies to those problems. By understanding the role of 

feedback mechanisms in explaining behavior, the modeler can generate workable 

policy measures that will help solve social and economic problems. Without this 

emphasis on causal structure a modeler will be forced to look for the causes outside 
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the system thereby imposing an exogenous and necessarily stochastic understanding of 

system behavior. This belief that macrobehavior arises from microstructure is brought 

out in the writings of many system dynamics researchers namely Forrester (1977), 

Richardson (1984), Richardson and Pugh (1981). 

A system dynamics model has some unique characteristics according to 

Richardson (1984) for it is almost always described in terms of closed boundaries and 

the feedback loops that are. contained within them. It is the closed system boundary 

that reflects the endogenous bias of the system dynamics methodology. The feedback 

loops link the level and rate variables and the flow of material and information within 

these loops generate the dynamic path of the system variables over time. 

Feedback Loops 

Feedback loops represent the circular causality within the system. The 

emphasis inherent in the word feedback rests equally on both the transmission and 

return of information. (Richardson and Pugh (1980)). For example, the thermostat in 

a room is connected to the heating system and transmits information about the room's 

temperature back to the system thereby either switching on or shutting off the heat. 
. . 

The thermostat is therefore the feedback device and together with the heating system 

makes up the feedback system. 

Feedback loops are classified according to the positive or negative polarities 

associated with them. Positive feedback loops amplify any change within the system 

and are also characterized as destabilizing, disequilibrating or self-reinforcing. 
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Negative feedback loops are classified as goal seeking or equilibrating in their effect. 

The thermostat controlled heating system is a negative feedback system. 

Levels and Rate Variables 

' . 
The system variables are categorized as levels (stocks) that represent 

accumulations within the system and rates (flows) that embody decisions or activity 

that change the levels. The term level invokes the image of a liquid accumulating in a 

container. Some examples of levels would include population, inventories, capital 

stock and even psychological variables such as perceptions that in reality represent 

accumulations of information. (Meadows (1980)). The flows that add to or decrease 

the level are the rates and are the elements that represent the decisions, action or 

change in the levels. Examples include the birth rate that leads to an increase in the 

population level; the death rate that depletes the population level, investment rates 

that increase the capital stock (level) in an economy or rates of depletion of inventory 

through sales. 

Positive and Negative Feedback 

The concept of a negative and a positive feedback loop are important elements 

of the system dynamics methodology. Together they represent respectively the goal 

seeking or disequilibrating potential of a dynamical system. The pollution control 

feedback diagram is an example of a negative feedback loop. In the simple pollution 

control loop, (Figure 6) the amount of pollution is the important level variable. An 

increase in the amount (level) of pollution leads to an increase in the citizenry's 
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concern about the ill effects of pollution. Thus the level of pollution and the concern 

for pollution are directly related and this is represented by a positive sign in the arrow 

connecting the two ele,nents. An increase in the concern for pollution brings about 

political action and a resulting increase in the number of pollution controls. Once 

again the relationship is direct as evidenced by the positive sign at the arrowhead. An 

increase in the number of pollution controls leads to a decrease in emissions of 

polluting substances that decreases the pollution level. The number of pollution 

controls is inversely related to the amount of pollution and this is represented by a 

negative sign in the arrow connecting the two variables. Overall the system is goal­

seeking and is called a negative feedback system since any increase in pollution will 

cause activity around the loop that moves the pollution level to an equilibrium. The 

number of negative signs around the loop determines the polarity of the entire loop~ 

An odd number of negative signs represents a negative feedback loop and an even 

number would imply a positive feedback loop. In the pollution example above, there 

is one negative sign (an odd number) confirming the goal seeking property of the 

system. 

The model of job stress in Figure 7 is an example of a positive feedback loop. 

It is a simple model of stress in the wor]q>lace. The worker in this model has a job 

backlog that is increased as new assignments land upon her table. An increase in the 

job backlog causes an increase in the anxiety level of the worker represented by the 

positive sign on the artow head. In her case an increase in anxiety is disabling and 

causes an increase in the average time taken to complete the task. An increase in task 

completion time causes a fall in the task completion rate which is an inverse 
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completion rate causes an increase in the job backlog which is once again an inverse 

relationship. The net result is that the job backlog continues to grow causing even 

greater anxiety in ever greater proportions. This is a positive feedback loop because it 

causes the job backlog to grow with each iteration around the loop. The loop has an 

even number (two) negative signs on the arrowheads which confrrms the self 

reinforcing nature of the model. 

This study uses the system dynamics simulation methodology to develop a 

model of the arbitrage process. The first step in the exercise is to develop a " partial 

model" as it is called by Morecroft (1988). The partial model is a deliberately simple 

and uncomplicated representation of reality which makes specific some part of the 

subsystem that is of interest. It is designed to depict the arbitrage process under the 
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Figure 8. Flow Chart of Positive Feedback Behavior 

most ideal conditions, i.e., with sufficient arbitrage capital and the absence of any 

market frictions such as trading delays. By design, there are no other players in the 

arbitrage system. The test of this partial model is that it should eliminate any 

mispricing as it occurs by appropriate adjustments to the cash and futures price. In the 

next stage, specific market features such as price adjustment delays in the stock 

market and the uptick rule are introduced into the system. The path of adjustment to 

an initial mispricing can then be observed under these added circumstances and 

contrasted with the base case. This helps provide a better understanding of the effect 

of select microstructural elements viewed in isolation. In effect, this methodology 

formalizes through simulation the ceteris paribus approach that is universally adopted 

in theoretical economics. 
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The Arbitrage Model 

The simulation model for the index arbitrage system as shown in Figure 9A 

consists of two level (state) variables; the spot index price and the corresponding 

index futures value. As can be observed from this flow chart, the spot index value at 

any point in time determines the corresponding forward price. The forward price is 

the sum of the cash index value and the 'cost of carrying the index basket to maturity. 

The interest rate and,' the dividend rate~. are inputs to this formulation and are assumed 
' ' ' 

constant for the simulation exercise. The difference between the forward price and the 

futures price gives the index futures mispricing ~hich is computed as a percentage of 

the cash index value in accordance with the empirical defmition given by MacKinlay 

and Ramaswamy (1988). The observed mispricing (positive or negative) induces 

arbitrage activity causing equilibrating changes in both the futures price and the cash 

index value. If the futures price exceeds the forward price the arbitrage action would 

involve the sale of the futures contract and the purchase of the underlying basket of 

stocks. The result would be a fall in the futures price and an increase in the cash 
I 

index value. Both actions drive the level of mispricing to zero. The opposite arbitrage \ 

effects would occur if the futures price falls below the forward price. 

The arbitrage price change in both markets will drive the mispricing level 

toward zero as can be seen by the two arrows in Figure 9A that lead from the 

arbitrage price change back once again to the spot price and the futures price 

respectively. The combined index arbitrage mechanism can therefore be viewed as a 

feedback system comprising two negative feedback (equilibrating) loops; the stock 

market loop and the futures market loop. Arbitrage causes the two prices to change in 
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opposite directions thereby reducing the mispricing to zero. In Figure 9B, the same 

feedback mechanism is shown with only the market structural feature of trading 

delays added in. 

Calibrating the Arbitrage Price Reaction Function 

The arbitrage price reaction (5) is a rate equation which maps the 

corresponding price change to different levels of mispricing. The price reaction 

parameters used in this exercise are graphed in Fig 9. The x-axis shows the 

mispricing level which ranges from -3 percent to + 3 percent of index value. These 

high and low values of mispricing (rounded up) are obtained from the MacKinlay and 

Ramaswamy (1988) data series. Corresponding to each of the mispricing levels are 

the arbitrage price reactions shown in the y-axis. The high ( + 3. 75%) and (-3. 75%) 

low bounds for the arbitrage price reactions are also based upon the MacKinlay and 

Ramaswamy (1988) data series. 

The summary statistics of mispricing and price change for the March and June 1987 

series is shown in Table (6). 

TABLE 6 

MISPRICING AND PRICE CHANGES 

DATA 
SERIES 

June 1987 
March 1987 

MIS PRICING 
MAXIMUM 

2.60% 
1.70% 

FUTURES PRICE 
CHANGE (MAXl 

1.99% 
3.75% 

SPOT PRICE 
CHANGE (MAX) 

1.80% 
2.00% 
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Figure 9B. System Dynamics of the Arbitrage System with Stock Market Trading Delay 



55 

ARBITRAGE PRICE REACTION 
.... 

-3 

-2 -1 0 2 
MISPRICING LEVEL 

Figure 10. Table Function Relating Mispricing and Arbitrage Price Response 

This serves to provide realistic bounds for the mispricing levels and the corresponding 

arbitrage price reactions. Unfortunately, the exact mathematical function that will 

relate each observed mispricing level to the corresponding price change cannot be 

observed empirically. This is beca~se the price changes in either market are a result 

not only of arbitrage activities but also include an amalgam of price effects caused by 

hedgers, speculators, noise traders, and other classes of market players. Isolating the 

arbitrage price reaction from the mix of other influences can be very difficult if not 

impossible. Therefore, some logical assumptions need to be made in order to specify 

the relationship between observed mispricing and the arbitrage related price change in 

the futures and cash market. The arbitrage price reaction function as graphed in 

Figure 10 slopes upwards and has a positive second derivative. The justification for 

these assumptions are as follows. At low levels of mispricing only the most efficient 

arbitrageurs with the lowest transaction costs would find it profitable to arbitrage. At 

higher levels of mispricing however even marginal arbitrageurs with higher 
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transaction costs would be induced to invest in arbitrage. This would draw more 

investment capital to the arbitrage arena and cause a larger price reaction. At very 

high levels of mispricing it is conceivable that many other classes of market players 

(non-arbitrageurs) would be attracted by the profitable arbitrage opportunity. The 

price reaction· function under such assumptions would have a positive slope that would 

increase at an increasing rate. 

It is also assumed that the arbitrage price changes in the futures market and the 

cash market are symmetric since the arbitrageur would buy and sell equal quantities 

of the two baskets. Furthermore, lower and upper transaction cost bounds have been 

set for the mispricing levels at -0.5 and +-0.5 respectively. Arbitrage will not be 

profitable within these transaction cost bpundaries. Correspondingly, the associated 

arbitrage price change would be zero. 

The flexibility inherent in a simulation experiment permits the scaling of the 

price reaction to a fraction of the normal to reflect inadequate arbitrage capital. 

Rubinstein (1987) suggests that the persistence of index futures mispricing may be 

caused by such capital rationing. Alternatively it is possible to scale the arbitrage 

price reaction to many times the normal to reflect a flush capital situation. This is 

achieved by using a scaling factor to represent the strength of arbitrage (SOA). If the 

scaling factor is set at 0. 5 the arbitrage price reaction would be one half the base or 

normal situation. This would represent a weak price· response. At a strength of 

arbitrage of 2.0 the arbitrage price response would be doubled to twice the norm. A 

strength of arbitrage of 1.0 would represent the base case. All three situations are 

investigated in this simulation experiment. 
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Formulating Trading Delays 

Specific market microstructural issues in the form of trading delays are 

introduced into this simple arbitrage experimental system. In Figure 9B, the flowchart 

incorporates a trading delay in the stock market leg of the arbitrage transaction. The 
. ' 

behavior of the arbitrage system with stock market,delays can then be compared with 

the base case in the absence of delays. The, differential delay in the stock market leg 

is increased in small time increments and the system is sirimlated' repeatedly under 

different delay conditions. 

The Justification for Delays. Sufficient evidence exists to show that it takes 

longer to trade a basket of stocks in the stock market as opposed to the futures 

market. The futures leg requires one transaction while the stock market leg would 

require many more. Stoll and Whaley (1990) conclude that the S&P 500 futures 

returns leads the cash index by as much as ten minutes. The reasons relate to the 

different microstructure of the two markets. The futures market uses the open outcry 

system of trading whereas the stock market is a specialist based system. Information 

is quickly incorporated in futures prices ·even if it calls for discontinuous price 

changes. In the stock market, on the other hand, the specialist's role is to cushion 

shocks and smooth price changes when necessary by taking the opposite side of the 

transaction3• According to Miller (1990) this delayed price response causes problems 

because the specialist is forced to take the losing end of every arbitrage transaction. 

This is always the case since the arbitrageur locks in a profit when making the trade. 

3 Report of the Committee on Market Volatility and Investor Confidence (1990). New 
York Stock Exchange Publication. 



58 

In this context Miller (1990) notes: "That the slowness (emphasis added) in adjusting 

quotes on the NYSE is the real source of pain inflicted by arbitrage is suggested by 

· the absence of complaints about intermarket arbitrage in the many other futures and 

options markets currently operating. when a government bond dealer looks at the 

appropriate window in his quote screen' and sees that the futures price has fallen 

significantly below his own quotes, he doesn't wait around for the arbitrageurs to 

arrive. He immediately marks down his quote." (p.63) 

The existence of the uptick rule in the stock market and its absence in the 

futures market is yet another microstructural difference that induces a stock market 

delay. In this case the delay is asymmetric since it limits price declines and not price 

increases. The uptick rule restricts short sales on a stock below the price at which the 

last sale was affected. The existence of the uptick rule has been cited by Edwards 

(1988) as one factor that exacerbated the stock market crash of 1987 since the 

appropriate arbitrage action at that time would have required the purchase of the 

futures contract and the sale of the underlying basket of stocks. 

The asymmetric delay caused by the uptick rule is explicitly introduced into 

the simulation model. The response of the arbitrage system to the introduction of the 

uptick delay is then investigated. 

The complete program code in DYNAMO including the feedback equations 

are set out as appendices to this essay. An explanation of important sections of the 

program code is also included. All the simulation results reported in this essay can be 

reproduced by anyone with access to the PROFESSIONAL DYNAMO simulation 

software. Each of the different microstructure features investigated requires a different 



program. Consequently the appendices contain the DYNAMO code for an arbitrage 

model without delays; with stock market delays; and with the uptick rule combined 

with stock market delays. 

Arbitrage Sfstem Simulation Results Using Dynamo 
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The Dynamo model of the arbitrage system is initialized with a cash index 

value of 100, a corresponding futures price of 106, an interest rate of 10% and a 

dividend rate of 3%. Given these initial values the model computes the initial 

mispricing and the arbitrage reactions begin. Dynamo keeps track of the number of 

trading intervals (minutes) taken for the system to reach equilibrium at which time the 

arbitrage responses cease. At equilibrium mispricing will lie within the transaction 

cost bounds. 

Experimental Simulation Results without 

Stock Market Delays 

The plot of mispricing against transaction time is shown in Figures 11 and 12, 

for strength of arbitrage set to 0.5, (weak) and 1.0 (normal) respectively. There are 

no transaction delays. As can be observed in both cases the system quickly reduces 

mispricing to the nonarbitrage range. 

The robustness of the experimental system would depend upon its response to 

repeated disequilibrium situations just as in the real world. In order to study the 

response of the simulation model to frequent mispricing, a predetermined shock term 

is introduced which shoots the level of mispricing above transaction cost bounds every 
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Figure 11. Mispricing with Weak Arbitrage Response 
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20 minutes. The model's response is plotted in Figure 12 for the slowest arbitrage 

price reaction (SOA , 0.5). Once again the arbitrage system quickly moves 

mispricing to the nonarbitrage bounds. The robustness of the simulation model in 
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terms of its response to repeated destabilization is evident from the speed of recovery. 
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Figure 13. Test of the Simulated Arbi~ge System 

Experimental Simulation Results with Stock Market Delays 

Knowledge that the arbitrage system responds as it should to index futures 

mispricing makes it is possible to investigate the effect of differential delays upon the 

arbitrage system. To do so, three levels of delays are introduced; a delay of 3 

minutes, of 5 minutes, an~ of 10 minutes. The selection of these delay parameters are 

based upon Stoll and Whaley's (1990) observation of up to a ten minute lag in stock 

market returns. The system response at these delays with SOA = 0.5 is graphed in 

' ' 

Figures 14, 15, and 16. As can be seen erratic changes in the mispricing levels are 

introduced. The mispricing levels overshoot and it takes longer to reach equilibrium. 

With a delay of 3 minutes (Figure 14) the system takes about 15 minutes to stabilize 

with two overshootings. As the delay is increased to 5 minutes (Figure 15) the 

magnitude of the oscillations increase and the system takes 20 minutes to stabilize. 

The overshootings increase to three with a delay of 10 minutes (Figure 16) and it now 



takes the system a little more than 50 minutes to stabilize. The erratic moves in the 

path of the mispricing series are clearly caused by the delayed changes in the cash 

index price because the system had adjusted speedily in the absence of delays. 
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Figure 14. Simulated Mispricing Series with Three Minute Trading Delay 

The market scenario that would correspond to these observations may be as 

follows. On observing the initial level of mispricing arbitrageurs initiate the 

appropriate arbitrage trade. Under normal circumstances without delays the system 

would have quickly stabilized within one or two minutes. However, with a delay in 

the stock market, only the futures leg of the arbitrage trade is captured in the price 

and the mispricing response is therefore partial and not complete. Observing the 
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continued mispricing, more arbitrage trades are initiated. This is especially likely with 

many arbitrageurs in the market who have no way of knowing the number of trades 

already in the pipeline. By this time, however, the delayed stock market reaction 

kicks in and the mispricing level overshoots. 
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Figure 15. Simulated Mispricing. Series with Five Minute Trading Delay 
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Figure 16. Simulated Mlspricing Series. With Ten Minute Trading Delay 
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Figure 17 graphs tl\e results of a simulation run using the same delay 

parameter (3 minutes) with the strength of arbitrage set at 1.0 (the normal case). 

Increasing the strength of arbitrage shifts the system into a repeated cycling mode. 
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Figure 17. Cycling Behavior in the Simulated Mispricing Series 
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This is reminiscent of the Fieganbaum bifurcation scenario (shown earlier) that results 

when select parameters are increased in a nonlinear systems. As can be observed from 

the plots, the system initially drives the mispricing within transaction bounds. Within 

a few minutes the delayed stock price reaction hits the market and the mispricing 

level overshoots. The situation is fundamentally the same for delays of 5 and of 10 

minutes and for that reason are not shown. 

Experimental Simulation Results with Uptick Rule 

Introducing the uptick rule as an additional feature of the market 

microstructure, in combination with trading delays, brings about a very different time 

path for the mispricing series. Figures 18, 19,and 20 show the system response to an 

asymmetric uptick delay of 5 minutes in addition to a stock market trading delay of 

10 minutes. With a strength of arbitrage set at half the base case (SOA=0.5), the 

system goes through three overshootings and takes seventy minutes to stabilize 
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(Figure 18). When the strength of arbitrage is increased to 1. 0 (Figure 19), the 

system reaches equilibrium after 5 overshootings and takes more than 80 minutes to 

stabilize. When the strength of arbitrage is doubled to twice the base case (SOA = 2), 

the system shifts to a chaotic continuous disequilibrium (Figure 20). Here the time 

path of the mispricing levels looks random despite the fact that this is a perfectly 

determined system. It must be emphasized that the model does not use any random or 

stochastic inputs. The. chaotic fluctuations are solely caused by the endogenous system 

structure, specifically by the uptick delay in conjunction with a. -powerful arbitrage 

generated price respon~. 
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Figure 18. Simulated Market with Uptick Rule and Weak Arbitrage Responses 

It may be argued that the delay caused by the uptick rule would not be 

constant but would vary depending upon the extent of short selling pressure in the 

stock market. Thus at times such as during Black Monday 1987, the uptick delay 

would have been very large due to arbitrage related stock sales whereas it would not 
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Figure 20. Chaotic Mispricing in the Simulated System 
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be significant during normal trading days. To investigate such a scenario the system is 

reconfigured with a vatjable uptick delay whose magnitude varies with the extent of 

selling pressure in the stock market. Table 7 shows the parameters of the uptick delay 



67 

which ranges from a low of 3 minutes associated with a 1 percent decline in the cash 

index to a high of 30 minutes with a stock index fall of 10%. 

TABLE 7 

VARIABLE DELAY DUE TO UPTICK RULE 

% PRICE DECLINE 1 2 3 4 5 6 7 8 
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Figure 20. Chaotic Mispricing With Variable Uptick Delay 
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The outcome with a variable uptick delay is shown in Fig. 20. The strength of 

arbitrage is maintained at twice the base case (SOA = 2). The time plot looks 
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chaotic with significant peaks and very high mispricing levels, thus demonstrating that 

even in an otherwise equilibrating arbitrage system trading delays can generate 

continuous disequilibria. 

Such large levels of mispricing in the real system would lead observers to the 

conclusion that the market is inefficient and/or that market players are irrational. This 

simulation experiment shows that large mispricing can occur even with perfectly 

' 
rational arbitrageurs possessing sufficient capital for arbitrage (Note: SOA = 2 in the 

previous simulation run). 

The observed mispricing in this experimental model is a consequence of 

differing microstructure of the two markets. When arbitrage links two dissimilar 

markets with different response times, the resulting mispricing innovations can appear 

chaotic and show all the puzzling characteristics of an inefficient market with 

untapped potential for supernormal arbitrage profits. 

Validating 'the Simulation Experiment 

Despite its obvious simplicity this model of the arbitrage process succeeds in 

capturing some of the rich patterns in the empirical mispricing series. Figure 22 

reproduces the December 1984 mispricing series for purposes of comparison. The 

simulation model demonstrates how overshootings can occur in an arbitrage system 

that consists of two negative feedback loops. Such overshootings of transaction cost 

bounds have been identified by MacKinlay ~d Ramaswamy (1988) and can be 

observed very clearly in their plot of the December 1984 mispricing series as well. 
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TABLE 8 

AUTOCORRELATION PATTERNS IN OBSER\TEI) 
AND SIMULATED DATA 

MISPRICING DATA MEAN SD LAGl LAG2 LAG3 LAG4 LAGS 
March 1987 -0.02 0.21 0.65 0.58 0.60 0.59 0.56 
June 1987 -0.11 0.22 0.46 0.34 0.31 0.27 0.25 

SIMULATED DATA 
Upttck: SOA = .5 -0.03 0.79 0.74 0.57 0.45 0.34 0.26 
Upttck: SOA = 1 0.04 0.58 0.45 0.38 0.31 0.25 0.19 

S&P SOD MISPRICING SERIES 
DECEMBEI=I 1984 
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Figure 21. Plot of MacKinlay and Ramaswamy (1988) Mispricing Series 

Yet another feature of the mispricing series that has generated interest among 

researchers is the presence of strong serial correlation patterns in the data. This 
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conflicts with the notion of efficient markets and the resulting random walk price 

process. The simulation runs identify a possible cause by showing how delayed price 

adjustments can bring about path dependence in the mispricing series. Table 8 

reproduces these autocorrelation patterns for the June 1987 mispricing series and two 

of the runs with uptick delays for purposes of comparison. All the autocorrelation 

coefficients are significant at the 5 percent level. As can be observed the simulated 
' ' 

data exhibit very similar path dependence in the form of autocorrelation patterns. 

To what extent should an experiment replicate the real world data series before 

researchers can gain confidence in the simulation model? In the presidential address to 

the Southern Economic Association, Charles Plott (1991) addresses this very 

complicated issue and discusses the proper role of such experimental simulation in the 

context of market economies. The following quote from his paper serves as an 

especially relevant and appropriate postscript to this essay: 

"This belief sugge~ted that the only effective way to create an experiment 

would be to mirror in every detail, to simulate so to speak some ongoing natural 

process. Early experimenters were guilty of yielding to this belief and described 

experiments as simulations of a market or attempted to include in their experiments 

much of the rich and complicating details found in many markets. As a result the 

experiments tended to be dismissed either because as simulations the experiments 

were incomplete or because as experiments they were so complicated that tests of 

models were unconvincing .... Once models as opposed to economies became the 

focus of research the simplicity of an experiment and perhaps even the absence of 

features of more complicated economies became an asset. The experiment should be 



judged by the lessons it teaches about theory and not by its similarity with what 

nature might happen to have created." (p. 906) 
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CHAPTERN 

SUMMARY AND CONCLUSIONS 
' "' 

There have been many fmdings ,in recent years of regularities and long term 

serial dependence in fmancial time serj.es. Such· findings· have contradicted the 
' ' 

assumption of market efficiency. The nature and form 'of· such ·regularities are of 

interest to fmancial researchers everywhere. In fact the large amounts of money spent 

by investment institutions on market arialysis b~ testimony to this. The science of 

nonlinear dynamics ~ provide some insight into such questions. In particular, it can 

be demonstrated that a.time.history of a. nonlinear function (F) of the form, 

Y(t) = F[Y(t-1), Y(t-2), ... Y(t-i)] 

" ' 

can appear quite random even th_{>,ug~ it_ is completely deterministic1• It has been 

hypothesized that the apparent random~ess of economic and fin~cial series m_ay 

actually be caused by nonlinear relationships among the variables. This may help 

explain the tantalizing findi~gs of regul~ties in financial data. 

Researchers have identified nonlinean~es and deterministic chaos in fmancial 

time series. However, a fmding of low ord~r dimension and nonlinear structure tell us 

nothing about the precise nonlinear functional form or even the general class of 

' ' 

nonlinear relations-among the variables under investigation. ·Nonetheless, the 

1 May (1976) illustrates this using select nonlinear functions. So do Baumol and 
Benhabib (1990) · 
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empirical finding of nonlinear dynamics in the mispricing series is of considerable 

value even without the specification of the precise nonlinear mathematical 

relationships. This is so because market efficiency should imply the absence of any 

deterministic structure whatsoever. 

The first ~ssay "Does the S&P 500 Mispricing Series Exhibit Nonlinear Serial 
' . 

Dependence?" finds evidence of low order de~rminism and nonlinearities in the S&P 

500 mispricing series. The BDS statistic and its associated testing procedure were 

used for this purpose (Brock, Hsieh and LeBaron (1991)). In addition the paper 

identified some structural issues such as the differential delays in trading the index 

basket in the futures market and the cash market which when combined with nonlinear 

adjustment processes within the system can generate sustained and irregular 

fluctuations in mispricing levels. In an intense and fast trading system such wide 

fluctuations can potentially destabilize the market. A rigorous examination of the 

dynamics of the arbitrage pr<;>cess in a nonlinear environment with adjustment delays 

is necessary to validate this hypothesis. This is made the focus of the second essay. 

The second essay titl,ed "Market Microstructure Issues in the Mispricing of the 

S&P 500 Futures Contract" uses the system dynamics simulation methodology to 

repre~nt the arbitrage linkage between the two markets. Trading delays are then 

introduced into the system and its effect on the path of index futures mispricing is 

analyzed. The simulation results demonstrate that introducing differential delays in an 

otherwise equilibrating sys~m causes sustained fluctuations in mispricing levels. 

Increasing the strength of arbitrage in this system only serves to increase the 

fluctuations. This result, in some ways, is counter-intuitive for one would expect that 
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a strong arbitrage response should bring about a quick adjustment. Yet in the presence 

of a an asymmetric delay caused by the uptick rule the strong arbitrage response is 

actually destabilizing. These conclusions support the findings of Blank (1990) and 

Scheinkman and LeBaron (1989) who find evidence of nonlinear structure in the S&P 

500 futures and the cash index respectively. This experiment shows that nonlinearities 

in the mispricing series result from the negative feedback structure of the arbitrage 

system. The mispricing feeds back to the spot and futures price through arbitrage 

trades. Consequently both the spot and futures index prices would show evidence of 

nonlinearities as well. 

TABLE 9 

SUMMARY OF SIMULATION RESULTS 

MARKET DISSIMILARITY 
DELAY DELAY DELAY UPTICK 
0 MIN 5 MIN 10 MIN 5 MIN 

MARKET 
LINKAGE 

SOA = 0.5 2 TI" 25 TI 52 TI 65 TI 
0 OS 3 OS 3 OS 3 OS 

SOA = 1.0 2TI lTI lTI 85 TI 
1 OS CYCLE CYCLE 5 OS 

SOA = 2.0 CYCLE CYCLE CYCLE CHAOTIC 

*rr represents the nwnber of transaction zntervals for the system to reach equzlibnum. 

UPTICK 
VARIABLE 

60TI 
4 OS 

lTI 
CYCLE 

CHAOTIC 

OS represents the nwnber of overshootzngs of transactzon cost boundaries dunng the adjustment process. 

In Table 9, which summarizes the simulation results, the market dissimilarities 

are represented in the form of differential trading delays. An increase in the 



75 

differential delay represented in the table columns implies greater market 

dissimilarity. The market linkages are represented in this simple model by the strength 

of arbitrage. An increase in the strength of arbitrage down the table rows represents 

stronger market linkage. 

It can be observed from Table 9 that as dissimilarity increases for a given 

strength of arbitrage, the arbitrage system take_s longer to reach equilibrium. With 

differential trading delays kept constant, the increase in market linkage in the form of 

strength of arbitrage initially reduces mispricing and then cycles regularly. With both 

the market dissimilarity and the market linkage at the highest, the mispricing series 

exhibits chaotic fluctuations. These simulation results are revealing in the sense that 

they show how irrational mispricing levels can occur even with perfectly rational 

arbitrageurs possessing adequate arbitrage capital. 

Market linkages and the strength of arbitrage 

In the language of system dynamics the ratio of the arbitrage price respon~ to 

a change in mispricing (SOA) is known as amplification and is sometimes referred to 

as system gain. Various aspects of the financial markets (other than arbitrage capital) 

can bring about an increase in amplification of price responses over time. The 

preponderance of institutional traders with large amounts of trading capital and the 

use of computerized trading systems that allow them to commit large proportions of 

their funds almost at will leads to amplified price responSes. It would appear therefore 

that the evolution of financial markets is towards greater amplification of price 

responses to information and not less. Other forms of positive feedback trading can 



76 

also amplify price responses. Delong etal. (1990) discuss some forms.of positive 

feedback trading that result in the amplification of trends. Examples are portfolio 

insurance, frontrunning, limit prices and some forms of technical trading techniques 

that look for and follow apparent price .patterns. This results in the reinforcing of the 

very same patterns. Such self-reinforci~g behavi~r is not a feature of trader behavior 

alone. Even structural features su.ch as ·margin calls in a declining market can result in 

further price declines through forced liquidations. These are all forms of positive 

feedback that can a!Jlplify an arbitrage response and differential delays under such 

conditions become important factors in the adjustment of the system to an observed 

mispricing. 

During the stock market crash the combination of arbitrage selling in the stock 

market and portfolio insurance sales would have caused a large amplification in the 

price response to an observed mispricing. This may be one reason why index 

arbitrage reaped much of the. blame for the stock market crash of 1987. An expanded 

simulation model needs to be developed in order to investigate the impact of positive 

feedback trading on the arbitrage process. If the results of the current simulation are 

extrapolated to an experimental market that includes positive feedback motivations one 

could expect to observe chaotic fluctuations at even lower·strengths of arbitrage price 

response. 

Policy Implications of Simulation Experiment 

These simulation results suggest some guidelines for government policy relating to the 

stabilization of financial markets. The focus of regulatory response in the form of 



77 

curbs on program trading, circuit breakers and the uptick rule serves to reduce the 

extent of market linkage. In terms of the simulation model, this would imply a 

reduction in the strength of arbitrage. One consequence of this policy is that the 

markets may at times be completely delinked. This would undermine the very purpose 

of a derivative market. The futures market serves as a hedging vehicle and delinking 

the marke~ shortcircuits this very fundamental purpose. Moreove,r, the, simulation 

results as seen.in Table 9 indicate that mispricing, for extended periods ,can occur even 

at low strength of arbitrage under conditions of differential trading delays. 

This simulation experiment brings out the implications of market dissimilarities 

that result in differential trading delays. If structural differences are indeed a potential 

cause of market instabilities, then the appropnate policy action should not rely upon 

different uptick rules and different restrictions on program trading f~r the cash and 

futures markets. These only serve to leng~en the differential trading delay in the 

futures and the cash market. Tl;le emphasis of regulatory effort should instead be on 

reducing the structural differences between the two markets by speeding up trading in 

the stock market as opposed to slowing· it down. These conclusions are in line with 
' • 1 .I 

the free market position on market regulation and can be used to validate this policy 

stance. 

Of course the appropriate caveats in terms of the limitations of this simulation 

model should be applied before extending the simulation results to the real world 

stock and futures markets. This model is limited to lhe arbitrage process and does not 

include the wide range of trading motivations represented in the financial m~kets. 
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There is no information arrival in this experimental system and microstructural 

features other than the trading- delays h~ve been ignored. 

On the other hand, one should recognize that no simulation model can ever 

completely mirror reality. This is in some ways an advantage. Simulation allows the 

researcher to focus on specific structural issues and conduct an experiment under 

ceteris paribus conditions without being bogged down by the complexity of the 

system. The second essay is' designed ,as such, a simulation experiment that focuses on 

a narrow aspect of market microstructure. 

This dissertation makes a contribution by linking the disparate research areas 

of nonlinear dynamics. and market microstructure. It does so by identifying a specific: 

market feature ,that has the potential to generate bifurcations and chaos in the arbitrage 
,, 

system. 

Directions for Further Research 

The simulation model developed in this dissertation could be used to examine 

other aspects of market microstructure . .It would be possible to examine the impact of 

alternate trading motivations on the extent of index futures mispricing. These could 
' ' . ~ 

include positive feedback trading ~ehavier in the form of port:folio insurance 

strategies. 

An empirical study that compares the extent of mispricing in different pairs of 

linked markets that do not bear the same extent of microstructural differences as the 

New York Stock Exchange and the Chicago Mercantile Exchange would further test 

the conclusions brought out in this dissertation. An examination of index futures 
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mispricing in the London Financial Times Stock Index before and after the Big Bang 

in 1986 would offer such an opportunity. 
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Figure 28. Base Level Arbitrage Strength with Uptick Delay 
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ARBITRAGE MODEL WITH UPTICK RULE EFFECT 
VARIABLE UPTICK DEIAY: SOA • 1 

5r---------------------------------------~ 

' 1-

-2 1-

-3 1-

0 10 20 30 40 50 60 70 80 90 100 110 

TIME IN TRANSACTION INTERVALS 
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Figure 32. Weak Arbitrage Strength with Five Minute Delay 
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Figure 34. Weak Arbitrage Strength :with Uptick Delay 
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APPENDIX B 

DYNAMO CODE FOR SIMULATION 

· Model With No Delays 

NOTE SPOT PRICE MODULE 

* 
L SPOTP .K=SPOTP.J + DT*(SCARB.JK) 

SPOTP = SPOT PRICE ($) 
N SPOTP =NSPOT 
C NSPOT=lOO 

SCARB = SPOT PRICE CHANGE DUE TO ARBITRAGE ($/TRANSACTION 
INTERVAL) 
R SCARB.KL=SPOTP.K*(STPC.KL/100) 
R STPC.KL=PPC.KL*SOA 

STPC.KL = PERCENT AGE STOCK PRICE CHANGE 
C SOA=l 

SOA = STRENGTH OF ARBITRAGE 
PPC.K = PERCENTAGE PRICE CHANGE 

* 
NOTE FUTURES PRICE MODULE 

* 
L FUTP.K=FUTP.J + DT*(FCARB.JK*(-1)) 

FUTP = FUTURES PRICE ($) 
FCARB = FUTURES PRICE CHANGE DUE TO ARBITRAGE 

($/TRANSACTION INTERVAL) 
NFUTP=NFUT 
C NFUT=106 
R FCARB.KL=FUTP.K*(PPC.KL/lOO)*SOA 

* 
NOTE FORWARD PRICE MODULE 

* 
A FWDP.K=SPOTP.K*EXP(COC.K*TIM.K) 
A COC.K=INT-DIV 
C INT=.lO 
C DIV=.03 

FWDP = FORWARD PRICE ($) 
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COC = COST OF CARRY (FRACTION/YEAR) 
A TTM.K=(MAT-TIME.K)/TIY 
C TIY=518400 360 DAYS/YEAR* 24 HOURS/DAY* 60 MIN/HOUR 
C MAT=129600 90 DAYS/CONTRACT* ~4 HOURS/DAY* 60 MIN/HOUR 

TIM = TIME TO MATURITY (MINUTES REMAINING/CONTRACT) 
TIY = TRANSACTION INTERVALS ( ~INUTES IN ONE YEAR) 
MAT= MATURITY (LENGTH OF FUTURES CONTRACT IN MINUTES) 

* 
NOTE MISPRICING AND ARBITRAGE MODULE 
* 
A MISP.K=((FUTP.K.,FWDP.K)/SPOTP.K)*lOO 

MISP = MISPRICING (PERCENTAGE OF INbEX VALUE): NORMAL= 0 
R PPC.Ki.=TABLE(TABPC,MISP.K,.:3,3,0.5) 
N PPC=O 
C TABPC=-3. 75/-2.3/-1.4/-0.8/-0.5/0/0/0/0.5/0.8/1.4/2.3/3.75 

* 
NOTE SYSTEM SPECIFICATIONS 
* 
SAVE SPOTP/FUTP/FWDP/MISP 
SPEC DT = 1/LENGTH = 300/SA VPER =,1 

Mo~~~- with Three Minute Delay 

NOTE SPOT PRICE MODULE 

* 
L SPOTP.K=SPOTP.J + DT*(SCARB.JK)' 

SPOTP =SPOT PRICE($) 
N SPOTP=NSPOT 
C NSPOT=lOO 
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SCARB = SPOT PRICE CHANGE DUE TO ARBITRAGE ($/TRANSACTION 
INTERVAL) 
R SCARB.KL=SPOTP.K*(DPPC3.KL/100) , 

* 
*DELAY MODULE: REPRESENTS PRIMARY DELAY IN STOCK MARKET 
TRANSACTION 

* 
R DPPClO.KL=DELA Y1(DPPC9.KL,DET) 
R DPPC9.KL=DELAY1(DPPC8.KL,DET) 
R DPPC8.KL=DELAYl(DPPC7.KL,DET) 
R DPPC7.KL=DELAYl(DPPC6.KL,DET) 
R DPPC6.KL=DELAY1(DPPC5.KL,DET) 
R DPPC5.KL=DELAYl(DPPC4.KL,DET) 
R DPPC4.KL=DELA Y1(DPPC3.KL,DET) 
R DPPC3.KL=DELAYl(DPPC2.KL,DET) 



R DPPC2.KL=DELAY1(DPPC1.KL,DET) 
R DPPCl.KL=DELA Y1(STPC.KL,DET) 
R STPC.KL=PPC.KL*SOA 
C SOA=1 
C DET=1 

DPPC'N' = DELAYED PERCENTAGE PRICE CHANGE FOR N DELAYS 
DET = DELAY IN EFFECTING STOCK MARKET TRADES 
PPC.K = PERCENTAGE PRICE CHANGE 

* 
NOTE FUTURES PRICE MODULE 

* 
L FUTP.K=FUTP.J +DT*(FCARB.JK*(-1)) 

FUTP = FUTURES PRICE ($)' 
FCARB =FUTURES PRICE CHANGE DUE TO ARBITRAGE 

($/TRANSACTION INTERVAL) 
N FUTP=NFUT 
C NFUT=l06 
R FCARB.KL=FUTP.K*(PPC.KL/lOO)*SOA 

* 
NOTE FORWARD PRICE MODULE 

* 
A FWDP.K=SPOTP.K*EXP(COC.K*TTM.K) 
A COC.K=INT-DIV 
C INT=.lO 
C DIV=.03 

FWDP = FORWARD PRICE ($) _ , 
COC =COST OF CARRY (FRACTION/YEAR) 

A TTM.K=(MAT-TIME.K)/TIY-
C TIY=518400 360 DAYS/YEAR *,24 HOURS/DAY* 60 MIN/HOUR 
C MAT=129600 90 DAYS/CONTRACT* 24 HOURS/DAY* 60 MIN/HOUR 

TIM = TIME TO MATURITY (MINUTES REMAINING/CONTRACT) 
TIY =TRANSACTION INTERVALS (MINUTES IN ONE YEAR) 
MAT = MATURITY (LENGTH OF FUTURES CONTRACT, IN MINUTES) 

* 
NOTE MISPRICING AND ARBITRAGE MODULE 

* 
A MISP .K = ((FUTP .K-FWDP .K)/SPOTP. K)*lOO 

MISP = MISPRICING (PERCENT AGE OF INDEX VALUE): NORMAL = 0 
R PPC.KL=TABLE(TABPC,MISP.K,-3,3,0.5) 
N PPC=O 
C TABPC =-3. 75/-2.3/-1.4/-0.8/-0.5/0/0/0/0.5/0.8/1.4/2.3/3.75 

* 
NOTE SYSTEM SPECIFICATIONS 

* 
SAVE SPOTP/FUTP/FWDP/MISP 
SPEC DT= l/LENGTH=300/SA VPER= 1 
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Model with Five Minute Delay 

NOTE SPOT PRICE MODULE 

* 
L SPOTP .K =SPOTP .J + DT*(SCARB.JK) 

SPOTP = SPOT PRICE ($) 
N SPOTP=NSPOT 
C NSPOT=.lOO 

SCARB = SPOT PRICE CHANGE DUE TO ARBITRAGE ($/TRANSACTION 
INTERVAL) 
R SCARB.KL=SPOTP.K*(DPPCS.KL/100) 

* 
*DELAY MODULE: REPRESENTS PRIMARY DELAY IN STOCK MARKET 
TRANSACTION 

* 
R DPPC10.KL=DELAY1(DPPC9.KL,DET) 
R DPPC9.KL=DELA Yl(DPPC8.KL,DET) 
R DPPC8.KL=DELAYl(DPPC7.KL,DET) 
R DPPC7.KL=DELA Yl(DPPC6.KL,DET) 
R DPPC6.KL=DELAYl(DPPC5.KL,DET) 
R DPPC5.KL=DELA Yl(DPPC4.KL,DET) 
R DPPC4.KL=DELA Yl(DPPC3.KL,DET) 
R DPPC3.KL=DELAY1(DPPC2.KL,DET) 
R DPPC2.KL=DELA Yl(DPPCl.KL,DET) 
R DPPCl.KL=DELA Yl(STPC.KL,DET) 
R STPC.KL=PPC.KL*SOA 
C SOA=l 
C DET=l 

* 

DPPC'N' = DELAYED PERCENTAGE PRICE CHANGE FOR N DELAYS 
DET = DELAY IN EFFECTING STOCK MARKET TRADES 
PPC.K = 'PERCENT AGE PRICE CHANGE 

NOTE FUTURES PRICE MODULE 

* 
L FUTP.K=FUTP.J+DT*(FCARB.JK*(-1)) 

FUTP = FUTURES PRICE ($) 
FCARB = FUTURES PRICE CHANGE DUE TO ARBITRAGE 

($/TRANSACTION INTERVAL) 
NFUTP=NFUT 
C NFUT=106 
R FCARB.KL=FUTP.K*(PPC.KL/lOO)*SOA 

* 
NOTE FORWARD PRICE MODULE 

* 
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A FWDP.K=SPOTP.K*EXP(COC.K*TIM.K) 
A COC.K=INT-DIV 
C INT=.lO 
C DIV=.03 

FWDP = FORWARD PRICE ($) 
COC = COST OF CARRY (FRACTION/YEAR) 

A TTM.K=(MAT-TIME.K)/TIY ', 
C TIY=518400 360 DAYS/YEAR* 24 ~OURS/DAY* 60 MIN/HOUR 
C MAT=129600 90 DAYS/CONTRACT* 24 HOURS/DAY* 60 MIN/HOUR 

TIM = TIME TO MATURITY (MINUTES REM;AINING/CONTRACT) 
TIY = TRANSACTION INTERVALS (MINUTES IN ONE YEAR) 
MAT = MATURITY (LENGTH OF FUTURES CONTRACT IN MINUTES) 

* 
NOTE MISPRICING AND ARBITRAGE MODULE 

* 
A MISP.K=((FUTP'.K-FWDP.K)/SPOTP.K)*lOO 

MISP = MISPRICING (PERCENTAGE OF INDEX VALUE): NORMAL= 0 
R PPC.KL=TABLE(TABPC,MISP.K,-3,3,0.5) 
N PPC=O 
C TABPC =-3. 75/-2.3/-1.4/-0.8/-0.5/0/0/0/0.5/0.8/1.4/2.3/3.75 

* 
NOTE SYSTEM SPECIFICATIONS 

* 
SAVE SPOTP/FUTP/FWDP/MISP 
SPEC DT = 1/LENGTH = 300/SA VPER = 1 

Model with Ten Minute Delay 

NOTE SPOT PRICE MODULE 

* 
L SPOTP .K =SPOTP .J + DT*(SCARB.JK) 

SPOTP = SPOT PRICE ($) 
N SPOTP=NSPOT 
C NSPOT=lOO _ 
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SCARB =SPOT PRICE CHANGE DUE TO ARBITRAGE ($/TRANSACTION 
INTERVAL) 
R SCARB.KL=SPOTP.K*(DPPClO.KL/100) 

* 
*DELAY MODULE: REPRESENTS PRIMARY DELAY IN STOCK MARKET 
TRANSACTION 

* 
R DPPC10.KL=DELAY1(DPPC9.KL,DET) 
R DPPC9.KL=DELAY1(DPPC8.KL,DET) 
R DPPC8.KL=DELA Yl(DPPC7.KL,DET) 



R DPPC7.KL=DELA Yl(DPPC6.KL,DET) 
R DPPC6.KL=DELA Yl(DPPC5.KL,DET) 
R DPPC5.KL=DELA Yl(DPPC4.KL,DET) 
R DPPC4.KL=DELAYl(DPPC3.KL,DET) 
R DPPC3.KL=DELA Yl(DPPC2.KL,DET) 
R DPPC2.KL=DELA Yl(DPPCl.KL,DET). · 
R DPPCI.KL~DELA Yl(STPC.KL,DET). 
R STPC.KL=PPC.KL*SOA 
C SOA=1 
C DET=l 

* 

DPPC'N' = DELAYED PERCENTAGE PRICE CHANGE FOR N DELAYS 
DET = DELAY IN EFFECTING STOCK MARKET TRADES 
PPC.K = PERCENT AGE PRICE CHANGE 

NOTE FUTURES PRICE MODULE 
* 
L FUTP.K=FUTP.J + DT*(FCARB.JK*(-1)) 

FUTP =FUTURES PRICE($) 
FCARB =FUTURES PRICE CHANGE DUE TO ARBITRAGE 

($/TRANSACTION INTERVAL) 
NFUTP=NFUT 
C NFUT=106 . 
R FCARB.KL=FUTP.K*(PPC.KL/lOO)*SOA 
* 
NOTE FORWARD PRICE MODULE 

* 
A FWDP.K=SPOTP.K*EXP(COC.K*TTM.K) 
A COC.K=INT-DIV 
C INT=.lO 
C DIV=.03 

FWDP = FORWARD PRICE ($) 
COC =COST OF CARRY (FRACTION/YEAR) 

A TTM.K=(MAT-TIME.K)/TIY , 
C TIY=518400 360 DAYS/YEAR* 24 HOURS/DAY* 60 MIN/HOUR . 
C MAT= 129600 90 DAYS/CONTRACT * 24 HOURS/DAY * 60 MIN/HOUR 

* 

TIM = TIME TO MATURITY (MINUTES REMAINING/CONTRACT) 
TIY =TRANSACTION INTERVALS.( MINUTES IN ONE YEAR) 
MAT = MATURITY (LENGTH OF FUTURES CONTRACT IN MINUTES) 

NOTE MISPRICING AND ARBITRAGE MODULE 

* 
A MISP .K = ((FUTP .K-FWDP. K)/SPOTP .K)* 100 

MISP = MISPRICING (PERCENTAGE OF INDEX VALUE): NORMAL= 0 
R PPC.KL=TABLE(TABPC,MISP.K,-3,3,0.5) 
N PPC=O 
C TABPC =-3. 75/-2.3/-1.4/-0.8/-0.5/0/0/0/0.5/0.8/1.4/2.3/3.75 
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* 
NOTE SYSTEM SPECIFICATIONS 
* 
SAVE SPOTP/FUTP/FWDP/MISP 
SPEC DT=l/LENGTH=300/SAVPER=l 

Model With Five Minute Uptick Delay 

* STOCK MARKET DELAY = 5: UPTICK DELAY = 5 
* 
NOTE SPOT PRICE MODULE 
* 
L SPOTP.K=SPOTP.J+DT*(SCARB.JK) 

SPOTP = SPOT PRICE ($) 
N SPOTP = NSPOT 
C NSPOT=lOO 

SCARB =SPOT PRICE CHANGE DUE TO ARBITRAGE ($/TRANSACTION 
INTERVAL) 
R SCARB.KL=SPOTP.K*(DSPC.KL/100) 

* 
NOTE UPTICK RULE IN STOCK MARKET 

* 
R PSPC.KL=CLIP(DSPCN.KL,O,DSPCN.KL,O) 

PSPC = POSITIVE SPOT PRICE CHANGE (%) 
R NSPC.KL=CLIP(O,DSPCN.KL,DSPCN.KL,O) 

NSPC = NEGATIVE SPOT PRICE CHANGE(%) 
R DNEG.KL=DELA Y3(NSPC.KL,DSHORT) 
C DSHORT=5 

DNEG = DELAY IN NEGATIVE S"POT PRICE CHANGE DUE TO UPTICK 
RULE 
R DSPC.KL=PSPC.KL+DNEG.KL 
R DSPCN.KL=DPPCS.KL . 

DSPCN = DELAYED STOCK PRICE CHANGE FOR 'N' DELAYS 

* 
*DELAY MODULE: REPRESENTS PRIMARY DELAY IN STOCK MARKET 
TRANSACTION 

* 
R DPPClO.KL=DELAYl(DPPC9.KL,DET) 
R DPPC9.KL=DELA Yl(DPPC8.KL,DET) 
R DPPC8.KL=DELA Yl(DPPC7.KL,DET) 
R DPPC7.KL=DELA Yl(DPPC6.KL,DET) 
R DPPC6.KL=DELA Yl(DPPCS.KL,DET) 
R DPPCS.KL=DELA Yl(DPPC4.KL,DET) 
R DPPC4.KL=DELAY1(DPPC3.KL,DET) 
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R DPPC3.KL=DELA Yl(DPPC2.KL,DET) 
R DPPC2.KL=DELAYl(DPPCl.KL,DET) 
R DPPCl.KL=DELAYl(STPC.KL,DET) 
R STPC.KL=PPC.KL *SOA 
C SOA=l 
C DET=l _ 

* 

DPPC.K=DELA YED PERCENTAGE PRICE CHANGE 
DET =DELAY IN EFFECTING STOCKMARKET TRADES 
PPC.K = PERCENT AGE PRICE CHANGE 

NOTE FUtURES PRICE MODULE 

* 
L FUTP.K=FUTP.J + DT*(FCARB.fK*(-1)) 

FUTP =FUTURES PRICE($) 
FCARB =FUTURES PRICE CHANGE DUE TO ARBITRAGE 

($/TRANSACTION INTERVAL) 
NFUTP=NFUT 
C NFUT=l04 
R FCARB.KL=FUTP.K*(PPC.KL/lOO)*SOA . 

* 
NOTE FORWARD PRICE MODULE 

* 
A FWDP.K=SPOTP.K*EXP(COC.K*TTM.K) 
A COC.K=INT-DIV 
C INT=.lO 
C DIV=.03 

FWDP = FORWARD PRICE ($) 
COC =COST OF CARRY (FRACTION/YEAR) 

A TTM.K=(MAT-TIME.K)/TIY 
C TIY=518400 360 DA YS/Y.EAR * 24 HOURS/DAY * 60 MIN/HOUR 
C MAT=129600 90 DAYS/CONTRACT* 24 HOURS/DAY* 60 MIN/HOUR 

TIM = TIME TO MATURITY (MINUTES REMAINING/CONTRACT) 

* 

TIY = TRANSACTION INTERVALS (MINUTES IN ONE YEAR) . 
MAT= MATURITY (LENGTH OF FUTURES ~ONTRACT IN MINUTES) 

NOTE MISPRICING AND ARBITRAGE MODULE 

* 
A MISP .K = ((FUTP .K-FWDP .K)/SPOTP. K)* 100 

MISP = MISPRICING (PERCENTAGE OF INDEX VALUE): NORMAL= 0 
R PPC.KL=TABLE(TABPC,MISP.K,-3,3,0.5) 
N PPC=O 
C TABPC =-3. 75/-2.3/-1.4/-0.8/-0.5/0/0/0/0.5/0.8/1.4/2.3/3.75 

* 
NOTE SYSTEM SPECIFICATIONS 

* 
SAVE SPOTP/FUTP/FWDP/MISP 
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SPEC DT=1/LENGTH=300/SAYPER=l 

Model with Uptick Delay 

* STOCK MARKET DELAY = 10: UPTI,CK DELAY :::::: 5 
* 
NOTE SPOT PRICE MODULE 
* 
L SPOTP.K=SPOTP.J + DT*(SCARB.JK) 

SPOTP = SPOT PRICE ($) 
N SPOTP = NSPOT -
C NSPOT= 100 

SCARB = SPOT PRICE CHANGE DUE TO ARBITRAGE ($/TRANSACTION 
INTERVAL) 
R SCARB.KL=SPOTP.K*(DSPC.KL/100) 

* 
NOTE UPTICK RULE IN STOCK MARKET 
* 
R PSPC.KL=CLIP(DSPCN.KL,O,DSPCN.KL,O) 

PSPC =POSITIVE SPOT PRICE CHANGE(%) 
R NSPC.KL=CLIP(O,DSPCN.KL,DSPCN.KL,O) 

NSPC = NEGATIVE SPOT PRICE CHANGE (%) 
R DNEG.KL=DELA Y3(NSPC.KL,DSHORT) 
C DSHORT=5 

DNEG = DELAY IN NEGATIVE S:POT PRICE CHANGE DUE TO UPTICK 
RULE 
R DSPC.KL=PSPC.KL+DNEG.KL , 
R DSPCN.KL=DPPC10.KL 

DSPCN = DELAYED STOCK PRICE CHANGE FOR 'N' DELAYS 

* 
*DELAY MODULE: REPRESENTS PRIMARY DELAY IN STOCK MARKET 

' ' 

TRANSACTION -

* 
R DPPC10.KL=DELAY1(DPPC9.KL,DET) 
R DPPC9.KL=DELAYl(DPPC8.KL,DET) 
R DPPC8.KL=DELA Yl(DPPC7.KL,DET) 
R DPPC7.KL=DELA Y1(DPPC6.KL,DET) 
R DPPC6.KL=DELA Yl(DPPC5.KL,DET) 
R DPPC5.KL=DELA Yl(DPPC4.KL,DET) 
R DPPC4.KL=DELA Y1(DPPC3.KL,DET) 
R DPPC3.KL=DELAY1(DPPC2.KL,DET) 
R DPPC2.KL=DpLAYl(DPPCl.KL,DET) 
R DPPCl.KL=DELA Y1(STPC.KL,DET) 
R STPC.KL=PPC.KL *SOA 
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C SOA=l 
C DET=l 

* 

DPPC.K=DELAYED PERCENTAGE PRICE CHANGE 
DET = DELAY IN EFFECTING STOCK MARKET TRADES 
PPC.K = PERCENTAGE PRICE CHANGE 

NOTE FUTURES PRICE MODULE 

* 
L FUTP.K=FUTP.J +DT*(FCARB.JK*(~l)) 

FUTP = FUTURES PRICE ($) 
FCARB =FUTURES PRICE CHANGE DUE TO ARBITRAGE 

($/TRANSACTION INTERVAL) 
N FUTP=NFUT 
C NFUT=l04 
R FCARB.KL=FUTP.K*(PPC.KL/lOO)*SOA 

* 
NOTE FORWARD PRICE MODULE 

* 
A FWDP .K =SPOTP ,K*EXP(COC.K*TIM. K) 
A COC.K=INT-DIV 
C INT=.lO 
C DIV=.03 

FWDP = FORWARD PRICE ($) 
COC = COST OF CARRY (FRACTION/YEAR) 

A TTM.K=(MAT-TIME.K)/TIY 
C TIY=518400 360 DAYS/YEAR* 24 HOURS/DAY* 60 MIN/HOUR 
C MAT= 129600 90 DAYS/CONTR.ACT * 24 HOURS/DAY * 60 MIN/HOUR 

TIM = TIME TO MATURITY (MINUTES REMAINING/CONTRACT) 
TIY =TRANSACTION INTERVALS (MINUTES IN ONE YEAR) 
MAT= MATURITY (LENGTH OFFUTURES CONTRACT IN MINUTES) 

* 
NOTE MISPRICING AND ARBITRAGE MODULE 

* 
A MISP.K=((FUTP.K-FWDP.K)/SPOTP.K)*100 . 

MISP.:.. MISPRICING (PERCENTAGE OF INDEX VALUE): NORMAL= 0 
R PPC.KL=TABLE(TABPC,MISP.K,-3,3,0.5) 
N PPC=O 
C TABPC =-3. 75/-2.3/-1.4/-0.8/-0.5/0/0/0/0.5/0.8/1.4/2.3/3.75 

* 
NOTE SYSTEM SPECIFICATIONS 
* 
SAVE SPOTP/FUTP/FWDP/MISP 
SPEC DT= l/LENGTH=300/SAVPER= 1 



Model with Variable Uptick Delay 

* STOCK MARKET DELAY = 10: UPTICK DELAY IS VARIABLE 

* 
NOTE SPOT PRICE MODULE 

* 
L SPOTP.K=SPOTP.J+DT~(SCARBJK) . 

SPOTP = SPOT PRICE ($) 
N SPOTP = NSPOJ' 
C NSPOT=lOO 

SCARB =SPOT PRICE CHANGE DUE TO ARBITRAGE ($/TRANSACTION . ' 

INTERVAL) 
R SCARB.KL=SPOTP.K*(DSPC.KL/100) 

* 
NOTE UPTICK RULE IN STOCK MARKET 

* 
R PSPC.KL=CLIP(DSPCN.KL,O,DSPCN.KL,O) 

PSPC =POSITIVE SPOT PRICE CHANGE(%) 
R NSPC.KL=CLIP(O,DSPCN.KL,DSPCN.KL,O) 

NSPC =NEGATIVE SPOT PRICE CHANGE(%) 
R DNEG.KL=DELA Y3(NSPC.KL,DSHORT.K) 
A DSHORT.K=TABLE(TABUP,NSPC.KL,-10,-1, 1) 
C TABUP=30/27/24/21/18/15/12/9/6/3 

DNEG = DELAY IN NEGATIVE SPOT PRICE CHANGE DUE TO UPTICK 
RULE , , 

R DSPC.KL=PSPC.KL+DNEG,KL 
R DSPCN.KL=DPPClO.KL . 

DSPCN = DELAYED STOCK 'PRICE CHANGE FOR 'N' DELAYS 

* 
*DELAY MODULE: REPRESENTS PRIMARY DELAY IN STOCK MARKET 
TRANSACTION 
* 
R DPPC10.KL=DI;LAY1(DPPC9.KL,DET) 
R DPPC9.KL=DELA Yl(DPPC8.KL,DET) 
R DPPC8.KL=DELA Yl(DPPC7.KL,DET) 
R DPPC7.KL=DELA Yl(DPPC6.KL,DET) 
R DPPC6.KL=DELAYl(DPPC5.KL,DET) 
R DPPC5.KL=DELAYl(DPPC4.KL,DET) 
R DPPC4.KL=DELA Yl(DPPC3.KL,D~T) 
R DPPC3.KL=DELA Yl(DPPC2.KL,DET) 
R DPPC2.KL=DELA Yl(DPPC1.KL,DET) 
R DPPCl.KL=DELAYl(STPC.KL,DET) 
R STPC.KL=PPC.KL*SOA 
C SOA=l 
C DET=l 
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DPPC.K=DELA YED PERCENTAGE PRICE CHANGE 
DET = DELAY IN EFFECTING STOCK MARKET TRADES 
PPC.K = PERCENTAGE PRICE CHANGE 

* 
NOTE FUTURES PRICE MODULE 

* 
L FUTP .K = FUTP .J + OT*(FCARB.JK*( -1)) 

FUTP =FUTURES PRICE($) 
FCARB =FUTURES-PRICE CHANGE DUE TO ARBITRAGE 

($/TRANSACTION INTERVAL) , , , 
N FUTP=NFUT 
C NFUT=106 
R FCARB.KL=FUTP.K*(PPC.KL/lOO)*SOA 

* 
NOTE FORWARD PRICE MODULE , 

* 
A FWDP.K=SPOTP.K*EXP(COC.K*TTM.K) 
A COC.K=INT-DIV 
C INT=.lO 
C DIV=.03 

FWDP = FORWARD PRICE ($) 
COC = COST OF CARRY (FRACTION/YEAR) 

A TTM.K=(MAT-TIME.K)/TIY 
C TIY=518400 360 DAYS/YEAR* 24 HOURS/DAY* 60 MIN/HOUR 
C MAT= 129600 90 DAYS/CONTRACT * 24 HOURS/DAY * 60 MIN/HOUR 

TTM = TIME TO MATURITY (Mr'NUTES REMAINING/CONTRACT) 
TIY = TRANSACTION INTERVALS ( MINUTES IN ONE YEAR) 
MAT = MATURITY (LENG".fH OF FUTURES CONTRACT IN MINUTES) 

* 
NOTE MISPRICING AND ARBITRAGE MODULE 

* 
A MISP .K = ( (FUTP .K-FWDP. K)/SPOTP. K) * 100 

MISP = MISPRICING (PERCENTAGE OF IND,EX VALUE): NORMAL= 0 
R PPC.KL=TABLE(TABPC,MISP.K,-3,3,0.5) , , 

' ' 

N PPC=O , 
C TABPC =-3. 75/-2.3/-1.4/-0.8/-0.5/0/0/0/0.5/0.8/1.4/2.3/3.75 

* 
* 
NOTE SYSTEM SPECIFICATIONS 

* 
SAVE SPOTP/FUTP/FWDP/MISP 
SPEC DT= 1/LENGTH=300/SAYPER= 1 
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APPENDIX~ 

EXPLANATION TO THE DYNAMO MODELS 

The Basic Arbitrage Model 
Without Delays 

The Dynamo model is divided for convenience into four modules. These 

include, 

(1) The mispricing and arbitrage module 

(2) The futures price module 

(3) The spot price module 

(4) The forward price module 

The Mispricing Module 

The mispricing module may be a ~onvenient place to start the explanation of 

the program code in Dynamo. Mispricing in the current period is defined as the 

difference between the futures pri~e and the (orward price in the current period and is 

expressed as a percentage of the current spot price. The suffix "K" indicates that the 

values are of the current period., The Dynamo statement defining mispricing is an 

auxiliary equation as denoted by the first letter of the equation below which begins 

with an "A". 

A MISP.K = ((FUTP.K-FWDP.K)/SPOTP.K)*100 (1) 

where, 
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MISP = Mispricing (percentage) 

FUTP = Futures Price ($) 

SPOTP = Spot Price ($) 

FWDP = Forward Price ($) 
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The observed mispricing will bring about arbitrage activity in both the futures 

and the cash "markets. The result will be a decline in the price of t~e overpriced asset 

(futures or cash) due to arbitrage selling and an 'incr.ease m the price of the relatively 

underpriced asset. It is assumed that the~ price change in both markets would be 

symmetric since the arbitrageur would buy and sell equru proportions of both indices. 

The percentage price change as a result bf mispricmg is expressed as a Table function 

in Dynamo. This maps the corresponding price change in both markets for every level 

of mispricing. The corresponding Rate equation in Dynamo which begins with the 

letter "R" is given by: 

R PPC.KL =TABLE (TABPC, MISP.K, -3, 3, 0.5) (2) 

TABPC = -3.75/-2.3/-1.4/-0.8/-0.510/0/0/0.5/0.8/1.4/2.3/3.75 (3) 

where, 

PPC.KL = Percentage price change. caused by arbitrage 

TABPC = Table of Price changes for given mispricing 

Equation (2) states that the mispricing levels stretch from -3 to + 3 at increments of 

0.5 and equation (3) expresses the corresponding price changes. The range of 

mispricing levels is established empirically using the MacKinlay and Ramaswamy 

(1988) time series. The high and low values of price changes are also obtained from 

the transaction to transaction price changes in both the index futures and the spot 
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index. The graph of equation (2) shows that the price changes increase exponentially 

with increased levels of futures mispricing. The justification for this is as follows. At 

small levels of mispricing only the most cost effective arbitrageurs will enter the 

markets but at higher levels of mispricing more ar~itrageurs would be attracted by the 

risk free arbitrage profits wbich would bring ~bout larger equilibriating price changes 

in the two markets. Conceivably, at very high levels of mi~pricing even non arbitrage 

market players would be induced to enter into arbitrage, transactions. 

THE FORWARD PRICE MODULE 

The forward price in the current period is computed as the sum of the spot 

price and the cost of carrying the basket of stocks to maturity. The corresponding 

Auxiliary statement in Dynamo would be: 

where, 

A FWDP.K = SPOTP.K * EXP(COC.K*TTM.K) 

A COC.K = INT - DIV 

C INT = .10 

C DIV = .03 

COC = Cost of Carry (Fraction/Year) 

INT = Assumed interest rate (constant) 

DIV = Assumed dividend rate (constant) 

TIM = Time to Maturity (Minutes remaining/contract) 

The remaining time to maturity is computed as an auxiliary equation in Dynamo: 

A TTM.K =(MAT- TIME.K) I TIY 

Where: 



MAT = Maturity (90 days per contract* 24 hours/day* 60 min/hour = 

129600 minutes) 
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TIY = Transaction intervals in one year ( 360 days/year * 24 hours/day * 60 

min/hour = 518400 minutes) 

SPOT PRICE MODULE 

The current spot price for the pul-pose of the simulation exercise is given as the sum 

of the previous spot price and the chan~e in price, due to arbitrage activity. The spot 

price formulation is a level (stock) equation in Dynamo. The Dynamo equation is 

given by 

where 

L SPOTP.K = SPOTP.J + DT * (SCARB.JK) 

SCARB = Stock price change due to arbitrage. 

DT = Time increment set equal to 1 

The stock price change due to arbitrage (SCARB) is a rate (flow) equation in Dynamo 

and is computed using the percentage price change from the mispricing module. 

R SCARB.KL = SPOTP.K *, '(PPC.KL I 100) * SOA 

Where, 

SOA = Strength of Arbitrage 

The Strength of arbitrage can be varied during simulation to observe both fast and 

slow arbitrage price responses. The base case sets SOA equal to one. 
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