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C h a p t e r  1  

INTRODUCTION 

Economic Importance of Ticks 

Ticks have been serious pests of humans and domestic animals since ancient times, 

and they surpass all other arthropods in the number and variety of pathogens that they 

transmit to domestic animals.  Ticks rank second only to mosquitoes as vectors of human 

diseases including fungi, viruses, rickettsia, bacteria, protozoa and filarial nematodes (Bowman 

et al. 1996). 

Ticks affect the production of over 1000 million cattle and sheep worldwide. The 

effect of tick feeding on cattle includes growth reduction and milk production, paralysis, 

transmission of tick-borne pathogens and secondary infections with other parasites (Estrada-

Peña and Jongejan, 2001).  Eighty percent of the 1288 million cattle worldwide were estimated 

to be at risk of tick-borne diseases, with a global cost estimated between US $13.9 and 18.9 

billions (Castro, 1997). 

Classification of ticks 

Ticks are obligated hematophagous ectoparasites of terrestrial vertebrates. They belong 

to the class Arachnida and are closely related to scorpions and spiders (USDA, 1976). Ticks are 

classified in the subclass Acari, order Parasitiformes, suborder Ixodida (Sonenshine, 1991). 

Three families are included into the suborder Ixodida. The family Ixodidae or the hard ticks 

has a scutum and it is the largest and economically the most important, containing 13 genera 

and approximately 650 species (Sonenshine, 1993). The family Argasidae includes the soft ticks 

which lack a scutum and have a leathery cuticle (USDA, 1976; Sonenshine, 1991). The 
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Argasidae comprises 5 genera and approximately 170 species (Sonenshine, 1991).  The third 

familiy, Nutalliellidae, consists of only one species (Sonenshine, 1991). In total, approximately 

820 species of ticks have been identified which are geographically widespread (USDA, 1976; 

Wang and Nuttall, 1999).  Ticks have adapted to climatic extremes and a diverse range of   

hosts, demonstrating that they are a biologically well established group (Wang and Nuttall, 

1999). 

 

 Figure 1. Classification of ticks (Adapted from Sonenshine, 1991).  

   Ixodidae 

 Prostriata 

Metastriata

Ixodinae Ixodes (245 spp.) 

Amblyomminae
Amblyomma ( 102 spp.) 

Haemaphysalinae Haemaphysalis ( 155 spp.)

Hyalomminae Hyalomma ( 30 spp. ) 
 

Rhipicephalinae

   Nuttalliellidae Nuttalliella (1 spp.) 

   Argasidae 

Aponomma ( 24 spp.) 

Argasinae
Ornithodorinae
Otobinae
Antrocolinae
Nothoaspinae

Argas (56 spp.) 
Ornothodoros (100 spp.) 
Otobius (2 spp.) 
Antricola (8 spp.) 
Nothoaspis (1 spp.) 

Dermacentor (30 spp.) 
Cosmiomma (1spp.) 
Nosomma (1 spp.) 
Rhipicentor (2 spp.) 

Boophilus (5 spp.) 
Margaropus (3 spp.) 

Rhipicephalus (70 spp.) 

Anomalohimalaya (3 spp.)
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Ecology and life cycle of ticks 

Ticks undergo a life cycle that includes four stages: egg, larvae, nymph, and adult (male 

and female). Adults and nymphs have 4 pairs of legs while the larvae have 3 pairs of legs. 

Transition form one stage to the next occurs by molting (USDA, 1976).  In most species, each 

active stage seeks a host, takes a bloodmeal, and drops off to develop in the natural 

environment, (Sonenshine, 1991). In the Argasidae, development is gradual involving multiple 

nymphal stages before becoming adults (multi-host life cycle), while in Ixodidae, development 

is accelerated and involves a single nymphal stage followed directly by adult stage (Sonenshine, 

1991). 

The number of tick generations may vary from 3 or 4 per year in the one host species 

such as Boophilus microplus, every 2 or 3 years in the Agasidae, or one every 2 or 3 years in some 

three host species, such as Dermacentor andersoni and Ixodes scapularis (USDA, 1976).  In one host 

ticks such as Boophilus spp. all stages remain on the host after the larval attachment. Larvae and 

nymphs feed and remain in situ following molting to the adult stage, the males and females 

remain to feed and mate, and only the fed, mated females drop to oviposit in the natural 

environment (Sonenshine, 1991). In the two host life cycle, fed larvae remain on the host, molt 

in situ and the unfed nymphs reattach. Following their engorgement the nymphs detach, they 

molt off the host to the adult stage, after which they seek a new host (Sonenshine, 1991). In 

three host ticks, the fed larvae drop from their hosts and undergo a molt after which the unfed 

nymphs seek and feed on a new host again. Engorged nymphs drop from their hosts and molt, 

after which the adults emerge to seek a host, feed, and mate.  The engorged females drop off 

of the host at the completion of feeding and oviposit, thus completing the life cycle 



 

 4

(Sonenshine, 1991). The three host life cycle is the most common developmental pattern for 

ticks (Sonenshine, 1991). 

Ticks as vectors of diseases 

Ticks, perhaps more than any other group of arthropods, are well suited for 

transmission of disease agents and they serve as vectors of protozoa, rickettsiae, viruses and 

bacteria to a variety of vertebrates throughout the world (reviewed by Kocan, 1995). In 

humans, ticks can cause tick paralysis and toxicosis,   irritation and allergic reactions (Estrada 

Peña and Jongejan, 1999). In North America, ticks are considered to be the most important 

arthropod vector of pathogens (Parola and Raoult, 2001). Many important tick-borne diseases 

such as Rocky Mountain spotted fever, crimean hemorrhagic fever and tick borne encephalitis 

have been known for some time, while recently emergent diseases include lyme disease, human 

monocytic ehrlychiosis and human granulocytic ehrlichiosis (Bowman et al. 1996).  

Ixodes spp. serve  as vectors of human diseases caused by Borrelia burgdorferi (lyme 

disease), Anaplasma phagocytophilum (human granulocytic ehrlichiosis), Coxiella burnetti (Q fever), 

Francisella tularensis (tularemia), Rickettsia helvetica, R. japonica and R. australis, Babesia divergens, B. 

microti, tick-borne encephalitis (TBE), and omsk hemorrhagic fever viruses (Table 1; Estrada-

Peña and Jongejan, 1999; Parola and Raoult, 2001). I. scapularis is the main vector of B. 

burgdorferi, the causative agent of human lyme disease in the eastern USA and Canada. The 

white-footed mouse (Peromuscus leucopus) serves as the primary reservoir of B. burdorferi and the 

major host for immature I. scapularis ticks. (McQuiston et al. 1999; Estrada-Peña and Jongejan, 

1999). Before and during the larval tick feeding, infected nymphs transmit B. burgdorferi to 

reservoir hosts. The newly hatched spirochete-free larvae acquire the bacteria from the 

reservoir host and retain the infection through molting process. In spring, nymphs derived 
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from infected larvae transmit infection to susceptible animals, which will serve as hosts for 

larvae later in the summer (Fish, 1993). Lyme disease is currently the most important tick-

borne disease of humans worldwide and the reported incidence of the disease in the USA has 

increased over recent years (Bowman et al. 1996). Most cases of Lyme disease have been 

reported along the northeastern coast, although the distribution of the vector appears to be 

spreading (Estrada Peña, 2001). 

I. scapularis also transmits Babesia microti, the protozoan parasite responsible for human 

babesiosis in the Neartic. The major reservoir host for B. microti is the white-footed mouse, 

Peromyscus leucopus, although mead wolves (Microtus pennsylvanicus) may also act as reservoirs 

(Reviewed by Estrada-Peña and Jongejan, 1999). Nymphs are the primary vectors, although 

adults may transmit the infection. Human babesiosis caused by B. microti has remained a minor 

public health concern in the USA. Until 1993, about 200 cases had been recognized 

(Sonenshine, 1993). 

Human granulocytic ehrlichiosis, caused by Ehrlichia phagocytophila is a disease 

distributed in the midwestern and northeastern USA and also in California. Larval I. scapularis 

ticks acquire the infection by feeding on infected mice, and they also efficiently transmit 

Ehrlichiae after molting to nymphs. Granulocytic ehrlichiosis is a zoonotic disease and dogs 

may contribute to the enzootic cycle and human infection (Estrada-Peña and Jongejan, 1999).    
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Table 1. Ixodes species, pathogens transmitted and distribution (adapted from Estrada- 
Peña and Jongejan, 1999) 

 
Species 
 

 
Pathogen 

 
Distribution 

I. holocyclus Rickettsia australis Australia 
I. ovatus Borrelia japonica Japan 
I. pacificus B. burgdorferi USA, Canada 
I. persulcatus Omsk hemorrhagic fever virus Japan, former USSR 
 B. afzelii  
 B. garinii  
 B. burgdorferi  
 TBE virus  
I. ricinus B. afzelii Europe, Western former USSR, 

Northern Africa 
 B. garinii  
 B. lusitaniae  
 B. valasiana  
 B. burgdorferi  
 Ehrlichia phagocytophilum  
 TBE virus  
 Babesia divergens  
 Rickettsia Helvetica  
I. scapularis B. burgdorferi USA (Atlantic coast), 

Southeastern Canada 
 Babesia microti  
 Ehrlichia phagocitophilum  

 
Distribution of Ixodes spp.  

I. scapularis is found along the eastern and central United States (Denis et al. 1998) and 

the hosts range extends from Canada to Mexico (USDA, 1976). The upper boundary is located 

in Maine westward to Minnesota and Iowa (Wilson et al. 1988). The I. scapularis distribution 

correlates with the distribution of its principal host, the white-tailed deer (Odocoileus virginianus) 

(Wilson et al. 1988). Only deer or other large animals appear capable of supporting high 

populations of these ticks (Duffy et al. 1994). I. scapularis may be locally common and abundant 
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in periods of good climate conditions, while almost absent or with greatly reduced densities in 

periods of adverse climatic conditions (Estrada-Peña and Jongejan, 1999).  

The western black legged tick, I. pacificus, is distributed primarily throughout the Pacific 

cost of the United States, where the western fence lizards (Sceloporus occidentalis) and Columbian 

black-tailed deer (Odocoileus hemionus comlumbianus) serve as the major hosts (Dennis et al. 1998). 

In Canada I. pacificus is endemic in localized areas of southern British Columbia and on the 

Gulf Islands and Vancouver Island (CCDR, 1998). I. dentatus, I. spinipalpis, and I. noeotomae are 

present in the United States; however, these ticks rarely feed on humans, and therefore this 

tick is of lesser importance compared with I. scapularis or I. pacificus. 

 I. ricinus is distributed in Europe from Ireland, Britain, and France where populations 

are associated with sheep pastures, to southern Scandinavia eastwards across Europe to 

northern Iran and southward to the Mediterranean littoral (Sonenshine, 1993; Vasallo, 2000). 

This species is also found in small numbers in forested areas in North Africa and in the Levant 

countries of the eastern Mediterranean (Sonenshine, 1993). The Taiga tick, I. persulcatus, is 

found in a large portion of southern Siberia, Far East, and middle Asia (Durden and Keirans, 

1996). 

I. scapularis life cycle 

I. scapularis is a three-host tick and each stage feeds on a different host. Adult female 

ticks feed for five to seven days, while the male ticks feed only intermittently. Adult ticks feed 

on large animals, preferentially white-tailed deer (Odocoileus virginianus) (Wilson et al. 1990), but 

they also feed on cattle, horses, dogs, sheep, hogs, and human. Nymphs feed primarily on 

birds, small mammals, and occasionally lizards (USDA, 1976). Replete females lay between 

1000-3000 eggs (Wilson et al. 1990), and the eggs are deposited in the spring and hatch in mid-

summer (Sonenshine, 1993).  
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The I. scapularis larvae fed during the warm summer period, prior to late September, 

molt to nymphs that survive the winter as unfed nymphs (Wilson et al. 1990; Sonenshine, 

1993). Larvae fed later in the fall are believed to overwinter as engorged larvae and molting to 

the nymphal stage occurs the following spring or summer. In contrast, larvae fed in spring 

molt immediately, and the subsequently-molted nymphs seek hosts throughout the late spring 

and early summer months, with the peak populations occurring in June. Nymphs that feed and 

incubate during the long photoperiod of the northern summer molt to adults and commence 

questing soon after their emergence. These patterns of feeding activity and development result 

in a 2-year life cycle (Sonenshine, 1993).  

As reviewed by Estrada-Peña and Jongejan (1999), I. scapularis ticks require moist 

microclimates for survival, including habitats with leaf-litter and one in which a high canopy of 

mixed deciduous forests provides protection from extreme temperatures. I. scapularis accounts 

for 76.2% of the ticks collected on humans in southern New York, but comprise only 3.9% of 

the ticks collected in Georgia and South Carolina. 
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Females lay eggs
off the host

Adults feed and mate 
on white-tailed deer

Larvae feed on small mammals
(white-footed mouse)

Nymps feed on dogs, 
humans, and other
mammals

Nymphs leave the
host and molt to
adults

Eggs hatch to
larvae

Figure 1. Life cycle of I. scapularis. 

Host immune response to tick infestations 

Compared with other ectoparasites, ticks have a unique and long-term association with 

the host (Bowman et al. 1996). After attachment to a host, ixodid ticks ingest a copious meal of 

blood during a prolonged attachment. Females imbibe more than 100 times their unfed body 

weight (Bowman et al. 1997) and  may feed for several days or even weeks during which  their 

mouth parts become embedded into the dermis of their vertebrate hosts (Valenzuela et al. 2000). 

Ixodid ticks feed for extended periods of   two weeks or more. As the tick feeds, it  

alternates between     imbibing     blood     components    infiltrating into the feeding lesion   and 
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returning excess of fluid and ions back to the host via the saliva, thus concentrating the blood 

meal nutrients in the gut for future egg production (Bowman et al. 1996).  

Ticks must overcome their host’s innate immune mechanisms in order to complete 

engorgement (Lawrie et al.1999). Protracted attachment and feeding is possible largely because 

of properties of the tick’s saliva, which contains bioactive substances that counter host 

immune, inflammatory and hemostatic responses at the feeding site (Bowman et al. 1997). 

Pathogens are most often transmitted from infected ticks to the host via the salivary secretions 

(USDA, 1976). Salivary secretions also play an   important role in the transmission of these 

pathogens by serving as a medium of transport for pathogens and may contribute to their 

establishment.     

Tick attachment and feeding often causes an immune response that result in tick 

rejection or anti-tick immunity (Valenzuela, 2002). The primary effect of immune rejection is 

infiltration of the wound site with watery fluids instead of hemoglobin-rich blood which is the 

target of tick feeding and digestion. Therefore, ticks feeding performance, attachment success 

and/or engorged weight are greatly reduced when ticks are allowed to feed   on a previously-

infested host (Sonenshine, 1993). In addition to being unable to feed on blood, a secondary 

effect of the host immune response is the direct damage to tick tissues and physiological 

processes (Sonenshine, 1993). 

Although hosts are usually unable to develop resistance during the initial tick challenge, 

they mount an effective immune response when challenged by subsequent feedings resulting in 

an acquired immunity (Sonenshine, 1993). Tick exposure typically leads to immune responses 

by the hosts that are directed against antigenic moieties at the attachment site and in tick 

tissues (Willadsen, 2001).  
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I. scapularis is able to feed repeatedly on its natural host, the white footed mouse, 

Peromyscus leucopus, primarily because of anticomplement activity in the saliva   (Valenzuela et al. 

2000).  Rabbits or guinea pigs infested with I. scapularis acquire resistance to tick bites, which is 

partially mediated by antibodies (Das et al. 2001). Repeated exposure of rabbits, cattle, dogs, 

and guinea pigs to ticks has been shown to interfere with tick feeding, molting and fecundity 

(Das et al. 2001). 

Infestations with I. scapularis nymphs were   shown to modulate the host T-lymphocyte 

cytokine production (Schoeler et al. 1999). Tick-induced suppression of cytokines not only 

enhances the ability of the tick to feed but may also contribute to pathogen transmission 

(Schoeler et al. 1999). Host reaction to tick antigens, including humoral or cellular responses, 

will then affect subsequent tick infestations (Das et al. 2001). 

Tick resistance has been demonstrated by observing a reduction in the number of 

feeding ticks, weights, feeding rates, a reduction in the ability of fed larvae or nymphs to molt 

to the next stage, and/or reduced progeny (Allen, 1989). Increased feeding periods, decreased 

egg production, inhibited molting and egg and tick mortality have been all well documented 

after ticks feed on resistant hosts (Schoeler, 1999). Acquired resistance is most evident in 

recent or unstable host-parasite interactions, abnormal hosts on which the tick do not usually 

feed or in non-specific host-parasite associations (Sonenshine, 1993). For example, infestation 

of raccoons with I. scapularis resulted in a significant decrease in the proportion of engorged 

larvae after repeated applications of both nymphs and larvae (Craig et al. 1996). In contrast, 

ticks in long established host parasite relationships have evolved mechanisms to suppress or 

evade the immune response (Sonenshine, 1993).  
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Control of tick infestations 

Currently, the most effective method of tick control is by using chemical acaricides 

(USDA, 1976) which are   commonly applied to the host by dipping animals in tanks or vats 

containing a solution of acaricide. Dipping is more effective than spraying for achieving 

satisfactory coverage of cattle with the acaricide. Other means of applying acaricides that are 

less commonly used include spot or pour-on application, slow release acaricide boluses, and 

acaricide-impregnated ear tags (Norval et al.1992). Systemic treatments like ivermectin have 

also been used for tick control (Wilson, 1993), but are often impractical because of the expense 

of the chemicals.  Since the usual method of tick dispersion is by movement of the host, 

chemical control can be most effectively used when animals are in quarantine or when animal 

movements are regulated (USDA, 1976). Besides the expense, acaricides require stringent 

application regimens and management strategies, and may contribute to environmental 

pollution. In addition, ticks may develop resistance to acaricides, and cattle, especially calves, 

may be susceptible to toxic effects of acaricides (Kocan, 1995). In addition, acaricide 

applications may not reduce tick populations in a given area. Ticks are often not attracted to 

treated cattle; therefore tick populations may remain essentially unaffected (Kocan, 1995). 

Control of tick infestations is difficult and often impractical for multi-host ticks such 

as Ixodes spp. Currently, tick control is effected most often by integrated pest management in 

which different control methods are adapted to a given geographic location  or against one tick 

species with due consideration to their environmental effects (de la Fuente et al. 1998). 

Tick vaccines 

In the past years efforts had focused on development of vaccines against tick-borne 

pathogens.  However, the tick may vector two or more diseases. Therefore, vaccination may 
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serve as an alternative for prevention of tick-borne diseases that would be directed against a 

tick antigen with the aim of interrupting pathogen transmission (Kay and Kemp, 1994). Two 

strategies have been adopted for anti-tick vaccine development: (1) mimicking acquired 

resistance and (2) targeting internal tick organs (Wang and Nuttall, 1999). Development of 

vaccines against ticks is feasible because ticks feed slowly, remaining in contact with the host’s 

immune system for days or weeks.  This long-term association provides the opportunity for 

the tick gut epithelium to be exposed to host antibodies ingested with the blood meal.  

Because tick digestion is largely intracellular the gut environment has   a neutral pH and is 

relatively free of proteases (Willadsen, 2001). 

Development of vaccines against the one-host tick Boophilus spp. has demonstrated the 

feasibility of using protective antigens for immunization against tick infestations (Willadsen 

and Kemp, 1998; de la Fuente et al. 1999; de la Fuente 2000; de Vos et al. 2001). Control of 

ticks by vaccination avoids environmental contamination and selection of drug resistant ticks 

that results from repeated acaricide applications (de la Fuente et al. 1998).  

Anti-tick vaccines would also allow for inclusion of multiple antigens in order to target 

a broad range of tick species and for incorporation of pathogen-blocking antigens. Willadsen 

and Kemp (1998) isolated and characterized genes expressed in tick cells that are essential for 

tick survival. These antigens encode protective antigens for vaccination against the cattle tick 

B. microplus. This strategy relies on identification of tick antigens that are not naturally exposed 

to the host and are capable of eliciting a protective response upon immunization.  A protective 

antigen, Bm86, was identified from the gut of semi-engorged adult female B. microplus ticks and 

produced in large quantities by recombinant DNA technology for use in a vaccine (de la 

Fuente et al. 1999).  
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In addition to Bm86, other gut antigens have been isolated from B. microplus and 

evaluated in vaccination experiments. The Bm91 gut and salivary antigen elicits partial 

protection against B. microplus with an added effect when used in combination with Bm86 

(Riding et al. 1994). The Bm95 gut antigen was isolated from an Argentinean strain of B. 

microplus and was found to protect against a wider range of B. microplus strains when compared 

to Bm86 (Garcia-Garcia et al. 2000).  Bm86 vaccine induces production of antibodies that bind 

to the intestinal cells causing them to lyse, and thereby interfering with the blood-feeding 

activity of the tick (Dalton and Mulcahy, 2001). However, immunization with Bm86 failed to 

protect against Amblyomma spp. (de Vos et al. 2001), and the vaccine did not have an immediate 

effect on reducing the numbers of ticks (Dalton and Mulcahy, 2001). In addition, efforts to 

develop a vaccine against 3-host ticks, particularly Rhipicephalus appendiculatus, have been 

unsuccessful (Castro, 1997). Therefore the screening and identification of novel protective 

antigens is necessary for the identification of vaccine candidates against tick infestations of 

these species of medical and veterinary importance. 

Expression library immunization (ELI) 

Expression library immunization (ELI) is an alternative approach for identification of 

protective antigens (Moore et al. 2002). Unlike methods used previously, ELI does not require 

prior knowledge of possible antigenic targets and has the potential to screen the entire 

genome. ELI involves the construction of genomic libraries, vaccination of hosts with naked 

DNA from the libraries, and screening through a disease model to demonstrate whether 

clones from the library confer protection against ticks or disease agents (Moore et al. 2002). 

Studies in mice suggest that DNA immunization is one of the most simple and yet versatile 

methods of inducing both humoral and cellular host immune responses (van Drunen Littel-

van den Hurk et al. 2001).   
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To obtain a cDNA vaccine, RNA is extracted from a given parasite. Then, by reverse 

transcription, the cDNA coding for a potentially protective antigen is amplified, and 

subsequently cloned into a plasmid vector under the control of a strong eukaryotic promoter. 

The vector is then administered to a host organism where it undergoes expression and the 

expressed protein elicits an immune response that results in resistance to any particular disease 

(Kofta and Wedrychowiez 2001). DNA vaccines are strongly immunogenic, inducing immune 

mechanisms different from the active response, which would be a crucial factor in their 

efficiency. In addition, DNA itself can act as an adjuvant (Kofta and Wedrychowiez, 2001).  

ELI was first used to identify protective antigens against Mycoplasma pulmonis after 

immunization of mice with cloned genomic DNA in pools of 3000-27000 plasmids (Barry et al. 

1995). Subsequently, ELI has been used for antigen identification of other parasites, primarily 

protozoa such as Tripanosoma cruzi. An expression genomic library was constructed using 

pcDNA3 plasmid for immunization of mice and expression of T. cruzi antigens was detected 7 

days after intramuscular immunization of mice (Alberti et al. 1998).  

A genomic Plasmodium chabaudi expression library was constructed comprising ten 

separate pools containing 3000 plasmids. In three vaccine trials using pools composed of 616 

to 30,000 clones, 63% protection was found in mice challenged with P. chabaudi adami 

(Smooker et al. 2000). 

Melby et al. (2000) immunized BALB/c mice with plasmid DNA isolated and pooled 

from 15 cDNA sub-libraries, following systemic challenge with L. donovani. Mice immunized 

with 6 of these 15 sub-libraries shown a significantly reduction of hepatic parasite burden. 

Several groups of cDNAs that afforded protection were identified, including a set of nine 

novel cDNAs and a group of cDNAs that encoded L. donovani histone proteins. 
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This methodology was applied then to helminths for development of a DNA vaccine 

against rats experimentally infected with the liver fluke Fasciola hepatica. A reduction of 74% in 

the fluke burden per animal was found in vaccinated animals and flukes the livers appeared 

histologically normal in contrast to livers from unvaccinated rats that were markedly damaged 

(Kofta et al. 2000). 

Vaccination with DNA and cDNA molecules has been used to induce a protective 

immune response against B. microplus (De Rose et al. 1999). However, identification of 

individual protective clones was not reported. The difficulty in identifying protective antigens 

will most likely increase with the complexity of the organism genome.  

Analysis of expressed sequence tags (EST) 

The analysis of expressed sequence tags (ESTs) has proven to be a valuable approach 

in gene discovery and has generated a large pool of coding sequences (Boguski et al. 1993). 

This approach has resulted in valuable information for the study of biological systems and for 

the identification of potential vaccine candidates (Lizotte-Waniewski et al. 2000; Kressler et al. 

2002). Hill and Gutierrez (2000) reported the EST approach to study the genome of 

Amblyomma americanum. Analysis of ESTs has   been used to characterize gene expression in 

salivary glands of I. scapularis and I. ricinus (Valenzuela et al. 2000; Valenzuela et al. 2002). Other 

tick species such as A. variegatum (Nene et al. 2002), and Dermacentor variabilis (Mulenga et al. 

2003) have been studied by ESTs. The characterization of I. scapularis EST sequences will 

provide a basis for future research in anti-tick vaccines, with an important role in the reduction 

of transmission of tick-borne pathogens. 

Expression profile and functional analysis 

Evaluation of the extent of antigens in tick’s tissues is important in order to detect 

protective antigens. Penichet et al. (1994) detected gut cell recognition to antiserum from cattle 
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vaccinated with the recombinant Bm86 antigen. Expression of Troponin I-like protein from 

the hard tick Haemaphysalis longicornis was detected by immunohistochemistry (You et al. 2001). 

In addition, the expression profile can also be tested in different phases from the tick 

development by reverse transcription-polymerase chain reaction (RT-PCR).  

RNA interference (RNAi), or the induction of sequence specific gene silencing by 

double stranded RNA (dsRNA), is accomplished when expression of double-stranded RNA 

leads to specific decreases in the abundance of cognate mRNAs (Sorensen, 2003). dsRNAs can 

be delivered in a variety of ways, including introduction of large or small dsRNA directly, and  

through expression from appropriate expression vectors following transfection (Hannon, 

2002). This approach was first described in the nematode Caenorhabditis elegans (Fire et al. 1998). 

Messenger RNA-specific anti-sense oligonucleotides were used to inhibit the in vitro gene 

expression of the protozoa Trypanosoma congolense (Inoue et al. 2002). In arthropods, RNAi 

allowed for the targeting of specific genes in Drosophila melanogaster adult fly (Kalidas and Smith, 

2002). Recently, the first application of RNAi in ticks was reported (Aljamali et al. 2003). A 

dsRNA from an A. americanum histamine binding protein was cloned and incubated with tick 

salivary glands. Results showed a lower histamine binding ability, suggesting that RNAi might 

be an important tool for target encoded gene proteins (Aljamali et al. 2003). Experiments in vivo 

can be performed (Kalidas and Smith, 2002) in which molecules of interest may be injected 

into the hemolymph in order to interrupt vital functions of the tick. 

Tick genomics and proteomics are likely to evolve into projects addressing the 

sequencing, annotation and functional analysis of entire tick genomes, providing invaluable 

information for the development of tick vaccines. EST databases provide an inclusive catalog 

of potential vaccine candidate antigens. The use of this information in conjunction with 

bioinformatics, RNAi, mutagenesis, immunomapping, transcriptomics, proteomics, ELI and 
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other emerging technologies should allow for a systematic and comprehensive approach to 

vaccine discovery. In addition, the screening of protective clones by ELI of cDNA libraries 

constructed from different tick tissues, developmental stages and from genes expressed in 

response to various stimuli, including tick feeding or infection with pathogens, will provide 

exciting possibilities for the identification of new antigens protective against tick infestations 

and may also allow for identification of antigens that interfere with pathogen development and 

transmission. Vaccination trials can be also designed to evaluate the effect of selected tick 

antigens, in combination with pathogen-specific antigens, in reducing transmission of tick-

borne pathogens. 
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RESEARCH PROBLEM 

Because of the importance of ticks to livestock and public health and the difficulty of 

controlling them, vaccines would be an improved and effective control method for   ticks of 

medical and veterinary importance. The use of acaricides for tick control is less desirable 

because of the risk of environmental contamination and selection of resistant ticks. Recently, 

a successful vaccine against the cattle tick B. microplus was produced by recombinant 

technology (de la Fuente et al. 1999). However, this vaccine did not protect against 

Amblyomma spp. (de Vos et al. 2001).  The screening and identification of novel protective 

antigens is therefore needed in order to identify vaccine candidates that would protect 

against multiple tick species.  Expression library immunization (ELI) is a new method for 

discovery of potential vaccine antigens and, unlike more traditional methods, ELI does not 

require prior knowledge of possible antigenic targets and also provides the opportunity to 

screen the entire organism genome.  ELI in combination with analysis of expressed sequence 

tags (ESTs) provides an alternative approach for identification of protective antigens 

through the rapid screening of the expressed genes in immunized hosts.  Several reports 

have demonstrated that antigens identified by ELI have provided a degree of protection 

when used in vaccine formulations (Barry et al. 1995; Alberti et al. 1998; Smooker et al. 2000; 

Melby et al. 2000). However, this methodology has not been used in arthropods and, 

specifically in ticks. In this research we hypothesized that cDNAs encoding protective 

antigens against I. scapularis infestations can be identified by ELI of a cDNA library 

constructed from a tick cell line (IDE8) that was derived from embryonic I. scapularis.  

Herein, we proposed to screen and characterize genes expressed in I. scapularis that are 

essential for tick larval development and encode protective antigens by cDNA-ELI. The 
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putative function were determined by analysis of ESTs. Candidate vaccine antigens for 

control of tick infestations were then tested in mice and rabbits model systems and in a tick 

capillary feeding system.   

The specific objectives of the research proposed herein are: 

1. To construct a cDNA expression library from cultured IDE8 tick cells. 

2. To identify genes encoding protective antigens against tick larvae by expression library 

immunization using a mouse model of I. scapularis infestation. 

3. To clone and sequence selected genes and to predict putative protein function 

according to sequence databases. 

4. To express protective antigens in E. coli to produce recombinant antigens for protein 

characterization and vaccine formulations. 

5. To characterize the biological function, expression profile and sequence conservation 

of genes encoding protective antigens across ixodid tick species.  

6. To test the efficacy of recombinant vaccine formulations in mice and rabbits against 

the different developmental stages of I. scapularis. 



 

 25

C  h  a  p  t  e  r  2  

IDENTIFICATION OF PROTECTIVE ANTIGENS FOR THE CONTROL OF 
Ixodes scapularis INFESTATIONS USING cDNA EXPRESSION LIBRARY 

IMMUNIZATION  

Consuelo Almazán, Katherine M. Kocan, Douglas K. Bergman, Jose C. Garcia-Garcia, 
Edmour F. Blouin and José de la Fuente. Vaccine 2003, 21: 1492-1501. 

Abstract 

Identification of antigens that induce an immune response against tick infestations is 

required for the development of vaccines against these economically important ectoparasites. 

In order to identify protective antigens, we constructed a cDNA expression library from a 

continuous Ixodes scapularis cell line (IDE8) that was initially derived from tick embryos.  

cDNA clones were subjected to several rounds of screening in which mice were immunized 

with  individual pools and then challenge-exposed by allowing I. scapularis larvae to feed on the 

immunized and control mice. Immunity against tick infestation was determined by the 

reduction in the ability of the larvae to attach, feed to repletion and molt to the nymphal stage. 

Individual clones in pools that induced immunity to larval infestations were partially sequenced 

and grouped according to their putative protein function by comparison with sequence 

databases. The screening identified several individual antigens that induced a protective 

immune response against I. scapularis infestations. Our studies demonstrated for the first time 

that cDNA expression library immunization (ELI) combined with sequence analysis is a 

powerful and efficient tool for identification of candidate antigens for use in vaccines against 

ticks. 

Keywords: tick, vaccine, tick cell culture, cDNA library immunization 
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Introduction 

Ticks are ectoparasites of wild and domestic animals and humans, and they transmit 

pathogens including fungi, bacteria, viruses and protozoan. Currently, ticks are considered to 

be second in the world to mosquitoes as vectors of human diseases, but they are considered to 

be the most important vector of pathogens in North America [1]. Ixodes spp. are distributed 

worldwide and are vectors of human pathogens, including Borrelia burgdorferi (Lyme disease), 

Anaplasma phagocytophila (human granulocytic ehrlichiosis), Coxiella burnetti (Q fever), Francisella 

tularensis (tularemia), B. afzelii, B. lusitaniae, B. valaisiana and B. garinii, Rickettsia helvetica, R. japonica 

and R. australis, Babesia divergens, as well as tick-borne encephalitis (TBE) and Omsk 

Hemorrhagic fever viruses [1, 2]. Throughout eastern and southeastern United States and 

Canada, I. scapularis (the black legged tick) is the main vector of B. burgdorferi sensu stricto and 

A. phagocytophila [1, 2].  

Control of tick infestations is difficult and often impractical for multi-host ticks such 

as Ixodes spp. Presently, tick control is effected by integrated pest management in which 

different control methods are adapted in a geographic area against one tick species with due 

consideration to their environmental effects. Recently, development of vaccines against one-

host Boophilus spp. has provided new possibilities for the identification of protective antigens 

for use in vaccines for control of tick infestations [3-7]. Control of ticks by vaccination would 

avoid environmental contamination and selection of drug resistant ticks that result from 

repeated acaricide application [8, 9]. Anti-tick vaccines also allow for inclusion of multiple 

antigens in order to target a broad range of tick species as well as pathogen-blocking antigens.  

A new technique, expression library immunization (ELI), in combination with 

sequence analysis, provides an alternative approach for identification of potential vaccine 

antigens that is based on rapid screening of the expressed genes without prior knowledge of 
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the antigens encoded by the cDNAs. ELI was first reported for Mycoplasma pulmonis [10] and 

since then has been used for unicellular and multicellular pathogens and viruses [11-17].  

However, the identification of individual protective clones has not been reported and it was 

predicted that the identification of protective antigens would be more difficult as the 

complexity of the genome increases.  

Herein we describe the first application of ELI to arthropods, specifically ticks. A 

combination of cDNA ELI and sequence analysis resulted in the identification of individual 

protective antigens against I. scapularis infestations.  

2. Materials and Methods 

2.1. Tick cells 

Monolayers of IDE8 (ATCC CRL 1973) cells, originally derived from embryonic I. 

scapularis, were maintained in 25 cm2 flasks at 31oC in L-15B medium supplemented with 5% 

fetal bovine serum, tryptose phosphate broth and bovine lipoprotein concentrate (ICN, Irvine, 

CA) after Munderloh et al. [18].  Cells were subcultured at a density of 2 x 105 cells/cm2.  

Medium was replaced weekly.   

2.2. Library construction  

A cDNA expression library was constructed in the vector pEXP1 containing the 

strong human cytomegalovirus major immediate early promoter/enhancer (CMVIE) (Clontech, 

Palo Alto, CA).  We chose to construct our library from cultured embryonic I. scapularis IDE8 

cells-derived poly(A)+ RNA in order  to target the early larval stages of I. scapularis. The cDNA 

library contained 4.4 x 106 independent clones and a titer of approximately 1010 cfu/ml with 

more than 93% of the clones with cDNA inserts. The average cDNA size was 1.7 kb (0.5-4.0 

kb).  
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2.3. Library screening by ELI  

2.3.1. Primary screen 

The overall schema for identification of protective antigens through ELI, sequential 

fractionation and sequence analysis is shown in Fig. 1. 

Ninety six LBA (master) plates containing an average of 41 (30-61) cDNA clones per 

plate were prepared. Replicas were made and clones from each plate were pooled, inoculated 

in Luria-Bertani with 50 µg/ml ampicillin, grown for 2 hr in a 96-well plate and plasmid DNA 

purified from each pool (Wizard SV 96 plasmid DNA purification system, Promega, Madison, 

WI). BALB/c female mice, 5-6 weeks of age at the time of first vaccination, were used. Mice 

were cared for in accordance with standards specified in the Guide for Care and Use of 

Laboratory Animals.  

Mice were injected using a 1 ml tuberculin syringe and a 27½G needle at days 0 and 

14. Three mice per group were each immunized IM in the thigh with 1 µg total DNA/dose in 

50 µl PBS. Two groups of 3 mice each were included as controls. One group was injected with 

1 µg vector DNA alone and the second with saline only. Two weeks after the last 

immunization, mice were infested with 100 I. scapularis larvae per mouse. Ticks were reared at 

the Oklahoma State University Tick Rearing Facility by feeding larvae on mice, nymphs on 

rabbits and adults on sheep. For these experiments, larvae were obtained from the eggs 

oviposited by sister females. Twelve hours after tick infestation, larvae that did not attach were 

counted in order to calculate the number of attached larvae per mouse. Mice were then 

transferred to individual cages with an elevated ¼” mesh wire platform with water (½” deep) 

in the bottom of the cage. Replete larvae dropping from each mouse were collected daily from 

the water and counted during 7 days. Time for larval development was evaluated from the day 

of tick infestation to the day in which the maximum number of replete larvae was collected. 
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The inhibition of tick infestation (I) for each test group was calculated with respect to vector-

immunized controls as  [1-(RLn/RLc x RLic/RLin)] x 100, where RLn is the average number 

of replete larvae recovered per mouse for each test group, RLc is the average number of 

replete larvae recovered per mouse for control group, RLic is the average number of larvae 

attached per mouse for control group, and RLin is the average number of larvae attached per 

mouse for each test group.  

2.3.2. Secondary screen 

After the primary screen of 66 cDNA pools (2705 clones), 9 pools (351 clones) with 

I≥60% were selected for the secondary screen (re-screening) employing 5 mice per group as 

described above. Control mice were immunized with the negative (I=0%) F2 cDNA pool or 

saline only. A group was included that was immunized SC with two doses of 100 µg of total 

IDE8 tick cell proteins per dose in Freund’s incomplete adjuvant. Engorged larvae were held 

in a 95% humidity chamber and allowed to molt. Molting of engorged larvae was evaluated 34 

days after the last larval collection by visual examination of ticks under a dissecting light 

microscope. The inhibition of molting (M) for each test group was calculated with respect to 

controls as  [1-(MLn/MLc x RLc/RLn)] x 100, where MLn is the number of nymphs for each 

test group, MLc is the number of nymphs for the control group, RLc is the number of larvae 

recovered for the control group, and RLi is the number of larvae recovered for each test 

group.  

2.3.3. Sequence analysis 

Immunization of mice with all 9 pools (351 cDNA clones) tested in the secondary 

screen effected immunity to larval tick infestation. Therefore, DNA from individual clones in 

these pools was purified (Wizard SV 96 plasmid DNA purification system, Promega, Madison, 

WI) from the master plate and partially sequenced with a 5’ vector-specific primer (5’-
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CGACTCACTATAGGGAG-3’) at the Core Sequencing Facility, Department of 

Biochemistry and Molecular Biology, Noble Research Center, Oklahoma State University, 

using ABI Prism dye terminator cycle sequencing protocols developed by Applied Biosystems 

(Perkin-Elmer Corp., Foster City, CA). In most cases a sequence larger than 700 nucleotides 

was obtained. Nucleotide sequences were analyzed using the program AlignX (Vector NTI 

Suite V 5.5, InforMax, North Bethesda, MD). BLAST [19] was used to search the NCBI 

databases to identify previously reported sequences with homology to those that we 

sequenced. Sequence analysis allowed grouping the clones according to sequence identity to 

DNA databases and predicted protein function. 

2.3.4. Tertiary screen 

For the tertiary screen, 64 clones were grouped in 16 sub-pools each containing 1 to 17 

plasmids according to the predicted function of encoded proteins (e.g. all the plasmids that 

encoded histone proteins were grouped together) and used, along with 4 sub-pools containing 

182 clones of unknown function or with sequences without homology to sequence databases, 

to immunize 4 mice per group.  Mice were immunized with 0.3 µg/plasmid/dose in 50 µl PBS 

and evaluated as described above. Control mice were immunized with a pool of 20 plasmids 

containing mitochondrial cDNAs. The inhibition of molting (M) for each test group was 

calculated with respect to controls as described above. The protection efficacy was calculated 

for cDNA sub-pools resulting in I>1 and M>1 as E (%) = 100 x [1-(RI x RM)] where RI 

(reduction in tick infestation) = 1-I/100 and RM (reduction in molting) = 1-M/100. 

2.4. Microscopy 

Selected ticks were fixed in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2),  
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dehydrated in a graded series of ethanol washes and embedded in epoxy resin after Kocan et 

al. [20].  Thick sections (1.0 µm) were cut and stained with Mallory’s stain [21] for light 

microscopic observation.   

2.5. Characterization of the immune response in vaccinated mice by Western blot  

Mice were euthanatized by cervical dislocation, blood was collected and the serum 

removed. One hundred micrograms of IDE8 tick cell proteins were loaded in an 8% 

polyacrylamide gel [22] using a preparative comb. SDS-PAGE gels were transferred to a 

nitrocellulose membrane.  Strips were made and membranes were blocked with 5% skim milk 

for 1 hr at room temperature.  Sera from immunized and control mice were diluted 1:10 in 

TBS and incubated with the membrane for 1 hr at room temperature. The membrane was 

washed 3 times with TBST and incubated for 1 hr at room temperature with goat anti-mouse 

IgG alkaline phosphatase conjugate (KPL, Gaithersburg, MD) diluted 1:10,000. The 

membrane was washed again and the color developed using Sigma Fast BCIP/NBT alkaline 

phosphatase substrate tablets.   

2.6. Statistical analysis 

In each round of screening, the number of larvae attached per mouse and the number 

of engorged larvae recovered per mouse 7 days after infestation were compared by Student’s t-

test between cDNA-immunized and control vector DNA-immunized mice (primary screen), 

between mice immunized with positive cDNA pools and the control negative F2 cDNA pool 

(secondary screen) or between test cDNA sub-pools-immunized and control mice immunized 

with mitochondrial cDNAs (tertiary screen). 
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3. Results 

3.1. Primary screen 

Pools of approximately 41 (30-61) I. scapularis cDNA clones were screened by ELI. 

Only 33 cDNA pools and 2 control groups were analyzed per experiment. The average tick 

infestation level in two experiments was 50±13 and 56±15, and 56±15 and 54±18 

larvae/mouse for cDNA immunized and control mice, respectively (P>0.05) (Table 1). The 

average number of engorged larvae recovered per mouse was 9±3 and 13±4 in the cDNA-

immunized mice and 16±4 and 17±3 in the control vector-immunized group (P<0.05) (Table 

1). Reduction in the number of larvae collected from mice that received the vector DNA was 

not observed compared with the saline-immunized controls (data not shown). The average 

inhibition of tick infestation (I) was 49±28% and 30±22% (Table 1). The maximum number of 

engorged larvae was collected 3 to 4 days after infestation. However, when larvae were fed on 

mice immunized with cDNA pools B5, A8 and A10 (Fig. 2), a retardation of larval 

development in 1 to 2 days was observed (data not shown). After two experiments covering 

the analysis of 66 pools (2705 clones), 9 protective pools (351 clones) were selected producing 

inhibition of tick infestations I≥60% (Fig. 2A and 2B and Table 1). Because of the complexity 

of the screening procedure in mice vaccinated and challenged with tick larvae, it was difficult 

to work with more than 9 protective cDNA pools. Therefore, we did not continue screening 

new cDNA pools and focused our attention on the 9 pools selected after the primary screen. 

3.2. Secondary screen and sequence analysis 

The secondary screen was done to verify the protective capacity of the cDNA pools 

selected after the primary screen (Fig. 2A and 2B). Positive results were observed in all 9 

protective cDNA pools in the secondary screen. Tick infestation levels were higher in this 
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experiment (average 85±6 and 84±3 larvae/mouse for cDNA-immunized and control mice, 

respectively; P>0.05). Nevertheless, the average number of engorged larvae recovered per 

mouse was 39±7 and 26±6 for control and cDNA-immunized mice, respectively (P<0.05). 

The group immunized with total IDE8 tick cell proteins was protected with I=33%. Again, no 

reduction was observed in the number of larvae collected from mice that were injected with 

the control cDNA (F2 negative pool after the primary screen; Fig. 2A) compared to saline-

immunized controls (data not shown).   

In the secondary screen, molting of engorged larvae was evaluated after 34 days. 

Molting was affected in all but one test cDNA-immunized group. Inhibition of molting in test 

cDNA-immunized mice compared to the control cDNA-immunized group varied from 0% to 

12% (6±4%). Differences were not observed between control cDNA and saline-immunized 

mice. Among the larvae that did not molt to the nymphal stage, some were visibly different 

from the controls and had a bright red color. The percent of red larvae in cDNA-immunized 

mice varied between 3% to 18 % (7±5%) while in the saline and control cDNA-immunized 

groups red larvae represented the 6% and 4%, respectively.  

Plasmid DNA from the 351 individual clones in the 9 protective pools was isolated 

and partially sequenced. Comparison to sequence databases permitted identification of 

sequence identity with previously reported genes with known function in 152 (43%) of the 

clones (Table 2). Fifty seven percent of the sequences were homologous to genes with 

unknown function or had no significant identity to previously reported sequences (Table 2). 

Of the clones with sequence identity to genes with known function, 85% were homologous to 

arthropod sequences. Ninety three clones (61%) contained sequences homologous to 

Drosophila melanogaster, 5 (3%) to other insects and 32 (21%) to Ixodid tick species. Thirty 
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percent of the clones were eliminated from further analysis based on their sequence identity, 

including those containing similar sequences (Table 2).  

3.3. Tertiary screen 

For the tertiary screen, mice were immunized with 64 clones grouped in 16 sub-pools 

according to the predicted function of encoded proteins and with 4 sub-pools containing 182 

clones with unknown function or with sequences without homology to sequence databases 

(Table 3). Control mice were immunized with a pool of mitochondrial cDNAs. Tick 

infestation levels were similar in all test groups (72±2 larvae/mouse) and in control mice (69±2 

larvae/mouse) (P>0.05).  The number of engorged larvae recovered per mouse was also 

similar between test (16±7) and control (14±6) mice (P>0.05). However, the groups 

immunized with cDNA sub-pools containing clones with putative endopeptidase, 

nucleotidase, ribosomal proteins, heat shock proteins, glutamine-alanine-rich proteins and 3 of 

the sub-pools with clones of unknown function or with sequences without homology to 

sequence databases had I≥15% (Fig. 3). Furthermore, among them, the groups immunized 

with sub-pools containing clones with a putative endopeptidase, nucleotidase and two of the 

cDNA sub-pools with unknown function or with sequences without homology to sequence 

databases resulted in lower infestation levels compared to control mice (P<0.05) and I≥40% 

(Fig. 3). Retardation of larval development was not observed. Molting was affected only in the 

groups immunized with sub-pools containing clones with a putative endopeptidase, 

nucleotidase and three of the cDNA sub-pools with unknown function or with sequences 

without homology to sequence databases (Table 4). Three of these sub-pools were the same 

giving the highest I value (Fig. 3 and Table 4). The protection efficacy of cDNA sub-pools was 

calculated considering the effect of vaccination on tick infestation and molting and varied from 
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44% to 73% (Table 4).  Only in mice immunized with a putative beta-adaptin-encoding cDNA 

sub-pool, the proportion of red larvae (6%) was higher than in the control group (2%). The 

red coloration observed in this group of ticks appeared to be associated with an extended gut 

(Fig. 4). Sera from each group of mice immunized with cDNAS sub-pools containing clones 

with a putative endopeptidase, nucleotidase, ribosomal proteins, heat shock proteins, 

glutamine-alanine-rich proteins, beta-adaptin and from control mice immunized with vector 

DNA were pooled and analyzed by Western blot against IDE8 tick cell proteins. Distinctive 

bands were identified in some of the sera from mice immunized with cDNA sub-pools 

compared to control serum (Fig. 5).   

4. Discussion 

The feasibility of controlling tick infestations through immunization of hosts with tick 

antigens has been demonstrated for Boophilus spp. (reviewed by [3-6]). The recombinant B. 

microplus BM86 gut antigen included in commercial vaccine formulations, TickGARD 

(Hoechst Animal Health, Australia) and Gavac (Heber Biotec S. A., Havana, Cuba), also 

confers partial protection against phylogenetically related Hyalomma and Rhipicephalus species [6, 

7]. However, immunization with BM86 failed to protect against the more phylogenetically 

distant Amblyomma spp. [7]. These results suggested that use of BM86 or a closely related 

antigen for the production of vaccines against Ixodes spp. or other tick genera phylogenetically 

distant from Boophilus spp. [23] may be impractical. Therefore, the screening for novel 

protective antigens would be necessary for identification of candidate vaccine antigens for 

control of these tick species of medical and veterinary importance.  

Vaccination with DNA and cDNA molecules has been used to induce a protective 

immune response against B. microplus, as well as several pathogens in laboratory animals and 

livestock [24-27]. Here, cDNA ELI, combined with sequence analysis, resulted in a rapid 
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method for the identification of protective antigens against I. scapularis infestations. Although 

several reports in the literature have demonstrated by ELI that libraries can offer a degree of 

protection [10-17], this is the first report in which sub-fractionation identified individual 

protective clones.  

When we started these experiments, we planned to screen over 4000 cDNA clones 

considering the complexity of the tick genome. However, 9 protective cDNA pools were 

identified after screening only 66 pools containing 2705 cDNA clones. This result probably 

reflects the possibility of interfering with tick infestations at many different levels that involve a 

plethora of gene products. Results from vaccination experiments against ticks employing 

recombinant tick antigens support this view (reviewed by [28]).   

The effect of cDNA vaccination on I. scapularis experimental infestations of mice was 

evidenced by the reduction of the number of engorged larvae, the retardation of larval 

development, the inhibition of molting to nymphal stages and the appearance of visibly 

affected larvae. These effects were also recorded in vaccination experiments with recombinant 

BM86 and BM95 antigens against infestations with B. microplus [29] and the protective effect of 

these antigens correlated with the concentration of specific antibodies [8]. Immunoglobulins 

trigger a variety of effector mechanisms and are specifically transported into the tick 

hemolymph during feeding [30, 31]. Some of the sera collected from mice after the tertiary 

screen showed discrete bands against IDE8 tick cell proteins, thus suggesting an immune 

response against cDNA vaccination. The failure to detect an immune response in all the 

immunized mice may be due to poor immunogenicity or underrepresentation of the encoded 

proteins in the IDE8 protein extract.  

After the tertiary screen, tick infestation levels were lower in mice immunized with 

several cDNA sub-pools and inhibition of molting to nymphal stage was apparent when 
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compared to controls. Two of these cDNA sub-pools contained single clones homologous to 

an endopeptidase from D. melanogaster and to a human 5’-nucleotidase. Proteinases have been 

identified in many tick species and are involved in different physiological and developmental 

processes [32-37]. Furthermore, tick proteins with proteinase activity have been recently 

targeted for development of anti-tick vaccines [28, 38-42]. A 5’-nucleotidase was identified and 

characterized in B. microplus by Liyou et al. [43, 44] but they did not assay its protection 

capacity.  

Although a preliminary observation, the highest number of red larvae was recorded in 

the group immunized with a cDNA homologous to a beta-adaptin from D. melanogaster. Beta 

adaptins are adaptor components required in the assembly of clathrin-coated plasma 

membrane pits, which function during endocytosis [45]. The process of endocytosis is actively 

involved in blood digestion by ticks and other hematophagous arthropods [33]. Therefore, an 

inhibition of endocytosis may impair the acquisition and digestion of the blood meal in ticks 

and results in extension of the midgut as observed in larvae fed on immunized mice.  

Development of vaccines against tick infestations by targeting tick proteins essential for 

acquisition and digestion of blood meal has been reported by various groups [46, 47]. 

Furthermore, the protective BM86 antigen from B. microplus has been suggested to be involved 

in endocytosis and ticks fed on vaccinated cattle also show a red coloration associated with tick 

damage [3, 29]. 

The sub-pools identified in the tertiary screen with higher capacity to inhibit tick 

infestations were composed of 50 and 49 clones with unknown function or with sequences 

without homology to sequence databases. Furthermore, the protection elicited by cDNA 

vaccination was higher in the primary and secondary screens of library pools than in the 

tertiary screen of sub-pools. Results of previous ELI studies have demonstrated that 
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immunization with pools confers a better protection than sub-pools after fractionation [14]. 

Therefore, protection induced by immunization with the larger pools appears to be mediated 

by the combined and/or synergistic effect of different antigens or, alternatively, by the 

nonspecific adjuvant activity of some DNA sequences on antigenic cDNAs [14].  

The other 3 cDNA sub-pools identified in our experiments to induce partial 

protection contained sequences homologous to glutamine-alanine-rich, ribosomal and heat 

shock proteins. Although initially surprising, the protection capacity of ribosomal and heat 

shock protein preparations has been previously documented in other organisms [14, 48-50]. 

Several vaccines have been developed to protect humans against Ixodes-transmitted 

pathogens including TBE virus and B. burgdorferi. However, it is not clear whether these 

vaccines will protect against all pathogen strains and genotypes. The inclusion of tick 

immunogens in pathogen-specific vaccines could enhance their protective effect and increase 

efficacy [51]. This transmission-blocking approach is supported by evidence that host 

resistance to ticks provides some protection against tick-borne transmission of viruses and B. 

burgdorferi [52]. Furthermore, vaccination against B. microplus has been demonstrated to 

contribute to the control of tick-borne diseases [5, 8]. 

In summary, we have used ELI and sequence analysis to identify cDNAs that induce 

protection to experimental infestations of mice with I. scapularis. Two of these cDNAs 

conferred protection when used individually to immunize mice. We anticipate that use of 

recombinant proteins and/or modified cDNAs in combination with adjuvant will enhance the 

protective efficacy of vaccine preparations. Ultimately, the combination of anti-tick antigens 

with pathogen antigens may provide a means to control tick-borne infections through 

immunization of the human population at risk or by immunization of the mammalian 

reservoir to reduce pathogen transmission to humans.  
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Table 1. Primary screen of the I. scapularis cDNA library by ELI in mice. 

Experimental 
groupa 

Number of 
pools 

screened 
(clones) 

Average 
number of 

larvae 
attached per 

mouseb 

Average 
number of 
engorged 

larvae 
recovered 

per mousec 

Average 
inhibition of 

tick infestation 
(I)d 

Number of 
pools 

selected for 
the 

secondary 
screen 

Experiment 1 
 
 

33 (1383) 50±13 (33-80) 9±3 (2-42) 49±28% (0-87%) 6 (I>75%) 

Vector DNA-
immunized 
controls for 
experiment 1 

--- 56±13 (45-67) 16±4 (5-27) --- --- 

Experiment 2 
 
 

33 (1322) 56±15 (29-79) 13±4 (1-27) 30±22% (0-89%) 3 (I>60%) 
 

Vector DNA-
immunized 
controls for 
experiment 2 

--- 54±18 (36-73) 17±3 (6-28) --- --- 

 

aNinety six LBA plates containing an average of 41 cDNA clones per plate were prepared. 

Replicas were made and clones from each plate were pooled, inoculated, grown for 2 hr in a 96 

wells plate and plasmid DNA purified from each pool for ELI. Three mice per group were 

each immunized IM twice with 1 µg DNA/dose in 50 µl PBS two weeks apart. Two groups of 

3 mice each were included as controls. One group was injected with vector DNA and the 

second with saline only. 
bFifteen days after the last immunization, mice were infested with 100 I. scapularis larvae per 

mouse. Twelve hrs later, larvae that did not attach were counted to calculate the number of 

attached larvae per mouse and mice were transferred to new cages. 
cEngorged larvae dropping from each mouse were collected daily and counted after 7 days. 
dThe inhibition of tick infestation (I) for each test group was calculated with respect to vector-

immunized controls as [1-(<RL>n/<RL>c x <RL>ic/<RL>in)] x 100, where <RL>n is the 

average number of replete larvae recovered per mouse for each test group, <RL>c is the 

average number of replete larvae recovered per mouse for control group, <RL>ic is the 

average number of larvae attached per mouse for control group, and <RL>in is the average 

number of larvae attached per mouse for each test group. 
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Table 2. Classification of the I. scapularis cDNA clones in protective pools by putative protein 

function according to identity to sequence databases. 

 

Putative Protein Function Number of clones 

Biosynthetica 2 
Catabolism 4 
Cell adhesion 2 
Cell cyclea 2 
Cytoskeletala 8 
Defense 2 
DNA structure or replicationa 3 
Extracellular matrix 3 
Endocytosis 2 
Energy metabolism 10 
Homeostasis 2 
Morphogenetic 9 
Mitochondriala 34 
Protein synthesis or processinga,b 34 
RNA synthesis or processinga 7 
Heat-shock proteins 4 
Signal transduction 16 
Transport 8 
Unknown 199 
Total 351 

 

aEliminated from further screening of protective antigens, bexcept for ribosomal proteins. 

Other clones were eliminated from further screening for containing similar sequences. 
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Table 3. Grouping of the I. scapularis cDNA clones according to the predicted function of 
encoded proteins in sub-pools for the tertiary screen. 

 
 

cDNA sub-pool (No. of clones) 
 

Clone Poola 

Unknown I (50) NR NR 
Unknown II (50) NR NR 
Unknown III (49) NR NR 
Unknown IV (33) NR NR 

Ribosomal (17) 

1A2, 1A10, 1C11 
1F6 
2B8 

2F8, 2F10 
3A10, 2C3, 3D2, 3D10 

3G9, 3G10 
4D11, 4D12, 4E7, 4F7 

A5 
D1 
A10 
E8 
B4 
E3 
F1 

Membrane protein (7) 

1D8, 1D11, 1E10 
2B12 
2H5 
3C9 

3G11 

D1 
A10 
E8 
B4 
E3 

ATPase (6) 

1A9, 1B2, 1C9 
2C9 
4A4 

4G12 

A5 
A10 
C3 
F1 

Cell channel/Transporter (5) 

1F4 
2H11 
4A12 

4G10, 4G11 

D1 
E8 
C3 
F1 

Early development-specific (4) 

1C8 
3F4 
4C7 
4G9 

A5 
E3 
C3 
F1 

G protein-coupled receptor (4) 
2B7, 2C12 

2F12 
4C9 

A10 
E8 
C3 

Growth factor receptor (3) 2E8 
3B8, 3C8 

B5 
B4 

Lectin (3) 3E10 
4B8, 4C8 

E3 
C3 

Vitellogenin (3) 
1F12 
4A6 
4G2 

D1 
C3 
F1 

Heat shock (3) 1C10 
1F10 

A5 
D1 
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3F6 E3 

EGF-like (2) 2H4 
4C10 

E8 
C3 

Secreted protein (2) 2F9 
3C12 

E8 
B4 

Glutamine-Alanine rich (2) 4D6, 4E6 F1 
Adaptin (1) 3E1 E3 
Endopeptidase (1) 4D8 F1 
Nucleotidase (1) 4F8 F1 
 
acDNA pools refer to positive pools after primary and secondary screens (Fig. 2A and 2B). 

NR, not relevant.  
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Table 4. Inhibition of tick infestation, inhibition of molting and protection efficacy of cDNA 
sub-pools after the tertiary screen by ELI. 

 
 

cDNA sub-pool 
 

I (%) M (%) E (%) 

Endopeptidase 40 7 44 

Nucleotidase 50 17 58 

Unknown II 57 37 73 

Unknown III 44 18 54 

Unknown IV 0 14 --- 

 

Sub-pools refer to those in table 3. Only cDNA sub-pools that produced an inhibition of 

molting to nymphal stages (M) are shown. The protection efficacy (E) was calculated 

considering the effect of vaccination on the reduction of tick infestation (I) and molting as E 

(%) = 100 x [1-(RI x RM)] = 100 x [I x M – (I-M/100)].  

  



 

 49

 
 
Figure 1. Summary of the cDNA ELI approach used to identify protective antigens against 

I. scapularis infestations. 
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Figure 2. Primary screen of I. scapularis cDNAs pools by ELI. (A) Experiment 1 (cDNA pools 

A-H 1-4, A5). *P<0.05, **P<0.03 (Student’s t-test). (B) Experiment 2 (cDNA pools A6-A10, 

B-H 5-8). *P<0.05, **P<0.03 (Student’s t-test). The inhibition of tick infestation (I) and the 

number of engorged larvae per mouse (mean±SD) is presented. V, control mice injected with 

1 µg vector DNA alone. 
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Figure 3. Tertiary screen by ELI of I. scapularis cDNA sub-pools formed according to the 

predicted function of encoded proteins. Only groups with I≥15% are shown (white bars). The 

number of engorged larvae per mouse is expressed as mean±SD (black bars). Control mice 

were injected with mitochondrial (MT) cDNAs. *P≤0.05 (Student’s t-test). 
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Figure 4. Normal and affected ticks. Replete larvae were kept for molting in a 95% humidity 

atmosphere. Larvae with normal appearance molt to nymphal stage while affected red larvae 

did not. Microscopic analysis of larval sections denoted extended guts in affected larvae. 
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C  h  a  p  t  e  r  3  

CHARACTERIZATION OF GENES TRANSCRIBED IN AN Ixodes scapularis 
CELL LINE THAT WERE IDENTIFIED BY EXPRESSION LIBRARY 

IMMUNIZATION AND ANALYSIS OF EXPRESSED SEQUENCE TAGS 

Consuelo Almazán, Katherine M. Kocan, Douglas K. Bergman, Jose C. Garcia-Garcia, 
Edmour F. Blouin and José de la Fuente. Gene Ther Mol Biol 2003, 7: 43-59. 

Summary 

Expression library immunization (ELI) combined with the analysis of expressed 

sequence tags (ESTs) was used to analyze genes transcribed in the Ixodes scapularis embryonic 

IDE8 cell line. A cDNA expression library was constructed from IDE8 cells. cDNA clones 

were screened by ELI in mice injected with cDNAs and then infested with I. scapularis larvae. 

cDNA clones affecting larval development were subjected to single pass 5’ sequence analysis. 

Non-redundant sequences were putatively identified based on sequence identity using the 

protein Basic Local Alignment Search Tool (BLAST) algorithm and grouped according to the 

predicted function of encoded proteins. The screening identified 351 cDNAs affecting larval 

development in the mouse model of tick infestation. Of them, 316 cDNA clones contained 

non-redundant sequences and 102 produced a significant identity to previously reported 

sequences. Gene ontologies could be assigned to 87 clones. Vaccination of mice with plasmid 

DNA and tick infestation resulted in some cDNA clones producing inhibition of tick 

infestation and other promoting tick feeding. The cDNAs inhibiting tick infestation were 

identical to nucleotidase, heat shock proteins, beta-adaptin, chloride channel, ribosomal 

proteins and proteins with unknown function. Tick pro-feeding activity was produced by 

cDNA clones identical to beta-amyloid precursor, block of proliferation, mannose-binding 
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lectin, RNA polymerase III, ATPases and a protein of unknown function. In this paper we 

describe the sequence analysis of I. scapularis ESTs selected by ELI for affecting tick larval 

development. These proteins might be used in vaccine preparations to interrupt the life cycle 

of I. scapularis and help to control this ectoparasite and/or to reduce its ability to transmit 

pathogens. 

Keywords: tick, vaccine, tick cell culture, cDNA library immunization, EST 

I. Introduction 

Ticks are ectoparasites of wild and domestic animals and humans, and are considered 

to be the most important vector of pathogens in North America (Parola and Raoult, 2001). 

Ixodes spp. (Acari: Ixodidae) are distributed worldwide and are vectors of human pathogens, 

including Borrelia burgdorferi (Lyme disease), Anaplasma phagocytophilum (human granulocytic 

ehrlichiosis), Coxiella burnetti (Q fever), Francisella tularensis (tularemia), B. afzelii, B. lusitaniae, B. 

valaisiana and B. garinii, Rickettsia helvetica, R. japonica and R. australis, Babesia divergens, as well as 

tick-borne encephalitis (TBE) and Omsk Hemorrhagic fever viruses (Estrada-Peña and 

Jongejan, 1999; Parola and Raoult, 2001). Throughout eastern and southeastern United States 

and Canada, I. scapularis (the black legged tick) is the main vector of B. burgdorferi sensu stricto 

and A. phagocytophilum (Estrada-Peña and Jongejan, 1999; Parola and Raoult, 2001).  

Control of tick infestations is difficult, particularly for multi-host ticks such as Ixodes 

spp. Presently, tick control is effected by integrated pest management in which different 

control methods are adapted in a geographic area against one tick species with due 

consideration to their environmental effects. Recently, development of vaccines against one-

host Boophilus spp. has provided new possibilities for the identification of protective antigens 

for use in vaccines for control of tick infestations (Willadsen, 1997; Willadsen and Jongejan, 

1999; de la Fuente et al., 1999, 2000a; de Vos et al., 2001). Control of ticks by vaccination 
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would avoid environmental contamination and selection of drug resistant ticks that result from 

repeated acaricide application (de la Fuente et al., 1998; Garcia-Garcia et al., 1999). Anti-tick 

vaccines also allow for inclusion of multiple antigens in order to target a broad range of tick 

species as well as pathogen-blocking antigens.  

Development of high throughput DNA sequencing technologies and bioinformatic 

tools facilitate assignment of provisional function to expressed sequence tags (ESTs; Boguski 

et al., 1993). This approach has resulted in valuable information for the study of biological 

systems and for the identification of potential vaccine candidates (Lizotte-Waniewski et al., 

2000; Knox et al., 2001; Tarleton and Kissinger, 2001; Touloukian et al., 2001; Kessler et al., 

2002). In ticks, the construction of EST databases has been reported for B. microplus 

(Crampton et al., 1998), Amblyomma americanum (Hill and Gutierrez, 2000) and A. variegatum 

(Nene et al., 2002). The application of EST approach has been used for the characterization of 

gene expression in salivary glands of I. scapularis (Valenzuela et al., 2002), I. ricinus (Valenzuela, 

2002), A. americanum and Dermacentor andersoni (Bior et al., 2002) and for the identification of 

genes differentially expressed in D. variabilis ovaries in response to rickettsial infection 

(Mulenga et al., 2003) and in I. ricinus salivary glands in response to blood feeding (Leboulle et 

al., 2002).    

A new technique, expression library immunization (ELI), in combination with 

sequence analysis of ESTs, provides an alternative approach for identification of potential 

vaccine antigens that is based on rapid screening of the expressed genes without prior 

knowledge of the antigens encoded by the cDNAs. ELI was first reported for Mycoplasma 

pulmonis (Barry et al., 1995) and since then has been used for unicellular and multicellular 

pathogens and viruses (Manoutcharian et al., 1998; Alberti et al., 1998; Brayton et al., 1998; 

Melby et al., 2000; Smooker et al., 2000; Moore et al., 2001; Singh et al., 2002; Leclercq et al., 
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2003). Recently, we described the first application of ELI to arthropods, specifically to I. 

scapularis (Almazán et al., 2003). A combination of cDNA ELI and EST analysis resulted in the 

selection of 351 cDNA clones affecting tick larval development (Almazán et al., 2003). After 

grouping the clones according to the putative function of predicted proteins, some cDNA 

pools resulted in the inhibition of tick infestation and other promoted tick feeding after ELI 

(Almazán et al., 2003). 

Herein we describe the sequence analysis and characterization I. scapularis ESTs that 

were identified by Almazan et al. (2003) using cDNA ELI and a mouse model for tick 

infestation. 

II. Materials and Methods 

A. Construction of the I. scapularis expression cDNA library.   

The cDNA library was constructed from I. scapularis cultured embryonic IDE8 cells 

(Munderloh et al., 1994) as previously reported (Almazán et al., 2003). The expression library 

was constructed in the vector pEXP1 containing the strong human cytomegalovirus major 

immediate early promoter/enhancer (CMVIE) (Clontech, Palo Alto, CA).  The cDNA library 

contained 4.4 x 106 independent clones and a titer of approximately 1010 cfu/ml with more 

than 93% of the clones with cDNA inserts. The average cDNA size was 1.7 kb (0.5-4.0 kb).  

B. DNA vaccination and tick infestation. 

Vaccinations with plasmid DNA and tick infestations were done as previously 

reported for the screening of the expression cDNA library by ELI using the mouse model of I. 

scapualris infestations (Almazán et al., 2003).  Briefly, plasmid DNA was purified (Wizard SV 96 

plasmid DNA purification system, Promega, Madison, WI) and used to inject CD-1 female 

mice, 5-6 weeks of age at the time of first vaccination. Mice were cared for in accordance with 

standards specified in the Guide for Care and Use of Laboratory Animals. Mice were injected 
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using a 1 ml tuberculin syringe and a 27½G needle at days 0 and 14. Three to 6 mice per group 

were each immunized IM in the thigh with 1 µg total DNA/dose in 50 µl PBS. Control mice 

were injected with 1 µg vector DNA alone. Two weeks after the last immunization, mice were 

infested with 100 I. scapularis larvae per mouse. For tick infestations, mice were retrained in a 

small wire cage in a cardboard carton. On hundred larvae were counted and applied to the 

mice with a brush. Ticks were reared at the Oklahoma State University Tick Rearing Facility by 

feeding larvae on mice, nymphs on rabbits and adults on sheep. For these experiments, larvae 

were obtained from the eggs oviposited by sister females. Twelve hours after tick infestation, 

larvae in the bottom of the cage that did not attach were counted in order to calculate the 

number of attached larvae per mouse. Mice were then transferred to individual cages with an 

elevated ¼” mesh wire platform with water (½” deep) in the bottom of the cage. Replete 

larvae dropping from each mouse were collected daily from the water and counted during 7 

days. Time for larval development was evaluated from the day of tick infestation to the day in 

which the maximum number of replete larvae was collected. The inhibition of tick infestation 

(I) for each test group was calculated with respect to vector-immunized controls as  [1-

(RLn/RLc x RLic/RLin)] x 100, where RLn is the average number of replete larvae recovered 

per mouse for each test group, RLc is the average number of replete larvae recovered per 

mouse for control group, RLic is the average number of larvae attached per mouse for control 

group, and RLin is the average number of larvae attached per mouse for each test group. 

Engorged larvae were held in a 95% humidity chamber and allowed to molt. Molting of 

engorged larvae was evaluated 34 days after the last larval collection by visual examination of 

ticks under a dissecting light microscope. The inhibition of molting (M) for each test group 

was calculated with respect to controls as [1-(MLn/MLc x RLc/RLn)] x 100, where MLn is 

the average number of nymphs for each test group, MLc is the average number of nymphs for 
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the control group, RLc is the average number of larvae recovered for the control group, and 

RLi is the average number of larvae recovered for each test group.  

C. Plasmid DNA preparation and sequencing. 

Bacterial colonies were inoculated in Luria-Bertani with 50 µg/ml ampicillin, grown for 

16 hr in a 96-well plate and plasmid DNA purified (Wizard SV 96 plasmid DNA purification 

system, Promega, Madison, WI) and partially sequenced with a 5’ vector-specific primer (5’-

CGACTCACTATAGGGAG-3’) at the Core Sequencing Facility, Department of 

Biochemistry and Molecular Biology, Noble Research Center, Oklahoma State University, 

using ABI Prism dye terminator cycle sequencing protocols developed by Applied Biosystems 

(Perkin-Elmer Corp., Foster City, CA). In most cases a sequence larger than 700 nucleotides 

was obtained.  

D. Data analysis. 

Nucleotide sequences were analyzed using the program AlignX (Vector NTI Suite V 

5.5, InforMax, North Bethesda, MD). Multiple sequence alignment was performed using an 

engine based on the Clustal W algorithm (Thompson et al., 1994). Nucleotides were coded as 

unordered, discrete characters with five possible character-states; A, C, G, T, or N (missing) 

and gaps were coded as missing data.  Phylogenetic trees were constructed based on a 

sequence distance method utilizing the Neighbor Joining algorithm of Saitou and Nei (1987).  

BLAST (Altschul et al., 1990) was used to search the NCBI databases to identify previously 

reported sequences with identity to those that we sequenced. Sequence analysis allowed 

grouping the clones according to predicted protein function. Gene ontology assignments were 

made according to Ashburner et al. (2000) for non-redundant EST sequence data with the help 

of GoFish v.1.0 (Berriz et al., 2003). 
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III. Results 

The screening of the I. scapularis expression cDNA library by ELI and EST analysis 

resulted in 351 cDNAs affecting larval development in the mouse model of tick infestation 

(Alamazán et al., 2003). Of them, 316 cDNA clones contained non-redundant sequences and 

101 (32%) produced a significant identity to previously reported sequences by BLAST analysis 

of NCBI nucleotide and protein databases (Table 1). Gene ontologies could be assigned to 87 

clones (27.5% of non-redundant sequences and 86.1% of clones with identity to sequences 

reported previously) (Table 2).  

The majority of clones with gene ontology assigned corresponded to non-nuclear gene 

products involved in cell growth and maintenance, including genes with ligand binding, carrier 

or enzymatic activities (Table 2). Seventeen clones contained sequences corresponding to tick 

mitochondrion and were not submitted to the EST database. Other clones such as 2A9 and 

1D6, although probably coding for mitochondrial proteins, were analyzed and submitted to 

the EST database. Interestingly, 11 clones encoded gene products localized in the cell nucleus 

(Table 2). 

The average G + C content of the EST dataset (47,503 bases excluding the poly-A tails 

with 171 (0.4%) undetermined nucleotide positions) was 54%, but some sequences, such as 

clone 2A9 which probably codes for a mitochondrial protein, had only a 25% G + C content. 

Some short ESTs in clones 1D1 and 2D5 contained a long stretch of T.  

  Vaccination of mice with plasmid DNA followed by tick infestation resulted in some 

cDNA clones that had an inhibitory effect on tick infestations, while others appeared to 

promote tick feeding (Table 3). The cDNAs inhibiting tick infestation were identical to 

nucleotidase, heat shock proteins, beta-adaptin, chloride channel, ribosomal proteins and 

proteins with unknown function. cDNA clones identical to beta-amyloid precursor, block of 
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proliferation, mannose-binding lectin, RNA polymerase III, ATPases and a protein of 

unknown function  enhanced  tick feeding.  

Further characterization of cDNAs that affected larval development (Table 3) was 

conducted for all clones except for 4D8, 4F8, 4D6 and 4E6, which produced high inhibition 

of tick infestation and are currently being studied separately as recombinant proteins expressed 

in Escherichia coli.  

The pool of hsp70 and hsp60 cDNAs conferred partial protection against tick 

infestations and did not affect molting (Table 3). The cDNA sequences for hsp70 and hsp60 

in clones 1C10 and 3F6, respectively, were partial and contained the region coding for the C-

terminal of the protein, and were highly identical to other hsp70 sequences (data not shown).  

The sequence of hsp70 contained a 3’ untranslated region (UTR) of 299 bp before the 

poly-A tail. The clone 3E1 contained a cDNA identical to the beta-adaptin that produced a 

27% inhibition of tick infestation and a 5% inhibition of molting to the nymphal stage after 

vaccination and tick challenge (Table 3). The complete sequence was determined for the clone 

3E1 (Fig. 1A), and contained an insert of 1,942 bp encoding for a predicted protein of 191 

amino acids. The sequence of this protein was shorter than that for other beta-adaptins (Fig. 

1B), suggesting that it could encode for a beta-adaptin appendage or it may be a partial cDNA 

sequence because of a long 3’ UTR of 1,334 bp located before the poly-A tail.  

The cDNA in clone 4G11 was identical to a chloride channel but it contained only a 

partial sequence (Fig. 2A). This sequence protected against tick infestations and inhibited larval 

molting (Table 3). Chloride channels have been found in living organisms from bacteria to 

mammals, with some amino acid positions being conserved in all sequences (Fig. 2A). As 

expected, phylogenetic analysis of chloride channel sequences demonstrated that the I. 
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scapularis sequence comprised a sister group to other insect sequences that have been reported 

(Fig. 2B).  

Vaccination with ribosomal sequences had some inhibitory effect on tick infestations 

but did not affect molting (Table 3). The pool of ribosomal cDNAs included EST sequences 

coding for cellular and mitochondrial ribosomal proteins and translation factors (Table 4), and 

these genes are highly conserved across species. However, proteins encoded by I. scapularis 

ESTs were 43% to 95% identical to arachnida or insect sequences and 36% to 85% identical to 

mouse sequences (Table 4). The cDNA in clone 2C12 that was found to be identical to the 

beta-amyloid precursor protein (APP) contained a fragment encoding for the C-terminal of the 

protein (Fig. 3), suggesting that it contains a partial cDNA with a long (1,400 bp) 3’ UTR.  

Nonetheless, the C-terminal sequence of the I. scapularis APP contained regions of amino acids 

identical to fly and mosquito sequences (Fig. 3). Vaccination with this cDNA resulted in 8% 

enhancement of larval feeding (Table 3). The complete sequence of clone 4F1 cDNA was 

determined and contained an isnert of 2475 bp woth 30 bp and 66 bp of 5’ and 3’ UTR, 

respectively and a poly-A tail of 114 bases. 

An open reading frame of 2,265 bp encoded for a protein of 754 amino acids that was 

identical to mouse block of proliferation (Bop 1) (Fig. 4).  

Similar proteins have been identified in other organisms including Drosophila 

melanogaster, Anopheles gambiae and humans (Fig. 4), suggesting that this protein has been highly 

conserved during evolution. The clone 3E10 had a pronounced stimulatory effect on larval 

feeding (Table 3). This clone was completely sequenced and contained an insert of 1,848 bp 

with 50 bp and 279 bp of 5’ and 3’ UTR, respectively and a short poly-A tail of 24 bases. An 

open reading frame of 1,494 bp encoded for a protein of 497 amino acids that was identical to 
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mannose-binding lectins found in many eukaryotes (Fig. 5). A similar sequence was described 

in A. variegatum ESTs, which clustered together with the I. scapularis sequence (Fig. 5).  

The clone 3C12, together with clone 2F9, produced the greatest enhancement of tick  

feeding after vaccination and tick challenge (Table 3). The clone 3C12 was completely 

sequenced and contained an insert of 447 bp with 5 bp and 86 bp of 5’ and 3’ UTR, 

respectively and a short poly-A tail of 29 bases. An open reading frame of 327 bp encoded for 

a protein of 108 amino acids that was identical to RNA polymerase III, and had a high degree 

of identity with human and insect sequences (Fig. 6A). The EST in clone 2F9 was identical to 

human and A. variegatum sequences coding for proteins of unknown function (Fig. 6B).  

Vaccination with the pool of ESTs identical to ATPases resulted in a 57% increase in  

larval feeding (Table 3). This pool originally contained 6 sequences (Almazán et al., 2003) but 

only 3 were non-redundant (clones 1A9, 1B2 and 4A4). All sequences were identical to 

vacuolar proton pump ATPases (EC 3.6.1.34). The sequence of 1A9 was identical to D. 

melanogaster (TC112371) V-ATPase subunit D, 1B2 was identical to A. americanum (AAU03374) 

V-ATPase subunit C and 4A4 was identical to D. melanogaster (TC112172) V-ATPase subunit 

E.  

Six clones of the I. scapularis ESTs contained short tandem repeat (STR) microsatellite  

sequences. STRs were found in 5 clones (1F4, 2C7, 3B6, 4G12 and 4H2) containing sequences 

of unknown function and in one clone (1A9) that was identical to the D. melanogaster V-ATPase 

subunit D (Table 1). Microsatellite sequences contained perfect and imperfect STRs (Table 5). 

Clones 1A9, 4G12 and 3B6 contained 9, 6 and 12 TA repeats, respectively. Clone 1F4 

contained an imperfect repeat of 15 GC/T and the clone 2C7 contained 9 GT repeats. The 

clone 4G12 contained a second STR of 10 CA/GA/CT repeats.    
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IV. Discusion  

The feasibility of controlling tick infestations through immunization of hosts with tick 

antigens has been demonstrated previously for Boophilus spp. (reviewed by Willadsen, 1997; 

Willadsen and Jongejan, 1999; de la Fuente et al., 1999, 2000a). However, a limiting step for 

development of effective anti-tick vaccines is the identification of tick protective antigens. In 

the past, tick protective antigens were identified by (a) evaluating proteins after host 

immunization and tick challenge that were derived from progressive fractionation of crude tick 

extracts, (b) immunomapping of tick antigens which elicit an antibody response in the infested 

host, and (c) testing tick proteins in vaccination experiments that were considered to be 

important for the parasite function and/or survival.  

However, construction of cDNA libraries and EST databases from different tick 

tissues, developmental stages and from genes expressed in response to various stimuli (i.e., tick 

feeding or infection with pathogens) of cDNAs encoding for tick immunosuppressants, 

anticoagulants and other proteins with low antigenicity that may enhance tick feeding provides 

new exciting possibilities for screening and identifying antigens protective against tick 

infestations.  This approach may also allow for identification of antigens that interfere with 

pathogen development and transmission. Alternatively, they may encode for proteins 

homologous to host proteins associated with anti-tick or growth suppression activity which 

neutralization results in a tick pro-feeding effect. The former could be the case for ATPases. 

These proteins are highly conserved across species and, therefore, could elicit a poor immune 

response. However, ATPases are expressed in tick embryos and salivary glands of unfed adults 

and adult females at all stages of feeding and some evidences suggest that these proteins may 

participate in salivary fluid secretion in A. americanum (McSwain et al., 1997).  
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Therefore, although the mechanism is not known, DNA vaccination with ATPase-

coding cDNAs could produce enhanced larval feeding.  Although we presently do not have 

evidence to support the latter hypothesis, proteins of unknown function, such as the one 

encoded by clone 2F9 that is identical to host proteins of unidentified function, and Bop 1, a 

nonribosomal protein that is highly conserved from yeast to human with a growth suppressor 

function that plays a key role in the formation of mature 28S and 5.8S rRNAs and in the 

biogenesis of the 60S ribosomal subunit (Pestov et al., 1998; Strezoska et al., 2000), are 

examples that may enhance tick feeding.  

Nonetheless, cDNAs associated with enhanced tick feeding could be made as 

recombinant proteins to modify their immunogenicity and then be evaluated as candidate 

protective antigens. Additionally, these antigens may also be good candidates for blocking the 

transmission of tick-borne pathogens (Wikel et al., 1997; Labuda et al., 2002). 

The enhanced feeding effect of cDNA clones with identity to App (2C12), mannose-

binding lectin (3E10) and RNA polymerase III (3C12) is difficult to explain. The beta-amyloid 

protein precursor is involved in different physiological processes, including development of 

the embryonic nervous system in D. melanogaster (Rosen et al., 1989) and pharyngeal pumping 

in Caenorhabditis elegans (Zambreano et al., 2002). The sequence contained in clone 2C12 

corresponded to the beta-amyloid peptide (ß-AP), a ≈40 amino acids peptide derived from the 

APP protein found as the major component of dense plaques in brains of Alzheimer disease 

patients (reviewed by Cummings, 2003). Vaccination with ß-AP prevented the formation of ß-

AP plaques in transgenic mice, opening a new possible approach for treatment of Alzheimer 

disease (McGeer and McGeer, 2003). However, we do not understand the apparent enhanced 
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feeding effect of the tick ß-AP in cDNA-vaccinated mice.  The lectin in clone 3E10 was 

identical to mannose-binding endoplasmic reticulum-Golgi intermediate compartment protein 

(Arar et al., 1995; Lahtinen et al., 1996). However, the carbohydrate-binding domain is shared 

by other lectins found in different cell compartments. The clone 3C12 encoded for an RNA 

polymerase III. Enhanced tick feeding was produced in mice vaccinated with a DNA pool 

containing this clone and clone 2F9 of unknown function. It is therefore possible that the 

enhanced feeding effect on tick larvae was due to clone 2F9 with little or no contribution of 

clone 3C12.  

Microsatellites are a class of genetic markers that are composed of STR sequences 

flanked by unique DNA sequences (Hearne et al., 1992). STRs are highly polymorphic and 

widely distributed through the genome. The analysis of tick STRs has been used for 

identification of strains of B. microplus (de la Fuente et al., 2000b) and for the development of a 

preliminary genetic linkage map of I. scapularis (Ullman et al., 2003). The STR sequences 

described in this study could be used for completion of the genetic map of I. scapularis as the 

first step toward the sequencing of this tick genome.  

Most sequences in the I. scapularis EST data set were relatively G + C rich, with an 

average G + C content of 54%, similar to the 52% reported by Nene et al. (2002) for A. 

variegatum. The few sequences with a high A + T content probably corresponded to 

mitochondrial genes, corroborating the hypothesis that there is a marked difference in codon 

usage between mitochondrial and nuclear protein coding genes in the Ixodidae  (Nene et al., 

2002).  
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Recently, Almazán et al. (2003) used cDNA ELI combined with EST analysis as a 

rapid method for the identification of protective antigens against I. scapularis infestations, 

demonstrating the role of sequence information in conjunction with new technologies such as 

bioinformatics and ELI for a systematic and comprehensive approach to vaccine discovery. 

One of the advantages of ELI for identification of protective antigens is that a priori 

criteria are not introduced to direct the selection of candidate genes. This approach, as shown 

in this study, resulted in potential vaccine antigens otherwise not predicted, such as clone 4F8 

that was found to be identical to a nucleotidase. However, nucleotidases are essential for cell 

growth and the inhibition of its enzymatic activity would be cytotoxic (Spiegelberg et al., 1999), 

providing a possible explanation for their protective properties against tick infestations. The I. 

scapularis sequence in clone 4F8 was different from the 5’-nucleotidase that was identified and 

characterized previously by Liyou et al. (1999, 2000) in B. microplus.  However, the protective 

capacity of this protein has not been evaluated. 

As discussed previously by Almazán et al. (2003), a possible explanation for the 

inhibitory effect on larval tick development of other vaccine candidates that were identified in 

this study is based on the role that they play in cell growth and maintenance, which is evident 

for clones identical to beta-adaptin (3E1) and chloride channel (4G11). Beta adaptins are 

adaptor components required in the assembly of clathrin-coated plasma membrane pits that 

function in cell vesicular transport mechanisms including endocytosis (Camidge and Pearse, 

1994; Boehm and Bonifacino, 2002), a process actively involved in blood digestion by ticks 

and other hematophagous arthropods (Akov, 1982). Chloride channels are also involved in 

vital cell functions including the catalysis of counter ion currents that accompany primary 
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proton fluxes in endosomal and lysosomal acidification (Koprowski and Kubalski, 2001; Iyer 

et al., 2002). Therefore, interference with the process of endocytosis may impair acquisition 

and digestion of the tick bloodmeal and result in inhibition of tick infestations. Another I. 

scapularis EST (clone 3E12) encoded for a protein identical to D. melanogaster clathrin heavy 

chain, a protein involved in synaptic vesicle endocytosis (Chang et al., 2002). This cDNA is 

also a candidate protective antigen because it interfers with endocytosis in feeding larvae.    

The protection capacity of ribosomal and heat shock protein preparations has been 

documented previously in other organisms (Elad and Segal, 1995; Silva, 1999; Melby et al., 

2000; Cassataro et al., 2002). Recently, Hsp70 was demonstrated to be induced in I. ricinus 

salivary glands during blood feeding (Leboulle et al., 2002), documenting the role of heat shock 

proteins in physiological responses in ticks. Even in the case where substantial homology exists 

between tick proteins and host (mouse) proteins, analysis of ribosomal proteins suggests that 

differences in the amino acid sequence could direct the host immune response against 

distinctive, non-self epitopes, which could be sufficient to induce a protective response.  

The results of vaccination and tick infestation demonstrated that some cDNAs 

enhance tick feeding. This effect could be due to the expression corroborating the hypothesis 

that there is a marked difference in codon usage between mitochondrial and nuclear protein 

coding genes in the Ixodidae (Nene et al., 2002) 

Most of the ESTs in our database, although initially identified by ELI of cDNA pools 

that produced inhibition of tick infestation, were not characterized further and remain 

potential candidate antigens for vaccine development against I. scapularis infestations. 

Particularly interesting were cDNAs that may be involved in developmental processes. Clone 
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4B2, identical to D. melanogaster sequence NP_523710, encoded for calmodulin, a Ca++-binding 

protein of 149 amino acids that is involved in fly development.  This protein was found to be 

expressed in several larval and adult tissues, including the larval midgut  (Takamatsu et al., 

2002). Clone 1C8 had a low degree of identity to D. melanogaster virilizer, a gene involved in 

Sex-lethal (Sxl) splicing and essential for fly male and female viability and embryonic 

development (Niessen et al., 2001). Clone 2A11 also had a low degree of identity to D. 

melanogaster developmental regulator, Notchless, a key player in the signaling by Notch family 

receptors that are involved in many cell-fate decisions during development (Royet et al., 1998). 

Similarly, clone 4A10 had partial identity to the putative homeodomain transcriptional factor, 

phtf, a member of a gene family that plays an important role during development and is 

conserved between fly, mouse and human (Manuel et al., 2000). Other clones with special 

interest as vaccine candidates may include those identical to membrane proteins (1D8, 1D11, 

3G11) and those putatively involved in G-protein-coupled signaling (2B7, 2F12, 4C9). In fact, 

the clone 3G11 was identical to D.  melanogaster BM-40, a protein of the group of extracellular 

basement membrane proteins which includes the protective antigen p29 from Harmaphysalis 

longicornis  (Mulenga et al., 1999). 

In summary, we have characterized I. scapularis EST sequences that were selected by 

cDNA ELI in the mouse/tick challenge model because they affected tick development. 

Characterization of these ESTs provides a basis for future research on ticks and is a source of 

candidate antigens for use in vaccine development designed to control tick infestations and/or 

reduce transmission of pathogens. The combination of ELI with EST appears to be a 

productive systematic and comprehensive approach to vaccine discovery.  
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Table 1. cDNA clones with identity to previously reported sequences. 

 
cDNA clone 

 
Predicted protein 

GenBank 
accession 
number 

1C11 Translation initiation factor 5A (Eif5A) CD052489 
1E6 Translation initiation factor 5C (eIF-5C) CD052490 
2D2 Initiate factor 5 (if5) CD052491 
1A10 Elongation factor 2 CD052492 
4F7 Elongation factor 1alpha CD052493 
1F6 Ribosomal protein S4 (RpS4) CD052494 
2B8 Ribosomal protein S11 (RpS11) NR 
2F8 Laminin receptor 1 (ribosomal protein SA) CD052496 
2F10 Ribosomal protein L3 (RpL3) NR 
3A10 Ribosomal protein L7A (RpL7A) CD052497 
3G9 Ribosomal protein S8 (RpS8) CD052495 
3G10 Ribosomal protein L27A (RpL27A) CD052498 
3C3 QM homolog (DQM) ribosomal protein CD052499 

4D12 Proteasome/Signalosome subunit CD052500 
4E7 Proteasome subunit CD052501 

4D11 Proteasome subunit CD052502 
3D10 Ribophorin I CD052503 
1B12 Ubiquitin-conjugating enzyme CD052504 
1D10 Ubiquitin CD052505 
1A9 V-ATPase Conjugated enzyme 

Contains mcirosatellite sequence 
CD052506 

1B2 V-ATPase C subunit CD052507 
4A4 V-ATPase E subunit CD052508 
1C5 Na+/K+ ATPase, alpha subunit CD052509 
2A9 NADH dehydrogenase CD052510 
1D6 NADH dehydrogenase subunit 5 (nad5) CD052511 
1A4 Aldehyde dehydrogenase CD052512 
1C8 Virilizer (vir) CD052513 
1C10 Hsp70 CD052514 
3F6 Hsp60 CD052515 
1D1 Nucleotide binding protein 1 (Nubp1) CD052516 
1D8 Identity to D. melanogaster GH03607 full length cDNA 

coding for a putative membrane protein 
CD052517 

1D11 Putative membrane protein CD052518 
1E7 Sterol carrier protein CD052519 
1F3 Cyclin C (CycC) CD052520 
3D9 Alpha tubulin CD052521 
2A7 Beta tubulin CD052522 
2A11 Notchless (Nle) CD052523 
2B2 Export factor binding protein 2 (Refbp2) CD052524 
2B7 G protein-coupled receptor CD052525 
2B9 Succinate dehydrogenase B (SdhB) CD052526 
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2C12 Beta-amyloid precursor protein (APP CD052527 
2D1 Fructose-1,6-bisphosphatase (fbp gene) CD052528 
2D5 DNA repair protein Rad1 (Rad1) CD052529 
2D6 Identity to S. pombe dim1+, helicase protein 1 CD052530 
2E8 Esterase CD052531 
2F9 Identity to AvGI TC255 (A. variegatum) & hypothetical 

protein FLJ12475 (H. sapiens) 
CD052532 

2F12 Transmembrane G-protein-responsive adenylyl cyclase CD052533 
2G8 Lysyl-tRNA synthetase CD052534 
2H11 Sodium- and chloride-dependent taurine transporter CD052535 
3C12 RNA polymerase III CD052536 
3E1 Beta-adaptin CD052537 
3E2 Microtubule-associated protein, RP/EB family CD052538 
3E4 Myosin II regulatory light chain CD052539 
3E6 Unknown 

Zinc finger like protein 
CD052540 

3E10 Mannose binding lectin (rhea) CD052541 
3E12 Clathrin heavy chain (Chc) CD052542 
3F4 Identity to M. musculus adult male testis cDNA CD052543 
3F10 Identity to D. melanogaster P-element somatic inhibitor 

(Psi) 
CD052544 

3G11 Identity to D.  melanogaster BM-40 extracellular basement 
membrane protein 

CD052545 

4A8 Identity to D. melanogaster regulator of gene transcription 
(Chi) 

CD052546 

4A10 Identity to D. melanogaster homeoprotein phtf CD052547 
4A12 Amino acid transporter system A (ATA2) CD052548 
4B2 Calmodulin CD052549 
4B7 Alpha-tubulin CD052550 

4C9 
Identity to D. melanogaster transducin (G protein)-like 
enhancer of split 3, homolog of E(spl) 

CD052551 

4C11 Intracellular receptor of activated protein kinase C1 
(Rack1) 

CD052552 

4D6 Identity to D. melanogaster CG10395 cDNA CD052553 
4D7 Identity to D. melanogaster LD23959 cDNA CD052554 
4E6 Identity to D. melanogaster CG13597 cDNA CD052555 
4D8 Identity to H. sapiens hypothetical protein FLJ10342 CD052556 
4E1 Pre-mRNA splicing factor CD052557 
4E3 Receptor signaling protein serine/threonine kinase CD052558 
4F8 Nucleotidase CD052559 
4F1 Block of proliferation 1 (Bop1) CD052560 
4G1 Identity to H. sapiens hypothetical protein MGC2404 CD052561 
4G2 LRP/alpha-2-macroglobulin receptor CD052562 
4G5 Disulfide isomerase CD052563 
4G8 Fumarate hydratase CD052564 
4G10 Rab3D (member of the Ras superfamily of small 

GTPases) 
CD052565 
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4G11 Chloride channel CD052566 
4H4 Solute carrier protein CD052567 
1B7 Mitochondrion NR 
1B8 Mitochondrion NR 
2E9 Mitochondrion NR 

2G11 Mitochondrion NR 
3C6 Mitochondrion NR 
3G4 Mitochondrion NR 
4A2 Mitochondrion NR 
4E9 Mitochondrion NR 
2A6 Mitochondrion NR 
4G7 NAD-dependent malate dehydrogenase NR 
3D4 Cytochrome c oxidase I (COI) NR 
1C2 Cytochrome c oxidase II (COII) NR 
4D2 Cytochrome c oxidase III (COIII) NR 
1G4 Cytochrome b (cytb) NR 
2G9 16S ribosomal RNA NR 

1F4 
Unknown 
Identity to I. scapularis clone AC22 microsatellite 
sequence (AF331735) 

CD052568 

2C7 Unknown 
Contains microsatellite sequence 

CD052569 

3B6 Unknown 
Contains a microsatellite sequence 

CD052570 

4G12 Unknown 
Contains microsatellite sequence 

CD052571 

4H2 Unlnown 
Contains microsatellite sequence 

CD052572 

 
NR, Not reported to the EST database for being identical to mitochondrial sequences. 
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Table 2. I. scapularis gene ontology assignments. 

Category 
Number of 

clones 

% of 87 clones 
with gene 
ontology 

assignments 

% of 102 clones 
with identity to 

reported 
sequences 

Cellular component    
Cell 32 36.78 31.88 
Mitochondria 17 15.54 16.83 
Cell membrane 14 16.09 13.86 
Nucleus 11 12.64 10.89 
Extracellular 2 2.30 1.98 
Unlocalized 2 2.30 1.98 
Unknown 9 10.34 8.91 

Biological process    
Cell growth or maintenance 61 70.11 60.40 
Physiological process 8 9.20 7.92 
Developmental process 5 5.75 4.95 
Cell communication 2 2.30 1.98 
Unknown 11 12.64 10.89 

Molecular function    
Ligand binding or carrier 30 34.48 29.70 
Enzyme 29 33.33 28.71 
Transporter 9 10.34 8.91 
Chaperone 2 2.30 1.98 
Structural molecule 7 8.05 6.98 
Unknown 10 11.49 9.90 
 
Gene ontology assignments were made according to Ashburner et al. (2000) for non-

redundant EST sequence data with the help of GoFish v.1.0 (Berriz et al., 2003). The number 

of clone sequences falling into each category are listed and then calculated as a percent of 

clones for which gene ontology was assigned and the total number of clones for which identity 

to previously published sequences was found.  
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Table 3. Summary of results of DNA vaccination and challenge with I. scapularis larvae in the 
mouse model of tick infestations. 

cDNA 
clone 

Predicted protein 
Inhibition of tick 

infestation  
I (%) 

Inhibition of 
molting  
M (%) 

4D8 
Identity to H. sapiens hypothetical 
protein FLJ10342 with unknown 

function 
40 a 7 a 

4F8 Nucleotidase 50 a 17 a 
1C10 b Hsp70 17 a 0 a 
3F6 b Hsp60   

4D6 Identity to D. melanogaster CG10395 
cDNA with unknown function 61 11 

4E6 Identity to D. melanogaster CG13597 
cDNA with unknown function 20 ND 

3E1 Beta-adaptin 27 5 
4G11 Chloride channel 38 30 

17 clones b Ribosomal proteins 15 a 0 a 
2C12 Beta-amyloid precursor protein (APP) -8 c ND 
4F1 Block of proliferation Bop1 -39 c ND 

3E10 Mannose binding lectin -48 a, c ND 
3C12 b RNA polymerase III 

2F9 b 
Identity to A. variegatum AvGI TC255 
& Homo sapiens hypothetical protein 
FLJ12475 with unknown functions 

-104 a, c ND 

1A9, 1B2, 
4A4 b ATPase -57 a, c ND 

 
a Data reported by Almazán et al. (2003). For all other experiments, mice were immunized with 

cDNA-containing expression plasmid DNA as described above. I and M were calculated as 

described in Materials and Methods section. ND, not determined. 
b Pooled together for vaccination experiments by ELI (Almazán et al., 2003) (1C10 and 3F6, 

cDNA pool “Heat shock”; 3C12 and 2F9, cDNA pool “Secreted protein”; ribosomal clones, 

cDNA pool “Ribosomal”; 1A9, 1B2 and 4A4, cDNA pool “ATPase”).   
c Resulted in a tick pro-feeding activity after mouse vaccination and tick challenge. 
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Table 4. Characterization of I. scapularis ESTs encoding for ribosomal proteins. 

Clone Encoded protein 
Identical 

amino 
acids 

Species 
GenBank 
accession 
number 

4F7 
1A2 Elongation factor 1-alpha 95% 

85% 

Neacarus texanus 

Mus musculus 
AAK12660 
NP_031932 

1A10 Elongation factor-2 88% 
80% 

Mastigoproctus giganteus 
Mus musculus 

AAK12348 
BAC26203 

1C11 eIF-5A 65% 
59% 

Drosophila melanogaster 
Mus musculus 

AAM68297 
XP_203336 

1F6 
2C3 RpS4 79% 

75% 
Spodoptera frugiperda 

Mus musculus 
AAL26580 
AAH09100 

2B8 RpS11 92% 
80% 

Dermacentor variabilis 
Mus musculus 

AAO92287 
XP_133477 

2F8 Laminin receptor 1 
(RpSA) 

66% 
73% 

Anopheles gambiae 

Mus musculus 
EAA00413 
NP_035159 

2F10 RpL3 70% 
68% 

Spodoptera frugiperda 
Mus musculus 

AAL62468 
AAH09655 

3A10 RpL7A 55% 
60% 

Drosophila melanogaster 
Mus musculus 

NP_511063 
A30241 

3D10 Ribophorin I 57% 
50% 

Drosophila melanogaster 
Mus musculus 

AAN71150 
BAC26679 

3G9 RpS8 70% 
71% 

Spodoptera frugiperda 
Mus musculus 

AAL62472 
XP_134904 

3G10 RpL27A 42% 
36% 

Spodoptera frugiperda 
Mus musculus 

AAK92158 
XP_137118 

4D11 Proteasome subunit 60% 
55% 

Drosophila melanogaster 
Mus musculus 

NP_524115 
NP_035315 

4D12 Proteasome/Signalosome 
subunit 

43% 
56% 

Anopheles gambiae 
Mus musculus 

EAA11895 
AAC33900 

4E7 Proteasome subunit 84% 
85% 

Anopheles gambiae 
Mus musculus 

EAA10351 
NP_036096 

The sequences of I. scapularis ESTs identical to ribosomal proteins, which were pooled for 

DNA vaccination in Almazán et al. (2003), were compared to all non-redundant sequences 

in GenBank DNA and protein databases (1,419,727 sequences total; Apr-09-2003) using 

BLASTX 2.2.6 (Altschul et al., 1997). The percent of identical amino acids to arachnida or 

insect and mouse sequences are shown together with their corresponding GenBank 

accession number. The GenBank accession numbers for I. scapualris sequences are shown on 

Table 1.  
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Table 5. Microsatellite STR sequences in I. scapularis ESTs. 

 
cDNA clone 

 
Microsatellite sequence 

1A9 
 TATATATATATATATATA 

4G12 
 

CACACACAGACACACTCACA 
ATATATATATATA 

1F4 
 GCGCGCGCGTGTGCGTGTGTGTGTGTGTGT 

2C7 
 GTGTGTGTGTGTGTGTGT 

3B6 
 TATATATATATATATATATATATA 

4H2 
 TGAAATGAAATGAAATGAAA 
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A 

 
cgATGCAGGCGATGACGGGCTTTGCGGTGCAGTTCAACAAAAACAGTTTCGGGCTGACTC
CAGCTCAGCCGCTGCAGTTGCAGATTCCCCTGCAGCCCAACTTCCCAGCTGATGCGAGCT
TGCAGCTGGGAACCAACGGTCCCGTGCAGAAGATGGACCCCCTCACCAACCTTCAGGTGG
CCATCAAGAACAATGTGGACGTGTTCTACTTCAGCTGCCTGGTGCCCATGCACGTGCTGA
GCACGGAGGACGGCCTGATGGACAAGCGGGTGTTCCTGGCCACCTGGAAAGACATCCCCG
CCCAAAACGAGGTCCAGTACACCCTCGACAACGTCAACCTCACTGCAGACCAAGTTTCCC
AGAAGCTGCAGAACAACAACATTTTCACGATAGCCAAGAGGAACGTGGACGGCCAGGACA
TGCTGTACCAGTCCCTGAAGCTCACCAACGGCATTTGGGTGTTGGCGGAGCTCAAGATAC
AGCCCGGCAATCCAAGGATCACGTTGTCTTTGAAGACAAGAGCACCTGAAGTGGCAGCAG
GTGTACAACAAACTTACGAACTCATTCTACACAGCTGAggctgctgtgaatgaaactctt
ctcccacccccttcttttgatggcagtcaatgtctcgtttcattttcttgttttcttttg
cggcgtgctacggaacaaggtcctacattcccaagttatatggtgttgtcgcgtaggggg
cagagtgccgctgagcccgcgacagccttgtttctgaggagagccgaacgcaccacttcg
aaaaagaaaaagtgaaaacggaaaaatgaaaaattttccagttgcttcaaattaacattc
ctcgtagtcagtctgtggccgttgagtttggtgtaaagaagaaaaaggtgtctcttttag
tgaaaatggttgctttttattggtatcccctatcacaccgagcacgaacataagaaatcc
tgacaaggattctcctttagttgtattatggtggctggagcacacgaggcacctgttgcc
aattcgacccagcaaatgcccaattctcaagatttgagttcattgaggttgttttgctcc
tccccccccaccccccaactttgtcgttggattgtctaacagtgtaaatgggcgacgact
cgttattctttttttcttcattctttctttttgttgtcacgcgccccgggggacgcgaca
caacttatgtgcataattgattttcacaggctgcgacgcagtctgtaaaagaaggggaag
tgaaactctgctccgccgctgctagtgtcatcacgggacgaccatcgcgttttctctgac
tatttaaacaaaactgcatagcttagggggcagtctgtgcaaagtggaacaaccaaactg
agccctgccctttcggtgtgtgtacaagcatctctgtgtaacatgaactactttacatga
actacattgcatgaacgggagaagtttagttgtttttttgttttttttttcaggtgacta
tgtcaacagattagaaccattttttggaacggctggaaagataaccgctcattttgtttc
tactaaaagactacgaaaagtgttgactttttgcatcggtttggcaacgtttgtttggca
tgcatgtagttgagcgtaatggtatcacccctcgtaaacaataacagtgcaatggagcag
tactgtagtgtccattaaagagcgagagtttggttaaaggttgttaattgaggtccgtgt
tatcctttgagtaggagagcggcactttttgcaaatagcgctgctgggggcgtcatatct
gccctccaaaacatgcacattttaagtgtgaattgttgcggcggcttgtacaagtatgtg
tgttatgtgtagaaaaagaactcttaattaaaatatttgtggccaaaacgtcaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa 
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B                        

    M. musculus  (747) LQHMTDFAIQFNKNSFGVIPSTPLAIHTPLMPNQSIDVSLPLNTLGPVMK 
D. melanogaster  (731) MQPMTNFAIQLNKNSFGLVPASPMQ-AAPLPPNQSIEVSMALGTNGPIQR 
     H. sapiens   (68) LQHMTDFAIQFNKNSFGVIPSTPLAIHTPLMPNQSIDVSLPLNTLGPVMK 
  I. scapularis    (1) MQAMTGFAVQFNKNSFGLTPAQPLQLQIPLQPNFPADASLQLGTNGPVQK 
      Consensus  (748) LQHMTDFAIQFNKNSFGLIPATPLQIHTPLMPNQSIDVSLPLNTNGPVQK 
                        
    M. musculus  (797) MEPLNNLQVAVKNNIDVFYFSCLIPLNVLFVEDGKMERQVFLATWKDIPN 
D. melanogaster  (780) MEPLNNLQVAVKNNIDIFYFACLVHGNVLFAEDGQLDKRVFLNTWKEIPA 
     H. sapiens  (118) MEPLNNLQVAVKNNIDVFYFSCLIPLNVLFVEDGKMERQVFLATWKDIPN 
  I. scapularis   (51) MDPLTNLQVAIKNNVDVFYFSCLVPMHVLSTEDGLMDKRVFLATWKDIPA 
      Consensus  (798) MEPLNNLQVAVKNNIDVFYFSCLIPLNVLFVEDGKMDKRVFLATWKDIPN 
                        
    M. musculus  (847) ENELQFQIKECHLNADTVSSKLQNNNVYTIAKRNVEGQDMLYQSLKLTNG 
D. melanogaster  (830) ANELQYTLSGVIGTTDGIASKMTTNNIFTIAKRNVEGQDMLYQSLKLTNN 
     H. sapiens  (168) ENELQFQIKECHLNADTVSSKLQNNNVYTIAKRNVEGQDMLYQSLKLTNG 
  I. scapularis  (101) QNEVQYTLDNVNLTADQVSQKLQNNNIFTIAKRNVDGQDMLYQSLKLTNG 
      Consensus  (848) ENELQFTIKEVHLTADTVSSKLQNNNIFTIAKRNVEGQDMLYQSLKLTNG 
                        
    M. musculus  (897) IWILAELRIQPGNPNYTLSLKCRAPEVSQYIYQVYDSILKN- 
D. melanogaster  (880) IWVLLELKLQPGNPEATLSLKSRSVEVANIIFAAYEAIIRSP 
     H. sapiens  (218) IWILAELRIQPGNPNYTLSLKCRAPEVSQYIYQVYDSILKN- 
  I. scapularis  (151) IWVLAELKIQPGNPRITLSLKTRAPEVAAGVQQTYELILHS- 
      Consensus  (898) IWILAELKIQPGNPNYTLSLKCRAPEVAQYIYQVYDSILKS  
 

 

Figure 1. Analysis of clone 3E1 identical to beta-adaptin. (A) Nucleotide sequence of full 

cDNA. Non-coding sequence is shown in lower case letters and coding sequence is shown in 

capital letters with translation initiation and termination codos in bold letters. (B) Alignment of 

M. musculus (GenBank accession number XP_109938), D. melanogaster (CAA53509) and Homo 

sapiens (AAA35583) protein sequences and the translation product of clone 3E1 identified as I. 

scapularis beta-adaptin appendage (AY296113). Protein sequences are shown in the single letter 

amino acid code. Identical amino acids are shown in red and amino acids conserved in 3 of 4 

sequences are shown in blue. 
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A                        

        E. coli    (4) DTPSLETPQAARLRRRQLIRQLLERDKTPLAILFMAAVVGTLVGLAA-VA 
 O. mossambicus   (98) DLKEGVCLSALWFNH--------EQ----------CCWTSNETTFAERDK 
      X. laevis  (146) DLKEGICLPWFWFNH--------EQ----------CCWQSNNVTFEDRNN 
  I. scapularis    (1) DLKEGICPQAFWLNK--------EQ----------CCWASNDTFFKG-DD 
     C. elegans  (141) DLKTGVCADRFWLDH--------EH----------CCWSSNDTFYKD-DD 
D. melanogaster  (223) DLKHGICPPAFWFNR--------EQ----------CCYPAKQSVFEE-GN 
       L. major  (114) AFRSGICANFFWLGR-------------------------N-MCCVDCRE 
     A. gambiae  (272) DLKFGICPQAFWLNR--------EQ----------CCWSSNETSFDS-GN 
    M. musculus  (155) DLKEGICLSALWYNH--------EQ----------CCWGSNETTFEERDK 
   S. tuberosum  (108) GFKLLLTSNLMLDGK----------------------------------- 
  S. cerevisiae  (102) NWKTGHCQRNWLLNKS-------------------FCCNGVVNEVTSTSN 
      Consensus  (272) DLK GIC  AFWLNR        EQ          CCW SN T F D    
                        
        E. coli   (53) FDKGVAWLQNQRMGALVHTADNYPLLLTVAFLCSAVLAMFGYFLVRKYAP 
 O. mossambicus  (130) CPQWKSWAELILGQ--AEGPGSYIMNYFMYIYWALSFAFLAVCLVKVFAP 
      X. laevis  (178) CPEWRSWSQLVLGR--SEGAFPYILNYFMYVMWALLFSLLAVLLVRNFAP 
  I. scapularis   (32) CKQWYRWPEMFDSGMDKDGAGFYLLSYLLYVMWSVLFATLAVMLVRTFAP 
     C. elegans  (172) CKAWTKWPWMLNYYN-SSSFLFLFLEWIFYIGWAVAMSTLAVLFVKIFAP 
D. melanogaster  (254) CSTWKTWPEIFGLD--RNGTGPYIVAYIWYVLWALLFASLSASLVRMFAP 
       L. major  (138) CGEYYSWGEFFLGR---DNHVVAFVDFVMYVSFSTMAAVTAAYLCKTYAP 
     A. gambiae  (303) CSQWYAWSEIFTSS--REGFGAYVISYFFYIMWAMLFALLAASLVRMFAP 
    M. musculus  (187) CPQWKTWAELIIGQ--AEGPGSYIMNYIMYIFWALSFAFLAVSLVKVFAP 
   S. tuberosum  (123) ----------------------YFQAFAAFAGCNVFFATCAAALCAFIAP 
  S. cerevisiae  (133) LLLKRQEFECEAQG-LWIAWKGHVSPFIIFMLLSVLFALISTLLVKYVAP 
      Consensus  (322) C  W  W EL       EG   YIL YIMYILWALLFA LA  LVK FAP 
                        
        E. coli  (103) EAGGSGIPEIEGALE---DQRPVRWWRVLPVKFFGGLGTLGGGMVLGREG 
 O. mossambicus  (178) YACGSGIPEIKTILSGF-IIRGYLGKWTLMIKTITLVLAVASGLSLGKEG 
      X. laevis  (226) YACGSGIPEIKTILSGF-IIRGYLGKWTLIIKTMTLVLAVSSGLSLGKEG 
  I. scapularis   (82) YACGSGIPEIKTILSGF-IIRGYLGKWTLTIKSVCLVLAVGAGLSLGKEG 
     C. elegans  (221) YACGSGIPEIKCILSGF-VIRGYLGKWTFIIKSVGLILSSASGLSLGKEG 
D. melanogaster  (302) YACGSGIPEIKTILSGF-IIRGYLGKWTLLIKSVGLMLSVSAGLTLGKEG 
       L. major  (185) YASGGGIAEVKTIVSGH-HVKRYLGGWTLITKVVGMCFSTGSGLTVGKEG 
     A. gambiae  (351) YACGSGIPEIKTILSGF-IIRSYLGKWTLIIKSVGIMLSVSAGLSLGKEG 
    M. musculus  (235) YACGSGIPEIKTILSGF-IIRGYLGKWTLMIKTITLVLAVASGLSLGKEG 
   S. tuberosum  (151) AAAGSGIPEVKAYLNG-IDAHSILAPSTLLVKIFGSILGVSAGFVVGKEG 
  S. cerevisiae  (182) MATGSGISEIKVWVSGFEYNKEFLGLLTLVIKSVALPLAISSGLSVGKEG 
      Consensus  (372) YACGSGIPEIKTILSGF IIRGYLGKWTLIIKSVGLVLAVSSGLSLGKEG 
                        
        E. coli  (150) PTVQIGGNIGRMV----------LDIFRLKG--DEARHTLLATGAAAGLA 
 O. mossambicus  (227) PLVHVACCCGNIF----------SYLFPKYSKNEAKKREVLSAASAAGVS 
      X. laevis  (275) PLIHVACCCGNIL----------CHLFTKYRKNEAKRREVLSAAAAAGVS 
  I. scapularis  (131) PLVHVACCIGNIF----------SYLFPKYGKNEAKKREILSAAAAAGVS 
     C. elegans  (270) PMVHLACCIGNIF----------SYLFPKYGLNEAKKREILSASAAAGVS 
D. melanogaster  (351) PMVHIASCIGNIF----------SHVFPKYGRNEAKKREILSAAAAAGVS 
       L. major  (234) PFVHIGACVGGII----------SGALPSYQQ-EAKERELITAGAGGGMA 
     A. gambiae  (400) PMVHIASCIGNIL----------SYLFPKYGRNEAKKREILSAAAAAGVS 
    M. musculus  (284) PLVHVACCCGNIF----------SYLFPKYSTNEAKKREVLSAASAAGVS 
   S. tuberosum  (200) PMVHTGACIANLLGQGGSRKYHLTWKWLKYFKNDRDRRDLITCGAAAGVA 
  S. cerevisiae  (232) PSVHYATCCGYLL----------TKWLLRDTLTYSTQYEYLTAASGAGVA 
      Consensus  (422) PLVHIA CIGNIL          SYLFPKY KNEAKKREILSAAAAAGVS 
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        E. coli  (188) AAFNAPLAGILFIIEEMRPQ--FRYTLISIKAVFIGVIMSTIMYRIFNHE 
 O. mossambicus  (267) VAFGAPIGGVLFSLEEVSYY--FPLKTLWRSFFAALVAAFVLRSINPFGN 
      X. laevis  (315) VAFGAPIGGVLFSLEEVSYY--FPLKTLWRSFFAALVAAFTLRSINPFGN 
  I. scapularis  (171) VAFGAPIGGVLFSLEEVSYY--XPLKTLWRSFFCALVAASVLRSINPFGN 
     C. elegans  (310) VAFGAPIGGVLFSLEEASYY--FPLKTMWRSFFCALVAGIILRFVNPFGS 
D. melanogaster  (391) VAFGAPIGGVLFSLEEVSYY--FPLKTLWRSFFCALIAAFVLRSLTPFGN 
       L. major  (273) VAFGAPVGGVIFALEDVSTS--YNFKALMAALICGVTAVLLQSRVDLWHT 
     A. gambiae  (440) VAFGAPIGGVLFSLEEVSYY--FPLKTLWRSFFCALIAAFILRSINPFGN 
    M. musculus  (324) VAFGAPIGGVLFSLEEVSYY--FPLKTLWRSFFAALVAAFVLRSINPFGN 
   S. tuberosum  (250) AAFRAPVGGVLFALEEIASW--WRSALLWRTFFTTAIVAMVLRSLIQFCR 
  S. cerevisiae  (272) VAFGAPIGGVLFGLEEIASANRFNSSTLWKSYYVALVAITTLKYIDPFRN 
      Consensus  (472) VAFGAPIGGVLFSLEEVSYY  FPLKTLWRSFF ALVAA VLRSINPFGN 
                        
        E. coli  (236) VA----------LIDVGKLSDAPL 
 O. mossambicus  (315) SR----------LVLFYVEYHTPW 
      X. laevis  (363) SR----------LVLFYVEFHAPW 
  I. scapularis  (219) DH----------LVMFYVEYDFPW 
     C. elegans  (358) NQ----------TSLFHVDYMMKW 
D. melanogaster  (439) EH----------SVLFFVEYNKPW 
       L. major  (321) GR----------IVQFSVNYQHNW 
     A. gambiae  (488) EH----------SVLFYVEYNKPW 
    M. musculus  (372) SR----------LVLFYVEYHTPW 
   S. tuberosum  (298) GGNCGLFGQGGLIMFDVNSGVSNY 
  S. cerevisiae  (322) GR----------VILFNVTYDRDW 
      Consensus  (522)             LVLFYVEY  PW 
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Figure 2. Analysis of clone 4G11 identical to chloride channel. (A) Alignment of M. musculus 

(XP_134186), D. melanogaster (AAM76180), Solanum tuberosum (T07608), Oreochromis mossambicus 

(AAD56388), A. gambiae (EAA11899), C. elegans (NP_495940), Leishmania major  (strain 

Friedlin) (T02805), Saccharomyces cerevisiae (P37020), Escherichia coli K12 (AAC73266), and 

Xenopus laevis (CAA71071) protein sequences and the translation product of clone 4G11 

identified as a fragment of I. scapularis chloride channel (AY296114). Protein sequences are 

shown in the single letter amino acid code. Identical amino acids are shown in red and amino 

acids conserved in 6-10 of 11 sequences are shown in blue. (B) Phylogenetic tree constructed 

from analysis of chloride channel protein sequences based on a sequence distance method 

utilizing the Neighbor Joining algorithm of Saitou and Nei (1987).   
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D. melanogaster   PHAQGFIEVDQNVTTHHPIVREEKIVPNMQINGYENPTYKYFE 
  I. scapularis   PQAQGFVQVDQGALPASPEER---HLASMQVNGYENPTYKYFE 
     A. gambiae   PHAQGFVEVDQAVGAPVTPEE--RHVANMQINGYENPTYKYFE 
      Consensus   PHAQGFVEVDQ V    P ER   HVANMQINGYENPTYKYFE 
 

 

Figure 3. Analysis of clone 2C12 identical to beta-amyloid precursor protein. Alignment of D. 

melanogaster (AF181628) and A. gambiae (EAA07868) protein sequences and the translation 

product of clone 2C12 identified as I. scapularis beta-amyloid peptide (ß-AP) (AY296115). 

Protein sequences are shown in the single letter amino acid code. Identical amino acids are 

shown in red and amino acids conserved in 2 of 3 sequences are shown in blue. 
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…                         1                                               50 
    M. musculus    (1) ------------------------MAGACGKPHMSPASLPGKRRLEPDQE 
D. melanogaster    (1) MTKKLALKRRGKDSEPTNEVVASSEASENEEEEEDLLQAVKDPGEDSTDD 
     H. sapiens    (1) ----------------------------SVRPEKRRSEPELEPEPEPEPP 
     A. gambiae    (1) ---------------------QENLLGSIENEGEDSSDSDGEYATDDDED 
  I. scapularis    (1) ----------------------MGPKTLSKQPAKASSSTSKRTAGPTISK 
      Consensus    (1)                                P    S    E A D D D 
                       51                                             100 
    M. musculus   (27) LQIQEPPLLSD-PDSSLSDSEESVFSGLEDSGSDSSEEDTEGVA----GS 
D. melanogaster   (51) EGIDQEYHSDSSEELQFESDEEGNYLGRKQSSSAEEDEESSDEEDN---E 
     H. sapiens   (23) LLCTSPLSHSTGSDSGVSDSEESVFSGLEDSGSDSSEDDDEGDEEGEDGA 
     A. gambiae   (30) DVLSFESLNSDGEE---EDEEEDAGTTLEEVEREAEEDDDEEDAERKQRE 
  I. scapularis   (29) QTEDSDDEGSSSAYSDLEDSEGADSSDSNDLSDTEASEDDYDDSQDEENT 
      Consensus   (51)   I  E   SS  DS LEDSEES FSGLEDS SDSSEEDDEDDAE      
                       101                                            150 
    M. musculus   (72) SGDEDNHRAEETSEELAQAAPLCSRTEE--------------AGALAQDE 
D. melanogaster   (98) EEESTDGEEVEDEEKDSKSKQTDDKPSGSGAASKKALTAELPKRDSSKPE 
     H. sapiens   (73) LDDEGHSGIKKTTEEQVQASTPCPRTEM--------------ASARIGDE 
     A. gambiae   (77) EQFESDDEPLPDDLKLGRIEDVLGTGEKKTRGLGVFPPVPKRKGKAAQDE 
  I. scapularis   (79) KITLTGVEGKDLELRGKDQEAPVESGKRSAWHRQQEDAKEDRRTQVVEDE 
      Consensus  (101) DET  E  E EEK   A     R E               K   A DE 
                       151                                            200 
    M. musculus  (108) YEE-DSSDEEDIRNTVGNVPLAWYDEFPHVGYDLDGKRIYKPLRTRDELD 
D. melanogaster  (148) YQDSDTSDEEDIRNTVGNIPMHWYDEYKHIGYDWDAKKIIKPPQG-DQID 
     H. sapiens  (109) YAE-DSSDEEDIRNTVGNVPLEWYDDFPHVGYDLDGRRIYKPLRTRDELD 
     A. gambiae  (127) YAAGDTSDEEDIRNTVGNIPMHWYDEYKHVGYDWDAKKIIKAKKG-DAID 
  I. scapularis  (129) YAF-DSSDEEDVRNTVGNIPLEWYEHYPHIGYDLEGKPILKPPRV-SDLD 
      Consensus  (151) YAE DSSDEEDIRNTVGNIPL WYDEYPHVGYDLDGKKIIKP R  DELD 
                       201                                            250 
    M. musculus  (157) QFLDKMDDPDFWRTVQDKMTGRDLRLTDEQVALVHRLQRGQFGDSGFNPY 
D. melanogaster  (197) EFLRKIEDPDFWRTVKDPLTGQDVRLTDEDIALIKRIVSGRIPNKDHEEY 
     H. sapiens  (158) QFLDKMDDPDYWRTVQDPMTGRDLRLTDEQVALVRRLQSGQFGDVGFNPY 
     A. gambiae  (176) DFLQRMEDPNFWRTVTDPQTGQKVVLSDEDIGLIKRIMSGRNPDAEYDDY 
  I. scapularis  (177) DFLRKMDDPNYWRTVKDKSTGQDVVLTDEDVDLIQRLQKGQFPSSTTDPY 
      Consensus  (201) DFL KMDDPDFWRTV DPMTGQDVRLTDEDVALIKRLQSGQFPDS FDPY 
                       251                                            300 
    M. musculus  (207) EPAVDFFSGDIMIHPVTNRPADKRSFIPSLVEKEKVSRMVHAIKMGWIKP 
D. melanogaster  (247) EPWIEWFTSEVEKMPIKNVPDHKRSFLPSVSEKKRVSRMVHALKMGWMKT 
     H. sapiens  (208) EPAVDFFSGDVMIHPVTNRPADKRSFIPSLVEKEKVSRMVHAIKMGWIQP 
     A. gambiae  (226) EPFIEWFTSEVEKMPIRNIPESKRSFLPSKAEKHKIGRYVHALKMGWMKT 
  I. scapularis  (227) EPFEDIFSHETMIHPVTRHPPQKRSFVPSRIEKAMVSKMVHAIKMGWIKP 
      Consensus  (251) EPFIDFFS EVMIHPVTN P  KRSFIPSLVEK KVSRMVHAIKMGWIKP 
                       301                                            350 
    M. musculus  (257) RRPHD------PTPSFYDLWAQEDPNAVLG-RHKMHVPAPKLALPGHAES 
D. melanogaster  (297) TEEVEREKQAKRGPKFYMLWETDTSREHMR-RIHDPVSAPKRDLPGHAES 
     H. sapiens  (258) RRPRD------PTPSFYDLWAQEDPNAVLG-RHKMHVPAPKLALPGHAES 
     A. gambiae  (276) MAEKRRLEAIRRQPKFYMLWTTDHGKEEMR-RIHDHVAAPKRMLPGHAES 
  I. scapularis  (277) RVKKH------DPERFSLLWDKDDSTAGSNERMQRHIPAPKMKLPGHEES 
      Consensus  (301) R  KD        PKFYMLW  DD  A L  RI  HVPAPKL LPGHAES 
                       351                                            400 
    M. musculus  (300) YNPPPEYLPTEEERSAW--MQQEPVERKLNFLPQKFPSLRTVPAYSRFIQ 
D. melanogaster  (346) YNPPPEYLFDAKETKEWLKLKDEPHKRKLHFMPQKFKSLREVPAYSRYLR 
     H. sapiens  (301) YNPPPEYLLSEEERLAW--EQQEPGERKLSFLPRKFPSLRAVPAYGRFIQ 
     A. gambiae  (325) YNPPPEYLFDEKELEEWNKLANQPWKRKRAYVPQKYNSLREVPGYTRYVK 
  I. scapularis  (321) YNPPAEYLFTEEEEAKWR--EQEPEERRINFLPAKYPCLRAVPAYERFIE 
      Consensus  (351) YNPPPEYLFTEEE   W  L QEP ERKL FLPQKFPSLR VPAYSRFI  
                       401                                            450 
    M. musculus  (348) ERFERCLDLYLCPRQRKMRVNVDPEDLIPKLPRPRDLQPFPVCQALVYRG 
D. melanogaster  (396) ERFLRCLDLYLCPRAKRVKLNIDAEYLIPKLPSPRDLQPFPTVESMVYRG 
     H. sapiens  (349) ERFERCLDLYLCPRQRKMRVNVDPEDLIPKLPRPRDLQPFPTCQALVYRG 
     A. gambiae  (375) ERFLRCLDLYLAPRMRRSRVAVGAEYLIPKLPSPRDLQPFPTLQNLIYTG 
  I. scapularis  (369) ERFERCLDLYLCPRQRKMRVNVDAEDLIPQLPKPKDLQPFPSIQSIVYEG 
      Consensus  (401) ERFERCLDLYLCPRQRKMRVNVDAEDLIPKLPRPRDLQPFPTIQALVYRG 
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                       451                                            500 
    M. musculus  (398) HSDLVRCLSVSPGGQWLASGSDDGTLKLWEVATARCMKTVHVGGVVRSIA 
D. melanogaster  (446) HTDLVRSVSVEPKGEYLVSGSDDKTVKIWEIATGRCIRTIETDEVVRCVA 
     H. sapiens  (399) HSDLVRCLSVSPGGQWLVSGSDDGSLRLWEVATARCVRTVPVGGVVKSVA 
     A. gambiae  (425) HTSLIRCISVEPKGEYIVTGSDDMTVKIWEISTARCIRTIPTGDIVRSVA 
  I. scapularis  (419) HTDCVLCLSLEPAGQFFASXSEDGTVRIWELLTGXCLKKFQFEAPVKSVA 
      Consensus  (451) HTDLVRCLSVEPGGQWLVSGSDDGTVKIWEIATARCIRTI  GGVVRSVA 
                       501                                            550 
    M. musculus  (448) WNPNPTICLVAAAMDDAVLLLNPALGDRLLVGSTDQLLEAF----TPPEE 
D. melanogaster  (496) WCPNPKLSIIAVATGNRLLLVNPKVGDKVLVKKTDDLLAEAPSQDVIESE 
     H. sapiens  (449) WNPSPAVCLVAAAVEDSVLLLNPALGDRLVAGSTDQLLSAF----VPPEE 
     A. gambiae  (475) WCPNSKISLVAAASGKRVLLINPKVGDYMLVKKTDDLLTEAPRSDTVDSE 
  I. scapularis  (469) WCP--VVVPMKLCVDKTVSMLDAGVTDKLLPFTTGHRVVCPPRRVLGPGG 
      Consensus  (501) WCPNP I LVAAAVD  VLLLNPAVGDKLLV STD LL   P   V P E 
                       551                                            600 
    M. musculus  (494) PALQPARWLEVSEEEHQRGLRLRICHSKPVTQVTWHGRGDYLAVVLSSQE 
D. melanogaster  (546) RIKTAVQWSNAEADEQEKGVRVVITHFKPIRQVTWHGRGDYLATVMPEGA 
     H. sapiens  (495) PPLQPARWLEASEEERQVGLRLRICHGKPVTQVTWHGRGDYLAVVLATQG 
     A. gambiae  (525) RIRSAVQWGEVTEEEKKLGVRIVITHFREVRQVTWHGRGDYFATVMPDGA 
  I. scapularis  (517) GSGVGADVGLLSRVPLPGGASAGRSPPR-CGAGDVALEGRLLCHCHGRGT 
      Consensus  (551)     AA W EVSEEE   GLRL ITH KPV QVTWHGRGDYLA VL  GA 
                       601                                            650 
    M. musculus  (544) HTQVLLHQVSRRRSQSPFRRSHGQVQCVAFHPSRPFLLVASQRSIRIYHL 
D. melanogaster  (596) NRSALIHQLSKRRSQIPFSKSKGLIQFVLFHPVKPCFFVATQHNIRIYDL 
     H. sapiens  (545) HTQVLIHQLSRRRSQSPFRRSHGQVQRVAFHPARPFLLVASQRSVRLYHL 
     A. gambiae  (575) YRSVMIHQLSKRRSQVPFSKSKGLIQCVLFHPIKPCLFVATQRHIRVYDL 
  I. scapularis  (566) GHRACPSVVHAAVRRLPFSKAKGGVSRVLFHPLRPFLLVACQRTVRVYHL 
      Consensus  (601) H  VLIHQLSKRRSQIPFSKSKG VQ VLFHPIRPFLLVASQRSIRIYHL 
                       651                                            700 
    M. musculus  (594) LRQELTKKLMPNCKWVSSMAVHPAGDNIICGSYDSKLVWFDLDLSTKPYK 
D. melanogaster  (646) VKQELVKKLLTNSKWISGMSIHPKGDNLLVSTYDKKMLWFDLDLSTKPYQ 
     H. sapiens  (595) LRQELTKKLMPNCKWVSSLAVHPAGDNVICGSYDSKLVWFDLDLSTKPYR 
     A. gambiae  (625) VKQLMMKKLYPGCKWISSMAIHPKGDNLLIGTYEKRLMWFDLDLSTKPYQ 
  I. scapularis  (616) LKQELAKRLTSNCKWISCMGRPPPGDNLLIGTYEKRLMWFDLDLSTKPYQ 
      Consensus  (651) LKQEL KKLMPNCKWISSMAIHP GDNLLIGTYDKKLMWFDLDLSTKPYQ 
                       701                                            750 
    M. musculus  (644) VLRHHKKALRAVAFHPRYPLFASGSDDGSVIVCHGMVYNDLLQNPLLVPV 
D. melanogaster  (696) TMRLHRNAVRSVAFHLRYPLFASGSDDQAVIVSHGMVYNDLLQNPLIVPL 
     H. sapiens  (645) MLRHHKKALRAVAFHPRYPLFASGSDDGSVIVCHGMVYNDLLQNPLLVPV 
     A. gambiae  (675) QLRIHNAAIRSVAFHPRYPLFASAGDDRSVIVSHGMVYNDLLQNPLIVPL 
  I. scapularis  (666) QLRIHNAAIRSVAFHPRYPLFASAGDDRSVIVSHGMVYNDLLQNPLIVPL 
      Consensus  (701)  LRIHK AIRSVAFHPRYPLFASGSDD SVIVSHGMVYNDLLQNPLIVPL 
                       751                                  790 
    M. musculus  (694) KVLKGHTLTRDLGVLDVAFHPTQPWVFSSGADGTIRLFS- 
D. melanogaster  (746) KKLQTHEKRDEFGVLDVNWHPVQPWVFSTGADSTIRLYT- 
     H. sapiens  (695) KVLKGHVLTRDLGVLDVIFHPTQPWVFSSGADGTVRLFT- 
     A. gambiae  (725) RRLKNHAVVNDFSVFDVVFHPTQPWVFSSGADNTVRLYT- 
  I. scapularis  (716) RRLKNHAISKGMGVLDCAFHPHQPWIVTAGADSTLRLFT- 
      Consensus  (751) KRLK H LTRDLGVLDV FHPTQPWVFSSGAD TIRLFT  

 
 

Figure 4. Analysis of clone 4F1 identical to block of proliferation (Bop1). (A) Alignment of 

M. musculus (AAH12693), D. melanogaster (NP_611270), A. gambiae (EAA04116), and H. sapiens 

(AAH07274) protein sequences and the translation product of clone 4F1 identified as I. 

scapularis Bop (_AY296116). Protein sequences are shown in the single letter amino acid code. 

Identical amino acids are shown in red and amino acids conserved in 3-4 of 5 sequences are 

shown in blue. 
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Figure 5. Analysis of clone 3E10 identical to mannose-binding lectin. Phylogenetic tree 

constructed from analysis of C. elegans (NP_492548), A. gambiae (EAA11908), D. melanogaster 

(NP_524776), M. musculus (XP_128952), R. norvegicus (NP_446338), Cercopithecus aethiops 

(Q9TU32), H. sapiens (NP_005561), Polyandrocarpa misakiensis (BAB20045), X. laevis 

(AAC59755), Dictyostelium discoideum (AAL92589), A. variegatum (BM290898) and I. scapularis 

(AY296117) protein sequences based on a sequence distance method utilizing the Neighbor 

Joining algorithm of Saitou and Nei (1987).   
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A 

                       1                                               50 
D. melanogaster    (1) MLFFCPSCGNILIIEEDTNCHRFTCNTCPYISKIRRKISTKTFPRLKEVD 
     H. sapiens    (1) MLLFCPGCGNGLIVEEGQRCHRFSCNTCPYVHNITRKVTNRKYPKLKEVD 
     A. gambiae    (1) MLMFCPTCGNLLLVEESTDSLRFSCNTCPYICKIRRTISSRIYPTLKEVD 
  I. scapularis    (1) MLLFCPTCANILIVEQGLECFRFACNTCPYVHNIKAKMSNRKYPRLKDVD 
      Consensus    (1) MLLFCPTCGNILIVEEGTDCHRFSCNTCPYIHNIRRKISNRKYPRLKEVD 
                       51                                             100 
D. melanogaster   (51) HVLGGKAAWENVDSTDAECPTCGHKRAYFMQIQTRSADEPMTTFYKCCNH 
     H. sapiens   (51) DVLGGAAAWENVDSTAESCPKCEHPRAYFMQLQTRSADEPMTTFYKCCNA 
     A. gambiae   (51) HVMGGSAAWENVDSTDAVCPSCSHNRAYFMQMQTRSADEPMTTFYKCCNQ 
  I. scapularis   (51) DVLGGAAAWENVDSTEEKCPKCGHERAYFMQIQTRSADEPMTTFYKCCNQ 
      Consensus   (51) HVLGGAAAWENVDSTDE CPKCGH RAYFMQIQTRSADEPMTTFYKCCNQ 
                       101 
D. melanogaster  (101) ECNHTWRD 
     H. sapiens  (101) QCGHRWRD 
     A. gambiae  (101) TCGHNWRD 
  I. scapularis  (101) LCGHQWRD 
      Consensus  (101)  CGHNWRD  
 
 

B                   

I. scapularis   (78) MVDPEDEEVQLDEAMDEMAAYFRKEYTPKLLITTSDNPHRRTIKFCRELK 
A. variegatum    (1) MVQADDEEVQLDEAMDEMAAYFRKEYIPKLLITTSDNPHTRTIRFCRELK 
   H. sapiens  (115) TVDPNDEEVAYDEATDEFASYFNKQTSPKILITTSDRPHGRTVRLCEQLS 
    Consensus  (115) MVDP DEEVQLDEAMDEMAAYFRKEY PKLLITTSDNPH RTIRFCRELK 
                      
I. scapularis  (128) QSIPDAEFRWRNRSRIKKTVEQAVERGYSDIAIINEDRRHPSKFVVQFL 
A. variegatum   (51) QSIPNADFRWRNRSRIKKTVEQAIERGYSDIAVINEDRRHPNGLLLTHL 
   H. sapiens  (165) TVIPNSHVYYRRGLALKKIIPQCIARDFTDLIVINEDRKTPNGLILSHL 
    Consensus  (165) QSIPNA FRWRNRSRIKKTVEQAIERGYSDIAVINEDRRHPNGL L HL 
 
 

Figure 6. Analysis of clones 3C12 and 2F9 identical to RNA polymerase III and a 

hypothetical protein of unknown function, respectively. (A) Alignment of D. melanogaster 

(AAF57437), A. gambiae (TC6088), and H. sapiens (AAK61210) RNA polymerase III protein 

sequences and the translation product of clone 3C12 identified as I. scapularis RNA polymerase 

III (AY296118). (B) Alignment of A. variegatum (TC255), H. sapiens (FLJ12475) and I. scapularis 

clone 2F9 (AY296119) partial protein sequences. Protein sequences are shown in the single 

letter amino acid code. Identical amino acids are shown in red and amino acids conserved in 2-

3 of 4 (A) and 2 of 3 (B) sequences are shown in blue. 
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C  h  a  p  t  e  r  4  

CHARACTERIZATION OF GENES TRANSCRIBED IN AN IXODES 
SCAPULARIS CELL LINE THAT WERE IDENTIFIED BY EXPRESSION 

LIBRARY IMMUNIZATION AND ANALYSIS OF EXPRESSED SEQUENCE 
TAGS 

Consuelo Almazán, Uriel Blas-Machado, Katherine M. Kocan, Joy H. Yoshioka, Edmour F. 
Blouin, Atilio J. Mangold and José de la Fuente. (Vaccine, in press). 

Abstract 

 cDNA expression library immunization (ELI) and analysis of expressed sequenced tags 

(EST) in a mouse model of tick infestations was used to identified cDNA clones  that  affected 

I. scapularis. Three protective antigens against larval tick infestations, 4F8, with homology to a 

nucleotidase, and 4D8 and 4E6 of unknown function, were selected for further 

characterization.  All three antigens were expressed in all I. scapularis stages and localized in 

adult tick tissues. 4D8 was shown to be conserved in 6 other tick species. Based on 

immunization trials with synthetic polypeptides against larvae and nymphs and on artificial 

feeding experiments of adults, these antigens, especially 4D8, appear to be good candidates for 

continued development of a vaccine for control of tick infestations and may be useful in a 

formulation to target multiple species of ticks.  

Keywords: tick, vaccine, expression library immunization, EST, recombinant protein 

1. Introduction 

Ticks are ectoparasites of wild and domestic animals and humans, and are considered to 

be the most important vector of pathogens in North America [1]. Ixodes spp. (Acari: Ixodidae) 

are distributed worldwide and are vectors of pathogens affecting humans and wild and 

domestic animals [1, 2]. Members of the I. ricinus complex are the primary tick vectors of 

Borrelia burgdorferi and Anaplasma phagocytophilum, the causative agents of Lyme disease and 
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human granulocytic anaplasmosis, respectively [1, 2]. Throughout eastern and north-central 

United States, southern Canada and northern Mexico, I. scapularis (the black-legged tick) is the 

main vector of these pathogens [1, 2], while the closely related species, I. pacificus and I. ricinus, 

vector these pathogens in western United States and Europe, respectively [2]. 

Some tick species such as Boophilus microplus complete the life cycle while feeding on a 

single host. In other tick species such as I. scapularis, larvae, nymphs and adults feed on 

different hosts. Therefore, the control of tick infestations is especially difficult for multi-host 

ticks because several host species may need to be considered when implementing tick control 

strategies. Presently, tick control is effected by integrated pest management in which different 

control methods are adapted to a geographic area against one tick species with consideration 

to their environmental effects (reviewed by [3]). Recently, development of vaccines against 

one-host Boophilus spp. has provided new possibilities for identification of protective antigens 

for use in vaccines for control of tick infestations (reviewed by [4, 5]). Control of ticks by 

vaccination would avoid environmental contamination and the selection of drug resistant ticks 

that result from repeated acaricide applications. Tick vaccines could also be designed to include 

multiple tick and pathogen antigens that may target a broad range of both tick species and 

associated pathogens (reviewed by [4]).  

 Development of high throughput screening and sequencing technologies and 

bioinformatic tools facilitate the study of biological systems and provide information for the 

identification of potential vaccine candidates [6-10]. Recently, we reported the use of cDNA 

expression library immunization (ELI) and analysis of expressed sequenced tags (EST) in a 

mouse model of tick infestations for  identification of cDNAs protective against I. scapularis 

[11, 12]. The combination of cDNA ELI and EST analysis resulted in the selection of 351 

cDNA clones that affected tick larval development [11, 12].  These clones were grouped 
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according to their putative function, and some cDNAs resulted in inhibition of tick infestation 

while others promoted tick feeding [11, 12].  

Herein we describe the characterization of three I. scapularis cDNAs, 4F8, 4D8 and 4E6, 

which reduced tick infestations in cDNA-vaccinated mice [11, 12]. 

2. Materials and Methods 

2.1. Sequence analysis of protective tick cDNAs and deduced proteins 

A strategy using primer walking was developed at the Core Sequencing Facility, 

Department of Biochemistry and Molecular Biology, Noble Research Center, Oklahoma State 

University, for sequencing both strands of cDNA inserts contained in protective clones 4F8, 

4D8 and 4E6, using ABI Prism dye terminator cycle sequencing protocols developed by 

Applied Biosystems (Perkin-Elmer Corp., Foster City, CA, USA). Nucleotide sequences were 

analyzed using the program AlignX (Vector NTI Suite V 5.5, InforMax, North Bethesda, MD, 

USA). Open reading frames (ORFs) were found and the deduced amino acid sequence of 

encoded proteins determined. BLAST [13] was used to search the NCBI databases and the 

TIGR Amblyomma variegatum Gene Index (AvGI; [14]) to identify previously reported 

sequences with identity to those obtained by ELI.  Conserved domains in proteins were 

analyzed by searching CDD, a curated Entrez database of conserved domain alignments [15] 

at NCBI web site. Protein topology was analyzed using TMpred and TMHMM v.2.0 

algorithms for the prediction of transmembrane helices in proteins [16, 17], and the TargetP 

v1.01 algorithm was used to predict the localization of proteins in cells [18].  

Phylogenetic analysis were implemented with 4D8 protein sequences using MEGA 

version 2.1 [19]. Protein sequences similar to I. scapularis 4D8 were included in the analysis 

from Drosophila melanogaster (Genbank accession number AAF50569), A. variegatum (T10865), 

Danio rerio (AAQ94594), mouse (XP_131324), human (NP_060534), Xenopus laevis 
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(AAH43949), Anopheles gambiae (EAA04195) and Caenorhabditis elegans (NP_491304). Maximum 

parsimony (MP) tree searches were heuristic, using tree-bisection-and-reconnection (TBR) 

branch swapping for 10 random addition sequence replicates. Minimum evolution (ME) and 

Neighbor Joining (NJ) trees were constructed based on p-distances and pairwise deletion of 

gaps. Stability or accuracy of inferred topology(ies) were assessed via bootstrap analysis [20] of 

1000 replications.   

2.2. Production and characterization of tick antigens 

2.2.1. Cloning and expression in Escherichia coli of 4F8 and 4D8 recombinant proteins  

For expression of 4F8 and 4D8 cDNAs in E. coli, coding regions were amplified from 

plasmid DNA by PCR using specific oligonucleotide primers introducing Eco RI and Sal I 

restriction sites in the 5’ and 3’ primers, respectively, to insert amplified fragments into the 

cloning site of pFLAG-CTC expression vector (Sigma, St. Louis, MO, USA). Recombinant 

plasmids were named pFNUC1 and pFEND2 for 4F8 and 4D8, respectively. In these 

constructs, the inserted genes were under the control of the inducible tac promoter and yielded 

full-length polypeptides with a C-terminal fusion of a FLAG marker octapeptide. The fidelity 

and orientation of the constructs was verified by sequencing. For expression of recombinant 

polypeptides, pFNUC1 and pFEND2 expression plasmids were transformed into E. coli K-12 

(strain JM109). Transformed E. coli cells were inoculated in LB containing 50 µg/ml ampicillin 

and 0.4% glucose. Cultures were grown at 37°C to OD600nm=0.4. IPTG was then added to 0.5 

mM final concentration, and incubation continued during 4 h for induction of recombinant 

protein expression. Cells were collected by centrifugation and later analyzed by SDS-PAGE 

and Western blot, or then used for the purification of recombinant proteins. 
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2.2.2. Synthesis of 4E6 peptide 

A peptide corresponding to the sequence of 4E6 ORF (NH2-

MEISVKPRPTKRKRKAIIIMARMRTAFPTRSGNSFSRT-COOH) was synthesized,    

analyzed by HPLC and mass spectrometry by Sigma-Genosys (The Woodlands, TX, USA), 

and shown to be 99% pure. 

2.2.3. Protein purification 

E. coli cells expressing recombinant 4F8 and 4D8 proteins were disrupted by 

sonication. Recombinant proteins were extracted with 0.1% Triton X-100 in Tris-buffered 

saline (TBS) and purified by FLAG-affinity chromatography (Sigma) following the 

manufacturer’s instructions. The purity of recombinant proteins was estimated to be ≥90% as 

assayed by densitometry scanning of protein gels. 

2.2.4. Protein gel electrophoresis and Western blot analysis 

Expression and purification of the recombinant proteins was confirmed by SDS-

PAGE [21] and immunoblotting. Protein samples were loaded on 12.5% polyacrylamide gels 

that were stained with Coomassie Brilliant Blue or transferred to nitrocellulose membranes. 

Membranes were blocked with 5% skim milk for 60 min at room temperature. Western blot 

analysis was performed using anti-FLAG M2 monoclonal antibodies (Sigma) for detection of 

recombinant fusion 4F8 and 4D8 proteins or 4F8-, 4D8-, 4E6-monospecific rabbit sera 

prepared in New Zealand White rabbits that were immunized subcutaneously with 3 doses 

(weeks 0, 4 and 7) each containing 50 µg purified 4F8 and 4D8 proteins or 4E6 synthetic 

peptide per dose in Freud’s incomplete adjuvant (FIA) (Sigma). After washing with TBS, the 

membranes were incubated with 1:10,000 goat anti-mouse IgG or goat anti-rabbit IgG alkaline 

phosphatase conjugate (KPL, Inc., Gaithersburg, MD, USA). The membranes were washed 

again, and the color was developed using BCIP/NBT alkaline phosphatase substrate (Sigma). 
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2.3. Ticks 

I. scapularis females, nymphs, larvae and eggs and A. americanum, Dermacentor variabilis 

and Rhipicephalus sanguineus nymphs and adults were obtained from the Oklahoma State 

University Tick Rearing Facility. I. pacificus females were field collected and kindly provided by 

Dr. Robert B. Kimsey (University of California, Davis, CA, USA). I. ricinus and B. microplus 

were kindly provided by Drs. Milan Labuda (Institute of Zoology, Slovak Academy of 

Sciences, Bratislava, Slovakia) and Robert J. Miller (Cattle Fever Tick Research Laboratory, 

USDA, Edinburg, TX, USA), respectively. 

2.4. RNA extraction and reverse transcriptase (RT)-PCR 

Total RNA was extracted from guts and salivary glands dissected from unfed adult 

ticks or from homogenates of eggs and whole unfed larvae and nymphs. Thirty I. scapularis 

females, approximately 100 and 1000 I. scapularis nymphs and larvae, respectively, the egg mass 

oviposited by one I. scapularis female, 10 D. variabilis males, 20 A. americanum adults, 20 R. 

sanguineus adults, 10 B. microplus adults, 10 I. pacificus females and 100-150 I. ricinus larvae were 

used. Total RNA was extracted from homogenized tick samples using TRI Reagent (Sigma), 

except for I. ricinus and B. microplus RNA which were extracted using the RNA Instapur kit 

(Eurogentec, Seraing, Belgium) and the RNeasy mini kit (Qiagen, Valencia, CA, USA), 

respectively, according to the manufacturer’s instructions. The final RNA pellet was 

resuspended in 50-100 µl diethyl pyrocarbonate-treated distilled deionized sterile water.  RT-

PCR reactions were performed using the Access RT-PCR system (Promega, Madison, WI, 

USA). One µl RNA was reverse transcribed in a 50 µl reaction mixture (1.5 mM MgSO4, 1 X 

avian myeloblastosis virus (AMV) RT/Thermus flavus (Tfl) reaction buffer, 10 mM random 

hexamers, 0.2 mM each deoxynucleoside triphosphate (dNTP), 5 U AMV RT, 5u Tfl DNA 

polymerase (Promega), (10 pmol of each primer) at 48oC for 45 min. After 2 min incubation at 
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94oC, PCR was performed in the same reaction mixture with specific primers (4F8, 4F8R5: 5´-

GCGTCGTGTGGAGCATCAGCGAC-3´ and  

4F8-R: 5´-TCGCAACGGACAACGGCAGGTTG-3´; 4D8,  

4D8R5: 5´-GCTTGCGCAACATTAAAGCGAAC-3´and 

4D8-R: 5´-TGCTTGTTTGCAGATGCCCATCA-3´; 4E6,  

4E6R5:  5´-GAAATATCTGTGAAACCAAGGCC-3´ and 4E6U-R: 5´-

ATTGCACAACACATCATTAACTG-3´) and amplification conditions (4F8, 30 sec at 61oC 

and 2 min at 68oC; 4D8, 30 sec at 56oC and 1 min at 68oC; 4E6, 30 sec at 52oC and 1 min at 

68oC for annealing and extension steps, respectively). Control reactions were performed using 

the same procedures but without RT to control for DNA contamination in the RNA 

preparations and without RNA added to control contamination of the PCR reaction. Positive 

control reactions for the PCR were performed with plasmid DNA containing the cloned tick 

cDNAs and with genomic DNA extracted from I. scapularis IDE8 cells. PCR products were 

electrophoresed on 1% agarose gels to check the size of amplified fragments (972 bp, 577 bp 

and 138 bp for 4F8, 4D8 and 4E6 amplicons, respectively) by comparison to a DNA 

molecular weight marker (1 Kb Plus DNA Ladder, Promega). 

2.5. Immunohistochemistry of tick tissue sections 

Adult I. scapularis and IDE8 tick cells derived originally from I. scapularis embryos [22] were 

fixed in formaldehyde and embedded in paraffin. Sections (4 µm) were prepared and mounted 

on microscope slides that were stored at 4oC. For immunohistochemistry studies, tissue 

sections were deparaffinized and dehydrated twice for 5 min in   xylene, 100% ethanol, 95% 

ethanol, followed by a 5 min wash in 80% ethanol. For antigen retrieval, slides were incubated 

with 0.05% pronase (DakoCytomation, Glostrup, Denmark) diluted in TBS, pH 7.2 during 15 

min. The slides were incubated for 1 hr with rabbit 4F8, 4D8 or 4E6 antisera prepared as 
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described previously and diluted 1:400 in PBS, pH 7.2. A preimmune rabbit serum and a 

monospecific rabbit serum prepared with total IDE8 proteins as described previously for 

recombinant proteins were used as negative and positive controls, respectively. The slides were 

blocked in PBS/0.5% Tween 20, pH 7.2 (PBST) with 10% goat serum and 5% skim milk for 1 

hr and then  incubated for 1 hr with peroxidase–labeled goat anti-mouse IgG (KPL) diluted 

1:3000 in PBST. To inactivate the endogenous peroxidase activity, slides were incubated with 

3% H2O2 in PBS, pH 7 and 10% ethanol for 1 hr prior to a 1 min incubation with the 

substrate 3’,3’-diaminobenzidine tetrahydrochloride Fast DAB set (Sigma) followed by staining 

with hematoxylin for 2 min. After each treatment, the slides were rinsed twice for 5 min in 

PBST, unless otherwise indicated.  All incubations were done at room temperature. For 

microscopic examination, the slides were rinsed with distilled water and dehydrated 2 times for 

2 min each in 95% ethanol, 100% ethanol, and finally xylene, and mounted in permount.  

2.6. Biological function of recombinant 4F8 putative tick nucleotidase 

In order to characterize the biological activity of the of recombinant 4F8 putative tick 

nucleotidase, an affinity purification experiment was conducted based on the nucleotidase’s 

activity on 3’-phosphoadenosine 5’-phosphate (PAP) [23]. PAP-agarose resin (Sigma) was 

swelled in PAP-agarose buffer (50 mM HEPES, pH 7.5, 10 mM CaCl2, and 50 mM KCl) and 3 

ml were poured into a 4-ml glass chromatography column (Sigma). Calcium was added to 

satisfy the metal requirement for substrate binding while preventing the hydrolysis of 

immobilized PAP by homologous phosphomonoesterases. Purified recombinant 4F8 (0.4 mg) 

was resuspended in 1 ml PAP-agarose buffer and applied to the column by gravity flow. The 

column was washed with 10 column volumes of PAP-agarose buffer plus 0.5 M NaCl and then 

reequilibrated with 3 column volumes of PAP-agarose buffer containing no additional salt. The 

enzyme was eluted with 3 ml PAP-agarose buffer containing 300 µM 2'/3',5'-PAP (Sigma). 
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Protein fractions in the column pass flow (unbound protein) and after elution with 2'/3',5'-

PAP were collected and concentrated in Amicon Ultra-15 centrifugal filter devices, 

10,000 nominal molecular weight limit (Millipore; Bedford, MA, USA). Both protein samples 

were then analyzed by Western blot using anti-FLAG M2 monoclonal antibodies (Sigma) as 

described above. 

2.7. Protective properties of tick antigens 

Three experiments were conducted to evaluate the effect of 4D8, 4F8 and 4E6 

antigens on larval, nymphal and adult tick infestations. The first experiment was designed to 

compare the effect elicited by protein antigens with that previously obtained with tick cDNAS 

following the same protocol of mouse immunization and infestation with I. scapularis larvae 

[11]. The second experiment was conducted to obtain preliminary data on the inhibitory effect 

of the tick protective antigens on nymphal infestations by I. scapularis, D. variabilis and A. 

americanum. For this experiment, rabbits were chosen because they are a better host to support 

the infestation with nymphs of several tick species and were immunized following the protocol 

described above to elicit a strong antibody response with 4D8, 4F8 and 4E6 antigens. The 

third experiment was conducted in order to obtain preliminary data on the effect of the 

immune response to recombinant protective antigens against adult I. scapularis stages using an 

artificial feeding method followed by completion of the feeding period on a sheep, which 

supports adult tick infestations and is the host routinely used to feed I. scapularis adults at the 

Oklahoma State University Tick Rearing Facility. 

2.7.1. Immunization of mice and infestation with I. scapularis larvae 

Five groups of 6 CD-1 female mice, 5-6 weeks of age at the time of first immunization, 

were used in this experiment. Experimental groups included immunization with 10 µg/dose of 

4F8 or 4D8 recombinant proteins, 4E6 synthetic peptide, and recombinant Anaplasma marginale 
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MSP1a [24], which did not affect tick feeding [25], or vehicle (TBS)/adjuvant alone to serve as 

controls. The mice were cared for in accordance with standards specified in the Guide for Care 

and Use of Laboratory Animals. Mice were injected subcutaneously with each antigen or TBS 

at weeks 0 and 2 with 100 µl/dose in FIA (Sigma) using a 1 ml tuberculin syringe and a 27½G 

needle as described previously [11]. In separate experiments we have shown that immunization 

with FIA did not have an effect on tick feeding (unpublished results). Two weeks after the last 

immunization, mice were infested with 100 I. scapularis larvae per mouse as described 

previously [11]. The unattached larvae were counted and removed 12 hrs after infestation, and 

engorged larvae were collected daily for 7 days from each mouse and counted. After tick 

feeding, the mice were euthanized by cervical dislocation, the blood was collected and the 

serum removed and stored. The engorged larvae were held in a humidity chamber for 34 days, 

after which molting was evaluated using a dissecting light microscope. The inhibition of tick 

infestation (I) and inhibition of molting (M) for each test group with respect to the MSP1a-

immunized controls and the overall efficacy of the vaccine (E) were calculated as described 

previously [11]. The protection efficacy of the vaccine was calculated as E = 100 x [1-(RI x 

RM)] where RI (average reduction in tick infestation) = 1-I/100 and RM (average reduction in 

molting) = 1-M/100. 

2.7.2. Characterization of the immune response in the immunized mice by Western blot  

Ten micrograms of 4F8 and 4D8 recombinant proteins and 4E6 synthetic peptide 

were loaded on a 12.5% polyacrylamide gel using a preparative comb for Western blot analysis 

of mouse immune response as described previously [11].  

2.7.3. Characterization of the immune response in the immunized mice by ELISA 

The antibody response against tick antigens in immunized and control mice was 

evaluated by ELISA. Antibody levels to I. scapularis recombinant 4F8, 4D8 and 4E6 were 
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detected by indirect ELISA. Purified recombinant proteins were used to coat ELISA plates 

over night at 4°C. Sera were serially diluted to 1:10 and 1:100 in PBST and 10% fetal bovine 

serum (Sigma). The plates were incubated with the diluted sera for 1 hour at 37°C and then 

incubated with 1:10,000 sheep anti-mouse IgG-HRP conjugate (Sigma) for 1 hour at 37°C. 

The color reaction was developed with 3,3’,5,5’-tetramethylbenzidine (Sigma) and the OD450nm 

was determined. After incubations the plates were washed with PBST. Antibody titers were 

considered positive when yielded an OD value at least twice as high as the negative control 

serum and were expressed as the geometric mean (mean ± S.D.) at the 1:100 serum dilution of 

the six immunized mice OD minus the OD of the control group.  

2.7.4. Immunization of rabbits and infestation with I. scapularis, D. variabilis and  

A. americanum nymphs 

Preliminary data on the inhibitory effect of the three tick protective antigens on 

nymphal infestations of I. scapularis, D. variabilis and A. americanum was obtained using 

immunized and control rabbits.  One New Zealand White rabbit per group was each 

immunized with 3 doses (weeks 0, 4 and 7) containing 50 µg/dose purified 4F8 and 4D8 

proteins or 4E6 synthetic peptide, a combination of 4F8+4D8+4E6 or bovine serum albumin 

(Sigma) as control in FIA (Sigma). Rabbits were cared for in accordance with standards 

specified in the Guide for Care and Use of Laboratory Animals. Rabbits were injected 

subcutaneously with 500 µl/dose using a 1 ml tuberculin syringe and a 27½G needle. Two 

weeks after the last immunization, each rabbit was infested in ear bags with 100 I. scapularis 

nymphs per rabbit in one ear and 110 nymphs of each D. variabilis and A. americanum on the 

other ear. The unattached nymphs were counted and removed 24 hrs after infestation. The ear 

bag was then removed from the  D. variabilis and A. americanum infested ear and replete 

nymphs from each rabbit were collected on each of the next 7 days from either the ear bag left 
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(for I. scapularis) or from water in the bottom of the cage (for D. variabilis and A. americanum), 

and were weighed and counted. D. variabilis and A. americanum engorged nymphs were 

separated under a dissecting light microscope. The inhibition of tick nymphal infestation was 

calculated in comparison with the control group as described above for larval tick infestations. 

Reduction in the weights of engorged nymphs was determined in experimental groups with 

respect to the nymphs collected from the control groups. 

2.7.5. Capillary feeding of adult I. scapularis with rabbit immune sera against tick protective antigens 

Twenty unfed female I. scapularis per group were used for capillary feeding (CF) 

experiments as described previously [26]. Five groups were included in the CF experiment that 

were fed tick meals with rabbit immune sera against 4F8, 4D8, 4E6, 4F8+4D8+4E6, or rabbit 

preimmune serum as control. The 4F8+4D8+4E6 serum contained 4F8, 4D8 and 4E6 sera 

combined in equal amounts prior to preparing the tick meal for CF. The quantity of serum 

consumed per tick was determined by measuring the difference in level of serum in the 

micropipets when first filled and prior to changing of the meal. The height of the ingested 

serum meal column (mm) was determined daily and used to calculate the total volume of 

ingested serum per tick. After two days of CF, the ticks were removed from the tape and 

placed with 10 unfed males per group in separate orthopedic stockinettes glued to the side of a 

sheep and allowed to attach and feed for 11 days. Replete ticks were collected daily and the 

number recorded, and the ticks were weighed prior to incubation in a humidity chamber and 

held until oviposition was completed (40 days). The egg mass from each tick was weighed and 

recorded. The number of dead ticks during feeding and oviposition was also recorded.  

2.7.6. Statistical analysis 

The ratio of the number of engorged larvae recovered per mouse 7 days after 

infestation (RL) and the number of larvae attached per mouse (RLi) and the ratio of the 
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number of nymphs (ML) and the number of engorged larvae per mouse (RL) were compared 

by Student’s t-test between tick antigen-immunized and control MSP1a-immunized mice in the 

mouse vaccination experiment. In the CF experiment, ingested serum volume, tick weights 

and weight of egg mass of ticks capillary fed on immune sera were compared using a Student’s 

t-test with the control ticks fed on preimmune serum. The ratios of dead to fed ticks were 

compared by χ2–test. The number of ticks on the sheep was recorded daily and compared 

using a Wilcoxon signed rank test.  Wilcoxon signed rank and χ2 tests were implemented using 

Mstat 4.01. 

3. Results 

3.1. Characterization of protective tick cDNAs 

The I. scapularis cDNA clones 4F8, 4D8 and 4E6 that caused inhibition of tick 

infestation in ELI experiments were sequenced and the ORFs identified. The cDNA clone 

4F8 contained a cDNA insert of 1791 bp plus a poly-A tail of 30 bases. An ORF of 951 bp 

was identified encoding for a protein of 316 amino acids with a predicted molecular weight of 

34.7 kDal. The protein was predicted to be a soluble polypeptide localized in the cytoplasm of 

the cell. Protein domain analysis resulted in identity to highly conserved protein families 

KOG3099, bisphosphate 3'-nucleotidase BPNT1/Inositol polyphosphate 1-phosphatase 

involved in nucleotide transport and metabolism (E=4e-84) and KOG3853, inositol 

monophosphatase involved in signal transduction mechanisms (E=8e-38). The 4F8-encoded 

protein contained the consensus for the sequence involved in metal binding and catalysis (D-

Xn-EE-Xn-DP(i/l)D(s/g/a)T-Xn-WD-X11-GG; ref. [23]) and was similar to A. variegatum 

(TIGR gene index TC259; 64%), mouse nucleotidase (Genbank accession number 

AAH11036; 61%), human nucleotidase (AAD17329; 60%), A. gambiae (XP_316740; 61%), D. 

melanogaster (AAF56941; 58%), C. elegans (NP_494780; 46%) and X. laevis (AAH59974; 16%) 
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sequences. Sequence analysis suggested that 4F8 encoded for a tick nucleotidase. The 

nucleotidase activity of 4F8 was then confirmed in a biological assay showing that the 

recombinant protein bound to the immobilized substrate PAP and specifically eluted with 

2'/3',5'-PAP (data not shown). 

The cDNA clone 4D8 contained a cDNA insert of 2,664 bp plus a poly-A tail of 79 

nucleotides. This cDNA contained a large 3’ untranslated region (UTR) of 2,030 bp excluding 

the poly-A tail and a 5’ UTR of 79 bp. An ORF of 555 bp was identified encoding for a 

putative soluble cytoplasmic protein of 184 amino acids with a predicted molecular weight of 

20.7 kDal. A conserved protein domain (KOG4330) was localized in the 4D8-encoded protein 

that was present in uncharacterized conserved proteins of unknown function. The protein 

encoded by 4D8 was similar to A. variegatum (T10865; 32%; 100% similarity in the 40 amino 

acids reported for A. variegatum), D. rerio (AAQ94594; 56%), mouse (XP_131324; 51%), 

human (NP_060534; 49%), X. laevis (AAH43949; 48%), A. gambiae (EAA04195; 47%), D. 

melanogaster (AAF50569; 46%) and C. elegans (NP_491304; 24%) sequences. Phylogenetic 

analysis of 4D8 protein sequences revealed similar tree structures for MP, ME and NJ 

algorithms (Fig. 1 and data not shown). Tick sequences clustered together, separated from 

insect and vertebrate sequences (Fig. 1).  

The cDNA clone 4E6 contained a small insert of 320 bp excluding a 29 bases poly-A 

tail. This insert contained an ORF of 117 bp encoding for a soluble peptide of 38 amino acids 

with a predicted molecular weight of 4.4 kDa or corresponding to a truncated protein from an 

incomplete cDNA. The only sequence found in the databases with homology to 4E6 

corresponded to a D. melanogaster protein of unknown function (AAL90160; 39% similarity in 

the region comprising the 38 amino acids of 4E6).   

3.2. Expression of recombinant proteins 
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Recombinant 4F8 and 4D8 proteins were expressed in E. coli fused on the C-terminal 

to a FLAG marker octapeptide for purification by FLAG-affinity chromatography. Expression 

levels of recombinant proteins after induction reached approximately the 5-10% of total 

cellular proteins (Fig. 2, lanes 2, 4). Rabbit immune sera were prepared with recombinant 

proteins 4F8 and 4D8 and with the synthetic peptide 4E6. Rabbit sera specifically recognized 

4F8 and 4D8 proteins in induced E. coli protein extracts (Fig. 3A, lanes 2, 4) and in purified 

protein preparations (Fig. 3A, lanes 3, 5). The rabbit serum against the 4E6 peptide recognized 

the peptide in Western blots (Fig. 3A, lane 6). The anti-FLAG M2 monoclonal antibody 

specifically recognized the FLAG peptide fused to the C-terminal of 4F8 and 4D8 proteins. 

Combined analysis of Western blots of E. coli-induced and purified proteins with the anti-

FLAG M2 monoclonal antibody and the rabbit immune sera evidenced the presence of higher 

molecular weight proteins in 4F8 (Fig. 3B, diamond in lane 2) and 4D8 (Fig. 3A and 3B, 

diamond in lanes 4, 5), also present in the PAGE (Fig. 2, lines 3, 5), and lower molecular 

weight products in 4D8 (Fig. 3A and 3B, circle in lines 4, 5). Higher molecular weight products 

corresponded in size to protein dimers and lower molecular weight polypeptides could 

represent degradation products. After purification, the purity of recombinant proteins was 

estimated to be ≥90% as assayed by densitometry scanning of protein gels (Fig. 2, lanes 3, 5) 

considering all products specifically recognized in Western blot analyses (Fig. 3A and 3B).   

3.3. Expression of protective cDNAs 

Expression of genes encoding for tick protective antigens was analyzed at mRNA and 

protein levels by RT-PCR and immunohistochemistry, respectively. Expression of 4F8, 4D8 

and 4E6 mRNA was detected in I. scapularis eggs, larvae and nymphs and in guts and salivary 

glands from adult ticks (Fig. 4). Control reactions ruled out contamination with genomic DNA 

or during the PCR (Fig. 4). Furthermore, PCR of tick genomic DNA showed that the size of 
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the amplified DNA fragments was higher than the size corresponding to cDNA fragments, 

probably due to the presence of intron sequences in the analyzed genes (data not shown).  

Protective polypeptides were detected by immunohistochemistry in I. scapularis IDE8 

cells (Fig. 5). Furthermore, proteins 4D8 and 4E6 were also detected in I. scapularis gut sections 

(Fig. 5). The positive control anti-IDE8 proteins serum labeled IDE8 cells and tick gut 

sections (Fig. 5). Labeling was not seen in sections reacted with the negative control rabbit 

preimmune serum (Figs. 5). 

Sequence conservation and expression of 4F8, 4D8 and 4E6 were analyzed in  

I. scapularis related species, I. pacificus and I. ricinus, and in D. variabilis, R. sanguineus, B. microplus 

and A. americanum by RT-PCR using the primers derived from I. scapularis sequences. 

Expression was detected in I. ricinus for all three genes and in I. pacificus and A. americanum for 

4D8 and 4E6 (Fig. 4). Expression of 4D8 was also detected in D. variabilis, B. microplus and R. 

sanguineus (Fig. 4).  

3.4. Protective properties of tick antigens against I. scapularis larval infestations 

The first vaccination experiment was designed to evaluate the effect of recombinant or 

synthetic proteins on larval I. scapularis infestations as evaluated previously for cDNA 

immunizations [10]. Mice were immunized with 10 µg/dose of purified recombinant 4F8 and 

4D8 proteins and with the synthetic 4E6 peptide. Control mice received 10 µg/dose of the 

unrelated recombinant MSP1a protein or saline/adjuvant alone. Antibody response against 

protective antigens was confirmed in mice after immunization by ELISA (mean OD ± SD of 

1.0 ± 0.5, 0.9 ± 0.6 and 0.4 ± 0.04 for 4D8, 4F8 and 4E6 immunized mice, respectively) and 

Western blot (data not shown). Sera from mice immunized with adjuvant/vehicle alone did 

not recognize 4F8, 4D8, 4E6 or MSP1a (data not shown). Vaccination with recombinant 

proteins 4F8 and 4D8 and with the synthetic peptide 4E6 resulted in protection of mice 
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against tick larval infestations. Mice vaccinated with tick protective antigens showed a decrease 

in tick infestations (RL/RLi) when compared to controls, although it was statistically 

significant for 4F8 and 4D8 only (Table 1). The inhibition of tick infestations (I) was ≥46% 

for all three tick antigens (Table 1). A decrease in the molting of tick larvae to nymphs was 

found in ticks that fed on mice immunized with 4D8 and 4E6 proteins, while molting of larvae 

that fed on 4F8-immunized mice was similar to controls (Table 1).  Differences in tick 

infestations were not observed between MSP1a-immunized mice and mice that received 

saline/adjuvant alone (data not shown). The overall efficacy of immunization was calculated 

for each tick antigen considering the effect on larval infestations and on molting to nymphs 

and ranged from 62% to 71% (Table 1). 

3.5. Protective properties of tick antigens against I. scapularis, D. variabilis and  

A. americanum nymphal infestations 

The detection of 4D8 and 4E6 expression in non-Ixodes tick species and the evaluation of the 

effect of tick protective antigens on tick nymphal infestations were the basis for an experiment 

in which rabbits were immunized and challenged with I. scapularis, D. variabilis and A. 

americanum nymphs. Although viewed as preliminary data because of the use of one rabbit per 

group only, the results demonstrated an effect of 4D8 immunization on the inhibition of 

nymphal infestations in all three tick species.  In addition, a notable effect of immunization 

with 4D8 was observed on D. variabilis nymphs by the number of visibly damaged ticks (Fig. 6) 

and a reduction in the weight of engorged nymphs (Table 2). Immunization with 4F8 affected 

I. scapularis nymphal infestations and immunization of rabbits with 4E6 affected A. americanum 

infestations and the weights of D. variabilis engorged nymphs (Table 2).  
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3.6. Effect of rabbit immune sera against recombinant proteins on adult I. scapularis  

Capillary feeding experiments were conducted in order to obtain preliminary data on 

the effect of the immune response to recombinant protective antigens against adult I. scapularis 

stages. Female ticks that were capillary fed for two days with  rabbit immune sera prepared 

against recombinant proteins and were then allowed to feed on a sheep for 11 days had 

reduced feeding periods as compared to controls (P<0.05; Fig. 7). In addition, the weight of 

these ticks at repletion was reduced in comparison with the control group, with significant 

differences in  the  weights of ticks capillary fed on 4D8 and 4E6 immune sera (P<0.05; Table 

3). All ticks survived  CF, but tick mortality during 11 days of feeding on the sheep was  higher 

in ticks fed on 4D8, 4E6 and the combined immune sera (P<0.05; Table 3). For ticks that 

survived feeding and completed engorgement, a significant reduction in weight was observed 

in ticks that fed on 4D8 immune serum (P<0.05; Table 3). When egg mass weight and tick 

mortality were determined at 40 days post-oviposition, the reduction in oviposition  observed 

for ticks fed on 4D8 immune serum was statistically significant (P<0.05; Table 3). 

Furthermore, the overall tick mortality was significantly higher for ticks that fed on 4D8 

immune serum (P<0.01; Table 3). Although ticks capillary fed on 4F8, 4D8 and 4E6 immune 

sera ingested more serum than the controls fed on preimmune serum or those fed on the 

combined immune sera (P<0.05; Table 3), a correlation was not observed between the volume 

of ingested serum by CF and the effect on ticks. Notably, the effect of the 4D8 immune serum 

had the most pronounced effect on tick feeding, oviposition and survival (Table 3).  

4. Discussion 
 

The feasibility of controlling tick infestations through immunization of hosts with tick 

antigens has been demonstrated for Boophilus spp. (reviewed by [4, 5]). Although proteins with 
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the capacity to control tick infestations have been described in various tick species, 

identification of tick protective antigens has continued to be the limiting step in the process of 

developing new effective tick vaccines (reviewed by [4, 5]). Recently, we used a high 

throughput screening method for the identification of tick protective antigens in I. scapularis by 

using cDNA ELI and EST analysis [11, 12]. Immunization of mice with the I. scapularis 4F8 

and 4D8 cDNAs resulted in 50% and 40% inhibition of tick infestations, respectively [10, 11], 

and these cDNAs were therefore selected for further characterization. 4E6 cDNA, although 

inhibited tick infestations at a lower level (20%) compared to 4D8 and 4F8 [12], was selected 

for further evaluation because it encodes a small protein of 38 amino acids which could be 

interesting to use in chimeric polypeptides or in combination with other antigens for 

vaccination against ticks. 

Recombinant polypeptides were produced for 4F8 and 4D8 in E. coli and a synthetic 

peptide was prepared for the short 4E6 protein. Vaccination of mice with recombinant 4F8 

and 4D8 proteins and with the synthetic peptide 4E6 resulted in an overall vaccine protection 

efficacy of >60% against I. scapularis larval infestations. Previous pen vaccine trials using Bm86 

and Bm95 recombinant antigens with the one-host cattle tick B. microplus showed that a vaccine 

efficacy higher than 50% resulted in control of tick populations in the field (reviewed by [4]). 

However, in the three-host tick, I. scapularis, the efficacy of immunization with 4F8, 4D8 and 

4E6 on all tick developmental stages is unknown. Nonetheless, preliminary immunization trials 

in rabbits and CF studies suggested that immune sera against 4F8, 4D8 and 4E6 have an 

inhibitory effect on I. scapularis nymphs and adults. Although statistical analyses could not be 

done in the rabbit immunization trial because of the use of one rabbit per group, the results 

suggested an effect of 4D8 and 4F8 immunizations on I. scapularis nymphs. The lack of 
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statistical significance in some analyses of the CF experiment may reflect differences in the 

antibody concentration between the different immune sera, differences in the activity of 

immune sera against adult ticks or the result of the small number of ticks used in the CF 

experiment. Nevertheless, these results are particularly encouraging because adult ticks were 

exposed to specific antibodies for two days only, which represents 15% of the total feeding 

time. Ticks feeding on artificial membrane systems or on ascitic mice producing tick-specific 

IgGs and inoculation of female ticks with immune sera have been used before to test the 

inhibitory effect of antibodies against tick antigens in B. microplus [27, 28], Ornithodoros moubata 

[29] and Haemaphysalis longicornis [30].   

The degree of protection obtained with 4F8, 4D8 and 4E6 protein vaccine 

formulations was higher than that obtained with cDNA vaccination [11, 12]. The inhibition of 

tick infestation for protein vs. cDNA vaccination was 64% vs. 50% for 4F8, 61% vs. 40% for 

4D8 and 46% vs. 20% for 4E6. The inhibition of molting was assayed with cDNA 

immunization for 4F8 (M=17%) and 4D8 (M=7%) in previous experiments [11]. Although 

inhibition of molting was not observed in the experiments described herein for the group 

immunized with recombinant 4F8, the vaccination efficacy observed was higher for 4D8 

protein formulation when compared to cDNA vaccination (71% vs. 44%). Additionally, 

antibodies against protective antigens were detected in all protein-immunized mice, a finding 

that contrasted with the poor antibody response observed in cDNA-vaccinated mice [11]. The 

higher protection efficacy obtained with protein vaccine formulations probably reflects a 

higher stimulation of the host antibody response by protein immunization (reviewed by [31]) 

and suggests a role for antibodies in the mechanism of protection with tick vaccine 

formulations [32]. Immunoglobulins trigger a variety of effector mechanisms and are 
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specifically transported into the tick hemolymph during feeding [33, 34]. Therefore, 

immunization with tick antigens may target a variety of tick cell proteins. 

The expression of 4F8, 4D8 and 4E6 in all I. scapularis developmental stages suggested 

that these genes are constitutively expressed throughout the life cycle of the tick. In addition, 

expression was detected for all three genes in I. ricinus and for 4D8 and 4E6 in I. pacificus, also 

members of the I. ricinus complex. Recent analyses indicate that members of the I. ricinus 

species complex are closely related despite the fact that they are distributed in different regions 

of the world [35]. These results strongly suggest the possibility for I. scapularis protective 

antigens to be cross-protective against other tick species of the I. ricinus complex.  

Expression of 4F8, 4D8 and 4E6 mRNA was detected in tick guts and the expression 

of 4D8 and 4E6 was confirmed at the protein level in tick gut sections. Although it is possible 

to control tick infestations using antigens expressed in different tick tissues (reviewed by [4]), 

many of the tick protective antigens evaluated as recombinant proteins, including the B. 

microplus Bm86 and Bm95 antigens used in commercial tick vaccine formulations, are 

expressed in tick guts (reviewed by [4]). Targeting gut antigens may result in impairment of tick 

development by interfering with uptake of the blood meal and digestion, which may cause the 

visible damage observed in D. variabilis nymphs fed on the 4D8-immunized rabbit as 

previously noted on I. scapularis [11] and B. microplus [36, 37] fed on mice and cattle immunized 

with tick cDNAs and Bm86 and Bm95 recombinant proteins, respectively.  

 The protein encoded by 4D8 was found to be highly conserved and tracked 

ancestors to the bilateria (Taxblast threshold 10-3). With the exception of the position of fish 

and amphibian sequences, 4D8 trees were in accordance with the phylogenetic relationships 

proposed for eukaryotes [38]. Expression of 4D8 mRNAs were detected in all I. scapularis 

developmental stages (eggs, larvae, nymphs and adults). Furthermore, the detection of 4D8 



 

 114

mRNA expression using primers identical to the I. scapularis sequence in related tick species, 

I. ricinus and I. pacificus, and in the more phylogenetically distant species, A. americanum, B. 

microplus, R. sanguineus and D. variabilis [39], suggests that the function of 4D8 is widely 

conserved among tick species. Expression of the human 4D8 homologue has been detected 

in a variety of adult and fetal tissues (expression information for NCBI UniGene Cluster 

Hs.201864 Homo sapiens) and in C. elegans the 4D8 homologue was expressed in all 

developmental stages [40]. Interestingly, the biological function of 4D8 is unknown, but may 

be involved in the control of developmental processes as deduced from the possible 

involvement of the D. melanogaster homologue in the dorsal-thorax formation of the embryo 

[41] and the embryonic lethal phenotype obtained by RNA interference with the C. elegans 

homologue [40]. Importantly, conservation of 4D8 in different tick species suggests that this 

antigen may be useful in vaccine formulations designed for the control of multiple tick 

species, as evidenced by our preliminary experiments in which immunized rabbits were 

challenged with both D. variabilis and A. americanum nymphs. 

The cDNA clone 4F8 encodes for a metal-dependent tick nucleotidase, a member of 

the phosphomonoesterase protein family that is involved in nucleotide transport and 

metabolism and signal transduction [23]. In general, 5'-nucleotidase has been considered as a 

marker enzyme for the plasma membrane, and is considered to be a key enzyme in the 

generation of adenosine, a potential vasodilator [42]. However, from its wide range of 

localization in tissues it is also considered to be related to the membrane movement of cells in 

the transitional epithelium, cellular motile response, transport process, cellular growth, 

synthesis of fibrous protein and calcification, lymphocyte activation, neurotransmission, and 

oxygen sensing mechanisms [42]. The inhibition of nucleotidases results in the accumulation 

of PAP and 3’-phosphoadenosine 5’-phosphosulfate (PA) leading to cell toxicity [23]. 
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Although a 5’-nucleotidase (AAB38963) with 6% similarity to 4F8 was identified and 

characterized in B. microplus by Liyou et al. [43, 44], the protection capacity of this antigen has 

not been reported.   

Presently, little is known about 4E6, but immunization with this short 38 amino acid 

peptide resulted in the inhibition of tick infestations. Immunizations with Bm86-derived 

peptides have resulted in control of B. microplus infestations ([45]; de la Fuente J and Garcia-

Garcia JC, unpublished results). These results suggest that chimeric vaccine antigens 

containing protective epitopes derived from multiple tick proteins may enhance development 

of new tick vaccines.  

In summary, we identified and characterized three I. scapularis tick protective antigens, 

4D8, 4F8 and 4E6. These antigens, and especially 4D8, appear to be good candidates for 

continued development of a commercial product for control of tick infestations. Although 

these antigens are expressed in all tick developmental stages and preliminary immunization 

trials and capillary feeding experiments have provided encouraging results, further studies are 

needed to test the efficacy of these proteins for the control of all I. scapularis stages and of 

other tick species.  
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Table 1. Results of vaccination with recombinant tick protective antigens on I. scapularis larvae. 
 

 

Experimental Group 

 

RL/RLi I (%) ML/RL M (%) E (%) 

4F8 0.14±0.07 a 64 0.84±0.05 -5 62 

4D8 0.15±0.10 a 61 0.59±0.30 a 26 71 

4E6 0.21±0.17 46 0.54±0.29 a 32 63 

Control (MSP1a) 0.39±0.33 -- 0.80±0.17 -- -- 

 
The inhibition of tick larval infestation (I) for each test group was calculated with respect to 

controls as [1-(RL/RLc x RLic/RLi)] x 100 = [1-(RL/RLi x RLic x RLc)] x 100, where RL is 

the average number of replete larvae recovered per mouse in test groups, RLc is the average 

number of replete larvae recovered per mouse in controls, RLic is the average number of 

larvae attached per mouse in controls, and RLi is the average number of larvae attached per 

mouse for each test group. The inhibition of molting (M) for each test group was calculated 

with respect to controls as [1-(ML/MLc x RLc/RL)] x 100 = [1-(ML/RL x RLc/MLc)] x 100, 

where ML is the average number of nymphs per mouse for each test group and MLc is the 

average number of nymphs per mouse for the control group. The protection efficacy of the 

vaccine was calculated as E = 100 x [1-(RI x RM)] where RI (average reduction in tick 

infestation) = 1-I/100 and RM (average reduction in molting) = 1-M/100. a Significantly 

different from controls (P<0.05). 
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Table 2. Results of vaccination with recombinant tick protective antigens on I. scapularis, D. 
variabilis and A. americanum nymphs. 

 

Tick species 
Inhibition of tick nymphal 

infestation (%)a 

Reduction in the weight of 

engorged nymphs (%)b 

 4D8 4F8 4E6 Allc 4D8 4F8 4E6 Allc 
 

I. scapularis 
 

35 
 

39 
 
0 

 
63 

 
0 

 
0 

 
0 

 
0 

 
D. variabilis 

 
22 

 
0 

 
5 

 
8 

 
32 

 
0 

 
27 

 
0 

 
A. americanum 

 
17 

 
9 

 
29 

 
12 

 
3 

 
1 

 
0 

 
16 

 
aDetermined with respect to the number of engorged nymphs recovered from the control 

group as described above for tick larval infestations. 
bAverage weight per engorged nymph with respect to the weight of nymphs collected from the 

control group. 
cRabbit in this group was immunized with a combination of 4D8, 4F8 and 4E6 antigens. 
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Table 3. Effect of capillary feeding with rabbit immune sera prepared against recombinant 
protective antigens on adult female I. scapularis. 

 

Immune 
serum 

Volume of 
serum 

ingested by 
CF (µl) 
(N=20) 

 

Weight of 
ticks (mg) 

after 13 days 
of feeding 

(N=20) 

No. 
dead 
ticks 

during 
the 13 

days of 
feeding 

Ratio of 
dead/fed 

ticks 
(%)a 

Weight of 
engorged 
ticks (mg) 

that 
survived 
after 13 
days of 
feeding 

Weight of 
egg mass 
(mg) after 
40 days of 

oviposition 

No. dead 
ticks 

during the 
40 days of 

oviposition 

Ratio of 
total 

dead/fed 
ticksb 

 

4F8 
4.9±0.8c 183.8±93.7 2 10 208.9±72.0 105±39 1 15 

 

4D8 
4.7±0.6c 141.7±97.5c 5 25d 188.9±57.8c 103±24c 4 45d 

 

4E6 
4.5±0.7c 164.5±105.9c 5 25d 219.3±48.4 103±34 1 30 

 

4F8+4D8+4E6 
4.2±0.8 212.9±102.7 3 15e 250.5±50.3 116±39 2 25 

 

Controlf 
4.2±0.5 219.9±90.5 1 5 231.4±76.3 120±28 3 20 

 

aTicks that died during feeding with respect to the 20 ticks that were fed. 
bTicks that died during the entire experiment (feeding + oviposition) with respect to the 20 

ticks that were fed. 
cDifferent from control (P<0.05; Student’s t-test).  
d,eDifferent from control (dP<0.01, eP<0.05; χ2–test). 
fControl ticks were capillary fed on rabbit preimmune serum. 
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Figure 1. Phylogenetic relationships of 4D8 protein sequences using the minimum-evolution 

criterion. Bootstrap values for 1000 replicates are shown. 
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Figure 2. PAGE of recombinant 4F8 and 4D8 proteins. Protein samples were loaded on 

12.5% polyacrylamide gels that were stained with Coomassie Brilliant Blue. Lane 1, induced E. 

coli cells (control); lane 2, induced E. coli expressing 4F8; lane 3, purified 4F8; lane 4, induced 

E. coli expressing 4D8; lane 5, purified 4D8. Arrows indicate the size of the proteins while 

diamonds indicate the presence of higher molecular weight products. MW, molecular weight 

markers (TriChromRanger marker, Pierce Biotechnology, Inc., Rockford, IL, USA).  
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Figure 3. Western blot analysis of recombinant 4F8 (lanes 2, 3) and 4D8 (lanes 4, 5) proteins 

and synthetic peptide 4E6 (lane 6). Samples of induced E. coli proteins, recombinant proteins 

expressed in E. coli lanes 2, 4) and after purification (lanes 3, 5) and the synthetic peptide were 

separated by SDS-PAGE and reacted with (A) monospecific rabbit immune sera or (B) anti-

FLAG M2 monoclonal antibody. Arrows indicate the size of the proteins while diamonds and 

circles indicate the presence of higher and lower molecular weight products, respectively. MW, 

molecular weight markers (TriChromRanger marker, Pierce).  
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Figure 4. Expression of tick protective antigen mRNAs in I. scapularis developmental stages 

and adult tissues and in other tick species. RT-PCR reactions were done with primers 

specific for 4F8, 4D8 and 4E6 I. scapularis sequences with conditions described in Materials 

and Methods. Control reactions were performed using the same procedures but without RT 

to control for DNA contamination in the RNA preparations (Control 1) and without RNA 

added to control contamination of the PCR reaction (Control 2).
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Figure 5. Localization of tick protective antigens by immunohistochemistry in paraffin 

sections of IDE8 tick cells (A-F) and adult I. scapularis guts (G-L).  Sections A and G, stained 

with hematoxylin and eosin (bar 6.7 µm (A) and 6.9 µm (G)); B and H, negative controls 

reacted with rabbit preimmune serum (bar 6.7 µm (B) and 6.9 µm (H)); C and I, positive 
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A B C 

D E F 
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controls reacted with anti-IDE8 antibodies (bar 6.9 µm (C) and 6.7 µm (I)); D and J, reacted 

with anti-4F8 antibodies (bar 7.0 µm); E and K, reacted with anti-4D8 antibodies (bar 6.8 µm 

(E) and 6.9 µm (K)); F and L, reacted with anti-4E6 antibodies (bar 6.7 µm (F) and 6.8 µm 

(L)). Original magnification, 600X.  All sections except A and G were counterstained with 

hematoxylin. 
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 Figure 6. Effect of vaccination with recombinant I. scapularis antigens on D. variabilis nymphs. 

Engorged nymphs were collected from rabbits immunized with recombinant tick antigens and 

inspected for morphological changes in comparison with nymphs recovered from the control 

group. Nymphs visibly damaged were observed in the group that fed on the 4D8-vaccinated 

rabbit. 
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Figure 7. Daily number of female ticks feeding on sheep after capillary feeding on rabbit 

immune sera prepared against recombinant tick protective antigens. 
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C h a p t e r  5  

SUMMARY 

Ticks are ectoparasites of domestic and wild animals and they rank second after 

mosquitoes as vectors of human diseases. The life cycle of some ticks is developed on one 

host while in other tick species like Ixodes spp. the life cycle requires three hosts, which difficult 

the control of these ectoparasites. Currently, the most effective method of tick control is the 

chemical; however, resistance of ticks to acaricides has propitiated the searching for new 

alternatives of control. Vaccination represents a good alternative for prevent both tick 

infestations and tick borne diseases. However, despite the efforts for produce vaccines against 

ticks, only one vaccine against the cattle tick B. microplus is available.   

This thesis focuses on the identification and characterization of tick protective antigens 

in the three hosts tick I. scapularis. We hypothesized that cDNAs encoding protective antigens 

against I. scapularis infestations can be identified by ELI of a cDNA library constructed from a 

tick cell line (IDE8) derived from embryonic I. scapularis.   

The identification of protective antigens against I. scapularis infestations was performed 

by construction of a cDNA ELI of IDE8 ticks cells, derived from embryos of I. scapularis in 

the vector pEXP1. cDNA clones were subjected to several rounds of screening where mice 

were immunized with cDNA pools and then challenged with I. scapularis larvae. The inhibition 

of tick infestation and inhibition of molting was evaluated.  Three screenings were performed 

and 9 pools containing 351 cDNA clones that induced protection against tick infestations were 

selected in the first part of this study for further characterization. 
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The identified sequences were partially sequenced with a 5’ vector specific primer (5’-

CGACTCACTATAGGGAG-3’). Most of the obtained sequences were larger than 700 

nucleotides. The nucleotide sequences were analyzed using the program AlignX. Multiple 

sequence alignment was performed using an engine based on the Clustal W algorithm. 

Phylogenetic trees were constructed by using the Neighbor algorithm of Saitou and Nei and 

searching of NCBI databases was performed by BLAST algorithm. From the 351 cDNAs 

identified, 316 contained non-redundant sequences and 101 produced a significant identity to 

sequences reported previously. Vaccination of mice with plasmid DNA and followed of tick 

challenging resulted in identification of cDNAs that inhibited tick infestation (identical to 

nucleotidase, heat shock proteins, beta-adaptine, chloride channel, ribosomal proteins, and 

proteins with unknown function) or promoted tick feeding (identical to beta-amyloid 

precursor, block of proliferation, mannose-binding lectine, RNA polymerase III, ATPases and 

a protein of unknown function). 

Further experiments on mice allowed the selection of genes 4D8, 4F8, and 4E6. These 

genes were cloned and proteins expressed in E. coli. The expression of these proteins was 

demonstrated by protein gel electrophoresis and Western blot. The expression profile of 

proteins 4D8, 4F8 and 4E6 was studied by RT-PCR. Expression of 4F8, 4D8 and 4E6 mRNA 

was detected in I. scapularis eggs, larvae and nymphs and in guts and salivary glands from adult 

ticks. Expression and sequence conservation of these three genes was detected in I. ricinus and 

in I. pacificus.  4E6 was detected in A. americanum and 4D8 in D. variabilis, A. mericanum, R. 

sanguineus and B. microplus. Protein localization was studied by immunohistochemistry in 

sections of IDE8 cells and in sections of I. scapularis adult ticks. The three protective proteins 

were detected in I. scapularis IDE8 cells and 4D8 and 4E6 were detected in I. scapularis gut 
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sections.  The protective properties of selected proteins against I. scapularis larvae were tested 

by immunization of 5 mice with 10 µg/dose of purified recombinant 4F8 and 4D8 proteins 

and with the synthetic 4E6 peptide followed of infestation with 100 I. scapularis larvae. The 

antibody response was evaluated by ELISA and Western blot. The overall efficacy of 

immunization was calculated for each tick antigen considering the effect on larval infestations 

and on molting to nymphs and ranged from 62% to 71%. To evaluate the effect of these 

proteins against nymphs, New Zealand rabbits were immunized with 50 µg/dose of purified 

4F8 and 4D8 proteins or 4E6 synthetic peptide, a combination of 4F8+4D8+4E6, followed of  

infestation with 100 I. scapularis nymps on the right ear. In order to evaluate the effect of these 

proteins against other tick species, the same rabbist were infesteded with 100 nymphs of A. 

americanum and D. variabilis. Immunization with protein 4D8 was demonstrated by inhibition of 

nymphal infestations in the studied tick species.The protective effect of selected proteins 

against I. scapularis adults was evaluated by artificially feeding of ticks with serum from rabbits 

immunized with 4D8, 4F8, 4E6 and a combination of the 3 proteins. The major effects of tick 

capillary fed with rabbit immune sera were reduction of the feeding period, reduction of 

weight of engorged ticks, mortality, and reduction in oviposition.  

The results presented herein confirmed the identification and characterization of three 

protective antigens against I. scapularis infestations. The antigens 4F8, 4D8 and 4E6, especially 

4D8 appear to be good candidates for the development of tick vaccines. Although 4D8 is 

expressed in different tick species, further studies are required to identify the biological 

function and location of this protein in ticks and to test its efficacy against other tick species in 

experimentally  and naturally infested hosts. 
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