
CONCURRENT ENGINEERING: Research and Applications

Formulation and Search of Assembly Sequence Design Spaces for
Efficient Use of Assembly Plant Resources for New Products

Shilpitha Bomi Reddy and Zahed Siddique*

School of AME, University of Oklahoma, Norman, OK 73019, USA

Abstract: Efficient procedures for generation of feasible assembly sequences and effective utilization of available assembly plant resources

can greatly reduce the development time and cost of platforms for new product family members. This article presents a method to generate

feasible assembly sequences and an approach to select an assembly process that reduces the existing plant modification cost. Assembly

sequence design space is combinatorial in nature. Mathematical models to solve the effects of constraints on these spaces and algorithms to

efficiently enumerate feasible spaces are explored in this research. Algorithms to search the feasible space to identify assembly process that

can reduce the modification cost of the existing assembly plant can help increase utilization of existing resources. A software application that

implements the method and algorithms has been developed. The algorithms use the concept of recursive partitioning of set of components to

generate assembly sequence space. The assembly processes are then evaluated to determine the process that maximizes resource utilization

for new platforms. The application of the proposed approach is demonstrated using automotive underbody front structure family.

Key Words: assembly reasoning, assembly sequence design space, assembly resource utilization.

1. Introduction

In order to gain advantage over their competitors or
to survive in the current turbulent market, companies
need to introduce newer models more frequently. One
approach is to organize similar products into a product
family that typically a share common platform.
Companies can further reduce product development
time and cost through efficient management and
utilization of existing resources [1–5]. The increasing
demand for product variety force companies to make
frequent changes to their product design, manufacturing
process, assembly plants, etc. In order to shorten the
product design time, companies need to develop decision
tools for assembly process planning [6–9]. The present
work is focused on developing a decision tool that
automates generation of feasible assembly sequences
from a set of constraints and selection of an assembly
sequence to minimize changes to existing plant for new
platforms.

Utilization of available assembly resources can greatly
reduce development time and cost for platforms and
new product family members [4,5]. All members of a
family have similar assembly processes in general and
have the potential to be assembled using the same

assembly line [10]. Combinations of assembly processes
for the similar member products and platforms make up
the assembly line for the entire product family. The
design of the assembly process and selection of assembly
plants are usually performed after the product is
designed. This article focuses on the development of a
method to determine an assembly sequence for new
product family members that utilize existing assembly
plant resources. The article also focuses on developing a
software application to automatically generate feasible
assembly sequences for a new product family member.
The objectives of this research are to: (1) develop a
method for enumerating assembly sequence design
spaces (Section 3); (2) solve the effects of constraints
and determine feasible assembly sequence space (Section
4); (3) select an assembly sequence by utilizing existing
assembly plant resources that requires minimum mod-
ification to the existing plant. (Section 5); (4) develop a
software application to automatically generate an
assembly process for new product family members
using existing resources.

2. Background

2.1 Assembly Sequence Representation

In order to generate feasible assembly space, first
assembly sequences need to be represented. The assembly
sequence diagram representation was developed by

*Author to whom correspondence should be addressed.
E-mail: zsiddique@ou.edu
Figures 1, 2, 4 and 5 appear in color online: http://cer.sagepub.com

Volume 18 Number 2 June 2010 129
1063-293X/10/02 0129–12 $10.00/0 DOI: 10.1177/1063293X10370798

� The Author(s), 2010. Reprints and permissions:

http://www.sagepub.co.uk/journalsPermissions.nav at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215220881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cer.sagepub.com/

De Fazio and Whitney [11], which corrects some of the
drawbacks in Bourjault [12] tree representation.
Delchambre [13] proposed assembly plans, which con-
sists of precedence graphs. Haung and Lee [14] addressed
the representation and acquisition of precedence
knowledge of an assembly, which plays an important
role in the generation of assembly sequence and planning.
Homem de Mello and Sanderson [15] used AND/OR

graph to represent all mechanical assembly sequences.
Directed graphs are used to represent a set of all
assembly sequences [16]. The nodes in this graph
correspond to stable state partition of set of parts. The
edges in this graph are ordered pairs of nodes and each
edge corresponds to an assembly task. HAP can
overcome difficulties associated with computational
complexities in case of large assemblies.

2.2 Generation of Assembly Sequences

Several methods have been proposed to solve for
generation of assembly sequences. Forward assembly
sequence search or backward assembly sequence search
are based on traditional tree search, graph theory,
artificial intelligence, and disassembly approach.
Bourjault [12] developed means for generating all
assembly sequences from a series of rules using
algorithms based on precedence relations. De Fazio
and Whitney [11] used a similar concept by simplifying
his technique, which includes a smaller set of questions.
Homem de Mello and Sanderson [17] developed a
program that takes input as a representation of a
product and generates all feasible assembly sequences
presenting them as AND/OR graph representation of
assembly sequences.
Several authors proposed heuristics to generate a set

of feasible assembly plans. Generative assembly process
planner [18] takes input as solid model from which a
suitable assembly representation is formed as a graph
model. Lee and Shin [19] presented an assembly
planning system COPLANNER. The XAP/1 system
[20] is oriented towards plan optimization rather that
generating all feasible plans. Lin et al. [21] uses contact
relation matrix (CRM) approach to generate assembly
sequences for product design.
Assemble planning problem presented by Bonneville

et al. [22] uses genetic algorithm (GA) with the initial
population is composed of few assembly plans examined
by an expert. The approach of assembly sequence
planning problem [23] is a modified version of GA
with the search space clustered as families of sequences
having similar genetic characteristics.
The disadvantages of the nonheuristics methods are

the combinatorial explosion as the number of compo-
nents in products increases. These methods also require
the user to validate all the sequences before selection. In
addition, the rules derived from the answers to the

questions become difficult if the product complexity
increases. For the heuristics methods, the drawback is
the complexity involved in selecting an initial feasible
assembly plan.

3. Enumeration of Assembly Sequence Space

An assembly sequence design space is defined as a set
of all feasible sequences for a given product or family of
products. The feasible sequences are obtained by
applying constraints, such as precedence relations,
imposing subassemblies, etc., on assembly sequence
spaces. In this section, an algorithm and associated
mathematical tools, to determine the unconstrained
assembly sequence design space is presented. The
problem is defined as: Given a list of components
V¼ {v1, v2, . . . ,vn} for a product or new product family
member, determine an assembly sequence space that
models all possible assembly sequences for the compo-
nent set V.

Development of a model to represent assembly
process and assembly plant is discussed in Section 3.1.
Individual assembly sequences are represented using
series-reduced planted tree (SRPT). Mathematical
models and associated algorithm to enumerate the
assembly sequence design space are discussed in
Sections 3.2 and 3.3.

3.1 Series-reduced Planted Tree

To enumerate the assembly sequence space a new
representation of assembly process called series-reduced
planted tree was introduced by Siddique [24]. If C is
taken to be collection of components in the product and
|C|¼ n, then assembly sequence is a SRPT with nþ 1
labeled leaves. Vertices of degree one is called leaves or
endpoints and vertices more than degree one are called
assembly workstations. If two or more components are
assembled together they are considered as a single
component or a sub-assembly, which can be assembled
to other components or subassemblies. The unassembled
components are considered as leaves of the tree. The
finished product is represented by point adjacent to the
root. The advantage of this representation is that each
SRPT refers to an assembly process. The SRPT
representation is extended to capture product family
assembly plant information. The leaf node labels of the
tree are underlined to distinguish between platform and
optional components. If a product family member does
not have an optional component then we assume that no
activity will be performed at that workstation for the
product. For new products with options not included in
the current assembly plant, we try to apply the concept
of late point differentiation to assemble the optional
components in the assembly process [25].

130 S. B. REDDY AND Z. SIDDIQUE

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

3.2 Enumeration of Assembly Sequence Space

The assembly sequence space is combinatorial in
nature and can be enumerated using recursion. If T is an
assembly sequence represented as SRPT. The branches
of the tree can consist of individual components and
subassemblies. Each subassembly is an assembly space.
Consider an assembly sequence of a product with a set
of components V¼ {a, b, c, d} divided into two branches
such that one branch has component a and the other
branch has components b, c, and d (Figure 1(a)). Each
branch is a subassembly and branch with components a
has only one sequence. The branch with components b,
c, and d is a subassembly with more than one sequence.
The branch with three components has four possible
sequences (Figure 1(b)).

This recursive nature leads to enumeration of
assembly sequence space. To solve the enumeration of
assembly sequence space mathematically set partitions
are applied. Therefore, enumeration of assembly
sequence space is described as partitioning of set of
components recursively. The set of components of a
product are partitioned into subsets such that, each
subset of two or more components is considered as a
branch and individual components are considered
as leaves. The subset with more than two components

is further partitioned. Consider V¼ {v1,v2, . . . ,vn} be
a set of n components then the unconstraint
assembly sequence space is formally represented as:
SeqV¼Seq{v1,v2, . . . ,vn}.

3.3 Algorithms to Generate Assembly
Sequence Space

Before developing the algorithm to generate the
unconstrained assembly sequence space, several defini-
tions need to be presented. A set of distinct objects that
can be divided into a number of ways is called a set
partition. The number of ways, which a set of distinct
objects can be partitioned, is called Bell number. Bell
number for a set with n objects, B(n), is the sum of the
number of ways that it can be partitioned into 1,2,3, . . . ,n
subsets. The number of ways that a set of size n can be
partitioned into k subsets is called Stirling number of the
second kind and is denoted as S2(n, k). They satisfy the
following recurrence relation, which forms the basis of
recursive algorithms for generating them.

nk ¼ k
n� 1
k

� �
þ

n� 1
k� 1

� �
ð1Þ

(a) (b)

(c)

(d)

a

a

a a a a
d

d
b

bc c b
c

db

b

c

c

d

d

Seq{b,c,d}

Seq(a,b) c d

Seq(a,d) c b

Seq(b,d) c a

Seq(a,c) Seq{a,b} Seq(b,c,d) a

Seq(a,c,d) b

Seq(a,b,d)

Seq(a,b,c)

c

d

Seq{c,d}

Seq{a,c} Seq{b,d}

Seq{a,d} Seq{b,c}

b d

Seq(b,c) a d

Seq(c,d) a b

Seq{a,b,c,d}

Partition of 4
elements into 4

Partition {a,b,c,d} specified using restricted growth values
0123 0122- {a,b,{cd}}

0121- {a,c,{bd}}
0112- {a,d,{bc}}
0120- {{ad},b,c}
0102- {{ac},b,d}
0012- {{ab},c,d}

0011- {{ab}{cd}} 0001- {{abc}d}
0010- {{abd}c}
0100- {{acd}b}
0111- {{bcd}a}

0101- {{ac}{bd}}
0110- {{ad}{bc}}

{{a}{b}{c}{d}}

Partition of 4 elements
into 2,1 and 1 element

Partition of 4 elements
into 2 and 2 elements

Partition of 4 elements
into 3 and 1 element

Figure 1. Recursive nature of assembly sequence space: (a) components divided into two branches; (b) four feasible assembly sequence for
four components divided into two branches of one and three components; (c-d) set partitions obtained from restricted growth strings for four
components.

Formulation and Search of Assembly Sequence Design Spaces 131

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

In general Bell number B(n) is the sum of Stirling
numbers from 1 to n. The n-th Bell number can be
computed using the formula:

BðnÞ ¼
Xn
k¼1

S2 n,kð Þ ð2Þ

For example the set {1, 2, 3} can be partitioned into
three subsets in one way: {{1},{2},{3}}; into two subsets
in three ways {{1,2},{3}},{{1,3},{2}}, and {{1},{2,3}};
and into one subset in one way: {{1,2,3}}. The
Bell number is B(3)¼S2(3, 1)þS2(3, 2)þS2(3, 3)¼
1þ 3þ 1¼ 5. Restricted growth function is used to
generate the partitions themselves. The restricted growth
array is a set of zero-based indices specifying to which
partition each element of the set belongs.
For a set of size 4, for example RG¼ [0,0,0,0], defines

all elements belonging to one partition, which is
{1,2,3,4}, RG¼ [0,1,1,0] represents {1,4}, {2,3}, which
specifies 1 and 4 belonging to the first partition and 2
and 3 belonging to second partition. The RG array
values have the characteristic that for each i,
RG[i]5¼1þmax (RG[0], RG[1], . . . ,RG[i�1]). A set
partition of the set [n]¼ {1, 2, . . . , n} is a collection B0,
B1, B2, . . . ,Bj of disjoint subsets of [n] where B0[B1[

B2 � � � [Bj¼ [n] and B0\B1\B2 � � �Bj¼ ø. Each Bi is
considered as a block. A restricted growth string (or
RG string) is a string a[1, . . . , n] where a[i] is the block in
which element i occurs. Restricted growth strings are
often called restricted growth functions.
The restrictions on assembly sequence space are

. The assembly plan can be nonlinear, that is more
than one component can be moved at a time.

. Assembly plan is monotone that every operation
makes all the moved parts reach goal positions and
no operation separates the parts already assembled.

. Assembly plan can be sequential, such that each
operation involves moving a set of parts along a
common trajectory.

Algorithm 1, used to generate restricted growth
values, was developed by Orlov [26]:

Given: Set of components of size n.
Step 1: create two array variables k and m of size n
and initialize them to zero.
Step 2: Each value of array m is calculated from
equationmi¼max{k0, . . . , ki}. Each value of arraym is
outcome of above equation throughout the algorithm.
Step 3: Calculate the bell number from Stirling
number of second kind.
Step 4: The restricted growth values are generated
and stored in array k. Repeat this step from i¼ 1 to
(Bell number �1)

for i¼ n�1 to 1 do
if ki�mi�1 then ki kiþ 1and mi max(mi, ki)
if ((iþ 1)�n)
for j¼ iþ 1 to n�1 do

kj k0 and mj mi

Return

Consider a set of four components as V¼ {a, b, c, d},
the restricted growth is shown in Figure 1(d).

Algorithm 1 generates partitions for set of compo-
nents. However, for enumerating assembly sequence
space the partitioned subsets need to be further
partitioned until all the components are divided into
individual elements. Algorithm 2, used for recursive
partitioning of sets is:

Given: A set of components of size n.
Step 1: If number of components ¼ 2, then there is
only one sequence. If number of components ¼ 1 then
it is an individual component.
Step 2: If number of components4 2, then,
Step 3: Generate the restricted growth values using
Algorithm 1.
Step 4: After obtaining, the restricted growth values
collect the elements, which fall into the respective
subsets. Again, repeat the steps 1–4. Each time when
the sequence is determined for the subsets add it as a
subset to main set.
Step 5: Print sequence according to values stored in
subsets.

Consider a set of four components V¼ {a, b, c, d}, all
set partitions and restricted growth function are shown
in Figure 1(c) and (d).

4. Constraints on Assembly Space

Since the assembly space is combinatorial in nature,
enumeration of the design space becomes difficult, if
not impossible, as numbers of components increase. In
order to address this issue, constraints are applied on
the assembly space to ensure that only feasible
assembly sequences are generated, which is different
than generating and then checking for feasibility.
Constraints on the assembly space are based on work
done by Nugen [27] and expanded in Wilmes and
Siddique [25].

4.1 Type I Constraints

Type I constraints on an assembly sequence space is a
situation where the basic components of a subset are
completely specified along with the sequence among the
components. The effect of Type I constraint can be
imagined as specifying a sub-tree of a SRPT.

132 S. B. REDDY AND Z. SIDDIQUE

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

4.1.1 MATHEMATICAL MODEL FOR TYPE I
CONSTRAINT

Formally, consider a set of n components V¼
{v1,v2, . . . , vn} then the unconstrained assembly sequence
space can be represented as SeqV. If k is the number of
components satisfying Type I constraint and t denotes
the super-node representing Type I constraint, then the
assembly sequence space satisfying Type I constraint is
formally represented as:

SeqV CI
T

� �
¼ SeqV�Kþt ð3Þ

Multiple Type I Constraints: Suppose that there are m
Type I constraints T1,T2, . . . ,Tm with K1,K2, . . . ,Kk

different set of components satisfying each Type I
constraints, that is T1\T2¼T1\T3¼ � � � ¼Tm�1\Tm¼Ø,
then formal representation of multiple constraints is:

SeqV CI
T1
þ CI

T2
þ � � � þ CI

Tm

� �
¼ SeqV�K1þt1�K2þt2����Kkþtk

ð4Þ

Nested Type I Constraints: Another way of arranging
Type I constraints is by nesting. With Type I constraint,
nested constraints are redundant. For example if T1� T2

are both Type I, then T1 is a redundant constraint. We
can solve Type I constraint by just applying T2:

SeqV CI
T2

� �
¼ SeqV�K2þt2 ð5Þ

4.1.2 ALGORITHM 3 TO APPLY TYPE I
CONSTRAINTS

Algorithm 3 identifies the sequence among the
components in Type I constraints specifying them as a
sub-tree. The Type I constraints are represented as
super-nodes (components) to generate the assembly
sequence space. Applying Type I constraints reduce
the size of the assembly space.

Given: A product with n components stored in array
V¼ {v1,v2, . . . , vn}. Type I constraints T1,T2, . . . ,Tm

having k1,k2, . . . , km elements showing the sequence
among the components. When Type I constraints are
defined each Type I constraint is given a new
component number as ei(i¼1, . . . ,m).
Step 1: Check for multiple constraints and nested
constraints. If there are multiple constraints then
check for T1\T2¼T1\T3¼ � � � ¼Tm�1\Tm¼Ø. If the
condition is not equal to NULL (empty set), then the
constraints are invalid constraints. If there are any
nested constraints, for example if T1�T2, then
eliminate T1 and just apply T2.
Step 2: Solve for Type I constraint (Ti) where
i¼ 1,2, . . . ,m having ki number of elements.

Define all the elements of Ti constraint by specifying
the sequence among the components. Give name of
new component number as ei.
Step 3: Check whether Ti is subset of array V. Check
whether each element of Ti is contained in array V.
Step 4: Next check for the first element of T1 in the
array V, if it is found at position ‘j’ in main array V,
then replace the subset T1, with V[i] at its respective
position. Now change the positions of all the
components in V[] from jþ 1 to (n� ki) or depending
upon the positions of the elements eliminated from
the array V, which are contained in T1. Delete the
positions from n� ki to n� 1. The total number of
components in array V are n� kþ 1.
Step 5: Check for the next Type I constraint and
repeat all the steps from 1 to 4.
Step 6: After all the Type I constraints are defined and
specified as super nodes the assembly sequence space
is determined by using the Algorithm 2.
Step 7: After enumerating the assembly space the new
component numbers given for each Type I constraint
are replaced with their respective components and
completely defined sequence among the components
of each Type I constraint.

4.2 Type II Constraints

The effect of Type II constraints can be considered as
specifying a set of subassembly sequences for a given set
of components on an assembly sequence space. The
effect of Type II constraint can be imagined as
specifying different sub-trees for a same set of compo-
nents of a SRPT.

4.2.1 MATHEMATICAL MODEL FOR TYPE II
CONSTRAINT

If v is the entire set of components for a given product
and Q is the set of components representing Type II
constraint. The sequence space among the components is
denoted by SeqQ. Then each sequence of Q is considered
as Type I constraint, which can be represented as a super-
node to determine the assembly sequence space. The
assembly sequence satisfying Type II constraint is:

SeqV
�
CII

Q

�
¼

�
SeqV

�
CI

qi

�����ðq1, . . . , qiÞ 2 SeqQ

and i ¼ 1,2, . . . ,RjQj

�
ð6Þ

Multiple Type II Constraints: Two types of situation
emerge when more than 1 Type II constraints are
applied. These cases are defined as multiple and nested.
In the multiple case, the constrained subsets are disjoint.
In the second case constrained subsets are nested, one
subset is contained in another subset.

Formulation and Search of Assembly Sequence Design Spaces 133

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

If there are m many multiple Type II constraints
then they have to satisfy Q1\Q2¼Q1\Q3¼ � � � ¼

Qm�1\Qm¼Ø, and the formal representation is:

If there are m many nested Type II constraints then,

where: V � Q1 � Q2 � � � � � Qm.

4.2.2 ALGORITHM 4 TO APPLY TYPE II
CONSTRAINTS

In Algorithm 4, Type II constraint is represented as
super-node, which is used as a component in generating
assembly sequence space. Each super-node correspond-
ing with Type II constraint represents an assembly
space, with components contained in the constraint.
Once the initial assembly space with super-node is
generated, each super-node is replaced by its corre-
sponding sub-assembly space.

Given: Given n components of a product stored in an
array V¼ {v1, v2, . . . , vn}. Given all Type II constraints
Q1,Q2, . . .,Qm having x1, x2, . . . , xm elements with out
showing any specified sequence among the compo-
nents. When Type II constraints are defined each
Type II constraint is given a new component number
as qi(i¼ 1, . . . ,m).
Step 1: Check for multiple constraints and nested
constraints. If the constraints are multiple constraints
then check for Q1\Q2¼Q1\Q3¼ � � � ¼Qm�1\

Qm¼Ø. If the condition is not equal to NULL then
the constraints are invalid constraints. Then ask the
user to give a valid constraint. If there are any nested
constraints, for example if Q1�Q2, then Q1 is a subset
of Q2. Therefore the elements of subsets are enumer-
ated first and the sub-assembly space is represented as
super-node.
Step 2: Solve for each Type II constraint (Qi) where
i¼ 1, 2, . . . ,m having xi number of elements. Define
all the elements of Qi constraint giving name of each
Type II constraint as super node qi.
Step 3: Check whether Qi is subset of array V. Check
whether each element of Qi is contained in array V.

Step 4: Next check for the first element of Q1 in the
main array V, if it is found at Position ‘j’ then replace

the subset Q1, in V at its respective position. Now
change the positions of all the components in V from
jþ 1 to (n� yi) or depending upon the positions of the
elements eliminated from the main array, which are
contained in Q1. The total number of components in
array V is n� yiþ 1.
Step 5: Check if Qi has any subsets, which are already
defined under Type I or Type II constraints. If it has
then replace them by following the procedure in Step
1, 2, 3, & 4 assuming Qi as main array.
Step 6: Check for the next Type II constraint and
repeat from Step 1 to 5.
Step 7: The sequence space among the components of
each Type II constraint is generated using Algorithm
2 and replaced by new components numbers (super-
nodes) in array V.
Step 8: The final assembly sequence space is generated
by using the new component numbers of Type II
constraints. The component number of Type II
constraint in each sequence of final space is replaced
with corresponding sub-assembly space.

4.3 Type III Constraints

Type III constraints are used to specify precedence
relationships among components in the assembly.
Consider a product with four components a, b, c, and
d. If component a has to be assembled after d, then we
use the notation a4d. The precedence relationship does
not mean that component a is immediately after d, an
assembly sequence where c and d is first assembled, then
b is assembled, with a added at the last workstation will
be a valid assembly sequence. To enumerate the
assembly sequence space with Type III constraints we
use a concept of ‘growth retardation.’ Since the
assembly sequence space is recursive in nature, if a
partition is infeasible then the growth of that partition is

SeqV CII
Q1
þ CII

Q2
þ � � � þ CII

Qm

� �
¼ SeqV CI

q1i
þ CI

q2j
þ � � � þ CI

qmk

� � q1i 2 SeqQ1 and i ¼ 1,2, . . . ,RjQ1j

q2j 2 SeqQ2 and j ¼ 1,2, . . . ,RjQ2j

. .
qmk 2 SeqQm and k ¼ 1,2, . . . ,RjQmj

��������

0
BB@

1
CCA ð7Þ

SeqV CII
Q1
CII

Q2
. . .CII

Qm

� �
¼ SeqV CI

q1i

� � q1i 2 SeqV�Q1þq1 ðC
I
q2j
Þ and i ¼ 1,2, . . . ,Rn�jQ1jþ1

q2j 2 SeqQ1�Q2þq2 and j ¼ 1,2, . . . ,RjQ1j�jQ2jþ1

. .
qmk
2 SeqQm and k ¼ 1,2, . . . ,RjQmj

��������

0
BB@

1
CCA ð8Þ

134 S. B. REDDY AND Z. SIDDIQUE

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

stopped. So, in the four component example with a Type
III constraint, a4d, the recursion is not applied to
partitions that do not meet the constraint. To solve the
Type III constraints mathematically we need to calculate
the level numbers. A level number for a given
component in a sequence is defined as number of
vertices between the component and the root. Algorithm
5 to check Type III constraints is:

Given: Given an input strings of the form {v1, v2,
{vk�1, vk}, . . . , vn} and array Temp given a Type III
constraint of type x1 x24x3, x4.
Step 1: Each component on both sides of precedence
symbol has to be checked.
Step 2: Calculate the level numbers for the given input
string. Store the level numbers with their respective
positions corresponding to component numbers in
array Temp.
Step 3: Solve for the level numbers of given Type III
constraint on both sides of the precedence symbol.
Obtain the level numbers of components from array
obtained in Step 3 by matching the component
number with the component numbers in Type III
constraint string. If a component number in Type III
constraint in not contained in the string or vice versa
do not check for that component number.
Step 4: Check if level number on right-hand side of
precedence symbol is greater than the level number on
left-hand side of the precedence symbol. If this
condition is satisfied then the Type III constraint is
satisfied for that given input string. If not the growth of
partition is stopped or the given string is not considered
as a valid string.
Step 5: For other precedence constraints repeat from
Steps 2 to 4.

To generate feasible sequences, first the Type I
constraints are applied by collapsing the subsets into
super-nodes. Then partially apply Type II constraints by
collapsing the subsets into super-nodes. The associated
sub-spaces are considered later. Organize the Type III
constraints. Enumerate the subspaces associated with
each Type II constraint based on Type III constraints.
Enumerate the sequence space for the new set of
components with super-nodes obtained from Type I
and Type II constraints. The final assembly sequence
space is determined by considering combinations of each
Type II constraint.

5. Assembly Process Selection by Measuring
Process and Plant Similarity

One of the focuses of this article is to select an
assembly process that will increase the utilization of
current assembly plant resources. The similarity between
the assembly process and a given assembly plant is

measured by the difference in the path length among the
common components in assembly process and plant.
The path length difference indicates the assembly
sequence deviation from assembly plant sequence. The
path length for a given component q in assembly process
or assembly plant is calculated as number of vertices
denoted by m in between root and component q. To
calculate the change in assembly sequence between the
assembly process and plant, the difference of path
lengths for each component in the assembly process and
assembly plant is calculated. Let x be the path length of
a given component q in assembly process and y is the
path length of the component q in assembly plant
sequence then the difference in path length is absolute
value x� y

�� ��. The path lengths of optional components
are not considered when measuring the change in
assembly sequence of process and plant:

Given: All feasible assembly sequences and assembly
plant sequence.
Step 1: Calculate the path lengths from the root for
each component in assembly plant sequence.
Step 2: Calculate the path lengths from the root for
each component in assembly process for the first
feasible assembly sequence.
Step 3:Measure the difference of path lengths (absolute
value) for each components in assembly process and
plant. Do not measure for optional components.
Step 4: Calculate the total difference of this assembly
process from assembly plant by adding all the
differences for each component.
Step 5: Repeat Steps 2, 3, and 4 for each assembly
process.
Step 6: Compare the total difference of all the
assembly sequences and select the assembly pro-
cess(es) with minimum total difference.

Consider the example with five components, as shown
in Figure 2. The total path length difference is 2 for
assembly process 1 (Figure 2(a)). The path lengths
calculated for assembly process 2 (Figure 2(b)) are 2, 2,
3, 3, 3 and differences are 1, 1, 0, 1, 2. The total
difference for assembly process 2 is 5. Hence we select
assembly process 1. A detailed comparison is shown in
Figure 2(d).

6. Implementation

6.1 Generation of Assembly Space

A software program coded in Visual Cþþ has been
developed to automatically generate assembly sequence
space. A flow chart gives overview of the generation of
feasible assembly sequences and selection of assembly
plant that minimizes existing plant modification cost is
shown in Figure 3.

Formulation and Search of Assembly Sequence Design Spaces 135

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

The user input is given in text file. Generation of the
space starts with reading the input file. The first step
is to declare all the variables, pointers, elements for
Type I, Type II, and Type III constraints. Next, the
number of components is initialized by reading the first
line from the file. The names of the components are also
added to the corresponding component numbers. After
reading the component names an element of Type II
constraint is created, which represents the main space
element. The main space element contains list of all
components, number of components and a component
number given to the main space element as an increment
of the number of components. Next step is to read the
constraints.
When the first Type I constraint is read, an element of

Type I constraint is created and the associated
component numbers are added to component list by
reading each component number and the component
name is given as the user specified one. Each Type I
constraint is given a new component number. Each time
a new element is created at the start of new hierarchy.
After all hierarchies are specified the sequence string
representing the Type I constraint is written to a file. For
Type II constraints are read, the associated components
are stored in the component list of Type II constraint.
When Type III constraints are read for each Type III
constraint an object of type supercon3 is created. The
components on left side of the precedence symbol are
stored in ‘before’ and on the right side are stored in
‘after.’ The next step is to organize the Type I and Type
II constraints. First all the Type II constraints are
ordered according to the number of components in each

constraint. After that Type II constraints are organized
according to the hierarchy.

A function then organizes the constraints according to
the component number of the constraint. The parent
component list and child component list are compared.
If all the components are found in parent component list
the child element component number is replaced with
the components present in the parent component list.
Therefore, if any Type I and Type II constraints are
subsets of other Type II constraint or main space. Then
they are replaced with their component numbers.

Type III constraints are organized by finding the
appropriate element with each individual Type III
constraints. Each component on both sides of pre-
cedence symbol is compared. Each component is
checked for the appropriate element and if it is found
in the appropriate element then the component is added
to the list of Type III constraint of the element.

The assembly sequence with all three types of
constraints by first checking whether the element is a
Type II constraint then only it generates the space. Next
it checks whether any child elements exist for the current
element. If it has any children it calls the same function
to generate the space for children. It also checks whether
the current element is a Type I constraint, if it is a Type I
constraint then it checks for the next element. A
function is then invoked to generate the space for the
current element. This method generates the sequence
space and writes them into a file. For each Type II
constraint the associated space is written to a separate
file. The generation of the space starts from the bottom
for the hierarchy by generating sub spaces.

(a)

E E

E

D
D

DC

C

C

B

Component

A
B
C
D
E

4

Assembly
Process 1 Process 2 Process 1 Process 2

Assembly
plant

Absolute difference

4
3
2
1

2
2
3
3
2

3
3
3
2
1

1
1
0
0
0

2 4Total difference

1
1
0
1
1

B

BA

A

A

(b) (c)

(d)

Figure 2. (a) Assembly process 1, (b) assembly process 2, (c) existing assembly plant sequence, (d) comparison of feasible assembly
process and plant.

136 S. B. REDDY AND Z. SIDDIQUE

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

6.2 Selecting Assembly Process that Minimizes
Existing Plant Modification Cost

A class called component is created with members
functions that reads the feasible assembly sequences and
then determines the total absolute difference of path
lengths for all components in assembly process and
assembly plant. The main function counts the number of
components for any given assembly process or assembly
plant. Another function calculates the path lengths of
component numbers of assembly plant and each
assembly process. By calculating the path lengths the
total path length difference is calculated for all
components of assembly process and plant.

7. Automotive Underbody Front Structure
Product Family

Automotive underbody front structure is an impor-
tant part of automotive underbody called chassis.
The front structure of an automotive underbody has a
number of varieties, to meet the requirements of different
automotive models. Different functions are used to
satisfy needs of different market segments. In this case
study the automotive underbody front structure product
family is used to demonstrate the generation of assembly
sequence and to perform trade-off studies in order to
utilize existing assembly plant resources.

Imagine a manufacturing company already has an
assembly plant that manufactures several automotive
underbody front structure varieties. A new automotive
underbody front structure has been designed with few
added options and the manufacturer wants to determine
if the current assembly plant can be used to manufacture
the new underbody front structure without any change.
If not, then determine the underbody front structure
assembly sequence that will require minimum modifica-
tion to the existing assembly plant. The steps involved
are presented next.

Step 1: Identify the assembly process constraints for the
new automotive underbody front structure product family
member: The new automotive underbody front structure
model being designed by the manufacturer with a new
option added, which requires assembling of five new
components: Support Battery Tray Front, Bracket Fan
Shrout Upper, Plate Assembly Engine Front Mounting,
Rein. Floor Side Member Inner RR(LH), and Rein.
Floor Side Member Inner RR(RH) to the underbody
front structure.

The constraints on the assembly process for the new
automotive underbody front structure are shown in
Figure 4 (optional components are underlined). The
constraints use the component numbers shown in
component list. For example, T2 ¼ {29, 30, 31, 32},
which means that Radiator Support Upper
Reinforcement, Radiator Support Upper, Bracket Rad
Mounting, Hood Lock Reinforcement are assembled
first at same workstation. This is a Type I constraint.

Step 2: Generate the feasible assembly sequences using
the software tool. Using the developed application, the
feasible assembly sequences are generated. The compo-
nent names and the list of all three types of constraints
are given as input in a text file. The user’s input file
contains: number of components given as size, names of
components, and the three types of constraints. The
feasible assembly sequences are generated and saved in a
text file. There are 624 feasible assembly sequences for
the new automotive underbody front structure.

Step 3: Assembly process selection by comparing
feasible sequences with the existing assembly plant.

lnput Data
Number of Components,

Name of the components,
List of Type I, Type II and Type Ill Constraints

Generation of
feasible assembly
sequences

Assembly process
selection

Create List of Components and specify the names for each component
number

Create a list of elements for Type I, Type II & Type Ill Constraints
Specify the complete hierarchy for Type I constraint, give a new

component number for each Type I constraint and store it in a file
For Type II constraints identify the list of component numbers

associated them with each Type II constraint.
Give new component numbers for each Type II constraint.

For each Type Ill constraint store the components in an array on both
sides of precedence symbol

Organize the Type I and II constraints according to the hierarchy

Organize the names of components of Type I and Type II constraints
according to the component numbers. Check whether any Type I and
Type II constraints are subsets of other Type II constraints. If they are

subsets replace them with their respective component numbers.

For each Type Ill constraint divide the Type Ill constraints and find
the appropriate constraint and add it to the list of each constraint.

Generate the sequence space using recursion and write them into a
file. The generation of the space starts from the bottom of the

hierarchy. Therefore it generates the subspaces and uses them in
generating the larger spaces.

Write all the feasible assembly sequences to a file

Input data
Feasible Assembly Sequences

Assembly Plant Sequence

Calculate the path lengths of components of assembly plant.

Calculate the path lengths of components of each assembly process and
calculate the absolute total difference for each component of assembly

process and assembly plant.

Write each assembly process and total difference calculated
between each assembly process and assembly plant to a file.

Select the assembly process or processes with
least total difference.

Output all the assembly process with least total
difference

Figure 3. Flowchart of overall approach.

Formulation and Search of Assembly Sequence Design Spaces 137

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

The feasible assembly sequences are compared with the
existing assembly plant sequence. The assembly plant
representation for the existing automotive underbody
front structure is modeled using SRPT Representation
(Figure 4(a)). The assembly plant sequence can be
written as:
{{43,{{27,{{22,23,}{24,25,26,}{{17,18,29,}{{20,21,}

{14,15,16,}}}}}{13,{{4,5,}{10,11,12,}{9,{3,{1,2,}}{6,7,8,}
}}}{36,37,38,{29,30,31,32,}{33,34,35,}}}}{40,41,42,{39,
28,}}}. The numbers in the string corresponds to
automotive underbody front structure components, as
shown in Figure 4(a).

The feasible sequences are compared with the existing
assembly plant sequence and the absolute difference in
path lengths for each component of each assembly
process is calculated. All the differences are added
to calculate the total difference for each assembly
process. The assembly process with the least total
difference is selected and displayed in the output text
file (Figure 5).

For the automotive front structure, there is only one
assembly process which has the least total difference of
‘8.’ There are no assembly processes with total difference
‘9’ and ‘10.’ There are three assembly processes with

(a)

1

2
3

4

5

9

8
7
6

10
11

12
1314

15
1620

21

22

23

27 26

43

42

20
21

22

23

27

14 44
15

16

17
18

19
24

25

26

43

42
41

40 39
48

47

46
2845

38
37

36

32

35
34
33

31
30

29
13

12

11
109

8
761

2
3

4
5

41
40

39

28

38
37
36

35

34
33

32

31
30

29

25
24

19
18
17

(b)

Component list:
1. Front Fender Apron Upper Brace (RH)
2. Front Suspension Mounting Housing (RH)
3. Bracket Radiator Overflow Cont
4. Front Fender Apron Upper Inner Reinf (RH)
5. Front Fender Apron Extension (RH)
6. Engine Mtg Plate Front (RH)
7. Floor Side Inner Member Reinf (RH)
8. Floor Side Inner Front Member Assembly (RH)
9. Bracket Engine Mounting Rear
10. Brake Line Bracket Front (RH)
11. Filler Front Floor Side Member Front (RH)
12. Reinf Engine Rear Support Bracket
13. Front Suspension Housing Upper Reinf (RH)
14. Front Suspension Mounting Housing (LH)
15. A/C L Mounting Brkt Center (LH)
16. Front Fender Apron Upper Brace (LH)
17. Floor Side Inner Member Reinf(LH)
18. Floor Side Inner Front Member Assembly (LH)
19. Engine Mtg Plate Front (LH)
20. A/C L Mounting Brkt RR
21. Battery Support Bracket Inner
22. Front Fender Apron Extension (LH)
23. Front Fender Apron Upper Inner Reinf(LH)
24. Brake Line Bracket Front

25. Filler Front Floor Side Member Front (LH)
26. A/C L Mounting Brkt Center (LH)
27. Front Suspension Housing Upper Reinf (LH)
28. Front Side Member Extension
29. Radiator Support Upper Reinf
30. Radiator Support Upper
31. Bracket Radiator Mounting
32. Hood Lock Reinf
33. Front Cross Member Lower Reinf
34. Front Cross Member Lowerfill
35. Front Tow Hook Bracket Assembly
36. Head Lamp Mounting Panel Reinf
37. Front Fender Apron Reinf (RH)
38. Front Fender Apron Reinf (LH)
39. Reinf Front Side Member Extension
40. Bracket Accel Padel Stop
41. Dash Panel
42. Reinf Dash Panel Brake Master Cyl
43. Body Front Cross Lower Member
44. Support Battery Tray Front
45. Brkt Fan Shrout Upper
46. Plate Assembly Engine Front Mounting
47. Reinf Floor Side Member Inner RR (LH)
48. Reinf Floor Side Member Inner RR (RH)

Type I
T1 = {,13,{,{,4,5,},{,10,11,12,},{,9,{,3,{,1,2,},},{,6,7,8,} ,},},}
T2 = {,29,30,31,32,}
T3 = {,33,34,35,}
T4 = {,28,46,47,48,}
T5= {,36,37,38,45,}
T6= {,27,{,{,22,23,},{,{,24,25,},26,},{,{,17,18,19,}, {,{,21,20,},
 {,{,14,44,},15,16,},},},},}
Type III
Q1 = {,40,41,42,28,39,46,47,48,}
Q2 = {,29,30,31,32,33,34,35,36,37,38,45,}
Q3 = {,33,34,35,}
Q4 = {,14,15,16,17,18,19,20,21,22,23,24,25,26,27,44,}
Q5 = {,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
 23,24,25,26,27,29,30,31,32,33,34,35,36,37,38,44,45,}
Type III
40,41,42,>,28,39;
43,>,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 17,18,19,20,21,22,
 23,24,25,26,27,29,30,31,32,33,34,35,36,37,38,44,45;

Figure 4. Name of components and assembly constraints for new automotive underbody front structure family member: (a) existing product
family assembly plant model, (b) modified product family assembly plant sequence to incorporate the new automotive underbody front
structure product family member.

138 S. B. REDDY AND Z. SIDDIQUE

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

total difference ‘11.’ The assembly process with total
difference of ‘8’ will be selected to make changes in the
existing assembly plant sequence, because it represents
the least modification to the existing assembly plant.

8. Concluding Remarks

In this article an approach to generate assembly
sequence design spaces has been presented. The SRPT
was developed to represent assembly plant and assembly
process sequence. The hierarchical nature of this repre-
sentation leads to recursion, which consists of compo-
nents assembled as subassemblies. This recursive nature is
used to recursively partitioning the set of components to
enumerate entire assembly space. The algorithm to
generate assembly sequence space was presented.

A methodology to solve the effects of three types of
constraints to generate only feasible assembly sequence
spaces was presented. The Type III constraint uses the
concept of growth retardation such that only feasible
assembly sequences are retained. An algorithm was
developed to automatically solve the effect of all
constraints and to generate only feasible sequences by
eliminating the infeasible ones.

A unique approach to compare each feasible assembly
sequences with assembly plant sequence to determine a
product family assembly process that minimizes the
existing assembly plant modification cost has been
developed. Each component path distances from the
root were measured and compared for assembly process
and plant sequence. A computer application, which
utilizes the above concepts to determine the feasible
assembly sequences and to select an assembly process
that increase utilization of existing assembly plant
resources, was presented. The method was applied to
automotive underbody front structure product family to
estimate the change for existing assembly plant for a new
product family member. Some of the limitations of this
research include:

. This research assumes that information provided by
the user about components and assembly constraints
are valid and correct.

. The software tool developed selects assembly process
based on change in sequence of assembly process and
assembly plant. A tool which considers information
about moving cost, workstation attributes and time
etc., is necessary.

. The method developed to generate assembly sequence
space does not consider information about geometric
checks, mating relationships and other aspects.

. The assembly process generated in this article is
presented in the form of strings using curly braces.
The user has to determine assembly tree from this
sequence. A visual representation of the tree can help
users understand the assembly process.

References

1. Bower, J.L. and Hout, T. (1988). Fast Cycle Capability
for Competitive Power, Harvard Business Review,
66(Nov–Dec): 110–118.

2. McDermott, C.M. and Stock, G.N. (1994). The Use of
Common Parts and Designs in High-tech Industries: A
Strategic Approach, Production and Inventory Management
Journal, 35(3): 65–68.

3. Wheelwright, S.C. and Clark, K.B. (1992). Revolutionizing
Product Development: Quantum Leaps in Speed, Efficiency
and Quality, New York: The Free Press.

4. Martinez, M.T., Favrel, J. and Ghodous, P. (2000).
Product Family Manufacturing Plan Generation and
Classification, Concurrent Engineering: Research and
Applications, 8: 12–23

5. Liverani, A., Amati, G. and Caligiana, G. (2004). A CAD-
augmented Reality Integrated Environment for Assembly
Sequence Check and Interactive Validation, Concurrent
Engineering: Research and Applications, 12: 67–77.

6. Giudice, F., Ballisteri, F. and Risitano, G. (2009)
Concurrent Design Method Based on DFMA–FEA
Integrated Approach, Concurrent Engineering: Research
and Applications, 17: 183–202.

7. Gottipolu, R.B. and Ghosh, K. (1997). Representation and
Selection of Assembly Sequences in Computer-Aided
Assembly Process Planning, International Journal of
Product Research, 35(12): 3447–3465.

8. Grewal, S. and Choi, C.K. (2005). An Integrated
Approach to Manufacturing Process Design and Costing,
Concurrent Engineering: Research and Applications, 13:
199–207.

9. Li, Y., Xue, D. and Gu, P. (2008). Design for Product
Adaptability, Concurrent Engineering: Research and
Applications, 16: 221–232.

10. Chan, S.C.F., Soo, S.M.K. and Yu, K.M. (2006).
Customer-driven Collaborative Product Assembler for
Internet-based Commerce, Concurrent Engineering:
Research and Applications, 14: 99–109.

11. De-Fazio, T.L. and Whitney, D.E. (1987). Simplified
Generation of all Mechanical Assembly Sequences, IEEE
Journal of Robotics and Automation, RA-3(6): 640–658.

Figure 5. Output file showing the final assembly process.

Formulation and Search of Assembly Sequence Design Spaces 139

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

12. Bourjault, A. (1984). Contribution à une Approche
Méthodologique de l’Assemblage Automatisé:
Élaboration Automatique des Séquences Opératoires,
PhD Thesis, Faculté des Sciences et des Techniques de
l’Université de Franche-Comté.

13. Delchambre, A. (1992). Computer-aided Assembly
Planning, London, UK: Chapman & Hall.

14. Huang, Y.F. and Lee, C.S.G. (1991). A Framework of
Knowledge-based Assembly Planning. In: Proceedings of
the IEEE International Conference on Robotics and
Automation, Sacramento, CA, pp. 599–604.

15. Homem De-Mello, L.S. and Sanderson, A.C. (1990). AND/
OR Graph Representation of Assembly Plans, IEEE
Transactions on Robotics and Automation, 6(2):188–199.

16. Homem De-Mello, L.S. and Sanderson, A.C. (1991).
Representation of Mechanical Assembly Sequences,
IEEE Transactions on Robotics and Automation, 7(2):
228–240.

17. Homem De-Mello, L.S. and Sanderson, A.C. (1989). A
Correct and Complete Algorithm for the Generation of
Mechanical Assembly Sequences, IEEE Transactions on
Robotics and Automation, 1: 56–61.

18. Laperriere, L. and Eimaraghy, H. (1996). GAPP: A
Generative Assembly Process Planner, Journal of
Manufacturing Systems, 15(4): 282–293.

19. Lee, S. and Shin, Y.G. (1990). A Cooperative Planning
System for Flexible Assembly, In: Proceedings of the 2nd
International Conference on Computer Integrated
Manufacturing, Troy, NY.

20. Wolter, J.D. (1989). On the Automatic Generation
Assembly Plans, In: Proceedings of the IEEE
International Conference on Robotics and Automation,
Scottsdale, AZ, pp. 62–68.

21. Lin, M.C., Tai, Y.Y., Chen, M.S. and Alec Chang, C.
(2007). A Rule Based Assembly Sequence Generation
Method for Product Design, Concurrent Engineering:
Research and Applications, 15: 291–308

22. Bonneville, F., Perrard, C. and Henrioud, J.M. (1995). A
Genetic Algorithm to Generate and Evaluate Assembly
Plans, In: IEEE Symposium on Emerging Technology and
Factory Automation, Paris, France, pp. 231–239.

23. Sebaaly, M.F. and Fujimoto, H. (1996). A Genetic Planner
for Assembly Automation, In: Proceedings of the IEEE
Conference on Evolutionary Computation, Nagoya, Japan,
pp. 401–406.

24. Siddique, Z. (2000). Common Platform Development:
Designing for Product Variety, Doctoral Dissertation,
Georgia Institute of Technology.

25. Wilmes, L. and Siddique, Z. (2004). Applicability of Design
Spaces to Utilize Current Assembly Plant Resources to
Produce New Product Family Members, In: Proceedings of

ASME 2004 Design Engineering Conference, Paper No.
DETC2004-52528, Salt Lake City, Utah.

26. Orlov, M. (2002). Efficient Generation of Set Partitions.
Available at: http://www.informatik.uni-ulm.de/ni/Lehre/
WS04/DMM/Software/partitions.pdf (accessed April 20,
2010).

27. Nugen, F. (1999). Enumerating with Constraints on the
Hierarchy Space, Unpublished Manuscript, Georgia
Institute of Technology.

Shilpitha Bomi Reddy

Shilpitha Bomi Reddy
is currently working as a
Net Developer for The
MitGroup. Ms. Reddy’s
research interests include:
product platform design,
assembly process genera-
tion, and development of
computer applications to
support designers. She com-
pleted her Masters from
School of Aerospace and

Mechanical Engineering at University of Oklahoma.

Zahed Siddique

Prof. Zahed Siddique is
currently working as an
Associate Professor at the
School of Aerospace and
Mechanical Engineering of
University of Oklahoma.
His research interests include
product family design, colla-
borative design, design edu-
cation, and reverse
engineering. Dr Siddique
received his PhD in

Mechanical Engineering from Georgia Institute of
Technology.

140 S. B. REDDY AND Z. SIDDIQUE

 at UNIV OF OKLAHOMA on January 20, 2016cer.sagepub.comDownloaded from

http://cer.sagepub.com/

