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PREFACE 

Precise systems design, equipment standardization, and 

stability of performance characteristics are among the many 

advantages digital techniques can offer in signal 

processing. Earlier research in this field of study has 

contributed much to many of the modern day conveniences. 

Many of these contributions focus on improving computational 

efficiency of discrete Fourier transform (DFT) calculation. 

However, there are many shortcomings; therefore number 

theoretic transform (NTT) is proposed. 

This study implements three digital filters using one 

of the NTT, namely the Fermat number transform (FNT), and 

DFT. It compares the execution time, number of operation, 

and memory requirement for both implementations. 

Implementation of both types of filters employs the radix-2 

fast Fourier transform (FFT) . This study proposes a modified 

diminished-one number system in implementing FNT. The 

number system was originally proposed by Leibowitz. 

I would like to take this opportunity to thank my major 

advisor, Dr. Lu, for the encouragement she has offered over 

the years. Her patience and constructive guidance has been 

very helpful. Also, I would like to thank Dr. Teague for 
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his kindness in giving me access to his digital signal 

processing laboratory, where most of the work in this study 

was done. My appreciation also goes to my parents for their 

continuous support 
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CHAPTER 1 

1. INTRODUCTION 

C.M. Rader introduced Mersenne number transform (MNT) 

in 1972 [1] . His proposal started a whole new category of 

transform, generally termed as number theoretic transform 

(NTT) . This opened up new possibilities in digital signal 

processing. Among the many claims of number theoretic 

transform are precision and accuracy, processing speed, and 

a lower memory requirement compared to its complex 

counterpart. As the structure of NTT is very similar to 

that of DFT, FFT algorithms are most suitable for improving 

efficiency. Interesting enough, FFT algorithms did not draw 

much attention until a decade earlier, when Cooley and Tukey 

published their paper in 1965 [2] . 

This study seeks to implement lowpass, bandpass, and 

highpass filters using NTT and DFT. The specific focus is 

FNT and DFT, using radix-2 FFT algorithm implementations. 

The software Hypersignal was used to design the filters, 

producing a set of filter data sequence to convolute with 

input signals. A modification of L.M. Leibowitz's 

diminished-one number system used to implement FNT is 

presented. The study compares the execution time and the 

memory requirement for the two implementations. An analysis 
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of the computational accuracy is also presented. All these 

implementations are run on Texas Instruments' (TI) TMS320C30 

evaluation module. 

Chapter 2 contains a historical account of the 

development of the field of digital signal processing. The 

chapter first recount early 19th century discoveries. A 

description of the improvements in both NTT and DFT will 

follow. Chapter 3 gives the necessary background 

information regarding the implementations in this study. 

Chapter 4 discusses the specific implementations. A 

detailed description of the algorithm implemented in this 

study, followed by a discussion of the modified diminished­

one operations is also presented. Chapter 5 presents an 

analysis of the results collected from the two 

implementations. This paper will then end with a summary in 

chapter 6. It reiterates the findings and wraps up this 

study. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Introduction 

The contribution of the French mathematician Jean 

Baptiste Joseph Fourier (1768 - 1830) is a major milestone 

to the study of signal processing [3] . Fourier first 

demonstrated the method of representing periodic functions 

in infinite harmonic series. This method, now known as the 

Fourier series, has become a valuable tool for the study of 

digital signal processing. Later, the definition of the 

Fourier transform is developed from the foundation of this 

work. Just as the Fourier series describes a periodic 

function in terms of the frequency-domain attributes of 

amplitude and phase, the Fourier transform extends this 

frequency-domain description to aperiodic functions. 

However, digital signal processing did not catch on until 

Cooley and Tukey published their work in 1965 [2] . Their 

work was indeed a turning point in digital signal processing 

and in certain areas of numerical analysis. With their 

method, the order of complexity of performing DFT drops from 

o{N2} to a significantly lower order at O(Nlog2N) . 
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Less known to many researchers, however, is the 

treatise written by the eminent German mathematician Carl 

Friedrich Gauss (1777 - 1855) [4]. This treatise described 

an algorithm similar to the Cooley-Tukey FFT more than one 

hundred and fifty years earlier, in 1805. As noted by H. 

Burkhardt [5] in 1904 and H. H. Goldstine [6] in 1977, this 

work predated even Fourier's 1807 work on harmonic analysis. 

Although DFT is useful in today's digital electronic 

era, time-consuming complex operations and roundoff errors 

due to finite word length plague its usefulness. Many 

researchers have begun to explore similar transforms 

exhibiting cyclic convolution property (CCP) , which is 

having the transform of the cyclic convolution of two 

sequences equal to the product of their transforms. In 

1971, Pollard published a paper [18] discussing the 

conditions for having transforms showing CCP and defined 

transforms in a finite (Galois) field. Transforms in the 

rings of integers appeared after Rader proposed the 

transforms in the rings of integers modulo a Mersenne number 

or a Fermat number. Researchers call these transforms in a 

ring of integers NTT. 

This chapter first recounts the development behind 

modern day digital signal processing since early 1800. 

Then, an account of the progress in DFT follows. 

Thereafter, the chapter discusses progress in NTT. 
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2.2 Theoretical Development 

2.2.1 Early Developments 

In a well-documented article [7], M.T. Heideman 

referred to two earlier papers [5,6], confirming Gauss's 

contribution to the study of signal processing. He quoted 

Herman H. Goldstine [6], "This fascinating work of Gauss was 

neglected and was rediscovered by Cooley and Tukey in an 

important paper in 1965." Here, he was referring to Gauss's 

treatise, "Theoria Interpolations Methodo Nova Tractata." 

Gauss published this treatise, most likely written in 1805, 

in 1866. H. Burkhardt, who wrote in 1904 [5], also noted 

the contribution of Guass. 

While a student at Gottingen, Gauss became familiar 

with the works of Leonhard Euler (1707 - 1783) and Joseph 

Louis Lagrange (1736 - 1813) on the analysis of 

trigonometric series [7] . He later extended these works on 

trigonometric interpolation to periodic functions. 

Nevertheless, most of his important publications are in a 

nineteenth-century version of Latin, called neo-Latin. 

Unfortunately, it is difficult for a casual student of 

classical Latin to translate neo-Latin accurately. Gauss's 

notation in describing his method also posts an obstacle to 

modern readers. As such, his work went largely unnoticed. 

Heideman wrote, "Burkhardt pointed out this algorithm in 
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1904 and Goldstine suggested the connection between Gauss 

and the FFT in 1977, but both of these went largely 

unnoticed, presumably because they were published in books 

dealing primarily with history." So, the world did not 

benefit from Gauss's method until Cooley and Tukey came 

along in 1965. 

~Gauss's algorithm is as general and powerful as the 

Cooley-Tukey common-factor algorithm and is, in fact, 

equivalent to a decimation-in-frequency algorithm adapted to 

a real data sequence," wrote Heideman. Although Gauss did 

not go on to quantify the computational requirements of his 

method, clearly his algorithm performs in the order of 

complexity at the now familiar ~Nlog2N}. 

Although Gauss's contribution precedes that of Fourier, 

Fourier's work in harmonic series commands more attention. 

It is fascinating to see that the knowledge acquired in one 

field of study became useful in another. In fact, Fourier 

was studying and analyzing the heat flow in metal rods when 

he discovered the trigonometric series representation of a 

periodic function. He did not know the importance of his 

work to modern day signal processing. Essentially, Fourier 

showed that any periodic function is expressible as a 

function of harmonic frequencies of the fundamental 

frequency, which we now refer to as the Fourier series. 

Such mathematical abstraction of periodic functions is a 
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useful tool for objective observation of periodic signals. 

Beside the physical interpretation to view periodic 

functions as a sum of component functions with harmonic 

frequencies, Fourier series allow us to describe such 

functions in their frequency-domain attributes. Further 

development introduces the idea of Fourier transform, giving 

us the abstract mathematical tools to study aperiodic 

functions. 

Over the years, independent works that were unrelated 

to Gauss's work appeared, but were not as general or as well 

formulated as his work. Many of the methods did not handle 

computation above the fourth harmonics until Runge published 

his work [7] in the early 1900's. 

2.2.2 Discrete Fourier Transform 

At the turn of the century, Runge proposed an algorithm 

for lengths equal to powers of two [7], which was later 

generalized to powers of three as well. Apparently, his 

work was well known and was cited in the popular textbook 

written by Whittaker and Robinson [8] . His influence did 

not survive after the war, however. 

After the war, in 1958, another important contribution 

appeared. Good developed an index mapping that facilitated 

the division of a problem into subproblems of smaller length 

[9] . This mapping itself is an application of the Chinese 
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remainder theorem, which dates back to the Chinese 

mathematician Sun-Tsu some time between 200 BC and 200 AD 

[10] . When Cooley and Tukey presented their fast Fourier 

transform in 1965, they claimed to base their work on Good's 

mapping, apparently unaware of Gauss's algorithm that the 

world had forgotten more than a century ago. However, there 

are major differences between Good's algorithm and the 

Cooley-Tukey FFT. The former does not require auxiliary 

complex multiplications, referred to as twiddle factors, 

while the later does; thus, the two different classes of 

FFT. 

The development of FFT, without twiddle factors, did 

not become popular with Good's algorithm, which is suitable 

when factors of the transform length are coprime, or are 

indivisible by each other. Good's algorithm requires a set 

of efficient small-length DFT algorithms. Paradoxically, in 

1968, Rader published a paper that showed how to map a prime 

length N DFT into circular convolution of length N -1 [11] 

Yet, not until Winograd's study on complexity theory [12] 

that the two foundation works above are ready for efficient 

applications on signal processing. Winograd published his 

paper in 1977, presenting his complex theory, particularly 

on the number of multiplications required for computing 

polynomial products or convolution. His work is crucial to 

this class of FFT. With Good's mapping, coupled with 
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Rader's fast convolution scheme, a first algorithm makes use 

of the intimate structure of these convolution schemes to 

obtain a nesting of the various multiplications. This 

algorithm is now known as Winograd Fourier transform 

algorithm (WFTA) . If the nesting is not used, the resulting 

algorithm is known as prime factor algorithm (PFA) . 

The development in FFT with twiddle factors took off 

with the Cooley-Tukey FFT. Unlike Good's algorithm, the 

Cooley-Tukey FFT can have transform length of any composite 

length. With the growing interest in the theoretical 

aspects of digital signal processing motivated by technical 

improvements in the semiconductor industry, and the 

availability of reasonable computing power, the Cooley-Tukey 

FFT quickly became an interest of research. They employ the 

divide and conquer approach by separating input sequences to 

process. When the sequence length is a power of two, their 

algorithm becomes what is known as the radix-2 decimation-

in-time (DIT) algorithm. Emphasis on a dual approach leads 

to decimation-in-frequency (DIF) algorithm. Later, Bergland 

noted that the algorithm can be more efficient with higher 

radices like radix-8 [13] . In 1984, there were four 

proposals [14,15,16,17] submitted at about the same time 

that leads to split-radix algorithm. This approach uses a 

different radix for the even part (radix-2) and the odd part 

(radix-4) . 
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This research uses a radix-2 algorithm for comparison 

with the NTT implementation. Thus, it is the author's 

intention to leave the rest of the development in this 

thread, for example polynomial transform, to the reader to 

explore. This discussion will continue with the motivations 

and history of NTT. 

2.2.3 Number Theoretic Transform 

In his paper published in 1971 [18], J.M. Pollard 

defined a transform in finite (Galois) field analogous to 

the DFT. Replacing the complex roots of unity in DFT with 

rk, where r is a member of any field F, of order d and k is 

an integer, he showed that CCP holds for the transform in 

F. This is under the condition that r has finite order d 

in the multiplicative group F. of F. Generalizing his 

definition, he suggested transforms in a ring of integers 

modulo m, where m is an integer. C.M. Rader picked up from 

here and introduced a transformation defined in the rings of 

integers modulo a Mersenne number [1] . We now call this 

transform Mersenne number transform (MNT) . 

Unlike DFT, the only arithmetic operations MNT needs 

are that of additions and circular shifts of bits within a 

word. One other advantage the MNT has over DFT is the 

accuracy of the transformation it can attain; virtually no 
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roundoff errors. Rader also suggested a transformation 

using Fermat numbers. In time, researchers coined the term 

'number theoretic transform' to refer to similar 

transformations. Later in 1974, R.C. Argarwal and C.S. 

Burrus [19] worked on a transform using Fermat numbers, 

named Fermat number transforms (FNT). In their paper, they 

formalized the conditions for CCP and showed its relation to 

the transform length. Unlike Rader, they defined the roots 

of unity as a' instead of 2'. Thus giving more flexibility 

to the transform. Since these transformations are similar 

to the DFT, therefore FFT algorithms are perfectly suitable 

on NTT to achieve better efficiency. As the topic of 

interest is on implementation of FNT, many of the later 

developments in NTT are left to the readers to explore. The 

emphasis will now turn to issues in the implementation of 

FNT. 

Argarwal and Burrus proposed implementations of the 

various basic arithmetic operations modulo a Fermat number, 

~=2h+l, in their paper [19]. However, this method does 

not have the convenience of circular shifts of bits when 

performing scaling. The method also involves the 

representation of the number -1, requiring b+l bits. The 

integer b is equal to 2t . Argarwal and Burrus decided to 

ignore this extra bit in order to simplify modular 

arithmetic operations. While McClellan developed a 
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technique of exact computation using a new binary code 

representation of b+l bits in 1976 [20], L.M. Leibowitz 

proposed a similar binary representation he called 

diminished-one number system the same year [21] . His method 

shows less mathematical complexity than that of McClellan. 

It also allows circular bit shifts for scaling by powers of 

2. This paper builds on the foundation of Leibowitz's 

diminished-one number system and presents modifications to 

the various diminished-one number operations. 

2.3 Hardware Environment 

2.3.1 TMS320C30 Evaluation Module 

The TMS320C30 Evaluation Module (EVM) is a tool for 

application development. This module allows the execution 

and debugging of application programs. With one of the 

fastest digital signal processors (DSP), the 33-MFLOP 

TMS320C30 floating-point DSP, this EVM provides a lot of 

computing power. This section will give a brief description 

of the hardware environment used in this study. 

As mentioned earlier, the TMS320C30 EVM employs the TI 

TMS320C30 DSP for its brain power. This DSP has a 60-ns 

single-cycle instruction execution time (33Mhz) . The 

processor has one 4K x 32-bit single-cycle, dual-access on­

chip ROM block, and two 1K x 32-bit single-cycle dual-access 
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on-chip RAM blocks. It also includes a 64 x 32-bit 

instruction cache. The instruction and data words are 32-

bit, while the addresses are 24-bit. Both the multiplier 

and the ALU have 40-bits floating-point operations and 32-

bits for integer operations. It has a 32-bit barrel 

shifter. Among the many advances in this processor, it can 

perform parallel multiply and ALU operations on integer or 

floating-point data in a single cycle. Another main feature 

of this processor is its internal dual-access memory 

capability. 

In addition to the TMS320C30 DSP, this EVM has 16K 

words of zero wait-state SRAM on the primary bus. It also 

has a voice quality analog data acquisition circuitry, with 

standard RCA jacks for line-level analog input and output. 

Beside an external serial port, it also has a 16-bit 

bidirectional PC host communication port. The unit is built 

on an IBM PC/AT compatible 8-bit half card that fits onto 

any PC compatible computer. 

With this computing power, the EVM represents one of 

the latest technologies available in the market. It is, 

therefore, a suitable platform to test and to compare the 

various implementations for use in this study. 
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CHAPTER 3 

3. Background Information 

3.1 Fourier Series and Fourier Transform 

3.1.1 Fourier Series 

What Fourier discovered in his experiments on heat flow 

is that a periodic function is expressible as the sum of an 

infinite number of sinusoids with a period that is the 

multiple of the fundamental frequency. The equation below 

is the mathematical realization of this discovery. 

( ) a oo [ 2;mt . 2;mt] 
X t = - 0 + L an cos--+bn sm--

2 n=l p p 

Here, x(t) is a periodic time function that is 

integrable over its period P. The a's and b's are the 

Fourier coefficients, while 2ffjP is the fundamental 

frequency of the x(t) . The integral multiples of the 

fundamental frequency are the harmonic frequencies of x(t) . 

Mathematically, Dirichlet's conditions ensure a 

convergent Fourier series. These conditions, as noted in 

[3] , are 

1. x(t) is single-valued; 
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2. x(t) has a finite number of discontinuities in the 

periodic interval; 

3. x(t) has a finite number of maxima and minima in the 

periodic interval; and 

4. The integral fo+Pjx(t)~t exists. 
to 

These are all sufficient conditions and not necessary 

conditions. Therefore, Fourier series can express any 

periodic functions meeting these requirements. However, 

periodic functions not meeting these conditions may still be 

expressible in Fourier series. 

Fourier series leads to the definition of Fourier 

transform. Note the frequency-domain attributes in Fourier 

series in the next section, which discusses the development 

of Fourier transform. 

3.1.2 Fourier Transform 

Strictly speaking, Fourier transform is not a new 

transform. J.W. Nilsson [3] wrote, "It is a special case of 

bilateral Laplace transform with the real part of the 

complex frequency set equal to zero." Nevertheless, 

understanding the evolution from Fourier series to Fourier 

transform gives tremendous insights to the physical 

significance of this transform. 

l.S 
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By replacing the sine and cosine terms in the Fourier 

series equation 

) 
a QO [ 2:mt . 2:mt] x(t = - 0 + L an cos--+bn sm--
2 n=l p p 

with the identities 

cosB = He10 + e-10
), 

sinB = L (e 10
- e-10

), and collecting like terms, the Fourier 

series equation becomes 

x(t) = n~ ~ [ aini - jsign( n )bini ]/m~,Vp , 

{ 
l,n;::: 0 

where sign(n) = -l,n < 0 

Then let 

X(n) = ~hni- jsign(n)binl] 

such that the equation becomes 

x(t) = fx(n)e2m~jp 
n=-oo 

Therefore, IX(n~ is the frequency magnitude at 2:mt/ P, 

where VP is the fundamental frequency of the original 

function. Note that the exponential functions are 

orthogonal as in 

1 fP/2 -j2trl!t/P -j211it/P dt = 8 - e e k1 p -P/2 

where 8/d is the Kronecker delta function given by 
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s: -{ l,k=l 
u kJ -

O,otherwise 

The summation index in the above equation can be 

changed to l . Then multiplying both sides of the equation 

by e-i2
7rkzfP , integrating from - P/2 to P/2 , and applying the 

orthogonality equality gives the following equation. 

% 
X(k) = _!_ J x(t)e-ndt/P dt 

P_Ih 

Following this, by multiplying each side with P, and 

taking limit on P, we get the following 

X(f)= [x(t)e-2'!fldt 

This is the Fourier transform of x(t) . The inverse 

Fourier transform is therefore defined as 

x(t) = J: X(J)?i2
1!fl df . 

It becomes clear that the Fourier transform of a time 

function represents its frequency domain counterpart, as 

X(n) determines the frequency magnitude. The roles of the 

exponential terms clearly relate the Fourier transform to 

the frequency domain. 

As explained in the previous chapter, the Fourier 

transform exhibits CCP. This means that the product of the 

transforms of two time functions is equal to the transform 

of their convolution. This property has no apparent 

1.7 

_1. 



usefulness unless a more efficient computation of the 

Fourier transform becomes available, which is very crucial 

to the study of signal processing as noted in the later 

sections. One other invaluable contribution of Fourier 

transform is the transformation of a time function to the 

frequency counterpart of the function. This essentially 

allows the ability to perform frequency analysis of any time 

function, an essential operation in most signal processing 

studies. 

With the development in microelectronics technology, 

today's computing power increases many fold compared to that 

of only three decades ago. Combining these advances, and 

the many advantages of digital filter characteristics, it is 

undeniably practicable to conceive a digital form of the 

Fourier transform. Thus, the conception of DFT is a natural 

progression. 

3.2 Signal Filtering and Convolution 

The process of filtering signals involves modification 

of the frequency attributes of the signal. In most cases, 

such processes include removal or intensification of a 

certain range of frequency components of the signal. These 

processes can best be described as the multiplication of a 

filter sequence with the signal in the frequency-domain. 
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Assume x(t) is the sampled signal and h(t) is the filter. 

The transform of x(t), X(f) , and the transform of h(t) , H(f), 

are in the frequency-domain. Clearly, a term-wise 

multiplication of H(/) to X(/) modifies the frequency 

attributes of the signal x(~. The results can then be 

reverse transformed to time-domain to produce the desired 

signal modification. This process is called convolution. 

3.3 Discrete Fourier Transform 

DFT is an adaptation of Fourier transform in situations 

where discrete quantization of a continuous function is 

necessary. This adaptation is most useful in digital signal 

processing where discrete numbers are processed. Without 

going into the details of the derivation, the following 

equation represents the DFT 

1 N-1 

X(k) = -L:x(n)e-12=k/N,k = 0,1,2, ... ,N -1 
N n=O 

The inverse discrete Fourier transform (IDFT) is also a 

summation, similar to DFT. This is shown as 

N-1 

X(n) = L X(k)eJznnk/N ,k = 0,1,2, ... ,N -1 
n=O 
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3.3.1 Cooley-Tukey Algorithm 

Starting with the DFT equation, as shown below, Cooley 

and Tukey employed a divide and conquer strategy to simplify 

the computation of the transform. 

} N-1 

X(k) = -L:x(n)wnk,W = e-i2
tr/N 

N n=O 

They first divide the transform length N into smaller 

length, as in N = N1 • N2 • Letting 

n = n2 N1 + ~.~ = 0,1,2, ... ,N1 -l,n2 = 0,1,2, ... ,N2 -1 

k = kn1N 2 + k2 ,k1 = 0,1,2, ... ,N1 -l,k2 = 0,1,2, ... , N2 -1 

Cooley and Tukey defined their FFT algorithm as follows. 

N 2 -l 

V = ~X W,n,k, 
..-nt,kz L...J nzNI+nl N2 

n 2 =0 

_ W,n1k 2 Yn 1 ,k2 - Yn 1 ,k2 N 

N1-l 
X _ ~ ' W,n1k 1 

k1N 2 +k2 - L...JYn1 ,k2 N1 

n1 =0 

This modification breaks up the computation of DFT into 

two smaller pieces, Yn,,kz and xk,N,+k, • Each of the smaller 

pieces can then be further broken up into even smaller 

pieces. In this way, the computational time complexity 

reduces from o(N2
) to O(NlogN) 
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3.3.2 Radix-2 Fast Fourier Transform 

The radix-2 FFT is a special case of the Cooley-Tukey 

FFT. This type of FFT has transform length N = 2n . 

Assuming that N is the product of N 1 and N 2 , where N1 = 2 , 

and N2 = N/2, we get the following: 

N/2-1 N/2-1 

X " W,n 2k2 + W,k2 
" W,n2k2 

k2 = .LJX2n2 N/2 N .LJX2n2 +1 N/2 
n 2 =0 n2 =0 

N/2-1 N/2-1 

X " W,n2k2 W,k2 " W,n2k2 
N/2+k2 = .LJX2n2 N/2 - N .LJX2n2 +1 N/2 

n2 =0 n 2 =0 

This form of radix-2 FFT is termed as decimation-in-

time (DIT). However, owing to the transform structure, it 

is necessary to rearrange the order of the input sequence. 

This process is called bit-reverse procedure. Essentially, 

the order of the input sequence is arranged such that the 

index has its bits reversed. For example, an N = 4 

transform sequence will have an input sequence of 0,2,1,3 

(00,10,01,11). 

By emphasizing the duality principle, taking N1 = N/2 

and N2 = 2, we get the decimation-in-frequency (DIF) radix-2 

FFT algorithm. 

N/2-1 

X2k, = L:w;;~'(xn, +xN/2+nJ 
n 1=0 

N/2-1 

x2k,+1 = L w;;~'W;'(xn, -xN/2+nJ 
n1=0 
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Somewhat different from the DIT algorithm, the output 

of this algorithm is in bit-reversed order when the input is 

in ascending order. 

3.4 Number Theoretic Transform 

When Pollard published his paper in 1971 [18] , he had 

in mind analogous transforms to Fourier transform that also 

exhibit the CCP. Yet, these transforms are defined in 

finite field. As transforms defined in the rings of 

integers appeared since Argarwal and Burrus published their 

important paper in 1974 [19] , the motivation had been an 

attempt to do away with the inaccuracy of complex operations 

due to limited word length. One other motivation had been 

the complete removal of multiplications that such transforms 

promised. Today, these motivations are still as credible. 

Such transforms in the rings of integers are now termed as 

number theoretic transform. Among the more popular NTT is 

Fm. 

3.4.1 Fermat Number Transform 

Fm is defined over the rings of integers modulo a 

Fermat number, ~,defined as 2b+l, where b=21
• This 
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transform and its inverse transform are defined as follows. 

The FNT is defined as 

X.t = /''fx"a(".t;b) ,where k = 0,1,2, ... ,N -1 
\n=O F, 

aN= (l)F ,and N =2m 
t 

while the inverse Fermat number transform (IFNT) is defined 

as 

\ 

N-1 (-nk)b) 
x" = qLxka 

k=O 
F, 

q = rm = (-2 b-m) F, 

a is an integer of order N, transform length. If a is 

taken as the number 3, it will have an order N = 2b. 

However, if a is taken as 2, it has an order of N = 2b. In 

this case, the transform is also called the Rader transform 

(RT) . The transform is most efficiently implemented in this 

case, since most digital devices are designed to function in 

base 2. 

When Argarwal and Burrus proposed Fermat number 

transform, they also suggested a set of arithmetic 

operations to make this transform possible. However, 

multiplication by powers of 2 is not as simple. Later, L.M. 

Leibowitze introduced a simplified binary number system 

named diminished-one number system to simplify arithmetic 

operations in the rings of integers modulo a Fermat number. 

The next section describes this number system. 
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3.4.2 Diminished-One Number System 

Leibowitz defined a number A to be represented by 

[ah , ... ,aPao] where 0:::; A:::; 2h . In this representation, the number 

zero is represented by ah = 1, and a; = 0 for i = 0,1,2, ... ,b-1. All 

other numbers are represented by the normal binary 

representation of (A -1). 

To add two numbers in this system involves taking the 

sum of the two numbers and adding the complement of the 

carry to the sum. However, if any of the numbers to be 

added is zero, the sum is set to the other number. 

Negation in this number system is much simpler. 

Remembering that all operation in this number system is to 

modulo a Fermat number, negation of a number is simply the 

binary complement of the number. The only exception in this 

operation is, again, the number zero. In this case, the 

operation is inhibited. 

Subtraction in this number system is defined as a 

combination of the above two operations. It involves a 

negation of the subtrahend and an addition to the minuend. 

One of the more frequently used operations in Fermat 

number transforms is scaling. Scaling involves the 

multiplication with the roots of unity. In this case, the 

root is always a number that is a power of 2. Thus, 

multiplication by powers of 2 becomes an important operation 
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in ensuring an efficient algorithm. Fortunately, this 

operation involves only left bit shifts and an addition of 

the complement of the carry bit. In other word, "for each 

factor of 2, a left-circular shift of the b-lsb's is 

required and the bit circulated into the lsb is 

complemented." 

The last operation that Leibowitz proposed was general 

multiplication. Here, he offered 3 methods. The first 

method involves multiplication of the two diminished-one 

numbers. This result is then added to the b-lsb of the 

diminished-one sum of the two numbers. Then one must 

perform a residue reduction of the result by a diminished­

one subtraction of the b-msb's from the b-lsb's. The 

same rule regarding the number zero applies. 

The second method requires translation to normal binary 

coding. The two numbers are then multiplied and a residue 

reduction as described above is applied. The result is the 

desired product. 

The third method requires a translation of one of the 

numbers to normal binary coding and then doing a general 

diminished-one addition. 
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CHAPTER 4 

4. Implementation 

4.1 Radix-2 Fast Fourier Transform Algorithm 

4.1.1 Decimation-In-Time Algorithm 

As presented earlier, the DIT FFT equation is as 

follows: 

N/2-1 N/2-1 

X "" W,"zkz + W,k2 "" W,"zkz 
k2 = "'-" X2n2 N/2 N "'-" X2n2 +1 N/2 

n2 =0 n2 =0 

N/2-1 N/2-1 

X "" W,"zkz W,k2 "" W,n2k2 

N/2+k2 = "'-" X2n2 N/2 - N "'-" X2n 2 +1 N/2 
n2 =0 n 2 =0 

This form of the Cooley-Tukey FFT divides a transform 

sequence into two smaller sequences, containing either the 

set of odd, or the set of even sequences. This corresponds 

to the first and second term of the above equations. 

Recursive application of the equation leads to further 

division of the two sequences into smaller sequences. This 

continues until each set has only one element remaining. 

Essentially, this requires recursive application to the 

first and second term in the equation. 

Taking a cue from this, the algorithm for DIT FFT 

begins by pairing two elements at a time. This produces 

N/2 two element pairs. To perform this operation, called 
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the butterfly operation, multiply a root of unity to the 

second element, add and subtract from the first, and then 

store the results. The result produces N/2 terms. 

Combining two terms at a time, and repeating the same 

processes, results in N/4 terms. Continue this until only 

one term remains. The following figure illustrates this 

process using a length eight transform sequence. 

z~ 0 

z:gzM: 
' ~' 

z K h 7' 6>'•1 0 \ • : 

:><::' 7 " 
p ~ Ffft7 

" p 
0 

ow; ~ a ws' ~ 0 

Figure 4. 1: DIT FFT algorithm (Extracted from [10]) 

As such, the construct of the following algorithm shows 

the iterative process. Each iteration corresponds to one 

layer in the above figure, that is a recursive application 

of the equation on itself. Within each iteration, perform 

butt~rfly operations on each element of the separate sets in 
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the sequence. This is how we get the two loops as shown in 

the algorithm below. 

n =length 

for l = l,log 2 n{ 

m=2 1 

wm = root of unity 

W=l 

for j = O,m/2 -1{ 

} 

for k = j,n -l,m{ 

t = Wx(k +m/2) 

u = x(k) 

x(k) = u+t 

x(k +m/2) = u- t} 

W=WWm} 

return X 

Figure 4. 2: DIT FFT pseudo code 

Since this algorithm works best with bit reversed 

input, it makes sense to implement it on IFFT and allow the 

DIF algorithm to take care of FFT. In this way, there is 

less wastage in resources to modify input sequence and gives 

a more efficient implementation. 

28 

===~~ ..... ·-· . ·-·-~--- ___l 



4.1.2 Decimation-In-Frequency Algorithm 

The DIF algorithm is similar to that of the DIT except 

for the emphasis on duality. Instead of separating the 

transform sequence into sets of odd and even sequences, the 

algorithm pairs up elements of the set. 

N/2-1 

x2k, = Lw;;~'(xn, +xN/2+n,) 
n1 =0 

N/2-1 

x2k,+l = L w;;~'W;'(xn, - XN/2+n,) 
n 1=0 

The above equations show the pairing of elements half the 

sequence length apart. Repeated application of the equation 

to itself leads to the efficient DIF FFT algorithm. The 

figure below depicts this process. 

•. ~ f """ X ,.:>< 
" " " .. ,, . ~ ~rvin, o~ 

,,, . '.. "" .~ ,WoT <n<o~ 

08 
I. 3 r J '"o ~ n W. ~ 0 

Figure 4. 3: DIF FFT algorithm (Extracted from [10)) 

29 

J. 



Again, taking cue from the figure, the following 

algorithm begins by performing butterfly operations that are 

half the sequence length apart. The butterfly operation in 

this case consists of addition and subtraction of the two 

elements, followed by the multiplication of the root of 

unity to the difference of the two elements. This same 

process continues as the algorithm proceeds to the next 

layer. 

n =length 

for I= l,log2 n{ 

m = n/21-I 

wm = root of unity 

W=l 

for j = O,m/2 -1{ 

for k = j,n -l,m{ 

u = x(k}- x(k +m/2} 

x(k) = x(k) +x(k +m/2) 

x(k +m/2) = uW} 

W= WW"'} 

} 

return X 

Figure 4. 4: DIF FFT pseudo code 
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Note that this algorithm will produce a bit reversed 

output sequence. It is, therefore, more suitable to 

implement the FFT. When performing a convolution, this bit 

reversed output sequence is fed into IFFT implemented in DIT 

algorithm. Such is a perfect combination that takes 

advantage of the characteristic of both DIT and DIF FFT 

algorithms. 

4.2 Modified Diminished-One Operations 

The idea behind the diminished-one number system is 

useful because it simplifies arithmetic operations when 

implementing FNT. This system eradicates the need to 

perform multiplication. Although not true in most modern 

digital signal processing processors like the one in use 

with this research, multiplication is usually the most 

expensive operation in most processors. All operations in 

this system consist of simple additions and bit shift 

operations. However, one of the disadvantages of 

diminished-one number system is the need to convert from an 

ordinary binary number before any such operations are 

useful. Moreover, scaling operations or multiplication by 

powers of 2 requires multiple steps to produce the desired 

result for higher powers of scaling factor. It defeats the 

purpose of employing FNT when this most frequently used 
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operation in a transform demands expensive processing 

resources. 

The modified diminished-one algorithm employs the best 

of both worlds, normal binary and diminished-one arithmetic 

operations. Although the theoretical foundation is based on 

the diminished-one number system, this method attempts to 

solve the shortcomings of the diminished-one number system 

by turning back to ordinary binary operations whenever it is 

most convenient. Scaling has become a multiple bit rotation 

operation instead of a series of single bit rotations. 

These are explained in the following sections. 

4.2.1 Negation 

Negation of a number remains the same as in the 

diminished-one number system operation. Performing a binary 

complement on all the bits of a diminished-one number 

produces its negative counterpart. 

4.2.2 Addition 

This modification to diminished-one addition eliminates 

the need to check for the number zero. Therefore reducing 

the number of branching operations, which is the most 

expensive operation for the digital signal processor used in 
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this research. The operation assumes all numbers are in the 

rings of integers modulo a Fermat number, ~· Therefore, 

the algorithm disregards all cases of adding negative 

numbers. An addition begins with normal binary addition and 

a condition check to determine if the number is indeed 

greater than or equal to the modulo. When the result is 

indeed greater than, or equal to the modulo, a conversion to 

the diminished-one number system enables easy modulo ~ 

operation. The following equation shows that the sum of two 

numbers is one more than the value of the sum in the 

diminished-one number system. 

A+B=[(A+B)-1]+1 

With this insight, and taking that the range of any 

addition is no larger than twice the modulo, adding one to 

the diminished-one number is equivalent to adding the 

complement of the msb to the b lsb's of the number. Since 

the maximum number of bits is b+l, and that the msb is 2b, 

the above conclusion is true as (2b)~ = -1. 
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k=l+m 

if(k ~ 2b ){ 

k = k-1 

(subtract 1 to get diminished-one 

representation) 

complement msb and add to b lsb's 

} 

(perform conversion from diminished-one to 

binary) 

return k 

Figure 4. 5: Modified diminished-one addition 

Therefore, the algorithm for this operation is shown 

above in Figure 4.5. 

Notice the saving of one conditional check compared to 

the original diminished-one algorithm. This algorithm also 

has the advantage of not needing to convert a number into 

diminished-one number system in order to obtain the desired 

result. 

4.2.3 Subtraction 

The subtraction algorithm is similar to the addition 

algorithm. The rationale is the same, except that this 

algorithm is much simpler to implement. Like the addition 

algorithm, the following equation shows the connection 
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.1 

between normal binary representation and the diminished-one 

representation of the difference of two numbers. 

A-B=[(A-B)-1]+1 

This algorithm assumes that all inputs are in the ring 

of integers modulo ~~ as in the addition operation. Thus 

the largest difference is ~-1 and the smallest difference 

is -(~-D. When the difference is a positive number, the 

algorithm does nothing more. When the difference is a 

negative number, the algorithm retains only the b lsb's of 

the number. 

Employing the same rationale as the addition algorithm, 

theoretically this algorithm converts the difference to 

diminished-one representation when it is negative. This 

eliminates the conditional checks for the number zero and 

thus the inevitable branch operations. When using the 

diminished-one representation, a residue reduction on the 

number accomplishes the modulo ~ operation. Residue 

reduction involves the addition of the complement of the b 

msb's to the b lsb's. 

Since a negative number has all b msb's equal to 1, 

its complement is always zero. For all possible negative 

numbers except the smallest, this involves subtracting one 

from the b lsb's and adding zero. Following this is a code 

conversion to normal binary nu~er, which is the addition of 
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the complement of the b+lth bit to the b lsb's. For this 

case, it is the addition of the number one. This algorithm 

removes the redundancy of subtracting and later adding one 

to the b lsb's by simply retaining the b lsb's of a 

negative number. For the smallest possible negative number, 

such as the binary number with b ones followed by b zeros, 

it is different. After converting to diminished-one 

representation and performing residue reduction, all bits 

except the b+lth bit are one. A code conversion to normal 

binary representation gives the same results as in retaining 

the b lsb's. Therefore, the algorithm is as shown below. 

k =1-m 

if(k < 0) 

k = b lsb' s of k 

return k 

Figure 4. 6: Modified diminished-one subtraction 

As in the addition operation, this algorithm also 

removes the need for number system conversions and the need 

to check for the number zero. 
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4.2.4 Scaling 

The scaling operation is essentially an extension to 

the diminished-one scaling operation. Noted in the previous 

chapter, scaling in the diminished-one number system 

involves rotating the complement of the msb to the lsb. 

This is easily seen in the following equality. 

(2A- 1) = 2(A- 1) + 1 

However, this operation is a single bit operation. 

Therefore, a multiplication of higher powers of 2 requires 

several scaling operations to accomplish. The proposed 

algorithm extends the diminished-one scaling operations to 

multiple bit operation. Noting that the maximum power of 2 

in the multiplication of the scaling factor is 2b, or the 

maximum transform length for FNT. This operation needs only 

be concerned with a maximum of 2b bit rotations. 

Subsequent paragraphs will explain the operation using a 

combination of bit shift, 'xor', and 'or' logic operations. 

This is so because rotation is not a native operation of the 

digital signal processor used in this research, . 

Referring to the following figures, the left figures 

represent a number while the right figures represent the 

same number, d2, with bit extension, dl. A single bit 

rotation in the left figures is equivalent to a left bit 

shift and an addition of the complement of the bit shifted 
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into the dl field. Thus a multiple bit rotation in the left 

figures is then the same operation as multiple bit shift and 

addition of the complement of the bits shifted into dl to 

d2. The scaling algorithm takes advantage of the above idea 

to simplify the diminished-one scaling operation. 

Assuming scaling by 2x, and that m~k=2b-, the 

following figures show the inner working of this algorithm. 

dl d2 

Figure 4. 7: Diminished-one number A 

• X • 

dl d2 

Figure 4. 8: Diminished-one number A after less than b bits rotation 

X 

dl d2 

Figure 4. 9: Diminished-one number A after more than b bits rotation 

In the above figures on the left, the shaded areas are the 

complemented bits rotated. The shaded areas in the right 

figures represent the original bit sequence. When a 

rotation is less than b bits, figure 2 shows that the msb's 
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of a number is rotated into the dl zone. However, when the 

bit rotation is more than b bits, the lsb's of the number 

gets into the dl zone. Whenever the bits are in zone dl, 

take their complement, and 'or' them to the bits in zone d2 

to give you the diminished-one result of the scaling 

operation. 

convert A to diminished-one representation 

dl = d2 left shift x-b bits 

mask= mask left shift x-b bits 

dl = dl xor mask 

if (bit shift <b) 

d2 = d2 << X 

else 

d2 = d2 < < X- 2b 

d2 = dl or d2 

convert d2 to normal binary representation 

Figure 4. 10: Diminished-one scaling 

Therefore, the above algorithm first converts a number 

into its diminished-one representation. A left shift of 

x-b bits gives the bits shifted into zone dl. Perform the 

same number of bit shifts to the mask and then do a 'xor' 

with it to produce the complements of the bits shifted into 

zone dl. The result is stored in a register conveniently 

named dl. In the case when the number of bit rotation is 

more than b, the msb's will have been complemented twice. 
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... 

Therefore, this method does not perform these complements 

and simply left shifts the original number by x-2b. Take 

note that a negative left shift implies a right shift. The 

result is then stored in register d2. This is then 'or' 

with the value in d1 to produce the desired result. 

4.2.5 Multiplication 

Multiplication remains the same as method 2 proposed by 

Leibowitz. A normal binary multiplication result in a 

product, which is the desired product in diminished-one 

representation. This is followed by a residue reduction. 

The last step in this algorithm is a code conversion of the 

product to obtain the normal binary product. Figure 4.6 

shows the process of this operation. 

Since the algorithm is essentially the same as 

Leibowitz's diminished-one algorithm, the author will not 

discuss the algorithm any further. However, as this 

implementation involves 33 bit operation, note that this 

implementation assumes three 16 bit parts in a number. This 

is because the multiplication operation in the digital 

signal processor used involves 16 bits numbers and produces 

a product with 24 bits. By separating a number into three 

16 bit parts, multiplication becomes a multiple process. 
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Figure 4. 11: 

A2 A1 A0 

X B2 B1 B0 
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c~C4 C2 C1 co 
~--c4 c2 
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+ 

D~Do 
D2 

E2 El Eo 
Diminished-one multiplication 

The figure above shows the process of multiplying two 

numbers. Each part of a number is multiplied to the 

components of the other number. The results are combined to 

produce the actual product. A residue reduction follows, 

giving the diminished-one product. This number then goes 

through a code conversion to obtain the binary 

representation of the desired result. 
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CHAPTER 5 

5. Data Analysis 

As described in the preceding chapter, the filter 

implementations use both NTT and DFT. Both implementations 

use the Texas Instruments' TMS320C3X digital signal 

processor. The three filters are lowpass, bandpass, and 

highpass filters. Applying these signals to a filter, as 

presented in the subsequent section, modifies the signal 

accordingly. The following sections will look at these data 

and compare them, in the frequency domain, with the original 

signal. This serves to verify the validity of the 

algorithm. Analysis of execution time and memory 

requirements of each implementation will then follow. 

5.1 General Data Output 

The following sub-sections will look at an input sample 

and the filtered samples, both in time-domain and in 

frequency-domain. The input signal obtained via the input 

port of the TMS320C3X evaluation module has a transform 

length of 64 words. Performing convolution with the three 

filter sequences produces the filtered outputs. These 

output sequences are then compared with the original input 

data. 
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5.1.1 Sample Data 

The following diagram shows the input data in its time-

domain representation. Performing a Fourier transform on 

this data sequence produces the frequency-domain sequence of 

the input data, as shown in the next figure. Both figures 

show the real and the imaginary portion of the signal. 

9,..., 

~~~-:gn-yl 

4 

"""""~~M 
Figure 5. 1: Input data sequence 

1.4 

1.2 I ~~-:gklrf I 

0.8 

0.8 

0.4 

0.2 

... \i \I 

.0.2 ,_/\ -- ·- _., . 

.0.4 

Figure 5. 2: Input data sequence in frequency-domain 
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Note that the frequency-domain data sequence shows a 

significant amount of lower frequency components. Also note 

the symmetry in the figure. Referring to the definition of 

the Fourier transform in chapter 2, one can find the term 

lnl, and that the summation spans from negative n to 

positive n. This accounts for the symmetry seen here. 

Thus, the center of this figure represents the highest 

frequency components. 

5.1.2 Lowpass Filtering 

Having looked at the original input sequence, the 

following figure presents the lowpass filtered sequence. 

1=-=--=-:~1 
4 

_, 

Figure 5. 3: Lowpass filtered sequence using DFT 
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Figure 5.3 shows the filtered sequence using DFT and 

Figure 5.4 shows the filtered sequence using NTT. Notice 

the similarity of the two figures. 

350000 

3)0000 

250000 

200000 

150000 

100000 

50000 

.6000() 

-100000 

Figure 5. 4: Lowpass filtered sequence using NTT 

The values of the output from the NTT version are 

significantly higher. However, this is due to the fact that 

the lowpass filter for the DFT method is scaled to unity, 

while that for the NTT remains in its original form. 
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Figure 5. 5: Lowpass filter sequence in frequency-domain 
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The above figure shows the lowpass filter in frequency-

domain. This filter has significantly larger low frequency 

components and tapers towards the higher frequency. 

Therefore, the filtered result of the input sequence is 

expected to contain a fair amount of lower frequency 

components, while the higher frequency components diminish 

after filtering. 

Looking at the filtered sequence below, the results are 

just as expected. The higher frequency components of the 

input sequence are diminished, while the lower frequency 

region remained. 
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Figure 5. 6: Lowpass filtered output sequence in 
frequency-domain 

5.1.3 Bandpass Filtering 

The following two figures show the bandpass filtered 

output using DFT and NTT convolution respectively. Again, 
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the output sequences have exactly the same shape, with 

varying amplitudes. The range of the data value is, again, 

different since the DFT bandpass filter is scaled to unity. 
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Figure 5. 7: Bandpass filtered sequence using DFT 
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Figure 5. 8: Bandpass filtered sequence using NTT 

After observing the similarity between the above two 

outputs, the following two figures present the frequency-
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domain output for analysis. The bandpass filter shows a 

large amount of mid-range frequency components and a fair 

amount of these components consist of lower frequencies. 

This being so, the filtered output should show a significant 

decrease in high frequency components, while retaining most 

of the mid-range and some of the lower frequency components, 

which is demonstrated in figure 5.10. 
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Figure 5. 9: Bandpass filter sequence in frequency-domain 
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Figure 5. 10: Bandpass filtered output sequence in 
frequency-domain 
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5.1.4 Highpass Filtering 

As in the above figures, the following figures show the 

highpass filtered output from both DFT and NTT convolution 

methods. Again, note that the NTT convolution methods do not 

produce the imaginary portion. However, although the ranges 

of the data values are different for the same reason as 

above, the shape of these sequences are the same. 
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Figure 5. 11: Highpass filtered sequence using DFT 
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Figure 5. 12: Highpass filtered sequence using NTT 
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The following figure shows the highpass filter in the 

frequency-domain. This particular highpass filter consists 

of some low frequency components and has a large portion of 

its components in the higher frequencies. Therefore, the 

filtered output is expected to contain mostly high frequency 

components and the mid-range frequencies will be absent or 

filtered off. This is shown in figure 5.14, which is the 

filtered output in the frequency-domain. 
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Figure 5. 13: Highpass filter sequence in frequency-domain 
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The results from the above data show that the filters 

perform as they are designed to do. The exact shape of both 

implementations shows consistency in the two 

implementations, therefore, laying the groundwork for 

comparison of both implementations. 

5.2 Execution Time 

The following table shows the number of clock cycle to 

execute each operation in both NTT and DFT implementations. 

NTT DFT 

Clock Cycle Lowpass Bandpass Highpass All cases 

Filtering 16302 16308 16298 6832 

Transformation 8806 8806 8806 3560 
L___ -------- -- ---L_ - ----

Table 5. 1: Execution clock cycle 

The data indicates significantly lower number of clock 

cycles for DFT implementation. The conclusion is, 

therefore, favorable towards DFT implementation compared to 

NTT implementation in this environment. 

A similar conclusion prevails when using the number of 

operation as a measure. Table 5.2 shows that the NTT 

implementation accounts for a significantly larger number of 

operations, which include addition, subtraction, 
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multiplication, 'and', 'or', 'xor', 'not', and shift 

operations. 

NTT DFT 

No. Operations Lowpass Bandpass Highpass All cases 

Filtering 15112 15085 15077 3852 

Transformation 5159 5159 5159 1790 

Table 5. 2 Number of operations 

This finding differs from many research literatures on 

NTT. The difference is due to two reasons. Firstly, the 

DSP chip in this research environment performs real 

multiplications with 1 clock cycle, which are the same as 

real additions and subtractions. This is contrary to the 

general belief that multiplication is more expensive than 

other operations. Secondly, even though complex operations 

take a few real operations to complete, they are still 

better off compared to operations in modulo arithmetic. The 

reason is that existing DSPs do not perform modulo 

arithmetic. Therefore, for example, a simple modulo 

addition will consist of a number of integer additions, 

shifts, and 'xor' operations. Until there is efficient 

hardware implementation to modulo arithmetic in the market, 

NTT is not a better solution compared to DFT. 
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5.3 Memory Requirement 

Memory requirement in the case of DFT requires a 32-bit 

word for the real and the imaginary portion of a complex 

number. Therefore, it requires 2 memory locations for each 

data point. An additional array of L25n words, where 11 is 

the sequence length, is required for the DFT. This array 

stores the scaling factors, thew's, in order to increase 

computational speed to complete the DFT. While FNT requires 

33 bit data point, it takes up 2 memory locations for each 

data point in practice. The msb of a data point will occupy 

one memory location, which is a waste of memory resources. 

However, future development may lead to more efficient use 

of memory. In view of this, the FNT uses less memory space 

compared to the DFT. 

5.4 Summary 

In summary, this chapter verifies the correctness of 

the implementations of DFT and FNT in this study. The time, 

or number of clock cycle taken in the FNT implementation is 

significantly higher than that of the DFT implementation. 

When counting the number of operations needed to perform the 

two operations, FNT shows the same disappointing results. 

The amount of memory requirement for the FNT, however, is 

lesser compared to the DFT. 
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CHAPTER 6 

6. Analysis and Conclusion 

6.1 Analysis 

6.1.1 Speed 

Referring to table 5.1 and table 5.2 on the number of 

execution clock cycle and the number of operation 

respectively, this study consistently indicates the poorer 

execution time performance of the FNT. This is contrary to 

the general belief that the FNT takes shorter computational 

time. 

Agawal and Burrus commented in their 1974 paper [19], 

"To compute the convolution using the FFT, most of the time 

is taken in computing the complex multiplications required 

to compute the transform." They also said that, "A 

comparison with the RT reveals that these complex 

multiplications are replaced by bit shifts and subtractions 

which are much faster operations." This assumption that 

complex multiplications have poorer time performance than 

bit shifts and subtractions was valid in the 1970's. It is 

rightly so, especially when their comparison was verified on 

the IBM 370/155. Nevertheless, technological advances over 
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the past twenty years have changed the validity of these 

statements. The results from this study strongly indicate 

the repercussion from this improved technology. There are 

two reasons the results from this study deviate from Agawal 

and Burrus's conclusion. 

Firstly, multiplications are no longer expensive and 

time consuming operations. In the TMS320C30 hardware 

environment where this study does most of its computation, 

multiplications take only one clock cycle. This is the same 

number of clock cycle as operations like additions, 

subtractions, bit shifts, etc. One complex multiplication, 

therefore, takes only six clock cycles; four 

multiplications, one addition, and one subtraction. Compare 

this to implementing diminished-one multiple-of-two 

operation in the TMS320C30 environment, which takes three 

shifts, one 'xor', and an addition. This will take five 

clock cycles. Multiplication is now comparable to bit 

shifts and subtractions in terms of time complexity. 

Secondly, the traditional practice of considering only 

multiplications in time complexity analysis is not 

justifiable. This is because multiplications need to be of 

equal weighting with the other arithmetic operations in time 

complexity analysis, since they all take the same amount of 

time to execute. All types of operations need to be 

considered in the analysis. As such time complexity 
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analysis will also include additions, subtractions, bit 

shifts, etc. Since these operations are taken into 

consideration, and the FNT uses a lot of such operations, 

the time complexity of the implementation of the FNT becomes 

much higher compared to the DFT. The FNT clearly stands out 

to be more time consuming. This is verified in table 5.1 

and table 5.2. 

6.1.2 Memory Requirement 

Memory requirement for the DFT is more than that of the 

FNT implementations. Since the DFT is in the complex field, 

it requires one word each for the real and the imaginary 

component. Therefore, a total of two words is needed for 

each element in the transform sequence. In addition to this 

memory requirement, the DFT implementation requires an array 

of scaling factors, them's, to speed up execution time. 

This array occupies 2.5n, where n is the sequence length, 

words. In this implementation, the word length of the FNT 

is 33 bits. Since a word occupies 32 bits in this case, 

each element in the transform sequence for the FNT requires 

2 words. Future work may aim at improving space complexity 

of FNT. This is because most of the bits in the most 

significant word are not needed. Therefore, the 
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implementation of FNT in this study requires less memory 

space as the DFT implementation. 

6.1.3 Accuracy 

The most attractive advantage of the FNT is the degree 

of accuracy it offers in computing convolution. There are 

two sources of error in digital signal processing. They are 

the quantization error and the computation roundoff error. 

When sampling a signal, the equipment used introduces 

limitations caused by the finite precision of the arithmetic 

units and the limited capacity of the memory. Since the 

sampling devices and the memory have limited word length, 

the sampled data in the memory represent approximations to 

the actual signal. These are the causes for quantization 

errors. Both the DFT and the FNT suffer from quantization 

errors. For all practicality, it is unavoidable. The degree 

of approximation depends on the word length of the equipment 

used. 

Among the limitations of the FNT is the requirement 

that all values of the final outcome for the transform must 

not exceed the modulo. This limitation requires scaling of 

the input data in order to prevent any overflow. Errors are 

introduced in this scaling process. However, there are no 

computational roundoff errors. This is because the 
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transforms are computed in rings of integers modulo a Fermat 

number. In computing the DFT, some processes of additions, 

subtractions, and multiplications increases the number of 

bits in representing the resulting complex numbers of these 

operations. However, the number of bits available remains 

unchanged within the machines. This makes it necessary to 

limit the wordlength throughout the calculations. As such, 

rounding off the results from the operations becomes 

necessary too. Roundoff errors occur at every operation 

that produces results exceeding the wordlength of the 

machine. Therefore, errors can be introduced at all stages 

of computing the transform. This lack of roundoff errors 

during computation for the FNT is an advantage over the DFT. 

The FNT has its advantages and disadvantages. When 

execution speed is crucial, the DFT is a better choice than 

the FNT. With the current hardware technology, implementing 

the FNT will increase the amount of time taken to perform 

the transform. However, when accuracy is important, the FNT 

offers highly accurate results compared to the DFT. 

6.2 Conclusion 

The field of signal processing has matured tremendously 

over a little less than two centuries, most especially 

during the last three decades. Coupled with the advances in 

microelectonic industry, the many advantages in digital 
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filtering techniques have spurred the study of digital 

signal processing. 

Over this time, the paper published by Cooley and Tukey 

set an important landmark. Their method increased 

computational efficiency of calculating the Fourier 

transform many folds. Other researchers have also 

introduced improved algorithms to their method over the last 

few decades. However, in 1974, Rader introduced a new 

transform, generally referred to as the number theoretic 

transform, in the hope of eradicating the shortcomings of 

the Fourier transform. Number theoretic transform uses 

integer modulo arithmetic instead of complex arithmetic. 

Thus, it is possible to perform the transform without the 

use of multiplication, which is a traditionally expensive 

operation using the Fourier transform. 

This study takes a look at the many claims of number 

theoretic transform, specifically FNT. Comparisons in 

execution time, number of operation, and memory requirement 

by both DFT and FNT using radix-2 FFT algorithm are done. 

All these methods are implemented on the Texas Instruments' 

TMS320C3X digital signal processing chip. This study also 

presents an analytical comparison of computational accuracy 

of the DFT and the FNT. 

Results from this study show that the execution time, 

or the number of clock cycles.1Table 5.1) for the FNT 
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implementation is considerably higher than that of the DFT 

implementation. In order to have a fair comparison, the 

study also look at the number of operation for both 

implementations. Again, FNT shows a discouraging higher 

value (Table 5.2) However, based on analytical analysis, 

the FNT requires lesser memory space when compared to the 

DFT. In terms of computational accuracy, the FNT also 

performs much better. The only error introduced in 

implementing FNT is during input quantization [21] . There 

are no computational roundoff errors in FNT. This is not 

the case for DFT. 

This research also introduces modified diminished-one 

number operations. The results from this study show the 

feasibility of these operations. Future development in this 

area should include hardware implementation of these 

operations. An advantage of these operations over 

Leibortze•s original diminished-one number system proposal 

is the lack of number system conversion for both addition 

and subtraction operations. Both these operations also 

remove the need to check for the number zero. Scaling or 

multiplication by powers of 2 operation becomes a one-step 

operation instead of multi-step operation. 
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APPENDIX A 

Software User's Instruction 

System Requirements: 

1. IBM PC or PC compatibles with Intel 80386 or above 

microprocessor. 

2. Texas Instruments' TMS320C30 Evaluation Module (EVM). 

3. DOS 5.0 or above. 

4. Windows 3.1 or above. 

5. Borland custom control tools library bwcc.dll 

Starting The Software: 

1. Ensure that TI's TMS320C30 EVM is properly installed. 

2. Ensure that the client program 'child.out', the EVM 

loader 'evmload.exe', and the three initialization 

files 'resvct. 001' , 'resvct. 002' , 'resvct. 004' are in 

the same directory as 'host.exe'. 

3. Run Windows 3.1 

4. Select 'Run' from Program Manager's 'File' Menu 

5. Type 'host.exe' and punch the Enter key. 

6. 'host.exe' will load the TMS320C30 EVM client program, 

'child.out', initiate and start the program running in 

the EVM. 

7. 'host.exe' will then return to the Windows environment. 
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8. If 'host.exe' couldn't locate the TMS320C30 EVM, or the 

client program 'child.out', it will inform the user and 

prompt for further action. 

Moving Around The Software: 

Figure 1: Host program's interface 

1. Item 'Convert', under the 'File' Menu, allows user to 

convert filter files computed from Hypersignal to data 

files in the format for this program. 

2. item 'About', under the 'Help' Menu, displays 

information about this program. 

3. Button 'F' is the filter button. User must select 

filter, output, and input files before this function 
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will work. After the user points the mouse pointer at 

this button and click it once, the program will filter 

the input file using the filter file selected. 

4. Button 'T' is the transform button. Selecting this 

function will start a transform operation on the input 

file using the type of transform selected. The 

selection of the type of transform is discussed below. 

5. Button 'R' is the reset button. This function will 

reset the TMS320C30 EVM client program. 

6. Button 'S' is the sample button. The EVM will sample 

input signal from the EVM input port. This 64-word 

data is then sent to the PC. The data is then saved 

using the output filename. 

7. Button 'N' is the name button. When selected, the 

message box just below the buttons will display all the 

selected filenames. 

8. When 'Filter File' button is selected, the user is 

prompted for a filter filename from a pop up window. 

9. When the 'Output File' button is selected, the user is 

prompted for an output filename from a pop up window. 

10. When the 'Input File' button is selected, the user is 

prompted for an input filename from a pop up window. 

11. The 'Input' button, when selected, enables an input 

file to be used. Otherwise, the EVM will sample from 
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its input port and use the data collected as input data 

for any operation. 

12. When the 'DFT(NTT)' button is highlighted, all 

operations are performed using DFT algorithm. 

Otherwise, all operations are performed using NTT 

algorithm. 

13. When the 'TI(PC)' button is highlighted, all operations 

are performed using the TI's TMS320C30 EVM. Otherwise, 

all operations are performed using the PC. 

14. Below all the buttons is the message box. This is the 

area where the program will display messages for the 

user. 

15. To the right of the message box is the display list 

box. Pointing and clicking on the arrow will display a 

list of items. Selecting an item selected from the 

list box will display the item in the display area. 

16. The display area is below the menu and toolbar. This 

is the area where data is displayed. 
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APPENDIX B 

Program Source Code 

SINE, N, M 
iinverse, cinverse 

*=================================================================== 
* ADDRESSES OF CONSTANTS 
*=================================================================== 
fftsize .word N 
logsize .word M 

sinetab .word SINE 
IINVERSE .word iinverse 
CINVERSE .word cinverse 

*=================================================================== 
* CONSTANT VARIABLES 
*=================================================================== 
mask .word Offffh ;mask for ffnt 
mid_carry .word OlOOOOh ;carry over 
shiftmask .word Offffffffh ;mask for power of 2 multiplication 

.text 
FP .set AR3 

.ref com saddrl 
*=================================================================== 
* GLOBAL DECLARATION OF FUCTIONS 
*=================================================================== 

.def fft -

.def fscale -

.def ifft -

.def fmult -

.def ffnt -

.def nscale -

.def iffnt -

.def nmult -

.def bit reverse 
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*====================================================================* 
* DFT using DIF FFT algorithm * 
*====================================================================* 
* * 
* This routine performs DFT using DIF FTT algorithm. * 
* * 
********************************************************************** 
fft: 

push 
ldi 
ldi 
sti 

ldi 
ldi 
lsh 
ldi 
lsh 
ldi 
ldi 

flooplf: 
lsh 
ldi 

ldi 
addi 

ldi 
subi 
rptb 

addf 
subf 
addf 
subf 
stf 
II stf 

flooplnf: stf 

II su 

ldi 
mpyi 
lsh 
addi 

floop2f: 
subi 
bz 

ldi 
addi 
addi 

ldf 

FP ;initialize registers for 
SP,FP ;c function interface 
*-FP(2) ,arO ;load argument 
arO,@_com_saddrl ;initialize source address 

®fftsize,irO ;irO =2m 
irO,ar2 
l,irO 
irO,ar3 
-2,ar2 
l,irl 
®logsize,r6 

-l,ar3 
ar3,r7 

;ar2 = N/4 
;N/m 
;log N 

;m 

@_com_saddrl,arO ;arO->x[O] 
ar3,arO,arl ;arl->x[m/2] 

irl,rc ;repeat N/m times 
l,rc 
flooplnf 

*arl,*arO,rl ; rl <- x [k] + x [k+m/2] 
*arl++,*ar0++,r2 ;r2 <- x[k] - x[k+m/2] 
*arl,*arO,r3 ;rl <- y[k] + y [k+m/2] 
*arl,*arO,r4 ; r2 <- y [k] - y [k+m/2] 
r3,*ar0-- ;arO -> y [k] + y [k+m/2] 
r4,*arl-- ;arl -> y[k] - y [k+m/2] 
rl,*arO++(irO) ;arO -> X [k] + x [k+m/2] 
r2, *arl++ (irO) ;arl -> X (k] - x [k+m/2] 

®sinetab,ar4 ;ar4 -> sin(O) 
irl,r7,rl 
-l,rl 
rl,ar4 ;ar4 -> sin[m/2] 

2,r7 ;m/2 - 1 
floopnf 

@_com_saddrl,arO ;arO -> x[O] 
r7,ar0 ;arO -> X (k] 
ar3,arO,arl ;arl -> x[k+m/2] 

*--ar4 (irl) ,r5 ;r5 <- sin(2*pi*j/m) 
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addi 

ldi 
subi 
rptb 

subf 
subf 
mpyf 
II actctf 
mpyf 
II stf 
subf 
mpyf 
II stf 
mpyf 
lladdf 
addf 

floop2nf: 
stf 
II stf 
br 

floopnf: 
lsh 
lsh 
subi 
bp 

pop 
rets 

ar2,ar4,ar5 

rl,rc 
l,rc 
floop2nf 

*arl,*arO,r3 
*+arl,*+arO,r4 
r3,r5,r0 
*+arl,*+arO,r2 
*ar5,r4,rl 
r2, *+arO 
rO,rl 
*ar5,r3,r0 
rl,*+arl 
r4,r5,rl 
*arl,*arO,r2 
rO,rl 

r2,*ar0++(ir0) 
rl,*arl++(irO) 
floop2f 

-l,irO 
l,irl 
1, r6 
flooplf 

FP 

;ar5 -> cos(2*pi*j/m) 

;repeat N/m times 

;r3 <- x(k] - x[k+m/2] 
;r4 <- y[k] - y[k+m/2] 
;rO <- (x(k] -x[k+m/2] )sin(2*pi*j/m) 
;r2 <- y[k] + y[k+m/2] 
;rl <- (y[k] -y[k+m/2] )cos(2*pi*j/m) 
;y[k] <- y[k] + y[k+m/2] 
;rl = b cos() - a sin() 
;rO <- (x[k]-x[k+m/2] )cos(2*pi*j/m) 
;y[k+m/2] <- b cos() - a sin() 
;rl <- (y[k]-y[k+m/2] )sin(2*pi*j/m) 
;r2 <- x[k] + x[k+m/2] 
;rl =a cos() + b sin() 

;x[k] = x[k] + x[k+m/2] 
;x[k+m/2] =a cos() + b sin() 

;m 
;N/m 
;decrement main loop count 
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*====================================================================* 
* Floating point scaling by 1/N * 
*====================================================================* 
* 
* 
* 
* 
* 
* 
* 

* 
This routine multiply every elements in the input sequence by * 

the inverse of the transform length. The address of the input * 
sequence is send to this function at location FP-2. The value of * 
inverse of the transform length is stored at the memory location * 
specified at CINVERSE * 

* 
********************************************************************** 
fscale: 

push 
ldi 
ldi 
sti 

ldi 
ldf 
ldi 
mpyi 
subi 
rptb 
mpyf 

fscaling: stf 

pop 
rets 

FP 
SP,FP 
*-FP(2) ,arO 
arO,@_com_saddrl 

®CINVERSE,ar1 
*ar1,r0 
@fftsize,rc 
2,rc 
1,rc 
fscaling 
*arO,rO,r1 
r1,*ar0++ 

FP 

;initialize registers for 
;c function interface 
;load argument 

;ar1 gets address of constant 1/N 
;rO <- 1/N 
;setup repeat loop number 

;begin loop 
;multiply by 1/N 
;store result 
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*====================================================================* 
* IDFT using DIT FFT algorithm * 
*====================================================================* 
* 
* This routine performs IDFT using DIT FFT algorithm. The 
* address of the memoty location of the input sequence is stored 
* at FP-2. 

* 

* 
* 
* 
* 
* 

********************************************************************** 
ifft: 

push 
ldi 
ldi 
sti 

ldi 
ldi 
ldi 
lsh 
ldi 

floopli: 
ldi 
ldi 
lsh 
lsh 

ldi 
addi 

ldi 
subi 
rptb 

addf 
subf 
addf 
subf 
stf 
II stf 

flooplni: 
stf 
II stf 

ldi 
mpyi 
lsh 
addi 

floop2i: 
subi 
bz 

ldf 
addi 

FP 
SP,FP 
*-FP(2) ,arO 
arO,@_com saddrl 

2,ir0 
®fftsize,irl 
irl,ar6 
-2,ar6 
@logsize,r7 

irO,ar3 
ar3,r6 
l,irO 
-l,irl 

@_com_saddrl,arO 
ar3,ar0,arl 

irl,rc 
l,rc 
flooplni 

*arO,*arl,rO 
*arl++,*arO++,rl 
*arl,*arO,r2 
*arl,*arO,r3 
r2,*ar0-­
r3,*arl--

rO,*arO++(irO) 
rl,*arl++(irO) 

@sinetab,ar4 
irl,r6,rl 
-l,rl 
rl,ar4 

2,r6 
floopni 

*--ar4(irl) ,r5 
ar6,ar4,ar5 

;initialize registers for 
;c function interface 
;load argument 

;2m 
;N/m 

;N/4 
;log N 

;m/2 

;m 
;N/m 

;arO->x(O] 
;arl->x[m/2) 

;repeat N/m times 

;rO=x[k)+x[k+m/2) 
;rl=x[k) -x[k+m/2) 
;r2=y[k)+y[k+m/2) 
;r3=y[k)-y[k+m/2) 
;y[k) = r2 
;y[k+m/2) = r3 

;x[k) = rO 
;x[k+m/2) = rl 

;sin(O) 

;ar4 -> sin[m/2) 

;m/2 - 1 

;r5 <- sin(2*pi*j/m) 
;ar5 -> cos(2*pi*j/m) 
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ldi 
addi 
addi 

ldi 
subi 
rptb 

mpyf 
mpyf 
mpyf 
lladdf 
mpyf 
lladdf 
subf 
subf 
II su 
addf 
II su 
subf 
II stt 

floop2ni: 
stf 

br 
floopni: 

subi 
bnz 

pop 
rets 

@_com_saddrl,arO 
r6,ar0 
ar3,arO,arl 

irl,rc 
l,rc 
floop2ni 

*+arl,*ar5,r3 
*arl,*ar4,r0 
*arl,*ar5,rl 
rO,r3,r2 
*+arl,r5,r0 
*+arO,r2,r3 
rO,rl,rO 
r2,*+arO,rl 
r3,*+ar0 
*arO,rO,rl 
rl,*+arl 
rO,*arO,rl 
rl, *ar0++ (irO) 

rl, *arl++ (irO) 

floop2i 

l,r7 
floopli 

FP 

;arO->x [0] 
;arO -> x[k] 
;arl -> x[k+m/2] 

;repeat N/m times 

;r3 <- y[k+m/2]*cos(2*pi*k/m) 
;rO <- x[k+m/2]*sin(2*pi*k/m) 
;rl <- x[k+m/2]*cos(2*pi*k/m) 
;r2 <- b cos() +a sin() 
;rO <- y[k+m/2]*sin(2*pi*k/m) 
;r3 <- y[k] + b cos() + a sin() 
;rO <-a cos()- b sin() 
;rl <- y[k] - b cos() -a sin() 
;y[k] <- y[k] + b cos() +a sin() 
;rl <- x[k] +a cos()- b sin() 
;y[k+m/2] <- y[k] -b cos()-a sin() 
;rl <- x[k] -a cos()+b sin() 
;x[k] = x[k] + a cos() - b sin() 

;x[k+m/2] <- x[k]-a cos()+b sin() 

;decrement main loop count 

75 



*=~==================================================================* 
* Complex multiplication * 
*====================================================================* 

* 
* 
* 
* 

This routine performs a term-wise multiplication of the 
transformed input sequence to the transformed filter sequence. 

* 
* 
* 
* 

********************************************************************** 
fmult: 

push 
ldi 
ldi 
ldi 
ldi 

ldi 

ldi 
subi 
rptb 
mpyf 
mpyf 
mpyf 
II addf 
mpyf 
subf 
stf 

fmloop: stf 

pop 
rets 

FP 
SP,FP 
*-FP(2) ,arO 
*-FP(3) ,arl 
*-FP(4) ,ar2 

2,irl 

®fftsize,rc 
l,rc 
fmloop 
*+arO,*arl,r3 
*arO,*+arl,rO 
*+arO,*+arl,rO 

nitialize registers for 
;c function interface 
;load input address 
;load filter address 
;load output address 

;setup repeat loop number 

;begin repeat loop 
;r3 <- yl*x2 
;rO <- xl*y2 
;rO <- yl*y2 

rO,r3,r2 ;r2 <- yl*x2 + xl*y2 
*arO++(irl) ,*arl++(irl) ,rl ;rl <- xl*x2 
rO,rl,rO ;rO <- xl*x2 - yl*y2 
r2,*+ar2 ;store results 
rO, *ar2++ ( irl) 

FP 
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*~===================================================================* 

* FNT using DIF FFT algorithm * 
*====================================================================* 
* * 
* This routine performs FNT using DIF FFT algorithm. All * 
* operations use the modified diminished-one number operations * 
* * 
********************************************************************** 
ffnt: 

push 
ldi 
ldi 
sti 

ldi 
ldi 
lsh 
lsh 
ldi 
ldi 
ldi 
ldi 

nloopf: lsh 
ldi 

ldi 
addi 

ldi 
subi 
rptb 
subi 
subb 

bnnd 
ldi 
ldi 
nop 

addi 
and 

nadd1f: addi 
addc 

bzd 
sti 
II sti 

subi 
subb 

xor 

FP 
SP,FP 
*-FP(2) ,aro 
arO,@_com_saddrl 

®fftsize, irO 
irO,ar4 
-1,ar4 
1,ir0 
irO,ar5 
@shiftmask,ar7 
1,ir1 
@logsize,rO 

-1,ar5 
ar5,r7 

;initialize registers for 
;c function interface 
;load argument 

;index for increment of m 
;N/2, for scaling comparison 

;double irO for 2 word data 
;m/2, index to 2nd number 
;ar7 <- Offffffffh 
;N/m, power of 2, # bits to shift 
;log N, number of main loops 

;update, calculate m/2 
;counter from m/2-1 to 1 

@_com_saddrl,arO ;arO -> x[O) 
ar5,arO,ar1 ;arl -> x[m/2) 

irl,rc 
1,rc 
nloop1nf 
*arl,*arO,r3 
*+arl,*+arO,r4 

naddlf 
1, ar2 
O,ar3 

ar2,r3 
ar2,st,r4 

*ar1,*arO,r1 
*+ar1,*+arO,r2 

nloop1nf 
r4,*+arl 
r3,*arl++(ir0) 

ar2,rl,r3 
ar3,r2,r4 

ar2,r4 

;repeat N/m times 

;r3 <- binary diff, low word 
;r4 <- binary diff, high word 

;if diff is positive 
;register ar2 <- 1 
;register ar3 <- 0 

;if negative, low word is d-1, 
;thus d-1 mod operation 

;rl <- binary sum, low word 
;r2 <- binary sum, high word 

;if sum< 2A32, store result 
;save high word diff 
;save low word diff, and increment 
;index 
;convert to d-1, low word 
;convert to d-1, high word 

;A+B = [(A+B)-1]+1. Thus d-1 
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addi 
and 

nloop1nf: 
sti 
II sti 

index 

nloop2f: 
subi 
bzd 
ldi 
ldi 
addi 

addi 
ldi 
subi 
rptb 

addi 
addc 

bzd 
ldi 
subi 
subb 

xor 
addi 
and 

ndiff2f:subi 
subb 

bnd 
sti 
II sti 
mpyi 
lsh 

subi 
subb 
bnn 

brd 
ldi 
nop 
nap 

nscaledf: 
subi 

r4,r3,r1 
ar2,st,r2 

r2,*+ar0 
r1, *arO++ ( irO) 

2,r7 
nloopnf 
1,ar2 
@_com_saddrl,arO 
r7,ar0 

ar5,ar0,ar1 
ir1,rc 
1,rc 
nloop2nf 

*ar1,*ar0,r1 
*+ar1,*+arO,r2 

ndiff2f 
O,ar3 
ar2,r1,r3 
ar3,r2,r4 

ar2,r4 
r4,r3,r1 
ar2,st,r2 

*ar1,*arO,r3 
*+ar1,*+arO,r4 

nscaledf 
r2,*+ar0 
r1,*ar0++(ir0) 
r7,ir1,r1 
-1,r1 

ar2,r3 
ar3,r4 
nscaledf 

ndonef 
O,ar2 

ar4,r1,r2 

;mod operation 
;save carry 

;save high word sum 
;save low word sum, and increment 

;decrement r7 
;end routine if zero 
;register ar2 <- 1 
;arO -> x[O] 
;arO -> x(k] 

;ar1 -> x[k+m/2] 
;repeat N/m times 

;r1 <- binary sum, low word 
;r2 <- binary sum, high word 

;if sum < 2A32, store result 
;register ar3 <- 0 
;convert to d-1, low word 
;convert to d-1, high word 

;A+B = [(A+B)-1]+1. Thus d-1 
;mod operation 
;save carry 

;r3 <- binary diff, low word 
;r4 <- binary diff, high word 

;if diff is negtive, r3 is in d-1 
;save high word 
;save low word, and increment index 
;# of bit shift 
;adjust bit shift for double 
;counting 

;convert to d-1 low word 
;convert to d-1 high word 
;if not zero, scale 

;if equal zero, make r4 

;X - N/2 shift, shift d2 
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bnd 

lsh 
lsh 
xor 

subi 

nscalef: 
lsh 
or 

ndonef: addi 
and 

nloop2nf: 
sti 
II sti 
br 

nloopnf: 
lsh 
lsh 
subi 
bnz 

pop 
rets 

nscalef 

r2,ar7,r6 
r2,r3,r5 
r5,r6 

@fftsize,r1 

r1,r3 
r6,r3 
1,r3 
ar2,st,r4 

r3,*arl++(ir0) 
r4,*+arl 
nloop2f 

-l,irO 
l,ir1 
l,ro 
nloopf 

FP 

;if shift less than N/2, next shift 
;X 
;shift mask by X - N/2 
;shift d-1 data by X - N/2 
;complement r5 

;shift more than N/2, adjust next 
;shift 
;X - N 
;left shift X or X-N bits 
;or register to get final d-1 result 
;convert to binary low 
;convert to binary high 

;store results 

;update irO, m/2 
;update irl, N/m 
;update rO, decrement 
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*====================================================================* 
* Diminished-one scaling by inverse of transform length N * 
*====================================================================* 

* * 

* This routine multiplies all terms in the input sequence by a * 

* scaling factor specified in the memory location IINVERSE. * 

* Since 2Ab is always the multiplicative inverse of itself * 

* modulo 2Ab + 1, multiplicative inverse of all other numbers * 

* require only b bits. The (b+1)th bit of the multiplicative * 

* inverse of N is assumed 0 at all times to simplify calculation. * 

* Ignore all calculation of Z2, since the value of Z2 does * 

* not effect the result. * 

* * 
********************************************************************** 

nscale: 
push 
ldi 
ldi 

ldi 

ldi 
ldi 
ldi 
ldi 
ldi 

ldi 
ldi 
ldi 
subi 

rptb 
ldi 

lsh 
and 
ldi 
ldi 

bpd 
ldi 
lsh 
and 

ldi 
nmults: addi 

mpyi 
mpyi 
mpyi 

addi 

FP 
SP,FP 
*-FP(2) ,ar1 

®IINVERSE, r2 

®fftsize,rc 
@mask,ar7 
4,ir0 
2,ir1 
@mid_carry,ar6 

16,ar2 
-16,ar3 
1,ar4 
1,rc 

nscaling 
*ar1,r1 

ar3,r1,r7 
ar7,r1,r6 
O,r1 
*+ar1,r3 

nmults 
r2,r0 
ar3,rO,r5 
ar7,rO,r4 

o,ro 
rO,r1 

r4,r6,r0 
r5,r6,r3 
r7,r4 

r4,r3 

;initialize registers for 
;c function interface 
;load argument 

;load multiplication inverse of ffnt 
;size 
;setup repeat counter 
;ar7 <- Offffh 
;constant 4 
;constant 5 

;constant shift left 16 bits 
;constant shift right 16 bits 
;constant 1 

;r1 <- Y1 YO 

;r7 <- Y1 
;r6 <- YO 
;r1 <- X2 * Y1 YO = 0 
;r3 <- Y3 Y2 

; if Y2 = 1 
;rO <- multiplicative inverse 
;r5 <- X1 
;r4 <- XO 

;rO <- Y2 * X1 XO = 0 
;r1 <- X1 XO + Y1 YO 

;rO <- XO * YO 
;r3 <- Xl * YO 
;r4 <- Yl * XO 

;r3 <- (Xl * YO) + (Yl * XO) 
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bncd 
lsh 
lsh 

16 bits 
mpyi 

addi 
nmultsnxt: 

addi 
and 
addc 

product 
ldi 
addi 
and 
addc 
and 
bnz 

not 
residue 

addi 
and 
xor 
addi 

addi 
and 

nscaling: 
sti 
II sti 

pop 
rets 

nmultsnxt 
ar3,r3,r4 
ar2,r3 

r7,r5 

ar6,r5 

r3,r0 
irO,st,r3 
r5,r4 

O,r5 
r4,r1 
st,r3 
O,r5 
st,r3 
nscaling 

r1 

r1,r0 
ar4,st,r1 
ar4,r1 
r1,r0 

ar4,r0 
ar4,st,r1 

r1,*+ar1 
rO,*ar1++(ir1) 

FP 

;r4 <- high word of r3 
;r3 <- low word of r3 left shifted 

;r5 <- Y1 * X1 

;r5 + 65536 

;rO gets low word of product 
;r3 gets zero flag 
;r4 gets partial high word of 

;r5 to receive carry over 
;r1 gets high word of product 
;r3 gets zero flag 
;r5 gets carry 
;r3 gets zero flag 

; (AB-1) = (AB) - 1, thus begin 

;reduction 
;save carry 
;complement carry 
;diminished one result 

;convert to binary 
;save carry 

;store result 
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*====================================================================* 
* IFNT using DIT FFT algorithm * 
*====================================================================* 

* 
* This routine performs IFNT using DIT FFT algorithm. The 
* starting address of the input sequence is stored in memory 
* location FP-2. 

* 

* 
* 
* 
* 
* 

********************************************************************** 
iffnt: 

push 
ldi 
ldi 
sti 

ldi 
ldi 
ldi 
ldi 
lsh 
ldi 
ldi 

nloopi: 
ldi 
ldi 
lsh 
lsh 

ldi 
addi 

ldi 
subi 
rptb 
subi 
subb 

bnnd 
ldi 
ldi 
nap 

addi 
and 

nadd1i: addi 
addc 

index 

bzd 
sti 
II sti 

subi 

FP 
SP,FP 
*-FP(2) ,arO 
arO,@_com_saddrl 

2,ir0 
®fftsize,ir1 
ir1,ar4 
ir1,ar6 
-1,ar4 
@logsize,rO 
@shiftmask,ar7 

irO,ar5 
ar5,r7 
1,ir0 
-1,ir1 

;initialize registers for 
;c function interface 
;load argument 

;index for increment of m 
;N/m, power of 2, # bits to shift 
;N/2, for scaling comparison 
;ar6 <- N 

;log N, number of main loops 
;ar7 <- Offffffffh 

;m/2, index to 2nd number 
;counter from m/2-1 to 1 
;update irO, m/2 
;update ir1, N/m 

@_com_saddrl,arO ;arO -> x[O] 
ar5,arO,ar1 ;ar1 -> x[m/2] 

ir1,rc 
1,rc 
nloop1ni 
*ar1,*arO,r3 
*+ar1,*+ar0,r4 

nadd1i 
1,ar2 
O,ar3 

ar2,r3 
ar2,st,r4 

*ar1,*ar0,r1 
*+ar1,*+arO,r2 

nloop1ni 
r4,*+ar1 
r3,*ar1++(ir0) 

ar2,r1,r3 

;repeat N/m times 

;r3 <- binary diff, low word 
;r4 <- binary diff, high word 

;if diff is positive 
;register ar2 <- 1 
;register ar3 <- 0 

;if negative, low word is d-1, 
;thus d-1 mod operation 

;r1 <- binary sum, low word 
;r2 <- binary sum, high word 

;if sum < 2A32, store result 
;save high word diff 
;save low word diff, and increment 

;convert to d-1, low word 
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subb 

xor 
addi 
and 

nloop1ni: 
sti 
II sti 

index 

nloop2i: 
subi 
bzd 
ldi 
addi 
addi 

ldi 
subi 
rptb 
subi 
subb 

bnd 
mpyi 
lsh 

subi 
subi 

bnd 

lsh 
lsh 
xor 

subi 

nscalei: 
lsh 
or 

ndonei: addi 
addc 

subi 
subb 

bnnd 
ldi 
ldi 
nop 

ar3,r2,r4 

ar2,r4 
r4,r3,r1 
ar2,st,r2 

r2,*+ar0 
r1,*ar0++(ir0) 

;convert to d-1, high word 

;A+B = [(A+B)-1)+1. Thus d-1 
;mod operation 
;save carry 

;save high word sum 
;save low word sum, and increment 

2,r7 ;decrement r7 
nloopni 
@_com_saddrl,arO 
r7,ar0 
ar5,arO,ar1 

ir1,rc 
1,rc 
nloop2ni 
ar2,*ar1,r3 
ar3,*+ar1,r4 

ndonei 
r7,ir1,r1 
-1,r1 

r1,ar6,r1 
ar4,r1,r2 

nscalei 

r2,ar7,r6 
r2,r3,r5 
r5,r6 

@fftsize,r1 

r1,r3 
r6,r3 

ar2,r3,r5 
ar3,r4,r6 

r5,*arO,r3 
r6,*+ar0,r4 

nadd2i 
1,ar2 
O,ar3 

;arO -> x[O) 
; arO -> x [k] 
;ar1 -> x[k+m/2) 

;repeat N/m times 

;convert to d-1 low word 
;convert to d-1 high word 

;# of bit shift 
;adjust bit shift for double 
;counting 
;r1 <- (-r1) mod FFTSIZE 
;X - N/2 shift, shift d2 

;if shift less than N/2, next shift 
;X 
;shift mask by X - N/2 
;shift d-1 data by X - N/2 
;complement r5 

;shift more than N/2, adjust next 
; shift 

;X - N 
;left shift X or X-N bits 
;or register to get final d-1 result 

;convert to binary low 
;convert to binary high 

;r3 <- binary diff, low word 
;r4 <- binary diff, high word 

;if diff is positive 
;register ar2 <- 1 
;register ar3 <- 0 
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addi 
and 

nadd2i: addi 
addc 

bzd 
sti 
II sti 

index 
subi 
subb 

xor 
addi 
and 

nloop2ni: 
sti 
II sti 

index 
br 

nloopni: 
subi 
bnz 

pop 
rets 

ar2,r3 
ar2,st,r4 

r5,*ar0,r1 
r6,*+arO,r2 

nloop2ni 
r4,*+ar1 
r3,*ar1++(ir0) 

ar2,r1,r3 
ar3,r2,r4 

ar2,r4 
r4,r3,r1 
ar2,st,r2 

r2,*+ar0 
r1,*ar0++(ir0) 

nloop2i 

1,ro 
nloopi 

FP 

;if negative, low word is d-1, 
;thus d-1 mod operation 

;r1 <- binary sum, low word 
;r2 <- binary sum, high word 

;if sum< 2A32, store result 
;save high word diff 
;save low word diff, and increment 

;convert to d-1, low word 
;convert to d-1, high word 

;A+B = [(A+B)-1]+1. Thus d-1 
;mod operation 
;save carry 

;save high word sum 
;save low word sum, and increment 

;update rO, decrement 
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*====================================================================* 
* Diminished-one multiplication * 
*====================================~===============================* 

* * 
* This routine performs term-wise modified diminished-one * 
* multiplication on the transformed input and filter sequences. * 
* Ignore all calculation of Z2, since the value of Z2 does not * 
* affect the result. * 
* Both multiplier and multiplicant are assumed non-zero * 
* * 
********************************************************************** 

nmult: 
push 
ldi 
ldi 
ldi 
ldi 

ldi 

ldi 
ldi 
ldi 
ldi 
ldi 
ldi 

subi 

rptb 
ldi 
ldi 
ldi 

bpd 
lsh 
and 
nop 

ldi 
chknxt: ldi 

bpd 
lsh 
and 
ldi 

ldi 
nmultm: addi 

bncd 
mpyi 
mpyi 
mpyi 

FP 
SP,FP 
*-FP(2) ,arO 
*-FP(3) ,ar1 
*-FP(4) ,ar5 

®fftsize,rc 

16,ar2 
-16,ar3 
1,ar4 
®mask,ar7 
4,ir0 
2,ir1 

1,rc 

nmloop 
*arO,rO 
*ar1,r1 
*+arO,r2 

chknxt 
ar3,r1,r7 
ar7,r1,r6 

O,r1 
*+ar1,r3 

nmultm 
ar3,rO,r5 
ar7,rO,r4 
®mid_carry,ar6 

o,ro 
rO,r1 

nmultnxtl 
r3,r2 
r4,r6,r0 
r5,r6,r3 

;initialize registers for 
;c function interface 
;load input address 
;load filter address 
;load output address 

;setup repeat counter 

;16 bits left shift, get low word 
;16 bits right shift, get high word 
;constant 1 
;ar7 <- Offffh 
;constant 4 
;constant 2 

;rO <- X1 XO 
;r1 <- Y1 YO 
;r2 <- X3 X2 

;if X2 = 1, 
;r7 <- Y1 
;r6 <- YO 

;r1 <- X2 * Y1 YO = 0 
;r3 <- Y3 Y2 

; if Y2 = 1 
;r5 <- X1 
;r4 <- xo 

;rO <- Y2 * X1 XO = 0 
;r1 <- X1 XO + Y1 YO 

;r2 <- X2 * Y2 
;rO <- XO * YO 
;r3 <- X1 * YO 

85 



addi 
nmultnxt1: 

mpyi 

addi 
bncd 
lsh 
lsh 

mpyi 

addi 
nmultnxt2: 

addi 
and 
addc 

product 
addc 
addi 
and 
addc 
and 
bnzd 
nop 
nop 
nop 

not 

addi 
and 
addi 
addc 
xor 
addi 
and 

xor 
addi 
and 

nmloop: 
sti 
11 sti 

pop 
rets 

ar4,r2 

r7,r4 

r4,r3 
nmultnxt2 
ar3,r3,r4 
ar2,r3 

r7,r5 

ar6,r5 

r3,r0 
ir0,st,r3 
r5,r4 

O,r2 
r4,r1 
st,r3 
O,r2 
st,r3 
nmloop 
*++arO(ir1) 
*++ar1(ir1) 

r1 

r1,r0 
ar4,st,r1 
r2,r0 
O,r1 
ar4,r1 
r1,r0 
ar4,st,r1 

ar4,r1 
r1,r0 
ar4,st,r1 

r1,*+ar5 
rO,*ar5++(ir1) 

FP 

;r2 + 1 if r0+r1 has carry 

;r4 <- Y1 * XO 

;r3 <- (X1 * YO) + (Y1 * XO) 

;r4 <- high word of r3 
;r3 <- low word of r3 left shifted 
;16 bits 
;r5 <- Y1 * X1 

;r5 + 65536 

;rO gets low word of product 
;r3 gets zero flag 
;r4 gets partial high word of 

;r2 gets msb 
;r1 gets high word of product 
;r3 gets zero flag 
;r2 gets msb 
;r3 gets zero flag 

; (AB-1) = (AB) - 1, thus begin 
;residue 
;reduction 
;save carry 
;add msb 

;complement carry 
;diminished one result 
;save carry 

;convert to binary 
;binary result 
;save carry 

;store result 
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*====================================================================* 
* Bit reverse routine * 
*====================================================================* 
* * 
* This routine copy the data from the memory location pointed to * 
* by arO into the memory location pointed to by arl in bit-reversed * 
* order. * 
* * 
********************************************************************** 

bit reverse: 
push 
ldi 
ldi 
ldi 

ldi 
lsh 
ldi 
subi 
rptb 
ldi 
sti 

ldi 
sti 

lsh 
nop 

bitloop:lsh 

pop 
rets 

FP 
SP,FP 
*-FP(2) ,arO 
*-FP(3) ,arl 

@fftsize,irO 
-l,irO 
@fftsize,rc 
l,rc 
bit loop 
*arO,rO 
rO,*arl++ 

*+arO,rO 
rO,*arl++ 

-l,arO 
*arO++(irO)b 
l,arO 

FP 

;initialize registers for 
;c function interface 
;load input address 
;load filter address 

;initialize index 

;setup repeat loop 

;begin loop 
;read from input address 
;write to output address & increment 
;address 

;calculate next bit-reversed address 
;adjust bit reversed 
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