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PREFACE 

The problem of detecting the presence or absence of a signal in 

noise when the probability distribution of the noise is unknown is one to 

which nonparametric statistical tests can be applied. Previous investi

gations have assumed that the input random process to the detector can 

be sampled in such a manner so that the resulting observations are 

statistically independent. As the sampling frequency increase~ this 

assumption obviously becomes invalid. The purpose of this study is to 

determine the effect of correlated input samples on the performance of 

a particular type of nonparametric detector, the median detector. 

The first part of this investigation consists of a statistical 

analysis of the nonparametric median detector and two parametric 

detectors for the detection of a constant signal in stationary, additive 

noise. The computational results based on this analysis are given in 

the latter portion. Included are comparisons of the asymptotic relative 

efficiency (ARE) of the three detectors, as well as comparisons of 

their operating characteristics. 
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CHAPTER I 

INTRODUCTION 

The reception of signals in the presence of noise, is a central 

· problem of communication theory. Noise to varying degrees always 
. . 

obscures the desired sign~l or :rness~ge. Two major subdivisions of . 

this problem are known as detection and extraction. The detection 

problem involves the design of systems which determine only the 

presence or absence of a signal in noise. Extraction of signals in 

noise is the estimation of qne or more of the information-bearing 

features of a signal, for example. the amplitude. frequency. or 

waveform. This investigation will consider only the detection problem. 

The detection problem is encountered quite frequently :j.n 

practice. Possibly the most common example is the radar detection 

problem, in which it is desired to determine the presence of· a target 

by detecting the presence of a radar return signal in noise. A second 

example is a PCM (pulse code modulation) system, in which a . 
message is received by determining whether or not successive pulses 

are present in noise. 

Early approaches to the detection problem were based on the 

signal-to-noise ratio criterion (1). These methods required relatively 

1 
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little information on the signal and noise statistics -- the correlation 

function of the noise was usually sufficient. The output of such a 

detector was certain a posteriori information on the basis of which an 

observer could come to a decision as to the presence or absence of a 

signal. Typically, the detector output included the a posteriori 

probabilities of signal and no-signal. The detection system assisted 
I 

the observer but left the actual decision to his discretion. 

More recently, the detection problem has been studied from 

the viewpoint of statistical decision theory (2). The resulting detection 

systems have been classified as parametric detectors and nonparametric 

detectors. The parametric detector requires a knowledge of the 

probability distributions of the signal and noise, whereas the non-

parametric detector can be designed with a minimum of information 

about the signal and noise statistics. Thus the nonparametric detector 

could be applied, for example, if it is known that the noise and the signal 

plus noise distributions are continuous and differ in location, but nothing 

else. Ih sueh cases the parametric detector could not be obtained. 

Consider again the radar (or sonar) detection problem. When 

the statistical nature of the received process is known for the signal 

and the no-signal cases, a parametric procedure, such as the 

Neyman-Pearson test (13) or the sequential probability ratio test (11), 

may be used. However, if the underlying signal and noise distributions 

are unknown due to a jamming or countermeasures environment, or 

lack of physical knowledge of the process, then a nonparametric 



procedure, such as a detector based on the sign test (18), could be 

employed. 

3 

Comparisons of various parametric and nonparametric detection 

procedures have been made in the past to show the relative advantages 

of each procedure. With few exceptions the cardinal assumption has 

been made that the input samples are statistically independent. That is, 

the input process is sampled in such a way that the samples are uncorre

l~tep. or independent of each other. In a practical detection system the 

ihput process is sampled at as high a frequency as possible, since the 

length of the signal pulse to be detected is short in most cases of interest. 

Also, a larger quantity of input data will allow the detector to make a 

more nearly accurate decision. As the sampling frequency increases, 

the correlation between samples will increase and the performance of 

the detector will change. Therefore, the present analysis of nonpara

metric detection procedures should be extended to include the possibility 

of dependent input samples. 

The purpose of this thesis is to study the effect of dependent 

samples on the performance of a particular nonparametric detector, 

the coincidence or median detector. ( The median detector is based 

on the sign test and requires only a knowledge of the noise median.) 

The detection problem will be to detect a constant signal in additive 

noise with a specified noise correlation function. This requires that 

the receiver and the transmitter be synchronized and the signal pulse 

width be known (coherent detection (2)). The median detector was 
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chosen because it is based on one of the few nonparametric statistical 

tests which can be easily implemented. Also, its efficiency (assuming 

independent sampling) is comparable -- or at least not grossly inferior -

to that of the more common nonparametric tests. 

The median detector will be compared to the conventional 

Neyman-Pearson detector based on the likelihood ratio test. Both the 

Neyman-Pearson detector designed for dependent samples as well as 

the one for independent samples will be considered. The asymptotic 

relative efficiency and the operating characteristics will be used to 

provide comparisons of each detection procedure. The question of 

how much is to be gained by increasing the sampling frequency, as well 

as the amount of error introduced in previous analyses assuming 

independence, will be discussed. 



CHAPTER II 

BACKGROUND OF THE PROBLEM 

Theory of Hypothesis Testing and the Detection Problem 

The problem of determining whether or not a signal is present 

in noise can be approached from the viewpoint of statistical decision 

theory. Recently. several books h~ve been written incorporating 

statistical decision theory with the detection problem (2, 3, 4, 5). 

The detection process is a decision system whose output is "yes" - a 

signal is present - or "no" - only noise occurs. The problem of the 

detection of a signal in noise is therefore equivalent to one which, in 

statistical terminology, is called the problem of testing hypotheses 

(6). Here, the hypothesis that noise alone is present is to be tested, 

on the basis of some received data, against the hypothesis that a 

signal is present. The function of the detector is to examine the set 

of input samples in order to determine whether the null hypothesis 

H (signal is absent) is true, or whether the alternative hypothesis 
'0 

:fl1 (signal is present) is true. 

To illustrate the detection process, consider the detection of 

a constant signal A in additive gaussian noise with zero mean. Imagine 

that the receiver input consists of a single sample Yt of the received 

5 



process. On the basis of this sample ~he receiver chooses between 

one of two hypotheses H0 and H1• If the value of Yt is always zero 

when hypothesis H is true, and A when H1 is applied, there would be 
0 . 

6 

no problem. But on account of noise; the sample Yt is a random variable 

that must be described statistically by giving its probability density 

functions Pyl 0(y) and Pyj .1(y) under hypotheses H0 and H1, r.espectively. 

The receiver is based on a particular strategy that divides the 

range of values of Yt into two regions R 0 and R 1 such that the detector 

chooses hypothesis H when Yt lies in region R and hypothesis H1 0 . 0 

when Yt lies in R 1• The division of the range of values of Yt by some 

threshold value of Y is based on the allowable detection errors. 

Figure 1 shows the probability density functions assumed in this 

example and the relationship between the threshold and the detection 

errors. 

_________ Ro ---1-...-- Rl --------

0 y 
0 

A 

Fig. 1. Probability Density Functions Associated with a Simple Detector. 
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Basic assumptions and terminology of detection theory and 

hypothesis testing will now be discussed~ 

The noise N(t) which is introduced into the transmission 

medium is assumed to be a sample function o:f a continuous parameter 

stochastic process { N(t)} and independent of the signal S(t). The out

put of the transmission medium (the input to the detector) is denoted 

by Y(t), and is considered to be a sample function of a continuous 

parameter stochastic process {Y(t)~. If the signal is not transmitted 

(H0 ), then Y(t) is identical to N(t); if the signal is transmitted (H1), 

Y(t) is a mixture of signal and noise (7). 

One of the functions of the detector is to sample the input Y(t) 

at times t. to obtain the observations Y1, · • ·, Y • (Y. = Y(t.), 
1 n 1 1 

, i = 1, · · ·, n). During the time that these n samples are being 

obtained it is assumed that the signal is either on or off. Thus, Y 1, 

• • • , Y is a set of random variables with a certain joint probability 
n 

'distribution function which depends upon whether or not the signal is 

present. The detector then bases its decision on the observed samples .. 

y . . . y 
1' ' n · 

In detection problems it is convenient to introduce a quantity 

known as the signal-to-noise ratio parameter 9. When the signal S(t) 

is a constant, the signal-to-noise ratio is a function of the peak signal-

to-rms noise ratio. Hence, 9 is defined as the magnitude of the 

constant signal divided by the rms value of the noise. If the signal 

S(t) is a sample function of a random process, the signal-to-noise 



ratio is defined as a function of the rms signal-to-rms noise ratio. 

In either case it is required that e always be positive and that it go 

to zero as the peak (or rms) signal-to-rms noise goes to zero. 

If the signal is absent (H ), the peak (or rms) signal-to-rms 
0 

noise ratio is obviously equal to zero and hence e is equal to zero. 

If the signal is present (H1), then the peak (or rms) signal-to-rms 

noise ratio and e are not equal to zero. 

The errors committed by the detector can be of the following 

two exhaustive and mutually exclusive types: ( 1) the detector says 

there is a signal present, when in reality the signal is absent; the 

probability of such an error is denoted by a, and is known as the 

false alarm probability; (2) the detector says there is no signal 

present, when in reality there is a signal present; the probability of 

8 

this type of error is denoted by f3, and is known as the false dismissal 

probability. In statistical terms, a is the level of significance or size 

of the test (detector), and 1-{3 is the power of the test. In communi-

cation theory 1-{3 is called the detection probability. A schematic 

representation of the error probabilities is shown in Fig. 2. 

A detection procedure bases its decisions concerning the 

presence of the signal in noise on a statistic T0 (Y 1, · · ·, Yn). a 

function which is defined on the observations Y 1, · · ·, Yn. If Tn 

is a Borel-measurable function of Y1, · · ·, Y- ,- then T is a random n n 

variable. The introduction of T serves the useful purpose of mapping 
n 

the outcome of the measurements on Yt from then-dimensional 



p 

Transmitter 
Output 

1 

Detector 
Output 

1 - /3 
---------------------. YES 

A priori 
prob abilities Decision 

q 0 
1 - a 

Fig. 2. The Error Probabilities of a Detector. 

sample space of Y 1, · · ·, Yn to the one-dimensional sample space 

of T, i.e., the real line (8). 
n 

A detection scheme can be thought of as equivalent to a 

division of the sample space of the observations into two parts. The 

null hypothesis H is accepted, or rejected, depending on whether 
0 

the observed sample Y 1, • · · , Y n lies in the acceptance or critical 

region, respectively. 

If the function T is to serve as a useful mapping of the set of 
n 

9 

measurements Y 1, · · · , Y n' it must map the critical and acceptance 

regions of this n-dimensional space into nonoverlapping regions on 

the real line. In this event the division of then-dimensional sample 

space is reduced to the considerably simpler problem of dividing the 
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one-dimensiqn9-l sample space of Tn into two regions. If the statistic 

Tn, as calculated for a particular set of observations, lies in the 

acceptance region, H0 (signal is absent) is accepted; otherwise H1 

(signal is present) is accepteq. The critical region is an interval of 

the form (-ex,, T ) , and the p,cceptance region is an interval of the n,a · 

form (T , ex,), where T is a constant chosen to make the false n,a n,a 

· alarm probability of the detector equal to a. 

The distinguishing c.haracteristic of a detection system is 

the procedure used to decide between H0 and H1• A system is required 

to handle the rec·eiv·er input so that the decisions are made with the 

greatest possible success in a series of observations. The decision 

strategy will depend not only on the nature of the signals to be detected 

and on the character of the noise th't corrupts them, but also on .the 

p~rticular definition of success. In general, both a and (3 will depend 

on the decision procedure. 

Decision procedures can be classified as either parametric 

or nonparametric tests. Parametric statistical tests are those in 

which the probability distribution underlying the observations is taken 

to be of a certain form, and the test is concerned only with the value 

of one or two (or at most a countable number) of the distribution1s 

parameters (18). The term "parameters" refers to a finite number 

of constants appearing in the specification of the probability distribution 

, · of the random variable. Nonparametric statistical tests include those 

in which the underlying probability distribution function cannot be 



11 

¢lescribed by a finite number of p;:irameters. Parametric detectors 
\ ' . 

(statistical tests) will.be considered first. 

Parametric Detectors 

Detectors based on the par~metric methods of the theory of 

hypothesis testing have been termed parametric detectors (2). In 

order to apply parametric procedures the probability distribution 

function of the input sampled process must have some simple functional 

form. such ae that of the normal d,istribution, and must be completely 

specified by one. two. or at most a countable number of real param-

eters. The essent:i.al fe~ture is the finite or countable number of real 

parameters that serve as indices or labels for the probability 

distributions . 

Each of the parametric ~etectors tests the null hypothesis 

H0 : probability distributiqn of Y 1 •. · · ·, Yn is :P (y 1, · · · , y n 

· I 9 = O) (signal is absent) against the alternative hypothesis H1: 

probability distribution of Y 1, · • ·• Y n is P (y1, · · ·, yn I 9 = 9 1) 

(signal is present). The actual decision procedure employed by the 

various parametric detectors is not the same. Three examples of 

parametric detectors will illustrate this point. 

The ideal observer is a parametric detector originated by 

Siegert (9). This was the first application of the theory of hypothesis 

testing to the problem of detecting signals in noise~ The ideal 

observer maximizes the probability of a correct decision by 
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minimizing the sum of the error probabilities a and {3 for a fixed 

number of observations. The probability of a correct decision or the 

level of success depends upon the a priori probabilities p and q 

(q = 1 - p) of signal plus noise and noise alone, and is given by (see 

Fig. 2) 

Ps = Ps(0, n) = p(l - (3) + q(l - a)= 1 - p{3 - qa 

where n is the sample size and 0 is the signal-to-noise ratio. 

The relation between the level of success and the input signal

to-noise ratio is expressed in terms of a betting curve (9), which is 

the essential feature of the more fundamental theory of the detection 

process. The minimum detectable signal can be defined, using the 

betting curve, as that signal observed at the output of the receiver for 

which there is some arbitrarily selected percentage of success. The 

betting curve then relates the minimum detectable signal to a corre

sponding input signal-to-noise ratio. "' 

One of the drawbacks associated with the ideal observer is 

that the decision procedure depends upon the a priori probabilities 

p and q. If these probabilities are unknown, the ideal observer is not 

applicable. If the a priori probabilities are known the ideal observer 

is optimum in the sense described above. 

A second parametric detector is the sequential observer 

discussed by Bussgang and Middleton (10). It is based on a sequential 

decision procedure originated by Wald (11). In this system the error 

probabilities a and /3 are fixed and the observation time or the number 
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of samples is variable. The observations are continued until certain 

limits, depending on a and {3, are exceeded for the first time, at 

which point the null hypothesis H is either accepted or rejected. 
0 

The sequential observer has the advantage that the decision procedure 

is independent of the a priori probabilities p and q. 

The most common parametric detector is the Neyman-Pearson 

observer investigated by Middleton ( 12). The decision procedure was 

first given by Neyman and Pearson (13). In this case the decisions are 

made such that for a given number of observations and a given false 

alarm probability, the false dismissal probability is minimized. In the 

classical Neyman-Pearson test the observer formulates its decision 

without any knowledge of the a priori probabilities p and q. Middleton 

(2, 12) has extended the classical test to include the more general 

situation encountered in detection problems. This extension emphasizes 

the role of a priori probabilities and the cost ratio. ( The cost ratio is 

c - c 1 a -a 
defined as C _ C where C and Cf). are the costs of false alarm 

{3 1-{3 a ,..., 

and false dismissal errors, respectively, and c 1 _ a' c 1 _ {3 are the 

costs associated with correct decisions.) He has modified the classical 

procedure so as to minimize the total false dismissal error probability 

p{3 with the total false alarm error probability qa fixed. The modifi-

cation reduces to the classical Neyman-Pearson test if it is assumed 

that the cost ratio equals one and p = q. 

Various aspects of the Neyman-Pearson detector have been 

studied by several investigators. Peterson, Birdsall and Fox (14) 
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have considered several practical applications of the detector. Reich 

and Swerling (15) and Zubakov (16) have applied the Neyman-Pearson 

observer to the detection of a sine wave in gaussian noise when 

correh1tion exists between successive samples. Other references can 

be found in Middleton and van Meter (17). 

The per!ormance of the Neyman-Pearson detector will be 

compared with that of the nonparametric coincidence detector later 

in this thesis; therefore, its structure will now be discussed in detail. 

It is convenient to introduce a new function called the likelihood 

ratio,J\..(Y 1, · · ·, Y0 ), defined as the ratio of the conditional joint 

probability density functions, 

J\.(Y 1' 

f (y 1 , y nl 9 = 9 1) 
y ) :::: ------------n f (y 1 , • • • , y nl 9 = 0) 

where f (y 1, • • ·, y nl 9 = O) is the conditional joint probability density 

function of the input samples, given that only noise is present; and 

f (y 1, • • • , y J 9 == '\) is the conditional joint probability density 

function of the input samples, given that signal and noise both are 

present. It has been assumed here that the a priori probabilities are 

equal. A(Y 1, · • • , Y n) represents the likelihood that the set of 

samples was drawn from signal plus noise relative to the likelihood 

that it was drawn from noise only. Hence, if A(Y 1 , · • · · , Y n) is 

sufficiently large, it would be reasonable to conclude that a signal 

was present. 

For a given value of a and a fixed number of samples a 



0 

threshold A. can be found. The Neyman-Pearson criterion is then 
0 

15 

to compare the likelihood ratio to this threshold,A ; the null hypothesis 
0 

H is chosen ifA<.A., and the alternative hypothesis H1 is chosen 
0 0 . 

if A >A . It can be shown that this procedure will minimize f3 (12). 
0 

A schematic representation of the conditional probability density func-

tions for a Neyman-Pearson test of H 0 vs H 1 is given in Fig. 3. 

Although we have tacitly assumed that 9 = e 1 has only one 

particular value for i:tll tests of n oqservations, the optimum character 

of the present test is not altered if other choices of e1 are made, as 

long as e 1 is considered to be small, i.e. , the weak signal case. The 

Neyman-Pearson test has therefore been termed the locally most 

powerful test of H 0 against H 1 no ma,tter what other tests (for a given 

a) are tried ( 6). "Locally" refers to the restriction that the test is 

optimum only for values of E\ in the locality of zero. 

H: 
0 

f(y 1' . 

1-a 

-..c R 
0 

y I e = o) 
n 

~~~~~~~~~-=::::=-~~~---->-...11... 
.-..1 .. Rl 

Acceptance Region Critical Region 

Fig. 3. A Sc:hematic Representation of the Probability Densities in 
a Neyman-Pearson Test of H0 vs H 1. 



The likeiihood ratio for the detection of a constant signal in 

stationary, additive gaussian rioise is well known. The input under 

signal conditions is 

Y (t) = N (t) + 9 

where 9 is the input signal-to-noise ratio (in this case the amplitude 

of the signal to be detected, too), and the noise N(t) is a sample 

function of a gaussian process {N(t)} with a mean ~f zero and a 

variance of one. U!lder no-signal conditions the input is .. 

Y (t) = N (t). 

16 

If the assumption of independent samples Y 1, · · 

likelihood ratio is equivalent to L : 

Y is made, then n . 

n 

Y. 
1 

The decision rule is if L < L , accept H ; if L > L , accept H1, n a · o n a 

where L is the threshold. a . 

If the samples 9-re correlated, the noise correlation matrix 

11 R .. 11 is composed of the elements 
lJ 

R .. = R (I" i - jl T ) 
lJ . 

(i, j = 1, · · · , n) 

where T is the sampling interval. · The decision rule is based on an 

equivalent likelihood ratio 0 : , , n 

where! I Qij 11 =11 Rijl I 

.f 
J = 1 

Q .. Y. 9 
lJ 1 

-l, i.e., 11 Q .. I I is the inverse of the noise 
lJ 

[ 1 J 

[ 2 J 



covariance matrix. 

(/J is the threshold. 
a 
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If (/J < (/J , accept H ; if (/J > (/J , accept H1, where n a o n a . 

It should be stressed that the Neyman-Pearson test is optimum 

only for the particular pair of density functions f(y 1' • • • , y n I 9 = 0) 

and f(y1, · · • , y n I e = e 1) for which it has been designed. If these 

density functions are changed, then the optimum test may also be 

changed. 

Nonparametric Detectors 

Detectors whose error probabilities a and (3 remain the same 

for a large class of possible noise distributions are known as nonpara-

metric (or distribution-free) detectors (7). The parametric detector 

was design~d for a specific noise distribution; whereas the nonpara-

metric detector, based on a nonparametric statistical test, is designed 

to operate with noise distributions that cannot be completely specified 

by a finite number of parameters. Nonparametric detectors would be 

applicable in instances where parametric detectors are inappropriate 

due to incomplete information concerning the functional form of th-e 

noise distribution. 

Numerous nonparametric statistical tests have been suggested 

in the literature (18, 19, 20). Of course, not all of these are applicable; 

however, many remain to be investigated. Capon (7) was one of the 

first to apply nonparametric statistical tests to the problem of 

detecting signals in the presence of noise. Recently, Bell (21) has 

made a comprehensive study of nonparametric detectors. 
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In order to briefly summarize the work that has been done, 

three models of nonparametric detectors will be introduced: 

(1) Detectors with one input 

(2) Detectors with one input and a reference 

noise source 

(3) Detectors with two inputs. 

Statistical tests known as one-sample tests (18) can be applied 

to the first detector model. One-sample tests should not be confused 

with the number of observations, Y 1, • • ·, Yn. The term "one

sample" in this case means that one set of data·(Y1, • • ·, Y ) from 
. n 

one population {Y(t)} is available for use in the decision process. 

More than twelve one-sample, nonparametric statistics have 

been studied by Bell (21). Among these are detectors which employ 

statistics based on differences of the probability distribution function 

of Y 1, · · ·, Yn and the pure-noise distribution function. Examples 

of this type (investigated by Bell) are the Kolmogorov-Smirnov or 

Vodka detector, the Cramer-von Mises detector, and the sign-

quantile detector. The sign-quantile detector is based on one of the 

oldest and simplest nonparametric tests, the sign test. In its ele-

mentary form a sign detector (sometimes called a coincidence or 

threshold detector) counts the number of times the input observations 

Y 1, · · ·, Yn exceed a threshold. If this number is greater than a 

certain limit, the alternative hypothesis is accepted; otherwise it i-s . 

rejected. The test statistic has the form 
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n 
s = 

i~ 1 n 

where(*) c(z) = 1 if z > 0 

= 0 if z < 0 

and ~ (F ) = F -\p). F is the pure noise probability distribution, 
p O O O 

and p is some percentile. For a decision threshold S , the decision . a 

rule is accept H if S < S ; accept H1 if S > S . When p = o. 5 o n a n a 

Sn is sometimes referred to as the median statistic. The more complex 

sign-quantile detector has more than one threshold level. 

A second class of one-sample detectors investigated by Bell is 

composed of the run-block detectors, which deal with the number of 

observations Y 1, • • ·, Yn that fall in certain preassigned intervals 

a.,nd/or the relative spacing of these values relative to the pure-noise 

distribution function. General forms of detectors of this type are the 

spacing and the empty-cell detectors. 

The third class of one-sample detectors studied by Bell 

includes the rank,..sum detectors, whose decisions are based on sums 

of percentile ranks of the observations Y 1, • ·- ·, Yn. One example 

of this type is the one-sample Mann-Whitney (Wilcoxon) test (22). A 

second example is the rank sum detector based on the c 1 test (23). 

The second detector model has been used by Capon (7, 24) as 

*The possibility of z = 0 is ignored since it occurs with 
probability zero, assuming continuous distribution functions. 
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well as by Bell (21). The basic assumption is that, in addition to then 

independent observations Y 1, • • ·, Yn of the input process considered 

above, m independent observations x1,- · · ·, Xm can be obtained 

under no signal conditions. If the yrs and X's are samples from two 

independent, stationary random processes with continuous first-order 

distribution functions F and G, respectively, and if it is desired to 

detect the presence of a signal component in the yrs with the aid of 

the X's, then some method of comparison of the X's and Y's is 

needed which is sensitive to differences between F and G. Two-

sample nonparametric statistical tests meet this requirement (18). 

Two-sample tests compare data taken from two samples or 

populations [ (Y 1, • • • , Y n), (X1, • · • , Xm)] and make decisions 

concerning the distribution functions of the two samples. Bell has 

applied two-sample versions of the one-sample tests described for the 

first detector model to this model. Capon has investigated the Mann-

Whitney, the Wald-Wolfowitz, the Kolmogorov-Smirov or Vodka, and 

the rank-sum tests for use as detectors employing a reference noise 

source. 

Probably the most significant of these tests is the two-sample 

Mann-Whitney test (25). The Mann-Whitney test is based on the 

. statistic 

v mn 
::: 

1 
mn f 

. L, 1 J ::: 
c (Y. - X.) 

1 J 

where c(z) has the same meaning as earlier. In essence, the 
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statistic V counts the number of times that the magnitude of an 
mn 

observation Y. exceeds the magnitude of an observation X.. This test 
l J 

is one of the more efficient nonparametric tests. 

The reference noise source from which x1, X are 
m 

obtained may be difficult to realize in practice, since its character-

istics must be identical with those of the signal-bearing channel under 

no-signal conditions. Of course, the output of the latter channel might 

itself serve as the reference source during time intervals when it is 

known that a signal is not being transmitted, provided that these inter-

vals are long enough to permit the establishment of suitable noise 

records x 1, · · ·, Xm' and provided that the channel characteristics 

d,o not change when one passes from such a reference interval to an 

interval in which a signal may be present (22). 

It should be stressed that neither Bell (21) nor Capon (7) con-

sidered the consequence of correlated or dependent samples in their 

analysis of various nonparametric detectors. The assumption of " 

independent input observations was made throughout. The validity of 

this assumption remains to be investigated. 

Two-input detection schemes are considered when the signal to 

be detected is a random process whose presence perturbs both inputs 

simultaneously; in the absence of a signal, it is assumed that the two 

inputs are independent random noise processes. Thus, the applicable 

statistical techniques are those suitable for testing a hypothesis of 

independence vs an alternative corresponding to the type of dependence 
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introduced by the common signal component. 

The most popular two-input nonparametric detector is the 

polarity coincidence correlator (PCC) detector. It is a simple device 

to implement and utilizes only the polarity information of the two 

inputs. Given the input observations (X1, · · · ; Xn) and (Y 1, 

Y ) , the fallowing test statistic is calculated: 
n 

s 
pee 

sgn (X.) sgn (Y.) 
l l 

where sgn (z) = ± 1 according to whether z> 0 or z <O. The dec.ision 

rule is to accept H if S <S and reject H if S > S , where 
o pee a o pee a 

S is the threshold and 
a 

H : X(t) and Y(t) are independent, statistically 
0 

identical noise processes (signal absent), 

H1: X(t) and Y(t) contain in addition a common 

random signal component (signal present). 

The polarity coincidence correlator has been discussed by a 

number of authors. Thomas and Williams (26) considered the perform-

ance of the PCC in nonstationary noise. Wolff, Thomas, and Williams 

(27) compared the PCC with an ordinary correlator and a Neyman-

Pearson detector designed for white gaussian noise inputs. Kanefsky 

(28, 29) described an adaptive PCC for nonstationary processes. · The 

effect of correlated noise samples on the performance of the PCC has 

been studied by Kanefsky (30) and Ekre (31). Squire (32) analyzed a 

PCC with biased polarity indicators. The circuit design of a practical 
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PCC has been given by Rosenbeck (33) and a less successful optical 

model by Collela (34). The results of these investigations indicate 

that the polarity coincidence correlator can be applied successfully to 

nonstationary, non-white, g.nd unknown noise environments. However, 

when the noise distributions are known the Neyman-·Pearson detector 

has superior performance. 

The work done by Kanefsky and by Ekre does consider depend

ent samples; however, it is limited to the PCC detector. Neither uses 

the methods of comparison considered in this thesis. Ekre considers 

the detection of a gaussian signal in gaussian noise with identical 

normalized power spectra. The PCC is compared to the conventional 

~nalog correlator, using a signal-to-noise ratio performance criterion. 

Kanefsky only compares the performance of the PCC under dependent 

sampling to that under independent sampling. An effective sampling 

rate is defined as a performance criterion. No mention is made in 

either paper of the effect of correlated samples on the PCC as com

pared to the effect on the optimum parametric procedure. Also, the 

question of the relative performance of the optimum parametric pro

cedure designed assuming independent observations and that designed 

9-Ssuming correlated observations remains unanswered. These points 

will be studied in this thesis. 

To summarize, nonparametric detection schemes offer the 

following advantages: (1) the false alarm probability can be specified 

in advance even when detailed information on the input noise process 
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is unavailable; (2) weak-signal performance in gaussian noise may not 

be too inferior to that of the optimum parametric detector for gaussian 

noise., while superior performance may be obtained when the noise is 

13-ctually non-gaussian and/or nonstationary; (3) many times the instru

mentation is simpler. 

The nonparametric detector to be used in this investigation is 

· the coincidence or median detector. It will be assumed that only one 

input is available and that the median under no-signal conditions (i.e., 

the median of the noise distribution) is known. Therefore, the detector 

is of the first class of detectors discussed previously. As has been 

pointed out, this detector is based on a special case of the sign 

statistic. 

The median detector was chosen for three reasons. First:, it is 

based on one of the few nonparametric statistical tests which is simple 

to implement. Second, its statistical analysis is tractable and, hope

fully, the results obtained are representative of other tests. Finally, 

the efficiency of the median detector is comparable or at least not far 

below that of other nonparametric detectors. 

The coincidence detector, due to its simplicity, has been 

studied and instrumented by several investigators. Not all of the 

coincidence detectors have been nonparametric, however, because of 

the manner in which the threshold has been chosen. Schwartz (35) 

and Capon (8) have studied optimum parametric coincidence procedures 

for detecting weak signals in additive gaussian noise. The detection 
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of a gaussian signal in correlated gaussian noise by use of a coincidence 

detector has been investigated by Bunimovich and Morozov (36, 37). 

The system design and performance of a coincidence detector has 

been reported by Raether and Bitzer (38). 

A coincidence detector with nonparametric properties, here-

after referred to as the median detector, has been studied by Lainiotis 
' . 

(39). The threshold was chosen to be the median of the noise distri-

bution. The input samples were assumed to be statistically independent. 

The relative efficiency of the median detector compared to the 

optimum parametric detector has been calculated assuming in.dependent 

observations and very small signal-to-noise ratios. For example, the 

relative efficiency of the median statistic compared to the optimum 

parametric statistic for detecting a constant signal in additive gaussian 

noise (the likelihood ratio test) is 2/ TT (40). The median detector is 

twice as efficient as the optimum parametric detector designed under 

the gaussian assumption but operating under noise with an exponential 

density function (39). On the other hand, the relative efficiency of the 

median detector compared ::i.gainst the likelihood ratio test appropriate 

for detecting a constant signal in a noise with an exponential distri-

bution is zero (41). (The meaning of relative efficiency will be given 

in Chapter III. ) 

A block diagram illustrating the median detector for detecting 

a constant signal in additive noise of median Mis given in Fig. 4. 

The test statistic is 
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n 

Sn 
1 l c (Y. - M) [4] = -
n 

i 'ii: 1 
1 

where 

c(z) = 1 if Y. >M 
1 

= 0 if Y. <M 
1 

The term "constant signal" in practice could imply a pulsed carrier of 

known phase. 

Half-Wave Binary 
Y(t) ~ Adder Ideal Sampler -- ,- Integrator r 
-· ~ 

~ Limiter 
r s + 

~ 
~c[Y. - M] -t Y(t) - M c[Y(t) - M] 

n 

M 1 

Fig. 4. A Block Diagram of the Median Detector. 

In general, individual sample values cannot be treated as 

statistically independent. This inherent correlation between sample 

values over the observation period is an essential feature of the detec-

tion problem (2). For realizable narrow-band signals, there is no 

sampling rate for which the independent sample assumption is valid 

(30). Also, due to the finite bandwidth of the noise, the samples are 

not statistically independent. If the interval between samples is some-
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what larger than the reciprocal of the noise bandwidth, the samples 

are nearly statistically independent (4). It is evident, however, that 

the more frequent the sampling, the more reliable the signal detection: 

with an increase in sampling frequency additional measurements are 

performed, providing additional information concerning the process 

under observation. Therefore, the effect of correlated samples on 

the performance of the median detector could be quite important. To 

determine its importance, certain performance criteria for detectors 

must be introduced. This will be done in the following chapter. 



CHAPTER III 

PERFORMANCE CRITERIA FOR DETECTORS 

To determine the effect of dependent sampling on a detector, 

some means of performance comparison must be used. Unfortunately, 

the comparison methods do not give a sufficiently complete description 

of the detector, or they impose severe restrictions on the type of 

operation that can be considered. This chapter will discuss the two 

methods of performance co.mparison used in this study: asymptotic 

relative efficiency and receiver operating characteristics~ The relation 

between these two methods and the input-output signal-to-noise ratios 

will also be mentioned. 

Asymptotic Relative Efficiency 

The asymptotic relative efficiency (hereafter designated ARE) 

of one detector with respect to another is an indication of how many 

more observations one detector requires than the other to detect a 

given weak signal with a prescribed accuracy, a, {3. It should be 

stressed that the ARE is a comparison which is valid only for a partic

ular pair of noise and signal plus noise probability distribution functions. 

If the distribution functions change, the ARE will change. Thus, only 

. comparisons for specific cases can be made; no general performance 
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efficiency can be concluded. The comparison of detectors in the 

presence of increasingly weak signa,ls is justified by assuming that the 

strong signal performance is not critical. A more precise definition 

of ARE will now be given. 

Suppose a null hypothesis, e = 0, is to be tested against the 

alternative e = en > 0, where en approaches zero as n approaches 

infinity. (9 corresponds to the input signal-to-noise ratio defined in n . 

Chapter II. ) Let the two tests which are to be compared be based on 
I 

the two statistics T and T , which are asymptotically normally dis-
n n · 

tributed under both the null and the alternative hypotheses. Suppose 

I I 

that T and T require N and N observations, respectively, to attain · n n 

the power (3 at a level of significance a for testing the hypothesis 

H : 9 = 0 against the alternative H1 : 9 = 9 . The ARE of T with 
o 1 . n n 

respect to T I is lim NN (42, 43). 
n n -t00 

In order for the limit to exist and be independent of a and {3, 

a number of regularity conditions are needed~ Let the mean of the 

test statistic T be denoted as En [ T ] under signal conditions and 
n o n 

E [ T. J under no-signal conditions; let the variance of T be 
o n n 
2 2 er [ T ] and er [T ] under sigri~l and no- signal conditions, 

9 n O n 

respectively. 

Regularity Conditions: 

(A) The distribution of [ T - En [ T ]] 
n o n 

I cr 9 [ Tn] tends 

to the normal dlstribution with mean "zero and variance 
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(B) 

(C) 

(D) 

(E) 

(F) 

one, uniformly in 0. ( *), with 'O s; e·s:·g . · for some 01> 0. .· .. 1 J 

is continuous at 0 = 0. 

lim 1 [Ea' [Tn JI 0 
J 

2 

- = 0 n -+·OCl n = E > O· ET is 
cr [ T J T ' 

O n 
n n 

called the efficacy. 

There exists a sequence {en} , such that 

lim 0 
n 

= o. 
n -+ .CC) 

CJ 
2 [T J 

lim 
0 n 

n 
n -+ ·CC) 

= 1 
(] 2 [T ] 

0 n 

lim cr O 
2 

['.l'n] 0 = 
n .-+ .CC) 
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The regularity conditions are essentially equivalent to requiring 

I 

that the two tests T and T be consistent (**) (7, 42h 
n n 

*Mood (40) states that generally proofs of asymptotic normality 
do not provide this strong a result, and the validity of the assumption is 
not completely justified. However, the computations are usually valid. 

**The property of consistency is defined as 

lim 
n -+ .CC) 

f3 = 0 
n ' 

and me~ns th1~.t for a fixed alternative 0 1 and a, the decisions conce,rning 
the presence or absence of the signal become more and more reliable as 
more observations are obtained. 



If the regularity conditions are satisfied for the detectors T .· n 
I . 

and T , then it can be shown that (44) , n . 

I 

ARE (T : T ) = 
n n E I 

T 
n 
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Thus the ARE is given by the ratio of the efficacies of the two detectors 

(statistics). 

The validity df the concept of A.RE for comparing statistical 

tests might be' supported by its wide usage in the field of statistics. The 

concept has been attributed to E. J. G. Pitman, ·and has been described 

by several authors (6, 18, 44, 45, 46). Applications of ARE can be 

found in many papers (47, 48, 49, 50, 51, 52). It is noted that all of 

these applic~tions have assumed independent observations. 

One further comment regarding the efficiency of nonparametric 

tests is given by Kendall and Stu~rt ( 18). They state that a nonparametric 

test, chosen in ignorance of the form of the underlying distributions, 
' . 

cannot be expected to be as efficient as the test that would have been 

used had the underlying distributions been known, that is, the optimum 

parametric test. The only "fair" standard of efficiency for a nonpara-

metric test is that provided by other nonparametric tests. In such 

cases the most efficient test should naturally be chosen. However, 

comparisons between parametric and nonparametric tests will be made 

in this study; hence, these remarks should be kept in mind. 
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Receiver Operating Characteristics 

All statistical performance criteria for detectors are based 

directly or indirectly on either a and {3 or cost and risk functions. Cost 

and risk functions require that the cost of a false alarm and of a miss 

be known; also, the a priori probabilities must be specified. If a perform-

ance criterion based on a and {3 is used, one usually fixes a and is 

.consequently led to a criterion which (for a fixed a) depends solely on 

{3. Such is the case in this investigation. In so doing it is assumed 

that values of a and {3 can be intelligently specified, and that the inf or-

mation concerning the a priori probabilities and the cost functions can 

somehow be utilized in specifying a and {3. 

The function {3 = {3 (a, 8) has been termed the operating 

characteristic of a receiver, where a, {3, and 8 are the same as 

defined previously (5). An alternate form is a plot of the power of the 

test vs the size of the test (1 - {3 vs a) for 8 constant. The operating 

characteristic depends on the probability density functions of the 

observations under the two hypotheses, but not on any cost functions 

or a priori probabilities. 

The function to be plotted can be determined from the definitions 

of a and {3. For a threshold Ta' 

= po (y) dy 

and 
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= J Ta P9 (y) dy 
- co 

where p O (y) and p9 (y) are the probability density functions of the noise 

and the signal plus noise observations. For a fixed a, T can be found 
a 

and used in the second equation to find f3 for various values of e. 

The disadvantage of using the operating characteristic as a 

performance criterion is that the distribution functions under noise 

and signal plus noise must be specified, thereby limiting the generality 

of the comparison. 

Signal-to-Noise Ratio Criterion 

The definition of signal-to-noise ratio in Chapter II can be used 

to give input-output signal-to-noise ratio comparisons in terms of loss 

in db (31, 36). For the detection of a constant signal A in noise with 

2 
variance crN , the input signal-to-noise ratio is 

Input SNR = 
A 

cr 
N 

= 8 • 

The output signal-to-noise ratio is defined as 

Output SNR = 
Ee [Tn J - Eo [Tn] 

cr [ T J e n 

where E 9 [Tn land e-9 
2 [Tn] are the mean and the variance of the test 

statistic T under signal conditions and E 0 [ T ] is the mean under no-
n 'n 

signal conditions. If E 9 [Tn] is expanded in a Maclaurin's series in 

terms of 9: 
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Ee [ Tn J = Eo [ Tn J + e :e Ee [ T J + e: d2 2 Ee [T J +· 
n 9 = 0 d9 n 9 = 0 

and if 9< 1 such that 9 2<< 1, the ratio of the input to output signal-to-

noise ratios is 

d 
Ee [T J I e Output SNR 9de = 0 = n 

Input SNR 9 (J Er'n J 9 

Furthermore, if 
2 

[T J . 2 [T J for n large and 9 small, then -(J (J 

9 0 n 

Output SNR = 
Input SNR 

n 

Notice that as n -+ co this becomes the square root of the efficacy of the 

detector. Therefore, the efficacy of a detector co-q.ld be interpreted 

as the ratio of the input and output signal-to-noise ratios squared for 

n large and 9 small. Because of this redundancy, the signal-to-noise 

criterion will be replaced by the more meaningful efficacy and ARE 

criteria. 



CHAPTER IV 

STATISTICAL PROPERTIES OF THE MEDIAN DETECTOR 

An introduction to ... {letection theory and a review of the problem 

have been given in Chapters I and II. It was pointed out that very few 

studies have been made concerning nonparametric detectors without 

making the assumption that the observations are independent of each 

other. No work has been published with respect to the median detector 

without assuming independent samples. Furthermore, the performance 

criteria described in Chapter III to be used in the analysis of detectors 

always requires that the mean and the variance of the test statistic 

under signal and no-signal conditions be known. Therefore, to investi

g~te the effect of dependent observations on the performance of the 

median detector, the first step is to derive these quantities. In this 

chapter the mean and the variance of the median test statistic under 

signal and no-signal conditions will be found for the cases of independent 

~nd of dependent sampling. The optimum parametric test statistic will 

be similarly considered in Chapter V. 

Independent· Samples 

The mean and variance under signal and no- signal conditions 

assuming independent samples will first be found for reference 
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purposes. The median test statistic was given in Chapter II as 

n 

s n = -~ l c (Yi - M) 
i = 1 

where Y 1, • · ·, Yn are the observations of the iµput random process 

Y(t) and Mis the median of the noise distribution. The function c(z) 

is defined as 

c(z) = 1 if z > 0 

=O if z<O. 

It will be assumed throughout that the random process y(t) is 

stationary under no-signal conditions~ 

The mean of Sn under no-signal conditions and independent 

observations is (39) 

E[S] =l 
O n n 

i = 1 

n 

E 
0 

[c(Y. - M)] 
l 

=~ l [1 · P 0 (Y.> M) + 0 • P 0 (Yi<M)] 
n . . 1 1 

1 = 
n 

1 
n 

i = 1 

n 

=! l 
i = 1 

[l - F O. (M) ] 
1 

where F O. (y) is the probability distribution function of the random 
1 .. 

variable Y.. For a stationary noise median, 
1 

and 

F 0 _(M) 
1 

= 1 
2 

36 

[8] 



The v~riance of Sn under no-signal conditions. assuming 

independent samples. is (39) 

n 

a 2 [S J =..!_2 
O n 

n 
I 2 . lcro [c(Yi - M)]. 

1 = 

Let Zi = Yi- M, and let E 0 [c(Yi - M)] 

a 2 [s J = .!_2 
O n, 

n 

But from above, mi = 1 - F 0 _(M) 
1 

F O.(M) 
l' 

= 1 2· Thus 

= m .• 
1 

Then 

~7 

[9] 

[10] 

Note that the mean and the variance are independent of the noise distri-

bution; hence a is constant and the detector is nonparametric. 

The mean of the test statistic Sn under signal conditions, 

assuming independent samples. is (39) 

1 
:;: -

n 

1 = -n 

n 

= _!_ l Ee [c(Yl. - M) . J 
n . 1 

1 = 

n 

I [ 1 . Pe (Yi >M) + o . Pe (Yi < M8 
i = 1 

n 

I Pe (Yi >M) 
i == 1 

1 
= -n 

n 

I 
i ::: l 



n 
1 \ . 

_ 'l [1 - G9 _(M}] 
i = 1 1 . 

= -
n 

where G9 . (y} is the probability distribution function of the random 
1 

variable Y. under signal conditions. It is assumed that under signal 
1 . 
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conditions the distribution functions of Y., i = 1,. · · • , n and Y., J. = 1, 
. 1 . J 

· • ·, n, i 'f j differ only through the signal-to-noise ratio parameter, 

9 (39}. Apply the mean value theorem (53} to G9(M). 

results into Eq. 11; 

a9 :<M> - a0(M) 
1 

e. 
1 

For the weak signal case, B !!: O, so 

= 1 2• 

A 

9 = 9 

Substitute these 

= .!. - :g _.E.. G (M) 
2 de a 

1 
where 9 = 

n 

n 

9 .. 
1 

9 !!: 0 

[12] 

[13] 

The variance of S under signal conditions, assuming independ
n 

ent sampling, is 

n 

(J 2 [s J = 1 I CJ 2 [c(Y. - M) J 
9 n 2. 1 e 1 

n 1 = 



1 =-
2 

n 

39 

n 

l [Ge_<M) - Ge. 2 (M>J 
. . 1 1 1 
1 = 

Again apply the mean value theorem of Eq. 12 to Ge(M) for the weak signal 

case. 

er 2 Cs J = 
1 ii Jt + Si d~ G9(M) -(i + 

d 

9 s JJ e n 2 ei de Ge (M) 
n 

e = o 

1 
2 

n 

1 
=-

4n 

-2 1 
where e = -

n 

I [i -
i = 1 

1 
2 

n 

n 

. i = 1 

d 
de 

2 e .. 
1 

e.2 d (M) 
1 de Ge 

2 

Ge (M) 

e . 0 

-2 -
Since e <:< e, 

2 

.J e 

n 

I e 2 
1 

i = 1 

2 

e = o 

Equations 9, 10, 13, 14 give the mean and the variance of S under 
n 

signal and no-signal conditions, assuming independent samples. 

The mean of S can be evaluated for the particular problem of 
n 

[14] 
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detecting a constant signal in additive, white gaussian noise with zero 

mean and variance of one. For this problem, 

G 8 (y) = F O (y - 9) 

and 

d 
d9 FO (y - E>) = -f (y) 

0 ° 0 0 ' 0 

where f(y) is the probability density function of the random variable Y. 
. 1 

under no-signal conditions. Since the noise is N (0, 1), then 

and 

. 2 
1 -~y 

f(y) = /2Tr e 

9 ~ 0 

since y = 0 at the median. Thus the mean for this example is 

Dependent Samples - - No-Signal Conditions 

The mean and the variance of S under no-signal conditions, 
n 

assuming dependent samples, will be derived next. Referring to the 

procedure in the previous section used to find the mean of Sn under 

no-signal conditions, it will be observed that the question of indepen-

dence of Y 1, ~ · •, Yn did not arise. Thus, the mean under no-signal 

conditions is not affected by the independent assumption, and E 0 [ Sn J 

assuming dependent samples is given by Eq. 9. 

[15] 

[16] 
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The variance of Sn under no-signal cono.itions, assuming depend

ent · samples from a stationary random process, is derived below. 

Refer to Lee (54) for a discussion of the general procedure used to 

obtain Eq. 17. 

E [ I c (Zi) 

n 

c (Zj)] 
CT 2 [s J 1 .l - E 2 [s J 

0 n =2 0 . 1 j = 1 
0 n 

n 1. = 

· \ E0 [ I O czii 2] +.L Eo[I f c (Zi) c(Zj)] 2 
n i = 1 n 

i -I= j 

n 

= .fil.Ql 1 2 l (1 k 
) R (k'F) - - +..,.. - -n 4 n k = 1 n 

where Z. = Y. :. M. R (kt) is defined as 
l l 

This can also be written as 

R (kT) = P (Z > onz > 0) 0 0 k 

where P O is a joint probability function. Thus 

R (kT) = If f (zo, zk) dzo dzk 

0 

1 
- 4 

[17] 

[18] 

[19] 

where f (z0 , zk) is the joint probability density function of the random 

variable Z O, Zk. 

It is clear from Eq. 19 that to proceed further the joint density 

function must be specified. It is apparent from Eq. 17 and Eq. 18 

that the variance of the test statistic S is not affected by any instanta
n 

neous operation on Y(t) that preserves the "median-crossing level". 
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Thus, define a class of modified gaussian processes as containing 

all processes that can be obtained by passing a stationary gaussian 

process through an instantaneous operation whose cp.aracteristic leaves 

the median value unchanged (30). Furthermore, to make the analysis 

tractable -- as well as for practical considerations, assume that the 

input noise process has. a mean value of zero. Practically speaking, 

this assumption is quite vali<:I. (,4\ derivation of R(kT) assuming that the 

mean is nonzero is given in Appendix A. ) Since the mean and the 

median coincide for a gaussian process, the median is zero under 

these assumptions. The class of modified gaussian processes then 

becomes the class of all processes that can be obtained by passing a 

stationary gaussian process through any instantaneous operation whose 

characteristic passes through the origin. 

Kanefsky (30) mentions that there are still definite advantages 

in using a nonparametric detector for this restricted class of inputs 

instead of the optimum parametric detector. The main advantages -are: 

1) simplicity of implementation (the median is zero); 2) invariance with 

respect to the noise power; and, 3) invariance with respect to certain 

nonlinear operations on the input signals, especially amplitude limiting 

operations. 

The bivariate gaussian density function for processes with zero 

mean is (2) 

1 
r--'J.,eXp 

2rrcr 2 /1 -p -.t. 
n 

[20] 



where p = p(k T) is the normalized correlation function expressing the 

correlation between the random variables z 0 , zk and an 2 is the noise 

power (variance). 
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Under the assumptions discussed above, ·the derivation of R(kT) 

can now be completed. The procedure follows that outlined by Rice (55). 

Substituting f(z 0 , zk) into Eq. 19, evaluate R{kT). 

Then 

Let 

and 

co 

R (k~) =ff 
0 

1 

1 

2TTCJ 2 11=p2 
n 

1 

2TTCJ 2 ll=p"2 ' 
n 

2 2 • 
2a (1 -p ) 

n 

co 

R (kT) = A ff exp [A2 (-z 2 + 2pz0 zk -1 0 

0 

z = y + p (1 - 2) -\ 
0 .o 

p . yk 

~k = 

zk 

[21] 

2 
) ] dz0 dzk. 

It is assumed that p I 1. Since zk runs from O to 00, so must yk; y O runs 

2 -t from -p (1 - p ) yk to co. This gives 

co 

R (kT) 1 [22] 

In order to carry out the integration of Eq. 22, change to polar· 

cnordinates. Hence, 



Y = r cos e 
.0 

yk r sine 

dykdyo = rdrde 

y ~ 0 
k gives 0 

-py 

s: e s;; TT 

-1 ( -e ) yo 
~ k gives e s: cot 
~2 /1 - p 2 

or e s;; cos - l ( - p) 

TT -.1 
or 0 s: - + sin p • . ~ 2 

e-1 

o~ ~o 

Fig. 5. Transformation of Coordinates for Evaluation of R (k T)., 

Substituting these into Eq. 22 and integrating, yields 

R (kT) 

= ___ A __ l;;;;;..__2_k [~ + sin-1 p J • 
2A2 . ( 1 - p ) 2 · 

r e 
2 

-Ar 
2 dr 

44 
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Substitute the values of A 1 and A2 into the above equation and simplify. 

The result is· 

1 1 -1 · 
R (kT) = 4 + 2TI sin p (kT) • 

Also, since p(O) = 1, then R(O) is 

R(O) = t_ 

The value of R(k-r) and R(O) found in Eq. 23 can be substituted 

into the expression for the Vq.riance, Eq. 17, 

n . 

cr 2 [s ··]= .L - .! + 1 I (1 - ~ ) [.! + .L sin-l p (k-r)] 
o n 2n .4 n k = 1 n 4 2TI 

Since (54) 

n 

L 2(n-k)=n(n-1), 

.k = 1 

then Eq. 24 can be simplified to the following form~ 

n 

cr 2 [s ] = .L + ..L 
o n 4n Tin I 

k = 1 

k -1 
(1 - ;; ) siri p (kT) 

[24] 

[2sJ 

Therefore, the mean and the variance of S under no-·signal conditions , n 

and assuming dependent samples are given by Eq. 9 and Eq. 25 . 

. Dependent Samples - - Signal Conditions 

The mean and the variance of the test statistic S under signal ·. n 

conditions, assuming dependent samples, will be found next. Again 

the mean of Sn under signal conditions for independent sampling did 

not depend upon the independent sample assumption. Hence,: the mean 



of Sn under signal conditions is the S9-me for both dependent and 

independent sampling, and is given by Eq. 13. 
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The variance of S under signal conditions and under the assump
n 

tion of dependent samples will now b\e derived. 

I c(Z.)] -E9
2 [ I c(z.)J} 

•'1 J . 1 1. J = . l. = 

= :2}0 [ it l c(Zi)~ - E0
2 [ I c(Z.)J + Ee[f: I c(Z.) c(z.~[26] . 1 l. • .L • l. J 

l. = l. r J -----FIRST TERM 

Consider the first term. 

n 

-----SECOND TERM 

l Ee [c(Zi)2 J 
i = 1 

= 

n 

= I P0 (Y. > M) 
i = 1 1. 

= ! [l - G9 (M) ] 
i = 1 i 

-----THIRD TERM 

Apply the mean value theorem to G9(M) as in Eq. 12, assuming weak 

signals, 9 !: 0. The first term becomes 

1 1 - d 
= - - - e - G (M) 2n n de 0 0 ~ 0 



- 1 . 
where 9 = - I: 9 .• 

· n 1 

Consider the second term of Eq. 26. 

E0
2 [ I c(Z.)~ ={ I Ee . 1 ·1 • 1 1 = 1 = 

[c(Z.) 
1 

2 

1 
= { f [1 • Pe cz. > o) + o • P0 cz. < o) · j· 

2 

. 1 1 1 
1 = 

Therefore simply square the result in Eq. 27, 

2 
l - d 

= - - 9 - G (M) 
.4 .de· e 9 ~ 0 

- 2 d 
+ 9. d9 G9 (M) 

9 ~ 0 

Consider the third term of Eq. 26. 

[c(Z.) c(Z.) J 
.. 1 J 

n n 
= I l [1 • Pe (Zi > on zj > O) + 0 • (rema:i.nder of terms) ] 

i I= j 
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[28] 



1 + Ge. e. (M,M) - Ge. (M) - Ge 
l. J l. j 

(M) ] 

where Ge.e.<M,M) is the joint distribution function of two dependent 
1 J 

input random variables, Y. and Y., under signal conditions, and 
1 . J 
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[29] 

Ge. (M) and Ge. (M) are marginal distributions. The various distributions 
1 J 

differ only through the signal-to-noise ratio parameter, e. The 

fundamental expression used to obtain Eq. 29 is (56) 

Apply the mean value theorem for two functionally independent variables 

to G9 9 (M, M), (53). The formula is 
x y 

f(a + ~x, b + ~y) - f(a,b) 

In different notation this becomes 

d 
Ge.@. (M, M) - Go O (M,M) = ei d0 Ge 0 (M,M) 

l. J , x x y 
+ 

" e = 0 
x x 

0 = 0 
y 

+ e. a! G0 0 (M,M) [30] 
J y x y e = 0. 

x l. 

A 

0 = e 
y y 

A A 

where o<e <9. and 0<0 <9 .. Assume the small signal case, 
X 1 y J 

A. A 

0 = 9 = 0. Also, apply the mean value theorem for one variable 
x y 
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from Eq. 12 to a9 .(M) and a9 .(M). The result is 
1 J 

+-ei d! Gee (M,M) 
x x y e ~ o + 

x 

d d 

e = o y 

+ e. de Gee (M,M) 
J y x y e = e. 

- G 
0 

(M) - (\ d0 Ga (M) 
x vx 0 ~ 0 

.. G 
0 

Since 

X 1 

0 ,;. 0 
y 

d 
(M) - 0. d9 G0 (M) 

J y y e -~ o 
y 

.. 

P (Y. > M () Y. > M) = 1 + G (M,M) - G (M) - G (M), 
·o 1 J -0,0 o o 

then Eq. 31 becomes 

\ E0 [I I c( Z.) c( Z. )] = 1
2 I f P (Y. > M () Y. > M) + 

n v i F j 1 J n i F j O 1 J 

l f f d. 1 f' ~ d 

x 

[31] 

+ 2 4" ~ ~\ de Ge e (M,M) + 2 L L 9 · de Ge e (M,M) 
n 1 F J x x y e :!:: o n i F j J y x y e = e. 

X · X 1 

0 = 0 
y 

1 - d 
- 2 ( 1 - - ) 9 - G (M) 

n d0 9 
e ~ o 

9 :!:: 0 
y 

[32] 

In Eq. 32 the fact has been used that the marginal density functions 

are the same, and that 

n n - 1 l 1 l 0 0. 0. n 1 n J 
i =·1 j = 1 



Recall that 

n n n n 

l l l p (Y. > M (\ y .. > M) 
n2 i. fo j o i J 

= 12 l l E [c(Z.) 
• .L • 0 1 

n 1 r J 

n 

n l ( 1 - k ) R ( kT) 
n 

2 

k = 1 

c( Z.) J 
J 

where R(kT) is the correlation function of the output of the O, 1 limiter 

in the detector under no-signal conditions. Substituting this into Eq. 

32 yields 

n 

= - I 
n k = 1 

2 

1 - d 
- 2 ( 1 - ;: ) Q de Ge (M) 

e 

n n 

( l - ~ ) R (k'r) -
n 

(M,M) 
0 ~ 0 

x 

0 = 0 
y 

+ 
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+l... 
2 

n 
~ ~ e. a! G0 0 (M,M) [33] 
1 fo J J y X y e = e. 

X 1 

e ~ o 
y 

This is the third term of Eq. 26. 

Substitute the results of Eq. 27, Eq. 28 and Eq. 33 into 

Eq. 26 to find cr9 
2 [Sn] . Simplifying, this yields 

n 

cr 2 [s ]= 1... - 1 + 1 I ( 1 - ~ ) R(kT) - ( 1 - 1 ) 0 .....!! G (M) I -
9 n 2n .4 n k=l n n de 0 9 ~ 0 



2 
- e d 

de Ge (M) 

n n 

2 

e • o 
(M,M) 

e 
x 

• 0 

0 = 0 
y 
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+ 

+ \ ~ ~ e. d! G0 0 (M,M) 
n 1 F J J y x y 

[34] 
e = e. 

X 1 

e = o y 
For further simplification, assume that e. and e. can be replaced by 

1 J 

their average value, e. The quantity CJ O 
2 [Sn J from Eq. 25 can be 

substituted in Eq. 34, thus giving 

2 
CJ 2 [s J 

0 n 
= CJ z [s ] - [o - ..1 ) e + 0 J ~ G O n n de 0 (M) 

n n 

+ 9i ~ z~: (M,M) d 
Ge 0 Gee + de 

n 1 F J x x y e = 0 y x y 
x 

0 = 0 
y 

+ 
0 • 0 

(M,M) 
= ai] e x 

e = 0 y 

Thus, the mean and the variance of S under signal conditions and 
n 

assuming dependent samples are given by Eq. 13 and Eq. 35. 

[35] 

The mean and the variance of S just derived can be evaluated 
n 

for the specific problem of detecting a constant signal in additive 

gaussian noise with zero mean, variance of one, and a correlation 

function p(kT). Actually, the mean of S for this case has been 
n 

evaluated in Eq. 16. Now consider the variance of S . The quantity 
n 

d! G9(M) j has been calculated in Eq. 15. The derivative of 
e = o 

G9 8 (x, y) is found below. 
x y 
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d d 
ae G0 e (x,Y) = de F (x = 0 , y - 0 ) = - f (x - f) , y - 0 ) [36] 

x x y x o,o x y x y 

where F (x, y) is the joint noise distribution and f(x, y) is the joint 
0,0 

density function. For the case of gai.ussian noise f(x, y) is given by 

1 (x - 9 ) -2p . . (x-e )(y-0 )+(y-0 ). { 2 2} 
f (x - e ' y m e ) = 2 exp - x 1 J ~ y y 

X y 2TT/1 - p 2 (1 - pij ) [ 37 ] 

where pij is the correlation between x and y. Thus Eq. 36 and Eq. 37 

yield 

d 
d0 Ge 0 (M,M) 

x x y e = o x 
e = o 

y 

-1 =---------2' 2TT/l - p. , 
1] 

since x = y = 0 at the median. Also, 

d 
d0 Ge f) (M,M) 

y x y e = e. 
X 1 

e = o y 

-1 
=---2 

2TT/1 - p ij 
{ -e 2 J 

exp -2 --=--i -2) . . 
(1 - p .. 

1] 

Substituting these results into Eq. 35 gives 
2 

(J 2 [ s J = cro2 [ s J + ~ [ ( 1 - .! ) 0 + e J -
0 n n v2TT n 

which can be written as 
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n [ -e2 
. ( 1 _ .~ ) 1 + exp 2 [ 1 - p2 

[3sJ e - -Tin 

k = 1 
ll Ii,----p-2-( k-'f--,.) I 

Equations 16 and 38 give the mean and the variance of S under signal 
n 

conditions, assuming a constant signal in additive gaussian noise with 

correlation p {k'f). 

The question might arise, either in the analysis or in the 

implementation of the median detector, as to which is simpler: a 

detector incorporating an O - 1 nonlinear device, such as has been 

assumed in this chapter, or one using a ±!nonlinear device. For the 

second example the test statistic would be given by 

where 

. t 1 
s = n n 

n 

I 
i = 1 

sgn (Y. - M) 
1 

sgn (zi) = 1 

= -1 

zi > 0 

z. < o. 
l. 

It is shown in Appendix B that the two detectors have the same power 

under dependent samples, since this has not previously been shown. 

(Two detectors have the same power if their efficacies are equal.) It 

can also be seen from Appendix B that the analysis is not simplfied; · 

hence, the median detector with the O - 1 nonlinear operation will continue 

to be used in this report. 

The important results of this chapter can be summarized by 

the following equations: Eq. 9 gives the mean of S under no-signal n 
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conditions for either dependent or independent samples; Eq. 10 gives 

the variance of S under no-signal conditions and independent samples; 
n 

Eq. 13 gives the mean of S under signal conditions for both dependent 
n 

and independent samples; Eq. 14 gives the variance of S under signal 
n 

conditions and independent samples; Eq. 16 gives the mean of S for 
n 

a constant signal in gaussian noise for either independent or dependent 

samples; Eq. 25 gives the no-signal variance of S assuming dependent 
n 

samples; Eq. 35 gives the same variance but under signal conditions; 

and Eq. 38 specializes this variance to the case of a constant signal·· 

in gaussian noise, correlated samples. The means and the variances 

of the median detector for dependent samples are new results, whereas 

the results for independent samples are well known (39). 



CHAPTER V 

STA TIS TI CAL PROPER TIES OF THE NEYMAN- PEARSON DETECTOR 

The optimum parametric detector for detecting the presence of 

a constant signal in additive gaussian noise is the Neyman-Pearson test 

based on the likelihood ratio. For a given false alarm probability and a 

fixed number of observations, the Neyman-Pearson detector minimizes 

the false dismissal probability. The form of the test statistic has been 

given in Chapter II. Since the Neymq.n-Pearson detector is parametric, 

its structure will change depending upon whether the input observations 

are correlated or independent. If they are correlated, the structure 

will depend upon the input correlation function. In this chapter the 

means and the variances of the test statistic will be derived under 

signal and no-signal conditions for both independent and dependent 

structures. 

Independent Sample Structure 

The structure of the Neyman-Pearson detector for detecting 

constant signals in white, additive ga,ussian noise was given in 

Chapter II as 

55 
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n 

L =_! l Y. 
n n i = 1 1 

[40] 

where Y., i = 1, · • ·, n are samples of the input random process Y(t). 
,1 

The input under no-signal conditions is 

Y(t) = N(t) 

where N(t) is a gaussian random process with zero mean. Under signal· 

conditions the input is 

Y(t) = N(t) + 9 

where 9 represents the signal to be detected. Although L was derived 
n 

assuming independent observations, the mean and the variance of L 
n 

will be found assuming correlated observations. This would correspond 

to the case where the independent sample assumption had been made but 

which was not valid physically. 

Consider the no-signal condition first. The mean of L is 
n 

n 

1 I EO - n 
i = .1 I 

[y .J 
]. 

o, 

assuming the input gaussian random process has mean zero. The 

variance of L is 
n 

a 2 [L ] 
O n 

1 
n 

= a 2 [1 I y .] 
O n i = 1 l. 

n 

I 
i = l 

n n 

I I 
i ,fo j 

EO [y. y.] 
]. J 



cr 2 
=_.!L +l 

n n 

n 

I 
k = 1 
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k 
(1 - - ) p (kT) 

n 

where the input noise variance, an 2, will be assumed equal to one, and 

the input correlation function as p(kT). 

The mean and the variance of L under signal conditions will . n 

now be established. The mean of L is 
n 

The variance of L is 
n 

cr 2 [L] 
e n 

But Y. = N. + 9, so 
. 1 1 

cr 2 [L] 1 e n =2 
n 

n 
1 
n 

i = 1 

= E [.1... e 2 
n 

n n 

1~1 J~l Ee [(e.+ N1l 

n n 

-E 2 
e 

(0 + N.)] -e2 
J 

[L ] . 
n 

I I [02 + E [N. N,] + 0 (N. + N.) ] -02 
1 J 1 J 

i=l j=l 

where N. = N. = 0, since the mean value of the noise process was 
1 J 

assumed to be zero. Furthermore, E [N.N.] is the correlation func-
1 J ' 

tion of the input noise process. Equation 46 becomes 

n n 

I r pij 
i=l j=l 

[45] 

[46] 



which can now be written as 

CJ 2 [L] = .1 + 1 
0 n n n 

n 

l k 
( 1 - ) p (kT) • 

n 
k = 1 

58 

[47] 

Referring to Eq. 44 it is seen that the variance of L under signal and 
n 

no-signal conditions is the same. 

Dependent Sample Structure 

The optimum parametric detector of a constant signal in additive 

gaussian noise assuming correlated input observations is based on the 

test statistic 

n n 

I I Qij Yi e 
i=l j=l 

where Y. and 8 have the same meaning as in the first part of this chapter. 
1 

The Q .. are the elements of the inverse of the noise covariance matrix 
lJ 

(correlation matrix), 

[49] 

where R .. = R (Ii - jJT ). The following derivation of the means and the 
lJ 

variances of@ are based on procedures stated by Zubakov (5, 16). 
n 

Consider first the case of noise only and an input noise correla-

tion function p(kT). The mean of @ under these conditions is 
n 

... 

n n 

l I Qij Eo [yieJ 
i=l j=l 

0 ' [so] 



since the gaussian input was assumed to have a zero mean value. 

The variance of (p under no-signal conditions is 
n 

CJ 2 [q} J 
· 0 n l fl L .. Qki E0 [Y. Y.J e2 • 

i j k J, 1J 1 J 

Assuming the signal and the noise are uncorrelated, Eq. 51 becomes 

2 _2I>0 II ao [q} J - 0 - Q. · Qki R.k · 
n i j k J, 1J J 

The elements of the inverse matrix JI Qij I J satisfy the relation 

n I Rjk Qki 6jJ 

k = 1 

where 6 jJ is the Kronecker delta, 

6jJ = 1 for j 

O for j ~ J 

Using Eq. 53, Eq. 52 reduces to 

CJ 2 
0 

[0 J 
n 

n n 

I I 
i=l j=l 

Q ••• 
1J 

Finally, find the mean and the variance of (p under signal 
n 

conditions. The me an of (fl under signal conditions is 
n 

n n 

l l Qij Ee [yieJ 

i=l j=l 
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[51] 

[52] 

[54] 



n n 

= e2 I I 
i~l j=l 

Q. . • 
l. J 

Th~ variance of (/J under signal con~itions is 
n 

n 

rr/ [fl)n] =? ~ ~ ~ Qij QklE9 [yi Y} 92 - E/ [fl)n] 

Applying Eq. 53 gives 

n n 

cre2 [0n] = 92 l l Qij 

i=l j=l ' 

which is the same as the variance of (J under no-signal conditions 
n 

given in Eq. 54. 

60 

[55] 

[56] 

The important results of this chapter can be summarized by the 

following equations: Eq. 43 gives the mean of L under no-signal 
n 

conditions; Eq. 45 gives the mean of L under signal conditions; Eq. 
n 

44 states the variance of L under no-signal conditions; Eq. 47 gives 
n 

the variance of L under signal conditions; Eq. 50 states the mean of 
n 



fJ under no-signal conditions; Eq. 55 gives the mean of (/J under n · n 

signal conditions; Eq. 51 gives the variance of (/J under no-signal 
n 
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conditions; and Eq. 56 gives the variance of (/J under signal conditions. 
n 

Note that L refers to the test statistic designed for independent 
n 

samples, and (/J refers to the test statistic designed assuming corre
n 

lated samples. The test statistic designed assuming independent samples 

has not previously been studied assuming correlated inputs. 



CHAPTER VI 

PERFORMANCE OF DETECTORS UNDER DEPENDENT SAMPLING 

The necessary means and variances have been found in Chapters 

IV and V to apply the ARE criterion and to calculate the error probabil

ities. Before applying the ARE criterion, however, it must be shown 

that the regularity conditions given in Chapter III are satisfied. This 

has not been investigated previously. It will be demonstrated in this 

chapter that the regularity conditions are satisfied by the detectors 

under consideration. Following this, equations for a, {3, and the efficacy 

of each detector will be stated. The input correlation functions to be 

used as examples in the computed results will also be discussed. This 

chapter will conclude with a description of the computations of a, {3, 

and the efficacy for each detector. The effect of correlated samples 

on the operation of the detectors will be illustrated by these results. 

Verification of the Regularity Cqnditions 

It will be shown that the median test statistic satisfies the 

regularity conditions for the detection of a constant signal in correlated 

gaussian noise. It will then be pointed out that the Neyman-Pearson 

detector (both dependent and independent structures) for the same 
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detection problem satisfies the regularity conditions in a similar 

mE1-nner. 

The first regularity condition stated in Chapter III requires 

tha,t the test statistic be asymptotically gaussian under signal and no

signal conditions. To show that this condition is satisfied, a central 

limit th~orem for sums of dependent random variables must be 

invoked. Rosenblatt' s central limit theorem for dependent processes 

will be used (57, 58). One requirement of the theorem is that the 

strong mixing condition hold. The strong mixing condition, intro

duced by Rosenblatt (57). will be discussed first. 

An example of the strong mixing condition is as follows (58): 

Let A, B be any events determined by conditions on the random 

variables xk' k s:m, and xk' · k~ n, respectively, with n>m. The 

process -{ xk\ is said to satisfy the strong mixing condition if 

for all such events A, B and some function d where d is a function on 

the positive integers n that decreases to zero as n .... CX). The condition 

basically requires that two events become independent of each other 

as the "distance" between them approaches infinity; 
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Rozanov (59) has stated the strong mixing condition more rigor

ously: Two cr-algebrasl1l' and in" of the events A' and A'~ respectively, 

are independent, if for any A' e 7rt' and A" e 'h1." 

P (A'(\ A") = P (A') P (A"). 

Defip.e a measure of dependence of the two er-algebras of events as 



:a (~', ??l.~') ~\=;::: .sup [P (A'() A") - P(A ') P(A")] • 

A' e m. 1 , A" e ?Tl" 

t "V>'I co 
Then for a stationary random process ~(t), a (~ 00 > ,,~ +~ depends 

only on T and is designated by a (T), where ,rt denotes the a-algebra 
s 

of events which is determined by the quantities S (u), s :s;;u :s;;t. If a(T) 

-+0 for·T -+ co, then the process S(t) is said to possess the property of 

strong mixing. 

Rosenblatt's central limit theorem may be stated as follows: 

Let {~\be a stationary process with mean zero, E [~] = 0, that 
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[.5aJ 

satisfies the strong mixing condition. Further, let the process satisfy 

the two moment conditions, 

E [ f x J 2 
= h( n) -+ co as n -+ 00 , 

i = 1 i 

[59] 

and 

[60] 

The sums :r: x. are then asymptotically and nontrivially normally 
1 . . 

distributed when suitably normed as n-+ co. The verification that these 

three conditions are satisfied for the problem under consideration is 

shown in Appendix C, subject to the conditions that the input corre-

lation function p{T) goes to zero as T ..... co, and that the input be 

stationary and gaussian. 

Regularity condition B requires that the derivative of the mean 
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of the test statistic exist for all e in a given interval and be continuous 

at e = O. Referring to E 9 [Sn] found in Cha,pter IV, this condition is 

clearly satisfied. 

The third condition requires that the efficacy be positive and 

finite. The efficacy is given by 

[ 

I J 2 1 Ee [sn] 
= lim ; cr [s J 

n --+ ·CO O n e ~ o 

Substitute Eq. 16 and Eq. 25 into Eq. 61 to obtain 

E = lim .! [. S ~con 1 n n ~ -
4n 

n 

l 
k = 1 

1 
= 

-¥ + 2 ~· 
k ~ 1 

-1 
sin p(k'f) 

Thus ES will be finite and ndn-zero as long as 
n 

I -1 . 
sin p(kT) 

k = 1 

[61] 

[62] 

is a convergent series. Recall that th~ central limit theorem required 

that p( T) --+O as T --+ co; thus, the series will converge under normal 

circumstances. 

For condition D it will be assumed that there exists a sequence 

e such that 
n 



lim 
ll -+ ·CC 

e = o • 
n 

Conqition E requires that 

a 2 [s ] e n lim 2 = 1 . 
n-+ cc cro [sn] 

The variances of Sn for the detection of a constant signal in additive 

gaussian noise have been found in Chp.pter IV, Eqs. 25 and 38. Sub-

stituting Eq. 25 and Eq. 38 into Eq. 63 yields 

.lim 02 n = 1 + 2 ] 
n-+cccro [sn] . r· -0 

2 _ n 1 + expl 2 
i r<1 - ..! ) e + e ]- .@... \.c1 - ~) . 2c1-e c~·r)) 

ffTI ~ n TTn k~l n / 1 _ p 2 ( kT) 

+ -lim 
n .-+ cc 1 .1 -+-

4n TTn 

n 

I 
k = 1 

( 1 - ~ ') - 1 ( '!') . sin p k · 
n 

Retaining only the significant terms in the limiting process gives 

.lim 
n ..... cc 

a 2 [s J e n 
1 + lim 

a,2 = 
[s J ll -+ ·CC 

0 n 
.L 1 n -1 
4n + TTn l siri p (kT) 

k = 1 

- 1 1 2 
But 9 =n: E e i; also, let C = T2"r? - n . Then 

lim 
n -+ cc 

a 2 [s J e n 

a 2 [s .] 
O n 

= 1 + lim 
0 -+ ·CC 

c 
n 

n 

l 
i =:= 1 

n 

1-+.L \ 
4n TTn L 

k = 1 

9. 
l. 

-1 
sin p (kT) 
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[63] 

[65] 
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n 
" ' c l e. 

]. 

1 [66] 
. co 

1 1 - +-· 4 • TI 
- 1 l sin. p (k'T) 

1 

The second term of Eq. 66 will be approximately zero if 9. goes to 
. ' 1 

zero much faster than p(k T), assuming the small signal case and applying 

condition D. This will be assumed to be possible, thus approximately 

satisfying condition E. 

Condition F requires that 

lim 
n .... co 

a 2 [s] = o. 
O n 

From Eq. 25 it is possible to write 

lim cr02 Is ] = lim ~-41 + -1 ~ · 
n .... co n .... co n nTI l 

n k = 1 

(1 - k 
n 

-1 1 
) sin p (k'T)J 

n 
1 1· 1 - TI 1.m -

n .... ·con l 
-1 

sin p (k'T) , 

k = l 

In Appendix D it is shown that if lim a = 0, then 
n n .... co 

n 

1 . 1 l 1.m -
n .... ·CO n 

k = 1 
8Ic = 0 • 

Using this result, Eq. 68 becomes 

lim cr 2 [s J = o, 
n .... ·co o n 

and condition F is satisfied. 

[68] 
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This completes the list of regularity conditions for the median 

detector. It follows from Appendix C that condition A also holds true 

for the dependent and the independent structure Neyman-Pearson detec-

tors. Conditions B and D follow in exactly the same manner as for the 

medi;m detector. From the results of Chapter V, it is obvious that 

condition E is satisfied. For the same constraints on the correlation 

function that have been imposed above, conditions C and F are satisfied. 

To summarize, the ARE criterion may be applied to the three 

detectors under consideration subject only to the following constraints: 

1) the input process must be a stationary gaussian process with zero 

mean; 2) the correlation function p(T) must go to zero as T -,co; 3) 

co l p(kT) must be convergent series; and 4) 8 must 
co 
\ -1 L sin p(kT) and 

1 1 

be small and go to zero much faster than the input correlation 

function, p(kT). 

Efficacy and Error Probability Equations 

The general equation for the efficacy has been given in Chapter 

III as 

1 [E~ [r J 

J: ET lim 
n 

[69] cro [T] n --> co n 
n n ,;. 0 

The equation for the false alarm probability, a, for the detection of a 

constant signal in additive gaussian noise with a test statistic T is (25) 
n 



Cl) 

Oi= )2rr' cr [T J 
o n 

1 J 
or, putting the integral in standard form, 

Cl) 

1 J ],, 2 

°' = /2rr 
e- 2Y dy. 

T - E [T] 
°' 0 

n 
er [T] 

.o n 

The corresponding equation for the false dismissal probability, f3. is 

1 la ~ = v'2TT' O' Q [T] 
n 

- Cl) 

or, in standard form, 

1 
l3 = v'2Tr' 

or 

exp f (x - E e 
2er 2 . e 

J 
- . Cl) 

J 
- Cl) 

Tt:X - Ee [ Tn] 
ere [T·J 

n 

T°' - Ee [Tn] 

12 ere [ Tn] 

[T ])2 

} dx 
n 

[T] n 

2 
-~y e dy 

2 
e -y dy 
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[70] 

[71] 

[72] 

For the median detector and the problem of detecting a constant 

signal in additive gaussian noise, these equations become 

1 
E = co 

8n TT . l,· . --1 . 
- + 2 sin p (kT) 
2 k = 1 



from Eq. 62. To find a (or S ) and {3, substitute Eqs. 9, 16, 25, and 
a 

38 for E 0 [Sn], Ee [Sn] , cr0 
2[ Sn] , and cre 2[Sn] , respectively, into 

Eq. 70 and Eq. 72. (These substitutions will not be performed here.) 

70 

For the Neyman-Pearson detector (independent sample structure) 

and the same detection problem, the efficacy is 

EL lim 
1 1 

= 
n .... co n n n 1 2 \· 

- +- l (1 
k 

) p (kT) n n n 
k = 1 

or 

1 

1 + 2 l p(kT) 

1 

To find a (or L ) and {3, substitute Eqs. 43, 44, 45, and 47 for E 0 [L], a · n 

Ee [Ln]' cr0 
2 [Ln ], and cre 2 [Ln]' respectively, into Eq. 70 and Eq. 72. 

For the Neyman-Pearson detector (dependent sample structure) 

and the same detection problem, the efficacy is given by 

= lim 
1 ( E~ [0n] l 0 ~ o) 

2 

[75] 
n _, co n 

(J 2 [0 J 
O n 

The mean value theorem states that 

A e = e 
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~ I 

where 0<9<9. Using regularity condition D that E 9 [0n] is continuous 

at 9 = 0 and assuming the small signal case, Eq. 76 becomes 

= ' E ['1) ] 
9 n 9 

9 ~ 0 

Substitute Eq. 77 into Eq. 75, along with Eq. 54, to obtain 

1 [Ee [0nl ~ Eo [0nl J 2 
E = lim - ------------

0n n ~-oo n n n 
92 \ \ 

or, using Eq. 50 and Eq. 55, 

= lim .! 
n ~ ·oo n 

L L Qij 
i=l j=l 

n n 

l l 
i=l j=l 

Q .•• 
l.J 

As before, a (or 0 ) and (3 may be obtained by substituting Eqs. 50, a . 

[77] 

[1sJ 

55, 51, and 56 for E 0 [0n] , E 8 [(jri J, er O 
2 [ 0n], and cr 8 

2 [0n]' respec-

tively, into Eq. 70 and Eq. 72. 

Examples of Typical Correlation Functions 

Four examples of typical correlation functions encountered in 

practical situations have been used in the computations to compare the 

detector performances. These will be discussed in the following 

paragraphs. 

The most common and the simplest correlation function is the 

decaying exponential. Correlation of this kind is obtained by passing 
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white noise through a simple RC low pass filter with a cutoff frequency 

w • The resulting normalized autocorrelation function is (2, 31) 
c 

p(T) = e-% ITI . [79] 

For a sampled random process with sampling frequency w , p(kT ) is 
s s 

O.l 

- -£ 2TTk 
O.l 

P (kT ) = e s 
s 

where w /w is the relative sampling rate. 
s c 

The damped exponential-cosine autocorrelation functions are 

often used to describe many random noise phenomena of interest. 

[so] 

Yaglom (60) states that this type can be used to describe certain types 

of fading of radio signals. An example of this based on experimental 

data is given by James, Nichols, and Phillips (61). If white noise is 

passed through a single-tuned filter with a power spectrum 

the normalized autocorrelation function of the filtered noise is (31) 

. -llwlTI 
p ( T) = e COS O.l T • 

0 

Here w is the center frequency and b.w is the half-bandwidth of the 
0 

[s1J 

filter, measured in radians per second. For a discrete random process, 

p (kT ) is 
s 

P (kT ) 
s 

= e 

w 
w 2TTk 

s 
cos 

U) 

2TTk ~ 
w 

s 

where w /w will be designated as the relative sampling frequency. 
S O 

[s2J 
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A third example is the sin x/x correlation function. This type 

of correlation can be obtained by passing white noise through a rectangu-

lar bandpass filter with a power spectrum 

G ( w ) = !,., {w - /jJJ s: w s: w 2L.>AJ O O 

= 0 elsewhere. 

+ /jJJ 

The resulting autocorrelation function is (2) 

FJr: a sampled random process with sampling frequency w , Eq. 83 
. . s 

becomes 

sin 2TTk /!:JJJ 
Ul 

s 
p (kT ) = ----,--

S 2TTk /!:JJJ 
Ul 

s 

cos 2TTk 
Ul 

0 

Ul 
s 

where w /w is again the relative sampling frequency. 
S O 

or 

A fourth type of correlation function has the gaussian form 

P (T) = e 

p(kT) 
s = e 

COS Ul T 
0 

'~ 2 
- (TTk ....... ) 

Ul 
s cos 2TTk w · /w • 

O S 

[s3J 

[s4J 

[ssJ 

[s6] 

These four correlation functions will be used as examples of correlation 

between input observations when obtaining . numerical results in the 

remainder of this chapter. 
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Num~rical Results 

This section will consist of computational results obtained by 

using the equations derived in the previqus chapters. The results of 

this section show graphically the effect of correlated samples on the 

performance of the median dete~tor. The performance of the median 

detector under dependent samples is compared with that under inde-

pendent samples and with the likelihood detector operating under 

correlated samples. 

The curves to be presented can be divided into three categories: 

1) examples of typical correlation functions to be used in the numerical 

results; 2) curves showing the effect of various types and degrees of 

correlation of the input observations on the ARE' s of the three detectors 

under consideration; and 3) the receiver operating characteristics show-

ing the effect of correlated samples on the error probabilities of the 

median detector as compared with that of the likelihood detector (both 

-independent and dependent structures. ) 

Examples of the correlation functions used in the computations 

are shown in Fig. 6 through Fig. 11. These are given to point out the 

extent of correlation that exists between input observations for the 

range of parameters considered. In Fig. 6 the decaying exponential 

correlation function (Eq. 80) is shown for values of the parameter 

w /w · (relative sampling frequency) from five to fifty. For w /JJ = 5 
S O S O 

the correlation only extends over about three samples, whereas for 

w /w = 50, p (kT ) is greater than O. 01 up to k = 38. 
S O S 
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Figure 7 shows the damped cosine correlation function (Eq. 82). 

This correlation function, as well as the next two correlation functions 

to be considered, is described by two parameters, UJ /w and UJ I /J,J). 
S O O 

The range of values for these two parameters has been chosen based 

on practical considerations. The parameter w /!Jm will be varied from 
0 . 

one to five and w /w will be varied from one to a hundred. 
S O 

The sin x /x correlation function (Eq. 84) is given in Fig. 8 and 

Fig. 9. This function decays to zero the slowest of the four correlation 

functions discussed here. Furthermore, it is considerably more 

difficult to apply over a range of parameter values. This will be dis-

cussed in detail later. Figures 10 and 11 display the gaussian corre-

lation function (Eq. 86) for two different values of the parameter 

It is seen that in each case the ·extent of the correlation 

increases as either w /w orw I bro is increased. Also, the curves 
S O O 

given in Fig. 6 through Fig. 11 can be extrapolated to .show that for 

w /w = w I w = 1 the samples are, practically speaking, independent 
S O O 

of each other. The values of w /w = UJ //Jm = 1 will therefore be con~ 
S O O 

sidered to represent the case of independent observations in the com-

parisons to be made later. 

The ARE's for the median and the likelihood (independent and 

dependent structure) detectors are given in Fig. 12, as the correlation 

between observations is varied. The decaying exponential correlation 

function is used. The ARES /L compares the median test statistic 
n n 
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S to the independent structure Neyman-Pearson test statistic L • The n · - n 

ARES /f/J 
n n 

compares the median test statistic S to the dependent struc-. n 

ture Neyman-Pearson test statistic f/Jn. Finally, the AREL /(j com
n n 

pares the two Neyman-Pearson statistics. The efficacies of S and L 
n n 

are also shown. (The efficacy of 0 lies almost on top of that for L ; 
n n 

hence, it is not shown.) 

It will be re·called that the ARE of the median test statistic and 

the Neyman-Pearson test statistic for the detection of a constant signal 

in additive gaussian noise, assuming indep'endent observations, was 

rr/2 or approximately O. 64, which compares quite closely with the 

value of ARES /L 
n n 

for w /w = 1 in Fig. 12. As the correlation increases 
S O 

to ws/w 0 = 100, the ARES /L increases to 0.91. This illustrates the 
n n 

important result that the median detector efficiency improves relative 

to .that of the Neyman~Pearson detector as the correlation between input 

observations increases. The ARES /(j increases to 0. 78 for 
n n 

ws/w 0 = 100. The AREL /f/J decreases from the expected value of 1.0 
n n 

atw 'w = 1 to O 91 at w "' = 100 st o · sro · 

Curves illustrating similar results but based on the damped 

cosine correlation function are presented in Fig. 13 and Fig. 14. 

Figure 13 gives the ARES /L for several values of w O /w . Figure 14 
n n 

gives the ARES /(j, and the AREL /(j for two values of w0 /!}jJJ. Note 
n n n n 

the decrease in the ARES /L and the ARES /(j for larger values of 
n n n n 
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~-
100 

w I w when w /w is in the range from one to five. Figure 16 shows 
O S O 

that the same general shape of the curves holds for the gaussian corre-

lation function. 

time required. 

The statistic 0 is not considered due to the computation 
n 

The ARES /L based on the sin x/x correlation function is 
n n 

illustrated in Fig. 15. The curve of the ARES /L has a discontinuity 
n n 
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when the arguments of the sine and cosine of Eq. 84 are krr. For 

w I t:i.w = 0. 5, this occurs at w /w = 3. 0; for w I t::,.w = l. 0, it occurs at 
O S O O 

w /w == 2. 0. Also, when the arguments are varied slightly from 
S O 

these values the resulting curves are very unstable and possess frequent 

spike discontinuities, as shown for w0 /w = 1. 01. The ARE8 /L 
n n 

changes drastically as w I t:i. w is increased from 1. 0 to 1. 25. For 
0 

w /w = 1. 25 the performance of the median detector relative to the 
0 

likelihood detector L is grossly inferior. 
n 

The results shown in Fig. 12 through Fig. 16 indicate that, in 

general, the ARES /L and the ARES /f/J increase as the correlation 
n n n n 

between the input observations increases. One exception is with the 

damped cosine and the gaussian correlation functions for larger values 

of w I /::JJJ when w /w is in the range from one to five. A second and 
O S O 

more significant exception occurs with the sin x/x correlation function 

when w O //::JJJ is greater than one. In all cases the ARES /L and the 
n n 

ARES /f/J decrease 
n n 

as w /1::JJJ increases. 
0 

Various receiver operating characteristics are given in Fig. 17 

through Fig. 24. Figures 17 and 18 illustrate the effect of increased 

correlation on the false dismissal probability, {3, for varying values of 

the input ,signal-to-noise ratio, 9. In both figures N = 100 and a = 0. 1. 

The c"Qrve for w /w = 1 represents approximately the case of indepen
s O 

dent sampling. The decaying exponential and the damped cosine corre-

lation functions have been used in Fig. 17 and Fig. 18, respectively. 
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Fig. 18. The Effect of Correlated Samples on the Error Prob

abilities for the M~dian Detector (Correlation 
Function: Damped Cosine). 
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The error probability, {3, increases as the degree of correlation is 

increased for fixed values of fJ, with one exceptibn. In Fig. 18 {3 is 

decreased slightly forw /w . = 5 and w I w = 3, 5. 
S O O 

Figures 19 and 20 compare the error probabilities of the three 

detectors for the case of the decaying exponential correlation function. 

The median detector and the likelihood detector (independent structure) 

are seen to have nearly the same error probabilities for .w /w = 25 in 
S O 

Fig. 19; however, the distance between the two curves increases when 

w s /,JJ O = 1. This corresponds to the fact that the ARES /L increased 
n n 

as w /w was increased in Fig. 12, (ARES /L = 0. 64 forw /w = 1. 0 
S O S O n n 

compared with ARES /L = 0. 89 for w s l,D O = 25). Thus, the error 
n. n 

probabilities for the two detectors would be expected to approach each 

other as the correlation increases. Figure 20 compares all three 

detectors. · The curves for the likelihood detector (independent struc-

ture) and the likelihood detector (dependent structure) lie almost on top 

of each other for w /w = 1 and.UJ /w = 10; hence, only the one curve 
S O S O 

has been drawn. Again, the relative performance of the three detectors 

agrees with the results obtained using the ARE criteria. 

The error probabilities of the median detector are considered 

in Fig. 21 for independent (w /w = 1) and dependent (w /w = 25) sam-
s O S O 

ples, where the number of samples varies from 25 to 500. For a fixed 

a (a = O. 1) and a decaying exponential correlation function, a wide 

variation of {3 is obtained for a particular value of fJ. Similarly, in 
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Structure Detectors' Error Probabilities Assuming 
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Fig. 21. The Effect of Correlated Samples on the Error Probabilities 
of the Median Detector for Various Numbers of Samples. 
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Fig. 22 the number of samples is held constant (N = 100) and a is 

varied from O.001 to O. 5. The effect of c~rrelated samples is again 

noticed. 

The family of curves in Fig. 23 illustrates the effect of correla-

tion on the number of samples required to maintain a particular set of 

error probabilities. The strongly correlated sample cases require 

. 
five to ten times as many samples to maintain the same error probability 

as for the case of independent samples (w /w = 1). For example, 
S O 

w /.» = 1 and N = 100 has the same set of error probabilities as the 
S O · 

case where .w /w :: 22 5 and N = 500 
S O • • 

The answer to the question of how much is to be gained by: 

sampling faster -- if any -- can be answered in the manner shown in 

Fig. 24. As the sampling frequency is increased, both N and .w /w 
S O 

increase. Whether it would pay to sample faster would depend upon the 

noise correlation function. For weak correlation it would be profitable 

to sample faster; however, if strong correlation exists between the input 

observations, little might be gained by increasing the sampling rate. 

To consider a specific example, assume a decaying exponential 

correlation function and assume that doubling N results in doubling the 

relative sampling frequency, w /w • ( The length of the signal pulse or 
S O 

the observation time will be assumed constant.) The gain in performance 

as the sampling frequency is doubled, increased five times, and 

increased ten times (x2, x5, xlO) is shown in Fig. 24 for two different 

cases. In the first case the original sampling frequency results in 
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very little correlation between samples (xl). Increasing the sampling 

frequency (x2, x5, xlO) in this situation produces considerable improve

ment in the error rate. However. in the second case shown moderate 

correlation between observations is present initially (xl). Increasing 

the sampling frequency (x2, xlO) results in very little improvement in 

the error rates. 



CHAPTER VII 

CONCLUSIONS 

A statistical analysis of the nonparametric median detector has 

been presented in the preceding chapters, extending previous res11:1ts 

to include the case of dependent as well as independent input observa

tions. The median detector, a form of the coincidence detector based 

on the sign test, was chosen because of its nonparametric properties 

and its easily implemented structure. The purpose of this study was 

to determine the effect that correlated samples have on the performance 

of the median detector. This has been accomplished by comparing the 

ARE and the operating characteristics of the median detector under 

dependent samples with the median detector under independent samples, 

with the Neyman-Pearson detector designed assuming independent· 

samples but operating under dependent samples, and with the Neyman

Pearson detector designed assuming dependent samples. The problem 

of detecting a constant signal in additive gaussian noise was chosen to 

make these comparisons. 

It may be concluded that the relative efficiency of the median 

detector with respect to the Neyman-Pearson detector increases as the 

amount of correlation between input samples increases. For the case 

95 
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of a decaying exponential correlation between the input samples the 

ARE of the median detector and the Neyman-Pearson detector 

(designed assuming independent samples) increases from 0. 64 for 

independent samples to greater than O. 91 for strongly correlated sam

ples. Similar but less significant results were found for the damped 

cosine and the gaussian correlation functions. For the sin x/x input 

correlation function the ARE of the median detector with respect to 

the Neyman-Pearson detector drops to a very low value over a range 

of values of the correlation function parameters; however, it is 

questionable whether or not this range of parameter values represents 

a form of correlation that would be encountered in practice. 

The operating characteristics of the three detectors illustrated 

the effect that correlation between the input samples has on the error 

probabilities. The results supported the conclusions drawn using the 

ARE criteria. The operating characteristics were also used to investi

gate the question of how much is gained by increasing the sampling 

frequency (and hence the degree of correlation). A simple example 

illustrated the amount by which the probability of error can be reduced 

by increasing the sampling rate. 

Several areas for further investigation can be stated as a 

re~mlt of research done for this thesis. One area concerns extending 

the analysis to non-gaussian noise distributions. The modified 

gaussian noise distribution is considerably more general than the 

gaussian distribution; however, distributions such as the exponential 
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and the Rayleigh should also be applied to the analysis. As it was pointed 

out in Chapter II, the ARE of the median detector with respect to the 

Neyman-Pearson detector designed for gaussian noise distributions is 

greater than one when the noise becomes exponentially distributed 

(assuming independent sampling). Carrying out the analysis for depend

ent sampling would possibly further emphasize the advantages of the 

median detector over the Neyman-Pearson detector when the underlying 

noise distribution is unknown. 

An extension of the analysis of this thesis to detection problems 

other than that of detecting a constant signal in additive noise could be 

another area of investigation. The first step would be to consider the 

detection of a sipnal of unknown phase (incoherent detection). 

Finally, other nonparametric detectors could be analyzed 

assuming dependent observations. It is felt that simplicity of the 

detector's structure should be a paramount factor in selecting other 

nonparametric tests, since many are extremely difficult to implement. 

One example could be the sign-quantile detector mentioned in Chapter 

II, which utilizes more than one threshold level in its operation. 
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APPENDIX A 

DERlY A TION OF THE AUTOCQRRELA TION FUNCTION OF 

A GAUSSIAN PROCESS WITH NON-ZERO MEAN PASSED 

THROUGil A LIMITING DEVICE 

The correlation function ·R(kr) was derived in Chapter IV for a 

gaussian process with zero mean passed through a limiter whose out-

put Wf!.S either zero or one. The sarpe problem will be considered in 

this appendix assuming an input gaussian process with a non-zero mean. 

Since these results have not previously been derived, a complete de-

scription of the procedure used will be given here. Rqc'T) was given 

in Chapter IV, Eq. 19,as 
co 

R(k'T) = fff (z, zk) dz dzk 
0 . 0 

0 

where, for non-zero input means, f (z0 , zk) is 

f (z z) = 
o' k 

(z -
0 

[A-1] 

where µ. = µ.0 ==fJ.k' "12 = cr O 
2 = crk 2, and p = p(kT) is the input correlation 

function. Instead of substituting Eq. A- 2 into Eq. A-1 and integrating, 
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as was done in Chapter IV, the characteristic function method will be 

used to find R(kr) (55, 62). 

The characteristic function method developed by Rice gives the 

output correlation function of a random process passed through some 

nonlinear device. The method is based on the equation 

R(kT) =JF (ju) du lF (jv) g (u, v, T) dv 
c c 

[A-3] 

where g(u, v, T) is the characteristic function of the input random pro-

cess and C, F (ju), and F (jv) are chosen to fit the particular nonlinear 

device used. 

The nonlinear device is described by the contour integral 

I = !rr l F (ju) .,JVu du 

c 
[A-4] 

where V is the input and I is the output of the device. To describe the 

nonlinear operation 

I =fo if V < 0 

~ifv>o 
[A-5] 

which applies to the problem under consideration, the function F (ju) 

is chosen as-;..- and the contour C as the real u axis from - ooto + oo 
JU 

with a downward indentation at u = 0. To verify that the integral will 

represent the O - 1 limiter, evaluate the contour integral 

I= 2!jf 
c 

Let. A = ju, then 

..! e jVu du. 
u 



106 

I =-1 J 2TTj 
L 

where L is an infinite contour from -j co to +jco, passing to the right of 

all singularities. By application of Jordan's lemma it can be shown 

that ( 63) 

I=- - dA = 
1 J e VA {1 if V > 0 

2TTj L A O if V < 0,. 

l!ence, the contour integr1:1,l does represent the O - 1 limiter. 

Evaluate R(kr) using the fundamental equation, Eq. A-3. The 

characteristic function for the gaussian process described in Eq. A-2 

is (2) 

[A-6] 

Substitute g(u, v, T) and F (iu) into Eq. A-3 to obtain 

11r_r· 1 1 [· 22 2 22 J R(k'T) = ~ 2 (-. ) (-.. ) exp Jl,l,(u + v) -\(er v + 2CY puv + -CY u ) du dv 
4TT . JU JV . c 

( ) , 2 (u2 2 2 ) jl,l, u + v e -~CY +v + puv du dv [A-7] 

where C is the infinite contour on the real axis from -co to +co with a 

downward indentation at the origin. Expand the cross product term of 

the second exponential in Eq. A-7 into a power series to give 

R(k'T) -1 JJ 1 = 4TT2 .UV e 

c 



R(kT) -l 
- 4TT2 

00 
n 2 n{JJ 2 2 . J2 

, · u e du • l (-1) (O" p) · n-1 -~cr u + Jµu 
n • 

n = 0 C 

The integral in Eq. A-8 can be evalu1;1.ted using Eq. A. 1. 55(*) of 

Middleton (page 1079) (2). The result is 

CX) 

R(kT) -1 l = 4TI2 
n = 0 

+ /2µ 
cr 

CX) 

R(kT) = t l 
n = 0 

(-O~e)n { Tlj-n+l 
[ lFl 

.!. -µ. 2 )/ re-B, 
n! (~0-2)\n ( 2' 2' 20"2 

2 Ir ( 1-n )]J lFl 
( n+l. l . .:.!:!'._ ) 

2 ' 2' 2 2 20" 

[20 (kT) ]n { F 
n! 1 1 

n 1 -µ 2 / n < 2' 2; 2 ) r (1 - - ) + 
i 20" 2 

( 1 -
2 
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[A-8] 

n + 
l)+ 2 

[A-9] 

where 1 F 1 (a; b; c) is the confluent hypergeometric function and r (n) is 

the gamma function. 

Note that forµ= 0 Eq. A-9 reduces the result obtained in 

Eq. 23; that is, 

CX) 

R (kT) = t I 
µ.=O n=O 

n! r 2 (1 - B ) 
2 

;'< Equation A. 1. 55 of Middleton (2) was stated incorrectly in 
the first printing of the book; however, by the third printing it had been 
corrected. Also, the formula is stated incorrectly in the source 
reference of Middleton ( 64). 



1 1 -1 =4 + 2TT sin p(k'T). 

The expression for R(k'T) withµ, f O tlbtained in Eq. A-9 could be 

substituted in Eq. 25 to find the variance of S under dependent 
n 

sampl:l.ng. 
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APPENDIX B 

THE POWER OF THE MEDIAN DETECTOR FOR TWO 

DIFFERENT LIMITERS 

The question arose in Chapter IV concerning what effect the 

type of limiter output had on the analysis and instrumentation of 

the median detector; that is, does it make any difference if the output 

of the limiter is O - 1 or t 1. First, it is necessary to show that the 

power of the median detector is the same regardless of which limiter 

is used. This will be shown in the following paragraphs, assuming 

dependent sampling. Obviously, if the powers are the same for depen-

dent samples, they will also be the same for independent samples. It 

will be observed that the analysis of the detector is not noticeably 

simplified by using the ± 1 limiter instead of the O - 1 limiter. Thus, 

the question of which limiter to use depends upon the implementation 

problems. 

To show that two detectors hi:j-ve the same power is equivalent 
I 
! 

to showing that their efficacies are e1qual, i.e. , 
; 

l [E~ [s:]] 2 
lim ; (J" [s' J 

n-->oo O n 
e == o 

109 
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where S refers to the median detector using the O - 1 limiter and S' n · n 

refers to the detector using the ± 1 limiter. To show that Eq. B-1 is 

' true, the mean of Sn under signal conditions and dependent samples and 

the no-signal variance for dependent Sp.mples must be found. 

The mean value under signal conditions, assuming dependent 

I 

sampling, of S is found as follows. Let 
n 

where 

I 

s n 

n 

1 I 
n i = 1 

sgn (Y. 
·1 

M) 

sgn (Y. - M) = 1 if Y. > M 
1 1 

= -1 if Y. < M 
1 

I 

and where Mis the medi~n of the noise distribution. The mean of S n 

under signal conditions is derived from Eq, B-2 by writing 

n 
I 1 l [sgn (Y. - M) J E0 [s J E9 n n 1 

i = 1 

n 
1 I [pa (Y. > M) - Pe (Y. < M) J 
n 1 1. 

i = 1 

CX) M 
n [J -J 1 l (y) J - d Ge. (y) d G0. n 

i = 1 M 1 _co 1 

n 
1 I [1 - 2 GS. (M)] [B-3] n 

i = 1 1 

where G9 . (y) is the probability distribution function of the random 
1 
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variable Yi. Apply the mean value theorem of Eq. 12 to G8(M). Assuming 

the small signal case, Eq. B-3 becomes 

- d = -2 9 dS G0 (M) [B-4] 

9 :. 0 

- 1 
where 8 = - .E 8.. Taking the derivative of Eq. B-4 with respect to 0 

n 1 

gives 

[B-5] 

9 :. 0 

I 

The variance of S under dependent samples and no-signal 
n 

conditions can be found by referring to Eq. 17 and re-defining R(k-r). 

From Eq. 17, 

cr 2 [s 1
] =]ifil- E 2 [s 1

] +1 
O n n .0 n n 

n 

l (1 _ 1) R(k'f) 
n 

[B-6] 

i = 1 

[B-7] 

Furthermore, 

n 
I 1 I EO [s J EO [sgn (Y. - M) J n n l. 

i = 1 

n 
I 1 

EO [s J l. [i . P0 (Yi> M) -1 . P(Y. < M) J n n l. 
i = 1 
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n [ J~ dFO. JM dFO. (y) J 1 l - (y) -n 
i = 1 M i ~ 00 1 

n 
1 

l [ 1 - (M) ] n FO. (M) - FO. 
i = 1 1 1 

I 

or EO [s J = o [B-8] 
n 

since F O. (y) is the probability distribution function of the random variable 
1 

Y. under no-signal conditions, and F 0 (M) = !. 
1 . 

1 

The output correlation function, R(kT), of a gaussian random 

process with zero mean and an input correlation function, p(kT), 

passed through a± 1 hard-limiting device is well known (62). Thus 

R(kT) of Eq. B-7 can be evaluated as 

2 -1 
R (kT) = 11 sin p (kT) • 

Since p(O) = 1, then R (O) = 1. Substituting the results of Eq. B-8 

and Eq. B-9 into Eq. 6 gives 

n 

cr 2 [sv] =.1 +~ 
O n n TTn I (1 

i = 1 

k -1 
) sin p(kT). 

n 

The efficacies of the two detectors will be calculated and 

compared; hence, 

1 . 1 0 
im - [

Ev 

n-->OOU O"Q 

~ 0 

[B-9] 

[B-10] 

[B-11] 



Substitute E~. 13 and Eq. 25 into Eq. B-11, 

(M) I: ~ o } 

(1 - .! ) siri-l p(kT) 
n 

k = 1 

Similarly, 

E 1 = lim .! [E~ [s~]J 2 
8n n ~ = n a [s 1

] 
O n 0 ~ 0 

Substituting Eq. B-5 ~nd Eq. B-10 into Eq. B-13, gives 

E I 

s 
n 

1. 1{ = im -

n~= 0 1 -4 - +-n TTn 

d 12 } .4 de Ge (M) e ::: o • 

n . 
. k -1 l (1 - ; ) sin p(kT) 

k = 1 
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[B-13] 

[B-14] 

Comparing Eq. B-12 and Eq. B-14 it can be seen that the power of 

the median detector is the same regardless of which limiter is used. 



APPENDIX C 

A CENTRAL LIMIT THEOREM FOR DEPENDENT 

RANDOM PROCESSES 

One form of Rosenblatt' s central limit theorem for sums of 

dependent random variables was stated in Chapter VI. It will be shown 

in this appendix that the hypotheses 9f the theorem are satisfied by the 

median test statistic for the problem of detecting a constant signal in 

additive gaussian noise. 

The first requirement of the theorem is that the strong mixing 

condition be satisfied. Rozanov (59, 65) has shown that the strong 

mixing condition is satisfied in the c~se of discrete time if for a 

stationary gaussian process the spectral density is continuous and never 

vanishes. Since the spectral density and the correlation function are 

Fourier transform pairs (54) this implies that the correlation function 

p(T) must approach zero as T-> co. However, the median statistic 

sums a binomial process of ones and zeros, not a gaussian process. 

The statement made above can be extended to include the binomial 

process, (*). 

*The generous help of Dr. J. L. Folks in extending these 
results is acknowledged. 
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Given two sets of A and B of samples from a gaussian process 

such that 

A • {-=, . . . k 1 • {?Ti_: 1 
and B • \k+ n, • • •, =}· t1;;: J • 
The strong mixing condition states that 

sup [p (A() B) - P (A) P (B) ] S: ot (n) t O as n -+ CIC) • 

A,B 

As stated above, this condition will be satisfied for the gaussian 

process if p(T)-+ 0 as T -+co. Consider now a binomial process of ones 

and zeros obtained by passing the gE).ussian process through a O - 1 

limiting operation. The resulting samples of the two processes are 

shown in Fig. 25. . 

Amplitudes of samples have a gaussian distribution. 

I I 
I I I 

I I I .1 I I I 11 
k 

A 
k+n 

B 

A~plitude of samples is either zero or one. 

I I I I I I 
AD 

k k+n 
BD 

Fig. 25. Binomial and Gaussian Samples~-
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In terms of probabilities, the probc:tbility for the binomial random 

process expressed in terms of that for the gaussian process is 

P (AD) = P (hyperquadrant of gaussian process), 

i.e. , the probabilities of AD and of BD are hyperquadrants of the 

gaussian process. So 

= sup [p (ADf'\ BD) - P (AD) P (BD)] 
subset 
of A,B 

~ sup [p (P (A('\B) - P (A) P (B) J. 
A,B 

Therefore, the strong mixing condition will also hold for the binomial 

process described. 

The second condition of the central limit theorem hypothesis 

concerns the second moment, namely, 

n 

E l 
i = 1 

x. 
1. 

2 

= h(n) ~ 00 as n ·- 00 • 

In the problem under consideration, x. is a binary random variable 
1 

which represents the output of the limiter of the detector. Let the 

random variable y. represent the input gaussian random process to the 
1 

detector. Then 

n 

I 
j = 1 

E [x. x.J = 
1. J 

n n 

I I P (y. > ony. > 0). 
1. J 

i = 1 j = 1 
[c-1] 
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This can be evaluated to give (66) .. 
I 

n 

I 
i = 1 

n 

l 
j = 1 

[ 
cos-l p .. J 

~ 1 11 
TT [c-2] 

where p .. is the input correlation function. Eq. C-2 can be rewritten 
lJ 

as 

E [ f xr n2 
n n -1 

I I 
cos Pi; 

=- -
2 2TT 

i = 1 i = 1 j = 1 

n 

I -1 
(n - k) cos p(kT). [c-3] 

k = 1 

It is clear from Eq. C-3 that the second moment condition of the 

hypothesis is satisfied. 

Now consider the third condition of the central limit theorem 

hypothesis. In his original statement of the theorem Rosenblatt (57) 

required that 

n 2 + .a 1 + 0/2 

E l x. = o [h (n)] 
1 

[c-4] 

.i = 1 

as n .... co, for so.me o > 0. However. in a later statement of the theorem 

(58) he required that 

n 4 2 

E z x. = 0 [h (n)] 
:L 

[c-sJ 
i := 1 
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as n ..... ~ (*). (AU other conditions of the theorem remain the same.) 

The problem in showing that either Eq. C-4 or Eq. C-5 is 

satisfied is the difficulty involved in evaluating the higher order moments 

of the summation. Thus, one is tempted to let~= 1 in Eq. C-4 and 

calculate the third moment. However, the result shows that the third 

moment is of comparable order with [h(n) J 312 instead of inferior order. 

Comparing the two conditions given in Eq. C-4 and Eq. C-5, one sees 

an obvious difference in the conditions for 8 = 2. H~nce, one might 

strongly suspect that it is sufficient for the moment in Eq. C-4 to be 

of comparable order with[ h(n) J 1 + 0/ 2. No further information 

has been found in the literature. Since the third order moment can 

be stated in closed form (but not the fourth order moment), the 

condition stated in Eq. C-4 will be shown to be true if "o" is replaced 

by "O" for 0 = 1. Following this, a more complicated derivation 

will show that Eq. C-5 can be satisfied. 

*The O and o notations are defined as follows (67): 
! 

f(x) = o(g (x) ) as x ..... x whenever 
0 

lim f(x) = o 
x--> x g(x) 

0 

i.e .• f(x) is of smaller order than g(x). If f and g are two real-valued 
functions defined on a set S of real numbers and if g is nonnegative, 
then f(x) = 0 (g(x) ) for x in S whenever there exists a positive constant 
M such that 

f(x) :,;; Mg(x) for every x in S; 

i. e. , f(x) is of comparable order with g(x). 
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The third order moment is given by 
n 3 n 

E l xi = l l I E [xi xj xk] 
i = 1 i j k 

= I !· I p < y i > on y j > o ny k > o) cc- 6 J 
i j k 

wh.ere the binary random variable xi is the output of the limiter, and 

y. is a random variable from the input gaussian random process. 
1 

Using the results of David (66), Eq. C-6 becomes 

n 

E. 

i = 1 

x. 
]. 

3 n 

= I I I 1 [ -1 -1 -1 ] 
4TT 211 - COS pij -cos pik •cos p jk 

i j k 

+ 
n 

-1 
cos p .. + 

l.J 

n 

cos 

j=lk=l 

I ! -1 
cos Pik + 

i = 1 k = 1 

[c-7] 

These results are used to find 

n 3 n 

) 3 
3n2 i k -1 E x. .!!.... (1 ) cos p(kT) 

L, ]. 2 • 2TT n 
lim r n 2 

J 
3/2 Um [ n -+ CX) 

I 
n-+CX) 2 n 

k l J 3/2 x. .!!.... n 

I (1 ) cos- p(kT) 
]. 2 TT n 

I 
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n 
3 3n2 I -1 n cos p(k'T) 

2 - 21T 

lim [ 2 
1 

= n -1 J 3/2 n .... co .!!_ n l cos p(k'T) - -2 1T 
1 

= Ii 
' 

assuming p(k'T) .... O as k .... co. This shows that 

n 3 3/2 

E l xi = o [h (n)] [c-s] 

1 

as n .... co. If the original statement of the theorem can be extended such 

that the condition in Eq~ C-8 replaces that in Eq. C-4, then the third 

condition of the central limit theorem would be satisfied. However, if 

this is not possible, the following alternative derivation using the 

fourth order moment could be used. 

The fourth order moment of ·l:: x. is evaluated as follows. The 
1 

results are based upon equations derived by Kendall (68) and Moran (69). 

Thus, 

4 n 

i = 1 j = 1 k = 1 ..t = 1 

n 

l I 2.. I p (yi > O(\yj > onyk> 0 r'\Y..e > 0) 

i j k ..e 

n 

I 
i,j,k,..t 

co { m n pq rs 
\ Pq 'tk Pu l\k p jt Pkt 
L I I I I I I 

m n p qr s m. n. p. q. r. s. 
' ' ' ' ' 



where 

• (-1) m+n+p+q+r+s • G • G 
tn+n+p m+q+r 

G = 1. 0 2 

G 
n+q+s 

G 
p+r+s 
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[c-9] 

Gt = 0 when t is even 

( 211.) ~ 
when t is odd and equal to 

(211.+1) where A=0,1,2,''', 

Looking at the first order terms of this expansion, Eq. C-9 yields 

+pij pjk pj.t + pi.t pj.t, pk.t + pik pjk pk.t ) + 

+P1J Pik PU Pjk Pjt Pkt + higher order terms in p} . 
Equation C-10 can be simplified to the following form, 

4 
4 6 2 n n 

n n l I = 16 + 8TT 
i = 1 j = 1 

1 
., TT2 

i j k .t 

+-l-
4TT 2 

n 

IIII 
i j k .t 

pij + 3 l 
4TT2 , 

l 

n 

L I I pi j pk.t -
j k .t 

[c-10] 

If p (T) .... 0 as T .... ex>, then EI I:_xi j 4 has n 4 as its leading term which is of 
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. . . 2 

compl:trkble order with ( E [ l xi 2 J ) , thereby slitisfying the condition 

given in Eq. C-5. This then shows that the three conditions of the central 

limit theorem are satisfied. 



APPENDIX D 

EVALUATION OF TJIE LIMIT OF A SUM 

The following. problem arose in satisfying the regularity 

conditions: Given that lim a = 0, show that 
n-+CCI n 

lim 1 
n ..... CCI n 

n 

l 
i = 1 

a. = O. 
1 

The solution to this problem could not be found in the literature, hence 

:i,t will be stated as a theorem and proved in this appendix (*). 

Theorem: If .lim 
n -+ CCI 

a = 0 
n 

then lim 1 
n 

l n ..... ·CCI n 
k = 1 

a = O. k 

Proof: For an e> 0. choose N such that if k > N then a < e. This 
. ' 0 0 k 

is possible since lim ak = O. Hence, 
k -+ CCI 

< 1 [c + (n - N ) e] 
n .o 

*The assistance of Dr. Paul E .. Long in, solving this problem is 
gratefully acknowledged. 
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where C = a1 + a 2 + · 

n 
lim 1 I ak 0 -+ CIC n 

k= 1 

n 

or litn 1 
n-+CIC n I 

k = 1 

+ aN . Thus, 
0 

< lim 1 [c (n + 
0 -+ CIC n 

a < e k • 

N ) -
0 

Since e > O is arbitrary, the result follows, 

lim. .! 
n -+ ·ixi n 

n 

l ak = o. 
k = 1 
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e J = e 

Q. E. D • 



APPENDIX E 

COMPUTATIONAL PROCEDURE AND COMPUTER PROGRAMS 

The numerical results of Chrpter VI were obtained using the 

methods described in this appendix. Before listing the computer pro-

grams. approximations for evaluating the error function and the inverse 

error fu,nction will be given. 

~valuation of the error function and its inverse was necessary 

in order to calculate the operating characteristics. For a given a, the 

threshold value was found. /3 was calculated using this threshold level 

with some signal-to-noise ratio value. 

Approximations for evaluating the error function and its 

inverse have been given by Hastings (70). For the inverse error 

function (used to find the threshold for a given a), the form of the func-

tion is 

1 
q=;zrr 

over the range o< q s;c>. 5. (The range can be changed to O. 5<q <l. 

by a simple change in the above equation.) The approximation is 

. x*(q) 
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~~ where y = ~ - . q2 

and 

ao = 2. 515 51 7 

a = • 802853 
1 

a = .010328 
2 

bl =1,432788 

b = • 189269 
2 

b3 = .. 001308 . 
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The error between the approximation and the actual value of the func-

tion is within ± O. 0005. 

An approximation fqr the error function was used to find {3, 

given the threshold value obtained from the approximation above. The 

form of the function is 

2 
~ (X) = R I x 2 

-t 
.e . dt 

0 

over the range O :.:x < =. ( The range can be altered for the negative 

values of X by a simple change of the above equation.) The approxima-

tion is 

where· 

a1 = • 0705; 2307, 84 a4 :: • 0001, 5201, 43 

a 2 = • 0433, 8201, 23 a 5 = . 0002, 7656, 72 

a 3 = • 0092, 7052, 72 a 6 = • 0000, 4306, 38 

The error between the approximation and the actual value of the function 

is within± 3 x 10-7 • 
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A brief description of the computer programs will now be given. 

The computations were performed on an IBM 1401 digital computer 

using Fortran IV compiler language. Two programs were written. The 

purpose of the first program was to compare the median detector and 

the Neyman-Pearson (independent sample structure) detector. The 

second program compared all three detectors, but was limited to a 

maximum of twenty input observations. Inversion of the correlation 

matrix, whose size depended upon the number of observations, limited 

the second program to only twenty samples. However. this was suffi-

cient to obtain valid comparisons. 

Each of the programs was divided into two phases. The first 

phase of the first program (Program 101) calculated the efficacies 

and the ARE of the median and the Neyman-Pearson (independent sample 

Structure) detectors. The input data specified the type of correlation 

function to be used, its parameters, and the number of observations. 

The second phase (Program 102) calculated (3 vs 9 for a given a and 

correlation function. The input data specified the range of a and 9 to 

be computed as well as the correlated function and its parameters. 

and the number of observations. 

The first phase of the second program (Program 201) computed 

the efficacies and the ARE of all three detectors studied for a number 

of input samples not greater than twenty. Note that the variable name 

DN was used for</, , the Neyman-Pearson test statistic designed 
n 

assuming dependent samples. Part of the output of this phase was used 
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as input! for phase two (Program 202), which calculated (3 vs 0 for a 

given a and correlation function. In each program the correlation func-
: . . 

tiot1 to be used was specified by a "cbmputed go to1' statement in the 

program. 'The format statements indicate the form of the input data. 

Listings of the programs just described lire given on the 

following pe;ges. The corresponding equations have been given in 

Chapter VI. 
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PROGRAM 1 - PHASE 1 (FORTRAN IV) 

EFFICACY AND ARE OF SN/LN DETECTORS 

300 FORMAT(1Hl,15X,33HARE OF MEDIAN DETECTOR/LIKELIHOOD, 
l9H DETECTOR) 

301 FORMAT(15X,33HIDEPENDENT SAMPLING - INDEPENDENT, 
lllH STRUCTURE)) 

3 0 2 FORMAT < I 2 , F 6 • 0 , F 6 • 2 , F 6 • 2 , I; 4 , F 6 • 2 , F 6 • 2 , I 4 ) 
303 FORMATl1HL,5X,21HCORRELATION FUNCTION ,I2,12X,F6.0, 

18H SAMPL.ES) 
304 FORMAT(lHT,5X,6HWSWOl=,F6•2,lX,5HDELl=,F6•2,lX,3HMl=, 

lI3,5X,6HWODW1=,F5.2,2x,5HoEL2=,F5.2,2X,3HM2=,13) 
305 FORMAT(l0X,5HWO/DW,5X,5HWS/WQ,5X,8HEFFICACY,5X, 

18HEFFICAGY,8X,3HARE) 
306 FORMAT<30X,23HlMEDIANl (~IKE~lHOODI) 
307 FORMAT(l0X,F6.2l 
308 FORMAT(2QX,F6.2,Fl2e5,Fl3.5,Fl3•5l 

WIUTEl:3,300) 
WRITE<3,301} 

1 READ(l,302)JJ,AN,WSW01,DEL1,Ml,WODW1,DEL2,M2 
WRITE13,303)JJ,AN 
WRITE13,304)WSWOl,DELl,Ml,WODWl,DEL2,M2 
WRITE13,305) 
WRITE(3,306) 
WODW=WODWl 
DO 200 I=l,M2 
WSWO=WSWOl 
WRITE13,307)WODW 
DO 100 J=l,Ml 
WSDW=WSWO*WODW 
JINX=l 
SUMl=O.O 
SUM2=0•0 
Al<i=lL,G 

9 1PK~6.283l85i*A~ 
Go ro(10,20,30,40!,JJ 

10 R=EXP(-TPK/WSWOI 
GO TO 50 

20 R=EXP(-TPK/WSDWl*COS(TPK/WSWO) 
GO TO 50 

30 R=SINITPK/WSDW>*COS<TPK/WSWOl*WSDW/TPK 
GO TO 50 

40 R=EXPl-((3.1415926*AK/WSDW)**2l )*COSCTPK/WSWOJ 
50 lF(ABS(R).GT •• 0001) GO TO 55 

IFCJINX.NEol) GO TO 62 
JINX=2 
GO TO 60 

55 RR=ATANIR/SQRTl1.-R**2)) 
SUMl=SUMl+R*(l.-AK/AN) 
SUM2=SUM2+RR*<l.-AK/AN) 



JINX=l 
60 IF(AK.GT.ANI GO TO 62 

AK=AK+l.O 
GO TO 9 

62 EFFSN=l./(l.5707952+2.0*SUM2) 
EFFLN=l./(1.0+2.0*SUMll 
ARE::i:EfFSN/liiFFLN 
WRITE(3,308)W5WO,EFFSN,EFFLN,ARE 

100 WSWO=WSWO+DELl 
200 WODW=WODW+DEL2 

GO TO J. 
END 

* 
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PROGRAM l - PHASE 2 (FORTRAN IV) 

CALCULATION OF ALPHA AND BETA FOR SN AND LN DETECTORS 

600 FORMAT(1Hl,22X,29HCALCULATION OF ALPHA AND BETAl 
601 FORMAT(26X,23HFOR SN AND LN DETECTORS) 
602 FORMAT(I2,F6.0,F6.l,F6.l,I3l 
603 FORMAT(F6.1,F6.l,I3,F6•4,F6.4,I3,F6.4,F6.4,I3) 
604 FORMAT(1HL,3X,21HCORRELATION FUNCTION ,I2,12X,F6.0, 

18H SAMPLES) 
605 FORMATl4X,6HWSW01=,F5.1,6H DEL1=,F5.1,4H Ml=,13,BX, 

16HALPH1=,F6.4,7H DEL3=,F6.4,5H M3=,I3} 
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606 FORMAT(lOHT WODW1=,F5.l,6H DEL2=,F5.1,4H M2=,I3,8X, 
16HSNR1 =,F6.4,7H DEL4=,F6.4,5H M4=,13) 

607 FORMAT(4X,27HWO/DW WS/WO THRESHOLD,6X, 
ll3HALPHA S/N,l2X,4HBETAl 

608 FORMAT(lHs~21x,10HsN LN,25X,2HSN,9X,2HLN) 
609 FORMATC3X,F6.1,FB.l,FB.2,F8.2,F9.4) 
610 FORMAT(45X,F6.3,3X,E12.4,El5e4l 
611 FORMAT(3X,F6·l•FB.1,16H NSQR NSQR,F9.4, 

128H GO TO NEXT VALUE OF ALPHA) 
612 FORMATC3X,F6.1,FB.l,F8.2,8H NSQR,F9.4) 
613 FORMAT(3X,F6.l,FB.1,8H NSQR,F8.2,F9.4) 
614 FORMAT(45X,F6.3,6X,4HXXXX,4X,El2•4l 
615 FORMAT(45X,F6.3,6X,4HXXXX,7X,4HNSQR) 
616 FORMATC45X,F6.3,3X,El2•4,6X,4HXXXXl 
617 FORMAT(45X,F6.3,3X,El2•4,6X,4HNSQRl 

WRITEl3,600) 
WRITE(3,601) 

1 READ<l,602JJJ,AN,WSW01,DEL1,Ml 
READC1,603)WODW1,DEL2,M2,ALPH1,DEL3,M3,SNR1,DEL4,M4 
WRITE(3,604)JJ,AN 
WRITE13,605)WSW01,DEL1,Ml,ALPH1,DEL3,M3 
WRITE13,606)WODW1,DEL2,M2,SNR1,DEL4,M4 
WRITEli,6G7l 
WRITE(J,608) 
WODW=WQDWl 
DO 500 I=l,M2 
WSWO=WSWOl 
DO 490 J=l,Ml 
WSDW=WSWO*WODW 
SUMl=O.O 
SUM2=0.0 
JINX=l 
AK=l.O 

9 TPK=6.2831852*AK 
GO TO(l0,20,~0,40),JJ 

10 R=EXP(-TPK/WSWO) 
GO TO 50 

20 R=EXP(-TPK/WSDWl*COS(TPK/WSWO) 
GO TO 50 



30 R=SIN<TPK/WSDW)*COS(TPK/WSWOl*WSDW/TPK 
GO TO 50 

40 R=EXP(-((3el415926*AK/WSD~l**2))*COS(TPK/WSWO) 
5 0 I F ( ABS ( R ) • GT .. 0·0 0 1 l GO TO 5 5 

IF(JINX.NEell GO TO 62 
JINX=2 
GO TO 60 

55 RR=ATAN(R/SQRT<l·-R**2)) 
SUMl=SUMl+R*(l.-AK/ANl 
SUM2=SUM2+RR*(le-AK/ANl 
JlNX=l 

60 IF(AKeGT.ANl GO TO 62 
AK.=AK+l.O 
GO TO 9 

62 ALPH=ALPH1 
DO 480 K=l,M3 
IF(ALPH.NEee5) GO TO 75 
SAl=O.O 
SA2=0.5 
NG:•l 
GO TO 100 

75 IF(ALPH.GT •• 5} GO TO ao 
NA=l 
GO TO 82 

80 NA=2 
ALPH=l.-ALPH 

82 Z=SQRT<AL.OG(l./ALPH**2)l 
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XQ=Z-<2.515517+Z*(.802853+.0l0328*Zl)/(l.+Z*<l.4i2788+ 
1Z*(el89269+Z*•00130Sl)) 

GO T0(87,85>,NA 
85 ALPH=l.-ALPH 

XQ=-XQ 
87 TESTl=l./AN+2.*SUMl/AN 

TEST2=0.25/AN+SUM2/CAN*3.141S926l 
IFCTESTl.GT.O.O) GO TO 91 
IFITEST2.GE.O.O) GO TO 89 
WRITE<3,61l)WObW,WSWO,A~PH 
GO TQ 4BQ 

89 N,=@ 
SA2=XQ*SQRT(TEST2)+0.5 
WRITE(3,612)WODW,WSWO,SA2,ALPH 
GO TO 101 

91 IF<TEST2.GE.O.O) GO TO 93 
NC=2 
SAl=XO*SQRT(TESTll 
WRITE<3,613)WODW,WSWO,SA1,ALPH 
GO TO 101 

93 SAl=XQ*SQRTCTESTll 
SA2=XO*SQRT<TEST2)+0.5 
NC=l 

100 WRITE(3,609)WODW,WSWO,SA1,SA2,A~PH 
101 SNR=SNRl 

DO 470 L=l,M4 
SUM3=0•0 



AK=leO 
JINX=l 
JJJ=l 

108 GO TO(l09,l6ll,JJJ 
109 TPK=6e2831852*AK 

GO TO(ll0,120tl30,140) ,JJ 
110 R=EXP<-TPK/WSWO) 

GO TO 150 
120 R=EXP<-TPK/WSDW)*COS(TPK/WSWO) 

GO TO 150 
130 R=SIN(TPK/WSDW)*COS(TPK/WSWO>*WSDW/TPK 

GO TO 150 
140 R=EXP(-((3el415926*AK/WSDW)**2))*COS(TPK/WSWO> 
150 IF<ABS(RleGT •• Oll GO TO 160 

IF(JINX.NEel) GO TO 153 
JINX=2 
GO TO 162 

153 C5=1.+EXPC-.5•SNR**2l 
JJJ=2 
GO TO 161 

160 C5:·(l.+EXP<-.5*SNR**2/(l.-R**2)))/SQRT<le-R**2l 
161 SUM3=SUM3+<1.-AK/ANl*C5 

JINX=l 
162 IF!AKeGT.AN> GO TO 171 

AK=AK+leO 
GO TO 108 

171 C7=.25/AN-SNR**2/6e2831852+<1.-l./AN)*SNR/2.506629 
TEST3=C7+(SUM2-SNR*SUM3)/(3.1415926*AN) 
GO TO(l75,180,185>,NC 

175 IF!TEST3.LE.O.O) GO TO 177 
NE=5 
GO TO 190 

177 X2=0.0 
NE=4 
GO TO 190 

180 X2=0.0 
N6=.3 
Go·ro 19G 

185 Xl.=01110 
IF<TESTJ.GT.O.O) GO TO 187 
X2=0• 0 
NE=2 
GO TO 200 

187 NE=l 
GO TO 191 

190 Xl~<SAl-SNR)/SQRT<TESTll 
IF(NE•NE.5} GO TO 200· 

191 X2=(SA2-.5-SNR/2e506629}/SQRT(TEST2) 
200 JJJJ=l 

X=Xl/1.414214 
275 IF(X.GE.O.O) GO TO 277 

NB=l 
X=-X 
GO TO 278 
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277 NB=2 
278 C8=1.+X*<•070523078+X*(•042282012+X*•0092705272)) 

C9~X**4*C.0001520143+X*(•OQ02765672+X*•0000430638)l 
GO T0(280~281),NB 

280 BETA=·5-(1.-1./(C8+C9)**16)/2.0 
GO TO 282 

281 BETA=·5+(1.-l./(C8+C9)**16)/2e0 
282 GO T0(283,284>,JJJJ 
283 JJJJ=2 

BETAl=BETA 
X=X2/l.414214 
GO TO 275 

284 BETA2=BETA 
GO T0(290,291,292,293,294l,NE 

290 WRITE(3,6l4)SNR,BETA2 
GO TO 470 

291 WRITE(3t61S)SNR 
GO TO 470 

292 WRITE(3,616>SNR,8ETA1 
GO TO 470 

293 WRITEC3,617)SNR,BETA1 
GO TO 470 

294 WRITE(3,610)SNR,BETA2,BETA1 
470 SNR=SNR+OEL4 
480 ALPH=ALPH+DEL3 
490 WSWO=WSWO+DELl 
500 WODW=WODW+DEL2 

GO TO 1 
END 

* ** **** ** * 
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PROGRAM 2 - PHASE 1 <FORTRAN IV) 

EFfI.CACY AND ARE OF SN/LN/DN DETECTORS 

DIMENSION QC20,20J,RC20,20) 
500 FORMAT(1Hl,25X,35HEFFICACY AND ARE OF MEDIAN DETECTOR, 

120H/LIKELIHOOD DETECTOR) 
501 FORMAT(24X,36H(DEPENDENT· SAMPLING - DEPENDENT AND , 

l23HINDEPENDENT STRUCTURES)) 
502 FORMAT(I2,F6.0,F6.1,F6el,I3,F6el,F6.l,I3) 
503 FORMAT(lHL,22X,21HCORRELATION FUNCTION ,I2,11X,F6e0 

lSH SAMPLES) 
504 FORMAT(23X,6HWSW01=,F5•1,7H DELl=,F~el,5H Ml=,13,SX, 

16HWODW1=,F5.1,7H D£L2=,F5el,5H M2=,I3) 
505 FORMAT(1HL,6X,14HWO/DW WS/W0•7X,13HEFFICACY , 

121HEFFICACY EFFICACY,9X,3HARE,lOX,3HARE,lOX,3HARE) 
506 FORMAT(30X,4H(SN),9X,4HCLN),9X,4H10N),9X,7HCSN/LN),6X, 

17H(SN/DN>,6X,7H(LN/0Nl) 
507 FORMAT(6X,F6.l) 
508 FORMAT(15X,F6.l,5X,Fl0.4,3X,Fl0e4,3X,Fl0.4,3X,Fl0.4, 

13X,Fl0.4,3X,Fl0.4) 
509 FORMAT(I2,f6.0,F6.l,F6.1,Fl6.8,Fl6.8,Fl6.8) 

WRITE(3,500) 
WRITEC3,501) 

1 READ(l,502)JJ,AN,WSWOl,DEL1,Ml,WODWl,DEL2,M2 
WRITE<3,503lJJ,AN 
WRITE(3,504JWSW01,DELl,Ml,WODWltDEL2,M2 
WRITE(3,505) 
WRITE(3,506) 
WODW=WODWl 
N=AN 
DO 490 II=l,M2 
WSWO=WSWOl 
WRITE(3,507)WQDW 
DO 480 KK=l,Ml 
WSDW=WSWO*WODW 
DO 10 I=l ,N 
DO 10 J=l,N 
IF(I.EQ.J) GO TO 5 
Q(I,J)=O.O 
GO TO 10 

5 Q( I,J)=l.O 
10 CONTINUE 

DO 60 I=l,N 
DO 60 J=l,N 
IF(I.NE.J> GO TO 11 
R(I,J)=l.O 
GO TO 60 

11 IF(I.GT.J> GO TO 12 
AK=J-I 
GO TO 14 



12 AK=I-J 
14 TPK=6.2831852*AK 

GO T0(21,22,23,24) ,JJ 
21 R(l,J)=EXP(-TPK/WSWOJ 

GO TO 60 
22 R(I,J>=EXP<-TPK/WSDWl*COS(TPK/WSWO) 

GO TO 60 
23 RCI,J)=SIN<TPK/WSDW)*COS(TPK/WSWOl*WSDWITPK 

GO TO 6,0 
24 R(I,J)=EXP(-{(3.141S926*AK/WSDW)**2l}*COS(TPK/WSWOl 
60 CONTINUE 

M=l 
DO 85 L.=l,N 
M•M+l 
IF(MeGT•Nl GO TO 75 
DO 70 I=M,N 

70 R(L,I)=RCL,I)/RCL,k) 
75 DO 80 J=l,N 
80 Q(L,Jl=Q(L,Jl/RCL,k) 

DO 85 J=l,N 
IF(L.EQ.J) GO TO 85 
IF(M.GT.Nl GO TO 84 
DO 83 l=M,N 

83 R(J,I1=RCJ,I>-R<L,Il*R<J,Ll 
84 DO 85 LL=l,N 

Q(J,Lll=Q(J,LL)-QCL,LLl*R(J,L) 
85 CONTINUE 

SUMQ=O.O 
DO 100 I=l,N 
DO 100 J=l,N 

100 SUMQ=SUMQ+QCI,J) 
CONTINUE 
JINX=l 
SUMl=O.O 
SUM2=0.0 
Al<i=l.O 

109 TPK=6e283185~*AK 
GO TO(llG,120~130,140) ,JJ 

110 RR•iXP<-TPKIW&WOI 
GO TG l.5Q 

120 RR=EXPC-TPK/WSDW>*COS(TPK/WSWO) 
GO TO 150 

130 RR=SIN(TPK/WSDWJ*COS(TPK/WSWO)*WSDW/TPK 
GO TO 150 

140 RR=EXP(-((3.1415926*AK/WSDW)**2l)*COS(TPK/WSWO) 
150 IFCABSCRR).GT •• 0001) GO TO 155 

IF(JINX.NE•ll GO TO 162 
JINX=2 
GO TO 160 

155 RRR=ATAN(RR/SQRT(l.-RR**2)l 
SUMl=SUMl+RR*{l.-AK/AN> 
SUM2=SUM2+RRR*(l.-AK/ANl 
JINX=l 

160 IF<AK·GT.AN> GO TO 162 

136 



AK=AK+l.O 
GO TO 109 

162 EFFSN=l./(l.5707952+2.0*SUM2) 
EFFLN=l./(l.0+2.0*SUMl) 
EFFDN=SUMQ/AN 
ARESL=EFFSN/EFFLN 
ARESD=EFFSN/EFFDN 
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ARELD=EFFLN/EFFDN 
WRITE(2,509)JJ,AN,WSWO,WODW,SUMl,SUM2,SUMQ 
WRITE<3,508)WSWO,EFFSN,EFFLN,EFFDN,ARESL,ARESD,ARELD 

480 WSWO=WSWO+DELl 
490 WODW=WODW+DEL2 

GO TO 1 
END 

* ** **** ** * 



138 

PROGRAM 2 - PHASE 2 (FORTRAN IV) 

CALCULATION OF ALPHA AND BETA FOR SN• LN, AND DN DETECTORS 

500 FORMAT(lH2,25X,33HCALCULATION OF ALPHA AND BETA FOR, 
ll6H THREE DETECTORS) 

501 FORMAT(laX,32H(MEDIAN, LIKELIHOOD-INDEPENDENT , 
l46HSTRUCTURE, AND LIKELIHOOD-DEPENDENT STRUCTURE)) 

502 FORMAT(l2,F6.0,F6.1,F6el,Fl6.8,Fl6e8,Fl6e8) 
503 FORMAT(F6.4,F6e4,I3,F6•3,F6.3,l3) 
504 FORMAT(lHL,20X,21HCORRELATJON FUNCTION ,I2,11X,F6eO, 

l:8H SAMPLES) 
505 FORMAT(lH ,20X,6HWSWO =,F6el,25X,6HALPH1=,F6.4, 

l8H DEL3=,F6.4,6H M3=,IJ) 
506 FORMAT(lHT,20X,6HWODW =,F6.1,25X,6HSNR1 =,F6.3, 

18H DEL4=,F6.3,6H M4=,I3l 
507 FORMAT(21X,9HTHRESHOLD,13X,5HALPHA,8X,3HS/N,20X, 

17HB ET A> 
508 FORMAT(lH/,15X,2HSN,7X,2HLN,7X,2HDN,31X,2HSN,llX,2HLN, 

lllX,2HDNl 
509 FORMAT(l2X,F7.2,F9.2,F9.2,5X,F6e4,5X,F6.3,Fl5•8,Fl3•8, 

J.Fl3e8) 
WRITE<:3'500) 
WRITEC3,501J 

l READ(l,502}JJ,AN,WSWO,WODW,SUM1,SUM2,SUMQ 
REAO(l,503JALPH1,DEL3,M3,SNR1,DEL4,M4 
WRITE<3,504JJJ,AN 
WRITEC3,505JWSWO,ALPH1,DEL3,M3 
WRITE<3,506)WODW,SNR1,DEL4,M4 
WRlTEC:3,507) 
WRITEC3,508) 
WSDW=WSWO*WODW 
AL.PH=AbPHl 
DO 480 1=1'M:3 
SNR=iNRl 
t)O 470 .J=l•M4 
lF(ALPH.Ni •• 5) GO TO 5 
SAl=O.O 
SA2=0.5 
SA3=0.0 
GO TO 99 

5 IF(ALPH.GT •• 5) GO TO 8 
NA=l 
GO TO 10 

8 NA=2 
ALPH=l.-ALPH 

10 Z=SQRT(ALOG(l./ALPH**2)) 
XQ=Z-<2.515517+Z*{•802853+e010328*Z))/(l.+Z*<l.432788+ 

1Z*Cel89269+Z*•00130Sl)) 
GO T0(25,20},NA 

20 ALPH=l.-ALPH 



XQ=-XQ 
25 TESTl=l./AN+Z.*SUMl/AN 

TEST2=0.25/AN+SUM2/<AN*3•1415926l 
TEST3=SNR**2*SUMQ 
NW=O 
NX=O 
NY=O 
NZ=O 
IFCTESTl.GT.O.O) GO TO 30 
TESTl=l.O 
NX=l 

30 IF(TEST2.GT.O.O) GO TO 35 
TEST2=1.0 
NY=1 

~5 IF(TEST3.GT.O,O) GO TO 40 
TEST3:;J..O 
NZ.=l 

40 SAl=XQ*SQRT(TESTll 
SA2=XQ*SQRT(TEST2)+0.i 
SA3=XQ*SQRT(TEST3l 

99 SUM3=0,0 
Al<.=l.O 
.JlNX=l 
J.JJ=l 

108 GO T0(109,161),JJJ 
109 TPK=6·2831852*AK 

GO TO(ll0,120;130,140) ,JJ 
110 R=EXP<-TPK/WSWOl 

GO TO 150 
120 R=EXPC-TPK/WSDW)*COSCTPK/WSWO) 

GO TO 150 
130 R=SIN<TPK/WSDWJ*COS(TPK/WSWO)*WSDW/TPK 

GO TO 150 
140 R=EXP(-((3.1415926*AK/WSDW>**2) )*COSCTPK/WSWO> 
150 IF(ABS(R).GT •• 01) GO TO l6Q 

If<JINX.NEel) GO TO 163 
JlNX=2 
G0 i0 '16J 

153 G5=~~+EXP(•.5*iNR**i» 
tJ.JJ = di 
GO TO 161 

160 C5=11.+EXP<-.5*SNR**2/(l.-R**2l))/SQRTC1.-R**2) 
161 SUM3=SUM3+<1.-AK/AN)*C5 

JINX=l 
162 IF(AKeGT.AN} GO TO 171 

AK=AK+1.0 
GO TO 108 

171 C7=·25/AN-SNR**2/6.2831852+(1.-l./ANl*SNR/2.506629 
TEST4=C7+{SUM2-SNR*SUM3)/(3.1415926*AN) 
IF(TEST4.GT.O.O)GO TO 173 
TEST4=1.0 
NW=l 

173 Xl=<SAl-SNRl/SQRT<TESTl) 
X2=(SA2-.5-SNR/2.506629)/SQRTiTEST2) 
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X3=(SA3-SUMQ*SNR**2)/SQRTCTEST3) 
200 JJJJ=l 

X=Xl/1.414214 
275 IF(X.GE.O.O) GO TO 277 

NB=l 
X=•X 
GO TO 278 

277 NB=2 
278 C8=1.+X*(e070523078+X*(.0422820l2+X*.0092705272)) 

C9=X**4*C.0001520143+X*<•0002765672+X*.0000430638)) 
GO T0(280,28l),NB 

280 BETA=·5-(l.-l./(C8+C9l**l6)/2•0 
GO TO 282 

281 BETA=.5+(1.-l./(C8+,9l**l6)/2.0 
2 8 2 GO TO ( 2 8 3 , 2 8 4 , 2 8 5 l , J.J J J 
283 .JJJJ=2 

BETAl=BETA 
X=X2/l.414tll4 
GO TO 275 

284 JJJJ=3 
BETA2=BETA 
X=X3/l.4l.4214 
GO TO 275 

285 SETA3=BETA 
IF(NX•EQ.O) GO TO 300 
SAl.=999.99 
BETAl=99.9999 

300 IF(NY.EQ.Ol GO TO 301 
SA2=999.99 
BETA2=99.9999 

301 IF(NZ.EQ.O) GO TO 302 
SA3=999.99 
BETA3=99.9999 

302 IF(NWeEQeOl GO TO 303 
BETA2=99.9999 

303 WRlTE(3,509)SA2,SAl,SA3,ALPH,SNR•65TA2,BETAl,BETA3 
470 SNR=iNR+DS~4 
4SQ A~PH=A~PH•bi~l 

iCi> 10 1 . 
EN(;} 

* ** **** ** * 
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