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Abstract

Polarimetric phased array radars (PPARs) are a rapidly developing area of re-

search interest in weather radar. However, they present intrinsic challenges for cal-

ibration and operation. Foremost among these are the adverse effects of copolar

radiation pattern mismatch as well as cross-polar fields on polarimetric measurement

accuracy. Characterization of the impact these effects have on weather radar obser-

vations and the effectiveness of proposed methods for mitigation of those impacts can

be time-consuming and costly if conducted using radar hardware. Furthermore, few

operational PPARs exist to serve as testbeds. Alternatively, the effects of copolar

and cross-polar fields can be studied using numerical simulations. In that regard,

this work outlines a simulation method that allows for the characterization of PPAR

performance and the prototyping of techniques to mitigate cross-polar biases. To

achieve this, a simulation volume is populated by thousands of scattering centers,

whose movement and scattering characteristics at any point in space and time are

governed by a high-resolution numerical weather prediction model. Each of these

scattering centers has its own individually calculated Doppler spectrum in both the

horizontal (H) and vertical (V) polarizations. These spectra are used to determine

instantaneous scattering parameters that are combined with a highly flexible radar

system model in order to compose time-series signals in H and V. This simulation

method is used to evaluate and compare the performance of several bias mitigation

techniques that have been previously proposed.

xii



Chapter 1

Introduction

Since their inception, weather radars have been constantly evolving. From frequency

modulated continuous wave, to pulsed Doppler, to polarimetry, the technology of

radar systems is constantly moving forward in order to better serve the intertwined

goals of attaining better understanding of the atmosphere and better protection of

lives and property. One of the most promising directions for the next step in this

development process is the polarimetric phased array radar (PPAR). The PPAR

offers all benefits of polarimetry for weather observation, as well as the agile scanning

capabilities of the phased array radar. These unique capabilities of the phased array

can be brought to bear on the problem of weather observation, as well as potentially

allowing PPARs to perform the functions currently delegated to civil air surveillance

radars. To make this vision a reality, there are technical challenges intrinsic to PPARs

that must be overcome. Accurate numerical simulations offer a powerful tool for the

reduction of both cost and risk in this development process. This work develops a

simulation method that can be used to evaluate the performance of PPAR systems

in observing fields of weather phenomena, as well as to prototype solutions to the

technical challenges these systems face. These capabilities are utilized to evaluate

and compare several techniques for the mitigation of antenna cross-coupling biases

(i.e., biases caused by the cross-polar fields) in polarimetric measurements.
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1.1 A Brief History of Weather Radar

The term radar is an acronym for radio detection and ranging, originating as an

agreed-upon term amongst the Allied powers during the second world war. Radio,

in this context, refers to any electromagnetic radiation between the wavelengths of

approximately 20 km and a few fractions of a millimeter (Doviak and Zrnić 2006). The

first description of radar can be attributed to Nikola Tesla, who, in 1900, described

the potential for a system that utilizes the reflection of electromagnetic waves off

of distant objects to determine their position and speed (Tesla 1900). The first

actual use of radar for the detection of objects is credited to Christian Hulsmeyer,

who successfully utilized continuous waves to detect riverboats at the Hohenzollern

bridge in Cologne, Germany on May 18, 1904 (Swords 1986). The first example

of simultaneous detection and ranging using radio waves was actually in service of

atmospheric science. It was accomplished some 20 years after Hulsmeyer’s experiment

by Appleton and Barnett at Cambridge University (Doviak and Zrnić 2006). They

used continuous wave interferometry to determine the heights of the ionosphere. The

first use of pulsed radio waves to perform detection and ranging, also in order to detect

ionospheric heights, was performed by G. Breit and M.A. Tuve at the department of

Terrestrial Magnetism of the Carnegie Institution (Breit and Tuve 1926).

The 1930’s saw an international surge in radar development efforts for military

applications (Doviak and Zrnić 2006). Particularly notable among these were the

efforts of Robert A. Watson-Watt in Britain (Watson-Watt 1957). Formerly em-

ployed by the Meteorological Office to research the localization of storms through
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radio emissions from lightning, Watson-Watt would develop the proposal that led to

the “Chain-Home” radar network that served to provide early warning of incoming

German air attacks during the Battle of Britain. The development of the multires-

onant cavity magnetron in early 1940 made the use of microwaves for long range

detection practical, leading to the first observations of precipitation, which likely can

be attributed to J.W. Ryde in late 1940 (Doviak and Zrnić 2006). However, the ear-

liest dedicated meteorological radars were not used for observing precipitation, but

were rather profilers dedicated to studying the structure of the clear troposphere.

The first use of pulsed-Doppler radar to study weather is attributable to Ian Browne

and Peter Baratt of Cavendish Laboratories at Cambridge University (Barratt and

Browne 1953). They used a vertically pointing radar directed into a rainshower to

study the Doppler spectrum of observed precipitation.

Operational weather radar use in the United States originated from the military

during World War II, during which air traffic control and defense radars were used by

specially trained officers for observing and forecasting weather. These efforts led to

the post-war deployment of repurposed military radars by the Weather Bureau (now

the National Weather Service) as an early weather radar network, as well as the Army

Signal Corps development of the AN/CPS-9 (the first purpose-built weather radar).

A spate of hurricanes in the 1950’s created a favorable legislative environment for

the funding of the WSR-57, which would remain the NWS’s flagship radar until the

introduction of the WSR-88D in the 1990s (Whiton et al. 1998a). The WSR-88D is

the first widely deployed pulsed-Doppler weather radar used to collect the invaluable

information about wind fields (provided by the mean Doppler velocity and Doppler
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spectrum width) which is widely available today. The Terminal Doppler Weather

Radar (TDWR) was developed in the 1980s to improve observations of low-level

wind shear near airports in order to improve safety (Whiton et al. 1998b). Together,

these two systems comprise the national weather radar network in operation in the

United States today.

The most recent major improvement of the network of WSR-88D radars was the

addition (beggining in 2011) of dual-polarization capability. Early studies of polar-

ization diversity in meteorological radar applications began in the first half of the

twentieth century and are summarized by Newell and Geotis (1955). These early

studies were focused primarily on circular and linear depolarization ratios (used to

measure the depolarization of the electromagnetic waves by the scattering media).

While work continued in the study of both numerical calculations of wave scatter-

ing by nonspherical raindrops and the use of polarization diversity in weather radars

through the 1960’s and early to mid 1970s, the concepts began to gain more momen-

tum with papers by Seliga and Bringi (1976, 1978) on rain rate estimation through

differential reflectivity (ZDR) and differential propagation phase. A few years later,

Sachidananda and Zrnić (1986, 1989) proposed the measurements of differential phase

(φDP) and copolar correlation coefficient (|ρHV(0)|). Zahrai and Zrnić (1993) obtained

the first real-time full set of measurements (differential reflectivity, differential phase,

and both the co-polar and cross-polar correlation coefficients). Over the next sev-

eral decades, a large body of work would be produced in service of developing and
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demonstrating the applications of dual-polarization measurements. These applica-

tions include quantitative precipitation estimation (QPE) (Seliga et al. 1986; Sachi-

dananda and Zrnić 1987; Ryzhkov and Zrnić 1995; Brandes et al. 2002; Ryzhkov et al.

2005; Giangrande and Ryzhkov 2008), hydrometeor classification algorithms (HCAs)

(Vivekanandan et al. 1999; Straka et al. 2000; Zrnić et al. 2001), and attenuation

correction (Testud et al. 2000; Bringi et al. 2001; Snyder et al. 2010). This body

of work would provide an impetus for the dual-polarization WSR-88D upgrade that

brought the national weather radar network to its current state (Doviak et al. 2000).

1.2 Polarimetric Phased Array Radars

The phased array is not a recent technological development. While the major impetus

for its development from World War II onward would be radar applications, it was

first researched for short wave radio applications (Sarkar et al. 2006). Friis (1925)

first demonstrated a non-steerable array of loop antennas. Friis and Feldman (1937)

demonstrated the first scanning array. That array, like all other scanning arrays until

the 1950’s, relied on electromechanical methods to produce phase shifts. The 50’s

saw the advent of ferrite phase shifters (followed closely by diode phase shifters in

the ensuing decade) that allowed for the first electronically scanning arrays (Button

1984). This development, combined with printed circuit antennas (first described by

Deschamps (1953)), and solid state modules (developed through the 50’s and first

applied to arrays in the 60’s (Sarkar et al. 2006)) gave us electronically scanning

active phased arrays in the form that is recognizable today.
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Until recently, the use of phased arrays in radar has primarily been confined to

defense and civil air surveillance applications. The widespread study of possibilities

for their use in meteorological applications is a recent development. There are numer-

ous clear advantages to the use of phased arrays to observe weather, most of which

stem in one way or another from the ability to scan electronically. Parabolic dish

radars suffer from the need to scan mechanically in several ways. It constrains the

speed at which scanning occurs as well as the spatial pattern of a scan. Further, the

mechanical rotation of the antenna introduces beam smearing effects which increase

the effective beamwidth and negatively impact the ground clutter detection and mit-

igation (Doviak and Zrnić 2006). Electronic scanning allows a near instantaneous

change in beam position to an arbitrary angle, making possible very rapid scanning

unconstrained by any particular spatial pattern, as well as a constant beam position

during each dwell time.

The ability to obtain scan volumes rapidly is advantageous for several reasons. It

allows for the observation of short-lived atmospheric phenomena with high temporal

resolution, which is particularly important when observing severe weather. It provides

better input to numerical weather prediction (NWP) models, and could potentially

even allow for the use of radar to precisely map lightning channels (Zrnić et al. 2007).

The ability to maintain a stationary beam during a dwell time improves data quality

through the elimination of beam smearing, as well as improving measurements of

rainfall and refractivity (Cheong et al. 2008a) through improved repeatability. The

phased array may also offer the possibility of transverse wind retrieval through the

spaced antenna method (Zrnić et al. 2007). Finally, the lack of spatial constraints on
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scan patterns offers the tantalizing possibility of multifunctionality as well as adaptive

weather-surveillance. This possibility of multifunctionality has become a key driver in

the development of PPARs. The multimission phased array radar (MPAR) program

is a multi-agency governmental effort to develop a single radar that will serve as the

platform for the next generation of not only the national weather radar network, but

also the national airport and air-route surveillance networks (Weber et al. 2007). In

order to perform both the aviation and meteorological facets of this ambitious mission

to modern standards, this radar will necessarily need to be a PPAR.

Unfortunately, the PPAR is subject to considerable technical challenges (Zrnić

et al. 2012). Obtaining accurate polarimetric measurements from an operational

phased array is a difficult problem for several reasons. The first is matching of the

copolar H and V radiation patterns of the radar, as these patterns can differ in

both the shape and amplitude. It is desirable to minimize the differences between

the H and V pattern shapes through antenna design and mitigate any remaining

differences in operation through adjustment of transmit and receive weightings based

on characterization of the actual radiation characteristics of the array. Additionally,

the H and V radiation patterns are not perfectly isolated. This is because excitation

of the H port always causes some amount of radiation in the V plane (i.e., cross-

polar radiation), and vice-versa. These cross-polar fields arise to some extent at

every scan angle. When electronically steering the transmitted beam away from the

principal planes of the array, they can reach levels capable of severe interference with

meteorological measurements. These effects exist regardless of the particular antenna

design (at least for the microstrip patches most often used in modern phased arrays).
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There are several proposed methods for the mitigation of these effects, however, they

are largely untested. Complicating efforts to resolve these issues is the challenge of

maintaining the accuracy of data collected by a phased array during its operation

(Fulton 2011). This is because the amplitudes and phases of the transmit and receive

channels of the radar will change over time (primarily due to changes in temperature).

1.3 Motivation for Robust Numerical Simulation

Currently, few operational phased array weather radars exist. Notable non-polarimetric

phased array weather radars include the National Weather Radar Testbed (Forsyth

et al. 2005), a repurposed naval radar developed as a collaborative effort between sev-

eral U.S. government agencies and private companies and used to study the potential

of phased arrays to improve the quality of weather observations, and the MWR-

05XP (Bluestein et al. 2010), an Army tactical radar modified by ProSensing, Inc.,

for weather observation applications. Another example is the Atmospheric Imaging

Radar (Isom et al. 2013), a mobile radar operated by the University of Oklahoma’s

Advanced Radar Research Center (although it should be noted that, as an imaging

radar, it is not a traditional phased array). Even fewer polarimetric phased arrays

exist. Several examples of existing PPARS include the phase-tilt radar (Orzel 2015)

developed and operated at the University of Massachusetts, Amherst, the Cylindri-

cal Polarimetric Phased-Array Radar Demonstrator (Fulton et al. 2016) developed

and operated at the University of Oklahoma, and the Ten-Panel Demonstrator (Ivić

8



and Byrd 2015) currently under evaluation by the National Severe Storms Labora-

tory. There is a scarcity of platforms available for quantifying the impact of copolar

calibration issues and cross-polar biases experimentally, as well as for prototyping

potential solutions to these problems. Furthermore, construction of PPARs is costly

and time consuming. This makes simulation an attractive approach for expediting

and guiding the development of these systems.

There are several simulator features necessary for it to be useful in quantifying the

performance of PPAR systems and methods for the mitigation of the effects of cross-

polar biases on weather observations. The first of these is an accurate model of the

dual-polarization radiation properties of an array. The simulator must also operate

on a realistic weather model, because while the actual radiated fields are determined

entirely by the radar system, the effect they have on polarimetric measurements is

determined in large part by the properties of the hydrometeors under observation.

Finally, in order to allow for prototyping of a wide variety of solutions to the challenges

faced by PPARs, the system model must be highly configurable and flexible. Taken

together, these requirements form an extremely specific simulation challenge that the

method presented in this paper has been designed to meet.

1.4 Outline of Thesis

Chapter 2 provides a brief overview of the technical principles fundamental to the

operation of polarimetric phased arrays. This includes the set of basic principles

common to the operation of all pulsed-Doppler radar systems, as well as particulars of
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distributed targets, polarimetry, and phased arrays. Chapter 3 discusses the details of

how cross-coupling biases arise and provides a survey of the many proposed techniques

for their mitigation. In Chapter 4, the PPAR simulation method is described in detail.

Chapter 5 is a quantitative comparison of the performance of two proposed cross-

coupling bias mitigation techniques. Conclusions and recommendations for future

work on these topics are provided in Chapter 6.
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Chapter 2

Fundamentals of Polarimetric Phased Array

Radars

In order to examine the simulation of PPARs it is first necesary to develop some

understanding of the basic principles underlying their operation. The objective of

this chapter is to provide a condensed treatment of those principles. Section 2.1

provides a simplified overview of signal transmission and reception in a pulsed-Doppler

radar system, as well as a basic discussion of how the recovered signals are processed

in order to retrieve information about meteorological targets. Section 2.2 covers

the fundamentals of weather radar polarimetry, discussing what wave polarization is

and how polarization diversity can be exploited to gain additional information about

hydrometeors. Finally, Section 2.3 gives a brief overview of the fundamental operating

principles of phased array antennas and how they are described mathematically.

2.1 Weather Radar Systems and Signals

This section seeks to provide a summary of the process of transmitting and receiving

a signal in a pulsed-Doppler radar system. While a detailed discussion of how these

systems are implemented is beyond the scope of this work, a simplified model is

utilized to provide a basic understanding of the method by which pulsed-Doppler
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radars are able to observe their environment. Equally important are the methods by

which the recorded signals are processed in order to retrieve information about the

physical characteristics of targets. This section discusses the ways in which pulsed-

Doppler radar signals in general may be related to the range, radar cross-section, and

velocity of point targets, as well as some of the processing concepts unique to the

observation of distributed targets such as weather.

2.1.1 Fundamentals of Weather Radar Systems

Put simply, the function of a weather radar is to transmit a signal into the atmosphere

as a pulse of electromagnetic energy and recover the backscattered signal from any

scatterers that may be present. From that point, the received signal is compared to

the transmitted signal, and the observed differences are used to recover information

about the scatterers. A simplified block diagram of a typical system architecture used

to carry out this process is shown in Figure 2.1.

The genesis of a weather radar signal occurs at the stabilized local oscillator

(STALO). This module generates a continuous sinusoidal wave at the desired carrier

frequency f0. This signal can be expressed as

f(t) = cos(2πf0t+ ψt), (2.1)

where ψt is the initial phase of the signal. This signal is then modulated by a pulse

which can be described by the following function:

U(t) =


1 0 ≤ t ≤ τ ,

0 otherwise.

, (2.2)
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Figure 2.1: Simplified block diagram of a pulsed-Doppler radar. A continuous wave

at the operating frequency is generated by the STALO. This signal is then modulated,

amplified, and transmitted through the antenna. The received signal is mixed with

the signal from the STALO and low-pass-filtered in order to generate an in-phase (I)

baseband signal. It is also mixed with a copy of the STALO signal that has been

phase-delayed by 90◦ to form the quadrature (Q) baseband signal. These two signals

are then processed to retrieve target characteristics. This diagram is adapted from

Doviak and Zrnić (2006).

13



where τ is the length of the pulse. The resulting pulsed signal is then passed through

a high power amplifier, at which point it can be expressed as:

f ′(t) = At cos(2πf0t+ ψt)U(t), (2.3)

where At is the signal amplitude (Doviak and Zrnić 2006). The connection between

the amplifier and the antenna can be made through a T/R switch, which briefly

connects the antenna to the amplifier during signal transmission and switches it back

to the receiver during signal reception, or a circulator, which transmits excitations

on one port to the next port forward in rotation. The antenna can have any of a

wide variety of possible designs. Most currently operational weather radars (such as

the WSR-88D) use a parabolic dish antenna. The antenna may also consist of one or

more elements of a phased array, which for radar applications are typically microstrip

patches. Once transmitted from the antenna, the pulsed electromagnetic waves will

travel through the atmosphere at speeds just slightly less than the speed of light.

A small fraction of the transmitted energy will reflect from hydrometeors and any

other targets in the environment back toward the antenna. This energy from a single

target, when received by the antenna composes a signal:

V (t, r) = A cos
(
2πf0(t− 2r/c) + ψt + ψs

)
U(t− 2r/c), (2.4)

where r is the range from the radar to the target, c is the speed of light in a vacuum,

which assumes that the small decrease in propagation speed in the atmosphere can

be neglected, and ψs is the phase rotation introduced through reflection. This signal

can, alternatively, be represented in phasor notation as

V (t, r) = A exp [j2πf0(t− 2r/c) + ψt + ψs]U(t− 2r/c). (2.5)
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For signal processing purposes, it is useful to demodulate the signal in order to remove

the carrier and decompose it into two constituent components, one which is aligned

in phase with the signal produced by the STALO, and another which is at a phase

delay of 90◦ relative to the same signal. These are referred to as the in-phase (I) and

quadrature (Q) signals respectively, and they correspond to the real and imaginary

components of the signal as represented by a phasor:

V (t, r) = I(t, r) + jQ(t, r), (2.6)

I(t, r) =
|A|√

2
cos(ψe)U(t− 2r/c), (2.7)

Q(t, r) = −|A|√
2

sin(ψe)U(t− 2r/c), (2.8)

where

ψe =
−4πr

λ
+ ψt + ψs (2.9)

is the total phase of the signal at baseband. This decomposition process is performed

digitally in most modern radar systems.

2.1.2 Time Series Signals

The first step in analyzing the I and Q signals to recover information about targets is

the process of sampling. The time interval between pulses transmitted by a radar is

commonly referred to as the pulse repetition time or PRT. Over the duration of each

PRT the signal received by the radar is sampled at some interval denoted by τs. The

range corresponding to the nth time sample is given by

r0 = n
cτs

2
. (2.10)
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This range corresponds to the center of a “range gate,” a range interval in which any

target illuminated by the radar will contribute to the sampled signal. The width of

these range gates, equivalent to the range resolution of the radar, is given by

∆r =
cτ

2
, (2.11)

where τ is the pulse width (in time). It should be noted that this relationship is

actually a consequence of the more fundamental relationship

∆r =
c

2β
, (2.12)

where β is the bandwidth of the transmitted signal. In the case of a square pulse trans-

mitted at constant frequency, this is equivalent to Equation 2.11. However, a long

pulse that sweeps over some frequency band can be used to achieve the same range

resolution as a shorter, constant frequency pulse. This is known as pulse compression,

and it allows radars to achieve a higher average transmit power (and therefore a higher

level of sensitivity) than possible through transmission of a constant frequency pulse

at some given peak transmit power and range resolution. The three-dimensional ana-

log to the range gate is the resolution volume, which is the three-dimensional volume

in space inside which targets make significant contributions to a signal. It is defined

by Equation 2.11 in the range dimension and by the two-way beamwidth (typically

out to the 6dB point) of the antenna in elevation and azimuth. Using the simple re-

lation in Equation 2.10, the range of a target to within ∆r can be determined based

on the time delay at which its reflected signal is received. A critical concept is that

the maximum distance an electromagnetic wave can travel within a PRT (Ts) defines

a maximum unambiguous range (ra). Echoes from targets beyond this range will
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be interpreted by the radar as having arisen from some pulse transmitted after the

one which produced them, causing an incorrect estimate of target range. This range

threshold is given by

ra =
cTs

2
(2.13)

Typically, a radar will sample the received echo from each resolution volume along a

given azimuth many times before transmitting at a new angle. However, it should be

noted that for a constantly rotating antenna these samples are taken at angles that

are only approximately the same, which results in “beam-smearing” effects. Each

of these larger intervals composed of many PRTs is referred to as a dwell time or

coherent processing interval (CPI). By calculating the time derivative of the phase

of the received signal at a given resolution volume, information about target velocity

can be retrieved. This time derivative is:

dψe

dt
= −4π

λ

dr

dt
= −4π

λ
vr = 2πfd = ωd (2.14)

where vr is the radial velocity of the target, and fd and ωd are the Doppler frequency in

Hertz and radians per second, respectively. Much like range measurements, estimates

of Doppler frequency (and therefore of radial velocity) have a maximum unambiguous

value. In this case, the value is defined by the Nyquist-Shannon sampling theorem,

which states that in order for a signal to be completely determined it must be sampled

at a frequency twice that of the highest frequency component of the signal. If this

criterion is not met, it will result in aliasing, in which high frequency signals are

erroneously measured as signals with frequencies less than half the sampling frequency.

In this instance, the sampling frequency (fs) is the pulse repetition frequency (PRF),
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which is the reciprocal of the PRT. Applying the Nyquist-Shannon theorem yields

the following expressions for the maximum unambiguous frequency (fa) and velocity

(va):

fa =
fs

2
= −2va

λ
, (2.15)

va = ± λ

4Ts

. (2.16)

It should be noted that the inverse dependencies of va and ra on Ts create a tradeoff

space in PRT selection between the ability to accurately detect targets at distant

ranges and the ability to accurately measure high radial velocities. This is a pivotal

problem of radar design commonly known as the Doppler dilemma (Doviak and Zrnić

2006).

2.1.3 Radar Range Equation

Information about the radar cross section (RCS) of a target may be retrieved from

the power of the received signal. RCS is a measure of the detectability of an object

via radar. It depends on the size, shape, composition, and orientation of the object

relative to the incident radiation. For the purposes of this work we will assume

that RCS refers to the backscatter cross-section, which corresponds to the case of a

colocated transmitter and receiver. Particles also have bistatic radar cross-sections

which correspond to cases win which the transmitter and receiver are at separate

locations. The radar cross-section of a single target is related to the received power

by the radar range equation:

Pr =
Ptg

2λ2σbf
4(θ, φ)

(4π)3r4l2
, (2.17)
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where Pr is the received power, g is the antenna gain, σb is the RCS, f 2(θ, φ) is the

normalized antenna power density pattern value in the scatterer direction and l is a

loss factor representing attenuation of the signal during propagation as well as any

losses due to the radar system.

Weather radars, however, are not intended to observe single targets. Rather,

they observe a set of distributed targets (hydrometeors) scattered throughout each

resolution volume. To approximately describe this scenario, it is necessary to modify

the radar range equation as follows:

P r(r0) =
Ptg

2ηcτπθ2
1λ

2

16(4π)3r2
0l

2 ln(2)
(2.18)

Where θ1 is the one-way 3 dB beamwidth of an antenna with an assumed Gaussian

radiation pattern, and η is reflectivity, a distributed target analog to RCS defined as:

η =

∫ ∞
0

σb(D)N(D)dD, (2.19)

where N(D) is a drop-size distribution (DSD), a function that gives the number

of drops (N) for any diameter (D) per unit volume. Assuming that reflectivity is

constant throughout the resolution volume and that Rayleigh scattering is a valid

approximation (the scatterer diameters are much smaller than the radar wavelength),

the reflectivity can be expressed as:

η = (π5/λ4)|Kw|2
∫ ∞

0

N(D)D6dD

= (π5/λ4)|Kw|2Z,
(2.20)

where |Kw| is the dielectric factor for water and Z is the reflectivity factor in units

of mm6m−3. Often, reflectivity factor is expressed is in a logarithmic scale, where

10 log10 Z gives the reflectivity in dBZ
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2.1.4 Weather Radar Equation

Doppler analysis of radar signals reflected from distributed targets has some additional

complexities as compared to the analysis of signals from point targets. Rather than

having a single observable Doppler frequency, the signal has Doppler frequencies

distributed over some band. This is a result of the fact that the signal is composed

of returns from targets with many different radial velocities. The power-weighted

distribution of these radial velocities is referred to as the Doppler spectrum, and its

properties can be analyzed in order to retrieve useful information about meteorological

targets. The Doppler spectrum is defined mathematically as the discrete-time Fourier

transform (DTFT) of the auto-correlation function (ACF) of the time-series collected

from a resolution volume. Because the overall Doppler spectrum of the returns from

a resolution volume is composed by the convolution of many independent spectra,

it can be shown through the central limit theorem to have an expected Gaussian

shape (Doviak and Zrnić 2006). Under this Gaussian assumption, the spectrum can

be described completely by its first three moments.

The zeroth moment corresponds to signal power and can be defined as follows:

S ≡
∫ ∞
−∞

S(v)dv, (2.21)

where S is the signal power and S(v) is the Doppler spectrum. Its magnitude is a

function of the number, size, and composition of the hydrometeors within a resolution

volume. The signal power can be converted to a reflectivity factor in dBZ through
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the weather radar range equation (Equation 2.18). The first moment is the mean

Doppler velocity, which can be expressed as

vr ≡
1

S

∫ ∞
−∞

vS(v)dv. (2.22)

This quantity reflects the power-weighted mean radial velocity of the hydrometeors

within the resolution volume, which corresponds approximately to the mean wind

velocity. The Doppler spectrum width is given by the square root of the second

central moment of the Doppler spectrum:

σ2
v ≡

1

S

∫ ∞
−∞

[v − vr]
2S(v)dv. (2.23)

This quantity describes the diversity of radial velocities within the resolution volume

and, therefore, the shear and turbulence in the volume. In practice, however, time-

domain estimators of these key observable quantities are oftern preferable to the direct

use of their integral definitions. Total signal power is estimated as follows:

P̂ =
1

M

M−1∑
m=0

|V (m)|2 +N . (2.24)

where N is the mean noise power. Mean radial velocity can be estimated through

the phase of the lag-one autocorrelation of the time-series signal. Assuming a Gaus-

sian Doppler spectrum, the ACF of the signal at some integer multiple of Ts can be

expressed as

R(lTs) = S exp[−8(πσvlTs/λ)2]e−j4πvrlTs/λ +N δl, (2.25)

The ACF at any lag l can be estimated from the time series signal as

R̂l =
1

M

M−1−|l|∑
m=0

V ∗(m)V (m+ l). (2.26)
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This allows the mean radial velocity to be estimated as

v̂r = − λ

4πTs

arg R̂1 (2.27)

and, similarly, for the spectrum width to be estimated as

σ̂v =
λ

2πTs

√
2

∣∣∣∣ln( Ŝ

R̂1

)∣∣∣∣1/2 (2.28)

where Ŝ is the estimated signal power minus some estimated noise power. Or, alter-

natively,

σ̂v =
λ

2πTs

√
6

∣∣∣∣ln(R̂1

R̂2

)∣∣∣∣1/2. (2.29)

While these products alone reveal a considerable amount of useful information about

the observed regions of the atmosphere, these metrics also have limitations. Their

inability to provide information about hydrometeor shape handicaps their usefulness

in applications such as precipitation estimation and hydrometeor classification. The

ability of radar to assist in those endeavors is significantly bolstered through the

technique of polarimetry.

2.2 Weather Radar Polarimetry

Polarimetry is a powerful tool for improving the accuracy and expanding the ca-

pabilities of meteorological radar measurements. It has applications in quantitative

precipitation estimation, hydrometeor classification, drop size distribution retrieval

and attenuation correction. It has become a standard feature of operational weather

radars. Therefore, it is critical for the proliferation of phased array weather radars
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that solutions be found to the considerable challenges inherent in effective imple-

mentation of this technology in phased array systems. This section provides a brief

discussion of the physical principles of electromagnetic wave polarization, the polari-

metric properties of hydrometeors, and the primary polarimetric products produced

by weather radars.

2.2.1 Polarized Waves

A wave is a propagating vibration. Electromagnetic waves (propagating oscillations

of electric and magnetic fields) are transverse waves. This means that the oscillation

of the wave is orthogonal to the direction of propagation. The polarization of an

electromagnetic wave is a description of the vibration direction of the electric field,

given by a trace of the motion of the tip of the electric field vector ~E in the plane

normal to the propagation direction of the wave. This motion can be linear, elliptical,

V

H

(a)

V

H

(b)

V

H

(c)

Figure 2.2: Traces of the electric field vector tip for (a) linear, (b) right-hand circu-

lar, and (c) left-hand elliptical polarizations. Handedness assumes wave propagation

outward normal to the page.
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or circular with right- or left-handed direction,(as shown in Figure 2.2) depending on

the relative phases of the orthogonal components of the vector. Antennas may be

designed to selectively radiate and receive some desired polarization. This allows

the design of radar systems that an additional set of independent information about

targets through the use of polarization diversity.

2.2.2 Polarimetric Characteristics of Precipitation

The utility of polarimetry in characterizing hydrometeors is contingent on the fact

that hydrometeors have properties that cause differences in scattering behavior be-

tween polarizations. Broadly speaking, these properties are shape, orientation and

composition. Before entering a short discussion of the various ways in which these

properties affect polarimetric scattering behavior, it is useful to note the standard

conventions for describing polarization in a weather radar context. First, while trans-

mission and reception in a circular polarization basis has been used in weather radar

polarimetry applications, the most widely used modern polarimetric products are

based on a linear polarization basis. As such, all further discussion within this work

will assume transmission and reception in a linear basis. The linear polarization di-

rections used in weather radar applications are designated horizontal (H), which lies

parallel to the surface of the earth and orthogonal to the direction of signal propaga-

tion, and vertical (V) which is orthogonal to the earth’s surface and to the direction
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of signal propagation. A simplified model of backscatter by a single particle can be

expressed as follows: Erh

Erv

 =

shh shv

svh svv


Eih

Eiv

 , (2.30)

where Erh and Erv are the reflected electric fields in the H and V polariztions back

toward the direction of arrival of the incident radiation, shh, shv, svh, and svv are

the scattering parameters of the particle. The first letter of the subscript represents

the polarization of the incident radiation and the second letter is the polarization

to which it is scattered. Eih and Eiv are the incident electric fields in the H and

V polarizations. Each of these quantities can be expressed as a phasor with some

amplitude and phase.

In order to understand how the shape, size, orientation and composition of a

particle affects these scattering parameters, we will first make several simplifying

assumptions. The first is that particle shapes can be reasonably approximated by

(a) (b)

Figure 2.3: Examples of the two possible spheroid configurations. An (a) oblate

spheroid is formed by revolution of an ellipse about its minor axis, while a (b) prolate

spheroid is formed by revolution about the major axis.
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spheroids. While actual hydrometeors can have widely varying shapes, particularly

when considering those composed of ice, this approximation works well for explaining

much of the polarimetric behavior of precipitation. The second assumption we will

make is that the hydrometors are sufficiently electrically small (typically, D < λ/50)

that the electric fields induced within the hydrometeor by incident radiation are

appoximately uniform. This is known as the Rayleigh assumption, and it allows us to

treat the the reflection of an incident wave as re-radiation by a dipole. This leads to

the Rayleigh-Gans scattering model for spheroids (Bringi and Chandrasekar 2001).

Let the spheroid be formed by the revolution of an ellipse about one of its axes. The

axis about which the ellipse is rotated is designated b, and the orthogonal axis is a.

Figure 2.3 shows diagrams of both prolate (most often used to model some types of

ice crystal) and oblate spheroids (used to model raindrops and most other forms of

precipitation). As shown in Section 6.32 of Van de Hulst (2012), we can define a set

of shape parameters Lx, Ly and Lz for each of these cases:

Lx = Ly =
1

2
(1− Lz) (2.31)

With Lz for an oblate spheroid (a > b) being equal to

Lz =
1 + g2

g2

(
1− 1

g
arctan(g)

)
, (2.32)

g2 =

(
a

b

)
− 1, (2.33)

and for a prolate spheroid (a < b) being equal to:

Lz =
1− e2

e2

(
−1 +

1

2e
ln

1 + e

1− e

)
, (2.34)

e2 = 1−
(
b

a

)2

. (2.35)
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Using these definititions the scattering parameter s for the polarization aligned with

the a or b axis of the spheroid can be expressed as

sa,b = k2a2b
εr − 1

3[1 + La,b(εr − 1)]
, (2.36)

where εr is the complex relative dielectric constant of the particle and k is the

wavenumber. From this expression it can be shown that the greater the value of

a, the greater the amplitude and phase of the associated scattering parameter, and

likewise for the b axis. This allows information about the dimensions of the spheroid

to be inferred from its scattering behavior. However, there is a caveat:

sa

sb

=
[1 + Lb(εr − 1)]

[1 + La(εr − 1)]
, (2.37)

lim
εr→1

sa

sb

= 1. (2.38)

In other words, the closer the complex relative dielectric constant of the particle to 1

(corresponding to free space) the less pronounced the differences in scattering behavior

between the two spheroid axes become. Therefore, the composition of a particle, as

well as its shape, plays a role in determining its polarimetric characteristics. If we

consider a scenario in which a aligns with the conventional H polarization direction

and b aligns with V, we will obtain the expression:Erh

Erv

 =

sa 0

0 sb


Eih

Eiv

 = SEi (2.39)

with the zeros along the off-diagonal of the scattering matrix indicating that no mixing

between the incident fields is induced during the scattering process. However, things

are not always this simple. If the a and b axes of the spheroid are rotated by some

27



angle (θ,φ) as represented in Figure 2.4, projection of the H/V coordinate basis onto

the axes of the spheroid giving us an effective scattering matrix (Zhang 2016) S′ as:

S′ =

−
(
sa(cos2 θ sin2 φ+ cos2 φ) + sb sin2 θ sin2 φ

)
(sa − sb) sin θ cos θ sinφ

(sa − sb) sin θ cos θ sinφ sa(sin2 θ + cos2 φ) + sb cos2(θ)

 .
(2.40)

Figure 2.4: Illustration of an oblate

spheroid scatterer oriented at some arbi-

trary angle (θ, φ) relative to the H/V po-

larization basis.

Accordingly, scattering from a spheroid

whose axes of symmetry are tilted off

of the H/V polarization basis will re-

sult in depolarization due to the non-zero

off-diagonal terms of the scattering ma-

trix. Thus, a particle’s orientation also

plays a role in determining its polarimet-

ric properties. An important concept is

that scattering does not occur only in the

backward direction. A scattering matrix

exists for every possible direction rela-

tive to the direction of arrival of the in-

cident radiation, including forward along

the path of the wave’s propagation. Un-

der the Rayleigh assumption, this forward scattering matrix is equal to the backscat-

tering matrix. This results in an increasing differential phase delay and attenuation

between the H and V polarized waves as they move along the propagation path. This

is less pronounced for smaller, more sphericle particles.
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2.2.3 Polarimetric Variables

Polarimetric radars are able to transmit and receive signals in the H and V polar-

izations. The corresponding time-series for each polarization can be used to derive

products that reflect the aggregate polarimetric properties of the scatterers within a

resolution volume. The most widely used of these products are H reflectivity (ZH), V

reflectivity (ZV), differential reflectivity (ZDR), differential phase (φDP), specific dif-

ferential phase (KDP) and copolar correlation coefficient (|ρHV(0)|). The remainder

of this section will be devoted to an explanation of how these parameters relate to

the shape and orientation of spheroidal hydrometeors (Zhang 2016) as well as how

they are estimated from time-series signals (Bringi and Chandrasekar 2001). ZH and

ZV can be expressed in terms of the scattering parameters within a volume as follows:

Zhh,vv =
4λ4

π4|Kw|2
〈n|shh,vv|2〉, (2.41)

where n is the number of scatterers in the volume and the dielectric factor for water

is:

Kw =
ε− 1

ε+ 2
, (2.42)

where ε is the dielectric constant of water. The polarimetric reflectivity values are

calculated from the H and V time-series data Vh(m) and Vv(m) by using Equation

2.24 to estimate the average power of each signal and then using the radar range

equation to convert each power to a reflectivity. The ZDR is simply the ratio of the

H and V reflectivities expressed in decibels:

ZDR = 10 log

(
Zhh

Zvv

)
. (2.43)
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This quantity is estimated by computing the ratio of power estimates in H and V.

ZDR is closely related to the average H/V aspect ratio of the hydrometeors within a

volume. One key application for ZDR is rain rate estimation. Using reflectivity alone,

it is difficult to distinguish between rainfall scenarios with many small drops and

those with a few large drops. These two scenarios may produce identical reflectivities,

but drastically different rainfall rates. ZDR is useful for distinguishing the scenarios

because large drops tend to become more “flattened” by the effects of drag, and

therefore have greater dimensions in H, resulting in higher ZDR.

Another quantity closely related to the aspect ratio of precipitation is KDP, which

can be calculated from scattering parameters (Zhang 2016) as:

KDP =
180

π
Re

[
2π

k
〈n(sa − sb)〉1

2

(
1 + e−2σ2

θ

)
e−2σ2

φ

]
. (2.44)

where σ2
θ and σ2

φ are the variances of the two canting angles among the hydrometeors

in the volume. KDP is a measure of the differential phase shift between H and V

accumulated per unit length along the propagation path. However, it is not measured

directly. It is estimated from φDP which is related by the expression:

φDP = 2

∫ r0

0

KDP dr. (2.45)

In order to discuss how φDP is calculated from time-series data, it is necessary to

briefly describe the two different modes of radar operation most commonly used to

collect polarimetric data, as the procedure is slightly different for each. The first mode

is simultaneous horizontal and vertical (SHV). In this mode a signal is transmitted on

both H and V simultaneously on each PRT. By contrast, in alternating horizontal and

vertical (AHV) mode, the polarization of the transmitted signal alternates between
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H and V on each PRT. In simultaneous mode, the φDP may be estimated from the

zero-lag covariance R̂vh[0]:

φ̂DP = ∠R̂vh[0] (2.46)

R̂vh[0] =
1

M

M−1∑
m=0

Vv[m]V ∗h [m]. (2.47)

Whereas in AHV mode we do not have the zero-lag covariance available. Therefore,

we calculate φDP from two single-lag covariances:

φ̂DP =
1

2

[
arg
(
R̂vh[1]

)
− arg

(
R̂hv[1]

)]
, (2.48)

R̂vh[1] =
1

N

N∑
n=1

Vv[2n]V ∗h [2n− 1], (2.49)

R̂hv[1] =
1

N

N−1∑
n=1

Vh[2n+ 1]V ∗v [2n]. (2.50)

As φDP, much like attenuation, is a path-integrated quantity, it is particularly useful

for attenuation correction applications.

The final major parameter is |ρHV(0)|. It is related to the scattering parameters

of the particles within the resolution volume by

|ρhv(0)| = |〈nshhsvv〉|(
〈n|shh|2〉〈n|svv|2〉

)1/2
. (2.51)

Like φDP it must be calculated differently for SHV and AHV operation modes. In

SHV, |ρHV(0)| is estimated as

|ρ̂hv(0)| = R̂vh[0]

(ŜhŜv)1/2
, (2.52)

R̂vh[0] =
1

N

N∑
n=1

Vv[n]V ∗h [n]. (2.53)
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and in AHV mode the estimator is

ρ̂hv =
|ρ̂hv[1]|
|ρ̂[2]|0.25

, (2.54)

ρ̂hv[1] =
R̂hv[1]√
ŜhŜv

, (2.55)

ρ̂[2] =
1

N

N−1∑
n=1

Vh[2n+ 1]V ∗h [2n− 1]. (2.56)

|ρHV(0)| is fundamentally an estimator of the diversity of the polarimetric character-

istics of the scatterers within a resolution volume. It plays a particularly important

role in hydrometeor classification, as well as in more specialized applications such as

identifying tornado debris.

Now that the basic foundations for pulsed-Doppler radar and polarimetry have

been established, the fundamental principles of the phased array antenna are the

major remaining component in our summary of the basic underpinnings of PPAR

operation.

2.3 Phased Arrays

The use of phased array antennas in radar applications offers a number of advantages

in exchange for an increase in cost and complexity. Among the most important are ag-

ile beamsteering, multifunctionality, and the potential for adaptive array processing.

This section will provide an overview of the basic operating principles and mathe-

matical description of phased arrays, initially for a simple linear array and eventually

for an arbitrary array configuration.
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2.3.1 Linear Phased Arrays

In order to demonstrate the basic operating principle of a phased array, it is instructive

to first consider a uniform linear array (ULA). A ULA is defined as consisting of a set

of sensors arranged in a straight line with some uniform spacing. We will consider a

ULA consisting of M antennas with a uniform spacing d as illustrated in Figure 2.5.

Next, consider a monochromatic plane wave with temporal variation Aejkt impingent

on the array from some angle θ with respect to the y-axis. In this scenario, the

received signal at the mth element can be expressed as:

ym(t) = Aej[k(t−md sin(θ)/c)+φ0] (2.57)

Where φ0 is the measured phase of the received signal at the element corresponding

to m = 0 (hereafter refered to as the reference element). Let ym[t0] be a single time

sample taken at the mth element at time t0. Arranging the samples from each element

at time t0 into a vector y, we can write (Richards 2005):

y =

[
y0[t0] y1[t0] ... yM−1[t0]

]
(2.58)

= Aejkt0+φ0

[
1 e−jkd sin(θ) ... e−(M−1)jkd sin(θ)

]
(2.59)

= Â

[
1 e−jKθ ... e−j(M−1)Kθ

]
(2.60)

≡ Âas(θ) (2.61)

We now have Kθ, a spatial frequency which represents the differential phase in the

received signal between adjacent elements, Â, a complex amplitude representing the

amplitude of the impingent plane wave and its phase at element m = 0 and as(θ)

a vector containing the phase delay (in phasor form) between each element and the
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Figure 2.5: A diagram of the beamforming process for a uniform linear array. The

signal of interest arrives at angle θ from the direction normal to the array. The

signal received by each element is designated ym, where m is the element index. The

signal is sampled at time t0 and summed over all elements after application of the

beamforming weights in vector h. This yields the time series sample at time t0. This

diagram is adapted from Richards (2005)

34



reference element. This vector is referred to as the spatial steering vector. Next

consider the weighted summation of the samples at each element using weights chosen

such that the samples are aligned in phase. This operation can be expressed as:

z = hTy, (2.62)

h =

[
w0 w1e

jKθ ... wM−1e
j(M−1)Kθ

]
(2.63)

where wm is an amplitude weight for the mth element. This weighting results in a

situation where a signal with wavenumber k = 2π/λ impingent upon the array from

θ will be summed constructively. This effectively “steers” the receive beam of the

array to that angle. The amplitude weights can be used to apply a taper for the

purpose of suppressing the sidelobes of the radiation pattern of the antenna. From

the principle of reciprocity, we can state that that applications of these same weights

to the element excitations on transmit will steer the transmitted radiation in the

same direction. For a beamformer steered to some angle θ0, the response of that

beamformer to an impingent wavefront from some angle θ can be obtained as follows:

z(θ) = h′y = Â
M−1∑
m=0

wme
−j(Kθ−Kθ0 )m (2.64)

This response, which is simply the DTFT of the sequence of complex weights, is the

array factor.
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2.3.2 Arbitrary Array Geometry

We can generalize this simple superposition-based beamforming process to multiple

dimensions and arbitrary array geometries by calculating the spatial phase for each

element separately (Wang and He 2010):

Φm(θ, φ) = k(r̂θ,φ ·Rm) (2.65)

Where r̂θ,φ is the unit vector from the coordinate system origin to the observation

direction (θ,φ), θ and φ are defined as angles from each of the array’s principle planes,

and Rm is a position vector from the origin to the mth element. From this generalized

spatial phase expression we can arrive at a generalized form of y, the value of h

necessary to steer the beam to some angle (θ0,φ0), as well as an array factor z(θ, φ):

y = Â

[
1 e−jΦ1(θ,φ) ... e−jΦM−1(θ,φ)

]
, (2.66)

h =

[
w0 w1e

−jΦ1(θ0,φ0) ... wM−1e
−jΦM−1(θ0,φ0)

]
, (2.67)

z(θ, φ) = h′y = Â
M−1∑
m=0

wme
j[Φm(θ0,φ0)−Φm(θ,φ)]. (2.68)

This array factor is not a complete description of the radiation characteristics of an

array. The radiation characteristics of the individual elements must be accounted for.

For arbitrary patterns at each element and arbitrary array geometry, the radiated

field in any direction F (θ, φ) can be calculated as

F (θ, φ) =
M−1∑
m=0

z(θ, φ)fm(θ, φ), (2.69)

where fm(θ, φ) is the complex-valued radiated field pattern of the mth element in

the direction (θ, φ). For the special case of a planar array with identical radiation
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(a) (b)

(c)

Figure 2.6: Example of the calculation of an array radiation pattern through mul-

tiplication of an element pattern and array factor. The element pattern (a) is for a

simulated H-polarized microstrip patch, and the array factor (b) is for a 16 × 40 ele-

ment planar array. Multiplication of the two at each angle yields the array radiation

pattern (c).

patterns at each element, which can be a reasonably valid assumption for large arrays,

the expression can be simplified (Bhattacharyya 2006):

F (θ, φ) = z(θ, φ)f(θ, φ). (2.70)
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An example of the results of this calculation is shown in Figure 2.6.

Before concluding the discussion of phased arrays, it should be noted that there are

a number of possible architectures for phased array implementation (Skolnik 2001).

The oldest architecture is the passive array, in which the entire beamforming process

is carried out by analog electronics and the radar system has only a single transmitter

and receiver (T/R module). Other possible implementations are the subarray archi-

tecture, in which the radar has several sets of T/R modules, each paired with some

subsection of the array through an analog beamformer. This allows for more flexible

and more adaptive scan strategies than the passive array, but it is not so flexible as

the fully active array, in which each individual element has its own T/R module. In

the most recent arrays, these T/R modules may even entirely eschew phase shifters

and attenuators, performing those functions instead in the digital-to-analog conver-

sion process. With that, our discussion of the theoretical components underlying

PPAR operation is complete, and we can turn our attention to the unique problems

encountered when polarimetry and electronic beam steering are combined in a single

system.
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Chapter 3

Cross Coupling Biases and Techniques for

Mitigation

3.1 Mechanisms of Cross Coupling Bias

Now that the basic principles of both phased array radars and of polarimetry have

been discussed, it is possible to examine the problems that arise when attempts are

made to combine these technologies. First, it is necessary to establish a model for

dual-polarization antennas generally and for dual-polarization arrays in particular.

Then, the issue of precisely defining a polarization basis will be discussed. This will

include an overview of the different bases commonly used when characterizing the

polarization properties of antennas as well as the H/V polarization basis as typically

defined in the context of weather radar polarimetry. Next, the chapter will discuss

the physical origins of cross-polar fields due to electronic beam steering, using several

common types of radiating elements as example cases. An explanation of the effects

of mechanical elevation on cross-polar fields will also be provided. Finally, the chapter

will conclude with a review of the methods that have been proposed in the literature

for the mitigation of the effects of cross-polar fields on estimates of polarimetric

weather radar products.
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3.1.1 A Model for Dual-Polarization Arrays

The first step toward a model for dual-polarization arrays is a model for an individual

dual-polarization radiating element. Chapter 2 introduced the concept of a radiation

pattern, which defines the amplitude and phase of the electric field radiated from an

antenna at any angle (θ, φ). The radiative behavior of a dual-polarization antenna

is not described by a single radiation pattern. The antenna has two ports, one cor-

responding to each polarization. Let the two polarizations be designated H and V

for ease of discussion. An excitation on the H port produces radiation primarily in

the H polarization, but it also produces some (generally undesirable) radiation in the

V polarization as well. The inverse is true for the V port. Therefore, it requires a

set of four patterns to completely describe the antennas behavior, representing the

radiation produced in each polarization by an excitation on each port. These pat-

terns will be designated fhh(θ, φ), fhv(θ, φ), fvh(θ, φ), and fvv(θ, φ), where the first

letter of the subscript indicates the polarization of the radiation described by the

pattern and the second letter of the subscript indicates the port excited in order

to produce that radiation. Additionally, as a consequence of reciprocity, this same

phenomenon occurs as the antenna receives incident radiation. Incident H polarized

radiation produces some signal on the V port as well as the H port, and incident V

polarized radiation behaves likewise. The process for calculating polarimetric array

radiation patterns is identical to that used in the calculation of single-polarization

array radiation, except that it must be performed separately for each of the four

patterns. A desired electronic steering angle (θ0, φ0) is chosen and for each element
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pattern, a corresponding array radiation pattern is calculated through either the gen-

eral weight-and-sum process (Equation 2.69) or through array factor multiplication

in the simplified case of a planar array with identical elements (Equation 2.70). In

the case of an array with identical element weighting on transmit and receive, this

yields a set of dual polarization array radiation patterns designated Fhh(θ0, φ0, θ, φ),

Fhv(θ, φ, θ0, φ0), Fvh(θ, φ, θ0, φ0), and Fvv(θ, φ, θ0, φ0). Combining this model of radia-

tion and reception with the general model for dual-polarization scattering (Equation

2.30) and the radar range equation (Equation 2.17), we can write a matrix-based

model for the relationship between the excitation on each antenna port of a radar

and the signal received due to scattering from a point target:V Rx
h

V Rx
v

 =
e−2jkr

r2

Fhh(θ, φ, θ0, φ0) Fvh(θ, φ, θ0, φ0)

Fhv(θ, φ, θ0, φ0) Fvv(θ, φ, θ0, φ0)


shh shv

svh svv


Fhh(θ, φ, θ0, φ0) Fhv(θ, φ, θ0, φ0)

Fvh(θ, φ, θ0, φ0) Fvv(θ, φ, θ0, φ0)


V Tx

h

V Tx
v

 . (3.1)

Normalizing for the phase and amplitude effects of target range and condensing the

notation, we obtain a simplified expression for the effects of dual-polarization patterns

on the measured fields scattered from a target:

V′Rx = FTSFVTx, (3.2)

where the ′ denotes the normalization for target range. As shown in Figure 3.1, the

magnitude of the cross-polar fields radiated from an array is largely controlled by

the magnitude of cross-polar fields of the array elements in the electronic steering

direction (θ0, φ0). This however, does not explain the physical reasons why these
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cross-polar fields radiate from the elements in the first place. In order to explain the

physical origins of this phenomenon, however, it is necessary to first rigorously define

cross-polarization.

3.1.2 Defining Cross-Polarization for Weather PPARs

In modeling weather radar polarimetry, it is necessary to take great care in ensuring

that the polarization basis used to describe antenna characteristics matches that used

to describe radiation incident on a hydrometeor, and if it does not, to transform the

measurement basis appropriately in any attempt to calculate the effects of antenna

patterns on polarimetric measurements. Ludwig (1973) describes three distinct defi-

nitions (illustrated in Figure 3.2) of co- and cross-polarization that have historically

been used in the literature on antennas. The first definition, commonly referred to as

Ludwig I, defines one unit vector in a rectangular coordinate system to represent the

reference polarization, and another to represent the cross-polarization. The second,

Ludwig II, defines the co- and cross-polarization directions using the tangential unit

vectors of a spherical coordinate system with the antenna under test (AUT) located

at the origin. The third definition, Ludwig III, is defined as “what one measures when

antenna patterns are taken in the usual manner” (Ludwig 1973). More precisely, a

reference polarization cut is obtained when one aligns a single-polarization probe in

azimuth and polarization with the AUT, which may be tilted at some elevation an-

gle, and then rotates the AUT in azimuth in order to obtain a cut. The procedure is

identical to obtain a cross-polarization cut, except for the single difference that when
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(a) (b)

(c)

Figure 3.1: a) Cross-polar element pattern. b) Corresponding cross-polar radiation

pattern for an array composed of those elements steered to broadside. c) Cross-

polar radiation pattern for the same array steered to (45◦, 45◦). The array patterns

correspond to a 16×40 element S-band array with λ/2 inter-element spacing. The

patterns shown here are untapered, leading to a 3dB beamwidth of approximately

2.5◦ × 6.4◦.
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(a) (b) (c)

Figure 3.2: The Ludwig I (a), II (b), and III (c) definitions of co- and cross-

polarization. The blue grid in each figure illustrates the polarization basis for each

definition relative to a spherical surface centered on the antenna under test. This

diagram is adapted from Ludwig (1973).

the two antennas are initally aligned in azimuth, the probe is rotated such that its

polarization is orthogonal to that of the AUT.

Let us define a spherical coordinate system such that:

r̂ = sin θ cos φ̂i + sin θ sinφĵ + cos θk̂, (3.3)

θ̂ = cos θ cos φ̂i + cos θ sinφĵ− sin θk̂, (3.4)

φ̂ = − sin φ̂i + cosφĵ, (3.5)

and place a theoretical weather radar at the origin, assuming the xy plane to be

tangent to the surface of the earth at the position of the radar. In this setup, the

H/V polarization basis that is of interest in weather radar polarimetry can defined as

follows (Zhang et al. 2009):

ĥ = φ̂, (3.6)

v̂ = −θ̂, (3.7)
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where ĥ is the horizontal polarization unit vector φ̂ is the azimuthal unit vector, v̂

is the vertical polarization unit vector and θ̂ is the zenith unit vector. This results

in the H polarization direction lying in a plane parallel to the surface of the earth,

with a V polarization that is approximately normal to the surface of the earth given

that the radar is steered to a small elevation angle. This definition of polarization

is chosen in order to directly correlate polarimetric measurements with hydrometeor

properties such as canting angle and drop size. It can be immediately noted that

the H/V polarization unit vectors are colinear to those that define the Ludwig II

definition of cross-polarization, and the two bases are therefore equivalent. As such,

the Ludwig II antenna patterns are those that are actually relevant to the performance

of polarimetric weather radars.

3.1.3 Origins of Bias Due to Electronic Beam Steering

Now that cross-polarization has been rigorously defined for our purposes, we may

examine the physical origins of bias due to electronic beam steering. First, let consider

a pair of crossed Hertzian dipoles placed at the origin of a Cartesian coordinate

system. The horizontal dipole oriented along the x axis radiates when the H port of

the antenna is excited. The vertical dipole oriented along the z axis radiates when

the V port of the antenna is excited. The electric field radiated by a dipole can be

expressed as:

E(r) = −k
2e−jkr

4πεr

[
r̂× (r̂×M)

]
, (3.8)
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where r is the position vector of the point at which the field is measured, ε is the

permittivity of free space, and M is the moment of the dipole (Ishimaru 1978). The

vectors giving the directions of the electric field components normal to the wave

propagation direction (along r̂) from each dipole can be expressed as follows:

ed1 = ĵ− (̂i sin θ cosφ+ ĵ sin θ sinφ+ k̂ cos θ) sin θ sinφ, (3.9)

ed2 = k̂ sin2 θ − (̂i cosφ+ ĵ sinφ) sin θ cos θ, (3.10)

where ed1 is the vector corresponding to radiation from the horizontal dipole and ed2

corresponds to radiation from the vertical dipole (Zhang et al. 2009). Projection of

these unit vectors onto the H/V polarization basis yields the following results:

ĥ · ed1 = φ̂ · ed1 = cosφ, (3.11)

v̂ · ed1 = −θ̂ · ed1 = − cos θ sinφ, (3.12)

ĥ · ed2 = φ̂ · ed2 = 0, (3.13)

v̂ · ed2 = −θ̂ · ed2 = sin θ. (3.14)

Note that the “H” dipole does not radiate exclusively into the H direction of our

polarization basis. To better visualize this effect, a spherical grid corresponding to the

radiated polarization directions for the dipoles has been superimposed on a second

spherical grid depicting the H/V polarization directions (i.e., the Ludwig II basis)

that we have defined for weather radars in Figure 3.3a. Observe that in the principal

planes of our crossed dipole antennas (θ = 0 or φ = 0) the radiated field aligns

exactly with the H/V basis, but the radiation from the horizontally oriented dipole

bends away from the H polarization direction as one moves further away from those
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Figure 3.3: Overlaid spherical grids representing the H/V polarization basis and and

the polarization of the radiation from a pair of elements, represented by the pair of

crossed arrows.In (a) the elements are dipoles and in (b) they are complementary

apertures.

planes. Meanwhile, the V dipole radiation aligns with the V polarization direction at

any angle. This translates to the normalized crossed-dipole element patterns shown

in Figure 3.4. While the crossed-dipole model is appealing for its simplicity in

conveying the basic idea of how polarimetric bias might arise, it does not describe

the exact mechanism through which this bias arises in the microstrip patch arrays

that are used in most modern phased array radars. In order to understand the biases

that arise in microstrip patch arrays, it is instructive to first examine how biases arise

in aperture antennas. From Babinet’s principle, as modified for electromagnetics

(Booker and Others 1946), it can be shown that an aperture complementary to a

dipole will radiate with transposed electric and magnetic field oscillation directions
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Figure 3.4: Normalized element patterns for a pair of crossed Hertzian dipoles. Note

that the radiation from the vertically oriented dipole corresponds exactly with V

polarization direction, yielding fHV(θ, φ) = 0. Meanwhile, the cross-polar radiation

from the horizontally oriented dipole increases in magnitude with distance from the

principal planes of the radiating element.
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relative to the original dipole. A similar set of e vectors in (θ,φ) can be constructed

normal to those derived for crossed dipoles and projected onto a (θ, φ) surface (Lei

et al. 2013):

ĥ · es1 = φ̂ · es1 = cos θ sinφ, (3.15)

v̂ · es1 = −θ̂ · es1 = cosφ, (3.16)

ĥ · es2 = φ̂ · es2 = sin θ, (3.17)

v̂ · es2 = −θ̂ · es2 = 0, (3.18)

where es1 corresponds to the horizontally aligned aperture, which is excited by the

V port of the antenna, and es2 corresponds to the vertically aligned aperture, which

is excited by the H port of the antenna. The properties of the H and V radiating

elements are reversed. The H radiation is now perfectly aligned with the H polariza-

tion direction at any angle, and the V radiation is misaligned with the V polarization

direction to an increasing degree as one moves away from the principal planes of the

antenna. This effect is shown in Figure 3.3b, and corresponding element patterns

are shown by Figure 3.5. Now that we have developed some understanding of the

polarization characteristics of idealized apertures, we are well equipped for a quali-

tative discussion of the polarization characteristics of microstrip patch antennas. A

microstrip patch radiates from the fringing fields at its edges, as illustrated in Figure

3.6. For a mode excited within the patch corresponding to a given polarization, one

pair of edges will have uniform fringing fields that will actually radiate, while the

other two edges will have sinusoidally varying fringing fields that interfere with each

other destructively in the principal planes of the patch (Balanis 2016). In contrast
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Figure 3.5: Normalized element patterns for a pair of crossed infitesimal apertures,

obtained through the application of Babinet’s principle. The H and V radiation

properties are essentially transposed. Here, fVH(θ, φ) = 0 due to the radiation from

the horizontally radiating aperture existing entirely in the H polarization direction.

The cross-polar fields from the vertically radiating aperture increase in magnitude

with distance from the principal planes.
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to the non-radiating edges, the effective apertures at the radiating edges interfere

constructively at broadside, resulting in a more focused pattern than that of a single

aperture. For the H and V radiating modes of the patch, one can perform a simi-

lar projection to that used in finding the polarization characteristics of dipoles and

apertures (Lei et al. 2013):

ĥ · ep1 = φ̂ · ep1 = cos θ sinφfv(θ, φ), (3.19)

v̂ · ep1 = −θ̂ · ep1 = cosφfv(θ, φ), (3.20)

ĥ · ep2 = φ̂ · ep2 = sin θfh(θ, φ), (3.21)

v̂ · ep2 = −θ̂ · ep2 = 0, (3.22)

where ep1 corresponds to the horizontally aligned edges of the patch, which are excited

by the V port of the antenna, and ep2 corresponds to the vertically aligned edges of

the patch, which are excited by the H port of the antenna. One may note that these

expressions are identical to those for a single aperture except for the terms fv(θ, φ) and

fh(θ, φ), which are introduced to account for both the fact that we are now modeling

an aperture pair, rather than a single aperture, and to account for finite dimensions,

as we are no longer discussing something so idealized as the complementary aperture

to a Hertzian dipole. These functions are given as follows (Lei et al. 2013):

fh(θ, φ) =
sin
(
k0L

2
cos θ

)
k0L

2
cos θ

cos

(
k0Le

2
sin θ sinφ

)
, (3.23)

fv(θ, φ) =
sin
(
k0L

2
sin θ sinφ

)
k0L

2
sin θ sinφ

cos

(
k0Le

2
cos θ

)
, (3.24)

51



Figure 3.6: Diagram of fringing fields in-

duced at each edge of a microstrip patch

when each port is excited. Fringing fields

are constant along the radiating edges cor-

responding to each polarization, while the

non-radiating edges are characterized by

sinusoidally varying fringing fields.

where k0 is the free-space wavenumber, L

is the physical length of the patch edges,

and Le is an effective patch length that

accounts for the extent of the fringing

fields past the physical patch edges. It

should also be noted that the above ex-

pression neglects the contribution of the

non-radiating edges, which do in fact ra-

diate to some extent away from the prin-

cipal planes of the array. When these

fields are accounted for, the radiation in-

duced in V by an excitation on the H

port will be non-zero. A realistic set of

simulated element patterns that includes

this contribution is shown in Figure 3.7.
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Figure 3.7: Copolar and cross-polar radiated fields of a patch antenna as simulated

through HFSS. The effective dual apertures of the patch at each polarization make the

copolar patterns more focused than those for an individual aperture. Both cross-polar

patterns are non-zero. For fHV(θ, φ) = 0, the primary contributor is the radiation

behavior intrinsic to apertures. fVH(θ, φ) = 0, by contrast, is non-zero primarily due

to radiiation from the “non-radiating” edges away from the principal planes of the

element. Reprinted from Byrd et al. (2016) © 2016 IEEE.
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3.1.4 Mechanical Elevation Tilt

An additional source of cross-polar fields is mechanical elevation tilt. This source

of bias was explored in detail by Orzel (2015) for the case of a mechanically tilted

array with electronic steering only in the azimuthal direction. His work is expanded

on here to encompass the case of an array with two-dimensional electronic beam

steering. Assume an array is positioned at the origin of a three-dimensional Cartesian

coordinate system xyz with its broadside direction oriented along the x axis. A set of

Ludwig II polarization measurements is taken with spherical unit vectors defined using

Equation 3.3. These polarization measurements correspond, as previously mentioned,

to the meteorological convention for H/V polarization. Now, allow the array to

be tilted upward in the θ̂ direction by some angle θe. Defining the new broadside

direction of the array as the x′ axis, a new coordinate system x′y′z′ can be defined,

as illustrated in Figure 3.8a. Coordinates in this system are related to those in xyz

as follows:

x′ = x cos θe + z sin θe, (3.25)

y′ = y, (3.26)

z′ = −x sin θe + z cos θe. (3.27)
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The first effect of this realignment of the array is that steering angles relative to the

array (θ′, φ′) no longer correspond to steering angles in the absolute coordinate system

(θ, φ). The two sets of directions are related as follows:

θ′ = arccos (cos θ cos θe − sin θ cosφ sin θe), (3.28)

φ′ = arctan

(
sin θ sinφ

sin θ cosφ cos θe + cos θ sin θe

)
. (3.29)

Additionally, this new array-relative coordinate system is now the one that corre-

sponds to our polarimetric pattern measurements, as they are necessarily only valid

given correct assumptions about orientation with respect to the array face. From

the x′y′z′ coordinate system, we can calculate a new set of unit vectors θ̂′, φ̂′ that

correspond to our measured polarization basis. Assuming that our original xy plane

corresponds to the surface of the earth, our measured polarization basis no longer

corresponds to the H/V polarization basis θ̂, φ̂ as defined for hydrometeors. Our

measured polarization has now effectively been rotated away from the H/V basis by

some angle γ at each angular position. This misalignment of polarization bases is

depicted in Figure 3.8b. The angle γ can be calculated as a functon of the eleva-

tion angle and the steering angle in both the array-relative and absolute coordinate

systems:

γ = arccos (cos θe sinφ sinφ′ + cosφ cosφ′). (3.30)

With γ known, we can account for the change in polarization basis by projecting our

radiated fields into the H/V polarization basis on transmit and back into the measured

coordinate system on receive. This is accomplished through the incorporation of a
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Figure 3.8: a) Coordinate transformation introduced when a mechanical elevation tilt

is applied to the array. xyz is the absolute coordinate space and x′y′z′ is the coordinate

system transformed by applying the elevation tilt θe. φ, θ and φ′, θ′ are the tangential

unit vectors in the absolute and transformed coordinate spaces respectively. γ is

the angle of rotation between the two unit vectors. The red mesh represents the

array face. Reprinted from Byrd et al. (2016) © 2016 IEEE. b) Visualization of

the misalignment of polarization bases resulting from applying mechanical tilt to an

array.

56



rotation matrix into our model of polarimetric phased array transmission, scattering,

and reception. Thus, we modify Equation 3.2 to yield the following:

V′Rx = FTPTS′PFVTx, (3.31)

where:

P(γ) =

 cos γ sin γ

− sin γ cos γ

 , (3.32)

P(−γ) = P−1(γ) = PT(γ). (3.33)

3.2 Techniques for Mitigation

In anticipation of the proliferation of polarimetric phased arrays, a number of meth-

ods have been proposed in the literature for the mitigation of measurement error due

to cross-polar fields. These methods span a wide range of approaches to the problem.

Some are based around design of the transmitted signal, while others rely on manipu-

lating the geometry of the array or the design of the radiating element. Each method

has associated advantages and drawbacks which need to be carefully characterized.

This section will provide a brief description of a number of these proposed bias miti-

gation methods, with a particular focus on those chosen to serve as test cases for the

simulator described later in this work.

3.2.1 Correction Matrices

The method of correction matrices (Zhang et al. 2009; Fulton 2011; Lei et al. 2013)

was one of the earliest proposed methods for the mitigation of cross-polar biases.
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The theoretical foundation of the method is simple. Consider Equation 3.1. If we

know the value of the radiation patterns of the array at angle θ0, φ0 when the array

is steered to that same angle (in other words, if we know the value of the radiation

patterns at the beam peak) we may construct a pair of correction matrices:

CTx =

Fhh(θ0, φ0, θ0, φ0) Fhv(θ0, φ0, θ0, φ0)

Fvh(θ0, φ0, θ0, φ0) Fvv(θ0, φ0, θ0, φ0)


−1

(3.34)

CRx =

Fhh(θ0, φ0, θ0, φ0) Fvh(θ0, φ0, θ0, φ0)

Fhv(θ0, φ0, θ0, φ0) Fvv(θ0, φ0, θ0, φ0)


−1

. (3.35)

We can apply these correction matrices to the transmitted signal before excitation

of the antenna ports and, similarly, to the received signal before processing. By

modifying Equation 3.2 accordingly, we arrive at the following expression for the

range-normalized, corrected measured signal received from as scatter located at θ, φ:

VRx = CRxFRxSFTxCTxVTx. (3.36)

For a scatterer located at the specified steering direction θ0, φ0:

CTx = FTx
−1, (3.37)

CRx = FRx
−1, (3.38)

VRx = FRx
−1FRxSFTxFTx

−1VTx, (3.39)

VRx = SVTx. (3.40)

Effectively, assuming no errors in the composition or application of the correction

matrix, all cross-polar effects are canceled and it is as though the scattering matrix of
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a particle at beam peak can be measured directly and without error. This approach

to the mitigation of polarimetric biases has several major advantages. The first is that

it is inexpensive to implement; mixing the transmit excitations and received signals

using the correction matrices is a change that can be implemented entirely in software

in many radar systems. Additionally, this process allows for any mismatch in the H

and V copolar patterns to be corrected in a single step along with the cross-polar bi-

ases. The greatest disadvantage of this method is that it requires detailed knowledge

of the complete set of polarimetric antennas patterns for any desired steering angle.

In many circumstances, this can be difficult to achieve, even more so given the con-

sideration that the radiation characteristics of arrays are not static, but change over

time during the course of system operation, due largely to changes in temperature

(Fulton 2011). Additionally, this correction (even disregarding any errors in antenna

pattern characterization) can only completely nullify the cross-polar fields at a sin-

gle angle, but scatterers contribute to the received signals over the entire radiation

pattern. Returns from scatterers farther away from the beam peak will contain in-

creasingly strong cross-polar components. Therefore, the performance of this method

will degrade with increased beamwidth, or in the presence of strong scatterers away

from the peak of the main beam.

3.2.2 Pulse-to-Pulse Phase Coding

Another proposed technipue for the mitigation of cross-polar biases is a pulse-to-

pulse phase coded SHV (PCSHV) transmit mode (Chandrasekar and Bharadwaj 2009;

Zrnić et al. 2014; Ivić and Doviak 2016). Like the correction matrix method, this
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Figure 3.9: Diagram of the H and V transmitted pulse trains for the pulse-to-pulse

phase coding implementation described by Zrnić et al. (2014).

method also relies on manipulation of the transmitted and received signals. The basic

principal is that the H and V excitations emitted by the transmitter are modulated

through multiplication by a pair of orthogonal phase codes ch(n) and cv(n), where n

is the index of the transmitted pulse. While any pair of orthogonal phase codes could

theoretically be utilized, we will consider the simplest possible example as proposed

by Zrnić et al. (2014):

ch(n) = 1, (3.41)

cv(n) = c(n) = c∗(n) = exp(jnπ). (3.42)

Put simply, the sign of the excitation on the V port is inverted on each pulse, as

shown in Figure 3.9. In this case, we can express the transmit excitations as:

V Tx
h (n) = 1, (3.43)

V Tx
v (n) = cv(n) = c(n)ejβ, (3.44)

where β is the phase of V Tx
v (n) relative to V Tx

h (n) prior to phase code application.

By inserting these values into Equation 3.1, carrying out the matrix multiplication,
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and integrating over some solid angle Ω representing the field of view of the radar, we

may express the approximate received signal from all angles as (Zrnić et al. 2014):

V Rx
h (n) ∼

∫
Ω

[(F 2
hhshh + F 2

vhsvv) + (FhhFhvshh + FvvFvhsvv)ejβc(n)]ejψh(θ,φ)dΩ, (3.45)

V Rx
v (n) ∼

∫
Ω

[(F 2
vvsvv + F 2

hvshh)ejβc(n) + (FvvFvhsvv + FhhFhvshh)]ejψv(θ,φ)dΩ, (3.46)

where ψh(θ, φ) and ψh(θ, φ) represent the phase imposed on the signal through prop-

agation and scattering facts. Note that the dependence of the antennas patterns on

angle still applies here, but has been suppressed in the notation for legibility. This

expression also assumes that any effects of mechanical elevation tilt have already

been accounted for in the antenna pattern values. On receive, the V signal is decoded

through multiplication by the conjugate phase code c∗(n) (in this case equivalent to

a second multiplication by c(n)). The decoded signal is:

V Rx
v (n) ∼

∫
Ω

[(F 2
vvsvv + F 2

hvshh)ejβ + (FvvFvhsvv + FhhFhvshh)c(n)]ejψv(θ,φ)dΩ. (3.47)

At this point it is prudent to discuss the component parts of each of these equations.

The first term in each is the pure copolar signal, given for H and V respectively by:

F 2
hhshh, (3.48)

F 2
vvsvv. (3.49)

For a perfect antenna without cross-polar fields, this would represent the entirety of

the received signal. In the H and demodulated V signals it remains unaffected by the

phase coding. The next term is the second-order bias:

F 2
vhsvv, (3.50)

F 2
hvshh, (3.51)
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for H and V, respectively. Like the copolar signal, it remains untouched by the phase

coding. However, as it is proportional to the square of a cross-polar field, it will most

likely be quite small in magnitude compared to the remaining bias terms:

(FhhFhvshh + FvvFvhsvv), (3.52)

(FvvFvhsvv + FhhFhvshh), (3.53)

once again, for H and V respectively. These first-order bias terms will generally be

the dominant source of error. Fortunately, as the term that is actually modulated

by the phase code in the final received signals, they may be largely removed using

the PCSHV technique. There are several ways to eliminate the first-order biases

from the received PCSHV signals. Chandrasekar and Bharadwaj (2009) suggests the

use of spectral processing. It should be note that this work uses the technique in

order to make simultaneous co- and cross-polar measurements in SHV mode, not to

suppress cross-polar biases in PPARs. However, the technique can nevertheless be

utilized to that end. In the spectral processing bias removal method, the phase code

effectively imposes an additional Doppler shift on the first-order bias signal, which can

then be removed through application of a notch filter at the corresponding Doppler

frequency. This approach, however, requires sufficiently broad Nyquist interval so

that the spectra to be removed is reasonably separated in frequency from the spectra

of the copolar signal. The effects of the first-order bias may also be removed from

polarimetric products calculated from unfiltered received signals through integration

over a number of pulses corresponding to an integer multiple of the phase code length.

To observe why this is true, consider the simple length-2 phase code used as an
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example here. The sign of the first-order bias term alternates relative to that of the

copolar and second-order bias signals on each pulse. Therefore, estimating received

power by averaging over an even number of pulses will effectively cancel the influence

of the first-order bias term. It should be noted that neither of these processing

techniques will mitigate the effects of second-order biases.

3.2.3 Cylindrical Arrays

Another proposed technique for bias mitigation is to utilize a cylindrical, rather than

planar, array geometry (Zhang et al. 2011). The use of a cylindrical polarimetric

phased array radar (CPPAR) allows for an alternative method of electronic beam

steering in the azimuthal direction. Rather than steering in azimuth by applying a

phase delay along the azimuthal axis of the array, the CPPAR steers by commuting

the set of active elements around the cylinder such that the steering direction is al-

ways centered in azimuth relative to the active sector. Electronic steering in elevation

is done in the traditional manner, by applying a phase delay along the vertical di-

mension of the cylinder. However, since the active array is centered in azimuth with

respect to the desired steering direction, this steering will take place in the principal

elevation plane of the array, which results in minimal cross-polar radiation. Planar

arrays maintain low cross-polar fields along their principal planes due to the fact that

radiating elements (as shown in the previous discusssion of biases due to electronic

beam steering) generally have cross-polar nulls along their principal planes. Since

planar array patterns are obtained by directly multiplying the array factor by the

element pattern, this property transfers directly to the entire array.
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Nonetheless, things are not so simple for a cylindrical array. Recall from Equation

2.69 that the pattern for a conformal array (of which cylindrical arrays are an example)

is formed by a weighted sum of the individual element pattern values in the steering

direction. While the individual radiating elements for a cylindrical array still have

nulls in their cross-polar fields along the principal planes, it should be noted that the

elements in the active sector do not all point in the same azimuthal direction due to

the curvature of the cylinder. Therefore, the beam steering direction will not lie in the

principal elevation plane of the individual elements outside of the center column of

the active sector. Why then, does an active sector of a cylindrical array still maintain

relatively low cross-polar fields along its principal planes? The answer is that it

takes advantage of another property of the cross-polar element patterns. Namely, the

cross-polar fields are point-symmetric in phase about the broadside direction of the

element. Therefore, the cross-polar fields from the elements offset from the center of

the active sector by some angle φ will cancel those offset by some angle −φ.

3.2.4 Other Mitigation Techniques

3.2.4.1 Quasi-Simultaneous H/V

There are several other methods for cross-polar bias mitigation that have been pro-

posed. Quasi-simultaneous horizontal and vertical transmission operates by transmit-

ting a separate H and V pulse in near immediate succession on every PRT, as shown

in Figure 3.10 (Zrnić et al. 2014). The effect of this technique is that the cross-polar

H signal, the cross-polar V signal, and the copolar signals measured at any instant
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Figure 3.10: Diagram of the H and V transmitted pulse trains for the quasi-

simultaneous H/V implementation described by Zrnić et al. (2014).

in time are all contributed by separate range gates. Because the reflections from

distributed weather targets are a zero-mean random process (Doviak and Zrnić 2006)

and the gates contributing the two cross-polar signals are independent from the copo-

lar gate, the cross-polar contamination should sum incoherently when the measured

signal from a gate is integrated over many pulses. These effects result in a significant

reduction in the impact of cross-polar bias. However, this technique is vulnerable to

sharp reflectivity gradients, which can create scenarios where the cross-polar signal

from a high-reflectivity region is able to strongly overwhelm the signal from a nearby

low-reflectivity region, regardless of independence. The system would be particularly

vulnerable to this pitfall if QSHV were used concurrently with pulse compression.

This would result in a scenario where the gates contributing the co- and cross-polar

components are not adjacent, but rather offset by some number of gates determined

by the pulse compression ratio. The farther apart these gates are, the greater the

reflectivity difference that would result from a given reflectivity gradient.
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3.2.4.2 Waveform Isolation

Another potential method for obtaining polarization isolation is the use of orthogonal

waveforms. This technique was explored for use in parabolic dish antennas in order

to allow for the measurement of the cross-polar terms of the scattering matrix in SHV

mode when used in conjuction with parabolic dish radars (Giuli et al. 1990, 1993b).

However, it also has a clear use-case for the mitigation of cross-polar biases in PPARs.

In this mitigation technique, the transmitted waveforms in the H and V polarizations

are designed such that they theoretically have zero cross-correlation. This can be

achieved through a number of design techniques, such as intra-pulse orthogonal phase

coding or opposing frequency chirp directions between the two waveforms. The lack

of correlation allows the first-order biases to be filtered from the received signal during

the matched filtering process. It should be noted that the second-order biases will not

be removed, as those components of the signal actually originate from the same port

on which they are received. Because this method removes cross-correlation between H

and V at lag-0, it prevents estimation of correlation coefficient and differential phase

from lag-0 second order estimates, as noted by Ivić and Doviak (2016).

3.2.4.3 Cross-Polarization Cancellation Elements

One interesting proposal for bias mitigation is setting aside some small proportion

of the radiating elements in order to cancel the cross-polar fields (Sánchez-Barbetty

et al. 2012). In this method, a small, randomly selected set of the array elements will

radiate in the polarization orthogonal to the desired transmit polarization. While the

current literature on this technique studies the AHV case in which there is a single
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desired polarization, one can imagine that in SHV there would simply be a separate

sparse cancellation array for each polarization. The transmitted amplitude and phase

of this sparse array must be calculated such that it will cancel the cross-polar fields of

the remainder of the array in the desired steering direction. Much like the method of

correction matrices, this requires detailed knowledge of the array radiation pattern.

This solution is particularly attractive for arrays with all-digital architectures, as they

allow for direct control over individual elements at the software level.

3.2.4.4 Hybrid Electronic/Mechanical Scanning

One very simple bias mitigation method for planar arrays is to scan electronically

along a single axis, while scanning mechanically along the other (Orzel 2015). This

allows the electronic scan to remain in a principle plane of the array at all times,

keeping cross-polar radiation at a relative minimum. There are two possible imple-

mentations, a mechanical tilt in elevation with electronic scanning, or vice versa.

The mechanical elevation tilt has the drawback of inducing cross-polar biases due

to rotation of coordinate systems as described earlier in this chapter. Meanwhile,

mechanical azimuth scanning has the drawback of inducing the same beam-smearing

effects when obtaining PPIs (the most common mode of weather radar operation)

that are a drawback of parabolic dish radars

3.2.4.5 Magneto-Electric Dipole Arrays

The final bias mitigation method that we will discuss is the use of a magneto-electric

dipole (Wu and Luk 2009; Ge and Luk 2012, 2015) as the radiating element of the
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array. This technique attempts to attack the polarization bias problem at the source

by using an array element that radiates in the desired polarization basis at all angles.

If one were able to radiate in H with an aperture and in V with a dipole, the radiated

polarization basis would align with the H/V basis in any beam steering direction. The

main drawback to using this method is the increased complexity, difficulty, and cost of

antenna fabrication with such a non-traditional design. This is of particular concern

for arrays, which for an operational weather radar with beamwidth comparable to the

WSR-88D would require many thousands of elements. However, it is possible that

new fabrication techniques will reduce the negative impacts of cost and complexity

in the near future.
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Chapter 4

Simulation of Polarimetric Phased Array Radars

Now that we have discussed the fundamental principles of polarimetric phased arrays,

as well as the nature and origins of the unique technical challenges these systems

face, it is possible to develop a robust, flexible simulation framework to model their

operation. This chapter discusses the details of one possible implementation of such

a framework. First, Section 4.1 gives an overview of the current literature on weather

radar simulation. Next, the mechanics of the simulator are described. This discussion

is divided into two parts. The atmospheric model of the simulator is described in

Section 4.2, and the radar system model is described in Section 4.3. The material

presented in this chapter adheres closely to format, content, and verbiage of Byrd

et al. (2016) © 2016 IEEE.

4.1 Prior Work in Weather Radar Simulation

The accuracy of measurements produced by meteorological radars is heavily depen-

dent on the properties of the radar system itself (e.g., operating frequency, radiation

fields), as well as accurate calibration and continuous maintenance. Moreover, the

relationship between radar measurables and physical characteristics of precipitation

(e.g., rainfall rate) depends on the assumed model of observed phenomena and there-

fore is not unique. For these reasons, weather radar simulators are useful because they
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provide complete control of a synthetic weather environment as well as properties of

radar used to survey this environment. Such a level of control allows for separation

and evaluation of the effects of sensor characteristics (e.g., operating frequency, radia-

tion patterns, etc.) on the radar measurables as well as variation of the microphysical

parameters of precipitation (physical state, size, shape, and number density of the

hydrometeors).

Weather radar simulators may be classified by whether they produce time series

data or directly simulate products such as Doppler moments and polarimetric vari-

ables. The latter type of simulator has been used for a number of applications such

as rain rate measurement (Krajewski et al. 1993; Giuli et al. 1993a; Anagnostou and

Krajewski 1997; Haase and Crewell 2000), sensitivity studies (Caumont et al. 2006),

tornadic signature detection (May et al. 2007), feasibility studies for airborne radars

(Lupidi et al. 2011), and polarimetric data assimilation (Augros et al. 2013). They

are useful for any application where the only requirement for the desired study is a

plausible field of radar observables (often reflectivity only) given some specified set

of conditions. They are generally less computationally intensive than those that pro-

duce time series data. Unfortunately, several of the techniques that are of principal

interest to studies of polarimetric bias mitigation, such as phase coded simultaneous

horizontal and vertical (PCSHV) (Chandrasekar and Bharadwaj 2009; Zrnić et al.

2014; Ivić and Doviak 2016) and quasi-simultaneous horizontal and vertical (QSHV)

(Zrnić et al. 2014; Ivić 2015) transmit modes, require signal modeling at the time

series level.
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Time series simulators are typically based on the concept of the “scattering cen-

ter” (SC), which originated with researchers working with wind profilers. SC-based

simulators populate the simulation space with artificial scatterers representing some

ensemble average of the radar profile of the hydrometeors (or, in the case of wind

profilers, refractivity gradients) in the surrounding region of space. Holdsworth and

Reid (1995) and, more recently, Venkatesh and Frasier (2013) implemented this con-

cept from a Lagrangian field specification perspective in which the scattering centers

moved through the simulation space with the wind field. Later, Muschinski et al.

(1999) implemented a similar principle from an Eulerian field specification perspec-

tive in which his scattering centers remained fixed in space over the course of the

simulation. Time series simulators may be classified based on their fundamental SC

mechanics. They can be sorted into two groups based on what each simulated scat-

tering center represents. In the first category of simulator, which uses a homogenous

scattering center (HSC) method, each SC represents a group of hydrometeors with

single uniform diameter, shape, and orientation. The second type uses a bulk scatter-

ing center (BSC) method. In this method each SC represents a group of hydrometeors

that follows some specified heterogeneous distribution of diameters, shapes and ori-

entations. HSC-based simulators excel as a tool for studying the effects of physical

attributes of precipitation on radar signatures, due to the fact that they allow for fine

control of the drop size distribution (DSD), as well as the simulation of precipitation

with mixed physical states. However, the emulation of enough SCs to adequately

represent the desired distribution of physical characteristics creates heavy compu-

tational demands. For this reason, many of them (Chandrasekar and Bringi 1987;
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Capsoni and D’Amico 1998; Capsoni et al. 2001) only emulate single resolution vol-

umes. While larger scale simulations based on an HSC method have been developed

(Li et al. 2011), computational resources are still a concern for this type of simula-

tion. Particularly if a simulator is to focus primarily on high-fidelity studies of radar

system effects, which will require the dedication of a significant amount of computing

power, there are clear advantages to making some sacrifices in weather simulation

fidelity in order to gain computational efficiency. This can be achieved through BSC

based simulations.

One key difference between HSC- and BSC-based simulators is how randomness is

introduced at the microphysical level. In HSC systems this occurs through the pop-

ulation of HSCs with random microphysical properties sampled from a distribution

based on the weather model. In BSC systems, because each SC has some determinis-

tically calculated set of expected radar observables (generally based on integration of

scattering parameters over a DSD calculated from a weather model), randomness is

intoduced (if at all) by combining the calculated observables with a weather-like ran-

dom signal model. Zrnić’s seminal work (Zrnić 1975) on the simulation of weather-like

signals outlines the basic process of generating single-polarization radar time series

as colored Gaussian noise given the preset true values of Doppler moments. In a later

paper, Chandrasekar and Bringi (1987) generate the time series through integration of

drop size distribution functions and Zrnićs method, taking the first steps toward cou-

pling the statistical time series generation method with physical models of weather.

(Galati and Pavan 1995) provided an extension of Zrnić’s signal generation method to

polarimetric radars in their paper discussing methods for efficient generation of these
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signals as well as the mathematical methods to produce horizontal/vertical (H/V)

signal pairs with a specified scaling, phase delay, and correlation coefficient.

The dissertation by Torres (2001) is the first example of an SC based simula-

tor that uses a weather-like signal model to emulate a radar signal which consists of

contributions from an ensemble of SCs, as opposed to using the model to directly rep-

resent the signal received by the radar. The system parameters of the radar such as

transmitted waveform specifications were then used to take a weighted average of the

scattering center amplitudes and phases, produced using the Zrnić (1975) and Galati

and Pavan (1995) methods. Cheong et al. (2004, 2008b), on the other hand, made use

of the Lagrangian scattering center framework developed by Holdsworth and Reid by

randomly populating the simulation space with BSCs that moved according to the

simulated wind field specified by the Advanced Regional Prediction System (ARPS)

weather prediction model (Xue et al. 2000, 2001). Rather than implementing Doppler

velocities through the parameters of weatherlike signals coupled to the scattering cen-

ters, Cheong et al. (2008b) did not simulate any microphysical randomness, instead

they modeled the scattering centers as having a deterministic position and allowing

the Doppler velocities to emerge through the motion of the scattering centers. This

was also the first of the time series simulators to derive its signals from a numerical

weather prediction (NWP) model. While this had already been common in simula-

tors that produce Doppler moments and polarimetric variables directly, time series

simulators had generally been used for signal processing studies (e.g., evaluation of

estimation errors for an arbitrary set of intrinsic radar observable values) in which it

was not necessary to realistically simulate a large region of the atmosphere. The BSC
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framework (with weatherlike signal based microphysical randomness) was later com-

bined with NWP based atmospheric simulations and used to simulate polarimetric

radar returns in works by May (2014) and Lischi et al. (2014).

PPAR technology for weather observations (Weber et al. 2007; Zrnić et al. 2007)

demands new considerations for accurate weather radar system simulation. Of partic-

ular concern is the problem of cross-polar biases, as discussed in Chapter 3. There has

been significant work to characterize these biases using theoretical analysis (Zhang

et al. 2008, 2009; Zrnić et al. 2011; Lei et al. 2013) but notably less using simulations

(Ivić and Doviak 2016; Ivić 2015, 2016). None of these works, however, evaluates

the cross-coupling biases from simulated fields of weather-like radar observables. Be-

cause of the dependence of measurement biases on the properties of hydrometeors

themselves, it is necessary to simulate observations of realistic weather-like fields in

order to estimate the magnitude of the biases that would occur during operation of

an actual meteorological PPAR.

Of the simulators surveyed herein, only two claim to be able to emulate phased ar-

rays. The simulator implemented by Li et al. (2011) was designed to simulate airborne

polarimetric array radars, but the main subjects of interest in the authors’ investi-

gations were the impacts of the airborne platform and various microphysical effects,

on the polarimetric signals. Therefore, they were able to simply use an illustrative

array factor as the antenna pattern and assumed no presence of system-induced cross-

polar fields. The simulator implemented by Cheong et al. (2008b) simulates arrays

with greater flexibility, but still with significant limitations. This simulator operates

through specification of the element positions rather than an array factor, and it is
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capable of generating a time series signal for each individual element. However, it

also assumes no presence of cross-polar fields, and only models imaging radars (it

does not allow for beamforming on transmit). In addition, it only offers an incom-

plete polarimetric characterization of scatterers, implementing differential reflectivity,

but not differential phase or correlation coefficient. The reasons presented above are

the motivation for the development of weather radar simulator capable of modeling

polarimetric phased arrays accurately enough to conduct a detailed study of their

limitations or the proposed techniques to overcome them.

4.2 Atmospheric Simulation

4.2.1 Parameterization of Radar Observables

The simulator uses the output of the ARPS model (Xue et al. 2000, 2001) to emulate

realistic atmospheric conditions. However, this model does not directly provide the

radar observables necessary to compose time series data. Rather, it provides me-

teorological information about the state of the atmosphere. This must be coupled

with assumptions about the DSD, drop shape, and scattering regime of the precipi-

tation present in the simulation volume in order to obtain the parameters necessary

to compose a simulated radar return.

ARPS is a fully compressible, non-hydrostatic prediction model that has seen

prior use in weather radar simulations by May et al. (2007), Cheong et al. (2008b),

and Li et al. (2011). It provides information on the physical state of the atmosphere

in the form of a 3-dimensional grid including the components of the wind field u,
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v, and w, potential temperature θ, pressure p, the mixing ratios for water vapor qv,

cloud water qc, rainwater qr, cloud ice qi, snow qs, and hail qh, as well as turbulent

kinetic energy (TKE) used by the 1.5-order subgrid-scale turbulent closure scheme

(Xue et al. 2000, 2001, 2003). Currently, the simulator only makes use of the Kessler-

type warm rain microphysics. The particular ARPS dataset used to generate the

simulations presented in this thesis is a prediction of the 8 May 2003 Oklahoma City,

Oklahoma. It uses a 50-m grid spacing initialized from a 20-minute forecast based

on a 100-m grid spacing ARPS simulation, that was in turn initialized from the 1800

UTC 8 May National Centers for Environmental Prediction Eta Model as well as

several in-situ measurements. The simulation includes assimilation of data from the

Oklahoma City WSR-88D. Xue et al. (2014) gives further details of the simulation

setup and a detailed meteorological analysis of the results.

The foundation for the conversion of the ARPS state variables into polarimetric

radar observables is laid out by Jung et al. (2008) as an intermediate step in a study

of polarimetric radar data assimilation. Their work assumes a constrained version of

the gamma DSD as proposed by Ulbrich (1983) , expressible as

N(D) = N0D
µexp(−ΛD) (0 < D < Dmax), (4.1)

whereD is the drop diameter andN0, Λ, and µ are the DSD parameters. N0 (assuming

only liquid precipitation) is assumed to have a fixed value of 8 × 106 m−4. Λ varies

based on qr according to the following expression (Lin et al. 1983):

Λ =

(
πρrN0

ρqr

)0.25

, (4.2)
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where ρ is the air density calculated based on p, θ and the ideal gas law, and ρr ≈

1000 kg m−3 is the density of liquid water. µ is estimated from Λ based on the

following expression derived by Zhang et al. (2001) through polynomial fitting on the

results of disdrometer observations:

µ = −0.016Λ2 + 1.213Λ− 1.957. (4.3)

In addition, Jung et al. uses the following relation between drop diameter (in mm)

and axial ratio r derived by Zhang et al. (2001) :

r = 1.0148− 2.0465× 10−2D − 2.0048× 10−2D2

+3.095× 10−3D3 − 1.453× 10−4D4.

(4.4)

This relation is derived by solving the equilibrium expression for raindrop shape

presented by Green (1975) and performing a polynomial fit. This set of assumptions

regarding DSD and drop shape, coupled with the T-matrix scattering model (Bringi

and Chandrasekar 2001), yields the following results for horizontal reflectivity ZH,

and vertical reflectivity ZV after integration of the scattering parameters over the

DSD:

ZH =
4λ4α2

aN0

π4|Kw|2
Λ−(2βa+1)Γ(2βa + 1) mm6m−3 (4.5)

ZV =
4λ4α2

bN0

π4|Kw|2
Λ−(2βb+1)Γ(2βb + 1) mm6m−3, (4.6)

where λ is the radar wavelength, αa = αb = 4.28 × 10−4, βa = 3.04, and βb = 2.77.

Through the same process of integration, the specific differential phase KDP can be

expressed as:

KDP =
180λ

π
N0αkΛ−(βk+1) °km−1, (4.7)
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where αk = 1.30 × 10−5 and βk = 4.63. Because the simulator does not model

propagation effects directly, it is necessary to convert KDP to differential phase φDP.

In order to achieve this, the KDP values for the points in the rectangular ARPS grid

are linearly interpolated to a spherical grid with the origin located at the center of

the simulated array face. These values are then numerically integrated along each

radial from the origin to the furthest extent of the simulation volume. The resulting

values of φDP are then interpolated back to the rectangular ARPS grid for use in the

simulation.

Jung et al. (2008) does not provide a method for determining values of copolar

correlation coefficient |ρHV(0)| from ARPS data. In order to calculate this parameter

the same assumptions about DSD and axial ratio were used as when calculating the

other polarimetric parameters. However, the Rayleigh-Gans model, rather than the

T-matrix method, was used to calculate the scattering parameters for each drop size,

as outlined by May (2014) (Equations 2.23-2.29). Rather than attempting to provide

an analytical expression for |ρHV(0)|, a numerical approach was taken. First, a family

of DSDs was calculated over the full range of Λ values present in the ARPS model.

For each of these DSDs the following integral expression (Bringi and Chandrasekar

2001) was solved numerically:

|ρHV(0)| =
|
∫ DMAX

0
sf

HH(D)sf∗
VV(D)N(D) dD|√∫ DMAX

0
|sf

HH|2N(D) dD
∫ DMAX

0
|sf

VV|2N(D) dD
, (4.8)

where sf
HH(D) and sf

VV(D) are the horizontally and vertically copolar forward scat-

tering parameters for a raindrop of diameter D. At each point in the ARPS grid, a

|ρHV(0)| value was then linearly interpolated from the precalculated integrals based
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on the value of Λ at that point. One additional parameter that must be calculated

from the ARPS table is a partial spectrum width σ̃2
v which is spectrum width for the

small average subregion of a resolution volume occupied by each SC. The square of

the spectrum width over a resolution volume σ2
v can be expressed as a sum of several

contributing factors:

σ2
v = σ2

s + σ2
α

+ σ2
d + σ2

o + σ2
t , (4.9)

where σ2
s is due to shear, σ2

α is a result of antenna motion, σ2
d arises from varying

speeds of fall for different hydrometeors, σ2
o is due to hydrometeor oscillation and

σ2
t is the contribution of turbulence (Doviak and Zrnić 2006). σ2

α is not relevant to

electronically scanning arrays, σ2
o does not apply here as our simulator does not model

drop oscillation, and σ2
t is accounted for by the random component of the scattering

center velocities. Therefore, σ̃2
v can be expressed as (Doviak and Zrnić 2006):

σ̃2
v = σ2

s + σ2
d (4.10)

σ2
d = (σd0 sin θe)

2 (4.11)

σ2
s = (r0σθkθ)

2 + (r0σφkφ)2 + (σrkr)
2, (4.12)

where r0 is the range from the radar to the center of the resolution volume, σd0 ≈

1 ms−1 is the spread in hydrometeor terminal velocity (Doviak and Zrnić 2006), θe

is the angle of elevation of the raindrop, and kθ, kφ, and kr are the components of

wind shear in each dimension of a spherical coordinate system with the radar at the

origin. Calculation of σ2
s is complicated by the fact that ordinarily σθ and σφ are the

second moments of the antenna pattern beamwidth and σr is the second moment of

the range weighting function. Because we are trying to determine spectrum widths for
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some small subregion of the radiation pattern, we must estimate the second moments

of the pattern over those regions. First, the average size of the subvolume occupied

by each SC is calculated. This is defined as the region surrounding each SC for

which it is the nearest SC to any enclosed point. Because the scattering centers are

randomly distributed throughout the simulation volume with a uniform probability

density function, it can be assumed that this mean subvolume size is uniformly valid

throughout the simulation volume. Second, it is assumed that this average subvolume

size is sufficiently small such that the hydrometeor properties, the antenna radiation

pattern, and the range weighting function can reasonably be approximated as constant

within it. Given these assumptions, σθ and σφ may now represent the second moment

of a uniform weighting function across each dimension of the solid angle represented by

each SC, and σr may represent the second moment of a uniform weighting function

across the range region represented by each SC. These parameters, ZH, ZV, φDP,

|ρHV(0)|, and σ̃2
v, together with with the ARPS-specified wind field (used to generate

Doppler shifts), comprise all the necessary information to determine the expected

parameters of a signal reflected from any point in the simulation volume.

4.2.2 Scattering Centers

A perfectly realistic weather simulator would derive a received signal based on a sum-

mation of the reflected signals from every individual hydrometeor in a simulation

volume. However, due to the shear number of hydrometeors present in a weather

system that spans hundreds or thousands of cubic kilometers, this is computationally

intractable for large scale simulations. In order to solve this problem, the proposed
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simulator simplifies the calculation by populating the simulation volume with scat-

tering centers, which are point targets with scattering parameters that represent the

properties of the entire distribution of hydrometeors within some region in the simu-

lation space.

4.2.2.1 Scattering Center Motion

The scheme used to move the SCs through space is drawn directly from Cheong et al.

(2008b). This process is critical to the simulation, as it is the method through which

Doppler shifts are introduced to the signals measured by the simulated radar. SCs

are initialized at random positions throughout the simulation volume based on some

specified sampling density. At every time step corresponding to 1 pulse repetition

time (PRT), a received signal is composed through methods discussed later in this

chapter. Afterward, the positions of the scatters are updated based on their velocity

and the PRT length. This process can be expressed as follows:

s(k)(n) = s(k)(n− 1) + v(k)(n− 1)Ts, (4.13)

where s(k)(n) = [ x y z ] is the postion vector of the kth SC at time step n, v(k)(n) =

[ ũ ṽ w̃ ] is the velocity vector of the kth SC at time step n, and Ts is the PRT length.

Each velocity component is obtained from the wind velocities and turbulent kinetic

energies of the ARPS grid as follows (Cheong et al. 2008b):

ũ = u+ ε

√
2

3
TKE (4.14)

ṽ = v + ε

√
2

3
TKE (4.15)

w̃ = w + ε

√
2

3
TKE, (4.16)
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where ε is the output of a normally distributed, unit variance random number gen-

erator. SCs that move out of the simulation volume are replaced with new SCs

initialized at random positions in the volume. One potential issue with allowing the

SCs to move with the wind field is that our effective sampling density can be affected

by the divergence of the wind field. If a divergent wind field were allowed to move

the SCs for too long without any intervention, it would create a region with few, if

any SCs, to return a signal to the simulated radar. To avoid this problem, a small

proportion of the SCs are randomly replaced after each PRT.

4.2.2.2 Physical Scattering Center Characteristics

The amplitude and phase of the scattering parameters of each scattering center change

in time due to two factors. The first is a pair of unit power weatherlike random signals

(one associated with horizontal polarization and the other with vertical) associated

with each scattering center. The second is the set of atmospheric conditions at the

location of the scattering center at any point in time. The weatherlike signals serve

a twofold purpose. First, since each scattering center represents a small region of

weather, these signals imbue the reflected signals from the SC with realistic statistical

properties consisting of a Rayleigh distributed amplitude and uniformly distributed

phase (Doviak and Zrnić 2006). Second, they allow for the correlation coefficient of

the H and V signals to be set according to the values calculated from the ARPS

model. At the beginning of each simulation the method described by Zrnić (1975) is

used to generate two independent random signals with the desired Doppler spectrum,

designated w1[n] and w2[n]. The Doppler spectra of these signals have a zero-mean
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Figure 4.1: This diagram is a representation of the quad-linear interpolation process.

To find the radar-observable parameters of an SC at some time point between two

ARPS snapshots at times t1 and t2, a tri-linear spatial interpolation is first performed

at the scatterer’s location in each table. Then a linear temporal interpolation is

performed between the two results (Adapted from Cheong et al. (2008b).)

Doppler velocity (since this is introduced by the motion of the scattering center in

space), unit power, and and a Doppler spectrum width σ̃ determined from the ARPS

model. w1(n) serves as weatherlike signal associated with horizontal polarization.

As outlined by Galati and Pavan (1995), w1[n] and w2[n] are then used to create a

third sequence w3[n] which will have some desired correlation coefficient |ρHV(0)| with

w1[n]. This is done according to the following equation:

w3[n] = |ρHV(0)|w1[n] +
√

1− |ρHV|2w2[n]. (4.17)

w3[n] becomes the weatherlike signal associated with vertical polarization. The

appropriate values of ZH(~r), ZV(~r), and φDP(~r) for the SC at each time step are found

through quad-linear interpolation from the ARPS model as described by Cheong et al.
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(2008b) and depicted in Figure 4.1. Once these values have been obtained, they are

combined with each SC’s associated weatherlike signals to form its final scattering

parameters for the current time step:

shh(~r, n) = α−1
√

ZH(~r)w1[n] (4.18)

svv(~r, n) = α−1
√

ZV(~r)w3[n] exp(jφDP(~r)). (4.19)

where α is a scaling factor, equal to the number of scatters per unit volume, introduced

to decouple the user-configurable scattering center density from the total returned

power, such that the expected reflectivity values at each range gate remain constant

regardless of the configured SC density.

4.3 Radar System Model

The primary objective of this simulator is to model the effects of PPAR design on

weather observations. As such, the level of detail and flexibility offered by the simu-

lated system model is critical. The simulator incorporates the basic system parame-

ters of center wavelength λ, pulse width τ , and PRT. In order to simulate arrays, it

allows for customizable element radiation patterns, positions, and amplitude weights,

as well as adjustable transmit polarization. For added realism, it also provides an

option to incorporate adjustable random phase and amplitude errors into the array

pattern calculation. The mechanical position of the array as well as the beam posi-

tions for each scan are also fully configurable. In order to allow for experimentation

with advanced beamforming techniques on receive, the simulator provides an option

to generate separate time series data for each array element. Transmitted waveforms
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are also fully configurable, with their effects modeled through conversion to a range

weighting function that accounts for quantization effects (e.g., the effects of generat-

ing waveforms through the use of a direct digital synthesizer with a finite number of

possible phase and amplitude states). Similarly, the waveform characteristics from

pulse to pulse, such as transmit phase and relative amplitude of the H and V pulses,

are entirely customizable.

4.3.1 Antenna

A detailed description of the basic model for radiation, scattering, and reception from

a dual-polarization array is given in Section 3.1.1. This simulation architecture uses

a slightly modified version of that basic model. The first difference between the basic

scattering model and the one utilized by the simulator is that we may no longer

assume that the constraint of identical element weighting on transmit and receive is

valid. It is not uncommon for operational phased arrays to transmit at maximum

power across all elements on transmit in order to maximize sensitivity while applying

a taper on receive for sidelobe reduction. As such, rather than having four patterns

to completely describe the properties of the array, we have eight. Let us introduce a

pair of new matrices to the model:

FTx =

Fhh(θ, φ, θ0, φ0)Tx Fhv(θ, φ, θ0, φ0)Tx

Fvh(θ, φ, θ0, φ0)Tx Fvv(θ, φ, θ0, φ0)Tx

 , (4.20)

FRx =

Fhh(θ, φ, θ0, φ0)Rx Fvh(θ, φ, θ0, φ0)Rx

Fhv(θ, φ, θ0, φ0)Rx Fvv(θ, φ, θ0, φ0)Rx

 , (4.21)
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allowing us to modify Equation 3.2 to yield:

V′Rx = FRxSFTxVTx. (4.22)

Furthermore, the simulator accounts for the rotation of polarization bases due to me-

chanical tilt, as described in Section 3.1.4. Therefore, we may introduce the projection

matrix P(γ) as in Equation 3.31, which gives us:

V′Rx = FRxP
TSPFTxVTx. (4.23)

It should be noted that the definition of the scattering matrix S as used here differs

from its standard usage. In the simulator, it represents the mean scattering parame-

ters of an ensemble of particles rather than those of an individual hydrometeor. Such

a reduction of an ensemble of particles to an equivalent point target that has scatter-

ing parameters with weatherlike properties is a well established practice in time series

weather radar simulators (Torres 2001; May 2014; Lischi et al. 2014). In this case,

elements of each scattering matrix S (representing a point target) account for the fact

that scatterers (within a volume represented by S) have different relative ranges for

every pulse transmission due to the motion of particles within, as well as across the

boundaries of, each volume. The result is that the elements of S have random real and

imaginary parts that are zero-mean, normally distributed functions of sample time,

unlike the unchanging scattering matrix of a single scatterer that is not oscillating

(Ivić and Doviak 2016). Consequently, elements of S are functions of range and are

semi-coherent along sample time. Consequently, elements on the main diagonal of so

modified scattering matrix can be simulated using the approach described in Zrnić

(1975), as well as in Galati and Pavan (1995).
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Bearing this in mind, we also make several modifications to the scattering matrix.

First, we assume that the hydrometeors represented by each scattering center have a

zero-mean canting angle. This allows us to approximate the cross-polar terms of the

scattering matrix, shv and svh, as equal to 0 (Zrnić et al. 2010) and focus on the depo-

larization induced by the antenna cross-polar fields rather than the scattering media.

Additionally, the simulator utilizes a transmission-modified scattering matrix model.

In this case that means that the differential propagation phase φDP is incorporated

into the copolar V term of the scattering matrix. In reality this effect occurs grad-

ually along the transmitted pulse’s propagation path, but to reduce computational

complexity this value is precalculated from the ARPS data and applied at the pulse’s

point of contact with the scattering center. Thus, we introduce a modified scattering

matrix for each scattering center:

S′ =

shh(r, n) 0

0 svv(r, n)

 , (4.24)

where shh(r, n) and svv(r, n) are the H and V scattering parameters of the scattering

center, calculated as a function of its position r within the ARPS data and the

current sample time step n. As previously noted, shh and svv are simulated based on

the ARPS data using Zrnić (1975) as well as Galati and Pavan (1995). Then, the

final expression for the simulator’s model used to compute the signals received by the

radar is:

V′Rx = FRxP
TS′PFTxVTx. (4.25)

The radiation patterns for the current steering angle exist as a set of lookup tables

in azimuth and elevation. For each scattering center, the value of each pattern at
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its precise angle relative to the radar is calculated by a bilinear interpolation on the

corresponding table.

4.3.2 Signal Model

The simulator accepts a waveform design as a function f(t), which specifies the base-

band frequency at a series of time points over the length of the pulse in Hz. Therefore,

it easily accommodates techniques, such as pulse compression, which involve phase

modulation on transmission. f(t) is then used to generate a phase function (used by

the digital-to-analog converter to generate the transmit waveform) as:

φ(t) = 2π

∫ τ

0

f(t)dt, (4.26)

where the integration is performed numerically. To allow for realistic simulation of a

direct digital synthesizer, the simulator allows for specification of phase and amplitude

quantization through specification of the number of bits allowed to specify each. At

this point, the phase quantization is applied. The simulator generates a list of 2np

possible phase states between zero and 2π, where np is the number of bits allowed

to specify phase, and rounds each value in φ(t) to the nearest possible state. This

quantized phase function φq[t] is then used to generate a vector of complex waveform

samples:

w(t) = ejφq(t). (4.27)
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Before applying the amplitude quantization, this waveform is decomposed into its

quadrature components:

I(t) = Re{w(t)}, (4.28)

Q(t) = Im{w(t)}. (4.29)

The simulator then generates a list of 2na allowable amplitude states, where na is the

number of digital-to-analog converter bits, and the values in I(t) and Q(t) are each

rounded to the nearest allowable state. We can then calculate the final waveform:

wq(t) = Iq(t) + jQq(t), (4.30)

where Iq(t) and Qq(t) are the quantized quadrature components. The range weight-

ing function that would result from a matched filtering operation performed on this

waveform can then be calculated as:

W (r) =


Rww

(
2(r−r0)

c

)
, − cτ

2
< r − r0 <

cτ
2

0, otherwise

, (4.31)

Rww(l) = acf{wq(t)} =

∫ ∞
−∞

wq(t)w
∗
q(t− l)dt, (4.32)

where r0 is the range of the center of the resolution volume being sampled and r is

the range of the scatterer. By calculating this range weighting function before the

actual simulation, we are able to simulate the the transmitted signals V Tx
h and V Tx

v as

single complex values. To demonstrate this, consider the transmission of a baseband

waveform p(t) with pulse length τ , scaled and phase shifted by some complex scalar

excitation VTx. This gives a total baseband signal:

P (t) = VTxp(t). (4.33)
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This signal undergoes an ideal upconversion process to the RF frequency of the radar

system, at which point it will be denoted P ′(t), and is transmitted from an isotropi-

cally radiating antenna. It propagates to some range r0. Assume a set of N scatterers

in the radar’s field of view. Each of these scatterers has a scattering parameter sn,

where n represents the index of the scatterer. Assuming the pulse was transmitted

at time t = 0, it will arrive at each scatterer at time tn = rn
c

, where rn is the range of

the nth scatterer from the radar. The signal reflected from each scatterer is simply

the transmitted signal phase shifted and attenuated according to scatterer range and

scattering parameter to yield a backscattered signal:

P ′b(t) =
N∑
n=0

e−j2πkrn

r2
n

snP
′(t− tn), (4.34)

where k is the wavenumber of the RF signal. This backscattered signal is then scaled

and phase shifted again according to range as it propagates back to the radar. On

reception it passes through an ideal downconversion process, giving:

Pr(t) =
N∑
n=0

e−j4πkrn

r4
n

snP (t− 2tn) (4.35)

Upon reception, the received signal is passed through an ideal matched filter with an

impulse response defined as:

h(t) = p∗(−t) (4.36)

The final received voltage Vr(t) is the output of this matched filter, which (neglecting

filter delays) can be expressed as follows:

Vr(t) = h(t) ∗ Pr(t) (4.37)
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Because convolution is linear, this can be rewritten as:

Pr(t) =
N∑
n=0

e−j4πkrn

r4
n

snh(t) ∗ P (t− 2tn) (4.38)

We can then define a weighting function:

W ′(t) = h(t) ∗ p(t) (4.39)

=
h(t) ∗ p(t)

VTx

(4.40)

= p∗(−t) ∗ p(t) (4.41)

The time-shift properties of convolution tell us that:

W ′(t− 2tn) = h(t) ∗ p(t− 2tn). (4.42)

Combining this result with a change of variables r = ct
2

, and evaluating at some

sample time ts, we obtain:

Pr(ts) =
N∑
n=0

e−j4πkrn

r4
n

snVTxW
′
(

2(rs − rn)

c

)
. (4.43)

Because we know that the pulse p(t) is nonzero only for 0 < t < τ , we can proceed

as follows starting from the definition of convolution:

W ′(t) > 0, 0 < t < 2τ (4.44)

W ′(ts − 2tn) > 0, 0 < ts − 2tn < 2τ (4.45)

W ′
(

2(rs − rn)

c

)
> 0, 0 <

2(rs − rn)

c
< 2τ (4.46)

W ′
(

2(r0 − rn)

c

)
> 0, r0 =

cτ

2
− rs, −

cτ

2
< rn − r0 <

cτ

2
(4.47)
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From there, we can define a range weighting function W (r) in the same form as the

weighting function given in Equation 4.31:

W (r) =


W ′
(

2(rn−r0)
c

)
, − cτ

2
< rn − r0 <

cτ
2

0, otherwise

(4.48)

This allows us to write a final expression for the received voltage composed from

many scatters as:

Pr(ts) =
N∑
n=0

e−j4πkrn

r4
n

snVTxW (rn). (4.49)

As stated before, this function can be precalculated from the transmitted waveform

and the appropriate value for each scattering center obtained from a lookup table at

each range gate with a center corresponding to range r0 in Equations 4.31 and 4.48.

This process is much less computationally expensive than summing a set of reflected

waveforms over all scatterers and performing a matched filtering operation during the

simulation runtime.

There are four modes of polarimetric signal transmission implemented in the simu-

lator. They include the two most common modes of signal transmission in polarimet-

ric radars (SHV and AHV), as well as PCSHV and QSHV, transmit modes proposed

for the mitigation of cross-polar biases (see Sections 3.2.2 and 3.2.4.1). The SHV,

AHV, and PCSHV modes can be implemented very directly in the simulation frame-

work based on their definitions. The SHV mode is implemented by simply allowing

V Tx
h and V Tx

v to be equal in magnitude on each PRT, with any desired constant phase

offset. AHV simply sets one of the transmitted signal values equal to zero on each

pulse, alternating between H and V on each PRT. PCSHV operates similarly to SHV
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but shifts the phase of V Tx
v by 180◦ on each PRT. The QSHV implementation is

slightly more complex, because the simulation architecture does not have the capa-

bility to directly simulate two separate pulses within the same PRT. This difficulty is

circumvented by simulating first an H-only pulse, sampled at one set of range gates,

and then a V-only pulse sampled at another set of range gates offset from the H range

gates by:

δr =
cτ

2
. (4.50)

The two independently collected sets of time-series data are then simply added to-

gether to form the complete QSHV time-series signal.

4.3.3 Coherent Integration

At each time step, the simulator composes a time series point for every radar reso-

lution volume in the scan. For each resolution volume, the signal is composed as a

coherent integration of signals returned from every scattering center within the range

annulus defined by the resolution volume’s range and the pulse width. This signal

can be expressed as:

VH =
N ′−1∑
k=0

W(r(k))

r(k)2
V
′(k)

H exp

(
j

4πr(k)

λ

)
+NH (4.51)

VV =
N ′−1∑
k=0

W(r(k))

r(k)2
V
′(k)

V exp

(
j

4πr(k)

λ

)
+NV, (4.52)

where N ′ is the number of SCs present in the range annulus, W(r) is the range

weighting function, r(k) is the range of the kth SC, V ′H and V ′V are the H and V

received voltages calculated through Equation 4.23, and NH and NV are simulated
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thermal noise (assumed to be additive white gaussian noise) added to each channel.

This process is illustrated in Figure 4.2.

Figure 4.2: Diagram of the coherent integration process. “scattering center” is abbre-

viated here as SC. The upper portion of the diagram outlines the actual process, while

the parallelograms below give a breakdown of the various inputs to the algorithm.

Reprinted from Byrd et al. (2016) © 2016 IEEE.
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4.4 Current Simulator Implementation

4.4.1 Software Architecture

To perform a simulation, the main emulator program, implemented in MATLAB, first

accesses a configuration file, which specifies all of the radar system characteristics as

well what ARPS files to use and what subregions of the ARPS data available from

those files should be used in the simulation. The emulator then calls an ARPS reader

function (also in MATLAB) to extract the data from the .hdf files in which it is stored,

calculate the radar observable parameters from the meteorological data, and arrange

the results in an easily utilized format. With that done, the emulator initializes

the scattering centers and their associated random time-series data, and calculates

their initial parameters. At each time series step, the emulator calls the coherent

integration function. This function, which is implemented in C as a .mex file, iterates

over each resolution volume and composes a time-series sample for each. Once that

process is complete, the emulator updates the position and scattering parameters

of each scatterer and advances to the next time-series step. Once the simulation is

complete, the time-series data is stored in .mat format and can be processed according

to the needs of the user. This process is diagrammed in Figure 4.3 The script used

to process the data in this work utilizes pulse-pair processing to generate estimates

of ZH, ZV, ZDR, vr, σ̃
2
v, φDP, and |ρHV(0)|. It is capable of processing data obtained

using any of the four polarimetric transmit modes available in the current simulator

software.
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Figure 4.3: This flowchart depicts a high-level view of the simulation process. The

processes taking place within each file in the simulation software package are delimited

by the dashed boxes.

4.4.2 Simulator Output Examples

In order to demonstrate the basic capabilities of the simulator, a set of illustrative

simulations have been carried out. The radar system simulated is a 128 × 128 element

S-band array with a one-degree beamwidth. It uses the element corresponding to the

radiation patterns depicted in Figure 3.7. A set of calculated transmit radiation

patterns for this array is shown in Figure 4.4 while a set of receive patterns is shown

in Figure 4.5. For both simulations the radar system was operated at a 1-ms PRT

with an uncompressed 1-µs rectangular pulse, transmitting a linear dual-polarized
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signal in SHV mode. For further details on the simulator configuration, see Table

4.1.

Each simulation scans a region from -45 to 45 degrees in azimuth at an elevation

of 5◦. A set of single-elevation cross-sections of the field of ARPS-derived polarimetric

variables used in the simulation is shown in Figure 4.6. The presence of cross-polar

fields and the mechanical elevation tilt of the array are varied across the simulations

Figure 4.4: Calculated dual-polarization transmit radiation patterns for the simulated

array. Spurious sidelobes are a result of random phase and amplitude errors.
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to demonstrate the ability of the simulator to model cross-polar biases arising from

each of the mechanisms discussed in Chapter 3. The first simulation serves as a

reference by which the effects of cross-polar bias can be measured. In this simulation,

all cross-polarization effects (due both to antenna pattern and mechanical tilt) were

Figure 4.5: Calculated dual-polarization receive patterns for the simulated array.

Note the increased mainlobe width and decreased sidelobe levels due to the -47dB

Taylor weighting.
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Figure 4.6: Single elevation cross-sections of the polarimetric radar observable values

calculated from the ARPS data used in the simulation.

nulled. This results in an ideal radar system free from any cross-polar biases. The

results of this simulation are shown in Figure 4.7.

The second simulation is carried out with no mechanical tilt on the array face, but

with the cross-polar effects of the antenna pattern included in the simulation. The

processed results of this simulation are shown in Figure 4.8. There are significant

cross-polar biases induced in this simulation, manifesting themselves primarily in the

ZDR measurements. The effects are subtle, but discernible through a direct visual

comparison between the ZDR PPIs produced by this scan and the reference scan.

However, to show them more clearly, a field PPI of ZDR error (calculated simply

by subtracting the ZDRmeasured by the reference scan from that measured by this

scan) is plotted in Figure 4.10a. Here, the biases are extremely clear, increasing in

magnitude as the radar steers away from the principal planes in azimuth.

The third simulation scans the same volume, but with a mechanical tilt of 10

degrees on the array face. This introduces significant additional bias due to the effects
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of mechanical tilt. The effects of electronic beamsteering are similar to those induced

in the previous simulation, as the radar is scanning off of the principle elevation

plane by the same angle (although in the opposite direction). The results of this

simulation are shown in Figure 4.9. Here, the biases are extremely severe and are

evident through visual inspection alone. To allow for an easier inspection of their

magnitudes and spatial dependencies, a PPI of ZDR error is also plotted in Figure

4.10b. Once again, the biases increase in magnitude (albeit much more sharply) when

steering further away from the principal planes of the array.

Table 4.1: Simulator Demonstration Configuration

Element Configuration 128 x 128

Element Spacing 0.49 λ

Receive Taper -47 dB Taylor

6 dB Two-Way Beamwidth 1◦ x 1◦

Phase Error SD=2◦

Amplitude Error SD=0.1dB

Operating Frequency 2.85 GHz

Pulse Repetition Time 1 ms

Pulse Width 1 µs

Frequency Modulation None

Pulse Window None

Range Resolution 150 m

Mean SNR 60 dB

Transmit Polarization Linear
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Figure 4.7: Simulated PPIs for an idealized radar system with no cross-polar fields.

Measured quantities include H reflectivity (Zh), H radial velocity (vrh), H spectrum

width (σh), differential reflectivity (ZDR), differential phase (φDP), and copolar cor-

relation coefficient (ρHV).
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Figure 4.8: Simulated PPIs (depicting exactly the same volume of weather used to

generate the results in Figure 4.7) for a radar system with simulated cross-polar fields

and no mechanical tilt on the array face. Measured quantities include H reflectivity

(Zh), H radial velocity (vrh), H spectrum width (σh), differential reflectivity (ZDR),

differential phase (φDP), and copolar correlation coefficient (ρHV). Note the subtle

errors induced in the ZDR measurements.
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Figure 4.9: Simulated PPIs (depicting exactly the same volume of weather used

to generate the results in Figures 4.7-4.8) for a radar system with simulated cross-

polar fields and a 10-degree mechanical tilt on the array face. Measured quantities

include H reflectivity (Zh), H radial velocity (vrh), H spectrum width (σh), differential

reflectivity (ZDR), differential phase (φDP), and copolar correlation coefficient (ρHV).

Note the severe distortion of the ZDR image.
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Figure 4.10: Errors in differential reflectivity measurements with respect to the ideal-

ized radar with no cross-polar fields, for an array with (a) 0◦ and (b) 10◦ of mechanical

elevation tilt.
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Chapter 5

Quantitative Comparison of Cross Coupling Bias

Mitigation Techniques

The objective of this chapter is to utilize the simulation framework described in Chap-

ter 4 to carry out some brief investigations into the effectiveness of polarimetry bias

mitigation methods. Specifically, simulations will be carried out in order to compare

several aspects of the ZDR bias mitigation performance of the PCSHV and correction

matrix methods. These investigations are designed to exercise the capabilities of the

simulator for studying mitigation methods while providing some insight into some

little-discussed aspects of their performance. They are not designed to be exhaustive

in scope with regard to the estimated products, the radar system configuration, or

the environmental conditions. While such an analysis would be both interesting and

useful, the prospect is complicated by the sheer number of variables (both in terms

of the observed weather and the radar system configuration) involved in modeling

polarimetric bias. The time and resources required to conduct such a study render

it beyond the scope of this work. Therefore, the studies conducted here will be con-

fined exclusively to a comparison of the PCSHV and correction matrix methods, and

they will be similarly limited to comparisons of the performance of those methods in

estimating ZDR (rather than the full set of polarimetric variables).
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5.1 Mechanical Tilt Effects on PCSHV and Correction

Matrices

This study seeks to compare the performance of the PCSHV and correction matrix

(CM) with respect to mechanical tilt applied to the face of the array. Two tilt angles

(0◦ and 10◦) were studied. The 10◦ tilt was chosen as a typical fixed mechanical

tilt for the face of an operational phased array. For example, this is the tilt on the

face of the NWRT (Doviak et al. 2011). For each combination of mechanical tilt

and bias correction method, a simulation was carried out over the complete range

of possible φDP0 values (the initial differential phase at the edge of the simulation

volume nearest the radar). The simulated φDP0 values were varied from 0 − 360◦ in

30◦ increments, leading to a set of 12 simulations for each configuration. It is necessary

to vary this value across all possible angles in order to completely characterize the

effectiveness of each method due to the sensitivity of cross-polar bias magnitudes to

φDP. In addition to the bias mitigation methods under test, several other scenarios

were simulated. In order to quantify the effectiveness of the mitigation methods, it

is also necessary to generate a set of ground truth values. This was accomplished by

carrying out a reference simulation at each mechanical tilt angle that used the same

system parameters as the bias mitigation tests, but with completely nulled cross-polar

fields (both due to tilt and element radiation patterns). This isolates the differences

between the reference and test simulations to effects of cross-polar bias. Finally,

uncorrected SHV simulations were also carried out across the full range of φDP0 values

to serve as a control group. The complete list of simulations is enumerated in Table

106



5.1. The radar system configuration used is identical to that used for the simulations

Table 5.1: Mechanical Tilt Test Simulations

Configuration Mechanical Tilt Bias Mitigation

1 0◦ PCSHV

2 10◦ PCSHV

3 0◦ CM

4 10◦ CM

Control 1 0◦ SHV

Control 2 10◦ SHV

Reference 1 0◦ No X-pol

Reference 2 10◦ No X-pol

carried out in Chapter 4, with the exception that no taper was applied to the array on

receive. Element patterns are shown in Figure 3.7, sample array radiation patterns

are depicted by Figure 4.4. These array radiation patterns are for both transmit and

receive, due to the lack of a receive taper. Other system parameters are listed in

Table 4.1. The correction matrices used for this experiment are calculated from the

actual radiation patterns (i.e., there is no simulated measurement error), and they

account for cross-polar biases due both to the element patterns and the mechanical

tilt. In other words we can represent the range-normalized received voltage in CM

mode as:
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Figure 5.1: Selected polarimetric products calculated from the reference scan (i.e.

no cross-polarization) at 0◦ mechanical elevation tilt. The volume is located at an

elevation angle of 5◦.

VRx = CRxF
TPTSPFCTxVTx, (5.1)

CTx = F−1PT, (5.2)

CRx = P(FT)−1. (5.3)

Note that in the case where the transmit and receive radiation patterns are equal

(as they are here) FRx = FT
Tx, hence the subscripts can be dispensed with entirely,

as in the above expressions. The simulated region of weather is depicted by selected

PPIs of polarimetric products from the 0◦ mechanical tilt reference scan in Figure 5.1.

The scan volume was strategically located at an elevation angle of 5◦. This means

to scan this volume the 10◦ mechanical elevation configurations must scan downward

electronically by 5◦ and the 0◦ mechanical elevation configurations must scan upward
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by the same amount. This takes advantage of the symmetry of the simulated element

patterns to allow a reasonable direct comparison between the simulated errors at the

0◦ and 10◦ mechanical elevation. In summary, 12 simulations were carried out for each

configuration listed in Table 5.1. Each of the twelve simulations observed an identical

simulated weather scenario, with the only difference being that φDP0 was varied from

0-330◦ in 30◦ increments over the twelve simulations. The results of this experiment

are shown in Figure 5.2. For each simulation carried out, the mean ZDR error at each

azimuth was calculated by averaging the absolute value of the difference between the

measured ZDRvalue and that obtained from the reference scan over the range gates in

each radial. Gates with an SNR of less than 30 dB were excluded from this average.

(a) (b)

Figure 5.2: For both the 0◦ mechanical tilt (a) and 10◦ mechanical tilt (b) simulations,

the average ZDR error magnitude for range gates with an SNR greater than 30 dB

was calculated along each azimuthal radial. The range of mean error magnitudes over

all φDP0 values is represented by the shaded regions. The lines represent the median

mean error magnitude along each radial.
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This yields a set of average ZDR errors at each azimuth for each φDP0 value. The

line corresponding to each correction method in the figure represents the average of

these azimuthal averages over all φDP0 values. The upper and lower bounds of the

corresponding shaded region indicate the maximum and minimum azimuthal average

over the full range of simulated φDP0 values. It is clear that at both mechanical tilt

angles, both the correlation matrix and phase coding methods represent substantial

improvements over the uncorrected SHV data. However, there are some major notable

differences in their performance characteristics. First, the correction matrix method

results in a smaller bias over the majority of the scan volume. Second, the residual

errors from the PCSHV method exhibit a much stronger dependence on steering angle

than those from the correction matrix method. Finally, the residual errors from the

PCSHV method also exhibit a much stronger dependence on φDP, which manifests

itself in the figure as an increased width of the shaded region corresponding to the

PCSHV errors.

While a detailed mathematical analysis of the deterioration of PCSHV perfor-

mance with mechanical tilt is beyond the scope of this work, it is useful to examine

our model of the received signals in order to gain a general understanding of the

origins of this effect. We begin with the polarimetric matrix model used in the sim-

ulator, which incorporates the mechanical tilt of the array in the form of projection

matrices (Equation 5.1). Integrating that expression over a solid angle Ω to model

an observation of a volume of scatterers we obtain:

VRx =

∫
Ω

FTPTS′PFVTxdΩ. (5.4)
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If the H and V signals represented by VTx are phase coded using the scheme described

by Equations 3.43 and 3.44 and the matrix multiplications are carried out accordingly,

we arrive at the following expressions for the received H and V polarized signals IQ

signals:

V Rx
h (n) ∼

∫
Ω

([
(F 2

hhshh + F 2
vhsvv) cos2 γ + 2FhhFvh(shh − svv) cos γ sin γ+

(F 2
hhsvv + F 2

vhshh) sin2 γ
]

+
[
(FhhFhvshh + FvvFvhsvv) cos2 γ+

2(FhhFvv + FhvFvh)(shh − svv) cos γ sin γ+

(FhhFhvsvv + FvvFvhshh) sin2 γ
]
ejβc(n)

)
ejψh(θ,φ)dΩ, (5.5)

V Rx
v (n) ∼

∫
Ω

([
(F 2

vvsvv + F 2
hvshh) cos2 γ + 2FvvFhv(svv − shh) cos γ sin γ+

(F 2
vvshh + F 2

hvsvv) sin2 γ
]
ejβc(n) +

[
(FvvFvhsvv + FhhFhvshh) cos2 γ+

2(FvvFhh + FvhFhv)(svv − shh) cos γ sin γ+

(FvvFhvshh + FhhFhvsvv) sin2 γ
])
ejψv(θ,φ)dΩ. (5.6)

It is immediately evident through comparison with the analogous expressions for

an untilted array (Equations 3.45 and 3.46) that the mechanical tilt has introduced

serious complications. Consider the first bracketed set of terms in Equation 5.5:

[
(F 2

hhshh + F 2
vhsvv) cos2 γ + 2FhhFvh(shh − svv) cos γ sin γ+

(F 2
hhsvv + F 2

vhshh) sin2 γ
]
. (5.7)
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Here, the uncontaminated copolar signal contribution is F 2
hhshh cos2 γ, while all other

terms represent an undesired contaminating contribution. The contaminating con-

tributions in this set of terms will occur even in AHV transmission mode, and they

cannot be eliminated by phase coding because the bracketed terms do not carry the

sign of the phase code. The magnitude of these contaminating terms will be signif-

icantly greater than that of the corresponding contaminating term for the untilted

array, which is merely F 2
vhsvv. Consider next the second bracketed set of terms:

[
(FhhFhvshh + FvvFvhsvv) cos2 γ + 2(FhhFvv + FhvFvh)(shh − svv) cos γ sin γ+

(FhhFhvsvv + FvvFvhshh) sin2 γ
]
ejβc(n). (5.8)

Here we have a number of highly damaging bias terms. They are so damaging because

the expected value of the magnitude squared of (5.5) (required to compute ZDR)

contains a pair of cross-products between (5.7) and (5.8). These cross-products,

however, carry the alternating sign of the phase code and will therefore vanish when

the number of power samples is even (Zrnić et al. 2014). Still, the terms in (5.8)

contribute to bias, as the expected value of the magnitude squared of (5.5) also

contains a term consisting of the expected value of the magnitude squared of (5.8). It

is clear from inspection that the magnitude of this bias will also be significantly greater

than the corresponding contribution for untilted arrays, where the contaminating

terms are simply (FhhFhvshh + FvvFvhsvv).

While PCSHV was clearly outperformed by the CM method in this experiment,

there is a major qualifier to that conclusion. The correction matrices utilized in this
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experiment were an ideal implementation in the sense that they utilized perfect knowl-

edge of the radiation patterns. The only source of error for the correction matrices in

this simulation was the fact that the cross-polarized fields are only perfectly corrected

at the exact peak of the transmitted beam. Therefore, scatterers illuminated by the

rest of the mainlobe and the sidelobes will be imperfectly corrected, moreso farther

from the mainlobe peak. However, this is not a realistic scenario. Radiation patterns

of antennas cannot be perfectly measured, nor are they perfectly static over the dura-

tion of the operation of a radar. This leads to the second set of experiments contained

in this chapter, an investigation of the resilience of the CM method to errors in the

measured patterns used to calculate the correction matrices.

5.2 Correction Matrix Resilience to Antenna Pattern

Measurement Error

In this study, a number of simulations were carried out with a radar system config-

uration identical to that utilized Section 5.1, with the exception that a taper was

added to the array on receive as specified in Table 4.1. The resulting receive patterns

for the array are shown in Figure 4.5. A set of four scenarios, listed in Table 5.2 were

simulated. The overall best and worst case φDP0 values (0◦ and 180◦) were estimated

from the data obtained in the previous experiment by averaging the ZDR error mag-

nitude over the entire simulated PPI at each value of φDP0. The four configurations

used in this experiment consist of each possible combination of these φDP0 values

with mechanical elevation tilts of 0◦ and 10◦. For each of these configurations a ran-
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Table 5.2: Correction Matrix Error Simulations

Configuration Mechanical Tilt φDP

1 0◦ 0◦

2 10◦ 0◦

3 0◦ 180◦

4 10◦ 180◦

dom measurement error εn was added to each antenna pattern value used to calculate

the correction matrices. Thus, we can express the correction matrices utilized in the

simulation as follows:

C′Tx = (FTx + ETx)−1PT, (5.9)

C′Rx = P(FRx + ERx)−1, (5.10)

ETx =

ε1 ε3

ε2 ε4

 , (5.11)

ERx =

ε5 ε7

ε6 ε8

 . (5.12)

εn represents the nth realization of the random variable ε, which is a zero-mean,

circularly symmetric, complex Gaussian random variable with a variance specified

as some percentage of the copolar H radiation pattern power (this variance will be

referred to interchangeably as the average error power). For each configuration, sim-

ulations were carried out for error powers ranging from 0-2% of the copolar pattern

power. Pang et al. (2016) gives an error of 5% in amplitude (translating to an 0.25%

error in power) as a figure “achievable in antenna engineering”. However, to allow
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for the possibility of less than ideal measurement conditions, as well as consideration

of what errors might occur due to drift over time between measurements of a theo-

retical system, it is useful to observe error levels above and beyond that. The 0-2%

power error range evaluated here corresponds to a 0-14% amplitude error range. The

mean ZDR error magnitude over the PPI is plotted against average error power for

each scenario in Figure 5.3. The mean error magnitude for each error power level

was obtained by averaging the ZDR error magnitude over all resolution volumes with

an SNR of more than 30 dB. Figure 5.4 shows a set of box plots for each scenario

representing the distribution of average ZDR errors over azimuth angle for selected
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Figure 5.3: Mean ZDR measurement errors over a range of average error powers. The

mean ZDR error at each simulated measurement error power represesnts an average

over the entire PPI. In addition to showing the relationship between the pattern

measurement errors and resulting ZDR errors, this figure also shows the degree of

retained dependence on mechanical tilt and differential phase, as well as the manner

in which that dependence scales with error magnitude.

115



average error powers. The set of data points used to produce each box plot is the set

of mean ZDR error magnitudes at each azimuth (corresponding to each independent

realization of the random error). The gates used to obtain these averages were again

thresholded at 30 dB SNR.

We will conclude this study with an examination of a simplified model for the

received signal in order to gain some insight into the path by which the correction

matrix propagates to the received signal. First, we will write an expression for the

signal, normalized for range effects, received when observing a point target at beam

peak.

VRx = C′RxFRxP
TS′PFTxC

′
TxVTx (5.13)

Next, the correction matrices with errors included are rewritten in terms of the ideal

correction matrices. For C ′Tx we have:

C′Tx= P(FTx + ETx)−1 (5.14)

= P

FTx
hh + ε1 FTx

hv + ε2

FTx
vh + ε3 FTx

vv + ε4


−1

(5.15)

=
1

det(FTx + ETx)
P

 FTx
vv + ε4 −(FTx

hv + ε2)

−(FTx
vh + ε3) FTx

hh + ε1

 (5.16)

=
1

det(FTx + ETx)
P (det(FTx)F−1Tx + E′Tx) (5.17)

=
det(FTx)

det(FTx + ETx)

(
CTx +

E′Tx

det(FTx)

)
(5.18)

It should be noted that since every element εn of the ETx and ERx matrices rep-

resents an independent realization of the random variable ε, which is symmetrically

distributed about zero, each of the elements of E′Rx and E′Tx has the same PDF as
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Figure 5.4: Box plots illustrating the distribution of average ZDR error magnitude

over azimuth (determined in a manner identical to that used to produce Figure 5.2)

at selected values of average error power. The red line corresponds to the median,

and the blue box delineates the interquartile range (IQR). The whiskers extend to the

minimum and maximum within 1.5 IQR of the lower and upper quartiles respectively,

and the red crosses denote data points outside of that range.
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the corresponding element of the original error matrix. Thus we will replace the mod-

ified matrices with the original matrices. Then, supposing that the copolar radiation

pattern magnitudes are much greater than both the cross-polar pattern and error

magnitudes we obtain:

det(FTx) ≈ det(FTx + ETx) ≈ 1 (5.19)

C′Tx ≈ CTx + ETx (5.20)

An identical procedure can be used to rewrite the correction matrix on receive, yield-

ing:

C′Rx ≈ CRx + ETx (5.21)

These expressions can then be substituted back into Equation 5.13:

VRx = (CRx + ERx)FTPTS′PF(CTx + ETx)VTx (5.22)

= (CRx + ERx)(FTPTS′PFCTx + FTPTS′PFETx)VTx (5.23)

= (CRxF
TPTS′PFCTx + CRxF

TPTS′PFETx+

ERxF
TPTS′PFCTx + ERxF

TPTS′PFETx)VTx

(5.24)

= (S′ + S′PFETx + ERxF
TPTS′ + ERxF

TPTS′PFETx)VTx (5.25)

It is clear from inspection that every element of the 2×2 matrix resulting from carrying

out the matrix multiplication E′RxF
TPTS′PFE′Tx will be second order with respect

to the random error ε, while the other error terms S′PFE′Tx and ERxF
TPTS′ are

first order with respect to the error, and will therefore dominate. Thus, the second

order error term will be discarded and the received signal can be approximated as:

VRx ≈ (S′ + S′PFTxETx + ERxFRxP
TS′)VTx (5.26)
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Carrying out the matrix multiplications and additions yields the following results for

the H and V signals respectively:

V Rx
h ≈ shh + shh

([
(ε1 + ε2)FTx

hh + ε5F
Rx
hh + (ε3 + ε4)FTx

vh + ε7F
Rx
hv

]
cos γ

+
[
(ε3 − ε4)FTx

vv + ε7F
Rx
vv − (ε1 + ε2)FTx

hv − ε5FRx
vh

]
sin γ

)
+ svv

[
(ε7F

Rx
vv + ε5F

Rx
vh ) cos γ − (ε5F

Rx
hh + ε7F

Rx
hv ) sin γ

]
, (5.27)

V Rx
v ≈ svv + svv

([
(ε3 + ε4)FTx

vv + ε8F
Rx
vv + (ε1 + ε2)FTx

hv + ε6F
Rx
vh

]
cos γ

+
[
(ε1 + ε2)FTx

vv − ε6FRx
vv + (ε3 + ε4)FTx

vh − ε8FRx
hv

]
sin γ

)
+ shh

[
(ε6F

Rx
hh + ε8F

Rx
hv ) cos γ + (ε8F

Rx
vv + ε6F

Rx
vh ) sin γ

]
. (5.28)

Note that due to the fact that we are considering the simplified situation of a point

target at beam peak, it is not necessary to integrate this result over a solid angle.

Examining these expressions we see that the uncontaminated copolar signal is rep-

resented by the leading shh or svv. The other terms are all bias contributors. The

ZDR bias, as always, is dependent on the expected value of the magnitude squared

of the received signals. Here, as before, the error in the expected squared magnitude

will be dominated by the terms that represent the product between a bias term and

the uncontaminated signal. These will be first order with respect to ε, while products

of two bias terms will be second order with respect to ε. It should be noted that while

the expected magnitude of the dominant power bias will be first order with respect

to ε, the expected initial error in radiation pattern power measurement is second

order with respect to ε. This nonlinear propagation of the measurement error to the

received signal is responsible for the high level of sensitivity to error observed in the
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simulations. The exact extent of this error propagation effect is subject to details

of the steering angle, radiation pattern characteristics, mechanical tilt, and scatterer

characteristics. Even then, a complete analytical characterization of this effect would

have to account for the increased errors occuring in contributions from targets away

from the beam peak. Such a study is beyond the scope of what is presented in this

thesis.

Results such as those obtained here can be used to provide some practical insight

into what kinds of accuracy requirements might need to be met to meet a partic-

ular design goal. For example the MPAR notional functional requirements require

ZDR biases not to exceed 0.1 dB. Pang et al. (2016) suggests that this goal may be

achieved by maintaining error amplitudes below 1% of the copolar amplitude, which

translates to 0.01% of the copolar power. However, achieving that number makes

some very optimistic assumptions about operating conditions, notably a perfectly

homogenous 0 dB ZDR field of observed scatterers. Here we can see, that in realistic

weather conditions, this specification is not even met under ideal correction. Un-

der those conditions, the upper boundary of the IQR remains below 0.1 dB, but the

maximum (neglecting outliers) extends as far as 0.2 dB. Meanwhile, the bias levels

at the ”achievable” error level of 0.25% of the copolar power are well outside of the

specification, with mean error levels across the entire PPI of approximately 0.34 dB

for the best case simulated scenario. These findings may suggest some sort of hybrid

approach combining correction matrices and PCSHV, which may help mitigate first

order biases contributed from regions away from the beam peak. Alternatively, they
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may necessitate the use of another technique altogether, or some reconsideration of

the realism of the technical requirements.

5.3 Conclusions

The studies in this chapter demonstrated several advantages and drawbacks of both

the CM and PCSHV methods that have received little attention in the existing liter-

ature. It was shown that phase coding can allow problematic levels of residual error

given a typical operational level of mechanical tilt on the face of the PPAR. While the

effects of mechanical tilt (Orzel 2015) and second order residual bias in the PCSHV

scheme (Ivić and Doviak 2016) have been discussed, their interaction has not been

explored in depth. Although correction matrices performed better with respect to

the application of mechanical tilt, the need for highly precise radiation pattern mea-

surements in any successful implementation of this method was clearly illustrated

by the simulation results, and it represents a serious technical challenge. While the

effects of measurement error on the correction matrix method have been previously

discussed in the literature (Fulton and Chappell 2010; Pang et al. 2016), a study of

the effects has not been carried out in the context of realistic weather simulations. In

addition to providing some insight into interesting aspects of these techniques, this

chapter also showcased the utility of the simulator in modeling and evaluating bias

mitigation methods.

Finally, it is important to be clear that these studies do not represent an exhaus-

tive study of these methods. Only a single weather scenario was studied, and the
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experiments were limited to very specific aspects of the performance of these bias

mitigation methods. Perhaps most obviously, the study was limited to effects only

on ZDR. These methods can, however, have effects on other polarimetric variables.

Notably, PCSHV is known to exhibit a detrimental effect on |ρHV(0)| estimates (Ivić

and Zrnić 2013). Similarly, the mathematical analysis provided is highly simplified

and qualitative, intended primarily to give a general sense of the origins of the results

produced by the simulator. An exhaustive study of these mitigation methods, either

through simulation or analytical mathematics, is beyond the scope of this work.
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Chapter 6

Conclusions and Recommendations for Future

Work

6.1 Conclusions

The primary objective of this thesis was to present a method for the simulation of

polarimetric phased array weather radars that combines a highly flexible radar sys-

tem model with realistic weather simulations. The simulator presented combines the

Lagrangian scattering center framework demonstrated by Cheong et al. (2008b) with

realistic antenna patterns, as well as the method of time series generation devel-

oped by Zrnić (1975) and extended by Galati and Pavan (1995) in order to produce

time series which account for the existence of cross-polar fields. ARPS data is used

to generate fields of simulated weather such that the performance of the simulated

radar systems may be characterized in realistic operational scenarios. The radar sys-

tem model includes easily configurable polar element patterns, array geometry, and

waveform design, as well as SHV, AHV, PCSHV, and QSHV transmit schemes. The

combination of the most current techniques for weather simulation with this level

of detail and flexibility in modeling radar systems allows for realistic emulation of

the challenges and mitigation techniques that have been theorized for PPAR weather

observation.
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In order to demonstrate the utility of the simulator and provide some insight into

aspects of bias mitigation techniques that had largely remained unexamined, a set of

simulated experiments were carried out to study the ZDR measurement performance

of the PCSHV and CM cross-polar bias mitigation methods. The first experiment

compared the performance of these two techniques on an untilted array, and one

with a typical mechanical elevation tilt of 10◦. The results highlighted the notable

sensitivity of residual errors in the PCSHV method to mechanical tilt on the array

face. The second experiment set out to characterize the deleterious effects of random

error in the antenna pattern measurements used to formulate correction matrices.

The results demonstrated the necessity for precise antenna characterization in any

attempt to implement the CM bias mitigation method.

6.2 Recommendations for Future Work

6.2.1 Simulator Development

There are a number of potential improvements to the simulator that could be made

in the course of future work. One limitation of the current framework is the fact

that the simulator models transmitted signals as single complex values in order to

generate time series signals more directly. Waveform design is accounted for in the

simulator through precalculation of a range weighting function that is applied to the

scatterers within each resolution volume. While the current approach offers major re-

ductions in computational demand, it also severely limits the ability of the simulator
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to model system configurations that feature waveform diversity, such as multiple-

input and multiple-output (MIMO) techniques (Li and Stoica 2007), or the use of

waveform design to gain isolation between array faces (Kurdzo et al. 2015) or polar-

izations (Pezeshki et al. 2008). Consequently, significant architectural changes would

be needed to accurately simulate waveform diversity. One possible implementation,

which would retain the current system of modeling transmitted signals as single val-

ues, would be to run a separate simulation for each transmitted waveform. Every

waveform would have its own range weighting function, and the cross-correlation be-

tween each given waveform and all other waveforms would be precalculated and used

during simulation to accurately model the cross-talk between transmitted signals. An

alternative would be to change the simulation architecture, such that the transmitted

signal is modeled not as a single complex value, but as a densely sampled base-

band waveform. Each transmitted waveform would be phase shifted and attenuated

through the simulator’s model of transmission, backscattering, and reception, much

like the complex excitation values VH and VV in the current architecture. However,

each received waveform would also need to be appropriately time delayed based on

2-way propagation time to compose the received signal (an operation corresponding

to the division of the scatterers into range gates when simulating using a single-

value transmitted signal). The results of this operation for all waveforms would be

summed to form a single composite signal. A matched filtering operation would then

be performed for each waveform to produce separate streams of time-series values.

This operation would eliminate the need to precalculate range weighting functions

for each waveform and cross-correlations for each waveform pair.
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Additionally, there are a pair of limitations related to the forward operator used

to derive radar observable parameters from the ARPS model data. The first is the

use of fixed closed-form expressions to determine the scattering characteristics of

hydrometeors. The equations from Jung et al. (2008) used to calculate ZH, ZV, and

KDP contain constants derived from T-matrix calculations at S-band. Therefore,

the simulator will not accurately reflect non-Rayleigh scattering effects that would

occur at shorter operating wavelengths. The same limitation exists for the Rayleigh-

Gans assumption used to calculate |ρHV(0)|. In order to accurately study polarimetric

signatures of rain at shorter wavelengths, or of very large hydrometeors at S-band, the

simulator could be modified to allow for radar observable calculations based on user-

provided scattering parameter data. The second forward operator limitation is the

highly constrained DSD model. In order to improve the accuracy of the polarimetric

signatures derived from the model data, the fixed-intercept, single-moment variant

of the constrained gamma DSD currently in use could be replaced with the more

flexible and more widely utilized 2-moment form (Ulbrich 1983). While the current

version of the simulator is very useful for characterizing the effects of system design

on the accurate measurement of ZDR, φDP, and |ρHV(0)|, improvements to the forward

operator should be strongly considered before utilizing the simulator to estimate the

effects of system design on the accuracy of microphysical information retrieval (such

as the performance of QPE, HCAs, or DSD retrieval algorithms). Any study of HCA

performance using this simulator would also, of course, mandate an expansion of the

weather model to include a variety of hydrometeor types other than rain. Finally, it

would undoubtedly be of interest to implement an attenuation model, both to obtain
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more realistic performance data, and to allow for the study of attenuation correction

through the use of polarimetric products obtained by PPARs.

6.2.2 Simulator Applications

There are many possibilities for future quantitative studies using this simulation

framework. One of the most obvious is a thorough evaluation and comparison of bi-

ases incurred in polarimetric products (including |ρHV(0)| and φDP) that occur when

using correction methods beyond just the CM and PCSHV methods. Even for those

two methods, the investigation carried out in Chapter 5 was relatively limited in its

depth. It did not investigate the effects on variance of polarimetric product estimates

when using those methods, or their dependence on such factors as SNR, spectrum

width, |ρHV(0)|, or gradients in reflectivity in the field of observed weather. All of

these are worthy subjects of investigation. Similarly, the studies conducted here uti-

lized only a single weather scenario and set of element patterns. For a more complete

characterization of the methods presented, these parameters could also be varied

in order to study the variation in biases with cross-polar isolation in the radiating

element, as well as dependencies on the structure of the observed weather.

Studies could also be carried out to investigate the effects of copolar mismatch

and methods for quantifying and mitigating its effects. While much has been made

of the problem of cross-polar biases, the fact that real antennas do not have perfectly

matched copolar radiation patterns presents a non-trivial technical challenge. An-

other possibility is that the simulator could be used to evaluate polarimetric array
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calibration procedures, which are another area of open investigation in PPAR devel-

opment. The ability to generate time series data for individual elements could also be

used to explore the possibilities of advanced beamforming with PPARs. Finally, the

simulator could be utilized to develop a system for effectively benchmarking PPAR

data quality through comparisons with a colocated parabolic dish with a significantly

different beamwidth. Such a procedure would promise to be extremely useful in

evaluating the performance of the first experimental PPARs.

In summary, there is a wide variety of open questions remaining with regard to

the development of effective polarimetric phased array radars. Efforts to better an-

swer many of these questions could benefit by leveraging a simulation framework such

as the one presented herein. PPAR observations of realistic weather are difficult to

model analytically, as they combine the complexities of the radar system itself with

those of an inhomogenous, dynamic field of scatterers. Any attempt to quantify such

a scenario mathematically realistically requires a large number of simplifying assump-

tions. As such, it is extremely helpful to have a method of verifying the validity of

those assumptions through numerical simulation. Field experiments are also invalu-

able in that regard, and will ultimately provide the final validation for solutions to

any of the technical problems presented by PPARs. However, the construction of

new PPARs and the process of conducting field experiments is both costly and time

consuming. Furthermore, there is no way to access, manipulate, or replicate ”ground

truth” values for real weather. Therefore, numerical simulations can and should play

an important role is assisting the design of new systems and experiments, as well as

in the verification of experimental results.
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