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CHAPTER ONE

INTRODUCTION

1.1 PROBLEM STATEMENT

Evolutionary algorithms (EAs) have become establisheth@approach for exploring the
Pareto-optimal front in multiobjective optimization problem#sHisually do not guarantee to
identify optimal tradeoffs but attempt to find a good approxiomtiFrom No Free Lunch
theorem [1], any algorithm elevated performance over one clagsldems is exactly paid for in
loss over another class. Although various multiobjective BAOKAS) are available today,
certainly we are interested in developing a most effecty@rithm to search for Pareto solutions
for a given problem [2]. Therefore, comparative studies are alwapducted. They aim at
revealing advantages and weaknesses of the underlying methods dettrmining the best
performance pertained to specific problem characteristics. Theroumapplications of MOEAs
boost the significance of performance comparison issues. Hovwwe\arsence of any established
comparison criteria, none of the different sets of estimbssged on various metrics for the

Pareto-optimal solutions generated can be argued to be better tlotimettse

Zitzler [2] proposed three optimization goals to be measuheddistance of the resulting
nondominated set to the Pareto-optimal front should be minimized, a (joodost cases
uniform) distribution of the solutions found- in objective spasaddsirable and the extent of the
obtained nondominated front should be maximized. In the literatheee tare many unary

performance metrics used to compare MOEAs. These metmcbecdroadly divided into five



categories according to the optimization goals. Each categaingly evaluates the quality of a
Pareto-optimal set in one aspect only. First, metricssaigsge the number of Pareto optimal
solutions in the sePareto Dominance IndicatofNR) [3] measures the ratio of non-dominated
solutions contributed by a particular solution set to the nonistited solutions provided by all
solution sets;Overall Non-dominated Vector Generation and Rg@NVG) [4] counts the
number of distinct nondominated points generaRadio of Non-dominated Individua(RNI) [5]
gives the proportion of the useful solutions known as the Pametbin a given population size;
and Error Ratio (ER) [4] checks the proportion of non true Pareto points in pipeoaimation
front. Within the second category, metrics measuring theewtss of the solution to the
theoretical Pareto fronGenerational Distanc€GD) [4] measures how far the evolved solution
set is from the true Pareto front; althximum Pareto Front ErrofMPFE) [4] focused on the
largest distance between the point in the theoretical d’drent and the point in the
approximation front. Third, metrics focusing on distribution of theutsmhs: Uniform
Distribution (UD) [5] measures the distribution of an approximation fronteurad pre-defined
parameteroshare Spacing[6] measures how evenly the evolved solutions distributef;itget
Number of Distinct ChoiceENDC,) [7] identifies solutions that are sufficiently distinar fa
special valueu. Fourth, metrics concerning spread of the solutideximum SpreadMS) [3]
measures how well the true Pareto front is covered bggheoximation set. In the last category,
metrics considering both closeness and diversity at the san@eHypervolume Indicatofor S

metric) [11] calculates the volume covered by the approximation front

Furthermore, there are some binary performance metrics usedntpare a pair of

algorithms. The first type of binary performance metrics ¢hame unary quality indicator. It
includes ¢ -indicator. |, [10] defines a& -dominate relation between algorithms, enclosing

hypercube Indicator [10] and coverage difference metiemétric) [11]. The second type is

direct comparison binary metric€ metrics[9] and R metrics[5]. C metrics [9] consider the



dominate relations between algorithnismetrics [5] use the probability that one algorithm is

better than the other over a series of functions.

However, the problem arises that no single metric alone &iimfully measure MOEA
performance. Every single metric can provide some specificinbomplete quantification of
performance and can only be used effectively under some spamfedions. For examplé)D
does a poor job when the Pareto front is discontinued, while Hylpeme can be misleading if
the Pareto optimal front is non-convex [4]. This implies omérim cannot entirely evaluate EAs
in all conditions. Every metric focuses on some special clearstats while neglects information
in others. Also, every metric has its unique characterisiic;metrics can substitute others
completely. Therefore, a single metrics cannot provide a compieemeasure for MOEAs.
Moreover, from [11], a fixed number of indicators are not sufficierdvaluate MOEAs because

reducing objective space must losing information.

Different metrics perform differently in different tegtoblems. For a given MOEA, one
metric may show well in one test problem, however, given other teseprspit may mislead the
conclusion should the measures show poorly. For a specific tesemrolve cannot ascertain
which metric should be applied in order to faithfully quantify pleeformance of MOEAs. We
need to exploit every metric to find which one is the .b&pparently, this introduces a heavy

computational process.

1.2MOTIVATION

To overcome these disadvantages and arrive at a faithful evaluaticDEA8/ performance
metrics ensemble is proposed in this research work. Ensembiedsaise multiple metrics to
obtain a fair performance than what could be obtained from anyhglesperformance metric
alone. Ensemble metrics not only can give the comprehensive c¢sampéetween different

algorithms, but avoid the choosing process and can be directly used to asdé€xsisg



There exists no publication in the literature, to our best kewbyd, regarding performance
metrics ensemble. MOEAs are only evaluated and comparedngla metric at a time. In this
paper, we propose double-tournament selection operator to compare ppaoiraation fronts
from different MOEAs. Double elimination design allows charastieripoor performance of a
quality algorithm under the special environment still to be abiein it all. In every competition,
one metric is chosen randomly to compare. After the whole proegssy metric could be
selected multiple times and a final winning algorithm idbéoidentified. This final winner has

been compared under all the metrics considered so that we can makeoadhision.

1.30ORGANIZATION OF THESIS

Chapter Two provides the consolidated literature review for this theki presents the
essential background with reference to knowledge in the afelkiltiobjective Optimization

Problem, Multiobjective Evolutionary Algorithms and Performance Mgtric

Chapter Three describes the proposed approach in detail. A novel ensemble meihgd us

modified Double-Tournament selection operator is introduced.

In Chapter Four, we elaborate on the experiment results for ZDT (1-6) BmdZ 2

problems.

Finally, conclusion is drawn i@hapter Five along with pertinent observations.



CHAPTER TWO

REVIEW OF LITERATURE

This chapter presents the essential background knowledge oiobjidtive Optimization

Problem (MOP), Multiobjective Evolutionary Algorithm (MOEAN& Performance Metrics.

21 MULTIOBJECTIVE OPTIMIZATION PROBLEMS (MOP)

First, the omnipresent of MOP is discussed. Then, definition oPN&Ogiven. After that,
concept of domination is introduced to identify the optimal solution. In additiercharacteristic
of reference sets of MOP is summarized. Finally, two seriéssbproblems are presented, which

are widely applied to evaluate the performance of multiobjectigkionary algorithms.

2.1.1 Why Multiobjective Optimization Problems?

In real life environments we always strive to optimizeuanber of parameters in any design
and these parameters are usually highly correlated. Hence,tisateeff between the criteria is
needed to ensure a satisfactory design. For example: in bridgeuctost a good design is
characterized by low total mass and higtiffness; aircraft desigrrequires simultaneous
optimization of fuel efficiency, payload, and weight; a good sunrosigdén a sport car could
aim at minimizing the noise the driver hears and maximizingvémdilation; and the business
portfolio management attempts to simultaneously minimize sie and maximize the fiscal
return. In these real-world optimization problems, the ohjestioften conflict across a high-

dimensional problem space and may also require extensive computationalggsou



Neither the problem nor algorithm domains considered withiis tlesearch is
straightforward. Multiobjective Optimization Problems (MQPsesent a possibly uncountable
set of solutions that produce vectors whose components repnesiibffs in objective space.
Therefore, for an MOP, a number of trade-off solutions arenahtiWithout further information,

such optimal solutions are equally important.

2.1.2 MOP Definition [39]

In general, an MOP involvels objectives,mconstraints andhdecision variables:

k objectives: Optimizest (x)=( f,(x) K , f (X)) (2-1A)
mequality and inequality constraints: Subjecgf¢x) <0,i=1K ,m (2-1B)
n decision variablesx=(x K , )" (2-1 C)

MOP deals with two search spaces: a decision sf@deplus an objective spaceA().

Mapping takes place from am-dimensional decision space to am-dimensional objective

space. The MOP's objective functidn,QQ— A, maps decision variables:(xl,K ,>§1) in

decision space to vectoris(x) =( f,(X),K , f (%)) in objective space. Proximity of two solutions

in one space does not imply proximity in the othigace and search is performed in the decision

space.

As stated in [2], the goal of MOPs consists of iplét objectives: the distance of the
resulting nondominated set to the Pareto-optimahtfishould be minimized; a good (in most
cases uniform) distribution of the solutions fousddesirable; and the extent of the obtained
nondominated front should be maximized, i.e., facheobjective, a wide range of values should

be covered by the nondominated solutions. Apparemthile these candidate solutions are



progressing towards Pareto-optimal front, the coymece process will adversely impact the

spread of the solution found.
2.1.3 Concept of Domination [39]

Most multi-objective optimization algorithms useetltoncept of domination. In these
algorithms, two solutions are compared on the bafsighether one dominates the other solution

or not.

e Pareto Optimality:

A solution xe Q is said to be Pareto optimal with respectXdf and only if there is no

X eQ forwhichv=f(x)=(f(x) K, {(x))dominatesi=f (x)=(£(% K , {(%).

e Pareto Dominance:

A vectoru= f(x,)=(u,K ,uy) is said to dominate= f(x,)=(y4,K ,y) (denoted by

upv) if and only ifu is worse tham, Vie{1K k} upy andie{ K k} ypy

e Pareto Optimal Set:

For a given MO (x),xeQ the Pareto optimal sBt is defined as:
P :={XeQ‘—|3x' eQ: f( X)s f( >§}

e Pareto Front (Non-dominated front):

For a given MO (x) and Pareto optimal st, the Pareto froreF" is defined as:

PE* ;:{uz f(X)=( fl(X),K , t( X))‘ xe P}

Figure 1 explains the relation between decisioncespand objective space and the

corresponding front in each space for a given jgrobl



/decisiun space

.

| x1 f1
Pareto optimal set Nondominated set (Pareto front)

Fig 2.1 The Relation between Decision Space anddipg Space

Moreover, there are some special points in thectibge space [39]ldeal Objective Vector

(Reference Solutior®") is the lower bound in the Pareto-optimal set. Tineh component of

the ideal objective vector is the constrained mimmsolution of the following problem:
Minimize f, (x), subject toce S. Z" = " =(, f, K , 1, )T. Utopian Objective VectofZ*™)

has each of its components marginally smaller th@at of the Ideal Objective Vector
Z" =27 —gwith ¢ >0 for all i=1,2K M and Nadir Objective VectorZ™") is upper bound

in the Pareto-optimal set.
2.1.4 ZDT problems [2]

ZDT problems were proposed by Deb in 1999 and sbisisix benchmark functions. ZDT
contains several characteristics that cause dififssufor multiobjective evolutionary algorithms:
for converging to the Pareto-optimal front, multohadity, deception and isolated optima are
applied and for maintaining diversity within the potation, convexity or nonconvexity,

discreteness, and nonuniformity in the front.

Each of the test functions is structured in the esamanner and consists itself of three

functionsf,, g, h:



Minimize f(x)=(f,(X), f,(X)) (2-2)

Subject tof, (x) = g(%.K , x) H (%), d 3K , %)),
wherex=(x,K , %)

e ZDT1 (Convex Pareto-optimal front):

f(X)=% (2-3A)

ACE g(x)[l— ;(())] @38
o > x

g9(x) =1+ (nzlj (2-3C)

x=(%,..»%) €[0,q". Givenn=30, the Pareto-optimal front is convex and formed

with g( x) =1.Figure 2.2 shows the true Pareto-optimal frorZDT 1.

Fig 2.2 Pareto-optimal front of ZDT1

9



ZDT2 (Nonconvex Pareto-optimal front):

Fig 2.3 Pareto-optimal front of ZDT2

ZDT3 (Discrete Pareto-optimal front):

f.(X)=%

10

(2-4 A)

(2-3B

(2-4 C)

(2-5 A)



f,(x)= o x)[l— 609~ B0 100 4)] (2-5 B)

(2-5 C)

x=(%,...%) €[0,d", Givenn=30, its Pareto-optimal front is disconnected and fedm
withg(x)=1. The two objectives are disparately scaled inRheeto-optimal frontf, is

from O to 0.852 and, from -0.773 to 1. The introductions of the sinedtion in h causes

discontinuity in the Pareto-optimal front.

Figure 2.4 shows the Pareto-optimal front of ZDT3.

Fig 2.4 Pareto-optimal front of ZDT3

e ZDT4 (Lots of local Pareto-optimal front):

f.(X)=% (2-6 A)

11



f,(x)=9( x){l— :;1((:)) ] (2-6 B)

g(x)=1+10(n—])+§2:[>f—1000$ 4%)] (2-6 C)

x=(%,...%) €[04 x[~5,3"". Givenn=10. It has many local Pareto-optimal fronts.

The global Pareto-optimal front is formedle( x) =1, the best local Pareto-optimal front

with g(x) =1.25. Not all local Pareto-optimal sets are distingalsh in the objective space.

Figure 2.5 shows the Pareto-optimal front of ZDT4.

Fig 2.5 Pareto-optimal front of ZDT4

ZDT5 (Deceptive problem):

f,(x)=1+u(x) (2-7A)

f,(x)=9(¥/ £(%) (2-7B)

12



9(%s%) =2, M U X)) (27 C)

V(U(X))={2+u()§) u(x) <5 (2-7D)

Givenn=11,x € {0, andx, K ,x, €{0,1°. The true Pareto-optimal front is formed with

a( x) =10. The global Pareto-optimal fronts as well as tual ones are convex.

ZDT6 (Pareto-optimal solutions are nonuniformity):

f,(X)=1-exp(—4x) sif( & x) (2-8 A)

f,(x)= g(x)[l—( ;1((;())J ] (2-8 B)
5

g(x)=1+9 ~= (2-8 C)

x:(xl,...,>§1)T €[0,7". Givenn=10. Its Pareto-optimal front is nonconvex. The distfitnu

of the Pareto solutions in the Pareto front is mifoun, i.e., for a set of uniformly
distributed points in the Pareto set in the denisipace, their images crowd in a corner of
the Pareto front in the objective space. The dgdithe solutions is lowest near the Pareto-

optimal front and highest away from the front.

Figure 2.6 shows the Pareto-optimal front of ZDT6.

13



Fig 2.6 Pareto-optimal front of ZDT6
2.1.5 Test Problem DTLZ [12]

DTLZ contains seven benchmark functions. All thections have more than two objectives.
Like ZDT problems, DTLZ also contains problem cludeaistics that present difficulties for
multiobjective evolutionary algorithms. Therefo2lLZ test MOEAS’ ability to deal with high-

dimension problems.

e DTLZ1I:
An M-objective problem with a linear Pareto-optimahifro

fl(X)=%XlX2--- )$/|71(1+ Q( X ))

Q) =2%% (1= %, )(1+ o %))
Minimize{K K (2-9 A)

fM_l(X)=%x1(1— %)(1+ 9( %))

fu (=5 (1-%)(+ o(x,)

Subjectt®<x <1,i=12K n

14



Q(XM)=100[|>%A|+ > (X059 - cof 26( x- 0-)5} (2-9 B)

% € Xy

The Pareto-optimal solution correspondsxte=0.5(x" € x, ) and the objective function
values lie on the linear hyperplang:ll f.=0.5. k=5 is suggested here. The total

number of variables i +k—-1. The search space conta(r.ls.k —1) local Pareto-optimal

fronts.The difficulty in this problem is to converge tathyperplane.

DTLZ 2:

An M-objective problem with a Spherical Pareto-optifnaht:

fl(x)=(1+ g()ﬁw))cos( X7/ Q- cofx, 7/ P

fo(x)=(1+ 9( %, ))cod X/ 3+ sirf ¥, 17/ 2 210 A)
LL

fu (X)=(1+ g( %, ))sin( %7/ 2

Minimize

Subjectt®d<x <1, i=1,2K n

9(Xu)=2, ., (x-05) (2-10 B)

The Pareto-optimal solution correspondsxfe=0.5(x € x, ) and all objective function
values must satisfyzle( fn’j)2 =1. k=10 is suggested here. The total number of variables

isM +k-1.

DTLZ 3:

An M-objective problem with a Global Pareto-optimalnr.o

15



fl(x)=(1+ g()ﬁw))cos( X7/ Q- cObX, 17/ P

f () =(1+ 9(%,)) cos x 7/ 3+~ sirf X, 7/ 2 211 A)
LL

fu (X)=(1+ g(%,))sin( %7/ 2

Minimize

Subjecttd<x <1, i=1,2K n

g(m)=100[lm|+x§ (%08 - cof 26( x- 0-)5} (2-11B)

The difficult is that this problem introduces mdagal Pareto-optimal fronts.

DTLZ 4:

This problem measures MOEA's ability to maintaigamd distribution of solutions:

f,(x)=(1+ g(x,))cod X 7/ 3--- cob X, 7/ P

f,(x)=(1+9(x ))cod X 7/ 3~ sif X 7/ 3 (2-12 A)
LL

fu (X)=(1+ g( %, ))sin( X 7/ 2)

Minimize

Subjectt®d<x <1,i=1,2K n,a=100.

9(%) =3, ., (X -05) (2-12 B)

DTLZ 5:

This problem will test an MOEA'’s ability to convergo a degenerated curve:

Mapping

6 ZM(H 29(r)%) (2-13 A)

16



i=2,3K M -1 inthe test problem of DTLZ 2.

g0m)=2, ., X" (213 B)

DTLZ 6:

This problem hag" ™ disconnected Pareto-optimal regions in the sespake:

Minimize, ™2 (%-0) = %u-s (2-14 A)

fu (¥)=(1+9(%,)) N . §.orss §0.9)

Subjecttd<x <1,i=12K n,

9(><M)=1+ﬁzm X (2-14 B)

4 f _
h=M->"" _—_(1+sin(3cf 2-14C
Zl:l |:l+g( ( |)):| ( )
k =20 is suggested here. The total number of varialsibs-+ k —1.This problem will test
an algorithm’s ability to maintain subpopulationdifferent Pareto-optimal regions.

DTLZ 7:

This problem is constructed by constraint surfgm@@ach:

.n

Minimize: f,(x)= 1 Z'” %, j=1K M (2-15 A)
{ n J (-2
M
Such thay, (x)= f, () +4f(X-1>0 j=1K M -1 (2-Bp

17



g (X) =21, (X)+min [ f(X+ f(R]-1=0 (2-15C)

i#]
subject to spade<x <1, i=1,2K n

Nn=10M . There are a total d¥ constraints. It is difficult for MOEAs to handl&ese

constraints while searching for the optimal solio Moreover, there are some non-
dominated solutions in the final population but tie¢ true Pareto-optimal solutions. This
problem is called redundant solutions. Becausesdfimdant solutions, the obtained set of

solutions may incorrectly find a higher-dimensiogatface as the Pareto-optimal front.
22MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS (MOEAS)

This part includes MOEA introduction, MOEA defimiti, MOEA’s main procedure, and

parameters in controlling the behavior of the GA aome examples of MOEAs.
2.2.1 An Introduction to MOEA [39]

MOEA is motivated from the conception of evolution biology, specifically Darwin’s
“survival of the fittest” (natural selection) lavkigure 2.7 describes how MOEA works. It
includes two steps. In the first step, an ideal tidbjective Optimizer finds an optimal front
consists of multiple trade-off solutions. Then,tire second step, based on some high-level

information, one solution is chosen for implementat

Evolutionary algorithms (EAs) have become an eiffectool for exploring the Pareto-
optimal front in multiobjective optimization probtes that are often too complex to be solved by
exact methods, such as linear programming or gnadiearch. This is because there are few
alternatives for searching intractably large spdoesnultiple Pareto-optimal solutions. Due to

their inherent parallelism and their ability to &ipsimilarities of solutions by recombination,

18



they are able to approximate the Pareto-optimaitfima single optimization run. The numerous

applications and the rapidly growing interest ia #nea of MOEAs take this fact into account.

Multi-Objective Optimization Problem
Minimize f,
Minimize f,

Minimize f,;

subject to constraints

Ideal Multi-Objective Optimizer

step 1

Multiple trade-off ('hwi&l ome
solutions found High level solution
\ information ‘ \

= step 2 —

Fig 2.7 The Process of MOEAs to solve MOPs

From Zitzler and Deb [2], the first pioneering sasl on evolutionary multiobjective
optimization appeared in the mid-eighties by Sdraiii 1984 [26] and Fourman in 1985[27].
After that, several different EA implementationsrev@roposed from 1991 to 1994: Kursawe in
1991[28]; Hajela and Lin in 1992 [29]; Fonseca &heming in 1993[30]; Horn in 1994 [31]; and
Srinivas and Deb in 1994 [32]. Later, these apgreacwere successfully applied to various
multiobjective optimization problems. In recent ggasome researchers have investigated
particular topics of evolutionary multiobjectiveaseh, such as convergence to the Pareto-optimal
front by Van Veldhuizen and Lamont [33] and Rudo[BH], niching by Obayashi [35], and
elitism by Parks and Miller [36]; while others has@ncentrated on developing new evolutionary

techniques, such as Laumanns [37] and Zitzler dmeld [38].

Today, there are some MOEAs frequently used: SPEB Zitzler [13], NSGA-II by Deb

[14], IBEA by Zitzler [15], PESA-II by Corne [16]ral MOEA/D by Zhang [17].
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Also, there are alternatives to EAs [39]: Evoluion Programming (EP) and Genetic
Programming (GP). EP is a mutation-based evolutjomégorithm to discrete search spaces.
Similar to EA, a self-adopting rule is used to upddne mutation strengths. Therefore, EP is
allowed to search anywhere in the real space likabparameter GAs. In GP, a terminal et
(constants and variables) and a functionFs@perators and basic functions) are pre-specitied

create initial population [41].

2.2.2 MOEAs Definition [39]

The basic structure of MOEA is shown in Fig 2.8nttludes: initialize population, evaluate
population, scale population fithnesses, selectti®olsi for next population and perform crossover

and mutation.

Scale
Evaluafce population
population fitnesses

Initialize

population

perform Select
crossover solutions
and for next
mutation population

Fig 2.8 Basic Structure of MOEAS
It is a generic population-based metaheuristicrélyn inspired by biological evolution and

can be viewed as an evolutionary process. It isadterized by the following components:
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A genetic representatiofor an encoding) for the feasible solutions to dpgimization
problem: The genetic representation may differ werably from the natural form of the
parameters of the solutions. Fixed-length and pimarcoded strings for representing solutions
have dominated GA research since they provide #ndmum number of schemata as they are

amenable to simple implementation.

A population of encoded solutions evolves overcuesece of generation§he population
contains not just a sample ofideas; rather it contains a multitude of notiond aankings of
those notions for task performance. Genetic algast ruthlessly exploit this wealth of
information by reproducing high quality notions ating to their performance and crossing

these notions with many other high-performanceangtifrom other strings.

A fitness function that evaluates the optimalitgath solutionDuring each generation, the
fithess of each solution is evaluated, and solstiare selectetbr reproduction based on their

fitness. The ‘goodness’ of a solution is determifreth its fitness value.

Genetic operators generate a new population from ekisting populationThe selected

solutions then undergo recombination under th@adaif the crossover and mutation operators.

Control parameterscontrol every step of evolutionary process.

2.2.3 The main procedure of MOEASs [39]

The first one is Reproduction or Selection Opetat@eproduction Operator makes
duplicates of good solutions and eliminates badt&wis while keeping the whole population size
constant. The whole process inscludes three sgsify good solutions in a population, make
multiple copies of good solutions and eliminate balditions from the population so that multiple

copies of good solutions can be placed in the @bjoul.

There are three types of Selection Operators ti@aelhe above task:
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Tournament selectiois played between two solutions and the bettartisol is chosen and
placed in the mating pool. Each solution can beartadparticipate in exactly two tournaments

and any solution in a population has 0, 1 or 2e&® new populations.

Proportionate selectioassigns each solution copies, the number of wikigihoportional to

their fitness value. For instance, a solution wétfiitness valuef, will get f,/f,,, number of

avg
copies. f,,,denotes the average fitness of all population mesndderefore, the solution with a

higher fithess value represents a large range wiutative probability values and has a higher
probability of being copied into the mating poobr@idering the scaling problem, the outcome of

operator is dependent on the true value of thed@gmather than relative fitness values.

Ranking selectiosorts solutions according to their fitness (truki@gafrom the worst to the
best. Each member is assigned a fitness (relasikey equal to the rank of the solution. In most

cases, proportionate selection is applied withréinded fithess values.

The second one is Crossover Operator. The pow@Asfarises from crossover. Crossover
causes a structured, yet randomized exchange @tigematerial between solutions, with the

possibility that ‘good’ solutions can generate tegtones.

Crossover occurs only with some probabipitythe crossover probability or crossover rate).

When the solutions are not subjected to crosstivey,remain unmodified.

The third one is Mutation Operator. Mutation appdarbe more useful than crossover when
the population size is small while there is evideiioat crossover can be more useful than
mutation when the population size is large. Otlaetdrs, such as the representation, selection
scheme, and the fitness function itself may alleham effect on the relative utility of crossover

and mutation.

2.2.4 Control Parameters of Genetic Algorithms [40]
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To control the behavior of the GA, the role of lewameterp.andp,, are often considered.

The choice of.andpn is known to critically affect the behavior and merhance of the GA.

The crossover probability. controls the rate at which solutions are subjetbedrossover.
The higher the value qf. the quicker are the new solutions introduced ihtogopulation. Ag,
increases, however, solutions can be disrupte@rfalsan selection can exploit them. Typical

values fom.are in the range [0.5, 1.0].

Mutation is only a secondary operator to restoreetje material. Large values @k,
transform the GA into a purely random search algorj while some mutation is required to
prevent the premature convergence of the GA totirhal solutions. Typically,, is chosen in

the range [0.005, 0.05]

The balance between converge and spread chartictedthe GA is dictated by the values
of p.andpn. Increasing values g, and p,,promotes exploration at the expense of exploitation
Moderately large values gf, (0.5-1.0) and small values g, (0.001-0.05) are commonly

employed in GA practice.

Moderately large values @k, (0.5 <p. < 1.0), and small values @f, (0.001 <p,, < 0.05)
are essential for the successful working of GAs Toderately large values pfpromote the
extensive recombination of schemata, while smalliega of p,, are necessary to prevent the

disruption of the solutions.

2.2.5 Some Examples of MOEAs

Today, there are some MOEAs frequently used: SPB4 Zitzler [13], NSGA-II by Deb
[14], IBEA by Zitzler [15], PESA-Il by Corne [16]rd MOEA/D by Zhang [17]. In the
experiment conducted in Chapter 4, these five d@hguns are compared under the performance

metric ensemble.
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First, we consideBtrength Pareto Evolutionary Algorithm(8PEA 2. SPEA is an effective
technique for finding or approximating the Parepthmal set for multiobjective optimization
problems. It has shown very good performance inpasigon to other MOEAS. Based on SPEA,
SPEA 2 incorporates a fine-grained fithess assigmrsiategy, a density estimation technique,

and an enhanced archive truncation method.

The main structure of SPEA 2 is presented in TadleTable 2.1 includes input and output

of the algorithm, and the process of the algoritbrdeal with MOPs:

e Given input:

N (population size)N (archive size) and (maximum number of generations)
e Required output:
A (nondominated set)

Stepl: Initialization:
Generate an initial populatioR,and create the empty archive (external Bety ¢ . Set
t=0.

Step2: Fitness assignment:
Calculate fitness values of individuals i and P:

Step 3:Environmental selection:
Copy all nondominated individuals # and Pt to Pu.1. If size of Pr.1 exceedsN then

reduceP.1 by means of the truncation operator, otherwiséz#g sf Pra is less thanN
then fill Pu.1 with dominated individuals i} andP.

Step 4:Termination:
If t>T or another stopping criterion is satisfied thenAséb the set of decision vectors

represented by the nondominated individuaR:in.

Step 5:Mating selection:

Perform binary tournament selection with replaca]mnlg‘m in order to fill the mating
pool.

Step 6: Variation:

Apply recombination and mutation operators to thating pool and seB,;

to the

[72)

resulting population. Increment generation courﬁéntt+1) and go to Fitnes
assignment step again.

Table 2.1 The main structure of SPEA 2
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In fitness assignment, each individdaln P andBtis assigned a strength valtﬁ( i)

representing the number of solutions it dominates:
S(i):‘{j‘jeF{JrE’t/\if J}‘ (2-16 A)
|| denotes the cardinality of a set, + stands for isatltunion andf corresponds to the

Pareto dominance relation.

Raw fitnessR(i) is determined by the strengths of its dominatorddth archive and

population:
R( i) = ZjePﬁ-E‘,jfi S( J) (2-16 B)

Density information is incorporated into differeatg individuals having identical raw fithess

values:

D(i)= (2-16 C)

wherek =+ N+ N is the square root of the sample size afits thek -th element gives the

distance sought.

Finally, for an individuall, its fithess
F(i):R(i)+ D(i) (2-16 D)

In Environmental Selection, first, all nondominatediuwduals have fithess lower than one

are copied to the archive of the next generation:
Pui={if R +R A F(i)<1 (2-17 A)

25



Then, there are three conditions:

If |Pe.1| = N, the environmental selection step is completed

If [Pea dominated individuals with (i)>1 in the previous archive

<N, the bestﬁ—‘l_%l

and population are copied to the new archive

If |Pea|> N, procedures are made to remove individuals f@muntil‘ﬁm =N

At each iteration, individual is chosen for removal for whiah<, j for all j ePua:

i<, j:=V0<k <|Pus

of =0V
_ (2-17 B)
Pt+1

J0<k< Z|:(V0<|<k:0'i|=O';)/\O'ik<O'jk:|

o/ denotes the distance bfo its k -th nearest neighbor Pu1. The individual with the

minimum distance to another individual is preferred

Second, we introducé&lon-Dominated Sorting Genetic Algorithm{INSGA-II). A non-

dominated sorting based multi-objective evolutignalgorithm NSGA-II, has two advantages:

computational complexity i@(mNz); a selection operator is presented to create agnpbol

by combining the parent and child populations agldcting the best (with respect to fithess and

spread)N solutions.
The main structure of NSGA-II is presented in Teéh2

The third one isRegion-based Selection in Evolutionary MultiobjeetiOptimization
(PESA-Il). PESA-II proposes a new selection techejgcalled Region-Based selection, for

evolutionary multiobjective optimization algorithris which the unit of selection is a hyperbox
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in objective space. A hyperbox is selected andréselting selected individual is randomly

chosen from this hyperbox.

The fourth one isindicator-Based Selection in Multiobjective Seaf(tBEA). IBEA is

combined with arbitrary indicators and adaptechw fireferences of the user and moreover does

not require any additional diversity preservatioacimanism to be used. It provides an approach

to allow preference information of the decision eralie integrated into multiobjective search.

Stepl: Generate random parent populatipand its child populatio, :
Initially, a random parent populatio®, is created. The population is sorted based or

non-domination. Each solution is assigned rank lefguiis non-domination level where
is the best level. Thus, minimization of fitnessassumed. Binary tournament selecti
recombination, and mutation operators are usectetiie a child populatio@, of sizeN .
Sett=0

Step2:R =RuU Q
Combine parent and children population. The pofriaR will have sizeN .

Step3:F = nondominated-sortR ) until |R,,|< N
PopulationR is sorted based on the non-domination sorting. fidw parent populatio

R., is formed by adding solutions from the first fraatthe next best front before the s
exceeddN .

Step4: crowding-distance-assignmeRt)(andR,, =R U F
Calculate crowding distance i and includek -th non-dominated front in the parent
population.

Step5: SortB,,,>,) andR,, = R,,[0: N]
Sort in descending order and choose the fitgtlements oP, .

Step6:Q,,, =make-new-pop k., )
This population of sizeN is now used for selection, crossover and mutabareate a nev

the
1

=]

population.

Table 2.2 The main structure of NSGA-II

Table 2.3 presents the input and output of theréilgo, and the process of the algorithm

deal with multiobjective problem.
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The final one is MOEA/D: A Multiobjective Evolutionary Algorithm Based on

DecompositionMOEA/D decomposes a multiobjective optimizatiawlgem into a number of

scalar optimization subproblems and optimizes th&multaneously. Each subproblem

is

optimized by only using information from its seMergighboring subproblems, which makes

MOEA/D with lower computational complexity at eagbneration.

e Giveninput:

a (population size)N (maximum number of generations) andfitness scaling factor)
e Required output:

A (Pareto set approximation)

Stepl: Initialization:
Generate an initial populatioR of sizex ; set the generation counter to 0.

Step2: Fitness assignment:

First scale objective and indicator values, and thee scaled values to assign fitness valuies.

Determine for each objective, its lower boundl =min

f.(x) and upper boun

xeP i
b =max, . f(x)

Scale each objective to the interval [0, 1], i,fg{x) =( f (x) —E)/(E—E)

Calculate indicator valuels(xl,xz) using the scaled objective valuges instead of the

original f,, and determine the maximum absolute indicatorevak max, XZEP‘ | (x1 ,xz)‘

For all X' e PsetF (xl) => _e_'({xz}’{xl})/(c"‘)

x2e P\{ xl}

Step3: Environmental selection:
Iterate the following three steps until the sizgpopulationP does not exceed :

Choose an individuak” € P with the smallest fithess value, i.é(x*) < f(x) for allxe P.

Removex® from the population.

Update the fitness values of the remaining indialdpi.e. F (x)= F(x)+ e_'({x*}’{x})/(ck)
Step4: Termination:

If t>T or another stopping criterion is satisfied then Aetio the set of decision vecto
represented by the nondominated individuaR in

Step5: Mating selection:
Perform binary tournament selection with replacenoanP in order to fill the mating pool.

Step6: Variation:
Apply recombination and mutation operators to thating pool and add the resultit

)

rs

9

population td® . Increment generation countdr={t +1) and go to Fitness assignment ste

o
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Table 2.3 The main structure of IBEA

Table 2.4 presents the input and output of thertkgo, and the process of the algorithm to

deal with multiobjective problem.

Step 1: Initialization:

Step 2: Update

Step 3: Stopping Criteria

Input:
a stopping criterion; the number of the subproblessidered in MOEA/D; a uniform

spread ofN weight vectors:A',K ,A"; and T, the number of the weight vectors in the

neighborhood of each weight vector.
Output: External Populatior=P)

SetEP = . Compute the Euclidean distances between any twghtveiectors and thep
work out the closest weight vectors to each weighttor. For each=1K ,N , set

B(i)={i,.K ,i;}, whereA",K ,A" are the T closest weight vectorsb.
Generate an initial populatior’,K , X" randomly or by a problem-specific method. Set
FV' = F(X)

Initialize z=(3,K , .7m)T by a problem-specific method.

Fori=1K ,N,do
Reproduction: Randomly select two indekesl from B(i), and then generate a new
solution y fromx“and X' by using genetic operators.

Improvement: Apply a problem-specific repair/ impement heuristic ory to producey

Update ofz": for eachj =1,K ,m, if z, < f, ( y) then setz, = f ( y)

Update of Neighboring Solutions:gfe(y'/ij, Z)S g‘e( )é‘/%j, a for each indej € B(i),
setx' = y andFV’ = F(y). gte(xj‘ii, z*):max{/Ilj f(X- 2}, 2K A" be a sef

I<ism

of even spread weight vectors arndbe the reference point.
Update ofEP: RemoveEP from all the vectors dominated b‘y( y') and addF (y) to EP

if no vectors inEP dominateF (y) .

If stopping criteria is satisfied, then stop antpoitt Otherwise, go to Step 2.

Table 2.4 The main structure of MOEA/D

2.3 Performance Metrics
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In this part, first some important concepts areotiiiced. These are applied to define

relations between different approximation fronteef, we will explain both unary and binary

performance metrics in detail.

2.3.1 Outperformance Relations

Hansen and Jaszkiewicz [9] have focused on thelgorobf evaluating approximations to

the true Pareto front. They define a number of edigpmance relations that classify the

relationships between two sets of nondominated ctilbge individuals while the preferences

information of the test problem is unknown. Basadhese, Knowles and Corne [18] further give

two definitions about Monotony and Relativity.

Weak Outperformance [9]

A weakly outperformsB (AQ, B): A weakly outperformsB if and only if nondominated
points of AU Bare the same as the whole poiimsA, andA= B. Therefore, each point

z, € B is covered bya pointz, € A; ‘cover’ means is equal to or dominatgs Additional,
there is at least one poigfe A which is not contained iB. Adding toB a new non-

dominated individual can generate a new approxondtiont that weakly outperfori.

Strong Outperformance [9]

A strongly outperformsB ( AO, B ): A strongly outperformsB if and only if
nondominated points oAU Bare the same as the whole poiimt#\, andB contains another

dominated points. Therefore, each pamt B is covered bya pointz € A. Additional,
there is at least one poigf € Bthat is dominated by a poif € Aandis not contained iB

. Adding to B a new individual that dominates at least one pmir8 can generate a new

approximation front that strongly outperfoBn

Complete Outperformance [9]
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A completely outperformsB ( AO. B): A completely outperformsB if and only if
nondominated points oAU B are the same as the whole pointsA, and none of

nondominated points oA Bbelongs td . Therefore, each poirt, € B is dominated by

pointz, € A. Adding to B a new individual that dominates all pointsBncan generate a

new approximation front that completely outperf@am

Incomparable Outperformance [9]

A incomparable outperformBis defined as some points lvdominate points irB and
some points irB dominate points if\. In this condition, we cannot state that which @e

better.

Compatibility and Weak compatibility [9]

LetO=Q,, 05 0r O.:

Compatibility: A comparison metri® is compatible with an outperformance relatiif

for each pair of nondominated setsandB, such thahO B, Rwill evaluate A as being

better tharB .

Weak compatibility: A comparison metriR is compatible with an outperformance relation

Oif for each pair of nondominated sefsandB, such thatAO B, Rwill evaluate A as

being no worse thaB.

Monotony and Weak Monotony [18]
Monotony: Given a nondominated skt adding a non-dominated point improves its

evaluation. Compatibility witlQ,, is necessary and sufficient for ensuring mono{asy.

Weak Monotony: Given a nondominated Aetadding a non-dominated point does not

degrade its evaluation.

31



e Relativity and Weak Relativity [18]

Relativity: The evaluation oE" is uniquely optimal, i.e., all other nondominaseds have a

strictly inferior evaluation. Compatibility wittQ,, is sufficient but not necessary for

ensuring relativity [18].

Weak Relativity: The evaluation &* is non-uniquely optimal, i.e., all other nondontath

sets have a non-superior evaluation.

From above theories, we can findAQ. B= AQ B= AQ, E andO, cO;cQ, .

Complete Outperformance is the strongest of thatioel and easiest to be compatible; Weak

Outperformance is the weakest of the relation aast miifficult to be compatible.
2.3.2 Compatibility and Completeness

Zitzler [10] has proposed a method that links Camspa Methods and Dominance
Relations to reveal differences in performance betwMOEAS, and make the statement that an
algorithm outperforms another one. What conclusicas be drawn with respect to the

dominance relations is emphasized.
Quality Indicator:

In order to quantify quality differences betweerp@ximation sets, quality measures are
necessary used to map approximation sets to thaugders by applying common metrics to the

resulting real numbers. Based on this observaliitner defines what a quality measure is:

An m -ary quality indicatorl is a functionl :Q™ — R , which assigns each vector

(A, A K ,A,)of m approximation sets a real valug,A, A, K ,A,).
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Often, not a single indicator but rather a combamaof different quality indicators is used in
order to assess approximation sets. The combingtiafity indicator vector can be regarded as a

function that assigns each approximation set soveftmultiple real numbers.
Comparison Method:

Here, we use Pseudo-Boolean functiaio compare different approximation sets. It maps

vectors of real numbers to Booleans:
E(1)=(1=1) meansE is true if and only if =0.

A comparison method, . is based on a combination of one or more qualiticators|

and a Boolean functida .

Given two approximation set®\BeQ , |=(I,l,K |,) a combination of quality
indicators, ancE: IR x IR —>{fa|se,true} a Boolean function, from Zitzler's theory, @, . is
defined by combination of unary indicators and Reol function E

Ce(AB)=E(I(A,I(B);If C is defined by combination of binary indicators d@mblean
function E, C, . (AB)=E(I(AB),I( B A)
Compatibility and Completeness:

Compatibility: for anyA, Be Q, the result ofC, (A, B) can indicate thaAis better thal

, or B is better tham\.

Completeness: for any, Be Q, the relation thatA is better thaB, or B is better thanA

can decide the value 6f . (A B).
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For a particular quality indicator, if there exist8Boolean function such that the resulting
comparison method is compatible and in additiongete with respect to the various dominance
relations (strong, weak or complete), this qualigicator can be evaluated to be powerful quality

indicator.

However, Zitzler [10] has proven there exists nonparison method based on a finite
combination of unary quality indicators that is quatible and complete at the same time. It
means for any combination of a finite number of rynguality indicators, a Boolean function

cannot be found such that this comparison methbdtls compatible andomplete.

From the above reasons, the number of performanegics that determine a better
approximation set from two sets is infinite. Furthere, to be able to detect whether an
approximation front weakly dominates or dominatesther approximation front, the number of

performance metrics should be greater than or équhe number of objectives.

2.3.3 Unary performance metrics

The first type of performance metrics concerns almssessing the Number of Pareto
Optimal Solutions in the SeRatio of Non-dominated Individua{®NI) [5] gives the proportion
of the useful solutions known as the Pareto-frord Diven population siz&rror Ratio (ER) [4]
evaluates the proportion of non true Pareto pointsthe approximation front;Overall
Nondominated Vector Generation and Raf®@NVG) [4] counts the number of distinct non-
dominated points generated; dhareto Dominance IndicatdNR) [3] measures the ratio of non-
dominated solutions contributed by a particularusoh set to the non-dominated solutions

provided by all solution sets.

Ratio of Non-dominated Individuals (RNI) [5]

The performance measure is:
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_ |nondom_ indiy

RNI(X) = = (2-18)

nondom_ indiv. Non-dominated individuals in populatiod with sizeP .

If RNI=1, all the individuals inX are non-dominated; and RNI=0, none of the
individuals in X is non-dominated. It is always required to haveugih qualified individuals to
construct a Pareto front. TherefoRINI is significant in that it checks the proportion rafn-

dominated individuals in populatiof.

Knowles and Corne in [18] have stated thafl is not weakly compatible with any
outperformance relation. It exhibits monotony. @gaadd a non-dominated point will make the
RNI value better. It violates relativity. True Partant cannot be sure to have more numbers of

non-dominated points than other approximation font

Error Ratio (ER) [4]

It is defined as the proportion of non true Papeimts in reference set:

>e)

ER( X)= ( 5 (2-19)

Individual i is a point in approximation froix . P is the number of individuals i .

g =0 means individual is in true Pareto set; argl=1 means individual is not in true

Pareto set. Lower value &R implies a small proportion of non true Pareto fmim X and
represents better nondominated sets. It is a refermetric using true Pareto front as reference

set.

Knowles and Corne in [18] have stated ti&Ris only weakly compatible witD, . It is not

weakly compatible wittOg orQ,, . If one algorithm generates 100 points, one inRaeeto front,
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the other 99 points are very far from the Paredatfrits error ratio is 0.99. However, if another
algorithm also generates 100 points, all thesepddts are very close to Pareto front, its error
ratio is 1. Although the second algorithm’s erratia is larger than the first one, we can see
clearly the second one is better than the first. @R strongly violates monotony: Add a

nondominated but non-Pareto optimal points in gar@pmation set, makes the ER score worse.
The advantage is easy to understand and easy ¢alatal It is scaling independent. The
disadvantage is the true Pareto front informatisnneeded. It is incompatible with the

outperformance relations.

Overall Nondominated Vector Generation and Ratio (ONVG) [4]
It measures the total number of nondominated vedtmnd in approximation front during

MOEA execution. It is defined as:
ONVG=| Plfnown| (2-20)

PF,

known

represents approximation front. From [19], too feectors inPF,,, make the

nown

front’s representation poor and too many vectorg ovarwhelm the decision maker.

Knowles and Corne in [18] have stated tHaNVG is not weakly compatible with any
outperformance relation. It does not exhibit eitezak monotony or weak relativity. The
advantage is easy to calculate and scaling indgpénevhile the disadvantage i#

outperformanceB on this metric does not meah is clearly better thaB .

Pareto Dominance Indicator (NR) [3]

Considering the differefFs, A, A, K A evolved by algorithms, this metric measures the
ratio of nondominated solutions that is contributeyl a particular solution sef to the

nondominated solutions provided by all solution:
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NR( A A,..., A)=— (2-21 A)

B={h|vh,—-Ig (AU A..U A)p B (2-21 B)
A is the solution set under evaluation.

Zitzler show that no combinations of unary perfonoc® metrics can provide a clear
indication of whether an evolved set is better thanther in the Pareto dominance sense, this

metric can be a complement to another metricdt[i§.weak compatible witl®, andO.. .

The second typef performance metrics focuses on measuring theenlkess of the solution
to the True Pareto FronGenerational DistancéGD) [4] measures how far the evolved solution
set is from the rue Pareto front; akthximum Pareto Front Erro(MPFE) [4] identifies the
largest distance between the point in the thealetRareto front and the point in the

approximation front.

Final Generational Distance (GD) [4]

GD:_(Z‘nldip)]/p
n

(2-22)

n is the number of vectors in the approximation fra@his the distance in objective space

between individual and the nearest member BF

true

.This metric is a value representing how
“far” the approximation front is from true Paretwrit. Lower value ofGD represents better
performance. It measure general process towardsRameto front [18]. It is a reference metric
using true Pareto front as reference set.

Knowles and Corne in [18] have proven tk&D is not weakly compatible witkD,, , but is

compatible withO; . It violates weak monotony which implies addingan-dominated point to

37



an approximation fronts cannot improve @B value. It exhibits weak relativity since any subse

of Pareto front has an optim@D. For a constant size of non-dominated &4, is compatible
with Q. But it is not used for non-dominated sets thata@ranging in cardinality. It cannot be

reliably differentiate between different levelsafmplete outperformance. The true Pareto front

information is needed.

Maximum Pareto Front Error (MPFE) [4]
It measures the largest distance between any vacttre approximation front and the
corresponding closest vector in true Pareto frivriinds the largest distance between individual

j in approximation front and individualin the true Pareto optimal front.

were=ma{ mif £ (3~ ¢ (4" +| 403~ £() (2-23)

It is a reference metric using true Pareto frontreference set. In terms of Pareto
compatibility, it is not weakly compatible with @#rformance relation. It violates weak
monotony. It exhibit weak relativity since any sebsf Pareto front is optimal. It is cheap to
compute. It helps us to focus on how far the wpnt is. However, from [19], for a non-
dominated set, a good performanceMiRFE does not ensure it is better than another one avith

much worseMPFE. The true Pareto front information is needed.

The third type of performance metrics measuresibligion of the SolutionsUniform
Distribution (UD) [5] measures the distribution of an approxioma front under a pre-defined

parametes

share?

Spacing[6] measures how evenly the evolved solutionsridigte itself; and

Number of Distinct ChoiceENDC,) [7] identifies solutions that are sufficientlystinct for a

special valuél .

Uniform Distribution (UD) [5]
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It measures the distribution of non-dominated imii@ls on the found trade-off surface. For

a given set of nondominated individua¥s in a populatiorX :

UD(X) = 1+1$m (2-24 A)
L) -
nc( %)= é‘ f(i, ) (2-24 C)
(i) = {5 o 2:24D)
nc( X)) :M (2-24 E)

N.

X

O4are IS Pre-defined by decision makes,_ is the standard deviation of niche count of the

overall set of non-dominated individualy, is the size of the set . nc( x) is the niche count of

the i individual X and dis(i, j) is the distance between individualand j in the objective

domain.

Knowles and Corne in [18] have proven th&tD is not even weakly compatible witl, .

It violates monotony in that an additional poinhoat make sure the distribution is improved. It
violates relatively. An approximation front far frothe Pareto front can have the sdui® score

to the Pareto front. It has low computational oeeidhand provides the opportunity for Decision
maker to choose well distributed front accordingedal application need by assigning different

However, it idifficult to choosec

share

value too,

share*

without any reference information.
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Spacing [6]
This metric is a value measuring the distributidvectors throughout approximation front.

It provides information about the distribution afctors obtained. Because approximation front's

“beginning” and “end” are known, a suitably defimaétric judge how welPF,_ . is distributed.

S= —Z[ d- qu (2-25 A)

d =minf| 5 (9 & (3 +] (3 £ (3] (225 B)

d. is minimum distance between two solutions in thpraximation front. Knowles and
Corne in [18] have stated that: Spacing is noneweakly compatible witl, . It violates

monotony in that an additional point cannot makee ghe distribution is improved. It violates
relatively. An approximation front far from the B#&y front can have the same Spacing score to

the Pareto front. It has low computational overhaad can be generalized to more than two

dimensions by extending the definition dbf. But the use of normalized distances may be

problematic.

Number of Distinct Choices (NDC,) [7]

In this metric, only those solutions that are sigfitly distinct from one another should be

accounted for as useful design options. The quallTy(q, P) indicates whether or not there is

any point p, € P that falls into the region.

T.(q) is decided byl/u™, 0<u<1.mis the dimension of objective-space
NT P _ 113PKEP,H<ETU(@
u ( G ) | 0.YpeP.peT (9 (2-26 A)

NDCU( P) is the number of distinct choices for a pre-spedifralue ofi:
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NDC,(P)=Y .3 Y NT(qg B (2-26 B)

From [7], for a pre-specified value f an observed Pareto solution set with a higher value

of the quantityNDC, ( P) is preferred to a set with a lower value.

In terms of Pareto compatibilitylDC, is not even weakly compatible wi, . It violates
monotony in that an additional point cannot makee ghe distribution is improved. It violates
relatively. An approximation front far from the B#&y front can have the same Spacing score to
the Pareto front. It provides the opportunity faedBion maker to choose well distributed front
according to real application need by a pre-spagtifralue ofi. However,it is not easy to

compute.

The fourth category of performance metrics concam®ad of the solutiondlaximum

Spread(MS) [3] measures how well the rue Pareto fromogered by the approximation set.
Maximum Spread (MS) [3]

It addresses the range of objective function vahres takes into account the proximity to

PF,..- This metric is applied to measure how well #€,,, is covered by thBF,

nown *

1H min( fim‘/’lx,Fimax)—ma><fi minFi min) 2

MS= M = (Fimax_Fimin)

(2-27)

f™and f™ are the maximum and minimum of thth objective inPF, respectively;

nown !

F™and F™ are the maximum and minimum of thth objective inPF,

true ?

respectively. If

MS( A > MY B, the solutionAis preferred tds .

The last type of performanceetrics considers both closeness and diversity:
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Hypervolume Metric [11]
The hyperarea difference metric [11] is also caBedetric and can be used to quantitatively
evaluate the difference between the size of theatibp space dominated by an observed Pareto

front and that of the space dominated by the taretB front.

The true Pareto front set dominates the largestinvel in solution space while an
approximation front may only dominate a portiontafe Pareto front dominated volume. A
guantitative measure is obtained as to how muchseven observed Pareto front is when
compared to the true Pareto front. Although in n@ablem, the true Pareto front is usually
unknown; it should still be possible to compareapproximation front to another so as to draw a

conclusion that which front is better.

Let HD(P) represent the hypervolume difference quantity betwthe inferior regions of

the true Pareto solution sBt andthe inferior region of the observed Pareto solutionR¢7]:

HD(P)=spac¢ 5( - & W=1- spdcg(S)) (2-28)

In [4], Veldhuizen also propose a Hyperarea Rattrimdefined as:

Hro Hu (2-29)

H, is the hyperarea dPF,,, while H, is that of PR

true

. In the proposed performance

nown

metrics ensemble to be presented in Chapter 3deygt ¢his modified Hyperarea Ratio Metric.

It is compatible with all the outperformance redas [18]. Each algorithm can be assessed
independently of the other algorithms in this nustriHypervolume Metric differentiates between

different degrees of complete outperformance of $ets, so it can evaluate how much better an
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approximation set is than the other approximatiem It is scaling independent, non-cardinal and

its meaning is intuitive. Itan be misleading if the Pareto optimal front is4convex [3].

Therefore, it focuses on the volume of the objecpace dominated by an approximation
set and calculates the hypervolume of the multiedisional region enclosed by approximation

front and a ‘reference point’ [18].

A reference point is also called the upper bounddrthe region. The choice of the upper
boundary determines which approximation front Hees maximum dominated hypervolume. In
many cases, we need to find the reference poirgfresent the upper boundary of the region.

The reference point should be chosen so thatlibrisinated by all Pareto-optimal solutions.

Auger and Zitzler [20] have proposed a method findehe reference point= (rl,rz) for a

specific problem:
Let U be an integer larger than or equal to 2. Assuraeftis continuous ofX ., X ..
non-increasing, differentiable dix,,, X....] and thaf is continuous ofX,;,, X :

The leftmost extremal point

Iflim,,, - f(x)<+o0:

R, = sup {f'(x)(x— %)+ ( )9} (2-30)

X[ Xin » Xone]

When R, is finite, the leftmost extremal point is contadne optimal u-distributions if the

reference point = (r,,r,) is such that, is strictly larger thaR,. r, can be chosen to Be.

If lim,,, —f(x)=+w0, the left extremal point of the front is neverlirded in optimak-
distributions. Sor, = +o.
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The rightmost extremal point

when f is strictly negative ofx ., Xa] :

R:= sup ]{X+M} (2-31)

Xe[ X + Xnax f (X)

When R is finite, the rightmost extremal point is contdnin optimalu-distributions if the

reference point=(r,r,) is such thatyris strictly larger thaR, . r,can be chosen to bR .

If f(X.)=0, the right extremal point of the front is neverlirded in optimalu -

distributions. Soy, = +o.

Hypervolume metric also has a large computationadrieead. Largest computation is
defined [21] by Klee’'s Measure Problem (KMP) andvést computation is defined by the
UniformGap Problem. KMP is the problem of computthg length of the union of a collection

of intervals on the real line and defines the ugpmmdary of the computation. It can be solved

with computational complexity in optim&( nlog n) time.
First, measure of a union of hyperrectangles id dimensions:
O(n"*logn)= O i*)=  ri*log 1) . Second, the weakly dominated hypervolume for a

point setP c IR, as a special case of Klee’s measure problem: Thytope I1¢ is patterned by

the collection of hyper-rectangléﬁzp}p . with R Z={X€ IR, : x< @ spanned by the points in

P and the reference point0< IR, . Third, the set of hyper-rectangles is the input &rel
desired hypervolume output. Finally, we get an uppeund of computation time in

O(nlog n+ i’ log n) . The best upper bound currently known éos 3:0( nlog n+ rf/z)

44



The UniformGap Problem defines the lower bounddrghe computation. This problem
uses the fixed-degree algebraic decision tree,wisithe standard model used in computational

geometry and is used to prove lower bounds forrtgenc) decision problems.

It captures the behavior of a (loop-unrolled) aidpon that branches depending on the
outcome of evaluations of bounded-degree polyn@niallower bound on the complexity of a
given problem can then be derived by establishifgrer bound on the depth of any such tree
resembling any valid algorithm to solve this probleMoreover, linear-time reduction from

problem A to problemB means the lower bound for problefis a lower bound for probleB

2.3.4 Binary performance metrics

The first type of binary performance metrics basedinary quality indicator. It includes-

indicatorl _, enclosing hypercube Indicatandcoverage difference metri¢®-metric).

First, ¢ -indicator|, [10] can be used to compare algorithms directihauit reference front

information. This is defined as:
I_(AB)=inf{vZe Bze A 22, % (2-32 A)
7> ZoVvi<i<n Z<e 7 (2-32 B)

I_(A,B)reflects the value af. For every individualz®in B, there must exist an individual

Z'in A dominates - 2.

For any pai\, Be @, Aff B= I_( A B)<1.Therefore, ifA is better thaB, s <1
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However, | _ (A, B) < 1can only imply thatA is not worse thaB in strictly dominates and

better relations.

SecondEnclosing Hypercube Indicatdd O] is defined as:

17 (A)=sup_{{(aa....8)} > A} (2-33 A)
15 (A) =inf, {{(bb,...b)} < A (2-33 B)
1;°(A)<I1°(B)= A>B Vvi<i<n+1 (2-33C)

1;'° (A)is the point that worse than all individualsAn I,° (B) is the point that better than

all individuals inB .

Finally, coverage difference metrid®-metric) [11] is defined as the size of the space
dominated byA and not dominated bB (regarding the objective spacé),B< X be two sets
of decision vectors.

D(AB)=S A- B- % B (2-34

A)
where S( A is the Hypervolume Difference Metri&-(netric).

Zitzler [11] suggest that (ideally) the metric is used in combination with tf&metric
where the values may be normalized by a referemtemeV , where (for a maximization

problem)V is given by:

Y =f[( free— £ mn) (2-34 B)

i=1
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f™and f™ represent the maximum respectively minimum valuetfie objectivef, .

D(A B)

Thus, the valueDl(A, B)= represents the relative size of the region (indhpctive

space) dominated by and not dominated .
The second type is direct comparison binary met@asetrics andk metrics.

C metrics[9] maps the ordered paj, B) to the interva]0,1]:

‘{be B|E|ae A a< lﬂ
AR

(2-35)

C(A B)=1: all decision vectors iB are weakly dominated by; C(A B)=0: none of
the points inB are weakly dominated bg. It is compatible withO, andO. , but incompatible
withQ,, . Only if C(A B)=1 andC(B, A)<1, it is compatible witlQ,, . It is Non-symmetric:
C(A B) is not necessarily equal +€(B, A). It has low computational overhead. Scale and

reference point independent. However, there are situations twaenetricC cannot decide if an

obtained front is better than the other.

R metrics [5] consist of three sub-metriB&( A B,U, p, R2( A B,U, p andR3( A B,U, p.
RI( A B,U, p calculates the probability that approximatiénis better than approximation

B over an entire set of utility functions.

R(ABU,P=[ QABY p ¥ d (2-36 A)

ueU

C(ABuU=:Y2,u(A=1u(B (2-36 B)
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u'(A)=max,_,{u( 2} , u(B)=max,{u(2)} and p(u) is an intensity function
expressing the probability density of the utility. RE( A B/U, p>0.E, A is the winner; if
Rl(A, B, U, p)< 0.5, B is the winner. In terms of Pareto compatibilifyl is only weakly

compatible withQ,, and is not compatible wit, . It has low computational overhead and Scale

independent buRl is cycle-inducing.

R2( A B,U, p calculates the expected difference in the utility of an approximaiiovith

another on® .

R2(ABU,p= [ (u(A-u( B) pyd (2-37)

ueU

R2 is compatible withQ, . It can differentiate between different levels of complete

outperformance. However, each utility functiondnmust be appropriately scaled with respect to

the others and its relative importance.

R3( A B,U, p calculates the ratio of the best utility values. Thahésexpected proportion

of superiority.

R3(A,B,U, p): J‘ (u*(ﬁz(_:;(B))

uelU

{y d (2-38)
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CHAPTER THREE

METHODOLOGY

This chapter first explains the motivation of the desigmedformance metrics ensemble.

Then, we describe the proposed approach in detail.

3.1MOTIVATION

Chapter 2 has introduced a large number of available perfoemaetrics with different
characteristics. However, none of these metrics alone cafuligitmeasure MOEA performance
independently. Every metric can provide some specific butddrinformation and can only be
used effectively in some specified conditions. For exaniizdoes a poor job when the Pareto
front is discontinued and Hypervoluntan be misleading if the Pareto optimal front is non-
convex [4]. This means one metric cannot entirely evaluate MOEAS| conditions. Every
metric focuses on some special characteristics while neglectmatfon in others. Also, every
metric has its unique character; no metrics can substitutesatbepletely. Therefore, a single
metrics cannot provide a comprehensive measure for MOEAs. Matebecause reduce
objective space must losing information, a fixed numbenditators are not sufficient to make a

comprehensive measure for MOEASs [11].

Meanwhile, different metrics perform differently in diffetetest problems. For a given
MOEA, one metric may do well in one test problem, howeieother test problems, it may be
misleading. For a specific test problem, we cannot knovehwhietric is better. We need to try

various metric to identify which one is the best. Thig leeavy computational process.

To overcome these challenge and arrive at a faithful evaluafiom given MOEAs,

49



performance metrics ensemble is necessary. Ensemethod usesnultiple metrics to obtaila
fair performance thanvhat could be obtained fronany of single performancmetric alone.
Ensemble metrics not oncan give the comprehensive comparibetween different algorithm

but avoid he choosing process and cardirectly used to assessing MOEAs.
3.20VERVIEW OF PERFORMANCE METRICSENSEMBLE

The proposed framework is shown in Figure

Ottt

UL,

[ PR [ N SN N L Al namC A

\aiik vdiu€ O Ail IVIULAS

N

f n YES
|
. NO
Double-Elimination NO. Remain
get one best front fronts is 0?

T

Eliminate All Fronts
from Winner Algorithm

Identify the Winner
Algorithm and Assign
Its Rank Value

Fig 3.1 The proposed framework

Table 3.1 explains the whole process of ensembliodein detail. 5(independent trials
given the same initial populations to each andyecandidate MOEAs are performed, resuli
50 approximation front§rom each chosen MOEA for comparisc Then, inthe proposed
DoubleTournament Selection, every individi(i.e., approximation fronthas twoopportunities

to compete. After one winner is found, identify wiialgorithm it isfrom; remove all the front
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of that algorithm and compare others again. Finally, all theridhms will be assigned a rank

value.

Input: A number of MOEASs for comparison
Output: Rank Value of the chosen MOEAs

Step 1: Generate 50 approximation fronts from each MOEA:
The selected MOEAs run 50 times for a given benchmaokl@m under the same
initial conditions. Every time, each MOEA generate an appromdatonts while
each front represents its algorithm. After that, a singleopednce metric in th
performance metrics ensemble is randomly chosen to measure liheajweach front,
and the best approximation front is picked up based drpdréormance pertained to
the chosen benchmark problem at hand. After 50 running timves,get 50
approximation fronts.

D

Step 2: UseDouble-Tournament Selection to get the best one individual:

I Every 2 individuals are randomly picked to form compatitipair. One
performance metric is randomly chosen in each competition. Eaichwil
generate a winner and a loser. After all the competitiom pavts are create,
contains all the winners named winner bracket; the dthewntains all the losers
named loser bracket.

ii. In bothW; andL,, the same competition is performed again and each package
can be divided into two sub-packages. One sub-package contaimsrsyithe
other losersW, is divided intoW;; (winners) and\j, (losers);L; is divided into
Ly; (winners) andLi, (losers). Then, individual ofV, will compete with
individual of Ly; one by one. Winners from these competitions consist efag n
loser bracket ;5. We reservéVy; andL,s. Therefore, the population is reduced to
an half.

iii. In both Wi; and L5, do as Step ii again. Every time, reduce the population by
half. Finally, only one individual wins at the very end.

Step 3: Assign every MOEA a rank value
Identify from which MOEA this winner front comes fromssign this algorithm ran
value 1. Then, eliminate all the approximate fronts genetatddis algorithm in the
50 approximate fronts. Go back to step 2 and compare remdiints from all
MOEA (less the winner with rank 1) again. Finally, welwissign each algorithm |a
rank value implying its ranking order through the m®gd performance metri¢cs
ensemble.

Table 3.1 The Whole Process of Ensemble Method

3.3ENSEMBLE METHOD WITH DOUBLE-TOURNAMENT SELECTION

3.3.1 Double-Tournament Selection
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The Modified Double Tournament algorithm selects an iddiai using tournament
selection: at the initial step, the tournament contestaatshamsen at random from the population.

Then, at the following step, they are each the winnel@sbtournament selection.

For example, imagine if the tournament has a pool size ofif32; the 16 “qualifier”
tournaments are held as normal in tournament selection, anchthe pool is divided into two
parts: winner bracket contains 16 winners and loser pasiE8d. Then, in each of the part, 8
normal tournament selections are processed so that the gatitled again. In both parts, there
are 8 new winners and 8 new losers. Afterward, we competerters from loser bracket with 8
losers from winner bracket. Here, two individuals come arie tournament selection should be
from different part, that means, one individual from winmeacket is compared with one
individual from loser bracket. Therefore, we get 8 wisneom this step. This process reduces
the total number of individuals from 32 to 16. Contiiaedo it, 16-8—>4—>2—1, finally, we

obtain the ultimate winner. This ultimate winner defeatsthkio31 competitors.

The motivation for applying Double-Tournament Selectiothé&t it gives every individual
two chances to take part in the competition. This advantdugpful to reserve good individual.
Because of the stochastic process, one approximation famtd quality MOEA may lose the
competition at time when a metric measuring the very defieigpect of problem characteristics
is applied. If this happens in the single eliminatiammament, the front will be lost forever and it
would not have any chance to compete again. However, in thelddabrnament Selection,

even it loses once, it has an opportunity to compete agdihapefully win at all.

For example, in NCAA basketball tournament, the last year’s dloanbgam will versus the
winner of the 6% and 6%' team. Of course, the probability that the champion team isinery
large, but basketball game bears a huge number of uncertain fdutoesexists probability that

the 64" team wins. In this condition, if single eliminationused, the last year's champion team
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loses at all. We will not see the excellent performanceigftélam in the following games of this
year. This will be a great loss for audience! In Doublerfiament Selection, the champion team
will have another chance to compete in the loser brackeanitmake up its mistake in the last

game and win again.

Therefore, in MOEASs comparison, if a really good frimsies its game at one competition, it
has the opportunity to win at another time. Doublemiglation design allows specific
characteristic-poor performance of a quality algorithm undespleeial environment still to be

able to survive through competitions and win it all.

3.3.2Ensemble Method with Double-Tournament Selection

The goal of Ensemble Metrics is that Ensemble Metrics can iberseffor its specific

ensemble advantages which accomplish the work that single metnict.can

In the following chapter, we choose five state-of-theM@EAs to compare and five
performance metrics to assess, every algorithm need to rumé&$ because of the stochastic
nature of MOEAs. In every running time, one algorithm paes one approximation front. Given
the same initial population, five fronts from five diéet algorithms go to competition in a pool
under evaluation of a randomly chosen performance metric andeshéront wins according to
this metric. After 50 running times, 50 winners are gemdrdtlere, maybe many of 50 winners

come from the same MOEA or none of 50 winners represenecdis@lgorithm.

In every 50 running time, the probability of each metribéochosen is 0.2, so the average
times each metric to be used is 10. This guarantee everic teebe chosen often and the 50

winners are decided by all five metrics collectively.

Then, these 50 winners are taken as the input to Doubierdiment Selection. Here, we just

consider 50 fronts as 50 individuals without concernirgualis representing algorithm.
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1)

2)

3)

4)

5)

6)

7

8)

Process:

Every 2 of 50 individuals are randomly picked to form ampetition pair. For every
competition, one metric is randomly chosen. Then, the tétpbits generate 25 winners and
25 losers. Create two parts: one contains 25 winners nameatembracket; the other
contains 25 losers named loser bracket.

In each of the part, first randomly choose an individua,rémaining 24 individuals form
12 pairs of competitions; every pair uses a randomly chosgricimtoo. Therefore, every
part has 12 new winners and 12 new losers. Put thefiosten individual into both winners
and losers. This will make the number of both winnerslasers to be 13.

13 losers in winner bracket and 13 winners in loser brgcket each individual losss only
once) are combined together to compete. Every competitionimerae individual from
winner bracket and one from loser bracket. Then, 13 winnergearerated and consist of a
new loser bracket. The other 13 losers and 13 loserdgimairloser part (i.e. each losses
twice) are eliminated.

Now, both new winner bracket and new loser bracket containdidduals. We finish this
step that reduces the number of competitors from 50 (pe2613 winners + 13 losers).
Then continue to do Step 2 and Step 3. We reduce the nafmbempetitors from 26 to 14
(7 winners + 7 losers), then from 14 to 8 (4 winneslosers), then from 8 to 4 (2 winners
+ 2 losers), then from 4 to 2 (1 winners + 1 losers) finally from 2 down to 1. The last
remaining individual is the final champion.

Check which evolutionary algorithm regarding the final winoemes from. Then we can
conclude which algorithm is the best.

Remove all the fronts come from the best algorithm and congplaee fronts from Step 1 to
Step 6 again. So we can arrive at the second best one.

Continue to do Step 7; finally, we obtain the ranking ¢ftla¢ algorithms. The whole
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process is end.

In this modified Doubl-Tournament Selection, to be the final winndre MOEZ must
defeat others under all the performance metin double eliminationbecause of stochas
mechanism for choosingetrics in every competition time. Therefore, ttank of all the

algorithms is based on all the met collectively.

Figure 3.2 usegraphs to explain each s of DoubleTournament Selectic:

[ \ A Mo .
! 13 winners 1 ! 13 Losers ! | 13 winners | | 13 Losers |
T Iﬁ—l
| T~ " |
| T~ — |
| - — |
| — |
______
} | 13 wWinners | \‘
I
Reserved as Winner Reserved as Loser o
Bracket in Next Bracket in Next Eliminate
Competition Time Competition Time
Fig 3.2 (a) From 50 individuals to 26 individL
‘ Winner Bracket (13) ‘ Loser Bracket (13)
7 Winners 7 Losers 7 Winners 7 Losers
Reserved as Winner Reserved as Loser o
Bracket in Next Bracket in Next Eliminate
Competition Time Competition Time

Fig 3.2 (b) From 26 individuals to 14 individu
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Fig 3.2 (d) From 8 individuals toindividuals
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CHAPTER 4

FINDINGS

4.1 EXPERIEMENT RESULTS

This part will show all experiment results in benchmaricfions: ZDT1, ZDT2, ZDT3,

ZDT4, ZDT6 and DTLZ2, respectively.

4.1.17DT 1

First, box plot for everperformance metric measure is presented:

e GD Metric

For each algorithm, the less the GD value, the better goeitaim’s performance:

o2l T B
0.15 |- | — : T _
T 1 |
o.05| — L 1 |

4.1(a) GD metric value in ZDT 1

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-ltgpresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.
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e Spacing Metric

For each algorithm, the less the Spacing value, the bettelgiimithm’s performance:

.
== — L=

4.1(b) Spacing metric value in ZDT 1

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e NR Metric

For each algorithm, the more the NR value, the better thethlgés performance:

1l %
O.6

4.1(c) NR metric value in ZDT 1
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Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e Smetric

For each algorithm, the more tBevalue, the better the algorithm’s performance
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4.1(d) Smetric value in ZDT 1

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

e MSMetric

For each algorithm, the more the MS value, the better thethlgés performance
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4.1(e) MS metric value in ZDT 1
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Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

Then, experiment results using ensemble performance maté€sT 1 is given:

Step 1 generates 50 fronts as the initial populatidbonible-Tournament Selection: in these
50 winner fronts, SPEA 2 wins 18 times, NSGA-Il wil times, IBEA wins 2 times, PESA-II
wins 4 times and MOEA/D wins 14 times. In this steptnns are totally chosen 50 times: GD is

chosen 17 times, NR is 12 times, Spacing is 8 tiesetric is 6 times and MS is 7 times.

Step 2 is the first step of Double-Tournament Selecti@t 50 fronts are competed to
generate 26 winners: in these 26 winner fronts, SPEAN2 &0 times, NSGA-II wins 7 times,
IBEA wins 0 times, PESA-II wins 1 time and MOEA/D wiBstimes. In this step, metrics are
totally chosen 62 times in two parts: The total 50 framésdivided into 2 groups in first 25 times:
GD is chosen 4 times, NR is 4 times, Spacing is 6 tiRasetric is 6 times and MS is 5 times.
26 winners are generated from both Winner group and Lgyseip in 37 times: GD is chosen 7

times, NR is 4 times, Spacing is 8 times, S-metric im@giand MS is 10 times.

Step 3 is the second step of Double-Tournament Selectior2@hfibnts are compared to
generate 14 winners: in these 14 winner fronts, SPEANR & times, NSGA-Il wins 4 times,
IBEA wins 0 times, PESA-Il wins 1 time and MOEA/D widstimes. In this step, metrics are
totally chosen 19 times: GD is chosen 5 times, NR is égjrBpacing is 5 times, S-metric is 2

times and MS is 3 times.

In the third step (Step 4) of Double-Tournament Seledtiat 14 fronts are compared to
generate 8 winners: in these 8 winner fronts, SPEA 2 8viimees, NSGA-Il wins 3 times, IBEA
wins 1 time, PESA-Il wins 0 times and MOEA/D wins fné. In this step, metrics are totally
chosen 10 times: GD is chosen 2 times, NR is 2 times, $p@schtimes, S-metric is 2 times and

MS is 1 time.
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Step 5 is the fourth step of Double-Tournament Selectiah & fronts are compared to
generate 4 winners: in these 4 winner fronts, SPEA 2 @itimes, NSGA-Il wins 1 time, IBEA
wins 0 times, PESA-II wins 0 times and MOEA/D winsirhd. In this step, metrics are totally
chosen 6 times: GD is chosen 0 times, NR is 1 time, Sp&ibdime, S-metric is 2 times and

MS is 2 times.

In the fifth step (Step 6) of Double-Tournament Selectimat # fronts are compared to
generate 2 winners: in these 2 winner fronts, SPEA 2 Wwitime, NSGA-Il wins 1 times, IBEA
wins 0 time, PESA-Il wins 0 times and MOEA/D winsifhé. In this step, metrics are totally
chosen 3 times: GD is chosen 1 time, NR is 1 time, Spasifgimes, S-metric is 0 times and

MS is 1 time.

In the final step (Step 7) of Double-Tournament Selecti@mt 2 fronts are compared to

generate 1 winner. The final winner is SPEA 2 and GD iseshttscompare.

In Step 8, remove all the fronts from SPEA 2 in 50 tsarbtained in the first step, continue
step 1 to step 7, NSGA-Il is the second best one and MDEAthe third one. After all the

remaining fronts come from the same algorithm, we get therfin& value for ZDT 1.

Rank 1: SPEA 2; Rank 2: NSGA-II; Rank 3: MOEA/D; RanlP£SA-II; Rank 5: IBEA.

4.1.2 ZDT2

First, box plot for everperformance metric measure is presented:

e GD Metric

For each algorithm, the less the GD value, the better doeithin’s performance:
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4.2(a) GD metric value in ZDT 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

e Spacing Metric

For each algorithm, the less the Spacing value, the bettelgibithm’s performance:
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4.2(b) Spacing metric value in ZDT 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e NR Metric

For each algorithm, the more the NR value, the better thethlgés performance:
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4.2(c) NR metric value in ZDT 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e Smetric

For each algorithm, the more tBevalue, the better the algorithm’s performance:
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4.2(d)S-metric value in ZDT 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e MSMetric

For each algorithm, the more the MS value, the better thetalgés performance:
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4.2(e) MS metric value in ZDT 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

Then, experiment results using ensemble performance meté€¥Tir2 is given:

Step 1 generates 50 fronts as the initial populationooiblz-Tournament Selection: in these
50 winner fronts, SPEA 2 wins 13 times, NSGA-II witistimes, IBEA wins 8 times, PESA-I|
wins 5 times and MOEA/D wins 13 times. In this step,riogtare totally chosen 50 times: GD is
chosen 9 times, NR is 11 times, Spacing is 10 times, Seneefrl times and MS is 9 times.

Step 2 is the first step of Double-Tournament Selecti@mt 50 fronts are competed to
generate 26 winners: in these 26 winner fronts, SPEA 2 Witimes, NSGA-Il wins 6 times,
IBEA wins 3 times, PESA-Il wins 3 times and MOEA/D wiid times. In this step, metrics are
totally chosen 62 times in two parts: The total 50 franésdivided into 2 groups in first 25 times:
GD is chosen 6 times, NR is 3 times, Spacing is 4 ti®easetric is 7 times and MS is 5 times.
26 winners are generated from both Winner group and Lgyseip in 37 times: GD is chosen 9

times, NR is 5 times, Spacing is 6 times, S-metric im8giand MS is 9 times.

Step 3 is the second step of Double-Tournament Selectiol2@hfbnts are compared to

generate 14 winners: in these 14 winner fronts, SPEA 2 &itimes, NSGA-Il wins 2 times,
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IBEA wins 1 time, PESA-Il wins 2 times and MOEA/D widstimes. In this step, metrics are
totally chosen 19 times: GD is chosen 7 times, NR is égjrSpacing is 5 times, S-metric is 2

times and MS is 1 time.

In the third step (Step 4) of Double-Tournament Seledtiah 14 fronts are compared to
generate 8 winners: in these 8 winner fronts, SPEA 2 @itimes, NSGA-Il wins 1 time, IBEA
wins 1 time, PESA-Il wins 1 time and MOEA/D wins 3 &m In this step, metrics are totally
chosen 10 times: GD is chosen 1 time, NR is 3 times, Spacihtimes, S-metric is 2 times and

MS is 2 times.

Step 5 is the fourth step of Double-Tournament Selectiah & fronts are compared to
generate 4 winners: in these 4 winner fronts, SPEA 2 fviimees, NSGA-Il wins 1 times, IBEA
wins 0 times, PESA-II wins 0 times and MOEA/D winsirhds. In this step, metrics are totally
chosen 6 times: GD is chosen 1 time, NR is 1 time, Spasi@gimes, S-metric is 2 times and

MS is O times.

In the fifth step (Step 6) of Double-Tournament Selectiwat ¢ fronts are compared to
generate 2 winners: in these 2 winner fronts, SPEA 2 Wittwe and MOEA/D wins 1 time. In
this step, metrics are totally chosen 3 times: GD is ch@giene, NR is 0 time, Spacing is 1 time,

S-metric is 1 time and MS is 1 time.

In the final step (Step 7) of Double-Tournament Selecti@t 2 fronts are compared to

generate 1 winner. The final winner is SPEA 2 and NR isethtiscompare.

In Step 8, remove all the fronts from SPEA 2 in 50 tsarbtained in the first step, continue
step 1 to step 7, NSGA-Il is the second best one and MDEAthe third one. After all the

remaining fronts come from the same algorithm, we get theréin& value for ZDT 2:

Rank 1: SPEA 2; Rank 2: NSGA-II; Rank 3: MOEA/D; RankBEA; Rank 5: PESA-II.
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4.1.3ZDT 3

First, box plot for everperformance metric measure is presented:

e GD Metric

For each algorithm, the less the GD value, the better doeithin’s performance:
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4.3(a) GD metric value in ZDT 3

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e Spacing Metric

For each algorithm, the less the Spacing value, the bettelgiimithm’s performance:
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4.3(b) Spacing metric value in ZDT 3

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e NR Metric

For each algorithm, the more the NR value, the better thethlgés performance:
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4.3(c) NR metric value in ZDT 3

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e S metric

For each algorithm, the more tBevalue, the better the algorithm’s performance:
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4.3(d)Smetric value in ZDT 3

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e MSMetric

For each algorithm, the more the MS value, the better thetalgés performance:

0.94 - - -

0.92 - _— ‘ —

4.3(e) MS metric value in ZDT 3

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgBiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

Then, experiment results using ensemble performance met#ZesTi 3 is given:

Step 1 generates 50 fronts as the initial populatidbonible-Tournament Selection: in these
50 winner fronts, SPEA 2 wins 11 times, NSGA-Il wita times, IBEA wins 9 times, PESA-II
wins 7 times and MOEA/D wins 11 times. In this step,riogtare totally chosen 50 times: GD is

chosen 10 times, NR is 13 times, Spacing is 7 times, Seneefr2 times and MS is 8 times.

Step 2 is the first step of Double-Tournament Selecti@t 50 fronts are competed to
generate 26 winners: in these 26 winner fronts, SPEA 2 @&itimes, NSGA-Il wins 6 times,

IBEA wins 5 times, PESA-II wins 3 times and MOEA/D wi6 times. In this step, metrics are
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totally chosen 62 times in two parts: the total 50 framéesdivided into 2 groups in first 25 times:
GD is chosen 4 times, NR is 5 times, Spacing is 4 ti®easetric is 5 times and MS is 7 times.
26 winners are generated from both Winner group and Lgyseip in 37 times: GD is chosen 7

times, NR is 6 times, Spacing is 7 times, S-metric iSri®¢ and MS is 7 times.

Step 3 is the second step of Double-Tournament Selectiol2@hibnts are compared to
generate 14 winners: in these 14 winner fronts, SPEA 2 @itimes, NSGA-Il wins 4 times,
IBEA wins 3 times, PESA-II wins 2 times and MOEA/D wif3 times. In this step, metrics are
totally chosen 19 times: GD is chosen 4 times, NR is BgjrBpacing is 3 times, S-metric is 4

times and MS is 3 times.

In the third step (Step 4) of Double-Tournament Seledtiah 14 fronts are compared to
generate 8 winners: in these 8 winner fronts, SPEAN3 Witime, NSGA-Il wins 3 times, IBEA
wins 1 time, PESA-Il wins 1 time and MOEA/D wins 2 & In this step, metrics are totally
chosen 10 times: GD is chosen 2 times, NR is 2 times, I8p&cB times, S-metric is 1 time and

MS is 2 times.

Step 5 is the fourth step of Double-Tournament Selectiah & fronts are compared to
generate 4 winners: in these 4 winner fronts, SPEA 2 Wiimees, NSGA-Il wins 2 times, IBEA
wins 0 times, PESA-II wins 0 times and MOEA/D winsirds. In this step, metrics are totally
chosen 6 times: GD is chosen 2 times, NR is 0 time, Spaibigimes, S-metric is 2 times and

MS is 2 times.

In the fifth step (Step 6) of Double-Tournament Selectiwat ¢ fronts are compared to
generate 2 winners: in these 2 winner fronts, NSGA-Hsw2 times. In this step, metrics are
totally chosen 3 times: GD is chosen 1 time, NR is 2 tifpacing is 0 time, S-metric is 0 time

and MS is 0 time.
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In the final step (Step 7) of Double-Tournament Selectiwat 2 fronts are compared to

generate 1 winner. The final winner is NSGA-Il and S-megrichiosen to compare.

In the Step 8, remove all the fronts from NSGA-II in 50nfs obtained in the first step,
continue step 1 to step 7, MOEA/D is the second best oniB&Adis the third one. After all the

remaining fronts come from the same algorithm, we get therfin& value for ZDT 3:

Rank 1: NSGA-II; Rank 2: MOEA/D; Rank 3: IBEA; Rank3PEA 2; Rank 5: PESA-II.

4.1.47DT 4

First, box plot for everperformance metric measure is presented:

e GD Metric

For each algorithm, the less the GD value, the better gloeitaim’s performance:
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4.4(a) GD metric value in ZDT 4

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

e Spacing Metric

For each algorithm, the less the Spacing value, the bettelgibrithm’s performance:
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4.4(b) Spacing metric value in ZDT 4

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

e NR Metric

For each algorithm, the more the NR value, the better thetalgts performance:
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4.4(c) NR metric value in ZDT 4

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e Smetric
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For each algorithm, the more tBevalue, the better the algorithm’s performance:
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4.4(d)S metric value in ZDT 4

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

° MS Metric

For each algorithm, the more the MS value, the better thethlgés performance:
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4.4(e) MS metric value in ZDT 4

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.
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Then, experiment results using ensemble performance meté&¥Tid is given:

Step 1 generates 50 fronts as the initial populatiddoafble-Tournament Selection: in these
50 winner fronts, SPEA 2 wins 0 times, NSGA-II wits times, IBEA wins 9 times, PESA-II
wins 9 times and MOEA/D wins 17 times. In this step,riogtare totally chosen 50 times: GD is

chosen 9 times, NR is 15 times, Spacing is 7 times, SaigettR times and MS is 7 times.

Step 2 is the first step of Double-Tournament Selecti@ 50 fronts are competed to
generate 26 winners: in these 26 winner fronts, SPEA 2 @itimes, NSGA-Il wins 9 times,
IBEA wins 5 times, PESA-Il wins 5 times and MOEA/D wiid times. In this step, metrics are
totally chosen 62 times in two parts: the total 50 framéesdivided into 2 groups in first 25 times:
GD is chosen 6 times, NR is 4 times, Spacing is 4 ti®easetric is 5 times and MS is 6 times.
26 winners are generated from both Winner group and Lgyseip in 37 times: GD is chosen 5

times, NR is 7 times, Spacing is 9 times, S-metric imBdiand MS is 11 times.

Step 3 is the second step of Double-Tournament Selectbr2éhfronts are compared to
generate 14 winners: in these 14 winner fronts, SPEA 2 @itimes, NSGA-Il wins 5 times,
IBEA wins 3 times, PESA-Il wins 2 times and MOEA/D wid times In this step, metrics are
totally chosen 19 times: GD is chosen 5 times, NR is 6gjrBpacing is 3 times, S-metric is 4

times and MS is 1 time.

In the third step (Step 4) of Double-Tournament Seledtiah 14 fronts are compared to
generate 8 winners: in these 8 winner fronts, SPEA 2 @itime, NSGA-II wins 3 times, IBEA
wins 1 time, PESA-Il wins 1 time and MOEA/D wins 3 &m In this step, metrics are totally
chosen 10 times: GD is chosen 3 times, NR is 1 time, Spacihtimes, S-metric is 2 times and

MS is 2 times.

Step 5 is the fourth step of Double-Tournament Selectiah & fronts are compared to

generate 4 winners: in these 4 winner fronts, SPEA 2 &iimees, NSGA-Il wins 2 times, IBEA
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wins 1 time, PESA-Il wins 0 times and MOEA/D wins fndi. In this step, metrics are totally
chosen 6 times: GD is chosen 1 time, NR is 0 time, Spagihgiime, S-metric is 2 times and MS

is 2 times.

In the fifth step (Step 6) of Double-Tournament Selectlwat # fronts are compared to
generate 2 winners: in these 2 winner fronts, NSGA-Il Witisme and MOEA/D wins 1 time. In
this step, metrics are totally chosen 3 times: GD is chasime, NR is O times, Spacing is 1

time, S-metric is O time and MS is 1 time.

In the final step (Step 7) of Double-Tournament Selectiwat 2 fronts are compared to
generate 1 winner. The final winner is MOEA/D and GD is ehds compare. This result is the

same as [14].

In the Step 8, remove all the fronts from MOEA/D in 50nts obtained in the first step,
continue step 1 to step 7, NSGA-Il is the second best onBBSA-II is the third one. After all

the remaining fronts come from the same algorithm, we gédintlerank value for ZDT 4:

Rank 1: MOEA/D; Rank 2: NSGA-II; Rank 3: PESA-II; RakIBEA; Rank 5: SPEA 2.

4.157DT6

First, box plot for every performance metric measure is pregent
e GD Metric

For each algorithm, the less the GD value, the better gloeitaim’s performance:
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4.5(a) GD metric value in ZDT 6

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

e Spacing Metric

For each algorithm, the less the Spacing value, the bettelgibithm’s performance:
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4.5(b) Spacing metric value in ZDT 6

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e NR Metric
For each algorithm, the more the NR value, the better thethlgés performance:
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4.5(c) NR metric value in ZDT 6

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgBiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/ND.axis shows the metric value.

e Smetric

For each algorithm, the more tBealue, the better the algorithm’s performance:
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4.5(d)S metric value in ZDT 6

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgBiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e MS Metric
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For each algorithm, the more the MS value, the better thethlyts performance:
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4.5(e) MS metric value in ZDT 6

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

Then, experiment results using ensemble performance metd&sTi® is given:

Step 1 generates 50 fronts as the initial populatiddonible-Tournament Selection: in these
50 winner fronts, SPEA 2 wins 8 times, NSGA-II witk times, IBEA wins 13 times, PESA-II
wins 6 times and MOEA/D wins 12 times. In this step,riogtare totally chosen 50 times: GD is

chosen 11 times, NR is 12 times, Spacing is 9 times, Seneefr2 times and MS is 6 times.

Step 2 is the first step of Double-Tournament Selecti@t 50 fronts are competed to
generate 26 winners: in these 26 winner fronts, SPEA 2 witimes, NSGA-Il wins 5 times,
IBEA wins 7 times, PESA-II wins 2 times and MOEA/D wiid times. In this step, metrics are
totally chosen 62 times in two parts: the total 50 fremésdivided into 2 groups in first 25 times:
GD is chosen 5 times, NR is 7 times, Spacing is 4 tiasetric is 4 times and MS is 5 times.
26 winners are generated from both Winner group and Lgyseip in 37 times: GD is chosen 6

times, NR is 5 times, Spacing is 8 times, S-metric im@giand MS is 9 times.
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Step 3 is the second step of Double-Tournament Selectior2@hfibnts are compared to
generate 14 winners: in these 14 winner fronts, SPEA 2 @itimes, NSGA-II wins 3 times,
IBEA wins 4 times, PESA-II wins 1 time and MOEA/D widstimes. In this step, metrics are
totally chosen 19 times: GD is chosen 6 times, NR is Bgjrpacing is 2 times, S-metric is 4

times and MS is 2 times.

In the third step (Step 4) of Double-Tournament Seledtian 14 fronts are compared to
generate 8 winners: in these 8 winner fronts, SPEA 28 @itime, NSGA-Il wins 2 times, IBEA
wins 3 times, PESA-II wins 0 time and MOEA/D wins Bés. In this step, metrics are totally
chosen 10 times: GD is chosen 2 times, NR is 1 time, Sp&ihtime, S-metric is 2 times and

MS is 4 times.

Step 5 is the fourth step of Double-Tournament Selectiah & fronts are compared to
generate 4 winners: in these 4 winner fronts, SPEA 2 Wiimees, NSGA-Il wins 0 times, IBEA
wins 2 times, PESA-II wins 0 times and MOEA/D winsirgds. In this step, metrics are totally
chosen 6 times: GD is chosen 3 times, NR is O time, Spacihgme, S-metric is 1 time and MS

is 1 time.

In the fifth step (Step 6) of Double-Tournament Selectltat # fronts are compared to
generate 2 winners: in these 2 winner fronts, IBEA witism& and MOEA/D wins 1 time. In this
step, metrics are totally chosen 3 times: GD is chosen ORiRés O times, Spacing is 0 time, S-

metric is 2 time and MS is 1 time.

In the final step (Step 7) of Double-Tournament Selecti@mt 2 fronts are compared to

generate 1 winner. The final winner is MOEA/D and Spacimfj@sen to compare.

In the Step 8, remove all the fronts from MOEA/D in 50nts obtained in the first step,
continue step 1 to step 7, IBEA is the second best onBl&@dh-Il is the third one. After all the
remaining fronts come from the same algorithm, we get therfin& value for ZDT 6:
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Rank 1: MOEA/D; Rank 2: IBEA; Rank 3: NSGA-II; RankSPEA 2; Rank 5: PESA-II.

4.1.6DTLZ 2

First, box plot for every performance metric measure is pregent
e GD Metric

For each algorithm, the less the GD value, the betteri¢ioeithm’s performance:

0.18 |
il ]
0.14 T -
== T |
Oo.1 4‘; —
0.08 ~ T —
== ==k
0.04 ~ 4L —
a1 2 3 a4 5

4.6(a) GD metric value in DTLZ 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

e Spacing Metric

For each algorithm, the less the Spacing value, the bettelgibrithm’s performance:
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4.6(b) Spacing metric value in DTLZ 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

e NR Metric

For each algorithm, the more the NR value, the better thetalgés performance:

4.6(c) NR metric value in DTLZ 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEAND.axis shows the metric value.

e S metric
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For each algorithm, the more tBevalue, the better the algorithm’s performance:
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4.6(d)S-metric value in DTLZ 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-lIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.

e MS Metric

For each algorithm, the more the MS value, the better thetalgés performance:
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4.6(e) MS metric value in DTLZ 2

Here, in graph’sx axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-IIgpiresents IBEA,

‘4’ represents PESA-Il and ‘5’ represents MOEA/D.axis shows the metric value.
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Then, experiment results using ensemble performance meté&¥Ti® is given:

Step 1 generates 50 fronts as the initial populationoaiblz-Tournament Selection: in these
50 winner fronts, SPEA 2 wins 11 times, NSGA-Il wBisimes, IBEA wins 13 times, PESA-II
wins 6 times and MOEA/D wins 12 times. In this step,riogtare totally chosen 50 times: GD is
chosen 7 times, NR is 15 times, Spacing is 9 times, Samettll times and MS is 8 times.

Step 2 is the first step of Double-Tournament Selectian ®9 fronts are competed to
generate 26 winners: in these 26 winner fronts, SPEA 2 &itimes, NSGA-Il wins 5 times,
IBEA wins 7 times, PESA-Il wins 2 times and MOEA/D wiii times. In this step, metrics are
totally chosen 62 times in two parts: the total 50 fremésdivided into 2 groups in first 25 times:
GD is chosen 6 times, NR is 4 times, Spacing is 7 ti®easetric is 3 times and MS is 5 times.
26 winners are generated from both Winner group and Lesapgn 37 times: GD is chosen 6
times, NR is 6 times, Spacing is 7 times, S-metric isrhi®@¢ and MS is 8 times.

Step 3 is the second step of Double-Tournament Selectior2@hfibonts are compared to
generate 14 winners: in these 14 winner fronts, SPEA 2 @itimes, NSGA-Il wins 0 times,
IBEA wins 6 times, PESA-Il wins 1 time and MOEA/D wibstimes. In this step, metrics are
totally chosen 19 times: GD is chosen 2 times, NR is 2gjr$pacing is 5 times, S-metric is 4

times and MS is 6 times.

In the third step (Step 4) of Double-Tournament Seledtian 14 fronts are compared to
generate 8 winners: in these 8 winner fronts, SPEA 2 Witime, NSGA-Il wins 1 time, IBEA
wins 3 times, PESA-II wins 0 time and MOEA/D wins Bés. In this step, metrics are totally
chosen 10 times: GD is chosen 3 times, NR is 2 times, [@pa&ci time, S-metric is 2 times and

MS is 2 times.

Step 5 is the fourth step of Double-Tournament Selectiah & fronts are compared to
generate 4 winners: in these 4 winner fronts, SPEA 2 Wiitees, NSGA-Il wins 0 times, IBEA

wins 2 time, PESA-II wins 0 times and MOEA/D wins ghé¢is. In this step, metrics are totally

83



chosen 6 times: GD is chosen 2 times, NR is 1 time, Spacihtime, S-metric is 1 time and MS

is 1 time.

In the fifth step (Step 6) of Double-Tournament Selectimat # fronts are compared to
generate 2 winners: in these 2 winner fronts, IBEA witismé and MOEA/D wins 1 time. In this
step, metrics are totally chosen 3 times: GD is chosenel NiR is O times, Spacing is 1 tin®,

metric is O time and MS is 1 time.

In the final step (Step 7) of Double-Tournament Selectiat 2 fronts are compared to

generate 1 winner. The final winner is IBEA and MS is chaserompare.

In the Step 8, remove all the fronts from IBEA in 50 fsowbtained in the first step,
continue step 1 to step 7, MOEA/D is the second best on8RE@ 2 is the third one. After all

the remaining fronts come from the same algorithm, we géinlerank value for DTLZ 2:

Rank 1: IBEA; Rank 2: MOEA/D; Rank 3: SPEA 2; Rank &BA-1I; Rank 5: PESA-II.

4.2 ANALYSISOF EXPERIMENT RESULTS

4.2.1Ensemble Performance Metrics give the same rank values to &pésp

In ZDT3, the final rank result is: Rank 1: NSGA-llaRk 2: MOEA/D; Rank 3: IBEA; Rank
4: SPEA 2; Rank 5: PESA-II. The experiment result in s also suggested that MOEA/D

generate a worse result than NSGA-II.

In ZDT6, the final rank result is: Rank 1: MOEA/D; Ra?x IBEA; Rank 3: NSGA-II; Rank
4: SPEA 2; Rank 5: PESA-II. [12] shows IBEA perforbetter than NSGA-Il and SPEA 2 in

ZDT 6. [14] gives the same result that MOEA/D is bettentNSGA-II in ZDT 6.

In DTLZ 2, the final rank result is: Rank 1: IBEA; Ragk MOEA/D; Rank 3: SPEA 2;

Rank 4: NSGA-Il; Rank 5: PESA-II. This result is neathg same as previous experiment: [10]
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has suggested that SPEA 2 seems to have advantages over NBGHigher dimensional
objective space. In [12], IBEA is also better than SPEARNBGA-II. The experiment result in

[14] has also identified that MOEA/D generate a bettedtrédsan NSGA-II.

4.2.2Summary of EAs to Solve Different Characteristics of Tesickans

e SPEA2
SPEA 2 is the final winner in problem ZDT 1 and ZDTAhough ZDT 1 has a convex
Pareto-optimal front while ZDT 2 has the nonconvex countetpaZDT1, Both ZDT1 and
ZDT2 have some common characteristics: they do not have lapatioPoptimal fronts and
their global Pareto-optimal fronts are continuous. Ftbenabove reason, we can state that,
if the test problem has continues global Pareto-optimatdrand do not have local Pareto-

optimal fronts, SPEA 2 will perform well in this preiph.

e NSGA-II
NSGA-II has the best performance in ZDT 3, which represéetsliscreteness feature and
has a Pareto-optimal front consisting of several noncamigwonvex parts. Therefore, if
there is a test problem with discrete Pareto-optimal fiwatcan propose that NSGA-II is

the best algorithm to solve this problem.

e MOEA/D
MOEA/D wins all other algorithms in both ZDT4 and Z6&. ZDT4 is difficult to solve
because it has many local Pareto-optimal fronts, a large nuohtdecal Pareto-optimal
fronts make the global Pareto front is not easy to fimlEBAs need to exhibit their ability to
deal with multimodality. ZDT6’s Pareto-optimal solutioase nonuniformly distributed
along the global Pareto front. The front is biased fantemis which have a lardgx) value.

Therefore, MOEA/D will exhibit its good performance wherc@amters the test problem
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which has lots of local Pareto-optimal fronts or Pargtiinaal solutions is not uniformly

distributed its global Pareto front.

e |[IBEA
IBEA wins at all in DTLZ 2, which is the only test flem chosen in this experiment has
more than two objectives. We may not absolutely say that IBE#est for solve problems
with high-dimension objectives. But we can make a companato@iclusion that IBEA

can perform better than others in some test problems igithdimension objectives.

In summary, from the above discussion, we can see more cledrlgvrg algorithm can
only be superior to another algorithm over some set optesiems, and then it must be inferior

in other problems with different characteristics. This $® @xpected by No Free Lunch Theory.

43WHY USE DOUBLE-ELIMINATIONMETHOD TO ENSEMBLE

First, we go through experiments in all benchmark funstioonsidering the performance
metrics’ values of every algorithm in this benchmark fumctim ZDT1, SPEA 2 is the final
winner and it wins under all four metrics but is inderio NSGA-Il inSmetric. In ZDT2, SPEA
2 is the final winner and it wins under all four megrbut it is a little bit worse than NSGA-II in
Spacing metric. In ZDT3, NSGA-II is the final winner andvins under all four metrics but is
inferior to MOEA/D inS-metric. In ZDT4, MOEA/D is the final winner and it vérunder all four
metrics but it is a little bit worse than NSGA-II MR metric. In ZDT6, MOEA/D is the final
winner but is inferior to IBEA itMS metric and a little bit worse than NSGA-Il in Spacing tcetr
In DTLZ 2, IBEA is the final winner and it wins undall four metrics but is inferior to MOEA/D

in Spacing metric.

From above results, to be a final winner does not mearthars in all performance metrics.

In ZDT1, if we useS-metric to compare SPEA 2 and NSGA-II in Single-Eliminati§PEA 2
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will be lost and we cannot find the best algorithm fas firoblem. However, if that condition

happens in Double-Elimination, SPEA 2 also has anothmoramity to win again.

Therefore, Double-Elimination can provide one more chanceviery competitor, this helps

to find the best one winner.
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CHAPTER S

CONCLUSION

. There are five types of unary metrics: 1) Metrics assessagumber of Pareto optimal
solutions in the set: Pareto Dominance IndicaiiR)( Overall Nondominated Vector Generation
and Ratio OQNVQ, Ratio of Non-dominated Individual®NI) and Error RatioER). 2) Metrics
measuring the closeness of the solution to the theoretamatdPfront: Generational Distance
(GD) and Maximum Pareto Front ErroMPFE). 3) Metrics focusing on distribution of the
solutions: Uniform Distribution YD), Spacing and Number of Distinct Choicd$DC,). 4)
Metrics concerning spread of the solutions: Maximum Sprt8). ) Metrics considering both

closeness and diversity: Hypervolume Indicatorametric).

There are two types of binary metrics: 1) binary performametics based on unary quality

indicator: ¢ -indicatorl ., enclosing hypercube Indicator and coverage difference mébics

e

metric). The second type is direct comparison binary me@icsetrics andR metrics.

An ensemble method is introduced to compare EAs by congbaiarge number of single
metrics using modified Double Tournament Selection. Doubteiredtion design give every
individual two chances to competition allows characteristior peerformance of a quality
algorithm under the special environment still to be ablevin at all. Therefore, this ensemble
mechanism can maximum protects the qualified individual fremgolost by some stochastic
factors in a comparison time. This ensures the final réstlte really best one and the whole

ensemble process is effective and precise.

Ensemble method can overcome the lost information probleimebsingle metric which on-
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ly provides some specific but limited information anaigy used effectively in some specified
conditions. The Comprehensive comparison of the propoggatithims on benchmark test

functions under ensemble performance metrics show that:

SPEA 2 performs well in the problem has continues glohatB-optimal fronts and do not

have local Pareto-optimal fronts.

NSGA-Il is the best algorithm to solve this problemhndiscrete Pareto-optimal front.

MOEA/D will exhibit its good performance when encountes test problem which has lots
of local Pareto-optimal fronts or Pareto-optimal solusi is not uniformly distributed its global

Pareto front.

IBEA can perform better than others in some test problenishigh-dimension objectives.

Furthermore, we are benefit from ensemble method that dtisetessary to spend much
time to choose a suitable performance metric for a specifiptebtem. We do not need to try
every metric to find which one is the best. Ensemble methadsattie choosing process which

is a heavy computational process and can be directly used teiagdess.

From above statement, multiple performance metrics ensemblapplying Double-
Tournament Selection can obtain better evaluation perfarengran could be obtained from any

of single performance metric.

Performance metric ensemble is just the first step. In theefusearch work, combine
benchmark functions together to test EAs based on this eresapptoach is needed to be
focused. A comprehensive evaluation of EAs in all the testtions and under all the

performance metrics is our ultimate goal.
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