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CHAPTER ONE 

INTRODUCTION 

1.1 PROBLEM STATEMENT 

Evolutionary algorithms (EAs) have become established as the approach for exploring the 

Pareto-optimal front in multiobjective optimization problems. EAs usually do not guarantee to 

identify optimal tradeoffs but attempt to find a good approximation. From No Free Lunch 

theorem [1], any algorithm elevated performance over one class of problems is exactly paid for in 

loss over another class. Although various multiobjective EAs (MOEAs) are available today, 

certainly we are interested in developing a most effective algorithm to search for Pareto solutions 

for a given problem [2]. Therefore, comparative studies are always conducted. They aim at 

revealing advantages and weaknesses of the underlying methods and at determining the best 

performance pertained to specific problem characteristics. The numerous applications of MOEAs 

boost the significance of performance comparison issues. However, in absence of any established 

comparison criteria, none of the different sets of estimates based on various metrics for the 

Pareto-optimal solutions generated can be argued to be better than the others. 

Zitzler [2] proposed three optimization goals to be measured: the distance of the resulting 

nondominated set to the Pareto-optimal front should be minimized, a good (in most cases 

uniform) distribution of the solutions found- in objective space- is desirable and the extent of the 

obtained nondominated front should be maximized. In the literature, there are many unary 

performance metrics used to compare MOEAs. These metrics can be broadly divided into five 
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categories according to the optimization goals. Each category mainly evaluates the quality of a 

Pareto-optimal set in one aspect only.  First, metrics assessing the number of Pareto optimal 

solutions in the set: Pareto Dominance Indicator (NR) [3] measures the ratio of non-dominated 

solutions contributed by a particular solution set to the non-dominated solutions provided by all 

solution sets; Overall Non-dominated Vector Generation and Ratio (ONVG) [4] counts the 

number of distinct nondominated points generated; Ratio of Non-dominated Individuals (RNI) [5] 

gives the proportion of the useful solutions known as the Pareto-front in a given population size; 

and Error Ratio (ER) [4] checks the proportion of non true Pareto points in the approximation 

front. Within the second category, metrics measuring the closeness of the solution to the 

theoretical Pareto front: Generational Distance (GD) [4] measures how far the evolved solution 

set is from the true Pareto front; and Maximum Pareto Front Error (MPFE) [4] focused on the 

largest distance between the point in the theoretical Pareto front and the point in the 

approximation front. Third, metrics focusing on distribution of the solutions: Uniform 

Distribution (UD) [5] measures the distribution of an approximation front under a pre-defined 

parameter σshare; Spacing [6] measures how evenly the evolved solutions distribute itself; and 

Number of Distinct Choices (NDCu) [7] identifies solutions that are sufficiently distinct for a 

special value u. Fourth, metrics concerning spread of the solutions: Maximum Spread (MS) [3] 

measures how well the true Pareto front is covered by the approximation set. In the last category, 

metrics considering both closeness and diversity at the same time: Hypervolume Indicator (or S-

metric) [11] calculates the volume covered by the approximation front.  

Furthermore, there are some binary performance metrics used to compare a pair of 

algorithms. The first type of binary performance metrics based on unary quality indicator. It 

includes ε -indicator. I ε [10] defines a ε -dominate relation between algorithms, enclosing 

hypercube Indicator [10] and coverage difference metrics (D-metric) [11]. The second type is 

direct comparison binary metrics: C metrics [9] and R metrics [5]. C metrics [9] consider the 
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dominate relations between algorithms; R metrics [5] use the probability that one algorithm is 

better than the other over a series of functions. 

However, the problem arises that no single metric alone can faithfully measure MOEA 

performance. Every single metric can provide some specific, but incomplete quantification of 

performance and can only be used effectively under some specified conditions. For example, UD 

does a poor job when the Pareto front is discontinued, while Hypervolume can be misleading if 

the Pareto optimal front is non-convex [4]. This implies one metric cannot entirely evaluate EAs 

in all conditions. Every metric focuses on some special characteristics while neglects information 

in others. Also, every metric has its unique characteristic; no metrics can substitute others 

completely. Therefore, a single metrics cannot provide a comprehensive measure for MOEAs. 

Moreover, from [11], a fixed number of indicators are not sufficient to evaluate MOEAs because 

reducing objective space must losing information.  

Different metrics perform differently in different test problems. For a given MOEA, one 

metric may show well in one test problem, however, given other test problems, it may mislead the 

conclusion should the measures show poorly. For a specific test problem, we cannot ascertain 

which metric should be applied in order to faithfully quantify the performance of MOEAs. We 

need to exploit every metric to find which one is the best. Apparently, this introduces a heavy 

computational process.  

1.2 MOTIVATION 

To overcome these disadvantages and arrive at a faithful evaluation of MOEAs, performance 

metrics ensemble is proposed in this research work. Ensemble methods use multiple metrics to 

obtain a fair performance than what could be obtained from any of single performance metric 

alone. Ensemble metrics not only can give the comprehensive comparison between different 

algorithms, but avoid the choosing process and can be directly used to assessing MOEAs.  
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There exists no publication in the literature, to our best knowledge, regarding performance 

metrics ensemble. MOEAs are only evaluated and compared in a single metric at a time. In this 

paper, we propose double-tournament selection operator to compare many approximation fronts 

from different MOEAs. Double elimination design allows characteristic poor performance of a 

quality algorithm under the special environment still to be able to win it all. In every competition, 

one metric is chosen randomly to compare. After the whole process, every metric could be 

selected multiple times and a final winning algorithm is to be identified. This final winner has 

been compared under all the metrics considered so that we can make a fair conclusion. 

1.3 ORGANIZATION OF THESIS 

Chapter Two provides the consolidated literature review for this thesis. It presents the 

essential background with reference to knowledge in the areas of Multiobjective Optimization 

Problem, Multiobjective Evolutionary Algorithms and Performance Metrics.  

Chapter Three describes the proposed approach in detail. A novel ensemble method using 

modified Double-Tournament selection operator is introduced. 

 In Chapter Four, we elaborate on the experiment results for ZDT (1-6) and DTLZ 2 

problems.  

Finally, conclusion is drawn in Chapter Five along with pertinent observations. 

 



5 

 

CHAPTER TWO 

REVIEW OF LITERATURE 

This chapter presents the essential background knowledge on Multiobjective Optimization 

Problem (MOP), Multiobjective Evolutionary Algorithm (MOEA) and Performance Metrics. 

2.1 MULTIOBJECTIVE OPTIMIZATION PROBLEMS (MOP) 

First, the omnipresent of MOP is discussed. Then, definition of MOP is given. After that, 

concept of domination is introduced to identify the optimal solution. In addition, the characteristic 

of reference sets of MOP is summarized. Finally, two series of test problems are presented, which 

are widely applied to evaluate the performance of multiobjective evolutionary algorithms. 

2.1.1 Why Multiobjective Optimization Problems? 

In real life environments we always strive to optimize a number of parameters in any design 

and these parameters are usually highly correlated. Hence, some tradeoff between the criteria is 

needed to ensure a satisfactory design. For example: in bridge construction, a good design is 

characterized by low total mass and high stiffness; aircraft design requires simultaneous 

optimization of fuel efficiency, payload, and weight; a good sunroof design in a sport car could 

aim at minimizing the noise the driver hears and maximizing the ventilation; and the business 

portfolio management attempts to simultaneously minimize the risk and maximize the fiscal 

return. In these real-world optimization problems, the objectives often conflict across a high-

dimensional problem space and may also require extensive computational resources. 
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Neither the problem nor algorithm domains considered within this research is 

straightforward. Multiobjective Optimization Problems (MOPs) present a possibly uncountable 

set of solutions that produce vectors whose components represent trade-offs in objective space. 

Therefore, for an MOP, a number of trade-off solutions are optimal. Without further information, 

such optimal solutions are equally important. 

2.1.2 MOP Definition [39] 

In general, an MOP involves k  objectives, mconstraints and ndecision variables: 

k objectives: Optimizes ( ) ( ) ( )( )1 , , kf x f x f x= K
                                                        

      (2-1 A) 

mequality and inequality constraints: Subject to ( ) 0, 1, ,ig x i m≤ = K
                             

(2-1 B) 

n decision variables: ( )1, ,
T

nx x x= K
                                                                                      

(2-1 C) 

MOP deals with two search spaces: a decision space (Ω ) plus an objective space (Λ ). 

Mapping takes place from an n -dimensional decision space to an m -dimensional objective 

space. The MOP's objective function,:f Ω→Λ , maps decision variables ( )1, , nx x x= K  in 

decision space to vectors ( ) ( ) ( )( )1 , , kf x f x f x= K  in objective space. Proximity of two solutions 

in one space does not imply proximity in the other space and search is performed in the decision 

space. 

As stated in [2], the goal of MOPs consists of multiple objectives: the distance of the 

resulting nondominated set to the Pareto-optimal front should be minimized; a good (in most 

cases uniform) distribution of the solutions found is desirable; and the extent of the obtained 

nondominated front should be maximized, i.e., for each objective, a wide range of values should 

be covered by the nondominated solutions. Apparently, while these candidate solutions are 
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progressing towards Pareto-optimal front, the convergence process will adversely impact the 

spread of the solution found. 

2.1.3 Concept of Domination [39] 

Most multi-objective optimization algorithms use the concept of domination. In these 

algorithms, two solutions are compared on the basis of whether one dominates the other solution 

or not. 

� Pareto Optimality: 

A solution x∈Ω  is said to be Pareto optimal with respect to Ω  if and only if there is no 

'x ∈Ω  for which ( ) ( ) ( )( )' ' '
1 , , kv f x f x f x= = K dominates ( ) ( ) ( )( )1 , , ku f x f x f x= = K . 

� Pareto Dominance:  

 A vector ( ) ( )1, ,u ku f x u u= = K  is said to dominate ( ) ( )1, ,v kv f x v v= = K  (denoted by

u vp ) if and only if u  is worse thanv , { } { }1, , , and 1, , ,i i i ii k u v i k u v∀ ∈ ∃ ∈K p K p  

� Pareto Optimal Set:  

For a given MOP ( )f x , x∈Ω  the Pareto optimal setP∗  is defined as:  

( ) ( ){ }' ': :P x x f x f x∗ = ∈Ω ¬∃ ∈Ω ≤  

� Pareto Front (Non-dominated front):  

For a given MOP ( )f x and Pareto optimal setP∗ , the Pareto frontPF∗  is defined as:  

( ) ( ) ( )( ){ }1: , , kPF u f x f x f x x P∗ ∗= = = ∈K  

Figure 1 explains the relation between decision space and objective space and the 

corresponding front in each space for a given problem. 
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Fig 2.1 The Relation between Decision Space and Objective Space 

Moreover, there are some special points in the objective space [39]. Ideal Objective Vector 

(Reference SolutionsZ∗ ) is the lower bound in the Pareto-optimal set. The m-th component of 

the ideal objective vector is the constrained minimum solution of the following problem: 

Minimize ( )mf x , subject tox S∈ . ( )1 2, , ,
T

MZ f f f f∗ ∗ ∗ ∗ ∗= = K . Utopian Objective Vector ( Z∗∗ ) 

has each of its components marginally smaller than that of the Ideal Objective Vector. 

i iZ Z ε∗∗ ∗= − with 0iε >  for all 1,2, ,i M= K and Nadir Objective Vector (nadZ ) is upper bound 

in the Pareto-optimal set. 

2.1.4 ZDT problems [2] 

ZDT problems were proposed by Deb in 1999 and consist of six benchmark functions. ZDT 

contains several characteristics that cause difficulties for multiobjective evolutionary algorithms: 

for converging to the Pareto-optimal front, multimodality, deception and isolated optima are 

applied and for maintaining diversity within the population, convexity or nonconvexity, 

discreteness, and nonuniformity in the front. 

Each of the test functions is structured in the same manner and consists itself of three 

functions 1f , g ,h: 
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Minimize ( ) ( ) ( )( )1 2,f x f x f x=
                  

                                                                        (2-2) 

Subject to ( ) ( ) ( ) ( )( )2 2 1 1 2, , , , ,n nf x g x x h f x g x x= K K , 

where ( )1, , nx x x= K  

� ZDT1 (Convex Pareto-optimal front): 

( )1 1f x x=                                                                                                                           (2-3 A) 

( ) ( ) ( )
( )

1
2 1

f x
f x g x

g x

 
= − 

  
                                                                                                (2-3 B) 

 ( ) 2

9

1
1

n

i
i

x

g x
n
=

 
 
 = +
−

∑

                                                                                                          
(2-3 C)

                                    

 ( ) [ ]1,..., 0,1
nT

nx x x= ∈ . Given 30n= , the Pareto-optimal front is convex and formed 

with ( ) 1g x = .Figure 2.2 shows the true Pareto-optimal front of ZDT1. 

 

Fig 2.2 Pareto-optimal front of ZDT1 
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� ZDT2 (Nonconvex Pareto-optimal front): 

( )1 1f x x=
 
                                                                                                                         (2-4 A) 

( ) ( ) ( )
( )

2

1
2 1

f x
f x g x

g x

  
 = −      

                                                                                                (2-4 B) 

( ) 2

9

1
1

n

i
i

x

g x
n
=

 
 
 = +
−

∑
                                                                                                            (2-4 C) 

( ) [ ]1,..., 0,1
nT

nx x x= ∈ . Given 30n= , the Pareto-optimal front is nonconvex and formed 

with ( ) 1g x = . 

Figure 2.3 shows the Pareto-optimal front of ZDT2. 

 

Fig 2.3 Pareto-optimal front of ZDT2 

� ZDT3 (Discrete Pareto-optimal front): 

( )1 1f x x=
                                                                                                                          

(2-5 A) 
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( ) ( ) ( )
( )

( )
( )

( )1 1
2 11 sin 10

f x f x
f x g x x

g x g x
π

 
= − − 

                                                                     

(2-5 B) 

( ) 2

9

1
1

n

i
i

x

g x
n
=

 
 
 = +
−

∑
                                                                                                         (2-5 C) 

( ) [ ]1,..., 0,1
nT

nx x x= ∈ , Given 30n= , its Pareto-optimal front is disconnected and formed 

with ( ) 1g x = . The two objectives are disparately scaled in the Pareto-optimal front; 1f  is 

from 0 to 0.852 and 2f  from -0.773 to 1. The introductions of the sine function in h causes 

discontinuity in the Pareto-optimal front. 

Figure 2.4 shows the Pareto-optimal front of ZDT3. 

 

Fig 2.4 Pareto-optimal front of ZDT3 

� ZDT4 (Lots of local Pareto-optimal front): 

( )1 1f x x=
                                                                                                                         

(2-6 A) 
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( ) ( ) ( )
( )

1
2 1

f x
f x g x

g x

 
= − 

                                                                                                 

(2-6 B) 

( ) ( ) ( )2

2

1 10 1 10cos 4
n

i i
i

g x n x xπ
=

 = + − + − ∑                                                                   (2-6 C) 

        ( ) [ ] [ ] 1

1,..., 0,1 5,5
n nT

nx x x
−

= ∈ × − . Given 10n= . It has many local Pareto-optimal fronts.      

      The global Pareto-optimal front is formed with ( ) 1g x = , the best local Pareto-optimal front       

with ( ) 1.25g x = . Not all local Pareto-optimal sets are distinguishable in the objective space. 

Figure 2.5 shows the Pareto-optimal front of ZDT4. 

 

Fig 2.5 Pareto-optimal front of ZDT4 

� ZDT5 (Deceptive problem): 

( ) ( )1 11f x u x= +
                                                                                                                          

(2-7 A) 

( ) ( ) ( )2 1f x g x f x=
                                                                                                                    

(2-7 B) 
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( ) ( )( )2 2
,...,

n

n ii
g x x v u x

=
=∑

                                                                                                     
(2-7 C) 

( )iu x  gives the number of ones in the bit vector ix : 

( )( ) ( ) ( )
( )

52

51
ii

i
i

u xu x
v u x

u x

 <+
= 

=
                                                                                             

(2-7 D) 

Given 11n= , { }30

1 0,1x ∈  and { }5

2 , , 0,1nx x ∈K . The true Pareto-optimal front is formed with

( ) 10g x = . The global Pareto-optimal fronts as well as the local ones are convex. 

� ZDT6 (Pareto-optimal solutions are nonuniformity): 

( ) ( ) ( )6
1 1 11 exp 4 sin 6f x x xπ= − −

                                                                                    
(2-8 A) 

( ) ( ) ( )
( )

2

1
2 1

f x
f x g x

g x

  
 = −                                                                                                   

(2-8 B) 

 ( )

0.25

21 9
1

n

i
i

x

g x
n
=

  
  
  = +
 −
 
 

∑

                                                                                                 

(2-8 C) 

( ) [ ]1,..., 0,1
nT

nx x x= ∈ . Given 10n= . Its Pareto-optimal front is nonconvex. The distribution 

of the Pareto solutions in the Pareto front is nonuniform, i.e., for a set of uniformly 

distributed points in the Pareto set in the decision space, their images crowd in a corner of 

the Pareto front in the objective space. The density of the solutions is lowest near the Pareto-

optimal front and highest away from the front. 

Figure 2.6 shows the Pareto-optimal front of ZDT6. 
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Fig 2.6 Pareto-optimal front of ZDT6 

2.1.5 Test Problem DTLZ [12] 

DTLZ contains seven benchmark functions. All the functions have more than two objectives. 

Like ZDT problems, DTLZ also contains problem characteristics that present difficulties for 

multiobjective evolutionary algorithms. Therefore, DTLZ test MOEAs’ ability to deal with high-

dimension problems.  

� DTLZ 1: 

An M-objective problem with a linear Pareto-optimal front: 

( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 2 1

2 1 2 1

1 1 2

1

1
1

2
1

1 1
2

Minimize

1
1 1

2
1

1 1
2

M M

M M

M M

M M

f x x x x g x

f x x x x g x

f x x x g x

f x x g x

−

−

−

 = ⋅ ⋅ ⋅ +

 = ⋅ ⋅ ⋅ − +



 = − +



= − +


K K

                                                               

(2-9 A) 

 Subject to0 1ix≤ ≤ , 1,2, ,i n= K  
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( ) ( ) ( )( )2
100 0.5 cos 20 0.5

i M

M M i i
x X

g x x x xπ
∈

 
= + − − −  

 
∑

                                                 

(2-9 B) 

The Pareto-optimal solution corresponds to 0.5ix∗ = ( i Mx x∗ ∈ ) and the objective function 

values lie on the linear hyperplane: 
1

0.5
M

mm
f ∗

=
=∑ . 5k =  is suggested here. The total 

number of variables is 1M k+ − . The search space contains ( )11 1k − local Pareto-optimal 

fronts. The difficulty in this problem is to converge to the hyperplane. 

� DTLZ 2: 

An M-objective problem with a Spherical Pareto-optimal front: 

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

1 1 1

2 1 1

1

1 cos 2 cos 2

1 cos 2 sin 2
Minimize

1 sin 2

M M

M M

M M

f x g x x x

f x g x x x

f x g x x

π π

π π

π

−

−

 = + ⋅⋅ ⋅


= + ⋅⋅ ⋅


 = +

L L
 

                                          

(2-10 A) 

Subject to0 1ix≤ ≤ , 1,2, ,i n= K  

( ) ( )20.5
i M

M ix X
g X x

∈
= −∑

                                                                                                     
(2-10 B) 

The Pareto-optimal solution corresponds to 0.5ix∗ = ( i Mx x∗ ∈ ) and all objective function 

values must satisfy: ( )21
1

M

mm
f ∗

=
=∑ . 10k =  is suggested here. The total number of variables 

is 1M k+ − . 

� DTLZ 3: 

An M-objective problem with a Global Pareto-optimal front: 
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( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

1 1 1

2 1 1

1

1 cos 2 cos 2

1 cos 2 sin 2
Minimize

1 sin 2

M M

M M

M M

f x g x x x

f x g x x x

f x g x x

π π

π π

π

−

−

 = + ⋅⋅ ⋅


= + ⋅⋅ ⋅


 = +

L L

                                           

(2-11 A) 

Subject to0 1ix≤ ≤ , 1,2, ,i n= K  

( ) ( ) ( )( )2
100 0.5 cos 20 0.5

i M

M M i i
x X

g x x x xπ
∈

 
= + − − −  

 
∑

                                              

(2-11 B) 

The difficult is that this problem introduces many local Pareto-optimal fronts.  

� DTLZ 4: 

This problem measures MOEA’s ability to maintain a good distribution of solutions: 

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

1

1 1

1

1 1

2

1 cos 2 cos 2

1 cos 2 sin 2
Minimize

1 sin 2

M

M M

M

M M

f x g x x x

f x g x x x

f x g x x

α α

α α

α

π π

π π

π

−

−
 = + ⋅ ⋅ ⋅

 = + ⋅ ⋅ ⋅




= +

L L

                                          

(2-12 A) 

Subject to0 1ix≤ ≤ , 1,2, ,i n= K , 100α = . 

( ) ( )20.5
ii M

M x X
g x xα

∈
= −∑

                                                                                                    
(2-12 B) 

� DTLZ 5: 

This problem will test an MOEA’s ability to converge to a degenerated curve: 

Mapping 

( )( ) ( )( )1 2
4 1i ig r x

g r

π
θ = +

+
                                                                                  (2-13 A) 
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 2,3, , 1i M= −K , in the test problem of DTLZ 2.  

( ) 0.1

i M
M ix X

g x x
∈

=∑
                                                                                                               

(2-13 B) 

� DTLZ 6: 

This problem has 12M −  disconnected Pareto-optimal regions in the search space: 

( )
( )

( ) ( )( ) ( )

1 1 1

1 1 1

1 2 1

Minimize

1 , ,..., ,

M M M

M M M

f x x

f x x

f x g x h f f f g

− − −

−

 =
 =


 = +

L L
                                                    (2-14 A) 

Subject to0 1ix≤ ≤ , 1,2, ,i n= K , 

( ) 9
1

i M
M ix x

M

g x x
x ∈

= + ∑                                                                                                        (2-14 B) 

( )( )1

1
1 sin 3

1

M i
ii

f
h M f

g
π

−

=

 
= − + + 

∑
                                                                                    

(2-14 C) 

20k =  is suggested here. The total number of variables is 1M k+ − .This problem will test 

an algorithm’s ability to maintain subpopulation in different Pareto-optimal regions. 

� DTLZ 7: 

This problem is constructed by constraint surface approach: 

Minimize: ( )
( )1

1
n

j
M

j in
i j

M

f x x
n

M

 = −  

=
 
  

∑ , 1, ,j M= K                                                     (2-15 A) 

Such that ( ) ( ) ( )4 1 0j M jg x f x f x= + − ≥
,

1, , 1j M= −K                                              (2-15 B) 
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( ) ( ) ( ) ( )1
, 12 min 1 0M

M M i j i j
i j

g x f x f x f x−
=

≠

 = + + − ≥ 
                                                            

 (2-15 C) 

subject to space0 1ix≤ ≤ , 1,2, ,i n= K  

10n M= . There are a total of M  constraints. It is difficult for MOEAs to handle these 

constraints while searching for the optimal solutions. Moreover, there are some non-

dominated solutions in the final population but not the true Pareto-optimal solutions. This 

problem is called redundant solutions. Because of redundant solutions, the obtained set of 

solutions may incorrectly find a higher-dimensional surface as the Pareto-optimal front. 

2.2 MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS (MOEAs) 

This part includes MOEA introduction, MOEA definition, MOEA’s main procedure, and 

parameters in controlling the behavior of the GA and some examples of MOEAs. 

2.2.1 An Introduction to MOEA [39] 

MOEA is motivated from the conception of evolution in biology, specifically Darwin’s 

“survival of the fittest” (natural selection) law. Figure 2.7 describes how MOEA works. It 

includes two steps. In the first step, an ideal Multiobjective Optimizer finds an optimal front 

consists of multiple trade-off solutions. Then, in the second step, based on some high-level 

information, one solution is chosen for implementation.   

Evolutionary algorithms (EAs) have become an effective tool for exploring the Pareto-

optimal front in multiobjective optimization problems that are often too complex to be solved by 

exact methods, such as linear programming or gradient search. This is because there are few 

alternatives for searching intractably large spaces for multiple Pareto-optimal solutions. Due to 

their inherent parallelism and their ability to exploit similarities of solutions by recombination, 
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they are able to approximate the Pareto-optimal front in a single optimization run. The numerous 

applications and the rapidly growing interest in the area of MOEAs take this fact into account. 

 

Fig 2.7 The Process of MOEAs to solve MOPs 

From Zitzler and Deb [2], the first pioneering studies on evolutionary multiobjective 

optimization appeared in the mid-eighties by Schaffer in 1984 [26] and Fourman in 1985[27]. 

After that, several different EA implementations were proposed from 1991 to 1994: Kursawe in 

1991[28]; Hajela and Lin in 1992 [29]; Fonseca and Fleming in 1993[30]; Horn in 1994 [31]; and 

Srinivas and Deb in 1994 [32]. Later, these approaches were successfully applied to various 

multiobjective optimization problems. In recent years, some researchers have investigated 

particular topics of evolutionary multiobjective search, such as convergence to the Pareto-optimal 

front by Van Veldhuizen and Lamont [33] and Rudolph [34], niching by Obayashi [35], and 

elitism by Parks and Miller [36]; while others have concentrated on developing new evolutionary 

techniques, such as Laumanns [37] and Zitzler and Thiele [38].  

Today, there are some MOEAs frequently used: SPEA 2 by Zitzler [13], NSGA-II by Deb 

[14], IBEA by Zitzler [15], PESA-II by Corne [16] and MOEA/D by Zhang [17].  
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Also, there are alternatives to EAs [39]: Evolutionary Programming (EP) and Genetic 

Programming (GP). EP is a mutation-based evolutionary algorithm to discrete search spaces. 

Similar to EA, a self-adopting rule is used to update the mutation strengths. Therefore, EP is 

allowed to search anywhere in the real space likes real-parameter GAs. In GP, a terminal set T 

(constants and variables) and a function set F (operators and basic functions) are pre-specified to 

create initial population [41]. 

2.2.2 MOEAs Definition [39] 

The basic structure of MOEA is shown in Fig 2.8. It includes:  initialize population, evaluate 

population, scale population fitnesses, select solutions for next population and perform crossover 

and mutation. 

 

Fig 2.8 Basic Structure of MOEAs 

It is a generic population-based metaheuristic algorithm inspired by biological evolution and 

can be viewed as an evolutionary process. It is characterized by the following components: 

Initialize 

population

Scale 

population 

fitnesses 

Select 

solutions 

for next 

population

perform 

crossover 

and 

mutation

Evaluate 

population
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A genetic representation (or an encoding) for the feasible solutions to the optimization 

problem: The genetic representation may differ considerably from the natural form of the 

parameters of the solutions. Fixed-length and binary encoded strings for representing solutions 

have dominated GA research since they provide the maximum number of schemata as they are 

amenable to simple implementation. 

A population of encoded solutions evolves over a sequence of generations: The population 

contains not just a sample of n ideas; rather it contains a multitude of notions and rankings of 

those notions for task performance. Genetic algorithms ruthlessly exploit this wealth of 

information by reproducing high quality notions according to their performance and crossing 

these notions with many other high-performance notions from other strings. 

A fitness function that evaluates the optimality of each solution: During each generation, the 

fitness of each solution is evaluated, and solutions are selected for reproduction based on their 

fitness. The ‘goodness’ of a solution is determined from its fitness value. 

Genetic operators generate a new population from the existing population: The selected 

solutions then undergo recombination under the action of the crossover and mutation operators.  

Control parameters: control every step of evolutionary process. 

2.2.3 The main procedure of MOEAs [39] 

The first one is Reproduction or Selection Operator. Reproduction Operator makes 

duplicates of good solutions and eliminates bad solutions while keeping the whole population size 

constant. The whole process inscludes three steps: identify good solutions in a population, make 

multiple copies of good solutions and eliminate bad solutions from the population so that multiple 

copies of good solutions can be placed in the population. 

There are three types of Selection Operators to achieve the above task: 
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Tournament selection is played between two solutions and the better solution is chosen and 

placed in the mating pool. Each solution can be made to participate in exactly two tournaments 

and any solution in a population has 0, 1 or 2 copies in new populations. 

Proportionate selection assigns each solution copies, the number of which is proportional to 

their fitness value. For instance, a solution with a fitness value if  will get i avgf f  number of 

copies. avgf denotes the average fitness of all population members. Therefore, the solution with a 

higher fitness value represents a large range of cumulative probability values and has a higher 

probability of being copied into the mating pool. Considering the scaling problem, the outcome of 

operator is dependent on the true value of the fitness rather than relative fitness values. 

Ranking selection sorts solutions according to their fitness (true value) from the worst to the 

best. Each member is assigned a fitness (relative value) equal to the rank of the solution. In most 

cases, proportionate selection is applied with the ranked fitness values. 

The second one is Crossover Operator. The power of GAs arises from crossover. Crossover 

causes a structured, yet randomized exchange of genetic material between solutions, with the 

possibility that ‘good’ solutions can generate ‘better’ ones. 

Crossover occurs only with some probability pc (the crossover probability or crossover rate). 

When the solutions are not subjected to crossover, they remain unmodified. 

The third one is Mutation Operator. Mutation appears to be more useful than crossover when 

the population size is small while there is evidence that crossover can be more useful than 

mutation when the population size is large. Other factors, such as the representation, selection 

scheme, and the fitness function itself may all have an effect on the relative utility of crossover 

and mutation. 

2.2.4 Control Parameters of Genetic Algorithms [40] 
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To control the behavior of the GA, the role of the parameters pc and pm are often considered. 

The choice of pc and pm is known to critically affect the behavior and performance of the GA.  

The crossover probability pc controls the rate at which solutions are subjected to crossover. 

The higher the value of pc the quicker are the new solutions introduced into the population. As pc 

increases, however, solutions can be disrupted faster than selection can exploit them. Typical 

values for pc are in the range [0.5, 1.0].  

Mutation is only a secondary operator to restore genetic material. Large values of pm 

transform the GA into a purely random search algorithm, while some mutation is required to 

prevent the premature convergence of the GA to suboptimal solutions. Typically pm is chosen in 

the range [0.005, 0.05]. 

The balance between converge and spread characteristics of the GA is dictated by the values 

of pc and pm. Increasing values of pc and pm promotes exploration at the expense of exploitation. 

Moderately large values of pc (0.5-1.0) and small values of pm (0.001-0.05) are commonly 

employed in GA practice. 

Moderately large values of pc, (0.5 < pc < 1.0), and small values of pm (0.001 < pm < 0.05) 

are essential for the successful working of GAs. The moderately large values of pc promote the 

extensive recombination of schemata, while small values of pm are necessary to prevent the 

disruption of the solutions. 

2.2.5 Some Examples of MOEAs 

Today, there are some MOEAs frequently used: SPEA 2 by Zitzler [13], NSGA-II by Deb 

[14], IBEA by Zitzler [15], PESA-II by Corne [16] and MOEA/D by Zhang [17]. In the 

experiment conducted in Chapter 4, these five algorithms are compared under the performance 

metric ensemble. 



24 

 

First, we consider Strength Pareto Evolutionary Algorithm 2 (SPEA 2). SPEA is an effective 

technique for finding or approximating the Pareto-optimal set for multiobjective optimization 

problems. It has shown very good performance in comparison to other MOEAs. Based on SPEA, 

SPEA 2 incorporates a fine-grained fitness assignment strategy, a density estimation technique, 

and an enhanced archive truncation method. 

The main structure of SPEA 2 is presented in Table 2.1. Table 2.1 includes input and output 

of the algorithm, and the process of the algorithm to deal with MOPs:  

� Given input:  

N  (population size), N  (archive size) and T  (maximum number of generations) 
� Required output:  

A  (nondominated set) 
 

Step1: Initialization:  

Generate an initial population 0P and create the empty archive (external set)0P φ= . Set 

0t = . 
 

Step2: Fitness assignment:  

Calculate fitness values of individuals in tP  and tP  
 

Step 3:Environmental selection:  

Copy all nondominated individuals in tP and tP  to 1tP + . If size of 1tP +  exceeds N  then  

reduce 1tP +  by means of the truncation operator, otherwise if size of 1tP +  is less than N       
then fill 1tP +  with dominated individuals in tP

 
and tP . 

 
Step 4:Termination:  

If t T≥ or another stopping criterion is satisfied then set A to the set of decision vectors 

represented by the nondominated individuals in1tP + . 
 

Step 5:Mating selection:  

Perform binary tournament selection with replacement on 1tP +  in order to fill the mating 
pool. 
 

Step 6: Variation:  
Apply recombination and mutation operators to the mating pool and set 1tP+  to the 

resulting population. Increment generation counter ( )1t t= +  and go to Fitness 

assignment step again. 
Table 2.1 The main structure of SPEA 2 
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In fitness assignment, each individual i  in tP  and tP is assigned a strength value ( )S i  

representing the number of solutions it dominates: 

( ) { }ttS i j j P P i j= ∈ + ∧ f
                                                                                        

(2-16 A) 

⋅ denotes the cardinality of a set, + stands for multiset union and f corresponds to the 

Pareto dominance relation. 

Raw fitness ( )R i  is determined by the strengths of its dominators in both archive and 

population: 

( ) ( )
,ttj P P j i

R i S j
∈ +

=∑ f                                                                                                   
(2-16 B) 

Density information is incorporated into differentiate individuals having identical raw fitness 

values: 

( ) 1

2k
i

D i
σ

=
+

                                                                                                                
(2-16 C) 

where k N N= +  is the square root of the sample size and k
iσ is the k -th element gives the 

distance sought.  

Finally, for an individuali , its fitness 

( ) ( ) ( )F i R i D i= +
                                                                                                                   

(2-16 D) 

In Environmental Selection, first, all nondominated individuals have fitness lower than one 

are copied to the archive of the next generation:  

( ){ }1 1t t tP i i P P F i+ = ∈ + ∧ <
                                                                                        

(2-17 A) 
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Then, there are three conditions: 

If 1tP N+ = , the environmental selection step is completed 

If 1tP N+ < , the best 1tN P +− dominated individuals with ( ) 1F i ≥  in the previous archive 

and population are copied to the new archive 

If 1tP N+ > , procedures are made to remove individuals from 1tP + until 1tP N+ =  

At each iteration, individual i  is chosen for removal for which di j≤ for all 1tj P +∈ : 

( )
1

1

: 0 :

0 : 0 :

k k
td i j

l l k k
t i j i j

i j k P

k P l k

σ σ

σ σ σ σ

+

+

≤ ⇔∀ < < = ∨

 ∃ < < ∀ < < = ∧ <                                           

(2-17 B) 

k
iσ denotes the distance of i to its k -th nearest neighbor in 1tP + . The individual with the 

minimum distance to another individual is preferred.  

Second, we introduce Non-Dominated Sorting Genetic Algorithm-II (NSGA-II). A non-

dominated sorting based multi-objective evolutionary algorithm NSGA-II, has two advantages: 

computational complexity is ( )2O mN ; a selection operator is presented to create a mating pool 

by combining the parent and child populations and selecting the best (with respect to fitness and 

spread) N solutions. 

The main structure of NSGA-II is presented in Table 2.2.  

The third one is Region-based Selection in Evolutionary Multiobjective Optimization 

(PESA-II). PESA-II proposes a new selection technique, called Region-Based selection, for 

evolutionary multiobjective optimization algorithms in which the unit of selection is a hyperbox 
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in objective space. A hyperbox is selected and the resulting selected individual is randomly 

chosen from this hyperbox. 

The fourth one is Indicator-Based Selection in Multiobjective Search (IBEA). IBEA is 

combined with arbitrary indicators and adapted to the preferences of the user and moreover does 

not require any additional diversity preservation mechanism to be used. It provides an approach 

to allow preference information of the decision maker be integrated into multiobjective search. 

Step1: Generate random parent population 0P  and its child population 0Q :  

Initially, a random parent population 0P
 
is created. The population is sorted based on the 

non-domination. Each solution is assigned rank equal to its non-domination level where 1 
is the best level. Thus, minimization of fitness is assumed. Binary tournament selection, 
recombination, and mutation operators are used to create a child population 0Q of sizeN . 
Set 0t =  

Step2: t t tR P Q= ∪  

Combine parent and children population. The population tR  will have size2N . 
 

Step3: F = nondominated-sort (tR ) until 1tP N+ <  

Population tR  is sorted based on the non-domination sorting. The new parent population 

1tP+  is formed by adding solutions from the first front to the next best front before the size 
exceedsN . 
 

Step4: crowding-distance-assignment (iF ) and 1 1t t iP P F+ += ∪  
Calculate crowding distance in iF and include k -th non-dominated front in the parent 

 population. 
 

Step5: Sort ( 1tP+ , n≥ ) and [ ]1 1 0 :t tP P N+ +=
 

Sort in descending order and choose the first N elements of 1tP+ . 
 

Step6: 1tQ + =make-new-pop ( 1tP+ ) 
This population of size N is now used for selection, crossover and mutation to create a new 
population. 

Table 2.2 The main structure of NSGA-II 

Table 2.3 presents the input and output of the algorithm, and the process of the algorithm to 

deal with multiobjective problem.  
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The final one is MOEA/D: A Multiobjective Evolutionary Algorithm Based on 

Decomposition. MOEA/D decomposes a multiobjective optimization problem into a number of 

scalar optimization subproblems and optimizes them simultaneously. Each subproblem is 

optimized by only using information from its several neighboring subproblems, which makes 

MOEA/D with lower computational complexity at each generation. 

� Given input:  
α  (population size), N  (maximum number of generations) and κ  (fitness scaling factor)  

� Required output:  
A  (Pareto set approximation) 
 

Step1: Initialization:  
Generate an initial population P  of sizeα ; set the generation counter m to 0. 
 

Step2: Fitness assignment:  
First scale objective and indicator values, and then use scaled values to assign fitness values. 
Determine for each objective if its lower bound ( )mini x P ib f x∈= and upper bound

 

( )maxi x P ib f x∈=  

Scale each objective to the interval [0, 1], i, e, ( ) ( )( ) ( )'
i i i i if x f x b b b= − −  

Calculate indicator values ( )1 2,I x x  using the scaled objective values'if , instead of the  

original if , and determine the maximum absolute indicator value ( )1 2

1 2

,
max ,

x x P
c I x x

∈
=  

For all 1x P∈ set ( ) { } { }( ) ( )

{ }
2 1

2 1

,1

\

I x x c

x P x
F x e

κ− ⋅

∈
= −∑

 
 
Step3: Environmental selection:  

Iterate the following three steps until the size of population P  does not exceed α : 

Choose an individual x P∗∈  with the smallest fitness value, i.e. ( ) ( )f x f x∗ ≤ for all x P∈ . 

Remove x∗  from the population. 

Update the fitness values of the remaining individuals, i.e. ( ) ( ) { } { }( ) ( ),I x x c
F x F x e

κ∗− ⋅
= +  

 
Step4: Termination:  

If t T≥ or another stopping criterion is satisfied then set A  to the set of decision vectors 
represented by the nondominated individuals inP . 

 
Step5: Mating selection:  

Perform binary tournament selection with replacement on P  in order to fill the mating pool. 
 
Step6: Variation:  

Apply recombination and mutation operators to the mating pool and add the resulting 
population toP . Increment generation counter ( 1t t= + ) and go to Fitness assignment step.  
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Table 2.3 The main structure of IBEA 

Table 2.4 presents the input and output of the algorithm, and the process of the algorithm to 

deal with multiobjective problem.  

� Input:  
a stopping criterion; the number of the subproblems considered in MOEA/D; a uniform 

spread of N  weight vectors: 1, , Nλ λK ; and T , the number of the weight vectors in the 
neighborhood of each weight vector. 

� Output: External Population (EP) 
 

Step 1: Initialization: 
SetEP=∅ . Compute the Euclidean distances between any two weight vectors and then 
work out the closest weight vectors to each weight vector. For each 1, ,i N= K , set 

( ) { }1, , TB i i i= K , where 1, , Tiλ λK are the T closest weight vectors to iλ . 

Generate an initial population 1, , Nx xK  randomly or by a problem-specific method. Set    

( )i iFV F x=  

Initialize ( )1, ,
T

mz z z= K by a problem-specific method. 

 
Step 2: Update 

For 1, ,i N= K , do 

Reproduction: Randomly select two indexesk , l from ( )B i , and then generate a new 

solution y  from kx and lx by using genetic operators. 

Improvement: Apply a problem-specific repair/ improvement heuristic on y  to produce 'y  

Update ofz∗ : for each 1, ,j m= K , if ( )'j jz f y< , then set ( )'j jz f y= . 

Update of Neighboring Solutions: if ( ) ( )' , ,te j te j jg y z g x zλ λ≤ , for each index ( )j B i∈ , 

set 'jx y= and ( )'jFV F y= . ( ) ( ){ }
1

, maxte j j j
i i i

i m
g x z f x zλ λ∗ ∗

≤ ≤
= − , 

1, , Nλ λK  be a set 

of even spread weight vectors and z∗  be the reference point. 

Update of EP: Remove EP from all the vectors dominated by ( )'F y  and add ( )'F y  to EP 

if no vectors in EP dominate ( )'F y . 

 
Step 3: Stopping Criteria 

If stopping criteria is satisfied, then stop and output. Otherwise, go to Step 2. 
 Table 2.4 The main structure of MOEA/D 

2.3 Performance Metrics  
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In this part, first some important concepts are introduced. These are applied to define 

relations between different approximation fronts. Then, we will explain both unary and binary 

performance metrics in detail. 

2.3.1 Outperformance Relations  

Hansen and Jaszkiewicz [9] have focused on the problem of evaluating approximations to 

the true Pareto front. They define a number of outperformance relations that classify the 

relationships between two sets of nondominated objective individuals while the preferences 

information of the test problem is unknown. Based on these, Knowles and Corne [18] further give 

two definitions about Monotony and Relativity. 

� Weak Outperformance [9] 

A  weakly outperforms B ( WA O B): A  weakly outperforms B  if and only if nondominated 

points of A B∪ are the same as the whole points in A , andA B≠ . Therefore, each point 

2z B∈  is covered by a point 1z A∈ ; ‘cover’ means is equal to or dominates2z . Additional, 

there is at least one point 1z A∈  which is not contained inB . Adding to B  a new non-

dominated individual can generate a new approximation front that weakly outperformB . 

� Strong Outperformance [9] 

A  strongly outperforms B  ( SA O B ): A  strongly outperforms B  if and only if 

nondominated points of A B∪ are the same as the whole points in A , andB contains another 

dominated points. Therefore, each point 2z B∈  is covered by a point 1z A∈ . Additional, 

there is at least one point 2z B∈ that is dominated by a point 1z A∈ and is not contained inB

. Adding to B  a new individual that dominates at least one point in B  can generate a new 

approximation front that strongly outperformB . 

� Complete Outperformance [9] 
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A  completely outperforms B  ( CA O B ): A  completely outperforms B  if and only if 

nondominated points of A B∪ are the same as the whole points in A , and none of 

nondominated points of A B∪ belongs toB . Therefore, each point 2z B∈  is dominated by a 

point 1z A∈ . Adding to B  a new individual that dominates all points in B  can generate a 

new approximation front that completely outperformB . 

� Incomparable Outperformance [9] 

A  incomparable outperforms B is defined as some points in Adominate points in B  and 

some points in B  dominate points inA . In this condition, we cannot state that which one is 

better. 

� Compatibility and Weak compatibility [9] 

Let , orW S CO O O O= : 

Compatibility: A comparison metric R  is compatible with an outperformance relationO if 

for each pair of nondominated sets AandB , such thatAO B, Rwill evaluate A  as being 

better thanB .  

Weak compatibility: A comparison metric R  is compatible with an outperformance relation

O if for each pair of nondominated sets AandB , such thatAO B, Rwill evaluate A  as 

being no worse thanB .  

� Monotony and Weak Monotony [18] 

Monotony: Given a nondominated setA , adding a non-dominated point improves its 

evaluation. Compatibility with WO  is necessary and sufficient for ensuring monotony [18].  

Weak Monotony: Given a nondominated setA , adding a non-dominated point does not 

degrade its evaluation.  
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� Relativity and Weak Relativity [18] 

Relativity: The evaluation of Z∗  is uniquely optimal, i.e., all other nondominated sets have a 

strictly inferior evaluation. Compatibility with WO  is sufficient but not necessary for 

ensuring relativity [18].  

Weak Relativity: The evaluation of Z∗  is non-uniquely optimal, i.e., all other nondominated 

sets have a non-superior evaluation.  

From above theories, we can find C S WAO B AO B AO B⇒ ⇒  and C S WO O O⊂ ⊂ . 

Complete Outperformance is the strongest of the relation and easiest to be compatible; Weak 

Outperformance is the weakest of the relation and most difficult to be compatible. 

2.3.2 Compatibility and Completeness 

Zitzler [10] has proposed a method that links Comparison Methods and Dominance 

Relations to reveal differences in performance between MOEAs, and make the statement that an 

algorithm outperforms another one. What conclusions can be drawn with respect to the 

dominance relations is emphasized.  

Quality Indicator: 

In order to quantify quality differences between approximation sets, quality measures are 

necessary used to map approximation sets to the real numbers by applying common metrics to the 

resulting real numbers. Based on this observation, Zitzler defines what a quality measure is: 

An m -ary quality indicator I is a function : mI RΩ → , which assigns each vector 

( )1 2, , , mA A AK of m approximation sets a real value, ( )1 2, , , mI A A AK . 
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Often, not a single indicator but rather a combination of different quality indicators is used in 

order to assess approximation sets. The combination quality indicator vector can be regarded as a 

function that assigns each approximation set a vector of multiple real numbers. 

Comparison Method: 

Here, we use Pseudo-Boolean functionE to compare different approximation sets. It maps 

vectors of real numbers to Booleans: 

( ) ( ): 1E I I= =  means E  is true if and only if 0I = . 

A comparison method ,I EC is based on a combination of one or more quality indicators I  

and a Boolean functionE . 

Given two approximation sets ,A B∈Ω , ( )1 2, , , kI I I I= K  a combination of quality 

indicators, and { }: false,truek kE IR IR× →  a Boolean function, from Zitzler’s theory, If ,I EC is 

defined by combination of unary indicators and Boolean function E , 

( ) ( ) ( )( ), , ,I EC A B E I A I B= ; If ,I EC  is defined by combination of binary indicators and Boolean 

function E , ( ) ( ) ( )( ), , , , ,I EC A B E I A B I B A=  

Compatibility and Completeness: 

Compatibility: for any ,A B∈Ω , the result of ( ), ,I EC A B  can indicate that A is better thanB

, or B  is better thanA . 

Completeness: for any,A B∈Ω , the relation that A  is better thanB , or B  is better than A  

can decide the value of ( ), ,I EC A B . 
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For a particular quality indicator, if there exists a Boolean function such that the resulting 

comparison method is compatible and in addition complete with respect to the various dominance 

relations (strong, weak or complete), this quality indicator can be evaluated to be powerful quality 

indicator. 

However, Zitzler [10] has proven there exists no comparison method based on a finite 

combination of unary quality indicators that is compatible and complete at the same time. It 

means for any combination of a finite number of unary quality indicators, a Boolean function 

cannot be found such that this comparison method is both compatible and complete.  

From the above reasons, the number of performance metrics that determine a better 

approximation set from two sets is infinite. Furthermore, to be able to detect whether an 

approximation front weakly dominates or dominates another approximation front, the number of 

performance metrics should be greater than or equal to the number of objectives.  

2.3.3 Unary performance metrics 

The first type of performance metrics concerns about assessing the Number of Pareto 

Optimal Solutions in the Set. Ratio of Non-dominated Individuals (RNI) [5] gives the proportion 

of the useful solutions known as the Pareto-front in a given population size; Error Ratio (ER) [4] 

evaluates the proportion of non true Pareto points in the approximation front; Overall 

Nondominated Vector Generation and Ratio (ONVG) [4] counts the number of distinct non-

dominated points generated; and Pareto Dominance Indicator (NR) [3] measures the ratio of non-

dominated solutions contributed by a particular solution set to the non-dominated solutions 

provided by all solution sets. 

Ratio of Non-dominated Individuals (RNI) [5] 

The performance measure is:  
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_
( )

nondom indiv
RNI X

P
=

                                                                                                         
(2-18) 

_nondom indiv:  Non-dominated individuals in population X  with sizeP . 

If 1RNI = , all the individuals in X  are non-dominated; and if 0RNI = , none of the 

individuals in X  is non-dominated. It is always required to have enough qualified individuals to 

construct a Pareto front. Therefore, RNI is significant in that it checks the proportion of non-

dominated individuals in populationX . 

Knowles and Corne in [18] have stated that: RNI is not weakly compatible with any 

outperformance relation. It exhibits monotony. Clearly, add a non-dominated point will make the 

RNI value better. It violates relativity. True Pareto front cannot be sure to have more numbers of 

non-dominated points than other approximation fronts. 

Error Ratio (ER) [4] 

It is defined as the proportion of non true Pareto points in reference set: 

( )
( )1

n

ii
e

ER X
P

=
=
∑

                                                                                                            
(2-19) 

Individual i  is a point in approximation frontX . P  is the number of individuals inX . 

0ie =  means individual i  is in true Pareto set; and 1ie =  means individual i  is not in true 

Pareto set. Lower value of ER implies a small proportion of non true Pareto points in X  and 

represents better nondominated sets. It is a reference metric using true Pareto front as reference 

set. 

Knowles and Corne in [18] have stated that: ER is only weakly compatible withCO . It is not 

weakly compatible with SO  or WO . If one algorithm generates 100 points, one in the Pareto front, 



36 

 

the other 99 points are very far from the Pareto front; its error ratio is 0.99. However, if another 

algorithm also generates 100 points, all these 100 points are very close to Pareto front, its error 

ratio is 1. Although the second algorithm’s error ratio is larger than the first one, we can see 

clearly the second one is better than the first one. ER strongly violates monotony: Add a 

nondominated but non-Pareto optimal points in an approximation set, makes the ER score worse. 

The advantage is easy to understand and easy to calculate. It is scaling independent. The 

disadvantage is the true Pareto front information is needed. It is incompatible with the 

outperformance relations. 

Overall Nondominated Vector Generation and Ratio (ONVG) [4] 

It measures the total number of nondominated vectors found in approximation front during 

MOEA execution. It is defined as:  

knownONVG PF=
                                                                                                                          

(2-20) 

knownPF  represents approximation front. From [19], too few vectors in knownPF  make the 

front’s representation poor and too many vectors may overwhelm the decision maker.  

Knowles and Corne in [18] have stated that: ONVG is not weakly compatible with any 

outperformance relation. It does not exhibit either weak monotony or weak relativity. The 

advantage is easy to calculate and scaling independent while the disadvantage is A  

outperformance B  on this metric does not mean A  is clearly better thanB . 

Pareto Dominance Indicator (NR) [3] 

Considering the differentPFs, 1 2, , nA A AK evolved by algorithms, this metric measures the 

ratio of nondominated solutions that is contributed by a particular solution set iA  to the 

nondominated solutions provided by all solution: 
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( ) 1
1 2, ,..., n

B A
NR A A A

B
=

I

                                                                                           
(2-21 A) 

( ){ }1 2, ...i i j n iB b b a A A A b= ∀ ¬∃ ∈ U U p
                                                                     

(2-21 B) 

1A
 
is the solution set under evaluation. 

Zitzler show that no combinations of unary performance metrics can provide a clear 

indication of whether an evolved set is better than another in the Pareto dominance sense, this 

metric can be a complement to another metrics [1]. It is weak compatible with SO  and CO . 

The second type of performance metrics focuses on measuring the closeness of the solution 

to the True Pareto Front. Generational Distance (GD) [4] measures how far the evolved solution 

set is from the rue Pareto front; and Maximum Pareto Front Error (MPFE) [4] identifies the 

largest distance between the point in the theoretical Pareto front and the point in the 

approximation front. 

Final Generational Distance (GD) [4] 

( )
1

1

pn p
ii

d
GD

n

=
=
∑

                                                                                                              
(2-22)

 

n is the number of vectors in the approximation front, id is the distance in objective space 

between individual i  and the nearest member of truePF .This metric is a value representing how 

“far” the approximation front is from true Pareto front. Lower value of GD represents better 

performance. It measure general process towards true Pareto front [18]. It is a reference metric 

using true Pareto front as reference set. 

Knowles and Corne in [18] have proven that GD is not weakly compatible with WO , but is 

compatible with SO . It violates weak monotony which implies adding a non-dominated point to 
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an approximation fronts cannot improve its GD value. It exhibits weak relativity since any subset 

of Pareto front has an optimal GD. For a constant size of non-dominated set, GD is compatible 

with SO . But it is not used for non-dominated sets that are changing in cardinality. It cannot be 

reliably differentiate between different levels of complete outperformance. The true Pareto front 

information is needed. 

Maximum Pareto Front Error (MPFE) [4] 

It measures the largest distance between any vector in the approximation front and the 

corresponding closest vector in true Pareto front. It finds the largest distance between individual 

j in approximation front and individual i in the true Pareto optimal front. 

( ) ( ) ( ) ( )( )
1

1 1 2 2max min
pp pi j i j

ij
MPFE f x f x f x f x= − + −

                                                                  
(2-23) 

It is a reference metric using true Pareto front as reference set. In terms of Pareto 

compatibility, it is not weakly compatible with outperformance relation. It violates weak 

monotony. It exhibit weak relativity since any subset of Pareto front is optimal. It is cheap to 

compute. It helps us to focus on how far the worst point is. However, from [19], for a non-

dominated set, a good performance in MPFE does not ensure it is better than another one with a 

much worse MPFE. The true Pareto front information is needed.  

The third type of performance metrics measures distribution of the Solutions. Uniform 

Distribution (UD) [5] measures the distribution of an approximation front under a pre-defined 

parameter shareσ ; Spacing [6] measures how evenly the evolved solutions distribute itself; and 

Number of Distinct Choices (NDCu) [7] identifies solutions that are sufficiently distinct for a 

special valueu . 

Uniform Distribution (UD) [5] 
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It measures the distribution of non-dominated individuals on the found trade-off surface. For 

a given set of nondominated individuals 'X  in a populationX : 

' 1
( )

1 nc

UD X
S

=
+

                                                                                                            
(2-24 A) 

( )
'

'

' '( )

1

x
N

i
i

nc

x

nc x nc X
S

N

− − 
 =

−

∑

                                                                                               

(2-24 B) 

( )
'

'

,

( , )
x

N

i
j j i

nc x f i j
≠

= ∑
                                                                                                        

(2-24 C) 

 ( ) ( ){1, ,
0., sharedis i j

elsef i j δ〈=
                                                                                                     

(2-24 D) 

( )
( )

'

'

'

'

x
N

i
i

x

nc x
nc X

N

−

=
∑

                                                                                                        

(2-24 E) 

shareσ  is pre-defined by decision maker. ncS  is the standard deviation of niche count of the 

overall set of non-dominated individuals. 'xN is the size of the set 'x . ( )'inc x  is the niche count of 

the thi  individual 'x  and ( ),dis i j  is the distance between individual i  and j  in the objective 

domain.  

Knowles and Corne in [18] have proven that:  UD is not even weakly compatible withWO .  

It violates monotony in that an additional point cannot make sure the distribution is improved. It 

violates relatively. An approximation front far from the Pareto front can have the same UD score 

to the Pareto front. It has low computational overhead and provides the opportunity for Decision 

maker to choose well distributed front according to real application need by assigning different 

value to shareσ . However, it is difficult to choose shareσ  without any reference information. 
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Spacing [6] 

This metric is a value measuring the distribution of vectors throughout approximation front. 

It provides information about the distribution of vectors obtained. Because approximation front’s 

“beginning” and “end” are known, a suitably defined metric judge how well knownPF is distributed. 

2

1

1

1

n

i
i

S d d
n

−

+

 = − −  
∑

                                                                                                    
(2-25 A) 

( ) ( ) ( ) ( )( )
1/ 22 2

1 1 2 2min i j i j
i

j
d f x f x f x f x= − + −

                                                                     
(2-25 B) 

id  is minimum distance between two solutions in the approximation front. Knowles and 

Corne in [18] have stated that:  Spacing is not even weakly compatible withWO .  It violates 

monotony in that an additional point cannot make sure the distribution is improved. It violates 

relatively. An approximation front far from the Pareto front can have the same Spacing score to 

the Pareto front. It has low computational overhead and can be generalized to more than two 

dimensions by extending the definition ofid . But the use of normalized distances may be 

problematic.  

Number of Distinct Choices (NDCu) [7] 

In this metric, only those solutions that are sufficiently distinct from one another should be 

accounted for as useful design options. The quality ( ),uNT q P  indicates whether or not there is 

any point kp P∈  that falls into the region.  

( )uT q  is decided by 1 mu , 0 1u< < .m is the dimension of objective-space  

( ) ( )
( ){1, ,

0, ,, k k u

k k u

p P p T q
u p P p T qNT q P ∃ ∈ ∈

∀ ∈ ∉=
                                                                                       

(2-26 A) 

( )uNDC P  is the number of distinct choices for a pre-specified value ofu : 
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( ) ( )
2 1

1 1 1

0 0 0

... ,
m

v v v

u u
l l l

NDC P NT q P
− − −

= = =

=∑ ∑∑
                                                                                 

(2-26 B) 

From [7], for a pre-specified value ofu , an observed Pareto solution set with a higher value 

of the quantity ( )uNDC P  is preferred to a set with a lower value.  

In terms of Pareto compatibility: uNDC  is not even weakly compatible withWO . It violates 

monotony in that an additional point cannot make sure the distribution is improved. It violates 

relatively. An approximation front far from the Pareto front can have the same Spacing score to 

the Pareto front. It provides the opportunity for Decision maker to choose well distributed front 

according to real application need by a pre-specified value ofu . However, it is not easy to 

compute.  

The fourth category of performance metrics concerns spread of the solutions. Maximum 

Spread (MS) [3] measures how well the rue Pareto front is covered by the approximation set.   

Maximum Spread (MS) [3] 

It addresses the range of objective function values and takes into account the proximity to

truePF . This metric is applied to measure how well the truePF  is covered by the knownPF .  

( ) ( )
( )

2
max max min min

max min
1

min , max ,1 M
i i i i

i i i

f F f F
MS

M F F=

 −
 =

−  
∑

                                                          

(2-27) 

max
if and min

if  are the maximum and minimum of the i th objective in knownPF , respectively; 

max
iF and min

iF  are the maximum and minimum of the i th objective in truePF , respectively.  If

( ) ( )MS A MS B> , the solution A is preferred toB . 

The last type of performance metrics considers both closeness and diversity: 
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Hypervolume Metric [11] 

The hyperarea difference metric [11] is also called S-metric and can be used to quantitatively 

evaluate the difference between the size of the objective space dominated by an observed Pareto 

front and that of the space dominated by the true Pareto front. 

The true Pareto front set dominates the largest volume in solution space while an 

approximation front may only dominate a portion of true Pareto front dominated volume. A 

quantitative measure is obtained as to how much worse an observed Pareto front is when 

compared to the true Pareto front. Although in real problem, the true Pareto front is usually 

unknown; it should still be possible to compare an approximation front to another so as to draw a 

conclusion that which front is better. 

Let ( )HD P represent the hypervolume difference quantity between the inferior regions of 

the true Pareto solution set tP  and the inferior region of the observed Pareto solution set P  [7]: 

( ) ( ) ( )( ) ( )( )1in t in inHD P space S P S P space S p= − = −
                                                           

(2-28)
 

In [4], Veldhuizen also propose a Hyperarea Ratio metric defined as: 

1

2

H
HR

H
=

                                                                                                                                         

(2-29) 

1H  is the hyperarea of knownPF  while 2H  is that of truePF .. In the proposed performance 

metrics ensemble to be presented in Chapter 3, we adopt this modified Hyperarea Ratio Metric. 

It is compatible with all the outperformance relations [18]. Each algorithm can be assessed 

independently of the other algorithms in this metrics.  Hypervolume Metric differentiates between 

different degrees of complete outperformance of two sets, so it can evaluate how much better an 
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approximation set is than the other approximation set. It is scaling independent, non-cardinal and 

its meaning is intuitive. It can be misleading if the Pareto optimal front is non-convex [3].  

Therefore, it focuses on the volume of the objective space dominated by an approximation 

set and calculates the hypervolume of the multi-dimensional region enclosed by approximation 

front and a ‘reference point’ [18].   

A reference point is also called the upper boundary of the region. The choice of the upper 

boundary determines which approximation front has the maximum dominated hypervolume. In 

many cases, we need to find the reference point to represent the upper boundary of the region. 

The reference point should be chosen so that it is dominated by all Pareto-optimal solutions. 

Auger and Zitzler [20] have proposed a method to define the reference point ( )1 2,r r r=  for a 

specific problem:  

Let u  be an integer larger than or equal to 2. Assume that f is continuous on[ ]min max,x x , 

non-increasing, differentiable on [ ]min max,x x  and that f’  is continuous on[ ]min max,x x : 

The leftmost extremal point: 

 If ( )
min

lim x x f x→ − < +∞ :  

[ ]
( )( ) ( ){ }

min max

'
2 max

,
: sup

x x x

R f x x x f x
∈

= − +
                                                                                     

(2-30) 

When 2R  is finite, the leftmost extremal point is contained in optimal u-distributions if the 

reference point ( )1 2,r r r=  is such that 2r  is strictly larger than 2R . 2r  can be chosen to be2R . 

If ( )
min

lim x x f x→ − = +∞ , the left extremal point of the front is never included in optimal u-

distributions. So, 2r = +∞ . 
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The rightmost extremal point:  

when f  is strictly negative on[ ]min max,x x : 

[ ]

( ) ( )
( )min max

min
1 '

,
: sup

x x x

f x f x
R x

f x∈

 − 
= + 

                                                                                             

(2-31) 

When 1R  is finite, the rightmost extremal point is contained in optimal u-distributions if the 

reference point ( )1 2,r r r=  is such that r1 is strictly larger than1R . 1r can be chosen to be 1R . 

If ( )max 0f x = , the right extremal point of the front is never included in optimal u -

distributions. So, 1r = +∞ . 

Hypervolume metric also has a large computational overhead. Largest computation is 

defined [21] by Klee’s Measure Problem (KMP) and lowest computation is defined by the 

UniformGap Problem. KMP is the problem of computing the length of the union of a collection 

of intervals on the real line and defines the upper boundary of the computation. It can be solved 

with computational complexity in optimal ( )logO n n  time. 

First, measure of a union of hyper-rectangles ind dimensions: 

( ) ( ) ( )1 1 2log logd d dO n n O n O n n− −⇒ ⇒ . Second, the weakly dominated hypervolume for a 

point set 0
dP IR≥⊆  as a special case of Klee’s measure problem: The polytope dΠ  is patterned by 

the collection of hyper-rectangles { }p p P
R

∈
 with { }0: :d

pR x IR x p≥= ∈ ≤  spanned by the points in 

P  and the reference point 00 dr IR≥= ∈ . Third, the set of hyper-rectangles is the input and the 

desired hypervolume output. Finally, we get an upper bound of computation time in

( )2log logdO n n n n+  . The best upper bound currently known for ( )23: log dd O n n n> +  
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The UniformGap Problem defines the lower boundary of the computation. This problem 

uses the fixed-degree algebraic decision tree, which is the standard model used in computational 

geometry and is used to prove lower bounds for (geometric) decision problems. 

It captures the behavior of a (loop-unrolled) algorithm that branches depending on the 

outcome of evaluations of bounded-degree polynomials. A lower bound on the complexity of a 

given problem can then be derived by establishing a lower bound on the depth of any such tree 

resembling any valid algorithm to solve this problem. Moreover, linear-time reduction from 

problem A  to problem B  means the lower bound for problem A  is a lower bound for problemB

. 

2.3.4 Binary performance metrics 

The first type of binary performance metrics based on unary quality indicator. It includes ε -

indicatorI ε , enclosing hypercube Indicator and coverage difference metrics (D-metric). 

First, ε -indicatorI ε  [10] can be used to compare algorithms directly without reference front 

information. This is defined as: 

( ) { }2 1 1 2, inf :
R

I A B z B z A z zεε∈ ∈
= ∀ ∈ ∃ ∈ ≥

                                                                     
(2-32 A) 

1 2 1 21 : i iz z i n z zε ε≥ ⇔ ∀ ≤ ≤ ≤ ⋅                                                                                     (2-32 B) 

( ),I A B∈ reflects the value ofε . For every individual 2z in B , there must exist an individual 

1z in A  dominate 2zε ⋅ .  

For any pair ,A B∈Ω , ( ), 1A B I A B∈⇒ <f f
 
.Therefore, if A  is better thanB , 1ε <  
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However, ( ), 1I A B∈ < can only imply that A  is not worse than B  in strictly dominates and 

better relations.  

Second, Enclosing Hypercube Indicator [10] is defined as:   

( ) ( ){ }{ }1 sup , ,...,HC
a RI A a a a A∈= >

                                                                              
(2-33 A) 

( ) ( ){ }{ }2 inf , ,...,HC
b RI A b b b A∈= <

                                                                                
(2-33 B) 

( ) ( )2 1
HC HCI A I B A B< ⇒ >  1 1i n∀ ≤ ≤ +                                                                      (2-33 C) 

( )2
HCI A is the point that worse than all individuals inA . ( )1

HCI B  is the point that better than 

all individuals inB . 

Finally, coverage difference metrics (D-metric) [11] is defined as the size of the space 

dominated by A  and not dominated by B  (regarding the objective space), ,A B X⊆ be two sets 

of decision vectors.  

( ) ( ) ( ),D A B S A B S B= + −
                                                                                                    

(2-34 

A) 

where ( )S A  is the Hypervolume Difference Metric (S-metric).  

Zitzler [11] suggest that (ideally) the D metric is used in combination with the S metric 

where the values may be normalized by a reference volume V , where (for a maximization 

problem) V  is given by: 

( )max min

1

k

i i
i

V f f
=

= −∏
                                                                                                                

(2-34 B) 
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max
if and min

if  represent the maximum respectively minimum value for the objective if . 

Thus, the value ( ) ( )
1

,
,

D A B
D A B

V
=  represents the relative size of the region (in the objective 

space) dominated by A  and not dominated byB . 

The second type is direct comparison binary metrics: C metrics and R metrics.  

C metrics [9] maps the ordered pair ( ),A B to the interval[ ]0,1 :  

( )
{ }:

,
b B a A a b

C A B
B

∈ ∃ ∈ ≤
=

                                                                                      

(2-35) 

( ), 1C A B = : all decision vectors in B  are weakly dominated byA ; ( ), 0C A B = : none of 

the points in B  are weakly dominated by A . It is compatible with SO  and CO , but incompatible 

with WO . Only if ( ), 1C A B =  and ( ), 1C B A < , it is compatible with WO . It is Non-symmetric: 

( ),C A B  is not necessarily equal to ( ),C B A− . It has low computational overhead. Scale and 

reference point independent. However, there are situations when the metric C cannot decide if an 

obtained front is better than the other. 

R metrics [5] consist of three sub-metrics:( )1 , , ,R A B U p , ( )2 , , ,R A B U p  and ( )3 , , ,R A B U p . 

( )1 , , ,R A B U p calculates the probability that approximation A  is better than approximation 

B  over an entire set of utility functions. 

( ) ( ) ( )1 , , , , ,
u U

R A B U p C A B u p u du
∈

= ∫
                                                                          

(2-36 A) 

 ( )
( ) ( )
( ) ( )
( ) ( )

1,

, , 1 2,

0,

u A u B

C A B u u A u B

u A u B

∗ ∗

∗ ∗

∗ ∗

 >


= =
 <                                                                                  

(2-36 B) 
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( ) ( ){ }maxz Au A u z∗
∈= , ( ) ( ){ }maxz Bu B u z∗

∈= and ( )p u  is an intensity function 

expressing the probability density of the utility. If( )1 , , , 0.5R A B U p > , A  is the winner; if

( )1 , , , 0.5R A B U p < , B  is the winner. In terms of Pareto compatibility: 1R  is only weakly 

compatible with WO  and is not compatible withCO . It has low computational overhead and Scale 

independent but1R  is cycle-inducing. 

( )2 , , ,R A B U p  calculates the expected difference in the utility of an approximation A  with 

another oneB . 

( ) ( ) ( )( ) ( )2 , , ,
u U

R A B U p u A u B p u du∗ ∗

∈

= −∫
                                                                   

(2-37) 

2R is compatible with WO . It can differentiate between different levels of complete 

outperformance. However, each utility function in U  must be appropriately scaled with respect to 

the others and its relative importance. 

( )3 , , ,R A B U p  calculates the ratio of the best utility values. That is the expected proportion 

of superiority. 

( )
( ) ( )( )

( )
( )3 , , ,

u U

u A u B
R A B U p p u du

u A

∗ ∗

∗
∈

−
= ∫

                                                                   

(2-38) 
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CHAPTER THREE 

METHODOLOGY 

This chapter first explains the motivation of the designed performance metrics ensemble. 

Then, we describe the proposed approach in detail. 

3.1 MOTIVATION 

Chapter 2 has introduced a large number of available performance metrics with different 

characteristics. However, none of these metrics alone can faithfully measure MOEA performance 

independently. Every metric can provide some specific but limited information and can only be 

used effectively in some specified conditions. For example, UD does a poor job when the Pareto 

front is discontinued and Hypervolume can be misleading if the Pareto optimal front is non-

convex [4]. This means one metric cannot entirely evaluate MOEAs in all conditions. Every 

metric focuses on some special characteristics while neglects information in others. Also, every 

metric has its unique character; no metrics can substitute others completely. Therefore, a single 

metrics cannot provide a comprehensive measure for MOEAs. Moreover, because reduce 

objective space must losing information, a fixed number of indicators are not sufficient to make a 

comprehensive measure for MOEAs [11].  

Meanwhile, different metrics perform differently in different test problems. For a given 

MOEA, one metric may do well in one test problem, however, in other test problems, it may be 

misleading. For a specific test problem, we cannot know which metric is better. We need to try 

various metric to identify which one is the best. This is a heavy computational process. 

To overcome these challenge and arrive at a faithful evaluation of a given MOEAs, 



 

performance metrics ensemble is necessary. Ensemble 

fair performance than what 

Ensemble metrics not only 

but avoid the choosing process and can be 

3.2 OVERVIEW OF PERFORMANCE METRICS ENSEMBLE

The proposed framework is shown in Figure 3.1

Table 3.1 explains the whole process of ensemble method in detail. 50 

given the same initial populations to each and every candidate MOEAs are performed, resulting 

50 approximation fronts from each chosen MOEA for comparison. 

Double-Tournament Selection, every individual 

to compete. After one winner is found, identify which algorithm it is 

50 

performance metrics ensemble is necessary. Ensemble method uses multiple metrics to obtain 

what could be obtained from any of single performance 

Ensemble metrics not only can give the comprehensive comparison between different algorithms, 

he choosing process and can be directly used to assessing MOEAs.   

PERFORMANCE METRICS ENSEMBLE 

he proposed framework is shown in Figure 3.1 

Fig 3.1 The proposed framework 

Table 3.1 explains the whole process of ensemble method in detail. 50 

given the same initial populations to each and every candidate MOEAs are performed, resulting 

from each chosen MOEA for comparison.  Then, in 

Tournament Selection, every individual (i.e., approximation front) has two 

to compete. After one winner is found, identify which algorithm it is from; remove all the fronts 

multiple metrics to obtain a 

any of single performance metric alone. 

between different algorithms, 

 

 

Table 3.1 explains the whole process of ensemble method in detail. 50 independent trials 

given the same initial populations to each and every candidate MOEAs are performed, resulting 

Then, in the proposed 

has two opportunities 

remove all the fronts 
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of that algorithm and compare others again. Finally, all the algorithms will be assigned a rank 

value. 

Input: A number of MOEAs for comparison 
 
Output: Rank Value of the chosen MOEAs 
 
Step 1: Generate 50 approximation fronts from each MOEA: 

The selected MOEAs run 50 times for a given benchmark problem under the same 
initial conditions. Every time, each MOEA generate an approximation fronts while 
each front represents its algorithm. After that, a single performance metric in the 
performance metrics ensemble is randomly chosen to measure the quality of each front, 
and the best approximation front is picked up based on that performance pertained to 
the chosen benchmark problem at hand. After 50 running times, we get 50 
approximation fronts. 
 

Step 2: Use Double-Tournament Selection to get the best one individual: 
i. Every 2 individuals are randomly picked to form competition pair. One 

performance metric is randomly chosen in each competition. Each pair will 
generate a winner and a loser. After all the competition, two parts are created: W1 
contains all the winners named winner bracket; the other L1 contains all the losers 
named loser bracket. 

ii. In both W1 and L1, the same competition is performed again and each package 
can be divided into two sub-packages. One sub-package contains winners, the 
other losers. W1 is divided into W11 (winners) and W12 (losers); L1 is divided into 
L11 (winners) and L12 (losers). Then, individual of W12 will compete with 
individual of L11 one by one. Winners from these competitions consist of a new 
loser bracket L13. We reserve W11 and L13.Therefore, the population is reduced to 
an half. 

iii.  In both W11 and L13, do as Step ii again. Every time, reduce the population by 
half. Finally, only one individual wins at the very end. 
    

Step 3: Assign every MOEA a rank value 
Identify from which MOEA this winner front comes from. Assign this algorithm rank 
value 1. Then, eliminate all the approximate fronts generated by this algorithm in the 
50 approximate fronts. Go back to step 2 and compare remaining fronts from all 
MOEA (less the winner with rank 1) again. Finally, we will assign each algorithm a 
rank value implying its ranking order through the proposed performance metrics 
ensemble. 

  
Table 3.1 The Whole Process of Ensemble Method 

3.3 ENSEMBLE METHOD WITH DOUBLE-TOURNAMENT SELECTION  

3.3.1 Double-Tournament Selection 
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The Modified Double Tournament algorithm selects an individual using tournament 

selection: at the initial step, the tournament contestants are chosen at random from the population. 

Then, at the following step, they are each the winners of last tournament selection.  

For example, imagine if the tournament has a pool size of 32: first, the 16 “qualifier” 

tournaments are held as normal in tournament selection, and the whole pool is divided into two 

parts: winner bracket contains 16 winners and loser part 16 losers. Then, in each of the part, 8 

normal tournament selections are processed so that the part is divided again. In both parts, there 

are 8 new winners and 8 new losers. Afterward, we compete 8 winners from loser bracket with 8 

losers from winner bracket. Here, two individuals come into one tournament selection should be 

from different part, that means, one individual from winner bracket is compared with one 

individual from loser bracket. Therefore, we get 8 winners from this step. This process reduces 

the total number of individuals from 32 to 16. Continue to do it, 16→8→4→2→1, finally, we 

obtain the ultimate winner. This ultimate winner defeats all other 31 competitors. 

The motivation for applying Double-Tournament Selection is that it gives every individual 

two chances to take part in the competition. This advantage is helpful to reserve good individual. 

Because of the stochastic process, one approximation front from a quality MOEA may lose the 

competition at time when a metric measuring the very deficient aspect of problem characteristics 

is applied. If this happens in the single elimination tournament, the front will be lost forever and it 

would not have any chance to compete again. However, in the Double-Tournament Selection, 

even it loses once, it has an opportunity to compete again and hopefully win at all.  

For example, in NCAA basketball tournament, the last year’s champion team will versus the 

winner of the 64th and 65th team. Of course, the probability that the champion team wins is very 

large, but basketball game bears a huge number of uncertain factors, there exists probability that 

the 64th team wins. In this condition, if single elimination is used, the last year’s champion team 
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loses at all. We will not see the excellent performance of this team in the following games of this 

year. This will be a great loss for audience! In Double-Tournament Selection, the champion team 

will have another chance to compete in the loser bracket; it can make up its mistake in the last 

game and win again. 

Therefore, in MOEAs comparison, if a really good front loses its game at one competition, it 

has the opportunity to win at another time. Double elimination design allows specific 

characteristic-poor performance of a quality algorithm under the special environment still to be 

able to survive through competitions and win it all. 

3.3.2 Ensemble Method with Double-Tournament Selection  

The goal of Ensemble Metrics is that Ensemble Metrics can benefit us for its specific 

ensemble advantages which accomplish the work that single metric cannot.  

In the following chapter, we choose five state-of-the-art MOEAs to compare and five 

performance metrics to assess, every algorithm need to run 50 times because of the stochastic 

nature of MOEAs. In every running time, one algorithm produces one approximation front. Given 

the same initial population, five fronts from five different algorithms go to competition in a pool 

under evaluation of a randomly chosen performance metric and one best front wins according to 

this metric. After 50 running times, 50 winners are generated. Here, maybe many of 50 winners 

come from the same MOEA or none of 50 winners represents a specific algorithm.  

In every 50 running time, the probability of each metric to be chosen is 0.2, so the average 

times each metric to be used is 10. This guarantee every metric to be chosen often and the 50 

winners are decided by all five metrics collectively. 

Then, these 50 winners are taken as the input to Double-Tournament Selection. Here, we just 

consider 50 fronts as 50 individuals without concerning about its representing algorithm.  
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Process:  

1) Every 2 of 50 individuals are randomly picked to form a competition pair. For every 

competition, one metric is randomly chosen. Then, the total 25 pairs generate 25 winners and 

25 losers. Create two parts: one contains 25 winners named winner bracket; the other 

contains 25 losers named loser bracket. 

2) In each of the part, first randomly choose an individual, the remaining 24 individuals form 

12 pairs of competitions; every pair uses a randomly chosen metric, too. Therefore, every 

part has 12 new winners and 12 new losers. Put the first chosen individual into both winners 

and losers. This will make the number of both winners and losers to be 13. 

3) 13 losers in winner bracket and 13 winners in loser bracket (i.e., each individual losss only 

once) are combined together to compete. Every competition contains one individual from 

winner bracket and one from loser bracket. Then, 13 winners are generated and consist of a 

new loser bracket. The other 13 losers and 13 losers in original loser part (i.e. each losses 

twice) are eliminated.  

4) Now, both new winner bracket and new loser bracket contain 13 individuals. We finish this 

step that reduces the number of competitors from 50 to 26 (i.e., 13 winners + 13 losers). 

5) Then continue to do Step 2 and Step 3. We reduce the number of competitors from 26 to 14 

(7 winners + 7 losers), then from 14 to 8 (4 winners + 4 losers), then from 8 to 4 (2 winners 

+ 2 losers), then from 4 to 2 (1 winners + 1 losers) and finally from 2 down to 1. The last 

remaining individual is the final champion. 

6) Check which evolutionary algorithm regarding the final winner comes from. Then we can 

conclude which algorithm is the best. 

7) Remove all the fronts come from the best algorithm and compare other fronts from Step 1 to 

Step 6 again. So we can arrive at the second best one.  

8) Continue to do Step 7; finally, we obtain the ranking of all the algorithms. The whole 



 

process is end. 

In this modified Double

defeat others under all the performance metrics 

mechanism for choosing metrics in every competition time. Therefore, the rank of all the 

algorithms is based on all the metrics

Figure 3.2 uses graphs to explain each step

Fig 3.2 (a) From 50 individuals to 26 individuals

Fig 3.2 (b) From 26 individuals to 14 individuals

55 

n this modified Double-Tournament Selection, to be the final winner, the MOEA

defeat others under all the performance metrics in double elimination because of stochastic 

metrics in every competition time. Therefore, the rank of all the 

algorithms is based on all the metrics collectively. 

graphs to explain each step of Double-Tournament Selection

Fig 3.2 (a) From 50 individuals to 26 individuals 

Fig 3.2 (b) From 26 individuals to 14 individuals 

, the MOEA must 

because of stochastic 

metrics in every competition time. Therefore, the rank of all the 

Tournament Selection: 

 

 



 

Fig 3.2 (c) From 14 individuals to 8 individuals

Fig 3.2 (d) From 8 individuals to 4 
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Fig 3.2 (c) From 14 individuals to 8 individuals 

Fig 3.2 (d) From 8 individuals to 4 individuals 

 

 



 

Fig 3.2 (e) From 4 individuals to 2 individuals

Fig 3.2 (f) From 2 individuals to 1 individuals
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Fig 3.2 (e) From 4 individuals to 2 individuals 

Fig 3.2 (f) From 2 individuals to 1 individuals 
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CHAPTER 4 

FINDINGS 

4.1 EXPERIEMENT RESULTS 

This part will show all experiment results in benchmark functions: ZDT1, ZDT2, ZDT3, 

ZDT4, ZDT6 and DTLZ2, respectively. 

4.1.1 ZDT 1 

First, box plot for every performance metric measure is presented: 

� GD Metric 

For each algorithm, the less the GD value, the better the algorithm’s performance: 

 

4.1(a) GD metric value in ZDT 1 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value. 
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� Spacing Metric 

For each algorithm, the less the Spacing value, the better the algorithm’s performance: 

 

4.1(b) Spacing metric value in ZDT 1 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� NR Metric 

For each algorithm, the more the NR value, the better the algorithm’s performance: 

 

4.1(c) NR metric value in ZDT 1 
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Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� S-metric  

For each algorithm, the more the S value, the better the algorithm’s performance 

 

4.1(d) S-metric value in ZDT 1 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� MS Metric 

For each algorithm, the more the MS value, the better the algorithm’s performance 

 

4.1(e) MS metric value in ZDT 1 
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Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

Then, experiment results using ensemble performance metrics in ZDT 1 is given: 

Step 1 generates 50 fronts as the initial population of Double-Tournament Selection: in these 

50 winner fronts, SPEA 2 wins 18 times, NSGA-II wins 12 times, IBEA wins 2 times, PESA-II 

wins 4 times and MOEA/D wins 14 times.  In this step, metrics are totally chosen 50 times: GD is 

chosen 17 times, NR is 12 times, Spacing is 8 times, S-metric is 6 times and MS is 7 times.  

Step 2 is the first step of Double-Tournament Selection that 50 fronts are competed to 

generate 26 winners:  in these 26 winner fronts, SPEA 2 wins 10 times, NSGA-II wins 7 times, 

IBEA wins 0 times, PESA-II wins 1 time and MOEA/D wins 8 times. In this step, metrics are 

totally chosen 62 times in two parts: The total 50 fronts are divided into 2 groups in first 25 times: 

GD is chosen 4 times, NR is 4 times, Spacing is 6 times, S-metric is 6 times and MS is 5 times. 

26 winners are generated from both Winner group and Loser group in 37 times: GD is chosen 7 

times, NR is 4 times, Spacing is 8 times, S-metric is 8 times and MS is 10 times.  

Step 3 is the second step of Double-Tournament Selection that 26 fronts are compared to 

generate 14 winners:  in these 14 winner fronts, SPEA 2 wins 5 times, NSGA-II wins 4 times, 

IBEA wins 0 times, PESA-II wins 1 time and MOEA/D wins 4 times. In this step, metrics are 

totally chosen 19 times: GD is chosen 5 times, NR is 4 times, Spacing is 5 times, S-metric is 2 

times and MS is 3 times.  

In the third step (Step 4) of Double-Tournament Selection that 14 fronts are compared to 

generate 8 winners: in these 8 winner fronts, SPEA 2 wins 3 times, NSGA-II wins 3 times, IBEA 

wins 1 time, PESA-II wins 0 times and MOEA/D wins 1 time. In this step, metrics are totally 

chosen 10 times: GD is chosen 2 times, NR is 2 times, Spacing is 3 times, S-metric is 2 times and 

MS is 1 time.  
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Step 5 is the fourth step of Double-Tournament Selection that 8 fronts are compared to 

generate 4 winners: in these 4 winner fronts, SPEA 2 wins 2 times, NSGA-II wins 1 time, IBEA 

wins 0 times, PESA-II wins 0 times and MOEA/D wins 1 time. In this step, metrics are totally 

chosen 6 times: GD is chosen 0 times, NR is 1 time, Spacing is 1 time, S-metric is 2 times and 

MS is 2 times.  

In the fifth step (Step 6) of Double-Tournament Selection that 4 fronts are compared to 

generate 2 winners: in these 2 winner fronts, SPEA 2 wins 1 time, NSGA-II wins 1 times, IBEA 

wins 0 time, PESA-II wins 0 times and MOEA/D wins 0 time. In this step, metrics are totally 

chosen 3 times: GD is chosen 1 time, NR is 1 time, Spacing is 0 times, S-metric is 0 times and 

MS is 1 time.  

In the final step (Step 7) of Double-Tournament Selection that 2 fronts are compared to 

generate 1 winner. The final winner is SPEA 2 and GD is chosen to compare. 

In Step 8, remove all the fronts from SPEA 2 in 50 fronts obtained in the first step, continue 

step 1 to step 7, NSGA-II is the second best one and MOEA/D is the third one.  After all the 

remaining fronts come from the same algorithm, we get the final rank value for ZDT 1:   

Rank 1: SPEA 2; Rank 2: NSGA-II; Rank 3: MOEA/D; Rank 4: PESA-II; Rank 5: IBEA.  

4.1.2 ZDT2 

First, box plot for every performance metric measure is presented: 

� GD Metric 

For each algorithm, the less the GD value, the better the algorithm’s performance: 
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4.2(a) GD metric value in ZDT 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� Spacing Metric 

For each algorithm, the less the Spacing value, the better the algorithm’s performance: 

 

4.2(b) Spacing metric value in ZDT 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� NR Metric 

For each algorithm, the more the NR value, the better the algorithm’s performance: 
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4.2(c) NR metric value in ZDT 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� S-metric 

For each algorithm, the more the S value, the better the algorithm’s performance: 

 

4.2(d) S-metric value in ZDT 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� MS Metric 

For each algorithm, the more the MS value, the better the algorithm’s performance: 
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4.2(e) MS metric value in ZDT 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

Then, experiment results using ensemble performance metrics in ZDT 2 is given: 

Step 1 generates 50 fronts as the initial population of Double-Tournament Selection: in these 

50 winner fronts, SPEA 2 wins 13 times, NSGA-II wins 11 times, IBEA wins 8 times, PESA-II 

wins 5 times and MOEA/D wins 13 times. In this step, metrics are totally chosen 50 times: GD is 

chosen 9 times, NR is 11 times, Spacing is 10 times, S-metric is 11 times and MS is 9 times.  

Step 2 is the first step of Double-Tournament Selection that 50 fronts are competed to 

generate 26 winners: in these 26 winner fronts, SPEA 2 wins 7 times, NSGA-II wins 6 times, 

IBEA wins 3 times, PESA-II wins 3 times and MOEA/D wins 7 times. In this step, metrics are 

totally chosen 62 times in two parts: The total 50 fronts are divided into 2 groups in first 25 times: 

GD is chosen 6 times, NR is 3 times, Spacing is 4 times, S-metric is 7 times and MS is 5 times. 

26 winners are generated from both Winner group and Loser group in 37 times: GD is chosen 9 

times, NR is 5 times, Spacing is 6 times, S-metric is 8 times and MS is 9 times.  

Step 3 is the second step of Double-Tournament Selection that 26 fronts are compared to 

generate 14 winners: in these 14 winner fronts, SPEA 2 wins 5 times, NSGA-II wins 2 times, 
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IBEA wins 1 time, PESA-II wins 2 times and MOEA/D wins 4 times. In this step, metrics are 

totally chosen 19 times: GD is chosen 7 times, NR is 4 times, Spacing is 5 times, S-metric is 2 

times and MS is 1 time.  

In the third step (Step 4) of Double-Tournament Selection that 14 fronts are compared to 

generate 8 winners: in these 8 winner fronts, SPEA 2 wins 2 times, NSGA-II wins 1 time, IBEA 

wins 1 time, PESA-II wins 1 time and MOEA/D wins 3 times. In this step, metrics are totally 

chosen 10 times: GD is chosen 1 time, NR is 3 times, Spacing is 2 times, S-metric is 2 times and 

MS is 2 times.  

Step 5 is the fourth step of Double-Tournament Selection that 8 fronts are compared to 

generate 4 winners: in these 4 winner fronts, SPEA 2 wins 2 times, NSGA-II wins 1 times, IBEA 

wins 0 times, PESA-II wins 0 times and MOEA/D wins 1 times. In this step, metrics are totally 

chosen 6 times: GD is chosen 1 time, NR is 1 time, Spacing is 2 times, S-metric is 2 times and 

MS is 0 times.  

In the fifth step (Step 6) of Double-Tournament Selection that 4 fronts are compared to 

generate 2 winners: in these 2 winner fronts, SPEA 2 wins 1 time and MOEA/D wins 1 time. In 

this step, metrics are totally chosen 3 times: GD is chosen 0 time, NR is 0 time, Spacing is 1 time, 

S-metric is 1 time and MS is 1 time.  

In the final step (Step 7) of Double-Tournament Selection that 2 fronts are compared to 

generate 1 winner. The final winner is SPEA 2 and NR is chosen to compare. 

In Step 8, remove all the fronts from SPEA 2 in 50 fronts obtained in the first step, continue 

step 1 to step 7, NSGA-II is the second best one and MOEA/D is the third one.  After all the 

remaining fronts come from the same algorithm, we get the final rank value for ZDT 2:   

Rank 1: SPEA 2; Rank 2: NSGA-II; Rank 3: MOEA/D; Rank 4: IBEA; Rank 5: PESA-II.  
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4.1.3 ZDT 3 

First, box plot for every performance metric measure is presented: 

� GD Metric 

For each algorithm, the less the GD value, the better the algorithm’s performance: 

 

4.3(a) GD metric value in ZDT 3 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� Spacing Metric 

For each algorithm, the less the Spacing value, the better the algorithm’s performance: 
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4.3(b) Spacing metric value in ZDT 3 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� NR Metric 

For each algorithm, the more the NR value, the better the algorithm’s performance: 

 

4.3(c) NR metric value in ZDT 3 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� S-metric 

For each algorithm, the more the S value, the better the algorithm’s performance: 
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4.3(d) S-metric value in ZDT 3 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� MS Metric 

For each algorithm, the more the MS value, the better the algorithm’s performance: 

 

4.3(e) MS metric value in ZDT 3 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

Then, experiment results using ensemble performance metrics in ZDT 3 is given: 

Step 1 generates 50 fronts as the initial population of Double-Tournament Selection: in these 

50 winner fronts, SPEA 2 wins 11 times, NSGA-II wins 12 times, IBEA wins 9 times, PESA-II 

wins 7 times and MOEA/D wins 11 times. In this step, metrics are totally chosen 50 times: GD is 

chosen 10 times, NR is 13 times, Spacing is 7 times, S-metric is 12 times and MS is 8 times.  

Step 2 is the first step of Double-Tournament Selection that 50 fronts are competed to 

generate 26 winners: in these 26 winner fronts, SPEA 2 wins 6 times, NSGA-II wins 6 times, 

IBEA wins 5 times, PESA-II wins 3 times and MOEA/D wins 6 times. In this step, metrics are 
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totally chosen 62 times in two parts: the total 50 fronts are divided into 2 groups in first 25 times: 

GD is chosen 4 times, NR is 5 times, Spacing is 4 times, S-metric is 5 times and MS is 7 times. 

26 winners are generated from both Winner group and Loser group in 37 times: GD is chosen 7 

times, NR is 6 times, Spacing is 7 times, S-metric is 10 times and MS is 7 times.  

Step 3 is the second step of Double-Tournament Selection that 26 fronts are compared to 

generate 14 winners: in these 14 winner fronts, SPEA 2 wins 2 times, NSGA-II wins 4 times, 

IBEA wins 3 times, PESA-II wins 2 times and MOEA/D wins 3 times. In this step, metrics are 

totally chosen 19 times: GD is chosen 4 times, NR is 5 times, Spacing is 3 times, S-metric is 4 

times and MS is 3 times.  

In the third step (Step 4) of Double-Tournament Selection that 14 fronts are compared to 

generate 8 winners: in these 8 winner fronts, SPEA 2 wins 1 time, NSGA-II wins 3 times, IBEA 

wins 1 time, PESA-II wins 1 time and MOEA/D wins 2 times. In this step, metrics are totally 

chosen 10 times: GD is chosen 2 times, NR is 2 times, Spacing is 3 times, S-metric is 1 time and 

MS is 2 times.  

Step 5 is the fourth step of Double-Tournament Selection that 8 fronts are compared to 

generate 4 winners: in these 4 winner fronts, SPEA 2 wins 0 times, NSGA-II wins 2 times, IBEA 

wins 0 times, PESA-II wins 0 times and MOEA/D wins 2 times. In this step, metrics are totally 

chosen 6 times: GD is chosen 2 times, NR is 0 time, Spacing is 0 times, S-metric is 2 times and 

MS is 2 times.  

In the fifth step (Step 6) of Double-Tournament Selection that 4 fronts are compared to 

generate 2 winners: in these 2 winner fronts, NSGA-II wins 2 times. In this step, metrics are 

totally chosen 3 times: GD is chosen 1 time, NR is 2 times, Spacing is 0 time, S-metric is 0 time 

and MS is 0 time.  
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In the final step (Step 7) of Double-Tournament Selection that 2 fronts are compared to 

generate 1 winner. The final winner is NSGA-II and S-metric is chosen to compare. 

In the Step 8, remove all the fronts from NSGA-II in 50 fronts obtained in the first step, 

continue step 1 to step 7, MOEA/D is the second best one and IBEA is the third one.  After all the 

remaining fronts come from the same algorithm, we get the final rank value for ZDT 3:   

Rank 1: NSGA-II; Rank 2: MOEA/D; Rank 3: IBEA; Rank 4: SPEA 2; Rank 5: PESA-II.  

4.1.4 ZDT 4 

First, box plot for every performance metric measure is presented: 

� GD Metric 

For each algorithm, the less the GD value, the better the algorithm’s performance: 

 

4.4(a) GD metric value in ZDT 4 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� Spacing Metric 

For each algorithm, the less the Spacing value, the better the algorithm’s performance: 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5



72 

 

 

4.4(b) Spacing metric value in ZDT 4 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� NR Metric 

For each algorithm, the more the NR value, the better the algorithm’s performance: 

 

4.4(c)  NR metric value in ZDT 4 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� S-metric 
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For each algorithm, the more the S value, the better the algorithm’s performance: 

 

4.4(d) S- metric value in ZDT 4 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

�  MS Metric 

For each algorithm, the more the MS value, the better the algorithm’s performance: 

 

4.4(e) MS metric value in ZDT 4 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  
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Then, experiment results using ensemble performance metrics in ZDT 4 is given: 

Step 1 generates 50 fronts as the initial population of Double-Tournament Selection: in these 

50 winner fronts, SPEA 2 wins 0 times, NSGA-II wins 15 times, IBEA wins 9 times, PESA-II 

wins 9 times and MOEA/D wins 17 times. In this step, metrics are totally chosen 50 times: GD is 

chosen 9 times, NR is 15 times, Spacing is 7 times, S-metric is 12 times and MS is 7 times.  

Step 2 is the first step of Double-Tournament Selection that 50 fronts are competed to 

generate 26 winners: in these 26 winner fronts, SPEA 2 wins 0 times, NSGA-II wins 9 times, 

IBEA wins 5 times, PESA-II wins 5 times and MOEA/D wins 7 times. In this step, metrics are 

totally chosen 62 times in two parts: the total 50 fronts are divided into 2 groups in first 25 times: 

GD is chosen 6 times, NR is 4 times, Spacing is 4 times, S-metric is 5 times and MS is 6 times. 

26 winners are generated from both Winner group and Loser group in 37 times: GD is chosen 5 

times, NR is 7 times, Spacing is 9 times, S-metric is 5 times and MS is 11 times.  

Step 3 is the second step of Double-Tournament Selection that 26 fronts are compared to 

generate 14 winners: in these 14 winner fronts, SPEA 2 wins 0 times, NSGA-II wins 5 times, 

IBEA wins 3 times, PESA-II wins 2 times and MOEA/D wins 4 times In this step, metrics are 

totally chosen 19 times: GD is chosen 5 times, NR is 6 times, Spacing is 3 times, S-metric is 4 

times and MS is 1 time.  

In the third step (Step 4) of Double-Tournament Selection that 14 fronts are compared to 

generate 8 winners: in these 8 winner fronts, SPEA 2 wins 0 time, NSGA-II wins 3 times, IBEA 

wins 1 time, PESA-II wins 1 time and MOEA/D wins 3 times. In this step, metrics are totally 

chosen 10 times: GD is chosen 3 times, NR is 1 time, Spacing is 2 times, S-metric is 2 times and 

MS is 2 times.  

Step 5 is the fourth step of Double-Tournament Selection that 8 fronts are compared to 

generate 4 winners: in these 4 winner fronts, SPEA 2 wins 0 times, NSGA-II wins 2 times, IBEA 
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wins 1 time, PESA-II wins 0 times and MOEA/D wins 1 time. In this step, metrics are totally 

chosen 6 times: GD is chosen 1 time, NR is 0 time, Spacing is 1 time, S-metric is 2 times and MS 

is 2 times.  

In the fifth step (Step 6) of Double-Tournament Selection that 4 fronts are compared to 

generate 2 winners: in these 2 winner fronts, NSGA-II wins 1 time and MOEA/D wins 1 time. In 

this step, metrics are totally chosen 3 times: GD is chosen 1 time, NR is 0 times, Spacing is 1 

time, S-metric is 0 time and MS is 1 time.  

In the final step (Step 7) of Double-Tournament Selection that 2 fronts are compared to 

generate 1 winner. The final winner is MOEA/D and GD is chosen to compare. This result is the 

same as [14]. 

In the Step 8, remove all the fronts from MOEA/D in 50 fronts obtained in the first step, 

continue step 1 to step 7, NSGA-II is the second best one and PESA-II is the third one.  After all 

the remaining fronts come from the same algorithm, we get the final rank value for ZDT 4:   

Rank 1: MOEA/D; Rank 2: NSGA-II; Rank 3: PESA-II; Rank 4: IBEA; Rank 5: SPEA 2. 

4.1.5 ZDT 6 

First, box plot for every performance metric measure is presented: 

� GD Metric 

For each algorithm, the less the GD value, the better the algorithm’s performance: 
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4.5(a) GD metric value in ZDT 6 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� Spacing Metric 

For each algorithm, the less the Spacing value, the better the algorithm’s performance: 

 

4.5(b) Spacing metric value in ZDT 6 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� NR Metric 

For each algorithm, the more the NR value, the better the algorithm’s performance: 
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4.5(c) NR metric value in ZDT 6 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� S-metric 

For each algorithm, the more the S value, the better the algorithm’s performance: 

 

4.5(d) S- metric value in ZDT 6 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� MS Metric 
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For each algorithm, the more the MS value, the better the algorithm’s performance: 

 

4.5(e) MS metric value in ZDT 6 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

Then, experiment results using ensemble performance metrics in ZDT 6 is given: 

Step 1 generates 50 fronts as the initial population of Double-Tournament Selection: in these 

50 winner fronts, SPEA 2 wins 8 times, NSGA-II wins 11 times, IBEA wins 13 times, PESA-II 

wins 6 times and MOEA/D wins 12 times. In this step, metrics are totally chosen 50 times: GD is 

chosen 11 times, NR is 12 times, Spacing is 9 times, S-metric is 12 times and MS is 6 times.  

Step 2 is the first step of Double-Tournament Selection that 50 fronts are competed to 

generate 26 winners: in these 26 winner fronts, SPEA 2 wins 5 times, NSGA-II wins 5 times, 

IBEA wins 7 times, PESA-II wins 2 times and MOEA/D wins 7 times. In this step, metrics are 

totally chosen 62 times in two parts: the total 50 fronts are divided into 2 groups in first 25 times: 

GD is chosen 5 times, NR is 7 times, Spacing is 4 times, S-metric is 4 times and MS is 5 times. 

26 winners are generated from both Winner group and Loser group in 37 times: GD is chosen 6 

times, NR is 5 times, Spacing is 8 times, S-metric is 9 times and MS is 9 times.  
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Step 3 is the second step of Double-Tournament Selection that 26 fronts are compared to 

generate 14 winners: in these 14 winner fronts, SPEA 2 wins 2 times, NSGA-II wins 3 times, 

IBEA wins 4 times, PESA-II wins 1 time and MOEA/D wins 4 times. In this step, metrics are 

totally chosen 19 times: GD is chosen 6 times, NR is 5 times, Spacing is 2 times, S-metric is 4 

times and MS is 2 times.  

In the third step (Step 4) of Double-Tournament Selection that 14 fronts are compared to 

generate 8 winners: in these 8 winner fronts, SPEA 2 wins 0 time, NSGA-II wins 2 times, IBEA 

wins 3 times, PESA-II wins 0 time and MOEA/D wins 3 times. In this step, metrics are totally 

chosen 10 times: GD is chosen 2 times, NR is 1 time, Spacing is 1 time, S-metric is 2 times and 

MS is 4 times.  

Step 5 is the fourth step of Double-Tournament Selection that 8 fronts are compared to 

generate 4 winners: in these 4 winner fronts, SPEA 2 wins 0 times, NSGA-II wins 0 times, IBEA 

wins 2 times, PESA-II wins 0 times and MOEA/D wins 2 times. In this step, metrics are totally 

chosen 6 times: GD is chosen 3 times, NR is 0 time, Spacing is 1 time, S-metric is 1 time and MS 

is 1 time.  

In the fifth step (Step 6) of Double-Tournament Selection that 4 fronts are compared to 

generate 2 winners: in these 2 winner fronts, IBEA wins 1 time and MOEA/D wins 1 time. In this 

step, metrics are totally chosen 3 times: GD is chosen 0 time, NR is 0 times, Spacing is 0 time, S-

metric is 2 time and MS is 1 time.  

In the final step (Step 7) of Double-Tournament Selection that 2 fronts are compared to 

generate 1 winner. The final winner is MOEA/D and Spacing is chosen to compare. 

In the Step 8, remove all the fronts from MOEA/D in 50 fronts obtained in the first step, 

continue step 1 to step 7, IBEA is the second best one and NSGA-II is the third one.  After all the 

remaining fronts come from the same algorithm, we get the final rank value for ZDT 6:   
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Rank 1: MOEA/D; Rank 2: IBEA; Rank 3: NSGA-II; Rank 4: SPEA 2; Rank 5: PESA-II. 

4.1.6 DTLZ 2 

First, box plot for every performance metric measure is presented: 

� GD Metric 

For each algorithm, the less the GD value, the better the algorithm’s performance: 

 

4.6(a) GD metric value in DTLZ 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� Spacing Metric 

For each algorithm, the less the Spacing value, the better the algorithm’s performance: 
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4.6(b) Spacing metric value in DTLZ 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� NR Metric 

For each algorithm, the more the NR value, the better the algorithm’s performance: 

 

4.6(c) NR metric value in DTLZ 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� S-metric 
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For each algorithm, the more the S value, the better the algorithm’s performance: 

 

4.6(d) S-metric value in DTLZ 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

� MS Metric 

For each algorithm, the more the MS value, the better the algorithm’s performance: 

 

4.6(e) MS metric value in DTLZ 2 

Here, in graph’s x axis, ‘1’ represents SPEA 2, ‘2’ represents NSGA-II,’3’represents IBEA, 

‘4’ represents PESA-II and ‘5’ represents MOEA/D. y  axis shows the metric value.  

0.86

0.88

0.9

0.92

0.94

0.96

1 2 3 4 5

0.88

0.9

0.92

0.94

0.96

0.98

1 2 3 4 5



83 

 

Then, experiment results using ensemble performance metrics in ZDT 6 is given:  

Step 1 generates 50 fronts as the initial population of Double-Tournament Selection: in these 

50 winner fronts, SPEA 2 wins 11 times, NSGA-II wins 8 times, IBEA wins 13 times, PESA-II 

wins 6 times and MOEA/D wins 12 times. In this step, metrics are totally chosen 50 times: GD is 

chosen 7 times, NR is 15 times, Spacing is 9 times, S-metric is 11 times and MS is 8 times.  

Step 2 is the first step of Double-Tournament Selection that 50 fronts are competed to 

generate 26 winners: in these 26 winner fronts, SPEA 2 wins 5 times, NSGA-II wins 5 times, 

IBEA wins 7 times, PESA-II wins 2 times and MOEA/D wins 7 times. In this step, metrics are 

totally chosen 62 times in two parts: the total 50 fronts are divided into 2 groups in first 25 times: 

GD is chosen 6 times, NR is 4 times, Spacing is 7 times, S-metric is 3 times and MS is 5 times. 

26 winners are generated from both Winner group and Loser group in 37 times: GD is chosen 6 

times, NR is 6 times, Spacing is 7 times, S-metric is 10 times and MS is 8 times.  

Step 3 is the second step of Double-Tournament Selection that 26 fronts are compared to 

generate 14 winners: in these 14 winner fronts, SPEA 2 wins 2 times, NSGA-II wins 0 times, 

IBEA wins 6 times, PESA-II wins 1 time and MOEA/D wins 5 times. In this step, metrics are 

totally chosen 19 times: GD is chosen 2 times, NR is 2 times, Spacing is 5 times, S-metric is 4 

times and MS is 6 times.  

In the third step (Step 4) of Double-Tournament Selection that 14 fronts are compared to 

generate 8 winners: in these 8 winner fronts, SPEA 2 wins 1 time, NSGA-II wins 1 time, IBEA 

wins 3 times, PESA-II wins 0 time and MOEA/D wins 3 times. In this step, metrics are totally 

chosen 10 times: GD is chosen 3 times, NR is 2 times, Spacing is 1 time, S-metric is 2 times and 

MS is 2 times.  

Step 5 is the fourth step of Double-Tournament Selection that 8 fronts are compared to 

generate 4 winners: in these 4 winner fronts, SPEA 2 wins 0 times, NSGA-II wins 0 times, IBEA 

wins 2 time, PESA-II wins 0 times and MOEA/D wins 2 times. In this step, metrics are totally 
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chosen 6 times: GD is chosen 2 times, NR is 1 time, Spacing is 1 time, S-metric is 1 time and MS 

is 1 time.  

In the fifth step (Step 6) of Double-Tournament Selection that 4 fronts are compared to 

generate 2 winners: in these 2 winner fronts, IBEA wins 1 time and MOEA/D wins 1 time. In this 

step, metrics are totally chosen 3 times: GD is chosen 1 time, NR is 0 times, Spacing is 1 time, S-

metric is 0 time and MS is 1 time.  

In the final step (Step 7) of Double-Tournament Selection that 2 fronts are compared to 

generate 1 winner. The final winner is IBEA and MS is chosen to compare. 

In the Step 8, remove all the fronts from IBEA in 50 fronts obtained in the first step, 

continue step 1 to step 7, MOEA/D is the second best one and SPEA 2 is the third one. After all 

the remaining fronts come from the same algorithm, we get the final rank value for DTLZ 2:   

Rank 1: IBEA; Rank 2: MOEA/D; Rank 3: SPEA 2; Rank 4: NSGA-II; Rank 5: PESA-II. 

4.2 ANALYSIS OF EXPERIMENT RESULTS 

4.2.1 Ensemble Performance Metrics give the same rank values to exist papers 

In ZDT3, the final rank result is: Rank 1: NSGA-II; Rank 2: MOEA/D; Rank 3: IBEA; Rank 

4: SPEA 2; Rank 5: PESA-II. The experiment result in [14] has also suggested that MOEA/D 

generate a worse result than NSGA-II. 

In ZDT6, the final rank result is: Rank 1: MOEA/D; Rank 2: IBEA; Rank 3: NSGA-II; Rank 

4: SPEA 2; Rank 5: PESA-II. [12] shows IBEA performs better than NSGA-II and SPEA 2 in 

ZDT 6. [14] gives the same result that MOEA/D is better than NSGA-II in ZDT 6. 

In DTLZ 2, the final rank result is: Rank 1: IBEA; Rank 2: MOEA/D; Rank 3: SPEA 2; 

Rank 4: NSGA-II; Rank 5: PESA-II. This result is nearly the same as previous experiment: [10] 
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has suggested that SPEA 2 seems to have advantages over NSGA-II in higher dimensional 

objective space. In [12], IBEA is also better than SPEA 2 and NSGA-II. The experiment result in 

[14] has also identified that MOEA/D generate a better result than NSGA-II. 

4.2.2 Summary of EAs to Solve Different Characteristics of Test Functions   

� SPEA 2 

SPEA 2 is the final winner in problem ZDT 1 and ZDT 2. Although ZDT 1 has a convex 

Pareto-optimal front while ZDT 2 has the nonconvex counterpart to ZDT1, Both ZDT1 and 

ZDT2 have some common characteristics: they do not have local Pareto-optimal fronts and 

their global Pareto-optimal fronts are continuous. From the above reason, we can state that, 

if the test problem has continues global Pareto-optimal fronts and do not have local Pareto-

optimal fronts, SPEA 2 will perform well in this problem. 

� NSGA-II 

NSGA-II has the best performance in ZDT 3, which represents the discreteness feature and 

has a Pareto-optimal front consisting of several noncontiguous convex parts. Therefore, if 

there is a test problem with discrete Pareto-optimal front, we can propose that NSGA-II is 

the best algorithm to solve this problem. 

� MOEA/D 

MOEA/D wins all other algorithms in both ZDT4 and ZDT6. ZDT4 is difficult to solve 

because it has many local Pareto-optimal fronts, a large number of local Pareto-optimal 

fronts make the global Pareto front is not easy to find and EAs need to exhibit their ability to 

deal with multimodality. ZDT6’s Pareto-optimal solutions are nonuniformly distributed 

along the global Pareto front. The front is biased for solutions which have a large f1(x) value. 

Therefore, MOEA/D will exhibit its good performance when encounters the test problem 
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which has lots of local Pareto-optimal fronts or Pareto-optimal solutions is not uniformly 

distributed its global Pareto front.  

� IBEA 

IBEA wins at all in DTLZ 2, which is the only test problem chosen in this experiment has 

more than two objectives. We may not absolutely say that IBEA is best for solve problems 

with high-dimension objectives.  But we can make a comparatively conclusion that IBEA 

can perform better than others in some test problems with high-dimension objectives. 

In summary, from the above discussion, we can see more clearly that every algorithm can 

only be superior to another algorithm over some set of test problems, and then it must be inferior 

in other problems with different characteristics. This is also expected by No Free Lunch Theory. 

4.3 WHY USE DOUBLE-ELIMINATION METHOD TO ENSEMBLE 

First, we go through experiments in all benchmark functions considering the performance 

metrics’ values of every algorithm in this benchmark function. In ZDT1, SPEA 2 is the final 

winner and it wins under all four metrics but is inferior to NSGA-II in S-metric. In ZDT2, SPEA 

2 is the final winner and it wins under all four metrics but it is a little bit worse than NSGA-II in 

Spacing metric. In ZDT3, NSGA-II is the final winner and it wins under all four metrics but is 

inferior to MOEA/D in S-metric. In ZDT4, MOEA/D is the final winner and it wins under all four 

metrics but it is a little bit worse than NSGA-II in NR metric. In ZDT6, MOEA/D is the final 

winner but is inferior to IBEA in MS metric and a little bit worse than NSGA-II in Spacing metric. 

In DTLZ 2, IBEA is the final winner and it wins under all four metrics but is inferior to MOEA/D 

in Spacing metric. 

From above results, to be a final winner does not mean win others in all performance metrics. 

In ZDT1, if we use S-metric to compare SPEA 2 and NSGA-II in Single-Elimination, SPEA 2 
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will be lost and we cannot find the best algorithm for this problem. However, if that condition 

happens in Double-Elimination, SPEA 2 also has another opportunity to win again. 

Therefore, Double-Elimination can provide one more chance for every competitor, this helps 

to find the best one winner.  
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CHAPTER 5 

CONCLUSION 

. There are five types of unary metrics: 1) Metrics assessing the number of Pareto optimal 

solutions in the set: Pareto Dominance Indicator (NR), Overall Nondominated Vector Generation 

and Ratio (ONVG), Ratio of Non-dominated Individuals (RNI) and Error Ratio (ER). 2) Metrics 

measuring the closeness of the solution to the theoretical Pareto front: Generational Distance 

(GD) and Maximum Pareto Front Error (MPFE). 3) Metrics focusing on distribution of the 

solutions: Uniform Distribution (UD), Spacing and Number of Distinct Choices (NDCu). 4) 

Metrics concerning spread of the solutions: Maximum Spread (MS). 5) Metrics considering both 

closeness and diversity: Hypervolume Indicator (or S-metric).  

There are two types of binary metrics: 1) binary performance metrics based on unary quality 

indicator: ε -indicatorI ε , enclosing hypercube Indicator and coverage difference metrics (D-

metric). The second type is direct comparison binary metrics: C metrics and R metrics.  

An ensemble method is introduced to compare EAs by combining a large number of single 

metrics using modified Double Tournament Selection. Double elimination design give every 

individual two chances to competition allows characteristic poor performance of a quality 

algorithm under the special environment still to be able to win at all. Therefore, this ensemble 

mechanism can maximum protects the qualified individual from being lost by some stochastic 

factors in a comparison time. This ensures the final result is the really best one and the whole 

ensemble process is effective and precise. 

Ensemble method can overcome the lost information problem by the single metric which on-
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ly provides some specific but limited information and is only used effectively in some specified 

conditions. The Comprehensive comparison of the proposed algorithms on benchmark test 

functions under ensemble performance metrics show that:  

SPEA 2 performs well in the problem has continues global Pareto-optimal fronts and do not 

have local Pareto-optimal fronts. 

NSGA-II is the best algorithm to solve this problem with discrete Pareto-optimal front. 

MOEA/D will exhibit its good performance when encounters the test problem which has lots 

of local Pareto-optimal fronts or Pareto-optimal solutions is not uniformly distributed its global 

Pareto front.  

IBEA can perform better than others in some test problems with high-dimension objectives. 

Furthermore, we are benefit from ensemble method that it is not necessary to spend much 

time to choose a suitable performance metric for a specific test problem. We do not need to try 

every metric to find which one is the best. Ensemble method avoids the choosing process which 

is a heavy computational process and can be directly used to assessing EAs.  

From above statement, multiple performance metrics ensemble by applying Double-

Tournament Selection can obtain better evaluation performance than could be obtained from any 

of single performance metric.  

Performance metric ensemble is just the first step. In the future research work, combine 

benchmark functions together to test EAs based on this ensemble approach is needed to be 

focused. A comprehensive evaluation of EAs in all the test functions and under all the 

performance metrics is our ultimate goal. 
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