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LITERATURE REVIEW 

 

     Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone which facilitates 

the stabilization of an assortment of eukaryotic signaling proteins, including steroid hormone 

receptors, transcription factors, and protein kinases (Pratt & Toft, 2003, Pearl & Prodromou, 

2000, Buchner, 1999, Young et al., 2001, Abbas-Terki et al., 2002, Picard, 2002).  Hsp90 

functions to stabilize its clientele by facilitating their maturation into autonomous components.    

Hsp90 also directs thermodynamically unstable clients down proteasomal degradation 

pathways (Pratt & Toft, 2003, Pearl & Prodromou, 2000, Buchner, 1999, Young et al., 2001, 

Abbas-Terki et al., 2002, Picard, 2002).    Consequently, Hsp90 plays essential roles in cell 

trafficking, signal transduction, and development (Pratt & Toft, 2003, Pearl & Prodromou, 

2000, Buchner, 1999, Young et al., 2001, Abbas-Terki et al., 2002, Picard, 2002).   Moreover, 

Hsp90 has been demonstrated to buffer phenotypic variation and to facilitate morphological 

evolution (Rutherford & Lindquist, 1998). 

  

Hsp90 Structure: 

     Hsp90 is a homodimer which is composed of three structural domains:  a highly 

conserved 25kD N-terminal domain, a 35kD middle domain, and a 12kD C-terminal 

dimerization domain (Pearl & Prodromou, 2000, Prodromou & Pearl, 2003, Pearl & 

Prodromou, 2001).  An unstructured charged portion of amino acid residues connects the 

N-terminal domain to the remainder of the protein (Pearl & Prodromou, 2000, Prodromou 
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& Pearl, 2003, Pearl & Prodromou, 2001).  This flexible linker varies in length and 

composition depending on species and has been demonstrated to be necessary for the 

function of yeast hsp90 (Louvion et al., 1996).  Although the overall structure of Hsp90 

has yet to be elucidated, the crystal structures for isolated domains have been reported.  

Domainal truncations suggest that Hsp90 shows a high degree of homology to members 

of the ATPase/kinase Gyrase, Hsp90, Histidine Kinase, MutL (GHKL) superfamily 

(Prodromou & Pearl, 2003).  

    Three dimensional structures of the yeast and human Hsp90 N-terminal domains 

demonstrated that the N-terminus of Hsp90 contains a nucleotide binding site for ATP 

which additionally functions as a site of binding for the ansamycin antibiotic, 

geldanamycin (Stebbins et al., 1997, Prodromou et al., 1997b, Prodromou et al., 1997a).  

An important  feature of the N-terminal ATP binding region of Hsp90 is the functionally 

significant “lid” that  is open in apo and ADP Hsp90 states and closed in ATP bound 

conformations (Pearl & Prodromou, 2006).  The architecture Hsp90:p23: nucleotide 

complexes suggest that  Hsp90: ATP complexes have extensive interdomain contacts 

brought about by in part N domain swapping  (Ali et al., 2006).  A remodeling of 

residues 94-125 corresponding to the ATP lid  is observed such that these residues fold 

over the nucleotide pocket and function to stabilize the association of the N-terminal 

domains  (Ali et al., 2006).  Middle domain residues interact with segments of the N-

terminus of the opposing monomer as well as interfacing with N-terminal regions of the 
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same monomer to stabilize an overall compact conformation of ATP bound Hsp90 (Ali et 

al., 2006).   

     The crystal structure of the yeast middle domain (MD) has also been elucidated 

(Meyer et al., 2003).  The MD consists of  an N-terminal and C-terminal  α-β-α sandwich 

connected by an alpha helical coil (Prodromou & Pearl, 2003).  Mutagenesis studies 

implicate the middle domain as a major site for client docking (Pearl & Prodromou, 

2006).  For example client proteins which have been observed to interact with the Hsp90 

MD include PKB/Akt1, eNOS, (Sato et al., 2000, Fontana et al., 2002) and cochaperones 

Aha1, Hch1 (Pearl & Prodromou, 2006).   The Hsp90 MD contains conserved arginine 

residue which interacts with the  γ phosphate of ATP which has been demonstrated by 

mutagenesis studies to be essential for its ATPase activity in vitro and in vivo (Pearl & 

Prodromou, 2006).   

     Both structural and biochemical studies indicate that the C-terminus is required for 

Hsp90 dimerization (Harris et al., 2004, Minami et al., 1994).    The three dimensional 

structure of the C-terminal domain of the Escherichia coli Hsp90 homologue, HtpG, 

shows that the C-terminus is a mixed α/β dimer in which alpha helices form the dimer 

interface and pack at the C-terminal end to form a four helix bundle (Harris et al., 2004).   

However, C-terminal HtpG is more divergent from the eukaryotic Hsp90 CD in that the 

HtpG CD lacks an approximate 35 residue region at the extreme C-terminus containing 

the tetratricopeptide repeat (TPR) motif recognition site (Harris et al., 2004).  This 

conserved MEEVD pentapeptide of eukaryotic Hsp90s  has been  implicated in its 
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interaction with co-factors such as  immunophilins FKBP51 and FKBP52, Sti1/Hop, 

cyclophilin-40, PP5, and others (Chen et al., 1998, Young et al., 1998).   Despite these 

dissimilarities, the overall architecture of C-terminal eukaryotic and bacterial Hsp90 is 

hypothesized to be similar (Harris et al., 2004).  And, to date, the bacterial structure 

continues to be the best working model of the Hsp90 C-terminal domain as eukaryotic 

crystal structures have yet to be resolved (Pearl & Prodromou, 2006). 

 

Hsp90 is a Conformationally Coupled ATPase: 

    The Hsp90 ATPase cycle has been hypothesized to be akin to the opening and closing 

of a molecular clamp (Figure 1A) based on biochemical and mutational analysis which 

have suggested that the nucleotide free state of Hsp90 corresponds to an open state, 

whereas the nucleotide bound state corresponds to a closed state in which the N-terminal 

domains become transiently associated (Chadli et al., 2000, Prodromou et al., 2000).   

The observation that Hsp90 is a weak ATPase, in which yeast Hsp90 has been observed 

to hydrolyze 1 molecule of ATP every 1-2 minutes, while human Hsp90 hydrolyzes 1 

molecule of  ATP every 20 minutes (Wandinger et al., 2008) suggests that 

conformational transitions of Hsp90 are coupled to the ATPase reaction.   

     It has been posited that conformational changes that occur within the nucleotide lid 

region decelerate Hsp90 ATPase activity (Wandinger et al., 2008) The contribution of the 

lid to the ATPase activity of Hsp90 has been investigated with site-directed mutagenesis 

and other assays (Wandinger et al., 2008(Pearl & Prodromou, 2006).  Lid mutants which 
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stabilize a closed conformation of Hsp90 have been demonstrated to increase ATP 

turnover whereas lid mutants which stabilize an open conformation of Hsp90 decreased 

ATP turnover (Wegele et al., 2004).  Hsp90 cochaperones and cohorts have also been 

observed to modulate Hsp90’s ATPase activity (Pearl & Prodromou, 2006, Caplan et al., 

2003) (see discussion below). 

 

Hsp90 Cochaperone System and Client Maturation: 

     Hsp90 does not function alone but utilizes a collection of other cochaperones that 

influence its interaction with nucleotides and client proteins (Caplan et al., 2003).  The 

best characterized model for Hsp90’s interaction with cochaperones comes from studies 

with steroid hormone receptors (SHRs) in which it was demonstrated that cochaperones 

appear to enter and exit Hsp90-SHR complexes in a definite order (Figure 1B) (Caplan et 

al., 2003).  The loading of SHRs onto Hsp90 require cochaperones Hsp70, Hsp40, and 

Hop/Sti1 (Kosano et al., 1998).  While Hsp70 with cofactor Hsp40 facilitate early folding 

intermediates of SHRs, the cochaperone Hop/Sti1 facilitates the loading of Hsp70:SHR 

complexes onto Hsp90 (Kosano et al., 1998).   Hop/Sti interacts with the C-terminal 

domain of both Hsp90 and Hsp70 via its tetratricopeptide repeat  regions, however the 

mechanism of its recruitment of Hsp70:SHR complexes remains obscure (Wandinger et 

al., 2008).   ATP subsequently binds to this heterocomplex.  ATP binding facilitates 

conformational rearrangements which lead to N-terminal dimerization, the recruitment of 

final complex cochaperones, p23 and immunophillins, to Hsp90:SHR complexes and 
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SHR maturation (Kosano et al., 1998).  Although the mechanism of final stage 

cochaperone recruitment remains largely unknown, it has been suggested that 

immunophilins, such as FKBP52, which contain the peptidylprolyl isomerase activity 

necessary to mature SHRs, compete with HOP and act to trigger the final folding 

complex  (Kosano et al., 1998).  This is consistent with the observation that 

immunophilins have been only recovered in Hsp90 complexes containing the later stage 

cochaperone p23 (Wandinger et al., 2008).   ATP hydrolysis is proposed to cause the 

dissociation of bound SHR and cochaperones from Hsp90 (Wandinger et al., 2008). 

     In contrast, the folding pathways for Hsp90 client kinases are less clearly defined 

(Wandinger et al., 2008, Terasawa et al., 2005). The loading of immature protein kinases 

to Hsp90 requires cochaperone p50/Cdc37, which simultaneously interacts with signaling 

kinases and Hsp90 (Wandinger et al., 2008, Terasawa et al., 2005).  The following steps 

for the Hsp90 facilitated folding of client kinases remain elusive.  It may be that for 

kinases, as well as for SHRs, Hsp70, Hsp40, and Hop are additionally required, however 

this remains to be determined (Wandinger et al., 2008, Terasawa et al., 2005). 

        Further, cochaperones have been demonstrated to regulate the ATPase activity of 

Hsp90 (Pearl & Prodromou, 2006, Caplan et al., 2003).  Cochaperones Hop/Sti1, Cdc37, 

and p23/Sba1 have been observed to have an inhibitory effect on the ATPase cycle of 

Hsp90 (Siligardi et al., 2002, Panaretou et al., 2002, Prodromou et al., 1999). Both Hop 

and Cdc37 stabilize an open conformation of Hsp90 which prevent the association of the 

N-terminal domains, while p23 binds to the ATP binding site and stabilizes the N-
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terminally dimerized conformation of Hsp90 at latter stages of the Hsp90 cycle (Chadli et 

al., 2000, Richter et al., 2006). Hop and Cdc37 are hypothesized to stabilize 

conformations of Hsp90 which facilitate client loading, whereas p23 is posited to 

stabilize conformations of Hsp90 which facilitate client maturation (Chadli et al., 2000, 

Richter et al., 2006).  Despite conformational differences, Hop/Sti1, Cdc37, and p23 each 

function to decrease ATP turnover (Chadli et al., 2000, Richter et al., 2006).   

     On the contrary, the cochaperone, activator of heat shock 90kDa protein ATPase 

homolog 1, (Aha1) has been shown to increase the ATPase activity of Hsp90 by up to 10 

fold (McLaughlin et al., 2002, Panaretou et al., 2002).  Biochemical and structural studies 

suggest that binding of Aha1 facilitates a restructuring of the middle domain which 

induces a transition from an open  inactive conformation to a closed catalytically active 

conformation (Pearl & Prodromou, 2006, Wandinger et al., 2008).  Similarly, the 

immunophillin, Cpr6, has been observed to stimulate Hsp90 ATPase activity by two-fold 

(Panaretou et al., 2002), and reduce the ATPase inhibition by Hop/Sti1 (Prodromou et al., 

1999). 
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INTRODUCTION 

 

Hsp90’s Conformational Dynamics: 

     Recently, much work has focused on Hsp90’s varying conformational states.  Previous 

crystal structures for full length E. coli Hsp90 have demonstrated a V-shaped structure 

which is dimerized by the  C-terminal domain (Shiau et al., 2006).   Recent cryo-electron 

micrographs (EM) and small angle x-ray scattering (SAXS)  studies have showed that 

uncomplexed Hsp90  is in equilibrium between two  open conformations consisting of a 

highly extended, open, “seagull”  conformation  and an  intermediate, less extended, “V 

shaped” conformation (Krukenberg et al., 2009, Bron et al., 2008).    These studies 

suggest that apo Hsp90 is in “dynamic equilibrium” between two open conformations and 

that binding of nucleotide shifts this equilibrium (Krukenberg et al., 2009, Bron et al., 

2008). 

     Previously, Sullivan and Toft (1997) proposed a model in which binding of nucleotide 

to the N-terminus of Hsp90 arbitrates between two different conformations of Hsp90.  

This model was based on the observations that binding of ATP and/or geldanamycin to 

the  N-terminal domain of Hsp90 distinctly altered Hsp90’s interactions with p23 and C-

terminal protein-protein interactions (Sullivan et al., 2002, Sullivan et al., 1997).   More 

recent ATP binding kinetics indicate that ATP binding induces a conformational switch 

that may be conferred to the C-terminus  by the docking of the N and middle domains 
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(McLaughlin et al., 2004).  Additionally, H/D exchange studies suggest that binding of 

N-terminal inhibitors to the nucleotide binding pocket stabilizes a differential 

conformational state of Hsp90 in which the interface between the C-terminal, middle, and 

N-terminal domains has been tightened (Phillips et al., 2007).  Further, geldanamycin and 

molybdate have also been demonstrated to stabilize distinct Hsp90 conformations 

(Nemoto et al., 1997, Hartson et al., 1999).  This conclusion was based on the following 

observations:  (1) GA stabilized the recovery of Hsp90: Hop: Hsp70 complexes from 

RRL, whereas molybdate stabilized the recovery of Hsp90:p23: immunophilin complexes 

(Hartson et al., 1999), and (2) molybdate protected Hsp90FL from proteolysis through 

the restructuring of the C-terminal domain of Hsp90, while GA did not induce a protease 

protected conformation of Hsp90FL (Nemoto et al., 1997, Hartson et al., 1999).  

     Hydrogen deuterium exchange mass spectrometry (HX-MS) in combination with 

fluorescence resonance energy transfer (FRET) assays has provided recent insights into 

the conformational changes which occur upon binding of ATP to  E. coli Hsp90 

(Hessling et al., 2009, Graf et al., 2009).   ATP binding induces a series of sequential 

conformational changes which begin at the N-terminal nucleotide binding pocket and 

progress in a stepwise manner through the catalytic loop of the middle domain.  Based on 

this data at least four different conformations for the ATP induced Hsp90 cycle have been 

suggested.   (1). apo Hsp90 resides in an open conformation whose NTD is in the lid 

open position.  (2). Binding of ATP leads to the stabilization of an “I1” conformer in 

which the N-terminal ATP lid is closed but not interacting with the middle domain.  (3).  
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The NTD then rotates so that the lid interfaces with the MD stabilizing an I2 

conformation.  (4)  Finally, interaction of N and M domains completes the dimerization 

leads to a fully closed state.   In contrast to Buchner and co workers’ findings, 

“autoinhibitory” conformations of apo Hsp90 structures have been observed in E. coli 

and yeast Hsp90 in which helix 5 of the nucleotide capping lid has been demonstrated to 

occlude the nucleotide binding pocket (Shiau et al., 2006, Richter et al., 2006).  

      

Inhibition of Hsp90 Function: 

     N-terminal inhibition:   ATP has been demonstrated to bind to the N-terminal 

nucleotide binding pocket in an atypical bent manner, which is mimicked by the 

structurally unrelated natural products geldanamycin (GA) and radicicol (Wandinger et 

al., 2008).  GA and radicicol bind Hsp90 with higher affinity than ADP or ATP and 

inhibit Hsp90’s ATPase activity as well as block the maturation of substrate proteins, 

including ErbB-1 and ErbB-2 kinases, glucocorticoid receptors, Src kinases, and tumor 

necrosis factor receptors (Whitesell & Lindquist, 2005).  Geldanamycin and radicicol 

have also been observed to deplete cells of the prosurvival kinases, AKT and Raf-

1(Chiosis et al., 2003, Basso et al., 2002, Taiyab et al., 2009).  These compounds have 

additionally been shown to inhibit the prosurvival nuclear factor (NF –κβ) pathway 

(Chiosis et al., 2003, Basso et al., 2002).  Moreover, inhibition of Hsp90 by GA and 

radicicol has been shown to potentiate the activity of radiation and chemotherapy in the 

treatment of a variety of cancer types by depleting tumor cells of Raf-1 ErbB2, and Akt 
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and enhancing tumor cell sensitivity to proteasomal inhibition (Whitesell & Lindquist, 

2005). 

     C-terminal inhibition:   Biochemical studies have recently suggested that the C-

terminal region of Hsp90 possesses a secondary cryptic ATP binding site which upon 

occupancy of N-terminal nucleotide binding pocket becomes available (Marcu et al., 

2000a, Soti et al., 2002).  Although the contribution of the C-terminus and of this site to 

the regulation of Hsp90 chaperone machinery remains unclear, novobiocin (Figure 2) has 

been  reported to bind to this site (Marcu et al., 2000a) and to alter the chaperone 

cochaperone interactions (Marcu et al., 2000a, Yun et al., 2004).  Further, novobiocin and 

related coumarins (Figure 2) have been demonstrated to inhibit Hsp90 chaperone 

machinery altering basal cochaperone interactions and inducing the depletion of an 

assortment of Hsp90 dependent oncogenic signaling proteins, including mutant p53, Raf-

1, p185erbB2, AKT kinase, and Her2 (Yun et al., 2004, Marcu et al., 2000a, Marcu et al., 

2000b, Burlison & Blagg, 2006, Allan et al., 2006, Itoh et al., 1999).  

     The existence of an Hsp90 binding site for novobiocin and related coumarins has been 

suggested through studies with purified constructs (Marcu et al., 2000b, Allan et al., 

2006, Marcu et al., 2000a, Yun et al., 2004, Langer et al., 2002).  Langer and coworkers 

showed that increasing concentrations of novobiocin inhibited the autophosphorylation of 

purified Hsp90 (Langer et al., 2002).   Pre-addition of novobiocin to both recombinant 

Hsp90FLβ and Hsp90CTβ increased the rate of aggregation in chaperone activity assays 

for both Hsp90FL and Hsp90CT (Allan et al., 2006).   Moreover, pretreatment of 
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purified, His- tagged full length Hsp90β and purified, his-tagged, C-terminal Hsp90β 

with increasing concentrations of novobiocin led to the inability to detect subsequently 

added GST-tagged immunophilins by ELISA (Allan et al., 2006).         

     Novobiocin was additionally shown to bind purified, recombinant Hsp90FL in 

complex with geldanamycin Sepharose resins (Marcu et al., 2000b).  Novobiocin and the 

related coumarin, coumermycin, also bound Hsp90α coated magnetic beads (Marszall et 

al., 2008b).  Further, purified recombinant Hsp90CT bound to novobiocin sepharose 

resins, and novobiocin was shown to compete recombinant Hsp90CT from ATP-linked 

Sepharose resins (Marcu et al., 2000b, Marcu et al., 2000a).  Yun et al similarly 

demonstrated that the recombinant Hsp90 C-terminus became resistant to trypsinolysis in 

protease nicking assays in the presence of increasing concentrations of novobiocin (Yun 

et al., 2004). Further, increasing concentrations of coumermycin inhibited the chemical 

crosslinking of Hsp90CTβ (Allan et al., 2006).   

     Currently, novobiocin and related coumarins are being developed into higher affinity 

analogs for the treatment of various cancers based on their inhibition of Hsp90 chaperone 

function (Burlison et al., 2008, Burlison & Blagg, 2006).   However, nothing to date has 

been published which confirms structure activity relationships for coumarin derivatives in 

the context of purified Hsp90 components.  Further, no work to date has established 

affinity constants for novobiocin related compounds for purified Hsp90 and compared 

those binding constants to those estimated on the basis of the inhibition of chaperone 

function assays in vivo and in vitro.   Moreover, with the current lack of a co-crystal 
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structure of the Hsp90 C-terminal domain with bound inhibitor, it is difficult to 

definitively establish the site of binding for novobiocin and related compounds on Hsp90. 

     In order to address this gap in our knowledge, we used the technique of surface 

plasmon resonance (SPR) to assay the affinities of novobiocin derivatives for Hsp90 FL 

and a C-terminal Hsp90 truncation.  We also examined the effect of bound N-terminal 

ligands, ATP, ADP, and GA, on the affinities for our compounds of interest.   Results 

demonstrate that novobiocin and related coumarins bind to apo Hsp90FL and apo 

Hsp90CT with comparable affinities ranging from micromolar to millimolar range, which 

is consistent with previously reported affinities for the novobiocin induced depletion of 

Hsp90 substrates (Yun et al., 2004, Marcu et al., 2000a, Marcu et al., 2000b, Burlison & 

Blagg, 2006, Allan et al., 2006, Itoh et al., 1999).  Additionally, coumarin derivatives 

bound to Hsp90: ADP complexes with enhanced affinity, and docking of N-terminal 

ligand abrogated nonspecific binding observed for novobiocin: apo Hsp90 complexes. 

We further demonstrate an inability to resolve nucleotide binding prior to treatment of 

Hsp90 with 0.01% Igepal.    These results not only support the hypothesis that the 

conformation of the N-terminus influences the conformation of the C-terminus but 

demonstrate that a binding site for novobiocin compounds resides in the C-terminus of 

Hsp90.  Further, the inability to resolve nucleotide binding prior to treatment with Igepal 

suggests that Igepal loosens an autoinhibitory conformation of Hsp90 which facilitates 

the binding of nucleotide.  Our results provide new insights into the mode of action by 

which novobiocin related compounds interact with Hsp90 in vitro and may suggest novel 
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approaches to the development of higher affinity novobiocin derivatives in the treatment 

of cancer and related diseases. 
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EXPERIMENTAL PROCEDURES: 

 

Reagents: Geldanamycin, coumermycin A1(C9270), novobiocin (N6160), adenosine 5’ 

triphosphate (A26209), and adenosine 5’ diphosphate (A2754) were purchased from 

Sigma Aldrich.  Chlorobiocin was a gift from the National Institutes of Health Drug 

Synthesis Division.   

Protein Purification: 

     Ηsp90β Purification: Sf9 cells containing overexpressed human Hsp90β were 

purchased from the Baculovirus/Monoclonal Antibody Core Facility Baylor College of 

Medicine (Alnemri & Litwack, 1993).  Sf9 cells were lysed as detailed previously, 

replacing sonication with homogenization (Sullivan et al., 1997).  The Sf9 lysate was put 

through successive chromatographic steps as described previously, omitting the DEAE 

cellulose column (Johnson et al., 1998, Kosano et al., 1998).  Full length Hsp90 

(Hsp90FL) was purified to apparent homogeneity as assessed by loading 2 µg of protein 

on an SDS-PAGE gel and staining with Coomassie blue.  The purified Hsp90 was flash 

frozen and stored at -80 oC in 20 mM Tris-HCl, 350 mM NaCl, 1 mM DTT, and 10% 

glycerol, pH7.4. 

     Hsp90CT Purification: The C-terminal domain of human Hsp90 (Hsp90CT) was 

designed as previously described (Yun et al., 2004), with the exception that the PCR 

product was ligated into a pProEx-HTa vector (Gibco-BRL), containing a trc promoter, 

an N-terminal His6 tag, and a TEV consensus cleavage site.  In consequence, the final, 
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uncleaved, gene product contained human Hsp90alpha residues Q531-D732 including an 

extended N-terminal tag derived from vector sequences.  The Hsp90CT gene product was 

extracted from Escherichia coli lysates as described previously (Yun et al., 2004).   Peak 

fractions were pooled and desalted into buffer containing 20 mM imidazole.  The 

extended N-terminal tag was cleaved overnight at 4 oC using recombinant TEV protease 

(Invitrogen) to yield a purified product which retained vector residues GAM as an N-

terminal tag fused to Hsp90CT residues Q531-D732.   This product was then applied to a 

Superdex 200 HR gel filtration column (GE Healthcare).  Peak Hsp90CT fractions were 

pooled and concentrated.  Hsp90CT was purified to apparent homogeneity as assessed by 

loading 2 µg of protein on an SDS-PAGE gel and staining with Coomassie blue.  Purified 

Hsp90CT was flash frozen and stored at-80 oC in 20 mM Tris, 500 mM NaCl, 1 mM 

DTT, and 10% glycerol, pH7.4. 

      Cdc37 Purification:  Cdc37 was constructed by amplifying a PCR product encoding 

amino acids M1-V378 of human Cdc37 and by ligating the resultant PCR product into a 

pProEx-HTa vector (Gibco-BRL).  Ion-metal affinity chromatography was employed to 

isolate the Cdc37 gene product from E. coli lysates.  Recombinant Cdc37 was eluted 

from nickel affinity resin (Sigma) with 250 mM imidazole.  Peak fractions were pooled 

and desalted into buffer containing 20mM imidazole to facilitate overnight cleavage of 

the His6 tag by recombinant TEV protease (Invitrogen), thereby yielding a purified 

product comprised of Cdc37 residues M1-V378 fused to the N-terminal tag, GAM, 

derived from vector sequences.   This product was then subjected to gel filtration on a 
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Hiprep Superdex200 16/60 HR column (GE Healthcare).  Fractions corresponding to 

Cdc37 were pooled and concentrated.  Cdc37 was purified to apparent homogeneity as 

assessed by loading 3 µg of protein on an SDS-PAGE gel and staining with Coomassie 

blue.  Purified Cdc37 was flash frozen and stored at -80 oC in 20 mM Tris, 250 mM 

NaCl, 1 mM DTT, and 10% glycerol, pH 7.4. 

Surface Plasmon Resonance: 

     Protein Immobilization: SPR analysis was performed with a Sensi-Q dual channel 

biomolecular analysis system (ICX Nomadics, USA).  All proteins were immobilized to a 

research grade SSOO carboxylic acid chip (ICX Nomadics, USA) using traditional N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride/ N-hydroxysuccinimide 

(EDC/NHS; Sigma) coupling protocol.  Proteins were extensively desalted into running 

buffer consisting of 20 mM sodium bicarbonate and 150 mM NaCl, pH 8.0.   Proteins 

were injected at flow rates of 10 µL/min at concentrations ranging from 6 mg/mL-8 

mg/mL to yield an approximate 3000 resonance units of protein coupled to the surface of 

flow cell 1.  Unreacted esters were quenched with 1.0 M ethanolamine, pH 8.2.  The 

surface of flow cell 2 was activated and blocked so that a comparable surface could serve 

as a reference.   

     Binding of Small Molecules:  Analytes were dissolved in running buffers, which are 

indicated in the figure legends.  To eliminate any contribution to changes in bulk 

refractive index, double referencing was employed, in which all relative response units 

represent the difference between the raw response curves obtained for the sample cell and 
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the reference cell in addition to buffer curve subtraction (Myszka, 1999).  Assays were 

conducted at 25 oC at a flow rate of 25 µL/min. 

     Data analysis:  Analysis of data was performed using Nomadics Quantitative Data 

Analysis Tool (QDAT) software.  Binding constants were fitted using the equations:  Req 

= KA (A) Rmax / (KA(A) +1) for one-sited binding and Req = (KA1 (A) Rmax / (KA1(A) +1)) 

+(KA2 (A) Rmax / (KA2(A) +1)) for two-sited binding.  Regraphs and statistical analysis of 

SPR data were performed with GraphPad Prism software. 
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RESULTS 

 

Binding of Novobiocin-Derivatives to Hsp90FL 

     Binding of Coumermycin (Cm) toHsp90FL:  In order to test the hypothesis that a drug 

binding pocket for coumermycin exists on Hsp90FL, successive concentrations of 

coumermycin were co-injected over an Hsp90FL surface, as described in Figure 3.  

Coumermycin revealed a concentration dependent binding response  (Figure 3A).  

Affinity analysis fitted one site of binding for the Cm: Hsp90FL interaction and estimated 

the KD of Cm for Hsp90FLto be 50 ± 20 µM. In order to determine if Cm exhibited a 

saturable binding response for Hsp90FL, a replot of the Cm steady state binding signals 

was performed.  The binding isotherm for Cm showed a hyperbolic curve in which Cm 

saturated the surface of Hsp90FL at a maximum concentration of 600 µM (Figure 3B). 

Nonlinear regression of the Cm: Hsp90FL binding isotherm calculated the affinity of Cm 

for Hsp90FL to be equal to 60 ± 20 µM, R2 =0.99.  In order to elucidate the mechanism 

of Cm binding, a Hill plot of Cm SPR signals was performed.  The Hill plot for Cm: 

Hsp90FL response curves delineated a straight line with a calculated Hill coefficient of 

1.0 (Figure 3C).  Coumermycin’s robust response in combination with its saturable 

hyperbolic replot, calculated Hill coefficient of 1.0, and low micromolar range affinity 

constant, which could be fitted for only one site of binding, indicates that Cm specifically 

binds to Hsp90FL at a discrete site. 



 28

     Binding of Chlorobiocin (Cb) to Hsp90FL:  In order to expand our investigation, a 

compound of similar structure was assayed for its affinity to Hsp90FL.  Successive 

concentrations of chlorobiocin were co-injected over an Hsp90FL surface, as described in 

Figure 3. Chlorobiocin demonstrated a significant binding response when injected over 

the surface of Hsp90FL (Figure 5A).  Affinity analysis calculated a high affinity KD1 = 45 

± 5 µM and a low affinity KD2 = 155 ± 10 µM. A replot of the binding isotherm for 

chlorobiocin (Figure 5B) showed a deviation from the rectangular hyperbola and 

demonstrated saturation at a maximal concentration of 500 µM   chlorobiocin.  This 

departure from hyperbolic behavior is diagnostic of a cooperative binding event 

(Acerenza & Mizraji, 1997).  To determine the type of cooperative mechanism by which 

chlorobiocin binds to Hsp90, a Hill plot was constructed from Cb response signals 

(Figure 5C).  The Hill plot for the Cb: Hsp90FL interaction was sigmoidal in shape with 

a calculated Hill coefficient of 1.7, R2=0.99.  The sigmoidal binding isotherm together 

with the curved Hill plot substantiates a positive cooperative binding event and confirms 

our hypothesis that Cb binds to Hsp90.   

       Binding of Novobiocin (Nb) to Hsp90FL:   Because coumermycin and chlorobiocin, 

demonstrated significant binding responses to Hsp90FL (Figures 3 and 5), we expanded 

our analysis to include the related compound, novobiocin, which has been shown to 

inhibit Hsp90 function in prior work (Yun et al., 2004, Marcu et al., 2000a, Marcu et al., 

2000b, Burlison & Blagg, 2006, Allan et al., 2006, Itoh et al., 1999).   Consecutive 

concentrations of novobiocin were co-injected over an Hsp90FL surface, as described in 

Figure 5. Novobiocin demonstrated an exaggerated binding response, with a rapid off rate 

(Figure 7A).  A replot of the steady state binding signals (Figure 7B) showed that 
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saturation was not achieved, suggesting that novobiocin binds to Hsp90FL 

nonspecifically.  In order to determine if nonspecific binding could be subtracted from 

specific binding, novobiocin’s binding isotherm was globally fit for total and nonspecific 

binding as described in Figure 7C.  The subtraction of nonspecific binding from total 

binding revealed that saturable binding was achieved at concentrations approximating 6 

mM (Figure 7C-D).  Nonlinear regression of the baseline corrected data points (Figure 

7D) calculated the half maximal occupancy of Nb for Hsp90FL to be 3.3 ± 0.9 mM, R2 

=0.99.  A Hill plot of the Nb : Hsp90FL response curves (Figure 7E) was sigmoidal in 

shape (n=1.3; R2=0.98), thereby indicating a positive cooperative binding event.  These 

results indicate that novobiocin binding is comprised of a significant nonspecific 

response that when subtracted from the total response facilitates the conclusion that that 

more than one novobiocin binding site resides on Hsp90FL.  Further, these sites 

demonstrate specificity as indicated by the saturable subtracted binding isotherm and the 

sigmoidal Hill plot. 

 

Binding of Novobiocin-Derivatives to Hsp90CT: 

     Binding of Cm to Hsp90CT:  Because coumermycin demonstrated affinity for 

Hsp90FL (Figure 3), we extended our study to the C-terminal domain of Hsp90.  A series 

of Cm concentrations were co-injected over an Hsp90CT surface, as described in Figure 

4.  Cm demonstrated robust signals when injected over the surface of Hsp90CT (Figure 

4A).  Affinity analysis fitted one site of binding for the Cm: Hsp90CT interaction and 

calculated the KD of Cm for Hsp90CT to be 40 ± 10 µM.  To determine whether binding 

was saturable, a replot of the Cm binding response was constructed.  The Cm binding 
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isotherm traced a hyperbola and saturated at concentrations spanning 300 µM and 600 

µM (Figure 4B).  Nonlinear regression of the data points calculated the affinity of Cm for 

Hsp90CT to be equal to 45 ± 10 µM, R2 =0.99.  A Hill plot of Cm: Hsp90CT response 

curves (Figure 4C) depicted a straight line with a Hill coefficient of 1.0.  The saturable, 

hyperbolic, binding isotherm combined with the straight Hill plot and binding constants 

which can be fitted for only one site of binding suggests that coumermycin binds 

independently to a single site on Hsp90.  This data further indicates that coumermycin 

binds to a site which is located on the C-terminus of Hsp90. 

      Binding of Chlorobiocin (Cb) to Hsp90CT:  Similarly, our study of chlorobiocin was 

broadened to the C-terminus of Hsp90 due to chlorobiocin’s demonstrated affinity for 

Hsp90FL (Figure 5) and coumermycin’s exhibited affinity for Hsp90CT (Figure 4).  A 

series of chlorobiocin concentrations were co-injected over an Hsp90CT surface (Figure 

6). Upon binding and subsequent release of chlorobiocin, we observed a reproducible 

concentration dependent net drop in refractive index (Figure 6A).   Affinity analysis 

calculated a high affinity KD1 = 35 ± 5 µM and a low affinity KD2 = 110 ± 10 µM.  A 

replot of the binding isotherm for chlorobiocin (Figure 6B) showed a sigmoidal curve 

which saturated at a maximal concentration of 600 µM.  A Hill plot of Cb response 

signals (Figure 6C) revealed a curved line with an estimated Hill coefficient of 1.78, 

R2=0.99.  The sigmoidal binding isotherm together with the S-shaped Hill plot 

substantiates a positive cooperative binding event and confirms our hypothesis that Cb 

allosterically interacts with Hsp90CT.  These results further indicate that chlorobiocin 

binds to the C-terminus of Hsp90.   
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     Binding of Novobiocin (Nb) to Hsp90CT:  Our analysis of novobiocin was extended to 

the C-terminal domain of Hsp90 due to novobiocin’s multifaceted binding behavior for 

Hsp90FL (Figure 7) and due to previous work suggesting that novobiocin interacts with 

the C-terminal domain of Hsp90 (Marcu et al., 2000a, Marcu et al., 2000b, Yun et al., 

2004).  Successive concentrations of novobiocin were co-injected over Hsp90CT, as 

described in Figure 8.  Novobiocin demonstrated exaggerated, atypical, binding 

responses, with concentration dependent positive and negative deflections which were 

respectively apparent at the beginning and end of each injection (Figure 8A).   Such 

refractive index deflections are indicative of ligand-protein dependent conformational 

transitions (Winzor, 2003).  A replot of the steady state binding signals (Figure 8B) 

demonstrated that saturation was not achieved and indicated that there is a nonspecific 

component to the binding of novobiocin to Hsp90CT.  Subtraction of nonspecific binding 

from total binding revealed that saturable binding was achieved at concentrations 

approaching 6 mM (Figure 8C-D).  The concentration of half maximal occupancy of Nb 

for Hsp90CT was equivalent to 1.9 ± 0.6 mM, R2 =0.98 (Figure 8D) . The Hill plot of 

novobiocin:Hsp90CT responses (Figure 8E) depicted a straight line (n=1.0).  Thus, 

novobiocin binding is comprised of a large nonspecific component which can be 

subtracted from the total component to reveal a saturable hyperbolic binding component, 

which, collectively, exhibit complex Hsp90CT binding interfaces.   

 

Effect of Geldanamycin (GA) on the Affinities of Novobiocin Derivatives: 

     GA has been shown to bind to the adenine nucleotide binding pocket in Hsp90’s N-

terminal domain, inhibiting the binding of ATP and inducing an altered conformation of 
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Hsp90 (Prodromou et al., 1997b).  In order to assess the affect of GA on the binding of 

our compounds, we initially confirmed that GA demonstrated binding to our Hsp90FL 

surface.  Initial results yielded negligible binding for GA concentrations as high as 50 µM 

(data not shown).  Treating Hsp90 with 0.01% Nonidet-P40 has previously been shown 

to activate Hsp90s ATP binding activity (Sullivan et al., 1997).  Therefore, we pretreated 

the protein surface with 0.01% Igepal (the equivalent of Nonidet-p40), as described in 

Figure 9. Subsequently injection of 2 µM GA yielded a significant binding response 

approximating 160 RU with a post injection baseline leveling off at 120 RU (Figure7A), 

consistent with higher affinity interactions (Winzor, 2003).  To confirm that the GA 

response was specific for the N-terminus of Hsp90, GA was assayed over an Hsp90CT 

surface under similar conditions. A GA binding response could not be demonstrated to 

the Hsp90CT surface (Figure 9B). 

     Binding of Cm to Hsp90:GA Complexes: In order to assess the effect of GA on the 

binding of coumermycin to Hsp90FL, a series of Cm concentrations were co-injected 

over an Hsp90FL:GA surface, as described in Figure 9A.  Cm demonstrated robust, 

concentration dependent binding responses, which differed from Cm binding responses to 

apo Hsp90FL, in that lower concentrations of Cm demonstrated a binding response, and, 

apparent saturation was achieved at 150 µM (Figure 10B).  Affinity analysis calculated a 

high affinity KD1 = 1.5 ± 0.5 µM and a lower affinity KD2 = 20 ± 15 µM.  In contrast to 

these results, only one binding constant could be fitted for the Cm:Hsp90FL interaction 

(Figure 3).  The hyperbolic binding isotherm for the Cm: Hsp90FL:GA interaction 

revealed saturation at a maximal concentration of 150 µM, and nonlinear regression of 

these data points estimated the concentration of half maximal occupancy to be 10.75 ± 2 
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µM, R2=0.99.  A Hill plot of the Cm: Hsp90FL: GA interaction (Figure 0C) revealed a 

straight line with an estimated Hill coefficient of 1.0, R2=0.99.  The hyperbolic binding 

isotherm together with the calculated Hill value of 1.0 substantiates a noncooperative 

binding event and demonstrates that coumermycin and GA bind at discrete sites.  These 

results also suggest that GA acts to allosterically enhance the affinity of coumermycin for 

Hsp90FL through the induction of conformation transitions in the N-terminus of 

Hsp90FL which are transmitted to the C-terminus.  Further, this data argues in favor of 

the hypothesis that the GA conformation of Hsp90 is distinct from the apo conformation 

of Hsp90.   

     In order to test the hypothesis that N-terminal GA binding alters C-terminal 

conformation to affect coumermycin binding, coumermycin was assayed on an Hsp90CT 

surface in the presence of GA (Figure 11A).  Affinity analysis fitted one site of binding 

for the Cm:Hsp90CT in the presence of GA and calculated the KD to be 40 ± 10 µM, 

consistent with the data for Cm:Hsp90CT (Figures 4).  Analogous to Cm:Hsp90CT 

interactions in the absence of GA (Figure 4B), a replot of Cm: Hsp90CT:GA response 

curves demonstrated saturation at concentrations spanning 320 and 640 µM (Figure 11B).  

A Hill plot of Cm response signals (Figure 31C) revealed a straight line with an estimated 

Hill coefficient of 1.0, R2=0.99.  The consistency of these results as to previous Cm 

Hsp90Ct results suggests that GA does not influence the binding of coumermycin to 

Hsp90CT.  Moreover, the absence of a GA effect on the C-terminus is consistent with the 

hypothesis that binding of GA to the N-terminus induces global structural rearrangements 

which are conferred to the C-terminus and enhance coumermycin binding (Figure 10).   
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     Binding of Cb to Hsp90:GA Complexes: In order to assess the effect of GA on the 

binding of chlorobiocin to Hsp90FL, a series of Cb concentrations were co-injected over 

an Hsp90FL:GA surface, as described in Figure 10A.  Affinity analysis calculated a high 

affinity KD1 = 45 ± 5 µM and a low affinity KD2 = 170 ± 20 µM, consistent with the 

affinities calculated for Cb: Hsp90FL.   A replot of the Cb:Hsp90FL: GA binding 

isotherm (Figure 12B) showed a deviation from the rectangular hyperbola and 

demonstrated saturation at a concentration range of 400 -1250 µM, while nonlinear 

regression of the data points estimated the K 0.5 to be 120 ± 20 µM, R2=0.99. A Hill plot 

of the Cb: Hsp90FL: GA interaction was sigmoidal in shape with calculated a Hill 

coefficient of 1.5, R2 =0.99.  The sigmoidal binding isotherm together with the S-shaped 

Hill plot substantiates a positive cooperative binding event and demonstrates that 

chlorobiocin and GA bind to discrete sites on Hsp90FL.  Further, these results 

demonstrate that GA does not alter the binding of chlorobiocin as it does for 

coumermycin and suggests a differential mechanism of binding for these two novobiocin 

derivatives. 

     The examination of chlorobiocin binding in the presence of GA was extended to an 

Hsp90CT surface (Figure 13A).  Affinity analysis calculated a high affinity K D1 = 35 ± 5 

µM and a lower affinity KD2 = 88 ± 10 µM for Cb: Hsp90CT: GA, consistent with 

previous results (Figure 6).  Analogous to the previous Cb: Hsp90CT interaction (Figures 

4), a replot of Cb: Hsp90CT: GA response curves demonstrated saturation at 

concentrations spanning 320 and 640 µM in a nonhyperbolic fashion (Figure 13B).  A 

Hill plot of Cb response signals (Figure 13C) revealed a sigmoidal curve with an 

estimated Hill coefficient of 1.7, R2=0.99.  The consistency of these results as to the 
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previous Cb Hsp90CT results suggests that GA does not influence the binding of 

chlorobiocin to Hsp90CT.  Moreover, the absence of a GA effect on the C-terminus for 

chlorobiocin as well as for coumermycin further supports the hypothesis that binding of 

GA to the N-terminus induces a conformation in the C-terminus which augments the 

binding of the of dicoumarin, coumermycin, to the C-terminus.   

     Binding of Nb to Hsp90: GA Complexes:  In order to assess the effect of GA on the 

binding of novobiocin to Hsp90FL, a series of Nb concentrations were co-injected over 

an Hsp90FL: GA surface, as described in Figure 12A.  Novobiocin revealed 

concentration dependent response curves when applied to the Hsp90FL: GA surface 

(Figure14A), which were 3 times less robust than the novobiocin binding responses to 

apo Hsp90 (Figure 7A).  Affinity analysis calculated a high affinity KD1 = 800 ± 80 µM 

and a low affinity KD2 = 2.0 ± 0.2 mM.  A replot of steady state signals revealed a 

nonhyperbolic, binding isotherm which saturated at concentrations ranging between 5 

and 7 mM. (Figure 14B).  The calculated concentration of half maximal occupancy of Nb 

for the Hsp90FL:GA conjugate was 1.3 ± 0.20 mM, R2 =0.975.  A Hill plot of the Nb: 

Hsp90FL: GA interaction traced a curved lined with an estimated Hill coefficient of 1.3, 

R2 =0.99.  The sigmoidal binding isotherm together with the curved Hill plot confirms a 

positive cooperative binding event and demonstrates that novobiocin and GA bind at 

discrete site on Hsp90.  Our data further indicates that GA alters the structure of 

Hsp90FL such that the nonspecific component to novobiocin binding is no longer 

observed. 

      The examination of novobiocin binding in the presence of GA was then extended to 

an Hsp90CT surface.  Novobiocin demonstrated exaggerated, atypical, binding responses 
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(Figure 15A) analogous to novobiocin responses for Hsp90CT in the absence of GA 

(Figure 8A).   The binding isotherm did not demonstrate saturation (Figure 15B) in a 

manner similar to novobiocin responses for Hsp90CT in the absence of GA (Figure 8B). 

These results show that GA does not abrogate novobiocin’s nonspecific binding 

component on Hsp90CT surfaces as it does on Hsp90FL surfaces (Figure 14). 

Subtraction of nonspecific binding from total binding revealed that saturable binding was 

achieved at concentrations approaching 6 mM (Figure 15C-D).  The concentration of half 

maximal occupancy of Nb for Hsp90CT in the presence GA was equivalent to 1.86 ± 

0.58 mM,, R2 =0.99 (Figure 15D).   The Hill plot of the Nb: Hsp90CT: GA responses 

(Figure 35E) depicted a straight line (n=1.0).  Novobiocin binding to the C-terminal 

domain of Hsp90 in the presence of GA is therefore comprised of a large nonspecific 

component which can be subtracted from the total component to reveal a saturable 

hyperbolic binding component which is comparable to Nb: Hsp90CT responses in the 

absence of GA (Figure 8).  Thus, novobiocin and GA do not compete for a discrete site of 

binding on recombinant Hsp90CT.  The absence of a GA effect on the C-terminus for 

novobiocin, adds further support for the argument that binding of GA to the N-terminus 

induces a conformation in the C-terminus. 

 

Effect of ATP on the Affinities of Novobiocin Derivatives:   

     Previous work has demonstrated that binding of nucleotide to Hsp90FL confers 

conformational changes which are distinct from GA (Sullivan et al., 1997, Sullivan et al., 

2002).  In order to confirm the availability of the N-terminal nucleotide binding pocket 

for the Hsp90 immobilized on our chip, we injected varying concentrations of ATP over 
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the Hsp90 surface.  Similar to our observations with GA binding to Hsp90, initial results 

yielded a poor binding response of less than 10 RU for 5 mM ATP, suggesting that the 

nucleotide binding pocket was not available, possibly due to steric conditions created by 

protein immobilization.   However, after pretreatment of the protein surface with 0.01% 

Igepal (as described in Figure 9), 0.2 mM ATP yielded a significant binding response 

approximating 60 RU with a post injection baseline leveling off at 25 RU (Figure 16A).  

In a similar manner, we injected varying concentrations of ATP over an Hsp90CT 

surface, in order to test the hypothesis that a secondary C-terminal nucleotide binding 

pocket exists in the C-terminus of Hsp90, as prior literature has indicated (Soti et al., 

2002, Marcu et al., 2000a).  However, 5.0 mM ATP did not produce a detectable binding 

response (Figure 16B).  In contrast to Hsp90FL, pretreatment of the C-terminal surface 

with Igepal did not induce nucleotide binding. 

      Binding of Cm to Hsp90: ATP Complexes:  In order to determine to effect of ATP on 

coumermycin binding, a series of Cm concentrations were co-injected over an Hsp90FL: 

ATP surface, as described in Figure 16.  Cm demonstrated robust, concentration 

dependent binding responses (Figure 17A).  Affinity analysis fitted one site of binding for 

the Cm: Hsp90FL: ATP interaction and calculated the KD of Cm for Hsp90FL: ATP to be 

49 ± 7 µM.  A replot of the binding isotherm for coumermycin (Figure 17B) traced a 

hyperbola which saturated at a maximal concentration of 300 µM, while nonlinear 

regression of the data points estimated the KD of Cm for the Hsp90FL:ATP conjugate to 

be 55 ± 20 µM, R2 =0.99.  A Hill plot of Cm response signals (Figure 17C) revealed a 

straight line with an estimated Hill coefficient of 1.0, R2=0.99.  From these results, we 
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conclude that coumermycin and ATP bind to distinct sites on Hsp90, we further conclude 

that ATP does not alter the affinity of coumermycin for Hsp90FL.  

       Although we were unable to directly demonstrate ATP binding to our Hsp90CT 

surface, we tested the hypothesis that a cryptic C-terminal nucleotide binding site may 

compete with coumermycin, in order to exclude the possibility that low levels of specific 

ATP binding to Hsp90CT were being masked through real time reference curve 

subtraction of high levels of nonspecific ATP binding to the control surface.  Cm 

demonstrated robust, concentration dependent binding responses to the Hsp90CT surface 

in the presence of ATP (Figure 18A). Affinity analysis fitted one site of binding and 

calculated the KD for the interaction to be 18.6 ± 10 µM.  A replot of the binding 

isotherm for coumermycin (Figure 18B) traced a hyperbola which saturated at a 

concentrations spanning 320 and 640 µM, while nonlinear regression of the data points 

estimated the KD of Cm for Hsp90CT in the presence of ATP additive to be 20 ± 10 µM, 

R2 =0.99.  A Hill plot of Cm response signals (Figure 18C) revealed a straight line with 

an estimated Hill coefficient of 1.0, R2=0.99.  This data indicates that coumermycin binds 

with similar affinity to Hsp90CT in presence of ATP as in absence of ATP. The inability 

to resolve ATP-binding to Hsp90CT, together with the lack of any effect of ATP on 

coumermycin binding to the C-terminal domain of Hsp90, suggests a number of 

possibilities: 1) coumermycin does not bind to the ATP-binding site in Hsp90CT; 2) 

Hsp90CT does not bind nucleotide; and/or 3) immobilized Hsp90CT may not adopt an 

ATP-binding competent conformation. 

     Binding of Cb to Hsp90: ATP Complexes:  We expanded our investigation of the 

effect of ATP binding to the related compound, chlorobiocin.  A series of chlorobiocin 
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concentrations were co-injected over an Hsp90FL: ATP surface (Figure 19).  

Chlorobiocin demonstrated robust, concentration dependent binding responses (Figure 

19A). Affinity analysis calculated a high affinity KD1 = 40 ± 10 µM and a low affinity 

KD2 = 170 ± 20 µM. A replot of the binding isotherm for chlorobiocin (Figure 19B) 

showed a saturable sigmoidal curve, while nonlinear regression of the data points 

estimated the K0.5 of Cm for the Hsp90FL:ATP conjugate to be 110 ± 20 µM, R2 =0.99.  

A Hill plot of Cb response signals (Figure 19C) revealed a curved line with an estimated 

Hill coefficient of 2.0, R2=0.99.  The sigmoidal binding isotherm together with the S-

shaped Hill plot substantiates a positive cooperative binding event and demonstrates that 

chlorobiocin and ATP bind to discrete sites on Hsp90FL.  These results further show that 

ATP does not alter the affinity of chlorobiocin for Hsp90. 

    We similarly assayed chlorobiocin binding to the Hsp90CT in the presence of ATP 

(Figure 20A).  A reproducible concentration dependent net drop in refractive index was 

observed upon chlorobiocin release (Figure 20A), in an analogous manner to 

Cb:Hsp90CT responses assayed in the absence of ATP (Figure 4A).  Affinity analysis 

calculated a high affinity KD1 = 30 ± 5 µM and a low affinity KD2 = 110 ± 10 µM.  

Chlorobiocin displayed a sigmoidal binding isotherm (Figure 20B), which saturated at 

concentrations spanning 320 to 640 µM.  The calculated concentration of half maximal 

occupancy was 68 ± 15 µM,  R2 =0.98.  The Hill plot of Cb response signals (Figure 

20C) revealed a curved line with an estimated Hill coefficient of 1.70, R2=0.99.  The 

sigmoidal binding isotherm together with the S-shaped Hill plot again confirms a positive 

cooperative binding event and demonstrates that chlorobiocin is not competed by ATP.   
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     Binding of Nb to Hsp90: ATP Complexes:   In order to determine if ATP affected 

binding of novobiocin to Hsp90FL, novobiocin was assayed as described in Figure 21.  

Novobiocin revealed concentration dependent response curves when applied to the 

Hsp90FL: ATP surface (Figure 21A), which were 3 times less robust than the novobiocin 

binding responses to apo-Hsp90FL (Figure 7A),  yet similar to the binding responses 

observed for the Hsp90:GA curves (Figure  12A). Affinity analysis calculated a high 

affinity KD1 = 980 ± 80 µM and a low affinity KD2 = 2.1 ± 0.20 mM.  A replot of steady 

state signals revealed a sigmoidal binding isotherm which saturated at concentrations 

ranging between 5 and 7 mM. (Figure 21B).  The calculated concentration of half 

maximal occupancy of Nb for the Hsp90FL ATP conjugate was 1.5 ± 0.50 mM, R2 

=0.975.  A Hill plot of the Nb: Hsp90FL: ATP interaction traced a curved lined with an 

estimated Hill coefficient of 2.0, R2 =0.99.  The sigmoidal binding isotherm together with 

the curved Hill plot confirms a positive cooperative binding event and demonstrates that 

novobiocin and ATP bind at discrete site on Hsp90.  Our data further indicates that ATP 

alters the structure of Hsp90FL such that the nonspecific component to novobiocin 

binding is no longer observed.   

     In order to test the hypothesis that ATP competes for novobiocin binding on 

recombinant Hsp90CT, novobiocin binding was assayed in the presence of ATP as 

previously described (Figure 22).  Novobiocin demonstrated exaggerated, atypical, 

binding responses (Figure 22A) analogous to novobiocin responses for Hsp90CT in the 

absence of ATP (Figure 8A).  The binding isotherm did not demonstrate saturation 

(Figure 22B) in a similar manner to novobiocin responses for Hsp90CT in the absence of 

ATP (Figure 8B).  These results show that ATP does not abrogate novobiocin’s 
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nonspecific binding component on Hsp90CT surfaces as it does on Hsp90FL surfaces 

(Figure 21). Subtraction of nonspecific binding from total binding revealed that saturable 

binding was achieved at concentrations approaching 6 mM (Figure 22C-D).  The 

concentration of half maximal occupancy of Nb for Hsp90CT was equivalent to 1.6 ± 0.7 

mM, R2 =0.97 (Figure 22D).  The Hill plot of novobiocin-Hsp90CT responses in the 

presence of ATP (Figure 22E) depicted a straight line (n=1.0).  Novobiocin binding to the 

C-terminal domain of Hsp90 in the presence of ATP is therefore comprised of a large 

nonspecific component which can be subtracted from the total component to reveal a 

saturable hyperbolic binding component which is comparable to novobiocin binding in 

the absence of ATP (Figure 8).  Thus, novobiocin and ATP do not compete for a discrete 

site of binding on recombinant Hsp90CT. 

 

Effect of ADP on the Affinities of Novobiocin Derivatives:        

     Earlier studies report that ADP confers structural transitions upon Hsp90 which are 

distinct from the structural rearrangements which are induced upon ATP and GA binding 

(Southworth & Agard, 2008, Zhang et al., 2004).  In order to assess the effect of ADP on 

the binding of our compounds, we first confirmed that ADP was able to bind to our 

Hsp90FL surface.  ADP binding was unable to be determined until the nucleotide-

binding competent conformation of Hsp90 was activated by 0.01% Igepal, as described 

for ATP and GA binding.  ADP (0.5 mM) demonstrated a rapid binding response which 

did not achieve steady state during injection, and a slow, consistent release (Figure 23A), 

which differed the binding response of ATP (Figure 16A).    
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     Former work indicates that hydrolysis of ATP does not occur in the C-terminus of 

Hsp90 and suggests that an ADP binding site does not reside in Hsp90CT (Soti et al., 

2002).  In order to test this hypothesis, ADP was injected onto Hsp90CT surfaces with 

and without 0.01% Igepal pretreatment.  Consistent with previous reports (Soti et al., 

2002), ADP binding could not be resolved on Hsp90CT surfaces (Figure 23B).  

     Binding of Cm to Hsp90: ADP Complexes:  In order to assess the effect of ADP on the 

binding of coumermycin to Hsp90FL, a series of Cm concentrations were co-injected 

over an Hsp90FL: ADP surface, as described in Figure 24.  Cm demonstrated robust, 

concentration dependent binding responses, which differed from Cm binding responses to 

Hsp90FL:ATP complexes and apo, in that, lower concentrations of Cm demonstrated a 

binding response, and, apparent saturation was achieved at 150 µM (Figure 24A). 

Analogous to the Cm:Hsp90FL:GA interaction, two binding constants could be fitted for 

the Hsp90FL: ADP surface.  Affinity analysis calculated a high affinity KD1 = 1.5 ± 0.5 

µM and a lower affinity KD2 = 7.5 ± 2 µM.  In contrast to these results, only one binding 

constant could be fitted for the Cm: Hsp90:ATP and Cm: apo interactions (Figures 3 and 

17).  The hyperbolic binding isotherm for the Cm: Hsp90FL: ADP interaction revealed 

saturation at a maximal concentration of 150 µM, and nonlinear regression of these data 

points estimated the concentration of half maximal occupancy to be 3.6 ± 1.5 µM, 

R2=0.98.  A Hill plot of the Cm: Hsp90FL: ADP interaction (Figure 24C) revealed a 

straight line with an estimated Hill coefficient of 1.0, R2=0.99.  The hyperbolic binding 

isotherm together with the calculated Hill value of 1.0 substantiates a noncooperative 

binding event and demonstrates that coumermycin and ADP bind at discrete sites.  These 

results also suggest that ADP acts to allosterically enhance the affinity of coumermycin 
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for Hsp90FL.  Thus, ADP appears to induce conformation transitions in Hsp90FL which 

are distinct from both the apo conformation of Hsp90 and the ATP conformation of 

Hsp90, yet similar to the GA conformation of Hsp90.   

     As a negative control, coumermycin was assayed on an Hsp90CT surface in the 

presence of ADP (Figure 25A).   Affinity analysis fitted one site of binding for the Cm: 

Hsp90CT in the presence of ADP and calculated the KD to be 49 ± 7 µM, consistent with 

previous assays (Figures 4 and 18).  Analogous to previous Cm: Hsp90CT interactions 

(Figures 4 and 18), a replot of Cm: Hsp90CT: ADP response curves demonstrated 

saturation at concentrations spanning 320 and 640 µM (Figure 25B).  A Hill plot of Cm 

response signals (Figure 25C) revealed a straight line with an estimated Hill coefficient 

of 1.0, R2=0.99.  The consistency of these results as to previous Cm Hsp90CT results 

suggests that ADP does not influence the binding of coumermycin to Hsp90CT.  

Moreover, the absence of an ADP effect on the C-terminus is consistent with the 

hypothesis that binding of ADP to the N-terminus induces global structural 

rearrangements which are conferred to the C-terminus which promote coumermycin 

binding.   

     Binding of Cb to Hsp90: ADP Complexes:  In order to assess the effect of ADP on the 

binding of chlorobiocin to Hsp90FL, a series of Cb concentrations were co-injected over 

an Hsp90FL:ADP surface, as described in Figure 26A.  Affinity analysis calculated a 

high affinity KD1 = 15 ± 5 µM and a lower affinity KD2 = 30 ± 20 µM for Cb: Hsp90FL: 

ADP.  The affinity of Cb for Hsp90FL: ADP was more avid than the affinity of Cb for 

Hsp90FL:ATP, Hsp90FL:GA, and apo-Hsp90.  A replot of the binding response deviated 

from a rectangular hyperbola and saturated at concentrations spanning 400 and 800 µM 
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(Figure 26B).  Nonlinear regression estimated the K0.5 of Cb for the Hsp90FL:ADP 

complex to be 30 ± 20 µM.    The Hill plot for this interaction shows a curved line with 

an estimated Hill value of 2.6 (Figure 26C).   The non-hyperbolic binding isotherm 

together with the calculated Hill value of 2.6 substantiates a positive, cooperative binding 

event and demonstrates that chlorobiocin and ADP bind at discrete sites.  These results 

further suggest that ADP allosterically enhances the affinity of chlorobiocin for Hsp90FL 

in a manner that differs from its allosteric effects on coumermycin (Figure 25) and lend 

credence to the hypothesis that the conformational changes induced by ADP alter binding 

affinities for novobiocin derivatives in the C-terminus of Hsp90. 

     Chlorobiocin was assayed on an Hsp90CT surface in the presence of ADP to assess 

the validity of the previous results (Figure 27A).   Affinity analysis calculated a high 

affinity KD1 = 35 ± 5 µM and a lower affinity KD2 = 88 ± 10 µM for Cb: Hsp90FL: ADP, 

consistent with previous assays (Figures 6 and 20).  Analogous to previous Cb: Hsp90CT 

interactions (Figures 6 and 20), a replot of Cb: Hsp90CT: ADP response curves 

demonstrated saturation at concentrations spanning 320 and 640 µM in a nonhyperbolic 

fashion (Figure 27B).  A Hill plot of Cb response signals (Figure 27C) revealed a 

sigmoidal curve with an estimated Hill coefficient of 1.8, R2=0.98.  The consistency of 

these results as to previous Cb Hsp90Ct results suggests that ADP does not influence the 

binding of chlorobiocin to Hsp90CT.  Moreover, the absence of an ADP effect on the C-

terminus for chlorobiocin as well as for coumermycin provides further support in favor of 

the hypothesis that binding of ADP to the N-terminus induces a conformation in the C-

terminus which augments the binding of novobiocin derivatives. 
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     Binding of Nb to Hsp90: ADP Complexes:  In order to assess the effect of ADP on the 

binding of novobiocin to Hsp90FL, a series of Nb concentrations were co-injected over 

an Hsp90FL: ADP surface, as described in Figure 28A.  Similar to the Nb: Hsp90FL: 

ATP responses (Figure 21A), novobiocin Hsp90FL: ADP responses were approximately 

3 times less robust than the novobiocin binding responses to apo-Hsp90 (Figure 7A).  

Unlike Nb: Hsp90FL: ATP responses, affinity analysis calculated a high affinity KD1 = 

130 ± 30 µM and a lower affinity KD2 = 600 ± 200 µM for Nb: Hsp90FL: ADP.  

Analogous to the results obtained for coumermycin and chlorobiocin for Hsp90FL: ADP, 

the affinity of Nb for Hsp90FL: ADP was more avid than the affinity of Nb for Hsp90FL: 

ATP and apo Hsp90.  The sigmoid binding isotherm for Nb:Hsp90FL:ADP demonstrated 

saturation at concentrations ranging between 4 and 8 mM (Figure 28B).  Nonlinear 

regression estimated the K0.5 of Nb for the Hsp90FL ADP complex to be 250 ± 50 µM.  

The Hill plot for Nb responses depict a curved line with an estimated Hill value of 3.0 

(Figure 28C).  The non-hyperbolic binding isotherm together with the calculated Hill 

value of 3.0 substantiates a positive, cooperative binding event and demonstrates that 

novobiocin and ADP bind at discrete sites on Hsp90. This data also indicates that ADP 

alters the structure of Hsp90 such that the nonspecific binding component to is not longer 

observed.  However, the enhanced affinity of novobiocin for the ADP: Hsp90 complex 

further argues that ADP alters Hsp90 structure in a way that differs from both ATP and 

GA, as enhanced novobiocin affinity is not observed for Nb: Hsp90FL: ATP and GA 

interactions (Figures 21 and 14).  These results additionally suggest that ADP 

allosterically enhances the affinity of chlorobiocin for Hsp90FL in a manner that differs 

from its allosteric effects on coumermycin (Figure 24) and lend credence to the 
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hypothesis that the conformational changes induced by ADP alter binding affinities for 

novobiocin derivatives in the C-terminus of Hsp90.    

      Novobiocin was assayed on an Hsp90CT surface in the presence of ADP to 

substantiate the Nb: Hsp90FL: ADP interaction.   Novobiocin demonstrated exaggerated, 

atypical, binding responses (Figure 29A) analogous to previous novobiocin: Hsp 90CT 

responses (Figures 8A and Figures 22A).   The binding isotherm did not demonstrate 

saturation (Figure 29B), consistent with previous Nb: Hsp90CT interactions (Figures 8B 

and 22B).  Nonspecific subtraction revealed that saturable binding was achieved at 

concentrations approaching 6.4 mM (Figures 29C-D) comparable to prior Nb:Hsp90CT 

data (Figures 8 and 22).  The concentration of half maximal occupancy was estimated to 

be 1.7 ± 0.69 mM, R2 =0.97 (Figure 29D).   The Hill plot of novobiocin:Hsp90CT 

responses in the presence of ADP (Figure 29E) depicted a straight line (n=1.0).  The 

consistency of these results with previous Nb Hsp90Ct results suggests that ADP does 

not influence the binding of novobiocin to Hsp90CT.  Furthermore, the absence of an 

ADP effect on the C-terminus for novobiocin as well as for both coumermycin and 

chlorobiocin advances the hypothesis that binding of ADP to the N-terminus induces a 

conformation in the C-terminus which induces the binding of novobiocin to the C-

terminus.   

 

Effect of ADP/ phosphate and ADP/ molybdate on Novobiocin Derivative Affinities for 

Hsp90:  

     Sullivan et al (2002) proposed that phosphate and molybdate may function structurally 

as the γ-phosphate of ATP when used in conjunction with ADP.  In order to test this 
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hypothesis, we injected ADP in the presence of phosphate (Figure 30A) and/or 

molybdate (Figure37A).   Binding responses were again unable to be detected until the 

protein surface had been pretreated with Igepal, as described above.  ADP/ phosphate 

demonstrated a comparable binding response to ATP in that 0.25 mM ADP with 

phosphate additive yielded a significant binding response approximating 60 RU with a 

post injection baseline leveling off at 25 RU (Figures 30 A and 16A).   Likewise, ADP/ 

molybdate demonstrated a maximal binding response approaching 120 RU with a post 

injection baseline leveling off at 80 response units analogous to the Hsp90FL: ATP 

response (Figures 37A and 16A).  Both the ADP/ phosphate and the ADP/ molybdate 

response differed from the ADP response in that ADP demonstrated a slow, steady off to 

a zero baseline (Figure 23A).  ADP/ phosphate and ADP/ molybdate were then assayed 

over an Hsp90CT surface under similar conditions.  Binding responses could not be 

demonstrated on the Hsp90CT surface (Figures 30B and 37B). 

 

     Binding of Cm to Hsp90: ADP/ phosphate and Hsp90: ADP/ molybdate complexes: In 

order to assess the effect of ADP/ phosphate and ADP/ molybdate on the binding of 

coumermycin to Hsp90FL, a series of Cm concentrations were co-injected over an 

Hsp90FL: ADP/ phosphate or an Hsp90FL: ADP/ molybdate surface (Figures 31A and 

Figure 38A, respectively).  Cm demonstrated robust, concentration dependent binding to 

both Hsp90FL: ADP/ phosphate (Figure 31B) and Hsp90FL: ADP/ molybdate (Figure 

38B), which saturated at concentrations spanning 320 and 640 µM consistent with Cm: 

Hsp90FL and CM: Hsp90FL: ATP interactions.  Calculated binding constants of Cm for 

Hsp90FL: ADP/ phosphate and Hsp90FL: ADP/ molybdate were 25 ± 10 µM and 33 ± 
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15 µM, respectively.  Hill plots for both interactions depicted straight lines with 

calculated Hill values of 1.0 (Figures 31C and 38C).  The similarity of these results to the 

Cm: Hsp90: ATP and the Cm :apo  results combined with the dissimilarity of these 

results from Cm: Hsp90:ADP results suggests that ADP/ phosphate and ADP/ molybdate 

stabilize an Hsp90 conformation which is different from the ADP conformation. 

     Binding of Cb to Hsp90: ADP/ phosphate and Hsp90: ADP/ molybdate complexes:  

Our analysis on the effect of ADP/ phosphate and ADP/ molybdate on the binding of 

coumarin compounds was then extended to chlorobiocin.  Cb demonstrated robust, 

concentration dependent binding to both Hsp90FL: ADP/ phosphate (Figure 33 A &B) 

and Hsp90FL: ADP/ molybdate (Figure 39A &B), which saturated in a nonhyperbolic 

fashion at concentrations spanning 320 and 640 µM consistent with Cb: Hsp90FL, Cb: 

Hsp90FL: ATP and Cb: Hsp90: GA interactions.  Calculated binding constants of Cm for 

Hsp90FL: ADP/ phosphate and Hsp90FL: ADP/ molybdate were: KD1 = 35 ± 8 µM and 

KD2 = 145 ± 20 µM, and KD1 = 30 ± 8 µM and KD2 = 125 ± 20 µM, respectively.  Hill 

plots for both interactions were sigmoidal with average Hill values of 1.45 (Figures 33C 

and 39C).  The similarity of these results to the Cm: Hsp90:ATP and the Cm :apo-Hsp90 

results combined with the dissimilarity of these results from Cm: Hsp90:ADP results 

suggests that ADP/ phosphate and ADP/ molybdate stabilize an Hsp90 conformation 

which is distinct from the ADP conformation of Hsp90.         

    Binding of Nb to Hsp90: ADP/ phosphate complexes and Hsp90: ADP/ molybdate 

complexes: The effect of ADP/ phosphate and ADP/ molybdate was further determined 

on the binding of novobiocin to Hsp90FL.  Nb demonstrated robust, concentration 

dependent binding to both Hsp90FL: ADP/ phosphate (Figure 35 A &B) and Hsp90FL: 
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ADP/ molybdate (Figure 40A &B), which saturated in a nonhyperbolic fashion at 

concentrations spanning 4 and 8 mM consistent with Nb: Hsp90FL: ATP and Nb: 

Hsp90FL: GA interactions.  Calculated binding constants of Nb for Hsp90FL: ADP/ 

phosphate and Hsp90FL: ADP/ molybdate were: KD1 = 900 ± 100 µM and KD2 = 2.2 mM  

± 0.25 mM, and KD1 = 750 ± 100 µuM and KD2 = 2.3 ± 0.2 mM, respectively.  Hill plots 

for both interactions were sigmoidal with average Hill values of 1.5 (Figures 35C and 

40C).  The similarity of these results to the Cm: Hsp90: ATP and the Cm: apo results 

combined with the dissimilarity of these results from Cm: Hsp90: ADP results suggest 

that ADP/ phosphate and ADP/ molybdate stabilize an Hsp90 conformation which is 

different from the ADP conformation.  These results further support that hypothesis that 

phosphate and molybdate act as a γ-phosphate analog.       

 

Competition Assays:   In order to determine if the compounds, coumermycin, 

chlorobiocin, and novobiocin compete for a single site of binding, the protein surface was 

equilibrated in running buffer containing excess competitor, while the compound of 

interest was assayed over the surface (Figure 41).  Coumermycin (320 µM) was unable to 

bind to Hsp90 surfaces pre-equilibrated with the indicated concentrations of chlorobiocin 

and novobiocin (Figures 41A and B).   Likewise, chlorobiocin (640 µΜ) demonstrated no 

net response on surfaces equilibrated with the indicated concentrations of coumermycin 

and novobiocin (Figures 41C and D).  Further, 4 mM novobiocin was unable to bind to 

Hsp90 pre-bound to the indicated concentrations of coumermycin and chlorobiocin 

(Figures 41E and F).  The ability of these compounds to compete each other in this assay 

suggests that these novobiocin derivatives bind to a common discrete site on Hsp90.   
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Negative Controls:  

     Dicoumarol Binding: To rule out the possibility that Hsp90 promiscuously binds all 

small molecules with a conjugated ring structure, we assayed the binding of the 

chemically related compound, dicoumarol, to both Hsp90FL and Hsp90CT.  Dicoumarol 

did not demonstrate binding to Hsp90FL or Hsp90CT surfaces (Figures 42 A1 and A2).  

Thus, the binding of coumermycin, chlorobiocin, and novobiocin appears to represent a 

specific binding response to the C-terminal domain of Hsp90. 

     Coumarin Compounds Do No Bind Cochaperone Cdc37:  To further demonstrate 

specificity of coumarin antibiotics for Hsp90 and to rule out the possibility that their 

previously reported depletion of signaling kinases (Burlison & Blagg, 2006) was not due 

to the combinatorial effects of cochaperone inhibition, we assayed Cm, Cb, and Nb over 

a Cdc37 surface, as described in Figure 42B.  The indicated concentrations of Cm, Cb, 

and Nb did not produce a binding response to Cdc37 (Figures 42B1, B2, &B3), further 

substantiating the specificity of these compounds for Hsp90. 
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DISCUSSION 

Coumarin Derivatives Bind to the C-terminus of Hsp90: 

     Data presented in this thesis suggests that one or more binding sites for novobiocin and 

related coumarins reside on Hsp90CT.  This conclusion is based on the observation that 

coumermycin demonstrated comparable affinity for both Hsp90FL and Hsp90CT (Tables 1 & 

2).   Similarly, chlorobiocin showed equivalent affinities for both Hsp90FL and Hsp90CT 

(Tables 1 & 2).   Two sites of binding could also be fitted for chlorobiocin for both the full 

length protein and the C-terminal construct.  Chlorobiocin additionally exhibited the same 

degree of positive cooperative binding for both Hsp90FL and Hsp90CT (n=1.7).   Further, 

novobiocin exhibited similar affinities for both Hsp90FL and Hsp90CT (Tables 1 & 2). 

Moreover, novobiocin and related compounds did not bind to the Hsp90 N-terminal nucleotide 

binding pocket (Figures 17, 19 & 21). 

    Our conclusion is consistent with previous work, which suggests the existence of an Hsp90 

binding site for novobiocin and related coumarin antibiotics based on a number of indirect 

assays (Yun et al., 2004, Marcu et al., 2000a, Marcu et al., 2000b, Burlison & Blagg, 2006, 

Allan et al., 2006).   Incubation of rabbit reticulocyte lysate and or cell culture lysate with 

novobiocin quantitatively decreased the amount of p23 and Hsp70 which coimmunoadsorbed 

with Hsp90 (Marcu et al., 2000a, Yun et al., 2004).   Novobiocin also  reduced the levels of 

Hsp90 dependent signaling proteins, p53, Raf-1, and to a lesser extent p185erbB2 in SKBR3 

cells, while, the related coumarin compounds, chlorobiocin and coumermycin, induced the 

degradation of Hsp90 dependent clients, Raf-1 and p185erbB2/Her2 (Marcu et al., 2000a, Marcu 
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et al., 2000b, Burlison & Blagg, 2006, Allan et al., 2006).  Pretreatment of cell lysates with 

increasing amounts of novobiocin also lead to an inability to recover Hsp90 in complex with 

immunophillins (Yun et al., 2004).  Both novobiocin and coumermycin depleted glucocorticoid 

receptors in HeLA cells (Allan et al., 2006), while novobiocin inhibited the co adsorption of 

Hsp90 and Cdc37 from heme-regulated eIF2α kinase (HRI) in rabbit reticulocyte lysate (Yun 

et al., 2004).  Thus, the inhibition of chaperone function in presence of these compounds 

suggests a direct biophysical interaction between coumarin molecules and the Hsp90 

chaperone machinery.  

     Our conclusions regarding the existence of an Hsp90 binding site for coumarin molecules 

are also consistent with studies with purified Hsp90 constructs (Marcu et al., 2000b, Allan et 

al., 2006, Marcu et al., 2000a, Yun et al., 2004, Langer et al., 2002).  Langer and coworkers 

showed that increasing concentrations of novobiocin inhibited the autophosphorylation of 

purified Hsp90 (Langer et al., 2002).   Pre-addition of novobiocin to both recombinant 

Hsp90FLβ and Hsp90CTβ increased the rate of aggregation of rhodanese in chaperone activity 

assays for both Hsp90FL and Hsp90CT (Allan et al., 2006).   Moreover, pretreatment of 

purified recombinant His- tagged full length Hsp90β or His-tagged C-terminal Hsp90β with 

increasing concentrations of novobiocin led to the inability to detect subsequently added GST-

tagged immunophilins by ELISA (Allan et al., 2006).   

      Novobiocin was additionally shown to bind purified, recombinant Hsp90FL in complex 

with geldanamycin Sepharose resins (Marcu et al., 2000b).  Novobiocin and the related 

coumarin, coumermycin, also bound Hsp90α coated magnetic beads (Marszall et al., 2008b).  

Further, purified recombinant Hsp90CT bound to novobiocin sepharose resins, and novobiocin 

was shown to compete recombinant Hsp90CT from ATP-linked Sepharose resins (Marcu et al., 
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2000b, Marcu et al., 2000a).  Yun et al similarly demonstrated that the recombinant Hsp90 C-

terminus became resistant to trypsinolysis in protease nicking assays in the presence of 

increasing concentrations of novobiocin (Yun et al., 2004). Further, increasing concentrations 

of coumermycin inhibited the chemical crosslinking of Hsp90CTβ (Allan et al., 2006).  The 

above results not only support our conclusion that Hsp90 possesses a binding site for coumarin 

compounds; they argue in favor of our conclusion that the binding site for coumarin antibiotics 

resides on the C-terminus of Hsp90.    

      The affinities obtained for the compounds in this study are consistent with previously 

published data suggesting the chlorobiocin and coumermycin are 5 to 10 times more effective 

than novobiocin, respectively, in inhibiting Hsp90 chaperone function (Burlison & Blagg, 

2006, Marcu et al., 2000b, Galam et al., 2007, Yun et al., 2004, Marcu et al., 2000a).  

Chlorobiocin and coumermycin have been reported to induce maximal depletion of the Hsp90 

dependent oncogenic proteins Raf-1 and p185erbB at concentrations of 500 µM and 100 µM, 

respectively, whereas maximal depletion of Raf-1 and p185erbB was not observed until 

novobiocin concentrations approached 1 mM (Marcu et al., 2000b),  Analogously, 

coumermycin caused Hsp90 dependent depletion of the oncogenic client, Her2,  at half 

maximal concentrations of 1 µM,  while novobiocin depleted Her2 at half maximal 

concentrations of 300 µM (Burlison & Blagg, 2006).  Millimolar concentrations of novobiocin 

have been demonstrated to inhibit the coimmunoadsorption of p23 and Hsp70 with Hsp90 from 

rabbit reticulocyte lysate (Marcu et al., 2000a, Yun et al., 2004, Allan et al., 2006). Similarly, 2 

-5 mM novobiocin was shown to inhibit co-precipitation of FKBP52 and PP5 with Hsp90 (Yun 

et al., 2004).  Further, Yun et al demonstrated that 1-5 mM novobiocin abrogates the 

maturation of Hsp90, client, heme regulated eIF2α kinase (HRI), as evidenced by the absence 
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of HRI’s autophosphorylation activity (Yun et al., 2004).  Moreover, the IC50’s  for  coumarin 

compounds’  inhibition of the Hsp90-dependent renaturation of denatured luciferase in rabbit 

reticulocyte lysate have been reported to be  400 µM, 60 µM, and 40 µM for novobiocin, 

chlorobiocin, and coumermycin, respectively  (Galam et al., 2007).  The above results are 

consistent with the average binding constants for novobiocin (1.4 mM), chlorobiocin (75 µM), 

and coumermycin (40 µM) calculated for Hsp90FL in this study.   

      The work of Marszall et al (2008), however, contradicts our findings.  Affinities for 

novobiocin and coumermycin were determined using a frontal chromatography system, in 

which serial concentrations of the compounds were injected in mobile phase and the various 

retention volumes were used to calculate binding affinities for Hsp90, which was covalently 

immobilized to an APS resin (Marszall et al., 2008a).  In contrast to our estimated average 

affinities of novobiocin and coumermycin for Hsp90FL of 1.4 mM and 40 µM, respectively, 

Marszall et al reported IC50s of approximating 100 nΜ for novobiocin and 200 nM for 

coumermycin (Marszall et al., 2008a),.  Further, these authors report no nonspecific binding 

component of novobiocin to Hsp90 while our data shows extensive nonspecific binding of 

novobiocin to Hsp90 in the absence of N-terminal ligand (Figure 7).  While these discrepancies 

might be rationalized by the different Hsp90 isoforms assayed, Marszall and coworkers 

assayed binding to Hsp90α, whereas we assayed binding to Hsp90β (Marszall et al., 2008a), 

this is unlikely as we also assayed binding of the drugs to the Hsp90CT  construct of the α-

isoform of Hsp90.  Differential results could also be resolved on the basis of differences in 

experimental techniques.  We coupled Hsp90 to a planar surface at pH 8.0, whereas Marszall 

and colleagues report coupling their Hsp90 construct to a  three dimensional resin at pH 6.0 

(Marszall et al., 2008a).  The exposure of Hsp90 to a lower pH may have altered the 
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conformation of Hsp90, hiding exposed regions of the protein susceptible to nonspecific 

interaction with novobiocin and increasing the affinity of Hsp90 for both novobiocin and 

coumermycin.  Alternatively, immobilization of Hsp90 onto a planar surface may have 

loosened Hsp90 structure thereby promoting nonspecific Hsp90: Nb interactions and lowering 

Hsp90’s affinity for both compounds.   

     However, it is difficult to understand how the authors could make an accurate estimate of 

the binding affinities for novobiocin and coumermycin when the highest concentration of drug 

utilized in their assays failed to approach previously report affinities and in no manner 

approached saturation. Further, the authors failed to demonstrate specificity.  Their results are 

likely an artifact. These discrepancies, however, remain unresolved and require further 

investigation by other techniques. 

 

Coumarin Derivatives Demonstrate Specificity for Hsp90 

     Our results indicate that coumarin derivatives bind Hsp90 with specificity.  This conclusion 

is based on the observations that novobiocin and related coumarins compete with each other for 

binding (Figure 41) and that the structurally related compound, dicoumarol, did not 

demonstrate binding to Hsp90FL or Hsp90CT (Figure 42, A1 & A2).  Since Hsp90 has been 

reported to be in equilibrium between conformational states and that binding of ligand has been 

shown to shift this conformational equilibrium (Shiau et al., 2006, Krukenberg et al., 2008), we 

cannot exclude the possibility that pre-binding of coumarin derivative A to Hsp90 does not 

alter Hsp90 conformation and thereby mask a secondary binding site for coumarin derivative 

B. However, the simplest conclusion is that novobiocin derivatives share a common site of 

binding located in the C-terminal domain of Hsp90.   
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     Our binding results for dicoumarol disagree with  previously published results, in which 

dicoumarol was observed to inhibit the renaturation of denatured luciferase in HCT116 cells, 

deplete cells of the Hsp82 clients Erb2/Her2, Akt, and securin, and induce apoptosis 

(Hernandez et al., 2008).  Perhaps this discrepancy resides from possibility that dicoumarol is 

chemically modified in biological systems and this chemical modification facilitated the in vivo 

inhibition of Hsp90 machinery which cannot be reproduced in vitro.  Alternatively, the 

dicoumarol induced depletion of Hsp90 clients demonstrated in the previous assay could be 

explained by the observation that dicoumarol has been shown to induce the production of the 

mitochondrial reactive oxygen species, superoxide and hydrogen peroxide, through its 

inhibition of the two electron reductase NADPH quinone oxidoreductase and mitochondrial 

quinone mediated electron transfer (Du et al., 2006).  Likely, these differential results reflect 

the differences in techniques utilized.   These inconsistencies remain to be explored further.  

     However, it should be noted that dicoumarol-induced decrease in securin expression 

reported by Hernandez and colleagues correlated with a decrease in the level of expression of 

its mRNA.  Hsp90 inhibitor-induced decrease in client protein levels is a consequence of their 

ability to inhibit the folding of nascent protein and in some cases inhibit Hsp90’s stabilization 

of the mature active protein, leading to their degradation via the proteasome (Whitesell & 

Lindquist, 2005). Suppression of the transcription of the mRNA encoding an Hsp90 dependent 

client is not a hallmark of Hsp90 inhibition.  

 

Binding of Nucleotide Hsp90FL: 

     Our nucleotide binding data is consistent with current models (Mickler et al., 2009, 

McLaughlin et al., 2004, Hessling et al., 2009).  Binding of ATP, ADP/ phosphate, and ADP/ 
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molybdate to Hsp90 demonstrate comparable responses (Figures 16A, 30A, &37A).    We 

rationalize that both phosphate and molybdate mimic the gamma phosphate of ATP and 

facilitate the stabilization of a range of  ATP conformations (Sullivan et al., 2002). We 

demonstrate a rather fast initial on rate in which we conclude ATP, ADP/ phosphate, and ADP/ 

molybdate bind to an open conformation of Hsp90.  We hypothesize that during and after 

injection the conformation of “I2” is being stabilized (Hessling et al., 2009, McLaughlin et al., 

2004).  The initial rapid drop within the first 10 seconds after the injection ceases suggests that 

the “I2”   conformation of ATP bound Hsp90 represents a relaxed transition state in which a 

large population of Hsp90 conformers are in an open lid conformation.  Consequently, ATP is 

readily able to diffuse.  Seconds 250-260 represent the transition from I2 to a closed 

Hsp90conformation for the ATP and ADP/ phosphate curves, while seconds 520-530 

correspond to this transition for the ADP/ molybdate curve. The steady 25 response units 

(RUs) that are observed  for ATP and ADP/ phosphate after 260 seconds have transpired 

corresponds to the stable  N-terminally dimerized closed conformation, while the positive 85 

response units following 600 seconds represents the closed conformation of Hsp90:ADP/ 

molybdate.  Moreover, 25 RU is consistent with the percentage of ATP which are committed to 

slow hydrolysis (Mickler et al., 2009, Hessling et al., 2009, McLaughlin et al., 2004), while the 

25 RU (Figure 30A) and the 85 RU(Figure 37A)  correspond to the percentage of ADP/ 

phosphate and ADP/ molybdate which are trapped by Hsp90.  Conversely, the ADP binding 

response revealed a rapid on rate which did not approach steady state during injection and a 

slow steady off which did not demonstrate a positive baseline plateau (Figure 13A).  

 

Novobiocin and Related Coumarins Do Not Bind to the N-terminal Nucleotide Binding 
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Pocket: 

          Our results support the conclusion that apo-Hsp90 and Hsp90: ATP complexes 

are distinct Hsp90 conformations which bind coumarin derivatives with equivalent 

affinities.  This conclusion is based on the following observations:  (1) Coumermycin 

exhibits similar affinities for the Hsp90: ATP complex as it does for uncomplexed 

Hsp90 (Table 1).  (2) Chlorobiocin and novobiocin demonstrate comparable affinities 

for Hsp90 in complex with ATP as they do for apo (Table 1).  (3) Both chlorobiocin 

and novobiocin exhibited cooperative binding for both interactions with estimated 

Hill coefficients of 1.85 and 1.65, respectively.  (4)  Binding data for the Nb: 

Hsp90FL: ATP interaction indicated that ATP eliminates the nonspecific binding that 

was observed in the Nb: apo Hsp90 interactions.  

     These results suggest the conclusion that novobiocin nonspecifically binds to 

charged residues within the N-terminal domain, as novobiocin has been shown to 

bind to highly basic amino acid residues in a nonspecific manner (Cotten et al., 

1986).   Because the  linker which connects the N-terminus with the middle domain 

consists of a highly unstructured region of charged amino acid residues which are 

extended in the absence of N-terminal ligand (Krukenberg et al., 2009, Pearl & 

Prodromou, 2006, Krukenberg et al., 2008), we hypothesize that ATP restricts the 

conformation freedom of the charged linker region and leads to a compaction of the 

linker such that it is no longer available to nonspecifically interact with novobiocin.  

Our results are consistent with current models which suggest that ATP stabilizes a 

tense conformation of Hsp90 (Chadli et al., 2000, Graf et al., 2009, McLaughlin et 

al., 2004, Hessling et al., 2009, Mickler et al., 2009, Prodromou et al., 2000, Maruya 
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et al., 1999), while apo Hsp90 exists in at least two extended conformations which 

are in dynamic equilibrium (Bron et al., 2008, Krukenberg et al., 2008). 

     Our data is also consistent with the conclusion that phosphate and molybdate 

function structurally as a γ-phosphate analog (Sullivan et al., 2002), which together 

with ADP induce the formation of a range of ATP conformations.  Coumermycin, 

chlorobiocin, and novobiocin bind to ADP/ phosphate and ADP/ molybdate liganded 

Hsp90 complexes (Figures 31-35 & 38-40) with comparable affinities to Hsp90 ATP 

complexes and apo.  ADP/ phosphate and ADP/ molybdate abrogated the nonspecific 

binding component of novobiocin in a manner suggestive of ATP (Figures 35, 39 & 

21).  The similarities of the affinities of coumarin derivatives for Hsp90FL:ADP/ 

phosphate, Hsp90FL:ADP/ molybdate, and Hsp90FL:ATP complexes coupled with 

the dissimilarly of their affinities for Hsp90FL:ADP complexes (see discussion 

below) together with the comparable responses of ATP, ADP/ phosphate, and ADP/ 

molybdate (Figures 14A, 28A, & 35A) for Hsp90FL suggests that ADP/ phosphate 

and ADP/ molybdate facilitate an assortment of Hsp90 conformations which is 

distinct from Hsp90:ADP conformations yet comparable to Hsp90: ATP 

conformations. 

       Our results additionally indicate that geldanamycin stabilizes a population of 

Hsp90 conformers which are distinct from apo and Hsp90: ATP conformers.  This 

conclusion is based on observation that GA increased the affinity of the dicoumarin, 

coumermycin, for Hsp90FL by opening a higher affinity binding site as indicated by 

the high affinity binding constant 3.3 ± 5 µM  and low affinity binding constant 20 ± 

15 µM (Figure 10).  These results contrast with the previously described lower 
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affinities of Cm for apo and Hsp90FL: ATP, Hsp90FL: ADP/ phosphate, and 

Hsp90FL: ADP/ molybdate complexes. GA eliminated the nonspecific binding 

component of novobiocin in a manner reminiscent to ATP, ADP/ phosphate and 

ADP/ molybdate.  Affinities of novobiocin and of the novobiocin derivative, 

chlorobiocin, for the Hsp90: GA complex approximated the affinities for apo Hsp90 

and Hsp90: ATP complexes, (K0.5 =1.3 mM ± 200 µM and K0.5 =120 µM ± 20 µM, 

respectively).  We therefore conclude that geldanamycin binds to the nucleotide 

binding site and allosterically induces a conformational change such that the affinity 

of coumermycin is enhanced and the conformational freedom of the charged linker 

region is restricted resulting in an overall compaction of the protein as evidenced by 

the absence of novobiocin nonspecific interactions. 

Our results are consistent with previous biochemical and structural 

characterizations (Zhang et al., 2004, Phillips et al., 2007).   H/D exchange suggests that 

binding of N-terminal inhibitors to the nucleotide binding pocket stabilized a differential 

conformational state of Hsp90 in which the interface between the C-terminal, middle, and 

N-terminal domains has been tightened (Phillips et al., 2007).  Similarly, small angle x-

ray scattering (SAXS) indicates a reduction in Hsp90 hydrodynamic radius upon 

complexation with geldanamycin (Zhang et al., 2004).   

 

ADP Allosterically Enhances Affinity of Coumarin Derivatives for Hsp90FL:   

     Our results further indicate that ADP stabilizes a conformation of Hsp90 which is 

distinct from the GA, ATP, ADP/ phosphate, ADP/ molybdate, and apo Hsp90 

conformations.  This rationalization is based on our results which demonstrate that ADP 
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enhances the affinity of coumarin derivatives for Hsp90FL (Figures 24, 26, 28).  ADP 

increased the affinities of coumermycin and novobiocin for Hsp90 by a factor of 15 (3.6 

± 1.5 µM   versus 50 ± 10 µM, and, 250 ± 50 µM versus 3.3 mM ± 0.9 mM), 

respectively.  Likewise, ADP enhanced the affinity of chlorobiocin for Hsp90 by a factor 

of 4 (30 ± 20 µM versus 100 ± 20 µM).  Analogous to GA, ADP induced the opening of 

a higher affinity binding site for the larger dicoumarin compound, coumermycin, with the 

two sites binding in a noncompetitive fashion as suggested by the Hill coefficient of 1.0 

(Figure 24C). In contrast to GA, ADP appears to have increased the cooperativity of the 

smaller structured molecules, chlorobiocin and novobiocin, as evidenced by the increase 

in Hill coefficients from 1.7 to 2.6 and 1.3 to 3.0, respectively.  Moreover, ADP appears 

to eliminate the nonspecific binding effects of novobiocin observed in the absence of 

ADP analogous to both GA and ATP.  Thus, we conclude that ADP alters the 

conformation of Hsp90 leading to changes in the conformation of the N-terminus such 

that nonspecific binding sites are no longer exposed.  N-terminal conformational changes 

are then conferred to the C-terminus resulting in the allosteric enhancement of the affinity 

of coumarin derivatives.  Our results are consistent with a host of experimental data (e.g., 

X-ray crystallography, EM, and HD-exchange studies) that indicate that the ADP-bound 

conformation of Hsp90 is distinct from Hsp90’s apo and ATP-bound conformations 

(Southworth & Agard, 2008, Shiau et al., 2006, Graf et al., 2009, Hessling et al., 2009, 

Krukenberg et al., 2008).    

          Our results further support the conclusion that it is the docking of N-terminal 

ligand that induces the conformational change in the C-terminus which alters the affinity 

of coumarin derivatives.  This conclusion is based on the observations that GA and ADP 
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did not bind to the Hsp90 C-terminal truncation (Figures 9B and 23B).  Moreover, assays 

of coumarin derivatives on the C-terminus in the presence of GA and/or ADP produced 

equivalent results to binding assays of the C-terminus in the absence of these additives. 

Furthermore, addition of ADP or GA did not abrogate the nonspecific component of 

novobiocin binding to Hsp90CT (Figures 15 and 29).  Our results are consistent with 

earlier work which suggests the absence of binding sites for ADP and/or GA on the C-

terminal domain of Hsp90 (Prodromou et al., 1997a, Soti et al., 2002, Stebbins et al., 

1997, Marcu et al., 2000a, Marcu et al., 2000b). 

 

Novobiocin and Chlorobiocin Induce Conformational Transitions on Recombinant 

Hsp90CT: 

    As previously described, novobiocin exhibited significant nonspecific binding to both 

Hsp90FL and Hsp90CT (Figures 7& 8).   Whereas we concluded that the nonspecific 

binding component of novobiocin on Hsp90FL was due to the extended charged linker 

connecting the N and middle domains, we rationalize that the nonspecific binding 

component of the Nb: Hsp90CT interaction originates from the composition of our C-

terminal truncation which consists of a string of approximately 20 amino acid residues 

from the middle domain, which we hypothesize to be unstructured and susceptible to 

nonspecific interaction.  Moreover, this unstructured region may not facilitate cooperative 

binding of Nb to Hsp90CT.  While Nb binds to Hsp90FL in a cooperative manner and 

confirms the existence of more than one site of binding for the full length interaction, the 

calculated Hill value of 1.0 together with the extensive nonspecific binding observed for 

Hsp90 CT does not facilitate the discernment between one and two- site binding for 
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Hsp90CT.  However, photoactive novobiocin analogs were observed to crosslink to the 

Hsp90 C-terminus at 2 positions (Robert Matts personal communication), and novobiocin 

was shown to inhibit this crosslinking (Steve Hartson personal communication), 

suggesting that novobiocin binds to more than one site on both Hsp90CT and Hsp90FL.    

     Our results suggest that novobiocin responses for Hsp90 CT were not governed by the 

laws of simple mass action. This conclusion is based on the concentration dependent 

spikes, plateaus, and valleys apparent upon each novobiocin injection (Figure 8), which 

we propose represents four states and at least two apparent conformations of Hsp90CT.  

During the first 10 seconds of injection (Figure 8), the initial binding response depicts a 

rapid spike in response to novobiocin binding to apo-Hsp90CT (Winzor, 2003). While 

seconds 15 - 20 depict the transition from the more extended Hsp90CT:novobiocin 

complex to a less extended Hsp90CT:novobiocin complex.  As novobiocin binding 

continues, Hsp90CT is observed to occupy a smaller fractional volume (a plateau), which 

is stabilized during the remainder of the injection (seconds 20-60).   After novobiocin 

release, Hsp90CT remains in the more compact conformation, as evidenced by the 

negative response spanning 65 and 75 seconds (the valley), and  returns to its original pre 

novobiocin conformation as represented by the zero response following 80 seconds 

(Figure 8).  These results are consistent with ligand-induced global conformational 

transitions (Flatmark et al., 2001, Gestwicki et al., 2001, Winzor, 2003) 

     Similarly, our results suggest that chlorobiocin responses for Hsp90CT were not ruled 

by simple mass action, as suggested by net negative signal that is stabilized after 

chlorobiocin release from Hsp90 CT.  We propose that this net negative signal represents 

a distinct chlorobiocin induced conformation of Hsp90CT, which reflect a decrease in 
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Hsp90CT hydrodynamic radius upon chlorobiocin binding and release (Figure 6).  These 

atypical binding responses are consistent ligand-induced conformational shifts (Flatmark 

et al., 2001, Gestwicki et al., 2001, Winzor, 2003).   

 

ATP Does Not Bind to Recombinant Hsp90CT: 

     Our results suggest that a secondary nucleotide binding pocket does not reside on the 

C-terminus of Hsp90.  This conclusion was based on  a complement of four observations: 

(1) binding of ATP, ADP/ phosphate and ADP/ molybdate to Hsp90CT was not observed 

(Figures 16B , 30B and 37B),  (2) secondary nucleotide binding to Hsp90FL: GA 

complexes was unable to be demonstrated (data not shown), (3) assays of coumarin 

derivatives on the C-terminus with additives, ATP, ADP/ phosphate, and/or ADP/ 

molybdate,  produced equivalent results as binding assays to  apo Hsp90CT (Table 1), 

and (4)  ATP, ADP/ phosphate, and/or ADP/ molybdate addition did not mitigate the 

nonspecific binding component of novobiocin (Figures 22, 29, and 36).    

      Our conclusions, however, are inconsistent with previous work that suggests the 

existence of a secondary ATP binding site on the C-terminal domain of Hsp90 (Soti et 

al., 2002, Marcu et al., 2000a, Marcu et al., 2000b, Garnier et al., 2002, Callebaut et al., 

1994). Scanning differential calorimetry, fluorescence spectroscopy, and isothermal 

titration calorimetry on the in vivo function of Hsp90 and a recombinant C-terminal 

truncation indicate that a second ATP binding site resides in the carboxyl terminus  

(Callebaut et al., 1994, Garnier et al., 2002).  Previous oxidative nucleotide-affinity 

cleavage assays showed that the occupation of the N-terminal nucleotide binding pocket 

with GA or radicicol exposed a C-terminal ATP binding site (Soti et al., 2002).  The C-
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terminus of Hsp90 has also been observed to interact with both purines and pyrimidines 

(Soti et al., 2002).   Further, novobiocin has been observed to block the binding of ATP 

to both the N-terminal and the C-terminal sites (Soti et al., 2002) and compete 

recombinant Hsp90 CT from ATP-linked Sepharose resins (Marcu et al., 2000a, Marcu et 

al., 2000b).      

     The disparities between our results and previously reported results likely reflect the 

different techniques utilized.    Although we were unable to demonstrate a positive 

nucleotide binding response to the C-terminus of Hsp90, it cannot be ruled out that 

alternative conformations of Hsp90CT may induce the binding of ATP to recombinant 

Hsp90CT.  Additionally, steric conditions created by protein immobilization may have 

restricted the conformational freedom necessary to bind C-terminal nucleotide, thereby 

explaining the discrepancy in our results from previous findings.  These important 

questions remain unanswered and require further investigation by other means.   
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CONCLUSIONS 

 

     It has been proposed that the Hsp90 chaperone cycle can be utilized to identify small 

molecule inhibitors which selectively affect different states of the Hsp90 cycle (Mayer et 

al., 2009, Whitesell & Lindquist, 2005).  This study demonstrates that novobiocin and 

related coumarins bind preferentially to the ADP conformation of Hsp90 in vitro.   Our 

study also suggests that Igepal loosens an “autoinhibitory” conformation of Hsp90 to 

facilitate the binding of N-terminal ligands.  We propose that Igepal may function as an 

in vitro pseudo-substrate which lowers the energy barrier necessary to bind N-terminal 

ligand in a manner consistent with current models of cochaperone regulation of the 

ATPase cycle (Abbas-Terki et al., 2002, Pearl & Prodromou, 2000, Pearl & Prodromou, 

2006, Terasawa et al., 2005, Buchner, 1999).  We further propose a model in which 

binding of N-terminal ligands to the Igepal-facilitated conformation of Hsp90 causes a 

structuring of the charged linker connecting the N-terminal and middle domains thereby 

leading to a reduction in the hydrodynamic radius of Hsp90 (Figure  43).  This model, 

while consistent with previous work (Zhang et al., 2004, Sullivan et al., 1997, Shiau et 

al., 2006, Mickler et al., 2009, Krukenberg et al., 2008, Hessling et al., 2009, Graf et al., 

2009), is based on the observation that the presence of bound N-terminal ligand abolished 

the nonspecific binding component to novobiocin.  
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FUTURE DIRECTIONS 

 

     With the current lack of a crystal structure for the eukaryotic Hsp90 C-terminal 

domain, it is difficult to definitively ascertain the site of binding for novobiocin and 

related compounds.   Recent computational modeling suggests a probable binding site for 

novobiocin and related coumarins to be localized between H18 and H20-H21 on the 

Hsp90 C-terminal domain (Sgobba et al., 2008).  However crystallization and mutational 

analyses have yet to confirm this conclusion.   Therefore, important future  and current 

work includes obtaining the structural and biochemical data necessary to elucidate of the 

site of binding for novobiocin related compounds.   Important future work additionally 

includes the elucidation of the mechanisms by which C-terminal ligand binding induces 

conformational changes and contributes to the inhibition of chaperone function.   The 

determination of the mechanisms by which novobiocin compounds bind to the C-

terminus and compete for binding site(s), together with structural data regarding the 

architecture of the binding pocket will lead to the development of higher affinity 

pharmacological derivatives for the treatment of cancer and related illnesses and will 

assist in the deconvolution of the biochemical mechanism by which Hsp90 facilitates the 

maturation of protein substrates. 
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FIGURES 

                 

 
Figure 1: Hsp90 Stucture and Function: 
(A).  The Hsp90 ATPase cycle.  The nucleotide free state corresponds to an open 
state.  Binding of nucleotide induces conformational changes  resulting in a closed or 
tense conformation.  (B).  The Hsp90 chaperone cyle.    
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Figure 2: 
Structures of Novobiocin and Related Coumarins
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Figure 3: Binding of Coumermycin A1 to Hsp90FL: 
(A). Coumermycin A1 was dissolved in standard running buffer (10 mM PIPES, 300 
mM NaCL, 2% DMSO, pH 7.4) and the concentrations indicated in the figure legend 
were co-injected randomly over a surface bearing 33 nmol/mm2 (3000 RU) Hsp90 FL 
and a blank reference surface.  All concentrations were repeated 3 times at a flow rate 
of 25 µL/min in order to allow for a 1.5min contact time.  Double referencing was 
employed to obtain relative response units, as described in material and methods.   
Affinity analysis by SPR QDAT analysis software calculated the KD to be equal to 50 
± 10µM.  (B). A hyperbolic replot of the steady state Cm sensorgram.  Nonlinear 
regression estimated the KD of Cm for Hsp90FL to be 60 ± 20 µM, R2 =0.99.  (C). A 
Hill plot of steady state Cm SPR signals; n = 1, R2 =0.99. 
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Figure 4: Binding of Cm  to Hsp90CT: 
(A).  Coumermycin A1 was dissolved in standard running buffer and the 
concentrations indicated in the figure legend were co-injected randomly over a 
surface bearing 24 nmol/mm2 (600 RU) Hsp90CT and a blank reference surface.  All 
concentrations were repeated 3 times at a flow rate of 2 5 µL/min in order to allow 
for a 1.6 min contact time.  Double referencing was employed in order to obtain 
relative response units.   Affinity analysis by SPR software calculated the KD of Cm 
for Hsp90CT to be 40 ± 10 µM.  (B). A hyperbolic replot of the steady state Cm 
sensorgram.  Nonlinear regression estimated the KD of Cm for Hsp90FL to be 45 ± 
10 µM, R2 =0.99.  (C). A Hill plot of steady state Cm SPR signals; n = 1, R2 =0.99. 
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Figure 5:  Binding of Chlorobiocin to Hsp90FL: 
(A). Chlorobiocin was dissolved in standard running buffer and the concentrations 
indicated in the figure legend were co-injected randomly over a surface containing 
33nmol/mm2 (3000 RU) Hsp90 FL and blank control surface.  All concentrations 
were repeated 3 times at a flow rate of 25uL/min in order to allow for a 1.0 min 
contact time.  As described in material and methods, double referencing was 
employed to obtain relative response units.   Affinity analysis by SPR analysis 
software calculated a high affinity KD1 = 45 ± 5 µM and a low affinity KD2 = 155 ± 
10 µM. (B). A hyperbolic replot of the steady state Cb SPR response curves. The 
concentration of half maximal occupancy of Cb for Hsp90FL calculated by 
nonlinear regression of the data points was 100  ± 20 µM, R2 =0.98.  (C). A Hill 
plot of steady state SPR signals; n = 1.7, R2 =0.99. 
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   Figure 6:  Binding of Cb to Hsp90CT: 

 (A). Chlorobiocin was dissolved in standard running buffer  and the 
concentrations indicated in the figure legend were co-injected randomly over a 
surface containing 24 nmol/mm2 (600 RU) Hsp90CT and blank control surface.  
All concentrations were repeated 3 times at a flow rate of 25 µL/min in order to 
allow for a 1.8 min contact time.  Double referencing was employed to obtain 
relative response units.  Affinity analysis by SPR analysis software calculated a 
high affinity KD1 = 35 ± 5 µM and a low affinity KD2 = 110  ± 10 µM. (B). A 
hyperbolic replot of the steady state Cb SPR response curves.   70 ± 15 µM is the 
concentration of half maximal occupancy of Cb for Hsp90CT as calculated by 
nonlinear regression of the data points, R2 =0.98.    (C). A Hill plot of steady 
state SPR signals; n = 1.78, R2 =0.99. 
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Figure 7: Binding of Novobiocin to Hsp90FL 

(A). Novobiocin was dissolved in standard running buffer and the concentrations 
indicated in the figure legend were co-injected randomly over a surface containing 
33nmol/mm2 (3000 RU) Hsp90 FL and a blank control surface.  All concentrations 
were repeated 3 times at a flow rate of 25uL/min in order to allow for a 1.0 min contact 
time.  Double referencing was employed to obtain all relative response units.   (B)  A 
hyperbolic replot of steady state Nb response curves. (C) Nb binding isotherm globally 
fit for total and nonspecific binding using the equation Y= (Bmax(X))/(KD +X)) +NS(X) 
to fit total binding and the equation Y=NX(X) to fit nonspecific binding.  (D).  A 
baseline corrected hyperbolic replot of Nb steady state response curves, representing 
the subtraction of nonspecific binding from total binding.  Nonlinear regression of the 
baseline corrected data points estimated the K0.5 of Nb for Hsp90FL to be 3.3mM ± 
0.9mM, R2 =0.99.  (E). A Hill plot of Nb SPR signals, n = 1.3, R2 =0.98. 
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Figure 8: Binding of Nb to Hsp90CT: 
(A). Novobiocin was dissolved in standard running buffer  and the concentrations 
indicated in the figure legend were co-injected randomly over a surface 
containing 24nmol/mm2 (600 RU) Hsp90CT and a blank control surface.  All 
concentrations were repeated 3 times at a flow rate of 25uL/min in order to allow 
for a 1.0 min contact time.  Double referencing was employed to obtain all 
relative response units.  (B)  A hyperbolic replot of steady state Nb response 
curves. (C) Nb binding isotherm globally fit for total and nonspecific binding 
using the equation Y= (BmaxX/(KD +X)) +NS(X) to fit total binding and the 
equation Y=NX(X) to fit nonspecific binding.  (D).  A baseline corrected 
hyperbolic replot of Nb steady state response curves, representing the subtraction 
of nonspecific binding from total binding.  Nonlinear regression of the baseline 
corrected hyperbolic replot estimated the KD of Nb for Hsp90CT to be 1.9mM ± 
0.6mM, R2 =0.98.  (E). A Hill plot of Nb SPR signals, n = 1.0, R2 =0.98. 
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Figure 9:  Binding of Geldanamycin to Hsp90 Constructs: 
(A) To facilitate access of Hsp90’s N-terminal nucleotide binding site, 0.01% 
Igepal was dissolved in standard  running buffer and successively injected over a 
surface of 33nmols/mm2 Hsp90FL in a series of three injections.  2µM GA was 
then dissolved in standard SPR running buffer and injected over this pretreated 
surface at a flow rate of 25uL/min(n=3).  (B)  2µM GA was dissolved in standard 
SPR running buffer and injected over an SPR chip coupled with 100nmols/mm2 
(2500RU) Hsp90CT at a flow rate of 25uL/min(n=3). 
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Figure 10:  Effect of GA on the Binding of Coumermycin A1 to Hsp90FL:  
(A). Coumermycin A1 was dissolved in Geldanamycin  running buffer (10mM 
PIPES, 300mM NaCL, 2uM GA, 2% DMSO, pH 7.4).  Coumermycin A1 was 
assayed as described in Figure 1.  SPR analysis software calculated a high affinity 
KD1 = 3.3 ± 5uM and a lower affinity KD2 = 20uM ± 15uM.   (B). A hyperbolic 
replot of the steady state Cm sensorgram in the presence of GA.  10.75uM ± 2uM 
is the concentration of half maximal occupancy of Cm for Hsp90CT as calculated 
by nonlinear regression of the data points, R2 =0.99.   (C). A Hill plot of steady 
state Cm SPR signals; n = 1.0, R2 =0.99. 
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Figure 11:  GA Does Not Alter the Affinity of Cm A1 for Hsp90CT: 
(A). Coumermycin A1 was dissolved in Geldanamycin running buffer and 
assayed as described in Figure 2, with the exception that the assays were 
conducted over a surface bearing 100nmols/mm2 (2500RU) Hsp90CT.  Affinity 
analysis by SPR software calculated the KD of Cm for Hsp90CT to be 40uM ± 
10uM.  (B). A hyperbolic replot of the steady state Cm sensorgram.  Nonlinear 
regression estimated the KD of Cm for Hsp90CT in the presence of GA to be 
45uM ± 10uM, R2 =0.99.  (C). A Hill plot of steady state Cm SPR signals; n = 1, 
R2 =0.99. 
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Figure 12:  Effect of Geldanamycin on the  Binding of Cb to Hsp90FL:  
(A). Chlorobiocin was dissolved in GA running buffer and assayed as described 
in Figure 2.   Affinity analysis by SPR analysis software calculated a high affinity 
KD1 = 45 ± 5uM and a low affinity KD2 = 170uM ± 20uM.  (B). A hyperbolic 
replot of the steady state Cb sensorgram.  Nonlinear regression estimated the 
concentration of half maximal occupancy of Cb for Hsp90FL_GA to be 120uM ± 
20uM, R2 =0.99.  (C). A Hill plot of the steady state Cb response signals; n = 1.5, 
R2 =0.99. 
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 Figure 13:  GA Does not Alter the Affinity of Chlorobiocin for Hsp90CT: 
(A). Chlorobiocin was dissolved in GA running buffer and assayed  over a 
surface bearing 100nmols/mm2 (2500RU) Hsp90CT as described in Figure 4.  
Affinity analysis calculated a high affinity KD1 = 36 ± 5uM and a low affinity 
KD2 = 109uM  ± 10uM. (B). A hyperbolic replot of the steady state Cb SPR 
response curves.   70uM ± 15uM is the concentration of half maximal occupancy 
of Cb for Hsp90CT in the presence of GA as calculated by nonlinear regression 
of the data points, R2 =0.98.    (C). A Hill plot of steady state SPR signals; n = 
1.70, R2 =0.99. 
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Figure 14:  Effect of Geldanamycin on the Binding of Nb to Hsp90FL:  
(A). Novobiocin was dissolved in GA running buffer and assayed as described in 
Figure 5.   Affinity analysis calculated a high affinity KD1 = 800uM ± 80uM and a 
low affinity KD2 = 2.0mM ± 200uM.  (B). A hyperbolic replot of the steady state 
Nb response curves.  Nonlinear regression of the data points calculated the 
concentration of half maximal occupancy of Nb  for Hsp90FL in complex with 
GA to be 1.3mM ± 200uM, R2 =0.99.   (C). A Hill plot of the steady state 
response signals; n = 1.3, R2 =0.99. 
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 Figure 15:  GA Does not Alter the Affinity of Nb for Hsp90CT 
(A)  Novobiocin was dissolved in GA running buffer and assayed over a 
surface bearing 100nmols/mm2 Hsp90CT, as described in Figure 6.   (B)  A 
hyperbolic replot of steady state Nb response curves. (C) Nb binding isotherm 
globally fit for total and nonspecific binding, as described in Figure 6. (D).  A 
baseline corrected hyperbolic replot of the Nb steady state response curves.  
Nonlinear regression of the baseline corrected data points estimated the K0.5 of 
Nb for Hsp90CT with additive GA to be 1.86mM ± 0.58mM, R2 =0.99.  (E). A 
Hill plot of Nb SPR signals, n = 1.0, R2 =0.98. 
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Figure 16:  Binding of ATP to Hsp90 Constructs: 
(A) 33nmols/mm2 Hsp90FL was pretreated with 0.01% Igepal as described in 
Figure 7.  ATP was dissolved in nucleotide running buffer (10mM PIPES, 
300mM NaCL, 5mM MgCL2, 2% DMSO, pH 7.4) and injected over the igepal 
pretreated surface at a flow rate of  25uL/min(n=3).  (B)  5mM ATP was 
dissolved in nucleotide running buffer and injected over a surface bearing 
100nmols/mm2 (2500RU) Hsp90CT at a flow rate of 25uL/min(n=3). 
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Figure 17:  ATP Does not Alter the Affinity of Cm A1 for Hsp90FL 
(A). Coumermycin A1 was dissolved in ATP assay buffer (10mM PIPES, 300mM 
NaCL, 5mM MgCL2, 5mM ATP, 2% DMSO, pH 7.4) and assayed as described in 
Figure 1.  Affinity analysis calculated the KD of Cm A1 for the Hsp90FL_ATP 
permutation to be equal to 49uM ± 7uM.  (B). A hyperbolic replot of the steady 
state Cm sensorgram.  Nonlinear regression estimated the KD of Cm for the 
Hsp90FL ATP conjugate to be 55uM ± 20uM, R2 =0.99.  (C). A Hill plot of 
steady state SPR signals; n = 1, R2 =0.99. 
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  Figure 18:  ATP Does Not Alter the Affinity of Coumermycin A1 for Hsp90CT 
(A). Coumermycin A1 was dissolved in ATP running buffer and assayed over a 
surface bearing 100nmols/mm2 (2500RU) Hsp90CT as described in Figure 2.   
Affinity analysis calculated the KD of Cm A1 for Hsp90CT under conditions of 
saturating ATP be equal to 18.6uM ± 10uM.  (B). A hyperbolic replot of the steady 
state Cm sensorgram.  Nonlinear regression estimated the KD of Cm A1 for 
Hsp90CT in the presence of ATP additive to be 20uM ± 10uM, R2 =0.99.  (C). A 
Hill plot of steady state Cm A1 SPR signals; n = 1, R2 =0.99. 
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Figure 19:  ATP Does Not Alter the Affinity of Chlorobiocin for Hsp90FL: 
(A). Chlorobiocin was dissolved in ATP running buffer and assayed as described 
in Figure3.  Affinity analysis established a high affinity KD1 = 40 ± 10uM and a 
low affinity KD2 = 170uM ± 20uM.  (B). A hyperbolic replot of the steady state 
Cb SPR response curves.   110uM ± 20uM is the concentration of half maximal 
occupancy of Cb for the Hsp90FL_ATP permutation, as calculated by nonlinear 
regression of the data points, R2 =0.975.    (C). A Hill plot of steady state SPR 
signals; n = 2.0, R2 =0.99. 



 87

 
 

Figure 20:  ATP Does Not Alter the Affinity of Chlorobiocin for Hsp90CT: 
(A). Chlorobiocin was dissolved in ATP running buffer and assayed over a surface 
bearing 100nmols/mm2 (2500RU) Hsp90CT as described in Figure 4.   Affinity 
analysis established a high affinity KD1 = 30 ± 5uM and a low affinity KD2 = 
110uM  ± 10uM.  68uM ± 15uM is the concentration of half maximal occupancy 
of Cb for  Hsp90CT under conditions of saturating ATP, as calculated by nonlinear 
regression of the data points, R2 =0.98.    (C). A Hill plot of steady state Cb SPR 
signals; n = 1.7, R2 =0.99. 
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 Figure 21:  ATP Does Not Alter the Affinity of Novobiocin for Hsp90FL 
 (A). Novobiocin was dissolved in ATP running buffer and assayed as described 
in Figure 5.  Affinity analysis established a high affinity KD1 = 980uM ± 80uM 
and a low affinity KD2 = 2.1mM  ± 200uM.  (B). A hyperbolic replot of the steady 
state Nb SPR response curves.   1.5mM ± 0.50mM is the concentration of half 
maximal occupancy of Nb for the Hsp90FL_ATP conjugate, as calculated by 
nonlinear regression of the data points, R2 =0.975.    (C). A Hill plot  of steady 
state SPR signals; n = 2.0, R2 =0.99. 
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 Figure 22:  ATP Does Not Alter the Affinity of Novobiocin for Hsp90CT: 
     (A). Novobiocin was dissolved in ATP running buffer and assayed over a surface 

bearing 100nmols/mm2 Hsp90CT, as described in Figure 6.   (B)  A hyperbolic 
replot of steady state Nb response curves. (C) Nb binding isotherm globally fit 
for total and nonspecific binding, as described in Figure 6. (D).  A baseline 
corrected hyperbolic replot of the Nb steady state response curves.  Nonlinear 
regression of the baseline corrected data points estimated the K0.5 of Nb for 
Hsp90CT with additive ATP to be 1.6mM ± 0.7mM, R2 =0.97.  (E). A Hill plot 
of NbSPR signals, n = 1.0, R2 =0.98. 
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Figure 23:  Binding of ADP to Hsp90 Constructs 
(A) 33nmols/mm2 Hsp90FL was pretreated with 0.01% Igepal as described in 
Figure 7.  0.5mM ADP was dissolved in nucleotide running buffer (10mM PIPES, 
300mM NaCL, 5mM MgCL2, 2% DMSO, pH 7.4) and injected over the igepal 
pretreated surface at a flow rate of 25uL/min (n=3).  (B)  0.5mM ADP was 
dissolved in nucleotide running buffer and injected over a surface bearing 
100nmols/mm2 (2500RU) Hsp90CT at a flow rate of 25uL/min (n=3). 
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Figure 24:  ADP Allosterically Enhances the Affinity of Cm Al for Hsp90FL: 
(A). Coumermycin A1 was dissolved in ADP running buffer (10mM PIPES, 
300mM NaCL, 5mM MgCL2, 0.5mM ADP, 2% DMSO, pH 7.4), and assayed as 
described in Figure 1.    Affinity analysis established a high affinity KD1 = 1.5uM ± 
0.5uM and a low affinity KD2 = 7.5uM ± 2uM.  (B). A hyperbolic replot of the 
steady state Cm A1 sensorgram.  3.6uM ± 1.5uM is the concentration of half 
maximal occupancy of Cm A1 for Hsp90FL_ADP, as calculated by nonlinear 
regression of the data points, R2 =0.98.(C). A Hill plot of steady state SPR signals; 
n = 1, R2 =0.98. 
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 Figure 25:  ADP Does Not Alter the Affinity of Coumermycin A1 for Hsp90CT: 
 (A). Cm A1 was dissolved in ADP running buffer and assayed over a surface 
bearing 100nmols/mm2 (2500RU) Hsp90CT as described in Figure 2.  Affinity 
analysis estimated the KD of Cm A1 for Hsp90CT in the presence of ADP to be 
38uM ± 10uM.  (B). A hyperbolic replot of the steady state Cm sensorgram.  
Nonlinear regression of the data points calculated the KD of Cm for Hsp90CT in the 
presence of ADP to be 39uM ± 10uM, R2 =0.99.  (C). A Hill plot of steady state Cm 
SPR signals; n = 1, R2 =0.99. 
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Figure 26:  ADP Allosterically Enhances the Affinity of Cb for Hsp90FL: 
(A). Cb was dissolved in ADP running buffer and assayed as described in Figure 
3. Affinity analysis calculated a high affinity KD1 = 15uM ± 5uM and a low 
affinity KD2 = 30uM ± 20uM.  (B). A hyperbolic replot of the steady state Cb 
SPR response curves.  30uM ± 20uM is the concentration of half maximal 
occupancy of Cb for Hsp90FL_ADP, as calculated by nonlinear regression of the 
data points, R2 =0.98.  (C). A Hill plot of steady state SPR signals; n = 2.6, R2 

=0.99. 
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Figure 27:  ADP Does Not Alter the Affinity of Chlorobiocin for Hsp90CT: 
(A). Cb was dissolved in ADP running buffer and assayed over a surface bearing 
100nmols/mm2(2500RU) Hsp90CT as described in Figure 4. Affinity analysis 
calculated a high affinity KD1 = 35uM ± 5uM and a low affinity KD2 = 88uM ± 
10uM.  (B). A hyperbolic replot of the steady state Cb SPR response curves.  
65uM ± 15uM is the concentration of half maximal occupancy of Cb for 
Hsp90CT under saturating conditions of ADP as calculated by nonlinear 
regression, R2 =0.98.  (C). A Hill plot of steady state SPR signals; n = 1.8, R2 

=0.99. 
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Figure 28:  ADP Allosterically Enhances the Affinity of Nb for Hsp90FL: 
(A). Nb was dissolved in ADP running buffer  and assayed as described in 
Figure 5. Affinity analysis calculated a high affinity KD1 = 130uM ± 30uM 
and a low affinity KD2 = 600uM ± 200uM.  (B). A hyperbolic replot of the 
steady state Nb sensorgram.  250uM ± 50uM is the concentration of half 
maximal occupancy of Nb for Hsp90FL_ADP, as calculated by nonlinear 
regression of the data points, R2 =0.975.  (C). A Hill plot of steady state Nb 
SPR response curves; n = 3.0, R2 =0.99 
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Figure 29:  ADP Does Not Alter the Affinity of Novobiocin for Hsp90CT: 
     (A). Novobiocin was dissolved in ADP running buffer and assayed over a 

surface  containing 100nmols/mm2 Hsp90CT, as described in Figure 6.   (B)  A 
hyperbolic replot of the steady state Nb response curves. (C) Nb binding 
isotherm globally fit for total and nonspecific binding, as described in Figure 6. 
(D).  A baseline corrected hyperbolic replot of the Nb steady state SPR signals.  
Nonlinear regression of the baseline corrected data points estimated the K0.5 of 
Nb for Hsp90CT with additive ADP to be 1.7mM ± 0.69mM, R2 =0.97.  (E). A 
Hill plot of Nb SPR signals, n = 1.0, R2 =0.98 
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Figure 30:  Binding of ADP/ phosphate to Hsp90 Constructs 
(A) 33nmols/mm2 Hsp90FL was pretreated with 0.01% Igepal as described in 
Figure 7.  0.25mM ADP was dissolved in nucleotide-phosphate running buffer 
(10mM PIPES, 300mM NaCL, 5mM MgCL2, 100mM phosphate 2% DMSO, pH 
7.4) and injected over the igepal pretreated surface at a flow rate of 25uL/min 
(n=3).  (B)  0.5mM ADP was dissolved in nucleotide- phosphate running buffer 
and injected over a surface bearing 100nmols/mm2 (2500RU) Hsp90CT at a flow 
rate of 25uL/min (n=3). 
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Figure 31:  ADP/ phosphate Does Not Alter the Affinity of Cm A1 for Hsp90FL  
(A). Coumermycin A1 was dissolved in ADP/phosphate running buffer (10mM 
PIPES, 300mM NaCL, 5mM MgCL2, 0.5mM ADP, 100mM phosphate, 2% DMSO, 
pH 7.4) and assayed as described in Figure 1. Affinity analysis estimated the KD of 
Cm A1 for the Hsp90FL ADP/ phosphate permutation to be 25uM ± 10uM.  (B). A 
hyperbolic replot of the steady state Cm sensorgram.  Nonlinear regression of the 
data points calculated the KD of Cm A1 for Hsp90FL_ADP/ phosphate to be 20uM ± 
15uM, R2 =0.99.  (C). A Hill plot of steady state Cm SPR signals; n = 1, R2 =0.99 
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 Figure 32:  ADP/ phosphate Does Not Alter the Affinity of Cm A1 for Hsp90CT 
 (A). Coumermycin A1 was dissolved in ADP/ phosphate running buffer  and assayed 
over a surface bearing 100nmol/mm2 (2500RU) Hsp90CT, as described in Figure 2. 
Affinity analysis estimated the KD of Cm A1 for the Hsp90CT in the presence of 
ADP/ phosphate to be 25uM ± 10uM.  (B). A hyperbolic replot of the steady state Cm 
sensorgram.  Nonlinear regression of the data points calculated the KD of Cm A1 for 
Hsp90FL_ADP/ phosphate to be 20uM ± 15uM, R2 =0.99.  (C). A Hill plot of steady 
state Cm SPR signals; n = 1, R2=0.99 
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 Figure 33:  ADP/ phosphate Does Not Alter the Affinity of Cb for Hsp90FL:  
(A). Cb was dissolved in ADP/ phosphate running buffer and assayed as 
described in Figure 3.  Affinity analysis calculated a high affinity K D1 = 35 ± 
8uM and a lower affinity KD2 = 145uM  ± 20uM.  (B). A hyperbolic replot of the 
steady state Cb sensorgram.  86uM ± 18uM is the concentration of half maximal 
occupancy of Cb for Hsp90FL_ADP/ phosphate, as calculated by nonlinear 
regression of the data points, R2 =0.98. (C). A Hill plot of steady state SPR 
signals; n = 1.6, R2 = 0.99 
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 Figure 34:  ADP/ phosphate Does Not Alter the Affinity of Cb for Hsp90CT: 
(A). Cb was dissolved in ADP/ phosphate running buffer and assayed over a 
chipbearing 100nmols/mm2 (2500RU) Hsp90CT, as described in Figure 4.  
Affinity analysis estimated a high affinity KD1 = 35 ± 5uM and a lower affinity KD2 
= 110uM  ± 10uM.  (B). A hyperbolic replot of the steady state Cb sensorgram.  
70uM ± 15uM is the concentration of half maximal occupancy of Cb for Hsp90CT 
in the presence of ADP/ phosphate, as calculated by nonlinear regression of the 
data points, R2 =0.98. (C). A Hill plot of steady state Cb SPRresponse curves; n = 
1.8, R2 = 0.99 
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  Figure 35:  ADP/ phosphate Does Not Alter the Affinity of Nb for Hsp90FL: 
(A). Nb was dissolved in ADP/ phosphate running buffer and assayed as 
described in Figure 5.  Affinity analysis calculated a high affinity KD1 = 900uM 
± 100uM and a lower affinity KD2 = 2.2mM  ± 250uM.  (B). A hyperbolic replot 
of the steady state Nb sensorgram.  1.24mM ± 0.30mM is the concentration of 
half maximal occupancy of Nb for Hsp90FL_ADP/ phosphate, as determined by 
nonlinear regression of the data points, R2 =0.97. (C). A Hill plot of steady state 
Nb response curves; n = 1.6, R2 = 0.99 
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Figure 36:  ADP/ phosphate Does Not Alter the Affinity of Nb for Hsp90CT: 

      (A). Novobiocin was dissolved in ADP/ phosphate running buffer and assayed 
over a surface bearing 100nmols/mm2 Hsp90CT, as described in Figure 6.   (B)  
A hyperbolic replot of steady state Nb response curves. (C) Nb binding isotherm 
globally fit for total and nonspecific binding, as described in Figure 6. (D).  A 
baseline corrected hyperbolic replot of the Nb steady state  response curves.  
Nonlinear regression of the baseline corrected data points estimated the K0.5 of  
Nb for Hsp90CT with additive ADP/ phosphate to be 0.95mM ± 0.5mM, R2 

=0.97.  (E). A Hill  plot of Nb SPR signals, n = 1.0, R2 =0.98. 
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Figure 37:  Binding of ADP/ molybdate to Hsp90FL: 
33nmols/mm2 Hsp90FL was pretreated with 0.01% Igepal as described in Figure 
7.  0.5mM ADP was dissolved in nucleotide-molybdate running buffer (10mM 
PIPES, 300mM NaCL, 5mM MgCL2, 20mM Na2MoO4, 2% DMSO, pH 7.4) and 
injected over the igepal pretreated surface at a flow rate of 25uL/min (n=3). 
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Figure 38:  ADP/ molybdate Does not Alter the Affinity of Cm A1 for Hsp90FL: 
(A). Coumermycin A1 was dissolved in ADP/ molybdate running buffer (10mM 
PIPES, 300mM NaCL, 5mM MgCL2, 0.5mM ADP, 20mM Na2MoO4, 2% DMSO, 
pH 7.4) and assayed as described in Figure 1. Affinity analysis estimated the KD of 
Cm A1 for the Hsp90FL_ADP/ molybdate conjugate to be 33uM ± 15uM.  (B). A 
hyperbolic replot of the steady state Cm sensorgram.  Nonlinear regression of the 
data points calculated the KD of Cm A1 for Hsp90FL_ADP/ molybdate to be 30uM 
± 10uM, R2 =0.99.  (C). A Hill plot of steady state Cm SPR signals; n = 1, R2 =0.99 
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Figure 39:  ADP/ molybdate Does not Alter the Affinity of Cb for Hsp90FL: 
(A). Cb was dissolved in ADP/ molybdate running buffer and assayed as 
described in Figure 3.  Affinity analysis calculated a high affinity K D1 = 30 ± 
8uM and a lower affinity KD2 = 125uM ± 20uM.  (B). A hyperbolic replot of the 
steady state Cb sensorgram.  79uM ± 18uM is the concentration of half maximal 
occupancy of Cb for Hsp90FL_ADP/ molybdate, as calculated by nonlinear 
regression of the data points, R2 =0.98. (C). A Hill plot of steady state SPR 
signals; n = 1.3, R2 = 0.99. 
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Figure 40:  ADP/ molybdate Does not Alter the Affinity of Nb for Hsp90FL: 
(A). Nb was dissolved in ADP/ molybdate running buffer and assayed as 
described in Figure 5.  Affinity analysis calculated a high affinity K D1 = 750uM ± 
100uM and a lower affinity KD2 = 2.3mM ± 200uM.  (B). A hyperbolic replot of 
the steady state Cb sensorgram.  1.3mM ± 200uM is the concentration of half 
maximal occupancy of Nb for Hsp90FL_ADP/ molybdate, as calculated by 
nonlinear regression of the data points, R2 =0.98. (C). A Hill plot of steady state 
SPR signals; n = 1.4, R2 = 0.99 
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Figure 41:  Competition Assays:   
(A) 320uM Cm A1 was injected at a flow rate of 25uL/min over 33nmol/mm2 
Hsp90FL after the protein surface had been preequilibrated with standard running 
buffer containing 640uM of  competitor, chlorobiocin, (n=3).  (B)  320uM Cm A1 
was assayed as described in (A) with 4mM of competitor, novobiocin (n=3).  (C)  
640uM Cb was assayed as described in (A) in conjunction with 320uM of 
antagonist, coumermycin A1 (n=3).  (D) 640uM Cb was assayed as described in 
(A) in tandem with 4mM of antagonist, novobiocin (n=3).  (E). 4mM Nb was 
assayed as described in (A) in combination with 320uM of competitor, 
coumermycin A1 (n=3).  (F). 4mM Nb was assayed as described in (A) in tandem 
with 640uM of antagonist, chlorobiocin, (n=3).  Assays done immediately prior to 
addition of each competitor and immediately following the removal of each 
competitor revealed typical response curves for all analytes examined. 
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Figure 42:  Negative Controls: 
(A). 0.5mM Dicoumarol was dissolved in standard running buffer and injected at 
a flow rate of 25uL /min over (A1) 33nmols/mm2 Hsp90FL and (A2) 
100nmols/mm2 Hsp90CT in independent assays (n=3).   (B). (B1) 200uM 
Coumermycin A1 was dissolved in standard running buffer and injected at a flow 
rate of 25uL/min over  a surface bearing 40nmols/mm2 Cdc37 (n=3).  (B2-B3) 
320uM chlorobiocin and 4mM novobiocin were assayed as described in B1 (n=3).   
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Figure 43:  Model: 
(A). An autoinhibitory conformation of Hsp90 which induced by steric hindrance of 
nucleotide capping lid causing an occlusion of the NTD nucleotide binding pocket.  
Injection of Igepal induces an Igepal-facilitated conformation of Hsp90, in which 
the nucleotide capping lid no longer occludes the NTD nucleotide binding pocket.  
(B).  The Igepal facilitated conformation of Hsp90 readily binds GA, ADP, and/or 
ATP, whereas the autoinhibitory conformation of Hsp90 is unable to bind N-
terminal ligands.  Binding of N-terminal ligand to the Igepal-facilitated 
conformation of Hsp90 leads to a reduction in the hydrodynamic radius of Hsp90. 
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Hsp90FL Summary of Values:  
 Cm Cb Nb Replicates  
 
Hsp90 
 
 
 

 
50 ± 10 µµµµM 

 
45 ± 5 µµµµM 

155 ± 10 µµµµM 
 

 
3.3  ± 0.9 mM 

 
n = 3  

 

Hsp90: GA  
 
 
 

3.3 ± 5 µµµµM 
20 ± 15 µµµµM 

 

45 ± 5 µµµµM 
170 ± 20µµµµM 

800 ± 80 µµµµM 
2 ± 0.2 mM 

n = 3 

Hsp90: ATP  49 ± 7 µµµµM 40 ± 10 µµµµM 
170 ± 20 µµµµM 

 

980 ± 80 µµµµM 
2.1 ±0.2 mM 

n = 3 

     
Hsp90: ADP  1.5 ± 0.5 µµµµM 

7.5 ±  2.0 
µµµµM 

 

15 ± 5 µµµµM 
30 ± 20 µµµµM 

130 ± 30 µµµµM 
600 ± 200 mM 

n = 3 

     
Hsp90: ADP/PoO 4 25 ± 10 µµµµM 35 ± 8 µµµµM 

145 ± 20µµµµM 
 

900 ± 100 µµµµM 
2.2 ±0.3mM 

n = 3 
 
 
 

Hsp90: ADP/MoO 4 33 ± 15 µµµµM 30 ± 8µµµµM 
125 ± 20 µµµµM 

750 ± 100 µµµµM 
2.3 ± 0.2 mM 

n = 3 
 
 

 
Table 1: 
Summary of affinity constants obtained for Hsp90FL interactions.   All constants are 
reported as KD’s with the exception for the apo Hsp90: Nb interaction.  Nb’s binding 
constant for apo Hsp90 FL is reported as the concentration of half maximal occupancy 
(K0.5). 
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Hsp90CT Summary of Values: 
 Cm Cb Nb Replicates  
 
Hsp90CT 

 
40 ± 10 µµµµM 

 
35 ± 5 µµµµM 

110 ± 10 µµµµM 

 
1.9 ± 0.6 mM 

 
n = 3 

 
 
 

Hsp90CT: GA  40 ± 10 µµµµM  36 ± 5 µµµµM 
109 ± 10 µµµµM 

1.9 ± 0.6 mM n = 3 

 
 

    

Hsp90CT: ATP  20 ± 10 µµµµM 30 ± 5 µµµµM 
110 ± 10 µµµµM 

1.6 ± 0.7 mM n = 3 

 
 

    

Hsp90CT: ADP  38 ± 10 µµµµM 35 ± 5 µµµµM 
88 ± 10 µµµµM 

1.7 ± 0.69 mM n = 3 
 
 
 

Hsp90CT: ADP/PoO 4 25 ± 10 µµµµM 35 ± 5 µµµµM 
110 ± 10 µµµµM 

0.95 ± 0.5 mM n = 3 
 
 

 
Table 2: 
Summary of affinity constants obtained for Hsp90CT interactions.   All constants are 
reported as KD’s with the exception for the Hsp90CT: Nb interactions.  Nb’s binding 
constants for all Hsp90CT interactions are reported as concentrations of half maximal 
occupancy (K0.5). 
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Findings and Conclusions: 
      
Heat shock protein 90 (Hsp90) is a highly conserved, eukaryotic, molecular chaperone 
which stabilizes an assortment of oncogenic proteins.  Currently, novobiocin and related 
coumarins are being developed into higher affinity analogs for the treatment of various 
cancers based on their inhibition of Hsp90 chaperone function.      However, direct 
binding to Hsp90 has yet to be demonstrated; the existence of an Hsp90 binding site for 
these compounds has, to date, been based on a number of indirect assays.  In order to 
address this gap in our knowledge, we used the technique of surface plasmon resonance 
(SPR) to assay the affinities of novobiocin derivatives for full length Hsp90 (Hsp90FL) 
and a C-terminal Hsp90 truncation (Hsp90CT).  We also examined the effect of bound N-
terminal ligands, ATP, ADP, and geldanamycin (GA), on the affinities for our 
compounds of interest.    Results demonstrate that novobiocin and related coumarins bind 
to apo Hsp90FL and apo Hsp90CT with comparable affinities.  Additionally, novobiocin 
and related compounds did not bind to the N terminal nucleotide binding pocket on 
Hsp90FL.   Moreover, coumarin derivatives bound to Hsp90: ADP complexes with 
enhanced affinity.  Our results demonstrate that a binding site for novobiocin related 
compounds resides on the C-terminus of Hsp90.  Our results also support the hypothesis 
that the N-terminal and C-terminal domains of Hsp90 interact to moderate Hsp90 
chaperone activity.  Our results provide new insights into the mode of action by which 
novobiocin related compounds interact with Hsp90 in vitro and may suggest novel 
approaches to the development of higher affinity novobiocin derivatives in the treatment 
of cancer and related diseases. 
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