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Chapter 1 

Introduction and Organization of 
Thesis 

With the invention of the computer a new branch of physics was born-computational 

physics. The very first electronic computer, the ENIAC, built in 1945, was used to 

solve physical, albeit military, problems such as the deter~ination of artillery trajec

tories and (still classified) quandaries in nuclear physics [1]. In June of 1953, the first 

computer simulation of interacting particles was reported [2,3]. Since then, computer 

simulation has grown to become one of the most powerful techniques available to the 

physicist. To a large degree, this dramatic increase in use is due to the huge increase 

in computational power since the 1950's and, just as important, the huge decrease 

in price for these powerful computers. However, even low-cost, fast computers would 

be of no use if simulation methods did not give some insight into physics. Indeed, 

tremendous insight and information has been delivered to physics through the use of 

computer simulation. 

Given the widespread use of computer simulation in physics, one should not be 

surprised that many different simulation methods have been devised. When design

ing a simulation of a particular model, many factors must be considered. Foremost 

is the quantity that is to be calculated. Then, the computational expense of the 

various simulation methods must be determined and compared with the available 

1 



resources. In this comparison of computational cost, not all currency is equivalent. 

A particular facility may have a super-computer containing a very fast processor 

while another may have a massively parallel computer containing many slower pro

cessors. Simulation methods that work very well on a parallel system may be very 

inefficient on a single processor system, and vice versa. So, each problem needs a 

simulation method tailored to the model and to the computational resources at hand. 

This situation has lead to the creation of a large number of methods. In this the

sis, two physical systems, lipid bilayers and diamond films, are studied using three 

computation techniques: molecular dynamics, configurational-bias Monte Carlo, and 

kinetic/equilibrium Monte Carlo. Since the two physical systems are quite different, 

it seems reasonable to divide the thesis itself into two distinct parts. 

The first part details the study of dimyristoyl phosphatidylcholine (DMPC) lipid 

bilayers in the fluid-like liquid crystal phase and the modulated ripple phase. The 

liquid crystal phase is studied via molecular dynamics (MD) simulation. This work 

was performed in collaboration with S.-W. Chiu, V. Balaji, S. Subramaniam and 

E. Jakobsson at the University of Illinois, Urbana-Champaign, and results of the study 

have been published [4]. My role in this project involved primarily interpretation 

of data calculated by Chiu and Jakobsson. The ripple phase was modeled with 

a fifteen state lattice model that was determined using configurational-bias Monte 

Carlo (CBMC). 

Part II of the thesis focuses on my work in the simulation of chemical vapor 

deposition (CVD) of diamond film. Development and implementation of a hybrid 

kinetic/equilibrium Monte Carlo method is presented as a method of incorporating 

events that occur on widely varying time scales into a single simulation. This work 

has also been published [5,6]. 
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Part I 

Simulation Studies of Lipid 
Bilayers 
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Chapter 2 

Introduction 

Lipids are members of a large class of molecules known as amphipathic molecules. 

These species have two types of molecular groups or moieties. One moiety is polar 

and thus dissolves readily in polar solvents such as water but is insoluble in non-polar 

solvents such as oils. This type of molecular group is termed hydrophilic (literally, 

water loving). The other moiety is non-polar and thus does not readily dissolve in 

water although it does dissolve in oils. It is called hydrophobic (water fearing). When 

amphipathic molecules are dispersed in water, oil or both, a wide variety of structures 

can form as the two moieties are dissolved into their favored solvents and repelled 

by their unpreferred solvents. Lipids dispersed in water under proper conditions can 

form a membrane or bilayer structure. This structure consists of two adjacent sheets 

of lipids with their hydrophobic regions forming the interior of the membrane and 

their hydrophilic regions forming the exterior boundary ( the water-lipid interface) of 

the membrane. Since 1925, when Gorter and Grendel speculated that erythrocyte 

lipid membranes formed a "bimolecular leaflet" from their experiments [7], the study 

of lipid bilayers has become a major topic of research in biology, chemistry, and 

physics. The notion that the lipid bilayer forms the underlying matrix of all biological 

membranes has produced several successful models of biomembranes which culminate 

in the now well established Singer-Nicolson Fluid Mosaic Model [7,8]. 

Although there is a wealth of general knowledge regarding biomembranes [7,9,10], 
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the study of natural biomembranes is complicated by the large variety of protein and 

lipid species that occur in them. These membranes perform many specialized biolog

ical functions, and general characterization is quite difficult. For this reason, most 

experimental and theoretical studies of the generic properties of biomembranes are 

performed on model membranes. These are bilayers constructed from purified species 

of lipid molecules. However, the properties of even the simplified model membranes 

are so complex, they have eluded complete experimental or theoretical description. 

To further the knowledge of model membranes, many researchers have turned to 

computer simulation. Computer simulation provides insights into membranes that are 

not currently possible by either experiment or other theoretical methods. Specifically, 

computer simulation can access the details of the membrane at atomic resolutions. 

The resulting data can be used to further both the interpretation of experimental 

data and the construction of new theoretical models. 

This chapter introduces a presentation of work based on a molecular dynamics 

(MD) simulation of a hydrated DMPC bilayer. The MD trajectory was calculated by 

Chiu and Jakobsson and results of the simulation have been reported [4]. In the next 

section, a brief discussion of the structure of a DMPC molecule and a hydrated DMPC 

bilayer is presented. Relevant experimental studies follow in the next section. The 

last sections of this chapter will consist of a discussion of relevant theoretical work, 

which will be divided into non-simulation and simulation sections. This separation 

is performed because of the practical differences between the two approaches and 

because computer simulations, particularly MD simulations, are currently the primary 

theoretical method for studying lipid bilayers. 

2 .1 Lipids and Lipid Bilayers 

Figure 2.1 shows two molecular models of DMPC. Lipids in the phosphatidylcholine 
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(a) (b) 

Figure 2.1: Molecular models of dimyristoyl phosphatidylcholine (DMPC). (a) A ball 
and stick model of DMPC identifying all atoms. The white atoms are H, the grey 
atoms are C, the red atoms are 0 , the blue atom is N, and the orange atom is P. (b) 
A space filling model of DMPC showing molecular moieties. The cyan colored atoms 
form the phosphaticlylcholine heaclgroup. It is connected to the rest of the molecule 
by the glycerol 'backbone' shown in green. Ester linkages, shown in yellow, connect 
the glycerol to the two acyl chains, shown in reel. 
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(PC or lecithin) class have this basic structure and differ only in the length and 

saturation of the acyl chains. In Figure 2.l(a), the molecule is shown using a ball 

and stick representation so that the molecule's structure can be easily seen. The 

various atoms are colored by their standard colors: hydrogen is white, carbon is grey, 

nitrogen is blue, phosphorus is orange, and oxygen is red. 

Figure 2.1 (b) shows the molecule using a space filling model so that the shape 

of the molecule is seen. The colors divide the molecule into the polar (hydrophilic) 

headgroup region, shown in cyan, and the acyl (hydrophobic) chain region, shown 

in red. Shown in green is the glycerol 'backbone' that holds the hydrophobic and 

hydrophilic moieties together. The ester linkages or carbonyl groups that connect the 

acyl chains to the glycerol are polar and indicated by yellow. 

The headgroup is multi-polar, with every atom from the headgroup down to the 

chain carbonyls effectively having a non-zero charge [4]. However, the choline group 

(N+(CH3 )3) has an excess charge of +e centered near the nitrogen atom. The phos

phate group (P04) possesses an excess charge of -e centered near the phosphorus 

atom [4]. Thus, there is a electric dipole going approximately from the phosphorus 

atom to the nitrogen atom which is often referred to as the headgroup dipole. 

Of primary importance in the discussion of lipid structure and bilayer properties 

is the conformational structure of the lipid chains. The usual method of describing 

the rotameric structure of the chains is by specifying the dihedral ( torsional) angles of 

each C-C bond in the chain. The definitions of the dihedral angle and representative 

dihedral states are shown in Figure 2.2. A dihedral angle is described by four atoms. 

Figure 2.2(a) shows four carbon atoms with sticks indicating the tetrahedral bonding 

sites of the sp3 atoms. If all these sites were to contain hydrogen, Figure 2.2( a) would 

depict a model of n-butane. In Figure 2.2(b ), the same set of four atoms are oriented 

such that the bond between the inner two carbons lies normal to the page, obscuring 
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(a) (b) 

(c) (d) 

Figure 2.2: Trans and gauche dihedral states. (a) Four C atoms shown in the trans 
configuration with tetrahedral structure depicted by protruding sticks. The dihedral 
angle indicates rotations about the central C-C bond. (b) Atoms arranged in the 
trans position as viewed with the central C-C bond normal to the page. ( c,d) Atoms 
arranged in the two gauche states also oriented with the central C-C bond normal to 
the page. 
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one of the atoms. The atoms of Figures 2.2(a,b) are in the trans (straight chain) 

configuration. Figures 2.2( c,d) show the atoms in the two gauche positions. These 

positions represent consecutive 120° dihedral rotations about the hidden, inner bond. 

The use of the trans and gauche states is useful in describing chain conformations 

because the dihedral angle potential energy for alkane chains has three distinct minima 

at the trans and gauche positions. This can be seen in Figure 2.3. This figure shows 
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Figure 2.3: Ryckaert-Bellemans dihedral potential [11]. The minimum are designated 
as trans or gauche as indicated. The potential is of the form Ef=o ai cosi <p with <p 
representing the dihedral angle. The constants ai were determined for n-butane by 
fitting to experimental data. In units of kcal/mol, they are a0 = 2.217, a1 = 2.905, 
a2 = -3.135, a3 = -0.731, a4 = 6.270 and a5 = -7.526. 

a plot of the torsional potential determined by Ryckaert and Bellemans [11] for n

butane. Thus, the dihedral angles of an isolated alkane chain prefer to take on three 

distinct values corresponding to the potential minima of the trans and gauche states. 

Note in Figure 2.3 that global minimum lies at the trans position, and the gauche 

minima are equal ( as they must be from symmetry). 
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When DMPC is dispersed in water, the hydrophobic chains are attracted to each 

other and are repelled by the water. The polar headgroups and carbonyls, on the 

other hand, dissolve into the water. This behavior can lead to the self-assembly of a 

large variety of water lipid structures-a phenomena know as lipid polymorphism [7]. 

The type and phase of a lipid-water mixture is determined by several factors such as 

species of lipids and their relative proportions, temperature, and water concentration 

or level of hydration. The structures that form can be divided into three categories: 

micelles, and hexagonal structures and lamellar structures. 

Micelles are globular aggregates of lipids. They are balls of lipid whose interiors 

hold the non-polar chains while the exterior surface, exposed to water, is covered 

with the polar headgroups. The size and shape of micelles can vary. Microscopic and 

mesoscopic sizes can be formed and they can take on regular shapes such as spheres 

or rods. 

Hexagonal phases consist of cylindrical structures which are packed in a hexagonal 

lattice (as viewed down the cylinder axes). There are two types of hexagonal phases. 

At high water concentration, the cylinders are surrounded by water, the outer surfaces 

formed by the hydrophobic moieties, and the inner cores containing the hydrophobic 

chains. At low concentrations, the cylinders become inverted with the headgroups 

and water forming the cylinder cores and the chains forming the cylinder surfaces. 

The last type of structure is the lamellar bilayer. Here, the lipids form large (in 

many cases macroscopic) sheets. The dissolved headgr6ups make up the outer surface 

of the bilayer and the acyl chains form the bilayer interior as shown in Figure 2.4. 

The lipid chains are shown as green sticks while the headgroup atoms are shown as 

red balls. The water molecules are shown in blue and white indicating O and H, 

respectively. 

Lamellar structures can form larger structures. Multi-lamellar bilayers are struc-
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Figure 2.4: Hydrated bilayer of dimyristoyl phosphatidylcholine (DMPC) molecules. 
T he DMPC alkane chains are depicted as green sticks while the headgroup atoms are 
depicted as red balls. Water oxygen is colored blue and water hydrogen is colored 
white. 
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tures of many bilayers stacked on top of each other. These systems can exist with 

many randomly oriented multi-lamellar domains ('powder' samples), or they can be 

formed on a solid substrate such that all bilayers are parallel ( oriented bilayers). 

The bilayer membrane can also be formed to enclose a volume like a balloon. 

These bilayer balloons are called liposomes or vesicles and come in various forms. If 

the vesicle membrane is a single bilayer, it is know as a unilamellar vesicle. These 

come in three sizes, small unilamellar vesicles (SUV's) which have diameters "'250 A, 

large unilamellar vesicles (L UV's) which have diameters "'500-2,000 A, and cell-sized 

unilamellar vesicles which have diameters as large as "'300 µm [7]. If the vesicle is 

made up of multi-lamellar bilayers it is called a multi-lamellar vesicle (MLV). 

More variety in these systems is seen by the phases individual bilayers can take on. 

Examples of bilayer phases are shown in Figure 2.5. Again, the particular phases that 

a bilayer takes on depends on the types and mix of lipids, hydration, temperature, 

etc .. At lower temperatures, the bilayer chains become elongated as they drop to their 

lowest conformational state, the straight chain or all-trans conformation. This pro

duces rigid molecules that pack in specific manners depending upon the type of lipids 

involved. This phase is known as the gel (Lf3) phase and is shown in Figure 2.5(a). 

(Figure 2.4 is also an example of a gel phase bilayer.) As the temperature is increased, 

some lipids undergo a transition to a ripple ( Pf3,) phase, shown in Figure 2.5(b). This 

phase is similar to the gel phase since the chains are still primarily rigid, but instead 

of a planar structure, the ripple phase exhibits a corrugated surface. Finally, at higher 

temperatures, the bilayer chains become disordered as high energy conformations be

come thermally activated. The bilayer is once again locally planar and is much more 

flexible. In addition, the lipids can readily diffuse in the plane of the bilayer. This 

fluid-like phase, shown in Figure 2.5(c), is know as the liquid crystalline (La) phase. 

It is the biologically relevant phase; the diffusion of proteins and membrane flexibility 
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Figure 2.5: Three possible phases of a lipid bilayer. (a) The gel phase has tilted, 
densely packed all-trans chains. (b) The ripple phase also has trans chains but pos
sesses a periodic undulation of the bilayer surface. ( c) The liquid crystal phase has 
disordered chains and is less dense than the gel or ripple phases. 

required for life require the fluid nature of the liquid crystalline phase bilayer. 

Liquid crystal bilayers are the subject of the present discussion (the ripple phase 

is the focus of Chapter 5). So, we now turn our attention to the experimental data 

gathered on liquid crystal bilayers. 

2.2 Experimental Knowledge 

Since simulations provide detailed information about the atomic structure and dy-

namics of a bilayer on very short time scales, experimental results of primary interest 

to this discussion are those that produce information about atomic structure and 

measure average properties of fast processes. So, for example, nuclear magnetic res-
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onance (NMR) studies and X-ray diffraction studies are useful in this context since 

both depend only on atomic structure and processes fast enough to be adequately 

averaged in a simulation. On the other hand, data on processes such lipid flip-flop be-

tween bilayer leaves, thermodynamic phases, or membrane flexing/ splaying motions 

are not very useful since they involve processes that take times much longer than can 

be simulated or, in the case of :flexing/splaying motions, would require the simulation 

of many more lipid molecules and water than is currently possible. 

In this section, we shall explore the experimental results obtained from studies of 

model liquid crystal phase phospholipid bilayers. We will concentrate on empirical 

data that is useful in the study of such bilayers via simulation or that can be better 

interpreted using simulations. 

2.2.1 Acyl Chain Structure 

The best experimental measure of the acyl chain order in liquid crystal phase lipid 

bilayers is the Seo order parameter determined by deuterium nuclear magnetic reso-

nance (2H-NMR). These NMR experiments are performed on lipid bilayers in which 

some or all of the hydrogen of the acyl chains has been substituted with deuterium. 

The orientational order parameters measured by 2H-NMR are defined by 

(3 2 1) Seo = - cos () - -2 2 . (2.1) 

Here, () is the angle made between the bilayer normal and a vector which runs from 

the deuterated carbon to the deuteron. The angled brackets indicate averaging. 

There are several reasons why 2H-NMR is an important tool for measuring acyl 

chain order. First of all, by using selectively deuterated samples, the order parameter 

can be measured as a function of carbon position along the chains. The 2 H-NMR 

spectra produced by such samples are extremely simple; for each deuterated position, 

a well resolved doublet appears [12-14]. Furthermore, interpretation of this doublet is 
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straightforward, requiring few a priori or ad hoc assumptions regarding the structure 

of the bilayer [12,13]. Finally, the substitution of a deuteron in place of a hydrogen 

does not significantly perturb the conformations of the chain being studied [12,15]. 

The theoretical basis of 2H-NMR rests in the fact that deuterium possesses a elec-

tric quadrupole moment and this quadrupole moment dominates all other interactions 

except for the Zeeman term [13]. In the high-field approximation, the quadrapolar 

interaction is taken as a perturbation to the Zeeman splitting, and if the lipids are 

axially symmetric about the bilayer normal, the average quadrapolar splitting is pro-

portional to Seo [12,13]: 

3 (e2qQ) 2 (6.vq) = 4 -·-h- (3cos /3- l)Seo- (2.2) 

In this express10n, e is the charge of the proton, q is the dominant electric field 

gradient reduced by e, Q is the quadrupole moment of deuterium, and h is Planck's 

constant. Finally, f3 is the angle made by the bilayer normal and the externally 

applied magnetic field. So, Seo is easily taken from 2H-NMR for oriented bilayers, 

for which f3 is known [16]. 

In unoriented or 'powder' samples, the signal is a superposition of splittings due 

to a collection of bilayers whose normal directions are uniformly distributed over a 

sphere [12]. This averaging removes f3 from the Equation 2.2. If the line broadening 

effects are ignored, the resulting spectra produce a feature known as a Pake doublet 

[14] which has an average difference in frequency given by [12] 

3 (e 2qQ) (6.vq) = 4 -h- Seo- (2.3) 

Corrections for the line broadening can be made for a known or assumed lineshape. 

Despite the straightforward interpretation of 2H-NMR spectra, there are some 

sources of error such as line broadening and spectral distortion. However, these 

sources produce only small errors in Seo and are well understood; they should not 
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cause problems in the interpretation of the results [12,13]. Thus, 2 H-NMR experi-

ments are an ideal method for determining average orientational order of the acyl 

region of liquid crystal bilayers. One must be cautious, however. Even though the 

interpretation of the data is a simple matter, interpretation of their meaning is not 

so straightforward. There are many possible structures and dynamics that can give 

rise to a particular value of ScD· Simulation order parameters can be compared with 

experimentally measured parameters to help establish the validity of the simulation. 

Conversely, the atomic level detail of the simulations can be used to determine the 

structure and dynamics that produce measured order parameters. 

Infrared (IR) spectroscopy provides another method of determining chain struc-

ture in liquid phase lipid bilayers. These studies complement the average orientation 

measurements from 2H-NMR by providing data on specific chain conformations. IR 

absorption measurements identify vibrational modes of molecules. As such, they 

measure phenomena that occur on a much faster time scale than 2H-NMR measure-

ments; 2H-NMR measurements represent averages over times ,...., 3 x 10-6 s [14] while 

IR measurements typically measure motions with characteristic times < 10-12 s [17]. 

For this reason, the lipid rotamer motions occurring on these faster times will not be 

averaged over as in the 2H-NMR studies. Such motions as trans-gauche isomerization 

will appear 'frozen' on this time scale [18]. The practical use of these measurements 

applied to acyl chain structures comes from the ability to assign particular frequencies 

to particular rotameric conformers. Detailed information about chain conformations 

can be found from CD 2 rocking modes and CH2 wagging modes.1 The information 

these two modes provide are complementary. The CD 2 rocking modes can be used to 

identify the ratio of trans ( t) rotations to gauche (g) rotations at a particular chain 

1The CD2 rocking mode consists of the movement of the C-D bonds, in unison, parallel 
to the plane defined by the C-D bonds. The CH2 wagging mode consists of the movement 
of the C-H bonds, in unison, perpendicular to the plane defined by C-H bonds. 
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segment, and the CH2 wagging modes indicate the number of kink (g'tg, where the 

prime indicates the two gauche rotations are in opposite directions) rotations and end 

gauche ( eg) rotations present. 

For selectively deuterated chains, the CD2 rocking mode depends upon the local 

conformation of the chain. From a careful analysis of the normal modes of n-alkanes, 

Snyder and Poore determined the frequencies associated with the conformations of 

an isotopically isolated CD2 group (19,17]. Specifically, they determined the CD2 

adsorption bands associated with two-dihedral (CHrCDrCH2) conformations: tt, 

tg, and gg [17]. In addition, CD2 rocking bands have been identified with three four

dihedral (CHrCHrCDrCHrCH2 ) conformations: gtgt, g'tgt, and ttgt [17]. The 

fraction of trans-gauche isomerizations can thus be calculated by the intensity ratio 

of frequencies indicating gauche rotations to frequencies indicating trans rotations, 

taking into account the relative absorptivity of these modes (20]. However, the relative 

absorptivity of these modes are not known a priori. The most accurate method 

of calculating them is to use a combination of spectra from n-alkanes and Flory's 

rotational isometric state (RIS) model [21]. The RIS model assumes ideal chains 

(i.e., chains which do not interact with each other) for which rotations are limited to 

a set of discrete values (the trans and gauche minima) [22]. Using this model, the 

concentration ratios of the rotameric states can be calculated for n-alkanes. These 

concentration ratios can be divided into intensity ratios taken from n-alkane spectra 

to estimate the relative absorptivity of the the gauche and trans CD2 rocking modes. 

CH2 wagging modes allow measurement of gtg, kink and terminating eg rotations 

for which the CD2 rocking modes cannot differentiate [23]. These conformations 

exhibit specific IR absorption bands due to the CH2 wagging [17]. Again, to calculate 

absolute numbers, say percentages of kinks, the relative absorptivities are necessary. 

These are also calculated using the RIS model coupled with the analysis of n-alkanes 
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[20]. 

There is much room for error in these IR measurements and subsequent interpre

tations. In the first place, the relative absorptivities are not unambiguously known. 

Use of the RIS model requires the input of the energy difference between the trans 

and gauche states. The absorptivities vary significantly with this energy change-by 

a factor of two over a range of 400 cal/mole. Also, they depend on chain length. 

For longer chains, larger values of the relative absorptivities are found. Snyder and 

Poore [19] point out these dependencies as well as other discrepancies which may be 

due to the RIS model underestimating the ratio of tt pairs to tg pairs. Also, one 

must consider that absorptivities are calculated using spectra from n-alkanes and 

may differ from the absorptivities of the more ordered alkane chains in lipid bilayers 

[20]. Along technical lines, it is reported that cholesterol and gramicidin D, common 

components of membranes, as well as H20 and D2 0 all absorb in this same region, so 

careful subtraction of this background is necessary [20,17]. Aside from these extrane

ous components, there are similar types of complications in pure membranes [21]. For 

example, there is an overlap of the CD2 rocking band and the intense CH2 rocking 

bands; the CH2 rocking band does not possess a simple shape, so subtraction of its 

contribution is problematic. Finally, isotopic impurities lead to CHD rocking modes 

which obscure the CD2 band. 

2.2.2 Atom Distributions 

The average distribution of particular lipid atoms and water are very difficult to de

termine experimentally. Conversely, computer simulations can provide very detailed 

atomic distribution data. So, this is a case where simulations can potentially en

hance interpretation of experimental data. A good example of this is electron density 

data generated by X-ray diffraction [24,25]. In these experiments, low-angle X-ray 
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diffraction patterns can be be utilized to determine the electron density profile per

pendicular to the bilayer (24]. Since the lipid headgroup contains heavy atoms relative 

to the chains, the electron density can be used to roughly locate headgroup and chain 

atoms. But, the resolution does not allow the location of specific atom positions. 

Nonetheless, the electron density can be easily calculated in a computer simulation, 

and, thus, electron density experiments should be used to test the validity of a sim

ulation. Recently, atom distributions and electron density profiles calculated from 

simulations have been used to test methods of determining the membrane area per 

lipid molecule from X-ray diffraction data [25]. 

2.3 Theoretical (Non-Simulation) Approaches 

Another area of interest to the current discussion are analytical theoretical endeavors 

that provide insight into the structure and dynamics of the liquid crystal phase bilayer. 

There are relatively few such analytical studies outside direct simulation, owing to the 

complexity of liquid crystal bilayers. We provide a brief overview of analytic methods 

in this section before concentrating on simulations in the next. 

When modeling a lipid bilayer system, the theoretician must take into account 

several interactions that are quite difficult to study analytically (26,14], such as the 

chain dihedral interaction, the van der Waals interactions, and the electrostatic inter

action. The dihedral interaction is problematic because of the very large number of 

possible rotameric states a chain may assume, many of which may be restricted by van 

der Waals repulsion (excluded volume interactions). The van der Waals interactions 

are problematic because of the anisotropic nature of the lipid chains. Even though 

the van der Waals interaction between individual particles is radially symmetric, the 

restriction of the particle positions by the chemical bonds of the acyl chains imposes a 

distinct anisotropy. This anisotropy is acute in the restriction of chain conformations 
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by excluded volume interactions. For this reason, the repulsive van der Waals interac

tion is usually incorporated separately from the attractive van der Waals interaction 

[26,27,14]. The electrostatic interaction is difficult to model because of the complex 

nature of the charge distribution in the lipid headgroup and the complex interactions 

with the electric dipoles of the surrounding water. Additionally, the electrostatic in

teractions are long range in nature requiring special techniques to properly account 

for long range correlations. 

The complexity of the system requires theorists build abstract models, simplifying 

the interactions until only the most important contributions are left. There have 

been many such attempts, and there are several reviews of the various approaches 

[26,14,28]. Each theory has its own advantages and disadvantages, and each taken 

alone would not serve as a very complete understanding of a lipid bilayer. However, 

the various approaches taken together do help create an understanding of the vast 

array of issues involved in describing a bilayer. With this in mind, it seems more useful 

to discuss the common features of the various models to produce an understanding 

of the general theoretical concepts used to describe membranes than to describe each 

model in detail. 

A critically important feature of all the models is the rotameric degrees of freedom. 

This is because the most important contribution to the gel to liquid crystal phase 

transition is the disordering of the the hydrocarbon chains through trans-gauche iso

merization. This is evident from comparisons of X-ray diffraction spectra of bilayers 

and long chain alkanes whose only significant degree of freedom is rotameric [26,27]. 

Furthermore, calorimetry studies have shown that the transition enthalpy is large, 

""9 kcal/mole for the palmitoyl ( C16 chain) phospholipids, which indicates a large 

change in entropy, equivalent to over twenty two-state spins. This large change in 

entropy can only be explained via activation of rotameric degrees of freedom [27]. The 
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fundamental difference between gel and liquid membranes rests in the disordering of 

rotameric states. 

Another critical feature that is universally included in some fashion is the excluded 

volume and the intrinsic anisotropy of the chains. The chains must, of course, be 

anchored to the headgroup, hence the anisotropy. Then, the neighboring chains 

prevent individual chains from disordering independently. Due to the steric repulsion, 

the chains can disorder only through cooperative movement [26]. 

Finally, an attractive term is needed as well. The van der Waals interaction 

between the chains is usually included in statistical models. Although the wa

ter/headgroup interaction is critical in the formation of the bilayer, the chain/chain 

attraction coupled with the steric repulsion is the primary determining factor of molec

ular packing detail [26]. 

Just as insightful into the current state of lipid bilayer theory as the features al

most universally incorporated are the features that are almost universally ignored. 

The interactions between polar headgroups and the two leaves of the bilayer are of

ten neglected, and the fact that the two chains are bond to a single headgroup is 

ignored in many cases [26,28]. These approximations are actually quite reasonable. 

The headgroup interactions, particularly the interactions with water, are necessary 

for the formation and stability of the bilayer structure. However, this is their primary 

effect, and the bilayer structure is a priori included in all models [26]. The interac

tion between the two bilayer leaves are considered to be small due to the agreement 

between monolayer and bilayer studies [27]. Specifically, both monolayer and bilayer 

systems exhibit a phase transition at similar temperatures and surface pressures [26]. 

Finally, with headgroup interactions neglected, the two chains of a particular. lipid 

can be thought of as independent. In fact, since the chains are attached to the limber 

glycerol moiety, to rigidly pair the chains may be a more erroneous approximation 
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than no pairing altogether [26). 

These general features of bilayer modeling have been applied by several researchers 

and all have had varying degrees of success using quite different methods and approx

imations [14,26,28,29). Thus, they serve to indicate that the ideas behind the com

mon features of the models are correct. A few of the more notable studies are due 

to Nagel, Marcelja, Scott and Pink. Nagel constructed two simple, exactly solvable 

order-disorder models of a lipid membrane [30). These models, while two-dimensional 

and having infinite chains, showed that a model can explain the main gel to liquid 

crystal phase transition using energy contributions from van der Waals attraction, 

isomeric rotation and steric repulsion. Marcelja took a mean field approach, utiliz

ing a pressure term to model the steric repulsion and a mean field expression for 

the attractive van der Waals energy [31,32). The mean field method reproduces the 

2H-NMR order parameters and has subsequently been adopted into some molecular 

dynamics boundary conditions discussed below. Scott has utilized hard core modeling 

techniques. One method utilized an approximation (the Flory approximation) to de

termine the sterically limited conformations of a two-dimensional lattice model [33). 

Another, more versatile, model describes lipids as two-dimensional rods, represent

ing the area i11 the plane of the bilayer required for the lipid in various conformations 

[29,34,35). The hard core models show, again, that steric repulsion coupled with chain 

disordering are primary factors in the lipid gel to liquid phase transition. Finally, Pink 

utilized a lattice model incorporating specific enumeration of conformational states 

considered 'intermediate' between the gel (all-trans) state and a high energy 'melted' 

state [28). The attractive van der Waals interaction was incorporated using a mean 

field approximation and the steric repulsion was incorporated in the selection of the 

intermediate states-states were selected that could be expected to form with little 

steric hindrance from neighboring molecules. This modeling effort also resulted in 
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many qualitative agreements with experiment [28]. 

2 .4 Simulations 

The theoretical treatments discussed above have explained various aspects of the 

gel to liquid crystal phase transition. In general, however, they do not bring out 

detailed structural information about the liquid crystal phase itself. Moreover, none 

of the studies provide dynamical information. The system is simply too complex to 

model with lattice models and mean field theories and, at the same time, provide this 

information. The approximations made to focus on the most important processes 

can only provide information about those select processes. Still lacking in both the 

experimental and theoretical approaches discussed so far is a description of liquid 

phase bilayers at atomic resolutions. Computer simulations can provide this. Lipid 

membrane simulations have been reviewed recently by Pastor [36] and by Damodaran 

and Mertz [37]. 

2.4.1 Molecular Dynamics Simulations 

As with the simulation of most physical systems, atomic scale computer simulations 

of lipid monolayers and bilayers began utilizing simple models and progressed to very 

complicated 'realistic' models. Thus, the first bilayer MD simulations carried out were 

similar to the other theoretical treatments in that they concentrated primarily on the 

acyl chain region while grossly simplifying the headgroup structure and interaction. 

For example, the early work of van der Ploeg and Berendsen consisted of MD simula

tions of decane chains whose 'headgroups' (i.e., one of the terminal CH3 groups) were 

anchored to the bilayer plane by a harmonic potential in the direction of the bilayer 

normal [38,39]. However, the simulation was termed 'realistic' by the authors since a 

continuous and realistic dihedral potential, full van der Waals interactions ( although, 

23 



CH2 and CH3 groups were modeled as 'unified atoms' or single Lennard-Jones parti

cles) and harmonic bond angle potentials were explicitly included. Even though the 

headgroup interactions were ignored, the simulation produced a wealth of data that 

could not be determined from the other theoretical treatments such as chain tilting 

information, radial distributions of headgroups, density profiles, and components of 

the pressure tensor. 

Subsequent MD simulations have grown increasingly realistic, with more detailed 

descriptions of headgroups, electrostatic interactions and interaction parameters. For 

instance, Egberts and Berendsen expanded on the early simulations of van der Ploeg 

and Berendsen by adding in charged headgroups and water using constant pressure 

MD methods (40]. Detailed water/phospholipid studies were performed by Berkowitz, 

although lipid chains were held rigid (41,42]. Since then, there have many simulations 

of phospholipid bilayers including full headgroups and water (43-55]. Some of these 

simulations were primarily focused on structural aspects of bilayers such as head

group / water interactions (44,46,51,55] and lipid packing (50]. Several others were 

aimed at testing simulation methods themselves. Shinoda and co-workers investi

gated the Nose-Parinello-Rahman NPT ensemble (53], Tu and co-workers show that 

a NPT simulation with isotropic pressure can produce stable bilayers (54], and the 

application of various simulation methods proposed by Zhang (56] were carried out 

in the simulations performed by Feller and co-workers (52]. 

The most recent simulations are similar in that they include atomic detail and 

complex, 'realistic' potentials. However, they are not equivalent. They utilize different 

potential parameters and differ in system size and length of time simulated. But, 

more important, they differ in the types of ensembles simulated and the type of 

boundary conditions applied. Many of the early simulations were performed in the 

constant particle number, volume and temperature (NVT) ensemble [41-45,48,51]. 
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This ensemble requires the a priori input of the bilayer density. In particular, the 

value of the bilayer surface area per lipid is not easily obtained from experiments 

[57,25]. Several others simulated bilayers using constant pressure in favor of constant 

volume (the NPT ensemble) [46,49,50,52-55]. This ensemble removes the need to 

know the area per lipid in advance; however, it suffers from needing to know the 

pressure, and thus the surface tension, in advance. 

Since the patch of membrane that can be simulated is minuscule compared to a 

real membrane, the treatment of boundaries is an important aspect of a simulation. 

Generally, the researcher wants to create an environment as close as possible to an 

infinite membrane. The vast majority of bilayer simulations use periodic boundary 

conditions. Most of the recent simulations utilize periodic boundaries in three di

mensions [41,42,44,46,48-55], although Stouch performed a simulation with periodic 

boundary conditions only in the plane of the bilayer while using repulsive walls to 

contain water in the direction normal to the bilayer [47]. An alternative to periodic 

boundary conditions is mean field stochastic boundary conditions used in a few sim

ulations [43,45]. In these simulations, the molecules on the edge of the simulation 

cell are subjected to a external force comprised of stochastic noise and a mean field 

potential based on Marcelja's model. Although computationally more efficient than 

periodic boundary conditions, this method introduces uncontrolled errors into the 

boundary lipids. 

The details of force calculations and equilibration of the systems vary for each 

simulation and will not be addressed here. However, a few novel technical details 

deserve note. In order to more fully equilibrate their bilayer, Venable et al. simulated 

individual lipid molecules in a Marcelja mean field to 'randomize' the molecules before 

placing them in a bilayer configuration [48]. Shinoda and co-workers tested the use of 

the Nose-Parinello-Rahman NPT ensemble featuring periodic boxes that can change 

25 



shape ( the cell angles can vary) [53]. They found that utilization of this ensemble 

lead to less dependence on initial conditions and the elimination of artifacts such as 

collective chain tilt. 

A wealth of atomic resolution data has been generated by the simulations dis

cussed above. Seo order parameters were calculated in most of the studies [38-

40,43-45,47-55]. The distribution of atoms across the bilayer were also commonly re

ported [38-47,49,50,53,55] as were radial correlations between various atoms or groups 

[38-42,44,47,49,54,55]. Electron density was calculated in many studies [40,44,47,49-

51,54,55] as were statistics regarding chain structure such as chain tilt and chain trans 

or gauche isomerization [38-40,47,49-51,53]. Several also reported data on chain dy

namics such as trans-gauche reorientational correlations [38-40,43,47-49,51,55]. De

tailed data on headgroup/water interactions such as orientational statistics of water 

and headgroups, mean squared displacement of water, and diffusion coefficients of 

water were frequently reported [41,42,44-47,49,51,52]. The surface dipole potential 

was calculated in two of the studies [46,55]. Finally, pressure or surface tension data 

was reported by a few of the NVT studies [43,45,52], while the area per lipid was 

reported by several of the NPT studies [46,50,52-54]. 

2.4.2 Monte Carlo Simulations 

Although, MD simulations of lipid bilayers is the focus here, it is not the only simu

lation method that has been employed to study liquid bilayer systems. In fact, MC 

simulations of monolayers preceded MD simulations of monolayers by fourteen years 

[58,59]. Still, there are substantially fewer MC simulations of bilayers than MD sim

ulations. Several studies based on Metropolis sampling [2] have been used to study 

monolayers and bilayers focusing primarily on chain order [58,60-68]. But, of these, 

only three directly simulate a bilayer [62,65,68]. The Metropolis based simulations 
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are of relatively simple systems, compared with MD simulations, but they offer the 

advantage of sampling structures that MD simulations are currently unable to sample 

because they occur on relatively long time scales. Most use lattice models; only the 

work of Scott [60,61,64,69,35,70-72) and Taga [68) do not fix the atoms on lattice 

points. 

MC simulations of bilayers are simpler than MD simulations primarily because 

the Metropolis sampling is quite inefficient for bilayer systems; attempted MC moves 

are likely to lead to steric overlaps among the densely packed chains and thus be 

rejected. This is especially true of rotations about torsional bonds which often extend 

atoms below the torsional bond into the neighboring chains. For this reason, MC 

simulations of bilayers have been smaller in size and none have explicitly included 

water-to properly include water would greatly increase the system size and therefore 

the amount of MC moves required. However, soon MC simulations may rival MD in 

both size and realism. Configurational-bias Monte Carlo [73-77) ( CBM C) has already 

proven to dramatically increase the efficiency of chain simulations [7 4, 75, 77-80). This 

method was utilized in sampling disordered chain configurations in the ripple phase 

and is described in Chapter 5. 

2.4.3 Brownian Dynamics Simulations 

Another alternative to MD simulation is Brownian dynamics (BD) simulation ( also 

referred to as Langevin or Stochastic dynamics) [36,37). These studies are akin to 

MD studies except they add a random force term along with a mean field term to 

account for boundary and/or solvent interactions which are otherwise not explicitly 

included in the potential [81-83]. In a sense, they form a link between MC simulations 

and MD simulations. The advantage of BD is the reduction of computational cost; 

the disadvantage is that details of important interactions are lost, and, consequently, 
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many different models can produce the same results [36]. (This is not unlike the 

situation in the analytical theories of bilayers.) In addition, the errors of the mean field 

used will likely be transferred in an unknown manner into the particle trajectories. 

Finally, BD dynamics do not conserve energy and the trajectories are not reversible 

[37]. Thus, as Pastor notes in his review, BD simulations should be backed by more 

detailed simulations [36]. 
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Chapter 3 

Molecular Dynamics Simulation 
Method 

We now turn to the details of the Molecular Dynamics (MD) method itself. This 

chapter begins with a general description of the MD method in Section 3.1 and nar

rows its scope to bilayer simulations in Section 3.2. Finally, specific details regarding 

our simulation are discussed in Section 3.3. 

3.1 General Principles 

Despite the simple nature of the MD concept, its application can be quite complicated. 

For excellent discussions of the application of MD methods to complex systems see 

the text by Allen and Tildesley [81] or Rapaport [84]. Much of the discussion in this 

section comes from these sources. 

MD methods are used to solve the classical equations of motion of a system of 

particles. The task at hand is to determine an algorithm that can be programmed into 

a computer to solve these equations. There are several possible numerical procedures 

depending on the nature of the equations, but one of the most common is the Verlet 

method. 
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3.1.1 The Verlet Algorithm 

The Verlet algorithm [85], like the majority of numerical solution methods, is a finite 

difference method. That is, a derivative is approximated by an expression of the form 

. x(t+h)-x(t-h) 
X ~ 2h . (3.1) 

Here, the dot indicates differentiation with respect to time t and h, the time step size, 

is a small increment in time. 

Consider the equations of motion as formulated by Newton: 

(3.2) 

the mass of the ith particle mi multiplied by its acceleration i\ is equal to the total 

force acting on the particle fi. Vector quantities are indicated by the bold typeface. 

Taylor expansions of the displacement ri give 

ri(t+h) 

r;(t - h) 

ri(t) + hri(t) + ~h2 i\(t) + · • · 

ri(t) - h ri(t) + ~h2 i\(t) - · · · 

which can be added resulting in, neglecting O(h4 ), 

(3.3) 

(3.4) 

This expression is the starting point of the Verlet method. It allows the calculation of 

the position of a particle at time t + h given the position of the particle at time t and 

t - h, and given the net force acting on the particle at time t. A particle's velocity is 

determined by the application of Equation 3.1 to the particle's displacement: 

(3.5) 

although this expression is accurate to only O(h2 ). 
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The Verlet method has several advantages. It is very compact and easy to pro-

gram, and it conserves energy well, even when long time steps are used [81]. It is 

also time-reversible; setting h to -h leaves Equation 3.4 unchanged. ~owever, in its 

original form, the Verlet algorithm contains the undesirable addition of a small term 

to a difference of two large terms. This problem is remedied by using the 'leap-frog' 

form of the Verlet algorithm. 

In the leap-frog scheme, particle displacements play 'leap-frog' with particle ve-

locities over half steps in time: 

Vi(t + !h) 

r;(t + h) 

v;(t - !h) + h f;(t) 
m· i 

r;(t) + hv;(t + !h). 

(3.6) 

(3.7) 

That is, given the net force on a particle at time t and it's velocity at time t - !h, 

the velocity at a half step in the future, t + !h, is determined using Equation 3.6. 

Thus, the velocity has skipped or 'leap-frogged' the evaluation at the current time t. 

Using this result and the displacement of the particle at time t, the displacement of 

the particle a full step in the future can be determined from Equation 3.7. Now the 

displacement has 'leaped' over the intermediate time t + ih. While both the future 

and past velocities are at hand, the velocity at time t can be calculated using 

v;(t) = vi(t + ih) + v;(t - ih) 
2 . (3.8) 

It is clear that this method removes the subtraction of similar large quantities coupled 

with the addition of small quantities. The original Verlet algorithm can be recovered 

from this scheme by substituting Equation 3.6 into Equation 3. 7 and eliminating 

vi( t - ih) using 

·( _ !.h) = r;(t) - r;(t - h) 
Vi t 2 h . (3.9) 
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3.1.2 Periodic Boundary Conditions 

Since the number of particles that can be actually simulated is limited by finite 

computational resources, the boundary of the simulated volume (the simulation cell) 

is of great importance. One boundary condition often used in particle simulations 

to more closely model a macroscopic system with a limited number of particles is 

the periodic boundary condition. The application of periodic boundary conditions is 

performed by replicating the simulation cell. This is shown in Figure 3.1. Particles 
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Figure 3.1: Periodic Boundary Conditions. The central cell is the simulation cell and 
the surrounding eight cells are the periodic images of this cell. When the minimum 
image convention is applied to darkened particle, only the particles marked with a 
'+' interact with it. The dashed box has the dimensions of the simulation cell and is 
centered on the darkened particle. 

actually followed in the simulation are in the central cell, while the remaining cells are 

periodic reflections of the central cell. To avoid unwanted periodicities, the minimum 

image convention is applied whereby each particle interacts only with the closest 

images of the the other particles. This is shown in Figure 3.1 where the closest 
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particle images to the darkened particle are indicated with a '+'. The dashed box 

centered on this particle has the same dimensions as the simulation cell. Only particles 

within this box interact with the darkened particle. This technique is easily extended 

to three dimensions. For example, if a cubic cell is used, it will be surrounded by 

26 identical copies: 6 covering the cube faces, 12 filling in the exposed edges and 8 

closing off the corners. 

Although squares and cubes have been used to illustrate periodic boundary con

ditions, there are many other choices, although they are not as simple to incorporate. 

Examples of other three dimensional cells are the truncated octahedron, the rhom

bic dodecahedron [81], and any parallelepiped. For the remaining discussion, we will 

assume a cubic simulation cell with cell edge length l. Generalization to other cell 

shapes is straightforward. 

Clearly, the use of minimum image periodic boundary conditions is not equivalent 

to direct simulation of a macroscopic number of particles. The periodic boundary 

removes any non-periodic correlations longer than the cell edge (for a cubic cell) and 

replaces them with perfectly periodic correlations. Any motions or structures that 

may extend distances greater than the cell edge lengths will be suppressed. This will 

effect simulations near critical points and phase transitions where long wavelength 

fluctuations are important [81]. Periodic boundaries can also distort any statistic 

that depends on long range contributions such as the pair distribution function. In 

addition, the shape of the periodic cell can distort the dynamics for some systems. 

For example, a cubic lattice will not conserve angular momentum. This can be seen 

if one imagines a rotation of the particles about the center of the simulation cell in 

Figure 3.1. All the images will similarly rotate about their respective cell centers. If 

the rotation proceeds in a counter-clockwise manner, the relative distance between 

the solid particle and the image it interacts with in the cell to its left will increase 
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until this particle crosses the cell border. At this point, it will be reflected across the 

cell and the distance will decrease as the rotation continues. Thus, the Hamiltonian 

of the system is not invariant under a rotation of the coordinate system, and the 

angular momentum will not be conserved. 

3.1.3 Potential Truncation and Neighbor Lists 

The minimum image convention reduces the number of particle interactions that need 

to be evaluated by removing the interactions of a particles which fall outside a cell 

volume centered on either one of them. Thus, the interaction potential should be 

insignificant at ranges longer than ! l or else the long range part of the potential 

should be handled using special long range force techniques [81,86]. For a system 

of N particles, the number of force evaluations· required to include all unique pair 

interactions is !N(N -1). This limits the number of particles that can be simulated. 

However, the limitation is mitigated by using truncated potentials and neighbor lists. 

By truncating the potential to zero at a cutoff radius re, many interactions can 

be removed. Of course, the interaction must be considered small enough at distance 

greater than re that they can be neglected. Although the use of a cutoff radius reduces 

the number of interactions that need to be evaluated, the calculation of !N(N - 1) 

distances remain. But, for particles that are separated by a large distance relative to 

re, it is wasteful to check their separation at every iteration since it would likely take 

many iterations for the particles to move within the cutoff distance of each other. 

Neighbor lists reduce this waste. 

The simplest implementation of a neighbor list is the Verlet neighbor list [81]. This 

method consists of storing, for each particle, a list of all neighbors within a radius rn. 

Then, when the time comes to determine the interactions of a particle, only particles 

in the list contribute. Of course, rn must be greater than re. Indeed, for this scheme to 
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work, rn must be large enough that any particle outside another's neighbor list cannot 

cross the space between the spheres of radius r n and r c before the list is updated. 

The period between revisions of the neighbor lists is determined by r n. The larger 

rn, the less frequently the lists need to be updated. But, as rn increases, the number 

of particles in the lists grows, increasing the number of distance evaluations and the 

amount of memory necessary to hold the lists. The optimal value of r n will depend 

on the system being studied since the number and computational cost of evaluations 

will vary. The update of the neighbor list can also be done automatically when any 

particle crosses a distance greater than than (rn - re) [81]. 

Another neighbor list implementation that is more efficient than the Verlet method 

for large numbers of particles is the cell index method [81,84]. In this method, the 

simulation cell is divided into smaller sub-cells. Lists of particles in each sub-cell 

can be quickly determined. Then, interactions are evaluated for a particle with all 

particles within its sub-cell and particles within the 26 sub-shells which surround 

it. Since the sorting of particles can be done inexpensively, it is performed at each 

iteration. The cell index method can be executed easily and efficiently in a data 

structure called a linked list. Allen and Tildesley [81] and Rapaport [84] both provide 

example programs in FORTRAN and C, respectively, for implementing linked lists. 

However, the implementation can be performed in a much simpler manner by the 

use of structure type variables and variable pointers. (For example, see [87], pages 

255-266.) 

3.1.4 Application of Constraints 

Often in a simulation, it is desirable to incorporate constraints on the system. For 

example, atomic bonds may be modeled as rigid, constraining bonded atoms to a fixed 

relative distance, or whole structures may be constrained to form a large rigid body. 

35 



Constraints that can be written in terms of the constrained particles' coordinates and 

time in a form 

J(r1,r2, .. . ,t) = 0 (3.10) 

are holonomic constraints [88]. 

Holonomic constraints may be imposed by several methods. The most elegant 

method is the use of generalized coordinates producing equations of motion that do 

not explicitly contain the constraints. However, in application, this method is quite 

unmanageable for a system of constraints needed to apply rigid bonds to a large 

flexible molecule such as a lipid. The next possibility is the application of Lagrange 

undetermined multipliers. This method incorporates the equations of constraint into 

the equation of motion through the use of new variables ( the Lagrange multipliers) 

extending the system to 3N + Ne equations and unknowns where Ne is the number 

of holonomic constraints [88]. However, when this method is applied in a simulation, 

the Lagrange multipliers will accumulate integration errors leading to a divergence of 

bond lengths from their original values. 

Ryckaert and co-workers devised a method of including constraints in a simulation 

that does not produce this accumulation of error [89]. Their method is to include con-

straints via corrections to the unconstrained equations of motion. For large molecules 

with many constraints, the SHAKE algorithm [89,81,86,84] is the most suitable ap-

plication of this method. 

The SHAKE algorithm is applied by first moving the particles in time without 

any constraints applied using Equations 3.6 and 3. 7. Then, a correction is made to 

the unconstrained position. With rij = rj - ri, the corrected displacements, indicated 

with primes, is given by 

r~(t + h) ri(t + h) - ,_,/ii(t) 
mi 

r i ( t + h) + ,/ ii ( t) . 
ffij 
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The variable I is determined by solving the holonomic constraint imposed on particles 

i and j, 

e~ - d~- = o tJ tJ . (3.12) 

The result, neglecting 0(,2 ) and smaller, is 

e~(t + h) - d~-
•1 !J 

1 = (...L + -1 ) r· ·(t) · r· ·(t + h) · m; mj tJ !J 

(3.13) 

Now, when this correction is made, it may disturb other corrections previously ap-

plied to either particle i or j. So, the corrections are made iteratively, performing 

corrections for all bonded atoms in turn until all rigid bonds are within some given 

tolerance of the actual bond length. 

3.1.5 Constant Temperature and Pressure 

The MD algorithm in the previous section follows particle trajectories in the constant 

particle number, volume and energy (NVE) ensemble. (Although, the total energy of 

the system will fluctuate due to integration errors.) However, it is often desirable to 

perform the simulation with the temperature, pressure or both, held constant. Several 

methods have been developed to produce MD simulations in constant temperature 

and/or pressure ensembles [81,84]. The methods can be classified into four groups: 

stochastic methods, constraint methods, extended or feedback methods, and scaling 

methods. Stochastic methods are used to generate constant temperature MD simu-

lations. Although they differ in practical application, they all consist of resetting the 

particle's velocity to a random value chosen from a Maxwell-Boltzmann distribution 

having the desired temperature. Constraint methods introduce nonholonomic con-

straints into the equations of motion that enforce the constancy of the temperature 

or pressure. Extended methods incorporate the addition of new variables and energy 

terms to the equations of motion resulting in equations of motion which are constant 

temperature and volume analogs of the original system. 
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Scaling methods were used in this study. Developed by Berendsen et al. [90], these 

methods utilize a (non-stochastic) proportional scaling of velocities and coordinates 

to respectively produce constant temperature and pressure. In the case of constant 

temperature, the velocities are scaled by a factor 

(3.14) 

where h still represents the MD time step, TT is the temperature coupling constant, 

T0 is the desired system temperature, and T is the current (instantaneous) system 

temperature. The current system temperature is calculated from the kinetic energy 

(3.15) 

Here, kB is Boltzmann's constant, N is the number of particles, and Ne is the number 

of constraints. This scaling is equivalent to adding a temperature dependent friction 

term to the equations of motion, 

(3.16) 

where v(T) is the frictional damping constant, 

1 (To ) v(T)=- --1 . 
2TT T 

(3.17) 

The imposition of constant pressure is similar. The coordinates are all propor-

tionally scaled by a factor 

[ h l t A:i: = 1 - Tp (Po - P) (3.18) 

with Po representing the desired pressure, P the instantaneous pressure, and Tp the 

pressure coupling constant. The instantaneous pressure is calculated from the internal 

virial, 
1 N 

W = - "r· .f-3 L.J i i, 

i=l 
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by 

(3.20) 

where p is the system density and V is the system volume [81]. The coupling rate 

constants Tp and Ty are determined by trial and error. 

This method of simulating systems under constant temperature and pressure has 

several advantages [90]. First, the coupling to the heat or pressure bath ( Tp and Ty) 

is controlled by the researcher and there are no discontinuous changes in particle co-

ordinates or velocities. Also, truncation errors will not accumulate to produce large 

deviations from the constant values desired. The major disadvantage is that ensemble 

generated is unknown. 1 Static average properties and dynamic properties of individ-

ual particles are not significantly altered, but the :fluctuation of global properties, 

such as pressure, volume, kinetic energy and the velocity autocorrelation function are 

artificially influenced by this method if coupling constants are made too small [90]. 

3.1.6 Electrostatic Interactions 

Electrostatic interactions must be treated with particular care because of their long 

range nature [91]. Since the use of periodic boundary conditions requires the use of 

a cutoff radius, the electrostatic interaction will be truncated. If, say, the oppositely 

charged atoms of a polar molecule are separated by the cutoff radius for a particular 

interaction, the net force calculated will be erroneous. 

This problem is partially alleviated by using group-based electrostatic cutoffs. 

Instead of determining electrostatic interactions using a cutoff radius applied to in-

dividual atom pairs, the cutoff radius is applied to atom groups. For example, the 

three atoms of water can be considered a atom group. If any one of the water atoms 

1 However, the limiting cases of Ty --+ oo and Tp --+ oo produce adiabatic and 
isochoric systems, respectively. 
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is within the electrostatic cutoff radius, all atoms of the molecule are included in the 

interaction. This procedure can be applied to whole molecules or parts of a molecule. 

3.2 Specifics Related to Lipid Bilayers 

vVe now turn our attention from general methods to particular considerations when 

MD simulations are applied to lipid bilayers. The primary methodological concerns 

in such systems relate to the handling of equilibration and the choice of ensembles. 

3.2.1 Equilibration in Lipid Bilayer Simulations 

The structure of lipid bilayers makes the process of equilibration important in a simu

lation. This is because the simulation averages must be calculated over configurations 

that are statistically independent of the original configuration. But, the density and 

anisotropy of bilayers may lead to configurational 'bottlenecks' that may require a 

long simulation to escape. For example, consider a starting configuration determined 

from X-ray studies of hydrated gel phase bilayers as shown in Figure 2.4 on page 11. 

These systems have all-trans chains which are interdigitated and collectively tilted. 

As the simulation progresses from this configuration, the disordering of the chains 

will begin at the chain ends since the middle and upper parts of the chains will be 

sterically confined to remain in the trans conformation. The disordering of the upper 

parts of these chains may require a significant amount of simulation time. 

Of more importance, however, is the fact that different types of structure may 

require different amounts of equilibration time. Say the chains appear to have taken 

on the appropriate fraction of trans-gauche isomerizations. This does not necessarily 

indicate that the chain structure is near equilibrium. The original tilt of the chains 

may still have strong influence on the collective arrangement and packing of the 

chains. So, appropriate equilibration should be gauged by measuring many different 
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parameters: kinetic and potential energy, volume, chain order parameters, chain tilt, 

area per molecule, etc .. 

3.2.2 Constant Pressure 

The choice of ensemble is another important consideration in a lipid bilayer simulation 

[91]. A common and natural selection is the NPT ensemble. This is in part due to 

the fact that nearly all experimental data is observed at constant temperature and 

pressure. But, the primary reasons are that the total energy of a lipid bilayer is 

unknown and the bilayer density is uncertain [57,25]. 

Constant temperature methods are easily applied to lipid systems, but constant 

pressure methods require some consideration. A non-zero surface tension is likely 

to exist in a lipid bilayer producing a pressure tangential to the bilayer surface that 

is different to the pressure normal to the surface. Although the surface tension is 

defined as the free energy per surface area, it is not the only term in the differential 

of the surface free energy dFu [92]. This differential is given by, 

dFu = -SudT- P dVu + ,dA + Lµ'f dn'[, (3.21) 
i 

where su is the surface entropy, vu is the surface volume, 1 is the surface tension, A 

is the surface area, µf is the chemical potential of the surface's ith component and nf 

is the number of the surface's ith component. At equilibrium dFu = 0. But, clearly, 

this does not imply I is zero. In particular, assuming that the bilayer volume doesn't 

change significantly at constant temperature Equation 3.21 becomes, 

dFu = 1 dA + Lµ'f dn'[. (3.22) 
i 

Thus, 1 can only be assured to vanish if the number of particles in the membrane 

do not change. In particular, there must be no transfer of water in or out of the 

membrane, dn':v = 0. 
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Feller and Pastor [93] argue that membrane simulations utilizing periodic bound

ary conditions must have a change in n':v. Periodic boundary conditions suppress 

membrane undulations since the edges of the bilayer must match up a the edge of 

the simulation cell. Because of this enforced 'flatness', the bilayer cannot undergo a 

change in the area without a change in n':v. Water will either enter the bilayer when 

the area increases or will be squeezed out of the bilayer when the area decreases. 

Feller and Pastor estimate I for cholines by determining the surface tension re

quired to remove undulations [93]. They calculate I to be 20-50 dynes/ cm. Chiu et 

al. estimate I to be 56 dynes/ cm from surface tension studies of lipid monolayers [4]. 

3.3 Summary of Simulation Method 

Now that general aspects of MD methods applied to lipid bilayers has been discussed, 

we turn to the particular method employed in this simulation study. The material in 

this section represents primarily the work of See-Wing Chiu and Eric J akobsson and 

can be found in [4]. 

The MD software package GROMOS by van Gunsteren and Berendsen [94] with 

some modification was used to perform the simulation. This package uses the Verlet 

Leap-Frog integration algorithm. The SHAKE algorithm was employed to constrain 

bond-lengths. 

The initial system is depicted in Figure 2.4 (page 11) and consists of 100 dimyris

toyl phosphatidylcholine (DMPC) molecules, 50 molecules per monolayer, hydrated 

by 2100 water molecules. There are 10,990 atoms in the system. Periodic boundary 

conditions in three dimensions were applied. The initial coordinates of the DMPC 

atoms were determined from X-ray studies of gel phase DMPC [95]. The extended 

simple point charge (SPC/E) model of water was used [96]. This model represents 

the water molecule as rigid with van der Waals spheres representing atoms. Point 
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charges are placed at the atom locations. The charges and van der Waals parameters 

are determined by fitting simulation data to the proper density and energy of water. 

The charge distribution of the DMPC molecule was determined through ab initio 

calculations. The values used are shown in Figure 3.2. The charge indicated is in 

units of e and are taken to reside at the center of the atom for which the charge is 

0.4 
CHs 

0.4 1-0.5 o 4 
CH 3 -N-CH 3 . 

0.3 I 0.4 
CH 2-CH2 

1-0.8 
-0.8 I , .1 -0.8 

o-p-o 

-0.1 o.5 o.3 o.,;J I _0 7 
o-CH2--CH-CH2--ro . 

-0.6 I 0.8 -0.71 0.7 ~-0-.7-----I 
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o.o I I o.o 
(CH2) 10 CH2 

o.o cLa o.o (Cl2l • 

I 
cHs°-0 

Figure 3.2: Charge distribution and charge groups used in the simulation. The num
bers next to each atom indicate the charge, in units of e, used in the simulation. The 
boxes group the atoms into neutral charge groups. 

associated. Group-based cutoffs were used with DMPC having five neutral groups. 

These groups are separated in Figure 3.2 by the thin lines. The alkane chain dihedral 

potential was that of Ryckaert and Bellemans [ll] shown in Figure 2.3 (page 9). All 

other interaction parameters were those used by Egberts [97]. This parameter set 

utilizes the united atom model for CH3 and CH2 groups, treating the groups as single 

van der Waals particles. 
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Two cutoff radii were utilized. The first radius of 10 A applied to van der Waals 

interactions and interactions within this radius were calculated every time step. The 

second radius of 20 A applied to the group-based electrostatic interaction and inter

actions between 10 and 20 A apart were calculated every 10 time steps. Verlet type 

neighbor lists were updated every 25 time steps. Each time step was 2 fs. 

A constant anisotropic pressure was applied. The pressure normal to the bilayer 

surface P1. was set to 1 atm. The pressure tangent to the bilayer surface -Pi1 was 

determined using the definition [4] 

(3.23) 

Here, 1 is the surface tension of the bilayer, z indicates the direction normal to the 

membrane and the interval z1-z2 covers the thickness of the bilayer. With P1. = 1 atm, 

1 = 56 dynes/cm and using a bilayer thickness of 55 A, -Pi1 ,..., -100 atm. The pressure 

was held constant using the scaling method of Berendsen as discussed in Section 3.1.5 

with an initial coupling rate constant rp of OA ps. Later, this was increased to 4 ps 

to reduce short-term fluctuations in volume. 

The initial configuration, shown in Figure 2.4 was equilibrated by first gradually 

heating the initial configuration to 325 K. Then 350 ps of MD was performed. Analysis 

of the time intervals 80-140 ps and 300-350 ps showed them to quite similar and 

characteristic of a fluid phase membrane, indicating that the latter intervals were 

near equilibrium. The system dimensions were found to be changing very slowly over 

the entire 350 ps simulation, but continuing the simulation until the volume became 

constant was not feasible given the computational resources. The area change of 

1.3 A 2 over 210 ps is unlikely to alter the results significantly. The final configuration 

is shown in Figure 3.3. 
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Figure 3.3: Bilayer of 100 dimyristoyl phosphaticlylcholine (DMPC) molecules hy
drated with 2100 water molecules after heating and 350 ps of molecular dynamics 
simulation. The DMPC alkane chains are depicted as green sticks while the head
group atoms are depicted as reel balls. Water oxygen is colored blue and water 
hydrogen is colored white. 
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Chapter 4 

Analysis and Results 

The analysis discussed in this chapter was performed on trajectories generated uti-

lizing the methods described in the preceding chapter. The method of analysis and 

results are presented in this chapter. These results are also available in [4]. Un-

less otherwise noted, the analysis was performed on atom coordinates at intervals of 

0. 05 ps over the 50 ps interval 300-350 ps ( 1000 configurations). 

4.1 Order Parameters 

The average order parameter Sen as discussed in Section 2.2.1 (page 14) was cal-

culated as a function of acyl chain carbon position. This parameter will now be 

designated Si where i indicates the carbon position with i = 1 representing the chain 

carbon closest to the the glycerol backbone. Specifically, i = 1 indicates the carbonyl · 

carbon (see Figure 2.1, page 6). 

The order parameter was calculated from the average 

( 4.1) 

with (h representing the angle made between the ith C-H bond and the bilayer normal. 

The two chains of the lipid molecule are not equivalent. In Figure 2.1 it is evident 

that the first C-C bond of the chain on the right is approximately horizontal. The 
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next bond is then oriented in the roughly vertical position of the rest of the the chain. 

Since the chains are not equivalent, average order parameter profiles were calculated 

separately for each. The chains are denoted by the standard nomenclature with sn-1 

and sn-2 representing the chain on the left and right, respectively, in Figure 2.1. Si 

was averaged over all atom configurations and over all C-H bonds at position i for of 

each chain. 

Since the simulation utilized the unified atom model for the CH2 group, the po

sition of the methylene C-H bonds are not specified. They were calculated assuming 

that the CH2 group retains its tetrahedral structure. The method used to calculate 

the cos ()i is described in Figure 4.1. The coordinates of the C atoms are known, so the 

y' 

B 
x' 

(b) 

Figure 4.1: Vectors ( a) and axes (b) utilized in determining Si. 

vectors A and B shown in Figure 4.l(a) can be easily calculated. The cross product 

of these vectors will produce a vector that points into the page and is indicated in 

Figure 4.l(a) as vector C: 

C =AX B. ( 4.2) 
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The vector D is determined by another cross product, 

D =Bx C. (4.3) 

The three vectors C, D and B are orthogonal, and unit vectors in directions parallel 

to them form a orthonormal basis set, 

C 

ICI' 
D 

IDI' 
A 

!AT' ( 4.4) 

The primed vectors form a basis fixed to the CH2 group. Unprimed subscripts denote 

basis vectors fixed to the simulation cell. The vectors from the central C atom to the 

H atoms expressed in terms of the CH2 basis vectors are known ( see Figure 4.1 (b)). 

The orientation of the C-H vectors in the simulation cell basis can be determined by 

a vector transformation of the C-H vector from the CH2 basis to the simulation basis, 

(4.5) 

where rH is a vector from the central C atom to one of the H atoms and the superscript 

indicates the basis in which the vector is expressed. The transformation matrix [T] 

is given by, 

(4.6) 

Once the orientation of the the C-H vectors is known in the simulation cell basis, the 

order parameter S; (Equation 4.1) is obtained. 

The averaged S; are shown in Figure 4.2 for the sn-1 (dotted line), and sn-2 (solid 

line) chains. The results are in good agreement with experimental data measured by 
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Figure 4.2: Order parameters as a function of carbon position. The dotted and solid 
lines depict the order parameter I Si I determined from the simulation for the sn-1 and 
sn-2 chains, respectively. The symbols indicate the experimental results of Dodd [98]. 
The diamonds ( <>) denote data for DMPC at 303 K and the stars ( *) denote data for 
DMPC at 323 K. 

Dodd [98]. The experimental data were determined from 2H-NMR measurements on 

deuterated D MPC at 303 K ( <>) and 323 K ( *). 

The order parameter exhibits a plateau region at the smaller carbon numbers, 

toward the glycerol backbone, that rapidly falls off for the higher carbon numbers, 

toward the free ends of the alkane chains. In addition, as in the experimental data the 

sn-2 chain exhibits a slightly larger value of !Sil than the sn-1 chain [98] indicating 

that the sn-2 chain is slightly more ordered than the sn-1 chain. 

4.2 C-C Dihedral Bond Analysis 

The dihedral angle is easily determined from the positions of the four C-atoms which 

define the dihedral bond. Referring to Figure 4.3, vectors A, B and C are determined 
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Figure 4.3: Vectors used to determine the angle of dihedral bond. 

by the coordinates of the four atoms making up the dihedral. Then, vectors D and 

E (which both point out of the page for the bond orientation in Figure 4.3) are 

determined by taking cross products, 

D AxB, 

E Bx C. 

The cosine of the dihedral angle <pis then found using a vector dot product, 

D·E 
cos<p = !DI !El. 

(4.7) 

( 4.8) 

The angle is then found by taking the inverse cosine and correcting the result to the 

proper quadrant ( the returned angle from the inverse cosine function is always given 

in the range 0-1r radians). 

Using the method above, all the dihedral angles can be determined. Their prob-
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ability density can be determined by forming a histogram of the resulting angles 

and normalizing the results. Furthermore, angles can be classified into trans (t) and 

gauche (g) states by 

t if _E. < A,< E. 
3-'+'-3 

<p = g+ if -'Ir< <p < -i 
g- if i < <p < 7r 

( 4.9) 

The probability distribution of chain dihedral angles is given in Figure 4.4( a). 

The solid line shows the distribution calculated from the averaging the dihedral angle 

over all chain dihedral bonds, and the dotted line shows the distribution of an isolated 

dihedral at the same temperature (325 K). Note that the simulated distribution has 

a larger number of trans bonds than the isolated distribution. This reduction in the 

number of gauche rotations is due to the excluded volume effects of neighboring lipid 

molecules. 

Figure 4.4(b) shows the distribution of gauche and trans bonds as a function of 

time. The trans state ( thin solid line) and the total fraction of gauche states ( thin 

dotted line) are seen to be stable over the time interval with a t / g ratio of ,...., 3. 

However, there is a slight drift of the g+ / g- ratio from ,...., 1.2 toward unity. 

Table 4.1 summarizes the averages of various chain conformers determined by ex-

periment [23,20] and calculated from the simulation. The experimental data was taken 

from samples of dilauroyl phosphatidylcholine (DLPC, a 12-carbon chain lecithin) 

and dipalmitoyl phosphatidylcholine (DPPC, a 16-carbon chain lecithin) in the liq

uid crystal phases. The simulation and experimental results agree for the number 

of gg conformers per chain, although the number of end g conformers is underesti-

mated by the simulation. The number of gtg' and gtg' + gtg is more significantly 

underestimated by the simulation (primes indicate opposite gauche rotations relative 

to unprimed gauche states). However, the estimation of these three-bond conformers 

is experimentally problematic both in the determination of the adsorption band and 
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Figure 4.4: Dihedral bond distribution and trans/ gauche fractions. ( a )The probabil
ity density P( c/>) of the dihedral bond angle c/> is shown calculated from the simulation 
( solid line) and for a isolated dihedral ( dotted line). (b) Fractions of trans and gauche 
bonds as functions of time. 

52 



Experimental Simulation 

Conformer DLPC DPPC1 DPPC2 DMPC 

end g 0.45 0.54 0.40 0.31 

gg 0.32 0.40 0.40 0.34 

gig' 0.88 1.19 0.39 

gig'+ gig 1.00 0.67 

Table 4.1: Trans-gauche conformers per chain. Trans bonds are represented by i and 
gauche bonds are represented by g. A prime on a gauche bond indicates an opposite 
rotation to any unprimed gauche in the sequence. Experimental data for DLPC and 
DPPC1 were taken from [23], and data for DPPC2 were taken from [20] 

in the comparison to liquid alkanes [17]. 

4.3 Atom Distributions and Electron Density 

The atom distribution across the bilayer is calculated by making histograms of atom 

totals at positions along an axis normal to the bilayer surface for the various atom 

species for each set of atom configurations. These distributions are then averaged and 

normalized to unity. The resulting atom probability densities are shown in Figures 4.5. 

The electron density is calculated in a similar manner to the atom distribution. 

Histograms are made of atom numbers along the bilayer normal for each atom con-

figuration. However, in this case each atom is weighted by its atomic number. These 

distributions are averaged and normalized to unity resulting in the probability density 

shown in Figure 4.6. 
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Figure 4.5: Various atom probability densities P(z) as functions of position along the 
bilayer normal z. 
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Figure 4.6: Electron probability density P as a function of position along the bilayer 
normal z. 

4.4 Water Dynamics 

The behavior of the water /lipid interface is of particular interest since there are few 

experimental methods of examining this interface at the atomic scale. To this end, we 

calculated the mean square displacement (MSD) and diffusion constant D of water as 

functions of position along the membrane normal z. In addition, the contributions to 

D( z) from motion in each of the cartesian directions were determined as a function 

of position along the bilayer normal. 

The MSD is defined as 

MSD(r) = (lr(t + r) - r(t)l2), (4.10) 

with t representing time, r representing the time interval in which the particle travels 

and r indicating the particle's position. Selected results are shown in Figure 4.7. In 

this figure, the MSD is shown for five different positions along the bilayer normal at 

increments of 0.5 nm. The slope of each MSD curve is proportional to the diffusion 

constant, at that level in the bilayer. A linear least squares fit was made to the MSD 
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curves to calculate D( z). Since the data for r < 10 ps was nonlinear and data for 

r > 40 ps was noisy due to poor sampling, the least squares fit was performed only 

on the interval ( 10 ps < T < 40 ps) shown in Figure 4. 7. From the figure, it is clear 

that the slope (and thus D) decreases with increasing penetration into the bilayer. 

The diffusion constant is determined by the relation 

1 
D(z) = 27dMSD( r, z) (4.11) 

where d indicates the dimensionality of the motion. The MSD( r, z) was calculated 

for the total displacement ( d = 3) and for each cartesian direction ( d = 1) with the 

z-axis lying along the bilayer normal. Using a linear least squares fit, D(z) was then 

determined for these four cases. The results are shown in Figure 4.8. Of particular 

note is the fact that water furthest from the interface is seen to diffuse anisotropically. 

Diffusion normal to the bilayer is suppressed while diffusion in the plane of the bilayer 

is enhanced. The diffusion constant for bulk water was calculated for the water model 

used in the simulation [4] and it is indicated by the horizontal line in Figure 4.8. The 

anisotropy of the water motion exterior to the bilayer indicates the the system is 

not fully hydrated. Within the bilayer, the diffusion constant drops rapidly and 

the anisotropy diminishes due to the reduction of the mean free path caused by the 

relatively immobile lipid molecules. 
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Figure 4.7: Mean square displacement MSD(r,z) as a function of position along the 
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asterisks ( *) denote z = 2.0 nm, open circles ( o) denote z = 2.5 nm and solid circles 
( •) denote z = 3.0 nm. 

D(z) 
(cm2 /s X 10-5) 

4 

2 

1 

0 1 2 3 
z (nm) 

4 5 

Figure 4.8: Diffusion constant D(z) as a function of position along the bilayer normal 
z for water. The light solid line denotes the three-dimensional diffusion constant. The 
light dotted, heavy solid and heavy dotted lines denote the one-dimensional diffusion 
constant for motion in the x-, y- and z-directions, respectively. The heavy horizontal 
line displays the diffusion constant of bulk water calculated utilizing the same water 
model as used in the simulation [4]. 
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Chapter 5 

Lipid Ripple Phase 

As discussed in Section 2, phosphatidylcholine (PC) bilayers exhibit a ripple phase 

in which the bilayer surface is uniaxially corrugated with a correlation length on 

the order of tenths of microns [99]. This chapter describes an effort to construct 

a lattice model that describes the ripple phase and gel-+ripple-+liquid crystal phase 

transitions. The effort utilized configurational-bias Monte Carlo ( CBMC) methods to 

calculate a finite set of lattice site energy states. The results indicate that the energy 

states of the specified states exhibit large uncertainties relative to their differences, 

suggesting that the model requires expansion. 

5 .1 Introduction 

The ripple phase has been studied experimentally most recently by X-ray spectroscopy 

[100-102] and scanning tunnelling microscopy[103,99]. In the following subsection 

these data will be reviewed. Several different theoretical approaches have attempted 

to elucidate the phenomena focusing primarily on determining the underlying cause 

of the undulating structure. These will be summarized in the second subsection. 

In Section 5.2 the proposed model for the gel-+ripple-+liquid crystal phases will be 

described. Section 5.3 describes the CBMC method used, and Section 5.4 gives the 

results. 
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5.1.1 Experimental Knowledge 

The ripple phase is known to exist between the gel and liquid crystal phases for 

certain bilayer PC systems at sufficient water concentration. The threshold water 

concentration is ,....., 20% by volume, at which point the ripple wavelength decreases 

with increasing water concentration until excess water concentration is reached at 

,....., 35% by volume [101]. Over this range of water concentrations, the ripple wave

length of dimyristoyl phosphatidylcholine (DMPC) bilayers decreases from 15.94 nm 

to 12.31 nm [101]. 

Although the ripple wavelength has been found to be invariant with temperature 

[99], the ripple amplitude has recently been seen to increase from near zero to 2.4 nm 

over the ripple phase temperature range of DMPC (14-24 °C) [99]. The ripple wave

form is not a simple trigonometric or triangular function [104] and is likely to be 

asymmetric [102]. 

The chemical makeup of the lipid molecule is important to the formation of the 

ripple structure. The chains of the lipids are known to be mostly all-trans [101] 

although recently there is some suggestion that one side of the ripple is more liquid

like than the other [102]. The ripple wavelength and amplitude increase with chain 

length [104]. The headgroup composition is critically important. If a single CH3 

group is removed from the choline group (N+(CH3)3) (see Figure 2.1, page 6) and 

replaced with a single hydrogen atom, the ripple phase does not appear [104]. 

5.1.2 Theoretical Approaches 

There are two general approaches to theoretical modeling of the ripple phase: phe

nomenological models and microscopic models. The phenomenological models be

gin with a postulated free energy functional depending on thermodynamic variables 

which define the transition and attempt to extract information using classical ther-
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modynamic methods; microscopic models begin with a microscopic Hamiltonian and 

then apply methods of statistical mechanics to determine the system's thermody

namic properties. The summary of previous theoretical work given below is based 

primarily on the review by Scott and McCullough [104]. 

Phenomenological models for phase transitions are based on the original theory 

of Landau [105]. In this theory, a free energy functional is postulated that utilizes a 

reduced variable ( the order parameter) whose value continually varies from unity to 

zero as the system undergoes a phase transition. This functional is then expanded 

in terms of the order parameter and minimized. In the case of ripple phase studies, 

the Landau approach has utilized order parameters based on bilayer thickness and 

local bilayer curvature [104]. In both cases the free energy minimization process 

produced modulated phases. There are difficulties, however. For example, there is no 

experimental evidence supporting the assumption that bilayer thickness is the driving 

variable in the ripple phase transition. The lipid chains are nearly all-trans as in the 

gel phase, and no clear mechanism for changes in bilayer thickness has been observed 

[104]. Generally, the phenomenological method suffers from the fact that a single 

order parameter is unlikely to describe the variety of processes that take place in the 

ripple phase transition [104]. 

The microscopic approach involves constructing a Hamiltonian that describes the 

microscopic interactions between lipid atoms or molecules. Such a Hamiltonian must 

be simple if it is to be tractable. Such a model was proposed by Pearce and Scott 

[106] and subsequently expanded and analyzed [107-110]. 

This model views DMPC as a rigid 'L' shaped block, as shown in Figure 5.l(a) 

[106]. The model Hamiltonian utilized two integer state variables denoting vertical 

displacement (in,..., 5 A intervals) and orientation (left or right) of the L-blocks [108]. 

Energy parameters were determined by calculating molecular interaction energies 
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Figure 5.1: Block models used by Scott and co-workers [106]. (a) Dimensions of lipid 
block: hz l'.J 25 A, he l'.J 20 A, wz l'.J 12 A and We l'.J 10 A. (b-d) Some possible two lipid 
orientations. 
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between two DMPC lipid molecules at vanous values of the state variables usmg 

optimized van der Waals potentials for the atom interactions [108]. This enabled 

a determination of energy values for various lipid-lipid configurations such as those 

shown in Figures 5.l(b-d). 

Several variations of this model produced a gel phase ground state energy as shown 

in Figure 5.2(a) and a modulated phase phase at higher temperature as caricatured in 

Figure 5.2(b ). In addition, the model was successful in reproducing observed behavior 

DDo 
Figure 5.2: Ripple model profiles showing L-block representation of the gel (a) and 
ripple (b) phases. 

when cholesterol is added to DMPC membranes [109]. However, the model cannot 

reproduce the asymmetric profiles observed by Sun et al. [102] or the combination of 

temperature invariant wavelengths and temperature dependent amplitudes observed 

by Woodward and Zasazinski [99). Furthermore, the model cannot describe the ripple 

to liquid crystal phase transition since the rigid L-blocks do not allow for the melting 

of the lipid chains. 
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5.2 Model 

The model of Scott and co-workers was expanded in this study in an attempt to 

include the ripple to liquid crystal phase transition. This section details the model. 

As in the original model, the lipid molecules are thought of as block shaped 

objects. But here the chains have two possible states, rigid ( ordered) or flexible 

( disordered). Molecules with rigid chains take on the shape of the original model as 

shown in Figure 5.l(a). Disordered chains take up more volume, so that molecules 

with disordered chains expand laterally to assume rectangular profiles. 

Ideally, the Hamiltonian of the original model could be simply extended in this 

manner by adding another spin variable whose value (0 or 1, say) indicates whether 

the molecule has ordered or disordered chains. However, this leads to 40 unique 

pair energy states. This number is two large for practical use in a lattice model, so 

the model was simplified by only allowing lipid chains to be disordered if the chains 

are not confined by having another lipid "tucked under" it. Using this criterion and 

ignoring interactions perpendicular to the ripple axis, the number of pair energy states 

is reduced to fifteen. These energy states are shown in Table 5.1. 

5.2.1 Calculation of State Energies 
, ........ 

Energy values of the states shown in Table 5.1 were calculated using the same atom 

potentials as utilized in the molecular dynamics study discussed in the previous chap-

ters including use of the Ryckaert-Bellemans dihedral potential shown in Figure 2.3 

on page 9. The energy calculation includes interactions between each atom of one 

lipid matched with each atom of the other lipid and each chain atom with the all 

other atoms of the lipid to which it belongs. 

For a pair of rigid molecules, this interaction energy is straightforward to calcu-

late, but the calculation becomes complicated when one or both of the lipids are in 
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State Number Lipid Orientation Chains of Left Lipid Chains of Right Lipid 

1 DO disordered disordered 

2 DO disordered ordered 

3 OD disordered disordered 

4 DD disordered disordered 

5 DO ordered disordered 

6 DO ordered ordered 

7 Q] ordered disordered 

8 Q] ordered ordered 

9 OD disordered disordered 

10 oD disordered ordered 

11 Q] ordered disordered 

12 uD disordered disordered 

13 uD ordered ordered 

14 uD ordered disordered 

15 uD disordered ordered 

Table 5.1: State identification numbers are shown for the fifteen ripple model states. 
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disordered states for two reasons. First, the number of possible chain conformations 

is huge requiring that a statistical sampling be made. But, second, the sampling of a 

chain's configurations is complicated by the volume restriction due to the other chains 

of the lipid pair and the surrounding molecules, modeled as shown in Figure 5.3. 

Figure 5.3: Top view of a pair of lipid molecules surrounded by a hard wall. The wall 
is located by placing a hard cylinder centered on each lipid and then removing the 
intersecting arcs. The 'T' shapes indicate the lipid orientation with the cross of the 
'T' indicating the 'chain' side of an L-block model and the stem of the 'T' indicating 
the ripple axis. 

Traditional Metropolis Monte Carlo methods [2] are very inefficient at sampling 

systems such as lipid molecules. When a trial dihedral rotation is made along a lipid 

chain, the segment of the chain below the rotated bond will be displaced greatly and 

will likely overlap atoms of another chain or the enclosing wall. This situation leads to 

very small acceptance rates for Metropolis methods applied to dense chain systems. 

However, a recent Monte Carlo method, known as configurational-bias Monte Carlo 

(CBMC) [73-77], has been developed that is particularly suited to the simulation of 

dense chain systems [74,75,77-80]. This method was used to sample the disordered 

chain configurations in this study and is described in the next section. 

The calculation of the state energies followed these steps: 

1. The minimum energy position near the appropriate lipid pair configuration was 
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determined using rigid molecules. The purpose in this step is to eliminate any 

large energies that may be due to poor placing of the molecules. 

2. The energy contribution due to rigid atoms is calculated. Rigid atoms include 

all head group atoms and the chain atoms of any ordered lipid molecules. For 

a given displacement between molecules, this energy does not change. 

3. The interaction energy of the flexible chains with all other atoms is calculated 

using CBMC methods. This step is iterated many times before the next step is 

taken. 

4. For each state, entire molecules are displaced using Metropolis MC methods at 

zero temperature. As in step 1, this is to help ensure the lipid molecule pairs 

are at or near minimum energy states due to their relative displacement. 

5. Steps 2-4 are repeated. Over a simulation, over twenty-thousand CBMC moves 

are performed on each flexible chain of each state. 

The above modeling efforts were carried out for several different values of the tem

perature and the effective headgroup charges. 

Since water was not explicitly included in the calculation, the dielectric effect of 

water was modeled by reducing the charge on the headgroup atoms. This is certainly 

an approximation for a calculation of atomic interactions since the water dipoles will 

not produce a continuous dielectric constant at this resolution. A charge reduction 

of one half was used in the final calculations. 

Ideally, a microscopic model should not contain any temperature dependent terms. 

However, the CBMC sampling of the disordered chain configurations in step 3 is 

temperature dependent. Several values of temperature were used providing a set of 

state energies as a function of temperature. 
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The results of these calculations are presented in Section 5.4, but first we digress 

to discuss the CBMC method. 

5.3 Configurational-Bias Monte Carlo 

As its name implies, the CBMC method samples a system with a sampling bias based 

on the system configuration. The biased sampling procedure generates configurations 

that are energetically more favorable than those generated by methods such as those 

due to Metropolis. The description of the method that follows is taken from several 

sources [73-76]. References [75] and [76] contain particularly lucid discussions of the 

method and a notation similar to that of reference [76] will be used. 

The sampling procedure consists of regrowing a selected chain of atoms, picking 

the position of each atom based on that atom's environment. The chain of atoms need 

not be an actual bonded chain, rather, the 'chain' is a collection of sequentially redis

tributed atoms. However, the method is particularly well suited to bonded molecular 

chains, and the discussion below will be in terms of the application to chains. 

Consider the addition of the ith chain segment ( attachment of the ith atom) 

to a chain producing a conformation of the chain r. The potential energy of the 

attachment can be separated into two contributions. The first contribution Vi~{(r) 

is the 'internal' potential energy. This is the potential due to the bond itself. For 

the hydrocarbon chains of a lipid molecule, this contribution is the dihedral potential 

of Figure 2.3 on page 9. The second energy contribution vl~t (r) is the 'external' 

contribution. It represents the potential due to nonbonded interactions experienced 

by the segment. Note, both Vi~{(r) and Vl~t(r) include the contribution of energy 

due to the previously grown i - 1 atoms of the chain but not the i + 1 to £ atoms yet 

to be added where £ is the total number of segments in the chain. That is, the total 

67 



potential energy of a chain segment in conformation r is given by 

e 
( ( i) ( i) ) Vr = L Vint(r) + Vext(r) . (5.1) 

i=l 

With the separation. of potentials into internal and external contributions, the 

ith segment is attached in two steps. First, b trial positions are generated for the 

ith segment. These orientations are selected based a Boltzmann distribution of the 

internal energy of the segment. For example, in our case, the internal potential is 

the dihedral potential, Vi~t (r) = V dihedral( Bi). Thus, b angles are randomly generated 

from the distribution 

p,. (B) _ exp (-,BVdihedra1(B)) 
mt - Ji1rexp(-,BVdihedra1(B))dB' 

(5.2) 

where ,B = 1/(ksT) with ks representing the Boltzmann constant and T representing 

the temperature of the system. Next, one of the b trial orientations is randomly 

selected based on the Boltzmann weighting of it's external potential energy. That is, 

segment orientation j is selected with probability 

. exp (-,BV~~t(j)) 
Pext(J) = zi , (5.3) 

where 
b 

- ( (i) ) zi - L exp -,BVext(k) . (5.4) 
k=l 

Segment i is added to the chain with the chosen orientation, and the process 1s 

repeated for the remaining segments. 

This biased growth algorithm can be incorporated into a Monte Carlo selection 

scheme to generate unbiased equilibrium configurations from the constant particle, 

volume, and temperature (NVT) ensemble. This scheme proceeds as follows: 

1. Randomly pick a chain and regrow it using the method described above. Its 

configuration before the regrowth (the 'old' configuration) is denoted I' 0 , and 

the new trial configuration is denoted I't. 
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2. For each growth step, calculate the Rosenbluth weight of the selection, 

(5.5) 

This is a weight reflecting the bias of the selection of segment i and is named in 

honor of Rosenbluth and Rosenbluth who developed an early precursor to the 

CBMC method [111]. 

3. For each growth step, calculate the 'old' Rosenbluth weight. That is, determine 

the bias required to select the original conformation j' of the ith segment. To 

satisfy detailed balance, this weight must be based on the same set of b segments 

used in step 1. The 'old' weight w}0
) is determined in the same manner as w}t) 

except the contributions of the b trial conformations to w}0
) are evaluated in the 

environment seen by the ith segment of the original chain, and conformation j' 

is substituted for j: 

(o) _ exp (-/3Vtf(/)) + Iltj' exp (-/3Vi~f(k)) 
wi - b . (5.6) 

4. The trial chain is accepted with probability min( wt/ w0 , 1) where Wt = Tik=i wit) 

and w0 = Tik=l Wk0
). If accepted, the trial chain replaces the old chain, if 

rejected, the old chain is taken as the selected chain. 

The last step ensures that microscopic reversibility is maintained. That is, the 

probability of a transition ro -+ rt is equal to the reverse transition rt -+ ro. 

Microscopic reversibility ( detailed balance) is a sufficient condition to ensure that 

the sampling scheme produces configurations from the NVT ensemble of states [81]. 

To see that microscopic reversibility is indeed maintained, consider the probability 

density to select a particular trial conformation j, from a specific set of b orientations, 
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at location i along the chain, 

Pi(j) = Hnt(j) [rr Pint(k)l Pext(j). 
kf.j 

(5.7) 

Here, the prefactor is the probability density that conformation j is selected as one 

of the b orientations. The second factor ( the product series) is the probability that 

the particular set of b - 1 other trial conformations are chosen, and the last factor 

is the probability that conformation j is chosen out of the b possible conformations. 

The probability to generate the original chain, is identical except in the set of b trial 

conformations, the original conformation j' of segment i, is substituted for the chosen 

trial orientation j. The probability to generate a whole chain is given by a product 

of the segment probabilities, 
£ 

Pr = IT Pi(Ji)- (5.8) 
i=l 

Detailed balance requires the transition probability from state j to j' should be 

equal to the transition probability from state j' to j, 

} ,T }'' \jj' = \j'j• (5.9) 

But, there may be a very large number of sets of b configurations containing j or 

j'. For this reason, a 'super-detailed balance' condition is applied such that for any 

specific set of b orientations, detailed balance holds [75, 76]. 

We assume, without loss of generality, that w?) < w}0 l. This means that the 

probability to accept the transition j'-+ j is w}t) /w}0 l (for the whole chain, wtf w 0 is 

used) while the probability to accept the transition j -+ j' is 1. Then, 

I{"/ JJ (5.10) 

with Nj indicating the number of segments in configuration j. Using Equations 5.4-
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5.7, we have 

P ( ·I) (o) 
iJ wi = 

b 

cNj II Hnt(k), 
k=/:j 

b 

cNj, II Hnt(k), 
k=/:j 

(5.11) 

where c is a constant. Substituting into Equation 5.10 produces the desired equality, 

r,r r,r cNjNj, IIb o (k) 
fljj' = l'i.j'j = (o) .rjnt · 

. wi k=/:i 
(5.12) 

The CBMC method, thus generates chain conformations appropriately sampled 

from the NVT ensemble but chosen using a bias to make 'acceptable' configurations 

more likely to be generated. This increases the efficiency of the sampling tremendously 

since overlapping of chains is unlikely under the CBMC scheme. In addition, the 

method makes relatively large steps through configuration space as it samples the 

chain configurations since each accepted trial chain is a complete rearrangement of 

the original chain. 

5 .4 Results & Discussion 

Calculations were performed for all states using temperature values of 200, 240, 280, 

300 and 340 degrees Kelvin. During these runs, the CBMC acceptance rates varied 

widely from state to state lying in a range of 0.18-16%. The average value ranged 

from 5.2% to 7.9% for the lowest and highest temperatures, respectively. These 

acceptance rates, while lower than the usual 50% desired, are substantially higher 

than traditional Monte Carlo methods produce for dense chain systems. A typical 

disordered configuration is shown in Figures 5.4. 

Although the CBMC method worked quite well in the calculation of the energy 

states, the resulting energy values maintained rather large fluctuations in the CBMC 

calculations. The result was that the difference in energy between many of the average 
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energies determined for different states was smaller than the standard deviations. For 

example, Figure 5.5 shows the values of the energy determined at 340 K with error bars 

indicating a standard deviation above and below the value. Clearly, many of the states 

overlap. This situation also occurred for the calculations at the other temperatures 

studied. The standard deviation was calculated over an extended calculation for each 

temperature and found not to vary indicating the standard deviation calculated was 

not due to a lack of proper equilibration. Since ordering of the energies was to be 

resolved, the current model cannot be used to study phase transitions. 

The inclusion of additional states is not likely to improve the model. An increase 

in the number of pair states will not remove the large standard deviations of the the 

states already selected. Use of three- or four-lipid states might narrow the standard 

deviation, but would increase the number of states beyond practical use. 

One possible remedy for the large standard deviations in the calculated energy 

states is a refining of the boundary enclosing the two lipids. The hard wall may allow 

more widely varying energy states than would exist if a more realistic boundary were 

imposed. For example, one could surround the chain region of the lipid pair with lipid 

chains which also undergo CBMC rearrangement. This may narrow the energy range 

sampled by the CBMC rearrangement of the lipid pair. This is especially likely if the 

pair interaction includes the interaction energy with the bounding chains, in which 

case, conformations which produce large energy contributions between the lipid pair 

may be offset by low energy contributions from the boundary chains. 
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Figure 5.4: Typical disordered lipid pair configuration. The figure corresponds to 
state 3 in Table 5.1 at 340 K. 
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Figure ,5.5: Energy of ripple model states at 340 K. Error bars indicate± one standard 
deviation for states requiring CBMC simulation for determination. These state are 
indicated with diamonds ( o). The stars ( *) indicate energy states t hat consist of two 
rigid molecules, and thus do not require CBMC simulation to determine. 
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Part II 

Hybrid Monte Carlo Method 
A pp lied to Diamond 
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Chapter 6 

Introduction 

The molecular dynamics (MD) simulation described in Chapters 3-4 cover a dura

tion of a few hundred picoseconds. In some applications, this is too short to obtain 

meaningful results. In the remaining chapters of this thesis, a method is described 

by which simulations of longer time scales may be achieved. 

Finite computational resources limit the system size and the real time through 

which a simulation may be propagated. As systems under investigation become more 

complex, these limitations become more acute. Gas-surface and condensed phase 

systems are examples. In such systems, the interaction potential is often a complex 

function containing many-body, highly directional terms. The computation time 

required for the repeated evaluation of such a potential and its derivatives currently 

precludes (MD) simulations over periods of time on the order of nanoseconds or 

greater. 

Kinetic Monte Carlo procedures (KMC) provide an alternative methodology [112-

117]. In a KMC simulation, derivatives of the potential energy need not be calculated 

providing an immediate advantage over MD methods. In addition, KMC methods 

may utilize simpler models to generate motion as a function of time. For example, 

most KMC simulations to date have been based on models in which the underlying 

crystalline symmetry of the solid to be grown is 'built-in' [116,117]. In these cases, 

the use of a simple set of growth rules and/ or a grid to restrict atom moves or 
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hops greatly reduces the computational cost of the simulation. The adequacy of 

the built-in growth rules and underlying grid are tested by comparing the results of 

the simulations with experimental data, which is possible since the simulations can 

produce large-scale film growth. However in these simulations, the pre-existence of 

an underlying grid precludes obtaining any fundamental insights into the microscopic 

mechanisms by which a given interatomic potential leads to growth of a crystalline 

phase. In order to obtain insights at this level, alternative simulations are required 

which are not lattice based (off-lattice), and which employ realistic ( and often very 

complex) intermolecular potential surfaces. Yet, these simulations must run for at 

least milliseconds of real time in order to allow surface clusters to form and interact. 

An important consideration for any dynamical simulation is the time scale of the 

events to be studied. If the events in question occur on vastly different time scales, 

it is generally impossible to simulate the process using the standard KMC and MD 

methods. For MD simulations, high-frequency motions will.determine the integration 

time step that must be employed. If this time step is extremely small, it will be 

impossible to adequately sample the low-frequency events in an acceptable amount 

of computational time. In KMC calculations, the events with the largest rates will 

completely dominate the simulation, and events with small occurrence probabilities 

will be rare. In some cases, this problem can be solved by ignoring the fastest motions. 

In an MD simulation, this may be done by the use of a restraint. For example, the 

high frequency motion of atomic bonds are often removed by constraining the atoms 

to a rigid bond. Also, if the high frequency motions can be integrated analytically, 

Tuckerman et al. [118] have shown that an MD simulation can utilize the exact 

solution as part of a longer time-step algorithm. This allows for inclusion of both long 

and short time scales in an MD simulation. However, its use is presently limited to 

systems where the high frequency motions are sufficiently simple to allow for analytic 
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solution of these motions [118]. In a KMC simulation, the high frequency events can 

often be removed from the model altogether so that all events in a KMC study will 

have probabilities that are of the same order of magnitude. 

For some systems, it is important to include explicit consideration of both fast 

and slow processes. Surface growth in a chemical vapor deposition (CVD) experiment 

may involve fast surface equilibration dynamics between deposition events which often 

occur on time scales several orders of magnitude longer than the equilibration steps. 

Yet, both of these events must be accurately treated in the simulation if the results 

are to be useful in the interpretation of experimental data. 

A hybrid MC method designed to handle problems created by critical processes 

occurring on vastly different time scales is presented in this part of the thesis. This 

method uses KMC techniques to handle the dynamics for the rate determining steps 

and equilibrium MC methods for the fast relaxation steps. The method allows the 

computation of trajectories up to hundredths of a second in length, extremely long 

for a dynamic simulation. In the next chapter, the hybrid MC method is presented in 

more detail. In Chapter 8, the hybrid method is applied to an off-lattice simulation 

of diamond growth by CVD. Chapter 9 presents and discusses the results of the 

simulations. The material in this part is also reported in references [5] and [6]. 
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Chapter 7 

Hybrid Monte Carlo Method 

The need to simulate the growth of diamond film over large times has lead to the use 

of a hybrid Monte Carlo method that uses Kinetic Monte Carlo (KMC) to perform 

the long time motions while Metropolis Monte Carlo (MMC) methods are used to 

simulate the fast time motions. This chapter describes this hybrid simulation method. 

7.1 Equilibrium Monte Carlo Method 

The Monte Carlo method devised by Metropolis et al. [2] is one of the most commonly 

used simulation methods. In its original form, it generates states in the constant 

particle number, volume and temperature ( NVT) ensemble. 

The practical implementation of the MMC method is as follows: 

1. Choose a particle ( or cluster of particles) and randomly displace it, producing 

a trial position. This displacement can be performed by nearly any means, but 

the simplest is a small linear displacement of the particle such that 

Yt (7.1) 

where x, y and z are the cartesian coordinates of the particle with the subscripts 
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indicating trial (t) and original (o) values, a is a constant defining the maximum 

displacement of the particle and ex, ey and ez are random numbers uniformly 

distributed between -1 and 1. 

2. Calculate the potential energy change .6.V = Vt- V0 between the initial config

uration and this new trial configuration. 

3. If .6. V < 0, accept the move. If .6. V ::::: 0, accept the move with probability 

exp(-,B .6.V) with ,B = 1/(kBT), kB being the Boltzmann constant. Accepting 

a move means to take the next configuration in our ensemble sampling to be 

the trial configuration generated by step 1; rejecting a move means to take the 

original configuration (before the particle was displaced) as the next configura

tion. 

This algorithm satisfies detailed balance and will thus generate ensembles from the 

NVT ensemble [81]. That is, the MMC method satisfies 

(7.2) 

where Kij is the probability of transition from state i to state j. This is shown in a 

manner similar to that used in Section 5.3 (page 67). Assuming that .6.V > 0, the 

transition probabilities generated by the method are 

(7.3) 

Here, Ni is the number of systems in state i, and Pi is the probability that state i is 

generated. Now, 

(7.4) 



where c is a constant. Using these two expressions, it follows that the MMC method 

satisfies detailed balance and is thus assured to generate states from the NVT en-

semble, 

, , cNiNJ 
hiJ = 1'1.Ji = ( (3V). exp - i 

(7.5) 

7.2 Kinetic Monte Carlo Method 

Unlike molecular dynamics (MD) simulations, Monte Carlo (MC) methods do not 

explicitly propagate the system through time. The motion of the particles in MC 

studies is quasi-random rather than deterministic. However, the states generated 

by traditional MC methods [2,119-121] are correlated in that they are generated 

sequentially from similar configurations. At present, there is no known sampling 

method that does not give correlated configurations that is computationally practical 

[112]. However, if the correlations can be interpreted as dynamical correlations in a 

stochastic description of the system, they work to our advantage [122]. That is, a 

kinetic interpretation of MC methods implies that the states simulate the real motion 

of the system rather than being just a sampling of ensemble states. Expectation values 

can then be calculated as time averages. 

The probability density p(xm, t) that a certain configuration Xm occurs at a time 

t is described by the Markovian master equation [113]: 

d p( Xm, t) '"' ( ) '"' ( ) d = ~ vVnmP Xn,t - ~ WmnP Xm,t' 
i n n 

(7.6) 

where vVmn is the transition rate from state m to state n and Xm is a 3N-dimensional 

vector representing the total configuration of a system of N particles. KMC methods 

are viewed as algorithms which numerically solve Equation 7.6 by properly choosing 

from the various transitions and accepting or rejecting the move with the appropriate 

probability [115]. The time scale is incorporated in the calculations through the 
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transition rates. These rates must be determined a priori (by phenomenological 

arguments, experiment, and/or MD simulations, for example). However the rates are 

determined, care must be exercised to ensure that Equation 7.6 gives a zero time rate 

of change of p(xm) when Xm is in an equilibrium state, or the simulation will not 

generate equilibrium behavior. This is most easily and commonly done by choosing 

transition rates such that detailed balance is satisfied [115]. 

For very simple potentials, MC steps can be viewed as being proportional to time, 

but for even modestly complex potentials, Kang and Weinberg have shown by direct 

simulations that this is not the case [114]. Fichthorn and Weinberg have shown that 

time can be formally linked to a particular KMC event when the event is a Poisson 

process [115]. In this case, the interevent time can be randomly determined from 

an exponential distribution. Since it is the key to the hybrid method employed, the 

Fichthorn and Weinberg argument is summarized below. 

Let ri be the transition rate for event i. An example might be the adsorption of 

a particle on a surface. If this transition can be cast as a Poisson process, then the 

probability that k independent events will occur in time t is given by 

(7.7) 

The expectation value of k for this distribution is 

(k) = rit. (7.8) 

Thus, r; is the average occurrence rate of the process. If there are different types 

of events with rates r a and rb, then the total number of events that occur in time t ( of 

both kinds) is also described by a Poisson distribution with a total rate rr = r a + rb 

[115,123]. It therefore follows that 

P(k = ka +kb)= (ra :,rbt e-(ra+rb)_ 

81 

(7.9) 



In general, the total rate for the entire system to change is given by 

(7.10) 

If events are governed by a Poisson distribution with rate R, the probability 

density of the interevent time is given by [115,123] 

P(t) =Re-Rt. (7.11) 

Thus, if the system under study can be cast as a set of independent events with known 

rates, the time between events has an exponential distribution which can be sampled 

to determine the time taken for an event to occur. 

Fichthorn and Weinberg [115] have provided an excellent example of the utilization 

of this method for the case of atom adsorption and desorption on a surface and Binder 

[112] lists several additional algorithms, although he does not explicitly cast them 

in terms of Poisson processes. Fichthorn and Weinberg have also pointed out that 

utilization of Poisson processes is valid for non-equilibrium MC simulations as long 

as the rates that have been chosen satisfy a "dynamical hierarchy" [115]. That is, 

every possible event must have a specific rate depending upon the transition process 

itself. Since the Metropolis algorithm [2] accepts all moves to lower energy states 

regardless of the transition process, it does not provide this hierarchy. Consequently 

a Metropolis MC move cannot be interpreted dynamically as a process that simulates 

random motion in time. 

7.3 Hybrid Monte Carlo Method 

KM C methods can be used to simulate a system of particles interacting by a set 

of physical processes as a function of time if the rates of the processes are known. 

However, if these rates vary greatly, the KMC method is very impractical. This can 

82 



be seen from Equation 7.9. If ra » rb, then P(ka + kb) approaches P(ka). That is, 

essentially all events will be of type a. Furthermore, the time scale for sampled events 

will be very small since ra is large. The conclusion is clear-widely varying events 

cannot be performed in a KMC simulation because the fast processes will completely 

dominate the simulation. However, if the difference in event rates is large enough, 

both fast and slow processes can be incorporated into a hybrid equilibrium/kinetic 

Monte Carlo method. 

If the high frequency processes are fast enough to equilibrate over the time required 

for a low frequency processes to occur, then the fast events can be simulated using 

the traditional equilibrium Monte Carlo methods while the slow motions are carried 

out using KMC. Thus for systems consisting of events that occur on widely varying 

time scales, a single iteration of the hybrid method consists of two steps: 

1. Equilibrate the high frequency processes. Any method of equilibration suited 

to the system may be used in this step. 

2. Perform a KMC step based on the low frequency processes. This is the time 

determining step and may be carried out using any number of low frequency 

events as long as their rates are comparable. There are several different algo

rithms available for performing this step [115,112,117]. 

The specific implementation of these steps will vary according to the system being 

studied. In the following chapter, the hybrid Monte Carlo method will be applied to 

a study of diamond film growth via chemical vapor deposition. 
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Chapter 8 

Diamond Film· Growth 

The hybrid simulation method presented in the previous chapter was applied to a 

model of diamond film production by chemical vapor deposition ( CVD) of methyl 

radical, CH3 . The kinetic Monte Carlo (KMC) method was used to propagate the 

system in time based on the (relatively) low frequency adsorption of CH3 , and the 

Metropolis Monte Carlo (MMC) method was used to equilibrate the high frequency 

lattice relaxation processes. 

8.1 Chemical Vapor Deposition of Diamond 

8.1.1 Experimental Knowledge 

There is currently a large number of experimental methods for growing diamond and 

diamond-like films of widely varying quality by CVD methods [124-126]. In all of these 

methods, a hydrocarbon gas is directed onto a substrate subsequent to having been 

energized in some fashion. If the surface temperature is properly controlled, the result 

is the formation of diamond film on the substrate. Growth rates up to 150 µm/h using 

a C2 H2 flame have been reported [127-130]. High quality diamond particles about 

10 µm in size have been grown in 20 h of deposition of CH3 and atomic hydrogen 

[131]. Nuclear magnetic resonance [132] and electron paramagnetic resonance [133] 
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experiments have provided new quantitative insights into the internal crystallinity of 

diamond films grown from filament-assisted CH3 and H bombardment of a substrate. 

These data indicate that there is relatively little atomic hydrogen or trapped CH3 in 

the film. The majority of the defects appear to be dangling bonds. Direct observation 

of films by scanning microscopy [134,135] and atomic force microscopy [136] show that 

the film surface is rough on an atomic scale, while on a larger scale, planar structures 

25-50A in size and with {111} orientation are visible in some cases [134,136]. This 

suggests a surface correlation length on the order of a few angstroms. 

8.1.2 Theoretical Model 

Despite the large amount of experimental knowledge regarding diamond CVD, theo

retical understanding of the mechanisms underlying the growth process is incom,plete. 

Several elementary-reaction mechanisms have been proposed [137-143]. Of interest 

to us is the suggestion that CH3 is the primary growth species on a { 111} surface 

[131,144-147]. For our initial simulations, we have chosen to concentrate on the basic 

elements of diamond CVD that are required to describe the physical system-the 

chemical constituents of the gas phase, CH3 and H, and the substrate surface, the 

{111} diamond plane. 

The choice of the interaction potential is critical in any simulation. A many

body, semi-empirical potential developed by Brenner [148] is used here. This po

tential is an extension of Tersoff's covalent-bonding potential [149] parameterized to 

fit a very large set of hydrocarbon interactions. It has been successfully employed 

in a variety of hydrocarbon molecular dynamics (MD) and Monte Carlo (MC) sim

ulations [117,150-156]. The corrections to Tersoff's potential introduce many-body 

terms which involve. up to third neighbor interactions. Consequently, the Brenner 

potential is very demanding of computational time making long-term, large scale MD 
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calculations impractical. Such a system therefore must be studied using the hybrid 

method. 

A KMC calculation requires that the time scales for the events to be considered be 

obtained from experiment or from a separate theoretical study. Rate coefficients for 

CH3 adsorption, hydrogen adsorption and hydrogen abstraction have been computed 

by Raff and co-workers [157,158] using MD and variational transition-state methods 

with the Brenner potential and parameter set #1 [148]. Using gas flow rates reported 

by Goodwin [145] we calculate the following overall event rates at T = 1250 K: 

• hydrogen abstraction [158]: 2.0 x 108 s- 1 , 

• hydrogen adsorption [157]: 3.7 x 109 s-1 , 

• CH3 adsorption on a ledge [157]: 5.5 x 104 s- 1 , and 

• CH3 adsorption on a terrace [158]: 1.25 x 104 s- 1 . 

The term 'terrace' indicates a site at which the dangling bond is oriented in the {111} 

direction of the lattice (normal to the growth surface). All other sites are designated 

as 'ledge' sites. 

The most important feature of the above rates is that the CH3 adsorption rate is 

four to five orders of magnitude slower than the hydrogen adsorption or abstraction 

rates. Thus, if both H and CH3 events were utilized in a KMC method, on average, 

104 H events would take place between each CH3 adsorption. This fact makes the 

inclusion of the hydrogen adsorption and desorption events in a KMC simulation of 

film growth impractical. 

Nevertheless, the hydrogen processes must be included in the simulation since the 

distribution of radical sites and, therefore, the possible adsorption sites for CH3 are 

determined by these events. A similar but more extreme example of this problem is 

that of off-lattice surface relaxation, including desorption and surface diffusion. The 

86 



CH3 adsorption rate and the hydrogen rates are both orders of magnitude slower 

than the local atomic motions which occu.r on time scales of picoseconds. Since 

we are describing off-lattice simulations, structural rearrangements via local atomic 

translational motion and rotation about C-C bonds are required to form diamond 

on the surface. But this type of relaxation cannot be simply incorporated into the 

KMC method by utilizing the rates of various relaxation events, even if they were 

explicitly known, because such moves would completely dominate any calculation to 

the exclusion of actual film deposition moves. 

In practice, the large difference in event rates allows us to circumvent the prob

lems described above by the application of the hybrid MC method. Since the surface 

relaxation and hydrogen adsorption/ desorption are much faster than CH3 chemisorp

tion, the system will reach equilibrium with respect to surface off-lattice relaxation 

and chemisorption/ desorption of hydrogen between CH3 events. Therefore, the KM C 

calculations can proceed based solely on CH3 events while surface relaxation and 

hydrogen processes can be simulated using any convenient method. 

The model system to which we have applied our KMC procedure consists initially 

of a diamond { 111} substrate. The substrate is three layers thick with hydrogen 

capping the vertical dangling carbon bonds at the interface. Figure 8.1 shows an ini

tially bare diamond {111} surface measuring after a single CH3 adsorption. Hydrogen 

atoms fill all non-radical sites. Radical sites are marked in yellow, carbon of the orig

inal bare substrate is grey, and adsorbed carbon is red. Only the first substrate layer 

is shown for clarity. In an actual diamond film growth experiment, radical sites are 

created when a hydrogen atom is abstracted from the surface by gaseous hydrogen. 

Each radical site is a possible location for chemisorption of CH3 . As more CH3 is 

deposited, the number of radical sites also grows. The appropriate equilibrium dis

tribution of radical sites is determined by the ratio of hydrogen atom adsorption to 
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Figure 8 .1: The topmost diamond { 111} surface after the deposition of a single methyl 
radical. Radical sites are colored yellow, hydrogens are white, substrate carbons are 
grey and adsorbed carbons are red. 

abstraction rates, given above. In our case, Tabs/(rabs + Tads) ~ 0.057. Thus, about 

5. 7% of the available C-H bonds will be vacant radical sites. This is a dynamic equi-

librium state, as hydrogen atoms in the gas phase continually abstract hydrogen from 

C-H pairs to form radical sites, or fill radical sites to make C-H pairs, all on a very 

fast time scale relative to the time between Clh chemisorption events. The radical 

sites are continually redistributed randomly over the set of C-H bonds. 

As the simulation evolves in time, some C-H pairs become unavailable as possi-

ble deposition sites by two possible mechanisms, steric shadowing or dendritic tree 

formation. As more CI-13 are chemisorbed to the initial surface some C-H pairs be-

come inaccessible to hydrogen in the gas phase clue to the steric presence of one or 

more nearby chemisorbed Clh molecules. This 'shadowing' effect must be ta.ken into 

consideration. We consider a. hydrogen or a. radical site to be 'una.va.ila.ble' clue to 

shadowing if there is another carbon or hydrogen a.tom within 1.5 A in the clirec-

tion perpendicular to the interface. Denclritic 'tree' formation occurs when a. CH3 
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chemisorbs to a radical site on a previously chemisorbed CH3 which is connected to 

the surface by only one C-C bond. This process, which leads to the formation of 

alkane-like chains on the surface, is strongly suppressed by the high kinetic energy of 

the gas phase hydrogen atoms and (to a lesser extent) CH3 molecules which impact 

the surface. In the simulation reported here, formation of such trees beyond a critical 

height of three C-C bonds is forbidden. 

8.2 Diamond Simulation Method 

The overall outline for the hybrid algorithm tailored to the specific model of methyl 

radical CVD contains eight steps in each iteration. 

1. Randomly rearrange the chemisorbed hydrogen atoms and radical sites on the 

surface while maintaining the appropriate equilibrium distribution which is de

termined by the ratio of the hydrogen absorption to abstraction rates, ~ 0.057. 

2. Scan possible event sites to determine available adsorption sites and calculate 

the total event rate R. The criteria for availability are, as stated above, that the 

radical site not be 'shadowed' from above by other atoms, and that deposition 

at the radical site will not produce a 'tree' larger than three C-C bonds. 

3. Select a random propagation time !1t from the distribution given by Equa

tion 7.11. This is accomplished by selection of a random number e from a 

uniform distribution on the interval (0,1) and taking !1t = -! ln(e) [81]. The 

total time of the simulation is the sum of propagation times for all steps. 

4. Randomly choose an event site from the site list. This is accomplished by first 

producing another random number e, and then picking the lowest value of n 
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which satisfies the inequality 

(8.1) 

Here ri is the rate for the event which can occur at site i (this depends on the 

type of atom or radical site which might be located at site i). The sum runs 

over the site list, which is continually updated as sites are added by deposition 

and removed by shadowing or the formation of C-C bonds. 

5. Perform the chosen event-attach a CH3 radical to the nth adsorption site. 

6. Perform off-lattice MMC rotation moves about the C-C bond between the newly 

chemisorbed CH3 and the surface carbon to which bonding has occurred. This 

step allows the chemisorbed CH3 to relax into an energetically more favorable 

state, if possible. If, after this relaxation, the energy of the chemisorbed CH3 

is still greater than a cutoff (set at l.5eV in the simulation reported here), the 

deposition move is rejected. Otherwise, the deposition move is accepted. 

7. Equilibrate the area around each site by off-lattice MMC displacement moves 

with hydrogens removed. This is the "bond formation" step. After the MC 

moves, the bonding status of all affected carbons is updated. Two carbons are 

considered to be bonded if the distance between them is less than a bonding 

cutoff. The value used for this cutoff in the current simulations is 1. 73 A. The 

equilibrium C-C bond length in diamond is 1.54 A. 

8. Randomly reattach H atoms at 94.3% of the surface carbon sites. Relax the 

surface by considering random displacements of all surface adatoms, and ran-

<lorn rotations about C-C bonds which support chemisorbed CH3 • Off-lattice 

MMC displacements and rotations are employed along with simulated anneal-

ing. That is, a set of MMC rotations and translations of chemisorbed atoms 

and their neighbors are performed at a temperature of 2500 K, roughly twice the 
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experimental gas phase temperature. Upon completion of these moves, hydro-

gen atoms and radical sites are redistributed over the set of all dangling carbon 

bonds, maintaining the equilibrium ratio of 5. 7% radical sites. Then another set 

of MMC moves are performed using a temperature of half the temperature used 

in the previous set of MC moves. The process is repeated Nanneal times using 

a temperature of 1/ Nanneal of the original temperature in each successive step. 

This relaxation procedure works well, but it is not unique. Since the relaxation 

is very fast, any method can, in principle, be used to simulate the relaxation 

process so long as it converges toward an equilibrium state. 

Surface relaxation is the most critical step for the formation of diamond-like car-

hon structures. It is at this point in the simulation that crystalline symmetry begins 

to appear in a continuum simulation. In large, off-lattice simulations such as the 

present example, the relaxation steps are also the most computationally intense part 

of the study. 

Since the practical problem of computation time reduction in large simulations is 

central to this study, it is appropriate to mention some of the programming consider-

ations that bear on this problem. The use of most many-body potentials requires the 

development of an efficient method for determining neighbors and next-nearest neigh-

hors. The cell method (see Section 3.1.3, page 34) is more efficient than standard 

neighbor lists for simulations such as the present example which involves between 

1000 to 4000 atoms. The use of the cell method provides an added advantage. Dis-

tortions to the diamond lattice due to local structural differences are quite localized 

[159]. Consequently, when an event takes place, surface relaxation moves need only 

be performed on the atoms in cells near the location of the event. 
' 

Since particles are added and deleted throughout the course of the simulation, 

linked lists [87] are used to store atom information. Actually, several lists are used. 
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Linked lists are employed to hold members of a particular cell, to hold the possible 

locations of event sites and to hold the total collection of atoms in the system. The C 

programming language is used to allow simple implementation of data structures and 

to provide pointers to reference these structures. Pointers permit 'fluid' movement of 

atoms among several categories without any repetition of atom information. That is, 

throughout the simulation, only one data structure is needed to hold all information 

for a particular atom. This programming mode is convenient, beneficial to debugging 

the code, and more efficient since movement of a data structure among linked lists 

involves changing only a few pointer variables rather than the entire data structure 

as would be necessary if traditional arrays were used to store information. 

When determining the bonding of atoms in Step 7 of the algorithm, a method is re

quired for dealing with hydrogen abstraction. During the period between CH3 events, 

there will be a great deal of rearrangement of hydrogen atoms on the surface. This 

rearrangement will provide radical sites to which added structures can form chemical 

bonds. Given that each site experiences about 104 hydrogen desorption/ adsorption 

events per CH3 adsorption, added structures will have the opportunity to bond to 

any nearby carbon atom at multiple moments between CH3 events. To simulate this 

situation, we simply remove all hydrogen atoms near added structures for one set of 

off-lattice MC moves, at the gas phase temperature (1250 K). This allows any carbons 

which are sufficiently close to bond. Bonds are updated after this set of moves, and 

hydrogens are added randomly to 94.3% of the sites. Subsequently, the simulated 

annealing relaxation moves are carried out. Finally, we have arbitrarily limited the 

size of tree-like structures on the surface. Such structures will be unstable during film 

deposition and will therefore tend to vanish during the extended time scales of the 

experiment. 
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Chapter 9 

Results & Discussion 

Figures 9.1-9.3 show the same surface as Figure 8.1 at various times during the 

simulation. In Figure 9.l(a) one can see the surface at t = l.288ms covered with 

CH3 but with few bonds between chemisorbed methyls. Figure 9.l(b) shows the 

surface at t = 3.278ms where pair bonding has begun on a large scale. Figure 9.2(a) 

shows the surface at t = 8.959 ms with hydrogens removed. This surface is shown 

at an oblique angle to enhance the visualization of the vertical growth and to note 

several desorbed molecules. One elongated, linear bonded chain is colored green for 

easy visualization. Figure 9.2(b) shows the surface at t = 9.801 ms, when smaller 

surface clusters are beginning to coalesce into larger structures. This configuration 

contains several ringed clusters, most notably the 5-membered ring at the upper left, 

shown in green. These rings tend to break up easily during relaxation, but some 

are precursors for diamond {111} surface clusters. Figure 9.3 shows a snapshot of 

a portion of the surface at t = 19.9 ms. In this snapshot only substrate carbon and 

chemisorbed carbon whi,ch has become fully 4-coordinated ( although not necessarily 

tetrahedral) are shown. In three locations (just below center at the left, just above 

center at the right, and near the bottom, left of center) are small nuclei of carbon 

atoms which are in nearly the correct diamond {111} geometry. 

Figure 9.4 is a plot showing counts of various types of clusters to depict surface 

morphology versus time which reflects the bonding behavior seen in Figures 9.1-9.3. 
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( a) 

(b) 

Figure 9 .1: Two snapshots of the simulated diamond surface at times (a) t = 1. 288 ms 
and (b) t = 3.278 ms. Blue atoms are H, black atoms are substrate C, reel atoms are 
adsorbed C, and yellow 'atoms' indicate radical sites. 
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( a) 

(b) 

Figure 9.2: Two snapshots of the simulated diamond surface at times ( a) t = 8.959 ms 
and (b) t = 9.801 ms. Hydrogens are not shown, black atoms are substrate C, red 
atoms are adsorbed C, and yellow 'atoms' indicate radical sites. The green atoms are 
C atoms highlighted to show the chains and rings forming on the surface. 
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Figure 9.3: Surface at t = 19.9 ms. Only four-coordinated or substrate carbon is 
shown in this snapshot. Three distinct small clusters with partial diamond {111} 
symmetry have formed. 

After sufficient coverage of the bare surface is attained, pair bonds form rapidly. The 

earliest pair bonds are simple attachments between adjacent chemisorbed methyl rad-

icals, with strained surface bonds which allow the methyls to approach close enough 

to bond. Later, 3-carbon 'bridges' form, in which a third carbon bridges the gap be-

tween two carbons chemisorbed to the original surface. These structures are required 

for the formation of a second diamond {111} layer. After a longer time interval, the 

3-carbon clusters and two-carbon clusters begin to link into larger, linear clusters. 

In many cases, parts of these larger clusters close off to form rings of 4-7 carbon 

atoms. In the time scale of this simulations, most rings were unstable, breaking up 

via desorption or surface diffusion shortly after formation. 

The simulation procedure described in the previous chapter was tailored specifi-
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Figure 9.4: Plot of growth of surface clusters consisting of pairs, triplets and larger 
clusters of chemisorbed C-C bonds versus time. 

cally to simulate CVD diamond film growth using the Brenner [148] potential energy 

function. Many previous trials were utilized to determine the most efficient method 

for carrying out the hybrid simulation method. The critical aspect of the simulation 

which controls the morphology of the growing surface is the surface equilibration pro-

cedure. The procedure used both allows for C-C bonds to form and for the surface 

to properly relax between bond formation and CH3 chemisorption steps. 

For further improvement of the quality and size of simulated films, more equilibra-

tion steps should be included, although this would slow the simulations considerably. 

Alternatively, new efficient methods to relax the surface could be developed. Prob-

ably the single most important computational problem which must be overcome for 

this method to produce crystalline film is relaxation. The relaxation of amorphous 

structures into systems with crystalline symmetry requires time scales which are too 

long to observe in all but the simplest of models. Final stages of relaxation may 

also involve complex many-particle cooperative moves which are beyond the scope 

of any current simulation methodology. This is especially true for carbon systems. 

97 



Carbon has a very rich potential energy surface as can be see from the various sta

ble structures than can form such as diamond, graphite, nanotubes, buckyballs, etc .. 

The competition between these structures makes any numerical method of relaxing 

carbon structures very difficult. 

The results presented describe the evolution of surface morphology as a function 

of time for the first 20 ms of CVD diamond film growth. We have found that surface 

growth primarily consists of the formation of linear bonded chains, which may close 

of into rings for short time intervals. At this early stage of growth, stable ledges of 

tetrahedral carbon have only begun to form. It may be that a substantial overlayer 

must form over the substrate before large scale relaxation into a crystalline phase 

can begin. This should occur on a time scale of seconds since an experimental rate 

of 0.5 µm/h corresponds to about 1.4 A of vertical growth, or roughly one layer per 

second. Times required for the formation of a fraction of a layer have not yet been 

achieved. However, the times achieved in this study are very long compared to most 

off-lattice atomic resolution simulations of complex systems, which are commonly at 

most a few tens of nanoseconds. 

In all simulations the calculated results are highly dependent on the model as

sumptions. One additional assumption not discussed above is the use of the phe

nomenological potential of Brenner [148]. This function has been extensively tested, 

and is highly parameterized to accurately reproduce the energetics of many carbon

hydrogen structures. Nevertheless its use in the formation of diamond film represents 

an extrapolation of the potential to the untested area of amorphous structures and 

their relaxation into crystalline potential wells. 
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