
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE

CHEMOPOROELASTIC SOLUTION OF 
TRANSVERSELY ISOTROPIC SATURATED 

POROUS MEDIA

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

degree of 

DOCTOR OF PHILOSOPHY

BY

ARTURO DIAZ PEREZ 
Norman, Oklahoma 

2004



UMI Number: 3318583

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 
submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, If unauthorized 

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3318583 

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 E. Eisenhower Parkway 

PC Box 1346 
Ann Arbor, Ml 48106-1346



CHEMOPOROELASTIC SOLUTION OF 
TRANSVERSELY ISOTROPIC SATURATED 

POROUS MEDIA

A DISSERTATION APPROVED FOR THE MEWBOURNE SCHOOL OF 
PETROLEUM AND GEOLOGICAL ENGINEERING

BY

[ Jeai%^)mde R osiers

. Richard G. HtKhes

Dr. Darn

%  Michael L. Wiggi

Dr. James M. Forgot^% Jr.



©Copyright by ARTURO DIAZ PEREZ 2004 

All Rights Reserved.



Acknowledgments

I would like to express my sincere gratitude to Dr. Jean-Claude Roegiers for his 

support, patience, extensive guidance, teaching and supervision. Also for providing 

me the opportunity to conduct this research. I am thankful for his interest, gen

erosity, and encouragement. Without his kindness, active help and understanding, 

this work would have never been possible.

Special thanks are also given to Dr. Adel Diek, for his invaluable contribution to 

this work, interest and generous investment of time in teaching me the fundamentals 

of shale behavior and sharing with me his ideas about swelling and fluid interactions.

My gratitude is extended to Dr. Roy Knapp, Dr. Richard Hughes, Dr. Daniel 

O’Meara, Dr. Michael Wiggins and Dr. James Forgotson for their teaching and 

kindly accepting to be member of my Doctoral’s Advisory Committee and for revis

ing this document. Important technical concepts were acquired during their courses 

and guidance. I will never forget their support and comprehension.

I am also particularly grateful to Ignacio Cortes Momoy, internal advisor from 

IMP for his efforts throughout this accomphshment.

Great appreciation also goes to Dr. Shubash Shah and Mr. Mike Shaw for their 

help and support. They invested great efforts in providing me access to the Rock 

Mechanics facilities.

I would hke also to thank my friends Dr. Simon Lopez Ramfrez, Ivan Gil and 

Freddy H. Escobar for their honest friendship and support.

Finally, I do not forget to acknowledge The Institute Mexicano del Petrôleo 

(IMP) for the financial support to pursue this degree.

IV



Table o f C ontents

A cknowledgm ents iv

A bstract vi

List o f  Figures ix

List o f  Tables x

1 Introduction 1

1.1 Introduction........................   1

1.2 O b je c tiv e ................................................................................................ 4

1.3 Overview...........................................  4

2 General R eview  on W ellbore Stability  6

2.1 Fundamental c o n c e p ts ..........................................................................  6

2.1.1 Introduction................................................................................  6

2.1.2 Rock fa ilu re ................................................................................  7

2.1.2.1 Failure c r i te r ia ........................................................... 8

2.1.2.1.1 Maximum tensile stress c rite rion ..............  8

2.1.2.1.2 Maximum shear stress or Tresca’s criterion 8

2.1.2.1.3 von Mises c riterion ...................................... 9

2.1.2.1.4 Drtlcker-Prager criterion ............................. 11

2.1.2.1.5 Coulomb’s criterion......................................  11

2.1.2.1.6 Mohr’s criterion............................................  12



2.2 Wellbore Stability..................................................................................  12

2.2.1 Borehole instability problems..................................................... 14

2.2.1.1 General re v ie w ........................................................... 14

2.2.1.2 Practical solution.........................................................  19

2.2.2 Wellbore stability models...........................................................  20

2.2.2.1 Analytical models ...............................................  21

2.2.2.2 Numerical models......................................................... 26

2.3 Poroelasticity ......................................................................................... 28

2.3.1 Introduction................................................................................. 28

2.3.2 Fundamental concepts of poroelasticity..................................  29

2.4 Shale........................................................................................................  34

2.4.1 Introduction................................................................................. 34

2.4.2 Clay-Water In te rac tio n s...........................................................  35

2.4.2.1 Electrically charged surfaces of clay particles . . . .  36

2.4.2.2 Hydration of C la j^ ..................................................... 37

2.4.3 Swelling phenomenon while d rillin g ........................................  38

2.5 S u m m a ry ...............................................................................................  41

3 Theoretical Approach 43

3.1 Introduction............................................................................................ 43

3.2 Transport processes.................................................................................  45

3.3 Rock Constitutive Equations.................................................................  48

3.3.1 Free Energy of Wetted Clay M a trix .........................................  48

3.3.2 Fundamental equations............................................................... 51

3.3.3 Variations of the fluid c o n te n t..................................................  53

3.3.4 Chemical Loading........................................................................ 54

VI



3.3.4.1 Linearization of Chemical L o a d in g .........................  57

3.3.5 Complete I s o tro p y ..................................................................... 58

3.3.6 Transverse Isotropy.....................................................................  59

3.4 Transport E q u a tio n s ............................................................................  61

3.4.1 Isotropic F lo w s ........................................................................... 61

3.4.2 Transversely Isotropic F low s.....................................................  63

3.5 Field E quations...................................................................................... 64

3.5.1 Navier-type E q u a tio n s ............................................................... 65

3.5.1.1 Isotropic M edia...........................................................  65

3.5.1.2 Transversely Isotropic M e d ia ................................... 66

3.5.2 Fluid Diffusion E quation ............................................................ 66

3.5.2.1 Isotropic M edia...........................................................  66

3.5.2.2 Transversely Isotropic M e d ia ...................................  66

3.5.3 Solute Diffusion E q u a tio n ......................................................... 67

3.5.3.1 Isotropic M edia ...........................................................  67

3 5.3.2 Tansversely Isotropic M e d ia ...................................  67

3.6 Swelling P aram ete r................................................................................ 67

3.6.1 Isotropic M e d ia ...........................................................................  67

3.6.2 Tansversely Isotropic M edia...................................................... 69

4 A nalytical solutions 72

4.1 Introduction............................................................................................  72

4.2 Diffusivity Equations for Irrotational Displacement F i e ld ................  72

4.3 Solutions for Borehole Problem s............................................................ 77

4.3.1 Vertical B orehole........................................................................  78

4.3.1.1 Mode 1 ........................................................................  78

V ll



43.1.1.1 S tre sse s ........................................................  78

4.3.1.2 Mode 2 ........................................................................  79

43.1.2.1 Solute mass fr a c tio n ................................... 79

43.1.2.2 Pore pressure ...............................................  79

4.3.1.2.3 S tre sse s ........................................................  80

43.1.3 Mode 3 ........................................................................  80

4.3.1.3.1 Pore pressure ...............................................  81

4.3.1.3.2 S tre sse s ........................................................  81

4.3.1.4 Final solution...................................   82

4.3.2 Inclined Borehole.......................................................................  83

4.3.2.1 Problem I ...................................................................... 84

4.3.2.2 Problem I I ..................................................................  87

4.3.2 3 Problem I I I ..................................................................  88

4.3.2.4 Final Solution...............................................................  89

5 M odel A pplications 90

5.1 Introduction.............................................................................................  90

5.2 Isotropic Porous M edia........................................................................... 91

5.3 Transversely Isotropic Porous Media ..................................................  93

5.4 Discussion of R e su lts .............................................................................. 93

5.4.1 Solute Mass F rac tion .................................................................  95

5.4.2 Pore P ressu re .............................................................................. 97

5.4.3 Total S tresses..................................................................................100

5.4.3.1 Radial S t r e s s ................................................................... 100

5.4.3.2 Tangential S tre ss ............................................................. 100

5.4.3.3 Axial s t r e s s ..................................................................  101

vni



5.4.4 Effective S tre sses........................................................................ 102

5.4.4.1 Radial S tr e s s .................................................................. 103

5.4.4.2 Tangential S tre ss ............................................................ 104

5.4.4.S Axial s t r e s s ..................................................................... 106

5.5 Failure an a ly sis .......................................................................................... 107

5.5.1 Compressive failu re ....................................................................  108

5.5.2 Tensile fa ilu re .............................................................................  110

5.5.2.1 Fracturing F a i lu r e ......................................................... 112

5.5.2.2 Spalling Failure............................................................... 112

5.5.3 Shear failure.................................................................................... 116

6 Conclusions and R ecom m endations 120

References 123

A ppendix A: Free Energy o f F luid-saturated Porous M edia 131

A ppendix B: Isotropic Therm odynam ic R esponse Coefficients 134

B.l Mechanical Loading.................................................................................... 134

B.2 Chemical Loading....................................................................................... 135

A ppendix C: Anisotropic Therm odynam ic R esponse Coefficients 136

C.l Mechanical Loading.................................................................................... 137

C.2 Chemical Loading....................................................................................... 137

A ppendix D: M ass Balance 138

A ppendix E; Solution for Loading M ode 2 140

E.l Solute Mass F rac tio n .............................................................................  140

E.2 Pore P re ssu re ............................................................................................. 141

E.3 Stresses ...................................................................................................... 142

A ppendix F: N om enclature 144

DC



A ppendix G; Isotropic Porous M edia W ithout Chem ical Effect 147

A ppendix H: Isotropic Porous M edia W ith  Chem ical Effect 152

A ppendix I: TYansversely Isotropic Porous M edia W ithout Cem ical 
Effect (A nisotropic Factor Equal to  tw o). 157

A ppendix J: IVansversely Isotropic Porous M edia W ith  Cem ical E f
fect (A nisotropic Factor Equal to  1 /2 ) . 162

A ppendix K: IVansversely Isotropic Porous M edia W ith  Cem ical Ef
fect (A nisotropic Factor Equal to  tw o). 167

A ppendix L: Effect o f the M ud’s Solute M ass Fraction (A nisotropic  
Factor Equal to  tw o). 172

A ppendix M: Effect o f  th e  Swelling Coefficient o f  th e Shale (A nisotropic  
Factor Equal to  tw o). 177

A ppendix N; Effect o f the Shale’s R eflection Coefficient (A nisotropic  
Factor Equal to  two) 182

A ppendix O: Effect o f  th e  M ud Pressure (A nisotropic Factor Equal 
to  two) 187

A ppendix P: Effect o f th e  Norm al Stress Field (A nisotropic Factor 
Equal to  two) 192



Abstract
Wellbore stability, mainly in shales, is one of the major problems encoimtered 

during the drilling of wells, with an estimated cost exceeding hundreds of millions 

of dollars each year in remedial works. Presently, the design of improved water- 

base muds for shale stability is of primary concern for the drilling industry. A key 

factor in selecting the appropriate drilling fluid is a better understanding of the 

swelling phenomenon in shales; it is associated with the chemical composition and 

characteristics of the material. However, until now, the experimental data did not 

totally and effectively explain the observations.

Instability of shales involves fully coupled chemo-mechanical processes, in which 

fundamental intermolecular surface forces are acting between the clay layers. These 

forces are function of the composition, type, amount, and micro-fabric of the clay 

content in the rock which are responsible for the global shale behavior. Thus, for 

wellbore stability problems one needs to include the mechanical properties of these 

materials interacting with the pore fluid.

The purpose of this dissertation is to provide civil, petroleum and geological 

engineers, a model of chemical poroelasticity for fluid saturated argillaceous rocks, 

appropriate for laboratory and field applications. The theory couples mechanical, 

hydraulic and chemical processes in fluid-saturated transversely isotropic porous 

media. The model of hydration swelling is derived from non-equilibrium thermo

dynamics; it is a hybrid of an extended version of the theory of poroelasticity and 

Onsager’s(1931) transport phenomenology. In particular, it is an extension of Hei- 

dug and Wong’s model (1996) to accommodate compressibihty of the fluid as well 

as anisotropy. The rock constitutive equations expressing the total stresses, the 

pore volume fraction per referential volume are constructed from the internal en

ergy of the wetted clay matrix in terms of the solid strains, the pore pressure, and 

the fluid component chemical potentials. The total stresses, and the variation of 

fluid content are linearly related to these variables through anisotropic material

xi



coefficients characterized via micro-homogeneity and micro-isotropy assumptions. 

The analysis incorporate fom coupled transport processes of fluid, and solute in 

addition to mechanical deformation, and chemical swelling. The phenomenologi

cal equations relating the fluxes to their conjugate force are constructed from the 

definition of the dissipation function and the generalized forces associated with it. 

Field equations for the linear chemical loading are derived and applied to vertical 

and inclined borehole subjected to non-hydrostatic far-field loading.

The solution is closed-form in the Laplace domain; and is then inverted to 

the time domain by using Stehfet’s (1970) algorithm. This solution simulates 

the chemoporoelastic process triggered by drilling a borehole in saturated porous 

media, and subject to a step constant mass firaction change together with mud 

pressure acting on the borehole wall. Results indicate that osmosis alters the pore 

pressure and effective stresses, which are function of the swelling coefficient and the 

reflection coefficient of the formation as well as the solute mass fraction of the mud.
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1 Introduction

1.1 Introduction

Oil and gas wells represent the fundamental infrastructure in hydrocarbon exploita

tion. Drilhng the wellbore is the first and, usually, the most expensive step in oil 

and gas production activities. As a consequence, designing a stable and safe well 

has become a critical issue in the industry, especially due to the recent and ever- 

increasing complexity of geological settings requiring continuous improvement in 

drilling technology.

Wellbore stabihty, mainly in shales, is one of the most difficult problems encoun

tered during drilling; estimated to cost more than hundreds of millions of dollars 

each year in remedial works. These problems often depart from the classical me

chanical failure mechanisms exhibiting time-dependent mud support changes and 

loss of strength according to physico-chemical processes. Swelling, dispersion, and 

deterioration of shale cause a great majority of wellbore instability problems. These 

problems range from hole tightening and shale adhesion to the drill bit to hole en

largement and /or even complete collapse of the borehole, as well as alteration of the 

rheological properties of the drilling fluid. Prior to drilling, a shale formation is in a 

state of mechanical, hydraulic, thermal, and chemical equilibrium. Drilling disturbs 

these natural equihbria, resulting in the modification of local stresses accompanied 

by deformation of the borehole, as well as the enforcement of hydraulic, tempera

ture, and chemical potential gradients (Hale et al.,1993; Mody and Hale,1993; van 

Oort et al.,1996; and Diek et al.,1996). In the past, one solution has been to use oil- 

base muds, which can often efiminate the swelling problem associated with shales;



however, environmental concerns restrict their use, and in many cases water-base 

muds are now required. The development of improved water-base muds for shale 

stability is of primary concern in the drilling industry. Wellbore stability has oc

cupied the attention of many researchers this last decade and some discrepancies 

have been reported, not only in their chemo-mechanical approach, but also in the 

understanding of their hydration behavior, and their characterization.

Shales are fine-grained detrital sedimentary rocks formed by the consolidation of 

clay, silt, or mud and are characterized by their finely laminated structure, cation 

exchange capacity, specific surface area, and water content. They contain wide 

ranges of clay minerals, and accessory minerals such as quartz, carbonates and 

feldspars. The chemical processes, rœponsible for this formation must be under

stood in terms of two mechanisms:

1) neoformation- actual precipitation from solution; and,

2) transformation- whereby a new clay mineral inherits a significant part of its 

silicate skeleton from preexisting minerals, usually also a phyUosilicate.

These processes include chemical weathering in soils, formation of authigenic 

minerals at the sediments depositional site, formation of diagenetic minerals after 

deposition, and clay minerals formed by hydrothermal alteration. Shales are, there

fore, subject to phenomena such as hydration, swelling, shrinking, and strength 

reduction when exposed to water and ions. The mechanisms controlling these re

actions are very complex and are not fully understood. These reactions result from 

the hydrophilic nature of the clay particles, which are somewhat altered by both 

the chemical and mechanical environments. The chemical effects are due to the in- 

termolecular forces between the clay particles, the ionic pore fluid inside the shale, 

and the composition of the drilling fluid. However, it has been recognized that 

the type and amount of clay groups and clay subgroups play an important role in 

distinguishing difierent hydration behaviors, as a result of their charge deficiency 

location (silica tetrahedral or alumina octahedral sheet). These chemical effects 

result in a continuous change in shale pore pressure and composition.



It is believed (Diaz, 2000) that the shale stability involves fully coupled chemo- 

mechanical phenomena, in which fundamental intermolecular surface forces are act

ing between the clay surfaces. Thœe forces are function of the composition, type, 

amount, and micro-fabric of the clay content in the rock which are responsible 

for the global shale behavior, where water content and water distribution are the 

partial result of these forces and are only one part of the picture.

A clay/water S5̂ tem is usually recognized as a four component system; clay 

particles (C), water molecules (W), counter-ions (I), and co-ions (A). So that a 

comprehensive model formulation has at least to consider all the pair interactions 

between these components (W-W; W-I; W-C; W-A; I-I; I-C; I-A; C-C; C-A; and 

A-A), which must be incorporated into the picture of the balance of forces. More 

terms have to be included in the above interactions if other components are added 

like polymers, surfactants, hydrocarbons, etc.

It is also well recognized (Diek et al, 1996) that the shale/swelling phenomena 

and their influence on the mechanical properties of the rock is a subject that involve 

two completely different scales, microscopic and macroscopic. At the microscopic 

level, which is ruled by Molecular Quantum Mechanics, molecular interactions in

duce changes in the structure of the rock which allow macroscopic driving forces 

to arise, which are unfortunately ruled by non-equilibrium thermodynamics. Both 

micrœcopic and macroscopic scales should, therefore, be connected using statisti

cal thermodynamics. However, the specific Hnkage is not well known, and must 

be achieved when computing the phenomenological coefficients, which must then 

be considered as variables, using stochastic models. Computer simulations of clay- 

water interfaces have been attempted by MuUa et al. (1984) for two components 

(clay and water) and Skipper et al. (1991-a, and 1991-b); while Refson et al. (1991) 

assumed three components (clay, water, and counter-ion). Nevertheless, computer 

simulations need to be extended in the immediate future to clay/water systems with 

larger water contents and with full matrix of pair interactions in order to determine 

the configuration and dynamics of clay/water interfaces for various clays and dif-



ferent counter-ions. Also extensive experimental work on shale cores is needed to 

establish the mechanical properties of different types of shales subject to different 

ionic environments. Despite the fact that the knowledge of mechanical properties 

of shales is important, little research has been conducted on such materials. Even 

thought the measurements of mineralogical and mechanical properties are comph- 

cated by the extremely fine grain size and the large clay content as well as the fact 

that they disintegrate in water, such effort should be undertaken. Correlation of 

chemical composition, physicochemical environment and mechanical properties of 

shale are extremely important in computer simulation of wellbore stability

1.2 Objective

The purpose of this research is to provide to civil, petroleum, and geological en

gineers a model of chemical-poroelasticity of fluid-saturated argillaceous rocks ap

propriate for laboratory and field applications. Such a theory will need to couple 

mechanical, hydraulic, and chemical process^ in fluid-saturated transversely porous 

media. The model of hydration swelling is derived from non-equihbrium thermo

dynamics (Onsager’s transport phenomenology) and is an extended version of the 

theory of poroelasticity. It is an exteiKion of Heidug and Wong’s model (1996) to 

accommodate for the compressibihty of the fluid and inherent anisotropy of the 

porous media.

1.3 Overview

A critical review of the hterature on wellbore stabihty, shale interaction and poroelas

ticity is presented in Chapter 2.

Chapter 3 contains the development of the theoretical approach of our chemo- 

poroelasticity model.

Chapter 4 contains the analytical solutions for the general case of fully-coupled



chemoporoelasticity for axisymetric mechanical and chemical loading conditions of 

vertical and incMned boreholes subjected to non-hydrostatic far field loading. The 

solution to the inclined situation is constructed via superposition of the plane strain 

solution (a vertical hole drilled in rock with far-field stress components Po and So) 

and the elastic anti-plane solution (a borehole subject to far field anti-plane shear 

stresses)

Chapter 5 presents the results of the application of our model to inclined bore

hole stability problems.

Finally the conclusions and recommendations are given in Chapter 6.



2 General R eview  on W ellbore Stability

2.1 Fundamental concepts

2.1.1 Introduction

Drilling the wellbore is the earliest and, usually, the mœt expensive step in oil 

and gas production activities. As a consequence, designing a drilling strategy has 

become a critical issue in petroleum engineering especially if one considers that 

geological settings of the new target become ever more complex.

Horizontal drilling, highly deviated wells, multilateral completions, extended- 

reach and slim holes are some examples of these technological advances. However, 

drilling in complex geological environments, such as faults, joints, fractures, layered 

formations, weak bedding planes, etc., usually leads to expensive borehole stabil

ity problems. Here, a deep understanding of the mechanics and mechanisms of 

rock fracture becomes a key element in solving such problems involving geotectonic 

structures.

Wellbore stabilization when drilling, should include preventing unwanted fluid 

or gas flow in or out of the wellbore, preventing the flow of particulates into the for

mation, and mitigating comprœsive or tensile failures. Solutions should involve the 

use of real-time drilling data obtained from measurement-while-drilhng, wellbore 

image logs, a complete suit of logging, core samples, laboratory test data, advanced 

fluid chemistry, computer simulation models and a good file of case histories re

lating similar well problems to allow minimizing non-drilling rig time, eliminating 

emergency or unplanned casing strings and preventing unwanted gas or fluid flow



that causes environmental hazards.

2.1.2 Rock failure

In general, fractures initiate and propagate when, at a point, the stresses become 

equal to the strength of the rock. It is recognized (Aydin and Johnson, 1978) that 

the stresses in the earth’s crust are generated by lithostatic changes, fluid pressure, 

tectonic events, thermal effects, volcanic activity, salt intrusion and, in some cases, 

from impact by extraterrestrial objects.

The basic concept of stress concentration and energy balance introduced by 

Griffith (1921) are fundamental to understanding rock fracture initiation as well 

as fracture propagation and distribution. Griffith originally defined the low tensile 

strength of brittle materials in terms of an inequality between the rate at which 

elastic energy is released and the rate at which surface energy is absorbed, as a 

flaw or crack extends within the material. The general basis of Griffith’s theory is 

that elastic potential energy is converted into surface energy during rock failure. 

In this way, the excess energy, large in relation to the stored elastic strain energy, 

is dissipated during the rock failure. Thus, the macro-fracturing process is well 

recognized as originated by micro-fractures acting as ‘strain concentrators’. Under 

a compressive stress state, the failure process starts with the creation of micro

cracks, due to localized tensile stresses, that eventually evolves into a damage zone 

turning towards the maximum principal stress direction. With the coalescence of 

those cracks, the specimen can not further sustain the applied load and failure of 

the specimen occurs (Roegiers, 1990, 1998).

Evidences of the fracturing process have been observed in laboratory experi

ments conducted in triaxial cells with acoustic sensors. An increase in acoustic 

emissions due to discrete events meant that the energy release mechanism is def

initely fracturing. Besides fracture creation, heat is also exchanged with the sur

roundings, if the rock temperature is allowed to equilibrate with the ambient con

ditions. The rock does not completely loose its strength and with further energy



stored, more fractures are created until the internal energy level reaches a critical 

value and the specimen fails. This critical value is referred as ultimate strength 

which is the base for failure criteria.

2.1.2.1 Failure c rite ria

According to Jaeger and Cook (1969), a failure criterion is a relationship between 

the principal stresses such that, if it is satisfied, the material becomes ductile and 

should satisfy two requirements:

•  any yield criterion must be independent of the choice of axes, and thus should 

be expressible in terms of the invariants of stresses or stress deviations; and,

•  at hydrostatic conditions only stress deviation should appear in the yield 

criterion.

2.1.2.1.1 M axim um  tensile  stress criterion  This criterion estabhsh that 

failure is reached as soon as the minimum principal stress reaches the tensile 

strength of the material; i.e.

<73 — —To (2.1)

2.1.2.1.2 M axim um  shear stress o r Tresca’s criterion  This criterion states 

that failure will occur when the maximum shear stress reaches a value | cTo charac

teristic of the material; i.e.

<7l -  <73 =  Si -  «3 =  (To (2.2)
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Where si^2,3 are the principal stresses deviation defined as:

1 1 1  
s =  -  (<Tz +  CTj, +  (Tg) =  -  (cTi +  era +  <73) =  - / i  (2.3)

and,

(2.4)

«2 -  (2.5)

% =  (2.6)

S x  — (Tx ■Sj S y  — (7y S ; S z  — CTz SJ S y z  — Tyz'i ^ z x  —  Tzx't ^ x y  — "^xy (2.7)

Also, in this particular case, the failure plane will occur at an angle bisecting 

the directions of maximum and minimum principal stresses.

2.1.2.1.3 von M ises criterion  This criterion states that yield occurs when 

the octahedral shear stress, or strain energy associated with distortion, reaches a 

value characteristic of the material. This criterion is by far the most commonly 

used and is adequate for most problems on metals. It can be expressed in terms 

of the second invariant of stress deviation, which can be written in the alternative 

forms as:

a}
J2 — (2.8)



where,

sf +  «2 +  (2 9)

(<T2 — O'sŸ +  (^3 — O'iŸ +  (^1 “  ^2)  ̂— 2(To (2.10)

Toct =  (To ( 2 .1 1 )

(2.12)

J 2 — 7̂  +  ^yz +  ( 2 .1 3 )

J 2 —  g  ((<^î/ — O 'z )^  +  {(Tz — <Tz)^ +  {(Tx —  ( T y Ÿ )  +  S y ^  +  +  ^ x y  ( 2 - 1 4 )

— g  ( (^ 2  — (^3 )^ +  (o'a — (T iŸ  +  (^ 1  ~  (^2)^ ) ( 2 .1 5 )

J 2 — 77 (^1 +  ^2 +  ^3 )  ( 2 .1 6 )

Toct =  ^  {{(T2 -  ( T o f  +  ((73 ~  ( T i f  +  ((Ti -  <72)^ )  ̂ ( 2 .1 7 )

~  4 G  +  ^2 +  ^3 )  -  (®1 +  4  +  4 )  — ^  =  ( i c )  ^  ( 2 .1 8 )

where 1% is the strain energy of distortion.

The advantage of using this criterion is that it involves aU three principal stress 

components.
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2.1.2.1.4 D rücker-P rager criterion  This criterion can be visualized as an 

extension of von Mises’ criterion which can be expressed (Driicker and Prager, 

1952) as:

+  To (2.19)

where J2 is the second invariant of the deviatoric stress tensor; Jiis the first invariant 

of the stress tensor (mean stress); and, m  and To are material parameters measured

in the laboratory. Note that the effective mean stress. Also note that, in the

case of m =  0, equation (2.19) becomes the original von Mises’ criterion.

Here, failure takes place if the effective collapse stress, at a particular point 

around the wellbore, or at wellbore wall, is less than zero; i.e.

=  -  V %  +  +  To <  0 (2.20)

Me Lean and Addis (1990b) gave the relationships to calculate the material con

stants in the Drücker-Prager criterion knowing the material constants of Coulomb’s 

criterion:

-  ■ g g  i“ >

2.1.2.1.5 Coulom b’s criterion  The simplest and most popular criterion was 

introduced by Coulomb (1773). He suggested that the shear stress tending to cause 

failure across a plane is resisted by the cohesion of the material and by a constant 

times the normal stress across the plane. This constant was called the coefficient 

of interned friction ( fx) of the material. The criterion for shear failure in a plane is 

thus given by:

1 1



|r | =  c +  /xcr (2.23)

where a  and r  are the normal and shear strœses across the plane; c is the cohe

sion or inherent shear strength of the material; and, /x =  tan 0 where 0 represent 

the angle of internal friction.

2.1.2.1.6 M ohr’s criterion Mohr (Jaeger and Cook, 1969) proposed that the 

normal stress cr and the shear stress r  across the plane, where shear failure takes 

place, are related by a functional relation characteristic of the material; i.e.

|r | =  f{a)  (2.24)

Mohr’s criterion is a generalized Coulomb’s criterion derived from an exper

imental envelope of the Mohr circles corresponding to failure under a variety of 

conditions. It carries several important conclusions:

•  the value of the intermediate principal stress does not affect failure; and,

•  the plane of shear failure passes through the direction of the intermediate 

principal stress, and its normal makes an angle /3 with the direction of maxi

mum principal stress.

2.2 Wellbore Stability

Wellbore stability has been studied by the oil industry for a long time. The basic 

approach that has been applied is to compare the stresses induced in the rock with 

some selected failure criterion. Basically, two types of failure have been widely
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investigated; borehole collapse and borehole fracturing. The first case is caused 

mainly by shear but also by active tensile failure (Aadnpy, 1987). The second case 

is when the s t r i e s  overcome the tensile strength and fracturing occurs either at 

or in the neighborhood of the wellbore.

While drilhng (Bradley, 1979), a damage zone is created because the state of 

stress around the wellbore changed as a result of the removed rock, and the hydro

static pressure exerted by the drilhng fluid. Creating a hole producœ an increase 

in the stresses around the borehole (a stress concentration) which induce cracks 

in weakened rock either by rock-fluid interaction or fluid pressure oscillations due 

to inadequate operational practices. In addition, in the case of inclined and/or 

horizontal boreholes, the stress tensor orientation also changes, so that in a normal 

stress field the inclination increases the local stress as well as stress differences while 

in a tectonic stress field the converse occurs.

In fractured zones, with random fracturing in all directions (which can be re

garded as aU planes were equally weak and the material was allowed to select its 

own plane of fracture), based on the Mohr and Coulomb theories, compressive shear 

fracturing will occur along one or a pair of conjugate planes which are parallel with 

the direction of the intermediate principal stress and are both oriented at an angle 

less than 45" to the direction of the maximum principal stress. Also shear fractur

ing is dependent on the relative values of the principal stresses. Thus, in a normal 

fault stress regime, a high-angle (with respect the horizontal plane) fracture zone 

occurs, whereas a low-angle fracture zone happens in a reverse fault stress regime,

and vertical fractures in a strike-slip fault stress regime.

Tensile failure occurs when the pore pressure (Pp) in the rock formation is 

sufficiently high such that (Anderson, 1951); i.e.

+  T  (2.25)

or, from the minimum tangential stress can be derived;

Pp > 3(T/i + T  — (Th (2.26)
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The plane of such tensile failure (open fracture) is perpendicular to the axis of 

(Tfe so that in an extensional or strike-slip environment, tensile open fractures are 

vertical and parallel to the azimuth of cr/y; in a compressional environment they 

are horizontal (Jaeger and Cook, 1969). The initiation and orientation of natural 

fractures need not to be related to the contemporary in -situ stress field. Natural 

fractures may have been created in a paleo-stress regime different to the contem

porary strœs field. However, if natural fractures are in an orientation inconsistent 

with the contemporary in situ stress field, they are not likely to remain open. Thus 

knowledge of the in-situ stresses field is a critical requirement for well design with 

regard to mechanical stability. The in-situ stress field also controls the orientation 

of open, natural and hydraulically induced fi-actures.

2.2.1 Borehole instability problems.

2.2.1.1 General review

Drilling problems frequently result from severe mechanical failures of the wellbore 

wall and thus depend on the interplay between magnitude and orientation of in-situ 

stresses, rock strength, wellbore and pore prœsure, the orientation of the wellbore, 

and also the high borehole pressure fluctuations from surging. The stress-induced 

borehole failures (Aadnpy, 1987; Maury and Zurdo, 1996) can be summarized as:

•  Compressive failure: i) hole size reduction due the plastic flow of the rock 

into the borehole (borehole collapse), which causes repeated requirements of 

reaming, difficulties to run in hole, pull out of hole or stuck pipe, ii) hole en

largement due to rock failing in a brittle manner and falling into the borehole 

(break-out), which results in poor directional control, poor cementing jobs, 

poor logging and formation evaluation.

• Tensile failure: fracturing due to tensile splitting of the rock as a result of 

excessive wellbore pressure. Severe loss of drilling fluid to the formation from
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Break-Out

Borehole Collapse -

Figure 2.1: Compressive failure (break-out and borehole collapse) induced by insu- 
ficient wellbore pressure (after Bradley, 1979).

fracturing causes lost time as well as increased cost and often results in well 

control problems or blow-outs.

• Shear failure, when drilhng through discontinuity and lateral shift of the well

bore trajectory occurs due to the shp of the fault.

The first two mechanisms (Figures 2.1 and 2.2) have been extensively studied 

and are usually related to the failure of the intact rock. According to Morita et 

al. (1990), driUing fluids not only stabilize the borehole, but also, seal off narrow 

natural or created fi-actures by laying down a low-permeable cake to prevent pore 

pressure build-up; maintaining high effective stresses acting on the formation. The 

mud solids build bridges in the fracture aperture, where minute cracks are conse

quently plugged. As a result, loss circulation pressures higher than predicted by the 

continuum theories develop. Thus lost circulation pressure depends on the Young’s 

modulus, wellbore size, mud solid bridging at the narrow fracture tip and degree 

of dehydration, as well as the parameters which can be derived from conventional
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Figure 2.2: Tensile failure (hydraulic fracturing) induced by exessive wellbore pres
sure (after Bradley, 1979).

theories such as stress, pore pressure, temperature, borehole inchnation, and pore 

pressure build-up.

On the other hand, in compressive failure, Zoback et al. (1985), among oth

ers, discussed the mechanism of break-out propagation. During drilhng, borehole 

compressive stresses can decrease in some domains of the wall. As a result, crack 

growth can be observed in these areas due to the inherent pore pressure. These 

cracks will tend to grow in a plane perpendicular to the direction of smallest com

pression. Redistribution of these stresses in the borehole due to driUing and due 

to the formation of plastic zones around the borehole leads to sufficient increase of 

tangential compression stresses in a zone close to a plastic one; at the same time, 

the radial compression stresses decrease. This facihtates the growth of micro-cracks 

in the direction of the largest compression and, as a result, a system of circumferen

tial cracks are formed in the vicinity of a plastic zone. Further increasing of radial 

stresses (or pressure inside a borehole) will lead to increasing of tangential stresses 

and to loss of stability of the system of concentric rings, breaking out rings into the

16



CONSEQUENCES

A) AHEAD OF THE TOOL B) BEHIND THE TOOL OR 
STABILIZERS

•Tight hole
• Difflcuitiei to run-ln-hole •stuck in holes
• Abnoraial torque • Difllcultlae to pull out
•Need for reaming of hole

•Drlllctring faHurea (?) 
•Need for back reaming

C) BEHIND CASINGS

•Caaing deformation 
•Casing weakening 
•TutJing stuck 
•if Internal pressure

Casing* tubing 
coiiapae loss of well

Figure 2.3: Lateral shift of borehole induced by shear release along preexisting 
fractures or faults (after Maury, 1994).

borehole.

To avoid this kind of instabihties, the classical remedy is to increase the mud 

density in order to help the wellbore to carry some of the load imposed on the 

borehole wall by the in-situ stresses. However, increasing the mud weight too far 

may result in the formation splitting in a tensile mode, causing lost circulation. 

Therefore, a balance is needed in the mud weight to prevent hole collapse without 

fracturing.

The third type of failure is related to drilling in a complex geological environment 

( faults, joints, natural fracture reservoir) where it is usually required to drill high 

inclined and horizontal weUs. In this environment (Maury, 1994; Maury and Zurdo, 

1996) drilling a deep weU implies crossing all kind of discontinuities (fractures, faults 

bedding joints, etc.) present in all rock masses which can be stabilized by a simple 

mechanism. One needs to take special care to insure good mud sealing capabilities 

and effectiveness of the mud cake, because mud invasion into joints can increase 

the pore pressure in the discontinuity; at the same time decreasing the effective 

normal stress which previously stabilized it; the shear stress is not affected. A

17



shear release results in a lateral shift of the borehole (Figure 2.3). Initially such 

movement are responsible for minor incidents (tight hole, abnormal torque, overpull, 

etc.) occurring repeatedly at the same depth, resolved by reaming or back-reaming 

when possible. Later, when shifts become larger, problems become more serious, 

with stuck pipe, drillstring failures not resolved by classical drilling remedy (mud 

weight increase, jarring) which become even detrimental to stabilization. Highly 

fractured zones can be subjected to similar mechanisms. The stability then depends 

mainly on the effectiveness of the mud cake and condition of no filtration or mud 

invasion into the fractures. Mud weight increase is not always efficient and may 

sometimes cause worst instability problems.

Drilling highly deviated, extended reach and horizontal wells bring additional 

problems. Cutting transport, casing setting and cementing, and drillstring frictions 

are some examples. From the wellbore stability point of view the main concerns 

are the changes in stress concentrations as the inclination changes. As a conse

quence, the formation fracture gradient generally decreases as the borehole angle 

increases (Bradley, 1979). Many researchers (Skopec, 1991; Zhou and Sandiford, 

1994; Maury, 1994; Last and McLean, 1996; Wilsonet ah, 1999; Moos et al., 1999 

among others) studied the wellbore stability problems in high inclination and com

plex geological environments and the general conclusion is that the knowledge of 

the in-situ stress field is a critical requirement for well design, because it controls 

the orientation of open, natural and hydraulically induced fractures. Great efforts 

and much progress have been made towards the determination of the orientation 

and magnitude of the in-situ stresses in the crust, in particular by micro-hydraulic 

fracturing techniques, borehole break-out analyses, strain relaxation on oriented 

core expansion, and by measurements of passive acoustics during hydraulic fractur

ing. Once the orientation and magnitude of the in-situ stress field is constrained, 

the most stable inclined well trajectory can be designed.
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2.2.1.2 Practical solution.

WeUbore stability requires a proper balance between the uncontrollable factors such 

as earth stresses, geological features, rock strength, and pore pressure; and the 

controllable factors such as wellbore fluids pressure, mud chemical composition, 

borehole orientation and good drilling practices.

In complex geological environments the following requirements should be em

phasized: i) observing minimum fluid-rock interaction and maximum fracture seal

ing capacity (good filtration control) in the mud to delay invasion and pressure 

diffusion through discontinuities; ii) using fast but smooth drilhng techniques to re

duce exposure time and to minimize wellbore pressure fluctuations and mechanical 

shocks due to drilling string movements (tripping-in and -out of the hole, vibration, 

reaming and back-reaming, etc.); and, iii) designing the wellbore trajectory more 

appropriately to meet drilling and production goals.

An integrated solution of wellbore stabihty problems when drilhng through a 

discontinuity, not only requires a systematic analysis of the information available 

of the history of the prospect field but also an adequate plan of gathering infor

mation and samples from the field in order to obtain a more complete formation 

evaluation. Nowadays the technological advances allow us to get formation evalu

ation data during drilhng and an advanced set of well logging, together with lab 

characterization of rocks, give the information needed to run a wellbore stabihty 

analysis.

However, if information is not available and repeated drilling incidents have 

occurred (caving, stuck pipe, difficulties to run in hole, or to puU out of hole) the 

first step is to make an analysis of the field problems. A sensitive analysis, with 

given or assumed rock properties and in-situ state of stress, should be run in order 

to understand and resolve the wellbore stability problems, which most of the time 

require corrective actions (lower density and filtration properties and faster driUing 

speed) contrary to the traditional remedies (increase density).

Figure 2.4 shows the complete analytical scheme for the characterization of
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Figure 2.4: Characterization of reservoir critical properties in horizontal drilling 
(after Skopec, 1991).

reservoir properties critical in horizontal drilling (Skopec, 1991).

2.2.2 Wellbore stability models.

The high economic impact of the horizontal, extended reach and high inclined well 

drilling technology have been widely recognized through lower development costs, 

faster production rates, higher recovery factors and the potential exploitation of 

naturally fractured reservoir (Joshi, 1991). However, in a normal stress field, well

bore instability usually arise as the wellbore inclination increases, which impedes 

the realization of the benefits offered by the horizontal drilling technology. As a 

result, the understanding and modeling of inclined wellbores have intensified within
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the oil industry.

Mathematical models describe material behavior in terms of equations which 

are used to find the distribution of displacements, stresses, and strains throughout 

a deforming body. In principle, these equations can be solved either analytically or 

numerically.

2.2.2.1 AnalyticEÜ m odels

Analytical solutions are general solutions to the equations that express the values of 

the unknown quantities as a mathematical function of position and material prop

erties. Thus the solution can be evaluated for a wide variety of specific conditions, 

and one can determine, from this general solution, how changes in conditions affect 

the specific solution. Analytic solutions, however, can be found only if the geometry 

of the body and the deformations are relatively simple; in addition, they generally 

apply only for small strain mathematical models.

In 1979, Bradley proposed a basic analytical model to account for the stress dis

tribution around an inclined borehole which is based on Kirsch’s solution, together 

with a solution by Fairhurst (1968). In this model, the formation around the bore

hole is considered as a finear elastic solid in plane strain condition along the axis of 

the borehole, the formation is considered to be normally stressed {oh = < ax)

and no fluid flow into or out of the formation is taking into account. Also, the 

formation is assumed isotropic and no discontinuity planes are present. This model 

uses two failure criteria: i) tensile failure occurring at effective s t r i e s  less than or 

equal to zero (assume tensile strength equal to zero); and, ii) compressive failure 

occurring when the mean shear stress ( J^) vs the effective mean normal stress 

(a — Po) is plotted and lies below the envelope of failure which is obtained experi

mentally (s is given by Equation 2.3). He also defined an effective borehole collapse 

stress which is positive for stable conditions:
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'^2eff ^ ro ck  failure '^2borehole ( 2 .2 7 )

Later, Aadn0y and Chenevert (1987), following Bradley’s approach, extended 

the model to take into account planes of weakness, incorporating the Mohr and 

Coulomb theories. They applied a simple algorithm as follow: first, the in-situ 

stresses are transformed to the direction of the borehole using Equation (2.30), then 

the stresses at the borehole wall are calculated using Equations (2.31) to (2.36). 

Finally, the principal stresses are calculated using Ekjuations (2.42) to (2.44) and 

the shear and normal stresses acting on the rock are calculated using Equations 

(2.45) and (2.46). Zhou and Sandiford, (1994) extended the model to account for 

fracture intersection using an anisotropic stress field and introduced the concept of 

shear stress anisotropy to define and optimize both drilling direction and deviation 

angle. This parameter is given by Equation (2.28) which can be visualized as a 

normalized octahedral shear stress (Equation 2.17).

R . =  S SA  = (2.28)
Toct (mm)

The shear stress anisotropy (SSA) is a function of the effective principal stress 

ratios nu = ^  and uh — the Poisson’s ratio u of the material, and the effective 

well pressure AP. The stable configuration is given by an optimum deviation angle 

from the vertical and a drilling direction a  with respect to the azimuth of the 

maximum horizontal principal stress.

Using the Mohr and Coulomb theories, Zhou and Sandiford, (1994) also pro

posed a measure of the wellbore stabihty by defining an effective failure stress as:

^eff ~  f̂ lrock failure Îborehole (2.29)

where <Te// is the effective failure stress, (Zirock failure is the rock strength evaluated 

using the Mohr and Coulomb theories (Equations 2.23 and 2.24) and the (Tiborehoie is
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Figure 2.5: Inclined borehole (local and global coordinate system).

the maximum principal stress at the point on the borehole wall under considera

tion. A positive value of the effective failure stress indicates a stable condition. 

Also, using the concept of minimum SSA t h ^  showed that, contrary to intuitive 

expectation, in a highly anisotropic horizontal stress field (usually a strike-slip or 

tectonic environment) inclined wells may be more stable than vertical wells.

The octahedral shear stress, r<,ct, is considered the most useful parameter because 

the increasingly recognized fact that the octahedral shear stress is an important 

factor controlling the stress level at failure (Steiger and Leung, 1988, 1989). The 

conventional von Mises failure criterion for rocks (Woodland, 1990), in which the 

octahedral shear stress is considered to be the controlling rock stress at failure, and 

the effective strain energy failure criterion (Wiebols and Cook, 1%8), which has 

been shown to be the most consistent with results of laboratory rock strength test 

(Hoek and Brown, 1980; Brady and Brown, 1985), and the elastic distortional strain 

energy is in fact directly proportional to the octahedral shear stress (Equation 2.18)

The in-situ stresses are transformed to the orientation of the borehole (Figure 

2.5) using the following matrix operation:
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(Tz sin^/3 cos  ̂p  cos  ̂o cos  ̂P  sin^ a

(Tj, 0 sin^ O' cos  ̂a

(Tz
> =  <

cos^ (3 sin^ P  cos  ̂o: sin^ P  sin^ a

T yz 0 — sin o; cos a  sin P sin a  cos a  sin p

T x z — sin /3 COS /3 sin P  cos P  cos^ a sin P  cos P  sin^ a

0 — sin (X cos a  cos P sin (X cos a  cos P
(2.30)

The stress field in radial coordinates is given by:

'^Txy I 1 +('
a

j  sin 20 +  —TL

— 2  (^ Z  +  (Ty) I 1 +

(2.31)

Txy ^1 +  sin20

g2
(Tz =  (Tzz ~  2i/ (cTg — cTj )̂ —  COS20 — 4z/Tj;y—̂ sin20 (2.33)

T-pO {(Tx -  cTj,) sin 20 +  Txy cos 20 _ 3o^ 2n^\
7 T  +  7 T y

T r z  =  (T x z  COS0 +  T y z  s i n  0 )  ^ 1  -  

T0Z =  ( - T x z  sin0 4 - T^z COS 0) ^1 +

(2.34)

(2.35)

(2.36)

24



At the borehole wall (r =  a) these equations reduce to:

(Tr =  f L  ( 2 .3 7 )

(To =  -  ((Tz (Ty — Pw) — 2  ((Tz -  (Ty) COS 29 — Ar^y sin 29 (2.38)

(Tz —  (Tzz — 2 u  ((Tz -  (Ty) COS 29 -  A u T ^ y  sin 29 (2.39)

Tr6 = = 0  (2.40)

T0Z = 2 {-Txz sin 9 +  Tŷ  COS 9) (2.41)

the principal stresses are given by:

CTI =  (Tr =  (2.42)

<^2=2 (^0 +  (Tz) +  -  \ J {{(T0 — (T ^ Ÿ  + (2.43)

<̂3 =  2 ~  gV((^^ ~ +  4?^) (2.44)

and the normal and shear stresses are given by:

(Ts =  ^  ((Ti -  as) sin 2^ (2.45)

(Tn =  ^  ((Ti +  (Ts) +  ^  (<Ti -  (Tg) COS 2'lp (2.46)
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where ip is the angle between the plane and

Other analytical models have been proposed, a complete review of them can be 

found in Charlez (1997).

2 2.2.2 N um erical m odels

Numerical solutions provide approximate values of the unknown quantities at spe

cific points throughout the body (Figure 2.6) . These solutions are not general; 

however, they are specific to a particular set of conditions. Thus to investigate the 

effect of a change in a specific variable one must calculate another specific solution 

for the different variable value. The advantage of numerical solutions for investigat

ing rock deformations, is that one can analyze geometrically complex geobodies and 

large and complex deformations. Problems in geomechanics involve considerably 

greater levels of data uncertainty and even lack of data. Geological heterogeneity, 

large-scale features (joints, faults, etc.) uncertainty of loading conditions (tectonic 

and gravitationally-induced), time-dependent changes of materials response, cou

pled interactions between fluids and solids, etc. Unfortunately, all may have an im

portant influence on the behavior of the rock and all are often unknown in detail; so 

geomechanics problems are often data limited. However, “numerical experiments” 

using a computer can provide important insights into such variables that appear to 

be the most critical in controlhng the overall behavior of the rock.

An appropriate methodology is necessary whatever numerical solution is used, 

but additional benefits are obtained if the numerical technique and solution proce

dures have been developed with the specific characteristics of geological materials 

(heterogeneity, non linear deformation behavior, large strain, coupled fluid/sofid 

interactions, discontinuous displacement and slip along joints, faults, etc.) in mind.

In the market nowadays are basically two methodologies to apply numerical 

methods: i) continuum; and, ii) discrete models. Continuum models use either 

finite difference solutions or finite element procedures. Both methods translate a 

set of differential equations into matrix equations for each element, relating forces
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Figure 2.6: Numerical method available to aproximate the solution in simulation.

at nodes to displacements of nodes. Although the equations are derived differently, 

for elastic material the resulting element matrix are the same between exphcit 

finite difference simulators and finite element methods for constant strain triangles. 

However, both approaches differ in some aspects (Fairhust and Lorig, 1999):

•  “Mixed discretization” can be used for accurate modelling of plastic collapse 

loads in plastic flow which is physically more justifiable that the “reduced 

integration” scheme commonly used with finite elements.

•  Dynamic equations of motion can be used even with modelling systems that 

are essentially static. This enables finite differences methods to follow physi

cally unstable processes without numerical distress.

•  Explicit schemes can follow arbitrary non-linear in stress/strain laws in al

most the same computer time as a linear law, whereas implicit solutions can 

take significantly longer to solve non-linear problems. Furthermore, it is not 

necessary to store any matrices, so a large number of elements may be mod
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elled with less memory requirements, and large strain simulations are not 

more time consuming because there is no stiffness matrix to be updated.

Continuum methods attempt to account for the presence of discontinuity by an 

equivalent continuum representation. However, equivalent continuum models can 

only give a limited representation for the behavior of jointed rock.

Discontinuous methods are numerical techniques (explicit finite difference codes) 

formulated specifically to analyze the behavior of discontinuous or particulate sys

tems. The best known and most advanced discontinuous method is the distinct 

element method, which was conceived as a mean to model the progressive failure 

of rock slopes (Cundall, 1971). The distinct element method is not very different 

from the other numerical methods, but has the following attributes associated with 

it:

•  The rock mass is composed of individual blocks that can undergo large rota

tions and displacements relative to each another.

•  Interaction forces between blocks arise from changes in their relative geomet

rical configuration.

•  The solution scheme is explicit in time.

2.3 Poroelasticity

2.3.1 Introduction

The poroelasticity theory assumes pore-pressure dissipation according to Darcy’s 

law (Detournay and Cheng, 1988). Based on this assumption the effect of an excess 

pore pressure generated by an external load or any other event can be estimated 

and quantified. The coupled diffusion-deformation mechanism generates a time- 

dependent effect in the response of the rock. In low permeability formations, the 

influence of excess pore présure is more pronounced than in high permeabihty
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formations, in which the dissipation takes place almost instantaneously. Rapid 

drainage of the rock near the borehole has direct impact on the stress concentration. 

Thus, at the borehole wall, the rock is characterized by the drained elastic modulus 

and beyond by a stiffer undrained modulus. As a result of this contrast, the borehole 

wall is partially shielded, at early times, from the stress concentration.

Poroelasticity is the basis of the theory of consolidation used in soil mechanics 

and is applicable to fundamental problems in the petroleum industry, such as the 

evaluation of stresses induced by the fluid flow through the elastic porous media, 

which could induce subsidence by fluid withdrawal or tensile failure by pressuriza- 

tion of a borehole.

2.3.2 Fundamental concepts of poroelasticity

Terzaghi (1948) was the first to develop a theory that takes into account the effect 

of pore fluid on the quasi-static deformation of soils in 1923. He introduced the 

concept of effective stress based on the assumption of incompressible fluid and sohd 

material, which was defined as:

+  pSij (2.47)

However, it is Biot (1941) who first formulated the original poroelastic constitu

tive relations using the total stress tensor and pore pressure. He assumed a hnear 

relationship between stress and strain, an isotropic material, and the reversibil

ity of stress-strain relations under final equilibrium conditions. Later, Biot (1955) 

extended his isotropic theory to anisotropy, based on a generalization of Hooke’s 

law. However, the anisotropic material coefficients remained unclear until Thomson 

and Willis (1991) reformulated the theory through micromechanical analyses. The 

identification of these coefficients and their relations to engineering constants led 

to the development of practical models for laboratory measurements (Cheng, 1997) 

and the extension of fundamental solutions of important problems to transversely 

isotropic media under non isothermal conditions (Ekbote et ah, 2000).
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Rice and Cleary (1976) linked the poroelastic parameters to physical concepts 

well understood in rock mechanics. They emphasized the limiting behaviors, drained 

(p =  cte.) and undrained (<̂ =  0), of a saturated porous media which simplify the 

interpretation of asymptotic poroelastic phenomena. This basic state variables were 

the total stresses and the pore pressure.

Starting from the Biot’s constitutive equation:

1 + u u p
Sij = (Tij -  —cFkk̂ ij +  — %  (2.48)

Rice and Cleary rearranged it as:

2Geij =  (<Tjj +  p6ij) — — —  {akk +  3p) 8ij — (2.49)
1. +  P o A g

where E, p, and G are Young’s modulus, Poisson’s ratio, and the shear modulus of 

the solid skeleton, respectively, i f  is a material constant and Kg is given by:

K  being the drained bulk modulus, defined as:

Also, Rice and Cleary represent the variation of fiuid content as follow:

C = ^  — V, = ^  ((̂ kk +  3p) — - ~ p  (2.52)

where Vg is a reference volume fraction in the unstressed state.

The relationship between the constant proposed by Biot and the new constant 

i f ;  is:

According to Detournay and Cheng (1993), the bulk modulus of the solid con

stituent {Ks) can be related in special cases to the constants K'g and K'g.
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The mass m of the pore fluid per unit volume can be expressed in a hnearized 

form as:

Am =  m — mo — Po^V  +  KAp (2.54)
Pô O . Po 1 1 \  / I o \ Po^o
K f

where rUo and Po are obtained in the reference state and K f i s  bulk modulus of the 

fluid, which is given by:

JR:/ == (24)5)
/) -/?o

FVom Equation (2.54), it is clear that a pore pressure p, proportional to the total 

pressure P  =  — ̂ ,  is induced under undrained conditions (C =  0); i.e.

p =  P P  (2.56)

where the coefficient B  is known as the Skempton pore pressure coefficient (P  =  ^ ) , 

given by:

1 1
B =  ....... " " 9

On the other hand. Equation (2.49) can be separated into a deviatoric and a 

volumetric response; i.e.

~  (2.57)

^  -  l )  (2.58)

where Sij (sÿ =  <Tÿ +  P % ) and (ê - =  Sÿ — |ôÿ) denote the deviatoric stresses 

and strains; P  the mean or total pressure (isotropic compressive stress); and, e 

(Skk) the volumetric strain.
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Substituting the value of p given in Equation (2.56) into Equation (2.58) indi

cates that the volumetric strain is proportional to the total pressure P  under the 

undrained conditions (^ =  0):

e -  - £  (2-59)

where,

K H ‘̂

or,

is the undrained bulk modulus of the material.

Under drained conditions (p =  0), the volumetric strain is also proportional to 

the total pressure (see Equation 2.58); i.e.

e =  — — (2.62)

From Equations (2.59) and (2.62) it is clear that poroelastic material, in the 

limiting case, behaves as an elastic one. Also, using Equations (2.52) and (2.62) it 

can be shown that:

C = ae (2.63)

where a  = This equation gives a meaning to the constant a  as the ratio of the 

fluid volume gained (or lost) in a material element to the volume change of that 

element, when the pore pressure is allowed to return to its initial state. Thus, the 

three volumetric constants, K , Ku [K, oo], and a  [0,1] have physical meanings that 

are associated with the drained and undrained responses of the material.

Alternative expressions for the volumetric response using the basic set of con

stants, K , Ku, and a, are given by:
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£ =  {P -  ap) (2.64)

< =  P.65)

where,

K — K

Equations (2.64) and (2.65) can inversely be written as:

f  =  (2.67)

p ~  M  {Ç — ae) (2.68)

where,

The constant M  is called the Biot modulus and is defined as the inverse of a 

storage coefficient or the increase of the amount of fluid (per unit volume of rock) 

as a result of a unit increase of pore pressure, under constant volumetric strain.

' = ( I ) .M

Detournay and Cheng (1988) rewrote the constitutive equations in a more ele

gant way, manipulating the Rice and Cleary equations as:

2Gi/
(Tij =  2Geij -f ~  (2.71)

2(2J9 (1 4- y«) SKZRS (1 4- r*)» (1 -- 2,4.)
^  3(1 — 2Uy) 9 (Uu — v ){ l  — 2uu)
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w here a  ca n  b e defined  as:

== g ( l + V ) ( l - 2 z / )

Prom Equation (2.71) it is clear that the Biot effective stress (Equation.2.47) is 

proportional to the solid strain in an identical elasticity relation.

Combining the constitutive equations (2.71), the equilibrium equations (a-ÿ j  = 0), 

Darcy’s law (% =  —«P,*), and the continuity equation for the fluid phase ( ^  +  Qi,i =  O), 

and neglecting body forces and fluid sources, they derived the borehole poroelastic 

response of isotropic porous media and presented numerical solutions of wellbore 

stress and pore pressure by superposing the three-mode loading aspects. The solu

tions were presented in the Laplace domain.

2.4 Shale

2.4.1 Introduction

Argillaceous rocks are fine-grained detrital sedimentary rocks formed by the consoli

dation of clay, silt, or mud and are characterized by their finely laminated structure, 

cation exchange capacity, specific surface area, and water content. They can con

tain a wide range of clay minerals, and accessory minerals such quartz, carbonates, 

and feldspars. The swelling of clay particles depends on the net effect of the inter- 

molecular forces acting on the clay surfaces. For surface separations ranging from 

the scale of a water molecule («0.25 nm) to the scale of clay particles («2//m), 

the operating forces and their respective ranges are (Israelachvili, 1991; Diek et 

ah, 1996): attractive van der Waals forces (<10 nm), attractive ion-ion correlation 

forces (<4 nm),oscillatory hydration forces (< 2 nm), monotonie repulsive hydra

tion forces (< 10 nm), and repulsive electric double-layer forces (< 2 ^m). The 

attractive and oscillatory forces tend to limit the swelfing to very small separation 

(«1,2 nm). This type of expansion is referred to as crystalline swelling, signifying 

that the overall crystal morphology is preserved. The monotonie repulsive hydra-
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tion forces tend to extend this crystalline swelling, still limitedly, up to 10 nm with 

increasing electrolyte concentration. On the other hand, in the presence of diluted 

electrolytes, the repulsive electric double-layer forces dominate the interactions at 

larger surface separations (> lOnm), and tend to expand the interlayer unlimitedly 

up to the size of a particle. The change in the fluid chemistry alters the equihbrium 

of these forces, which could lead to the expansion of the surface separation and the 

hydration of the clay surface groups and interlayer cations. Thus, the hydration 

reaction influences the net result of these forces.

2.4.2 Clay-Water Interactions

Fundamental molecular concepts of clay-water interactions, are basic for under

standing the hydration, swefling, and rheological behavior of clays. Of special 

importance are the colloidal characteristics of the clay particles, the hydration re

actions of clays and ions, the inter-particle forces in aqueous media, the molecular 

configuration of the clay/water interface, and the stability of clay suspensions. 

These fundamentals concepts of colloid chemistry are described in detail in numer

ous textbooks, hke the monographs by Hunter (1987) and Everett (1988).

Aqueous clay suspensions could be considered as a system of four components: 

clay particles, water molecules, cations (counter-ions), and anions (co-ions). The 

contribution of each component is related to its intrinsic characteristics and to its 

interaction with the other three components, so that the hydration of clays and 

the behavior of aqueous clay suspensions could be treated as the total interaction 

between these components.

In general, primary clay particles consist of a coherent stack of silicate layers; 

they may range in thickness from a single to a few tens of layers. The properties 

of the clay particles that affect their rheological behavior are: morphology (size, 

shape) and flexibility of clay particles; surface area of clay particles and electrical 

charges on them; microstructure and micropores in clay aggregates; and modes of 

association of clay particles in suspensions.
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Clay particles often occur as aggregates displaying various textures determined 

by the shape and arrangement of the constituent primary particles. The cluster of 

the clay aggregates may generate a micro-structure (fabric) often with large pores 

between the constituent clay aggregates. Thus, a clay may develop three kinds 

of pores: interlameUar pores within the primary particles; intra-aggregate pores 

between the primary particles within the aggregates; and inter-aggregate pores 

within the microstructure (fabric).

2.4.2.1 Electrically charged surfaces o f clay particles

Clay particles may expose two types of basal surfaces that may be distinguished 

as ’’sUoxane” and ’’hydroxide” surfaces. The siloxane surfaces consist of smooth 

planes of basal oxygen attached to the silica tetrahedra forming pseudo-hexagonal 

rings. A hydroxide surface consists of molecularly smooth planes of hydroxyl ions. 

Kaolinite and other 1:1 type layer silicates display a hydroxyl surface on one side 

of the layer, and a siloxane surface on the other side. Smectites and other 2:1 type 

layer silicates are bounded by siloxane surfaces on both sides.

The distribution of charge sites in the silicate layer is significant for the inter- 

lamellar hydration of 2:1 type clay minerals. Basal oxygen of the electrically neutral 

layers may act as weak Lewis bases (electron donors) and form weakly bounded 

aqueous complexes. Ionic substitutions within the silicate layer may generate ex

cess negative charges on the basal oxygen and make stronger Lewis bases that can 

form stable aqueous complexes with water dipoles through H-bonds. Sposito (1982) 

pointed out that H-bonds between water molecules and the basal oxygen are con

siderably stronger when the charges are derived from tetrahedral substitutions than 

when they are derived from the octahedral substitutions.

Ionic substitutions in tetrahedral and octahedral sheets are assumed to be re

sponsible for the creation of permanent charges on the basal surfaces of the layer 

sihcates.

Bleam (1990a and 1990b) established the factors that define the electrostatic
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potentials on clay surfaces.

The ’’localization of layer charge” on the certain basal oxygen is responsible for 

the development of a periodic electrostatic potential on the layer surface. However, 

there are no ’’localized” charges on the basal surfaces of smectites having octahedral 

excess charges. The latter reside on the octahedral cations which are about 0.5 nm 

away from the interlayer. The octahedral excess charges are, therefore, well shielded 

and generate weak fields at the basal surfaces.

2.4.2 2 H ydration o f Clays

Clay hydration involves adsorption of water molecules on the clay surfaces that are 

exposed in different pore spaces of the clay. Three modes of clay hydration can 

be distinguished and may take place simultaneously with increasing water activity: 

interlameUar hydration which involves the adsorption of limited amounts of water 

molecules on the internal surfaces of primary clay particle; continuous (osmotic) 

hydration which is related to an unlimited adsorption of the water on the internal 

and external surfaces of primary particle; and capillary condensation of free water 

in micropores within the clay fabric (i.e., in the inter-aggregate and intra-aggregate 

pores).

The main elements of interlameUar clay hydration are: the hydration of in

terlayer cations; the interactions of clay surface with both water molecules and 

interlayer cations; and the activity of water (water content) in the system.

These interactions wUl be described first in the vapor phase; then in the liquid 

phase using ’’smectite hydration” as a model.

Just like the step-wise hydration of ions in the gas phase, clays may display 

a step-wise hydration in the vapor phase at low relative vapor pressure (P/Po) 

by forming interlameUar hydration complexes. The interlameUar hydration of the 

clays has been weU documented by Hendricks et al., (1940); Mooney et al., (1952a 

and 1952b); Norrish (1954); van Olphen (1965 and 1969); Suquet et al., (1975); 

MacEwan and Wilson (1980); Suquet and Pezerat (1987); Krachenbuchl et ah,
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(1987); and Kahr et al., (1990). The interlameUar hydration complexes of clays are 

operationally distinguished by X-ray or neutron diffraction in terms of numbers of 

monomolecular water layers that are assumed to be intercalated between the silicate 

layers. The number of the water layers in well-defined interlameUar hydration 

complexes ranges from zero to three corresponding to zero-, one-, two-, and three- 

layer hydrates of clays.

Representative basal spacings for various n-layer hydrates of smectites and ver- 

micuUtes were compUed by Suquet et al., (1977); MacEwan and WUson (1980); 

and Suquet and Pezerat (1987). The main factors affecting interlameUar hydration 

of smectites and vermicuUtes may be summarized as: hydration energy of inter- 

layer cations; polarization of water molecular by the interlayer cations; variation 

of electrostatic potential on the clay surface as determined by the magnitude and 

distribution of the charges in the silicate layers; activity of water (relative water 

vapor pressure); and size and morphology of smectite particles and the fabric of the 

clay.

2.4.3 Swelling phenomenon while drilling

Many different theories have hem  presented to explain the sweUing phenomenon of 

shales, such as capiUary suction, osmosis pressure, and hydrauUc pore pressure im

balance. However, until now, the experimental data have not totally and effectively 

explained or even understood.

The pioneering work of Low and Anderson, (1958) suggests osmosis as the only 

mechanism responsible for swelUng pressures generated by shales. They presented 

the osmotic pressure equations for determining the sweUing properties of soil and 

gave the structural components of the sweUing pressure of clays. Their theory is 

based on the principle that the shale itself acts as a semi-permeable membrane, 

allowing for the generation of osmotic pressures between the fluid in the shale and 

the drilling fluid. Chenevert et al., (1970 and 1993) used this osmotic pressure the

ory to propose shale control procedures, using the concept of “balanced activity”.
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Later Fïitz et al. (1983) supported the osmotic theory as a basis to explain water 

and ion transport. They reported that clay membranes were not ideal and that the 

degree of “ideality” was a function of the membrane’s cation exchange capacity, 

porosity, and concentration of pore fluid. They suggested that such “ideality” for 

a given shale-hquid system could be determined from the measurement of swelling 

pressures, which would then be used to calculate a “reflection coefficient.” which 

is defined as the ratio of the measured swelHng pressure divided by the theoretical 

swelling pressure for a perfect membrane. Mody and Hale, (1993) took a simi

lar approach, postulating that membrane efficiency is a function of the confining 

pressure acting on the shale.

Pashley and Israelachvih (1984) and Pashley et al. (1989) described the hy

dration forces and chemical mechanisms behind the ion movements between mica 

surfaces. Their analysis takes into account the molecular interactions between the 

clay particles and the ions in the pores and drilhng fluids. Barbour et al. (1989) 

presented a theoretical description of two potential mechanisms that could explain 

osmotic volume changes. The first one, osmotic consolidation, occurs as a result 

of changes in the electrostatic forces between the clay particles, whereas the sec

ond, osmotically induced consolidation, occurs because of fluid flow in response to 

osmotic gradients. However, Ballard et al. (1992) investigated water transport 

through shale and concluded that shales do not act as semi-permeable membranes 

and that ions can freely diffuse through them. Bol et al. (1992) came to the same 

conclusion after running a series of experiments, stating that “osmosis was not ob

served”. Santarelli et al. (1995) discussed the swelling phenomenon and came to 

the conclusion that swelhng pressures are caused by gas present in the pore struc

ture of the rock, which induces capillary effects. They concluded that it is unlikely 

that swelhng actually occurs under downhole conditions. Santos et al. (1996) con

cluded that rather than the gas contained in the pores driving the swelling process, 

the water content in shale and its distribution are controlling the changes that are 

occurring in the rock. However, both of these hypotheses neglect basic concepts of
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surface chemistry and other phenomena at micro-scale levels that play a significant 

role in shale behavior. Also they can not explain the shale stability success usually 

achieved when balanced activity oil-base muds are used.

Diek et al. (1994 and 1996) have punctuated that mass transport into the forma

tion leads to changes in the pore fluid chemistry, ion exchange, mineral dissolution, 

and maybe stress corrosion in certain fractured shale. The first two processes, 

mainly caused by solute diffusion, alter the equilibrium of the interlayer surface 

forces between clay platelets which may either contract, expelling bound water, 

or expand, uptaking firee water. The last two processes, mainly caused by water 

invasion, produce weakened shale that become prone to erosion.

During the past decade, the extension of the classic poroelastic theory of Biot 

(1941) for coupling isothermal processes: mechanical, hydraulic, and chemical caus

ing shale deterioration and borehole instability while drilhng have been studied by a 

number of researchers. Sherwood (1993) and Sherwood and Bailey (1994) developed 

a coupled, Biot-hke model in which the shale is an ideal ion exclusion membrane. 

The model neglects the diffusion of ions and fimits the analysis to isotropic media 

under isothermal conditions; also, they assumed that the equilibrium state is inde

pendent of composition and only dependent on the pore pressure. Van Oort (1997) 

presented solutions for fluid pressure, filtrate invasion, and solute diflFusion around 

a wellbore but the study did not consider transient effects, which play and impor

tant role and affect pressure transmission and solute diffusion. Ghassemi and Diek 

(2002) extended the model of Sherwood and Bailey to non-isothermal conditions to 

consider the influence of thermal osmosis on shale instability. They also proposed 

a hnear chemo-poroelastic model for transveresely isotropic shales including solute 

diffusion (Diek and Ghassemi, 2002). Using a non-equihbrium thermodynamics 

approach Heidung and Wong (1996) presented a fuUy-coupled Biot-like model for 

hydration swelhng based on an extended version of the poroelastic model and Dar

cy’s transport equation that considered ion diffusion. Nevertheless, the model is 

limited to isotropic porous media saturated by an incompressible fluid.
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2.5 Summary

Drilling through thousands of meters increases the possibihty of crossing all kinds 

of formation's features (swelling formation, weak layers, fractures, faults, etc.), 

which combined with a complex geological environment characterized by high hor

izontal stresses, steeply dipping beds and alternating sand/shale sequences lead to 

extremely severe instability problems not normally encountered in past common 

oilfield drilling. In addition, the very wide range of conditions under which clay 

minerals may form and the very large number of intervening factors, geological 

settings, physico-chemical parameters controlling the diagenetic process, etc. arise 

the complexity of genetic, structure and reactivity of clay minerals which are the 

outcome of a complex geological process. It is further complicated by the fact that, 

here, the interaction of matter and energy takes place in a mediating agency (wa

ter), as a result of which the parameters of the process become functions of time 

and, as the medium is in motion, also of place. These events also lead structural 

alteration and submineralic process, which are reflected in long-range interaction 

between particles and short-range interaction between structural layers. As a re

sult, the swelling characteristic of shales changes. The surface of clay particles also 

alters the structure-sensitive properties of water to an appreciable distance and the 

swelling pressure of the clay is related to the degree of this alteration. The double 

layer contribution to the swelling pressure of the clay is insignificant because of 

lack of dissolution of the exchangeable cation; therefore, the swelling clays is due 

primarily to surface hydration.

On other hand, preexisting discontinuities present a basic mechanism of desta

bilization: mud invasion increases pore pressure in discontinuities, but at the same 

time decreases the effective normal stress which previously stabilized them. Then 

a shear release results in a lateral shift of the borehole which can be from a few 

millimeters to centimeters. AU these mechanisms provoke abnormal torque, tight 

hole, difficulties in run-in-hole or puU out of hole, stuck pipe, drilling string failures.

41



etc. These situations are not always solved by using the classical drilling remedy: 

“mud weight increase and jarring” , which often worsens the instabihty problems, 

especially if shales are present. Here, special methods and remedies are necessary 

such as: avoiding high mud density wherever it is not strictly necessary for gas 

kick control; increasing the sealing capacity of the mud and reducing the filtrate at 

the maximum; avoiding swab and surge effect that increase the internal pressure; 

and foreseeing the possibility of back-reaming using special tools to avoid further 

damage. However, the identification and understanding of the basic rock failure 

mechanisms are fundamental to the choice of a solution.

Rock failure mechanisms that are responsible for wellbore instability problems 

have been extensively studied in the literature. They are related to the in-situ 

conditions of the rock masses, such as, geotectonic conditions, temperature, pore 

fluid interactions, composition, loading condition, etc., and can be classified as: 

i) compressive failure, where hole size reduction is observed, due to the plastic 

flow of the rock into the borehole (borehole collapse) or hole enlargement due to 

rock faifing in a brittle manner and falling into the borehole (break-out); ii) tensile 

failure, where fracturing due to tensile splitting of the rock for excessive wellbore 

pressure is observed; and, iii) shear failure, when drilling through discontinuity 

and lateral shift of the wellbore trajectory occurs due to the slip of the fault. 

However, the changes of these in-situ conditions are often overlooked in wellbore 

stress analyses, neglecting thermal stresses and capillary effects in porous rocks with 

high and low permeability which is now possible thanks to the recent developments 

in thermoporoelasticity.

Finally, the phenomenological complexity of the wellbore stability problems in 

complex geotectonic environments require innovative and state-of-the-art wellbore- 

stabilization methods and numerical simulation to reduce the total cost associated 

to construction and productive life of the oil and gas wells; because a stable well

bore during the drilling, completion and production phases maximizes the well’s 

economical potential.
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3 T heoretical Approach

3.1 Introduction

This dissertation contains an extension of poroelasticity by fully coupling the three 

processes: mechanical, hydraulic, and chemical in transversely isotropic porous me

dia saturated by a shghtly compressible hquid consisting of a solvent and one or 

more solute. The results are vahd for both neutral and electrolyte solutions. The 

theory generalizes Heidug and Wong’s (1996) model by considering compressibihty 

of the fluid and anisotropy. One wiU investigate an isothermal situation in which 

small disturbances occur to an equihbrium state, defined by an initial stress, pore 

pressure and solute mass fraction, at constant temperature, in a chemically active 

poroelastic medium. There are no body forces and volume fluid sources. The dis

sipation of energy is due to the relative motions between the fluid components and 

the sohd. The fluid saturated porous medium is viewed as an open thermodynamic 

system. Under the actions of external forces, an element of the system deforms 

elastically as weU as exchanges fluid mass with the surroundings. The model aims 

to describe the rock behavior under mechanical and chemical loading. It targets 

the chemical effects of electrolyte solutions causing hydration and sweUing of the 

rock. The electrical effects are ignored based on the assumption that the influences 

of the electric field and resulting current are negligible. Therefore, the fluid is con

sidered a solution composed of chemical components (a solvent and one or more 

solute) and not of ions. The fluid saturated porous medium is composed of a sohd 

matrix which contains two kinds of connected voids of different scales: pore spaces 

filled with freely diffusing pore fluid, and interlayer spaces occupied by bound water
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Figure 3.1: Pore model composed of a solid matrix with two kinds of conected pores 
of different scales.

between clay platelets (Figure 3.1). The model considers the hydration of the wet

ted clay minerals under the assumption that the hydration reaction rates are much 

faster than the rates at which macroscopic changes of hydrauhc and chemical states 

are communicated through the rock, i.e. local physical and chemical equiUbria are 

sustained (Heidug and Wong, 1996). The state equation for the fluid density is as

sumed linear. Similarly, the solute chemical potential is related to its mass fraction 

linearly. Field equations for linear chemical loading are obtained by implementing 

the derived rock constitutive equations and phenomenological transport equations 

into the momentum, mass and energy balance equations. The resulting Navier-type 

equations couple the three solid displacements to pore pressures and solute mass 

fractions. The driving forces of the flows are identified with the forces associated 

with the relative motions between the fluid components and the sohd. The last de

rived field equations are the fully coupled fluid and solute diffusions, respectively. 

Finally, the swelling parameter and diffusivity are explored.
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Flow /  G rad ien t H ydraulic Chem ical P o ten tia l
Fluid
Solute

Hydraulic Conduction'^*™'  ̂
Pressure diffusion*”‘̂*̂®‘̂

Chemical osmosis^"'^*’’®'̂  
Chemical Diffusion '̂'^ '̂^

Table 3.1: Direct and Coupled Flow Phenomena

3.2 Transport processes.

Various transport processes occur in fluid saturated chemoporoelastic media (e.g., 

shales) under isothermal conditions. The presence of hydraulic pressure and chem

ical potential gradients engender both direct and indirect or coupled flows. Direct 

flows are in the form of hydraulic conduction and chemical solute diffusion; whereas 

indirect or coupled flows are in the form of chemical osmosis and pressure solute 

diffusion, as depicted in Table 3.1. In summary, the sohd deformations and stresses 

depend on changes in the hydraulic pressure and chemical potential components of 

the fluid.

A macroscopic thermodynamics theory of irreversible processes was developed 

by Onsager (1931) and reflned by Casimir (1945) in which n  independent forces X* 

are related to the n  independent fluxes 1“ by the following linear relationships:

n

( o , 6 = l , 2 , . . . . , n )  ( 3 .1 )

6=1

such that the tensor C is symmetrical; i.e.

=  ( u , 6  =  l , 2 , . . . . , n )  ( 3 .2 )

according to Onsager’s theorem derived by means of general methods of statistical 

mechanics. The reciprocal relations in Equation (3.2) are an implication of the 

property of microsœpic reversibility; i.e., the invariance of the equations of motion 

of individual microscopic particles under time reversal. Moreover, the phenomeno

logical coefficients express, for example, the coefficients of permeability, solute 

diffusion, thermal conductivity, etc.. The coefficients £ “*’ (a h) are connected to 

the cross or interference phenomena, they express, for example, the coefficients of
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solute reflection, pressure diffusion, thermal diffusion, etc.. They are represented by 

scalars for isotropic flows, whereas they assume the role of the tensors for anisotropic 

flows. The occurrence of irreversible processes is represented by the local entropy 

production rate or Rayleigh’s dissipation function V  which is expressed by the 

bihnear form:

n

Tî? =  2î>= (3.3)
0 = 1

where T  is the absolute temperature. Inserting (3.1) into (3.3), one gets:

n

2D =  ^  (X° . X'') >  0 (3.4)
0 ,6= 1

a positive definite quadratic expression according to the second law of thermody

namics, which vanishes for the reversible limiting case. The linear relations in (3.1) 

allow the construction of a reciprocal set of expressions in which the forces are 

represented as a linear functions of the fluxes such that:

cYD J L
=  (3-5)

6=1

where the coefficients R®** =  are elements of the inverse tensor R  and

represent generalized resistances or frictions. The determinant of C is nonvanishing 

(|£ | ^  0) since de fluxes F  are independent. Inserting (3.5) into (3.3) one gets:

n

2 V = Y ^  • I'’ (3.6)
a,6=1

For isothermal processes, the rate of dissipation energy 2T> can be expressed 

from (3.3) as:

n

ri? =  2D =  ^ I ^ - X ^  (3.7)
13=1

n

46



where the right hand side (RHS) term in Equation (3.8) denotes the dissipation 

energy due to the relative motions between the fluid components and the sohd 

matrix such that the fluxes measure the mass flow of the fluid component 

relative to the sohd velocity:

(v^ -  Vg) (3.9)

here f ^ ,  and denote the chemical potential, the mass density (per unit volume 

of the porous medium), and the velocity of the fluid component, respectively, 

n  denotes the total number of fluid components, and v , denotes the sohd velocity. 

The independent difl̂ usion fluxes, I^, can be decomposed into:

I^ =  +  /  j  (3.10)

where,

 ̂= (^) ’ = ( f  )
are the intrinsic mass density of the fluid component and total fluid mass density

(per unit volume of the fluid), and 0  denotes porosity. The dependent fluxes, 

J^, measure the mass flow of the fluid component relative to the mixture’s 

barycentric velocity vy =  aud py =  is the total fluid mass

density relative to the unit volume of the porous medium (sohd-fluid mixture):

=  /  (v^ -  Vy) ; ^ J ^  =  0 (3.12)

The mass flow of the fluid relative to the sohd velocity is given by:

J / =  py (vy -  Vg) =  pyW (3.13)

where.
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w  = (j){vf -  Vg) (3.14)

is Darcy’s filter velocity. Using (3.8), (3.10), (3.13), and Gibbs-Duhem relation:

(3.15)
13

the dissipation function (3.8) can be written as:

2P =  - J ^  . ^  . V /  (3.16)
Pf

where p is the pore pressure. For a binary solution, the dissipation function (3.16) 

becomes:

2D =  ^  . V (/i^ -  (3.17)

in which the superscripts S and D refer to solute and diluent (solvent), respectively. 

Prom Equations (3.5) and (3.17), one could associate the independent fiuxes and 

with their conjugated forces; i.e.

X® =  ^  =  - V  ( /  -  „•>) (3.19)

The rate of dissipation energy —J® • V applies to both neutral and

binary electrolyte solutions (Heidug and Wong, 1996).

3.3 Rock Constitutive Equations

3.3.1 Free Energy of Wetted Clay Matrix

The fluid saturated porous medium is composed of a solid matrix which contains 

two kinds of connected voids of different scales: pore space filled with freely diffus
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ing pore fluid, and interlayer space occupied by bounded water between individual 

clay platelets. Bound water is deflned, here, as the water that is subject to inter- 

molecular surface forces (e.g., van der Waals, hydration, and electric double layer 

forces), which possesses physical properties that deviate from those of the bulk 

(Derjaguin et al.j 1987; and Isrealachvili, 1991). On the other hand, pore water is 

not subject to these forces because it occupies voids with dimensions that are much 

larger than distances over which intermolecular surfaces forces are effective < 10 

nm  (Diek et al., 1994 and 1996). Consequently, one may divide the mass of the (3*̂  

fluid component per referential volume of the material into two parts (Heidug and 

Wong, 1996):

(3 20)

where m^ore are the masses per referential volume of the /?*'* fluid com

ponent in the pore fluid and the bound water, respectively. The fundamental 

constitutive relations for the total stresses the pore volume fraction v  or the 

variation of the pore fluid content (, and the fluid component masses in the bound 

water, can be derived from the free energy of the wetted clay matrix

containing bound water. This energy is obtained from the difference between the 

free energy of the fluid saturated porous medium ^  and that of the pore fluid Spore, 

as illustrated below.

The following expression of the time evolution of the free energy S per referential 

volume of the fluid saturated porous material is obtained by combining the first 

and second laws of thermodynamics (refer to Appendix A.l):

S=  ^  (3.21)

where cTÿ and are the components of the total stress and strain tensors and is 

the chemical potential of the fluid component. This localized balance equation 

relates the time change of the free energy S per volume element in the reference
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configuration to the deformation rate éij, and the rate of change of mass; i.e.

( 3 .2 2 )

of the fluid component per unit referential volume. Note that JT is the deter

minant of the deformation gradient such that:

dV
V . )  ( 3 .2 3 )

where the volume element dV  in the current configuration occupies the volume dVo 

in the reference configuration.

The pore volume fraction v  is assumed to be a macroscopic state variable, such 

that the pore fluid free energy per unit volume of the porous medium is defined as:

^  24)

where the mass per referential volume of the component in the pore fluid is 

given by:

m; =  L T (3 26)

in which v = J(f) is, the pore volume fraction per referential volume and is the

density of the pore fluid component in the current configuration. The quantity 

fpore denotes the specific free energy of the pore fluid component; i.e.

=  ( 3 - 2 6 )
Ppore

where Pp̂ re = The assumption that the specific chemical potential

of the pore fluid component is the same for the pore fluid and bound water 

preserves the local chemical equihbrium. The evolution of the potential with

time, then, obeys:

d w m  { ^ 1  ~  ~  ^ p o re  )
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for which Gibbs-Duhem (relation 3.15) has been used.

Alternatively, the dual potential W  defined by:

== 3&,m - Pt; -  (<) 3!8)

satisfies the equation:

T/y= -- lup - (3.29)
0

k"" ' lav if

in order for relation (3.29) to conform with the expression for W derived fi’om the 

differentiation chain rule:

3.3.2 Fundamental equations

Differentiation of Equation (3.30) with respect to time, yield to the following consti

tutive equations for the time evolutions of total stress (Tij, and pore volume fraction 

v:

=  Lijkiéki — cxijP +  (3.32)
P

t, ==a<jêij 4- <?p 4- (3.3:3)
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^̂ bound +  (3.34)
13

where tension is considered positive. The thermodynamic response coefficients 

are given by the following tensors (i, j ,  fc, / =  1,2,3):

L , u = ( p - )  = ( p i )

V »

dv
a  ■ -  ■

T  /  p,p0 ,T

P , S i o , T

V a?  ,

Q

where Lijku a*;, and denote the elastic moduli, Biot effective stress coefficients, 

and the chemical swelling parameters of the 0^^ fluid component, respectively. For 

binary solutions, the constitutive relations (3.32) and (3.33) reduce to:

&ij =  Lijkièki — OLijp +  (3.36a)

V =  Q-ijEij +  Qp +  jj0 +  B ^  (3.37)

fnikLmuf 4- (/i^ H /«*) (3L3W8)

52



bound 4- H - ,̂2) (3.39)

where the superscripts S and D denote solute and diluent, respectively. Note 

that the thermodynamic response coefficients Lijki, onj, ufj, and are components 

of symmetric tensors.

3.3.3 Variations of the fluid content

Small variations of the ratio of the fluid densities Pf and p/o in the current and 

reference configurations with respect to the fluid pressure at constant temperature, 

can be expressed by the following first order expansion or linear state equation:

f L
P fo

i + , p - p -
K , '

where p„ refer to the initial fluid pressure, and Kf  denotes the fluid bulk modulus. 

The hnearization of the fluid state equation, relating its density response to its 

pressure (3.40) yields:

^  “ I;
The assumption that the porous medium is fully saturated with the fluid implies 

that the pore volume change is equal to the variation of the fluid volume in the 

pores. The latter results from the following two processes: i) fluid density change, 

and ii) fluid exchange between the porous media and the surroundings. The total 

fluid mass density m / is defined by:

ruf = J p f  = J(f)pf = vpf (3.42)

which reduces to the reference mass nifo = <j)Pfo with u —> 0, and Pf —> Pfo- The 

variation of the fluid content is related to the difference between the fluid mass 

densities in the current configuration rrif and the reference configuration m/o by:
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C =  =  (3.43)
P f o  p f o

such that its time evolution is given by:

f  =  +  (3.44)
P f o  p f o  p f o

If one chooses, as reference, the configuration at any instant, then for this se

lection J  = I, but J ’ ^  0, Pf = pfo, but p f^  0, and (  =  0, but (  ^  0; hence. 

Equation (3.44) becomes:

C = i> + ^  (3.45)
K f

Substituting Equation (3.37) into (3.45), one gets the response of the rate of 

variation of the fluid content C to the rates of strain components êÿ, pore pressure 

p, and the chemical potential of the fluid component pPas follows:

C =  P  + B^fi^ (3.46)

or, in the case of binary solution:

C =  o îjéij +  P +  B ^(i^  (3.47)

Note that the storage coefficient, or the inverse of Biot Modulus M~^, is defined

by:

3.3.4 Chemical Loading

The solute chemical potential, p.^, can be approximated such that any significant 

change is solely due to a change in the solute mass fraction (Heidug and Wong, 

1996):
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(3.49)

The solute and diluent mass fractions and are defined iu terms of the

reference solute and diluent mass densities pf and respectively, by:

=  C ' ' =  (1 -  C®) =  =  pf + p f  (3.50)
P f o  P fo

The rate of change with time of the diluent chemical potential can be ex

pressed according to Gibbs-Duhem’s relation with respect to pf and p f  by:

. P f o
0151)

One could write the driving force V (p^ — p^) as:

V ( /  -  =  { %  -  VC» (3.52)

For dilute solutions, the first right hand side term^ is negligible compared to the 

second term (Haase, 1990 and Heidug and Wong, 1996). This leads to the following 

simphfication:

(3.63)

where.

This follows from the Gibbs-Duhem’s relation at constant pressure and temper

ature:
^The partial specific volumes and of the solute and diluent, respectively, satisfy:
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c® +  C °  =  0 (3.66)

Note that the chemical potentials represented in (3.49) and (3.51) satisfy Gibbs- 

Duhem’s relation;

Y ^f,p ,l> = p  (3.56)

Furthermore, it is important to observe that the state equation (3.21) is valid for 

both neutral and electrolyte solutions, since if /I* and denote the electrochemical 

potential and the electric charge of the ionic species:

^L57)

where (p is the electric potential which vanishes at infinity (no charges), then the 

following expression is form invariant; i.e.

^  pi^rhP (3.58)
b 13

according to local electroneutrality and chemical equihbrium (Haase, 1990 and 

Heidug and Wong, 1996). Consequently, the derived constitutive equations (3.36a), 

(3.37), and (3.47) for a binary solution are vafid for an electrolyte with the solute 

chemical potential related to the chemical potentials of the anions and cations 

IJp, at the equilibrium of dissociation by:

where iV^ and are the numbers of anions and cations, respectively. Note 

that a binary electrolyte solution is composed of four species: water molecules, 

undissociated electrolyte molecules, cations and anions.
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3.3.4.1 Linearization o f Chem ical Loading

Linearization of the rock-fluid constitutive equations in term of the above five in

dependent variables is accomphshed by assuming that the chemical disturbances 

to the system are small enough to induce hnear responses of the total stress aij, 

and the variation of the fluid content C with respect to the solute mass fraction 

C^. This approximation is appropriate for laboratory and fleld apphcations (Diek 

and Ghassemi, 2002). The chemical potential can be linearized with respect to the 

solute mass fraction by approximating In (7^ by a linear relation for a particular 

range of values of i.e.

RT
pf' a, -- 6), .far all E , (zrwi :> () (3.60)

where fa , such that denotes the mean value of the solute mass

fraction and fe is a reference constant. The time rate of change of the diluent 

chemical potential satisfies the approximated Gibbs-Duhem’s relation;

^
The constant where denotes the mean value of the diluent

mass fraction.

Finally, the approximation in Equation (3.53) takes the form:

V ( / - «  ( 1 ^  -  =  a v c " (3.62)

where,

91 =  (3X33)

is a constant. The hnearization leads to the following result:

&ij =  Lÿkiéki -  ( a i j  ^  ^  -  n^wg) (3.64a)
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c =  Oil

3.3.5 Complete Isotropy

In the case of complete isotropy, Equations (3.64a) and (3.65) reduce to:

àij — ( k  — — j  ékk^ij +  2Géij — Bpôij + xC^ôij (3.66)

Ç — cxijêij +  Ap +  ÇIC  ̂ (3.67)

where the chemical swelhng parameters reduce to ufj = and the isotropic

thermodynamic response coefficients are given by ( see Appendix A.2):

a

K  and G denotes the rock’s bulk and shear moduli, respectively. The poroelastic 

(Biot effective stress) coefficient a  is a scalar, Ks denotes the bulk modulus of the 

sohd matrix, and Ps is the mass density of the solid matrix. The other constant 

coefficients are given as follows:

B = {a

Finally, the components of the total stress cr̂  are given (integration of 3.66) by:

o'ij — ^ Skk^ij +  2Gsij — Bp6ij +  X Sij (3.70)

In particular, one may represent the input swelling parameters and by:

A/fS
cur? =  k/o =
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3.3.6 Transverse Isotropy

Argillaceous rocks are often transversely isotropic, in which there exist a rotational 

symmetry about the axis perpendicular to the bedding plane. In the case of trans

verse isotropy, the linear responses of total stresses <Xÿ and the variation of the fluid 

content (  to the strain components Eij, pore pressure p, and solute mass fraction 

are as follows;

&ij — LijkiSki — Bijp +  XijC (3.72)

B X
B X
B'

P +
X

0 0

0 0

0 0

Ln L i2 Ln 0 0 0 én

(T22 Li2 Ln Ln 0 0 0 £22

<̂33 Ln Ln Ls3 0 0 0
< £33

Ti2 0 0 0 G 0 0 712

723 0 0 0 0 G' 0 723

731 0 0 0 0 0 G' 731

(3.73)

c  =  O' ( ê i i  4 - £ 22) +  «£33  4 - A p - I -  

where the five independent drained elastic moduli are:

ui

(3.74)

(3.75)
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e ( e 'u + E { p Ÿ )

“  ( s ' ) ( !  +  -')

(1 -  f) (B')'
-'33 (3.78)

7/55 =  T̂'66 =  Gyz — Gzx =  G (3.79)

and the dependent parameter:

G =  L44 =  ^ 2 1 ^  (3.80)

The other thermodynamic response coefficients are given by (see Appendix C):

a  =  1 -  +  +  M  (3.81)
OXY5

a  =  1 -  +  (3.82)

_  (1 — (p) (27/11 +  7/33 +  2Ti2 +  47/13)
" 7f, 917(2 (3 213)

=  ) .  flC _  _  1 ( ' a ^ L , ^ )  (3.84)

The nnprimed and primed parameters represent the material coefficients in the

isotropic plane and in the direction normal to this plane (z-direction), respectively. 

The remaining constant coefficients are as follow:

B = { a and B ' = ( „ ' - î ^ )  (3.85)
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K =  -- oTAd %;' == (3.8K))

(1 == (a*jgf - a/)j3f)) (Z;.87)

A = ( Q  +  A  +  ^ )  (3.88)
\  Pfo /

In particular, one may represent the input swelling parameters , u ^ ,  w'^, and 

w'^ by:

w^ =  w^ =  (4 ) ^ ;  a n d  =  J ^  (3.89)

3.4 Transport Equations

In this section, the phenomenological equations relating the fluxes to their driving 

forces are derived from the definition of Rayleigh’s dissipation function and the 

generalized forces associated with it. Choosing, as reference, the configuration 

at any instant and writing the fluxes with respect to the reference fluid density 

P f  P f o  •

3.4.1 Isotropic Flows

The rate of dissipated energy or local entropy production rate results from the rel

ative motions between the fluid components and the sohd, as well as the dissipated 

heat firom the total heat supphed by pure heat and by the flows of all fiuid masses. 

Introducing Rayleigh’s dissipation function V  (3.6) as a quadratic function of the

^In that way, one ignores the spacial variation of the total fluid mass density such that:
=  V or

This assumption is required for the linearization of the balance or conservation equations (see 
Appendix D).
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independent fluxes associated with the flow, and J'® associated with the solute 

flow, leads to:

2V = A " (J^ • J^) +  { P  ■ J®) +  (J^ • J^) +  (J^ • J^) (3.90)

where the phenomenological coefficients are components of a symmetric tensor. 

Substituting (3.90) into (3.18) and (3.19), one obtains the following set of flow 

equations:

+ R^^P  (3.91)

- V  { p  -  =  R ^ ^ P  +  i222js (3.92)

Solving for J^, and in Equations (3.91) and (3.92) one finds that, in the pres

ence of hydraufic and chemical potential gradients, the fluid mass flux and solute 

mass flux can be related to the driving forces through experimentally measurable 

phenomenological coefficients, £*•' ; i.e.

p  = (3.93)
P f o

J S  _  _£21 ̂  _  £22y (3,94)
P f o

where the coefficients elements of the inverse tensor £  =  R  \  are

independent of the driving forces but may depend on the pore pressure and the 

solute concentration. One assumes the following phenomenological coefficients for 

isotropic flows:

;2 k
£ "  =  ^  (3.95)

V

,12 _  _^llgg 
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(3.97)

(3.98)

Nevertheless, with the approximation in Equation (3.62) and the definitions in 

Equations (3.95) to (3.98), the transport equations for isotropic flows reduce to:

(3.99)

(3.100)

The constants are defined as follows: k is the intrinsic permeability; ry is the 

viscosity of the fluid; 3% is the membrane reflection coefficient; Lp is the pressure 

solute diflfusion coefiicient; and, is the chemical solute diffusion coefficient. If 

one abides by Onsager’s reciprocity theorem then, Lp can be estimated by:

L\2 — — P̂ foLp P/o'

3.4.2 Transversely Isotropic Flows

The phenomenological equations may be written as:

(3.101)

P/O
P (3.102)

p f o

'211
P (3.103)
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As a first approximation, one assumes Equations (3.95) to (3.98), and the fol

lowing phenomenological coefBcients for transversely isotropic flows:

h.'
r 'li  =  ^  (3.104)

V

'̂12 _  (3,105)

(3.107)

The unprimed and primed parameters represent the phenomenological coeffi

cients in the isotropic plane and in the direction normal to this plane (z-direction), 

respectively. The resulting transversely isotropic fluxes are:

j f  =  (Vz -k V%/) 4- t'Vz]p -k ^  (Va; -I- Vy) -k Vzl (3.108)T] fj I

=  -P/o [ 4  (Va; +  Vy) -k 4 V z ]  p -  p /, (Va; 4- Vp) -k ZK^Vz] (3.109)

Note that the fluxes are expressed in terms of the reference fluid density pfo to 

ensure the linearity of the theory.

3.5 Field Equations

The field equations are developed by substituting the suggested phenomenological 

and constitutive equations into the momentum, mass, and energy balance equations. 

In the absence of body forces, the momentum balance or the mechanical equihbrium 

condition states:
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(Tijj =  0 (3.110)

Conservation of the fluid mass in the absence of volume sources yields (see 

Appendix D):

(  +  V . w  =0 (3.111)

Conservation of the solute mass states (see Appendix D):

However, in rocks with very low permeability as shales (nano-darcy), one can

simpHfy the above equation by neglecting the convective term (w • VC^). This

leads to the hnearized diffusion equation:

+  =  0 (3.113)

3.5.1 Navier-type Equations

3.5.1.1 Isotropic M edia

The hnear Navier-type field equations are obtained by substituting the constitutive 

Equations (3.66) into the mechanical equihbrium Equations (3.110), with constants 

given by (3.68), to (3.69):

K - h y )  V ( V - u ) - | - G V 2 u = B V p - x V C ' ^  ( 3 . 1 1 4 )

where u  is the sohd displacement vector. Note that the couphng terms may be 

viewed as body forces proportional to the gradients of the pore pressure, and the 

solute mass fraction.
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3.5.1.2 Transversely Isotropic M edia

The Navier-type field equations are obtained by substituting the constitutive equa

tions ( 3 . 7 3 )  into the mechanical equilibrium equations ( 3 . 1 1 0 ) ,  with the constant 

coefficients given by ( 3 . 7 5 )  to ( 3 . 7 9 ) ,  ( 3 . 8 1 )  to ( 3 . 8 4 ) ,  and ( 3 . 8 5 )  to ( 3 . 8 8 ) .  Assum

ing plane strain conditions, one gets the coupled Navier-type field equations in the 

isotropic plane {i,j =  1,2):

2  ( ^ 1 1  +  L 12)  U j j i  +  -  ( A l l  — A 12) U i j j  =  B p ^ i  — ( 3 . 1 1 5 )

3.5.2 Fluid Diffusion Equation

3.5.2.1 Isotropic M edia

The coupled diffusion equation is obtained by substituting the constitutive Equa

tions ( 3 . 6 7 ) ,  and flux ( 3 . 9 9 )  into ( 3 . 1 1 1 )  with the coefficients given by ( 3 . 6 3 ) ,  and 

(3.68) to (3.69):

o  (V . Ù) 4- Ap -k ^  [v^p -  (3.116)

3.5.2.2 Transversely Isotropic M edia

The fiuid diffusion field equations are obtained by substituting the constitutive 

equations ( 3 . 7 4 ) ,  and fiuid flux ( 3 . 1 0 8 )  into ( 3 . 1 1 1 ) ,  with the constant coefficients 

given by ( 3 . 6 3 ) ,  and ( 3 . 8 1 )  to ( 3 . 8 8 ) .  Assuming the case of plane strain conditions, 

one gets the fluid diffusion equation in the isotropic plane as:

a i i j j  - f  A p  -H Ç l C ^  =  -  [ p j j  -  p f o W U C j j ]  ( 3 . 1 1 7 )
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3.5.3 Solute Diffusion Equation

3.5.3.1 Isotropic M edia

Substituting (3.100) into (3.113), one gets the coupled linear solute diffusion equa

tion:

=  0 (3.118)

3.5.3.2 Transversely Isotropic M edia

The general coupled solute diffusion equation is obtained by substituting the solute 

flux equation (3.109) into the balance equation (3.113). Assuming the case of plane 

strain conditions, the solute diffusion equation is given in the isotropic plain by:

#7^  -  Tppjj -  =  0 (3.119)

3.6 Swelling Parameter

3.6.1 Isotropic Media

For isothermal processes, the isotropic rock constitutive equations expressing the 

time evolution of the total stresses and the variation of the fluid content C 

are given by Equations (3.66) and (3.67), and the transport fluxes are given by 

Equations (3.99) and (3.100), such that the fleld equations are expressed by (3.114), 

(3.116) and (3.118).

In the case of constant total stress and constant pore pressure {&ij = 0, p = 0, 

Vp  =  0) such that the fluid flows solely by osmosis under the action of solute mass 

fraction or concentration gradient, and the deformation is solely due to the chemical 

loading or swelling, one may estimate the order of magnitude of the swelling pa

rameter from an expression consisting of the drained elastic moduli, permeability, 

fluid viscosity, and solute diffusion and reflection coefficients, as follows.
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Prom  E q u ation  (3 .114):

ékk — (3.120)

If one substitutes êkk from (3.120) and from (3.118), into (3.116), and

equates the coefficients of C^, one gets:

(3.121)

from Equations (3.69) and (3.63) it follows that:

(a -  1) XÇÎ —

K

therefore:

X =  (3.122)

-  a^a^RT

(3.123)

where % is the coefficient associated with the chemical swelling or osmotic pressure. 

Assuming the chemical swelling parameters satisfy:

=  w (3.124)

it follows that:

w = --------------- --  -----------------
(o^ -  o^) ^2)^

or one may write:

(3.125)

w o ( l - 2 C ^ )
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Param eter
Drained Young’s Modulus, E  
Solid Bulk Modulus,
Biot Modulus, M  
Drained Poisson’s ratio, u 
Fuid Bulk Modulus, K f  
Fluid mass density, pof 
Fluid viscosity, rj 
Permeability, k 
Reflexion coefficient, %
Molar mass of solute (KCl), 
Mean solute mass fraction, 
Solute Diffusion coefficient, D®

Value
20.6 GPa(*)
48.2 GPa(*)
15.8 GPa(*) 
0.189(*)
3.30 GPa 
1.11x10^ Kg/m^ 
4.0x10-4 Pa s 
10-^ darcy 
0.1
0.0746 Kg/mole 
0.16
5x10“® m^/s

Table 3.2: Values of parameters (after Cheng, 1997)

where,

A -

(3.127) 

338 "A:Consider, for example, a shale saturated with a KCl solution at T  

with the parameters given in Table 3.2

From the data given by Cheng (1997), the drained bulk modulus K  and the 

porosity 4> [see relation (3.48)] are calculated using:

K E
(t>

( K g /M ) - a
l (K s /K i)  -  13(1 - 2 i / ) ’

Relations (3.125), (3.126), and (3.127) give: u  % 145 Kg/m^, luq 

and X «  30 MPa.

(3.128)

5.5 MPa,

3.6.2 Transversely Isotropic Media

If one considers solely the isothermal chemical loading at constant total stress, 

pore pressure and temperature {&ij =  0, p =  0 , Vp =  0), and assumes plane strain 

conditions, then it follows from (3.73) that to:
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i n  = i n  =  - ,  ®33 =  0 (3.129)
L ii i  - t -  L i i 2

The additional assumptions = w, and u>'̂  = = uj' yield:

X =  ““ ) (3.130)

The fluid and solute diffusion equations in the plane of isotropy {i = 1,2) reduce 

to, respectively:

(3.131)

(3.132)

with a  given by (3.81), and O given by (3.87) this last expression can be rewritten 

as:

O r- 1 /2 X  +  X'3 (3.133)

using (3.84) and (3.130). If one substitutes éu from (3.129) and from (3.132), 

into (3.131), then equates the coefficients of C^, one gets:

2 a \  l / 2 x  +  x ' \  kpfoW^(})
Lii +  L\2 3 \  Ks J TjD^

which can be simplifled using (3.81) and the constraint in (3.129):

(3.134)

x' 2Li3
X L n  +  L 12

(3.135)

to yield:

X =  ‘ ( i n  +  i n )  (3.136)
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therefore:

( L u  +  L12) k p fo ^ (p a ^ a ^  ( L u  +  L12) k p f o ^ 4> .

R% {L n + L n )I iT „ kp ,„ m
^ 0 — Ti jQ^ ~  /  — \  (o .io o j

^  2M^7/D^ f 1 -  2C^ j

Note that according to Equation (3.135), the swelling parameters obey the con

straint:

-  =  ^  =  (3.139)
UJ Wo -L'Il 4 - lv i2

Consider for example a shale saturated with KCl solution at T  — 338 ‘’K  with 

the parameters given in Table 3.2, and the following data calculated by Cheng 

(1997): Ln =  24.1 GPa, -  6.80 GPa, L13 =  7.62 GPa. Relations (3.135), 

(3.136), (3.137), (3.138), and (3.139) give: w «  203 Kg/m^ a/ 100 Kg/m^, 

Wo % 7.7 MPa, Wq »  3.8 MPa, % % 42 MPa, and =  21 MPa.
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4 A nalytical solutions

4.1 Introduction

This chapter presents the analytical solutions obtained in this dissertation for the 

general case of fully-coupled chemoporoelasticity comprising the solution for axisy- 

metric mechanical and chemical loading conditions of vertical and inclined boreholes 

subjected to non-hydrostatic far-held loading.

4.2 DifFusivity Equations for Irrotational Displace

ment Field

The displacement held under the condition of axisymetric loading is irrotational. 

This allows the decoupling of the displacement held from the pore pressure and the 

solute mass fraction helds. This decoupUng signihcantly simphfy the solution pro

cedure of the borehole problem in which the displacement held exhibits rotational 

symmetry.

For an irrotational displacement held, the displacement can be expressed as the 

gradient of the scalar function such that:

u =  (4.1)

6» =  V u  (4.2)
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V^U =V^ (V$) -  V (V^$) (4.3)

y  =  y  V (V^$) dk =  V^0 =  6» (4.4)

Substituting Equations (4.2) and (4.3) into the Navier-type field equations 

(3.115) and rearranging, one gets:

L „ V (v^0) =  e v p  -  xvc®

i n  =  6 p,< -  xCfi (4.5)

Integrating (4.5) on both sides and using (4.4), one obtains, after rearrangement:

£ii = ^  +  9 (0 (4.6)
ni

where.

5  =  (a  -  d^) (4.7)

X = 9o (d^ -  d^) (4.8)

6" =  ^ ;  u =  g ,D  (4.10)
P f o

and g (t) is an arbitrary function of time t  that vanishes for infinite or semi-infinite 

domains.

Under isothermal conditions, the transversely isotropic rock constitutive equa

tions expressing the time evolutions of the total stresses dÿ and the variation of the
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fluid content ^ are given by Equations (3.73) and (3.74). Assuming plane strain con

ditions, the field equations in the isotropic plane are expressed by (3.115), (3.117), 

and (3.119). Substituting (3.119) into (3.117) and rearranging, one gets;

p  — A -\-Lp p^ii =  —A — A ÔLEkk (4.11)

where A“  ̂is a parameter that reduces to Biot Modulus M  in the absence of chemical 

effects w", a/" — 0, and:

A =  ( m ~̂  +

Ô =  fioK^ ^

k
K  =  —

V

n =  (4.12)

ü  = Po [b ^ -

(26" 4- a^ )

P f o

Assuming the irrotational vector displacement property; i.e.
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ékk — (4.13)

m
(4.14)

and substituting (4.13) into (4.11) and rearranging, one gets the pressure diffusion 

equation:

(4.15)

where,

AC ^1 +  /to 72- Lj^ L\\ K ^1 +  /io 72. L \\M

Ln ( l  +  MBD^ +  M (o;2 -  a&^)
(4.16)

=

Ap =

~~ Lii
(ALn +  <y]S)

fioM (X (d^ — d^) — Ln — B ^ ^  — 72- Ln

i l l  ( l  +  + M { a ‘‘ -  aa<^)

(4.17)

Substituting (4.13) and (3.119) into (3.117) and rearranging, one gets the solute 

mass fraction diffusion equation:

—  \LsP +  A^sC,jj (4.18)

where,

f  cxBLp +  ALp
^  ^  _  ^LV y

S  I  +  W

C» «  +  f ^ - S î i ,

(4.19)

(4.20)
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Further simplification of Equation (4.18) can be made by assuming Lp —> 0 [see 

Equation (3.119)], such that:

(4.21)

where,

<t>
(4.22)

Also, Equation (4.16) becomes: 

kL\\ kL\i M
P (Af,n +  a5 )

Similarly, the diffusion of the variation of the fluid content C can be rewritten

as:

where,

(4.23)

kL 11 kA/I

(A^ii +  2 ii Tl +  +  M  («2 -  ad ^ )
(4.24)

A?

^ i^X ~  Aiifi)
— K /io  TZ

(AAjx ”t” olB')
M  [a (a^ -  d^) -  ^11

KHo
g ii ^1 +  M g f  )  4- M  («2 _  a d ^)

n

(4.25)

Note that if aU the solute molecules diffuse through the membrane (none is 

reflected), % ^  0 {TZ-^ 0), no chemical osmosis, the diffusivities coefficients =  

Â , and Af =  xAf. In this case the fluid flows solely under the action of a hydraulic 

gradient. On other hand, in the absence of a pore pressure gradient, the case of 

no pressure diffusion, M =  0, Â  =  0, but A  ̂ =  —Kpio TZ represents the coefficient
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of chemical osmosis, which means that the fluid flows solely by chemical osmosis 

under the action of a solute concentration gradient. In the purely poroelastic limit 

(no chemical effects), the coefficients reduce to 3% 0):

\ f  = \ f  = . _ \ S
\ 0 (4.26)

where is known as the diffusivity coefficient. Solutions of the isothermal fleld 

equations and their apphcation to the borehole problem in transversely isotropic 

porous media were presented by Diek and Ghassemi, (2002).

4.3 Solutions for Borehole Problems

In the case of a borehole, it is more convenient to express the diffusion field equations 

in a cyhndrical coordinate system. It is assumed that the material is homogeneous, 

the boundary conditions do not vary along the z-axis, and an infinitely long bore

hole is drilled in an infinite transversely isotropic saturated poroelastic medium, 

perpendicular to the isotropic plane. The borehole is subjected to non-hydrostatic 

far-field stresses, a borehole fluid pressure, and a constant solute mass fraction on 

the borehole wall; hence, plane strain conditions apply, which results in that all 

stresses, strain components, pore pressure, and solute mass fraction are indepen

dent of z. In addition, one can assume that the pore pressure and solute mass 

fraction only depend on the distance (r) and the time (t); so that it leads to the 

following system of equations:

d'^p 1 dp
Qj.2 ^  r Qr +  A: (4.27)

Qj.2 ^  p Qp (4.28)

S K  I K
dp2 p Qp +  Af Qp2 ^  p  Q p (4.29)
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4.3.1 Vertical Borehole

The procedure for solving the field equations is similar to that for porothermoelas- 

ticity, details of which can be found elsewhere (Li, 1998; Ghassemi et al., 1999; 

Ekbote et al., 2000 ). However, for the sake of completeness, a brief description 

follows.

The solution to the borehole problem can be constructed, following Detournay 

and Cheng (1988), by considering three loading modes superimposing the results 

onto the virgin formation conditions. Assuming that the axis of the wellbore co

incides with one of the in-situ principal stress directions, and that Po, G f, and 

(T2 ^  ct3 are the initial formation pore pressure, solute mass fi-action, and in-situ 

principal stresses acting perpendicularly to the borehole axis, respectively; the fol

lowing boundary conditions can be written for each of the loading modes:

4.3.1.1 M ode 1

Mode 1 considers a hole in an infinite space under hydrostatic stress with the 

following boundary conditions:

uW =  H ( ( ) ( ; i ) - p J  (4.30)

=  0

=  0

In mode 1, the solute mass firaction and pore pressure boundary condition are 

zero, so the solutions corresponding to the classical Lamé solutions in elasticity 

(Detournay and Cheng, 1988); i.e.

4.3.1.1.1 Stresses
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/I)’ee (4.32)

4.3.1.2 M ode 2

Mode 2 considers a virgin pore pressure and chemical loading at the wellbore wall 

with the following boundary conditions:

r(2) 0

0

(4.33)

H  ( t )  { p m  -  Po )

where H(t) denotes the Heaviside unit step function; Pm, and (7® are the wellbore 

pressure and the mud solute mass fraction content:

(4.34)
H{t) = 0 fo r  t < 0

H{t) =  1 fo r  t > 0

The solution of mode 2 (see Appendix E) is obtained by using the Laplace trans

form technique and then inverted to the time domain using Stehfest’s algorithm. 

In the Laplace domain the solution is:

4.3.1.2.1 Solute m ass fraction

s K q (Aa) (4.35)

4.3.1.2.2 Pore pressure

p  = { Pm -  Po )
%o(^ir) )
Ko (Ci«) A:o(Ao)

(4.36)
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4.3.1.2.3 Stresses

=
(1 — 2i>) a ' 

( l - i / ) r Ki(Çir)__ aKi{Çià)
[r$ii^o(6“) r̂ îlKo{Çid)

Ki(Xr)__ aKi(Xa)
rXKoiXa) r^XKo(Xa)

2G /î(l +  i/) r ATi (Ar) a ifi (Aa)
3 (1 - a ) { c i  -  C i ) rAA:o(Ao) r2AKo(Aa)

(4.37)

sa,(2) _  &0 —
(1 — 2u) a' 

{ l - iy )

■

A"i((ir)_____aKii îa) . ffo(gir)
r̂ lKo{̂ ia) r̂ îKo{̂ ia) Ko{̂ ia)

Ki(Xr)   aKi(Xa)  , Kp{Xr)
rXKo(Xa) r^XKo{Xa) ' Ko(Xa)

2G/?(l +  a) f - s  A s \ f * 'i ( A r )  o /f, (Aa) K„(Xr)
3 (1 - a )  

4.3.1.3 M ode 3

-  Ci) +rXKQ{Xa) (Aa) Ko{Xa) (4.38)

Mode 3 considers a far-field deviatoric loading with the following boundary condi

tions:

(3)

a.(3) _  
re —

p(3)

(;(3)g

—SqH  (t) cos 20 

SoH (t) sin 20 

0 

0

(4.39)

where:

(^L + (TÜ
(4.40)

Po is the isotropic part of the stress tensor and Sq represents its deviatoric part 

acting in a plane normal to the hole axis; then the principal stresses in the plane 

can be written as:
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=  (fb +  %)

S2 =  {Po — So)

(4.41)

with the orientation given by:

7 =
arctan (2<r^)

(4.42)

In mode 3, the solution is also obtained using the Laplace transform technique 

which is then inverted to the time domain using Stehfest’s algorithm. Due to 

the fact that in mode 3, the solute mass fraction boundary condition is zero, the 

solutions given by Detournay and Cheng (1988), can be applied; i.e.

4.3.1.3.1 Pore pressure

(1 -% /)(! +  Uu)
So cos 20 9(1 -  Uu) {Pu -  p)

4.3.1.3.2 Stresses

B {1 + Pu)

Ci^2(Ar) + g ( l  +  f/«)C2a^
3 ( 1 -  Pu)

(4.43)

So cos 20 3(1 — Pu)

B (1 + Pu)
So cos 20 3(1 — Pu)

_ 2B ( l  +  z/«)̂

Cl
(Ar) (Ar)^

C2 o"
(1 -  P u)  r2 3C,

a

(4.44)

a ’ X , (Ar) +  (1  +  ^  1 a:, (Ar)
(Ar)'

a
+ 3C3— (4.45)

5osin20 Z{l — p ^ Cl
2(1 -  Pu)

— 3C3
a’

(4.46)

where Â  =  4 ,  and Ci, Cg, C3, are constants obtained from boundary conditions:

C i =
12Aa (1 — Pu) (Pu — p) 
B ( l  +  i/^) (D2 - D 1)
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c ,  =  (4.48)
1/2 — 1/1

Aa(D2 - -Di)+ 8  (i/„ -  i/) i 2̂ (Aa) h io ')
=  \ a ( D , - D , )

Di = 2 (i/u — I/) Kl (Aa) and =  Aa (1 — i/) K 2 (Aa) (4.50)

4.3.1.4 Final solution

The final solution for the solute mass fi-action, the pore pressure and the stress

distributions can be obtained by superimposing solutions from modes 1 to 3 onto

the original stress, solute mass fi-action and pore pressure fields; i.e.

(Trr =  ~ P q  +  % COS 26 +  cjP +  (4.51)

(Tgg = — P q  — S q  COS 26 + +  (TgJ +  ( T ^  (4.52)

<7zz =  (Tg +  f/ +  a i f  +  (7 )̂ +  -  {a' -  2v'a) (po +  +  P̂ ^̂ )

(4.53)

(Tre = - S q sin 26 +  af^ (4.54)

P =  Po +  P̂ ^̂  +  P̂ ^̂  (4.55)

(4.56)

where the superscript (*) represent the solution for loading mode i.
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“Po “ So

Figure 4.1: Schematic diagram of an inclined borehole subjected to a non
hydrostatic stress field and wellbore presssure and solute mass concentration which 
are different fi-om initial formation pore pressure and solute mass concentration.

4.3.2 Inclined Borehole

An inclined borehole problem is solved by superposition of three fundamental prob

lems (Cui et al.,1997); an chemoporoelastic plane-strain problem; an elastic uniaxial 

stress problem; and an elastic anti-plane shear problem.

It is also assumed that the borehole is drilled perpendicular to the isotropic 

plane; the borehole axis (Figure 4.1) is parallel to z-axis; subjected to in-situ prin

cipal compressive stresses denoted by Sa;>,Syi, and Sz>; the formation has a virgin 

pore pressure po and an initial solute mass fraction Cq ; and a wellbore pressure 

Pm, and solute mass fraction C^. The local borehole coordinate system, xyz, is 

related to the global coordinate system, x’y'z', by an azimuth angle, (pz>, formed by 

rotation about the z '—axis, and an inchnation angle, (py, formed by further rotation 

about the y-axis. The in-situ principal stresses, Sx>, Sy>, Sz>, can be converted to the 

stress under borehole coordinate system, Sx, Sy,Sz, Sxy, Syz, Szx, using the method 

given by Fjaer et al.(1992).

The boundary conditions at the instant of drilling are assumed to be:
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for oo

^xx - S x (^yz — S y z

^yy  — — S y ^ X Z =  - S x z

(Tzz ~ —S z p  = Po

O'xy — —Sxy =  c !

for a

(4.57)

(Trr =  —SrH{—t)

r̂O ~  i)

(Tr;, =   ̂ (4.58)

P  =  P m H  (t )  -  P o H ( - t )

where Sr, Sro, and Srz are the far-field comprœsive stress components in cylindrical 

coordinates. H {—t) is defined as 1 — i f  (t) such that;

^ ( - t )

^ ( - t )

1

0

for t  < 0

for t > 0
(4.59)

4.3.2.1 Problem  I

Problem I (Figure 4.2) is a chemoporoelastic plane-strain problem. In elasticity, 

the plane strain solution for stresses in transverse isotropic material is the same as 

that for the isotropic case, if the plane of symmetry is perpendicular to the axis of 

symmetry. The boundary conditions for this problem are as follows:

oo cr.yy

— —Sx 

= —

^ x y  S x y

( ^ y z  —  ( ^ x z  —  0

P =  PO I
<̂zz — —i '̂{Sx +  Sy) — {a' — 2 v 'a )  po +  (%' — 2%/%)Ĉ

(4.60)
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P,.C.= ,

*yz

(a)
Pn.C,

SiTT'
C Z )

Z "  (d)

Figure 4.2: Loading decomposition scheme for an inclined borehole problem (after 
Li, 1998)

(Tfr — —S^Hi^—t)

(Tj.g =  —Sr0H{—t)

r = a < (Xrz = 0 (4.61)

P =  P m H  (t)  -  P o H { - t )

C^ = C ^ H ( t ) - C ^

The problem can be solved by further decomposing this situation into three 

loading modes, as derived in the last section (Equations 4.51 to 4.56). Because, 

the solutions(4.51 to 4.56) are given in a coordinate system, namely x*y*z*, where 

the z*-axis coincides with the in-plane minimum principal stress ax*x* (Figure 4.3), 

there is an angular difference between the coordinate systems xyz  and x*y*z*, i.e.:

(4.62)

where 6 and 9* are the polar angles in the xyz— and systems, respectively;

and.
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x*x*

■ ®xx

®xy

Figure 4.3: Correspondence between the two local coordinate systems

~ Sy
(4.63)

The in-plane maximum and minimum principal stresses in (a:*?/*2*)—coordinates

are:

^y*y*   Sx + Sy ^  I f  Sx — Si
(4.64)

The final solution for problem I in a polar coordinate system, complying with 

the (æ*y*2;*)—coordinates, is given by the following equations:

=  C f 4- (4.65)

(4.66)

=  - T o  +  S q c o s  2 0 *  +  O-W +  (7^2) ^ (3 ) (4.67)
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4P — —fo — Sq cos 26* +  cTgp +  (TgP +  (4.68)

4P =  2i/Po +  -  (a' -  2i/a)p(^) +  (%' -  2p'x )C^ (4.69)

(r!P =  -^ o8m 2^  +  (T2) (4.70)

<̂ rP =  ^0? =  0 (4.71)

where,

^x*x* 4~ ŷ*y*fh =  -  (4.72)

go =  (4.73)

4.3.2.2 Problem  II

Problem II (Figure 4.2) is a uniaxial loading problem with the following boundary 

conditions;

Uzz — —Sz +  [i^iSx +  Sy) +  {a '  — 2 i / a ) p o  +  (%' — 2z/'%)Cp]
at r  —»• oo ^

(^xx — (^yy — ^ x y  — (^yz — ^ x z  — P  — C  — 0
(4.74)

at T — (X ^ ^ 7*7* — ^vo  — (%rz — P  — ^  — 0^ (4.75)

Since the boundary conditions at the borehole are zero, the drilling and pressur- 

ization of the borehole do not provoke any disturbances for this specific problem; 

that means no in-plane stresses are generated and it is a pure elastic problem (Cui 

et al., 1998). Its solution for stresses is the same as the one for the corresponding
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isotropic problem; thus the solution is time-independent. In fact, it is given by a 

constant prevailing everywhere:

<T<"> =  +  [ [ / ( %  +  S , )  +  { a '  -  2 > / a ) p o  +  (% ' -  2 i / x ) C f ] (4.76)

a m  .  4 " )  =  4 " )  =  =  4 " )  =  p m  =  =  0 (4.77)

4.3.2.S Problem  m

Problem III (Figure 4.2) is an anti-plane shear problem with the following boundary 

conditions:

at r  —» oo
(̂ xx — ^yy — ^  

(Tyz -  -  ^

^XZ

z z  ^ x y(Txy = P = = Q

ŷz

—Sx

(4.78)

at r  =  a (4.79)
arr = (Tr9 = P = = 0

(Tpz — SfzH  ( £)

This problem is also purely elastic, where the shear deformation is uncoupled 

with the pore fluid and the solute mass fraction flow. The stress disturbance due to 

drilling is introduced by the sudden drop of surface traction along the borehole 

wall from -Srx to zero. Therefore, the solution can be expressed as:

=  -  {Sxz cos9 +  Syz sing) A  -  

a^z  ̂ = — {Sxz sing — Syz cosg) ^1 -f- —^

(4.80)

(4.81)

(4.82)
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4.3.2.4 Final Solution

Finally, superimposing the solution from problems I to III yields the following 

expressions (omitting the zero components):

(Trr =  Cr̂ r̂ ( 4 . 8 3 )

^ e e  =  4 ?  ( 4 . 8 4 )

(4.85)

(Tre  =  ( 4 . 8 6 )

(Trz =  ( 4 . 8 7 )

(4.88)

p  =  ( 4 . 8 9 )

(4.90)
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5 M odel Applications

5.1 Introduction

Drilling a borehole results in a redistribution of the original stresses and pore pres

sure near the wellbore. In addition, the drilling fluid exerts a system of mechanical 

and chemical loads onto the rock; as a consequence, the response of the rock to 

imposed loads is deformation. The redistribution of stresses and pore pressure as 

well as the resulting deformations can be solved using the model developed in this 

dissertation. In this chapter, results will be given of the effect varing some parame

ters on the stress distribution around the borehole, solute mass fraction and pore 

pressure. Plots will be presented for different angles, times, solute concentrations, 

swelling coefficients, reflection coefficients, and degree of anisotropy. In order to 

study the impact of ion transfer on the pore pressure/stress field around the well

bore, an inclined well, drilled in a shale formation with material properties as well 

as relevant drilling fluid properties and geometrical well parameters, reported in 

Tables 5.1 and 5.2, will be considered. Eventhough, the theory was formulated us

ing engineering sign conventions (tension positive), the results and the graphs will 

be given using the rock mechanics sign convention (compression positive). Figure

5.1 shows the experimental lay-out that was followed in getting the data. Finally, 

some failure analyses will be discussed.
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Experimental Program

Porous
Medial

Isotropic

\io Chemical Effect
I Transversely I Isotropic ChemicalEffect

msotropic
^atio -  0.5

iisotropic latio = 2.0
4o ChemicalEffect
I Chemical Effect

S o lu te  M ass F rac tio n  

[ M u d  P ressu re  

ReO ection C o effic ien t 

[S w e llin g  C o effic ien t 

I N o rm al S tress F ie ld

Figure 5.1: Experimental lay-out

5.2 Isotropic Porous Media

As pointed before, the model was used for inclined boreholes in shale; considering 

both an isotropic saturated porous media with and without chemical effects. The 

cases without chemical effects were used to simply simulate the poroelastic effect. 

Here, the solute mass fraction in the mud and the formation were equated. Also, the 

swelling coefficient, w; and reflection coefficient, % were set equal to zero^. Other 

parameters for isotropic saturated porous media that were used as entry data are 

reported in Table (5.1).

Hesults at different times and polar angles (0 and 90 degrees) for the pore 

pressure, total stresses, and effective stresses are reported in Appendix G for the 

isotropic case without chemical effects in Figures (G.l) to (G.7); for the case where 

the chemical effects were considered the results are reported in Appendix H Figures 

(H.1) to (H.8).

'̂ If o/^, and 3Î —> 0 no chemical osmosis is involved. The phenomenon then falls under the 
purely poroelastic limit.
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P aram eters Values
Poisson’s ratio, v 0.189
Undrained Poisson’s ratio, 0.31
Young’s Modulus, E 20.6 GPa
Solid Bulk Modulus, Ks 48.2 GPa
Fluid Bulk Modulus, K f 2.5 GPa
Permeability, k 7.66 E-8 Darcy
Porosity, (j) 0.143
Pore Fluid mass density, p„f 1111.11 Kg/nP
Pore Fluid viscosity, rj 3.0 E  — 4 Pa-sec
Molar mass of solute (NaCl), 58.5 kg/Kgmol
Pore solute mass fraction, Cq 0.1
Reflexion coefficient, 3? 0.0 and 0.4
Swelling Coefficient, 0.0 and 2.0 MPa
Solute Diffusion coefficient, l.OE-8 / sec
Pore Pressure, po 10.0 MPa
Temperature, T 80
Vertical Stress, cr̂ 25 M Pa
Maximum Horizontal Stress, an 29 M Pa
Minimum Horizontal Strœs, (Xh 20 M Pa
Mud Pressure, Pm 15 MPa
Mud solute mass fraction, 0.20
Wellbore radions, r 0.10 m
Borehole Azimuth, 30°
Borehole Inclination, 60°
Polar Angle, 9 0° and 90°
Time, t 0.1; 0.5; 1; 10; and 100 hrs

Table 5.1: Entry data for isotropic saturated porous media
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5.3 Transversely Isotropic Porous Media

The model was also used in the case of an inchned transversely isotropic saturated 

shale formation considering both cases: with and without chemical effects. The last 

one for the purpose of evaluating the difference between anisotropic and isotropic 

poroelastic effects.

In the anisotropic case with chemical effects two cases were explored: when 

the ratio between the mechanical and chemical properties in the isotropic plane 

and axial direction were 2 and 0.5, respectively. The results at different times and 

polar angles (0 and 90 degrees) with and without chemical effect for anisptropy 

ratio of 0.5 and 2.0 are reported in Appendixes I, J, and K respectively. For the 

anisotropic case without chemical effects the results are shown in Figures (I.l) to 

(1.7); the anisotropic case with chemical effects are represented in F igure (J.l) to 

(J.8) and (K.l) to (K.8) for AR =  0.5 and AR =  2 respectively for solute mass 

fraction diffusion, pore pressure, total stresses and effective stresses. In addition, 

for the anisotropic case with a ratio of two (AR =2) the chemical effects at early 

and long timœ were considered varying the concentration of solute mass fraction in 

the mud, the swelling coefficient, the reflection coefficient, and the mud pressure. 

The results are also reported in Appendixes L, M, N, and O in Figures (L.l) to 

(L.8); (M.l) to (M.8); (N.l) to (N.8); and Figures (0.1) to (0.8), respectively.

Finally, the anisotropic case was explored with chemical effects in a normal 

stress fleld. These results too are reported in Appendix P in Figures (P.l) to (P. 7). 

The entry data used for these cases are reported in Table 5.2.

5.4 Discussion of Results

It is wellknown, that when a borehole is drilled it is filled with drilling fluids which 

assists in keeping the stress concentration level within the hmits of permissible
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P aram eters Values
Poisson’s ratio, v 0.189 and 0.378
Undrained Poisson’ratio, Vu 0.31
Poisson’s ratio, i/ 0.189 and 0.378
Yoimg’s Modulus, E 20.6 and 41.2 GPa
Yoimg’s Modulus, E' 20.6 and 41.2 GPa
Solid Bulk Modulus, K s 48.2 GPo
Fluid Bulk Modulus, K f 2.5 GPo
Permeability, k 7.66 E-8 Darcy
Permeability, E 7.66 E-8 Darcy
Porosity, 0 0.143
Pore Fluid mass density, p o f 1111.11 Kg/m^
Pore Fluid viscosity, 77 3.0 E  — 4 Pa-sec
Molar mass of solute (NaCl), 58.5 kg/Kgmol
Pore solute mass fraction, Cq 0.1
Reflexion coefflcient, 0.0; 0.25; 0.5; 0.75; and 1.00
Swelling Coefficient, 0.0; 0.4; 2.0; 4.0; 20.0; and 40.0 MPa
Swelling Coefficient, 0.0; 0.2; 1.0; 2.0; 10; and 20.0 MPa
Solute Diffusion coefficient, 1.0 E-8 m^/sec
Pore Pressure, po 10.0 MPa
Temperature, T 80
Vertical Stress, 25 and 29 M Pa
Maximum Horizontal Stress, cth 29 and 25 M Pa
Minimum Horizontal Stress, ah 20 M Pa
Mud Pressure, pm 15 MPa
Mud solute mass fraction, 0.001; 0.05; 0.1; 0.15; 0.20; and 0.25
Wellbore radions, r 0.10 m
Borehole Azimuth, 30"
Borehole Inclination, 60"
Polar Angle, 6 0" and 90°
Time, t 0.1; 0.5; 1; 10; and 100 hrs

Table 5.2: Entry data for transveresely isotropic saturated porous media
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material strength. However, chemical composition of the drilhng fluids leads to 

chemical gradients which act as driving forces for chemical processes which affect 

the stress and pore pressure distributions near the borehole. The level of these 

changes are discussed in the following sections, as well as the impact of the main 

variables related to wellbore stabihty problems.

Anisotropy was studied setting the ratio between the properties of the isotropic 

plane and the axial direction of the Young’s modulus, Poisson’s ratio and sweUing 

coefficient to 1/2, 1/1, and 2/1, respectively. Other properties, such as solute mass 

fraction in the drilhng mud, drilling mud pressure, swelling coefficient, reffection 

coefficient and stress field were varied in order to capture the predicted chemical 

effect.

5.4.1 Solute Mass Fraction

Because of the uncoupling of the solute mass concentration and pore pressure in 

Equation 4.18 (by assuming Lp —> 0), the diffusion of the solute mass fraction of 

the mud obeys the classical diffusion equation. This does not depend on the rock 

properties such as isotropy, anisotropy, reflection coefficient, swelling coefficient, 

etc. The diffusion of the solute mass fraction is only a function of time, diffusion 

coefficient, and the difference of concentration between the mud and the formation, 

as is shown in Figures 5.2 and 5.3. It can be observed that due to ion transfer, 

the solute mass fraction in the formation, increases with time. The variation of the 

solute mass fraction through the formation increases or decreases in a monotonie 

way according to the initial value of the solute in the mud. At early times they 

converge rather fast to the formation value with a small perturbation radius, just 

behind the borehole wall. This perturbation zone is increased as time increases 

beyond the borehole wall. When the concentration of the solute mass fraction is 

the same in the mud than in the formation, no ion transfer or perturbation occurs.
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Solute Mass Fraction Variation

0.225

0.200

,0.175

I 100.0 hrs

I
«0.150

I5,0.125

0.100

0.075
2.00 3.001.00 4.00 5.00 6.00 7.00

Figure 5.2: Solute mass fraction variation with time in a transversely isotropic 
saturated porous media using an anisotropy factor of two. Chemical effects are also 
considered.

Solute Mass Fraction Variation
; E '/E  »  2 {41.2C 0.6M Pa); vVv =2(0 .378/0 .189); D =  IE -8  m  ^ /sec; vTo/wo = .5  (2/4 M Pa); C  *o =  0 .1 ; R  =  0 .4

0.300

Early Time (0.1 hrs.]

Long Time (100 hrs)
0.250

0.200

0.100  -

__ - o -  "  -0.050

0.000
1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

Figure 5.3: Solute mass fraction variation when changing the solute concentration in 
the drilling mud at early and long times. The formation is a transversely isotropic, 
saturated, with an anisotropy factor of two. Chemical effects are also considered.
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5.4.2 Pore Pressure

When no chemical effects are considered, in both isotropic and transversely isotropic 

saturated porous media, the pore pressure distributions along the radial direction 

as a function of time, are monotonie and obey a diflFusion-like law. At early times, 

the equihbrium value is reached faster within a few centimeters of the borehole wall. 

However, when the mud pressure is higher than the formation pressure, the isotropy 

case shows a slightly minimum in the pore pressure profile at very small times (0.1 

Hr) mainly along 6 — 0®, it also presents a difference between the pore pressure 

distribution at 0 =  0® and 6 = 90® which decreses as time increases (see Figures G.l 

and I.l ). For the case of anisotropy, the minimum of the pore pressure at early times 

does not exist and the values and perturbation zone shghtly increases, converging to 

the formation pore pressure beyond the borehole wall. Also, the differences of the 

pore pressure at different polar angles diminishes. In both isotropy and anisotropy 

cases, at long times, the perturbation reaches beyond twenty times the radius of 

the well.

Figure 5.4 shows the early and long times behavior of the pore pressure for 

five different cases; i) isotropic with chemical effects; ii) isotropic without chemical 

effects; iii) transversely isotropic with chemical effects; iv) transversely isotropic 

without chemical effects; and v) variation of the stress field (normal).

When chemical effects are taken into account, the pore pressure distribution 

along the radial direction is not monotonie. In both isotropic and transversely 

isotropic cases, the pore pressure shows a pronounced minimum value near the 

borehole wall. At early times, this minimum value is located very near the borehole 

wall. The pore pressure increases quickly to converge to the initial pore pressure 

in l^ s  than three times the wellbore radius. As time increases, these minima are 

located far away from the wellbore wall, which indicates that the slope in pore 

pressure reduction is smaller and their minimum values also increase. In this zone, 

the perturbation radius is bigger as time increases (see Figures H.2 , J.2, K.2, and 

5.4) due to the fact that the pore pressure increases after the minimum with a
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Pore Pressure Variation a t Different Rock Conditions
16.00

14.00

f t  - - f t12.00  -
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Figure 5.4: Pore pressure distribution along the radial direction (0 = 0) at early and 
long times for différents rock conditions (isotropic and anisotropic with and without 
chemical effects). The effect of the normal stress field in anisotropic conditions 
(AF=2) is also considered.

smaller slope, so that the convergence with the initial pore pressure takes place in 

more than 20 times the wellbore radius.

Prom these figurœ it is clear that chemical osmosis significantly modifies the 

pore pressure profile. Nevertheless, as time increases, the diffusion of ions dissipates 

the osmotic pressure by reducing the chemical potential gradient, which leads the 

reestablishment of a pore pressure regime, characteristic of hydrauhc flow. This has 

significant implications on borehole stabihty because it affects the effective stresses 

and can cause delayed borehole failures. This behavior occurs when the solute mass 

fraction and mud pressure are higher than the values of the formation.

On the other hand, from the aforementioned figures one can observe small dif

ferences in the pore pressure profile between isotropy and anisotropy at early times 

along the radial direction at 0 =  0 and ^ — 90, that disappears when the time 

increases. The anisotropic case reaches smaller values of the pore pressure as the 

radial distance increases; and no changes in the pore pressure occurs when the
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stress field was changed, at least within the order of magnitude considered in this 

dissertation.

In addition, pore pressure was not affected by the swelling coefficient as one 

can see in Figure (M.2) due to the fact of neglecting the pressure solute diffusion 

(Lp -^0 ) .  In Figures (L.2), (0.2), and (N.2) the pore pressure distributions are 

plotted along the radial direction {9 = 0) at early and long times, for a number of 

cases of solute mass concentration in the drilling fluids, mud pressure, and reflection 

coefficient, respectively. One observes negative values of the pore pressure for cer

tain combinations of input data (high solute concentration in the mud, small mud 

pressure, and high values of the refection coefficients), which may be due to the 

fact that the solute diffusion due to the hydrauhc gradient was neglected (pressure 

solute diffusion Lp = 0). The assumption results in uncoupling the effect of osmosis 

from the chemical solute diffusion and viceversa.

When the solute mass concentration of the mud changes, it is clear that the pore 

pressure distribution depends on the solute concentration gradient between the mud 

and the formation. If the concentration in the mud is smaller than the formation, 

pore pressure increases reach a maximum and decreases, converging towards the 

initial pore pressure. At early times, this peak is bigger than at long times, and 

meets the initial pore pressure just a  few centimeters behind the borehole wall. At 

long times this maximum is smaller, but the perturbation radius highly increases. 

Here, it can also be seen that the ion transfer causes the chemical-osmosis effect to 

be time-dependent.

The pore pressure behaves like the anisotropic case when the reflection coefficient 

is changed, with the difference, that here, the minima are much more pronounced 

as the reflection coefficient increases; high negative values of pore pressure are 

obtained, may be for the reasons explained before. In the case of the mud pressure 

variation at early and long times, the pore pressure distribution follows the same 

pattern explained before and the leW  depends of the gradient of pressure between 

the mud and the formation.
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Radial S trass Variation a t Différent Rock Conditions
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Figure 5.5: Radial stress variation along of radial {d = 0) direction for different 
rock conditions.

5.4.3 Total Stresses

Eventhough the total stresses are not as important as the effective ones in wellbore 

stability studies, they are presented here for completeness.

5.4.3.1 Radial Stress

The radial stress shows a monotonie increase from the wellbore pressure to a value 

in the far-field of 25.4 MPa in the radial direction and for a polar angle of 0°; and

22.3 MPa when the polar angle was 90®. When the stress field was changed, the 

radial stress reached values of 27.7 MPa and 21.3 MPa for angles of 0® and 90®, 

respectively. The radial stress keeps the same pattern, no matter what changes 

were introduced ( see Figures J.3, P.2, and 5.5).

5.4 3.2 Tangential Stress

The tangential stress shows a monotonie decrease along the radial direction for 

9 — 90®, converging to 25.4 MPa in all the cases (see Figures G.3; H.4; 1.3; J.4;
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Tangential S tress Variation a t Different Rock Conditions
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Figure 5.6: Tangential stress variation along the radial direction {9 =  0) for différ
ents rock conditions, with and without chemical effects.

K.4; L.4; M.4; N.4; 0.4; and P.3). As time increases, the value of the stress at 

the wellbore waU increases from 39 MPa, to 1,190 MPa for early and long times, 

respectively. However, at 0 =  0° for long times, the tangential stress profile increases 

monotonically from negative values at the borehole wall to 22.3 MPa. In addition, 

at early times, a smooth curve passing through a maximum and converging to the 

aforementioned value can be seen. From these figures and Figure 5.6 , one can say 

that anisotropy of the material and time are the parameters that most affect the 

stress value at the borehole wall.

R-om these figures one can also observe that the chemical eflFects in the tangential 

stress profile are negligible.

5 4.3.3 A xial stress

The axial stress profile along the radial direction at both polar angles {6 =  0° and 

9 = 90®) follows patterns similar to the tangential stress. However, the axial stress 

is more sensible to changes in rock and fluid properties. Here, the characteristics of
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Axial Stress Variation at Different Rock Properties
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Figure 5.7: Axial stress distribution along the radial direction (Û = 0) of the bore
hole at early and long times for different rock conditions.

the porous media, as well as the fluid (chemical properties) not only affect the axial 

stress profile, but also affect the magnitude of the stresses at the borehole wall, as 

can be seen from Figmes (5.7); (G.4); (H.5); (1.4); (J.5); (K.5); (L.5); (M.5); (N.5); 

(0.5); and (P.4)

5.4.4 Effective Stresses

The effective stresses are the most important parameters in wellbore stability stud

ies due to the fact that they couple the chemical and pore pressure effects in most 

failure criteria. In this dissertation we considered an effective stress like Terzaghi’s 

modified effective law which is calculated according to Equation 5.1, using B = 

in order to be more conservative for the case of tensile and shear failure.

"  BpÔij -F X (5.1)

^The effective stresses are smaller, due to the fact that the magnitude of the pore pressure is 
substracted completely from the total stress.
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Effective Radial Stress Variation at Different Rock Conditions
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Figure 5.8: Effective radial stress distribution along the radial direction {9 =  0) at 
early and long times for different rock properties.

5.4.4.1 Radial Stress

The effective radial stress distribution along the radial direction, when no chemical 

effects are taken into account, always increases monotonically from zero to 15.4 

MPa and 12.3 MPa for 0 =  0° and 6 =  90°, respectively. The only difference with 

time is the slope at which the curve increases, which decreases as time increases, 

resulting in a bigger perturbation in the stress field. Here, the anisotropy effect is 

only noticeable at early times and disappears at long times, as can be seen from 

Figures (G.5), and (1.5).

If the chemical effect is taken into account, the effective radial stress profile 

shows a non-monotonic increase with a peak nearest to the wellbore wall at early 

times. Also, the maximum slightly increases with time, but it is also located farther 

away from the borehole wall as a result of the decreasing slope, which means deeper 

perturbation of the stress field.

The effect of anisotropy, when chemical effects are considered, is more clear 

when the ratio of anisotropy is double, affecting only the magnitude of the stresses
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but not the profile, as one can see from Figures (H.6), (J.6), and (K.6). Although, 

the wellbore is supported by a mud pressure of 15 MPa, the rock experiences a 

tensile effective radial stress in the borehole wall of 3 to 5 MPa, in accordance 

with the degree of anisotropy. The tensile effective radial stress becomes lower as 

one uses lower solute mass concentrations in the mud (L.6), and becomes critical^ 

when the solute mass fraction in the mud is lower than the solute mass fi’action 

in the formation. This induced tensile stress is due to the solute invasion into the 

formation.

The value of the swelling coefficient is an other critical parameter that induces 

higher tensile effective radial stresses (Figure M.6) due to the fact that the magni

tude of the solute invasion into the formation depends largely on this parameter. 

The effect of other parameters like mud pressure also modifies in some way mod

erately the profile (see Figure 0.6). However, the reflection coefficient changes 

significantly the magnitude of the maximum of both at early and long times (Fig

ure N.6). Finally, changes in the stress field do not produce significant changes in 

the effective stress profile (Figure P.5).

5.4.4.2 Tangential Stress

The effective tangential stress distribution along the radial direction has different 

profiles (increasing or decreasing) depending of the polar angle. When no chemical 

effects are considered, the profiles at different times are monotonie in both the 

isotropic and anisotropic cases (Figures G.6, and 1.6); with the exception of some 

smooth and slight maximum for the early times along ^ =  0°. However, in this 

direction, especially at long times, a highly tensile effective tangential stress is 

developed, diminishing as the anisotropy arises. If chemical effects are taken into 

account (Figures H.7, J.7, and K.7), the profile in both directions exhibit sensible

^At lower values of solute mass fraction in the mud (fresh water), the effective tensile radial 
stress at early time reaches -35 MPa just behind the borehole well. At long times, the effective 
tensile radial stress reaches -15 MPa; however, the size of the perturbation zone increases more 
than 12 times.
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EffectiveTangential Stress Variation at Different Rock Conditions
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Figure 5.9: Effective stress distibution profile along the radial direction (9 = 0°) at 
early and long times for different rock properties

changes and present a maximum almost at all time intervals, except for long times 

along the 6 = 90°-direction. For 6 = 0^, the maximum decreases as time increases. 

Also their location is further away from the borehole wall as the time increases. 

From these figures it is clear that the profile changes as the anisotropy changes, 

decreasing the tensile effective stress as the anisotropy increases as well as the size 

of the perturbed zone (see Figure 5.9).

Changing the solute mass concentration in the mud also has a large effect (see 

Figure L.7), mainly when the solute mass concentration in the mud is lower than the 

formation, creating a large zone subjected to tensile effective tangential stresses. 

Also notice that, at long times, just behind of the wellbore wall, a large tensile 

effective stress field is created which decreases as the mud solute concentration 

increases. It is well-known that the increase in tangential effective stress enhances 

the potential for shear failure inside the formation.

The mud pressure effect is shown in Figure (0.7). From this figure one can see 

that, at early times, no tensile effective stress is generated at any pressure and the
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maximum effective tangential stress increases as the pressure decreases. However, 

at long times, high tensile effective tangential stresses appear a few centimeters 

from the borehole wall; this zone decreases as the mud pressure decreases. The 

reflection coefficient (Figure N.7) presents a similar profile to the mud pressure but 

in the reverse way; the maximum increases as the reflection coefficient increases and 

the tensile effective tangential stress generated at long times near to the wellbore 

wall increases as the reflection coefficient decreases.

For large values of the sweUing coefficient tensile effective tangential stresses are 

generated in both early and long times. However, at longer times a large tensile 

effective tangential stress is always induced for all values of the swelling coefficient 

(Figure M.7). From this figure one can observe a peak near the wellbore wall 

at early times and a smaller smooth maximum reached at long times, implying a 

deeper perturbation of the stress field into the formation.

The effect of the stress field in the effective tangential stress is shown in Figure 

P.6; it slightly increases the tendency to generate a tensile effective tangential stress 

near the wellbore wall.

5.4.4.S Axial stress

The effective axial stress distribution along the radial direction is shown in Figures 

(G.7) and (1.7), when no chemical effects are considered. From these figures it is 

clear that anisotropy affect the profiles but not the magnitude of the stresses at early 

times. However, it is clear that when anisotropy exists, the size of the perturbation 

zone decreases and concentrates closer to the wellbore. In addition, at very long 

times, the tensile effective stress decreases dramatically as the anisotropy increases.

When chemical effects are taken into account, the distribution and the val

ues of the tensile effective axial stress along the radial direction changes with the 

anisotropy of the medium (see Figures H.8, J.8, and K.8). As discussed before, 

the chemical effect introduces a non-monotonic distribution of the stresses which 

always presents a maximum near the wellbore wall and moves away as the time
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increases. Here, the higher values of tensile effective axial stress is obtained in the 

isotropic case, which also produces a deeper perturbation zone.

As one expects, the tensile effective axial stress increases as the concentration 

of the solute in the mud decreases. However, tensile effective axial stresses were 

obtained for all values of salinity, as can be seen in Figure (L.8). When mud 

sahnity values below the solute mass concentration of the formation were used, the 

perturbation zone was larger. It is also observed that the behavior of the effective 

tangential stress is similar to the pore pressure when the salinity was changed, 

which is an indication that osmosis works in a similar way as stresses.

The variation of the mud pressure (Figure 0.8) has a similar profile than the 

tangential stress, with the difference that, in this case, all the values of mud pressure 

generated tensile effective axial stresses. Nevertheless, at long times, the negative 

values are smaller that in the case of the tangential stresses. Figure (N.8) shows the 

results obtained by changing the reflection coefficient which give a similar profile 

than the effective tangential stress with some differences which were aheady pointed 

out before for the mud pressure. Also, the swelhng coefficient (Figure M.8) presents 

similar profiles to the ones discussed in the case of the effective tangential stress, 

but with similar limitations. The magnitudes of the tensile effective stresses are 

more pronounced that in the case of the effective tangential stress.

As a result it is clear that the stresses and the pore pressure are influenced by the 

anisotropy, reflection, swelling and chemical properties of the material. From these 

results one can conclude that the ion transfer and chemical osmosis significantly 

modifies the loading conditions of the formation near the borehole wall as the 

exposed time increases.

5.5 Failure analysis

It is well-known, that boreholes fail either by exceeding the tensile strength, the 

compressive strength or the shear strength of the rock formation by the effective
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stress concentration prevailing around the wellbore due to the far-held stresses and 

borehole relative orientation. Also, the wellbore failure is controlled by the effective 

stress concept, which in our case were calculated following Terzaghi’s modihed 

effective stress comcept.

In this study one will consider the more common failure criteria: compressive 

failure, tensile failure, and Mohr-Coulomb failure.

5.5.1 Compressive failure

The compressive failure criterion used in wellbore stability analyses establishes that 

the Terzaghi’s modihed effective compressive tangential stress at the borehole wall 

equals the uniaxial compressive strength of the rock formation, i.e:

— P  +  X  =  (Tc (5.2)

Thus, from Equation (5.2) the effective compressive failure stress can be dehned

as:

^ecfs — ^0 (5.3)

Where (Xecfs is the effective compressive failure stress. When the value of this stress 

is negative, compressive failure occurs (which means a-'g > <7̂ ).

Applying this criterion to the results already presented, assuming a compressive 

strength cTc =  40 MPa (average compressive strength of shale in the Sen held 

located in the southeast of Mexico), compressive failure is likely to occur along 

the radial direction at 9 — 90° after a period of interaction time either in the 

isotropic or anisotropic cases. However, as the anisotropy increases, the risk of 

failure diminishes.

When the mud solute mass fraction, swelhng coefhcient, rehection coefhcient, 

mud pressure or the stress held are changed, no risk of compression failure occurs 

at 0 — 0°. However, the most risky factor is reached for high rehection coefhcient
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Effective Tangential S tress Variation
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Figure 5.10: Effective tangential stress distribution along the radial direction {6 — 
90°) for different mud salinities

values. Ki 9 = 90° there are more risks of failure due to the fact that, for extended 

times, the effective tangential stress increases in all cases. It is clear that the zone 

of induced effective compressive failure stress expands as the time increases, but it 

does not extend far into the rock.

From Figures (5.10), (5.11), (5.12), and (5.13), one can observe that, for long 

periods of time, the effective tangential stress increases beyond 40 MPa for all values 

of solute mass fraction in the mud, mud pressure, reflection coefficient and swelling 

coefficient, respectively. From the results of the solute mass fraction variation in 

the mud, it is observed that, as the concentration increases, the limit value of the 

effective compressive failure stress is located deeper into the formation (between 

1.25 and 1.4 times the radius of the well). However, at early times, all values are 

below this stress limit. In the case of the mud pressure variation, the crossing of 

the stress limit is located between 1.32 to 1.56 times the borehole radius, but the 

tendency is reversed; the smaller the mud pressure, the deeper the location of the 

crossing of the stress limit. For this, at early times the peak of the smaller pressure
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Figure 5.11: Effective tangential stress distribution along the radial direction {9 =  
90°) for different mud pressures.

goes beyond the effective compressive failure stress very near the borehole wall.

The results of the reflection coefficient variation for long times, shows that the 

crossing of the stress limit is located between 1.34 to 1.42 times the wellbore radius, 

following the same tendency as the solute mass concentration; the bigger the re

flection coefficient, the deeper the location of crossing of the stress limit. However, 

for early t imes the peak, of two values of the reflection coefficient (1.0 and 0.75) 

goes beyond the effective compressive failure stress. The swelling coefficient varia

tion leads only to failure after an extended time period, crossing the stress limit at 

1.16 to 1.40 times the wellbore radius, which shows the same tendency than with 

mud pressure; the smaller the reflection coefficient, the deeper the location of the 

crossing of the stress limit.

5.5.2 Tensile failure

In tensile failure there are two possible modes: one is due to fracturing the borehole 

wall because of increasing mud pressure which induces tensile stresses, resulting in
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Effective Tangential Stress Variation

: E'/E = 2(41.2/20.6MPa): vVv =2(0.378/0.189); D = 1E-8 m ^/sec; w'o/wo = .5 (2/4 MPa); C *w/C *0 (0.2/01)
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Figure 5.12: Effective tangential stress distribution along the radial direction {9 
90°) for different reflection coefficients.
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F igu re 5.13: E ffective ta n g en tia l stress d istr ib u tion  a lon g  th e  rad ial d irection  {9
90°) for different sw ellin g  coefficients.
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fracturing the rock and lost circulation problems; the second one is referred as an 

outburst failure or spalUng, which is due to a tensile effective radial stress caused 

by decreasing in the mud pressure or a very rapid depressurizing borehole (Cheng 

et ah, 1993).

5.5.2.1 Fracturing Failure

The failure criterion for fracturing establishes that the effective principal tensile 

stress (i.e., minor principal stress) at the borehole wall equals the formation tensile 

strength, such that:

(&4)

where, cr̂  is the effective principal tensile stress (note that cr'̂  is a negative value). 

Thus, from Equation (5.4) one can define the effective fracturing stress as:

^frac ~  <̂3 T ^

where, (X/rao is the effective fracturing stress, so that when its value is below zero 

fracturing will occur.

During drilling operations, when high mud density is used for well control, lost 

circulation could be induced. Also, this mechanism is used in hydraulic fracturing 

to improve oil and gas production.

5.5.2.2 Spalling Failure

The failure criterion for spalling establishes that the effective radial tensile stress 

in the borehole equals the formation tensile strength such that:

= (Jr — P-\-X =  T  (5.5)

where is the total radial stress and p the pore pressure and cr( the effective radial 

stress.
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Effective Radial Stress Variation
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Figure 5.14: Effective radial stress distribution along the radial direction (6 — 90^) 
for different mud salinities.

From Equation (5.5) one can define the effective spalling stress, as:

O-spall =  T +  (t' (5.6)

It should be noted that cr' is negative.

Thus, from Equation (5.6), the failure criterion shows that the borehole wall 

will burst out when the effective tensile radial stress is larger than the rock mass 

tensile strength. Commonly, the tensile strength of the formation is very small 

and it is usual to consider it to be equal to zero. In our case, the assumed tensile 

strength value was 0.689 MPa (Chenevert et ah, 1993). Applying this criterion to 

the results already presented, an induced radial tensile stress (spalling failure) only 

occurs when chemical effects are considered (Figures H.6, J.6, and K.6), either at 

6 = ÇP ox 6 = 90". From these figures one can observe that the zone of induced 

tensile radial stress expands as time increases but it is located very near the borehole 

wall. It is also observed that the anisotropy reduces the extend of the failure zone.

Figures (L.6), and (5.14) show a large induced tensile radial stress when the mud
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Figure 5.15: Effective radial stress distribution along the radial direction {6 — 90°) 
for different swelling coefficients.

salinity is smaller than the formation in both radial directions {9 — 0° and 6 =  90°), 

respectively. At early times the peak is bigger than for long times, but the induced 

zone of failure is smaller at early times. From Figures (M.6) and (5.15) one can 

observe a large induced effective tensile radial stress when the swelhng coefficient 

is large in both radial directions {9 — 0° and 9 — 90°). For smaller values of the 

swelling coefficient, a smaller failed zone is produced. It is also observed that at 

9 =  90° a slightly larger failure zone is induced.

The variation of the reflection coefficient in both radial directions {9 — 0° and 

9 =  90°) induces a small failure zone, which expands as the reflection coefficient 

decreases (see Figures N.6 and 5.16). Also, the mud pressure variation in both 

radial directions {9 = 0° and 9 = 90°) induces a small failure zone, which expands 

as the mud pressure increases (see Figures 0.6 and 5.17).
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Effective Radial Stress Variation
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Figure 5.16: Effective radial stress distribution along the radial direction {9 — 90°) 
for different reflection coefficients.
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5.5.3 Shear failure

The more common shear failure is the Mohr-Coulomb failure criterion, which es

tablishes that shear failure may occur around the borehole when the shear strength 

of the formation is exceeded. Away from the wall of the borehole, the radial stress 

produces an increase in confinement; and shear failure is more probable to occur. 

According to Fjaer, (1992) the Mohr-Coulomb failure criterion in cylindrical coor

dinates^ can be expressed as:

When ag > az>  Ur

(70 =  Co +  Or tan^ (3 (5.7)

and

cTf =  Co +  a g tan^ (3 (5.8)

when Or > Oz > Og

where Co is the uniaxial compressive strength, (3 =  , and (j) is the angle of

internal friction.

For sake of simplicity one can use the difference between the effective radial stress 

and the effective tangential stress as a measure for the shear stress experienced by 

the formation (Heidug and Wong, 1996). Figures (5.18), (5.19), and (5.20), show 

that the difference between the effective radial stress and tangential stress increases 

monotonically with time near to the borehole wall along the radial direction at ^ =  

0°, when the swelling coefficient, reflection coefficient, and solute mass fraction in 

the mud are changed, respectively. From these figures one can observe that changes 

in these parameters lead to the same profile and the same level of magnitude.

However, when the mud pressure changed, a slight difference in the profiles can be

observed (see Figure 5.21).

Figure (5.22) depicts that the chemical effect does not have a significant impact

 ̂Shear failure was only considered in the (r — 0) plane, but that other planes should, theoret
ically, also be considered.
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Induced Effective Shear Stress
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Figure 5.18: Differential stress distribution along the radial direction at 0 =  0° for 
different swelling coefficients.
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Figure 5.20: Differential stress distribution along the radial direction at 0 =  0*̂ for 
different solute mass fractions in the mud.

in inducing shear stress. From this figure, it is clear that the major effect is obtained 

when the isotropic properties of the medium changes. Thus, the isotropic case has 

the major impact of inducing shear stresses along the radial direction at ^ — 0°. 

Changes in the stress field also have an impact on the differential stress distribution.

The relevance of this observation hes in the fact that, according to the Mohr- 

Coulomb criterion, a high value of (cr'  ̂— promotes shear failure.

Finally, when Equations (5.7) and (5.8) were used and compared with the result 

presented so far, no shear failure was induced at any conditions.
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Figure 5.21: Differential stress distribution along the radial direction at ^ — 0° for 
different mud pressures.

induced Shear Stress
( a ,  -  Ce)

90.00

70.00

Î
s

50.00

R.|=1
R.|=2I Time (10 hrs.) 

Time (100 his)30.00

10.00

2.00 3.00 3.60 4.00 4.60 6.(102.50
- 10.00

F igu re 5.22: D ifferential stress d istr ib u tio n  a long th e  rad ial d irection  Q
different an isotrop ic con d ition s (porous m ed ia  and  stress field ).

0° for

119



6 Conclusions and R ecom m endations

1. Biot’s theory was extended to fluid saturated poroelastic media that are chem

ical active and transversely isotropic.

2. The developed model is based on non-equilibrium thermodynamics, satisfy

ing: i) the first and second laws of thermodynamics; and ii) Gibbs-Duhem’s 

relation. It also employs Onsager’s transport phenomenology to express hy

draulic conduction, chemical osmosis, and solute diffusion.

3. The rock constitutive equations are derived from a state function that de

scribes the manner in which the free energy of the wetted clay matrix per 

referential volume of the porous medium changes with respect to time. These 

equations describe the constitutive response of the rock to mechanical and 

chemical loading. They express the temporal evolutions of the total stresses 

and the variation of the fluid content in terms of the solid strains, pore pres

sure, and solute and diluent chemical potentials.

4. The phenomenological relations that couple the influx and eflux of fluid and 

solute to their driving forces are derived from the definition of the dissipation 

function and its associated generalized forces.

5. Field equations were developed for the hnear chemical loading in terms of five 

independent variables; namely, the three displacements the pore pressure 

p, and the solute mass fraction C^. These equations were obtained by requir

ing the constitutive models to satisfy the momentum, fluid mass, and solute 

mass balance equations.
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6. In addition to the material parameters in standard poroelasticity, the theory 

predicts at least one chemical swelling parameter for isotropic media and two 

for transversely isotropic media.

7. A number of plausible assumptions were adopted to simplify the theory, 

among them: i) the pore fluid is compressible and consists of an ideal and suf

ficiently diluted solution; ii) the rock has very low permeability; iii) the clay 

matrix deforms elastically, iv) the hydration reaction rates are fast in com

parison to the rates at which macroscopic changes of hydraulic and chemical 

states are communicated through the rock, i.e. local physical and chemical 

equilibria are maintained; v) the chemical potential of the fluid component 

in the pore fluid is equal to the one associated with the bound water (this 

assumption preserves the local chemical equihbrium); vi) the solute chemical 

potential is solely a function of one variable, the solute mass fraction; vii) 

there are no body forces, or volume fluid sources; and, viii) the anisotropic 

thermodynamic response or material coefficients are characterized using mi

cromechanical assumptions.

8. The analytical solution is used to demonstrate the impact of the physico

chemical processes on the pore pressure and the stress fields around a borehole 

drilled in anisotropic shale.

9. The results show that the stresses and the pore pressure are influenced by the 

anisotropic, solute reflection, swelling and chemical properties of the shale: i) 

chemical osmosis alters the pore pressure and the total and effective stresses 

around the borehole; however, ii) solute diffusion reduces the effect of osmosis 

with time and impacts hole stability by inducing tensile stresses; iii) although 

the osmoticafly-induced reduction in the pore pressure tends to stabilize the 

borehole, solute diffusion can cause the formation to fail in tension or com

pression. Hence, its contribution to borehole failure is significant and should 

be considered in the process of optimizing the mud properties, such as salt
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con cen tration  and  m ud chem istry.

10. This work can be used to optimize the well trajectory, mud density, and mud 

chemistry to achieve borehole stabihty.

11. The hnearized theory is most useful for field applications, for gaining a fun

damental understanding of the physical phenomena, and for validating nu

merical solutions. The nonlinear version of the theory assuming a nonlinear 

chemical loading can be solved only numerically.

12. An interesting direction for future works would be to relax the local chemical 

equilibrium to expficitly express the hydration reaction of the clay matrix, 

introducing the electrochemical potential associated with charged ions, the 

electric double layer in a two-scales theory, nano-fast and macro-slow linked 

by statistical mechanics.
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A ppendix A: Free Energy o f

F luid-saturated Porous M edia

Under isothermal conditions, the fluid saturated porous medium is open to fluid 

mass exchanges with the surroundings. The localized internal energy balance equa

tion can be obtained from the first law of thermodynamics. The material time 

derivative of the internal energy of an arbitrary region R  of volume V  is equal to 

the sum of the rate at which work is done by surface traction to deform the bound

ary dR  and the rate at which the external energy is supplied through the boundary 

dR  due to the transfer of all fluid component masses (Heidug and Wong, 1996); i.e.

e{x , t )d V ^  = J  {an-Vs) da — j  da (A.l)

where s is the internal energy density in the current configuration, <rn is the traction 

vector. Vs is the sohd velocity, and the dot accent on the left side indicates the 

material time derivative following the motion of the solid with local velocity Vg:

e{K,t)dV^  ^  &  ( y  e (x,t) dV^ + Vs ■ V  e {x , t )d V ^  (A.2a)

The localized version of Equation (A.l) is obtained by applying Reynolds trans

port theorem (J. Bear, 1972; Heidug and Wong, 1996). Let €  (X, £) be the internal 

energy per volume element dVo in the reference configuration corresponding to 

e (x, t) the internal energy per volume element dV in the current configuration, 

such that:
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dV
(B (X, t) = J e  (x, t) ; where J  = -p - ;  and J  ~  J  (V -Vs) (A.3)avQ

The time evolution of the internal energy per referential volume is then given

b / :

(E= V • (crvg) — (A.4)

« =  -  E /  - 1") -  E i "  ' (A 5)

where the mechanical equilibrium condition (3.110) was used.

The locahzed entropy balance equation can be obtained from the second law of 

thermodynamics. Under isothermal conditions, the material time derivative of the 

entropy of all matter, contained in an arbitrary region R, is equal to the rate at 

which the internal entropy is produced relative to the matter present in R] i.e.

(A.6)

The rate of internal entropy production per unit volume is denoted by d. The 

localized version of (A.6) is obtained by defining ^  = J S  the entropy per

^If X  defines a position in an arbitrary reference configuration, which corresponds to x at time 
t, then a measure of the rock’s deformation state is provided by the Green strain tensor; i.e.

E - i ( F ^ F - l ) ;  F = ^ ( X , t )

where ^ refers to the transposed matrix. The second Piola-Kirshoff stress tensor:

T  =  J ' F - V F - ’ ’

relates the Cauchy stress cr acting in the current configuration to the stress state in the reference 
configuration. For small strains, one could approximate:

îj ^  BJij (7ij

The Green strain tensor Eij and the Piola-Kirshoff stress tensor Tij can be replaced by the 
infinitesimal strain tensor Sij and the Cauchy stress tensor (7̂ ; respectively.
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volume element in the reference configuration and by applying Reynolds’ transport 

theorem. The time evolution of the entropy per referential volume is then given by;

9 =  1) (A.7)

where the local entropy production rate is given by (3.8):

=  (A.8)

Note that the rate of entropy production is due to the relative motions between 

the fluid components and the solid. Therefore, according to the second law of 

thermodynamics, the time evolution of the energy T  ^  per referential volume 

satisfies the following equation:

(A.9)

The time evolution of the free energy ^  =  C — TÏÏ) is then given by (A.5) and 

(A.9):

- r  %= ^  /  (V . I") (A.10)

(Tijéij +  ^  (A. 11)
/3

Elquation (A .ll) is obtained fi’om (A. 10) using the relation between the strain 

rate and sohd velocity:

1 /  diii dû
—  %  I H2 V dxj dx.

and the mass balance of the fluid component (see Appendix D):
£ )  « “I

+  V • =  0 (A.13)m

133



A ppendix B: Isotropic Therm odynam ic

R esponse Coefficients

The isotropic thermodynamic response coefficients or material parameters ot, Q, 

and in the fundamental rock constitutive equations can be characterized in 

terms of more meaningful physical parameters: the rock’s bulk modulus, K-, the 

bulk modulus of the sohd matrix, Kg] the chemical swelling parameters, and 

the porosity, (j). The relations between these coefficients are obtained assuming 

that the sohd constituent of the rock deforms elasticaUy. Consider the fohowing 

isotropic constitutive equations for the time evolutions of the total stress cr̂  and 

pore volume fraction v (Heidug and Wong, 1996):

&ij =  ékk^ij + 2Géij — apÔij +  y ]  (B .l)

=  +  +  (B.2)

B .l Mechanical Loading

At constant chemical potentials =  0, the mechanical loading increment àÿ =  

—p6ij produces a local stress change p6ij at each point in the poroelastic medium, 

accompanied by a strain rate éÿ — — 6^, and a volume change v —

Substituting these values in Equations (B.l) and (B.2), and solving for a  and Q, 

respectively; one gets:
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a  =  1 -  ^  and Q =  (B.3)

B.2 Chemical Loading

At constant total stress <Tÿ =  0, and pore pressure p =  0, one could assume that to 

a first approximation, a chemical loading increment f /  (change of the fluid chemical 

composition) produces a volumetric strain rate èkk (swelling), accompanied by an 

equal change in the pore volume fraction û, i.e., êfcfc =  û. Solving for the strain rate 

in Equation (B.l) one gets:

=  (B.4)

Substituting (B.4) into (B.2) with èkk — v, and solving for one gets:

(B.5)
S
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A ppendix C: A nisotropic

Therm odynam ic R esponse C oefficients

The thermodynamic response coefScients or material parameters a^,  Q, and B^, in 

the fundamental rock constitutive equations can be characterized in terms of more 

meaningful physical parameters: the drained elastic moduli, Lif, the bulk modulus 

of the solid matrix, Kg', the chemical swelling parameters, and the porosity, 

(f). The relations between these coefficients are obtained using the assumptions of 

micro-homogeneity and micro-isotropy (Cheng, 1997). The skeleton of the porous 

rock is homogeneous and isotropic at the pore or granular scale. However, at the 

macroscopic scale, the rock is heterogeneous and anisotropic due to the structural 

arrangements of the grains and pores. Consider the constitutive equations for the 

time evolutions of total stress, <7̂ -; and pore volume fraction, v:

&ij = Lijkiéki -  aijp + (C .l)

where.

frll Til Li2 Ti3 Eli a ' ü /  '

Ô-22 y = Li2 Til Ti3 < S22 > — a

0"33 Ti3 Ti3 T33 . 3̂3 J d
fi=S,D

/  (C.2)

and,

V =  a  (êii +  S22) +  ol'è ^ z +  Q P  +  B ^ f i ^  4- (C.3)
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c.l Mechanical Loading

At constant chemical potentials — 0, the mechanical loading increment — 

—p6ij produces a local stress change —pSij at each point in the poroelastic medium, 

accompanied by a strain rate Sÿ- =  — and a volume change v =

Substituting these values in Equation (C.2) and solving for a  and o', one gets:

oixs
Substituting these values in (C.3), and solving for Q, one gets:

_  (1 ~  <j>) _  (2Lii +  L33 +  2Li2 +  4L13)

C.2 Chemical Loading

At constant total stress àÿ =  0, and pore pressure p =  0, one could assume that a 

chemical loading increment produces a volumetric strain rate èkk, accompanied 

by an equal change in the pore volume fraction v, i.e., ékk =  i>- Solving for the 

strain rate in Equation (C.2) one gets:

Substituting Equations (C.6) and (C.7a) into (C.3) with the condition ékk =  v, 

and solving for one gets:

after expressing a  and a' in terms of Ly.
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A ppendix D: M ass Balance

The balance equation of the fluid mass component contained in a region R  which 

is open to fluid mass exchange with the surroundiugs is given by:

(^ J  f^ d V ^  = -  j  ( l ^ - n ) d a  (D.l)

where and are the mass density per unit volume in the current conflguration

and mass flux of the fluid component, respectively. The localized version of 

(D.l) is obtained by defining = J o s ,  the component mass per volume in 

the reference conflguration and by applying the Reynolds transport theorem (see J. 

Bear, 1972; Heidug and Wong, 1996). The time evolution of the component mass 

per referential volume is then given by:

+  V . =  0 (D.2)

The total fluid mass m / per referential volume is defined by:

^  J p P  =  J p f  =  J ( f > p f  =  v p f  (D.3)

The variation of the fluid content, C, is related to the difference between the

fluid mass densities in the current configuration ruf and the reference conflguration 

rufo by:

(D.4)
P f o  P f o

The component fluid mass density is given by:
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((  +  <̂ ) (D.6)

One starts by substituting the definition of the fiuid component masses in Equa

tion (D.5) and the definition of the fluxes, I^, which measure the mass flow of the 

fluid component relative to the solid matrix:

(D.6)

into the mass balance of the fluid component (D.2), one gets:

(C +  <A) +  -k V . -k /  (V . w) -k (w . Vp^) =  0 (D.7)

Next, choose as reference the configuration at any instant. For this selection 

3 =  1, but 0, =  C^Pfo, and (  =  0, but ^ ^  0; therefore. Equation (D.7)

becomes:

-h +  V . w ) -H V . -k p/o (w . VC^) =  0 (D.8)

Since Yip — 1 and Y p  =  0, and assuming over all fluid components leads

to:

(  +  V . w  =0 (D.9)

the balance equation (D.9) dictates the mass conservation of the fluid as a whole. 

Inserting this equation into (D.8), one gets the mass conservation for the compo

nents of the fluid in terms of the mass fractions C^:

4- V . y  -I- p /o  (w . VC^) =  0 (D.IO)
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A ppendix E: Solution for Loading

M ode 2

E .l Solute Mass Fraction

The diffusion field equation in cylindrical coordinates for solute mass fraction, ne

glecting the pressure solute diffusion coefficient is given by Equation (4.28):

a v  IdC ^  _  1 dC^
dr“̂ ^  r dr dt

where the coefficient A^g reduces to The equation is decoupled from the pore 

pressure and displacement field and can be solved with the following boundary and 

initial conditions:

r  =  a  C» =  H (t) (Ci - C f) (E.2)

r  =  oo C® =  0  (B.3)

Tïansforming equations (E.l) to (E.3) into the Laplace domain:

- ,  {ci-cf)H(t)
C = —-----------    at r  =  a and t > 0 (E.5)

=  0 at r — oo or t  < 0  (E.6)
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\A î .where A =

Equation (E.4) is an homogeneous second order differential equation (modified

Bessel equation of order zero), which has the solution:

where K q is the modified Bessel function of the second kind of order zero.

E.2 Pore Pressure

The diffusion field equation in cylindrical coordinates, for pore pressure is given by 

Equation (4.27):

^  +  +  (e ,8)
dr^ r dr x l  dt x l  dt 

For a given solute mass fraction distribution, the pore pressure induced by both

excavation and mud pressure can be obtained by solving the non-homogeneous pore

pressure diflFusivity equations with the following boundary and initial conditions:

P = {Pm -  Po) H{t)  at r = a (E.9)

p — 0 at r  =  oo (E.IO)

Tïansforming equations (E.8) to (E.IO) into the Laplace domain:

i  +  =  (E.H)

where =  . /Â  and & =  4/ ^
y  y  ^

p = ^  at r = a and t > 0 (E.12)

p = 0 at r = 00 and t < 0  (E.13)
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The solution of Equation (E .ll) has two parts; the solution of homogeneous 

equations and a particular solution for the non-homogeneous part, such that:

p  =  P h + P p

The first is similar to the solution of Equation (E.4):

Ph
H  j t )  {Pm -  Po) K q (^ ir) 

s K q  (^la)

and the particular solution given by:

Pp s  K q (Aa)

Substituting Equations (E.15) and (E.16) into (E.14) one gets:

(E.14)

(E.15)

(E.16)

P  =
ff(t)

{Pm — Po) —
A? {cs, -  C f)  1 {ci - C |)  H  (t) K ,  (Ar)

K„ tea ) K q (Aa) 

(E.17)

E.3 Stresses

Solving Equation (3.115), in radial coordinates one can obtain the radial displace

ment, Ur, after substituting this value into the constitutive Equation (3.72). Ap

plying then the proper boundary conditions for mode 2, Laplace transforming the 

resulting equations and substituting Equations E.T and E.17 one can get the stress 

field:

(1 — 2i/) a '  

( l - i / ) Ki( îr)____ aKi( îa)
riiKo(^ia) r^iiKo(Cia)

^(6g.-cS) iCi(Ar) aK'i(Aa)
rAjFCo(Aa) r^XKo(Xa)

142



2GP {1 + 1*) ATi (Ar) aK i (Ao)
rAATo(Aa) r2AATo(Aa)

sa,(2) _  60 ~~
(1 — 2p) a' 

(1- iy)

Ki( îr)____ aKi(iia) . Ko( îr)

JC i(A r) _  a K i(A a )  , K p (A r) 
rXKo{Xa) r^XKo(Xa) K ’o(A a)

2G(3 {I+  V)
3 ( 1 - ! / )

A:i (Ar) aK i (Aa) Kg (Ar)+rAKo (Aa) r ‘̂ XKo{Xa) Ko{Xa)
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A ppendix F: N om enclature

Solute mass fraction 

Diluent mass fraction 

Mean value of the solute mass fraction 

Mean value of the diluent mass fraction 

T> Rayleigh’s dissipation function {J/m^ ■ s)

Solute Diffusion coefficient {m?/s)

E  Drained Young’s modulus ( fa )

CB Internal energy density of the fluid saturated porous medium (per {J/ m? )

referential volume)

Free energy density of the fluid saturated porous medium (per {J/rn?)

referential volume)

dwm Free energy of the vrett. clay matrix cont. bound water per unit (J/m^)

vol. of the porous medium 

Ŝ pore Pore fluid free energy per unit volume of the porous medium ( J/m^)

specific free energy of/?th fluid component in the pore fluid {J/kg)

G Shear modulus (fa )

Mass flux of the /?th fluid component relative to the solid velocity {kg/rm? ■ s)

Mass flux of the /5th fluid component relative to the mixture’s (kg/m? • s)

barycentric velocity

3^ Fluid mass flux vector (kg/m? ■ s)

Solute mass flux vector (kg/m? • s)

k Permeability (Darcy)

K  Total bulk modulus of the porous medium (fa )
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K f

Ks

Lij

Ln

Fluid bulk modulus 

Solid bulk modulus 

Drained elastic moduli

General phenomenological transport coefficients 

Pressure solute diffusion coefficient

{Pa)

(Fa)

(Pa)

(kg • s/m^) 

(m^ • s/kg)

•wr

mipore

^ound

mf

M

N

P

Po
R

%

Fluid mass per referential volume of the /3th fluid component 

Mass per referential volume of the ^th fluid component in the 

pore fluid

Mass per referential volume of the Pth fluid component in the 

bound water

Total fluid mass per referential volume of the porous medium

Biot Modulus

Molar mass of solute

Total number of fluid components

Pore pressure

Hydrostatic stresss

Universal gas constant

Reflection coefficient

Sx', Syi, Szln-situ principal stresses

T

u

V

V'

V/
Vs

w

W

X /

Absolute Temperature 

Solid displacement vector 

Pore volume fraction 

Velocity of the /3th fluid component 

Fluid mixture’s barycentric velocity 

Velocity of the solid 

Darcy’s filter velocity 

Dual potential of the wetted clay minerals 

Conjugate force of the fluid mass flux

{kg/m^)

(kg/m^)

(kg/m^)

{kg/m?)

(Pa)

(kg/mole)

(Pa)

(Pa)

{Jj°K-m^ • mole)

(Pa)

CK)

(m)

(m/s) 

(m/s) 

(m/s) 

(m/s)

(J/m^)

(3V/kp)
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Conjugate force of the solute mass flux (3V/k^)

2) Entropy per volume element in the reference configuration ( ,

CXij Biot effective stress coefficients

Components of the strain tensor

Fluid viscosity ( f a . s)

<t> porosity

c Variation of the fluid content

Chemical potential (specific) of the /3th fluid component {J/kg)

Solute chemical potential (J/kg)

Diluent chemical potential (J /tg )

A" Electrochemical potential of the 6th ionic specie (J /t^ )

u Drained Poisson’s ratio

V n Undrained Foisson’s ratio

wg. Chemical swelling parameters of the /3th fluid component

wg. Components of chemical swelling parameter tensor of the solute (kg/m^)

wg Components of chemical swelling parameter tensor of the diluent (%/TM^)

Mass density of the (3th. fluid component (per unit volume of the 

porous medium)

f Mass density of the /3th fluid component (per unit volume of 

fluid)

{kg/m^)

Solute mass density (per unit volume of fluid)

Diluent mass density (per unit volume of fluid) {kg/vnJ)

P f Fluid mass density (per unit volume of fluid) {kg/m^)

Ps Mass density of the solid {kg/rnJ)

^ i j Components of the total stress tensor ( fa )

% Deviatoric part acting in a plane normal to the hola axis ( fa )
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A ppendix G: Isotropic Porous M edia

W ithout Chem ical Effect
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Pore Pressure Variation
= 0 y9 0 ; g/E = 1(20.6MPa): vVv »=1(0.189); D= IE-8 m ^/sec; w*o=wo = 0; Csw/Cso (Q.2/0.1); R = 0

16.00

15.00

14.00

I###

100.0 hrs

912.00 -

10.00  - -

9.00 -

8.00
8.003.00 4.00 5.00 6.00 7.001.00 2.00

r/R

Figure G.l: Fore pressure variation with the radial distance for different times in 
an isotropic saturated porous media (anisotropy ratio equal to one). No chemical 
effect is considered.

Radial Stress Variation
g/E=1(2G.6MPa): v7v = 1(0.1^); D = IE-8 m Vsec; w*o=wo=0; Csw/Cso(0.2ffl.1): R = 027.00

25.00 -

23.00

19.00

17.00

15.00
2.501.00 1.50 2.00 3.00

r/R
3.50 4.00 4.50 5.00

F igu re G .2: R ad ia l stress varia tion  w ith  th e  rad ia l d ista n ce  for different t im es  in
an  iso trop ic  sa tu ra ted  porous m ed ia  (an isotrop y  ra tio  eq u al to  o n e). N o  chem ical
effect is considered.
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S = O y

Tangential Stress Variation
90;E'/E=1(20.6MPa); v'/v = 1(0,189); D = 1E-8 m ^/seo; Wo=wo = 0; Csw/Cso (0.2/0.1); R = 0

43.00 f  4

38,00 - - 0 %

I  33,00
1.0 hrs 
0.5 hrs

Q V.

'28.00 «V

23.00

18.00
1.50 2.50 3.00 5.001.00 2.00 3.50 4.00 4.50

Figure G.3: Tangential stress variation with the radial distance for different times 
in an isotropic saturated porous media (anisotropy ratio equal to one). No chemical 
effect is considered.

Axial Stress Variation
= 0  y 9 0  ; E '/E  =  1(20.6M P a); v 7 v  =  1 (0 .189); D =  IE -8  m  ^ /sec ; w"o=wo =  0 ; C sw /C so  (0 .2 /0 .1); R  =  0

-3.00
.3.00 3.50 4.00 5.50 6.001.50 2.00 2.50 4.50 5.00

-4.00 - ic

“5.00 * ■ O

Z  -6 .00

m  -7.00 --

-8.00 --

-9.00 -1

- 10.00

F igu re G .4: A x ia l stress varia tion  w ith  th e  rad ial d ista n ce  for different t im es  in
an iso trop ic  sa tu rated  porous m ed ia  (an isotrop y  ra tio  equal to  o n e). N o  chem ical
effect is considered .
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Effective Radiai Stress Variation
=0y90 ; E'Æ = 1(20.6MPa): v'/v = 1(0.189); D = 1E-d m /̂sec;w'o==wo = 0: Csw/Cso (0.2/0.1); R = 0

18.00

16.00 -

14.00

S  1 2 .0 0  - -

1.00 -

8.00 -

6.00 ■

4.00

2.00
0.00

8.001.00 2.00 3.00 4.00 5.00 6.00 7.00

Figure G.5: Effective radial stress variation with the radial distance for different 
times in an isotropic saturated porous media (anisotropy ratio equal to one). No 
chemical effect is considered.

Effective Tangential Stress Variation

6 = 0 y %  ; EVE = v '/v  = 1(0.18%; D = IE-8 m  ^feec; vypgwo = 0 : C8wX:so(0.2/0.1); R = 035.00

|10.00

5.00

0.00
1.501.00 2.00 2.50 3.00 3.50 4.00 5.00 5.50 6.004.50

F igu re G.6: E ffective  ta n g en tia l stress varia tion  w ith  th e  rad ial d ista n ce  for different
t im es  in  an  iso trop ic sa tu ra ted  p orou s m ed ia  (an isotrop y  ra tio  eq u al to  on e). N o
chem ical effect is considered .
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Effective Axial S tress Variation
= 0 y 90 : E'/E = 1(20.6MPa): v7v = 1(0.189); D = 1E-8 m ^/sec; Wo==wo = 0;Csw/Cso(0.2/0.1);R = 0

-16.00
7.(10.3.00 4.00 5.00 6.001.1 iO 2.00

-17.00

-18.00

•19.00 100.0 hrs

5-20.00 -

■21.00

-22.00

-23.00

-24.00
riR

Figure G.7: EflFective axial stress variation with the radial distance for different 
times in an isotropic saturated porous media (anisotropy ratio equal to one). No 
chemical effect is considered.
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A ppendix H: Isotropic Porous M edia

W ith  Chem ical Effect
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Solute Mass Fraction Variation
3 *  0 : E'/E = 1(20.6MPa): vVv = 1(0.189); D = IE-8 m ^/sec; w"o=wo = 4 (fc/̂ ja); C V/C*o (0.2/0.1); R = 0.4

0.225

0.200

.0.175

100.01m

0.125 -4).

0.100

0.075
1.00 2.00 3.00 4.00 5.00 6.00 7.00

Figure H.l: Solute mass fraction variation with the radial distance for different 
times in an isotropic saturated porous media (anisotropy ratio equal to one) and 
considering chemical effect.

Pore Pressure Variation
) = 0 y 90 : E'Æ = 1(20.6te>a); vVv = 1(0.189); D = IE-8 m ^feec; w’o=wo = 4 ^ P a); Csw/Cso (0.2/0.1); R = 0.4

14.00

12.00

Q.. o  - - £>■ - o  - a110.00
100.0 hre

S 8.00 - ■~0 —  0.1 hrs

6.00 -,

4.00 90°

2.001.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

F igu re H .2: P ore P ressure varia tion  w ith  th e  rad ial d ista n ce  for different t im es  in
an iso trop ic  sa tu rated  p orou s m ed ia  (an iso trop y  ra tio  equal to  on e) and  con siderin g
chem ical effect.
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Radial Streas Variation
E'/E =1(20.6MPa): v7v = 1(0.189); D = 1E-8 m ^/sec; w'o=wo = 1 (Mpa); Csw/Cso (0.2/0.1): R = 0.4

27.00

25.00

^23 .00

S.
S — ♦— 100.0 hrs 

— B — 0.1 hrs 
-  100.0 hrs

h tl.OO

1
19.00

17.00

15.00
2.00 2.50 3.00 4.00 4.50 5.001.00 1.50 3.50

Figure H.3: Radial stress variation with the radial distance for different times in an 
isotropic saturated porous media (anisotropy ratio equal to one) and considering 
chemical effect.

Tangential Stress Variation
e =0 y 90 ; E'/E = 1(20.6MPa); v7v = 1(0.189); D = 1E-8 m ^/sec; w"o=wo = 4 (MPa); Csw/Cso (0.2/0.1); R = 0.4

50.00

45.00

'lA-
40.00

S  35.00
100.0 hn
10.0 hrs
1.0 hrs 
0.5 hrs% 30.00 -■

325.00

20.00

15.00

10.00
2.00 4.001.00 1.50 2.50 3.00 3.50 4.50 5.00

F igu re H.4: T angentia l stress varia tion  w ith  th e  rad ia l d ista n ce  for different tim es in
an  iso trop ic  sa tu rated  porou s m ed ia  (an isotrop y  ratio  eq u al to  o n e) and  considering
chem ical effect.
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Axial Stress Variation

» 0 y 90 ; E’Æ « 1(2G.6MPa); V/v = 1(0.189); D = 1E-8 m Vsec; v/o=wo = 4(Mpa); Csw/Cso (0.2/0.1); R = 0.4
-2.00

’2.60 5.00 5.50 6.1101.110 1.50 2.00 3.00 3.50 4.00 4.50

-4.00 --

-6.00

0.1

- 12.00

r/R-14.00

Figure H.5: Axial stress variation with the radial distance for different times in an 
isotropic saturated porous media (anisotropy ratio equal to one) and considering 
chemical effect.

Efféctive Radial Stress Variation
0 =0 y 90 ; E'Æ -  1^0.6MPa); v7v = 1(0.189); D = 1E-8 m '/sec; w"o=wo = 4 (Mpa); Csw/Cso (0.2/0.1); R = 0.4

13.00

11.00
9.00

7.00

3.00

1.00
-I.OOl 3.00 4.002.00

-3.00

-5.00

F igu re H .6: E ffective rad ial stress varia tion  w ith  th e  rad ial d ista n ce  for different
tim es  in  an  iso trop ic sa tu ra ted  porous m ed ia  (an isotrop y  ra tio  equal to  one) and
considering  chem ical effect.
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Effective Tangential S tress Variation
= 0 y 90 : E'/E s 1(20.6MPa): v7v = 1(0.189); D = IE-8 m ^/sec; w"o=wo = 4 MPa ; Csw/Cso (0.2/0.1); R = 0.4

30.00

25.00

9^20.00
15.00

c  10.00

■g 5.00

0.00 10.004.00 6.00 7.00 8.00 9.001 2.00 3.00 5.00

-5.00

-10.00
r/R

Figure H.7: Effective tangential stress variation with the radial distance for different 
times in an isotropic saturated porous media (anisotropy ratio equal to one) and 
considering chemical effect.

Effective Axial Stress Variation
s 0 y 90 ; E'/E = 1g0.6MPa); v'/v = 1(0.189); D = IE-8 m ^/sec;w*o=wo = 4  MPa ; Csw/Cso (0.2A).1); R = 0.4

5.00 6.001, 2.00 3.00 4.00-20.00

-22.00

§ .28 .00

-30.00

-32.00
r/R

F igu re H.8: E ffective ax ia l stress varia tion  w ith  th e  rad ia l d ista n ce  for different
tim es in  an  iso trop ic sa tu ra ted  porous m ed ia  (an isotrop y  ra tio  eq u al to  one) and
considering  chem ical effect.

156



A ppendix I: Transversely Isotropic

Porous M edia W ithout Cem ical Effect 

(A nisotropic Factor Equal to  tw o).
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Pore Preesure Variation
= 0 y 90 : E’/E = 2(41.2/20.6MPa); v7v =2(0.378/0.189); D = IE-8 m ^/sec;w'o=wo = 0; Csw/Cso (0.2/0.1); R = 0

16.00
90°

15.00

14.00

£13.00 -
'IM.Ohre 
'10.0 hrs 
•1.0 hrs 
0.5 hrs812.00 -

10.00 -•

9.00 -

8.00
3.00 5.00 7.00 8.001.00 2.00 4.00 6.00

Figure I.l: Pore pressure variation with the radial distance for different times in a 
transversely isotropic saturated porous media (anisotropy ratio equal to two). No 
chemical effect is considered.

Radial Stress Variation
E/E = 2(41.2^.6M Pa); v'/v =2(0.378/0.189); D = IE-8 m ^/sec; w’o=wo =0; Csw/Cso (0.2/0.1); R = 027.00

25.00 -

23.00

100.0 hrs
221.00

19.00

17.00

15.00
2.00 2.50 3.00

r/R
3.50 4.00 4.50 5.001.00 1.50

F igu re 1.2: R ad ia l stress varia tion  w ith  th e  rad ial d ista n ce  for different t im es  in  a
tran sversely  iso trop ic sa tu ra ted  porous m ed ia  (an isotrop y  ra tio  eq u al to  tw o ). N o
ch em ical effect is considered.
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Tangential S tress Variation
5 = 0 /9 0 ; E’/E = 2(41 .aZOSMPa); v'/v =2(0.378/0.189); D = IE-8 m ^/sec; w'o=wo = 0; Csw/Cso (0.2/0.1); R = 0

43.00

38.00

133.00

'0.5 hrs

g28.00 -■

23.00

18.00
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Figure 1.3: Tangential stress variation with the radial distance for different times 
in a transversely isotropic saturated porous media (anisotropy ratio equal to two). 
No chemical effect is considered.

Axial Stress Variation
= OyBO; EyE = ^ 4 1 .^ ,G M P a) ' , yVy =p(0.378/0.189); D - lE -^  m, ^/sec; ^ (^ * 0  = p  C?#/Cso j:0.2/p.1): R = 0 

1.50
-3.00

5.502.00 2.50 3.00 3.60 4.00 4.50 5.00

-4.00 - •

-5.00 -?

'100.0 hrs
10.0 hrs
1.0 hrs 
0.5 hrs 
0.1 hrs

-6.00 -■

-7.00 --

(.00

-9.00
r/R

F igu re 1.4: A x ia l stress varia tion  w ith  th e  rad ial d ista n ce  for different tim es in  a
tran sversely  iso trop ic sa tu ra ted  porou s m ed ia  (an iso trop y  ra tio  equal to  tw o ). N o
ch em ical effect is considered.
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Effective Radial S tress Variation
5=0y90:Ê'/E = 2(41.2/20.6MPa): vVv »2(O.378/O.109); D = 1E-S m ^/sec; w’o=wo «0; Csw/Cso (0.2/0.1); R *0

18.00

16.00

14.00

».00
0.5 hrs

8.00 --

6.00 -■

4.00 -

2.00
0.00

1.00 2.00 3.00 4.00 6.00 7.005.00 8.00

Figure 1.5: Effective radial stress variation with the radial distance for different 
times in a transversely isotropic saturated porous media (anisotropy ratio equal to 
two). No chemical effect is considered.

Effective Tangential Stress Variation
) = 0 y 90 ; E'/E = 2(41 2/20.6MPa); V/v =2(0.378/0.189): 0  = IE-8 m ^/sec;w'o=wo = 0 ; Csw/Cso (0.2/0.1); R = 0

35.00

30.00

:25.00

100.0 hrs
% 20.00 -

  Q Q ' e — -# - -"-'S'.-—§15.00 --

£ 10.00

5.00

0.00
1.00 1.50 3.00 3.50 4.00 5.502.00 2.50 4.50 5.00 6.00

F igu re 1.6: E ffective ta n g en tia l stress varia tion  w ith  th e  rad ial d ista n ce  for different
tim es in  a  tran sversely  iso trop ic sa tu ra ted  p orou s m ed ia  (an iso trop y  ra tio  equal to
tw o ). N o  ch em ical effect is  considered .
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Effective Axial S tress Variation
= 0 y 90 ; E'/E = 2(41.2«0.6fcffl’ a): v'/v *2(0.378/0.189); D = IE-8 m ^/sec; w"o=wo = 0 ; Csw/Cso (0.2/0.1); R = 0

-17.00

-18.00

100.0 hot
£ - 20.00  -

-22.00

-23.00

-24.00
r/R

Figure 1.7: Effective axial stress variation with the radial distance for different times 
in a transversely isotropic saturated porous media (anisotropy ratio equal to two). 
No chemical effect is considered.
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A ppendix J: Transversely Isotropic

Porous M edia W ith  Cem ical Effect 

(A nisotropic Factor Equal to  1 /2 ).
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Solute Mass Fraction Variation
.0 = 0 : E'/E = 0.5(20.6/41.2MPa); v'/v =0.5(0.189/0.378); D « 1E-8 m ^/sec; Wo/wo = .2 (4/2 MPa); C *w/C*o (0.2A).1): R = 0.4

0.225

0.200 I

.0.175

100.0

20.150 -

0.125

0.100

0.075
1.00 2.00 3.00 4.00 5.00 6.00 7.00

Figure J .l: Solute mass fraction variation with radial distance for different times 
in a transversely isotropic saturated porous media (anisotropy ratio equal to 0.5). 
Chemical effect is considered.

Pore Pressure Variation
9 = 0 y 90 ; E'/E = 0.5(20.6/41.2MPa); v'/v = 0.5(0.189/0.378); D = 1E-8 m ®/sec; w*o/wo = 2 (4/2 MPa); C ®w/C *o (0.2/0.1); R = 0.4

15.00

13.00 10.0

3  9.00 -

7.00

5.00 -

3.00 -

1.00
2.00 2.50 3.00 3.50 4.00 4.50 5.001.00 1.50

F igu re J.2: P ore P ressure varia tion  w ith  rad ia l d ista n ce  for different t im es  in
a  tran sversely  iso trop ic  sa tu rated  porous m ed ia  (an iso trop y  ra tio  eq u al to  0 .5 ).
C hem ical effect is considered.
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Radiai Stress Variation
E'/E = 0.5(20.6/41.2MPa); vVv = 0.5(0.189/0.378); D = 1E-8 m ^/sec; v/o/Wo = 2 (4/2 MPa); C *w/C*o (0.2/0.1); R = 0.4

27.00

25.00

23.00
S.I 100.0 hrs

Î1.00

I
19.00

17.00

15.00
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Figure J.3: Radial stress variation with radiai distance for different times in a trans
versely isotropic saturated porous media (anisotropy ratio equal to 0.5). Chemical 
effect is considered.

Tangentiai Stress Variation
; E'/E = 0.5(20.6/41.2MPa); v'/v =0.5(0.189/0.378); D= IE-8 m ^/sec; vTo/wo = 2 (4/2 MPa); C V C * o  (0.2/0.1); R = 0.4

50.00

45.00 -  ‘A

40.00

10.00

5.00 -•

0.00
1.00 2.00 3.00 4.00

F igu re J.4: T angentia l stress varia tion  w ith  rad ial d ista n ce  for different t im es  in
a  tran sversely  iso trop ic  sa tu ra ted  porous m ed ia  (an iso trop y  ratio  eq u al to  0 .5 ).
C h em ical effect is considered.

164



Axial Stress Variation
= 90; E'/E f  0.5(20.6/41.2MPa):  ̂ v'/v =0.5{0.189/0.378); D = 1E-6m ^/sec; v/o/wo = 2 (4/2 W»a); C *w/C*o (0.2/0.1); R = 0.4

18.00

16.00

14.00

12.00

10.0 hn
1.0 hrs

10.00

6.00
4.00

2.00 --

0.00
1.00 2.00 3.00 4.00WR 5.00 6.00 7.00

Figure J.5: Axial stress variation with radial distance for different times in a trans
versely isotropic saturated porous media (anisotropy ratio equal to 0.5). Chemical 
effect is considered.

Effective Radial Stress Variation
= 90 : E'/E = 0.5(20.6/41.2MPa); v'/v = 0.5(0.169/0.378); D = 1E-8 m ^/iec; w'o/wo = 2 (4/2 MPa); C *w/C ®o (0.2/0.1); R = 0.4

12.00

10.00

8.00

2.00 -

0.00
2.00 2.50 3.001.50 >.110

-2.00

-4.00

-6.00

F igu re J.6: E ffective rad ial stress varia tion  w ith  rad ial d ista n ce  for different t im es
in  a  tran sversely  iso trop ic  sa tu ra ted  p orou s m ed ia  (an iso trop y  ra tio  equal to  0 .5 ).
C h em ical effect is considered.
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Effective Tangential Stress Variation

0 = 90 : E*/E = 0.5(20.6/41.2MPa); v'/v = 0.5(0.189/0.378); 0 = 1E-8 m Vsec; w*o/Wo = 2 (4/2 MPa); 0 ®w/C*o (0.2/0.1); R = 0.4
30.00

25.00

£20.00
■100.0 hrs 
•10.0 hrs 
•1.0 hrs 
■0.5 hrs

15.00

« 10.00

I  5.00

0.00
1 s.go 5.00 7.00 9.00 11.00

-5.00

Figure J.7: Eflfective tangential stress variation with radial distance for different 
times in a transversely isotropic saturated porous media (anisotropy ratio equal to 
0.5). Chemical effect is considered.

Effective Axial Stress Variation
5 Qpe = 90:E7E = 0.5<2li.e;41.2MPa);. v'A: = 0.5(0.189/0.376); D = lE S m  ^/«ec; vToAm = 2 (40  MPa); C ’w/C *o (O.aO 1): R = 0.4

1.00 -

'4.80- .1103.00 5.00 6.00- 1.001 .2.00

8  -3.00 —*—160.0 hrs

5  - 7.00 -

- 9.00

- 11.00

-13.00

-15.00

F igu re J.8: E ffective ax ia l stress varia tion  w ith  radial d ista n ce  for different tim es
in  a  tran sversely  iso trop ic sa tu ra ted  p orou s m ed ia  (an iso trop y  ra tio  equal to  0 .5 ).
C hem ical effect is considered.
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A ppendix K: Transversely Isotropic

Porous M edia W ith  Cem ical Effect 

(A nisotropic Factor Equal to  tw o).
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Solute Mass Fraction Variation
= 0 : e/E = 2(41.2/20.6W8): v'/v =2(0.378/0.189); D = 1E-8 m ^/sec; w'o/wo = .0.5 (2/4 MPa); C ®w/C*o (0.2/0.1 ); R = 0.4
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.0.175

100.0 hrs
10.0 hrs

•0 .1 5 0 X 0.5 hrs 
—0 —0.1 hrs

0.125 -<I;

0.100

0.075
7.001.00 2.00 3.00 4.00 5.00 6.00

Figure K.l: Solute mass fraction variation with radial distance for different times 
in a transversely isotropic saturated porous media (anisotropy ratio equal to two) 
and taking into account the chemical effect.

Pore Pressure Variation
= 0 y  90; ETE = 2(41.2/20.6MPa); v7v =2(0.378ffl.189); 0 =  IE-8 n1„ ^/sec; w’o/wo = .0.5 (2/4 MPa); Csw/Cso (0.2Æ.1); R = 0.4
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3  9.00 -

I 7.00 --

5.00 -
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1.00 2.00 3.001.50 2.50 3.50 4.00 4.50 5.00

F igu re K .2: P ore pressure varia tion  w ith  rad ia l d ista n ce  for different tim es in  a
tran sversely  iso trop ic sa tu ra ted  porous m ed ia  (an iso trop y  ra tio  eq u al to  tw o) and
ta k in g  in to  account th e  ch em ica l effect.
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Radial Stress Variation
27 o f Æ ’ 2(41.2/20.6MPaV. v'/v =2(0-378A).189): D= 1E-8 m ^Æec:w*oAw>= .0.5 T2/4 MPa): Csw/Cso (0.2/0.1V. R = 0.4

25.00

23.00
0 = 9 0°

.00

19.00 -

17.00

15.00
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Figure K.3: Radial stress behavior with radial distance for different times in a 
transversely isotropic saturated porous media (anisotropy ratio equal to two) and 
taking into account the chemical effect.

Tangential Stress Variation
= 0y90;E '/E  = 2(41.2/20.6MPa); vVv =2(0.378/0.189); D = IE-8 m ^/sec:v/o/wo = .0.5 (2/4 MPa); Csw/Cso (0.2/0.1); R = 0.4
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36.00 -■

26.00

24.00 --

22.00
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2.501.00 1.50 2.00 3.00 3.50 4.00 4.50 5.00

F igu re K .4: T angentia l stress varia tion  w ith  rad ial d ista n ce  for different tim es in  a
tran sversely  iso trop ic sa tu ra ted  porous m ed ia  (an iso trop y  ra tio  equal to  tw o ) and
ta k in g  in to  account th e  ch em ical effect.
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Axial Stress Variation
90; PÆ = 2(41.2^-6MPa); _ yVv-2(0.378ffl-ia&); D = 1E-8 m w'o/wo = .0.5 (2/4 Çsw/Çso (0.2/p.1 ); R = 0.4

2.00 2.50 3.00 3.5C io.o -r1.501.110
-5.00 -■

-6.00
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iOÔ.Ohrs

&  -8.00
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î2 -9.00 \o
- 10.00

- 11.00

90"
- 12.00  - H

-13.00 dR

Figure K.5: Axial stress variation with radial distance for different times in a 
transversely isotropic saturated porous media (anisotropy ratio equal to two) and 
taking into account the chemical effect.

Effective Radial Stress Variation
) =0 y 90 : E'/E = 2(41.2/20.6MPa); v'/v =2(0.378/0.189); D = IE-8 m ^/sec; w'o/wo = .0.5 (2/4 W»a); Csw/Cso (0.2/0.1); R = 0.4

16.00 -

0 - 11.00

1.0 hrs

«  6.00

1.00

2.00 3.00 4.00

-4.00

F igu re K .6: E ffective rad ia l stress varia tion  w ith  rad ia l d ista n ce  for different tim es
in  a  tran sversely  iso trop ic  sa tu ra ted  porou s m ed ia  (an iso trop y  ra tio  equal to  tw o)
and  ta k in g  in to  accou n t th e  ch em ica l effect.
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Effective Tangential Stress Variation

0 = 0 y 90 ; E'/E = 2(41.2/20.6MPa); v'/v =2(0.378/0.189); D = 1 E-8 m ^/sec; w'o/wo = .0.5 (2/4 MPa); Csw/Cso (0.2rt).1 );R = 0.4

30.00
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220.00
100.0 hrs

•  16.00
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7.00 8.001.00 2.00 3.00 4.00 5.00 6.00

Figure K.7: EflFective tangential stress variation with radial distance for different 
times in a transversely isotropic saturated porous media (anisotropy ratio equal to 
two) and taking into account the chemical effect.

= 0 y 9 q ;  E '/E ?2(41 ■2p0.gMPa);

Effective Axial Stress Variation
v'/v ^0,378/0.189);.D = IE-8 m. ^/sec; w"yA#q = Q.5 (2/4 MPg :̂ Cgw/Cso (0.2/p.l). I

-18.00

* .20.00

1.0 hrs

5-22.00

I
f .2 4 ,0 0

F igu re K .8: E ffective ax ia l stress varia tion  w ith  rad ia l d ista n ce  for different tim es
in  a  tran sversely  iso trop ic  sa tu ra ted  p orou s m ed ia  (an isotrop y  ra tio  equal to  tw o)
and  ta k in g  in to  accoun t th e  ch em ica l eflFect.
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A ppendix L: Effect o f th e M ud’s Solute

M ass Fraction (A nisotropic Factor Equal 

to  tw o).
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Solute Mass Fraction Variation
= 0 ; E'/E = 2(41.2/20.8MPa): v’/v =2(0.378/0.189): D = IE-8 m ^/sec; w'o/wo = .5 (2/4 MPa): C ®o = 0.1;R = 0.4
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,0.200
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0.000
1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

Figure L.l: Solute mass fraction variation for different mud’s solute mass fraction 
at early and long times, in a transversely isotropic saturated porous media (AF—2). 
Chemical effects are also considered.

Pore Pressure Variation
e = 0 ;E '/E  = 2(41.2/20.6MP3); vVv =2(0.378/0.189); D = IE-8 tn ^/sec; v/o/wo = .5 (2/4 MPa); C "o=0.1;R = 0.4

Earty Time (0.1 hrs.) 

Long Time (100 hre)
45.00

35.00

g  25.00

C«"0.05

S . 15.00

5.00

2.00 3.00 4.00 5.00 LOO

-5.00
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Figure L.2: Pore pressure variation for different mud’s solute mass fraction at
early and long times, in a transversely isotropic saturated porous media (AF=2).
Chemical effects are also considered.
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Radiai Stress Variation
C/E = 2(41.2/20.6MPa); vVv =2(0.378/0.189); D = 1E-8 m ^/sec; w*o/wo = .5 (2/4 MPa); C ^o = 0.1R = 0.4
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25.00 -■

23.00

— *— C s - 0 .2 6  
— e — C s» 0.001 
-  Çg »  0.25

S 21.00

19.00

17.00
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3.50 4.00 4.50 5.001.50 2.00 2.50 3.001.00

Figure L.3: Radial stress variation for different mud’s solute mass fraction at early 
and long times, in a transversely isotropic saturated porous media (AF=2). Chem
ical effects are also considered.

Tangentiai Stress Variation
= 0 : C/E = 2(41.2/20.6MPa); v7v =2(0.378^.189); D = IE-8 m Vsec; w*o/wo = .5 (2/4 MPa); C ®o=0.1;R = 0.4

r o .o o
4.501.10 1.50 2.00 2.50 3.00 3.50 4.00

10.00

- Long Time (100 hrs)

r/R

Figure L.4: Tangential stress variation for different mud’s solute mass fraction at
early and long times, in a transversely isotropic saturated porous media (AF=2).
Chemical effects are also considered.
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Axial Stress Variation
J=0; E'Æ = 2(41.2/20.8MPa); v'/v =2(0.378(0.189); D = 1E-8 m ^/8ec; w'o/wo = .5 (2/4 MPa); C 'o  =0.1; R = 0.4

EartyTime (0.1 hrs.)5.00 -,
Long Time (100 hrs)

0.00
L50, 2.00 2.50 3.00 3.50 4.00 4.50

-5.00

- 10.00

-15.00 I

-20.00

-25.00

r/R

Figure L.5: Axial stress variation for different mud’s solute mass fraction at early 
and long times, in a transversely isotropic saturated porous media (AF=2). Chem
ical effects are also considered.

Effective Radial Stress Variation
5 =90 : E'/E = 2(41.2/20.6MPa): v'/v =2(0.378/0.189); 0  = 1 E-8 m ^/sec; w"oA#o = .5 (2/4 MPa); C =o =0.1; R = 0.4

15.00 -■
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2.502.00 4.003.50
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-25.00 Early Time (0.1 hrs.) 

Long Time (100 hrs)
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Figure L.6: Effective radial stress variation for different mud’s solute mass fraction
at early and long times, in a transversely isotropic saturated porous media (AF=2).
Chemical effects are also considered.
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Effective Tangential Stress Variation
8 = 0 ; E'/E = 2(41.2/20.6MP8): v7v =2(0.378/0.189); D = 1E-8 m ^/sec; w*o/wo = .5 ^ 4  MPa); C ®o = 0.1 ; R = 0.4

-'10.00

C s  = 0 .0 5  

0.001

1̂0.00

# 4:Eariy n m e ( a i  hr&) 

Long Time (100 hfs)

•20.00

Figure L.7: Efective tangential stress variation for different mud’s solute mass fa c 
tion at early and long times, in a transversely isotropic saturated porous media 
(AF=2). Chemical effects are also considered.

Effective Axial Stress Variation
3 = 0 ; E'/E = 2(41 ̂ 0 .6 M P a); v'/v =2(0.378/0.189); D = 1E.«m ^/sec; Wo/wo = .5 (2/4 MPa); C *o=0.1;R = 0.4

f  -25.00

EaMvTkne (0.1 hfs.)

â -30.00 Long Ttme (100 hrs)

g  -35.00

-40.00

Figure L.8: Effective axial stress variation for different mud’s solute mass fraction
at early and long times, in a transversely isotropic saturated porous media (AF=2).
Chemical effects are also considered.
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A ppendix M: Effect o f th e Sw elling

Coefficient o f th e  Shale (A nisotropic  

Factor Equal to  tw o).
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Solute Mass Fraction Variation
= 0 ; E'/E = 2(41 2/20.6MPa); v'/v =2(0.378/0,189); D= IE-8 in ’’/sec; w-o/wo = .5 (MPa); C "w/Co (0.2m.1); R = 0.4

\
I
1 0.150 
s

I
^ 0 .1 2 5

--AwM

Early Time (0.1 his.) 

Long Tbne (100 hrs)

—»-20A0 -&-02J0A

3.00 4.00
r/R

5.00 7.00

Figure M.1: Solute mass fraction variation with radial distance at early and long 
times, for different swelling coefficients in a transversely isotropic saturated porous 
media (anisotropy factor equal to two).

Pore Pressure Variation
9 = 0 ; E/E = 2(41 2/20.8MPa); v'/v ^(0.378/0.189); D = IE-8 m ’'/sec; Wo/wo = .5 (MPa); C *w/C’o (0.2/0.1); R = 0.4
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Figure M.2; Pore pressure variation with radial distance at early and long time,
for different swelling coefficients iu a transversely isotropic saturated porous media
(anisotropy factor equal to two).
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Radiai Stress Variation
E'/E = 2(412/20.6MPa); vVv =2(0.378/0.189); D = IE-8 m ^/sec; Wo/wo = .5 (MPa); C "w/C'o (0.2rt).1); R *  0.4
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_  23.00
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1.QD 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
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Figure M.3: Radial stress variation with radial distance at early and long times, 
for different swelling coefficients in a transversely isotropic saturated porous media 
(anisotropy factor equal to two).

Tangential Stress Variation
5 » 0 ; E'/E = 2(41.2/20.6MPa); v'/v =2(0.378/0.189); D = IE-8 m ^/sec; w*o/wo = .5 (MPa); C *w/C*o (0.2/0.1); R = 0.4
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Figure M.4: Tangential stress variation with radial distance at early and long times,
for different swelling coefficients in a transversely isotropic saturated porous media
(anisotropy factor equal to two).
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Axial S t r e s s  V aria tion
q *  0 : E'/E = 2(41.2/20.6MPa); nVn *2(0.378/0.189); D = 1E-S nCfeec; w’o/wo = .5 (MPa); Csw/Cso (0.2/0.1); R = 0.4

1.1 0 
-6.00 -■

(.002.00 4.00 (.(105.00 6.00 7.00

-8.00 ;

-12.00

-14.00

EafV Time (0.1 Ivs.) 

Long Time (100 Ns)

-18.00
r/R

Figure M.5: Axial stress variation with radial distance at early and long times, 
for different swelling coefficients in a transversely isotropic saturated porous media 
(anisotropy factor equal to two).

EffécUve Radial Stress Variation
) =0 ; E/E = 2(41.2/20.6W»a); vVv -2(0.378/0.189); D = IE-8 m ^/sec; w*o/wo = .5 (MPa); C *w/C*o (0.2/0.1); R = 0.4

18.00 -

13.00 -

8.00 Earty Time (0.1 hrs.) 

Long Time (100 hrs)
3.00

2 . ^  " ' 2 . 5 0 10/202 -2.001. 1.50 3.00 5.00 5.503.50 4.00 4.50

-loo -)

5 - 12.00

-17.00

-22.00
-27.00

r/R

Figure M.6: Effective radial stress variation with radial distance at early and long
times, for different swelhng coefficients in a transversely isotropic saturated porous
media (anisotropy factor equal to two).
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Effective Tangential S tress Variation
q = 0 ; E‘/E = 2(41,2Æ0,6MPa): n'/n =2(0.378/0.189); D = 1E-8 rrCfeec; w*oMo = .5 (MPa);

i

Early Time (0.1 hrs.)

 Long Time (1(X) hrs)

20/40

Q.21ÙA

25.MPa

Figure M.7: Effective tangential stress variation with radial distance at early and 
long times, for different swelling coefficients in a transversely isotropic saturated 
porous media (anisotropy factor equal to two).

Effective Axial Stress Variation
;E ’/E=2(41.2«0.6MPa); vVv =2(0.378/0.189); D = IE-8 m ^/sec; w'o/wo = .5 (MPa); C *w/C*o (0.2A).1): R = 0.4

-15.00 --

-20.00
35k^am -25.00

Earty Time (0.1 hrs.) 

Long Time (100 hrs) «M40 10/20 2M 1/2
-O -0 .2 Æ /4

30.00 -

-35.00

>-40.00

-45.00

50.00

55.00 -■

•60.00

Figure M.8: Effective axial stress variation with radial distance at early and long
times, for different swelhng coefficients in a transversely isotropic saturated porous
media (anisotropy factor equal to two).
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A ppendix N: Effect o f th e Shale’s

R eflection Coefficient (A nisotropic 

Factor Equal to  tw o)
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0 =

r#

Solute Maes Fraction Variation
3 = 0 ; E'/E = 2(41.2/20.6MPa); v'/v «2(0.370/0.189); D = IE-8 m ^/sec; Wo/wo = .6 (2/4 MPa); C "w/C'c (0.2/0.1)

g0.155 -

I
I
■§0.136

Eariy Time (0.1 hre.) 

LongTim e(100 hre)

2 0 M P a < F —

R = 1.0 
- ♦  • - R »  1.0 
-Ô — R«0.0 
■ O  - - R « 0 .0

Figure N.l: Solute mass fraction variation with radial distance at early and long 
times, for different reflection coefficients in a transversely isotropic saturated porous 
media (anisotropy factor equal to two).

Pore Pressure Variation

0 = 0 ; E'/E = 2(41.2/20.6MPa); v'/v «2(0.378/0.189); 0  = IE-8 m Vsec; w*oAw) = .5 (2/4 MPa); C *w/C*o (0.2/0.1)

R = 1.0 
R = 0.75 
R = 0Æ0 
R « 0 .2 5  

0.0

•vv I « AiS « » • » *S

Eariy Time (0.1 hre.) 

Lof^ Time (100 hre)

Figure N.2: Pore pressure variation with radial distance at early and long times, for
diflFerent reflection coefficients in a transversely isotropic saturated porous media
(anisotropy factor equal to two).
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Radial Stress Variation

= 0; E'/E = 2(41.2/20.6MPa); v'/v =2(0.378/0.189); D = 1E-8m ^/sec; w’o/wo = .5 (2/4 MPa); C *w/C*o (0.2A).1)
25.(X)

24.00 -•

23.00 •

22.00
121.00

220.00

=519.00

18.00

17.00

16.00

15.00
1.00 2.00 2.50 4.001.50 3.00 3.50 4.50 5.00

Figure N.3: Radial stress variation with radial distanceat early and long times, for 
different reflection coefficients in a transversely isotropic saturated porous media 
(anisotropy factor equal to two).

Tangential Stress Variation
5 = 0 ;E '/E = 2(41^0.6M P a); vVv =2(0.378/0.189): 0  = 1E-S m ^/soc: «/o/wo = .5 (2/4 MPa): C "w/C*o (0.2/0.1)

15.00

S
3-1 5 .0 0

— Efflly Time (0,1 hre.)

— Long Tkrw (100 hre)

♦  --R »1.0 
R = 1.0 

-Ô— R»0.0 
- O  • ■ R ■ 0.0

Figure N.4: Tangential stress variation with radial distance at early and long times,
for different reflection coefficients in a transversely isotropic saturated porous media
(anisotropy factor equal to two).
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Axial Stress Variation

: E'/E = 2(41 2/20.6MP8); v'/v =2(0.378/0.189); D = IE-8 m ^/sec; v/o/vw> = .5 (2/4 MPa); C *w/C*o (0.2/0.1)

-9.00

-11.00

a-.13.00 R = 1.0 
R = 0.75 
R>0.50 
R-0.25 
R = 0.0

15.00

g -17 .00

-19.00

-21.00 E «iyT im e(0 .i hrs.) 

Long Time (100 hrs)
-23.00

Figure N.5: Axial stress variation with radial distance at early and long times, for 
different reflection coefficients in a transversely isotropic saturated porous media 
(anisotropy factor equal to two).

Effective Radial Stress Variation
= 0 ; E'/E «2(41.2/20.6MPa); v'/v =2(0.378/0.189); D = IE-8 m */Sec; w'oAwo = .5 (2/4 MPa); C *w/C®o (0.2/0.1)

26.00

.21.00

1 16.00

g  11.00

m 6.00
E «ly  Time (0.1 hrs.)

Long Tfcne (100 hrs)

1.00
6.(101 2.00 2.50 3.50 4.50 5.00 5.501.50 3.00 4.00

-4.00

Figure N.6: Effective radial stress variation with radial distance at early and long
times, for different reflection coefficients in a transversely isotropic saturated porous
media (anisotropy factor equal to two).
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Effective Tangential Stress Variation

; E'/E = 2(41.2/20,6»«>a); v'/v =2(0.378/0.189); D= IE-8 m ^/seo; iVo/wo = .5 (2/4 MPa); C 'w/C'o (0.2/0.1)
40.00

Early Time ((11 hrs.)

Long Time (100 hrs)

30.00 - -1

'20.00
R » 1 .0

§10.00

1 0.00
5.00 5.50 6.1 >01.10 2.00 2.50 4.00 4.50

Ir-10.00

-20.00

Figure N.7: Effective tangential stress variation with radial distance at early and 
long times, for different reflection coefficients in a transversely isotropic saturated 
porous media (anisotropy factor equal to two).

Effective Axial Stress Variation
= 0 ; EYE = 2(41.2/20.6W@); v'/v =2(0.378^.189): D = IE-8 m ^/sec; WoMo ® .5 (2/4 MPa); C *w/C“o (0.2/0.1)

-5.00
7.1 «2.00 3.00 4.00 5.00 6.00

-10.00

•15.00

!-20.00
R«0.25
R«0.0

Early Time (0.1 hrs ]

1-30.00 Long Time (100 hrs)

-35.00

-40.00
r/R

Figure N.8: Effective axial stress variation with radial distance at early and long
times, for different reflection coefficients in a transversely isotropic saturated porous
media (anisotropy factor equal to two).
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A ppendix O: Effect o f th e M ud

Pressure (A nisotropic Factor Equal to  

tw o)
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Solute Mass Fraction Variation
9=0;  E'/E = 2(41 2/20.6MPa); v'/v =2(0.378/0.189); D = IE-8 m “/sec; w'o/wo » .5 (2/4 MPa); C •w/Co (0.2/0.1)

50 .155

Early Time (0.1 hrs.) 

Long Time (100 hrs)

- # — Pw»17.5 
-♦ --P w * 1 7 .5
- B — Pw»7.S 
- O • - Pw» 7.5

Figure 0.1: Solute mass fraction variation with radial distance, for different mud 
pressures in a trasversely isotropic saturated porous media (anisotropy ratio equal 
to two)

Pore Pressure Variation
= 0 : EYE = 2(41.2Æ0.6MPa); v W  =2(0.378«).189): D = IE-8 m =/sec; w-oAvo = .5 (2/4 MPa); C %»r/C*o (0.2/0.1)

10.00 Pw»17Æ
Pw“ 16.0P*=125
Pw>10.0
Pw»75

E 5.00

5.00 5.50 6
Early Time (0.1 hrs.

- Long Time (100 hrs)

Figure 0.2: Pore pressure variation with radial distance, for different mud pressures
in a trasversely isotropic saturated porous media (anisotropy ratio equal to two)
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Radial Stress Variation
= 0; E'/E = 2(41.2/20.6MPa); v'/v =2(0.378/0.189); 0  = IE-8 m ^/sec; v/o/wo = .5 (2/4 MPa); C “w/C*o (G.2/0.1)

25.00

23.00

21.00
19.00

g  17.00 

1 15.00

S  13.00

11.00
9.00

7.00

5.00
4.501.00 1.50 2.00 2.50 3.00 3.50 4.00 5.00

riR

Figure 0.3: Radial stress variation with radial distance, for different mud pressures 
in a trasversely isotropic saturated porous media (anisotropy ratio equal to two)

Tangential Stress Variation
9 = 0 ; E/E = 2{41.2Û0.6MPa); v'A- =2(0.378/0.189); D = 1E-8 m ^/Sec; w'o/ww = .5 (2/4 MPa); C V /C ‘o (0.2/0.1)

35.00

25.00

15.00
Earty Time (0.1 Iws.) 

Long Time (100 hrs)F  5.00

P w -1 7 .6
1.50 2.00 2.50 3.00 (.50

« -1 5 .0 0  -■

H -25.00 •

-20.00^î
-35.00

-45.00

-55.00
rtR

Figure 0.4: Tangential stress variation with radial distance, for different mud pres
sures in a trasversely isotropic saturated porous media (anisotropy ratio equal to
two)
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Axial Stress Variation
) = 0 : E'/E = 2(41.2/20.6MPa): v'/v =2(0.378/0.189); 0  = 1E-8 m ^/sec; v/o/wo = .5 (2/4 IWa); C *w/C*o (0.2/0.1)

11.00
^ -1 3 .0 0

/ KO"

/5-17.00  -

19.00

-21.00
23.00

-25.00

Eariy Tfrne (0.1 hre.) 

- Long Time (100 hre)

. . . . . .

11.0 21.0 31.0 41.0

— Pw = 17Æ
15.0

— Pw= 12.5
M Pw* 10.0

- e - P w = 7.5

Figure 0.5: Axial stress variation with radial distance, for different mud pressures 
in a trasversely isotropic saturated porous media (anisotropy ratio equal to two)

Effective Radial Stress Variation
= 0 ;e '/E  = 2(41.2/20.6MPa): v'/v =2(0.378/0.189); D = IE-8 m “/sec; «(o/Wo = .5 (2/4 MPa); C V /C ’o (0.2/0.1)

16.00

M 11.00

Early Time (O.l hre.)

- Long Time (100 hre)

15.0
—A—Pw* 12.5
-M -Pw  = 10.0

o  Pw« 7Æ

Figure 0.6: Effective radial stress variation with radial distance, for different mud
pressures in a trasversely isotropic saturated porous media (anisotropy ratio equal
to two)
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Effective Tangential Stress Variation
S = 0 ; E ' *  = 2(41.2a0.6MPa): v7v =2(0.378/0.189); D = IE-8 m ^/soc; w'o/wo = .5 (2/4 MPa); 0 V /C o  (0.2/0.1)

35.00
Early Time (0.1 hre.)

30.00 —_  Long Time (100 hrs)

25.00 ■ ]

20.00
«  15.00

•Pw * 10.0
g 10.00

"B 5.00 -

0.00
5.1104.503.00 3.50 4.001.10 2.00 2.50

-5.00 ■■

-10.00
r/R

Figure 0.7: Effective tangential stress variation with radial distance, for different 
mud pressures in a trasversely isotropic saturated porous media (anisotropy ratio 
equal to two)

Effective Axial Stress Variation
) = 0 : E'/E = 2(41.2/20.6MP8): v'/v =2(0.378/0.189); D = IE-8 m Vsec; v/o/wo = .5 (2/4 MPa); C *w/C*o (0.2rt).1)-10.00

3.00 5.00 5.502.00 2.50 3.50 4.00 4.501.50

-15.00

Z -2 0 .0 0

I«2-25.00

-5.0 Û )
Ewly Time (0.1 hrs.)

.. Long Time (100 hrs)

-35.00

-40.00

Figure 0.8: Effective axial stress variation with radial distance, for different mud
pressures in a trasversely isotropic saturated porous media (anisotropy ratio equal
to two)
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A ppendix P: Effect o f th e Norm al

Stress Field (A nisotropic Factor Equal to  

tw o)
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Pore Pressure Variation
= 0 y 90 ; E'/E = 2(41.2/20.6MPa): v'/v =2(0.378/0.189); D = 1E-8 m ^fsec; w’o/wo = .0.5 (2/4 MPa); C *w/C*o (0.2/0.1); R = 0.4

K00“
14.00

10.00

- - 11.00 -

loootrs 10 0 hrs
3  9.00

3.00 -

1.00 1.50

Figure P.l: Pore pressure variation with radial distance, for different times in a 
transversely isotropic saturated porous media (anisotropy factor equal to two) at 
normal stress field.

Radial Stress Variation
2 0  0 0  ^ '/^  = 2(41.2/20.6MPa): v ’/v  =2(0.378Æ.189); D =  IE -8 m  ^feec; w’o/wo = .0.5 (2M MPa); C (0.2A).1); R = 0.4

26.00 --

24.00

•  20.00

18.00

16.00

14.00
1.00 2.00 3.00 4.00 5 .0 0 6.00 7.00 8.00 9.00 10.00

Figure P.2: Radial stress variation with radial distance, for different times in a
transversely isotropic saturated porous media (anisotropy factor equal to two) at
normal stress field.
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Tangential Stress Variation
=0 y 90 : E'/E = 2(41.2/20.6MPa); v'/v =2(0.378/0.189); D = 1E-8 m ^/sec; w'o/wo = .0.5 (2/4 MPa); C *w/C*o (0.2W.1): I

45.00

100.0
MX)

40.00 -

20.0

2
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I 30.00 -

!25.00

20.00

15.00
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

Figure P.3: Tangential stress variation with radial distance, for different times in 
a transversely isotropic saturated porous media (anisotropy factor equal to two) at 
normal stress field.

Axial Stress Variation
^/sec; wTo/wo = .0.5 (2/4 fcTa); C *w/C *o (0.2/0.1 ); R = 0.4

20.0 .............
0 .0-20X)1̂  «V ilX) 

-40.0 !

•120.0
-140.0

100.0 )vs
10.0 hrsO

1.00 2.00 2.50 3.00 3.50r/R 4.00 4.50 5.00 5.50 6.001.50

Figure P.4: Axial stress variation with radial distance, for different times in a
transversely isotropic saturated porous media (anisotropy factor equal to two) at
normal stress field.
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Effective Radial Stress Variation
=0 y 90: E/E = 2(41.2/20.6MPa); v'/v =2(0.378^.189); D = 1E-8 m Vsec; WoAwo = .0.5 (2/4 MPa); C 0.2A).1); R = 0.̂

16.00

« 11.00

6.00

1.00

0.00

-6.00
-4.00

5.00 6.001.00 1.50 2.00 2.50 3.00 3.50 4 .0 0 4.50 5.50

Figure P.5: Effective radial stress variation with radial distance, for different times 
in a transversely isotropic saturated porous media (anisotropy factor equal to two) 
at normal stress field.

Effective Tangential Stress Variation
S = Oy 90; E'/E = 2(41.2C0.6MPa); vVv =2(0,378/0.189);D  = 1E.8 m  %oc; Wo/wo = ,0.5 (2/4 MPa);C "w/C'a (0,2/01); R  = 0.4
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«  25.00
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5.502.00 2.50 3.00 3.50 4.00 4.50 5.00 6.001.00 1.50

Figure P. 6: Effective tangential stress variation with radial distance, for different
times in a transversely isotropic saturated porous media (anisotropy factor equal
to two) at normal stress field.
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E^ctive Axial Sta^ss Variation
0 = Oy9O:  EYE = 2(41 2/20.6MPa); vVv =2(0.378/0.189); D = IE-8 m ^/sec; w-o/wo = .0.5 (2/4 W»a); C V/C*o (0.2rt3.1); R = 0.4
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-18,00 -f**  o

.1)02.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

S  -18.00
100.0 hri

_ - 20.00

-22.00 0.0
' 20.0
-40.0
-60.0
-M .0

- 100.0
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Figure P.7: EiFective axial stress variation with radial distance, for different times 
in a transversely isotropic saturated porous media (anisotropy factor equal to two) 
at normal stress field.
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