This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Wissing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

Lee, Tae Jong

MIXING RULES AND UNLIKE INTERACTION PARAMETER
CORRELATIONS FOR CHARACTERIZATION PARAMETERS IN A THREEPARAMETER CORRESPONDING-STATES THERMODYNAMIC PROPERTIES CORRELATION

Ph.D. 1981

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Pages) \qquad lacking when material received, and not available from school or author.
12. Page (s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Other \qquad

THE UNIVERSITY OF OKLAHOMA
 GRADUATE COLLEGE

MIXING RULES AND UNLIKE INTERACTION PARAMETER CORRELATIONS FOR CHARACTERIZATION PARAMETERS IN A THREE-PARAMETER CORRESPONDING-STATES THERMODYNAMIC PROPERTIES CORRELATION

```
A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY
``` BY

TAE JONG LEE
Norman, Oklahoma
1981

MIXING RULES AND UNLIKE INTERACTION PARAMETER CORRELATIONS FOR CHARACTERIZATION PARAMETERS IN A THREE-PARAMETER CORRESPONDING-STATES THERMODYNAMIC

PROPERTIES CORRELATION

\section*{ACKNOWLEDGMENT}

The author expresses his sincere appreciation to the following people and organizations:

To K. E. Starling, George Lynn Cross Research Professor of Chemical Engineering, the author will always be indebted for his guidance and encouragement throughout the graduate work.

To L. L. Lee, Associate Professor of Chemical Engineering, for his advice in the early part of this research.

To S. D. Christian, George Lynn Cross Research Professor of Chemistry, to J. M. Radovich, Assistant Professor of Chemical Engineering, and to F. M. Townsend, David Ross Boyd Professor of Chemical Engineering, for being on the author's thesis committee.

To the Gas Research Institute and the American Gas Association for the support through Project BR-111-1. and the University of Oklahoma for the support of this research, in particular, the extensive use of the computer facilities.

To the author's wife Eun-jae for typing this manuscript, moreover, for her love, help and inspiration.

To the author's children for their love and sacrifice.

\section*{TABLE OF CONTENTS}
Page
LIS' OF TABLES. vii
LIST OF ILLUSTRATIONS ix
ABSTRACTS xi
Chapter
I. INTRODUCTION 1
II. REVIEW OF LITERATURE 6
2.1 Previous Work Related to Mixing Rules 6
2.2 Previous Work Related to Combining Rules 11
2.3 Previous Work Related to Correlations for Binary Interaction Parameters 13
III. THEORETICAL BASIS. 16
3.1. Anisotropic Fluid Conformal Solution Model 16
3.2 Modified van der Waals One-Fluid Mixing Rules. 19
3.3 Combining Rules 24
IV. CALCULATION OF THERMODYNAMIC PROPERTIES. 28
V. DEVELOPMENT OF MIXING RULES. 33
5.1 Use of the Modified van der Waals 0ne- Fluid Mixing Rules 33
5.2 Semiempirical Exponent Mixing Rules. 37
5.3 Evaluation of Vapor-Liquid Equilibrium Predictions for Multicomponent Systems: Paraffin-Paraffin. 42
VI. DEVELOPMENT OF UNLIKE INTERACTION PARAMETER CORRELATIONS 46
6.1 Correlations for Hydrocarbons 48
6.1.1 n-Paraffins with n-Paraffins 48
6.1.2 Hydrocarbons Other than \(n\)-Paraffins with n-Paraffins 55
6.2 Correlations for Carbon Dioxide with
Hydrocarbons 62
6.3 Correlations for Hydrogen Sulfide with Hydrocarbons and Carbon Dioxide. 62
6.4 Correlations for Nitroten with Hydro- carbons, Carbon Dioxide and Hydrogen Sulfide. 69
6.5 Summary 69
VII. COMPARISONS OF PREDICTED BINARY MIXTURE THER- MODYNAMIC BEHAVIOR WITH EXPERIMENTAL DATA. 75
7.1 Hydrocarbons 76
7.1.1 n-Paraffins with Methane 76
7.1.2 Paraffins with Paraffins 79
7.1.3 Paraffins with Unsaturated Hydro- carbons. 81
7.2 Nonhydrocarbons with Paraffin Hydro- carbons. 82
7.3 Nonhydrocarbons with Nonhydrocarbons 85
VIII. COMPARISONS OF PREDICTED MULTICOMPONENT MIX- TURE THERMODYNAMIC BEHAVIOR WITH EXPERIMENRAL DATA 106
XI. CONCLUSIONS AND RECOMMENDATIONS. 115

BIBLIOGRAPHY 118
NOMENCLATURE. 124
APPENDICES. 128
A. COMPARISON OF VAPOR-LIQUID EQUILIBRIUM CALCULATIONS FOR THE SYSTEM METHANE-ETHANEPROPANE. 128
B. COMPARISON OF VAPOR-LIQUID EQUILIBRIUM CALCULATIONS FOR THE SYSTEM METHANE-CARBON DIOMIDEHYDROGEN SULFIDE 135

\section*{LIST OF TABLES}
Table Page
IV-1. Generalization Parameters of Pure Materials to Be Used with Generalized Equation of State 31
IV-2. Generalized Parameters Used in the Modified Benedict-Webb-Rubin Equation. 32
V-1. Binary Interaction Parameters for Methane (First Component) with Heavier Hydrocarbons. 35
V-2. Summary of Deviations of Predicted Binary Mixture Densities and Methane K-Values from Experimental Data 36
V-3. Summary of Deviations of Predicted Vapor- Liquid Phase Compositions for the System Methane-Ethane-Propane 43
V-4. Comparison of Predicted and ExperimentalVapor-Liquid Equilibrium for the Four-Component Systems of Methane-Ethane-Propane-n-Butane and Methane-Ethane-Propane-Isobutane.44
VI-1. Optimum Values of the Constants in Eqs.(VI-3) - (VI-4) and Eqs. (VI-1) - (VI-2)for Paraffin Binaries52
VI-2. Optimum Values of the Constants in Eqs. (VI-3) - (VI-4) for Hydrocarbon and Non- hydrocarbon Binaries 61
VII-1. Binary Interaction Parameters for Use with the Modified VDW One-Fluid Mixing Rules. 88
VII-2. Binary Interaction Parameters for Use with the Semiempirical Exponent Mixing Rules. 89
VII-3. Estimated Binary Interaction Parameters 90
Table Page
VII-4. Data Used for Comparison of Predicted Properties for Study of Mixing Rules and Unlike Interaction Parameter Correlations. 93
VII-5. Summary of Comparisons of Predicted and Experimental Thermodynamic Behavior. 99
VIII-1. Summary of Deviations of Predicted Vapor- Liquid Phase Compositions for the System Methane-Carbon Dioxide-Hydrogen Sulfide. . . 109VIII-2. Comparison of Predicted and ExperimentalVapor-Liquid Equilibrium Mole Fractionsfor the System Methane-Ethane-Propane-n-Pentane-n-Hexane-n-Decane.110
VIII-3. Comparison of Predicted and ExperimentalVapor-Liquid Equilibrium Mole Fractionsfor the System Nitrogen-Methane-CarbonDioxide-Ethane-Hydrogen Sulfide-Propane. . . 112

\section*{LIST OF ILLUSTRATIONS}

Figure Page
VI- 1. \(\xi_{i j}\) values for methane-n-paraffin binaries. . 56
VI- 2. \(\zeta_{i j}\) values for methane-n-paraffin binaries. . 57
\(\begin{aligned} \text { VI- 3. } & \xi_{i j} \text { values for ethane- and propane-n-paraffin } \\ & \text { binaries. } 58\end{aligned}\)
\(\begin{aligned} \text { VI- 4. } & \zeta_{i j} \text { values for ethane- and propane-n-paraffin } \\ & \text { binaries. } 59\end{aligned}\)
VI- 5. \(\begin{aligned} & \xi_{j j} \text { values for isobutane- and isopentane- } \\ & n-p a r a f f i n ~ b i n a r i e s . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~\end{aligned} 63\)
VI- 6. \(\begin{aligned} & \zeta_{i j} \text { values for isobutane- and isopentane- } \\ & n-p a r a f f i n ~ b i n a r i e s . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ \\ & n\end{aligned}\)
VI-7. \(\begin{aligned} & \xi_{i j} \text { values for ethylene- and propylene- } \\ & \text { n-paraffin binaries } 65\end{aligned}\)
VI- 8. \(\begin{aligned} & \zeta_{i j} \text { values for ethylene- and propylene- } \\ & \text { n-paraffin binaries. } 66\end{aligned}\)
VI- 9. \(\xi_{i j}\) values for carbon dioxide-hydrocarbon binaries. 67
\(\begin{aligned} & \text { VI-10. } \zeta_{i j} \text { values for carbon dioxide-hydrocarbon } \\ & \text { binaries. } 68\end{aligned}\)
VI-11. \(\quad \xi_{i j}\) values for hydrogen sulfide-hydrocarbons and -carbon dioxide binaries. 70

VI-12. \(\zeta_{i j}\) values for hydrogen sulfide-hydrocarbons
and -carbon dioxide binaries. 71

VI-13. \(\xi_{i j}\) values for nitrogen-hydrocarbons, -carbon dioxide and -hydrogen sulfide binaries. . . 72

VI-14. \(\quad \zeta_{i j}\) values for nitrogen-hydrocarbons, -carbon dioxide and -hydrogen sulfide binaries. . . 73

VII- 1. The P-X diagram of the methane-ethane system at \(334.97^{\circ}\) R. 78

VII- 2. The \(P-X\) diagram of the methane-n-hexane system at \(491.69^{\circ}\) R. 80

\section*{ABSTRACT}

The conformal solution method is used as the basis for developing mixing rules for the characteristic parameters appearing in a three-parameter, corresponding-states correlation of thermodynamic properties. A logical extension of the van der Waals (VDW) one-fluid rules from two to three parameters, referred to herein as the modified VDW one-fluid mixing rules, is shown to yield accurate predictions of vaporIiquid equilibrium (VLE) for binary mixtures of paraffin hydrocarbons with similar size molecules but poor VLE predictions for mixtures of paraffin hydrocarbons wih highly dissimiJ.ar molecular sizes. Therefore, semiempirical exponent mixing rules were developed to obtain improved VLE predictive capability. In order to predict unlike interaction parameters from the characteristic properties of pure components alone, new correlations were formulated. The semiempirical exponent mixing rules, in conjunction with the correlations developed herein for unlike interaction parameters, gave predicted VLE accuracy standing about in the middle between the modified VDW one-fluid and semiempirical exponent mixing rules using individual unlike interaction parameters for each pair of paraffin hydrocarbons. The overall average absolute deviation
of predicted methane \(K-v a l u e s\) from experimental binary mixture data for methane with heavier normal paraffin hydrocarbons ranging from ethane through normal decane was \(4.1 \%\) using the semiempirical exponent mixing rules compared with \(11.0 \%\) for the modified VDW one-fluid rules (both using individual unlike interaction parameters for each fluid pair) and \(7.78 \%\) for the semiempirical exponent mixing rules using the correlations for unlike interaction parameters. The three methods provide accurate predictions of bulk properties for the methane binaries. When tested for other light hydrocarbons and natural gas mixtures, the semiempirical exponent mixing rules show significantly better accuracy for VLE predictions for multicomponent mixtures involving light hydrocarbons, slightly better accuracy for binary mixtures involving light hydrocarbons and nitrogen and comparable accuracy for binary and multicomponent mixtures containing hydrogen sulfide and carbon dioxide (when compared to the modified VDW one-fluid mixing rules). Both mixing rules exhibit reasonably accurate predictions of VLE and bulk properties for these systems. The semiempirical exponent mixing rules with the correlations for unlike interaction parameters yield acceptable predictions of VLE and bulk properties for all mixtures studied except the hydrogen sulfidecarbon dioxide and ethane-ethylene systems.

\title{
MIXING RULES AND UNLIKE INTERACTION PARAMETER CORRELATIONS FOR CHARACTERIZATION PARAMETERS IN A THREE PARAMETER CORRESPONDING STATES THERMODYNAMIC
}

PROPERTIES CORRELATION

CHAPTER I

\section*{INTRODUCTION}

The purpose of the research presented in this dissertation was to develop new mixing rules for the characteristic parameters appearing in the three-parameter conformal solution model utilized at the University of Oklahoma. Also, correlations were developed for the unlike interaction parameters appearing in the mixing rules for binary fluid pairs involving hydrocarbons, carbon dioxide, hydrogen sulfide and nitrogen.

The use of conformal solution theory models for the prediction of mixture thermodynamic behavior is becoming increasingly popular for industrial calculations. The attractiveness of the conformal solution approach stems largely from the fact that it is faster computationally than purely theoretical methods and yet has a sufficiently good basis in theory to allow extension to complex molecular interactions (e.g.,
multipole, dispersion and steric effects), which would be difficult using purely empirical methods.

The formulation of conformal solution theory which has received widest use to date is the so-called van der Waals one-fluid theory (45). Strictly, the van der Waals one-fluid theory applies to mixtures of similar size molecules for which a.ll pair potentials can be expressed in the form \(u_{i j}=\varepsilon_{i j}\) \(\phi\left(r_{i j} / \sigma_{i j}\right)\). Unfortunaiely, for many industrial mixtures molecular size difference can be large and orientation effects make important contributions to the pair potentials. Thus, aside from the approximations inherent to conformal solution theory, factors which adversely affect the accuracy of the van der Waals one-fluid theory for the complex. molecular systems encountered industrially include (1) the use of the two parameter \(\left(\varepsilon_{i j}\right.\) and \(\left.\sigma_{i j}\right)\) pair potential and (2) the requirement of similar molecular size for the mixture components. Chapter II discusses previous work related to mixing rules and correlations for unlike pair interaction parameters.

Efforts are in progress at the University of Oklahoma to develop a multiparameter corresponding states framework for correlation of thermodynamic properties, taking into account the various orientation contributions to pair interactions (e.g., dipole-dipole, quadrupole-quadrupole, dipolequadrupole, and higher multipole effects, as well as dispersion and steric effects). Preliminary research (41) in this direction has involved lumping the collective effects of orientation
contributions into a single term in the pair potential and the resultant expressions for the thermodynamic properties from the Pople perturbation theory (53). This approach leads to the three-parameter corresponding-states correlation framework reported in recent work (41) and utilized herein. The three characterization parameters in this correlation framework are the characteristic molecular size/separation parameter, \(\sigma\), the characteristic molecular energy parameter, \(\varepsilon\), and the characteristic orientation parameter, \(\gamma\). Within this three parameter corresponding states framework it is possible to derive, along the lines of the method used by Smith (79), a three parameter conformal solution model, which is presented in section III-1. In the derivation of the three parameter conformal solution theory, certain parameters (exponents) in the mixing rules for three characterization parameters are arbitrary. The use of the van der Waals one-fluid rules for the energy and separation parameters, along with a mixing rule for the orientation parameter, derived along the lines of the van der Waals one-fluid theory, yields the so called modified van der Waals mixing rules discussed in section III-2. The theoretical basis of the Berthelot rules used as starting formulas for development of new correlations of unlike pair interaction parameters is discussed in section III-3. The methodology for the thermodynamic properties calculations presented herein is presented in Chapter IV. It is shown in section \(V-1\) that the use of the modified
van der Waals one-fluid mixing rules yields accurate predictions of mixture thermodynamic behavior for mixtures of molecules with dissimilarities as great as methane and propane, but that the accuracy of prediction decays for larger molecular dissimilarities. In section \(V-2\), the exponents in the modified van der Waals one-fluid mixing rules are varied empirically; the resultant mixing rules, referred to herein as semiempirical exponent mixing rules,yield significantly improved predictions for mixtures with components as dissimilar as methane and normal decane.

The development of satisfactory correlations for unlike interaction parameters in terms of characterization parameters of pure components alone has been one of prime concerns for most generalized correlations. In Chapter VI, two correlations are formulated so that mixture properties and phase compositions may be calculated at any conditions of \(T\) and \(P\) only from pure component parameters without requiring binary interaction parameters which must be evaluated from binary mixture data. One of the correlations, which was developed for binaries of methane with other \(n\)-paraffins, was applied to other paraffinparaffin binaries with satisfactory results and to unsaturatedparaffin hydrocarbon binaries with acceptable predictions. The other correlation is for nonhydrocarbon-hydrocarbon interactions involving nitrogen, carbon dioxide and hydrogen sulfide. Constants in this correlation vary depending on the nonhydrocarbons involved. Chapter VII presents comparisons
anong the modified VDW one-fluid, the semiempirisal exponent, and the semiempirical exponent mixing rules using the correlations for unlike interaction parameters (in the latter case) for prediction of binary mixture thermodynamic behavior. The optimum and estimated binary interaction parameters used in the prediction calculations are presented in Chapter VII. Data used for the comparisons of predicted properties for both binary and multicomponent mixtures are summarized in Chapter VII. In Chapter VIII the predicted multicomponent thermodynamic behavior obtained using the semiempirical exponent mixing rules with and without the correlations for unlike interaction parameters is compared with predictions using the modified VDW one-fluid rules.

\section*{CHAPTER II}

\section*{REVIEW OF LITERATURE}

\subsection*{2.1 Previous Work Related to Mixing Rules}

Several representative mixing theories which have been proposed in the past are discussed here. They are the random mixture approximation (56): the average potential model (55), and the one-, two-, and three-fluid van der Waals theories (72). Recently, a generalized conformal solution theory (42) has been developed. None of these mixture theories has reached a stage of development sufficiently adequate for application to all types of mixtures. Instead, each theory seems to be restricted to a particular class of solutions. The random mixture approximation was formulated by Prigogine (56), Scott (77), and Byers Brown (9). This theory is limited to molecules of equal size. Since it does not account for the effect of component molecular size differences on mixture properties, it is inadequate. To improve the random mixture approximation, perturbation and two-fluid models were considered. An improved mixture model is the average potential model studied by Prigogine (55) and Scott (77). This model
is more accurate than the random mixture model but still can not handle the effect of component molecular size differences on the properties of the mixture. The van der Waals one-, two-, and three-fluid theories (72) make use of the so called van der Waals approximation to relate the interaction parameters for the mixture to the parameters associated with individual like and unlike interactions. They differ in their choice of the number of hypothetical pure fluids utilized. For example, the van der Waals one-fluid theory, utilized by Leland and colleagues (44), equates the mixture properties to those of a hypothetical single pure fluid. The van der Waals one-fluid model appears to provide the best results among the \(n-f l u i d\) van der Waals theories (27). To improve mixture property predictions over the two parameter van der Waals one-fluid theory, a generalized conformal solution model was utilized by Lee and Starling (42). They used a perturbation technique in conjuction with threeparameter corresponding states theory. Their conformal solution model is discussed in Chapter III. Two equations of state are noted here as examples to show how mixing rules and combining rules are employed. The first is the simple two parameter equation of state of Redlich and Kwong (64); the second is the more complicated three parameter Lee-Kesler equation of state (40).

The Redlich-Kwong equation of state can be written in the form
\[
\begin{equation*}
p=\frac{R T}{V-b}-\frac{a}{T^{1 / 2} V(V+b)} \tag{II-1}
\end{equation*}
\]
where \(a\) and \(b\) are constants. This equation can be rearranged in terms of the compressibility factor \(Z\) as
\[
\begin{equation*}
Z^{3}-Z^{2}+\left(A *-B^{*}-B^{*}\right) Z-A * B *=0 \tag{II-2}
\end{equation*}
\]
\(A^{*}\) and \(B^{*}\) are determined from:
\[
\begin{align*}
& A^{*}=\frac{\Omega_{\mathrm{a}} \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}^{2}}{ }^{2 \cdot 5} \tag{II-3}\\
& \mathrm{~B}^{*}=\frac{\Omega_{\mathrm{b}} \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \tag{II-4}
\end{align*}
\]
where \(\Omega_{a}=\left[9\left(2^{1 / 3}-1\right)\right]^{-1}=0.427480 \ldots\)
\[
\begin{equation*}
\Omega_{b}=\left(27 \Omega_{a}\right)^{-1}=0.086640 \ldots \tag{II-6}
\end{equation*}
\]

Equation (II-2) can be extended to mixtures by employing the pseudocritical rules (65) defined as
\[
\begin{align*}
& T_{c_{m}}=\left\{\frac{\left[\sum_{i} x_{i}\left(T_{c_{i}} 5 / 2 / P_{c_{i}}\right)^{1 / 2}\right]^{2}}{\sum_{i}\left(T_{c_{i}} / P_{c_{i}}\right)}\right\}^{2 / 3} \tag{II-7}\\
& P_{c_{m}}=\frac{T_{c_{m}}}{\sum_{i} x_{i}\left(T_{c_{i}} / P_{c_{i}}\right)} \tag{II-8}
\end{align*}
\]

Since the pseudocritical temperature and pseudocritical pressure are the two characterization parameters required in this two parameter formulation of the Redlich-Kwong equation, all mixture thermodynamic properties can be calculated using Eqs. (II-1) through (II-8).

Lee and Kesler (40) proposed an analytical approach to relate the compressibility factor of a real fluid to properties of a simple fluid and those of a reference fluid. The compressibility factor of a fluid with acentric factor \(\omega\) is represented by Lee and Kesler using the relation
\[
\begin{equation*}
z=z^{(0)}+\left(\frac{\omega}{\omega^{(R)}}\right)\left(z^{(R)}-z^{(0)}\right) \tag{II-9}
\end{equation*}
\]

The compressibility factor for both the simple fluid \(Z^{(0)}\) and the reference fluid \(Z^{(R)}\) are derived from the following reduced form of a modified Benedict-Webb-Rubin equation:
\[
\begin{align*}
Z^{(0 \text { or } R)}= & \left(\frac{P_{r} V_{r}}{T_{r}}\right)=1+\frac{B}{V_{r}}+\frac{C}{V_{r}^{2}}+\frac{D}{V_{r}^{5}} \\
& +\frac{C_{4}}{T_{r}{ }^{3} V_{r}^{3}}\left(\beta+\frac{\gamma}{V_{r}^{2}}\right) \exp \left(-\frac{\gamma}{V_{r}^{2}}\right) \tag{II-10}
\end{align*}
\]
where \(B=b_{1}-\frac{b_{2}}{T_{r}}-\frac{b_{3}}{T_{r}^{2}}-\frac{b_{4}}{T_{r}^{3}}\)
\[
\begin{equation*}
C=c_{1}-\frac{c_{2}}{T_{r}}+\frac{c_{3}}{T_{r}^{3}} \quad D=d_{1}+\frac{d_{2}}{T_{r}} \tag{II-12}
\end{equation*}
\]
and \(b_{1}, b_{2}, b_{3}, b_{4}, c_{1}, c_{2}, c_{3}, c_{4}, d_{1}, d_{2}, \beta\) and \(\gamma\) are constants.
\[
\begin{equation*}
Z^{(0)}=\frac{P_{r} V_{r}^{(0)}}{T_{r}} \tag{II-13}
\end{equation*}
\]
and
\[
\begin{equation*}
Z^{(R)}=\frac{P_{r} V_{r}^{(R)}}{T_{r}} \tag{II-14}
\end{equation*}
\]

The mixing rules recommended by Lee and Kesler (40) are as follows:
\[
\begin{align*}
& T_{c_{m}}=\frac{1}{8 V_{c_{m}}} \sum_{i j} \sum_{x_{i}} x_{j}\left(V_{c_{i}} 1 / 3+V_{c_{j}}{ }^{1 / 3}\right)^{3}\left(T_{c_{i}} T_{c_{j}}\right)^{1 / 2(I I-15)} \\
& V_{c_{m}}=\frac{1}{8} \sum_{i j} \sum_{i} x_{j}\left(V_{c_{i}}^{1 / 3}+V_{c_{j}}^{1 / 3}\right)^{3} \tag{II-16}\\
& V_{c_{i}}=\frac{\left(0.2905-0.085 \omega_{i}\right) R T_{c_{i}}}{\mathrm{P}_{c_{i}}} \tag{II-17}\\
& \omega_{m}=\sum_{i} x_{i} \omega_{i} \tag{II-18}\\
& P_{c_{m}}=\frac{\left(0.2905-0.085 \omega_{m}\right){ }^{R T} c_{c_{m}}}{V_{c_{m}}} \tag{II-19}
\end{align*}
\]

These mixing rules for \(T_{c_{m}}\) and \(V_{c_{\text {mi }}}\) imply the following combining rules for \(\sigma_{i j}\) and \(\varepsilon_{i j}\), provided \(\sigma_{\dot{i} i}{ }^{3}\) is proportional to \(V_{c_{i}}\) and \(\varepsilon_{i i}\) is proportional to \(T_{c_{i}}\),
\[
\begin{align*}
& \sigma_{i j}=\left(\sigma_{i i}+\sigma_{j j}\right) / 2 \tag{II-20}\\
& \varepsilon_{i j}=\left(\varepsilon_{i i} \varepsilon_{j j}\right)^{1 / 2} \tag{II-21}
\end{align*}
\]

It is seen that Lee and Kesler use the van der Waals one-fluid mixing rules for \(T_{c_{m}}\) and \(V_{c_{m}}\) along with the additivity of acentric factors of constituents on a molar basis for the mixture acentric factor and use the arithmetic combining rule for \(\sigma_{i j}\) and the geometric combining rule for \(\varepsilon_{i j}\).

\subsection*{2.2 Previous Work Related to Combining Rules}

Combining rules relate unlike interaction parameters, such as \(\varepsilon_{i j}, \sigma_{i j}, \gamma_{i j}\), to the parameters for pure components. For the estimation of unlike interaction parameters, various combining rules have been proposed. The most commonly adopted combining rules are shown in section 2.1 and are repeated below:
\[
\begin{align*}
& \sigma_{i j}=\left(\sigma_{i i} \pm \sigma_{j j}\right) / 2 \tag{II-22}\\
& \varepsilon_{i j}=\left(\varepsilon_{i i} \varepsilon_{j j}\right)^{1 / 2} \tag{II-23}
\end{align*}
\]

Equation (II-22), called Lorentz's rule (48), can be derived from the hard sphere repulsion approximation. The geometric mean rule of Berthelot (5), Equation (II-23), follows from London's (47) description of the dispersion forces of two unlike molecules having nearly the same size and ionization potential.

These formulas appear to give good results for simple molecules of similar size. When components are dissimilar, mixture thermodynamic property calculation accuracy diminishes when the Lorentz-Berthelot rules are used, leading to the following modifications.
\[
\begin{align*}
& \sigma_{i j}=\eta_{i j}\left(\sigma_{i i}+\sigma_{j j}\right) / 2 \tag{II-24}\\
& \varepsilon_{i j}=\zeta_{i j}\left(\varepsilon_{i i} \varepsilon_{j j}\right)^{1 / 2} \tag{II-25}
\end{align*}
\]
\(\eta_{i j}\) and \(\zeta_{i j}\), called binary interaction parameters, are measures of deviations from the Lorentz-Berthelot rules. The binary interaction parameters are evaluated from binary data. If \(\sigma_{i i}\) and \(\varepsilon_{i i}\) are proportional to \(V_{c_{i}}\) and \(T_{c_{i}}\) respectively, Equations (II-24) and (II-25) can be expressed in terms of critical properties:
\[
\begin{align*}
& V_{c_{i j}}=\dot{n}_{i j} \frac{\left(V_{c_{i}} 1 / 3+V_{c_{j}} 1 / 3\right)^{3}}{8} \tag{II-26}\\
& T_{c_{i j}}=\dot{\zeta}_{i j}\left(T_{c_{i}} T_{c_{j}}\right)^{1 / 2} \tag{II-27}
\end{align*}
\]

Lin and Robinson (46) tested a variety of combining rules for \(\varepsilon_{i j}\) for predicting rare-gas interactions by fitting second virial coefficients along with the potential function of Dymond and Alder. In their study the harmonic mean, \(2 \varepsilon_{i i} \varepsilon_{j j} /\left(\varepsilon_{i i}+\varepsilon_{j j}\right)\), was recommended for interactions
not including helium.
Good and Hope (21) have suggested that the geometric mean is preferred to the arithmetic mean for \(\sigma_{i j}\) based on detailed analysis of various combining rules for \(\varepsilon_{i j}\) in conjunction with the arithmetic and geometirc mean rules respectively for \(\sigma_{i j}\).

Geometric mean rules for both \(\sigma_{i j}\) and \(\varepsilon_{i j}\) have been proposed by Calvin and Reed (10). The 6, n Mie potential, with repulsive index \(n\) as an additional parameter, were employed for their analysis. More combining rules are listed elsewhere \((46,21)\).

For three parameters corresponding states correlations, a third characteristic parameter is required. The combining rule for the third parameter usually assumed is an arithmetic average of the parameters for the pure components. If the parameter is an orientation factor \(\gamma\), then the combining rule becomes:
\[
\begin{equation*}
\gamma_{i j}=\left(\gamma_{i i}+\gamma_{j j}\right) / 2 \tag{II-28}
\end{equation*}
\]

\subsection*{2.3 Previous Work Related to Correlations for Binary \\ Interaction Parameters}

Various equations for correlating \(\zeta_{i j}\) in Eq. (II-25) in terms of the characteristic parameters only of pure components have been proposed. Few correlations for \(\eta_{i j}\) in Eq. (II-24) have been developed since \(\eta_{i j}\) usually has been
taken to be unity. Hudson and McCoubrey (31) suggested the following relationship for \(\zeta_{i j}\)
\[
\begin{equation*}
\zeta_{i j}=\frac{2\left(I_{i} I_{j}\right)^{1 / 2}}{I_{i}+I_{j}}\left[\frac{2\left(\sigma_{i i} \sigma_{j j}\right)^{1 / 2}}{\sigma_{i i}+\sigma_{j j}}\right]^{6} \tag{II-29}
\end{equation*}
\]
where \(I_{i}\) is the first ionization potential of component \(i\). This equation can be obtained by equating the attractive part of the Lennard-Jones potential to the London's potential function. Chueh and Prausnitz (13) have investigated the correcting factor \(\zeta_{i j}\) primarily for paraffin-paraffin hydrocarbon mixtures. The correlation developed for such systems is
\[
\begin{equation*}
\zeta_{i j}=\left[\frac{2\left(v_{c_{i}} v_{c_{j}}\right)^{1 / 6}}{V_{c_{i}}^{1 / 3}+v_{c_{j}}}\right]^{3 / 3} \tag{II-30}
\end{equation*}
\]

Hiza and Duncan (30) found the following correlation from a purely empirical approach.
\[
\begin{equation*}
\zeta_{i j}=1-0.17\left(I_{i}-I_{j}\right)^{1 / 2} \ln \left(I_{i} / I_{j}\right) \tag{II-31}
\end{equation*}
\]
where \(i\) is the component with the larger ionization potential. This correlation is reasonable for binaries involving methane, ethane, ethylene, and inorganic gases. The harmonic mean for \(\varepsilon_{i j}\) proposed by Fender and Halsey (17) can provide the following equation (88):
\[
\begin{equation*}
\zeta_{i j}=\frac{2\left(T_{c_{i}} T_{c_{j}}\right)^{1 / 2}}{T_{c_{i}}+T_{c_{j}}} \tag{II-32}
\end{equation*}
\]

This formula was found to be satisfactory for binaries of methane with hydrocarbons, argon, krypton, nitrogen and hydrogen sulfide (88). Teja (87) suggested the following correlation based on the carbon numbers of hydrocarbons:
\[
\begin{equation*}
\zeta_{i j}=1-m\left(n_{c_{j}}-n_{c_{i}}-1\right) \tag{II-33}
\end{equation*}
\]
where \(n_{c_{j}}\) stands for the carbon number of component \(j\) with \(n_{c_{j}} \geq n_{i} ; m=0.02\) was proposed for \(n\)-paraffin binaries with methane; \(m=0.01\) was recommended for binaries of ethane with paraffins greater than two carbon atoms; and \(m=0.04\) was recommended for \(n\)-paraffin binaries with carbon dioxide. Tsonopoulos (88) also employed carbon number as a correlating parameter. The following equation has been proposed with m changing depending on the type of binary system;
\[
\begin{equation*}
\zeta_{i j}=1-m\left[\ln \left(n_{c_{j}}-n_{c_{i}}+1\right)\right]^{2} \tag{II-35}
\end{equation*}
\]
where \(m=0.0279\) for hydrocarbon binaries with methane, \(\mathrm{m}=0.0202\) for hydrocarbon binaries with ethane and ethylene, and \(m=0.0364\) for hydrocarbon binaries with nitrogen (note \(n_{c_{j}} \geq n_{c_{i}}\).

\section*{CHAPTER III}

\section*{THEORETICAL BASIS}

\subsection*{3.1 Anisotropic Fluid Conformal Solution Theory}

The method used here for considering conformal solution theories for fluids with molecular anisotropies is based on the method utilized by Smith (79) for treating isotropic one fluid conformal solution theories as a class of perturbation theories. The objective of the method is to closely approximate the properties of a mixture by calculating the properties of hypothetical pure reference fluid. The characterization parameters (in this case, intermolecular potential parameters) of the reference fluid are chosen to be functions of composition (i.e., mole fractions) and the characterization parameters for the various possible molecular pair interactions (like-like and unlike-unlike). In principle, all molecular anisotropies (dipole-dipole, quadrupole-quadrupole, dipolequadrupole and higher multipole interactions, as well as overlap and dispersion interactions) can be included in the method. Here, the various molecular anisotropies are lumped into a single term, so that the intermolecular potential energy \(u_{i j}\left(\underline{r}_{12}, \omega_{1}, \omega_{2}\right)\) between molecules 1 and 2 of species \(i\) and \(j\) can be written in the form
\(u_{i j}\left(\underline{r}_{12}, \omega_{1}, \omega_{2}\right)=\varepsilon_{i j} \phi^{o}\left(\frac{r_{12}}{\sigma_{i j}}\right)+\delta_{i j} \varepsilon_{i j} \phi^{p}\left(\frac{\underline{\underline{r}}_{12}}{\sigma_{i j}}, \omega_{1}, \omega_{2}\right)\) (III-1)

In Equation (III-1), \(\underline{r}_{12}\) is the vector displacement of the molecular centers of molecules 1 and \(2, r_{12}\) is the scaler separation, \(r_{12}=\left|\underline{r}_{12}\right|\), and \(\omega_{1}\) and \(\omega_{2}\) are the Euler angles describing the orientations of molecules 1 and 2. The first term on the right hand side of Equation (III-1) involving \(\phi^{\circ}\) is recognized as an isotropic potential form, so that the term involving \(\phi^{\mathrm{p}}\) describes anisotropic effects. The characterization parameters \(\sigma_{i j}, \varepsilon_{i j}\) and \(\delta_{i j}\), respectively, are characteristic distance, energy and anisotropic strength parameters for the interaction between molecules of species \(i\) and \(j\).

The extension of the isotropic mixture conformal solution theory method of Smith (79) to the case of anisotropic molecular systems can be made easily in the following manner. Let the quantities \(a_{i j}, b_{i j}\), and \(c_{i j}\) be defined by the relations \(a_{i j}=\delta_{i j}^{k} \varepsilon_{i j}^{l} \sigma_{i j}^{m}, b_{i j}=\delta_{i j}^{p} \varepsilon_{i j}^{q} \sigma_{i j}^{r}, c_{i j}=\delta_{i j}^{u} \varepsilon_{i j}^{v} \sigma_{i j}^{w}\), where the exponents \(k, l, m, p, q, r, u, v, w\) are left unspecified at this point in the development. The configurational Helmholtz free energy \(A\) for an anisotropic mixture then can be expanded about the configurational Helmholtz free energy of a hypothetical pure reference fluid, \(A_{x}\), with characterization parameters \(\delta_{x}, \varepsilon_{x}\), and \(\sigma_{x}\) (or \(a_{x}, b_{x}, c_{x}\)),
\[
\begin{align*}
& A=A_{x}+\frac{\partial A_{x}}{\partial a_{x}}{\sum \sum \sum x_{i} x_{j}}\left(a_{i j}-a_{x}\right)+\frac{\partial A_{x}}{\partial b_{x}} \sum_{i j} \sum_{i} x_{j}\left(b_{i j}-b_{x}\right) \\
& +\frac{\partial A_{x}}{\partial c_{x}} \sum_{i j} \sum_{x_{i}} x_{j}\left(c_{i j}-c_{x}\right)+\text { higher order terms } \tag{III-2}
\end{align*}
\]
where \(x_{i}\) is the mole fraction of the ith component in the mixture. The following mixing rules annul the first order terms in the expansion in Equation (III-2),
\[
\begin{align*}
& \delta_{x}^{k} \varepsilon_{x}^{I} \sigma_{x}^{m}={\sum \sum \sum \sum_{i j} x_{j} \delta_{i j}^{k} \varepsilon_{i j}^{l} \sigma_{i j}^{m}}_{\delta_{x}^{p} \varepsilon_{x}^{q} \sigma_{x}^{r}=\sum_{i j} \sum_{i} x_{j} \delta_{i j}^{p} \varepsilon_{i j}^{q} \sigma_{i j}^{r}}^{\delta_{x}^{u} \varepsilon_{x}^{v} \sigma_{x}^{W}=\sum_{i j} \sum x_{i} x_{j} \delta_{i j}^{u} \varepsilon_{i j}^{v} \sigma_{i j}^{W}} \tag{III-3}
\end{align*}
\]

The application of conformal solution theory in industrial calculations suggests the use of the approximation \(A=A_{x}\) to avoid the lengthy computation required to calculate the higher order terms in Equation (III-2).

Thus, a practical strategy for choosing the exponents \(\mathrm{k}, \mathrm{I}, \mathrm{m}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{u}, \mathrm{v}, \mathrm{w}\) in Equations (III-亏), (III-4), and (III-5) would be through minimization of the difference \(A-A_{x}\) (actually, data for all available mixture thermodynamic properties can be used simultaneously to determine the exponents by regression). However, most applications of conformal solution theory have involved the use of exponents based on molecular theory and so this approach was utilized in the
initial phase of the present work.

\subsection*{3.2 Modified van der Waals One-Fluid Mixing Rules}

The well known van der Waals one-fluid mixing rules for the characterization parameters \(\sigma_{x}\) and \(\varepsilon_{x}\) for isotropic fluids are
\[
\begin{align*}
& \sigma_{x}^{3}={\sum \sum \sum x_{i j} x_{j} \sigma_{i j}}^{3} \tag{III-6}\\
& \varepsilon_{x} \sigma_{x}^{3}=\sum_{i j} x_{i} x_{j} \varepsilon_{i j} \sigma_{i j}^{3} \tag{III-7}
\end{align*}
\]

Thus, the van der Waals one-fluid rules correspond to the use of the following values of the exponents in Equations (III-3) and (III-4), \(k=0,1=0, m=3, p=0, q=1, r=3\). Smith (80) has discussed the fact that for hard sphere mixtures, Equation (III-6) is the most reasonable theoretical choice for specifying \(\sigma_{x}\) (although other mixing rules have been used). Also, Smith (80) has shown for hard sphere binary mixtures that using the arithmetic mean rule, \(\sigma_{12}=1 / 2\) \(\left(\sigma_{11}+\sigma_{22}\right)\), the second order terms in Equation (III-2) for the Helmholtz free energy probably can be neglected only when \(\sigma_{11}\) and \(\sigma_{22}\) differ by less than about \(10 \%\). For isotropic fluids, the perturbation expansion of the Helmholtz free energy about that of a hard sphere system leads to Equation (III-7) when the mean density approximation is used for the hard sphere pair distribution function (80). Although the van der Waals one-fluid mixing rules yield reasonably accurate
predictions of mixture behavior for molecules which are not greatly dissimilar, the cases of evaluation of the unlike interaction parameters, \(\sigma_{i j}, \varepsilon_{i j}, i \neq j\), from the data may be compensatory in an empirical way.

For the derivation of a mixing rule for the anisotropic strength parameter, \(\delta_{x}\), consider the Pople expansion (53) of the Helmholtz free energy \(A\) about the free energy, \(A_{0}\), of an isotropic fluid reference system,
\[
\begin{equation*}
A=A_{0}+A_{1}+A_{2}+\cdots \tag{III-8}
\end{equation*}
\]
where \(A_{i}\) are the ith order terms in the expansion. The isotropic reference system pair potential is defined to be the unweighted average of the anisotropic pair potential in Equation (1), that is,
\[
\begin{equation*}
\varepsilon_{i j} \phi^{\circ}\left(\frac{\underline{\underline{r}}_{12}}{\sigma_{i j}}\right)=\left\langle u_{i j}\left(\underline{\underline{r}}_{12}, \omega_{1}, \omega_{2}\right)\right\rangle_{\omega} \tag{III-9}
\end{equation*}
\]
where the brackets \(\left\rangle_{\omega}\right.\) denote the angle average. Thus, \(A_{1}=0\) and Equation (III-8) is a perturbation expansion for A provided higher order terms are small. For small anisotropies, truncation at \(A_{2}\) is accurate, while for large anisotropies, the use of the Padé approximant used by Stell (85)
\[
A=A_{0}+\frac{A_{2}}{\left(1-A_{3} / A_{2}\right)}
\]
yields good results. Herein the truncation at \(A_{2}\) will be utilized. The second order term \(A_{2}\) is given by the relation
\[
\begin{equation*}
\dot{H}_{2}=\frac{-\rho^{2}}{4 k T} \sum \sum x_{i j} x_{j} \delta_{i j}^{2} \varepsilon_{i j}^{2} \int d \underline{r}_{1} d \underline{-}_{2}\left\langle\left(\phi_{i j}^{p}\right)^{2}\right\rangle g_{i j}^{0} \tag{III-10}
\end{equation*}
\]
where \(\rho\) is the molecule number density, \(T\) is absolute temperature, \(k\) is Boltzman's constant, \(\underline{r}_{1}\) and \(\underline{\underline{r}}_{2}\) are the position vectors of molecules 1 and 2 , and \(g_{i j}^{0}\) is the isotropic pair distribution function, For the case in which \(\phi_{i j}^{P}\) can be written as the product function
\[
\begin{equation*}
\phi_{i j}^{P}=F_{i j}\left(\frac{r_{12}}{\sigma_{i j}}\right) D\left(\omega_{1}, \omega_{2}\right) \tag{III-11}
\end{equation*}
\]
\(A_{2}\) becomes
\[
\begin{equation*}
A_{2}=-\frac{\pi \rho}{(k T)^{2}} \sum_{i j} \sum x_{i} x_{j} \delta_{i j}^{2} \varepsilon_{i j}^{2} \sigma_{i j}^{3} \int d r \frac{12}{M}{ }_{12}^{2} F_{i j}^{2} g_{i j}^{o}\left\langle D^{2} \hbar\right. \tag{III-12}
\end{equation*}
\]
where \(r_{12}=r_{12} / \sigma_{12}\). For example, if the perturbation contribution to the pair potential were the overlap potential for linear molecules, the perturbation contribution could be approximated by the following expression, due to Pople (53),
\[
\begin{equation*}
\delta_{i j} \varepsilon_{i j} \phi_{i j}^{p}=\delta_{i j} \varepsilon_{i j}\left(\frac{\sigma_{i, i}}{r_{12}}\right)^{12}\left[3 \cos ^{2} \theta_{1}+3 \cos ^{2} \theta_{2}-2\right] \tag{III-13}
\end{equation*}
\]
so that \(F_{i j}=\left(\frac{\sigma_{i j}}{r_{12}}\right)^{12}\) and \(D=\left[3 \cos ^{2} \theta_{1}+3 \cos ^{2} \theta_{2}-2\right]\), where \(\theta_{1}\) and \(\theta_{2}\) are the polar angles of orientation of molecules 1 and 2. To obtain the expression for \(\delta_{x}\) the following approximation is introduced,
\[
\begin{equation*}
g_{i j}^{0}\left(\frac{r_{12}}{r_{i j}}, \frac{k T}{\varepsilon_{i j}}, \rho \sigma_{i j}^{3}, x_{i}, \ldots\right)=g_{x}^{o}\left(r^{*}, \rho^{*}, T^{*}\right) \tag{III-14}
\end{equation*}
\]
where \(r^{*}=r / \sigma_{x}, \rho^{*}=\rho \sigma_{x}^{3}, T^{*}=k T / \varepsilon_{X}\). The approximation in Equation (III-14) is similar to, but more stringent than, the mean density approximation. With the assumption in Equation (III-14), \(A_{2}\) becomes
\[
\begin{equation*}
A_{2}=\frac{-\pi \rho\left\langle D^{2}>\right.}{(k T)^{2}} \sum_{i j} \sum_{i} x_{j} \delta_{i j}^{2} \varepsilon_{i j}^{2} \sigma_{i j}^{3} \int d r *\left(r^{* 2} \quad F^{2} g_{x}^{0}\right) \tag{III-15}
\end{equation*}
\]

It is then logical to choose the following mixing rule for the anisotropic strength parameter (overlap parameter in the specific example) \(\delta_{x}\),
\[
\begin{equation*}
\delta_{x}^{2} \varepsilon_{x}^{2} \sigma_{x}^{3}=\sum_{i j} \sum_{i} x_{j} \delta_{i j}^{2} \varepsilon_{i j}^{2} \sigma_{i j}^{3} \tag{III-16}
\end{equation*}
\]

This mixing rule corresponds to the use of the following values of the exponents in Equation (III-5), \(u=2, v=2, w=3\). The reduced Helmholtz free energy, \(A^{*}=A / N k T\), where \(N\) is the number of molecules, then takes the form
\[
\begin{equation*}
A^{*}=A_{0}^{*}-\delta_{x}^{2} \pi<D^{2}>0 * J_{x} /\left(T^{*}\right)^{2} \tag{III-17}
\end{equation*}
\]
where \(\rho^{*}=\rho \sigma_{x}^{3}, T^{*}=k T / \varepsilon_{x}\) and \(J_{x}\) is the integral
\[
\begin{equation*}
J_{x}=\int d r^{*}\left(r^{*^{2}} F^{2} g_{x}^{o}\right) \tag{III-18}
\end{equation*}
\]

Note that \(A^{*}\) is of the form
\[
\begin{equation*}
A^{*}=A_{o}^{*}+\delta_{x}^{2} f^{*}\left(T^{*}, D^{*}\right) \tag{III-19}
\end{equation*}
\]

This result is identical to the expression which is obtained
from the perturbation expansion of \(A\) for a pure fluid. Thus, referring to Equation (III-2), the first order conformal solution theory relation for anisotropic fluids is
\[
\begin{equation*}
A^{*}\left(T, \rho,\left\{\sigma_{i j}\right\},\left\{\varepsilon_{i j}\right\},\left\{\delta_{i j}\right\},\left\{x_{k}\right\}\right)=A_{x}^{*}\left(T^{*}, \rho^{*}, \delta_{x}\right) \tag{III-20}
\end{equation*}
\]
where \(\left\{\sigma_{i j}\right\},\left\{\varepsilon_{i j}\right\}\) and \(\left\{\delta_{i j}\right\}\) denote the sets of characterization parameters for the mixture constituent binary pairs;: \(\left\{x_{k}\right\}\) denotes the set of mole fractions of the mixture components, and
\[
\begin{equation*}
A_{x}^{*}\left(T^{*}, \rho^{*}, \delta_{x}\right)=A_{o}^{*}\left(T^{*}, \rho^{*}\right)+\delta_{x}^{2} f^{*}\left(T^{*}, \rho^{*}\right) \tag{III-21}
\end{equation*}
\]
with the modified van der Waals mixing rules for \(\sigma_{x}, \varepsilon_{x}\), and \(\delta_{x}\) given in Equations (III-6), (III-7) and (III-16).

The equation of state expression for the absolute pressure \(P\) is obtained from Equation (III-19) using the thermodynamic relation
\[
\begin{equation*}
\frac{p}{\rho k T}=\rho^{*}\left(\frac{\partial A^{*}}{\partial \rho^{*}}\right) N, T \tag{III-22}
\end{equation*}
\]

The resultant expression for the compressibility factor \(Z=\) \(\mathrm{P} / \mathrm{pkT}\) is
\[
\begin{equation*}
z=Z_{0}+\delta_{x}^{2} z_{1} \tag{III-23}
\end{equation*}
\]
where
\[
\begin{equation*}
Z_{0}=\rho^{*}\left(\frac{\partial A_{0}^{*}}{\partial \rho^{*}}\right)_{N, T} \tag{III-24}
\end{equation*}
\]
\[
\begin{equation*}
Z_{1}=\rho *\left(\frac{\partial f^{*}}{\partial \rho^{*}}\right)_{N, T}=\rho^{*}\left[\frac{\partial}{\partial \rho^{*}}\left(\frac{-\pi<D^{2}>\rho^{* J} x}{T *^{2}}\right)\right]_{N, T} \tag{III-25}
\end{equation*}
\]

\subsection*{3.3 Combining Rules}

The combining rules considered for discussion here are the geometric mean rules, which are starting formulas for the development of unlike interaction characterization parameters in Chapter VI,
\[
\begin{align*}
\varepsilon_{i j} & =\left(\varepsilon_{i j} \varepsilon_{j j}\right)^{1 / 2} \tag{III-26}\\
\sigma_{i j} & =\left(\sigma_{i i} \sigma_{j j}\right)^{1 / 2} \tag{III-27}
\end{align*}
\]

The following theoretical considerations for both \(\varepsilon_{i j}\) and \(\sigma_{i}\) are based on the approaches utilized by Good and Hope (22). For the geometric mean rule for \(\varepsilon_{i j}\), their theoretical basis is the London theory (47) of the dispersion forces. The attractive London forces between two simple, spherically symmetrical molecules at large distances are usually described by the potential function.
\[
\begin{equation*}
u_{i j}=-\frac{3}{2} \frac{\alpha_{i}{ }^{\alpha}{ }_{j}}{r^{6}}\left(\frac{I_{i} I_{j}}{I_{i}+I_{j}}\right) \tag{III-28}
\end{equation*}
\]

Here \(I_{i}\) and \(I_{j}\) are the first ionization potentials of the molecules, and \(\alpha_{i}\) and \(\alpha_{j}\) indicate their polarizabilities. The above potential function is derived from certain simplifying
assumptions on the dispersion forces in terms of the polarizabilities and the first ionization potentials of the individual molecules. If the molecules are alike, the above equation reduces to
\[
\begin{equation*}
u_{i i}=-\frac{3}{4} \frac{\alpha_{i}^{2} I_{i}}{r^{6}} \tag{III-29}
\end{equation*}
\]

The Lennard-Jones potential may be written as follows:
\[
\begin{align*}
u & =4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \tag{III-30}\\
& =\frac{C}{r^{12}}-\frac{A}{r^{6}} \tag{III-31}
\end{align*}
\]
where \(C=4 \sigma^{12} \varepsilon\), and \(A=4 \sigma^{6} \varepsilon\)
If London's potential function is equated to the corresponding term in the Lennard-Jones potential, then
\[
\begin{align*}
& A_{i j}=\frac{3}{4} \alpha_{i}^{2} I_{i} \tag{III-33}\\
& A_{i j}=\frac{3}{4} \alpha_{i} \alpha_{j}\left\{\left(I_{i} I_{j}\right) /\left[1 / 2\left(I_{i}+I_{j}\right)\right]\right\} \tag{III-34}\\
& A_{i j} /\left(A_{i i} A_{j j}\right)^{1 / 2}=\left(I_{i} I_{j}\right)^{1 / 2} /\left[1 / 2\left(I_{i}+I_{j}\right)\right] \tag{III-35}
\end{align*}
\]

The preceding equation becomes with Equation (III-32)
\[
\begin{equation*}
\varepsilon_{i j}=\left[\left(\varepsilon_{i i} \varepsilon_{j j}\right)^{1 / 2}\left(I_{i} I_{j}\right)^{1 / 2}\right] /\left[1 / 2\left(I_{i}+I_{j}\right)\right] \tag{III-36}
\end{equation*}
\]
provided \(\sigma_{i j}=\sigma_{i i}=\sigma_{j j}\). Since the ionization potentials of most substances are close to each other, the above equation simplifies to
\[
\begin{equation*}
\varepsilon_{i j}=\left(\varepsilon_{i i} \varepsilon_{j j}\right)^{1 / 2} \tag{III-37}
\end{equation*}
\]

For the case of geometric mean rule for \(\sigma_{i j}\), the following relationships can be obtained from Equation (III-32):
\[
\begin{equation*}
A_{12} /\left(A_{11} A_{22}\right)^{1 / 2}=\left[\varepsilon_{12} /\left(\varepsilon_{11} \varepsilon_{22}\right)^{1 / 2}\right]\left[\sigma_{12}{ }^{6} /\left(\sigma_{11} \sigma_{22}\right)^{6 / 2}\right] . \tag{III-38}
\end{equation*}
\]
\(A_{12} /\left(A_{11} A_{22}\right)^{1 / 2}=\left[C_{12} /\left(C_{11} C_{22}\right)^{1 / 2}\right]\left[\sigma_{12}-6 /\left(\sigma_{11} \sigma_{22}\right)^{-6 / 2}\right]\)
\[
\begin{equation*}
c_{12} /\left(c_{11} c_{22}\right)^{1 / 2}=\left[\varepsilon_{12} /\left(\varepsilon_{11} \varepsilon_{22}\right)^{1 / 2}\right]\left[\sigma_{12}^{12} /\left(\sigma_{11} \sigma_{22}\right)^{12 / 2}\right] \tag{III-4C}
\end{equation*}
\]

A geometric mean rule for each of \(A_{12}\) and \(\varepsilon_{12}\) is very reasonable. The above equations indicate that a geometric mean for \(\sigma_{12}\) world allow each of the equations to reduce to a single factor. This is one of the advantages of the choice of geometric mean rule for \(\sigma_{12}\). Furthermore, a geometric mean rule for any two of the constants, \(A, C, \varepsilon\) and \(\sigma\) in Eqs. (III-38) - (III-40), leads to the same rule for the other two. A geometric mean rule for each of \(A_{12}\) and \(\varepsilon_{12}\) is very reasonable from observations of Eqs. (III-35) and (III-26).

Therefore, a geometric mean rule for \(\sigma_{12}\) is a logical choice.

\section*{CHAPTER IV}

\section*{CALCULATION OF THERMODYNAMIC PROPERTIES}

For the calculation of thermodynamic properties, Equation (III-23) was utilized in an empirical manner. Only data for nonpolar normal paraffin hydrocarbon systems were utilized in the correlation development, so that as an approximation, the Pitzer acentric factor, \(\omega\), could be taken as an estimate of the collective strength of molecular anisotropies (i.e., \(\delta^{2}=\omega\)). Because the use of the resultant correlation for fluids other than paraffin hydrocarbons (including polar systems) was anticipated, the parameter \(\gamma\) \(\left(\gamma=\delta^{2}\right)\), referred to herein as the orientation parameter, was utilized instead of the acentric factor (\(\gamma \neq \omega\) for nonparaffin hydrocarbon fluids). The equation of state in Equation (III-23) then takes the form
\[
\begin{equation*}
Z\left(T^{*}, \rho^{*}, \gamma\right)=Z_{0}\left(T^{*}, \rho^{*}\right)+\gamma Z_{1}\left(T^{*}, \rho^{*}\right) \tag{IV-1}
\end{equation*}
\]
where \(Z\) is the compressibility factor and \(Z_{0}\) and \(Z_{1}\) are functions of the reduced temperature \(T^{*}=k T / \varepsilon\) and reduced density \(\rho^{*}=\rho \sigma^{3}\). The equation of state form utilized herein is the modified Benedict-Webb-Rubin (MBWR) equation as given by Han and Starling (82). It is cast into the form of Equation(IV-1)
by expressing the constants linearly in the equation into two parts, one isotropic part and one anisotropic part,
\[
\begin{equation*}
B_{i}=a_{i}+\gamma b_{i} \tag{IV-2}
\end{equation*}
\]
\(a_{i}\) being the isotropic part and \(b_{i}\) being the anisotropic part, where as noted above, \(\gamma \simeq \delta^{2}\) is an orientation parameter accounting for the nonsphericity of the molecule pair potentials under consideration. Therefore, the MBWR equation corresponding to Equation (IV-1) assumes the form
\[
\begin{align*}
& Z= 1+\rho^{*}\left[B_{1}-B_{2} T^{*-1}-B_{3} T^{*-3}+B_{9} T^{*-4}-B_{11} T^{*-5}\right] \\
&+\rho^{* 2}\left[B_{5}-B_{6} T^{*-1}-B_{10^{2}} T^{*-2}\right]+\rho^{* 5}\left[B_{7} T^{*-1}+B_{12} T^{*-2}\right] \\
&+B_{8} \rho^{*} T^{2} *-3\left[\left(1+B_{4} \rho^{*}\right) \exp \left(-B_{4} \rho^{*} *^{2}\right)\right] \tag{IV-3}
\end{align*}
\]
where \(b_{4}\) in Equation (IV-2) is zero to insure linearity of \(Z\) in \(\gamma, \rho^{*}\) is the reduced density, \(\rho^{*}=\rho \sigma^{3}\), and \(T^{*}\) is the reduced temperature, \(T^{*}=k T / \varepsilon\). The characteristic molecular distance parameter \(\sigma\), and energy parameter \(\varepsilon\), were estimated from the critical constants using the relations:
\[
\begin{align*}
& \sigma^{3}=\frac{0.3189}{\rho_{c}} \tag{IV-4}\\
& \varepsilon=\frac{\mathrm{k} \mathrm{~T}_{\mathrm{c}}}{1.2593} \tag{IV-5}
\end{align*}
\]
where \(k\) is the Boltzmann constant. Pertinent relations for
other thermodynamic properties have been presented elsewhere (41). Equations (IV-4) and (IV-5) are based on the relationships of the Lennard-Jones (12-6) potential parameters for argon to the argon critical constants. The use of Equations (IV-4) and (IV-5) in the MBWR equation of state given in Equations (IV-2) and (IV-3) has been shown to work well for pure normal paraffin hydrocarbons. The universal constants \(a_{i}\) and \(b_{i}, i=1, \ldots 12\left(b_{4}=0\right)\) were determined by simultaneously using density, vapor pressure and enthalpy departure data for methane through normal decane in multiproperty analysis. Average absolute deviations of predicted from experimental properties were \(1.00 \%\) for density, 1.13 Btu/lb for enthalpy and \(0.85 \%\) for vapor pressure. Thus, the multiparameter corresponding states correlation framework provided by the perturbation equation form in Equation (IV-1) and the resultant generalized MBWR equation in Equation (IV-3) yields good results for the pure normal paraffin hydrocarbons. The values of the critical constants and orientation parameters given in Table IV-1 are recommended for use in the correlation to be consistent with thermodynamic property calculations. Table IV-2 lists the values of the constants \(a_{i}\) and \(b_{i}\) in Equation (IV-2).

\section*{TABLE IV-1}

Generalization Parameters of Pure Materials to Be Used with
Generalized Equation of State
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Critical } \\
& \text { Temp., }{ }^{\text {F }}
\end{aligned}
\] & Critical Density, lbmole/cu. ft. & Molecular Weight & Orientation Parameter, \(\gamma\) \\
\hline Methane. & -116.43 & 0.6274 & 16.042 & 0.01289 \\
\hline Ethane. & 90.03 & 0.4218 & 30.068 & 0.09623 \\
\hline Propane & 206.13 & 0.3121 & 44.094 & 0.1538 \\
\hline i-Butane & 274.96 & 0.2373 & 58.12 & 0.1812 \\
\hline n-Butane. & 305.67 & 0.2448 & 58.12 & 0.1991 \\
\hline i-Pentane & 369. & 0.2027 & 72.146 & 0.2262 \\
\hline \(n-P e n t a n e\) & 385.42 & 0.2007 & 72.146 & 0.2530 \\
\hline n -Hexane. & 453.45 & 0.1696 & 86.172 & 0.3054 \\
\hline n -Heptane & 512.85 & 0.1465 & 100.198 & 0.3499 \\
\hline n-octane. & 563.79 & 0.1284 & 114.224 & 0.4004 \\
\hline n -Nonane. & 610.5 & 0.1150 & 128.24 & 0.4463 \\
\hline n -Decane. & 651.9 & 0.1037 & 142.276 & 0.4880 \\
\hline n-Undecane & 692.31 & 0.0946 & 156.30 & 0.5219 \\
\hline Ethylene. & 49.82 & 0.5035 & 28.05 & 0.1007 \\
\hline Propylene & 197.4 & 0.3449 & 42.08 & 0.1486 \\
\hline Nitrogen. & -232.6 & 0.6929 & 28.016 & 0.0263 \\
\hline Carbon Dioxide & 87.8 & 0.6641 & 44.01 & 0.2093 \\
\hline Hydrogen Sulfide & 212.7 & 0.6571 & 34.076 & 0.1092 \\
\hline
\end{tabular}

Generalized Parameters Used in the Modified Benedict-Webb-Rubin Equation
\begin{tabular}{ccc}
Parameter & \(B_{i}=a_{i}+\gamma b_{i}\) \\
\hline\(i\) & \(\frac{a_{i}}{1.45907}\) & \(b_{i}\) \\
\hline 1 & 4.98813 & 0.32872 \\
3 & 2.20704 & -2.64399 \\
4 & 4.86121 & 11.3293 \\
5 & 4.59311 & \\
6 & 5.06707 & 2.79979 \\
7 & 11.4871 & 10.3901 \\
8 & 9.22469 & 20.53730 \\
9 & 1.48858 & 2.76010 \\
10 & 0.015273 & -3.11349 \\
11 & 3.51486 & 0.18915 \\
12 & & 0.94260 \\
\hline
\end{tabular}

\section*{CHAPTER V}

\section*{DEVELOPMENT OF MIXING RULES}

\subsection*{5.1 Use of the Modified van der Waals One-Fluid Mixing}

\section*{Rules}

The modified van der Waals one-fluid mixing rules for \(\sigma_{x}, \varepsilon_{x}\) and \(\delta_{x}\) given in Equations (III-6), (III-7) and (III-16) were utilized to determine the ability of this formulation of conformal solution theory for prediction of mixture behavior. The following relations were used for \(\sigma_{i j}, \varepsilon_{i j}\), and \(\delta_{i j}\), \(i \neq j\),
\[
\begin{align*}
& \sigma_{i j}=\xi_{i j}\left(\sigma_{i i} \sigma_{j j}\right)^{1 / 2} \tag{V-1}\\
& \varepsilon_{i j}=\zeta_{i j}\left(\varepsilon_{i i} \varepsilon_{j j}\right)^{1 / 2} \tag{V-2}\\
& \gamma_{i j}=\phi_{i j}\left(\gamma_{i i}+\gamma_{j j}\right) / 2 \tag{v-3}
\end{align*}
\]
where \(\xi_{i j}, \zeta_{i j}\) and \(\phi_{i j}\) are binary interaction parameters to be determined from binary mixture thermodynamic property data. It was found that there was little loss in accuracy of predic-
tion when \(\phi_{i j}\) was fixed at unity; therefore \(\phi_{i j}=1\) was used for the calculations discussed herein. Values of the parameters \(\xi_{i j}\) and \(\zeta_{i j}\) determined from available binary density, enthalpy and vapor-liquid equilibrium data for methane with heavier hydrocarbons are given in Table V-1. Table VII-1 presents binary interaction parameters for number of other fluid pairs. Conditions for all mixture data studied including the methane binaries are shown in Table VII-4. Table V-2 presents a summary of the deviations of predicted densities and methane K-values (equilibrium ratio of vapor to liquid mole fractions). A complete summary of deviations of predicted properites for the methane binaries as well as other mixtures is provided in Table VII-5. Deviations of predicted heavy component Kvalues from experimental data were not used to evaluate the accuracy of prediction because the vapor phase mole fraction of the heavy component of ten is so small that the measurement error is extremely large on a percentage basis. The trend which can be noted in Table \(V-2\) is the fact that properties are predicted with reasonable accuracy for the methane-ethane and methane-propane systems but there is a decay in the accuracy of prediction for the mixtures of methane with normal butane and heavier components. This trend would be anticipated by virtue of the approximations made herein to develop the multiparameter corresponding states/conformal soIution formulas. The major approximations of concern are (1) the second order truncation of the Pople expansion, (2)

\section*{Binary Interaction Parameters for Methane (First Component)}
with Heavier Hydrocarbons
\begin{tabular}{|c|c|c|c|c|}
\hline Second Component & \multicolumn{2}{|l|}{Modified VDW One-Fluid Mixing Rules} & \multicolumn{2}{|l|}{Semiempirical Exponent Mixing Rules} \\
\hline & \(\xi_{12}\) & \(5_{12}\) & \(\xi_{12}\) & \(5_{12}\) \\
\hline Ethane & 0.999079 & 0.996810 & 1.00087 & 0.978262 \\
\hline Propane & 1.02116 & 0.974404 & 1.01188 & 0.936840 \\
\hline n-Butane & 1.03946 & 0.958079 & 1.02559 & 0.899345 \\
\hline \(n-\) Pentane & 1.05214 & 0.936798 & 1.03220 & 0.860984 \\
\hline \(n-H e x a n e\) & 1.07738 & 0.920368 & 1.04925 & 0.837207 \\
\hline n-Heptane & 1.08744 & 0.921744 & 1.05967 & 0.818753 \\
\hline n-Nonane & 1.09674 & 0.937876 & 1.07753 & 0.799090 \\
\hline n-Decane & 1.11940 & 0.978290 & 1.08519 & 0.790355 \\
\hline
\end{tabular}

TABLE V-2

Summary of Deviations of Predicted Binary Mixture Densities and Methane K-Values from Experimental Data
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Second Component with Methane} & \multicolumn{4}{|l|}{Average Absolute Deviations, \%*} \\
\hline & \multicolumn{2}{|l|}{Modified van der Waals one-Fluid Mixing Rules} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Semiempirical \\
Exponent Mixing Rules
\end{tabular}} \\
\hline & Densities & K-Values & Densities & K-Values \\
\hline Ethane & 2.20 & 1.14 & 1.99 & 1.02 \\
\hline Propane & 0.94 & 1.14 & 1.02 & 0.84 \\
\hline n-Butane & 2.65 & 8.10 & 2.12 & 4.01 \\
\hline n -Pentane & 2.12 & 9.61 & 1.49 & 4.58 \\
\hline n -Hexane & -- & 17.9 & -- & 5.97 \\
\hline n-Heptane & 3.57 & 13.6 & 3.07 & 8.77 \\
\hline n -Nonane & 1.41 & 16.1 & 2.55 & 2.15 \\
\hline n -Decane & 4.34 & 20.5 & 5.41 & 5.45 \\
\hline
\end{tabular}
\({ }^{*}\) Average Absolute Deviation, \% (AAD \%) \(\left.=\frac{\sum_{N}}{N} \right\rvert\,\) (Exp. Calc.)/Exp.|x 100/N
the lumping of the collective effects of molecular anisotro. pies into a single term, characterized by a single orientation parameter, \(\gamma\), (3) the first order truncation of the conformal solution expansion of the Helmholtz free energy, and (4) the choices made for the exponents in the mixing rules for the reference system characterization parameters \(\sigma_{x}, \varepsilon_{x}\) and \(\delta_{x}\). Because of the success of the formulation for predicting pure fluid properties, even as heavy as normal decane, the first two approximations appear adequate for practical industrially oriented correlations such as that utilized herein. Although the third approximation has been shown to be poor for binary mixtures of hard sphere molecuies with large size differences, the use of second order conformal solution theory introduces additional computational requirements which would slow practical calculations, especially multicomponent vapor-liquid equilibrium predictions. For these reasons, the fourth approximation was focused on and a first alternative to the modified van der Waals one-fluid mixing rules used above was considered.

\subsection*{5.2 Semiempirical Exponent Mixing Rules}

To determine if a significant level of improvement in predicted mixture properties over the van der Waals onefluid mixing rules is possible, the nine exponents in the general mixing rules for \(\sigma_{x}, \varepsilon_{x}\) and \(\delta_{x}\) in 巴quations (III-3), (III-4) and (III-5) could be determined empirically. However, all contact with the van der Waals one-fluid formulas might
be lost by such an approach. Therefore, the exponents \(k\), \(l\) and \(p\) were fixed at zero and nonlinear regression (20) was performed to determine the remaining exponents, starting the nonlinear regression with the van der Waals one-fluid values for the remaining exponents, i.e., \(m=3, q=1, r=3, u=2, v=2\), and \(\mathrm{w}=3\). Since the resultant fugacity expression is different from that presented earlier (41), the component fugacity is given here,
\[
\begin{align*}
& \ln \left(\frac{f_{i}}{x_{i} f_{i}^{0}}\right)=\left(1+\bar{V}_{i}\right) \frac{H-H^{0}}{R T}-\frac{S-S^{\circ}}{R}+\left(\bar{R}_{i}-\bar{V}_{i}\right)(Z-1) \\
& +\rho^{*}\left[B_{1, i}-\bar{B}_{2, i} T^{*-1}-B_{3, i} T^{*-3}+B_{9, i} T^{*^{-4}}-B_{11, i} T^{*-5}\right] \\
& +\frac{\rho *^{2}}{2}\left[\overline{\mathrm{~B}}_{5, \mathrm{i}}-\overline{\mathrm{B}}_{6, \mathrm{i}} \mathrm{~T}^{*-1}-\mathrm{B}_{\left.10, \mathrm{i}^{\mathrm{T}}{ }^{-2}\right]}\right. \\
& +\frac{\mathrm{p}^{5}}{5}\left(\overline{\mathrm{~B}}_{\left.7, \mathrm{i}^{\mathrm{T}^{*-1}}+\bar{B}_{12, \mathrm{i}^{\mathrm{T}^{-2}}}\right), ~()^{-2}}\right. \\
& +\bar{B}_{8, i^{T}} T^{-3}\left[1-e^{-B_{4} \rho * 2}-\frac{1}{2} B_{4} \rho^{* 2} e^{-B_{4} \rho * 2}\right] / B_{4} \tag{v-4}
\end{align*}
\]
where \(f_{i}^{0}\) is the standard-state fugacity, taken to be 1 , and the derivatives are:
\[
\begin{align*}
\bar{B}_{j, i} & \left.\equiv \frac{\partial B_{j}}{\partial n_{i}}\right|_{T, V, n_{k \neq i}} \\
& =\left.b_{j} \frac{\partial \gamma_{x}}{\partial n_{i}}\right|_{T, V, n_{k \neq i}} \\
& =b_{j} \gamma_{x}\left[\frac{4}{u}\left(\frac{\sum_{\alpha} x_{\alpha} \gamma_{\alpha \dot{i}}^{u} \varepsilon_{\alpha i_{-}}^{v} \sigma_{\alpha \dot{i}}^{w}}{\gamma_{x}^{u / 2} \varepsilon_{x}^{v} \sigma_{x}^{W}}-1\right)-\frac{2 W}{3 u} \bar{R}_{i}-\frac{2 v}{u} \bar{V}_{i}\right] \tag{V-5}
\end{align*}
\]
\[
\begin{align*}
\bar{R}_{i} & =\left.\frac{1}{\rho^{*}} \frac{\partial \rho^{*}}{\partial n_{i}}\right|_{T, V, n_{k \neq i}} \\
& =\frac{6}{m}\left[\frac{\sum_{\alpha} x_{\alpha} \sigma_{\alpha i}^{m}}{\sigma_{x}^{m}}-1\right] \tag{v-6}\\
\bar{V}_{i} & =-\left.\frac{1}{T^{*}} \frac{\partial T^{*}}{\partial n_{i}}\right|_{T, V, n_{k \neq i}} \\
& =\frac{2}{q}\left[\frac{\sum_{\alpha} x_{\alpha} \varepsilon_{\alpha i}^{q} \sigma_{\alpha i}^{r}}{\varepsilon_{x}^{q} \sigma_{x}^{r}}-1\right]-\frac{r}{3 q} \bar{R}_{i} \tag{V-7}
\end{align*}
\]
where \(m, q, r, u, v\) and \(w\) are the exponents in Eqs. (III-3) -(III-5). The above equations are on the basis of 1 mole of mixture. Available density, enthalpy and vapor-liquid equilibrium data for the eight binary systems in Table V-2 were used to determine the revised exponent values. The following scheme provided the present set of the optimum values:
1. Starting with the binary interaction parameters used with the modified VDW one-fluid mixing rules and using the same exponents set forth in Eqs. (III-6), (III-7) and (III16) \((\mathrm{m}=3.0, \mathrm{q}=1.0, \mathrm{r}=3.0, \mathrm{u}=2.0, \mathrm{v}=2.0, \mathrm{w}=3.0)\) as initial values, regression was done on \(\xi, v\), and \(m\).
2. Starting again with the same set of intial values employed in step 1 , regress on \(\zeta\), \(w\) and \(r\).
3. Taking each individual newly regressed parameter from step 1 and 2 and fixing \(q\) and \(u\) at 1.0 and 2.0 respectively, a new set of \(\xi, \zeta, m, q, r, u, v, w\) was obtained.
4. Regress on \(v, w, m\), and \(r\), holding the other parameters at the values obtained in step 3. It was found in step 4 that the exponent \(v\) turned out to be zero for three binary systems (methane with \(n\)-pentane, \(n\)-heptane and \(n\)-decane). Therefore, for the remaining two systems (methane with \(n\)-hexane and \(n\)-nonane) \(v\) was set to zero and step 4 was omitted. The deviations for these two systems, at completion of step 5 , were as small as when \(v\) was not fixed to zero and step 4 was carried out.
5. Regress \(w, m\) and \(r\).
6. Start to include \(\xi\) or \(\zeta\) one at a time with \(w, m\), and \(r\) in regression.
7. Repeat the above six steps for each of the following binary mixtures: methane with \(n\)-pentane, \(n\)-hexane, n-heptane, \(n\)-nonane and \(n\)-decane. This step provides the best set of \(\xi, \zeta, m, q, r, u, v, w\) for each methane binary system.
8. Regress \(w, m\) and \(r\) with \(u=2.0, q=1.0\) and \(v=0.0\) for the combined systems simultaneously. These systems consist of methane binaries with ethane through ndecane except n-octane. The initial values for the \(m, q, r, u, v, w\) were taken to be an average of the best exponents obtained in step 7 of the individual systems regressed for step 1 through step 6. They are \(m=3.12, q=1.0, r=3.98142, u=2.0, v=0.0\) and \(w=3.12\).

Values for \(\xi\) and \(\zeta\) were already obtained in step 6 . Step 8 supplies the optimum values of \(m, q, r, u, v\) and w applicable to all the eight binary systems (expressed as \(\overline{\mathrm{m}}, \overline{\mathrm{q}}, \overline{\mathrm{r}}, \overline{\mathrm{u}}, \overline{\mathrm{v}}, \overline{\mathrm{w}}\)): \(\overline{\mathrm{m}}=4.6917, \overline{\mathrm{q}}=1.0\), \(\bar{r}=4.5021, \bar{u}=2.0, \bar{v}=0.0, \bar{w}=3.79788\).
9. Regress \(\xi\) and \(\zeta\) again for each individual binary system with the optimum set (\(\overline{\mathrm{m}}, \overline{\mathrm{q}}, \overline{\mathrm{r}}, \overline{\mathrm{u}}, \overline{\mathrm{v}}, \overline{\mathrm{w}}\)).
- 10. Repeat steps 8 and 9 with the latest parameter values until no significant improvements appear in the deviations for the thermodynamic properties. This step completes determination of optimum values for \(m, q\), r, \(u\), \(v, w f o r ~ a l l ~ t h e ~ b i n a r y ~ s y s t e m s ~ a n d ~ a l s o ~ y i e l d s ~\) the optimum binary interaction parameters, \(\xi\) and \(\zeta\), for each individual binary system.

The optimum values of the exponents then are \(m=4.5255\), \(q=1.0, r=4.44271, u=2.0, v=0.0\), and \(w=3.4959\). Rounding off these exponents yields the following semiempirical exponent mixing rules,
\[
\begin{align*}
& \sigma_{x}^{4.5}=\sum_{i j} \sum_{i} x_{j} \sigma_{i j}{ }^{4.5} \tag{V-8}\\
& \varepsilon_{x} \sigma_{x}{ }^{4 \cdot 5}={\sum \sum \sum X_{i j}}^{x}{ }_{j} \varepsilon_{i j} \sigma_{i j}{ }^{4.5} \tag{V-9}\\
& \delta_{x}{ }^{2} \sigma_{x}{ }^{3.5}=\sum \sum x_{i j} x_{j} \delta_{i j}{ }^{2} \sigma_{i j}^{3.5} \tag{V-10}
\end{align*}
\]

The binary interaction parameters for use with the semiempirical exponent mixing rules are given in Table \(V-1\).

Table VII-2 shows binary parameters for additional fluid pairs. Summaries of deviations of predicted properties from experimental values using these semiempirical exponent mixing rules are given for binary systems in Table V-2. A complete summary of deviations of predicted properties for other mixtures in addition to the eight binary systems is presented in Table VII-5. The improvement in vapor-liquid equilibrium predictions is significant. The average absolute deviation of predicted methane \(K-v a l u e s\) from experimental data for the semiempirical exponent mixing rules is \(4.1 \%\) compared with \(11.0 \%\) for the modified van der Waals one-fluid mixing rules.

\section*{5:3 Evaluation of Vapor-Liquid Equilibrium Predictions} for Multicomponent Systems; Paraffin-Paraffin

Comparisons of predicted and experimental vapor-liquid equilibrium for ternary and quarternary systems are given in Tables \(V-3\) and \(V-4\), for both the semiempirical exponent and the modified van der Waals one-fluid mixing rules. The predicted results using the semiempirical exponent mixing rules with unlike interaction parameter correlations developed in Chapter VI are also given in these tables; analysis of the results will be made in Chapter VII. Vapor-liquid equilibrium predictions for additional multicomponent systems involving paraffin-paraffin interactions are treated in Chapter VII. For these systems, some of the binary interaction parameters are not available and thus the use of estimated

Summary of Deviations of Predicted Vapor-Liquid Phase Compositions for the System Methane-Ethane-Propane \({ }^{1}\)
(Subscripts 1, 2, 3, Respectively)

No. Data Points: 33
Temperature Range: -176--76 \({ }^{\circ} \mathrm{F}\)
Pressure Range: 32-800 psia
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mixing Rules & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(y_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline * & AAD \% & 4.75 & 3.80 & 3.90 & 1.145 & 7.25 & 15.05 \\
\hline * & \(A A D{ }^{2}\) & 0.00995 & 0.00687 & 0.00554 & 0.00786 & 0.00654 & 0.00138 \\
\hline * * & AAD \% & 4.56 & 3.62 & 3.79 & 1.152 & 6.92 & 16.38 \\
\hline ** & AAD & 0.00956 & 0.00653 & 0.00570 & 0.00795 & 0.00650 & 0.00151 \\
\hline \(\because * *\) & AAD \% & 8.14 & 6.01 & 5.59 & 1.43 & 9.02 & 17.67 \\
\hline \(\# * *\) & AAD & 0.01826 & 0.01144 & 0.00977 & 0.00979 & 0.00823 & 0.00163 \\
\hline
\end{tabular}
* Modified van der Waals one-fluid mixing rules.
** Semiempirical exponent mixing rules.
\(\because \%\) Semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12).
1 See Table VII-4 for data reference.
\({ }^{2}\) Average Absolute Deviation, \(A A D=\sum_{N}|E x p .-C a l c| /\).

TABLE V-4

Comparison of Predicted and Experimental *Vapor-Liquid Equilibrium
for the Four-Component Systems of Methane-Ethane-Propane-
n-Butane and Methane-Ethane-Propane-Isobutane
(Subscripts 1, 2, 3, 4, Respectively)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline System & T (\({ }^{\circ} \mathrm{F}\)) & P(psia) & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \({ }^{1} 4\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(y_{3}\) & \(\mathrm{y}_{4}\) \\
\hline Methane- & -60 & 204 & Expt. & 0.16 & 0.188 & 0.583 & 0.069 & 0.852 & 0.08 & 0.063 & 0.005 \\
\hline Ethane- & & & Calc \({ }^{1}\) & 0.184 & 0.186 & 0.562 & 0.0676 & 0.8869 & 0.0726 & 0.0396 & 0.00077 \\
\hline Propane- & & & Calc \({ }^{2}\) & 0.144 & 0.188 & 0.596 & 0.0718 & 0.8809 & 0.0779 & 0.0402 & 0.00093 \\
\hline n-Butane & & & Calc \({ }^{3}\) & 0.134 & 0.194 & 0.600 & 0.0724 & 0.8860 & 0.0731 & 0.0401 & 0.00079 \\
\hline Methane- & \(-60\) & 288 & Expt & 0.234 & 0.178 & 0.527 & 0.061 & 0.874 & 0.060 & 0.059 & 0.007 \\
\hline Ethane- & & & Calc \({ }^{1}\) & 0.271 & 0.170 & 0.499 & 0.0601 & 0.915 & 0.054 & 0.030 & 0.00064 \\
\hline Propane- & & & Calc? & 0.212 & 0.177 & 0.545 & 0.0659 & 0.910 & 0.058 & 0.031 & 0.00078 \\
\hline n-Butane & & & Calc \({ }^{3}\) & 0.197 & 0.183 & 0.553 & 0.0670 & 0.914 & 0.054 & 0.031 & 0.00066 \\
\hline Methane- & +20 & 200 & Expt. & 0.079 & 0.197 & 0.160 & 0.564 & 0.758 & 0.187 & 0.028 & 0.027 \\
\hline Ethane & & & Calc \({ }^{\text {d }}\) & 0.0977 & 0.180 & 0.1488 & 0.573 & 0.677 & 0.201 & 0.050 & 0.0715 \\
\hline Propane- & & & Calc \({ }^{2}\) & 0.0662 & 0.166 & 0.1558 & 0.612 & 0.663 & 0.210 & 0.051 & 0.075 \\
\hline Isobutane & & & Calc \({ }^{3}\) & 0.0703 & 0.163 & 0.1567 & 0.610 & 0.664 & 0.212 & 0.050 & 0.073 \\
\hline
\end{tabular}

\footnotetext{
* See Table VII-4 for data reference.

Modified van der Waals one-fluid mixing rules.
Semiempirical exponent mixing rules.
Semiempirical exponent mixing rules using the correlations given in
Eqs. (VI-10) - (VI-12).
}
values is required for mixture property predictions (e.g., assume to be unity).

In the calculations of vapor-liquid equilibrium, the binary interaction parameters for each binary pair in the multicomponent systems considered herein were taken from Tables VII-1 amd VII-2. Direct comparisons with experimental data for the methane-ethane-propane system are presented in Appendix \(A\). As shown in Tables \(V-3\) and \(V-4\), the semiempirical exponent mixing rules give better predictions of phase compositions for most components.

From inspection of Tables \(V-2, V-3\), and \(V-4\), it is obvious that for systems containing components heavier than propane, vapor-liquid equilibrium predictions are more accurate using the semiempirical exponent mixing rules rather than the van der Waals one-fluid mixing rules. Thus, from the point of view of practical industrial computations, the semiempirical nixing rules are recommended. It is difficult to ascertain the reasons for the magnitude of improvement in vapor-liquid predictions using the semiempirical exponent mixing rules instead of the modified van der Waals one-fluid mixing rules. It is probable that the semiempirical exponent mixing rules offset to some extent the truncation error in the approximation \(A=A_{x}\).

\section*{DEVELOPMENT OF UNLIKE INTERACTION PARAMETER CORRELATIONS}

The mixing rules in Chapter \(V\) require two binary interaction parameters, \(\xi_{i j}\), \(\zeta_{i j}\), to define the unlike interaction parameters, \(\sigma_{i j}\) and \(\varepsilon_{i j}\). The binary interaction parameters were empirically determined by means of multiproperty regression anlysis (82) on binary mixture thermodynamic property data. For multicomponent mixtures, the only required information is the binary interaction parameters and the characterization parameters for the pure components. However, for mixtures lacking binary mixture data, methods must be devised to estimate the binary interaction parameters in order to predict mixture properties.

The simplest method for estimating the unlike interaction parameters is to assume binary interaction parameters to be unity. In fact, when components are very similar in size and chemical nature, binary interaction parameters become very close to unity (e.g., \(n\)-hexane - \(n\)-heptane). In fortunately, small deviations from unity for the binary interaction parameters significantly affect the calculated properties, so that improvements are necessary over the unity assumption
for mixtures of dissimilar molecules. Therefore, the approach taken herein was to correlate the binary interaction parameters \(\xi_{i j}\) and \(\zeta_{i j}\) as functions of the pure fluid characterization parameters, \(\sigma_{i i}, \sigma_{j j}, \varepsilon_{i i}, \varepsilon_{j j}, \gamma_{i i}, \gamma_{j j}\) (or equivalently, \(\left.V_{c_{i}}, V_{c_{j}}, T_{c_{i}}, T_{c_{j}}, \gamma_{i}, \gamma_{j}\right)\).

The geometric mean is employed herein as the base formula for both \(\sigma_{i j}\) and \(\varepsilon_{i j}\), so that \(\xi_{i j}\) and \(\zeta_{i j}\) are multipliers for \(\left(\sigma_{i i} \sigma_{i j}\right)^{1 / 2}\) and \(\left(\varepsilon_{i i} \varepsilon_{j j}\right)^{1 / 2}\), respectively, to obtain \(\sigma_{i j}\) and \(\varepsilon_{i j}\). The reasons for adopting the geometric mean as the underlying unlike interaction parameter form are:
1. The geometric mean maintains consistency with the modified Berthelot rules used in the development of the semiempirical exponent mixing rules; 2. the modified Berthelot rules generally perform well for hydrocarbon mixtures. Two binary systems, methane with \(n\)-heptane and methane with \(n-\) decane, which are typical of highly dissimilar molecular sizes, were utilized in this investigation.

For the development of correlations for the unlike interaction parameters in the semiempirical exponent mixing rules, the binary mixtures in Table VII-4 are devided into five groups;
i. n-paraffins with n-paraffins;
ii. Hydrocarbons other than \(n\)-paraffins with \(n\)-paraffins;
iii. Carbon dioxide with hydrocarbons;
iv. Hydrogen sulfide with hydrocarbons and carbon dioxide;
v. Nitrogen with hydrocarbons, carbon dioxide and hydrogen sulfide.

\subsection*{6.1 Correlation for Hydrocarbons}

\subsection*{6.1.1 n-Paraffins with n-Paraffins}

Numerous types of formulas in terms of \(T_{c_{i}}, V_{a_{i}}\), and \(\gamma_{i}\) have been attempted to find a best fit to a collection of binary mixture data for methane with n-paraffin hydrocarbons up to \(n\)-decane by multiproperty regression analysis (82). As a result of extensive comparisons of the formulas, it has been found that the following relationships provide low overall average absolute deviations for thermodynamic properties for the binaries of methane with \(n\)-paraffins and yet allow sensible values for the constants (\(a, b, c, d, e\), and \(f\)).
\[
\begin{align*}
& \xi_{i j}=\frac{\left(v_{c_{i}}^{1 / 3}+v_{c_{j}}^{1 / 3}\right)^{b}}{\left(v_{c_{i}}^{1 / 3} V_{c_{j}}^{1 / 3}\right)^{c}} \tag{VI-1}\\
& \zeta_{i j}=d \frac{\left(v_{c_{i}}^{1 / 3}+v_{c_{j}}^{1 / 3}\right)^{e}}{\left(v_{c_{i}}^{1 / 3} v_{c_{j}}^{1 / 3}\right)^{f}}
\end{align*}
\]

Eqs. (VI-1) and (VI-2) are the reciprocals of the forms found by Chueh and Prausnitz (13). The resulting equations for the unlike interaction parameters are
\[
\begin{align*}
& \sigma_{i j}=a \frac{\left(v_{c_{i}}{ }^{1 / 3}+v_{c_{j}}{ }^{1 / 3}\right)^{b}}{\left(v_{c_{i}} 1 / 3_{v_{c_{j}}} 1 / 3\right)^{c}} \sqrt{\sigma_{i i} \sigma_{j j}} \tag{VI-3}\\
& \varepsilon_{i j}=d \frac{\left(v_{c_{i}} 1 / 3+v_{c_{j}}{ }^{1 / 3}\right)^{e}}{\left(v_{c_{i}} 1 / 3 v_{c_{j}} 1 / 3\right)^{f}} \sqrt{\varepsilon_{i i} \varepsilon_{j j}} \tag{VI-4}\\
& \gamma_{i j}=1 / 2\left(\gamma_{i i}+\gamma_{j j}\right) \tag{VI-5}
\end{align*}
\]

For the binaries of methane with n-paraffins, the constants are: a = 0.433212; b = 1.1154; c = 0.5; \(\alpha=0.513663 ;\) e \(=\) 1.3203; \(\mathrm{f}=1.2659\). The overall average absolute deviation for the mole fraction of methane in the liquid phase in vaporliquid equilibrium (VLE) predicted with Eqs. (VI-3) - (VI-5) is \(7.64 \%\), compared with \(10.63 \%\) and \(5.09 \%\) using the modified van der Waals (VDW) one-fluid rules and the semiempirical exponent rules respectively, with individual (not generalized) binary interaction parameters, for 120 representative VLE data points for the binaries of methane with n-paraffins.
It is reasonable to assume that Eqs. (VI-3) - (VI-5)
developed for the binaries of methane with \(n\)-paraffins would work well for other paraffin binaries with adjustments of the six constants by means of multiproperty regression analysis. Indeed this is the case. For ethane binaries (ethane with propane and n-butane) the overall average absolute deviation
of ethane mole fractions in the liquid phase in VLE using Eqs. (VI-3) - (VI-5) with optimum constants is \(3.08 \%\) versus 2.99\% for the semiempirical exponent mixing rules using individual binary interaction parameters, for 30 VLE data points. For the binary of propane with \(n\)-butane, the overall average absolute deviation of propane mole fractions in the liquid phase in VLE using Eqs. (VI-3) - (VI-5) with optimum constants is \(1.06 \%\), versus \(1.04 \%\) for the semiempirical exponent mixing rules using individual binary interaction parameters, for 19 VLE data points. As can be noted from the results, variations on the six constants for paraffin binaries provide accurate predictions. However, for reasons illustrated below, adjustment of two constants instead of all six constants in Eqs. (VI-3) - (VI-5) is desirable. When the two coefficients, a and d, are evaluated using multiproperty regression analysis employing the values of the four exponents for the methane binaries, there is little sacrifice in accuracy of predictions for the ethane binaries and an acceptable loss in accuracy for the propane-n-butane binary. These results for the ethane and propane binaries suggest that the exponents, \(b, c, e\) and \(f\), can be fixed at the values determined for the methane binaries, while two coefficients (a and d) need further refinement. The binary interaction parameters for binaries of ethane and propane with n -paraffins for which binary mixture data are not available can thus be estimated through the use of Eqs. (VI-1) and (VI-2) with the coefficients a and d
determined from the limited data for these systems and the fixed exponents.

For other paraffin binaries where experimental data are either sparse or unavailable, a similar procedure can be utilized. For instance, n-heptane data available include three binary systems, \(n\)-heptane with \(n\)-octane, \(n\)-nonane, and n-decane, respectively, from which three pairs of binary interaction parameters can be determined. Therefore, the two constants \(a\) and \(d\) can be evaluated by fitting the binary interaction parameters for these three binaries. When this procedure was carried out, it was possible to estimate a and d for systems lacking data by interpolation of the values of \(a\) and \(d\). The results are given in Table VI-1.

Inspection of the coefficients a and \(d\) in Table VI-1 shows that the asymptotic behavior of a and \(d\) is apparent. The limiting values of \(a\) and \(d\) are 0.4 and 1.0 respectively, which make \(\xi_{i j}\) and \(\zeta_{i j}\) unity for \(n\)-decane. With this fact taken into account, a and d for all normal paraffin binaries can be correlated in terms of the characteristic parameters for the pure components. The following correlations provide a satisfactory fit of the coefficients a and \(d\) :
\[
\begin{equation*}
\mathrm{a}=0.4\left\{1+\alpha_{1}\left[\left(\mathrm{~T}_{\mathrm{c}_{10}}-\mathrm{T}_{\mathrm{c}_{\mathrm{i}}}\right) / \mathrm{T}_{\mathrm{c}_{10}}\right]^{\alpha_{2}}\right\} \tag{VI-6}
\end{equation*}
\]
\[
\begin{equation*}
\text { where } \alpha_{1}=0.12847 \text { and } \alpha_{2}=1.19103 \tag{VI-7}
\end{equation*}
\]
\[
\begin{equation*}
d=1-\beta_{1}\left(\gamma_{10}-\gamma_{i}\right)^{\beta_{2}} \tag{VI-8}
\end{equation*}
\]

Optimum Values of the Constants in Eqs. (VI-3) - (VI-4) and Eqs. (VI-1) - (VI-2) for Paraffin Binaries
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Binary } \\
& \text { System }
\end{aligned}+
\]} & \multicolumn{3}{|l|}{\[
\sigma_{i, j}=\left(a x^{b} / Y^{c}\right) \sqrt{\sigma_{i i}{ }^{\sigma} j i}
\]} & \multicolumn{3}{|r|}{} \\
\hline & a & b & c & d & e & \(f\) \\
\hline Methane & 0.433212 & 1.154 & 0.5 & 0.513663 & 1.3203 & 1.2659 \\
\hline Ethane & 0.423023 & 1.154 & 0.5 & 0.599219 & 1.3203 & 1.2659 \\
\hline \multirow[t]{3}{*}{Propane} & 0.416951 & 1.154 & 0.5 & 0.672510 & 1.3203 & 1.2659 \\
\hline & \multirow[b]{2}{*}{a} & \(=a X^{\text {b }}\) & & \multicolumn{3}{|c|}{\(\zeta_{\underline{i} \underline{j}}=d X^{e} / Y^{\text {f }}\)} \\
\hline & & b & c & d & e & \(f\) \\
\hline n-Butane & 0.412429 & 1.154 & 0.5 & 0.735506 & 1.3203 & 1.2659 \\
\hline n-Pentane & 0.409344 & 1.154 & 0.5 & 0.791870 & 1.3203 & 1.2659 \\
\hline n-Hexane & 0.406749 & 1.154 & 0.5 & 0.841150 & 1.3203 & 1.2659 \\
\hline n-Heptane & 0.404521 & 1.154 & 0.5 & 0.886194 & 1.3203 & 1.2659 \\
\hline n-Octane & 0.402722 & 1.154 & 0.5 & 0.927974 & 1.3203 & 1.2659 \\
\hline
\end{tabular}

TABLE VI-1
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & a & b & c & d & e & \(f\) \\
\hline \(n-N\) onane & 0.401596 & 1.154 & 0.5 & 0.964576 & 1.3203 & 1.2659 \\
\hline n -Decane & 0.4* & 1.154 & 0.5 & 1.0** & 1.3203 & 1.2659 \\
\hline
\end{tabular}
\(X=\left(v_{c_{i}} 1 / 3+v_{c_{j}}^{1 / 3}\right)\)
\(Y=\left(v_{c_{i}} 1 / 3 v_{c_{j}}^{1 / 3}\right)\)
*Calculated from Equation (VI-1) to make \(\xi_{i j}\) unj.ty.
**Galculated form Equation (VI-2) to make \(\zeta_{i j}\) unity.
tSecond component is any normal paraffin hydrocarbon heavier than compound indicated, up to normal decane.
where \(\beta_{1}=1.17365\) and \(\beta_{2}=1.17384\)
and 10 refers to \(n\)-decane. With the above results, the equations for the unlike interaction parameters \(\sigma_{i j}, \varepsilon_{i, j}\) and \(\gamma_{i j}\) for normal paraffin binary pairs become
\(\left.\sigma_{i j}=0.4\left\{1+\alpha_{1}\left[\left({ }^{T} c_{10}-T_{c_{i}}\right) / T_{c_{10}}\right]^{\alpha}\right\}^{\left(V_{c_{i}}{ }^{1 / 3}+V_{c_{j}}{ }^{1 / 3}\right)^{1.1154}} \frac{\left(V_{c_{i}} 1 / 3_{V_{c}} 1 / 3\right.}{}\right)^{0.5} \sqrt{\sigma_{i i} \sigma_{j j}}\)
with \(\alpha_{1}=0.12847\) and \(\alpha_{2}=1.19103\)
\(\varepsilon_{i j}=\left[1-\beta_{1}\left(\gamma_{10}-\gamma_{i}\right)^{\beta_{2}}\right] \frac{\left(V_{c_{i}}^{1 / 3}+V_{c_{j}}^{1 / 3}\right)^{1.3203}}{\left(V_{c_{i}} 1 / 3 V_{c_{j}} 1 / 3\right)^{1.2659}} \sqrt{\varepsilon_{i i^{\prime}} \varepsilon_{j j}}\)
with \(\beta_{1}=1.17365\) and \(\beta_{2}=1.17384\), and
\(\gamma_{i j}=1 / 2\left(\gamma_{i i}+\gamma_{j j}\right)\)
where i refers to the component with the smaller carbon number for paraffin binaries and 10 indicates \(n\)-decane. For \(n\)-paraffin hydrocarbon pairs heavier than \(n\)-decane, values of unity are to be used for \(\xi_{i j}\) and \(\zeta_{i j}\). Since \(\xi_{i j}\) and \(\zeta_{i j}\) are multipliers for \(\left(\sigma_{i i} \sigma_{j j}\right)^{1 / 2}\) and \(\left(\varepsilon_{i i} \varepsilon_{j}\right)^{1 / 2}\), respectively, in Eqs. (VI-10) and (VI-11), it follows that
\(\zeta_{i j}=\left[1.0-1.17365\left(\gamma_{10}-\gamma_{i}\right)^{1.17384}\right] \frac{\left(V_{c_{i}}^{1 / 3}+V_{c_{j}}^{1 / 3}\right)^{1.3203}}{\left(V_{c_{i}} 1 / 3_{V_{c_{j}}} 1 / 3\right)^{1.2659}}(V I-14)\)

Generalized binary interaction parameters from Eqs. (VI-13) and (VI-14) for use with the semiempirical exponent mixing rules are included in Table VII-3 and also plotted versus \(\left(V_{c_{i}} 1 / 3+V_{c_{j}}^{1 / 3}\right) /\left(V_{c_{i}} V_{c_{j}}\right)^{1 / 3}\) in Figures (VI-1)-(VI-4) along with individual binary interaction parameters to be used with the modified VDW one-fluid and the semiempirical exponent mixing rules. As illustrated in Figs. (VI-1) and (VI-2), individual binary interaction parameters for use with the semiempirical exponent mixing rules are rather smooth functions, whereas those for use with the modified VDW onefluid mixing rules show some scatter of the values.

\subsection*{6.1.2 Hydrocarbons Other Than n-Paraffin with n-}

\section*{Paraffins}

The constants in Eqs. (VI-3) and (VI-4) were also determined for binaries of normal paraffins with hydrocarbons other than n-paraffins. The hydrocarbons other than n-paraffins include isobutane, isopentane, ethylene, and propylene. Isobutane binaries included isobutane with methane, ethane, and propane; isopentane binaries included isopentane with methane and propane; ethylene binaries included ethylene with methane and ethane; propylene binaries included propylene

Fig. (VI-1) \(\xi_{i j}\) values for methane-n-paraffin binaries.
a. \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{6}\)
b. \(\mathrm{CH}_{4}-\mathrm{C}_{3} \mathrm{H}_{8}\)
c. \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}\)
d. \(\mathrm{CH}_{4}-\mathrm{n}^{-\mathrm{C}_{5} \mathrm{H}_{12}}\) g. \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{9} \mathrm{H}_{20}\)
e. \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}\)
f. \(\mathrm{CH}_{4}-\mathrm{n}^{-\mathrm{C}_{7} \mathrm{H}_{16}}\)
h. \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{22}\)
x Individual values for modified VDW one-fluid rules.
o Individual values for semiempirical exponent rules.
- Calculatad from Eq. (VI-14).

Fig. (VI-2) \(\zeta_{i j}\) values for methane-n-paraffin binaries.
a. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}\) b. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10} \quad\) c. \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}\) \(x \triangle\) Individual values for modified VDW one-fluid rules. oa Individual values for semiempirical exponent rules. - Calculated for ethane-n-paraffin from Eq. (VI-13).
-- Calculated for propane-n-paraffin from Eq. (VI-13).

Fig. (VI-3) \(\xi_{i j}\) values for ethane- and propane-n-paraffin binaries.
a. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}\)
b. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}\)
c. \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}\)
\(x \Delta\) Individual values for modified VDW one-fluid rules.
o Individual values for semiempirical exponent rules.
- Calculated for ethane-n-paraffin from Eq. (VI-14).
-- Calculated for propane-n-paraffin from Eq. (VI-14).

Fig. (VI-4) \(\zeta_{i j}\) values for ethane- and propane-n-paraffin binaries.
with ethane, propane and isobutane. The optimum values of the constants in Eqs. (VI-3) and (VI-4) for these binaries are presented in Table VI-2. Since these systems are very similar to \(n\)-paraffin binaries in chemical nature and molecular size, Eqs. (VI-10) - (VI-12) can be expected to be fairly accurate. This expectation is borne out by the results. The subscripts i's in Eqs. (VI-10) and (VI-11) now refer to isobutane, isopentane and unsaturated hydrocarbon with the least carbon atom number. The overall average absolute deviation for isobutane liquid phase mole fractions predicted using Eqs. (VI-3) - (VI-5) is \(5.54 \%\), compared with \(2.65 \%\) and \(1.81 \%\), using Eqs. (VI-10) - (VI-12) and individual binary interaction parameters, respectively (for 67 VLE data points). The isopentane liquid phase mole fraction average absolute deviation is \(4.90 \%\), versus \(4.40 \%\) and \(3.35 \%\) (for 57 VLE data points). The ethylene liquid phase mole fraction average absolute deviation is \(7.52 \%\), versus \(28.9 \%\) and \(7.54 \%\) (for 12 VLE data points). The propylene liquid phase mole fraction average absolute deviation is \(7.04 \%\), versus \(12.10 \%\) and \(3.48 \%\) (for 55 VLE data points). The binaries involving isobutane, isopentane, and propylene show satisfactory agreement for the predicted VLE results obtained using Eqs. (VI-3) - (VI-5) and Eqs. (VI-10) - (VI-12). For the ethylene binaries, only one system, ethane-ethylene, shows poor results for both Kvalues and phase compositions. The calculated values of binary interaction parameters from Eqs. (VI-13) and (VI-14)

TABLE VI-2

Optimum Values of the Constants in Eq. (VI-3) and (VI-4)
for Hydrocarbon and Nonhydrocarbon Binaries
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Binary } \\
& \text { System }
\end{aligned}+
\]} & \multicolumn{3}{|l|}{\(\sigma_{i, j}=\left(a x^{b} / y^{c}\right) \sqrt{\sigma_{i i} \sigma_{i j}}\)} & \multicolumn{3}{|r|}{\(\varepsilon_{i j}=\left(d X^{e} / Y^{f}\right) \sqrt{\varepsilon_{i j} \varepsilon_{j i j}}\)} \\
\hline & a & b & c & d & e & \(f\) \\
\hline Isobutane & 0.326879 & 1.465 & 0.564. & 0.119433 & 2.236 & 0.478 \\
\hline Isopentane & 0.616126 & 1.307 & 1.148 & 0.176591 & 1.998 & 0.654 \\
\hline Ethylene & 0.485957 & 1.429 & 1.211 & 0.328639 & 2.106 & 1.769 \\
\hline Propylene & 0.333008 & 1.409 & 0.507 & 0.470313 & 1.40 & 1.054 \\
\hline \(\mathrm{CO}_{2}\) with Hyarocarbons & 0.385675 & 1.304 & 0.522 & 0.446068 & 1.424 & 1.364 \\
\hline \(\mathrm{H}_{2} \mathrm{~S}\) with Hydrocarbons and \(\mathrm{CO}_{2}\) & 0.257337 & 1.906 & 0.930 & 0.290325 & 1.894 & 1.270 \\
\hline \begin{tabular}{l}
\(\mathrm{N}_{2}\) with \\
Hydrocarbons, \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\)
\end{tabular} & 0.437184 & 1.119 & 0.416 & 0.352267 & 1.685 & 1.373 \\
\hline \multicolumn{7}{|c|}{\[
\left.\begin{array}{ll}
X=\left(V_{c_{i}} 1 / 3+v_{c_{j}} 1 / 3\right.
\end{array}\right) \quad Y=\left(V_{c_{i}} 1 / 3 v_{c_{j}} 1 / 3\right)
\]} \\
\hline
\end{tabular}
are plotted versus \(\left(v_{c_{i}}{ }^{1 / 3}+V_{c_{j}}{ }^{1 / 3}\right) /\left(v_{c_{i}} V_{c_{j}}\right)^{1 / 3}\) in Figs. (VI-5) - (VI-8) along with individual binary interaction parameters.

\subsection*{6.2 Correlation for Carbon Dioxide with Hydrocarbons}

Binaries of carbon dioxide with hydrocarbons studied include carbon dioxide with methane, ethane, propane, \(n\)-butane, and isobutane, respectively. The optimum constants for Eqs. (VI-3) and (VI-4) are listed in Table VI-2. The overall average absolute deviation for carbon dioxide \(K\)-values predicted using Eqs. (VI-3) - (VI-5) for the binaries is \(6.91 \%\) compared with \(6.50 \%\) using the individual binary interaction parameters (for 121 VLE data points). Thus, Eqs. (VI-3) -(VI-5) show accuracy of predictions similar to that obtained from the binary parameters. The calculated values of binary interaction parameters from Eqs. (VI-1) and (VI-2) are plotted versus \(\left(v_{c_{i}}{ }^{1 / 3}+v_{c_{j}}{ }^{1 / 3}\right) /\left(v_{c_{i}} V_{c_{j}}\right)^{1 / 3}\) in Figs. (VI-9) and (VI-10) along with individual binary interaction parameters.

\subsection*{6.3 Correlation for Hydrogen Sulfide with Hydrocarbons and Carbon Dioxide}

Binaries of hydrogen sulfide with carbon dioxjde and hydrocarbons studied include hydrogen sulfide with methane, ethane, propane, isobutane and carbon dioxide. Table VI-2 shows the optimum constants for Eqs. (VI-3) and (VI-4). The overall average absolute deviation for hydrogen sulfide
\(x \Delta\) Individual values for modified VDW one-fluid rules.
or Individual values for semiempirical exponent rules.
- Calculated from Eq. (VI-13) for isobutane-n-paraffin.
-- Calculated from Eq. (VI-13) for isopentane-n-paraffin.

Fig. (VI-5) \(\xi_{i . j}\) values for isobutane- and isopentane-n-paraffin binaries.
\(x \Delta\) Individual values for modified VDW one-fluid rules.
or Individual values for semiempirical exponent rules.
- Calculated from Eq. (VI-14) for isobutane-n-paraffin.
-- Calculated from Eq. (VI-14) for isopentane-n-paraffin.

Fig. (VI-6) \(\zeta_{i j}\) values for isobutane- and isopentane-n-paraffin binaries.
a. \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{4}\)
c. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{6}\)
e. \(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{C}_{3} \mathrm{H}_{6}\)
b. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{2} \mathrm{H}_{4}\)
d. \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{C}_{3} \mathrm{H}_{6}\)
\(x \Delta\) Individual values for modified VDW one-fluid rules.
or Individual values for semiempirical exponent rules.
- Calculated for ethylene-n-paraffin from Eq. (VI-13).
-- Calculated for propylene-n-paraffin from Eq. (VI-13).

\[
\left(v_{c_{i}}^{1 / 3}+v_{c_{j}}^{1 / 3}\right) /\left(v_{c_{i}}^{1 / 3} v_{c_{j}}^{1 / 3}\right)
\]

Fig. (VI-7) \(\xi_{i j}\) values for ethylene- and propylene-nparaffin binaries.
a. \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{4}\)
b. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{2} \mathrm{H}_{4}\)
c. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{6}\)
d. \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{C}_{3} \mathrm{H}_{6}\)
e. \(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{C}_{3} \mathrm{H}_{6}\)
\(x \Delta\) Individual values for modified VDW one-fluid rules.
or Individual values for semiempirical exponent rules.
- Calculated for ethylene-n-paraffin from Eq. (VI-14).
-- Calculated for propylene-n-paraffin from Eq. (VI-14).

Fig. (VI-8) \(\zeta_{i j}\) values for ethylene- and propylene-nparaffin binaries.
a. \(\mathrm{CH}_{4}-\mathrm{CO}_{2}\)
b. \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{CO}_{2}\)
c. \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{CO}_{2}\)
d. \(\mathrm{nC}_{4} \mathrm{H}_{10}-\mathrm{CO}_{2}\)
e. \(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{CO}_{2}\)
x Individual values for modified VDW one-fluid rules.
o Individual values for semiempirical exponent rules.
- Calculated from Eq. (VI-1).

Fig. (VI-9) \(\xi_{i j}\) values for carbon dioxide-hydrocarbon binaries.
x Individual values for modified VDW one-fluid rules.
- Individual values for semiempirical exponent rules.
- Calculated from Eq. (VI-2).

Fig. (VI-10) \(\zeta_{i j}\) values for carbon dioxide-hydrocarbon binaries.

K-values predicted using Eqs. (VI-3) - (VI-5) for the binaries is \(11.83 \%\) compared with \(5.81 \%\) using the individual binary interaction parameters (for 147 VLE data points). Individual binary interaction parameters are plotted versus (\(V_{c_{i}}{ }^{1 / 3}+\) \(\left.V_{c_{j}} 1 / 3\right) /\left(V_{c_{i}} V_{c_{j}}\right)^{1 / 3}\) in Figs. (VI-11) and (VI-12) along with the calculated values of binary interaction parameters from Eqs. (VI-1) and (VI-2).

\subsection*{6.4 Correlation for Nitrogen with Hydrocarbons, Carbon}

\section*{Dioxide and Hydrogen Sulfide}

Binaries of nitrogen with carbon dioxide, hydrogen sulfide and hydrocarbons studied include nitrogen with methane, ethane, propane, n-butane, isobutane, carbon dioxide and hydrogen sulfide. The optimum constants for Eqs. (VI-3) and (VI-4) are given in Table VI-2. The overall average absolute deviation of nitrogen K-values predicted using Eqs. (VI-3) -(VI-5) for the binaries is \(10.84 \%\) compared with \(7.69 \%\) using the individual binary interaction parameters (for 201 VLE data points). The individual binary interaction parameters are plotted against \(\left(V_{c_{i}} .1 / 3+V_{c_{j}} 1 / 3\right) /\left(V_{c_{i}} V_{c_{j}}\right)^{1 / 3}\) in Figs. (VI-13) and (VI-14) along with the calculated values of binary interaction parameters from Eqs. (VI-1) and (VI-2).

\subsection*{6.5 Summary}

The correlations for the unlike interaction pair
parameters \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) given in Eqs. (VI-3) - (VI-5)
\(x\) Individual values for modified VDW onefluid rules.
- Individual values for semiempirical exponent rules.
- Calculated from Eq. (VI-1)

\(x\) Individual values for modified VDW one-fluid rules.
o Individual values for semiempirical exponent rules.
- Calculated from Eq. (VI-2).
1.11

Fig. (VI-12) \(\zeta_{i j}\) values for hydrogen sulfide-hydrocarbons and -carbon dioxide binaries.
\(x\) Individual values for modified VDW one-fluid rules.
- Individual values for semiempirical exponent rules.
- Calculated from Eq. (VI-1).

Fig. (VI-13) \(\xi_{i j}\) values for nitrogen-hydrocarbons, -carbon dioxide and -hydrogen sulfide binaries.
x Individual values for modified VDW one-fluid rules.
- Individual values for semiempirical exponent rules.
- Calculated from Eq. (VI-2).

Fig. (VI-14) \(\zeta_{i j}\) values for nitrogen-hydrocarbons, -carbon dioxide and -hydrogen sulfide binaries.
can be binary fluid pairs involving hydrocarbons, carbon dioxide, hydrogen sulfide and nitrogen. For the hydrocarbons, the six coefficients in Eqs. (VI-3) and (VI-4) have been correlated to yield the expressions for \(\sigma_{i j}\) and \(\varepsilon_{i j}\) in Eqs. (VI-12) and (VI-13) so that \(\sigma_{i j}\) and \(\varepsilon_{i j}\) can be estimated for hydrocarbon binary pairs for which there are no data available. For binary pairs involving the nonhydrocarbons, for which binary mixture data are not available, values of the consiants in EqS: (VI-3) and (VI-4) determined from the available data can be used. Predictions of thermodynamic behavior for each fluid studied in this chapter as well as multicomponent systems using the semiempirical exponent mixing rules with unlike interaction parameter correlations are summarized in Chapters VII and VIII along with those obtained using the modified VDW one-fluid and semiempirical exponent mixing rules (both using individual interaction parameters).

\section*{CHAPTER VII}

COMPARISONS OF PREDICTED BINARY MIXTURE THERMODYNAMIC BEHAVIOR WITH EXPERIMENTAL DATA

Comparison calculations of predicted binary mixture properties and vapor-liquid equilibrium (VLE) with experimental values for 39 binary systems are given in this chapter using the modified VDW one-fluid and the semiempirical exponent mixing rules respectively. Deviations of equilibrium vapor compositions from the experimental values for heavy components are listed as average absolute deviation (AAD) in the mole fractions rather than average absolute percentage deviations because the vapor phase mole fractions of heavy components are so small that percentage uncertainties become very large. The binary interaction parameters used are given in Tables VII-1 and VII-2. For the case of the semiempirical exponent mixing rules, the binary interaction parameters for binary pairs for which data are lacking can be generated from the correlations presented herein for \(\sigma_{i j}\) and \(\varepsilon_{i j}\) using only the characteristic properties for the pure components with a satisfactory level of accuracy. Tables VII-2 and VII-3 show
these generated binary interaction parameters. The systems studied, data types and data ranges utilized in the comparison studies are given in Table VII-4. The results are summarized in Table VII-5.

\subsection*{7.1. Hydrocarbons}
7.1.1 n-Paraffins with Methane

Comparisons of predicted and experimental properties for binaries of methane with \(n\)-paraffins have already been summarized in Chapter V for both the modified VDW one-fluid and the semiempirical exponent mixing rules using individual values for the unlike interaction parameters, \(\sigma_{i j}, \varepsilon_{i j}\), and \(\gamma_{i j}\). In this section, the predicted results from both mixing rules using individual values for \(\sigma_{i j}\) and \(\varepsilon_{i j}\) are compared with results obtained from the semiempirical exponent mixing rules using the correlations developed herein for \(\sigma_{i j}\) and \(\varepsilon_{i j}\). The relation for \(\gamma_{i j}\) stays the same as before, as given in Eq. (V-3) with \(\phi_{i j}\) fixed at unity.

For mixtures of light hydrocarbons of similar sizes, such as methane with ethane and propane, both the modified VDW one-fluid and the semiempirical exponent mixing rules yield accurate predictions of bulk properties as well as phase compositions. The overall average absolute deviations of densities, enthalpy departures and methane K-values for the methane binaries using the semiempirical exponent mixing rules are \(1.55 \%\), \(1.95 \mathrm{Btu} / \mathrm{lb}\) and \(0.95 \%\), respectively, compared
with \(1.63 \%\), 2.50 Btu/lb, \(1.14 \%\) for the modified VDW one-fluid mixing rules, and \(1.63 \%, 2.49 \mathrm{Btu} / \mathrm{lb}, 3.21 \%\) for the semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}{ }^{\text {e }}\) These results exhibit close agreement with experimental data of the two methane binaries for all three formulations. The pressurecomposition diagram for the methane-ethane system is shown in Fig. (VII-1) for graphicla comparisons.

As noted earlier in Chapter \(V\), calculations for mixtures of hydrocarbons of dissimilar sizes (methane binaries with n-butane, \(n\)-pentane,..., \(n\)-decane) have shown significant improvement in VLE predictions using the semiempirical exponent mixing rules instead of the modified VDW one-fluid mixing rules. The overall average absolute deviations of densities and methane K-values for the binaries of methane with n-butane and heavier components up to \(n\)-decane using the semiempirical exponent mixing rules are \(2.65 \%\) and \(5.13 \%\), respectively, compared with \(2.65 \%\) and \(13.61 \%\) for the modified VDW one-fluid rules, and \(2.95 \%\) and \(9.47 \%\) for the semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) -(VI-12) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\). All three formulations predict densities accurately. The overall average absolute deviations of methane mole fractions in the liquid phase in VLE for the methane binaries with the heavy components show results very simil.ar to K-values for each formulation. The average absolute deviations of methane K-values for individual binary systems

Fig. (VII-1) The P-X diagram of the methane-ethane system at \(334.97^{\circ} \mathrm{R}\).
range from \(2.15 \%\) (methane-nonane) to \(8.77 \%\) (methane-n-heptane) using the semiempirical exponent mixing rules; from \(8.10 \%\) (methane-n-butane) to \(20.5 \%\) (methane-n-decane) for the modified VDW one-fluid mixing rules; and from \(5.83 \%\) (methane-n-hexane) to \(11.7 \%\) (methane-n-decane) for the semiempirical exponent mixing rules with the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) used. These results indicate that the semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) yield higher accuracy phase compositions than the modified VDW one-fluid mixing rules. The comparisons of predicted phase compositions for the methane-n-hexane system can be seen on pressure-composition diagram (Fig. VII-2).

\subsection*{7.1.2 Paraffins with Paraffins}

The systems studied included ethane with propane and n-butane, propane-n-butane, \(n\)-butane-n-decane, isobutane with methane, ethane, and propane, and isopentane with methane and propane. The overall average absolute deviations of densities, enthalpy departures, and K-values of the light components for the ethane, propane, and n-butane binaries using the semiempirical exponent mixing rules are 1.74\%, 2.58 Btu/lb and \(2.99 \%\), respectively, compared with \(1.60 \%\), \(2.77 \mathrm{Btu} / \mathrm{lb}\) and \(2.53 \%\) for the modified VDW one-fluid mixing rules, and \(3.19 \%, 3.68 \mathrm{Btu} / \mathrm{lb}\) and \(3.78 \%\) for the semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12) for \(\sigma_{i j}, \varepsilon_{i j}, \gamma_{i j}\). The overall average

Fig. (VII-2) The P-X diagram of the methane-n-hexane system at \(491.69^{\circ}\).
absolute deviations of densities and K-values (of isobutane and isopentane) for the isobutane and isopentane binaries using the semiempirical exponent mixing rules are \(2.78 \%\) and \(4.27 \%\), respectively, compared with \(2.41 \%\) and \(4.29 \%\) for the modified VDW one-fluid mixing rules, and \(2.32 \%\) and \(6.00 \%\) for the semiempirical exponent mixing rules with the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\). Thus, each of the three formulations shows accurate predictions of densities, enthalpy departures, and VLE data.

\subsection*{7.1.3 Paraffins with Unsaturated Hydrocarbons}

Ethylene with methane and ethane and propylene with ethane, propane, and isobutane were examined. The overall average absolute deviations of densities and mole fractions of paraffin hydrocarbons in the liquid phase for these five binaries using the semiempirical exponent mixing rules are \(0.85 \%\) and \(1.95 \%\), respectively, compared with \(0.84 \%\) and \(2.06 \%\) for the modified VDW one-fluid mixing rules, and \(2.12 \%\) and \(13.2 \%\) for the semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(Y_{i j}\). The overall average absolute deviations of \(K\)-values for ethylene and propylene using the semiempirical exponent mixing rules are \(2.02 \%\), compared with \(2.20 \%\) for the modified VDW one-fluid mixing rules, and \(10.99 \%\) for the semiempirical exponent mixing rules with the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(Y_{i j}\). Both the semiempirical exponent and the modified VDW one-fluid mixing rules accurately predict densities as well
as VLE. Using the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) appearing in the semiempirical exponent mixing rules, the overall deviation of the predicted K-values is higher but acceptable for engineering calculations. Poor predictions of ethylene K-values for the ethane-ethylene system increase the overall deviation of the K-values for the five binary systems.

\subsection*{7.2 Nonhydrocarbons with Paraffin Hydrocarbons}

For binaries of carbon dioxide with methane, ethane, propane, \(n\)-butane and isobutane, the overall average absolute deviations of densities and carbon dioxide \(K\)-values using the semiempirical exponent mixing rules are \(1.65 \%\) and \(6.50 \%\) respectively compared with \(1.22 \%\) and \(3.06 \%\) for the modified VDW one-fluid mixing rules and \(1.51 \%\) and \(6.91 \%\) for the semiempirical exponent mixing rules using the correlations given in Eqs. (VI-3) - (VI-5) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\). The results indicate accurate predictions of densities using all three formulations. For predicted phase compositions, the modified VDW one-fluid mixing rules show better predictions than other two formulations. The average absolute deviations of carbon dioxide \(K\)-values range from \(3.01 \%\) (methane-carbon dioxjde) to \(9.80 \%\) (n-butane-carbon dioxide) using the semiempirical exponent mixing rules; from \(1.78 \%\) (isobutane-carbon dioxide) to \(7.33 \%\) (ethane-carbon dioxide) using the modified VDW onefluid rules; from \(3.04 \%\) to \(10.1 \%\) (n-butane-carbon dioxide) using the correlations for \(\sigma_{i j}\) and \(\varepsilon_{i j}\) in the semiempirical
exponent mixing rules. Table VII-5 shows that both the semiempirical exponent mixing rules with the correlations given in Eqs. (VI-3) - (VI-5) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) and the semiempirical mixing rules with individual \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) are satisfactory for prediction of phase compositions for indjvidual binaries of the carbon dioxide systems.

Hydrogen sulfide binaries used in comparison calculat tions include methane, ethane, propane, and isobutane. The overall average absolute deviations of densities and hydrogen sulfide \(K\)-values using the semiempirical exponent mixing rules are \(1.87 \%\) and \(7.23 \%\), respectively, compared with \(1.86 \%\) and 4.28\% for the modified VDW one-fluid mixing rules, and 2.96\% and \(12.01 \%\) for the semiempirical exponent mixing rules using the correlations given in Eqs. (VI-3) - (VI-5), for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\). Densities are accurately predicted using all three formulations. The average absolute deviations of hydrogen sulfide \(K\)-values range from \(2.23 \%\) (hydrogen sulfide-methane) to \(11.9 \%\) (isobutane-hydrogen sulfide) using the semiempirical exponent mixing rules; from \(1.61 \%\) (hydrogen sulfide-methane) to \(6.94 \%\) (propane-hydrogen sulfide) for the modified VDW one-fluid mixing rules; from \(2.85 \%\) (ethane-hydrogen sulfide) to \(16.6 \%\) (propane-hydrogen sulfide) for the semiempirical exponent mixing rules using the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\). Table VII-5 shows that both the modified VDW onefluid and the semiempirical exponent mixing rules provide reasonably good descriptions of phase compositions for
individual binaries involving hydrogen sulfide. On the other hand, the semiempirical exponent mixing rules using the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) show somewhat poor predictions of phase compositions. Since the K-value deviations for the paraffin hydrocarbons for the hydrogen sulfide binaries range from \(4.05 \%\) to \(9.65 \%\), they are predicted with reasonable accuracy for engineering practice using the semiempirical exponent mixing rules with the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\).

For binaries of nitrogen with methane, ethane, propane, n-butane and isobutane, the overall average absolute deviations of densities and nitrogen \(K\)-values using the semiempirical. exponent mixing rules is \(2.16 \%\) and \(7.69 \%\), respectively, compared with \(2.23 \%\) and \(10.99 \%\) for the modified VDW one-fluid mixing rules, and \(2.25 \%\) and \(10.84 \%\) for the semiempirical exponent mixing rules using the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\). Density predictions are accurate for all three formulations. For predicted phase compositions, the semiempirical exponent mixing rules show the best predictions. The average absolute deviations of nitrogen \(K-v a l u e s ~ r a n g e ~ f r o m ~ 3.28 \% ~(m e t h a n e-~\) nitrogen) to \(13.6 \%\) (n-butane-nitrogen) using the semiempirical exponent mixing rules; from \(4.50 \%\) (ethane-nitrogen) to \(17.7 \%\) (propane-nitrogen) for the modified VDW one-fluid mixing rules; from \(5.21 \%\) (methane-nitrogen) to \(14.4 \%\) (propane-nitrogen) for the semiempirical mixing rules using the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\). The results show that the semiempirical
exponent mixing rules are satisfactory to predict phase compositions of individual binaries for the nitrogen systems. Both the modified VDW one-fluid mixing rules and the semiempirical exponent mixing rules with the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) show somewhat poor predictions of phase compositions. However, the semiempirical exponent mixing rules using the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) can be used for the nitrogen binaries since the accuracy is adequate for engineering calculations.

\subsection*{7.3 Nonhydrocarbons with Nonhydrocarbons}

The systems studied involve nonhydrocarbon-nonhydrocarbon binary interactions among nitrogen, carbon dioxide, and hydrogen sulfide. Phase composition predictions in Table VII-5 were analyzed for the hydrogen sulfide-carbon dioxide and hydrogen sulfide-nitrogen systems while density predictions were examined for these systems and the nitrogen-carbon dioxide systems.

Both the semiempirical exponent and modified VDW onefluid mixing rules show accurate density predictions. The former indicates 1.38 AAD\% (nitrogen-carbon dioxide) to 3.04 AAD\% (hydrogen sulfide-carbon dioxide) and the latter exhibits 1.23 AAD\% (nitrogen-carbon dioxide) to 3.23 AAD\% (hydrogen sulfide-carbon dioxide). The semiempirical exponent mixing rules using the correlations given in Eqs. (VI-3) - (VI-5) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) show less accurate densities for the mixtures containing carbon dioxide, with 11.2 AAD for the
hydrogen sulfide-carbon dioxide system and 5.61 AAD\% for the nitrogen-carbon dioxide system.

For vapor-liquid equilibrium predictions, the semiempirical exponent mixing rules show deviations ranging from 1.58 AAD\% for hydrogen sulfide K-values in the hydrogen sulfidecarbon dioxide system to \(14.0 \mathrm{AAD} \%\) for hydrogen sulfide \(\mathrm{K}-\) values in the hydrogen sulfide-nitrogen system; the modified VDW one-fluid mixing rules exhibit from \(1.55 \mathrm{AAD} \%\) for hydrogen sulfide K -values in the hydrogen sulfide-carbon dioxide system to \(24.90 \mathrm{AAD} \%\) for nitrogen K -values in the hydrogen sulfidenitrogen system; the semiempirical exponent mixing rules with the correlations used for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) yield deviations from \(4.20 \mathrm{AAD} \%\) for hydrogen sulfide \(K\)-values in the hydrogen sulfide-carbon dioxide system to 24.6 AAD for carbon dioxide K-values in the hydrogen sulfide-carbon dioxide system. Both the semiempirical exponent and modified VDW one-fluid mixing rules show similar accuracy for VLE predictions for the hydrogen sulfide-carbon dioxide system. For the hydrogen sulfidenitrogen system, the semiempirical exponent mixing rules predict more accurate nitrogen \(K\)-values (12.3 AAD\%) than the modified VDW one-fluid mixing rules (24.9 AAD\%) but yield poorer predictions for hydrogen sulfide \(K\)-values (14.0 AAD\% compared with 4.64 AAD\%).

Using the semiempirical exponent mixing rules with the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) employed, carbon dioxide K-values and nitrogen \(K\)-values are poorly predicted (24.6 AAD\%
and \(23.3 \mathrm{AAD} \%\), respectively) while the hydrogen sulfide \(\mathrm{K}-\) values of \(4.20 \mathrm{AAD} \%\) to \(5.43 \mathrm{AAD} \%\) are acceptable. These results suggest that the correlations for \(\sigma_{i j}\) and \(\varepsilon_{i j}\) developed herein should be used only as rough guides for the values of the unlike interaction parameters for nonhydrocarbon-nonhydrocarbon pairs.

Binary Interaction Parameters*(84) for Use with the Modified VDW One-Fluid Mixing Rules

*The numbers in () are estimated values.
Those in [] are suggested values to be used with caution.

Binary Interaction Parameters* for Use with the Semiempirical
Exponent Mixing Rules

*The values in () are generated from the unlike interaction parameter correlations given in Eqs. (VI-10) - (VI-12).

Those in [] are generated from the unlike interaction parameter correlations given in Eqs. (VI-3) - (VI-5).

TABLE VII-3*

Estimated Binary Interaction Parameters**
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { Components } \\
& (1) \quad(2)
\end{aligned}
\] & \(\xi_{12}\) & \({ }^{5} 12\) \\
\hline \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{6}\) & 0.999753 & 0.976663 \\
\hline \(\mathrm{CH}_{4}-\mathrm{C}_{3} \mathrm{H}_{8}\) & 1.01284 & 0.924594 \\
\hline \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}\) & 1.02565 & 0.886754 \\
\hline \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}\) & 1.03768 & 0.858308 \\
\hline \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}\) & 1.04899 & 0.835827 \\
\hline \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{16}\) & 1.05967 & 0.817415 \\
\hline \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{O}\) & 1.07909 & 0.789136 \\
\hline \(\mathrm{CH}_{4}-\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{22}\) & 1.08808 & 0.777827 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}\) & 0.992562 & 1.01207 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}\) & 1.00206 & 0.967259 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}\) & 0.992936 & 1.00513 \\
\hline \(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}-\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{22}\) & 1.02142 & 0.876107 \\
\hline \(\mathrm{CH}_{4}-\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{10}\) & 1.02745 & 0.882154 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{10}\) & 1.00341 & 0.961811 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{i}-\mathrm{C} 4 \mathrm{H}_{10}\) & 0.993986 & 0.999134 \\
\hline \(\mathrm{CH}_{4}-\mathrm{i}-\mathrm{C}_{5} \mathrm{H}_{12}\) & 1.03705 & 0.859679 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{i}-\mathrm{C}_{5} \mathrm{H}_{12}\) & 0.999792 & 0.969813 \\
\hline \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{4}\) & 0.993481 & 1.01019 \\
\hline
\end{tabular}

TABLE VII-3*
(Continued)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { Components } \\
& (1)(2)
\end{aligned}
\] & \(\xi_{12}\) & \(\zeta_{12}\) \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{2} \mathrm{H}_{4}\) & 0.979521 & 1.11346 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{6}\) & 0.989223 & 1.03174 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{C}_{3} \mathrm{H}_{6}\) & 0.983465 & 1.07621 \\
\hline \(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{C}_{3} \mathrm{H}_{6}\) & 0.985016 & 1.06749 \\
\hline \(\mathrm{CH}_{4} \mathrm{CCO}_{2}\) & 0.989159 & 0.989601 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{CO}_{2}\) & 1.01002 & 0.911431 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{CO}_{2}\) & 1.03004 & 0.859826 \\
\hline \(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}-\mathrm{CO}_{2}\) & 1.04894 & 0.822463 \\
\hline \(\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{10}-\mathrm{CO}_{2}\) & 1.05154 & 0.817930 \\
\hline \(\mathrm{H}_{2} \mathrm{~S}-\mathrm{CH}_{4}\) & 0.971047 & 0.980905 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{H}_{2} \mathrm{~S}\) & 0.979027 & 0.944669 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{H}_{2} \mathrm{~S}\) & 0.990596 & 0.923143 \\
\hline \(\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{10}-\mathrm{H}_{2} \mathrm{~S}\) & 1.00536 & 0.907684 \\
\hline \(\mathrm{H}_{2} \mathrm{~S}-\mathrm{CO}_{2}\) & 0.970572 & 0.986874 \\
\hline \(\mathrm{CH}_{4}-\mathrm{N}_{2}\) & 0.988300 & 0.977760 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{N}_{2}\) & 1.01095 & 0.916516 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{N}_{2}\) & 1.03183 & 0.876907 \\
\hline \(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}{ }^{-\mathrm{N}_{2}}\) & 1.05110 & 0.848793 \\
\hline i \(-\mathrm{C}_{4} \mathrm{H}_{10}-\mathrm{N}_{2}\) & 1.05373 & 0.845421 \\
\hline
\end{tabular}

\section*{TABLE VII-3*}
(Continued)
\begin{tabular}{lcc}
\begin{tabular}{l}
Components \\
\((1)\)
\end{tabular} & \(\xi_{12}\) & \(\zeta_{12}\) \\
\hline \(\mathrm{~N}_{2}-\mathrm{CO}_{2}\) & 0.985493 & 0.987451 \\
\(\mathrm{H}_{2} \mathrm{~S}-\mathrm{N}_{2}\) & 0.986008 & 0.985627 \\
\hline
\end{tabular}
*This table lists only the binary mixtures whose predicted properties have been compared herein in Chapter VII.
**The estimated values are obtained from the correlations in Chapter VI (the corresponding individual values are shown in Table VII-2).

TABLE VII-4

Data Used for Comparison of Predicted Properties for Study of Mixing Rules and Unlike Interaction Parameter Correlations (\(\rho=\) Density, \(H-H^{\circ}=\) Enthalpy Departure, VLE=Vapor-Liquid Equilibrium)
\begin{tabular}{|c|c|c|c|c|c|}
\hline System Components & Property & Data Points & \[
\begin{gathered}
\text { Temperature } \\
\text { Range } \\
\left({ }^{\circ} \mathrm{F}\right)
\end{gathered}
\] & Pressure Range psia & Ref. \\
\hline \multirow[t]{2}{*}{\(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{6}\)} & \(\rho\) & 92 & 70~ 250 & 200~3000 & 75 \\
\hline & VLE & 73 & -225~-100 & 28~ 919 & 92 \\
\hline \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{4}\) & \(\rho\) & 90 & 77~ 167 & 153~11998 & 43 \\
\hline \multirow{3}{*}{\(\mathrm{CH}_{4}-\mathrm{-C}_{3} \mathrm{H}_{8}\)} & \(\rho\) & 76 & -238~ 32 & 500~5000 & 75 \\
\hline & \(\mathrm{H}-\mathrm{H}^{\text {O }}\) & 84 & -250~ 250 & 500~ 2000 & 83 \\
\hline & VLE & 51 & \(-175 \sim-7.5\) & 26~ 708 & 92 \\
\hline \multirow[t]{2}{*}{\(\mathrm{CH}_{4}-\mathrm{nCS}_{4} \mathrm{H}_{10}\)} & \(\stackrel{\rho}{\text { ¢ }}\) & 55 & 70~130 & 40~10000 & 75
33 \\
\hline & VLE & 67 & -160~ 50 & 20~ 1597 & 33 \\
\hline \multirow[t]{2}{*}{\(\mathrm{CH}_{4}-\mathrm{iC} 4 \mathrm{H}_{10}\)} & \(\stackrel{\rho}{\text { VLe }}\) & 67
31 & 100~ 220 & 80~ 1600 & 52
52 \\
\hline & , & & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{CH}_{4}-\mathrm{nC}_{5} \mathrm{H}_{12}\)} & \(\rho\) & 64 & 100~ 400 & 200~ 5000 & 74 \\
\hline & VLE & 39 & -142~ 32 & 50~ 2000 & 74 \\
\hline \multirow[t]{2}{*}{\(\mathrm{CH}_{4}-\mathrm{iC}_{5} \mathrm{H}_{12}\)} & & & & & \\
\hline & VLE & 41
19 & \(126 \sim 329\)
\(160 \sim 280\) & \(200 \sim 1400\)
\(400 \sim 1000\) & 2
2 \\
\hline
\end{tabular}

TABLE VII-4
(Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline System Components & Property & Data Points & Temperature
Range
\(\left(\mathrm{O}_{\mathrm{F}}\right)\) & Pressure Range psia & Ref. \\
\hline \(\mathrm{CH}_{4}-\mathrm{nC}_{6} \mathrm{H}_{14}\) & VLE & 33 & -117~ 32 & 25~ 2550 & 12 \\
\hline \(\mathrm{CH}_{4}-\mathrm{nC}_{7} \mathrm{H}_{16}\) & \[
\stackrel{p}{\text { VLE }}
\] & \[
\begin{aligned}
& 40 \\
& 41
\end{aligned}
\] & \(40 \sim\)
\(-100 \sim\) & \[
\begin{aligned}
& 304 \sim 9984 \\
& 100 \sim 2250
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 11
\end{aligned}
\] \\
\hline \(\mathrm{CH}_{4}-\mathrm{nC}_{9} \mathrm{H}_{2} \mathrm{O}\) & VLE & \[
\begin{aligned}
& 62 \\
& 32
\end{aligned}
\] & \[
\begin{array}{cc}
-58 \sim & 302 \\
32 & 302
\end{array}
\] & \[
\begin{array}{ll}
147 \sim & 2646 \\
294 & 1764
\end{array}
\] & \[
\begin{aligned}
& 78 \\
& 78
\end{aligned}
\] \\
\hline \(\mathrm{CH}_{4}{ }^{-n \mathrm{C}} 10{ }^{\mathrm{H}} 22\) & \(\stackrel{\rho}{\text { VLE }}\) & \[
\begin{aligned}
& 43 \\
& 44
\end{aligned}
\] & \[
\begin{array}{ll}
100 \sim & 460 \\
100 \sim & 460
\end{array}
\] & \[
\begin{array}{r}
1000 \sim 9000 \\
100 \sim 4000
\end{array}
\] & \[
\begin{aligned}
& 58 \\
& 58
\end{aligned}
\] \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{2} \mathrm{H}_{4}\) & VLE & 12 & -424~-211 & 36~ 249 & 26 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}\) & \[
\underset{\mathrm{VLE}}{\mathrm{H}-\mathrm{H}^{\mathrm{O}}}
\] & \[
\begin{aligned}
& 46 \\
& 11
\end{aligned}
\] & \[
\begin{array}{r}
-240 \sim 240 \\
-40 \sim
\end{array}
\] & \[
\begin{array}{r}
250 \sim \\
2000 \\
20 \sim
\end{array}
\] & \[
\begin{aligned}
& 54 \\
& 24
\end{aligned}
\] \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{6}\) & \[
\stackrel{\rho}{\text { VLE }}
\] & \[
\begin{aligned}
& 50 \\
& 23
\end{aligned}
\] & \[
\begin{aligned}
& 10 \sim 400 \\
& 10 \sim 160
\end{aligned}
\] & \[
\begin{aligned}
& 600 \sim 9000 \\
& 100 \sim \quad 722
\end{aligned}
\] & \[
\begin{aligned}
& 49 \\
& 49
\end{aligned}
\] \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{nC}_{4} \mathrm{H}_{10}\) & \[
\stackrel{\rho}{\text { VL.E }}
\] & \[
\begin{aligned}
& 49 \\
& 19
\end{aligned}
\] & \[
\begin{array}{r}
62 \sim 272 \\
150 \sim 250
\end{array}
\] & \[
\begin{aligned}
75 \sim & 625 \\
470 \sim & 805
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 50
\end{aligned}
\] \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{iC} 4 \mathrm{H}_{10}\) & VL \({ }^{\text {L }} \mathrm{E}\) & \[
\begin{aligned}
& 65 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 100 \sim 249 \\
& 100 \sim 220
\end{aligned}
\] & \[
\begin{aligned}
& 155 \sim \\
& 155 \sim \\
& \sim
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE VII-4
(Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline System Components & Property & \[
\begin{aligned}
& \text { Data } \\
& \text { Points }
\end{aligned}
\] & Temperature Range (\({ }^{\circ} \mathrm{F}\)) & Pressure Range psia & Ref. \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{C}_{3} \mathrm{H}_{6}\) & VLE & \[
\begin{aligned}
& 50 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 10 \sim 400 \\
& 10 \sim 100
\end{aligned}
\] & \[
\begin{array}{r}
150 \sim 5000 \\
52 \sim 206
\end{array}
\] & \[
\begin{aligned}
& 59 \\
& 59
\end{aligned}
\] \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{nC}_{4} \mathrm{H}_{10}\) & \(\stackrel{\rho}{\text { VLE }}\) & \[
\begin{aligned}
& 80 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 163 \sim 289 \\
& 194 \sim 248
\end{aligned}
\] & \[
\begin{array}{ll}
225 \sim & 600 \\
300 \sim & 550
\end{array}
\] & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{iC} 4 \mathrm{H}_{10}\) & \(\stackrel{\rho}{\text { VLE }}\) & 10
11 & \(60 \sim 130\)
\(152 \sim 152\) & \(48 \sim 242\)
\(176 \sim 332\) & \[
\begin{aligned}
& 34 \\
& 29
\end{aligned}
\] \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{iC} 5^{\mathrm{H}} 12\) & \(\stackrel{\rho}{\text { VLE }}\) & \[
\begin{aligned}
& 50 \\
& 38
\end{aligned}
\] & \[
\begin{aligned}
& 77 \sim 572 \\
& 32 \sim 338
\end{aligned}
\] & \[
\begin{aligned}
& 73 \sim 1176 \\
& 15 \sim 588
\end{aligned}
\] & \[
\begin{aligned}
& 90 \\
& 90
\end{aligned}
\] \\
\hline \(\mathrm{nC}_{4} \mathrm{H}_{10} \mathrm{OnC}_{10} \mathrm{H}_{22}\) & \(\rho\) & 100 & 100~ 460 & 400~9000 & 62 \\
\hline \(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{C}_{3} \mathrm{H}_{6}\) & VLE & 15 & 124~ 217 & 197~399 & 18 \\
\hline \(\mathrm{CH}_{4}-\mathrm{N}_{2}\) & \[
\begin{aligned}
& \rho \\
& \mathrm{H}-\mathrm{H}^{\mathrm{o}} \\
& \mathrm{VLE}
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 50 \\
& 34
\end{aligned}
\] & \[
\begin{aligned}
& -283 \sim 392 \\
& -250 \sim 250 \\
& -255 \sim-130
\end{aligned}
\] & \[
\begin{array}{r}
11 \sim 4813 \\
250 \sim 2000 \\
50 \sim 676
\end{array}
\] & \[
\begin{aligned}
& 39,32 \\
& 83, \\
& 86
\end{aligned}
\] \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{N}_{2}\) & \(\stackrel{\rho}{\text { VLE }}\) & \[
\begin{aligned}
& 50 \\
& 34
\end{aligned}
\] & \[
\begin{array}{r}
40 \sim 460 \\
-210 \sim-110
\end{array}
\] & \[
\begin{array}{r}
200 \sim 8000 \\
50 \sim 1415
\end{array}
\] & \[
\begin{aligned}
& 63 \\
& 86
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE VII-4
(Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline System Components & Property & Data Points & Temperature Range (\({ }^{\circ} \mathrm{F}\)) & Pressure Range psia & Ref. \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{N}_{2}\) & \[
\begin{gathered}
\rho \\
\text { VLE }
\end{gathered}
\] & \[
\begin{aligned}
& 50 \\
& 41
\end{aligned}
\] & \[
\begin{array}{r}
257 \sim 300 \\
-202 \sim 176
\end{array}
\] & \[
\begin{array}{r}
92 \sim 3792 \\
200 \sim 2000
\end{array}
\] & \[
\begin{aligned}
& 76 \\
& 91
\end{aligned}
\] \\
\hline \(\mathrm{nC}_{4} \mathrm{H}_{10} \mathrm{~N}_{2}\) & \(\stackrel{\rho}{\text { VLE }}\) & \[
\begin{aligned}
& 50 \\
& 23
\end{aligned}
\] & \(310 \sim\)
\(100 \sim\) & \[
\begin{aligned}
& 484 \sim 9997 \\
& 236 \sim 2594
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 1,66
\end{aligned}
\] \\
\hline \(\mathrm{iC}_{4} \mathrm{H}_{10} \mathrm{~N}_{2}\) & VLE & 22 & 50~250 & 82~ 2462 & 70 \\
\hline \(\mathrm{N}_{2}-\mathrm{CO}_{2}\) & \(\rho\) & 97 & 32~ 99 & 351~2105 & 4 \\
\hline \(\mathrm{CH}_{4}-\mathrm{CO}_{2}\) & \(\stackrel{\rho}{\text { VLE }}\) & \[
\begin{aligned}
& 66 \\
& 22
\end{aligned}
\] & \(\begin{array}{rr}32 \sim & 59 \\ -65 \sim\end{array}\) & \[
\begin{aligned}
& 351 ~ 2106 \\
& 215 \sim 1108
\end{aligned}
\] & 3
15 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{CO}_{2}\) & \(\stackrel{\rho}{\text { VLE }}\) & \[
\begin{array}{r}
128 \\
14
\end{array}
\] & \(\begin{array}{ll}-25 \sim & 460 \\ -60 \sim & 20\end{array}\) & \[
\begin{array}{r}
15 \sim 10000 \\
102 \sim \quad 409
\end{array}
\] & \[
\begin{aligned}
& 57,25 \\
& 19
\end{aligned}
\] \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{CO}_{2}\) & VLE & \[
\begin{array}{r}
116 \\
28
\end{array}
\] & \(40 \sim 460\)
\(40 \sim 160\) & \[
\begin{aligned}
& 200 \sim 10000 \\
& 200 \sim \quad 800
\end{aligned}
\] & \[
\begin{aligned}
& 61 \\
& 61
\end{aligned}
\] \\
\hline \(\mathrm{nC}_{4} \mathrm{H}_{10}-\mathrm{CO}_{2}\) & \(\stackrel{\rho}{\text { VLE }}\) & \[
\begin{array}{r}
123 \\
40
\end{array}
\] & \[
\begin{aligned}
& 100 \sim \\
& 100 \sim \\
& 160
\end{aligned}
\] & \[
\begin{array}{r}
200 \sim 10000 \\
60 \sim 1000
\end{array}
\] & 4
5 \\
\hline \(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{CO}_{2}\) & VLE & 17 & 100~ 220 & 105~908 & 6 \\
\hline
\end{tabular}

TABLE VII-4
(Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline System Components & Property & Data Points & Temperature Range (\({ }^{\circ} \mathrm{F}\)) & Pressure Range psia & Ref. \\
\hline \(\mathrm{H}_{2} \mathrm{~S}-\mathrm{CH}_{4}\) & \[
\stackrel{\rho}{\text { VLE }}
\] & \[
\begin{aligned}
& 82 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 40 \sim 340 \\
& 40 \sim 160
\end{aligned}
\] & \[
\begin{aligned}
& 200 \sim 10000 \\
& 200 \sim 1750
\end{aligned}
\] & \[
\begin{aligned}
& 73 \\
& 73
\end{aligned}
\] \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{H}_{2} \mathrm{~S}\) & \[
\stackrel{\rho}{\text { VLE }}
\] & \[
\begin{aligned}
& 49 \\
& 11
\end{aligned}
\] & \[
\begin{array}{rr}
39 \sim & 181 \\
-100 \sim & 50
\end{array}
\] & \[
\begin{array}{r}
250 \sim 1100 \\
14 \sim \quad 300
\end{array}
\] & \[
\begin{aligned}
& 37 \\
& 71
\end{aligned}
\] \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{H}_{2} \mathrm{~S}\) & \[
\begin{gathered}
\rho \\
\text { VLE }
\end{gathered}
\] & \[
\begin{aligned}
& 36 \\
& 36
\end{aligned}
\] & \[
\begin{array}{r}
70 \sim 160 \\
-68 \sim 160
\end{array}
\] & \[
\begin{array}{rr}
218 \sim & 779 \\
20 \sim & 400
\end{array}
\] & \[
\begin{array}{r}
38 \\
8
\end{array}
\] \\
\hline \(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{H}_{2} \mathrm{~S}\) & \[
\stackrel{\rho}{\text { VLE }}
\] & \[
\begin{aligned}
& 50 \\
& 22
\end{aligned}
\] & \[
\begin{array}{ll}
40 \sim & 160 \\
40 \sim & 220
\end{array}
\] & \[
\begin{array}{ll}
30 \sim & 742 \\
57 \sim & 701
\end{array}
\] & \[
\begin{aligned}
& 68 \\
& 68
\end{aligned}
\] \\
\hline \(\mathrm{H}_{2} \mathrm{~S}-\mathrm{CO}_{2}\) & \[
\begin{aligned}
& \text { VLE }
\end{aligned}
\] & \[
\begin{aligned}
& 76 \\
& 37
\end{aligned}
\] & \[
\begin{array}{r}
33 \sim 192 \\
-40 \sim 190
\end{array}
\] & \[
\begin{aligned}
& 294 \sim 1176 \\
& 100 \sim 1200
\end{aligned}
\] & \[
\begin{array}{r}
7 \\
81
\end{array}
\] \\
\hline \(\mathrm{H}_{2} \mathrm{~S}-\mathrm{N}_{2}\) & \[
\stackrel{\rho}{\text { VLE }}
\] & \[
\begin{aligned}
& 50 \\
& 47
\end{aligned}
\] & \[
\begin{aligned}
& 2 \sim 160 \\
& 2 \sim 120
\end{aligned}
\] & \[
\begin{aligned}
& 495 \sim 3003 \\
& 495 \sim 3003
\end{aligned}
\] & \[
\begin{aligned}
& 68 \\
& 68
\end{aligned}
\] \\
\hline \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}\) & VLE & 33 & -176~-76 & 32~ 800 & 92 \\
\hline \(\mathrm{CH}_{4}-\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{~S}\) & VLE & 12 & -59~ 100 & 300~1200 & 67, 28 \\
\hline \[
\begin{gathered}
\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}- \\
\mathrm{nC}_{4} \mathrm{H}_{10}
\end{gathered}
\] & VLE & 2 & -60~ - 60 & 204~288 & 14 \\
\hline
\end{tabular}

TABLE VII-4
(Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline System Components & Property & \begin{tabular}{l}
Data \\
Points
\end{tabular} & Temperature Range (\({ }^{\circ} \mathrm{F}\)) & Pressure Range psia & Ref. \\
\hline \[
\begin{aligned}
& \mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}- \\
& \mathrm{iC}_{4} \mathrm{H}_{10}
\end{aligned}
\] & VLE & 1 & 20~ 20 & 200~200 & 14 \\
\hline \[
\begin{aligned}
& \mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}- \\
& \mathrm{nC}_{5} \mathrm{H}_{12}-\mathrm{nC}_{6} \mathrm{H}_{14}- \\
& \mathrm{nC}_{10} \mathrm{H}_{22}
\end{aligned}
\] & VLE & 5 & 150~250 & 100~3000 & 89 \\
\hline \[
\begin{aligned}
& \mathrm{N}_{2}-\mathrm{CH}_{4}-\mathrm{CO}_{2}-\mathrm{C}_{2} \mathrm{H}_{6}- \\
& \mathrm{H}_{2} \mathrm{~S}-\mathrm{C}_{3} \mathrm{H}_{8}
\end{aligned}
\] & VLE & 7 & -125~-50 & 398~ 999 & 69 \\
\hline
\end{tabular}

Summary of Comparisons of Predicted and Experimental Thermodynamic Behavior for Binary Mixtures Using Different Mixing Rules
(Mixing Rules Indices:
1=Modified VDW One-Fluid Rules with Individual Binary Interaction Parameters 2=Semiempirical Exponent Rules with Individual Binary Interaction Parameters 3=Semiempirical Exponent Rules Using the Correlations in Eqs. (VI-10)-(VI-12) \(4=\) Semiempirical Exponent Rules Using the correlations in Eqs. (VI-3)-(VI-5))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Components \\
(1) (2)
\end{tabular}} & \multirow[t]{2}{*}{Mixing Rules Index} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Density } \\
\text { AAD\% }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Enthalpy } \\
& \text { AAD } \\
& \text { Btu/lb }
\end{aligned}
\]} & \multicolumn{2}{|r|}{K Values} & \multicolumn{4}{|r|}{Equilibrium Compositions} \\
\hline & & & & \[
\begin{gathered}
\mathrm{K}_{1} \\
\mathrm{AAD}^{2}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{K}_{2} \\
\mathrm{AAD} \%
\end{gathered}
\] & \[
\begin{gathered}
\overline{x_{1}} \\
\operatorname{AAD} \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{x}_{2} \\
\mathrm{AAD}_{\%}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{y}_{1} \\
\mathrm{AAD}^{2}
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{y}_{2} \\
\mathrm{AAD}
\end{array}
\] \\
\hline \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{6}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 2.20 \\
& 1.99 \\
& 2.03
\end{aligned}
\] & & \[
\begin{aligned}
& 1.14 \\
& 1.02 \\
& 1.37
\end{aligned}
\] & \[
\begin{aligned}
& 8.60 \\
& 8.50 \\
& 8.29
\end{aligned}
\] & \[
\begin{aligned}
& 1.06 \\
& 0.95 \\
& 1.19
\end{aligned}
\] & \[
\begin{aligned}
& 3.45 \\
& 3.17 \\
& 3.51
\end{aligned}
\] & \[
\begin{aligned}
& 0.28 \\
& 0.28 \\
& 0.26
\end{aligned}
\] & \begin{tabular}{l}
0.0026 \\
0.0026 \\
0.0024
\end{tabular} \\
\hline \(\mathrm{CH}_{4}-\mathrm{C}_{2} \mathrm{H}_{4}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& 0.83 \\
& 0.95
\end{aligned}
\] & & & & & & & \\
\hline \(\mathrm{CH}_{4}-\mathrm{C}_{3} \mathrm{H}_{8}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 0.94 \\
& 1.02 \\
& 1.15
\end{aligned}
\] & \[
\begin{aligned}
& 2.50 \\
& 1.95 \\
& 2.49
\end{aligned}
\] & \[
\begin{aligned}
& 1.14 \\
& 0.84 \\
& 5.84
\end{aligned}
\] & \[
\begin{aligned}
& 19.5 \\
& 19.8 \\
& 19.2
\end{aligned}
\] & \[
\begin{aligned}
& 1.44 \\
& 0.93 \\
& 5.17
\end{aligned}
\] & \[
\begin{aligned}
& 4.17 \\
& 3.19 \\
& 5.85
\end{aligned}
\] & \[
\begin{aligned}
& 0.18 \\
& 0.18 \\
& 0.17
\end{aligned}
\] & \[
\begin{aligned}
& 0.0018 \\
& 0.0018 \\
& 0.0016
\end{aligned}
\] \\
\hline \(\mathrm{CH}_{4}-\mathrm{nC}_{4} \mathrm{H}_{10}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 2.65 \\
& 2.12 \\
& 2.42
\end{aligned}
\] & & \[
\begin{gathered}
8.10 \\
4.01 \\
10.6
\end{gathered}
\] & 10.5
10.4
11.6 & \[
\begin{aligned}
& 7.89 \\
& 3.99 \\
& 8.98
\end{aligned}
\] & \[
\begin{aligned}
& 5.88 \\
& 4.48 \\
& 6.83
\end{aligned}
\] & \[
\begin{aligned}
& 0.16 \\
& 1.19 \\
& 0.19
\end{aligned}
\] & \begin{tabular}{l}
0.0013 \\
0.0016 \\
0.0016
\end{tabular} \\
\hline
\end{tabular}

TABLE VII-5
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Components
\[
(1) \quad(2)
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Mixing } \\
& \text { Rules } \\
& \text { Index }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Density } \\
\text { AAD } \%
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Enthalpy } \\
& \text { AAD } \\
& \text { Btu/lb }
\end{aligned}
\]} & \multicolumn{2}{|r|}{K Values} & \multicolumn{4}{|r|}{Equilibrium Compositions} \\
\hline & & & & \[
\begin{gathered}
\mathrm{K}_{1} \\
\mathrm{AAD}^{2}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{K}_{2} \\
\mathrm{AAD}^{2}
\end{gathered}
\] & \[
\begin{gathered}
\overline{x_{1}} \\
\text { AAD } \%
\end{gathered}
\] & \[
\begin{gathered}
x_{2} \\
\mathrm{AAD}_{\%}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{y}_{1} \\
\mathrm{AAD} \%
\end{gathered}
\] & \[
\begin{array}{r}
y_{2} \\
A A D
\end{array}
\] \\
\hline \(\mathrm{CH}_{4}-\mathrm{iC} 4 \mathrm{H}_{10}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 1.85 \\
& 2.08 \\
& 1.24
\end{aligned}
\] & & \[
\begin{aligned}
& 3.12 \\
& 2.95 \\
& 5.38
\end{aligned}
\] & \[
\begin{aligned}
& 4.48 \\
& 4.51 \\
& 10.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.77 \\
& 2.15 \\
& 5.96
\end{aligned}
\] & \[
\begin{aligned}
& 0.57 \\
& 0.50 \\
& 1.78
\end{aligned}
\] & \[
\begin{aligned}
& 3.19 \\
& 3.39 \\
& 5.70
\end{aligned}
\] & \[
\begin{aligned}
& 0.0153 \\
& 0.0157 \\
& 0.0307
\end{aligned}
\] \\
\hline \(\mathrm{CH}_{4}-\mathrm{nC}_{5} \mathrm{H}_{12}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 2.12 \\
& 1.49 \\
& 1.76
\end{aligned}
\] & & \[
\begin{aligned}
& 9.61 \\
& 4.58 \\
& 9.02
\end{aligned}
\] & \[
\begin{aligned}
& 29.4 \\
& 31.8 \\
& 24.7
\end{aligned}
\] & \[
\begin{aligned}
& 9.23 \\
& 4.64 \\
& 8.35
\end{aligned}
\] & \[
\begin{aligned}
& 5.78 \\
& 2.82 \\
& 5.35
\end{aligned}
\] & \[
\begin{aligned}
& 0.20 \\
& 0.28 \\
& 0.21
\end{aligned}
\] & \begin{tabular}{l}
0.0019 \\
0.0027 \\
0.0019
\end{tabular} \\
\hline \(\mathrm{CH}_{4}-\mathrm{iC}_{5} \mathrm{H}_{12}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 2.61 \\
& 3.16 \\
& 1.70
\end{aligned}
\] & & \[
\begin{aligned}
& 15.6 \\
& 17.0 \\
& 20.1
\end{aligned}
\] & \[
\begin{aligned}
& 8.25 \\
& 8.78 \\
& 7.69
\end{aligned}
\] & \[
\begin{aligned}
& 16.3 \\
& 17.4 \\
& 26.3
\end{aligned}
\] & \[
\begin{aligned}
& 2.56 \\
& 2.76 \\
& 2.87
\end{aligned}
\] & \[
\begin{aligned}
& 3.52 \\
& 3.26 \\
& 2.49
\end{aligned}
\] & \[
\begin{aligned}
& 0.0233 \\
& 0.0228 \\
& 0.0173
\end{aligned}
\] \\
\hline \(\mathrm{CH}_{4}-\mathrm{nC}_{6} \mathrm{H}_{14}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & & & \[
\begin{gathered}
17.9 \\
5.97 \\
5.83
\end{gathered}
\] & \[
\begin{aligned}
& 20.7 \\
& 19.5 \\
& 20.6
\end{aligned}
\] & \[
\begin{gathered}
16.0 \\
6.91 \\
6.59
\end{gathered}
\] & \[
\begin{aligned}
& 6.95 \\
& 3.44 \\
& 2.93
\end{aligned}
\] & \[
\begin{aligned}
& 0.15 \\
& 0.20 \\
& 0.20
\end{aligned}
\] & \begin{tabular}{l}
0.0014 \\
0.0018 \\
0.0019
\end{tabular} \\
\hline \(\mathrm{CH}_{4}-\mathrm{nC}_{7} \mathrm{H}_{16}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 3.57 \\
& 3.07 \\
& 3.09
\end{aligned}
\] & & \[
\begin{gathered}
13.6 \\
8.77 \\
9.09
\end{gathered}
\] & \[
\begin{aligned}
& 75.8 \\
& 61.5 \\
& 60.5
\end{aligned}
\] & \[
\begin{aligned}
& 17.4 \\
& 10.1 \\
& 10.2
\end{aligned}
\] & \[
\begin{aligned}
& 6.05 \\
& 4.84 \\
& 4.89
\end{aligned}
\] & \[
\begin{aligned}
& 0.06 \\
& 0.06 \\
& 0.06
\end{aligned}
\] & \begin{tabular}{l}
0.0006 \\
0.0006 \\
0.0006
\end{tabular} \\
\hline \(\mathrm{CH}_{4}{ }^{-n \mathrm{nC}} 9 \mathrm{H}_{20}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 1.41 \\
& 2.55 \\
& 2.87
\end{aligned}
\] & & \[
\begin{gathered}
16.1 \\
2.15 \\
8.81
\end{gathered}
\] & & \[
\begin{gathered}
14.8 \\
2.19 \\
8.05
\end{gathered}
\] & \[
\begin{aligned}
& 4.36 \\
& 0.66 \\
& 2.78
\end{aligned}
\] & \[
\begin{aligned}
& 0.18 \\
& 0.21 \\
& 0.21
\end{aligned}
\] & \[
\begin{aligned}
& \text { * } \\
& \text { * }
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE VII-5
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Components (1) (2)} & \multirow[t]{2}{*}{Mixing Rules Index} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Density } \\
\text { AAD\% }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Enthalpy } \\
\text { AAD } \\
\text { Btu/lb }
\end{gathered}
\]} & \multicolumn{2}{|r|}{K Values} & \multicolumn{4}{|c|}{Equilibrium Compositions} \\
\hline & & & & \[
\begin{gathered}
\mathrm{K}_{1} \\
\mathrm{AAD}_{\%}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{K}_{2} \\
\mathrm{AAD}_{2}
\end{gathered}
\] & \[
\begin{gathered}
x_{1} \\
A A D \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{x}_{2} \\
\mathrm{AAD} \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{y}_{1} \\
\mathrm{AAD} \%
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{y}_{2} \\
\mathrm{AAD}
\end{array}
\] \\
\hline \multirow[t]{3}{*}{\(\mathrm{CH}_{4}-\mathrm{nC}_{10} \mathrm{H}_{22}\)} & 1 & 4.34 & & 20.5 & 18.9 & 17.2 & 10.9 & 1.40 & 0.0108 \\
\hline & 2 & 5.41 & & 5.45 & 19.0 & 4.17 & 4.74 & 1.57 & 0.0123 \\
\hline & 3 & 5.97 & & 11.7 & 17.6 & 9.36 & 7.24 & 1.57 & 0.0123 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{2} \mathrm{H}_{4}\)} & & & & 0. 74 & 3.05 & 1.37 & 8.26 & 1.41 & 0.0098 \\
\hline & 2 & & & 0.57 & 2.32 & 1.34 & 7.54 & 1.65 & 0.0104 \\
\hline & 3 & & & 10.8 & 29.9 & 7.20 & 28.9 & 16.9 & 0.0857 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{8}\)} & 1 & & 2.77 & 2.55 & 3.08 & 2.62 & 2.43 & 2.60 & 0.0109 \\
\hline & 2 & & 2.58 & 2.85 & 3.35 & 2.37 & 2.24 & 2.52 & 0.0104 \\
\hline & 3 & & 3.68 & 5.90 & 6.10 & 5.95 & 2.76 & 2.64 & 0.0128 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{C}_{3} \mathrm{H}_{6}\)} & 1 & 1.04 & & 2.13 & 1.38 & 1.37 & 1.35 & 2.50 & 0.0069 \\
\hline & 2 & 1.06 & & 2.20 & 1.34 & 1.36 & 1.22 & 2.41 & 0.0065 \\
\hline & 3 & 2.44 & & 10.2 & 6.25 & 23.6 & 10.7 & 10.1 & 0.0428 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{nC}_{4} \mathrm{H}_{10}\)} & & 1.88 & & 3.37 & 6.06 & 2.07 & 1.50 & 3.05 & \\
\hline & 2 & 1.40 & & 3.95 & 5.87 & 2.97 & 2.49 & 2.66 & 0.0150 \\
\hline & 3 & 0.80 & & 3.38 & 1.63 & 7.11 & 5.47 & 3.68 & 0.0206 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{in}_{4} \mathrm{H}_{10}\)} & & 3.44 & & 2.37 & 2.00 & 3.53 & 2.65 & 1.74 & 0.0064 \\
\hline & 2 & 4.16 & & 2.73 & 1.67 & 4.31 & 2.27 & 2.02 & 0.0077 \\
\hline & 3 & 4.44 & & 2.79 & 1.79 & 4.26 & 3.19 & 2.02 & 0.0082 \\
\hline
\end{tabular}

TABLE VII-5
(Continued)

TABLE VII-5
(Continued)

TABLE VII-5
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Components
\[
(1) \quad(2)
\]} & \multirow[t]{3}{*}{Mixing Rules Index} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Density } \\
\text { AAD\% }
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Enthalpy } \\
\text { AAD } \\
\text { Btu/sb }
\end{gathered}
\]} & \multicolumn{2}{|r|}{K Values} & \multicolumn{4}{|c|}{Equilibrium Compositions} \\
\hline & & & & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) \\
\hline & & & & AAD\% & AAD\% & AAD\% & AAD\% & AAD\% & AAD \\
\hline \multirow[t]{3}{*}{\(\mathrm{CH}_{4}-\mathrm{CO}_{2}\)} & 1 & 1.18 & & 7.67 & 2.79 & 6.31 & 1.51 & 1.98 & 0.0082 \\
\hline & 2 & 1.24 & & 7.12 & 3.01 & 5.29 & 1.29 & 2.77 & 0.0107 \\
\hline & 4 & 1.26 & & 7.01 & 3.04 & 5.37 & 1.31 & 2.86 & 0.0110 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{CO}_{2}\)} & 1 & 1.86 & & 3.87 & 7.33 & 3.14 & 14.5 & 6.37 & 0.0426 \\
\hline & 2 & 2.65 & & 4.24 & 6.08 & 3.80 & 18.8 & 7.27 & 0.0489 \\
\hline & 4 & 1.53 & & 4.32 & 8.24 & 7.43 & 33.1 & 10.10 & 0.0667 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{CO}_{2}\)} & 1 & 0.99 & & 1.78 & 1.98 & 0.95 & 2.06 & 1.44 & 0.0036 \\
\hline & 2 & 0.78 & & 5.08 & 6.69 & 3.63 & 11.7 & 6.63 & 0.0239 \\
\hline & 4 & 0.97 & & 4.30 & 5.07 & 4.21 & 8.72 & 5.92 & 0.0188 \\
\hline \multirow[t]{3}{*}{\(\mathrm{nC}_{4} \mathrm{H}_{10}-\mathrm{CO}_{2}\)} & 1 & 0.78 & & 1.47 & 3.02 & 0.47 & 3.35 & 1.72 & 0.0059 \\
\hline & 2 & 1.66 & & 2.49 & 9.80 & 2.30 & 13.6 & 3.56 & 0.0114 \\
\hline & 4 & 2.12 & & 3.20 & 10.1 & 2.85 & 14.4 & 4.83 & 0.0155 \\
\hline \multirow[t]{3}{*}{\(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{CO}_{2}\)} & 1 & & & 3.34 & 1.78 & 0.85 & 3.05 & 3.19 & 0.0116 \\
\hline & 2 & & & 7.43 & 3.28 & 2.86 & 7.34 & 8.75 & 0.0308 \\
\hline & 4 & & & 6.69 & 6.36 & 3.66 & 12.8 & 7.81 & 0.0307 \\
\hline \multirow[t]{3}{*}{\(\mathrm{H}_{2} \mathrm{~S}-\mathrm{CH}_{4}\)} & 1 & 0.97 & & 1.61 & 7.46 & 0.78 & 6.99 & 1.20 & 0.0066 : \\
\hline & 2 & 1.04 & & 2.23 & 10.2 & 1.06 & 8.25 & 1.48 & 0.0078 \\
\hline & 4 & 2.35 & & 9.65 & 15.3 & 2.11 & 10.2 & 8.45 & 0.0321 \\
\hline
\end{tabular}

TABLE VII-5
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Components
\[
(1)^{+} \quad(2)
\]} & \multirow[t]{2}{*}{Mixing Rules Index} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Density } \\
\text { AAD\% }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Enthalpy } \\
& \text { AAD } \\
& \text { Btu/lb }
\end{aligned}
\]} & \multicolumn{2}{|r|}{K Values} & \multicolumn{4}{|c|}{Equilibrium Compositions} \\
\hline & & & & \[
\begin{gathered}
\overline{\mathrm{K}_{1}} \\
\mathrm{AAD}^{2}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{K}_{2} \\
\mathrm{AAD} \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{x}_{1} \\
\mathrm{AAD} \%
\end{gathered}
\] & \[
\begin{gathered}
x_{2} \\
A A D \%
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{y}_{1}\) \\
\(\mathrm{AAD} \%\)
\end{tabular} & \[
\overline{y_{2}}
\]
\[
A A \tilde{D}
\] \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{H}_{2} \mathrm{~S}\)} & 1 & 2.10 & & 2.35 & 3.19 & 5.28 & 0.36 & 5.03 & 0.0163 \\
\hline & 2 & 2.67 & & 2.45 & 3.23 & 4.80 & 0.31 & 5.01 & 0.0163 \\
\hline & 4 & 4.43 & & 7.40 & 2.85 & 7.33 & 0.74 & 5.01 & 0.0157 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{H}_{2} \mathrm{~S}\)} & 1 & 2.24 & & 3.41 & 6.94 & 3.42 & 13.4 & 6.01 & 0.0257 \\
\hline & 2 & 1.93 & & 4.07 & 11.3 & 5.35 & 26.3 & 7.57 & 0.0351 \\
\hline & 4 & 2.47 & & 4.05 & 16.6 & 9.39 & 42.4 & 10.8 & 0.0511 \\
\hline \multirow[t]{3}{*}{\(\mathrm{iC}_{4} \mathrm{H}_{10}-\mathrm{H}_{2} \mathrm{~S}\)} & 1 & 2.81 & & 4.75 & 5.47 & 2.57 & 5.76 & 5.04 & 0.0120 \\
\hline & 2 & 2.41 & & 7.54 & 11.9 & 6.41 & 19.8 & 8.21 & 0.0190 \\
\hline & 4 & 2.86 & & 7.66 & 13.5 & 7.26 & 23.5 & 9.59 & 0.0233 \\
\hline \multirow[t]{3}{*}{\(\mathrm{H}_{2} \mathrm{~S}-\mathrm{CO}_{2}\)} & 1 & 3.23 & & 1.55 & 7.57 & 1.70 & 13.5 & 2.33 & 0.0119 \\
\hline & 2 & 3.04 & & 1.58 & 8.35 & 1.84 & 15.3 & 2.53 & 0.0129 \\
\hline & 4 & 11.20 & & 4.20 & 24.6 & 11.3 & 70.6 & 13.9 & 0.0646 \\
\hline \multirow[t]{3}{*}{\(\mathrm{H}_{2} \mathrm{~S}-\mathrm{N}_{2}\)} & , & 3.22 & & 4.64 & 24.9 & 1.41 & 34.9 & 4.75 & 0.0165 \\
\hline & 2 & 2.69 & & 14.0 & 12.3 & 0.58 & 12.2 & 14.2 & 0.0258 \\
\hline & 4 & 3.53 & & 5.43 & 23.3 & 1.46 & 36.2 & 6.02 & 0.0218 \\
\hline
\end{tabular}
* Vapor compositions not measured for a number of points

\section*{CHAPTER VIII}

COMPARISONS OF PREDICTED MULTICOMPONENT MIXTURE THERMODYNAMIC BEHAVIOR WITH EXPERIMENTAL DATA

The different mixing rules also were applied to calculate the thermodynamic properties of multicomponent systems. Predicted results are given in Tables V-3, V-4 and VIII-1 -VIII-3. The results for one ternary system (methane-ethanepropane) and two quarternary systems (methane-ethane-propane-n-butane and methane-ethane-propane-isobutane) have already been shown in Tables V-3 and V-4 in Chapter V. The individual binary interaction parameters were available for each binary pair of components in the three multicomponent systems. Therefore, comparisons of predicted vapor-liquid equilibrium for these multicomponent systems can be made on an equal basis among the different mixirg rules. Tables V-3 and V-4 show clearly that the semiempirical exponent mixing rules give better accuracy of predictions for most phase compositions than either the modified VDW one-fluid mixing rules or the semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\).

Although the semiempirical exponent mixing rules using the correlations for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) are inferior to the modified VDW one-fluid mixing rules for the predicted phase compositions of the ternary and quarternary systems, their predicted results are reasonably accurate.

Tables VIII-1 through VIII-3 summarize results for one ternery system (methane-carbon dioxide-hydrogen sulfide) and two 6-component systems (methane-ethane-propane-n-pentane-n-hexane-n-decane and nitrogen-methane-carbon dioxide-ethanehydrogen sulfide-propane). For the systems in Table VIII-2 and VIII-3, individual values of \(\sigma_{i j}\) and \(\varepsilon_{i j}\) have not been determined for some of the binary pairs. The binary interaction parameters for these pairs are taken to be unity for use with the modified van der Waals one-fluid mixing rules, unless otherwise indicated in Table VII-1. The binary interaction parameters estimated from the correlations for \(\sigma_{i j}\) and \(\varepsilon_{i j}\) developed herein were used with the semiempirical exponent mixing rules (see Table VII-2).

Predictions for the methane-carbon dioxide-hydrogen sulfide system show large deviations from the experimental data using all three formulations (see Table VIII-1). Direct comparisons with experimental data for this system are presented in Appendix B. The modified VDW one-fluid mixing rules are slightly better than the semiempirical exponent mixing rules, but both rules are close to each other in predicted results. The semiempirical exponent mixing rules
using the correlations given in Eqs. (VI-3) - (VI-5) for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\), even though the least accurate, provide comparable predictions to the other formulations.

In Table VIII-2, predicted phase compositions for the 6-component system involving paraffin-paraffin interactions are reasonably accurate using both formulations of the semiempirical exponent mixing rules. The modified VDW one-fluid mixing rules yield poorer predictions especially for the liquid compositions of lighter components.

For the nitrogen-methane-carbon dioxide-ethane-hydrogen sulfide-propane system, both the semiempirical exponent and the modified VDW one-fluid mixing rules provide reasonably accurate predictions of phase compositions (see Table VIII-3). The semiempirical exponent mixing rules using the correlations developed herein for \(\sigma_{i j}, \varepsilon_{i j}\) and \(\gamma_{i j}\) show poorer predictions for liquid phase compositions but comparable representation of vapor phase compositions. The fact that this system contains three nonhydrocarbons probably leads to the lower accuracy using the correlations for the unlike interaction parameters.

TABLE VIII-1

Summary of Deviations of Predicted Vapor-Liquid Phase Compositions for the System Methane-Carbon Dioxjde-Hydrogen Sulfide \({ }^{1}\)
(Subscripts 1, 2, 3, Respectively)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mixing Rules & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline * & AAD\% & 16.52 & 10.35 & 3.45 & 5.35 & 21.57 & 20.98 \\
\hline * & AAD & 0.0213 & 0.0168 & 0.0179 & 0.0326 & 0.0146 & 0.0287 \\
\hline ** & AAD\% & 18.37 & 9.99 & 3.57 & 5.59 & 20.66 & 21.48 \\
\hline ** & AAD & 0.0219 & 0.0153 & 0.0189 & 0.0342 & 0.0144 & 0.0293 \\
\hline *** & AAD\% & 22.89 & 15.45 & 4.50 & 8.80 & 24.04 & 33.66 \\
\hline *** & AAD & 0.0268 & 0.0159 & 0.0212 & 0.0561 & 0.0218 & 0.0434 \\
\hline
\end{tabular}
* Modified van der Waals one-fluid mixing rules.
** Semiempirical exponent mixing rules.
*** Semiempirical exponent mixing rules using the correlations given in Eqs. (VI-3)-(VI-5).
1 See Table VII-4 for data reference.

\section*{TABLE VIII-2}

Comparison of Predicted and Experimental* Vapor-Liquid Equilibrium Mole Fractions
for the System Methane-Ethane-Propane-n-Pentane-n-Hexane-n-Decane
(Subscripts 1, 2, 3, 4, 5, 6, Respectively)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{x}_{4}\) & \(\mathrm{x}_{5}\) & \(\mathrm{x}_{6}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) & \(\mathrm{y}_{4}\) & \(\mathrm{y}_{5}\) & \(y_{6}\) \\
\hline \multicolumn{13}{|c|}{\(\mathrm{T}=609.67^{\circ} \mathrm{R}, \mathrm{P}=100 \mathrm{psia}\)} \\
\hline Expt & 0.0266 & 0.0025 & 0.0019 & 0.2023 & 0.2004 & 0.5703 & 0.8712 & 0.0216 & 0.0062 & 0.0701 & 0.0269 & 0.0040 \\
\hline Calc & 0.0206 & 0.0059 & 0.0032 & 0.2040 & 0.1983 & 0.5680 & 0.8804 & 0.0182 & 0.0049 & 0.0670 & 0.02776 & 0.0019 \\
\hline \[
\begin{aligned}
& \mathrm{Calc} \\
& \mathrm{Calc}
\end{aligned}
\] & 0.0277
0.0246 & 0.0025
0.0025 & 0.0015
0.0015 & 0.1570
0.1570 & 0.1895
0.1901 & 0.6218
0.6245 & 0.8039
0.8038 & 0.0201
0.0201 & 0.0062
0.0062 & 0.1181
0.1183 & 0.0490
0.0490 & 0.0027
0.0027 \\
\hline \multicolumn{13}{|c|}{\(\mathrm{T}=609.67^{\circ} \mathrm{R}, \mathrm{P}=3000 \mathrm{psia}\)} \\
\hline Expt & 0.5753 & 0.0409 & 0.0272 & 0.0509 & 0.0616 & 0.2441 & 0.8585 & 0.0414 & 0.0183 & 0.0179 & 0.0172 & 0.0466 \\
\hline Calc & 0.5536 & 0.0492 & 0.0298 & 0.0528 & 0.0628 & 0.2519 & 0.9150 & 0.0314 & 0.0142 & 0.0121 & 0.0110 & 0.0162 \\
\hline Calc & 0.6337 & 0.0424 & 0.0248 & 0.0422 & 0.0505 & 0.2063 & 0.8731 & 0.0388 & 0.0188 & 0.0197 & 0.0186 & 0.0310 \\
\hline Calc & 0.6070 & 0.0428 & 0.0253 & 0.0436 & 0.0538 & 0.2274 & 0.8661 & 0.0389 & 0.0192 & 0.0219 & 0.0199 & 0.0340 \\
\hline \multicolumn{13}{|c|}{\(\mathrm{T}=709.67^{\circ} \mathrm{R}, \mathrm{P}=100 \mathrm{psia}\)} \\
\hline Expt & 0.0177 & 0.0016 & 0.0014 & 0.1694 & 0.1785 & 0.6314 & 0.5986 & 0.0231 & 0.0090 & 0.2103 & 0.1207 & 0.0382 \\
\hline Calc & 0.0123 & 0.0034 & 0.0023 & 0.1800 & 0.1869 & 0.6152 & 0.6376 & 0.0224 & 0.0085 & 0.2008 & 0.1081 & 0.0227 \\
\hline Calc & 0.0166 & 0.0016 & 0.0011 & 0.1103 & 0.1477 & 0.7227 & 0.5372 & 0.0208 & 0.0084 & 0.2523 & 0.1511 & 0.0302 \\
\hline \multicolumn{13}{|c|}{\(\mathrm{T}=709.67^{\circ} \mathrm{R}, \mathrm{P}=1000\) psia} \\
\hline Expt & 0.2157 & 0.0232 & 0.0182 & 0.1265 & 0.1428 & 0.4737 & 0.8797 & 0.0383 & 0.0165 & 0.0337 & 0.0211 & 0.0105 \\
\hline Calc & 0.1600 & 0.0303 & 0.0214 & 0.1361 & 0.1511 & 0.5012 & 0.9014 & 0.0312 & 0.0135 & 0.0291 & 0.0189 & 0.0060 \\
\hline Calc & 0.2321 & 0.0229 & 0.0165 & 0.1156 & 0.1361 & 0.4768 & 0.8622 & 0.0385 & 0.0180 & 0.0447 & 0.0280 & 0.0084 \\
\hline Calc & 0.2177 & 0.0230 & 0.0165 & 0.1166 & 0.1385 & 0.4877 & 0.8619 & 0.0382 & 0.0179 & 0.045 & 0.0281 & 0.0084 \\
\hline
\end{tabular}

TABLE VIII-2
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \({ }^{\mathrm{x}} 4\) & \(\mathrm{x}_{5}\) & \(\mathrm{x}_{6}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) & \(\mathrm{y}_{4}\) & \(\mathrm{y}_{5}\) & \(\mathrm{y}_{6}\) \\
\hline \multicolumn{13}{|c|}{\(\mathrm{T}=709.67{ }^{\circ} \mathrm{R}, \mathrm{P}=2000 \mathrm{psia}\)} \\
\hline Expt & 0.4122 & 0.0342 & 0.0235 & 0.0947 & 0.0993 & 0.3362 & 0.8510 & 0.0415 & 0.0192 & 0.0363 & 0.0261 & 0.0259 \\
\hline Calc! & 0.3114 & 0.0429 & 0.0287 & 0.1140 & 0.1171 & 0.3858 & 0.9014 & 0.0336 & 0.0151 & 0.0246 & 0.0168 & 0.0085 \\
\hline Calc: & 0.4197 & 0.0357 & 0.0234 & 0.0929 & 0.0978 & 0.3306 & 0.8694 & 0.0403 & 0.0191 & 0.0347 & 0.0233 & 0.0132 \\
\hline Calc \({ }^{\text {a }}\) & 0.4015 & 0.0359 & 0.0236 & 0.0944 & 1.0077 & 0.3438 & 0.8688 & 0.0399 & 0.0190 & 0.0357 & 0.0234 & 0.0132 \\
\hline AAD\% \({ }^{2}\) & 21.49 & 64.41 & 35.60 & 7.76 & 6.30 & 5.34 & 4.51 & 16.10 & 17.75 & 17.40 & 18.96 & 53.67 \\
\hline AAD & 0.0380 & 0.0058 & 0.0026 & 0.0086 & 0.0076 & 0.0207 & 0.0354 & 0.0058 & 0.0026 & 0.0069 & 0.0062 & 0.0140 \\
\hline AAD\% \({ }^{2}\) & 5.99 & 2.53 & 12.43 & 16.96 & 9.39 & 8.26 & 4.77 & 5.37 & 3.84 & 27.17 & 31.83 & 31.28 \\
\hline \(A A D{ }^{2}\) & 0.0169 & 0.0006 & 0.0009 & 0.0251 & 0.0122 & 0.0378 & 0.0358 & 0.0015 & 0.0005 & 0.0209 & 0.0127 & 0.0079 \\
\hline AAD\% \({ }^{3}\) & 6.34 & 2.79 & 11.98 & 15.95 & 7.91 & 7.25 & 4.59 & 5.54 & 4.355 & 29.48 & 33.32 & 29.97 \\
\hline \(A A D{ }^{3}\) & 0.0098 & 0.0007 & 0.0008 & 0.0244 & 0.0109 & 0.0370 & 0.0343 & 0.0016 & 0.0006 & 0.0212 & 0.0129 & 0.0073 \\
\hline
\end{tabular}
*See Table VII-4 for data reference.
\({ }^{1}\) Modified van der Waals one-fluid mixing rules.
\({ }^{2}\) Semiempirieal exponent mixing rules.
\({ }^{3}\) Semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12).

Comparison of Predicted and Experimental* Vapor-Liquid Equilibrium Mole Fractions for the System Nitrogen-Methane-Carbon Dioxide-Ethane-Hydrogen Sulfide-Propane
(Subscripts 1, 2, 3, 4, 5, 6, Respectively)

\(\left.\begin{array}{llllllllllllllll}\text { Expt. } & 0.0334 & 0.5532 & 0.0284 & 0.1143 & 0.2055 & 0.0652 & 0.0989 & 0.7579 & 0.0168 & 0.0497 & 0.0629 & 0.0138 \\ \text { Calci } & 0.0330 & 0.5533 & 0.0284 & 0.1162 & 0.2032 & 0.0658 & 0.10233 & 0.7673 & 0.0162 & 0.0446 & 0.0587 & 0.0108 \\ \text { Calci } & 0.0372 & 0.5676 & 0.0280 & 0.1121 & 0.1930 & 0.0621 & 0.1038 & 0.7699 & 0.0156 & 0.0429 & 0.0577 & 0.0101 \\ \text { Calc. } & 0.0220 & 0.4454 & 0.0349 & 0.1382 & 0.2752 & 0.0841 & 0.0876 & 0.7577 & 0.0165 & 0.0546 & 0.0655 & 0.0178\end{array}\right]\)
\begin{tabular}{lllllllllllllllll}
Expt. & 0.0203 & 0.4766 & 0.0329 & 0.1375 & 0.2512 & 0.0815 & 0.0996 & 0.8106 & 0.0133 & 0.0356 & 0.0349 & 0.0060 \\
Calci & 0.0221 & 0.5188 & 0.0308 & 0.1293 & 0.2253 & 0.0734 & 0.1095 & 0.8071 & 0.0128 & 0.0304 & 0.0358 & 0.0047 \\
Calc² & 0.0250 & 0.5285 & 0.0306 & 0.1262 & 0.2182 & 0.0712 & 0.1096 & 0.8075 & 0.0123 & 0.0299 & 0.0358 & 0.0045 \\
Calc. & 0.0154 & 0.4281 & 0.0366 & 0.1512 & 0.2766 & 0.0918 & 0.0960 & 0.8183 & 0.0121 & 0.0340 & 0.0346 & 0.0047
\end{tabular}

TABLE VIII-3
(Continued)
\begin{tabular}{lllllllllll}
\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{6}\) & \(y_{1}\) & \(y_{2}\) & \(y_{3}\) & \(y_{4}\) & \(y_{5}\)
\end{tabular}\(y_{6}\)
\(\mathrm{T}=-75^{\circ} \mathrm{F}, \mathrm{P}=799 \mathrm{psia}\)
\begin{tabular}{llllllllllllllll}
Expt & 0.0284 & 0.5623 & 0.0299 & 0.1181 & 0.1994 & 0.0619 & 0.1100 & 0.7973 & 0.0135 & 0.0350 & 0.0379 & 0.00634 \\
Calci & 0.0301 & 0.5794 & 0.0291 & 0.1151 & 0.1878 & 0.0582 & 0.1165 & 0.8016 & 0.0127 & 0.0296 & 0.0346 & 0.00477 \\
Calc2 & 0.0348 & 0.5911 & 0.0285 & 0.1109 & 0.1794 & 0.0554 & 0.1171 & 0.8020 & 0.0122 & 0.0290 & 0.0348 & 0.00458 \\
Calc. & 0.0221 & 0.4956 & 0.0350 & 0.1379 & 0.2367 & 0.0724 & 0.1019 & 0.8080 & 0.0124 & 0.0337 & 0.0363 & 0.00741
\end{tabular}
\(\mathrm{T}=-99.9^{\circ} \mathrm{F}, \mathrm{P}=601\) psia
\begin{tabular}{llllllllllllllllll}
Expt. & 0.0123 & 0.5521 & 0.0315 & 0.1233 & 0.2089 & 0.0629 & 0.1136 & 0.8253 & 0.0113 & 0.0237 & 0.0234 & 0.00277 \\
Calci & 0.0256 & 0.5955 & 0.0230 & 0.1118 & 0.1831 & 0.0543 & 0.1275 & 0.8225 & 0.0094 & 0.0185 & 0.0200 & 0.00206 \\
Calc2 & 0.02999 & 0.6062 & 0.0290 & 0.1076 & 0.1752 & 0.0518 & 0.1282 & 0.8221 & 0.0090 & 0.0182 & 0.0204 & 0.00200 \\
Calc. & 0.0189 & 0.5144 & 0.0360 & 0.1353 & 0.2272 & 0.0678 & 0.1087 & 0.8370 & 0.0088 & 0.0207 & 0.0215 & 0.00298
\end{tabular}
\(T=-100^{\circ} \mathrm{F}, \mathrm{P}=553 \mathrm{psia}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Expt & 0.0161 & 0.5004 & 0.0345 & 0.1384 & 0.2382 & 0.0724 & 0.1108 & 0.8308 & 0.0099 & 0.0246 & 0.0207 & . 00324 \\
\hline Calct & 0.0206 & 0.5474 & 0.0314 & 0.1268 & 0.2097 & 0.0641 & 0.1217 & 0.8260 & 0.0097 & 0.0201 & 0.0206 & 0.00213 \\
\hline Calc? & 0.0238 & 0.5568 & 0.0309 & 0.1233 & 0.2028 & 0.0620 & 0.1218 & 0.8258 & 0.0092 & 0.0197 & 0.0212 & 0.00207 \\
\hline Calc \({ }^{3}\) & 0.0141 & 0.4511 & 0.0382 & 0.1532 & 0.2616 & 0.0814 & 0.1037 & 0.8409 & 0.0090 & 0.0227 & 0.0213 & . 00211 \\
\hline & \(125^{\circ}\) & \(\mathrm{P}=\) & ia & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{llllllllllllllll}
Expt & 0.0167 & 0.4969 & 0.0378 & 0.1449 & 0.2314 & 0.0723 & 0.1334 & 0.8285 & 0.0083 & 0.0166 & 0.0166 & 0.00165 \\
Calci & 0.0194 & 0.5466 & 0.0348 & 0.1314 & 0.2038 & 0.0639 & 0.1495 & 0.8182 & 0.0073 & 0.0129 & 0.0113 & 0.00092 \\
Calci & 0.0229 & 0.5541 & 0.0342 & 0.1282 & 0.1981 & 0.0621 & 0.1495 & 0.8179 & 0.0070 & 0.0127 & 0.0118 & 0.00091 \\
Calc. & 0.0128 & 0.4407 & 0.0433 & 0.1628 & 0.2581 & 0.0819 & 0.1248 & 0.8404 & 0.0067 & 0.0149 & 0.0120 & 0.00092
\end{tabular}

TABLE VIII-3
(Continued)
\begin{tabular}{llllllllllll}
& \multicolumn{1}{c}{\(\mathrm{x}_{1}\)} & \multicolumn{1}{c}{\(\mathrm{x}_{2}\)} & \multicolumn{1}{c}{\(\mathrm{x}_{3}\)} & \(\mathrm{x}_{4}\) & \(\mathrm{x}_{5}\) & \(\mathrm{x}_{6}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) & \(\mathrm{y}_{4}\) & \(\mathrm{y}_{5}\) \\
\hline AAD\% \(^{1}\) & 12.00 & 6.37 & 4.64 & 5.56 & 8.64 & 8.72 & 8.85 & 0.738 & 7.24 & 16.82 & 5.62 \\
AAD \(_{1}\) & 0.0023 & 0.0322 & 0.0016 & 0.0074 & 0.0199 & 0.0063 & 0.0098 & 0.0059 & 0.0009 & 0.0052 & 0.0021 \\
AAD \(^{2}\) & 28.23 & 8.40 & 6.03 & 7.87 & 12.05 & 12.00 & 9.31 & 0.811 & 10.77 & 18.42 & 5.84 \\
AAD \(^{2}\) & 0.0058 & 0.0427 & 0.0020 & 0.0104 & 0.0275 & 0.0086 & 0.0102 & 0.0064 & 0.0013 & 0.0058 & 0.0022 .0 .0016 \\
AAD\% \(^{3}\) & 22.10 & 11.88 & 15.37 & 13.47 & 15.48 & 15.09 & 6.18 & 1.10 & 11.04 & 7.51 & 4.21 \\
AAD \(^{3}\) & 0.0053 & 0.0616 & 0.0048 & 0.0171 & 0.0342 & 0.0106 & 0.0067 & 0.0089 & 0.0013 & 0.0024 & 0.0015 \\
\hline
\end{tabular}
*See Table VII-4 for data reference.
\({ }^{1}\) Modified van der Waals one-fluid mixing rules.
\({ }^{2}\) Semiempirical exponent mixing rules.
\({ }^{3}\) Semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12) and Eqs. (VI-3) - (VI-5).

\section*{CHAPTER IX}

CONCLUSIONS AND RECOMMENDATIONS

In this study it has been determined that the modified VDW conformal solution method based on the threeparameter, corresponding-states correiation of pure fluid thermodynamic properties yields accurate mixture property predictions if the components are not greatly dissimilar. However, there is a progressive decay in prediction accuracy as molecular dissimilarities increase. This study indicates that if the VDW one-fluid mixing rule exponents are modified empirically (i.e., to noninteger values), the resulting semiempirical exponent mixing rules yield significant improvements in vapor-liquid equilibrium predictions for mixtures of molecules as dissimilar as methane and normal decane. Both mixing rules exhibit reasonably accurate predictions of bulk properties.

Correlations were developed herein for the unlike interaction parameters appearing in the semiempirical exponent mixing rules as functions of the characteristic parameters, \({ }^{T} c_{i}, V_{c_{i}}, \gamma_{i}\) of the pure components alone. The correlations given in Eqs. (VI-10) - (VI-12) are suitable for hydrocarbon-
hydrocarbon interactions. The correlations in Eqs. (VI-3) -(VI-5) are applicable to nonhydrocarbon-hydrocarbon interactions with reasonable predicted results and can be used as a rough guide for nonhydrocarbon-nonhydrocarbon interaction predictions.

The study presented herein has a number of implications. First, this study implies that it is possible to obtain accurate predictions of the thermodynamic behavior of mixtures within a multiparameter, corresponding-states framework using empirically determined exponents in mixing rules. This result is important to the continuing effort to develop a highly accurate multiparameter, correspondingstates framework for correlation of fluid properties, including mixtures, and to the industrial use of such a correlation. Second, this study demonstrates that there is a need to study separately rather than collectively (as herein) the errors introduced by the various major approximations introduced into the correlation methodology. These approximations include: (1) the choice for the form of the pair potential; (2) the method for estimation of the pure-fluid pair potential parameters; (3) the order and method (e.g., use of the Pade approximant) of truncation of the Pople expansion of the thermodynamic properties; (4) the order of truncation of the expansion of mixture properties about the properties of the pure-fluid reference system in the conformal solution methodology; (5) the method for choosing the mixing rules for the
reference system characterization parameters as functions of composition and the pair parameters for the molecular interactions of the components; and (6) the method for determination of the unlike interaction pair parameters. With a better understanding of the errors introduced by these approximations, the development of a more truly comprehensive correlation, capable of describing fluid systems with wide ranges of characteristics over wide ranges of conditions, should be possible.

From the point of view of further improvement of the first order conformal solution method for practical industrial calculations, the following considerations seem warranted, (1) the empirical determination of all nine exponents in the conformal solution mixing rules (2) the determination of the binary interaction parameter \(\phi_{i j}\) in the relation \(\gamma_{i j}=\phi_{i j}\left(\gamma_{i i}+\gamma_{j j}\right) / 2\) and (3) the modification of the formulas for estimation of the pure-fluid pair potential parameters using data for both pure components and mixtures.
1. Akers, W.W., Attwell, L.L. and Robinson, J.A., Ind. and Eng. Chem., Vol. 46, No. 12 (1954).
2. Amick, E.H. Jr., Jhonson, W.B. and Dodge, B.F., Chem. Eng. Prog. Sym. Series, Vol. 48, No. 3, 65.
3. Arai, Kaminishi and Saito, J. Chem. Eng. of Japan, Vol. 4, No. 2, 113.
4. Arki, Y., Kaminishi, G. and Saito, S., J. of Chem. Eng. of Japan, Vol. 4, No. 2, 113 (1971).
5. Berthelot, D. Compt. Rend., 126, 1703, 1857 (1898).
6. Besserer, G.J., and Robinson, D.B., J. Chem. Eng. Data, Vol. 18, 301 (1973).
7. Bierlein, J.A., and Kay, W.B., Ind. and Eng. Chem., Vol. 45, 618 (1953).
8. Brewer, J., Rodewald, N. and Kurata, F., AIChE J., Vol. 7, No. 1 (1961).
9. Byers Brown, W., Phil. Trans., A250, 175, 221 (1957).
10. Calvin, D.W. and Reed, T.M., J. Chem. Phys., 54, 3733 (1971).
11. Chang, H.L., Lewis, J.H. and Kobayashi, R., AIChE J., 12, 1212 (1966).
12. Chu, T.C., Chen, R.J.J., Chappelear, P.S. and Kobayashi, R., J. Chem. Eng. Data, 21, 41 (1976).
13. Chueh, P.L.
(1967).
14. DePriester, C.L., Chem. Eng. Prog. Symp. Series, 49(7), 1-43 (1953).
15. Donnelly, H.G. and Katz, D.C., Ind. and Eng. Chem., Vol. 46, No. 3, 511 (1954).
16. Evans III, R.R. and Watson, G.M., J. Chem. Eng. Data, 1, 67 (1956).
17. Fender, B.E.F. and Halsey, G.D., J. Chem. Phys., 36, 1881 (1962).
18. Gilliand, E.R. and Scheeline, H.W., Ind. and Eng. Chem., Vol. 32, No. 1,48 (1940).
19. Gognoni, R.J., Eldridge, J.W., Okay, V.C. and Les, T.J., AIChE J., Vol. 20, No. 2 (1974).
20. Goin, K.M., Ph.D. Thesis, Univ. of Oklahoma, 1978.
21. Good, R.J. and Hope, C.J., J. Chem. Phys., 55, 111 (1971).
22. Good, R.J. and Hope, C.J., J. Chem. Phys., 53, 540 (1970).
23. Gregory, D.P., Djordjevich, L., Kao, R., Anderson, G.L., Eakin, B.E., Bodle, W.W. and Starling, K.E., "Thermodynamic Properites of a Lean Natural Gas at Cryogenic Conditions", Report BR-4-8 for American Gas Association, by Institute of Gas Technology, Chicago, Illinois (1971).
24. Hains, M. S., M.S. Thesis, Univ. of Oklahoma, 1967.
25. Haman, S.E.M. and Benjamin, C.Y.L., Can. J. Chem. Eng., Vol. 52 (1974).
26. Hanson, G.H., Hogan, R.J., Ruehlen, F.N. and Cines, M.R., "Ethane-Ethylene System VLE at \(0-40\) and \(100(F)\) ", Symposium Series No. 6, Vol. 49.
27. Henderson, D. and Leonard, P.J., Proc. Natl. Acad. Sci. U.S.A., 68, 632 (1971).
28. Hensel, W.E. Jr. and Massoth, F.E., J. Chem. Eng. Data, Vol. 9, 352 (1964).
29. Hirata, M., Suda, S., Miyashita, R. and Hoshino, T., "High Pressure VLE Experimental Data on the System C3-IC4", Metropolitan University, Japan (1970).
30. Hiza, M.J. and Duncan, A.G., AIChE J., 16, 733 (1970).
31. Hudson, G.H and McCoubrey, J.C., Trans. Faraday Soc., 56, 761 (1960).
32. Jensen, R.A. and Kurata, F., J. Petro. Tech., Vol. 21 (1969).
33. Kahre, L.C., J. Chem. Eng. Data, Vol. 19, No. 1 (1974).
34. Kahre, L.C., J. Chem. Eng. Data, Vol. 18, 267 (1973).
35. Kay, W.B., J. Chem. Eng. Data, Vol. 15, No. 1, 48 (1970).
36. Kay, W.B., Ind. and Eng. Chem., Vol. 32, No. 3, 353 (1940).
37. Kay, W.B. and Brice, D.B., Ind. and Eng. Chem., Vol. 45, No. 3 (1953).
38. Kay, W.B. and Ramboser, G.M., Ind. and Eng. Chem., Vol. 45, No. 1 (1953).
39. Keyes, F.G. and Borks, H.G.,J.Amer. Chem. Soc., Vol. 50 (1928).
40. Lee, B.I. and Kesler, M.G., AIChE J. 21, 510 (1975).
41. Lee, L.L., Starling, K.E. and Mo, K.C., "Proceedings of the Seventh Symposium on Thermophysical Properties", American Society of Mechanical Engineers, New York, 451 (1977).
42. Lee, L.L. and Starling, K.E., "Three-Parameter Conformal Solution Theory for Light Hydrocarbon Vapor-Liquid Equilibrium", presented at AIChE convention, New York (1977).
43. Lee, R.C. and Edmister, W.C., AIChE J., Vol. 16, No. 6, 1047 (1970).
44. Leland, T.W., Chappelear, P.S. and Gamson, B.W., AIChE J., 8, 482 (1962).
45. Leland, T.W., Rowlinson, J.S. and Sather, G.A., Trans. Faraday. Soc., 64, 1447 (1968).
46. Lin, H.M. and Robinson, R.L. Jr., J. Chem. Phys., 54, 52 (1971).
47. London, F., Z. Phisik, 63, 245 (1930).
48. Lorents, H.A., Ann. Phisik, 12, 127 (1881).
49. McKay, R.A., Reamer, H.H., Sage, B.H. and Lacey, W.N., Ind. and Eng. Chem., Vol. 43, No. 9, 2112 (1951).
50. Mehra, V.S. and Thodos, G., J. Chem. Eng. Data, Vol. 10, No. 4, 307 (1965).
51. Olds, R.H., Reamer, H.H., Sage, B.H. and Lacey, W.N., Ind. and Eng. Chem., Vol. 41, No. 3, 476 (1949).
52. Olds, R.H., Sage, B.H. and Lacey, W.N., Ind, and Eng. Chem., Vol. 34, No. 8, 1008 (1942).
53. Pople, J.A., Prod. R. Soc., London, A221, 498 (1954).
54. Powers, J.E., Private Communication, Univ. of Michigan (1972).
55. Prigogine, I., The Molecular Theory of Solutions, Amsterdam (1957).
56. Prigogine, I., Bellemans, A. and Englert-Chwoles, A., J. Chem. Phys., 24, 518 (1956).
57. Reamer, H.H., Olds, R.H., Sage, B.H. and Lacey, W.N., Ind. and Eng. Chem., Vol. 37, No. 7 (1945).
58. Reamer, H.H., Olds, R.H., Sage, B.H. and Lacey, W.N., Ind. and Eng. Chem., Vol. 34, 1526 (1942).
59. Reamer, H.H. and Sage, B.H., Ind. and Eng. Chem., Vol. 43, No. 7, 1628 (1951).
60. Reamer, H.H., Sage, B.H. and Lacey, W.N., J. Chem. Eng. Data, Vol. 1, No. 1, 29 (1956).
61. Reamer, H.H., Sage, B.H. and Lacey, W.N., Ind. and Eng. Chem., Vol. 43, No. 11, 2515 (1951).
62. Reamer, H.H., Sage, B.H. and Lacey, W.N., Ind. and Eng. Chem., Vol. 38, No. 10, 986 (1946).
63. Reamer, H.H., Selleck, F.T., Sage, B.H. and Lacey, W.N., Ind. and Eng. Chem., Vol. 44, No. 1 (1952).
64. Redlich, O. and Kwong, J.N.S., Chem. Rev., 44, 233 (1949).
65. Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., The Properties of Gases and Liquids, 3rd ed., Ch. 4, New York: McGraw-Hill Book Company, Inc., 1977.
66. Roberts, L.R. and McKetta, J., AIChE J. Vol. 7, No. 1 (1962).
67. Robinson, D.B. and Bailey, J.A., "The Carbon DioxideHydrogen Sulfide-Methane System", Can. J. Chem. Eng., 35, 151 (1957).
68. Robinson, D.B. and Besserer, G.J., "Research Report-RR7", Natural Gas Processors Association, June (1972).
69. Robinson, D.B. and Kalra, H. "The Phase Behavior of a Six-Component Simulated Sour Gas System at Subambient Temperatures", paper 48 f, presented at the 70 th Annual Meeting, of AIChE, November 13-17th, 1977, New York.
70. Robinson, D.B. and Kalra, H., "Gas Processors Report", Research Report-RR-18, Univ. of Alberta, August (1976).
71. Robinson. D.B. and Kalra. H., "Research Report-RR15", Gas Processors Association, March 1975.
72. Rowlinson, J.S., Liquids and Liquid Mixtures, Ch. 9, Butterworths, London. (1969).
73. Sage, B.H. and Lacey, W.N., "Some Properties of the Lighter Hydrocarbons, Hydrogen Sulfide and Carbon Dioxide", API44: New York (1955).
74. Sage, B. H. and Lacey, W.N., "Monograph on API Research Project 37", API: New York (1950).
75. Sage, B.H. and Lacey, W.N., "Thermodynamic Properties of the Lighter Paraffin Hydrocarbons and Nitrogen", American Petroleum Institute: New York, (1950).
76. Schindler, D.L., Swift, G.W. and Kurata, F., Hydrocarbon Processing, Vol. 45, No. 11, November (1966).
77. Scott, R.L., J. Chem. Phys., 25, 193 (1956).
78. Shipman, L.M. and Kohn, J., J. Chem. Eng. Data, 11, 176 (1966).
79. Smith, W.R., Can. J Chem. Eng., 50, 271 (1972).
80. Smith, W.R.., Mol. Phys., 21, 105 (1971).
81. Sobocinski, D.P. and Kurata, F., AIChE J., Vol. 5, 545 (1959).
82. Starling, K.E., Fluid Thermodynamic Properties for Light Petroleum Systems, Gulf Publication Company: Houston, 1973.
83. Starling, K.E., Johnson, D.W. and Colver, C.P., NGPA, "Research Report RR-4", May (1971).
84. Starling, K.E., et.al., "Self Consistent Correlation of Thermodynamic and Transport Properties", prepared for American Gas Assocn., GRI/AGA Project No. Br-111-1, Univ. of Oklahoma (1977).
85. Stell, G., Rasaiah, J.C. and Narang, H., Mol. Phys., 23. 393 (1972).
86. Stryjek, R., Chappelear, P.S. and Kobayashi, R. J. Chem. Eng. Data, Vol. 19, (1974).
87. Teja, A.S., Chem. Eng. Sci.., 33, 609 (1978).
88. Tsonopoulos, C., Adv. Chem. Series, No. 182, 143 (1979).
89. Vairogs, J., Klekers, A.J. and Edmister, W.C., AIChE J., 17, 308 (1971).
90. Vaughan, W.E. and Collins, F.C., Ind. and Eng. Chem., Vol. 34, No. 7 (1942).
91. Watson, G.M., Stevens, A.B., Evans, R.B. and Hodges, Don Jr., Ind. and Eng. Chem., Vol. 46, No. 2, 362 (1954).
92. Witchterle, I. and Kobayashi, R., "Low Temperature Vapor-Liquid Equilibria in the Methane-EthanePropane Ternary and Associated Binary Methane Systems with Special Consideration of the Equilibria in the Vicinity of the Critical Temperature of Methane", Rice University Monograph: Houston, 1970.

NOMENCLATURE
\[
\begin{aligned}
& \text { A = Helmholtz free energy } \\
& A_{0}=\text { reference system Helmholtz free energy } \\
& A_{i}=\text { the ith order term in perturbation of } A \\
& A_{x}=\text { Helmholtz free energy of a hypothetical pure } \\
& \text { reference fluid } \\
& A^{*}=\text { reduced Helmholtz free energy, } A / N k T \\
& a_{i}=\text { constant in expression for } B_{i}, i=1, \ldots 12 \\
& a_{x}, b_{x}, c_{x}=\text { parameters in Equation (III-2) } \\
& a_{i j}=\delta_{i j}{ }^{k} \varepsilon_{i j}{ }^{l} \sigma_{i j}{ }^{m} \\
& B_{i}=\text { coefficients of MBWR equation, } B_{i} \equiv a_{i}+\gamma b_{i} \text {, } \\
& i=1, \ldots 12 \\
& b_{i}=\text { constant in expression for } B_{i}, i=1, \ldots 12 \\
& b_{i j}=\delta_{i j} p_{\varepsilon_{i j}} q_{\sigma_{i j}}{ }^{r} \\
& c_{i j}=\delta_{i j}{ }^{u} \varepsilon_{i j}{ }^{v}{ }_{\sigma_{i j}}{ }^{w} \\
& D=\text { angle dependent part of an isotropic potential } \\
& \text { in Equation (III-11) } \\
& F_{i j}=\underset{\text { distance dependent in Equat }}{\text { dial }} \text { of an isotropic poten- } \\
& f^{*}=\text { function, see Equation (III-21) } \\
& \mathrm{g}_{\mathrm{ij}}{ }^{\circ}=\begin{aligned}
& \text { radial } \text { distribution function of } \\
& \text { system with pair potential } U_{i j}
\end{aligned} \text { the reference } \\
& \mathrm{g}_{\mathrm{x}}{ }^{\circ}=\text { radial distribution function of a hypothetical } \\
& \text { pure reference fluid with pair potential } \mathrm{U}_{\mathrm{ij}}{ }^{\circ}
\end{aligned}
\]
\[
\begin{aligned}
& J_{\mathrm{x}}=\text { integral defined in Equation (III-8) } \\
& K=\text { Boltzman constant } \\
& \mathrm{k}, \mathrm{l}, \mathrm{~m}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{u}, \mathrm{v}, \mathrm{w}=\text { exponent in Equations (III-3) - (III-5) } \\
& P=\text { pressure } \\
& p_{c}=\text { critical pressure } \\
& p_{r}=r \in d u c e d \text { pressure, } p / p_{c} \\
& p_{c_{m}}=\text { pseudocritical mixture pressure } \\
& \underline{r}_{1}=\text { position vector of molecule } 1 \\
& r_{12}=\text { distance between molecular centers } \\
& r^{*}=\text { reduced distance, } r / \sigma_{x} \\
& T \text { = absolute temperature } \\
& \mathrm{T}_{\mathrm{c}}=\text { critical temperature } \\
& T_{r}=\text { reduced temperature, } T / T_{c} \\
& T_{c_{\mathrm{m}}}=\text { pseudocritical mixture temperature } \\
& T^{*}=\text { reduced temperature, } \mathrm{kT} / \varepsilon_{\mathrm{X}} \\
& U_{i j}=\text { intermolecular pair potential } \\
& U_{i j}^{O}=\underset{\text { action potential }}{ } \quad \begin{array}{l}
\text { spherically }
\end{array} \\
& \mathrm{V}=\mathrm{volume} \\
& V_{c}=\text { critical volume } \\
& V_{r}=\text { reduced volume, } V / V_{c} \\
& V_{c_{m}}=\text { pseudocritical mixture volume } \\
& \mathrm{x}_{i}=\text { mole fraction of component } i \\
& Z=\text { compressibility factor of fluid } \\
& Z_{0}=\text { reference fluid compressibility factor }
\end{aligned}
\]
```

    Z
    Z(0) = simple fluid compressibility factor, see Eq. (II-9)

```

\section*{Greek Symbols}
\(\gamma=\) orientation parameter
\(\gamma_{i j}=\) orientation parameter for component i
\(\gamma_{i j}=\) interaction orientation parameter species for \(i\) and \(j\)
\(\gamma_{x}=\) orientation parameter obtained from conformal solution theory mixing rule
\(\delta=\) overlap potential parameter
\(\delta_{i j}=\) unlike interaction overlap poteneial parameter
\(\delta_{x}=\) mixture reference overlap parameter
\(\varepsilon=\) characteristic molecular energy parameter
\(\varepsilon_{i i}=\varepsilon\) for component \(i\)
\(\varepsilon_{i j}=\) interaction parameter for characteristic molecular energy parameter \(\varepsilon\) between species \(i\) and \(j\)
\(\varepsilon_{\mathrm{x}}=\) mixture reference systems energy parameter
\(\zeta_{i j}=\) unlike-pair separation parameter coefficient for species \(i\) and \(j\)
\(\eta, \eta^{\prime}=\) unlike-pair separation parameter coefficient for species \(i\) and \(j\)
\(\sigma_{1}=\) polar angles of orientation for molecule 1
\(\xi_{i j}=\underset{j}{\operatorname{unl}}\) species -pair energy parameter coefficient for \(i\) and
\(\rho=\) molecule number density
\(\rho^{*}=\) reduced number density, \(\rho \sigma_{x}{ }^{3}\)
\(\rho_{c}=\) critical density
\(\sigma=\) characteristic molecular distance parameter
\(\sigma_{i i}=\sigma\) for component \(i\)
\(\sigma_{i j}=\begin{aligned} & \text { interaction parameter for characteristic molecular } \\ & \text { distance parameter, } \sigma \text { between substance } i \text { and } j\end{aligned}\)
\(\sigma_{x}=\) mixture reference system molecular distance parameter
\(\phi^{0}=\) isotropic part of potential
\(\phi^{\mathrm{p}}=\) anisotropic part of potential
\(\omega=\) acentric factor
\(\omega_{i}=\) orientation of molecule \(i\)
Superscripts
* = reduced form
\(R=\) reference fluid
Subscript
```

m = mixture

```
```

Comparison of Vapor-Liquid Equilibrium Calculations
for the System Methane-Ethane-Propane
(Subscripts 1, 2, 3, Respectively)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Pressure (psia)} & \multirow[t]{2}{*}{Temp.
\[
\left({ }^{\circ} R\right)
\]} & & \multicolumn{3}{|l|}{Liquid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{100} & \multirow{4}{*}{384.67} & Expt & 0.0533 & 0.9008 & 0.0459 & 0.44814 & 0.54755 & 0.00431 \\
\hline & & Cale \({ }^{1}\) & 0.0521 & 0.9023 & 0.0456 & 0.45794 & 0.58833 & 0.00373 \\
\hline & & Calc \({ }^{2}\) & 0.0524 & 0.9020 & 0.0456 & 0.45793 & 0.53837 & 0.00371 \\
\hline & & Calc \({ }^{3}\) & 0.0516 & 0.9023 & 0.0460 & 0.45904 & 0.53776 & 0.00320 \\
\hline \multirow{4}{*}{200} & \multirow{4}{*}{384.67} & Expt & 0.1777 & 0.1834 & 0.6389 & 0.90348 & 0.06461 & 0.03191 \\
\hline & & Calc \({ }^{1}\) & 0.1631 & 0.19074 & 0.64614 & 0.91036 & 0.05863 & 0.03101 \\
\hline & & Calc \({ }^{2}\) & 0.1698 & 0.18934 & 0.64078 & 0.91074 & 0.05877 & 0.03049 \\
\hline & & Calc \({ }^{3}\) & 0.1560 & 0.19514 & 0.64882 & 0.91457 & 0.05482 & 0.03061 \\
\hline \multirow{4}{*}{100} & \multirow{4}{*}{384.67} & Expt & 0.0813 & 0.2052 & 0.7135 & 0.81743 & 0.12625 & 0.05632 \\
\hline & & Calc \({ }^{1}\) & 0.0730 & 0.21533 & 0.71159 & 0.82907 & 0.11567 & 0.05526 \\
\hline & & Calc \({ }^{2}\) & 0.0767 & 0.21482 & 0.70843 & 0.82958 & 0.11563 & 0.05479 \\
\hline & & Calc \({ }^{3}\) & 0.0703 & 0.22142 & 0.70823 & 0.83681 & 0.10879 & 0.05441 \\
\hline \multirow{4}{*}{100} & \multirow{4}{*}{384.67} & Expt & 0.0580 & 0.7770 & 0.1650 & 0.50037 & 0.48624 & 0.01339 \\
\hline & & Calci & 0.0554 & 0.78463 & 0.15996 & 0.52143 & 0.46598 & 0.01259 \\
\hline & & Calc \({ }_{3}\) & 0.0557 & 0.78428 & 0.15997 & 0.52135 & 0.46616 & 0.01249 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.0542 & 0.78555 & 0.16021 & 0.526113 & 0.46264 & 0.01124 \\
\hline
\end{tabular}

APPENDIX A
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Pressure (psia)} & \multirow[t]{2}{*}{Temp.
\[
\left(O_{R}\right)
\]} & & \multicolumn{3}{|l|}{Liquid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{200} & \multirow{4}{*}{384.67} & Expt. & 0.1667 & 0.6943 & 0.1390 & 0.74702 & 0.24446 & 0.00852 \\
\hline & & Calci & 0.1584 & 0.70107 & 0.14045 & 0.75486 & 0.23798 & 0.00716 \\
\hline & & \(\mathrm{Calc}{ }^{2}\) & 0.1604 & 0.69945 & 0.14009 & 0.75485 & 0.23807 & 0.00708 \\
\hline & & Calc \({ }^{3}\) & 0.1552 & 0.70343 & 0.14137 & 0.75716 & 0.23638 & 0.00646 \\
\hline \multirow{4}{*}{200} & \multirow{4}{*}{384.67} & Expt & 0.1624 & 0.7963 & 0.0413 & 0.71442 & 0.28343 & 0.00215 \\
\hline & & Calc \({ }^{1}\) & 0.1597 & 0.79941 & 0.04085 & 0.72336 & 0.27446 & 0.00218 \\
\hline & & Calc \({ }^{2}\) & 0.1618 & 0.79743 & 0.04071 & 0.72346 & 0.27438 & 0.00217 \\
\hline & & Calc \({ }^{3}\) & 0.1590 & 0.79980 & 0.04113 & 0.72393 & 0.27417 & 0.00190 \\
\hline \multirow{4}{*}{400} & \multirow{4}{*}{384.67} & Expt. & 0.3725 & 0.51930 & 0.10820 & 0.86716 & 0.12712 & 0.00572 \\
\hline & & Calc \({ }^{1}\) & 0.3612 & 0.52859 & 0.11015 & 0.87256 & 0.12245 & 0.00498 \\
\hline & & Calc \({ }^{2}\) & 0.3677 & 0.52345 & 0.10882 & 0.87297 & 0.12213 & 0.00489 \\
\hline & & Calc \({ }^{3}\) & 0.3563 & 0.53242 & 0.11128 & 0.87381 & 0.12158 & 0.00462 \\
\hline \multirow{4}{*}{600} & \multirow{4}{*}{384.67} & Expt. & 0.5453 & 0.09710 & 0.35760 & 0.95770 & 0.02335 & 0.01895 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.5458 & 0.09887 & 0.35528 & 0.96157 & 0.02075 & 0.01767 \\
\hline & & Calc \({ }^{2}\) & 0.5511 & 0.09767 & 0.35116 & 0.96224 & 0.02084 & 0.01692 \\
\hline & & Calc \({ }^{3}\) & 0.5253 & 0.10349 & 0.37112 & 0.96257 & 0.01984 & 0.01759 \\
\hline \multirow{4}{*}{800} & \multirow{4}{*}{384.67} & Expt & 0.7796 & 0.1795 & 0.0409 & 0.91765 & 0.07395 & 0.00840 \\
\hline & & Calc \({ }^{1}\) & 0.7544 & 0.10879 & 0.04672 & 0.92586 & 0.06759 & 0.00654 \\
\hline & & Calc \({ }_{3}\) & 0.7594 & 0.19514 & 0.04546 & 0.92726 & 0.06643 & 0.00631 \\
\hline & & Calc \({ }^{3}\) & 0.7510 & 0.20150 & 0.04741 & 0.92678 & 0.06680 & 0.00642 \\
\hline
\end{tabular}

APPENDIX A
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Pressure \\
(psia)
\end{tabular}} & \multirow[t]{2}{*}{\[
\left.\mathrm{T}_{\mathrm{O}}^{\mathrm{O}} \mathrm{R}\right)
\]} & & \multicolumn{3}{|l|}{Liquid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \({ }^{\text {x }}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{800} & \multirow{4}{*}{384.67} & Expt & 0.7840 & 0.2037 & 0.0123 & 0.90632 & 0.09115 & 0.00253 \\
\hline & & Calc \({ }^{1}\) & 0.7589 & 0.2272 & 0.01383 & 0.91521 & 0.08258 & 0.00221 \\
\hline & & Calc \({ }^{2}\) & 0.7644 & 0.22217 & 0.01336 & 0.91689 & 0.08098 & 0.00214 \\
\hline & & Calc \({ }^{3}\) & 0.7593 & 0.22688 & 0.01378 & 0.91621 & 0.08163 & 0.00215 \\
\hline \multirow{4}{*}{40.00} & \multirow{4}{*}{359.67} & Expt. & 0.0390 & 0.1999 & 0.7611 & 0.77157 & 0.16379 & 0.06464 \\
\hline & & Calc \({ }^{1}\) & 0.0349 & 0.21275 & 0.75232 & 0.79052 & 0.14790 & 0.05978 \\
\hline & & Calc \({ }^{2}\) & 0.0359 & 0.21250 & 0.75152 & 0.79053 & 0.14987 & 0.05960 \\
\hline & & Calc. \({ }^{3}\) & 0.0325 & 0.22043 & 0.74700 & 0.80013 & 0.14098 & 0.05889 \\
\hline \multirow{4}{*}{40.00} & \multirow{4}{*}{359.67} & Expt. & 0.0255 & 0.67710 & 0.29740 & 0.43703 & 0.53611 & 0.02686 \\
\hline & & Calc \({ }^{1}\) & 0.0222 & 0.67779 & 0.30000 & 0.44247 & 0.53469 & 0.02284 \\
\hline & & Calc \({ }^{2}\) & 0.0219 & 0.67756 & 0.30047 & 0.44204 & 0.53515 & 0.02281 \\
\hline & & Calc \({ }^{3}\) & 0.0212 & 0.68275 & 0.29600 & 0.45291 & 0.52624 & 0.02086 \\
\hline \multirow{4}{*}{100} & \multirow{4}{*}{359.67} & Expt & 0.1058 & 0.5843 & 0.3099 & 0.78184 & 0.20508 & 0.01308 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.0973 & 0.58948 & 0.31315 & 0.78692 & 0.20179 & 0.01129 \\
\hline & & Calc \({ }^{2}\) & 0.0970 & 0.58936 & 0.31362 & 0.78635 & 0.20242 & 0.01123 \\
\hline & & Calc \({ }^{3}\) & 0.0916 & 0.59431 & 0.31406 & 0.79217 & 0.19725 & 0.01058 \\
\hline \multirow{4}{*}{100} & \multirow{4}{*}{359.67} & Expt & 0.1037 & 0.8045 & 0.0918 & 0.71928 & 0.27656 & 0.00416 \\
\hline & & Calc \({ }^{1}\) & 0.09965 & 0.80680 & 0.09355 & 0.71562 & 0.28086 & 0.00352 \\
\hline & & Calc \({ }^{2}\) & 0.09914 & 0.80717 & 0.09369 & 0.71515 & 0.28132 & 0.00353 \\
\hline & & Calc. & 0.09646 & 0.80922 & 0.09433 & 0.71658 & 0.28035 & 0.00308 \\
\hline
\end{tabular}

APPENDIX A
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Pressure
\((\) psia)} & \multirow[t]{2}{*}{\[
\underset{\left({ }_{\mathrm{T}}^{\mathrm{R}} \mathrm{R}\right)}{\mathrm{Temp}} .
\]} & & \multicolumn{3}{|l|}{Liquid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \({ }^{\text {x }} 3\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{200} & \multirow{4}{*}{359.67} & Expt. & 0.2332 & 0.05280 & 0.7140 & 0.96902 & 0.01232 & 0.01866 \\
\hline & & Calc & 0.22683 & 0.05553 & 0.71765 & 0.97311 & 0.00973 & 0.01716 \\
\hline & & \(\mathrm{Calc}{ }^{2}\) & 0.23233 & 0.05506 & 0.71261 & 0.97327 & 0.00985 & 0.01687 \\
\hline & & Calc. \({ }^{3}\) & 0.20946 & 0.05742 & 0.73312 & 0.97381 & 0.00890 & 0.01724 \\
\hline \multirow{4}{*}{200} & \multirow{4}{*}{359.67} & Expt & 0.2366 & 0.4960 & 0.2674 & 0.89046 & 0.10178 & 0.00776 \\
\hline & & Calc \({ }^{1}\) & 0.22488 & 0.50292 & 0.27220 & 0.89294 & 0.10043 & 0.00644 \\
\hline & & \(\mathrm{Calc}{ }^{2}\) & 0.22572 & 0.50215 & 0.27213 & 0.89247 & 0.10096 & 0.00657 \\
\hline & & Calc \({ }^{3}\) & 0.21266 & 0.51086 & 0.27648 & 0.89516 & 0.09854 & 0.00630 \\
\hline \multirow{4}{*}{400} & \multirow{4}{*}{359.67} & Expt. & 0.4877 & 0.03730 & 0.4750 & 0.98122 & 0.00627 & 0.01251 \\
\hline & & Calci & 0.48228 & 0.03846 & 0.47926 & 0.98370 & 0.00530 & 0.01100 \\
\hline & & Calc \({ }^{2}\) & 0.48498 & 0.03818 & 0.47684 & 0.98393 & 0.00539 & 0.01067 \\
\hline & & Calc. & 0.45281 & 0.04078 & 0.50640 & 0.98383 & 0.00497 & 0.01121 \\
\hline \multirow{4}{*}{400} & \multirow{4}{*}{359.67} & Expt; & 0.5206 & 0.3083 & 0.1711 & 0.94363 & 0.05125 & 0.00512 \\
\hline & & Cale & 0.49401 & 0.32516 & 0.18083 & 0.94654 & 0.04884 & 0.00461 \\
\hline & & Calc \({ }^{2}\) & 0.49898 & 0.32204 & 0.17898 & 0.94654 & 0.04893 & 0.00453 \\
\hline & & Calc. & 0.47725 & 0.33559 & 0.18716 & 0.94718 & 0.04829 & 0.00453 \\
\hline \multirow{4}{*}{600} & \multirow{4}{*}{359.67} & Expt. & 0.7668 & 0.0179 & 0.2153 & 0.98420 & 0.00355 & 0.01225 \\
\hline & & Calci & 0.75208 & 0.01890 & 0.22902 & 0.98696 & 0.00335 & 0.00969 \\
\hline & & \(\mathrm{Calc}{ }^{2}\) & 0.74904 & 0.01905 & 0.23191 & 0.98727 & 0.00337 & 0.00936 \\
\hline & & Calc. & 0.73228 & 0.02035 & 0.24737 & 0.98660 & 0.00326 & 0.01014 \\
\hline
\end{tabular}

\section*{APPENDIX A}
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Pressure (psia)} & \multirow[t]{2}{*}{\[
\underset{\left({ }_{(}^{\mathrm{O}} \mathrm{R}\right)}{\mathrm{Temp}} .
\]} & & \multicolumn{3}{|l|}{Liquid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{600} & \multirow{4}{*}{359.67} & Expt & 0.7795 & 0.1364 & 0.0841 & 0.96332 & 0.03113 & 0.00555 \\
\hline & & Calci & 0.76482 & 0.14552 & 0.08966 & 0.96701 & 0.02838 & 0.00461 \\
\hline & & Calc? & 0.76772 & 0.14391 & 0.08837 & 0.96742 & 0.02808 & 0.00450 \\
\hline & & Calc \({ }^{3}\) & 0.75648 & 0.15055 & 0.09297 & 0.96708 & 0.02818 & 0.00474 \\
\hline \multirow{4}{*}{725} & \multirow{4}{*}{359.67} & Expt. & 0.9194 & 0.0056 & 0.0750 & 0.98562 & 0.00184 & 0.01254 \\
\hline & & Calc: & 0.90633 & 0.00615 & 0.08753 & 0.98808 & 0.00185 & 0.01007 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.90399 & 0.00626 & 0.08974 & 0.98839 & 0.00183 & 0.00977 \\
\hline & & Calc. & 0.90264 & 0.00639 & 0.09097 & 0.98746 & 0.00184 & 0.01070 \\
\hline \multirow{4}{*}{32.00} & \multirow{4}{*}{334.67} & Expt & 0.04510 & 0.2274 & 0.7275 & 0.83393 & 0.13182 & 0.03425 \\
\hline & & Calc \({ }^{1}\) & 0.04034 & 0.24471 & 0.71495 & 0.86140 & 0.11082 & 0.02778 \\
\hline & & Calc \({ }^{2}\) & 0.04012 & 0.24425 & 0.71563 & 0.86081 & 0.11144 & 0.02775 \\
\hline & & Calc \({ }^{3}\) & 0.03591 & 0.25128 & 0.71281 & 0.86926 & 0.10332 & 0.02743 \\
\hline \multirow{4}{*}{32.00} & \multirow{4}{*}{334.67} & Expt & 0.0304 & 0.8378 & 0.1318 & 0.51306 & 0.48024 & 0.00670 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.03347 & 0.84449 & 0.12203 & 0.56377 & 0.43169 & 0.00454 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.03233 & 0.84528 & 0.12239 & 0.56302 & 0.43243 & 0.00458 \\
\hline & & Calc. \({ }^{3}\) & 0.03136 & 0.84604 & 0.12260 & 0.56599 & 0.43009 & 0.00392 \\
\hline \multirow{4}{*}{725} & \multirow{4}{*}{359.67} & Expt. & 0.9291 & 0.0501 & 0.0298 & 0.97067 & 0.02209 & 0.00724 \\
\hline & & Calc \({ }^{1}\) & 0.91131 & 0.05507 & 0.03362 & 0.97553 & 0.01931 & 0.00517 \\
\hline & & Calc \({ }^{2}\) & 0.91160 & 0.05499 & 0.03341 & 0.97600 & 0.01898 & 0.00502 \\
\hline & & Calc \({ }^{3}\) & 0.91004 & 0.05594 & 0.03402 & 0.97532 & 0.01929 & 0.00539 \\
\hline
\end{tabular}
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Pressure (psia)} & \multirow[t]{2}{*}{\[
\underset{\left(\mathrm{C}_{R}\right)}{\mathrm{Temp}} .
\]} & & \multicolumn{3}{|l|}{Liquid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{100} & \multirow{4}{*}{334.67} & Expt. & 0.1479 & 0.7354 & 0.1167 & 0.84909 & 0.14858 & 0.00233 \\
\hline & & Calc \({ }^{1}\) & 0.15888 & 0.72790 & 0.11322 & 0.86371 & 0.13453 & 0.00176 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.15623 & 0.73004 & 0.11373 & 0.86295 & 0.13526 & 0.00179 \\
\hline & & Calc \({ }^{3}\) & 0.15044 & 0.73483 & 0.11472 & 0.86383 & 0.13460 & 0.00157 \\
\hline \multirow{4}{*}{200} & \multirow{4}{*}{334.67} & Expt & 0.3142 & 0.1579 & 0.5279 & 0.07149 & 0.02149 & 0.00702 \\
\hline & & Calci & 0.31598 & 0.16102 & 0.52300 & 0.97772 & 0.01662 & 0.00566 \\
\hline & & Calci \({ }^{2}\) & 0.31298 & 0.16137 & 0.52565 & 0.97739 & 0.01700 & 0.00561 \\
\hline & & Calc. & 0.28299 & 0.16910 & 0.54791 & 0.97864 & 0.01559 & 0.00577 \\
\hline \multirow{4}{*}{400} & \multirow{4}{*}{334.67} & Expt & 0.6828 & 0.0729 & 0.2443 & 0.98718 & 0.00785 & 0.00497 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.72162 & 0.06500 & 0.21338 & 0.98982 & 0.00674 & 0.00344 \\
\hline & & Calc \({ }^{2}\) & 0.71915 & 0.06547 & 0.21537 & 0.98975 & 0.00684 & 0.00341 \\
\hline & & Calc. & 0.69663 & 0.07057 & 0.23281 & 0.98963 & 0.00663 & 0.00373 \\
\hline \multirow{4}{*}{32.00} & \multirow{4}{*}{309.67} & Expt. & 0.0715 & 0.7701 & 0.1584 & 0.81724 & 0.18068 & 0.00208 \\
\hline & & Calci & 0.06677 & 0.77358 & 0.15965 & 0.81666 & 0.18139 & 0.00195 \\
\hline & & Calc \({ }^{2}\) & 0.06296 & 0.77641 & 0.16063 & 0.81562 & 0.18239 & 0.00199 \\
\hline & & Calc. \({ }^{3}\) & 0.06004 & 0.77888 & 0.16108 & 0.81767 & 0.18061 & 0.00172 \\
\hline \multirow{4}{*}{100} & \multirow{4}{*}{309.67} & Expt. & 0.2541 & 0.6805 & 0.0654 & 0.93931 & 0.06034 & 0.00035 \\
\hline & & Galc & 0.25508 & 0.67967 & 0.06525 & 0.93957 & 0.06005 & 0.00038 \\
\hline & & \(\mathrm{Calc}{ }^{2}\) & 0.24992 & 0.68429 & 0.06579 & 0.93883 & 0.06077 & 0.00040 \\
\hline & & Calc. & 0.24173 & 0.69166 & 0.06662 & 0.93891 & 0.06075 & 0.0003 .4 \\
\hline
\end{tabular}

\section*{APPENDIX A}
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Pressure (psia)} & \multirow[t]{2}{*}{\[
\underset{\left({ }_{\mathrm{O}}^{\mathrm{R}}\right)}{\mathrm{Temp}} .
\]} & & \multicolumn{3}{|l|}{Liquid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\dot{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{200} & \multirow{4}{*}{309.67} & Expt. & 0.5487 & 0.3826 & 0.0687 & 0.97513 & 0.02460 & 0.00327 \\
\hline & & Calc. & 0.54457 & 0.38634 & 0.06910 & 0.97609 & 0.02354 & 0.00038 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.54673 & 0.38449 & 0.06878 & 0.97577 & 0.02384 & 0.00040 \\
\hline & & Calc \({ }^{3}\) & 0.52950 & 0.39894 & . 0.07156 & 0.97563 & 0.02399 & 0.00039 \\
\hline \multirow{4}{*}{300} & \multirow{4}{*}{309.67} & Expt & 0.8565 & 0.0462 & 0.0973 & 0.99553 & 0.00351 & 0.00096 \\
\hline & & Calc \({ }^{1}\) & 0.85031 & 0.04815 & 0.10154 & 0.99574 & 0.00340 & 0.00086 \\
\hline & & Calc \({ }^{2}\) & 0.84942 & 0.04841 & 0.10217 & 0.99567 & 0.00344 & 0.00090 \\
\hline & & Calc \({ }^{3}\) & 0.84123 & 0.05097 & 0.10780 & 0.99553 & 0.00344 & 0.00103 \\
\hline \multirow{4}{*}{100} & \multirow{4}{*}{284.67} & Expt. & 0.4190 & 0.3783 & 0.2027 & 0.98520 & 0.01449 & 0.00031 \\
\hline & & Calc \({ }^{1}\) & 0.40218 & 0.38936 & 0.20846 & 0.98571 & 0.01393 & 0.00036 \\
\hline & & Calc \({ }^{2}\) & 0.38582 & 0.39968 & 0.21450 & 0.98514 & 0.01448 & 0.00038 \\
\hline & & Calc \({ }^{3}\) & 0.35317 & 0.42077 & 0.22606 & 0.98541 & 0.01422 & 0.00037 \\
\hline \multirow{4}{*}{32.00} & \multirow{4}{*}{284.67} & Expt & 0.1174 & 0.3770 & 0.5056 & 0.96179 & 0.03639 & 0.00182 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.10185 & 0.38550 & 0.51265 & 0.96557 & 0.03270 & 0.00173 \\
\hline & & Calc \({ }^{2}\) & 0.09192 & 0.38904 & 0.51904 & 0.96471 & 0.03354 & 0.00175 \\
\hline & & Calc. & 0.08113 & 0.39512 & 0.52375 & 0.96743 & 0.03086 & 0.00172 \\
\hline
\end{tabular}

\footnotetext{
Modified van der Waals one-fluid mixing rules. Semiempirical exponent mixing rules.
Semiempirical exponent mixing rules using the correlations given in Eqs. (VI-10) - (VI-12).
}

\section*{APPENDIX}

\section*{Comparison of Vapor-Liquid Equilibrium Calculations for the System Methane-Carbon Dioxide-Hydrogen Sulfide}
(Subscripts 1, 2, 3, Respectively)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Pressure \\
(psia)
\end{tabular}} & \multirow[t]{2}{*}{Temp.
\[
\left({ }^{\circ} R\right)
\]} & & \multicolumn{3}{|l|}{Liguid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{600.00} & \multirow{4}{*}{559.83} & Expt. & 0.0280 & 0.0200 & 0.9520 & 0.2509 & 0.0628 & 0.6863 \\
\hline & & Calc! & 0.0223 & 0.0219 & 0.9558 & 0.2287 & 0.0562 & 0.7151 \\
\hline & & Calc \({ }^{2}\) & 0.0219 & 0.0224 & 0.9558 & 0.2304 & 0.0561 & 0.7135 \\
\hline & & Calc \({ }^{3}\) & 0.0262 & 0.0294 & 0.9444 & 0.2449 & 0.0525 & 0.7026 \\
\hline \multirow{4}{*}{1200.00} & \multirow{4}{*}{559.83} & Expt. & 0.1120 & 0.0460 & 0.8420 & 0.4267 & 0.1049 & 0.4684 \\
\hline & & Calc! & 0.1093 & 0.0629 & 0.8279 & 0.4443 & 0.0892 & 0.4665 \\
\hline & & Calc \({ }^{2}\) & 0.1098 & 0.0638 & 0.8264 & 0.4488 & 0.0885 & 0.4627 \\
\hline & & Calc \({ }^{3}\) & 0.1058 & 0.0711 & 0.8231 & 0.4905 & 0.0814 & 0.4282 \\
\hline \multirow{4}{*}{300.00} & \multirow{4}{*}{429.91} & Expt. & 0.0480 & 0.1270 & 0.8250 & 0.6528 & 0.1397 & 0.2075 \\
\hline & & Calc! & 0.0390 & 0.1180 & 0.8430 & 0.6803 & 0.1494 & 0.1703 \\
\hline & & \(\mathrm{Calc}{ }^{2}\) & 0.0351 & 0.1209 & 0.8440 & 0.6841 & 0.1464 & 0.1695 \\
\hline & & Calc \({ }^{3}\) & 0.0383 & 0.1488 & 0.8139 & 0.7326 & 0.1142 & 0.1533 \\
\hline \multirow{4}{*}{500.00} & \multirow{4}{*}{429.91} & Expt. & 0.1140 & 0.5110 & 0.3750 & 0.5996 & 0.2892 & 0.1111 \\
\hline & & Calc! & 0.1150 & 0.5056 & 0.3795 & 0.6437 & 0.2751 & 0.0812 \\
\hline & & Calc \({ }^{2}\) & 0.1144 & 0.5066 & 0.3791 & 0.6472 & 0.2727 & 0.0801 \\
\hline & & Calc \({ }^{3}\) & 0.0753 & 0.5238 & 0.4008 & 0.6811 & 0.2577 & 0.0612 \\
\hline
\end{tabular}

\section*{APPENDIX B}
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Pressure } \\
(\text { psia) }
\end{gathered}
\]} & \multirow[t]{2}{*}{Temp.
\[
\left({ }^{\circ} R\right)
\]} & & \multicolumn{3}{|l|}{Liquid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{500.00} & \multirow{4}{*}{429.91} & Expt. & 0.0950 & 0.1340 & 0.7710 & 0.7495 & 0.0950 & 0.1555 \\
\hline & & Calci & 0.0843 & 0.1256 & 0.7901 & 0.7769 & 0.1029 & 0.1202 \\
\hline & & Calc \({ }^{2}\) & 0.0770 & 0.1282 & 0.7948 & 0.7797 & 0.1004 & 0.1199 \\
\hline & & Calc \({ }^{3}\) & 0.0714 & 0.1469 & 0.7817 & 0.8176 & 0.0781 & 0.1043 \\
\hline \multirow{4}{*}{700.00} & \multirow{4}{*}{429.91} & Expt & 0.1280 & 0.1140 & 0.7580 & 0.8602 & 0.0240 & 0.1158 \\
\hline & & Calci & 0.1337 & 0.0823 & 0.7840 & 0.8356 & 0.0565 & 0.1079 \\
\hline & & Calc \({ }^{2}\) & 0.1230 & 0.0845 & 0.7925 & 0.8372 & 0.0547 & 0.1081 \\
\hline & & Calc \({ }^{3}\) & 0.1065 & 0.0964 & 0.7972 & 0.8663 & 0.0428 & 0.0910 \\
\hline \multirow{4}{*}{700.00} & \multirow{4}{*}{429.91} & Expt & 0.1720 & 0.4710 & 0.3570 & 0.6003 & 0.2261 & 0.1736 \\
\hline & & Calc \({ }^{3}\) & 0.2058 & 0.4549 & 0.3394 & 0.7156 & 0.2141 & 0.0703 \\
\hline & & Calc \({ }^{2}\) & 0.2065 & 0.4553 & 0.3382 & 0.7200 & 0.2106 & 0.0693 \\
\hline & & Calc \({ }^{3}\) & 0.1230 & 0.4921 & 0.3850 & 0.7449 & 0.2026 & 0.0526 \\
\hline \multirow{4}{*}{300.00} & \multirow{4}{*}{400.03} & Expt & 0.0580 & 0.1300 & 0.8120 & 0.8004 & 0.8502 & 0.1146 \\
\hline & & Calc \({ }^{1}\) & 0.0516 & 0.1195 & 0.8289 & 0.8155 & 0.0949 & 0.0895 \\
\hline & & Calc \({ }^{2}\) & 0.0442 & 0.1224 & 0.8334 & 0.8186 & 0.0922 & 0.0893 \\
\hline & & Calc \({ }^{3}\) & 0.0468 & 0.1447 & 0.8085 & 0.8551 & 0.0657 & 0.0792 \\
\hline \multirow{4}{*}{300.00} & \multirow{4}{*}{400.03} & Expt. & 0.0820 & 0.4700 & 0.4480 & 0.7052 & 0.2190 & 0.0758 \\
\hline & & Calc \({ }^{1}\) & 0.0752 & 0.4631 & 0.4617 & 0.7035 & 0.2303 & 0.0663 \\
\hline & & Calc \({ }^{2}\) & 0.0713 & 0.4649 & 0.4638 & 0.7057 & 0.2291 & 0.0653 \\
\hline & & Calc \({ }^{3}\) & 0.0463 & 0.4821 & 0.4716 & 0.7432 & 0.2071 & 0.0497 \\
\hline
\end{tabular}

\section*{APPENDIX B}
(Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Pressure } \\
(\text { psia) }
\end{gathered}
\]} & \multirow[t]{2}{*}{Temp. \(\left({ }^{\circ} \mathrm{R}\right)\)} & & \multicolumn{3}{|l|}{Liguid Mole Fractions} & \multicolumn{3}{|l|}{Vapor Mole Fractions} \\
\hline & & & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) \\
\hline \multirow{4}{*}{500.00} & \multirow{4}{*}{400.03} & Expt. & 0.0960 & 0.1080 & 0.7960 & 0.8285 & 0.0629 & 0.1086 \\
\hline & & Calc! & 0.1057 & 0.1085 & 0.7858 & 0.8739 & 0.0587 & 0.0674 \\
\hline & & \(\mathrm{Calc}{ }^{2}\) & 0.0909 & 0.1111 & 0.7980 & 0.8758 & 0.0568 & 0.0675 \\
\hline & & Calc \({ }^{3}\) & 0.0826 & 0.1241 & 0.7933 & 0.9024 & 0.0405 & 0.0571 \\
\hline \multirow{4}{*}{500.00} & \multirow{4}{*}{400.03} & Expt & 0.1280 & 0.4660 & 0.4060 & 0.7642 & 0.1771 & 0.0587 \\
\hline & & Calc \({ }^{1}\) & 0.1761 & 0.4482 & 0.3757 & 0.7952 & 0.1577 & 0.0472 \\
\hline & & Calc \({ }^{2}\) & 0.1706 & 0.4514 & 0.3780 & \[
0.7976
\] & 0.1558 & 0.0466 \\
\hline & & Calc \({ }^{3}\) & 0.0940 & 0.4862 & 0.4197 & 0.8185 & 0.1473 & 0.0343 \\
\hline \multirow{4}{*}{700.00} & \multirow{4}{*}{400.03} & & 0.2180 & 0.4150 & 0.3670 & 0.8567 & 0.0851 & 0.0582 \\
\hline & & Calc \({ }^{1}\) & 0.3314 & 0.3421 & 0.3265 & 0.8365 & 0.1179 & 0.0456 \\
\hline & & Calc \({ }^{\text {a }}\) & 0.3295 & 0.3437 & 0.3268 & 0.8393 & 0.1155 & 0.0452 \\
\hline & & Calc \({ }^{3}\) & 0.1416 & 0.4222 & 0.4363 & 0.8534 & 0.1138 & 0.0329 \\
\hline
\end{tabular}

1 Modified van der Waals one-fluid mixing rules.
2 Semiempirical exponent mixing rules.
3 Semiempirical exponent mixing rules using the correlations given in Eqs. (VI-3) - (VI-5).```

