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CHAPTER I

Introduction and literature review



Introduction

Schizaphis graminum, the greenbug is an important pest of wheat (Triticum

aestivum) , sorghum (Sorghum b;color), barley (Hordeum vulgare) and a number

of other graminaceous crops. On crop hosts it reproduces parthenogenically

leading to large populations that cause considerable economic loss. Damage is

typically through loss of chlorophyll leading to chlorosis, necrosis and eventually

plant death (Webster and Phillips 1912). Host plant resistance has been used to

attempt to control greenbug damage, however, its effectiveness has been

compromised by virulent biotypes. With the exception of biotype 0, which was

characterized on the basis of insecticide resistance (Teetes et al. 1975),

biotypes A-K have been characterized by their ability to differentially damage

certain resistant sources (Porter et al. 1997). Each biotype is defined by its

"virulence profile", i.e. it shows a unique pattern of virulence or avirulence

against a set of resistant plant entries. Virulence against susceptible varieties

results in characteristic chlorosis and necrosis, which leads to plant death

(Wadley 1931). The widespread assumption that these biotypes evolved

because of selection pressure from resistant field crops has recently come under

scrutiny (Porter ef al. 1997). Porter et al. (1997) found no correspondence

between the introduction of wheat cultivars and the emergence of biotypes

virulent to them and only a weak correspondence between the release of

resistant sorghum cultivars and the characterization of new biotypes resistant to

them. They instead proposed that the greenbug species may be a complex of

host-adapted races that evolved on non-cultivated hosts.
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In contrast to almost all studies of the greenbug to date, which have focused

exclusively on populations on crop hosts, this study concentrated on non­

cultivated hosts. The aim of this study was to document the phenotypic and

genotypic diversity of greenbugs found on non-cultivated grass hosts, to look for

evidence linking phenotype, genotype and host, and to show which non­

cultivated grasses were hosts for greenbugs. Phenotypic variation was assessed

by determining the biotypic status of greenbugs, i.e. how an array of plant

differentials responded to feeding. Genotypic diversity was measured by

comparing sequence divergence of mitochondrial DNA.

My hypothesis was that the greenbug populations utilizing wheat and

sorghum are only a subset of the total diversity found on other hosts. I measured

the diversity found on non-cultivated hosts and compared this with the diversity

that had been found on crop hosts previously. I also examined which non­

cultivated hosts greenbugs use. I measured the amount of genetic diversity

within single biotypes, which past studies had either ignored or only superficially

addressed.

The results of this thesis are important 'in a number of ways. If greenbug

diversity is high on grass hosts, plant breeders may have to consider using

grass-collected greenbugs when screening for resistance. The biotypic

composition on grasses may indicate the host range of each biotype and

whether or not they overlap. If new biotypes are found on grasses, then the use

of the biotype characterization system used in greenbugs may need revision. If

these new biotypes are not found on crop plants, should they be given a new
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alphabetic designation as a biotype, or should they be identified by some other

designation (host race for example)? The relationship between host, genotype

and phenotype was explored, in particular to look for evidence of host races.

Information about genetic variance within each biotype will also be useful in

determining whether biotypes are reproductively isolated and whether biotypic

designations have any evolutionary or taxonomic status in this system.

Study sites with a high diversity of grasses were chosen to maximize the

potential genetic diversity of greenbugs present. Grass-host diversity was

measured by constructing an a-diversity curve for each site (Southwood 1978).

Phenotypic diversity of the greenbug was measured by comparing the virulence

of greenbug clones on different sources of resistance in wheat, barley, rye and

sorghum. Genotypic diversity was measured by comparing sequence data from

the mitochondrial DNA cytochrome oxidase subunit I (COl) gene. This sequence

data was used to construct a phylogenetic tree of biotypes and field populations,

as well as to estimate the degree of genetic similarity among them.

Objectives

I. Determine the biotypic composition of greenbugs on non-cultivated grass

hosts.

II. Determine the genetic diversity of greenbugs on non-cultivated grass hosts.

III. Determine the fecundity and reproductive investment of a single aphid clone

on a number of hosts.



Methods

1. Three study areas were selected and a species curve of graminaceous

greenbug hosts was generated.

2. Live greenbugs were collected from non-cultivated grasses and nearby crops

at these sites, and from other sites on a contingency basis. The latter was

necessary because greenbug populations at selected sites may suffer local

extinction, a common event for aphids. Clonal laboratory colonies of these

collections were estabHshed to provide material for experimentation.

3. The biotype of each clone was determined by a characteristic response on

standard plant differentials. On wheat, barley and rye the plant entries were

simply scored alive or dead when the susceptible control died. On sorghum

differentials, a damage score relative to the control was given. If more than

60% of the plant was chlorotic or dead it was considered susceptible. If under

30% was damaged it was considered resistant. Intermediate scores were re­

tested.

4. A virulence profile for each greenbug clone was then generated. The

diversity of virulence profiles (i.e. biotype) found was determined.

5. The genetic diversity of populations was determined by sequencing the

mtDNA COl gene in each clone. After extracting the total DNA from each

greenbug clone, the COl gene was PCR amplified, extracted, and direct

sequenced. Sequence divergence was then compared and contrasted

between the clones collected from different grass species, and from the

standard laboratory biotypes (Shufran et al. 2000). This data was then used



to generate a phylogeny as well as to estimate genetic distances among

clones and biotypes and within biotypes. To determine if any specific biotype

and host associations exist, host information was overlaid upon the

generated phylogeny.

6. The fecundity and reproductive investment of a single greenbug isolate was

tested to see if it had a specific host association. Seven-day fecundity and

ovariole number were measured on four different hosts.

Literature Review

The earliest record of the occurrence of the greenbug, Schizaphis graminum

(Rondani), concern an outbreak in Parma Italy in 1847 (Rondani 1847). In 1852,

Rondani recorded another outbreak and noted that greenbugs were found only

on graminaceous hosts.

Greenbugs were first detected in the US in Culpepper, Virginia in 1882

(Webster 1909). The greenbug's geographical range in North America was

initially recorded as ranging from the Mexican border across the whole Western

coast into Canada and across the whole of the continental USA excluding the

NE (Webster and Phillips 1912). However, since then it has also been reported

from Pennsylvania, New Jersey, New York, Connecticut (Leonard 1968),

Wisconsin (Grlob and Medler 1961), New Brunswick (Grlob 1961) and Manitoba

(Robinson and Hsu 1963).

In the US, the aphid reproduces by apomictic parthenogenesis in areas

'vVhere the daylength does not decrease early enough for the induction of the

sexual cycle (Wadley 1931). North of the 35th parallel, sexual reproduction is
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induced during autumn. Decreased daylength is the primary trigger, but low

temperatures can further promote the production of oviparae (Puterka and

Siosser 1986). The greenbugs in these areas diapause and overwinter as an

egg, primarily on grasses in the genus, Poa (Dixon and Kundu 1994). In the

spring, a fundatrix emerges from the egg. She is always wingless (Wadley 1931 )

and must therefore establish a new colony on the grass on which she emerged.

Alates able to infest new hosts were not found in Indiana until May (Webster and

Phillips 1912) or in Minnesota until June (Wadley 1931). Eggs may be laid and

hatched on wheat, however, they do not normally contribute to fall infestation in

the next year because the wheat is harvested before the first alates appear

(Wadley 1931). In areas with a favorable microclimate and in areas South of the

35th parallel greenbugs overwinter as viviparous females, on both cultivated and

non-cultivated hosts (Wadley 1931).

In economic terms, greenbugs have been a serious pest of grain crops in

North America, particularly wheat since the 1880's and of sorghum since 1968

(Harvey and Hackerott 1969). Various control tactics have been used.

Organophosphorous chemicals were successfully used to control greenbug

populations from 1948-75 (Teetes et al. 1975). However, in 1975 greenbug

populations resistant to disulfoton caused a failure of chemical control (Teetes et

al. 1975). Since that time greenbugs have exhibited resistance to a number of

chemicals including oxydemeton-methyl, dimenthoate, parathion and

chlorpyrifos-methyl (Peters et a/. 1975; Archer and Bynum 1978; Sloderbeck et

a/. 1991). A combination of resistance to chemical control and the low value of
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crops make chemical control economically unfeasible in many cases, therefore

interest has focused on the deployment of greenbug resistant varieties.

Dahms (1948) first conducted tolerance screening of cereal crop lines. The

first source of greenbug resistance identified was "Dickinson selection 28A",

selected from durum wheat (T. turgidum var. durum) (Dahms et al. 1954). DS

28A was resistant to aphids collected from field populations (Porter et al. 1997),

however it was soon found to be damaged by a greenbug population found in

the greenhouse (Wood 1961). This virulent population was designated biotype

B, therefore the avirulent field population at the time was, a priori, biotype A. It

has been postulated that biotype A is no longer recoverable from the field and is

presumed extinct (Porter et at. 1997), however, since it was only defined in terms

of not being biotype B, this conclusion may be unfounded. Biotype C was

described in 1969 when greenbugs first caused extensive damage to sorghum

(Harvey and Hackerott 1969). Biotype 0 was characterized on the basis of its

resistance to organophosphate pesticides (Teetes et at. 1975). Biotype E was

described in the late 1970's. It damaged the biotype C-resistant wheat Amigo

and several resistant sorghum sources (Starks and Burton 1977, Porter et at.

1982). In 1986 an isolate colilected from Poa compressa was found that differed

from biotype E in its ability to damage a variety of this grass called II Reubens".

This isolate was designated biotype F (Kindler and Spoomer 1986). Biotypes G

and H were described by Puterka et al. (1988). Biotype G was unusuall in that it

was virulent to the known resistant sources in wheat but not to "Wintermalt"

barley, a variety susceptible to all other biotypes at the time. Biotype H was
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unique in its virulence to "Postn barley and its avirulence to all sorghums. In

1991 greenbugs able to overcome biotype E resistant sorghum was found and

described as Biotype I (Harvey et al. 1991). Beregovoy and Peters (1994)

described biotype J, it is avirulent to all plant differentials. The most recent

biotype was described in 1997, when greenbugs virulent to I resistant sorghum

were characterized as biotype K (Harvey et al. 1997). For a summary of test­

plant differentials and feeding reactions, see Table 1.1 (p.29).

The term biotype has been defined in a number of different ways. Eastop

(1973) suggested biotype referred to a subpopulation recognized by biological

function rather than by morphological characters. Similarly, Saxena and Barrion

(1989) defined biotype as an infraspecific category of insect populations with

similar genetic composition for a biological attribute. Diehl and Bush (1984)

recommended the division of the term biotype into five categories depending on

the mechanisms underlying biotype differentiation; "a) nongenetic polyphenisms,

b) polymorphic or polygenic variation within populations, c) geographic races, d)

host races and e) species". In the case of the greenbug, virulence (see

definition, p. 2) on certain hosts is the determining factor. Under the system of

classification of Diehl and Bush (1984), greenbug biotypes could be described

as a case of polymorphic variation within populations, host race, geographic

races or possibly even species. Currently the taxonomic and evolutionary status

of greenbug biotypes has not been determined.

The taxonomic and evolutionary status of greenbug biotypes has been the

subject of some controversy. Have biotypes recently evolved after selection by



the introduction of resistant 'Nheat and sorghum. or are they pre-adapted

opportunists, taking advantage of a new host when it is introduced? Porter et al.

(1997) addressed this question and found no correspondence between the

development of resistant wheat cultivars and the emergence of biotypes virulent

to them. Interestingly, in all cases resistant wheat cultivars could not have

caused the appearance of new biotypes because the cultivars were never

present in the field when a biotype virulent to them was discovered. For

instance, biotype B was found to be virulent to OS 28A wheat, but this cultivar

was never used commercially (Porter et al. 1997). They did find some

correspondence between the release of resistant sorghum cultivars and the

characterization of new biotypes resistant to them, but were unable to confirm a

direct cause and effect relationship.

The hypothesis that greenbug biotypes are pre-adapted populations taking

advantage of new hosts would fit theories of plant defense in agronomic crops.

Rosenthal and Oirzo (1997) showed that in maize and some of its relatives, the

perennial relative had best insect defense, followed in descending order by the

wild annual, a land race, and a modern high yielding variety. They attributed this

effect to the re-partitioning of resources from plant defense to increased yield. It

seems possible that as wheat and sorghum are bred for increased yield,

resources for aphid defense are re-partitioned to yield increase, making the crop

more susceptible to attack. Sympatric races of pea aphid (Acryrthosiphon pisum)

have been characterized by their ability to utilize different host species (Via

1999). They are believed to be reproductively isolated as a result of localized
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host adaptation. Habitat choice lead to assortive mating, providing a barrier to

gene flow and subsequent selection lead to the formation of two host races.

There was, however little genetic diversity found among these biotypes using

RFLP markers (Birkle and Douglas 1999) or mitochondrial DNA sequences

(Boulding 1998). This has lead some to reject the idea of host races in the pea

aphid (Boulding 1998) and others to conclude the separation into races is very

recent (Birkle and Douglas 1999).

Eisenbach and Mittler (1987b) believed crossing experiments they performed

showed biotype E virulence to biotype C resistant sorghum was inherited in an

extra-nuclear manner. This was subsequently refuted by Puterka and Peters

(1989) who studied the inheritance of virulence to resistance in wheat, in

biotypes C, E and F. The data for virulence to Gb2 and Gb3 resistance genes

gave the best fit with a duplicate gene-modifier gene inheritance model, where

virulence is recessive. Puterka and Peters (1995) also studied the inheritance of

virulence to resistant in sorghum, in biotypes C, E and F. Virulence to F-resistant

"Piper" (a variety of Sorghum sudanense) was controlled by a duplicate

dominant gene-modifier gene, and was dominantly inherited. Virulence to C and

E resistant "Pioneer 8493" (resistance from PI 264453), was also controlled by a

duplicate dominant gene-modifier gene, but was recessive. Resistance to

biotype C in " Pioneer 8515" (resistance from SA 7536-1) was recessive and

simply inherited. Greenbug virulence and sorghum resistance interactions were

found to fit a gene-far-gene model, however wheat resistance did not. These two

studies showed that genetic recombination during meiosis in sexual reproduction



could produce biotypic diversity. In fact, crossing experiments produced new

laboratory biotypes with different virulence profiles (Puterka and Peters 1995).

The greenbug is without doubt a highly polyphagous species. Webster and

Philips (1912) recorded its presence on 60 host species. Hunter (1909) and

Moore (1914) added a few new hosts to the list. Patch (1938) published the next

attempt at an exhaustive list of glrass hosts, 62 species were included but there

was no information on survivorship. Dahms et a/. (1954) published a list of 21

species on which greenbugs increased in a greenhouse. Interestingly, the two

different populations of greenbug (one from Stillwater, OK and one from

Manhattan, KS) he used showed different host association, with the Stillwater

greenbugs unable to live on Echinochloa crusgalli but able to live on Elymus

canadensis, and the Manhattan greenbugs able to live on E. crusgalli but unable

to live on E. canadensis. The "Canada Wild Rye isolate" recently characterized

in Oklahoma (Burd, unpublished data) was able to reproduce on Virginia wild rye

(Elymus virginicus) but unable to reproduce on western wheatgrass (Agropyron

smithil) (Anstead et al. 2000). These findings suggest individual greenbug clones

have a more limited host range than the species as a whole.

The most recent publication confirms this large host range; i.e. 70 confirmed

host plants in 29 genera (Michels 1986). It should be noted that greenbug

densities are considerably lower on wild grass hosts (less than 5 individuals per

leaf) than on wheat, sorghum, barley or oats, where infestations can run into

1000's of individuals (Wadley 1931). Grass hosts are considered important

oversummering hosts for the greenbug. There is a period during the summer
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'When wheat is not available to the greenbug. During this time period greenbugs

may be found on grasses (Daniels 1961). Greenbugs were found

oversummering on 23 grass species in the Texas panhandle from 1953-59

(Daniels 1960). Agropyron smithii was considered the most important host. The

greenbug extended its host range to sorghum in the late 1970's, however

oversummering on sorghum does not seem to occur. Harvey et al. (1982) report

two periods of infestation in sorghum, an initial seedling infestation that dies out

by mid June and a later population that appears in late July and early August.

Grasses are also important during the sexual cycle North of the 35th parallel. The

fundatrix emerges onto non-cultivated grasses in the spring (Wadley 1931). This

occurs primarily on grasses in the genus Poa (Dixon and Kundu 1994). The

fundatrix is apterous, so both she and her offspring (before maturity) must be

able to feed successfully on host they emerge on. Non-cultivated hosts are very

important in this context, because any eggs laid on wheat do not contribute to

the next years populations as the wheat is generally harvested before any alates

are produced (Wadley 1931). For instance, in Indiana a fundatrix hatched on

March 28th
, but her oldest progeny was not fully developed until May 9th

(Webster and Phillips 1912). In areas with a favorable microclimate and in

areas South of the 35th parallel greenbugs overwinter as asexual females, on

both cultivated and non-cultivated hosts (Wadley 1931).

There are numerous publications that describe the presence, absence and

densities of greenbug biotypes geographically. In 1984, biotypes C and E were

present in Kansas, Nebraska, Oklahoma and Texas, with biotype C

13



predominating (Kindler et al. 1984). This was also true in Arkansas (Dumas and

Mueller 1986). The most recent survey found biotypes 8, C, E, F, G and I

present on field crops in Oklahoma between 1991 and 1996, with biotype E

predominating and I second most common (Peters et al. 1997). In a similar

survey of a wider geographical area (but much smaller sample size) Kansas,

Nebraska, Texas, Colorado and Oklahoma were found to have populations

mostly consisting of Biotype E with some areas in each state containing biotype I

(Peters et al. 1997). This difference in occurrence and density of greenbug

biotypes on crop plants may be a reflection of the competitiveness of these

biotypes on these hosts. Although well characterized on crops, there is little

information concerning which biotypes occur on wild grass hosts as these were

seldom, if ever, surveyed.

There is a substantial body of work dealing with variation between greenbug

biotypes. Many researches have demonstrated differences in life history

parameters and other characters of greenbug biotypes. Early work showed that

biotype C had better survival and fecundity at temperature extremes than

biotypes A and B (Wood and Starks 1972, Starks et aJ. 1973). Some interesting

work was carried out looking at mate preference (Eisenbach and Mittler 1987).

Biotype E males, when given a choice, strongly preferred biotype E females and

biotype C males preferred biotype C females (although not as strongly). Mate

choice may be a factor in reproductively isolating these biotypes which are often

found together. Other researchers focused on the ability of greenbug biotypes to

produce sexuals. Under a 11 hour photoperiod, biotypes C, E and I readily

14



produced large numbers, of sexuals, G and F produced lower numbers of

sexuals, and biotypes B, Hand J produced no sexuals (Puterka and Peters

1990, Ullah and Peters 1996). Differences in feeding behavior have been

noticed. Montllor ef a/. (1983) found biotype E aphids initiated phloem feeding

more quickly than biotype C on biotype C resistant (E susceptible) sorghum and

also had a higher reproductive rate. Hays ef a/. (1999) showed that on resistant

barley, biotype E greenbugs probed more and spent much less time feeding than

Biotype H greenbugs. Very little work has focused on variation within biotypes,

but Michels ef al. (1987) showed differences in progeny production and

developmental periods between biotype E greenbugs collected from corn and

wheat. McCauley et a/. (1990) showed similar results, i.e. corn-reared aphids

were more fecund than sorghum raised aphids when fed on either host.

Recently more direct methods have been used to assess variation between

greenbug clones. Morphometric studies showed that biotypes B, C and E could

be differentiated (Inayatullah ef al. 1987b and Fargo ef a/. 1986), These studies

also indicated biotype B was more divergent than E or C. They were able to

separate all three biotypes based on four morphs (males, apterous viviparous,

apterous oviparous and alateiviviparous females) (Inayatullah ef a/1987a). Alate

biotype C greenbugs generally had more antennal sensoria than biotypes Band

E (Inayatullah ef a/1991 ).

Isozyme analysis failed to provide any pol,ymorphism between biotypes

(Beregovoy and Starks 1986). Therefore, most work has focused on genotypic

diversity in both mitochondrial and genomic DNA. Powers ef al. (1989) studied
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mitochondrial DNA restriction patterns and related these to divergence among

biotypes B, C, E and F. Their results sho'Ned a divergence level indicating

300,000-£00,000 years had passed since biotypes Band C shared a common

mitochondrial DNA ancestor. This suggested that it was unlikely these biotypes

evolved as a response to selection pressure from modern crop cultivars, since

300,000 years is well before the beginnings of human agriculture. Random

amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) was used to

detect DNA polymorphisms in four aphid species including greenbugs (Black et

al. 1992). Differences were detectable between greenbug biotypes, with the

exception of biotypes C and E, which were indistinguishable.

A number of studies have used the length of the intergenic spacer (IGS)

region of the rRNA cistron as a molecular fingerprinting probe to study diversity

within and between greenbug populations. It has been used to study clonal

diversity, spatially and temporally on sorghum and wheat (Shufran et a/. 1991).

They found that most of the variation in a greenbug population within a single

field could be found from sampling a single leaf. In a similar study using the IGS

as a marker 93.1 % of the clonal diversity was found to be present in a single

field of overwintering greenbugs (Shufran and Wilde 1994). Black (1993) found

differences in the IGS subrepeat structure, which were variable enough to

separate biotypes. He also found some variation within biotype E, but concluded

that each biotype tested (B, C and E) probably evolved from a single population

or maternal lineage. Shufran et al. (1992), however, showed biotype E

populations in the field were comprised of many clonal lineages.
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Shufran at al. (1997) studied the inheritance of 'IGS variants during sexual

reproduction and noted rearrangements and the generation of new size variants.

They concluded that recombination during meiosis in the sexual reproductive

cycle generates and maintains genetic variability in greenbugs.

Mitochondrial DNA has been used to examine the sequence divergence

between greenbug biotypes and infer phylogenetic relationships (Shufran et al.

2000). All presently known biotypes were included (B, C, E, F, G, H, I, J and K)

along with a possible example of biotype A (New York isolate), an unique isolate

collected from Canada Wild Rye (Burd, unpublished data) and an isolate from

Europe. All biotypes and isolates grouped into 3 clades, with the exception of

biotype H and the outgroup S. rotundiventris which fell outside the S. graminum

group. The three clades had significant sequence divergence between them.

This divergence supported the conclusions of Powers et al. (1989) that diversity

in the greenbug arose before the advent of modern agriculture. The greenbug

biotypes most commonly found on crops (C, E, I and K) were the most

homogeneous group and were found in clade 1. Clade 2 contained biotypes F, G

and the New York isolate. Both biotype F, and the New York isolate may

represent the population Wood (1961) referred to as biotype A (Kindler and

Spomer 1986, Shufran et a/. 2000). Biotype G was collected from wheat, but is

seldom found on crops (Bush at a/1987, Ullah 1993). Clade 3 contained biotype

B, the Canada Wild Rye isolate and the European isolate. These results

indicated that the ability to successfully utilize crop hosts is only present in part

of the greenbug species. However a shortcoming of this and other studies was
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that no measure of diversity within biotypes was made, as only a single

laboratory clone of each was included.

In summary, it appears that some greenbug biotypes may be distinct

populations that can be separated morphologically biologically and genetically.

However, little work has been produced dealing with intra-biotypic variation. It is

therefore still not clear how these biotypes evolved and whether there are

barriers to gene flow between them.

Review of Research methodology

Mitochondrial DNA has been very useful in the study of inter and intra­

specific variation in insects. In studies of 13 and 17 year cicadas (Magicicada

septendecim and M. tredecim) two distinct mitochondrial haplotypes were found

in each year class which differed by 2.5% (Martin and Simon 1990, Simon et al.

1993). In the honeybee (Apis mellifera), peR was used to amplify mtDNA

regions which were subsequently sequenced (Garnery et al. 1992). Nineteen

haplotypes were found which revealed three clades. These clades corresponded

with three geographical populations (African, North Mediterranean and South

Mediterranean). Mitochondrial DNA has also been used with some success to

study aphid populations. Barrette et al. (1994) carried out a restriction digest

analysis of the mitochondria of Acryrthosiphon pisum. They only found two

variable sites, but showed all four haplotypes. Martinez et al. (1990 and 1992)

digested Rhopalosiphum padi mtDNA with 20 restriction endonucleases but

found little restriction site polymorphism. Simon et al. (1998) amplified a 2.2 kb
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portion of three mitochondrial genes. Using restriction endonucleases they found

low variation but it was sufficient to divide R. padi into three haplotypes.

Mitochondrial DNA has been successfully utilized to solve phylogenetic

questions. Moran et al. (1999) used sequences from three mitochondrial regions

and one nuclear gene to examine the phylogenetics and evolution of Uro/eucon

spp. They concluded that the most plausible view of the radiation of Uro/eucon

spp. was that acquisition of new hosts occasionally lead to sympatric speciation.

Clements et a/. (2000) used sequences from the cytochrome oxidase subunit II

(COli) gene and elongation factor-1 alpha (EF-1 a) to examine variation within

the Myzus persicae complex. The low variation within this complex led them to

conclude that M. nicotianae and M. persicae were synonymous.

The advantage of using a mitochondrial gene sequence is that many of the

processes governing its evolution and inheritance are well understood. It is

maternally inherited and is not recombinant which makes the construction of

phylogenetic trees easier. Mitochondrial DNA also evolves approximately 10

times faster than genomic DNA (Miyata et a/1982) making it particularly useful

for separating closely related individuals or clones. It should be noted, however,

that using a mitochondrial gene sequence does not guarantee the correct

phylogeny will be generated. Cases of shared ancestral polymorphisms and

multiple substitutions at a single nucleotide site can occur (Simon et a/1994).

The cytochrome oxidase I (COl) gene codes for subunit I of the cytochrome

oxidase enzyme, that transfers electrons to oxygen, the final electron acceptor in

some electron transport chains. It is the most conserved region in the
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mitochondrial genome (Simon et al. 1994). The slow rate of evolution of this

gene may make it less suitable for intra-specific studies, however, there is a

lower chance of an incorrect phylogeny being caused by multiple substitutions at

a single site. One potential drawback with the COl gene is the possibility that

some sequences may be transposed out of the mitochondria DNA into nuclear

genomic DNA. This has been recorded in Sitobion aphids (Sunnucks and Hales

1996). Patterns of evolution are different in mtDNA and nuclear genes and this

could lead to the generation of an incorrect phylogeny. However, given the high

comparative copy number of mitochondrial versus genomic DNA I consider this

unlikely. The COl and its relative the COli gene have already been used in a

number of recent phylogenetic studies. They have been used estimate the

phylogeny of hepialid moths of the genus Wiseana in New Zealand (Brown et al.

1999a), and to aid identification of these species as larvae (Brown et al. 1999b).

Also, they have been used to study sympatric speciation in the bee genus

Lasioglossum (Danforth 1999) and to determine the phylogeny and sequence of

invasion of islands by tenebrionid beetles of the genus Hegeter (Juan et al.

1996).

In aphids, COl gene sequences were used to reject the hypothesis that there

were host races in the pea aphid (Acyrthosiphon pisum) (Boulding 1998). For an

alternative view see Via (1999). Moran et at. (1999) used COl sequences (and

other markers) to determine the phylogeny of aphids in the Uroleucon genus. A

combination of RAPD-PCR and COli sequences were used by Sunnucks et al.

(1997a) to separate the aphid Therioaphis trifoN; into host-restricted biotypes.
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Sunnucks et al. (1997b) used COl sequences in combination with a

microsatellite marker to divide Sitobion avenae into three distinct genotypes,

vvhich had little gene flow between them. Host specialization was found, with one

of the lineages found only on wheat, one found only on Daetylis glomerata, and

the other found on both. The aim of my study is to use the COl gene in

combination with non-cultivated host data and the phylogenetic relationships

already shown between the known greenbug biotypes (Shufran et al. 2000) to

determine whether there are any differences in host specialization and infer the

evolutionary status of greenbug biotypes.
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Table 1.1: Plant response to greenbug feeding.

Plant Differential
Wheat Rye Barley

Biotype Custer DS28A Amigo CI CI Largo GRS1201 Elbon Rye Insave Rye Wintermatt Post 00 PI
17882 17959 426756

A S R

B S S R S S S R S R S R R

C S S R R R R R S R S R R

E S S S R R R R S R S R R

F S R S S S S S S S S R R

G S S S S S S R S R R R R
I

H S S S S R R S S S S S S

I S S S R R R R S R S R R

J R R R R R R R R R R R R

K S S S R R R R S R S R R

CWR S S R S S S S S R S R R

(S =susceptible plant response. R =Resistant plant response)

CWR = Canada wildrye isolate.

(Woods 1961, Porter ef al. 1982, Kindler and Spoomer 1986, Puterka ef a/.1988,

Harvey ef a/. 1991, Beregovoy and Peters 1994, Harvey ef a/. 1997).
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ABSTRACT The greenbug (Schizaphis graminum (Rondani)) has a large host

range comprised primarily of non-cultivated grasses. Despite this, most studies

and biotype surveys have focused on greenbug populations on crop hosts.

Consequently the role of non-cultivated grass hosts in maintaining biotypes is

unclear. Greenbugs were collected from non-cultivated hosts in Oklahoma,

Kansas and Colorado, and their biotype and host association were determined.

Biotype I was the predominant biotype and was present on all host species that

greenbugs were found on. Biotypes E and K were also found on a number of

grass hosts. However, almost all biotype G isolates collected were from

Agropyron smithii Rydberg and A. intermedium Beauvois. A new biotype, virulent

to "Largo", but otherwise having the same virulence profile as biotype I was

found on A. smithii in Hays, KS. The Hays KS site had the lowest number of

grass species, but the greatest frequency of greenbugs and the highest biotypic

diversity. There was no apparent link between grass host diversity and biotypic

diversity, indicating that greenbug biotypes have limited host ranges.

KEY WORDS Greenbug, Schizaphis graminum, biotype, host association
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THE GREENBUG (Schizaphis graminum (Rondani)) is an important pest of

wheat (TrWcum aesUvum L.), sorghum (Sorghum bic%r (L.) Moench), barley

(Hordeum vulgare L.) and a number of other graminaceous crops. It reproduces

primarily by parthenogenesis leading to large populations, causing considerable

economic loss. Damage is caused by both loss of photosynthate and a virulence

reaction typified as loss of chlorophyll leading to chlorosis, necrosis and

eventually death (Webster and Phillips 1912). Host plant resistance has been

used to reduce greenbug damage, however its effectiveness has been

compromised by the occurrence of virulent biotypes (for a review, see Porter et

a!. 1997). Greenbug biotypes are characterized by their ability to damage certain

resistance sources and have been given the letter designations A through K

[Except D whose designation was based on insecticide resistance (Teetes et

aI.1975)].

The distribution and abundance of greenbug biotypes has been well

documented on crops. In 1984, biotypes C and E were present in Kansas,

Nebraska, Oklahoma and Texas, with biotype C predominating (Kindler et a!.

1984). This was also true in Arkansas (Dumas and Mueller 1986). In Oklahoma

a survey in 1991 found biotypes B, C, E, F and G present. Biotype E

predominated, and all other biotypes were present at frequencies less than 5%

(Ullah 1993). Biotypes B, C, E, F, G and I were present on field crops in

Oklahoma between 1991 and 1996, with biotype E predominating followed

closely by I (Peters et al. 1997). Kansas, Nebraska, Texas and Colorado were

also found to have populations mostly consisting of biotype E, with some areas
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in each state containing biotype I (Peters et al. 1997). While these surveys

represented extensive characterization of the biotype composition on crops, the

biotypic diversity on non-cultivated hosts was not considered.

Cultivated crop species represent a very small proportion of available

greenbug hosts. The host range of the greenbug includes 70 host species in 29

genera, most of which are non-cultivated species (Michels 1986). Moreover,

various populations show differential host associations. Dahms et al. (1954)

showed that greenbugs collected from Stillwater, OK were unable to live on

Echinochloa crusgalli (L.) but were able to l.ive on Elymus canadensis L., while

greenbugs from Manhattan, KS were able to live on Ec. crusgalli but unable to

live on EI. canadensis. Similarly, the "Canada wildrye isolate" collected from EI.

canadensis (J. D. Surd unpublished data) was able to reproduce on EI.

canadensis, EI. virginicus L. and Otis barley, but was unable to reproduce on

Agropyron smithii (Anstead et al. 2000c).

Non-cultivated hosts are an important component of greenbug population

dynamics. Grass hosts are considered especially important for greenbug

oversummering. There is a period during the summer when wheat is not

available to the greenbug and sorghum is an unsuitabl,e host (Dani,els 1961).

During this time, greenbugs must survive on non-cultivated grasses. Greenbugs

were found oversummering on 23 grass species in the Texas panhandle from

1953-59 and Agropyron smithii was considered its most important summer host

(Daniels 1960). Although the greenbug can successfully exploit sorghum

complete oversummering on sorghum may not always occur. Harvey at al.
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(1982) reported two periods of infestation in sorghum, an initial seedling

infestation that dies out by mid June and a later population that appears' in late

July and early August.

Wadley (1931) explained the importance of grasses during the sexual cycle

North of the 35th parallel. Oviparae is induced in the autumn as daylength

decreases. Eggs are laid primarily on grasses, as wheat has not emerged. In

this region greenbugs oviposit primarily on Poa spp. (Dixon and Kundu 1994).

The fundatrix emerges onto non-cultivated grasses in the spring and must

establish a colony. Alates are produced that disperse to wheat where new

colonies are established. However when the wheat is harvested only greenbugs

on grasses remain to restart the cycle.

Besides acting as temporal and spatial reservoirs, non-cultivated grasses

may also serve as reservoirs of biotypic and genetic diversity. Shufran et al.

(1991) found a high degree of clonal diversity on wheat and sorghum and

suggested that this diversity was maintained on non-cultivated grasses. Porter et

al. (1997) found no correspondence between the introduction of wheat cultivars

and the emergence of virulent biotypes and only weak correspondence between

the release of resistant sorghum cultivars and the characterization of new

virulent biotypes. Moreover, they proposed that the greenbug species may be a

complex of host-adapted races that evolved on non-cultivated hosts. Evidence

for this was reported by Kindler and Hays (1999) who found that biotype F had

significantly higher fecundity on Canada bluegrass, Poa compressa L. than on

several other cool-season grass hosts. They concluded that the development of
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biotype F was driven by its association with this non-cultivated grass host.

Shufran et al. (2000) showed that based on mtDNA sequences, the greenbug,

species could be divided into 3 clades. The isolates collected regularly from crop

hosts were confined to one clade and the other clades contained isolates rarely

collected on crop hosts or collected from non-cultivated hosts (Shufran et al.

2000). The authors postulated that these clades may have diverged as host­

adapted races on non-cultivated grasses. Anstead et al. (2000b) showed even

stronger relationships between the divergence of these clades and host use, and

supported the conclusion that the greenbug species is comprised at host­

adapted races.

The objectives of this study were to assess biotypic diversity on non­

cultivated grasses and to examine biotype-host associations.

Materials and Methods

Sampling. Aphid collections were made from three sites; Hays, KS (N38°50'32",

W99°18'09"), Redrock, OK (N36°26'34", W97°06'84") and Marshall, OK

(N36°06'53", W97°36'08"). The site at Hays was in a riparian area, bordering Big

Creek. The site sloped about 10 feet do'Ml across its width and was partially

shaded. It had been grazed previously. The wheat field was bordered by a

considerable area with volunteer wheat as well as an area that was tilled. The

area in Redrock was in a low lying area adjacent to a stock pond, with little

shade and it too had been grazed. It bordered a wheat field on one side and a

railway right-at-wayan the other. The site at Marshall was not grazed but had
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been movvn regularly but infrequently prior to the experiment. It bordered county

road NS303 and a wheat field. There was a transition from a dry area next to the

road, to a wetter, lower area beside the field fenceline. This site was

considerably drier than the other sites. The areas were chosen for their diversity

of non-cultivated grasses and because each site bordered a cultivated wheat

field. Each study area was 40m by 10m.

To estimate species richness an a-diversity curve of graminaceous hosts for

each area was created in June 1999. The fenceline between the non-cultivated

and cultivated areas served as a transect. At 1 meter intervals, a transect was

laid at a 900 angle from the fencel ine to the perpendicular border of the site (10

meters). Each grass species touching the line was identified and recorded. The

cumulative number of grass species found was plotted against the cumulative

distance examined. When this curve reached a plateau, this represented the oc­

diversity in the plot (Southwood 1978). All grasses in the plot were included. If a

grass could not be identified in its vegetative state, it was either marked and

identified at a later growth stage or a small amount was removed to the

laboratory for identification. Grasses were identified using Hitchcock and Chase

(1971). Cool season annuals were included by identifying them from the

previous seasons culms and inflorescences, and were included in the curve.

During subsequent sampling all species identified were found again and only a

single example of an additional grass was found. A single Aegilops cylindrica

Host plant was found in the Hays Kansas study site and is included in Table 2.1.
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Aphids were sampled between June 1999 and February 2000 at

approximately one month intervals. Sampling was carried out randomly by

casting a 0.25 m2 quadrant into the plot. Twenty culms of each grass species in

the quadrant were examined manually for aphids. On each sampling date twenty

quadrants were examined. At Hays, the neighboring field contained considerable

volunteer wheat and presence/absence of greenbugs was recorded separately

(Table2.2). Greenbugs were also collected from a number of other sites in

Oklahoma, Kansas and Colorado as opportunity arose (Table 2.4). Individual

greenbugs were collected alive and kept separately.

In the laboratory, single greenbugs were used to start clonal colonies. Each

colony was maintained on "Otis" barley grown in a 3.65 cm by 21 cm cone­

tainer™ (Cone-tainer Company, Canby, Oregon, USA) and covered with a

cylindrical plastic cage. The cages are manufactured from plastic tubing (3.5 cm

diameter), with several cloth covered ventilation holes in the sides. The major

cause of greenbug mortality after colonies were established was fungal disease.

To avoid this, barley plants were grown in fritted clay (near-sterile media) and

were watered and fertilized from the base of the cone-tainer. This was achieved

by placing the Cone-tainers in a rack and placing this in a tray of water

containing Peters Professional™ 20-20-20 fertilizer at one teaspoon per gallon.

After the aphids and cage were placed on the barley, water was withheld to

reduce humidity in the cage and help prevent fungal disease. The plants were

then kept in a growth chamber at 17±3°C with a photoperiod of 14:10 (L:D)
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hours. Because greenbugs are virulent to "Otis barley", they required new barley

plants every two to three weeks.

Biotyping; determination of biotypes A, BJ C, F, G, Hand J. The biotype of

each clone was determined using the plant differentials from Anstead (2000).

Large numbers of aphi.ds were produced c10nally for each test. The aphids were

allowed to reproduce freely on seedling barley in 4 rectangular pots (15cm by

8cm). This produced approximately 40 heavily infested barley plants, which

provided between 400-800 aphids for each test. For each test, 3 sets of 3 plants

for each differential were randomized in a 30 cm by 30 cm flat of polystyrene

wells containing fritted clay. Planting dates were staggered between the

differentials to ensure all entries emerged at the same time. "Wintermalt", "Post

90", "Insave" and "GRS1201" were planted first. 24 h later, "DS28A", "Amigo",

CI17959 and CI17882 were planted, and 24 h later "Largo", PI264453 and

"Custer" were planted. The plants were infested at the two-leaf stage by placing

infested barley leaves across the test plants to ensure efficient transfer. After 3-4

d, the barley leaves were removed. The tests were maintained under artificial

light (incandescent and fluorescent) with a photoperiod of 14:10 (L: D) h, at 20 ±

5°C. After the susceptible control, "Wintermalt" barley, was killed (usually about

7 d), the test was terminated and the remaining plants rated for damage. All

plants were scored as alive or dead. If more than 75% of a particular test plant

was dead, then it was rated susceptible. If none were dead, it was resistant. If

any entry didn't meet these criteria it was re-tested. This new protocol is a

simplification of the standard 1-9 (1 =no damage, 9=plant death) damage rating
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used for greenbug resistance screening (for standard protocol see Puterka et al.

1988). Initially the traditional rating system was used, however a rating of 9

(dead) was obtained for all susceptible entries and therefore the protocol was

simplified to save time.

Biotyping; determination of biotypes E, I and K. Testing with sorghum was

necessary to separate biotypes E, I and K, however all isolates were tested to

allow us to detect differences in sorghum virulence for the other "non-sorghum"

biotypes (8, C, F, G, H, J). For each test, 3 replicates of 3 seedlings were grown

in fritted clay, in Cone-tainers™ covered with cages. When the sorghum

seedlings reached the 2-leaf stage they were infested with equal numbers of

aphids (between 15 and 20 in each test). The aphids were placed directly onto

the plant with a paintbrush to reduce transfer mortality.

Three sorghum entries were used to ascertain biotypic composition; "Shallu"

susceptible to biotypes E, I and K; PI 264453 resistant to biotype E, but

susceptible to biotypes I and K; and PI 550610 resistant to E and I, but

susceptible to K. Therefore if there was no damage the greenbug was biotype C,

if it damaged only "Shallu" it was biotype E. If it damaged Shallu and PI 550610

it was biotype I and if it damaged all three entries it was biotype K (Harvey et al.

1997). After 14 d the sorghum plants were visually rated for damage. If more

than 60% of the plant was chlorotic or dead it was considered susceptible. This

would correspond to a score of ~7 on the traditional 1-9 scale of d.amage (1=0­

10%,9=81-100%) (Harvey et al. 1991 and 1997). If under 30% was damaged
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(score of ~4 on the old scale) it was considered resistant. Intermediate scores

were re-tested.

Results

The grasses present in each study site were identified to species. An (1.­

diversity curve was plotted for each area (Figure 2. 1). The curves were slightly

distorted by the presence of bunch grasses i.e. those with a cespitose growth

habit such as Panicum virgatum L., Chloris virgata Swartz or Elymus virginicus,

'Nhich were not randomly distributed within the plot. There were 11 grass species

present at Marshall, 10 at Redrock and 9 at Hays (Table 2.1). Cynodon dactylon

(L.) was the only species present at all three sites.

The collection data is summarized in Table 2.2. Because Hays was the only

site 'Nhere greenbugs were collected regularly, more detailed information about

host use was tabulated (Table 2.3). Greenbugs were present in Hays throughout

the study period, initially on non-cultivated grasses and later on volunteer and

cultivated 'Nheat. At the other sites, greenbugs were only found once on non­

cultivated hosts. but had become established on fall-planted wheat by

November. At Hays greenbugs were found on Agropyron smithii, Bromus

tectorum L. and Setaria viridis (L.) They were not found on Elymus virginicus,

Sporobo/us sp., Cynodon dacty/on or Poa pratensis, 'Nhich were abundant

(Table 2.3). Host plants and biotypes of greenbugs collected from random

locations in Oklahoma and Colorado are listed in Table 2.4. Sorghum halpense

was the most common host on 'Nhich greenbugs were found in Oklahoma



whereas A. intermedium was the only grass host that they were collected from in

Colorado.

Table 2.5 summarizes all the collection data. Overall biotype I was the

predominant biotype. It was present on every host and accounted for 63% of the

greenbugs collected, followed by biotypes E (17%), G (13%) and K (7%). It

should be noted that all biotype G isolates showed a biotype I virulence profile

on sorghum. Therefore screening for biotypes using sorghum only, would have

lead to the misclassification of these isolates and an overestimation of the

frequency of biotype I.

A new biotype was also found, i.e. it killed a set of plant differentials which

had not previously been described. It was collected from Agropyron smithii in

Hays, Kansas, in June 1999. It showed the same virulence profile as biotype I

except it was virulent against "Largo" wheat.

Other aphid species were also collected from non-cultivated hosts during the

course of this study. This data is presented in the appendix.

Discussion

On non-cultivated grasses, greenbug densities were low and very patchy,

both temporally and spatially. The differences in host species richness at each

site did not appear to influence greenbug abundance. At Redrock and Marshall.

even when several suitable greenbug hosts were present. greenbugs were not

found (Table 2.2). Greenbugs were collected once from Sorghum halpense, but

were not found again. There are a number of possible reasons local extinctions
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like this occur in aphids, such as host quality, natural enemies and abiotic

factors such as temperature (Hales et al. 1997). Interestingly, even when

greenbugs were present in the wheat field, these grasses were not colonized.

This may suggest that they couldn't colonize these grasses because they were

not adapted to these particular 110sts. Phylogenetic studies based on mtDNA

sequences indicate that greenbugs utilizing crop hosts are a very homogenous

group that appear divergent from those greenbugs that occur primarily on non­

cultivated hosts (Anstead et al. 2000a). Consequently, the results from the

present study indicating that the greenbugs on wheat at the Marshall and

Redrock study sites could not use the non-cultivated species present in the

study suggest that they originated from outside the local area and lack the

genetic diversity to utilize the grasses present.

At the Hays study site, greenbugs over-summered on non-cultivated grasses.

This shows the grasses have a direct role in the re-colonization of wheat in the

autumn. Interestingly at Hays greenbugs were present in cultivated wheat 2

months before the wheat in Marshall and Redrock, even though planting dates

were much earlier at these locations. This earlier infestation was a direct result

of local movement from oversummering grasses by local greenbug populations.

versus later more regional greenbug movement in Redrock and Marshall. At

Hays, greenbugs were found on only 3 of the 9 grasses sampled (Table 2.2),

even though all 9 of them have previously been listed as suitable greenbug

hosts (Michels 1986). Again, this suggests that the local population was only

adapted to a subset of the grasses present. This is in agreement with earlier
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work (Dahms et al. 1954, Kindler and Hays 1999, Anstead et al. 2000b), that

showed individual aphid clones differed in their ability to survive on different

grass species. Host specialization has also been found in other aphid species.

Work by De Barro et al. (1995) on Sitobion avenae F. showed particular clones

preferred to colonize, and performed better on wheat than other grasses. In

another study S. avenae lineages separated by a single-locus microsattelite and

a mitochondrial marker, were found to exhibit host specialization (Sunnucks et

al. 1997b). The same authors found three host-adapted races within Therioaphis

trifo/ii (Monell) (Hemiptera: Aphididae) (Sunnucks et al. 1997a).

Biotype I was present on all hosts (Table 2.5). There appears to be no

specialization by host for this biotype. This conclusion is supported by Anstead

et al. (2000a), where three clades within the greenbug species were identified

according to a mitochondrial gene tree. They suggested that these clades may

represent host-adapted races. Biotype I was present in all three clades and

therefore would be expected to have a large host range.

The presence of biotype G at such high densities was unexpected. In

previous surveys it accounted for a maximum of 2-3% of greenbugs collected

from crop hosts (Bush et aI., 1987; Ullah, 1993). I,n this survey it made up 13% of

the isolates collected and was found in Kansas. It had previously only been

found in Texas and Oklahoma. Furthermore, biotype G was only found on

Agropyron spp. It is possible biotype G is best adapted to non-cultivated grass

hosts. However, further collections and host range studies would be needed to

confirm this.
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Genetic recombination during meiosis in the sexual reproduction cycle can

lead to the formation of new biotypes (Puterka and Peters 1990). Therefore the

discovery of a "new biotype" was not totally unexpected. Hays is North of the

35th parallel, where sexual reproduction is kno'Nl1 to occur (Wadley, 1931) and

therefore greater biotypic diversity would be predicted. The "new biotype"

showed the same virulence profile as biotype I except it was virulent to "Largo".

Biotype I greenbugs were present at this site, as were biotype G aphids which

are virulent to "Largo". Based on mtDNA sequences this isolate was found to be

more closely related to other biotype I isolates than biotype G isolates (Anstead

et a!. 2000a). This provides a good example of how virulence genes present in

population on non-cultivated hosts may move into crop adapted races, thereby

exposing crops to new biotypes.

In summary, biotype G was the only biotype collected that showed a specific

host specialization and was limited to Agropyron spp. Biotypes E, I and K were

found on multiple hosts. Biotype I was found on all hosts which harbored

greenbug. Biotypes E, I and K did not appear to show any host specialization for

the grasses that were sampled. The presence of an isolate with a new virulence

profile, showed that biotypic diversity can be maintained on non-cultivated

grasses and these grasses may serve as reservoirs for biotypic diversity.

Moreover. non-cultivated grass hosts have the potential to serve as temporal

bridges between the growing seasons of crops.
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Table 2.1. Non-cultivated grasses present at 3 study sites surveyed for

greenbugs.

Site Scientific name

Hays, KS Aegi/ops cylindrica *
Agropyron Smithii*
Boute/oua curtipendu/a (Michaux)
Bromus tectorum*
Cynodon dacty/on *
E/ymus virginicus *
Poa pratensis *
Setaria viridis *
Sporobolus sp. *

Redrock, OK Bromus catharticus Vahl*
Bromus tectorum *
Cynodon dacty/on *
Elymus canadensis *
Eragrostis sp. *
Hordeum pusillum Nuttal*
Panicum virgatum *
Pha/aris canariensis L.*
Sorghum halpense *
Tridens f1avus (L)

Marshall, OK Aristida oligantha Michaux
Bothriochloa saccarhoides (Rydberg)*
Bouteloua curtipendula
Bromus catharticus *
Chloris virgata*
Cynodon dactylon *
Echinoch/oa crusgalli*
Elymus canadensis *
Eragrostis spectabi/is (Pursch)
Scheddonardus paniculatis (Nuttal)
Setaria viridis*
Sorghum halpense *

*Recorded greenbug host (Michels 1986)
C2 Common to two sites
C3 Common to three sites
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Common name

jointed goatgrass
Western vvheatgrass
side-oats gramma C2

downy brome C2

Bermuda grass C3

Virginia wildrye
Kentucky bluegrass
Green foxtai I C2

dropseed

rescue grass C2

downy brome C2

Bermuda grass C3

Canada wildrye C2

lovegrass C2

Iittle barley
switchgrass
canary grass
Johnsongrass
purpletop

annual 3-awn
silver bluestem
side-oats gramma C2

rescue grass C2

feather fingergrass
Bermuda grass C3

prairie cupgrass
Canada wildrye C2

purple lovegrass C2

Tumblegrass
green foxtai IC2

Johnsongrass C2



Table 2.2. Summary of collection data for 3 study sites 1999-2000

Site Month Number of GB GB
Host species colonies present present on

found on crop volunteer
Hays, KS May Bromus tectorum. 3 N N

Agropyron Smithii 2
June Agropyron Smithii 7 N N

Bromus tectorum 9

July 0 N N

August Setaria 1 N y

September 0 y y

October 0 y y

November 0 Y Y

December Bromus tectorum 1 Y y

March 0 y y

Redrock, OK May 0 N
June 0 N

July Sorghum halpense 1 N

August 0 N

September 0 N

October 0 N

November 0 N

December 0 y

January 0 y

Marshall, OK May Sorghum halpense 3 N
June 0 N

July 0 N

August 0 N

September 0 N

October 0 N

November 0 N

December 0 y

January 0 y
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Table 2.3. Grasses examined and greenbug densities, Hays KS.

Host

Agropyron smithii
Bromus tectorum
E/ymus virginicus
Sporobo/us sp.
Setaria viridis
Cynodon dacty/on
Poa pratense
Boute/oua curtipendu/a
Aegi/ops cy/indrica

No. of culms
examined

977
410
218
106
104
74
32
2
1

Number of culms
with aphids.

7
10
o
o
1
o
o
o
o

Biotypes present

G, I, K & New Biotype
G&I

Unknown

*Data for May collections not included in this table. The single greenbug from S.
viridis died before its biotype could be established. For complete collection data
see Appendix.
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Table 2.4. Other collections made on an ad-hoc basis.

State
OK
OK
OK
CO
OK
CO

Host
Sorghum halpense
Sorghum bicolor
Echinochloa crusgalli
Agropyron intermedium
Chloris verticulata Nuttal
Chloris sp.

No. of colonies found
15
8
4
3
1
1

Biotypes present
E& I
E & I

I
G&I

Unknown
Unknown

The greenbugs collected from Chloris spp. died before their biotypes could be
determined. Full collection data is shown in the appendix.
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Table 2.5. Summary of total collections and biotype

Grass
Agropyron smithii
Agropyron intermedium
Bromus tectorum
Chloris verticulata
Echinochloa crusgalli
Setaria viridis
Sorghum halpense
Volunteer sorghum
Volunteer wheat

No. colonies
7
3
10
4
1
1

18
5

20

No. biotyped
4
2
3
3
1
1
7
3
10
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Biotypes
I, G, K ,New

I, G
I, G
I, E

I
I

I, E
I

E, I, K



Figure 2.1. a-diversity of grasses at three study sites
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Molecular Ecology

CHAPTER III

MtDNA sequence divergence among Schizaphis graminum

(Homoptera: Aphididae) isolates from non cultivated hosts:

further evidence for host-adapted races

J. A. Anstead\ J. D. Burd2 and K. A. Shufran2

1Department of Entomology and Plant Pathology, Oklahoma State University,

Stillwater, OK, USA. 2USDA-ARS, Plant Science and Water Conservation

Research Laboratory, Stillwater, OK, USA.
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Abstract

A 1043 base pair region of the mitochondrial cytochrome oxidase subunit I

(COl) gene of the greenbug Schizaphis graminum was sequenced for 27

field collected isolates from non-cultivated and cultivated hosts, an isol,ate

from Syria, and an isolate collected from South Carolina. S. rotundiventris

(Signoret) was used as an outgroup. Maximum likelihood, maximum

parsimony and neighbor-joining phylogenies were estimated for these

isolates. All tests produced trees with identical topologies. The presence

of 3 clades within the greenbug species was confirmed. The isolates

showed no segregation according to biotype. Clade 1 contained all the

isolates collected from cultivated hosts and five of the six collected from

Sorghum halpense L., and was the most homogenous clade. Four of the

five isolates collected from Agropyron spp. were found in Clade 2. Clade 3

contained isolates from a number of different hosts, but none from

cultivated hosts. Greenbugs using crop plants are one relatively

homogenous race of the greenbug. There are 3 distinct clades each

adapted to a different set of non-cultivated hosts. These clades probably

evolved as host-adapted races on non-cultivated and wild grasses prior to

human agriculture.

Keywords: Schizaphis graminum, cytochrome oxidase I gene, biotype, molecular

phylogeny
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Introduction

The greenbug (Schizaphis graminum (Rondani)) is an important pest of wheat

(Triticum aestivum L.), sorghum (Sorghum bicoforMoench), barley (Hordeum

vulgare L.) and a number of other graminaceous crops. It reproduces

parthenogenically leading to large populations that cause considerable

economic loss. Host plant resistance has been used to control greenbug

damage, however its effectiveness has been compromised by the occurrence of

virulent biotypes (for a full review, see Porter et al. 1997). While the distribution

of greenbug biotypes is known to some extent (Peters et al. 1997; Dumas &

Mueller 1986), their origin and evolutionary status remain opaque (Porter et al.

1997).

Recent phylogenetic analysis of greenbug biotypes based on sequence data

from the mtDNA cytochrome oxidase subun,it 1 (COl) gene, revealed 3 clades

within S. graminum (Shufran et al. 2000). Each clade had a significant amount of

divergence between them. Distances, (in % sequence divergence) between

clades ranged from 4% to 6.8%. One clade contained the "agricultural biotypes",

C, E, I, K and J. A second clade contained biotypes F, G and the "New York"

isolate. The third clade contained biotype B, an isolate collected from Canada

wildrye and an isolate collected from wheat in Europe. Biotype H fell outside the

rest of these clades alongside the outgroup Schizaphis rotundiventris. These

results are in agreement with the findings of Powers et al. (1989) who suggested

that biotypes were probably host races, which diverged prior to the beginnings of

human agriculture. However, both studies only examined a single individual of
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each biotype and therefore did not consider intra-biotypic diversity, 'lNhich has

been documented by Shufran et al. (1992). They found that biotype E

populations in the field were comprised of multiple clonal lineages.

Greenbugs utilize a large number of non-cultivated hosts, including 70

species in 29 genera (Michels 1986). However, most genetic studies have

concentrated on greenbug populations collected from cultivated hosts or

laboratory clones. Recently it has been shown that individual greenbug clones

and localized greenbug populations cannot use the full range of documented

greenbug hosts, suggesting the presence of host-species races (Anstead et at.

2000c; Dahms et al. 1954). Grass hosts serve as oversummering bridges for the

greenbug during the period when wheat is not available and sorghum is

unsuitable. During this time period, greenbugs are restricted to grasses (Daniels

1961). Greenbugs were found oversummering on 23 grass species in the Texas

panhandle from 1953-59 (Daniels 1960). Agropyron smithii Rydberg was

considered the most important host. Grasses are also important during the

sexual cycle, 'lNhich occurs primarily North of the 35th parallel. Eggs are

oviposited on non-cultivated grasses in the autumn and in the spring the

fundatrix emerges onto non-cultivated grasses, which are primarily in the Poa

genus (Wadley 1931).

The objective of this study was to assess the genetic diversity of greenbugs

on non-cultivated hosts. DNA sequences of the COl gene in the mtDNA were

used to estimate the degree of relatedness 25 clones collected from a variety of

hosts. These results were compared with those of laboratory isolates reported in
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a previous study (Shufran et al. 2000). In addition. greenbug isolates from South

Carolina and Syria were included. A phylogeny was constructed using these

sequences, which allowed the inference of evolutionary relationships. The

relationships between phylogeny, biotype and host plant were examined. We

also estimated variation within some biotypes.

Materials and Methods

Insect Collection

Aphids collected from a number of sites in Oklahoma, Kansas and Colorado

were used for this study (Anstead et al. 2000a) After biotype determination

(Anstead et 81. 2000a), a sample was frozen and stored at -80°C for genetic

analysis. An isolate from South Carolina (collected from wheat, Dec. 1995 and

obtained from S.Gray, USDA-ARS, Ithaca, NY) was also included. It showed

susceptible reactions on "Custer", CI17882, "Largo", "GRS1201" and

"Wintermalt" and resistant reactions on "Amigo" and "Post 90", however the

reaction on "DS28A" was inconclusive (Stewart M. Gray, personal

communication). Based on these host differences, it is a unique biotype when

compared to the published biotypes B, C, E, F, G, H, I, J and K (Anstead 2000,

Table 1.1). The Syrian isolate was collected on 6th March 2000, from wheat in

Tel Hayda, about 30 KM South of Aleppo by Mustapha EI Bouhssini, (ICARDA,

P.O. box 5466, Aleppo Syria), and was preserved in 95% ethanol, therefore no

biotype information exists.
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DNA Extraction peR Amplification and Sequencing

DNA was extracted from 1 to 3 individuals of each clone using the procedure of

Black et al. (1992). Amplification was carried out according to the procedure of

Shufran et al. (2000), except 1.5 U Taq DNA polymerase (Gibco-BRL) was used

in each reaction. Amplification of the correct peR product was confirmed by

electrophorising 10Il' of the reaction mixture in a 1.2% agarose gel and staining

with ethidium bromide. Once the appropriate band was detected, contaminants

such as primer-dimers and amplification primers were removed from the

remaining 40111 of the reaction using the Wizard PCR Prep Kit (Promega,

Madison WI). The product was sequenced using the amplification primers used

in the PCR and a set of internal primers (4861 and 4862, Shufran et al. 2000).

The PCR products were direct sequenced by the Recombinant DNA/Protein

Resource Facility (Department of Biochemistry and Molecular Biology,

Oklahoma State University, Stillwater, OK) using a Perkin-Elmer (Applied

Biosystems) model 373 XL DNA Sequencing System incorporating an ABI-373

Automated DNA Sequencer.
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Sequence analysis

Sequences were aligned using the MAP program (Huang 1994). This was a

multipl,e sequence alignment with a mismatch score of -15, a gap open penalty

of 30, and a gap extension penalty of 3. Alignments were first carried out on

each isolate separately to give a complete sequence for each isolate. Isolates

were then aligned and manually corrected for discrepancies and gaps.

The 1043 bases that had sequence data for both strands were used in the

phylogenetic reconstruction. This is less than the 1200 bases used by Shufran et

al. (2000) (Genbank AF220511-AF220523), but produced the same phylogenetic

trees as with the longer sequence. Schizaphis rotundiventris (Shufran et al.

2000) was used as the outgroup for all tests. The analysis were carried out using

the MEGA statistical package (Kumar et al. 1993) and PAUP version 4.0b2

(written by David Swafford). We used the same statistical analyses as Shufran et

at. (2000). Distances were estimated by the method of Tamura and Nei (1993)

with a gamma correction factor of 0.=0.3 (estimated by maximum likelihood

procedure in PAUP), because there were unequal rates in the number and types

of transitions and transversions. Distances were also estimated using the 2­

parameter method (Kimura 1980). A dendrogram produced with neighbor-joining

(NJ) analysis (Saitou & Nei 1987) was based on the above Tamura and Nei

(1993) distances with 1000 bootstrap replications. Maximum parsimony (MP)

analysis was performed by bootstrapping method (1000 replications) with

heuristic search, using a 95% majority rule consensus. A maximum likelihood
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(ML) dendrogram was produced according to the method of Hasegawa et a/.

(1985).

All sequences were submitted to Genbank and have the consecutive

accession numbers AF285893-AF285916. PAUP command lines are shown in

the appendix.

Results

Among the S. graminum biotypes and isolates there were 128 varia,ble sites.

Eighty five were 3rd codon substitutions (66%). There were 92 silent substitutions

and 36 replacement substitutions. S. rotundiventris differed from S. graminum by

8.8% to 10.01 % (K-2 parameter distance) or by 12.7-15.9% (Tamura-Nei gamma

distance, 0.=0.3). Biotype H differed from the rest of S. graminum by 5.1 % - 6.5%

(K-2 parameter distance) or by 6.5% - 8.5% (Tamura - Nei gamma distance,

0.=0.3). The maximum divergence within the species (excluding biotype H) was

5.1 % (K-2 parameter distance) or 6.26% (Tamura - Nei gamma distance, 0.=0.3)

Divergence within bfotypes was also estimated (Table 3.2). Maximum parsimony,

maximum likelihood and neighbor joining analysis produced the same three

clades as reported by Shufran et al. (2000) (Figure 3.1). The topologies

produced by all three methods were identical; therefore only the maximum

likelihood results are shown (Figures 3.1 and 3.2). There was more diversity

between the 3 clades than within them (see Table 3.1).

The phylogeny generated according to biotype is shown in Figure 3.1, and

includes the biotypes and isolates used by Shufran et al (2000). Biotype I was
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present in all clades. Biotypes G and K were present in clades 1 and 2. The two

new examples of biotype E collected were in the same clade as the previous E.

The "new biotype" from Agropyron smithii (Anstead et al. 2000b) was in Clade 1.

Figure 3.2. shows the same phylogeny but according to host. Clade 1

contained all the isolates collected from wheat and sorghum. It also contained

four of the five isolates collected from Sorghum halpense, two isolates from

Agropyron spp. and one from Bromus tectorum L. Clade 2 contained four of the

six isolates collected from Agropyron spp., and one from Bromus fectorum.

Clade 3 contained three isolates from three separate grass species (Sorghum

halpense. Chloris verticulata Nultal and Echinochloa crusgalli L.

Discussion

Our results confirm those of Shufran et al. (2000), i.e. there are 3 clades (COl

haplotypes) within the greenbug species. The addition of 22 taxonomic units

further confirmed there was greater diversity between clades than within them.

Distances estimates were similar to those of Shufran et al. (2000), for instance

biotype H was 5.1 % - 6.5% (K-2 parameter distance) divergent from the rest of

the greenbugs in this study compared with 5.06% - 6.17% reported by Shufran et

al. (2000). In both cases biotype H was grouped outside the rest of the isolates

and therefore may represent a separate Schizaphis species. However other

events, such as a mitochondrial colonization that affected only this biotype, or

even just this clone, could account for this divergence. These mitochondrial

sweeps have been used to explain unusual divergence in mitochondrial
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sequences in Anopheles dirus (Walton et al. 2000) and have been linked with

the spread of symbionts such as Wolbachia (Shoemaket et al. 1999). The

divergence of biotype H could have been caused by such a sweep because

biotype H appears to be anholocyclic. If a new mitochondria with a slight

advantage colonized a biotype H clone it would be restricted to its progeny.

The "South Carolina" isolate grouped with the agricultural isolates, as might

be expected, as it was collected from 'Nheat. The "new biotype" from A. smithii

also grouped in this clade. Divergence within the species (excluding biotype H)

was over 5%. This is much greater than the 0.4% found in a study using the

same gene, that rejected the hypothesis that there were host races in the pea

aphid (Acyrlhosiphon pisum) (Boulding 1998). The highly divergent nature of

these clades indicates that they haven't shared a common mitochondrial

ancestor for a long time. Molecular clocks for other mitochondrial genes in

arthropods give a substitution rate of approximately 2% per million years (Brower

1994, Juan et al. 1996). Using this rate, the distances between clades (2-4%)

indicate they haven't shared a common mitochondrial ancestor for between 1

and 2 million years. This clock may not be completely accurate in this case, but

even if it was ten-fold inaccurate, these clades would have last shared a

common ancestor long before the beginnings of wheat cultivation in the fertile

crescent over 10,000 years ago. Because mitochondrial DNA is inherited in a

strictly maternal lineage, this result could have been caused in one of two ways,

geographic isolation at the time of divergence or sympatric isolation on separate

hosts.
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There is strong evidence that these clades may have diverged as a result of

sympatric isolation. Clade 1 contains all the agricultural biotypes and all the

field-collected isolates from wheat and sorghum. It contained the Syrian and

South Carolina isolates (both collected from wheat). It also contained 5 out of

the six isolates collected from Sorghum halpense, which is a close relative of

sorghum. Clade 1 was the most homogeneous despite containing the most

isolates. There was only 1.1 % sequence divergence among the 21 isolates in

this clade. Clade 1 contained a group of greenbugs able to exploit crop hosts

that may also use close relatives such as Sorghum halpense.

Four of the five isolates added to Clade 2 were collected from two closely

related Agropyron spp. This suggests Clade 2 may be divergent as a result of

host specialization. Clade 3 contained single isolates collected from Sorghum

halpense, Chloris verticuJata and EchinochJoa crusgalli. Further collections would

be needed to see if isolates from these hosts partitioned into this clade.

There appears to be exchange of genetic material between clades

conditioning for virulence to crops. Biotype I is present in all 3 clades and

biotypes G and K are present in two clades. There is no segregation into clades

according to biotype. This suggests that the present system of assigning

biotypes is not an indication of evolutionary origin, i.e. biotype has no taxonomic

or evolutionary status. This was confirmed by estimates of divergence within

biotypes. Biotypes I, G and K had divergences within them higher than within the

three clades. Of the biotypes for which we had multiple isolates, only E had

divergence lower than that of the clades. This was however based on only three

70



isolates. The addition of sequences from further collections would probably add

to this divergence. Most previous authors have treated biotypes as discrete

populations, even when variation was found in a biotype. Black (1993) found

variation in the IGS subrepeat structure within biotype E but concluded that each

biotype tested (B, C and E) probably evolved from a single population or

maternal lineage. Unfortunately, there still exists an assumption that virulence to

resistant crop species must mean something in evolutionary terms; e.g. "the

development of biotype F is driven by native grasses" (Kindler & Hays 1999).

Where as biotypes may be associated with particular hosts, it is not accurate to

say their formation is driven by them. Our results show that whilst virulence to

crops is important to researchers, farmers, and breeders, biotypes are not

discrete populations that evolutionary forces can act on.

This study showed there was greater diversity amongst greenbugs isolates

collected from non-cultivated gfass hosts than among those collected from

cultivated hosts. Non-cultivated hosts are therefore reservoirs for both genetic

and biotypic diversity. The presence of the same biotypes in each clade

indicates there is exchange of virulence genes between greenbug populations.

This means that virulence genes present in any of these populations could

easily be transferred into the greenbug race commonly found on crops. This

further suggests resistance screening against greenbugs from non-cultivated

hosts would be invaluable.

This study provides further evidence that S. graminum evolved three host­

adapted races on wild grass hosts, as first suggested by Porter et al. (1997) and
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by Shufran et al. (2000). These races use different sets of hosts but should not

be considered separate species, as there appears to be gene flow between

them.

Further work is needed in this system. This study used only a single marker.

Genomic markers will be required to confirm the relationships elucidated by

mtDNA studies. This combined with a comprehensive phylo-geographical survey

of greenbugs on non-cultivated hosts in North America would allow the

confirmation of these results.
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Table 3.1. Sequence analysis of a 1.043 kb portion of the COl gene of S.

graminum, maximum distances within clades and distance between clades

(% sequence divegence)

Within clades Between clades

1 2 3 1 &2 2&3 1 & 3

Kimura 2- parameter 1.07 1.2 1.16 2.05 3.77 3.66

distance

Tamura-Nei gamma 1.11 1.27 1.24 2.21 4.47 4.28

distances (a=0.3)
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Table 3.2. Sequence analysis of a 1.043 kb portion of the COl gene of S.
graminum, maximum divergence within biotypes (% sequence divergence)

Biotype

E
G
I
K

No. examined (n)

3
4

15
3

Kimura 2- parameter
distance

0.87
3.05
4.89
2.15
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Tamura-Nei gamma
distances (a=O.3)

0.91
3.52
5.87
2.34
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ABSTRACT

The fecundity of a unique Schizaphis graminum (Rondani) isolate collected

from Elymus canadensis (L.)(Canada wildrye) was tested. Its biotypic status is

unique because it is virulent to the wheat variety "GRS 1201", but avirulent to

Amigo. Seven-day fecundity and ovariole numbers were measured on three

different hosts and a susceptible control ("Otis" barley). Fecundity was

significantly higher on E. canadensis, E. virginicus, and Otis barley than on

Agropyron smithii. Ovariole numbers were also significantly lower on Agropyron

smithii than the other entries. The differences in the fecundity of the Canada

wil'drye isolate on these hosts supports the theory that this isolate has a different

host range than previously reported populations.
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INTRODUCTION

Greenbugs (Schizaphis graminum) were first detected in the US in

Culpepper, Virginia in 1882 (Webster 1909). Greenbugs have been an economic

pest of grain crops in North America, particularly wheat, since the 1880's and of

sorghum since 1968 (Harvey and Hackerott 1969). Crop varieties resistant to

greenbug damage have been deployed in an attempt to reduce greenbug

damage. This strategy has been undermined by the appearance of greenbugs

able to overcome this resistance. The first source of resistance was a selection

from Durum wheat called "Dickinson selection 28A" (OS 28A) (Dahms et aJ.

1954). This was resistant to aphids in the field at that time (Dahms et al. 1954).

However it was soon found to be damaged by a strain of greenbug found in the

greenhouse (Wood 1961). This strain was designated biotype 8, (the field

population at the time was therefore "a priori" biotype A). Subsequently a system

by which greenbug biotypes are characterized by their ability to damage certain

resistant sources has been developed and biotypes A-K have been described

(except D whose designation was based on insecticide resistance (Teetes et al.

1975)).

A unique isolate was recently collected from Elymus canadensis (Canada

wildrye) from Payne county, Oklahoma in 1997 (J. D. Surd unpublished data). It

is unique in being virulent to the wheat variety "GRS 1201", but avirulent to

"Amigo". In all other virulence tests it is equivalent to biotype 8 (Anstead et al.

2000a). It has not yet been assigned an alphabetical biotype designation and
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will be referred to as the Canada wildrye isolate in this paper. Following its

collection it was maintained for 6 months on Canada wildrye without causing any

of the virulence reactions produced on susceptible crop hosts (J. D. Surd

unpublished data). It has never been recorded on any other host.

In a study of DNA sequence divergence in the greenbug, the Canada wildrye

isolate was found to reside in a clade along with three other greenbugs collected

from non-cultivated grasses (Anstead et al. 2000b). If this clade represents a

host-adapted race or group of races, the Canada wildrye isolate should exhibit a

greater fitness on specific non-cultivated hosts. We tested this hypothesis by

measuring its fecundity on four different hosts; Elymus canadensis, Elymus

virginicus, Agropyron smithii and "Otis" variety barley. These hosts were chosen

as to include the host the Canada Wildrye isolate was collected from, another

host-species in the same genus, an unrelated non-crop greenbug host (Daniels

1961) and a susceptible crop host (Otis).

MATERIALS AND METHODS

Greenbugs were maintained on "Otis" barley grown in 3.65 cm by 21 cm

Cone-tainers™ (Cone-tainer company, Canby, Oregon, USA) covered with

ventilated 3.5 cm diameter cylindrical plastic cages (Anstead et al. 2000a).

Barley plants were grown in fritted clay in the greenhouse. They were watered

and fertilized (Peters Professional™ 20-20-20) from the base of the cone-tai,ner

to reduce disease. After the aphids and cage were placed on the barley watering
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ceased. This reduced humidity in the cage and helped prevent fungal disease.

The plants were then kept in a growth chamber at 20 ± SoC with a photoperiod of

14:10 (L: D) hours. Because greenbugs are virulent to Otis barley, they required

new barley plants every 10-20 days. Elymus virginicus and E. canadensis seeds

were collected from wild populations in Stillwater, OK. A. smithii seeds were field

collected from Hays, KS. Colonies of the Canada wildrye isolate greenbugs were

started on each of the plant entries. Four plants of each entry 'Nere grown in six­

inch pots covered with a cage. These plants provided host-acclimatized

greenbugs for experimentation and were infested with greenbugs two weeks

before the start of the experiments. Mortality on A. smithii was high and this

colony had to be restarted several times. Fecundity was measured in two ways.

Firstly, we measured seven-day fecundity which has been found to be correlated

to total fecundity (Shufran et al. 1992) and secondly we counted ovariole

number. Ovariole number has been found to be influenced by host quality

(Walters et al. 1988).

Seven-day fecundity. For each of the four treatments a single plant was

grown in fritted clay in a four-inch pot. This was repeated five times. Greenbugs

were individually placed on a blade of grass at the four-leaf stage. The insect

and grass blade were secured in a plastic cage. These cages were constructed

by taking a 5cm diameter petri dish and cutting holes in each side so that a

grass blade could be laid across it. This caused no damage to the leaf blade. A

section of the petri dish was cut out and replaced with screening to allow

ventilation. Two rubber bands were used to seal the cage.
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One randomly selected greenbug nymph was placed on a single grass blade

in each cage, one cage per plant. Greenbugs were monitored daily. At the

appearance of the first offspring, the count was begun. All offspring were

removed daily, minimizing a greenbug induced change in host quality and

ensuring no other greenbugs reached maturity and reproduced. After seven­

days the count was terminated.

OvarioJe production. Approximately 10 acclimatized greenbugs were cag.ed

on four plants at the four-leaf stage, grown in fritted clay in six-inch diameter

pots in a no-choice test. There were 3 pots for each plant entry. After several

generations of reproduction (in this case 10 days), 30 randomly chosen adult

apterous greenbugs were removed from each grass host. Each greenbug was

dissected in insect saline according to the protocol of Walters and Dixon (1983)

and its ovartoles were counted.

Statistics. For each experiment, Statistical Analysis Software (SAS Institute

1988) was used to analyze the data. An analysis of variance was conducted

using ProcMix, (P<0.05). This includes a Least Squares Means (LSMeans) test

to determine which treatments were significantly different from each other

(P<0.05).
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RESULTS

Seven-Day fecundity. Seven-day fecundity was highest on E. canadensis,

with an average of 26 nymphs (Figure 4.1). This was not significantly different

from the mean number of nymphs produced on E. virginicus (P=O.07). The

fecundity of this isolate on E. virginicus was not significantly different from that

on "Otis" barley (P=0.48). However seven-day fecundity was significantly higher

on E. canadensis than on "Otis" barley (P<O.0001) (Figure 1). Greenbug

fecundity on A. smith;; was zero, the five greenbugs placed on it were unable to

reproduce.

Ovariole production. Mean ovarioIe numbers were highest in greenbugs

raised on "Otis" barley, with an average of 5.1 ovarioles (Figure 2). Mean

ovariole numbers were 3.9,2.9, and 0.8 respectively on E. canadensis, E.

virginicus and A. smithii. All mean ovarioIe numbers were significantly different

from each other (P<O.02). Most of the greenbugs on A. smithii failed to

reproduce, Some of the greenbugs collected from A. smith;; did not appear to

have any ovarioles, indicating they are unable to complete development on this

host.
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DISCUSSION

Greenbugs raised on Elymus canadensis were well adapted to their host, as

evidenced by high seven-day fecundity and ovariole numbers. Based on seven­

day fecundity, E. canadensis was the most suitable host. Ovariole numbers also

showed that E. canadensis was the most suitable host apart from the susceptible

control. These results support the hypothesis that the Canada wildrye collected

from E. canadensis was adapted to that host.

Elymus virginicus is closely related to E. canadensis and will readily hybridize

with it (Hitchcock and Chase 1971). We would, therefore, expect greenbugs

collected from E. canadensis to exhibit similar biological responses and have a

relatively high fecundity on E. virginicus. This was shown to be correct. Seven­

day fecundity was not significantly different from that on E. canadensis. Ovariole

numbers were significantly lower on E. virginicus than E. canadensis, but were

significantly higher than in the greenbugs raised on A. smithii. These results

show E. virginicus is a less suitable host than E. canadensis for the Canada

wildrye isolate.

Agropyron smithii has been considered to be the most important greenbug

oversummering host in Texas and Oklahoma (Daniels 1960 and 1961).

However, it was a completely unsuitable host for this isolate. Seven-day

fecundity was zero and ovariole numbers were significantly lower than for all

other hosts, having a mean of less than one per greenbug. Aphids are known to
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produce fewer ovarioles under various environmental stresses, includi,ng stress

imposed by being on a poor quality host (Walters et al. 1988).

These experiments clearly show that the Canada wildrye isolate has a more

limited host range than the greenbug species as a whole. Similar conclusions

were reached by Dahms et al. (1954) for a different isolate. They showed that

greenbugs, (of unknown biotype) collected from Stillwater, OK were unable to

live on Echinochloa crusgalli (L.) Beauv. but were able to live on Elymus

canadensis, whereas greenbugs from Manhattan, KS were able to live on Ec.

crusgalli but unable to live on EI. canadensis.

In addition greenbugs collected from A. smithii included in a mitochondrial

sequence study (Anstead et al. 2000b) were found to be highly divergent from

the Canada wildrye isolate.

The differences in the fecundity of the Canada wildrye isolate on these hosts

supports the theory that greenbug isolates have limited host ranges and that the

species may be a complex of host-adapted races.
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CHAPTER V

Conclusions



These studies answered a number of important questions about the

relationships between Schizaphis graminum and its non-cultivated hosts. I found

significant biotypic diversity on non-cultivated grasses. Of the 10 greenbug

biotypes (A-K) only C, E, I and K are regularly found on crops (Peters et al.

1997). On non-cultivated hosts I found biotypes E, I, K, G and a "new biotype".

Biotype G was found at higher than previously recorded densities, 13%

compared to the 2-3% found on crop hosts (Bush et al. 1987, Ullah 1993). The

"new biotype", an isolate with a unique virulence profile was found on A. smithii.

Non-cultivated grasses provide a reservoir of biotypic diversity. Genetic

recombination during meiosis during the sexual reproductive cycle has been

shown to generate "new" biotypes in the laboratory (Puterka and Peters 1990).

This is likely the source of the unique isolate in this study and is probably the

mechanism that maintains biotypic diversity, generating new biotypes that are

virulent to resistant crop varieties and may be virulent to them.

This study supports the conclusions of Porter et al. 1997 that biotype

formation was not driven by the development of resistant crop varieties.

Biotypes, as defined in the greenbug do not appear to have any evolutionary

and taxonomic status. Rather this study confirms the presence of three

genetically distinct mtDNA clades (Shufran et al. 2000). The distances between

clades indicate a substantial time since they had shared a common

mitochondrial ancestor. At 2% divergence per million years (Brower, 1994, Juan

et al. 1996) this would be between 1 and 2 million years. This is long before the

advent of agriculture, so 20th century crop hosts could not have driven the
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divergence of these populations. The populations in these clades differ in the

grass hosts they use. Clade 1 contained greenbugs found predominantly on crop

plants and Sorghum halpense. Clade 2 populations appeared to show some

specialization for Agropyron spp. Clade 3 contained greenbugs from a number of

non-cultivated grasses, but none from crop hosts. These clades are likely to

represent host-adapted races. However, to elucidate the relationship between

clade and host thoroughly would require a much larger survey, both in terms of

numbers of host species examined and geographical area.

Given the limitations of mtDNA markers, confirmation of these relationships

would also require the use of a genomic marker. There is a possibility that these

phylogenetic patterns could have arisen from historical geographic isolation and

not from sympatric isolation. Use of a genomic marker would solve this issue.

In summary, the greenbug species is composed of 3 host-adapted races that

probably evolved sympatrically on non-cultivated grass hosts. One of these

races is able to easily exploit agricultural cropping systems. The other races are

mostly limited to non-cultivated hosts, but provide a genetic reservoir able to

produce biotypes that may overcome crop resistance.
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Appendix A: Field collection data

Hays, KS
Day/month/year 1/6/1999 817/1999 11/8/1999

No. No. No. No. No. No.
Grass culms GB culms GB culms GB
Agropyron Smithii 200 7 180 0 175 0
Bromus teetorum 175 9 0 0 0 0
Poa pratense 0 0 0 0 20 0
Elymus virginieus 70 0 88 0 0 0
Cynodon daetylon 0 0 0 0 20 0
Sporobolus sp. 0 0 60 0 46 0
Boute/oua eurtipendula 0 0 2 0 0 0
Aegilops eylindriea 3 0 0 0 0 0
Setaria viridis 0 0 18 0 40 1

Day/month/year 10/9/1999 6/10/1999 13/11/1999
No. No. No. No. No. No.

Grass culms GB culms GB culms GB
Agropyron Smithii 115 0 120 0 28 0
Bromus tee/arum 17 0 60 0 57 0
Poa pratense 0 0 12 0 0 0
E/ymus virginieus 0 0 a a 60 0
Cynodon daetylon 0 0 4 0 0 0
Sporobo/us sp. a 0 0 a 0 0
Boute/oua eurtipendu/a 0 0 0 0 0 0
Aegilops eylindriea 0 0 0 0 0 0
Setaria viridis 34 0 3 0 2 0

Day/month/year 2/12/1999 6/3/2000
No. culms No. No. No.

Grass GB culms GB
Agropyron Smithii 73 0 86 0
Bromus teetorum 45 1 56 0
Poa pratense 0 0 0 0
Elymus virginicus 0 0 a 0
Cynodon daety/on 15 0 35 0
Sporobolus sp. 0 0 0 0
Boute/oua curtipendula 0 a 0 0
Aegilops eylindriea 0 0 0 0
Setaria viridis 6 0 1 a
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Redrock, OK
Day/month/year 15/6/99 2117/99 24/8/99

No. No. No. No. No. No.
Grass culms GB culms GB culms GB
Bromus catharticus 15 0 0 0 0 0
Bromus fectorum 34 0 0 0 0 0
Cynodon dactylon 20 0 40 0 25 0
Elymus canadensis 15 0 14 0 0 0
Hordeum pusillum 3 0 0 0 0 0
Phalaris canariensis 0 0 0 0 0 0
Sorghum halepense 5 0 22 0 6 1
Eragrosfis sp. 20 0 30 0 23 0
Panicum virgatum 30 0 40 0 35 0
Tridens flavus 33 0 80 0 56 0

Day/month/year 9/9/99 25/9/99 16/10/99
No. No. No. No. No. No.

Grass culms GB culms GB culms GB
Bromus catharticus 0 0 3 0 12 0
Bromus tectorum 0 0 0 0 12 0
Cynodon dactylon 13 0 32 0 24 0
Efymus canadensis 0 a 0 0 0 0
Hordeum pusillum 0 0 0 0 0 0
Pha/aris canariensis 0 0 0 0 0 0
Sorghum hafepense 5 0 13 0 0 0
Eragrostis sp. 12 0 0 a 0 a
Panicum virgatum 35 0 24 0 23 a
Tridens ffavus 43 0 2a a 10 0

Day/month/year 25/11/99 18/1/00 23/2/00
No. No. No. No. No. No.

Grass culms GB culms GB culms GB
Bromus catharticus 23 0 11 0 16 0
Bromus tectorum 24 0 27 0 34 a
Cynodon dacty/on 27 0 a 0 45 0
Efymus canadensis 0 0 0 0 0 a
Hordeum pusillum a 0 0 0 0 0
Phafaris canariensis a 0 0 0 0 0
Sorghum hafepense a 0 0 0 0 0
Eragrostis sp. a 0 a 0 2 0
Panicum virgatum 14 0 6 0 12 0
Tridens f1avus 7 0 3 0 3 0
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Marshall, OK
Day/month/year 1317/99 3/8/99 1/9/99

No. No. No. No. No. No.
Grass culms GB culms GB culms GB
Aristida o/igantha 0 0 0 0 0 0
Boute/oua curtipendu/a 0 0 0 0 0 0
Bromus catharticus 0 0 0 0 3 0
Chloris virgata 4 0 0 0 7 0
Cynodon dactylon 5 0 4 0 6 0
Echinochloa crusgalli 10 0 2 0 3 0
E/ymus crusgalli 4 0 0 0 4 0
Eragrostis spectabilis 37 0 45 0 54 0
Scheddonardus panicu/atis 3 0 0 0 0 0
Sorghum ha/epense 8 3 0 0 3 0
Setaria viridis 37 0 23 0 21 0
Bothriochloa saccharoides 34 0 15 0 12 0

Day/month/year 25/9/99 26/10/99 24/11/99
No. No. No. No. No. No.

Grass culms GB culms GB culms GB
Aristida o/igantha 0 0 0 0 0 0
Boute/oua curtipendula 0 0 0 0 0 0
Bromus catharticus 0 0 0 0 0 0
Chloris virgata 3 0 0 0 0 0
Cynodon dactylon 12 0 8 0 18 0
Echinochloa crusgalli 0 0 0 0 0 0
Elymus crusgalli 4 0 5 0 0 0
Eragrostis spectabilis 32 0 17 a 23 0
Scheddonardus paniculatis 0 0 0 0 0 0
Sorghum ha/epense 2 0 0 0 0 0
Setaria viridis 17 0 12 0 14 0
Bothriochloa saccharoides 13 0 23 0 34 0
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Day/month/year 18/1/00 22/11100
No. No. No. No.

Grass culms G8's culms G8's
Aristida o/igantha 0 0 0 0
Boute/oua eurtipendu/a 0 0 0 0
Bromus eathartieus 2 0 17 0
Chloris virgata 1 0 8 0
Cynodon daety/on 4 0 23 0
Eehinoeh/oa erusgalli 0 0 0 0
E/ymus erusgalli 2 0 0 0
Eragrostis speetabi/is 33 0 25 0
Seheddonardus panieu/atis 0 0 1 0
Sorghum halepense 0 0 0 0
Setaria viridis 20 0 24 0
Bothrioehloa saeeharoides 552 0 17 0
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Appendix B: Collection details for isolates biotyped
Isolate Date State Closest Host Biotype Genbank

Collected town Accession no.
1-00-11 13/1/00 KS Hays Tdticum aestivum E
8-99-14* 10NIII/99 CO Mead Agropyron ? AF285900

intermedium
8-99-15 80099 CO Mead Agropyron

intermedium
8-99-18* 80099 CO Prospect Agropyron G AF285915

valley intermedium
8-99-30* 10NIII/99 KS Winona Triticum aestivum I AF285909
6-99-11''' 1NI/99 KS Hays Agropyron smithii I AF285901
9-99-12* 10/1X/99 KS Hays Triticum aestivum I AF285906
11-99-2- 13/X1/99 KS Hays Triticum aestivum I AF2859 10
6-99-4* 1NI/99 KS Hays Bromus tectorum G AF2859 11
6-99-5* 1NI/99 KS Hays Bromus tectorum I AF285893
6-99-7* 1NI/99 KS Hays Agropyron smithi; K AF285905

6-99-16- 1NI/99 KS Hays Agropyron smith;; G AF285903
6-99-18- 1NI/99 KS Hays Agropyron smith;; G AF285904
10-99-3 60099 KS Hays Triticum aestivum E
11-99-1 13/X1/99 KS Hays Triticum aestivum K
8-98-2* 4NIIi/98 KS S. Haven Sorghum bico/or I AF285908
7-98-01 7NII/98 NE Ceresco Sorghum bicolor I
7-98-27* 31NII/98 OK Balko Sorghum halpense I AF285896
8-98-10* 7NIII/98 OK Guymon Chloris verticulata I
8-98-9" 6NIIi/98 OK Guymon Echinochloa I AF285899

crusgalli
8-98-6 6NII1/98 OK Guymon Chloris verticullata I
8-98-10 7NIII/98 OK Guymon Chloris verticullata E AF285898
7-98-23 30NII/98 OK Guymon Chlor;s verticullata I
6-99-20* 1NI/99 OK Marshall Sorghum halpense I AF285894
6-99-22* 13NII/99 OK Marshall Sorghum halpense E AF285895
8-98-13 18NIII/98 OK Morrison Sorghum halpense E
7-99-1* 21NII/99 OK Redrock Sorghum halpense I AF285897
7-99-3- 1Nl1/99 OK Sumner Sorghum bicolor E AF285902
7-99-7* 21NII/99 OK Sumner Sorghum halpense I AF285912
7-99-8- 21NII/99 OK Sumner Sorghum bicolor I AF285911

7-99-10* 21NII/99 OK Sumner Sorghum halpense I AF285914

*sequenced and used in subsequent phylogenetic analysis.
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dIIhOdd" C OhA~ppen IX 0 t er apl I s co ecte0

Host Aphid No. of colonies
Sorghum halpense Rhopalosiphum maidis 8

Maerosiphum euphorbiae 4
Bromus teetorum Rhopa/osiphum padi 3
Elymus virginieus Sitobion avenae 3
Eragroslis eilianensis Maerosiphum euphorbiae 2

Sipha flava 1
Agropyron smithii Diuraphis noxia 1

Diuraphis tritiei 1
Rhopa/osiphum padi 1

Sporobolus eryptandrus Rhopalosiphum maidis 1
Macrosiphum euphorbiae 1

Echinoehloa erusgalli Rhopa/osiphum maidis 1
Macrosiphum euphorbiae 1

Setaria sp. Rhopa/osiphum maidis 1
Chloris sp. Rhopa/osiphum maidis 1
Chloris virgata Sipha f1ava 1
Agropyron desertorum Sipha elegans 1
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Appendix 0: PAUP commands

Maximum Likelihood

#nexus
(Subset data]

BEGIN DATA;
DIMENSIONS NTAX=37 NCHAR= 1041;

FORMA
INTERLEAVE

MISSING=? GAP=- MATCHCHAR=.
DATATYPE=DNA

MATRIX
( Data

ENDBLOCK;

begin paup;
outgroup 1;
log file=gbrnl.out;
set criterion=likelihood increase=auto;
hsearch;
likelihoods 11 rates=gamma shape=estirnate;
savetrees file=GBrnl.tre brlens;
endblock;

Neighbour joining

#nexus
(Subset data]

BEGIN DATA;
DIMENSIONS NTAX=37 NCHAR= 1041;

FORMAT
INTERLEAVE

MISSING=? GAP=- MATCHCHAR=.
DATATYPE=DNA

MATRIX
( data

ENDBLOCK;

begin paup;
outgroup 1;
log file=gbd.out;
set criterion=distance;
dset di=tarnnei rates=gamma shape=0.300097;
nj;

bootstrap rnethod=nj nreps=1000;
contree;

describe;
endblock;
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Maximum parsimony

#nexus
[Subset data]

BEGIN DATA;
DIMENSIONS NTAX=37 NCHAR= 1041;

FORMAT
INTERLEAVE

MISSING=? GAP=- MATCHCHAR=.
DATATYPE=DNA

MATRIX
data

ENDBLOCK;

begin paup;
outgroup 1;
log file=gbp.out;
set criterion=parsimony;
hsearch swap=tbr;
1ik /k;

describe;
bootstrap method=heuristic nreps=1000;
endb10ck;
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