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CHAPTER 1 

INTRODUCTION 

 

              The use of multimedia data has spread throughout the world with the availability 

of high performance, low-cost computers, and this has led to a need for accurate, efficient 

retrieval methods for large multimedia databases. Many users experience difficulty in 

formulating a query in words when they want to retrieve something from a multimedia 

database. Content-based retrieval is seen as a solution to this problem [1]. Content-based 

retrieval enables users to represent what they want directly; it makes the retrieval system 

easier to use. For a music retrieval system, content-based query can be either a hummed 

query or played through a digital piano. 

 

1.1 Motivation 

In spite of the growth of digital music libraries, or generically speaking, any 

multimedia database, it is really useful only if users can find what they are seeking in an 

efficient manner. Presently, whether it is the case of a digital music library, the Internet or 

any music database, search and retrieval is carried out mostly in a textual manner, based 

on metadata such as author, title or genre. Normally, metadata related to music is created 

manually. Some metadata information provided is meaningless and ambiguous. For 

instance, the track number of a CD album does not provide any useful information for 

musical data retrieval. A natural way of searching for music is to identify it by its content 
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rather than its secondary information (e.g., title), because the content is usually more 

memorable and a more robust feature of the musical work. Many people remember a 

short tidbit of a song but fail to recall a song’s name. Information such as title, artist, and 

genre often is learned at a much later stage of people’s relationship with a song. 

Furthermore, as the human brain sometimes forgets this information, while the melody 

remains fresh in mind, it seems obvious that an application capable of retrieving music 

from humming would be very useful. A query-by-humming system allows a user to find 

a song even if he merely knows the tune from part of the melody. The user simply hums 

the tune into a computer microphone, and the system searches through a database of 

songs containing the tune and returns a ranked list of search results. 

  

1.2 Music Terminology 

 Each time a key pressed on a piano or air is blown across a flute mouthpiece to 

make a sound, we say that a note has been played. Each type of musical instrument has 

its own method of playing notes within a certain range. This range refers to frequency 

range of sounds that can be produced from the musical instrument. Musicians do not 

usually discuss the frequencies of notes, but refer to them as having a particular pitch. 

Every note has a certain pitch. Pitch is how the listener perceives the tone. A note with 

higher frequency is said to have a higher pitch than one of a lower frequency. The pitch 

distance between notes is called an interval.  If one note has double the frequency of 

another, then it is said to be one octave above the lower note, i.e. the interval between the 

notes is one octave. Notes that are an octave apart sound very similar to each other. All 

notes that are a whole number octave apart have the same note name, which is usually a 
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letter, or a letter combined with a sharp (♯) or flat (♭) symbol. The notes used in western 

music result from dividing an octave into 12 notes that are a semitone apart. The note 

names used for notes within one octave starting at C and going up are:   

C C♯ D D♯ E F F♯ G G♯ A A♯ B C. 

C♯ is read as ‘C sharp’. It is the same note as ‘D flat’ (D♭). Similarly D♯, F♯, G♯, and 

A♯ can be referred to as E♭, G♭, A♭, and B♭ respectively. Note that a sharp symbol is used 

to raise the pitch of a note by one semitone, and a flat is used to lower the pitch of a note 

by one semitone. 

 Music is often divided into three categories based on the amount of concurrency 

present. Monophonic (‘Mono’ means one and ‘phony’ means sound) means ‘one sound’. 

In monophonic music only one note sounds at a time; two notes cannot sound 

simultaneously. The simplest type of monophony would be one person singing alone. 

Homophonic (‘Homo’ means same and ‘phony’ means sound) means that different notes 

may sound simultaneously but must start and end at the same time. For example, a singer 

accompanied by a guitar picking can be homophonic. Polyphonic (‘Poly’ means many 

and ‘phony’ means sound) means many sounds at once. In polyphony, notes may sound 

simultaneously with different start and end times. Generally most music by large 

instrumental groups such as bands or orchestras is polyphonic. This research deals with 

searching of a monophonic music (query) in a polyphonic database. 

 

1.3 Music data Representation 

Musical data can be represented in a computer in two different ways: symbolic 

representation and acoustic representation. Formats such as mp3, wav and au are popular 
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for acoustic representation.  Symbolic representation is based on musical scores, with one 

entry per note. Each entry keeps track of information such as pitch, duration, type of 

instrument and so on. Examples of this representation include MIDI (Musical Instrument 

Digital Interface), Humdrum, and sheet music with MIDI being the most popular format. 

Score-based representations are much more structured and easier to handle than raw 

audio data. A MIDI file contains the performance-related information of a piece of music; 

it contains all the necessary information to recreate that piece of music. As MIDI is the 

widely used music format this research concentrates in this format.  

 

1.4 Thesis Overview 

                 In this research, content-based music retrieval is performed on a polyphonic 

MIDI music database where the query is a hummed tune. After a hummed tune is 

translated to MIDI format, it is matched against the database of 250 MIDI files which 

may contain either monophonic or polyphonic MIDI music files. The similarity is based 

on the intuitive notion of similarity perceived by humans: two musical files are similar if 

they are fully or partially based on the same score, even if they are performed in a 

different key or at a different tempo. Retrieval results are ranked based on the computed 

similarity estimate. Two approximate string matching algorithms, LCTS and Myers 

algorithms are modified, applied to the problem, and retrieval performance is calculated. 

Response times of the algorithms are calculated by altering the values of some of the 

interesting parameters such as the query length, degree of polyphony and size of the 

database. 



CHAPTER 2 

LITERATURE REVIEW 

 

2.1 MIDI 

 When music technology moved into the 1980s, keyboards with internal 

microprocessors had been introduced and become popular. Manufacturers began to 

experiment with interfaces that would transfer digital information among their own 

various devices. By the beginning of the decade (1980), it dawned on the electronics 

industry that, if each manufacturer developed its own interface, it would not be beneficial 

to the growth of the entire industry and it would ultimately prove frustrating to musicians. 

In an attempt to find a way forward from this situation, audio engineer and synthesizer 

designer Dave Smith of Sequential Circuits, Inc. proposed the MIDI standard in 1981 in a 

paper to the Audio Engineering Society. The proposal received widespread enthusiasm 

within the industry and the MIDI Specification 1.0 was published in August 1983[2]. It is 

a standard that manufacturers of electronic musical instruments have agreed on. It is a set 

of specifications that they can use in building their instruments so that instruments of one 

manufacturer can, without difficulty, communicate musical information with instruments 

of another manufacturer. MIDI was originally designed for keyboards, but it is flexible 

enough that it could be easily adapted to various other kinds of electronic instruments. 

MIDI is an acronym for the Musical Instrument Digital Interface. The most 

fundamental aspect of MIDI is that it does not deal with musical sound at all; it only
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deals with musical data which can be transmitted among musical computing devices, 

including keyboards, drum machines, sequencers and computers running music software. 

Two musical instruments communicating using the MIDI standard send information as a 

series of numbers (binary) over connecting cables. The MIDI standard specifies that the 

numbers sent as data be sent in groups called MIDI messages. Each MIDI message 

communicates one musical event. These musical events usually are actions that a 

performer makes while playing a musical instrument, actions such as pressing keys, 

setting switches etc. MIDI messages can be collected and stored in a computer file  

commonly called a MIDI file, or more formally, a Standard MIDI File. 

 Standard MIDI files provide a common file format used by most musical software 

and hardware devices. This format stores the standard MIDI messages plus a time-stamp 

for each message (i.e. a series of bytes that represent how many clock pulses to wait 

before "playing" the event). MIDI messages usually are two or three bytes. The first byte 

of any MIDI message is called the status byte. It tells what kind of message it is. The 

bytes that follow the status byte are called data bytes. Many types of MIDI messages use 

two bytes to carry additional information, but some need only one byte. MIDI uses MIDI 

channels to allow communication between individual devices in a MIDI system. MIDI 

contains 16 channels and each of these channels can be used to set up an instrument, 

which gives the potential to program for 16 instruments playing at the same time. 

 All MIDI messages are divided into two types: system messages which carry 

information that is not channel specific, such as timing signal for synchronization, and 

channel messages which are transmitted on individual channels rather than globally to all 

devices. For example, the MIDI Note-On message is a channel message that instructs a 
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synthesizer to begin playing a note. This note will continue playing until a corresponding 

Note-Off message is received. The four most significant bits of the status byte of all Note-  

 

Table 2.1: Format of Note-on and Note-off events 

Event-Type 

Byte 0 

Byte 1 Byte2 Most significant 

Nibble (4 bits) 

Least significant 

Nibble (4 bits) 

Note-On 1001 MIDI channel [0-15] Key Number [0-127] Velocity [0-127] 

Note-Off 1000 MIDI channel [0-15] Key Number [0-127] Velocity [0-127] 

 

On messages must be 1001 and, as with all channel voice messages, the four least 

significant bits specify the channel on which the note should be played. Note-On 

messages have two data bytes. The first specifies pitch, from 0 to 127, and the second 

specifies velocity, also from 0 to 127. Pitch is numbered in semitone increments, with 

note 60 being designated as middle C. The velocity value specifies how hard a note is 

struck, which most synthesizers map to initial volume. Note-Off is the channel message 

used for turning off a currently playing MIDI note. The Note-Off message has an 

identical format to a Note-On message, except that the four most significant bits of the 

status byte are 1000. The pitch value specifies the pitch of the note that is to be stopped 

on the given channel and the velocity value specifies how quickly a note is released. 

When the note is turned off, it is just like an instrumentalist releasing a note its sound 

should start decaying. The basic format of the Note-On and Note-Off message is as shown 

in Table 2.1. There are many other channel messages such as Channel Pressure Message, 
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Program Change Message, etc. This research mainly concentrates on the Note-On and 

Note-Off messages. 

All standard MIDI files consist of groups of data called chunks, each of which 

consist of a four-character identifier, a thirty-two bit value indicating the length in bytes 

of the chunk and the chunk data itself. There are two types of chunks: header chunks and 

track chunks. The header chunk is found at the beginning of the file and includes the type 

of file format, number of tracks etc. The header chunk starts with four bytes representing 

ASCII symbols for the letters “Mthd” followed by four bytes specifying the length of the 

header chunk. Track chunks contain all of the information and MIDI messages specific to 

individual tracks. The Track chunk begins with four bytes representing the ASCII 

symbols for the letters “Mtrk” followed by four bytes specifying the length (in bytes) of 

the track data to follow, followed by the data. The data differ from the normal MIDI 

message only in that a delta time precedes each one. The delta time specifies how much 

time has elapsed since the previous track event. The MIDI message and their associated 

delta times are called Track events. Track events can be a MIDI events or meta-events. 

Meta-events provide the ability to include information such as lyrics, key signatures, time 

signatures, tempo changes and track names in files.  

The note names and different pitch values in standard MIDI are as shown in Table 

2.2. The numbers used for note values are from 0 to 127. The lowest note is a C (C0) and 

this is assigned note number 0. The C# (C#0) above it would have a note number of 1. 

The D (D0) note above that would have a note number of 2. 
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Table 2.2: Midi Note Numbers for different Octaves 

O c t a v e 
Note Numbers 

 C C# D D# E F F# G G# A A# B 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 12 13 14 15 16 17 18 19 20 21 22 23 

2 24 25 26 27 28 29 30 31 32 33 34 35 

3 36 37 38 39 40 41 42 43 44 45 46 47 

4 48 49 50 51 52 53 54 55 56 57 58 59 

5 60 61 62 63 64 65 66 67 68 69 70 71 

6 72 73 74 75 76 77 78 79 80 81 82 83 

7 84 85 86 87 88 89 90 91 92 93 94 95 

8 96 97 98 99 100 101 102 103 104 105 106 107 

9 108 109 110 111 112 113 114 115 116 117 118 119 

10 120 121 122 123 124 125 126 127     

 

 

2.2 String Matching 

  The string matching problem is to find one or more occurrences of a given pattern 

P1…m  with length m in a large text T1…n with length n (m ≤ n) , both being sequences of 

characters drawn from a finite character set. This problem is fundamental in computer 

science and is a basic need of many applications, such as text retrieval, music retrieval, 

computational biology, data mining etc. It has been studied extensively and numerous 

techniques and algorithms have been designed to solve this problem. String matching can 

be divided mainly into two types, exact and inexact (approximate) string matching. 

 

2.2.1 Exact Matching 

The exact string matching problem can be defined as follows: 

Given a text T1…n of n characters and the pattern P1…m of m characters (m≤ n) over a 

finite alphabet Σ,  the exact string matching problem is to find an integer s called the 

valid shift where 0 ≤ s ≤  n-m and Ts+1…s+m = P1…m.   
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The simplest approach for exact string matching is a brute force method, also 

called as the naïve method [3]. In this method, the first character of the pattern is aligned 

with the first character of the text. Comparison of characters of the aligned region is made 

until a mismatch is found. If the end of the pattern is reached without a mismatch, an 

occurrence of the pattern is reported. In either case, the pattern is shifted one position to 

the right and the process is repeated. In worst case the number of comparisons made by 

this method is O (mn) where m and n are length of pattern and text respectively. 

The Boyer-Moore algorithm [3] provides marked improvement over the brute 

force method through the implementation of two heuristics, the bad-character-heuristic 

and the good-suffix-heuristic. The idea of the Boyer-Moore algorithm is to skip those 

parts of the text that cannot match the pattern. At the beginning of the matching process 

the pattern is left-aligned with the text. The algorithm starts the comparison between text 

and pattern from right to left by checking if Tm = Pm (where m is the length of pattern). If 

the characters match, the algorithm continues with Tm−1 = Pm−1, and so on. If a mismatch 

occurs, the two heuristics calculate how far the pattern can be moved to the right, thus 

skipping over some text positions that cannot yield a match. 

The first heuristic is the bad-character-heuristic. In this heuristic, as shown in 

Figure 2.1, if a mismatch occurs at position k in text T, i.e. Pc ≠ Tk, then pattern P is 

shifted right by Max {1, c - B (Tk)} positions. B (Tk) (bad-character) is the position of 

the right-most occurrence of Tk  in the pattern P. If Tk does not occur in P then the value 

of B (Tk) is 0. The shaded portion in the figure represents the matched portion of the text 

and pattern. 

 

 10



               1 j k          j+m-1                                                  n 
Text   Tk  Match 

Pattern   Pc  Match 
  1 c m

Figure 2.1: Bad-character-heuristic explanation 
 

For example consider the text and the pattern as shown in Figure 2.2. Initially the 

first character of pattern is aligned with the first character of the text. The right-to-left 

comparison starts, and a mismatch occurs between the characters ‘O’ and ‘E’ at position 

5. The pattern is searched for the rightmost occurrence of character ‘O’ (i.e. Tk) which is 

found at position 2. So, the pattern is moved 3 (5-2) positions to the right (Step1). This 

process continues until an exact match of pattern is found or until the end of text is 

reached. In this example exact match is found in step2. 

 

 

Position 1 2 3 4 5 6 7 8 9 10 11 

Text R A C D O G M O U S E 

Pattern M O U S E       

Step1    M O U S E    

Step2       M O U S E 

Figure 2.2: bad-character-heuristic 
 

The second heuristic is the good-suffix-heuristic. While comparing the pattern 

with the text from right to left, and the mismatch is at pattern position k, then a suffix of 

the pattern Pk+1…m must match; otherwise, a mismatch would have occurred earlier. As 

shown in Figure 2.3, the shaded portion ‘u’ in the text and pattern is the matched portion 

and a mismatch is between characters Tk and Pk.. The shaded portion ‘u’ in the pattern 

(Step1) is the matched suffix of the pattern. 
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When a mismatch occurs, the pattern P1…k is searched for the right-most 

occurrence of the ‘u’. If ‘u’ is present in P1…k, then the pattern is moved to the right so 

that the right-most occurrence of ‘u’ aligns to the text. In figure 2.3, step2 shows how the 

pattern is moved to the right if ‘u’ is present.  

                    1   k   m
Text    Tk  u 

Pattern (Step1)  u  Pk  u 
  1 e            d  k m

Shifted Pattern(Step2)  Pe-1

 

 u  
 e-1 d m

Figure 2.3: Good-Suffix rule illustrations 1 
 

  If no such occurrence of ‘u’ is found in P1…k, then the pattern is shifted to the 

right so that the longest suffix of Tk+1…m  aligns with a matching prefix of P1…m. In 

Figure 2.4, the portion ‘v’ in the pattern i.e. prefix of the pattern is assumed to match the 

suffix of  Tk+1…m . If no such portion ‘v’ exists then the pattern is moved its whole length 

to the right. 

                    1  k   m
Text   Tk u 

Pattern   Pk

 

 u 
  1             k m

Shifted Pattern  v   
 e1 m

Figure 2.4: Good-Suffix rule illustrations 2 
 

For example, consider the text and the pattern as shown in Figure 2.5. Initially, 

the first character of pattern is aligned with the first character of the text. The comparison 

begins from right to left. A mismatch occurs at position 3.The matched suffix is of the 
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pattern is ‘ab’. The pattern can be shifted until the next occurrence of ‘ab’ in the pattern is 

aligned to the text symbols ‘ab’, i.e. to position 3.  

Position 1 2 3 4 5 6 7 8 9 10 

Text A B A A B A B B A C 

Pattern C A B A B      

Step1   C A B A B    

                           
Figure 2.5: good-suffix-heuristic 

 
The worst case complexity is still O (mn) which is the same as the naïve method, 

where m and n are length of pattern and text respectively. The algorithm can achieve an 

average case running time of O (n) by preprocessing the pattern. Considering the bad-

character-heuristic, in the preprocessing, for each different character ‘c’ in the pattern, 

B[c] (bad-character) is calculated in the following way: 

• Initially the B[c] is set to zero for all characters.  

• Then, the processing of the pattern starts from the right, if the value of B[c] is 

zero, and then B[c] is set to a value, which is the position of the character in the 

pattern.  

For example, for the pattern ‘xyzyz’, initially B[x], B[y], B[z] are set to 0. Processing 

starts from right and B[z] is set to 5, and then B[y] is set to 4, and then B[z] whose value 

is 5, which is not zero, so the value is not modified. This process continues until the end 

of the pattern. Finally the values of B[x], B[y], and B[z] are 0, 4 and 5. Preprocessing of 

pattern considering good-suffix-heuristic also calculates the amount of shift the pattern 

can be moved to the right when a mismatch occurs. (Complete explanation is discussed in 

[3]). 
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 The Rabin-Karp algorithm [4] presented by Michael Rabin and Richard Karp 

achieves an average run time of O (m+n) using hashing. The Rabin-Karp algorithm is 

based on the fact that if two strings are equal, their hash values are also equal. But since 

two hash values can be equal even if the underlying strings differ, the algorithm has to 

verify every match of hash values. The hash values are calculated based on pre-assigned 

values for each character, generally prime numbers. In a preprocessing phase, the hash 

value of the pattern P is calculated. Then, for every text position i = 1…n-m+1 the hash 

value of Ti….Ti-1+m is compared to the hash value of the pattern. If the hash values 

match, the pattern is compared to the text character-by-character beginning at position i 

to verify that there is indeed a match at this position. A good hash function would yield 

the same value only when there is a match of strings. For smaller patterns hash value can 

be calculated considering the m character sequence as an m-digit number in base b, 

where b is the size of the alphabet. 

The hash value for the text Ti….i+m-1 is calculated using the formula: 

Hash (i) = (Ti ) ( bm-1 ) + (Ti+1 ) ( bm-2 ) …….. (Ti+m-1)  

Furthermore, given Hash(i), Hash(i+1) for the next subsequence Ti+1….i+m can be 

computed in constant time using the formula below. 

              Hash (i+1) = ( Hash(i)*b )  [shift left by one digit] 

                                     – (Ti*bm)      [subtract leftmost digit] 

                                     + (Ti+m)        [add new right most digit] 

In this way the new hash value is computed by adjusting the previous hash value, 

resulting in a time savings. If m is large, then the resulting value bm will be enormous. 

For this reason, the hash value is calculated by taking mod of prime number q. 
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Notation:  A bit mask of length n (a sequence of bits) is denoted by bn…1. Superscripts 

are used to denote bit repetition; for example 03 = 000. Σ denotes an alphabet and m 

denotes pattern length. 

In the preprocessing step of the algorithm a table B that stores a bit mask B[c] = 

bm…1 for each character c є Σ is created. The bit mask B[c] has the i-th bit set to 1 if Pi = 

c and all other bits are set to 0. For example let Σ = {a,b,c} , pattern P = ‘bbc’  and Text T 

= ‘acbbc’. Bit masks for each character will be B[a] = 000, B[b] = 011, B[c] = 100. 

  The state of the search is kept in another bit mask D = dm…1, where di = 1 if and 

only if the state numbered i in Figure 2.7 is active. Initially D = 0m, which represents state 

numbered 0. When the text position j is scanned, di =1 whenever P1…i = Tj-i+1…j (1 ≤ j ≤ 

n). A match is reported whenever bit dm  is 1. Initially D = 0m and, for each character Tj, 

update D using the formula below 

D ← ((D << 1) | 0m-11) & B[Tj] 

From the above formula, the i-th bit is set to 1 if and only if the (i-1)-th bit was set for the 

previous text character and the new text character matches the pattern at position i. In 

other words, Tj-i+1…j = P1…i if and only if Tj-i+1…j-1 = P1…i-1 and Tj = Pi. For the above 

example the state of search varies as shown in Figure 2.8 (initially D = 0m). 

On reading character ‘a’      D ← (000 | 001) & 000, i.e. D = 000. 

On reading character ‘c’      D ← (000 | 001) & 100, i.e. D = 000. 

On reading character ‘b’      D ← (000 | 001) & 011, i.e. D = 001. 

On reading character ‘b’      D ← (010 | 001) & 011, i.e. D = 011. 

On reading character ‘c’       D ← (110 | 001) & 100, i.e. D = 100. 

Figure 2.8: State of search pattern P = ‘bbc’, text T = ‘acbbc’          
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  If the length m of the pattern ≤ w, (w is the size of machine word) the state of 

search can be represented as a single machine word. This approach has a best 

performance of O (n) when the length of the pattern is no longer smaller than the word-

size of the machine.  

Lemstrom and Tarhio [6] developed a variation of the Baeza-Yates and Gonnet 

Shift-And algorithm for distributed string matching that is defined as follows: 

Given a collection T containing h strings ti = ti
1 ti

2… ti
n  (1 ≤  i ≤  h ) of 

equal length n, we say that some pattern P1…m  occurs at position j of T if ps є 

{ ti
j+s-1  | 1 ≤  i ≤  h} for all 1≤  s ≤  m . 

For example consider the pattern P = ‘cat’ and the collection T= {‘abcde’, ‘bcdef’, 

‘abade’, ‘xyztz’}. Table 2.3 shows the distributed matching of the pattern in T. A 

match is found at position 2.  

   Table 2.3: Distributed Matching of pattern ‘CAT’ 

    t1
 A B C D E 

    t2
 B C D E F 

    t3
 A B A D E 

    t4
 X Y Z T Z 

 

In their approach, bit-masks for each character are calculated similar to that of shift-and 

method. But the state of search at position j in the text is calculated using the formula 

below. 

D ← ((D << 1) | 0m-11) & {B[tj
1]  |  B[tj

2]  | ... B[Tj
h]   } 

A musical score can be viewed as string; the symbols in the string can be simply a 

set of notes or a set of intervals. The music retrieval task is to find occurrences of a query 
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pattern within a music database. Both the pattern and database entries can be treated as 

strings. Some music information retrieval techniques [7] use exact matching for finding a 

pattern in a music database. Smith and Medina [8] used exact string matching to discover 

themes in music.  However, inexact (approximate) matching generally is more useful for 

music information retrieval as a query pattern may contain errors. 

 

2.2.2 Approximate String Matching 

 Given a text string T and a pattern P, the approximate string matching problem is 

to find substrings of T that approximately match P. To decide if a pattern approximately 

matches a text with a limited number of errors a metric for measuring those errors must 

be employed. A metric frequently used in approximate string matching is edit distance. 

The use of edit distance was proposed first by Levenshtein and is known as the 

Levenshtein distance [8]. The Levenshtein distance between two strings is the minimum 

number of insertions, deletions and substitutions of characters needed to transform one 

string into another.  

The dynamic programming method generally is used to calculate the edit distance 

measure. Let A1…m and B1….n be two strings. The dynamic programming method 

computes a (m+1) × (n+1) matrix C, where Ci,j corresponds to the minimum number of 

edit steps needed to transform A1..i to B1…j . The recurrence relation for the edit distance 

is defined as follows: 

          Ci, 0 = i and C0, =   j  j for 0 ≤ i ≤ m and 0 ≤ j ≤ n                          

            Ci, j = ࢔࢏ࡹቐ
࢐ି૚,૚ି࢏࡯ ൅ ܑ۾ ܎ܑ   ઼  ൌ ઼   ࢐ࢀ ൌ ૙ ܍ܛܔ܍ ઼ ൌ ૚      ሾܖܗܑܜܝܜܑܜܛ܊ܝ܁ሿ 
࢐,૚ି࢏࡯ ൅ ૚                                                                      ሾ࢔࢕࢏࢚ࢋ࢒ࢋࡰሿ
࢐ି૚,࢏࡯ ൅  ૚                                                                   ሾ࢔࢕࢏࢚࢘ࢋ࢙࢔ࡵሿ
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The relation accounts for the three allowed operations, insertion, deletion and 

substitution. The last entry in the matrix i.e. Cm,n evaluates to the edit distance between 

the two strings. For example consider the strings ‘PARK’ and ‘SPAKE’ as shown in 

Table 2.4; the edit distance is calculated using the above formula, and the value of the 

edit distance is 3.The complexity of the algorithm is O (mn).  

                                             Table 2.4: Edit distance Matrix 

 (i) P A R K 
(j) 0 1 2 3 4 
S 1 1 2 3 4 
P 2 1 2 3 4 
A 3 2 1 2 3 
K 4 3 2 2 2 
E 5 4 3 3 3 

 

Needleman and Wunsch were first to use the dynamic programming algorithm to 

perform inexact matching on biological sequences [9]. Mongeau and Sankoff [10] were 

among the first to adapt this technique to musical scores. They used the algorithm to 

compare the similarity of entire pieces of music. McNab [11] incorporated these ideas 

into the MELDEX (MELody inDEX) system, which searches for relatively short user 

queries within entire songs. 

During the last decade, algorithms based on bit-parallelism have emerged as the 

fastest approximate string matching algorithms [12]. Wu and Manber [13] devised an 

algorithm that amplifies the Shift-And method by finding inexact occurrences of a pattern 

in  text. The bit mask that represents the state of search in the Shift-And method can be 

expressed as a table M of size m×n, where each column represents the bit mask at 

character Tj in text. For example the contents of Figure 2.5 can be represented in tabular 

form as shown in Table 2.5. The shaded cell represents a match at that position. 
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                                         Table 2.5: State of search in tabular form 

 M                        -- j--                   

--
i--

   
   

 A C B B C 

B 0 0 1 1 0 

B 0 0 0 1 0 

C 0 0 0 0 1 

 

 

 

 

In the Wu-Manber method, the pre-processing step is similar to that of the Shift-

And algorithm. A bit mask is calculated for each character, and instead of one state of 

search, k+1 different states of search Ms (0 ≤ s ≤ k) are used, where k is at most number 

of mismatches allowed. Ms denotes in tabular form the state of search with at most s 

mismatches. Ms (i, j) = 1 if and only if P1…i = T j-i+1…j with ≤ s errors. There are four 

possibilities for the condition P1…i = T j-i+1…j with ≤ s errors to be true: 

• P1…i-1  = Tj-i+1…j-1  with ≤ s errors,   Tj = Pi            [Matching] 

• P1…i-1  = Tj-i+1…j-1  with ≤ s-1 errors,  Tj ≠ Pi         [Substitution] 

• P1…i-1   = Tj-i+1…j   with ≤ s-1 errors                      [Deletion of Pi] 

• P1…i   = Tj-i+1…j-1   with ≤ s-1 errors                      [Inserting Tj ] 

Using the above four conditions, the formula below is derived which is used to 

calculate Ms (where s = 1…k) at each text position j. 

   Ms (j)   = (Ms(j-1)<<1)& B[Tj]   | Ms-1 (j-1)]<<1  |  Ms-1(j) << 1  |    Ms-1(j-1)                 

(matching) (substitution)    (deletion) (insertion) 

The initial state of search, i.e. the first column of Ms, will be 1s0m-s, and the 

remaining columns are calculated using the above formula. If Ms (m, j) = 1 then there is 

an occurrence of P in T ending at position j (in the text) with at most s mismatches. For 
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example, consider pattern P = ‘bbc’, text T = ‘acbbc’ and k=1. M1, shown in Table 2.6, 

can be calculated using the above formula. The two shaded cells in M1 represent the two 

matches, when the number of errors allowed is 1. 

In this method k+1 different tables (M0, M1….Mk) are calculated to find whether 

the pattern is in the text with at most k mismatches. Hence the complexity is k times that 

of the Shift-And method i.e. O (knm/w). 

Table 2.6: Allowed number of errors  1 

M1                            --j-- 
--

i--
 

 A C B B C 

B 1 0 0 0 1 

B 0 0 1 1 1 

C 0 0 0 1 1 

 

 

 

 

 

In 1998 Myers [14] presented a fast, bit-parallel implementation for approximate 

string matching with at most k differences. This approach is based on a bit-parallel 

simulation of the dynamic programming array discussed in section 2.5. The 

parallelization has optimal speedup, and the time complexity is O (mn/w) in the worst 

case, that is k times better than the Wu-Manber algorithm.  

 

2.3 Monophonic Music Retrieval 

String matching is the method used most often for content-based music retrieval 

from a monophonic music database. This is because music can be represented as strings 

of symbols, where the symbols are taken from an alphabet corresponding to some 

particular attribute of music, such as the duration or note pitch. In some music retrieval 

systems [7][11], only the pitch information for a piece of  music is encoded as a string 
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and exact string matching techniques such as  Boyer-Moore, Rabin-Karp and Shift-And 

methods are used for matching. Pitch direction often is used instead of the pitch itself for 

music retrieval. Music is transformed into a string that consists of three symbols, ‘U’, 

‘D’, and ‘S’, which represent whether a note is higher than, lower than, or the same as the 

previous note, respectively [15][16] (Figure 2.9). The main reason for this representation 

is that when a hummed tune is input, it realizes robust retrieval even though the hummed 

tune may have differences in tone and tempo compared to the database tune it should 

match. However, for a large database, retrieval using only this information cannot 

provide sufficient resolution. Rhythm information and pitch intervals can be used to 

improve resolution.  

When music retrieval is done by humming a tune, errors in the hummed tune may 

include not only variations in tone and tempo, but also insertions, deletions and errors in 

note values. Approximate string matching algorithms should be used to allow these 

errors. Similarity is calculated by edit distance in DP-matching (Dynamic Programming).

 

 Absolute Pitch values    63   62   63    58    60    56      57     60   62    63 

UDS Representation           D      U      D      U      D        U        U      U      U 

Relative Pitches        -1     1       -5     2      -4        1         3       2        1 

Figure 2.9: UDS Notation and Relative pitch values. 
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The Note-Interval system developed by Pardo [17][18] uses both pitch and 

rhythm information of musical pieces for retrieval. The Note-Interval system combines a 

relative pitch with a logarithm of IOI Ratio (LogIOIR) to form a <Pitch, Rhythm> pair. 

The relative pitch is the difference between the pitches of two adjacent notes. The Inter-

onset-interval (IOI) is the time difference between the onset times of a note and the note 

that follows it. The final note of the piece has the same IOI value as its previous note.   

LogIOIR is used to represent rhythm. Both the target music database and the query are 

transformed to <Pitch, Rhythm> pairs. These pairs are encoded as strings and dynamic 

programming methods are used to find the similarity between the strings. The advantage 

of relative pitch is that transposition, (i.e. shifting a tune to a different key or octave) has 

no effect on matching, and the IOI ratio is invariant with respect to tempo. But, this 

technique is good only when the music database is monophonic. In polyphonic cases, two 

or more notes can be sounded at the same time, so relative pitches will not be useful as 

the query can be formed from different parts of the music (Figure 2.10).  

Pardo and Sanghi [17] used probabilistic string matching techniques for 

monophonic music retrieval. They used the longest common subsequence approach to 

calculate the similarity. A matrix M of size (m+1)×(n+1) is computed using the following 

recurrence relation. 

          Mi, 0 = 0 and M0, j = 0 for 0 ≤ i ≤ m and 0 ≤ j ≤ n 

            Mi, j = ࢞ࢇࡹ൞
࢐ି૚,૚ି࢏ࡹ ൅  µ൫ ܑ۾,  ሿܖܗܑܜܝܜܑܜܛ܊ܝ܁࢐൯                                                  ሾࢀ
࢐,૚ି࢏ࡹ ൅ µሺ ܑ۾, െሻ                                                                ሾ࢔࢕࢏࢚ࢋ࢒ࢋࡰሿ
࢐ି૚,࢏ࡹ ൅ µ൫ െ, ሿ࢔࢕࢏࢚࢘ࢋ࢙࢔ࡵ࢐൯                                                              ሾࢀ

 

μ(x, y) represents the match score function where x and y (note values) are 

symbols of the pattern and text respectively. In the above formula, the ‘-‘character is a 

 23



blank, which is added to the alphabet of note values. Matching to a blank can be thought 

of as skipping a character matched to the blank. For example pattern P be ‘BCD’ and text 

T be ‘ABCD’. If character ‘-’ is added to pattern at the beginning, the pattern will be  

 ‘–BCD’. Now this is matched with ‘ABCD’ with skipping the first character in the text, 

which is matched to blank. 

μ (x, y) gives the numeric value that corresponds to goodness of match between 

characters x and y. The match score function value for matching a blank is set to the 

penalty for skipping the element matched to the blank. Skipping a character of the pattern 

assumes the pattern inserted an extra character that was not in the text string. Skipping a 

character of the text string assumes that the pattern deleted that character of the text 

string. This function returns a negative value when the probability of a meaningful match 

is below that of a random co-occurrence. Similarly, the value is positive when a 

meaningful match is more likely than random chance. The similarity value between P and 

T is defined as the highest valued element of matrix M. 

 

2.4 Polyphonic Music Retrieval 

 Two approaches commonly have been used when searching for a monophonic 

pattern in a polyphonic database. The first approach is to convert polyphony into 

monophony and then apply DP-matching techniques on the monophonic data. 

Uitdenbogerd and Zobel [19] transform polyphonic music into monophonic music by 

using the note with the highest pitch at any given moment.  One drawback of this 

technique is the assumption that polyphonic music can be represented in this way, which 

is not always true [20].  
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Another technique is to extract the melody from the polyphonic data and then 

compare the melody against the monophonic pattern [20]. But it is quite possible that a 

query will be based on some part of the music other than the melody, such as a bass line 

[21]. In this case all of the parts of the music should be considered (Figure 2.10). 

 

Figure 2.10: Sheet music representation of ‘Twinkle Twinkle Little Star’ song  

The second approach is to match the monophonic pattern with all parts (i.e. voices 

or staff lines) of the polyphonic music. Figure 2.10 shows the sheet music representation 

of a polyphonic musical piece, in which four different voices are played at the same time. 

The boxed areas of the figure illustrate that a user’s hummed query pattern can be 

matched to different voices; i.e. a pattern may skip from one part to another.  

In their approach to polyphonic music retrieval, Iliopoulos and Kurokawa [15] 

considered all parts of a polyphonic music piece to match a pattern. They used the Shift-

And algorithm for exact distributed matching, i.e. to match a pattern across different 

parts. For example Table 2.7 shows sequences of (pitch, duration) pairs from three voices 

of a polyphonic music piece and a pattern that will be matched against the voices. Pairs in 

which the first value is zero represents rests.  
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Table 2.7: Different parts of polyphonic music 

 

                  

      Part1    (72, 2), (70, 2), (69, 4) 

      Part2 (0,1),(67,2),(67,1)(0,1)(67,1),(65,1),(64,1) 

      Part3    (52, 2), (48, 2), (53, 2), (48, 2) 

    Pattern (72, 1) (52, 1) (70, 1) (67, 1)(69, 1) (53, 1) (65, 1) (64, 1) 

The approach used by Iliopoulos and Kurokawa replaces the (pitch, duration) 

pairs by sequences of pitch values, such that the length of each sequence corresponds to 

the duration.  For example the (pitch, duration) in the above example (72, 2) is modified 

to (72, 1) (72, 1). Table 2.8 shows the modified parts of the polyphonic piece based on 

shortest duration, and how the pattern matches different parts of the polyphonic musical 

piece. The value -1 in Table 2.8 represents rest value i.e. no note is played at that 

particular time. After the polyphonic piece is modified, the Shift-And algorithm is used 

for exact distributed matching.  

Iliopoulos and Kurokawa [14] also considered the octave displacement problem 

(i.e. music played in a higher or lower octave than the original score). To do so, the pitch  

Table 2.8: Matching query pattern in modified score 

j 0 1 2 3 4 5 6 7 

Part1 72 72 70 69 69 69 69 69 

Part2 -1 67 67 67 -1 67 65 64 

Part3 52 52 48 48 53 53 48 48 

Pattern 72 52 70 67 69 53 65 64 

 

values are modified to be the original pitch values modulo 12, (the number of semitones 

in an octave) and then add 1.(In western music, single octave is essentially made of 12 
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notes.) Rest values are not modified. So, a C note with a pitch value of 60 becomes 1 (i.e. 

60 mod 12+1). The search pattern also is modified in a similar way. Table 2.9 shows the 

octave-modified pattern and the polyphonic music parts, and the shaded cells represent a 

match of the pattern. The complexity of the matching algorithm i.e. Shift-And is  

O (mn/w) where m is the length of the pattern and n is the length of the single part. 

          Table 2.9: Searching of query pattern in modified score 

j 0 1 2 3 4 5 6 7 

Part1 1 1 11 10 10 10 10 10 

Part2 -1 8 8 8 -1 8 6 5 

Part3 5 5 1 1 6 6 1 1 

Pattern 1 5 11 8 10 6 6 5 

 

   Iliopoulos and Kurokawa also considered key transposed matching by doing the 

following modifications: 

• Created 11 transposed patterns, by adding 1 to the pitch values of the original 

pattern, and then add 2 to the original pattern, and then add 3 to the original 

pattern and so on until 11. The rest value in the pattern is not changed. If pitch 

value exceeds 12, then subtract 12 from it.  

• Then the matching process is performed with all the 12 patterns formed.          

 

2.5 Myers’ Algorithm 

Gene Myers described an algorithm that can be used to find approximate 

occurrences of a pattern in text. The classic approach to this problem is to compute the 

dynamic programming matrix D0…m, 0….n that contains the edit distances between the text 
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and the pattern. (Edit distances are discussed in section 2.2.2.) The matrix is calculated 

using the following equations. 

           D0, j = 0 and Di, 0= i    

     Di, j = min {Di-1,j-1  + ( if ( Pi = Tj then 0 else 1), Di-1,j+1, Di,j-1+1} 

         for 0 ≤ i ≤ m and 0 ≤ j ≤ n 

           The solutions to the approximate string matching problem are all locations j-1in 

the text such that D [m, j] ≤ k (where k is allowed number of errors).The time complexity 

of this approach is O (mn) where m and n are the lengths of the pattern and the string, 

respectively.  

For example, let us consider a text string “CAGAT” and a pattern “GATA”; the 

dynamic programming matrix of the two strings is shown in Table 2.10.                       

  Table 2.10: Dynamic programming matrix 

  0 1 2 3 4 5 

   C A G A T 

0  0 0 0 0 0 0 

1 G 1 1 1 0 1 1 

2 A 2 2 1 1 0 1 

3 T 3 3 2 2 1 0 

4 A 4 4 3 3 2 1 

 

Ukkonen [22] showed that computing column j in a DP-matrix only requires 

knowing the values of the previous column j-1. This makes it possible to save space by 

storing only two columns at a time during DP-matrix calculation. Myers used the same 

concept in his algorithm, which computes the edit distances without first calculating a 

DP-matrix. 
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The DP-matrix has a property that the difference between adjacent entries in any 

row or any column is limited to 1, 0, or -1. Using this property, the following delta values 

are derived, for all (i, j) є [1, m] × [1, n]: 

  vertical adjacency property      ∆vi, j = Di, j - Di-1 , j  є {-1, 0, 1 } 

          horizontal adjacency property      ∆hi, j = Di, j - Di , j-1   є {-1, 0, 1 } 

                   diagonal property       ∆di, j = Di, j - Di-1 , j-1   є  { 0, 1 } 

Table 2.11, shows the ∆v matrix (i.e. the matrix of ∆vi, j values) for the dynamic 

programming matrix in Table 2.10. The values of D [m, j] (i.e. the edit distances) can be 

calculated using the summation D [m, j] = Σi=1…m (∆vi, j).  

Table 2.11: ∆vi, j matrix 

  C A G A T 

 0 0 0 0 0 0 

G 1 1 1 0 1 1 

A 1 1 0 1 -1 0 

T 1 1 1 1 1 -1 

A 1 1 1 1 1 1 

 

Myers’ algorithm computes successive ∆vj’s (i.e. the columns in the ∆v matrix) 

using the horizontal, vertical and diagonal adjacency properties (i.e. the delta values). The 

∆v, ∆h and ∆d matrices are represented as boolean matrices, so that the computation of 

matrix values can be done using bit operations. The ∆v matrix is represented using two 

boolean vectors VP and VN, ∆h is represented using two boolean vectors HP and HN, 

and ∆d matrix is represented using the boolean vector D0.The values of the 

VP,VN,HP,HN and D0 vectors are calculated using the following conditions:  

 

 29



    VP[i]   = 1 at text position j iff  ∆vi, j = 1  (a.k.a. the vertical positive delta vector) 

    VN[i] =1 at text position j iff ∆vi, j = -1 (a.k.a. the vertical negative delta vector) 

    HP[i] =1 at text position j iff ∆hi, j = 1 (a.k.a. the horizontal positive delta vector) 

    HN[i] =1 at text position j iff ∆hi, j = -1 (a.k.a. the horizontal negative delta vector) 

    D0[i] =1 at text position j iff ∆di, j = 0   (a.k.a. the diagonal zero delta vector) 

In all other cases the values of the delta vectors are set to 0. Myers’ proved that the delta 

vectors above have the following dependencies, and they are used in the algorithm to find 

the edit distances. (Proof of the dependencies is discussed in [14].) 

D0i,j   ↔  Pi=Tj | VNi,j-1 | HNi-1,j 

HNi, j  ↔ VPi,j-1 & D0i,j 

VNi,j   ↔  HPi-1,j & D0i,j 

HPi,j   ↔  VNi,j-1 | ~ ( VPi,j-1 | D0i,j) 

VPi,j   ↔  HNi-1,j | ~ ( HPi-1,j | D0i,j) 

Figure 2.11 shows the complete algorithm. There are two steps in the algorithm. 

The first step is to preprocess the pattern and the next step is to search the text for the 

pattern. In the preprocessing step, a bit-vector B[c] of length m is created for each 

different character c in the query pattern. The bit B[c]i (i.e. i-th bit in the bit vector) is set 

to 1 iff Pm-i+1 = c; all other bits of B[c] are set to 0.  

In the search phase, the bit-vectors D0, HN, HP, VN and VP are calculated using 

the dependencies among them for each text position j (0 ≤ j ≤ n-1). Instead of computing 

the dynamic programming matrix, the five bit-vectors described above are computed for 

each text position. The edit distance is calculated at each text position using the bit-

vectors. 
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///Preprocessing of the pattern 
1   for c є Σ do B[c] = 0m 

2   for j є 1….m do B[Pj]= B[Pj] | 0m-j10j-1 
3   VP = 1m      VN=0m 
4   Score = m 

///Searching the pattern 
5    for pos є 1….n do 
6     X = B [Tpos] | VN 
7     D0 = VP+(X&VP) ^ VP) | X; 
8     HN = VP & D0 
9     HP = VN | ~ (VP | D0) 
10   X = HP << 1 
11   VN = X & D0 
12   VP = (HN<<1 ) | ~ (X | D0) 

//output 
13   if HP & 10m-1 ≠ 0m 
14   then Score + = 1 
15   else if HN & 10m-1 ≠ 0m 

16   then score -=1 
            17                if score ≤ k report occurrence of the pattern 

             Figure 2.11: Myers’ algorithm [14]. 

For example, consider the text T = ‘CAGAT’   and the pattern P= ‘GATA’. In the 

preprocessing step, the bit-vectors for each character of the pattern are calculated. The bit 

values of the bit-vectors of all other characters (represented as *) are set to 0.   

B[G] = 0001    B[A] = 1010  B[T] = 0100  B[*] = 0000.    

Initially VP = 1m and VN = 0m. Table 2.12 shows the values of the vectors D0, HN, HP, 

VN and VP for each text position of the previous example.  The row labeled score 

represents the edit distance. 

Table 2.12: Search process of the Myers algorithm 

 ‘C’ ‘A’ ‘G’ ‘A’ ‘T’ 
D0 0000 1110 0011 1110 1100 
HN 0000 1110 0001 1110 1100 
HP 0000 0000 0000 0001 0010 
VN 0000 0000 0000 0010 0100 
VP 1111 1101 1110 1101 1001 

Score 4 3 3 2 1 
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The running time of the algorithm is O (mn/w).  Distributed string matching 

(discussed in section 2.2.1.) is done using Myers’ algorithm by modifying line number 6 

in Figure 2.8 in the following way [14]: 

                      X= { B[Tj
1]  |  B[Tj

2]  |  B[Tj
3]  | …….. B[Tj

h]  }  | VN 

 where Tj
1 ,Tj

2 ,…Tj
h represent the text characters at position j in each of the text strings T1 

through Th.  

 

2.6 LCTS Algorithm  

               String P is a subsequence of string T if P can be derived from T by deleting zero 

or more characters from T. For example, the string ‘abc’ has eight subsequences: abc, 

ab, bc, ac, a, b, c, and the empty string. A common subsequence of two strings is a 

subsequence that appears in both strings. 

           Given two strings P1…m and T1…n, the longest common subsequence (LCS) is the 

longest string that is a subsequence of both P and T. The Dynamic programming method 

generally is used to calculate the length of longest common subsequence denoted as LCS 

(P, T).  The dynamic programming method computes a (m+1) × (n+1) matrix using the 

following recurrence relation, where 0 ≤ i ≤ m and 0 ≤ j ≤ n: 

LCS i, j  = 0                                            if  i=0 or j=0 

LCS i, j = 1+ LCSi-1, j-1                           if i, j > 0 and  Pi = Tj  

LCS i, j = max {LCS i, j-1, LCSi-1, j}       if i, j > 0 and  Pi ≠ Tj    

              LCSm,n evaluates to the length of the longest common subsequence. The 

complexity of the algorithm is O (mn). For example, consider the strings ‘ABAB’ and 
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‘BABA’ as shown in Table 2.13; the LCS value is calculated using the above recurrence 

relation, and the value of the LCS is 3.  

Table 2.13:  LCS Matrix 

 

           

  A B A B 

 0 0 0 0 0 

B 0 0 1 1 1 

A 0 1 1 2 2 

B 0 1 2 2 3 

A 0 1 2 3 3 

          The length of the longest common subsequence (LCS) can be used to find the 

similarity between two melodies that are represented as string of pitch values (integers). 

The greater the LCS value is, then the better the similarity is between melodies. The LCS 

value will always be less than or equal to length of the pattern (m ≤ n). Western people 

tend to listen to music by observing the intervals between the consecutive pitch values 

more than the actual pitch values themselves. For example, melody performed in two 

distinct pitch levels is perceived the same regardless if it’s performed in a lower or higher 

level of pitches. This leads to the concept of transposition invariance. When LCS is used 

to find the similarity between two melodies, which are represented as string of pitch 

values (integers), transposition invariance is not considered. LCS calculation can be 

modified, so that transposition is considered while matching the melodies. 

                Let P and T be pattern and text strings with lengths m and n respectively, over a 

finite integer alphabet. The length of the longest common subsequence between P and T 

at transposition c,  denoted as LCSc (P, T) is to find the LCS value between T and P+c. 

(I.e. allowing P to be ‘shifted’ by adding some fixed integer c to the values of all 
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characters. Here characters are integers). The dynamic programming method generally is 

used to calculate LCSc (P, T) at transposition c. The dynamic programming method 

computes a (m+1) × (n+1) matrix using the following recurrence relation, where 0 ≤ i ≤ m 

and 0 ≤ j ≤ n:                        

                       LCSc i, j  = 0                                                if  i=0 or j=0 

LCSc i, j = 1+ LCSc
 i-1, j-1                            if i, j > 0 and Pi+c= Tj  

                       LCSc
 i, j = max { LCSc i, j-1, LCSc

 i-1, j}       if i, j > 0 and Pi+c ≠ Tj            

           For example, let Σ = {0, 1, 2, 3, 4}, pattern P = ‘012’ of length 3, and the text 

string T = ‘234’of length 3, the LCS value when no transposition is considered will be 1 

but when a transposition of 2 is considered the LCS value is 3.  

            LCSc (P, T) will calculate the LCS value at only one transposition value c. When 

a set of transpositions are considered instead of one value, then the maximum LCS value 

among all transpositions will give the longest common transposition invariant 

subsequence (LCTS). It is defined as follows [23]: 

        Given a text string T1…n of length n and the pattern P1…m of length m 

 (m ≤ n) over a finite integer alphabet Σ = {0… σ}, a string W1…p (p ≤ m) is a 

 longest common transposition invariant subsequence of P and T, iff W is 

subsequence of P, W+c is subsequence of T (for some constant c, –σ ≤ c ≤σ) 

and its length is maximal. W+c denote a constant adding to every character of 

string W. I.e.  W+c = W1+c W2+c…Wm+c. [– σ, σ] is the set of 

transpositions. 

The simplest technique to compute LCTS (P, T) is to compute LCSc (P, T) for all c 

 (–σ ≤ c ≤σ) from the set {–σ…σ}, and then choose the maximum among the calculated 
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LCSc (P, T) values. This requires a triple iteration to compute LCSc i, j for every i є 

{0…m}, j є {0…n}, and, c є {- σ… σ}, which takes O (σmn) time. 

             Lemstrom and Navarro [23] described an algorithm to find the LCTS value in a 

better way than above using bit operations. In their algorithm, LCSc (P, T) is computed 

for several c values simultaneously. The main concept in the algorithm is to compare 

individually on every (Pi, Tj) pair, but solve several transpositions simultaneously. The 

values of LCSc i, j will be in the range {0...m} where m is the length of the pattern (m ≤ 

n). Therefore, to store each value LCSc i, j, ڿlog2(m)ۀ bits are required. In a single 

machine word of length w, w/ ڿlog2 (m)ۀ (represented as k) different values can be stored. 

This means that k values of c (transpositions) can be computed simultaneously. So, the 

process of computing LCSc [P, T] for every c є {- σ … σ} is divided into (2σ+1 / k) 

separate bit-parallel computations. Figure 2.12 shows the complete algorithm. The Time 

complexity of the algorithm is O (σmn log(m)/w). 

Distributed string matching (discussed in section 2.2.1.) is done using LCTS 

algorithm by modifying the for loop in the line 3 of Figure 2.12. So the modified code 

(from line 3-7) will be:               

  For h=0; h<max_distribution; h++ 

                     If i=0 | j=0 then Lcs i,j  = 0A(length+1) 

                             Else 

                        int val = Tj
h - Pi   

                       If C ≤ val < C+A Then 

                         B ← B | (0(A+C-1-(val) (length+1) 1(length+1) 0 (val -c)(length+1)) 

                    Else   B ← B  |  0A(length+1) 

   End for 
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where Tj
1 ,Tj

2 ,…Tj
h represent the text characters at position j in each of the text strings T1 

through Th. The complexity is O (hσmn log(m)/w). 

 

// Bit parallel computation of LCS    

     LCTS (P,T,C,A,length) 
 1       For i є 0 ….. |P| Do 
 2          For j є 0 …. |T| Do 
 3                  If i=0 | j=0 then Lcs i,j  = 0A(length+1) 

 4                         Else 
 5                           If C ≤ Tj-Pi < C+A Then 
 6                                    B ← 0(A+C-1-(Tj-Pi) (length+1) 1(length+1) 0 (Tj-Pi -c)(length+1) 

 7                          Else   B ← 0A(length+1) 

 8                     Lcs i,j ← (B& (Lcs i-1,j-1 + (0length1)A ) | (~B & Max(Lcsi-1,j ,Lcs i,j-

1) 
 9         Return Lcs |P|, |T|. 
 

// dividing into different set of transpositions. 

 
       RangeLcts (P, T, σ) 
10                 Length ← Ceil(log2 (min(|P,||T|)+1)) 
11                 A ← floor( w/(length+1) 
12                C ← - σ 
13                Max ← 0 
14               While c ≤ σ 
15                              V ← RangeLcts(P,T,c,A,length) 
16                              For t є c…c+A-1 Do 
17                      Max ← max (Max, (V >> (t-c) (length+1) & 0 (A-1) (length+1)01length 

18                                    c← c+ A 
             Return Max 

Figure 2.12: Algorithm for calculating Longest Common Transposition invariant subsequence [22]. 
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CHAPTER 3 

 SYSTEM ARCHITECTURE 

             The process of retrieving music by humming starts with the query formulation 

in the front-end through microphone and it leads to the presentation of the best match of 

music in the database [24]. Figure 3.1 shows how this process is modeled.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Architecture of humming song retrieval in music database.
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The humming song retrieval from the database mainly is divided into two stages; 

preprocessing stage and the matching stage. In the preprocessing stage, the MIDI 

database files are converted into the binary files. These binary files only contain the 

information about the notes (discussed in section 3.2). In the matching stage, the 

following steps are performed: 

 Humming is captured as wave file and then converted to MIDI.  

 Both the humming tune (MIDI) and database (binary files) are converted to 

strings.  

 Finally the similarity between the hummed tune and the database (both in string 

format) is calculated. 

 

3.1 Humming and Query Transcription 

                    When the users are searching for musical data, either they know what they 

want, e.g., song title, artist or genre, where a traditional text-based search is enough, or 

they want to find musical data based on content similarity. In the case of searching by 

content similarity, it must be possible for the users to build their queries in an intuitive 

way. One of the most intuitive ways to find a song in music database is to hum a part of 

the song (query-by-humming).  

The accuracy (i.e. correct match for the tune) of the music retrieval process 

depends on the quality of the hummed tune. Recording the hummed tune in a relatively 

noise free environment will reduce the amount of the noise in the humming. In this 

research ‘Sound Recorder’ in the Microsoft Windows XP operating system is used for 

recording the hummed tune, and the hummed tune is captured using a microphone in a 
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relatively noise free environment, and stored as a wave file. Similarity between the query 

tune and music stored in the database is calculated using approximate string matching 

techniques. Therefore, a hummed tune in wave format is to be transformed into a 

representation that is appropriate for similarity measurement. For this purpose the 

hummed query saved in wave format needs to be converted to MIDI format [25]. 

Converting from wave format to MIDI format is done by capturing the discrete 

pitch information from the wave file [26][27]. The process of capturing pitch information 

accurately from humming is difficult, even if the user manages to hum perfectly. The 

performance of currently existing software for converting raw audio data into discrete 

pitch information is mediocre at best and often will introduce a great deal of noise when 

extracting the pitches from a user’s hum [26]. Many commercial software’s are available 

that convert wave format to MIDI but they fail to convert humming tune which is in wave 

format to MIDI accurately. This is because humming tune generally is not so clear. 

In this research Solo Explorer software is used for converting humming stored in 

wave format to MIDI format [26]. The accuracy of the Solo Explorer software is better in 

the case of humming tune as input [26].  Once the hummed MIDI file is generated as a 

result of transcription, required information for the comparison purpose is extracted from 

the file and all other information is discarded. MIDI file is comprised of many events and 

among them Note-on, Note-off, and tempo events are extracted which contains all 

information regarding notes and duration of these notes. All events in the MIDI file are 

followed by timestamps, represented in time units. These time units will give the duration 

of that particular event. Using this information, MIDI file is converted to a set of notes 
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where each note is comprised of its start-time, pitch value and duration. The set of notes 

are sorted based on the Note-on times.  

             These set of notes are converted into string of pitch values, since approximate 

string matching is used to find the similarity between the hummed tune and MIDI 

database. Conversion into strings is done using the following steps.  

 First shortest duration is extracted from the set of notes. 

 Using this shortest duration, time periods are formed. Time periods are the 

intervals of times, which are multiples of shortest duration. The pitch (integer 

value) that is played during that time period is used to form the string.  

For example, consider first few notes after sorting formed from the hummed 

query for the “Happy Birthday” song in the tabular form as shown in Table 3.1. The 

shortest duration is 240. Using this shortest duration the time periods formed, which 

are multiples of shortest duration, will be 0-240,240-480,480-720,720-960 and so on. 

During these time periods, the pitch values of note played are 47,51,49,49 and so on.  

     Table 3.1: (note-on, pitch, duration) pairs              Table 3.2: String representation  

                      

 

 

 

 

 

Duration periods Pitch (String) 
0-240 47 

240-480 51 
480-720 49 
720-960 49 
960-1200 47 
1200-1440 47 
1440-1680 54 
1680-1920 54 
1920-2160 54 
2160-2400 54 
2400-2640 52 
2640-2880 52 

Note-on Pitch Duration

0 47 240 

240 51 240 

480 49 480 

960 47 480 

1440 54 960 

2400 52 480 
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Table 3.2 contains the total time periods and pitch values of the set of notes. Pitch column 

in Table 3.2 represent the string formed. The string formed from the set of notes is ‘47 51 

49 49 47 47 54 54 54 54 52 52’. 

In the above example, the duration of notes is exact multiple of shortest duration 

but this may not be the case always. In that case, if the note is played for more than half 

of the duration, of that particular period, the pitch value is considered otherwise it is 

discarded.  For example consider the set of notes of the form (Note-on, pitch, duration) be  

{ (0,52,240)  (240, 50, 420)  (660,54,300) , (960,52,240) }.  The shortest duration among 

the set of notes is 240. The duration periods will be [0-240], [240-480], [480-720], [720-

960], [960-1200]. In the first duration period [0-240], pitch 52 is considered. In the 

second duration period [240-480], pitch 50 is considered. In the third duration period 

[480-720], two pitches should be considered, pitch 50 for duration of 180, and pitch 54 

for duration of 60. Since the duration of pitch 50 is greater than half of the duration 

period it is considered and pitch 54 is discarded. In the fourth duration period [720-960] 

pitch 54 is considered and in the fifth duration period [960-1200] pitch 52 is considered. 

The entire string formed will be ‘52 50 50 54 52’. 

 

3.2 Database files modification 

Database used in this research is comprised of both monophonic and polyphonic 

MIDI files. Database modification is done in two steps. The first step is performed during 

preprocessing phase and the second step is performed during the matching phase. In the 

first step, each MIDI file in the database is modified similar to that of the hummed query 

MIDI file (i.e. conversion from MIDI file to set of notes.). Each set of notes is comprised 
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of its start-time, pitch value and duration, and these notes are sorted based on the Note-on 

times. These sorted notes are written into a binary file. In this way all the database MIDI 

files are converted to binary files. This conversion from MIDI file to binary file does not 

depend on the hummed query; hence it can be done before the actual matching phase.  

In the second step (matching phase), from each of the binary file the set of notes 

are extracted. These set of notes are converted into sequences of pitch values, similar to 

that of hummed query modification. The shortest duration of a note among the set of 

notes of the query is used for calculating the time periods. The database contains 

polyphonic music files, so the number of notes played during a particular duration period 

can be more than one.  

For example, consider a sorted set of notes base on Note-on, for a database binary 

file, in (start time, pitch, duration) format be: 

{(0, 50, 2) (0, 63, 2.2) (1, 48, 2.6) (2.1, 60, 3) (2, 65, 2.1) (4, 62, 2) (5, 72, 1.4) (5, 71, 2)}  

Let the hummed query set of notes be: 

  {(0, 50, 1.2) (1.2, 63, 1) (2.2, 65, 1.8) (4, 62, 2) (6, 71, 1)}  

To modify the set of notes in the database, first the shortest duration of a note in the 

query is required; from the above example the shortest duration in the query is 1. 

Therefore the time periods will be [0-1], [1-2], [2-3], [3-4], [4-5], [5-6], [6-7]. During the 

first time period [0-1], both the pitches 50 and 63 are considered; in the second time 

period [1-2] pitch values 50, 63, 48 are considered. In the third time period, since the 

pitch value 63 is only for 0.2 which is less than the half of duration, the period is 

discarded. In this way all the sequences of strings are calculated. Table 3.3 shows the 

database modification into set of strings and how the query matches it.  
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Table 3.3: Database string representation 

Time 

Polyphony 
[0-1] [1-2] [2-3] [3-4] [4-5] [5-6] [6-7] 

1 50 50 48 48 60 62 71 

2 63 63 60 60 62 72 -- 

3 -- 48 65 65 -- 71 -- 

Query 50 63 65 65 62 62 71 

 

In the above example the degree of polyphony i.e. maximum number of notes 

played at the same time is 3.  

 

3.3 Problems in Music Retrieval       

 After the hummed query and the database files are transformed to the pitch value 

strings, similarity between them is calculated. In this research Myers algorithm and the 

LCTS algorithm are used to find the similarity. Myers algorithm output will be the edit 

distance, and the LCTS algorithm output will be the length of longest common 

subsequence with transposition invariance. There are many problems to be considered in 

the music retrieval process; distributed matching, transposition invariance and octave 

equivalence are some of them. The algorithms are modified accordingly to consider all 

this problems. 

 

3.3.1 Transposition Invariance and Octave Equivalence 

 Transposition in music means playing or writing music in a different key i.e. to 

change the pitch of each note without changing the relationships between the notes. 

Transposing a melody up or down by one octave will not change the key. Transposing is 
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a useful skill for people who play an instrument, especially the piano or organ. If a pianist 

is accompanying a singer and the song is a little too high for the singer’s voice it is very 

useful if he is able to transpose it down so that the music sounds in a lower key. Two 

musical objects are transposition ally equivalent if one can be transformed into another 

by transposition. For example, Figure 3.2  shows the first few notes of  “Jingle Bells”  

played in the key of F# and then played in key C i.e. 5 semitones away 

 

 

Figure 3.2: Jingle bells song played in F# and C key 

  The hummed tune may be in a different key (i.e. it may start on different note or 

a few notes off-pitch throughout the course of the hummed tune.) to than that of stored 

version in the database. In this case during the calculation of similarity this should be 

considered. During the similarity calculation, both the hummed query and database MIDI 

files are converted into strings of pitch values. When there is a transposition in the query, 

pitch values will be in a different key, i.e. all pitch values are transposed by certain 

amount.   

Let P be a pattern string formed from hummed tune and let T be a set of text 

strings formed from one of the database MIDI files. Both pattern and text strings are 

formed from an alphabet, which consists of different pitch values. In MIDI different pitch 

values are 0-127. So the alphabet size σ is 128. When the pattern is transposed by amount 

c (c is integer), means each character in P is added with an integer c. Possible 

 44

http://simple.wikipedia.org/wiki/Musical_instrument
http://simple.wikipedia.org/wiki/Piano
http://simple.wikipedia.org/wiki/Organ_%28music%29
http://simple.wikipedia.org/wiki/Accompaniment_%28music%29
http://simple.wikipedia.org/wiki/Singer
http://simple.wikipedia.org/wiki/Song
http://simple.wikipedia.org/wiki/Voice


transpositions in a pattern, i.e. c values are {-127 …. 127}.LCTS algorithm calculates the 

length of common subsequence between P and T with different transpositions in parallel 

using the bit operations (Discussed in section 2.6.). The complexity of this algorithm is O 

(σmn log(m) /w), where σ is the alphabet size. In this case, it is 128.  

During the transcription from wave to MIDI of humming tune, sometimes the 

pitch values extracted from wave file will have a little error [23].  For example, instead of 

pitch value 65 it will be pitch value 64 or 63, i.e. an error of 1. In music matching, this 

error allowance should be considered. To consider this case, δ-matching is used while 

calculating the similarity. Consider two integer strings A1…m and B1…m, then these strings 

are said to be δ-matched if Ai Є [Bi-δ, Bi+δ] for all 1 ≤  i ≤ m.  For example, string 

‘1234’ matches ‘3456’ exactly when the error allowed is 2. Here the characters in the 

strings are assumed to be {1, 2, 3, 4, 5, 6}. 

Longest common subsequence between two strings with δ-matching can be 

calculated using the dynamic programming method. The dynamic programming method 

computes a (m+1) × (n+1) matrix using the following recurrence relation, where 0 ≤ i ≤ m 

and 0 ≤ j ≤ n:                        

                       LCSc i, j  = 0                                                if  i=0 or j=0 

LCSc i, j = 1+ LCSc
 i-1, j-1     if i, j > 0 and Pi Є [Tj-δ, Tj+δ] 

                else  LCSc i, j = max { LCSc i, j-1, LCSc
 i-1, j} . 

LCTS algorithm can be modified so that the algorithm considers both the δ-matching and 

transposition invariance [23].  

    Myers algorithm doesn’t consider transposition during the calculation of the edit 

distance. But, transposition can be achieved by modifying the pattern for every different 
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possible transposition, and then running the actual algorithm for different patterns 

formed.  Therefore by considering transposition, Myers algorithm complexity will be 

increased by σ times more than the original complexity, which will be O (σmn/w). 

In music, an octave is the interval between one musical note and another with half 

or double its frequency and is the point where the most aesthetically related pitches 

harmonize most closely. For example, if one note has a frequency of 200 Hz, the note an 

octave above it is at 400 Hz, and the note, an octave below it is at 100 Hz. The ratio of 

frequencies of two notes an octave apart is therefore 2:1. Further octaves of a note occur 

at 2n times the frequency of that note (where n is an integer), such as 2, 4, 8, 16, etc. and 

the reciprocal of that series. Octave equivalence partitions the notes into twelve 

equivalence classes (Table 2.1). The user may have less memory about the melody, so the 

humming can be one octave higher or lower to that of the original melody and also the 

transcription of the query from wave to MIDI format may cause the same problem. Since 

the comparison between the query and database is done based on the actual pitch values, 

when the query is an octave apart, the similarity values will be affected if it is not 

considered.  

During the similarity calculation using the algorithms, octave equivalence is 

nothing but the transposing of a pattern string with values that are multiples of 12. That is 

the transposition c can have the value {…-48,-36,-24,-12, 0, 12, 24, 36, 48 …}.  

Similarity is calculated considering all the possible pitch values i.e. {-127…127}, octave 

equivalence transpositions will only be the subset of the total transposition values. 

Therefore no modification is required to the algorithms to consider octave equivalence.  
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3.3.2 Distributed Matching 

Music in the database can be both monophonic and polyphonic. In polyphonic 

music, more than one note may be sounded simultaneously. So the pitch string formed 

after modifying the database polyphonic MIDI file will be set of equal length strings.  

The query is monophonic; it is converted into single string of pitch values. This pitch 

string is matched against the collection of strings. This matching is called distributed 

matching (Discussed in section 2.2.1). Gene Myers’ algorithm and LCTS algorithm both 

deal with distributed matching. Using both the algorithms the similarity values are 

calculated.  

 

   

  



CHAPTER 4 

EXPERIMENTAL EVALUATION 

 

4.1 Testing Interface 

 For testing purposes, the interface as shown in Figure 4.1 is implemented. 

  

Figure 4.1: Testing Interface 
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The testing interface, MIDI file processing, and the algorithms are implemented in Visual 

C++.The testing interface mainly performs three steps. 

 Ability to record the humming 

 Adding MIDI files to the database 

 Searching the database to find similar musical files to that of a hummed 

tune 

The testing interface provides flexibility to hum the tune using a microphone. 

‘Start Record’ and ‘Stop’ buttons are used to start and stop the recording of the humming 

respectively. By pressing the ‘Play Hummed Tune’ button, the hummed tune that is 

recorded can be played. If the humming is not good (i.e. hummed tune has noise, etc), 

humming can be recorded again using the ‘Start’ and ‘Stop’ buttons. Recording and 

playback of the humming are implemented using Windows API function mciSendString. 

This function sends the appropriate command string (‘play’, ‘record’ etc) to an MCI 

device (multimedia control interface). The hummed tune is saved in PCM wave format 

with sampling rate of 44.1 khz, single channel (mono), bit resolution of 16 bits. The wave 

format is converted to MIDI using the Solo Explorer software. 

 Adding MIDI files to the database can be done using the interface. The MIDI file 

that is to be added to the database can be selected using the ‘browse’ button or by typing 

the path of the file in the respective textbox. Once the file is selected, by clicking the 

‘Add file’ button, the MIDI file is converted to a binary file (discussed in section 3.2.) by 

extracting the note information. Using the ‘Add Folder’ button all MIDI files in a 

particular folder can be added to the database.  
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Searching the database for the original MIDI file of the hummed tune is done by 

finding the similarity between the hummed tune and each MIDI file in the database. Both 

LCTS and Myers algorithms can be used to find the similarity. As shown in the interface, 

using ‘LCTS’ and ‘Myers’ buttons, respective algorithms are used to calculate similarity. 

Output of the algorithm contains the sorted similarity values and among them, the top 10 

MIDI files (Figure 4.1) are displayed with file names and percentage of similarity. 

            All the experiments in this research were run on a computer with Intel Pentium IV 

processor 1.86 GHz, 1GB RAM under the Windows XP operating system. The length of 

the machine word is 64 bits. The alphabet used in the algorithms is of size 128, and is 

comprised of MIDI pitch values {0…127}. Parameters to be considered in all 

experiments are: 

 Average length of the database MIDI file after modification in string format (n) 

 Average degree of polyphony of database files. (h) 

 Length of the hummed query MIDI file in string format (m) 

 Total transpositions considered. (σ) 

 

4.2 Retrieval accuracy analysis 

In this experiment, retrieval accuracies of both the algorithms are compared. The 

database in this experiment contains 250 polyphonic musical pieces in MIDI format. 

These musical pieces are comprised of folksongs, rhymes, classical, and Beatles 

[29][30][31]. The average degree of polyphony (i.e. number of notes playing at a 

particular time period.) of musical pieces in the database is four. A total of 150 humming 

samples are used in this experiment. Among the 150 samples, 50 samples are collected 
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from three different users, using the testing interface. The remaining 100 humming 

samples are collected from Erdem Unal and S.S. Narayanan [28]. The average length of 

the humming samples (m) is 45. All possible transpositions (σ) i.e. 256 are considered 

during similarity calculation. LCTS algorithm also considers the δ-matching with (δ=1) 

during similarity calculation. Figure 4.2 shows the percentage of humming samples that 

produces the correct target MIDI file in the database using both the algorithms. The 

LCTS algorithm returns correct result within the top 5 with an accuracy of 61%, and the 

Myers algorithm with an accuracy of 56%.  LCTS algorithm performs better in terms of 

accuracy; one of the reasons for it is δ-matching, which allows slight distortion in pitch 

value during the similarity calculation. In Figure 4.2 the top 1, top 3, top 5 and top 10 

results are shown. 

 

0

10

20

30

40

50

60

70

80

Top 1 Top 3 Top 5 Top 10

%
 o
f c
or
re
ct
 r
es
ul
ts
 

Rankings

Myers Algorithm

Lcts Algorithm

Figure 4.2: Retrieval rankings of the humming samples. 
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 The response time (i.e. the time taken for the similarity calculation) is calculated 

for each of the humming sample for both the algorithms. Using these response times, the 

average response time is calculated for this experiment. The average response time for 

Myers algorithm is 250 milliseconds, and LCTS algorithm is 340 milliseconds.   

 The same experiment is repeated by considering only the transpositions of two 

octaves higher, and two octaves lower. In this case, 48 different possible transpositions 

should be considered. The retrieval accuracy changes < 2% in both algorithms. Figure 4.3 

shows the retrieval accuracy of both algorithms. The average response time of the Myers 

algorithm reduces to 75 from 250 milliseconds. The average response time for LCTS 

algorithm reduces to 145 from 340 milliseconds. 
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Figure 4.3: Retrieval of humming samples considering fewer transpositions 
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4.3 Response Time  

Response time is the time taken for calculating the similarity values between the 

query MIDI file and the files in the database. In this section the response time of both the 

algorithms are compared by altering the values of some of the interesting parameters. The 

parameters considered are the database size, query length (m) and average degree of 

polyphony of database files.  Response times are measured by varying one parameter at a 

time, and using a fixed value for other parameters. The results for each experiment were 

averaged over 20 repetitions to smooth out any small variations that occur. For the 

purpose of this experiment, 500 MIDI files are collected from internet which includes 

folksongs, rock songs, and ringtones.  

In this experiment, variation in the response time is observed when the size of the 

database changes. Different size datasets {100, 200, 300 …} are created from the MIDI 

files so that the average length of the database MIDI file in string format is about 250 and 

average degree of polyphony is 3. The response times for different datasets are recorded 

for a query of length 45. Figure 4.4 shows the response time variation of the two 

algorithms with different database sizes. The x-axis of the graph indicates the size of the 

database and the y-axis indicates the response time in milliseconds. As shown in the 

Figure 4.4 the response time increases with the database size; however, the increase in 

Myer’s algorithm is less when compared to LCTS Algorithm.  
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Fig 4.4: Response time comparison with database size 

The response time is often affected by the length of the query. In this section 

response time is studied by varying the length of the query on a fixed database. The 

database in this experiment consists of 250 MIDI files. The average length of the 

database files in string format is 250, and the average degree of polyphony is 3. Figure 

4.5 shows the variation of response time with query length for both the algorithms. The 

x-axis of the graph indicates the length of the query and the y-axis indicates the response 

time in milliseconds. For smaller query length, LCTS algorithm has less response time 

than the Myers algorithm. But as the query length increases, the Myers algorithm has a 

better response time. 

 54



y = 1.068x + 1.8
R² = 0.998

y = 1.918x ‐ 10.8
R² = 0.992

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Re
sp
on

se
 T
im

e 
(M

ill
iS
ec
on

ds
)

Number of Songs

Myers Algorithm

Lcts Algorithm

Linear (Myers Algorithm)

Linear (Lcts Algorithm)

 

Fig 4.5: Response time comparison with query length 

 

The variation of the response time with average degree of polyphony is 

considered here. If the database contains only monophonic MIDI files then the average 

degree of polyphony will be 1. To observe the variation datasets are created from the 

MIDI files each containing approximately about 50 MIDI files. Each dataset vary in the 

average degree of polyphony. Response times of both the algorithms are recorded on 

different datasets. Figure 4.5 shows how both algorithms vary with the degree of 

polyphony. Myers algorithm is independent on the degree of polyphony, so the response 

time doesn’t change to great extent as degree of polyphony increases. LCTS algorithm 

approximately varies linearly with the increase in degree of polyphony. 
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Fig 4.6: Response time comparison with Average degree of polyphony 
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CHAPTER 5 

CONCLUSION 

 

5.1 Summary 

  In spite of the growth of digital music libraries, or generically speaking, any 

multimedia database, it is really useful only if users can find what they are seeking in an 

efficient manner. Query-by-humming is one of the efficient ways of retrieving musical 

information. Finding the best matching database target to a melodic query has been of 

great interest in the music information retrieval world. Most of the research in music 

retrieval is focused on monophonic music. However, most music is polyphonic with 

multiple notes playing the same time. This research is focused on content-based music 

information retrieval from a polyphonic MIDI music database using a monophonic query. 

Pitch and duration features of a note are used for music retrieval purpose. 

 Approximate string matching techniques are used for calculating the similarity 

between the hummed tune and the database with polyphonic MIDI music files. Two bit-

parallel approximate string matching algorithms Myers and LCTS are adapted to the 

context of music information retrieval in polyphonic database. Modifications are done to 

the algorithms in order to consider the distributed matching, transposition invariance and 

octave displacement. Retrieval accuracies of both the algorithms are compared on 

database of 250 polyphonic MIDI files, using 150 humming samples.  
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LCTS algorithm returns the correct result within the top 5, 61% of the time, and 

Myers algorithm 54% of the time. LCTS algorithm is better in terms of accuracy; one of 

the reasons is δ-matching used in the algorithm which allows slight distortion in pitch 

value during the query transcription from wave to MIDI format. Response times are 

calculated by varying different parameters like the query length, degree of polyphony and 

size of the database. Even though Myers algorithm performs better than LCTS, the 

response time of both algorithms is less than 1 sec on a database of 250 songs. 

 

5.2 Future Extension 

             In this research, the conversion of humming tune (wave format) to MIDI is 

performed using third party software. As a future extension, this can be built into the 

current framework the conversion using the pitch tracking algorithms. Moreover, it 

would be interesting to convert the framework to be accessible remotely.  This allows the 

user to hum the query remotely (client-server architecture) and retrieve the similar songs 

from music a database. 
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Due to the large amount of musical data available on the internet in recent years, 
efficient and intuitive methods are required for searching the musical data. Musical 
search services, such as the iTunes provides, support querying capabilities on the basis of 
metadata tags (title, artist, etc) associated with the musical data.  The natural way of 
searching musical data is to search by its content rather than secondary features like title, 
genre etc, because the content is usually more memorable. In this research, content-based 
music retrieval is performed on a polyphonic MIDI music database where the query is a 
hummed tune. Two approximate string matching algorithms, LCTS and Myers 
algorithms are modified, applied to the problem, and retrieval performance is calculated. 
Response times of the algorithms are calculated by altering the values of some of the 
interesting parameters such as the query length, degree of polyphony and size of the 
database.  

 

 

 

 

 

 


