
CONTENT-BASED RETRIEVAL OF MUSIC USING

MONOPHONIC QUERIES ON A DATABASE OF

POLYPHONIC, MIDI INFORMATION

 By

 RAVIKUMAR NIDADAVOLU

 Bachelor of Science in Information Technology

 Andhra University

 Hyderabad, Andhra Pradesh, India

 2004

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 May, 2008

 CONTENT-BASED RETRIEVAL OF MUSIC USING

 MONOPHONIC QUERIES ON A DATABASE OF

POLYPHONIC MIDI, INFORMATION

 Thesis Approved:

Dr. Blayne E. Mayfield

 Thesis Adviser

Dr. John P. Chandler

Dr. Venkatesh Sarangan

Dr. A. Gordon Emslie

 Dean of the Graduate College

 ii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

 1.1 Motivation ..1

 1.2 Music Terminology ..2

 1.3 Music Data Representation ..4

 1.4 Thesis Overview ..4

II. LITERATURE REVIEW 5

 2.1 MIDI ..5

 2.2 String Matching ...9

 2.2.1 Exact Matching ..9

 2.2.2 Approximate String Matching ...18

 2.3 Monophonic Music Retrieval ..21

 2.4 Polyphonic Music Retrieval ...24

 2.5 Myer’s Algorithm ..27

 2.6 LCTS Algorithm ..32

III. SYSTEM ARCHITECTURE 37

 3.1 Humming and Query Transcription ...38

 3.2 Database Files Modification ..41

 3.3 Problems in Music Retrieval ..43

 3.3.1 Transposition Invariance and Octave Equivalence43

 iii

 3.3.2 Distributed Matching ..46

IV. EXPERIMENTAL EVALUATION 47

 4.1 Testing Interface ..47

 4.2 Retrieval accuracy analysis ..49

 4.3 Response Time ...41

V. CONCLUSION 55

 5.1 Summary ..55

 5.2 Future Extension ..57

REFERENCES ...58

 iv

LIST OF TABLES

Chapter Page

2.1 Format of Note-on and Note-off Events ...7

2.2 MIDI Note numbers for different Octaves ..9

2.3 Distributed Matching of pattern ..17

2.4 Edit distance Matrix ..19

2.5 State of search in tabular form ..20

2.6 Allowed number of errors 1 ...21

2.7 Different parts of polyphonic music ..26

2.8 Matching query pattern in modified score ...26

2.9 Searching of query pattern in modified score ..27

2.10 Dynamic Programming matrix ..28

2.11 ∆vi, j matrix ..29

2.12 Search process of the Myers algorithm ..31

2.13 LCS matrix ...33

3.1 Note-on, pitch, duration pairs ...40

3.2 String representation ...41

3.3 Database String representation ...43

 v

LIST OF FIGURES

Figure Page

2.1 Bad-character-heuristic explanation ...11

2.2 Bad-character-heuristic ...11

2.3 Good-Suffix rule illustrations 1 ..12

2.4 Good-Suffix rule illustrations 2 ..12

2.5 Good-Suffix-heuristic ...13

2.6 Hash value calculations..15

2.7 Non-deterministic automata to search text for pattern15

2.8 State of search pattern ..16

2.9 UDS Notation and Relative pitch values ...22

2.10 Sheet music representation of ‘Twinkle Twinkle Little Star’ song25

2.11 Myers algorithm ...31

2.12 Algorithm for calculating Longest Common Transposition invariant36

3.1 Architecture of humming song retrieval in music database37

3.2 Jingle bells song played in F# and C key ...44

4.1 Testing Interface ..47

4.2 Retrieval rankings of the humming samples ..50

4.3 Retrieval of humming samples considering fewer transpositions51

4.4 Response time in comparison with database size ..52

 vi

4.5 Response time in comparison with query size ...53

4.6 Response time in comparison with average degree of polyphony54

 vii

CHAPTER 1

INTRODUCTION

 The use of multimedia data has spread throughout the world with the availability

of high performance, low-cost computers, and this has led to a need for accurate, efficient

retrieval methods for large multimedia databases. Many users experience difficulty in

formulating a query in words when they want to retrieve something from a multimedia

database. Content-based retrieval is seen as a solution to this problem [1]. Content-based

retrieval enables users to represent what they want directly; it makes the retrieval system

easier to use. For a music retrieval system, content-based query can be either a hummed

query or played through a digital piano.

1.1 Motivation

In spite of the growth of digital music libraries, or generically speaking, any

multimedia database, it is really useful only if users can find what they are seeking in an

efficient manner. Presently, whether it is the case of a digital music library, the Internet or

any music database, search and retrieval is carried out mostly in a textual manner, based

on metadata such as author, title or genre. Normally, metadata related to music is created

manually. Some metadata information provided is meaningless and ambiguous. For

instance, the track number of a CD album does not provide any useful information for

musical data retrieval. A natural way of searching for music is to identify it by its content

 1

rather than its secondary information (e.g., title), because the content is usually more

memorable and a more robust feature of the musical work. Many people remember a

short tidbit of a song but fail to recall a song’s name. Information such as title, artist, and

genre often is learned at a much later stage of people’s relationship with a song.

Furthermore, as the human brain sometimes forgets this information, while the melody

remains fresh in mind, it seems obvious that an application capable of retrieving music

from humming would be very useful. A query-by-humming system allows a user to find

a song even if he merely knows the tune from part of the melody. The user simply hums

the tune into a computer microphone, and the system searches through a database of

songs containing the tune and returns a ranked list of search results.

1.2 Music Terminology

 Each time a key pressed on a piano or air is blown across a flute mouthpiece to

make a sound, we say that a note has been played. Each type of musical instrument has

its own method of playing notes within a certain range. This range refers to frequency

range of sounds that can be produced from the musical instrument. Musicians do not

usually discuss the frequencies of notes, but refer to them as having a particular pitch.

Every note has a certain pitch. Pitch is how the listener perceives the tone. A note with

higher frequency is said to have a higher pitch than one of a lower frequency. The pitch

distance between notes is called an interval. If one note has double the frequency of

another, then it is said to be one octave above the lower note, i.e. the interval between the

notes is one octave. Notes that are an octave apart sound very similar to each other. All

notes that are a whole number octave apart have the same note name, which is usually a

 2

letter, or a letter combined with a sharp (♯) or flat (♭) symbol. The notes used in western

music result from dividing an octave into 12 notes that are a semitone apart. The note

names used for notes within one octave starting at C and going up are:

C C♯ D D♯ E F F♯ G G♯ A A♯ B C.

C♯ is read as ‘C sharp’. It is the same note as ‘D flat’ (D♭). Similarly D♯, F♯, G♯, and

A♯ can be referred to as E♭, G♭, A♭, and B♭ respectively. Note that a sharp symbol is used

to raise the pitch of a note by one semitone, and a flat is used to lower the pitch of a note

by one semitone.

 Music is often divided into three categories based on the amount of concurrency

present. Monophonic (‘Mono’ means one and ‘phony’ means sound) means ‘one sound’.

In monophonic music only one note sounds at a time; two notes cannot sound

simultaneously. The simplest type of monophony would be one person singing alone.

Homophonic (‘Homo’ means same and ‘phony’ means sound) means that different notes

may sound simultaneously but must start and end at the same time. For example, a singer

accompanied by a guitar picking can be homophonic. Polyphonic (‘Poly’ means many

and ‘phony’ means sound) means many sounds at once. In polyphony, notes may sound

simultaneously with different start and end times. Generally most music by large

instrumental groups such as bands or orchestras is polyphonic. This research deals with

searching of a monophonic music (query) in a polyphonic database.

1.3 Music data Representation

Musical data can be represented in a computer in two different ways: symbolic

representation and acoustic representation. Formats such as mp3, wav and au are popular

 3

 4

for acoustic representation. Symbolic representation is based on musical scores, with one

entry per note. Each entry keeps track of information such as pitch, duration, type of

instrument and so on. Examples of this representation include MIDI (Musical Instrument

Digital Interface), Humdrum, and sheet music with MIDI being the most popular format.

Score-based representations are much more structured and easier to handle than raw

audio data. A MIDI file contains the performance-related information of a piece of music;

it contains all the necessary information to recreate that piece of music. As MIDI is the

widely used music format this research concentrates in this format.

1.4 Thesis Overview

 In this research, content-based music retrieval is performed on a polyphonic

MIDI music database where the query is a hummed tune. After a hummed tune is

translated to MIDI format, it is matched against the database of 250 MIDI files which

may contain either monophonic or polyphonic MIDI music files. The similarity is based

on the intuitive notion of similarity perceived by humans: two musical files are similar if

they are fully or partially based on the same score, even if they are performed in a

different key or at a different tempo. Retrieval results are ranked based on the computed

similarity estimate. Two approximate string matching algorithms, LCTS and Myers

algorithms are modified, applied to the problem, and retrieval performance is calculated.

Response times of the algorithms are calculated by altering the values of some of the

interesting parameters such as the query length, degree of polyphony and size of the

database.

CHAPTER 2

LITERATURE REVIEW

2.1 MIDI

 When music technology moved into the 1980s, keyboards with internal

microprocessors had been introduced and become popular. Manufacturers began to

experiment with interfaces that would transfer digital information among their own

various devices. By the beginning of the decade (1980), it dawned on the electronics

industry that, if each manufacturer developed its own interface, it would not be beneficial

to the growth of the entire industry and it would ultimately prove frustrating to musicians.

In an attempt to find a way forward from this situation, audio engineer and synthesizer

designer Dave Smith of Sequential Circuits, Inc. proposed the MIDI standard in 1981 in a

paper to the Audio Engineering Society. The proposal received widespread enthusiasm

within the industry and the MIDI Specification 1.0 was published in August 1983[2]. It is

a standard that manufacturers of electronic musical instruments have agreed on. It is a set

of specifications that they can use in building their instruments so that instruments of one

manufacturer can, without difficulty, communicate musical information with instruments

of another manufacturer. MIDI was originally designed for keyboards, but it is flexible

enough that it could be easily adapted to various other kinds of electronic instruments.

MIDI is an acronym for the Musical Instrument Digital Interface. The most

fundamental aspect of MIDI is that it does not deal with musical sound at all; it only

 5

http://en.wikipedia.org/wiki/Dave_Smith_%28engineer%29
http://en.wikipedia.org/wiki/Sequential_Circuits
http://en.wikipedia.org/wiki/1981
http://en.wikipedia.org/wiki/Audio_Engineering_Society
http://en.wikipedia.org/wiki/The_MIDI_1.0_Protocol
http://en.wikipedia.org/wiki/1983

deals with musical data which can be transmitted among musical computing devices,

including keyboards, drum machines, sequencers and computers running music software.

Two musical instruments communicating using the MIDI standard send information as a

series of numbers (binary) over connecting cables. The MIDI standard specifies that the

numbers sent as data be sent in groups called MIDI messages. Each MIDI message

communicates one musical event. These musical events usually are actions that a

performer makes while playing a musical instrument, actions such as pressing keys,

setting switches etc. MIDI messages can be collected and stored in a computer file

commonly called a MIDI file, or more formally, a Standard MIDI File.

 Standard MIDI files provide a common file format used by most musical software

and hardware devices. This format stores the standard MIDI messages plus a time-stamp

for each message (i.e. a series of bytes that represent how many clock pulses to wait

before "playing" the event). MIDI messages usually are two or three bytes. The first byte

of any MIDI message is called the status byte. It tells what kind of message it is. The

bytes that follow the status byte are called data bytes. Many types of MIDI messages use

two bytes to carry additional information, but some need only one byte. MIDI uses MIDI

channels to allow communication between individual devices in a MIDI system. MIDI

contains 16 channels and each of these channels can be used to set up an instrument,

which gives the potential to program for 16 instruments playing at the same time.

 All MIDI messages are divided into two types: system messages which carry

information that is not channel specific, such as timing signal for synchronization, and

channel messages which are transmitted on individual channels rather than globally to all

devices. For example, the MIDI Note-On message is a channel message that instructs a

 6

http://en.wikipedia.org/wiki/Computer_file

synthesizer to begin playing a note. This note will continue playing until a corresponding

Note-Off message is received. The four most significant bits of the status byte of all Note-

Table 2.1: Format of Note-on and Note-off events

Event-Type

Byte 0

Byte 1 Byte2 Most significant

Nibble (4 bits)

Least significant

Nibble (4 bits)

Note-On 1001 MIDI channel [0-15] Key Number [0-127] Velocity [0-127]

Note-Off 1000 MIDI channel [0-15] Key Number [0-127] Velocity [0-127]

On messages must be 1001 and, as with all channel voice messages, the four least

significant bits specify the channel on which the note should be played. Note-On

messages have two data bytes. The first specifies pitch, from 0 to 127, and the second

specifies velocity, also from 0 to 127. Pitch is numbered in semitone increments, with

note 60 being designated as middle C. The velocity value specifies how hard a note is

struck, which most synthesizers map to initial volume. Note-Off is the channel message

used for turning off a currently playing MIDI note. The Note-Off message has an

identical format to a Note-On message, except that the four most significant bits of the

status byte are 1000. The pitch value specifies the pitch of the note that is to be stopped

on the given channel and the velocity value specifies how quickly a note is released.

When the note is turned off, it is just like an instrumentalist releasing a note its sound

should start decaying. The basic format of the Note-On and Note-Off message is as shown

in Table 2.1. There are many other channel messages such as Channel Pressure Message,

 7

Program Change Message, etc. This research mainly concentrates on the Note-On and

Note-Off messages.

All standard MIDI files consist of groups of data called chunks, each of which

consist of a four-character identifier, a thirty-two bit value indicating the length in bytes

of the chunk and the chunk data itself. There are two types of chunks: header chunks and

track chunks. The header chunk is found at the beginning of the file and includes the type

of file format, number of tracks etc. The header chunk starts with four bytes representing

ASCII symbols for the letters “Mthd” followed by four bytes specifying the length of the

header chunk. Track chunks contain all of the information and MIDI messages specific to

individual tracks. The Track chunk begins with four bytes representing the ASCII

symbols for the letters “Mtrk” followed by four bytes specifying the length (in bytes) of

the track data to follow, followed by the data. The data differ from the normal MIDI

message only in that a delta time precedes each one. The delta time specifies how much

time has elapsed since the previous track event. The MIDI message and their associated

delta times are called Track events. Track events can be a MIDI events or meta-events.

Meta-events provide the ability to include information such as lyrics, key signatures, time

signatures, tempo changes and track names in files.

The note names and different pitch values in standard MIDI are as shown in Table

2.2. The numbers used for note values are from 0 to 127. The lowest note is a C (C0) and

this is assigned note number 0. The C# (C#0) above it would have a note number of 1.

The D (D0) note above that would have a note number of 2.

 8

Table 2.2: Midi Note Numbers for different Octaves

O c t a v e
Note Numbers

 C C# D D# E F F# G G# A A# B

0 0 1 2 3 4 5 6 7 8 9 10 11

1 12 13 14 15 16 17 18 19 20 21 22 23

2 24 25 26 27 28 29 30 31 32 33 34 35

3 36 37 38 39 40 41 42 43 44 45 46 47

4 48 49 50 51 52 53 54 55 56 57 58 59

5 60 61 62 63 64 65 66 67 68 69 70 71

6 72 73 74 75 76 77 78 79 80 81 82 83

7 84 85 86 87 88 89 90 91 92 93 94 95

8 96 97 98 99 100 101 102 103 104 105 106 107

9 108 109 110 111 112 113 114 115 116 117 118 119

10 120 121 122 123 124 125 126 127

2.2 String Matching

 The string matching problem is to find one or more occurrences of a given pattern

P1…m with length m in a large text T1…n with length n (m ≤ n) , both being sequences of

characters drawn from a finite character set. This problem is fundamental in computer

science and is a basic need of many applications, such as text retrieval, music retrieval,

computational biology, data mining etc. It has been studied extensively and numerous

techniques and algorithms have been designed to solve this problem. String matching can

be divided mainly into two types, exact and inexact (approximate) string matching.

2.2.1 Exact Matching

The exact string matching problem can be defined as follows:

Given a text T1…n of n characters and the pattern P1…m of m characters (m≤ n) over a

finite alphabet Σ, the exact string matching problem is to find an integer s called the

valid shift where 0 ≤ s ≤ n-m and Ts+1…s+m = P1…m.

 9

The simplest approach for exact string matching is a brute force method, also

called as the naïve method [3]. In this method, the first character of the pattern is aligned

with the first character of the text. Comparison of characters of the aligned region is made

until a mismatch is found. If the end of the pattern is reached without a mismatch, an

occurrence of the pattern is reported. In either case, the pattern is shifted one position to

the right and the process is repeated. In worst case the number of comparisons made by

this method is O (mn) where m and n are length of pattern and text respectively.

The Boyer-Moore algorithm [3] provides marked improvement over the brute

force method through the implementation of two heuristics, the bad-character-heuristic

and the good-suffix-heuristic. The idea of the Boyer-Moore algorithm is to skip those

parts of the text that cannot match the pattern. At the beginning of the matching process

the pattern is left-aligned with the text. The algorithm starts the comparison between text

and pattern from right to left by checking if Tm = Pm (where m is the length of pattern). If

the characters match, the algorithm continues with Tm−1 = Pm−1, and so on. If a mismatch

occurs, the two heuristics calculate how far the pattern can be moved to the right, thus

skipping over some text positions that cannot yield a match.

The first heuristic is the bad-character-heuristic. In this heuristic, as shown in

Figure 2.1, if a mismatch occurs at position k in text T, i.e. Pc ≠ Tk, then pattern P is

shifted right by Max {1, c - B (Tk)} positions. B (Tk) (bad-character) is the position of

the right-most occurrence of Tk in the pattern P. If Tk does not occur in P then the value

of B (Tk) is 0. The shaded portion in the figure represents the matched portion of the text

and pattern.

 10

 1 j k j+m-1 n
Text Tk Match

Pattern Pc Match
 1 c m

Figure 2.1: Bad-character-heuristic explanation

For example consider the text and the pattern as shown in Figure 2.2. Initially the

first character of pattern is aligned with the first character of the text. The right-to-left

comparison starts, and a mismatch occurs between the characters ‘O’ and ‘E’ at position

5. The pattern is searched for the rightmost occurrence of character ‘O’ (i.e. Tk) which is

found at position 2. So, the pattern is moved 3 (5-2) positions to the right (Step1). This

process continues until an exact match of pattern is found or until the end of text is

reached. In this example exact match is found in step2.

Position 1 2 3 4 5 6 7 8 9 10 11

Text R A C D O G M O U S E

Pattern M O U S E

Step1 M O U S E

Step2 M O U S E

Figure 2.2: bad-character-heuristic

The second heuristic is the good-suffix-heuristic. While comparing the pattern

with the text from right to left, and the mismatch is at pattern position k, then a suffix of

the pattern Pk+1…m must match; otherwise, a mismatch would have occurred earlier. As

shown in Figure 2.3, the shaded portion ‘u’ in the text and pattern is the matched portion

and a mismatch is between characters Tk and Pk.. The shaded portion ‘u’ in the pattern

(Step1) is the matched suffix of the pattern.

 11

When a mismatch occurs, the pattern P1…k is searched for the right-most

occurrence of the ‘u’. If ‘u’ is present in P1…k, then the pattern is moved to the right so

that the right-most occurrence of ‘u’ aligns to the text. In figure 2.3, step2 shows how the

pattern is moved to the right if ‘u’ is present.

 1 k m
Text Tk u

Pattern (Step1) u Pk u
 1 e d k m

Shifted Pattern(Step2) Pe-1

 u
 e-1 d m

Figure 2.3: Good-Suffix rule illustrations 1

 If no such occurrence of ‘u’ is found in P1…k, then the pattern is shifted to the

right so that the longest suffix of Tk+1…m aligns with a matching prefix of P1…m. In

Figure 2.4, the portion ‘v’ in the pattern i.e. prefix of the pattern is assumed to match the

suffix of Tk+1…m . If no such portion ‘v’ exists then the pattern is moved its whole length

to the right.

 1 k m
Text Tk u

Pattern Pk

 u
 1 k m

Shifted Pattern v
 e1 m

Figure 2.4: Good-Suffix rule illustrations 2

For example, consider the text and the pattern as shown in Figure 2.5. Initially,

the first character of pattern is aligned with the first character of the text. The comparison

begins from right to left. A mismatch occurs at position 3.The matched suffix is of the

 12

pattern is ‘ab’. The pattern can be shifted until the next occurrence of ‘ab’ in the pattern is

aligned to the text symbols ‘ab’, i.e. to position 3.

Position 1 2 3 4 5 6 7 8 9 10

Text A B A A B A B B A C

Pattern C A B A B

Step1 C A B A B

Figure 2.5: good-suffix-heuristic

The worst case complexity is still O (mn) which is the same as the naïve method,

where m and n are length of pattern and text respectively. The algorithm can achieve an

average case running time of O (n) by preprocessing the pattern. Considering the bad-

character-heuristic, in the preprocessing, for each different character ‘c’ in the pattern,

B[c] (bad-character) is calculated in the following way:

• Initially the B[c] is set to zero for all characters.

• Then, the processing of the pattern starts from the right, if the value of B[c] is

zero, and then B[c] is set to a value, which is the position of the character in the

pattern.

For example, for the pattern ‘xyzyz’, initially B[x], B[y], B[z] are set to 0. Processing

starts from right and B[z] is set to 5, and then B[y] is set to 4, and then B[z] whose value

is 5, which is not zero, so the value is not modified. This process continues until the end

of the pattern. Finally the values of B[x], B[y], and B[z] are 0, 4 and 5. Preprocessing of

pattern considering good-suffix-heuristic also calculates the amount of shift the pattern

can be moved to the right when a mismatch occurs. (Complete explanation is discussed in

[3]).

 13

 The Rabin-Karp algorithm [4] presented by Michael Rabin and Richard Karp

achieves an average run time of O (m+n) using hashing. The Rabin-Karp algorithm is

based on the fact that if two strings are equal, their hash values are also equal. But since

two hash values can be equal even if the underlying strings differ, the algorithm has to

verify every match of hash values. The hash values are calculated based on pre-assigned

values for each character, generally prime numbers. In a preprocessing phase, the hash

value of the pattern P is calculated. Then, for every text position i = 1…n-m+1 the hash

value of Ti….Ti-1+m is compared to the hash value of the pattern. If the hash values

match, the pattern is compared to the text character-by-character beginning at position i

to verify that there is indeed a match at this position. A good hash function would yield

the same value only when there is a match of strings. For smaller patterns hash value can

be calculated considering the m character sequence as an m-digit number in base b,

where b is the size of the alphabet.

The hash value for the text Ti….i+m-1 is calculated using the formula:

Hash (i) = (Ti) (bm-1) + (Ti+1) (bm-2) …….. (Ti+m-1)

Furthermore, given Hash(i), Hash(i+1) for the next subsequence Ti+1….i+m can be

computed in constant time using the formula below.

 Hash (i+1) = (Hash(i)*b) [shift left by one digit]

 – (Ti*bm) [subtract leftmost digit]

 + (Ti+m) [add new right most digit]

In this way the new hash value is computed by adjusting the previous hash value,

resulting in a time savings. If m is large, then the resulting value bm will be enormous.

For this reason, the hash value is calculated by taking mod of prime number q.

 14

co

‘c

For ex

orresponds t

cah’ would b

xample let Σ

to 1, charact

be

Σ = { a,b,c,d

ter ‘b’ corres

d,e,f,g,h,i,j}

sponds to 2

be the alpha

and so on. T

abet. Let us

The hash va

say characte

alue for the s

er ‘a’

string

(3*1002)+(1*101)++8 = 318.

CConsider the text T= ‘abccahd’ and thee pattern P= ‘cah’,

al

h

Figure

lgorithm che

ash value. A

e 2.6 shows

ecks for ever

A match is fo

s the hash v

ry text posit

ound at the te

values for d

ion if the cu

ext position

different pos

urrent text ha

3.

sitions of th

ash value ma

he text. Then

atches the pa

n the

attern

ex

m

ch

co

T

se

 Baez

xact matchin

method the S

haracter co

omparison b

The Shift-An

earch text fo

Figure

Position

Text

Hash

ze-Yates and

ng problem

Shift-And m

omparison.

because bit

nd algorithm

or the pattern

e 2.7: Non-d

1 2

abc bca

123 231

Figure 2.6

d Gonnet [5

very efficie

method. The

The Shift-A

comparisons

m simulates

n.

deterministic

 15

3 4

cah ah

318 1

4

hd

84

6: Hash valuue calculatioons

5] devised a

ently for rela

algorithm i

And metho

s are perform

the operat

simple, bit-

atively smal

is based on

od has an

med much m

ion of non-

-oriented me

ll patterns. T

 bit compar

advantage

more quickl

-deterministi

ethod that s

They called

rison rather

over char

ly by proces

ic automata

olves

their

than

racter

ssors.

a that

c automata too search texxt for patternn P = ‘bbc’

Notation: A bit mask of length n (a sequence of bits) is denoted by bn…1. Superscripts

are used to denote bit repetition; for example 03 = 000. Σ denotes an alphabet and m

denotes pattern length.

In the preprocessing step of the algorithm a table B that stores a bit mask B[c] =

bm…1 for each character c є Σ is created. The bit mask B[c] has the i-th bit set to 1 if Pi =

c and all other bits are set to 0. For example let Σ = {a,b,c} , pattern P = ‘bbc’ and Text T

= ‘acbbc’. Bit masks for each character will be B[a] = 000, B[b] = 011, B[c] = 100.

 The state of the search is kept in another bit mask D = dm…1, where di = 1 if and

only if the state numbered i in Figure 2.7 is active. Initially D = 0m, which represents state

numbered 0. When the text position j is scanned, di =1 whenever P1…i = Tj-i+1…j (1 ≤ j ≤

n). A match is reported whenever bit dm is 1. Initially D = 0m and, for each character Tj,

update D using the formula below

D ← ((D << 1) | 0m-11) & B[Tj]

From the above formula, the i-th bit is set to 1 if and only if the (i-1)-th bit was set for the

previous text character and the new text character matches the pattern at position i. In

other words, Tj-i+1…j = P1…i if and only if Tj-i+1…j-1 = P1…i-1 and Tj = Pi. For the above

example the state of search varies as shown in Figure 2.8 (initially D = 0m).

On reading character ‘a’ D ← (000 | 001) & 000, i.e. D = 000.

On reading character ‘c’ D ← (000 | 001) & 100, i.e. D = 000.

On reading character ‘b’ D ← (000 | 001) & 011, i.e. D = 001.

On reading character ‘b’ D ← (010 | 001) & 011, i.e. D = 011.

On reading character ‘c’ D ← (110 | 001) & 100, i.e. D = 100.

Figure 2.8: State of search pattern P = ‘bbc’, text T = ‘acbbc’

 16

 If the length m of the pattern ≤ w, (w is the size of machine word) the state of

search can be represented as a single machine word. This approach has a best

performance of O (n) when the length of the pattern is no longer smaller than the word-

size of the machine.

Lemstrom and Tarhio [6] developed a variation of the Baeza-Yates and Gonnet

Shift-And algorithm for distributed string matching that is defined as follows:

Given a collection T containing h strings ti = ti
1 ti

2… ti
n (1 ≤ i ≤ h) of

equal length n, we say that some pattern P1…m occurs at position j of T if ps є

{ ti
j+s-1 | 1 ≤ i ≤ h} for all 1≤ s ≤ m .

For example consider the pattern P = ‘cat’ and the collection T= {‘abcde’, ‘bcdef’,

‘abade’, ‘xyztz’}. Table 2.3 shows the distributed matching of the pattern in T. A

match is found at position 2.

 Table 2.3: Distributed Matching of pattern ‘CAT’

 t1
 A B C D E

 t2
 B C D E F

 t3
 A B A D E

 t4
 X Y Z T Z

In their approach, bit-masks for each character are calculated similar to that of shift-and

method. But the state of search at position j in the text is calculated using the formula

below.

D ← ((D << 1) | 0m-11) & {B[tj
1] | B[tj

2] | ... B[Tj
h] }

A musical score can be viewed as string; the symbols in the string can be simply a

set of notes or a set of intervals. The music retrieval task is to find occurrences of a query

 17

pattern within a music database. Both the pattern and database entries can be treated as

strings. Some music information retrieval techniques [7] use exact matching for finding a

pattern in a music database. Smith and Medina [8] used exact string matching to discover

themes in music. However, inexact (approximate) matching generally is more useful for

music information retrieval as a query pattern may contain errors.

2.2.2 Approximate String Matching

 Given a text string T and a pattern P, the approximate string matching problem is

to find substrings of T that approximately match P. To decide if a pattern approximately

matches a text with a limited number of errors a metric for measuring those errors must

be employed. A metric frequently used in approximate string matching is edit distance.

The use of edit distance was proposed first by Levenshtein and is known as the

Levenshtein distance [8]. The Levenshtein distance between two strings is the minimum

number of insertions, deletions and substitutions of characters needed to transform one

string into another.

The dynamic programming method generally is used to calculate the edit distance

measure. Let A1…m and B1….n be two strings. The dynamic programming method

computes a (m+1) × (n+1) matrix C, where Ci,j corresponds to the minimum number of

edit steps needed to transform A1..i to B1…j . The recurrence relation for the edit distance

is defined as follows:

 Ci, 0 = i and C0, = j j for 0 ≤ i ≤ m and 0 ≤ j ≤ n

 Ci, j =
,
,

,

 18

http://en.wikipedia.org/wiki/String_%28computer_science%29

The relation accounts for the three allowed operations, insertion, deletion and

substitution. The last entry in the matrix i.e. Cm,n evaluates to the edit distance between

the two strings. For example consider the strings ‘PARK’ and ‘SPAKE’ as shown in

Table 2.4; the edit distance is calculated using the above formula, and the value of the

edit distance is 3.The complexity of the algorithm is O (mn).

 Table 2.4: Edit distance Matrix

 (i) P A R K
(j) 0 1 2 3 4
S 1 1 2 3 4
P 2 1 2 3 4
A 3 2 1 2 3
K 4 3 2 2 2
E 5 4 3 3 3

Needleman and Wunsch were first to use the dynamic programming algorithm to

perform inexact matching on biological sequences [9]. Mongeau and Sankoff [10] were

among the first to adapt this technique to musical scores. They used the algorithm to

compare the similarity of entire pieces of music. McNab [11] incorporated these ideas

into the MELDEX (MELody inDEX) system, which searches for relatively short user

queries within entire songs.

During the last decade, algorithms based on bit-parallelism have emerged as the

fastest approximate string matching algorithms [12]. Wu and Manber [13] devised an

algorithm that amplifies the Shift-And method by finding inexact occurrences of a pattern

in text. The bit mask that represents the state of search in the Shift-And method can be

expressed as a table M of size m×n, where each column represents the bit mask at

character Tj in text. For example the contents of Figure 2.5 can be represented in tabular

form as shown in Table 2.5. The shaded cell represents a match at that position.

 19

 Table 2.5: State of search in tabular form

 M -- j--

--
i--

 A C B B C

B 0 0 1 1 0

B 0 0 0 1 0

C 0 0 0 0 1

In the Wu-Manber method, the pre-processing step is similar to that of the Shift-

And algorithm. A bit mask is calculated for each character, and instead of one state of

search, k+1 different states of search Ms (0 ≤ s ≤ k) are used, where k is at most number

of mismatches allowed. Ms denotes in tabular form the state of search with at most s

mismatches. Ms (i, j) = 1 if and only if P1…i = T j-i+1…j with ≤ s errors. There are four

possibilities for the condition P1…i = T j-i+1…j with ≤ s errors to be true:

• P1…i-1 = Tj-i+1…j-1 with ≤ s errors, Tj = Pi [Matching]

• P1…i-1 = Tj-i+1…j-1 with ≤ s-1 errors, Tj ≠ Pi [Substitution]

• P1…i-1 = Tj-i+1…j with ≤ s-1 errors [Deletion of Pi]

• P1…i = Tj-i+1…j-1 with ≤ s-1 errors [Inserting Tj]

Using the above four conditions, the formula below is derived which is used to

calculate Ms (where s = 1…k) at each text position j.

 Ms (j) = (Ms(j-1)<<1)& B[Tj] | Ms-1 (j-1)]<<1 | Ms-1(j) << 1 | Ms-1(j-1)

(matching) (substitution) (deletion) (insertion)

The initial state of search, i.e. the first column of Ms, will be 1s0m-s, and the

remaining columns are calculated using the above formula. If Ms (m, j) = 1 then there is

an occurrence of P in T ending at position j (in the text) with at most s mismatches. For

 20

example, consider pattern P = ‘bbc’, text T = ‘acbbc’ and k=1. M1, shown in Table 2.6,

can be calculated using the above formula. The two shaded cells in M1 represent the two

matches, when the number of errors allowed is 1.

In this method k+1 different tables (M0, M1….Mk) are calculated to find whether

the pattern is in the text with at most k mismatches. Hence the complexity is k times that

of the Shift-And method i.e. O (knm/w).

Table 2.6: Allowed number of errors 1

M1 --j--
--

i--

 A C B B C

B 1 0 0 0 1

B 0 0 1 1 1

C 0 0 0 1 1

In 1998 Myers [14] presented a fast, bit-parallel implementation for approximate

string matching with at most k differences. This approach is based on a bit-parallel

simulation of the dynamic programming array discussed in section 2.5. The

parallelization has optimal speedup, and the time complexity is O (mn/w) in the worst

case, that is k times better than the Wu-Manber algorithm.

2.3 Monophonic Music Retrieval

String matching is the method used most often for content-based music retrieval

from a monophonic music database. This is because music can be represented as strings

of symbols, where the symbols are taken from an alphabet corresponding to some

particular attribute of music, such as the duration or note pitch. In some music retrieval

systems [7][11], only the pitch information for a piece of music is encoded as a string

 21

and exact string matching techniques such as Boyer-Moore, Rabin-Karp and Shift-And

methods are used for matching. Pitch direction often is used instead of the pitch itself for

music retrieval. Music is transformed into a string that consists of three symbols, ‘U’,

‘D’, and ‘S’, which represent whether a note is higher than, lower than, or the same as the

previous note, respectively [15][16] (Figure 2.9). The main reason for this representation

is that when a hummed tune is input, it realizes robust retrieval even though the hummed

tune may have differences in tone and tempo compared to the database tune it should

match. However, for a large database, retrieval using only this information cannot

provide sufficient resolution. Rhythm information and pitch intervals can be used to

improve resolution.

When music retrieval is done by humming a tune, errors in the hummed tune may

include not only variations in tone and tempo, but also insertions, deletions and errors in

note values. Approximate string matching algorithms should be used to allow these

errors. Similarity is calculated by edit distance in DP-matching (Dynamic Programming).

 Absolute Pitch values 63 62 63 58 60 56 57 60 62 63

UDS Representation D U D U D U U U U

Relative Pitches -1 1 -5 2 -4 1 3 2 1

Figure 2.9: UDS Notation and Relative pitch values.

 22

The Note-Interval system developed by Pardo [17][18] uses both pitch and

rhythm information of musical pieces for retrieval. The Note-Interval system combines a

relative pitch with a logarithm of IOI Ratio (LogIOIR) to form a <Pitch, Rhythm> pair.

The relative pitch is the difference between the pitches of two adjacent notes. The Inter-

onset-interval (IOI) is the time difference between the onset times of a note and the note

that follows it. The final note of the piece has the same IOI value as its previous note.

LogIOIR is used to represent rhythm. Both the target music database and the query are

transformed to <Pitch, Rhythm> pairs. These pairs are encoded as strings and dynamic

programming methods are used to find the similarity between the strings. The advantage

of relative pitch is that transposition, (i.e. shifting a tune to a different key or octave) has

no effect on matching, and the IOI ratio is invariant with respect to tempo. But, this

technique is good only when the music database is monophonic. In polyphonic cases, two

or more notes can be sounded at the same time, so relative pitches will not be useful as

the query can be formed from different parts of the music (Figure 2.10).

Pardo and Sanghi [17] used probabilistic string matching techniques for

monophonic music retrieval. They used the longest common subsequence approach to

calculate the similarity. A matrix M of size (m+1)×(n+1) is computed using the following

recurrence relation.

 Mi, 0 = 0 and M0, j = 0 for 0 ≤ i ≤ m and 0 ≤ j ≤ n

 Mi, j =
, µ ,
, µ ,

, µ ,

μ(x, y) represents the match score function where x and y (note values) are

symbols of the pattern and text respectively. In the above formula, the ‘-‘character is a

 23

blank, which is added to the alphabet of note values. Matching to a blank can be thought

of as skipping a character matched to the blank. For example pattern P be ‘BCD’ and text

T be ‘ABCD’. If character ‘-’ is added to pattern at the beginning, the pattern will be

 ‘–BCD’. Now this is matched with ‘ABCD’ with skipping the first character in the text,

which is matched to blank.

μ (x, y) gives the numeric value that corresponds to goodness of match between

characters x and y. The match score function value for matching a blank is set to the

penalty for skipping the element matched to the blank. Skipping a character of the pattern

assumes the pattern inserted an extra character that was not in the text string. Skipping a

character of the text string assumes that the pattern deleted that character of the text

string. This function returns a negative value when the probability of a meaningful match

is below that of a random co-occurrence. Similarly, the value is positive when a

meaningful match is more likely than random chance. The similarity value between P and

T is defined as the highest valued element of matrix M.

2.4 Polyphonic Music Retrieval

 Two approaches commonly have been used when searching for a monophonic

pattern in a polyphonic database. The first approach is to convert polyphony into

monophony and then apply DP-matching techniques on the monophonic data.

Uitdenbogerd and Zobel [19] transform polyphonic music into monophonic music by

using the note with the highest pitch at any given moment. One drawback of this

technique is the assumption that polyphonic music can be represented in this way, which

is not always true [20].

 24

Another technique is to extract the melody from the polyphonic data and then

compare the melody against the monophonic pattern [20]. But it is quite possible that a

query will be based on some part of the music other than the melody, such as a bass line

[21]. In this case all of the parts of the music should be considered (Figure 2.10).

Figure 2.10: Sheet music representation of ‘Twinkle Twinkle Little Star’ song

The second approach is to match the monophonic pattern with all parts (i.e. voices

or staff lines) of the polyphonic music. Figure 2.10 shows the sheet music representation

of a polyphonic musical piece, in which four different voices are played at the same time.

The boxed areas of the figure illustrate that a user’s hummed query pattern can be

matched to different voices; i.e. a pattern may skip from one part to another.

In their approach to polyphonic music retrieval, Iliopoulos and Kurokawa [15]

considered all parts of a polyphonic music piece to match a pattern. They used the Shift-

And algorithm for exact distributed matching, i.e. to match a pattern across different

parts. For example Table 2.7 shows sequences of (pitch, duration) pairs from three voices

of a polyphonic music piece and a pattern that will be matched against the voices. Pairs in

which the first value is zero represents rests.

 25

Table 2.7: Different parts of polyphonic music

 Part1 (72, 2), (70, 2), (69, 4)

 Part2 (0,1),(67,2),(67,1)(0,1)(67,1),(65,1),(64,1)

 Part3 (52, 2), (48, 2), (53, 2), (48, 2)

 Pattern (72, 1) (52, 1) (70, 1) (67, 1)(69, 1) (53, 1) (65, 1) (64, 1)

The approach used by Iliopoulos and Kurokawa replaces the (pitch, duration)

pairs by sequences of pitch values, such that the length of each sequence corresponds to

the duration. For example the (pitch, duration) in the above example (72, 2) is modified

to (72, 1) (72, 1). Table 2.8 shows the modified parts of the polyphonic piece based on

shortest duration, and how the pattern matches different parts of the polyphonic musical

piece. The value -1 in Table 2.8 represents rest value i.e. no note is played at that

particular time. After the polyphonic piece is modified, the Shift-And algorithm is used

for exact distributed matching.

Iliopoulos and Kurokawa [14] also considered the octave displacement problem

(i.e. music played in a higher or lower octave than the original score). To do so, the pitch

Table 2.8: Matching query pattern in modified score

j 0 1 2 3 4 5 6 7

Part1 72 72 70 69 69 69 69 69

Part2 -1 67 67 67 -1 67 65 64

Part3 52 52 48 48 53 53 48 48

Pattern 72 52 70 67 69 53 65 64

values are modified to be the original pitch values modulo 12, (the number of semitones

in an octave) and then add 1.(In western music, single octave is essentially made of 12

 26

notes.) Rest values are not modified. So, a C note with a pitch value of 60 becomes 1 (i.e.

60 mod 12+1). The search pattern also is modified in a similar way. Table 2.9 shows the

octave-modified pattern and the polyphonic music parts, and the shaded cells represent a

match of the pattern. The complexity of the matching algorithm i.e. Shift-And is

O (mn/w) where m is the length of the pattern and n is the length of the single part.

 Table 2.9: Searching of query pattern in modified score

j 0 1 2 3 4 5 6 7

Part1 1 1 11 10 10 10 10 10

Part2 -1 8 8 8 -1 8 6 5

Part3 5 5 1 1 6 6 1 1

Pattern 1 5 11 8 10 6 6 5

 Iliopoulos and Kurokawa also considered key transposed matching by doing the

following modifications:

• Created 11 transposed patterns, by adding 1 to the pitch values of the original

pattern, and then add 2 to the original pattern, and then add 3 to the original

pattern and so on until 11. The rest value in the pattern is not changed. If pitch

value exceeds 12, then subtract 12 from it.

• Then the matching process is performed with all the 12 patterns formed.

2.5 Myers’ Algorithm

Gene Myers described an algorithm that can be used to find approximate

occurrences of a pattern in text. The classic approach to this problem is to compute the

dynamic programming matrix D0…m, 0….n that contains the edit distances between the text

 27

and the pattern. (Edit distances are discussed in section 2.2.2.) The matrix is calculated

using the following equations.

 D0, j = 0 and Di, 0= i

 Di, j = min {Di-1,j-1 + (if (Pi = Tj then 0 else 1), Di-1,j+1, Di,j-1+1}

 for 0 ≤ i ≤ m and 0 ≤ j ≤ n

 The solutions to the approximate string matching problem are all locations j-1in

the text such that D [m, j] ≤ k (where k is allowed number of errors).The time complexity

of this approach is O (mn) where m and n are the lengths of the pattern and the string,

respectively.

For example, let us consider a text string “CAGAT” and a pattern “GATA”; the

dynamic programming matrix of the two strings is shown in Table 2.10.

 Table 2.10: Dynamic programming matrix

 0 1 2 3 4 5

 C A G A T

0 0 0 0 0 0 0

1 G 1 1 1 0 1 1

2 A 2 2 1 1 0 1

3 T 3 3 2 2 1 0

4 A 4 4 3 3 2 1

Ukkonen [22] showed that computing column j in a DP-matrix only requires

knowing the values of the previous column j-1. This makes it possible to save space by

storing only two columns at a time during DP-matrix calculation. Myers used the same

concept in his algorithm, which computes the edit distances without first calculating a

DP-matrix.

 28

The DP-matrix has a property that the difference between adjacent entries in any

row or any column is limited to 1, 0, or -1. Using this property, the following delta values

are derived, for all (i, j) є [1, m] × [1, n]:

 vertical adjacency property ∆vi, j = Di, j - Di-1 , j є {-1, 0, 1 }

 horizontal adjacency property ∆hi, j = Di, j - Di , j-1 є {-1, 0, 1 }

 diagonal property ∆di, j = Di, j - Di-1 , j-1 є { 0, 1 }

Table 2.11, shows the ∆v matrix (i.e. the matrix of ∆vi, j values) for the dynamic

programming matrix in Table 2.10. The values of D [m, j] (i.e. the edit distances) can be

calculated using the summation D [m, j] = Σi=1…m (∆vi, j).

Table 2.11: ∆vi, j matrix

 C A G A T

 0 0 0 0 0 0

G 1 1 1 0 1 1

A 1 1 0 1 -1 0

T 1 1 1 1 1 -1

A 1 1 1 1 1 1

Myers’ algorithm computes successive ∆vj’s (i.e. the columns in the ∆v matrix)

using the horizontal, vertical and diagonal adjacency properties (i.e. the delta values). The

∆v, ∆h and ∆d matrices are represented as boolean matrices, so that the computation of

matrix values can be done using bit operations. The ∆v matrix is represented using two

boolean vectors VP and VN, ∆h is represented using two boolean vectors HP and HN,

and ∆d matrix is represented using the boolean vector D0.The values of the

VP,VN,HP,HN and D0 vectors are calculated using the following conditions:

 29

 VP[i] = 1 at text position j iff ∆vi, j = 1 (a.k.a. the vertical positive delta vector)

 VN[i] =1 at text position j iff ∆vi, j = -1 (a.k.a. the vertical negative delta vector)

 HP[i] =1 at text position j iff ∆hi, j = 1 (a.k.a. the horizontal positive delta vector)

 HN[i] =1 at text position j iff ∆hi, j = -1 (a.k.a. the horizontal negative delta vector)

 D0[i] =1 at text position j iff ∆di, j = 0 (a.k.a. the diagonal zero delta vector)

In all other cases the values of the delta vectors are set to 0. Myers’ proved that the delta

vectors above have the following dependencies, and they are used in the algorithm to find

the edit distances. (Proof of the dependencies is discussed in [14].)

D0i,j ↔ Pi=Tj | VNi,j-1 | HNi-1,j

HNi, j ↔ VPi,j-1 & D0i,j

VNi,j ↔ HPi-1,j & D0i,j

HPi,j ↔ VNi,j-1 | ~ (VPi,j-1 | D0i,j)

VPi,j ↔ HNi-1,j | ~ (HPi-1,j | D0i,j)

Figure 2.11 shows the complete algorithm. There are two steps in the algorithm.

The first step is to preprocess the pattern and the next step is to search the text for the

pattern. In the preprocessing step, a bit-vector B[c] of length m is created for each

different character c in the query pattern. The bit B[c]i (i.e. i-th bit in the bit vector) is set

to 1 iff Pm-i+1 = c; all other bits of B[c] are set to 0.

In the search phase, the bit-vectors D0, HN, HP, VN and VP are calculated using

the dependencies among them for each text position j (0 ≤ j ≤ n-1). Instead of computing

the dynamic programming matrix, the five bit-vectors described above are computed for

each text position. The edit distance is calculated at each text position using the bit-

vectors.

 30

///Preprocessing of the pattern
1 for c є Σ do B[c] = 0m

2 for j є 1….m do B[Pj]= B[Pj] | 0m-j10j-1
3 VP = 1m VN=0m
4 Score = m

///Searching the pattern
5 for pos є 1….n do
6 X = B [Tpos] | VN
7 D0 = VP+(X&VP) ^ VP) | X;
8 HN = VP & D0
9 HP = VN | ~ (VP | D0)
10 X = HP << 1
11 VN = X & D0
12 VP = (HN<<1) | ~ (X | D0)

//output
13 if HP & 10m-1 ≠ 0m
14 then Score + = 1
15 else if HN & 10m-1 ≠ 0m

16 then score -=1
 17 if score ≤ k report occurrence of the pattern

 Figure 2.11: Myers’ algorithm [14].

For example, consider the text T = ‘CAGAT’ and the pattern P= ‘GATA’. In the

preprocessing step, the bit-vectors for each character of the pattern are calculated. The bit

values of the bit-vectors of all other characters (represented as *) are set to 0.

B[G] = 0001 B[A] = 1010 B[T] = 0100 B[*] = 0000.

Initially VP = 1m and VN = 0m. Table 2.12 shows the values of the vectors D0, HN, HP,

VN and VP for each text position of the previous example. The row labeled score

represents the edit distance.

Table 2.12: Search process of the Myers algorithm

 ‘C’ ‘A’ ‘G’ ‘A’ ‘T’
D0 0000 1110 0011 1110 1100
HN 0000 1110 0001 1110 1100
HP 0000 0000 0000 0001 0010
VN 0000 0000 0000 0010 0100
VP 1111 1101 1110 1101 1001

Score 4 3 3 2 1

 31

The running time of the algorithm is O (mn/w). Distributed string matching

(discussed in section 2.2.1.) is done using Myers’ algorithm by modifying line number 6

in Figure 2.8 in the following way [14]:

 X= { B[Tj
1] | B[Tj

2] | B[Tj
3] | …….. B[Tj

h] } | VN

 where Tj
1 ,Tj

2 ,…Tj
h represent the text characters at position j in each of the text strings T1

through Th.

2.6 LCTS Algorithm

 String P is a subsequence of string T if P can be derived from T by deleting zero

or more characters from T. For example, the string ‘abc’ has eight subsequences: abc,

ab, bc, ac, a, b, c, and the empty string. A common subsequence of two strings is a

subsequence that appears in both strings.

 Given two strings P1…m and T1…n, the longest common subsequence (LCS) is the

longest string that is a subsequence of both P and T. The Dynamic programming method

generally is used to calculate the length of longest common subsequence denoted as LCS

(P, T). The dynamic programming method computes a (m+1) × (n+1) matrix using the

following recurrence relation, where 0 ≤ i ≤ m and 0 ≤ j ≤ n:

LCS i, j = 0 if i=0 or j=0

LCS i, j = 1+ LCSi-1, j-1 if i, j > 0 and Pi = Tj

LCS i, j = max {LCS i, j-1, LCSi-1, j} if i, j > 0 and Pi ≠ Tj

 LCSm,n evaluates to the length of the longest common subsequence. The

complexity of the algorithm is O (mn). For example, consider the strings ‘ABAB’ and

 32

‘BABA’ as shown in Table 2.13; the LCS value is calculated using the above recurrence

relation, and the value of the LCS is 3.

Table 2.13: LCS Matrix

 A B A B

 0 0 0 0 0

B 0 0 1 1 1

A 0 1 1 2 2

B 0 1 2 2 3

A 0 1 2 3 3

 The length of the longest common subsequence (LCS) can be used to find the

similarity between two melodies that are represented as string of pitch values (integers).

The greater the LCS value is, then the better the similarity is between melodies. The LCS

value will always be less than or equal to length of the pattern (m ≤ n). Western people

tend to listen to music by observing the intervals between the consecutive pitch values

more than the actual pitch values themselves. For example, melody performed in two

distinct pitch levels is perceived the same regardless if it’s performed in a lower or higher

level of pitches. This leads to the concept of transposition invariance. When LCS is used

to find the similarity between two melodies, which are represented as string of pitch

values (integers), transposition invariance is not considered. LCS calculation can be

modified, so that transposition is considered while matching the melodies.

 Let P and T be pattern and text strings with lengths m and n respectively, over a

finite integer alphabet. The length of the longest common subsequence between P and T

at transposition c, denoted as LCSc (P, T) is to find the LCS value between T and P+c.

(I.e. allowing P to be ‘shifted’ by adding some fixed integer c to the values of all

 33

characters. Here characters are integers). The dynamic programming method generally is

used to calculate LCSc (P, T) at transposition c. The dynamic programming method

computes a (m+1) × (n+1) matrix using the following recurrence relation, where 0 ≤ i ≤ m

and 0 ≤ j ≤ n:

 LCSc i, j = 0 if i=0 or j=0

LCSc i, j = 1+ LCSc
 i-1, j-1 if i, j > 0 and Pi+c= Tj

 LCSc
 i, j = max { LCSc i, j-1, LCSc

 i-1, j} if i, j > 0 and Pi+c ≠ Tj

 For example, let Σ = {0, 1, 2, 3, 4}, pattern P = ‘012’ of length 3, and the text

string T = ‘234’of length 3, the LCS value when no transposition is considered will be 1

but when a transposition of 2 is considered the LCS value is 3.

 LCSc (P, T) will calculate the LCS value at only one transposition value c. When

a set of transpositions are considered instead of one value, then the maximum LCS value

among all transpositions will give the longest common transposition invariant

subsequence (LCTS). It is defined as follows [23]:

 Given a text string T1…n of length n and the pattern P1…m of length m

 (m ≤ n) over a finite integer alphabet Σ = {0… σ}, a string W1…p (p ≤ m) is a

 longest common transposition invariant subsequence of P and T, iff W is

subsequence of P, W+c is subsequence of T (for some constant c, –σ ≤ c ≤σ)

and its length is maximal. W+c denote a constant adding to every character of

string W. I.e. W+c = W1+c W2+c…Wm+c. [– σ, σ] is the set of

transpositions.

The simplest technique to compute LCTS (P, T) is to compute LCSc (P, T) for all c

 (–σ ≤ c ≤σ) from the set {–σ…σ}, and then choose the maximum among the calculated

 34

LCSc (P, T) values. This requires a triple iteration to compute LCSc i, j for every i є

{0…m}, j є {0…n}, and, c є {- σ… σ}, which takes O (σmn) time.

 Lemstrom and Navarro [23] described an algorithm to find the LCTS value in a

better way than above using bit operations. In their algorithm, LCSc (P, T) is computed

for several c values simultaneously. The main concept in the algorithm is to compare

individually on every (Pi, Tj) pair, but solve several transpositions simultaneously. The

values of LCSc i, j will be in the range {0...m} where m is the length of the pattern (m ≤

n). Therefore, to store each value LCSc i, j, log2(m) bits are required. In a single

machine word of length w, w/ log2 (m) (represented as k) different values can be stored.

This means that k values of c (transpositions) can be computed simultaneously. So, the

process of computing LCSc [P, T] for every c є {- σ … σ} is divided into (2σ+1 / k)

separate bit-parallel computations. Figure 2.12 shows the complete algorithm. The Time

complexity of the algorithm is O (σmn log(m)/w).

Distributed string matching (discussed in section 2.2.1.) is done using LCTS

algorithm by modifying the for loop in the line 3 of Figure 2.12. So the modified code

(from line 3-7) will be:

 For h=0; h<max_distribution; h++

 If i=0 | j=0 then Lcs i,j = 0A(length+1)

 Else

 int val = Tj
h - Pi

 If C ≤ val < C+A Then

 B ← B | (0(A+C-1-(val) (length+1) 1(length+1) 0 (val -c)(length+1))

 Else B ← B | 0A(length+1)

 End for

 35

where Tj
1 ,Tj

2 ,…Tj
h represent the text characters at position j in each of the text strings T1

through Th. The complexity is O (hσmn log(m)/w).

// Bit parallel computation of LCS

 LCTS (P,T,C,A,length)
 1 For i є 0 ….. |P| Do
 2 For j є 0 …. |T| Do
 3 If i=0 | j=0 then Lcs i,j = 0A(length+1)

 4 Else
 5 If C ≤ Tj-Pi < C+A Then
 6 B ← 0(A+C-1-(Tj-Pi) (length+1) 1(length+1) 0 (Tj-Pi -c)(length+1)

 7 Else B ← 0A(length+1)

 8 Lcs i,j ← (B& (Lcs i-1,j-1 + (0length1)A) | (~B & Max(Lcsi-1,j ,Lcs i,j-

1)
 9 Return Lcs |P|, |T|.

// dividing into different set of transpositions.

 RangeLcts (P, T, σ)
10 Length ← Ceil(log2 (min(|P,||T|)+1))
11 A ← floor(w/(length+1)
12 C ← - σ
13 Max ← 0
14 While c ≤ σ
15 V ← RangeLcts(P,T,c,A,length)
16 For t є c…c+A-1 Do
17 Max ← max (Max, (V >> (t-c) (length+1) & 0 (A-1) (length+1)01length

18 c← c+ A
 Return Max

Figure 2.12: Algorithm for calculating Longest Common Transposition invariant subsequence [22].

 36

CHAPTER 3

 SYSTEM ARCHITECTURE

 The process of retrieving music by humming starts with the query formulation

in the front-end through microphone and it leads to the presentation of the best match of

music in the database [24]. Figure 3.1 shows how this process is modeled.

Figure 3.1: Architecture of humming song retrieval in music database.

Ranked list of
matching songs

Humming

Query Transcription
(Wave to MIDI)

Transcription result
(MIDI file)

 Modified query
 (Pitch string)

Modified Database
(Distributed String)

Search Algorithm
(Comparison)

 Pre-processing Phase

 Polyphonic

Database Modification
(Binary Files)

 37

The humming song retrieval from the database mainly is divided into two stages;

preprocessing stage and the matching stage. In the preprocessing stage, the MIDI

database files are converted into the binary files. These binary files only contain the

information about the notes (discussed in section 3.2). In the matching stage, the

following steps are performed:

 Humming is captured as wave file and then converted to MIDI.

 Both the humming tune (MIDI) and database (binary files) are converted to

strings.

 Finally the similarity between the hummed tune and the database (both in string

format) is calculated.

3.1 Humming and Query Transcription

 When the users are searching for musical data, either they know what they

want, e.g., song title, artist or genre, where a traditional text-based search is enough, or

they want to find musical data based on content similarity. In the case of searching by

content similarity, it must be possible for the users to build their queries in an intuitive

way. One of the most intuitive ways to find a song in music database is to hum a part of

the song (query-by-humming).

The accuracy (i.e. correct match for the tune) of the music retrieval process

depends on the quality of the hummed tune. Recording the hummed tune in a relatively

noise free environment will reduce the amount of the noise in the humming. In this

research ‘Sound Recorder’ in the Microsoft Windows XP operating system is used for

recording the hummed tune, and the hummed tune is captured using a microphone in a

 38

relatively noise free environment, and stored as a wave file. Similarity between the query

tune and music stored in the database is calculated using approximate string matching

techniques. Therefore, a hummed tune in wave format is to be transformed into a

representation that is appropriate for similarity measurement. For this purpose the

hummed query saved in wave format needs to be converted to MIDI format [25].

Converting from wave format to MIDI format is done by capturing the discrete

pitch information from the wave file [26][27]. The process of capturing pitch information

accurately from humming is difficult, even if the user manages to hum perfectly. The

performance of currently existing software for converting raw audio data into discrete

pitch information is mediocre at best and often will introduce a great deal of noise when

extracting the pitches from a user’s hum [26]. Many commercial software’s are available

that convert wave format to MIDI but they fail to convert humming tune which is in wave

format to MIDI accurately. This is because humming tune generally is not so clear.

In this research Solo Explorer software is used for converting humming stored in

wave format to MIDI format [26]. The accuracy of the Solo Explorer software is better in

the case of humming tune as input [26]. Once the hummed MIDI file is generated as a

result of transcription, required information for the comparison purpose is extracted from

the file and all other information is discarded. MIDI file is comprised of many events and

among them Note-on, Note-off, and tempo events are extracted which contains all

information regarding notes and duration of these notes. All events in the MIDI file are

followed by timestamps, represented in time units. These time units will give the duration

of that particular event. Using this information, MIDI file is converted to a set of notes

 39

where each note is comprised of its start-time, pitch value and duration. The set of notes

are sorted based on the Note-on times.

 These set of notes are converted into string of pitch values, since approximate

string matching is used to find the similarity between the hummed tune and MIDI

database. Conversion into strings is done using the following steps.

 First shortest duration is extracted from the set of notes.

 Using this shortest duration, time periods are formed. Time periods are the

intervals of times, which are multiples of shortest duration. The pitch (integer

value) that is played during that time period is used to form the string.

For example, consider first few notes after sorting formed from the hummed

query for the “Happy Birthday” song in the tabular form as shown in Table 3.1. The

shortest duration is 240. Using this shortest duration the time periods formed, which

are multiples of shortest duration, will be 0-240,240-480,480-720,720-960 and so on.

During these time periods, the pitch values of note played are 47,51,49,49 and so on.

 Table 3.1: (note-on, pitch, duration) pairs Table 3.2: String representation

Duration periods Pitch (String)
0-240 47

240-480 51
480-720 49
720-960 49
960-1200 47
1200-1440 47
1440-1680 54
1680-1920 54
1920-2160 54
2160-2400 54
2400-2640 52
2640-2880 52

Note-on Pitch Duration

0 47 240

240 51 240

480 49 480

960 47 480

1440 54 960

2400 52 480

 40

Table 3.2 contains the total time periods and pitch values of the set of notes. Pitch column

in Table 3.2 represent the string formed. The string formed from the set of notes is ‘47 51

49 49 47 47 54 54 54 54 52 52’.

In the above example, the duration of notes is exact multiple of shortest duration

but this may not be the case always. In that case, if the note is played for more than half

of the duration, of that particular period, the pitch value is considered otherwise it is

discarded. For example consider the set of notes of the form (Note-on, pitch, duration) be

{ (0,52,240) (240, 50, 420) (660,54,300) , (960,52,240) }. The shortest duration among

the set of notes is 240. The duration periods will be [0-240], [240-480], [480-720], [720-

960], [960-1200]. In the first duration period [0-240], pitch 52 is considered. In the

second duration period [240-480], pitch 50 is considered. In the third duration period

[480-720], two pitches should be considered, pitch 50 for duration of 180, and pitch 54

for duration of 60. Since the duration of pitch 50 is greater than half of the duration

period it is considered and pitch 54 is discarded. In the fourth duration period [720-960]

pitch 54 is considered and in the fifth duration period [960-1200] pitch 52 is considered.

The entire string formed will be ‘52 50 50 54 52’.

3.2 Database files modification

Database used in this research is comprised of both monophonic and polyphonic

MIDI files. Database modification is done in two steps. The first step is performed during

preprocessing phase and the second step is performed during the matching phase. In the

first step, each MIDI file in the database is modified similar to that of the hummed query

MIDI file (i.e. conversion from MIDI file to set of notes.). Each set of notes is comprised

 41

of its start-time, pitch value and duration, and these notes are sorted based on the Note-on

times. These sorted notes are written into a binary file. In this way all the database MIDI

files are converted to binary files. This conversion from MIDI file to binary file does not

depend on the hummed query; hence it can be done before the actual matching phase.

In the second step (matching phase), from each of the binary file the set of notes

are extracted. These set of notes are converted into sequences of pitch values, similar to

that of hummed query modification. The shortest duration of a note among the set of

notes of the query is used for calculating the time periods. The database contains

polyphonic music files, so the number of notes played during a particular duration period

can be more than one.

For example, consider a sorted set of notes base on Note-on, for a database binary

file, in (start time, pitch, duration) format be:

{(0, 50, 2) (0, 63, 2.2) (1, 48, 2.6) (2.1, 60, 3) (2, 65, 2.1) (4, 62, 2) (5, 72, 1.4) (5, 71, 2)}

Let the hummed query set of notes be:

 {(0, 50, 1.2) (1.2, 63, 1) (2.2, 65, 1.8) (4, 62, 2) (6, 71, 1)}

To modify the set of notes in the database, first the shortest duration of a note in the

query is required; from the above example the shortest duration in the query is 1.

Therefore the time periods will be [0-1], [1-2], [2-3], [3-4], [4-5], [5-6], [6-7]. During the

first time period [0-1], both the pitches 50 and 63 are considered; in the second time

period [1-2] pitch values 50, 63, 48 are considered. In the third time period, since the

pitch value 63 is only for 0.2 which is less than the half of duration, the period is

discarded. In this way all the sequences of strings are calculated. Table 3.3 shows the

database modification into set of strings and how the query matches it.

 42

Table 3.3: Database string representation

Time

Polyphony
[0-1] [1-2] [2-3] [3-4] [4-5] [5-6] [6-7]

1 50 50 48 48 60 62 71

2 63 63 60 60 62 72 --

3 -- 48 65 65 -- 71 --

Query 50 63 65 65 62 62 71

In the above example the degree of polyphony i.e. maximum number of notes

played at the same time is 3.

3.3 Problems in Music Retrieval

 After the hummed query and the database files are transformed to the pitch value

strings, similarity between them is calculated. In this research Myers algorithm and the

LCTS algorithm are used to find the similarity. Myers algorithm output will be the edit

distance, and the LCTS algorithm output will be the length of longest common

subsequence with transposition invariance. There are many problems to be considered in

the music retrieval process; distributed matching, transposition invariance and octave

equivalence are some of them. The algorithms are modified accordingly to consider all

this problems.

3.3.1 Transposition Invariance and Octave Equivalence

 Transposition in music means playing or writing music in a different key i.e. to

change the pitch of each note without changing the relationships between the notes.

Transposing a melody up or down by one octave will not change the key. Transposing is

 43

http://simple.wikipedia.org/wiki/Music
http://simple.wikipedia.org/wiki/Key_%28music%29

a useful skill for people who play an instrument, especially the piano or organ. If a pianist

is accompanying a singer and the song is a little too high for the singer’s voice it is very

useful if he is able to transpose it down so that the music sounds in a lower key. Two

musical objects are transposition ally equivalent if one can be transformed into another

by transposition. For example, Figure 3.2 shows the first few notes of “Jingle Bells”

played in the key of F# and then played in key C i.e. 5 semitones away

Figure 3.2: Jingle bells song played in F# and C key

 The hummed tune may be in a different key (i.e. it may start on different note or

a few notes off-pitch throughout the course of the hummed tune.) to than that of stored

version in the database. In this case during the calculation of similarity this should be

considered. During the similarity calculation, both the hummed query and database MIDI

files are converted into strings of pitch values. When there is a transposition in the query,

pitch values will be in a different key, i.e. all pitch values are transposed by certain

amount.

Let P be a pattern string formed from hummed tune and let T be a set of text

strings formed from one of the database MIDI files. Both pattern and text strings are

formed from an alphabet, which consists of different pitch values. In MIDI different pitch

values are 0-127. So the alphabet size σ is 128. When the pattern is transposed by amount

c (c is integer), means each character in P is added with an integer c. Possible

 44

http://simple.wikipedia.org/wiki/Musical_instrument
http://simple.wikipedia.org/wiki/Piano
http://simple.wikipedia.org/wiki/Organ_%28music%29
http://simple.wikipedia.org/wiki/Accompaniment_%28music%29
http://simple.wikipedia.org/wiki/Singer
http://simple.wikipedia.org/wiki/Song
http://simple.wikipedia.org/wiki/Voice

transpositions in a pattern, i.e. c values are {-127 …. 127}.LCTS algorithm calculates the

length of common subsequence between P and T with different transpositions in parallel

using the bit operations (Discussed in section 2.6.). The complexity of this algorithm is O

(σmn log(m) /w), where σ is the alphabet size. In this case, it is 128.

During the transcription from wave to MIDI of humming tune, sometimes the

pitch values extracted from wave file will have a little error [23]. For example, instead of

pitch value 65 it will be pitch value 64 or 63, i.e. an error of 1. In music matching, this

error allowance should be considered. To consider this case, δ-matching is used while

calculating the similarity. Consider two integer strings A1…m and B1…m, then these strings

are said to be δ-matched if Ai Є [Bi-δ, Bi+δ] for all 1 ≤ i ≤ m. For example, string

‘1234’ matches ‘3456’ exactly when the error allowed is 2. Here the characters in the

strings are assumed to be {1, 2, 3, 4, 5, 6}.

Longest common subsequence between two strings with δ-matching can be

calculated using the dynamic programming method. The dynamic programming method

computes a (m+1) × (n+1) matrix using the following recurrence relation, where 0 ≤ i ≤ m

and 0 ≤ j ≤ n:

 LCSc i, j = 0 if i=0 or j=0

LCSc i, j = 1+ LCSc
 i-1, j-1 if i, j > 0 and Pi Є [Tj-δ, Tj+δ]

 else LCSc i, j = max { LCSc i, j-1, LCSc
 i-1, j} .

LCTS algorithm can be modified so that the algorithm considers both the δ-matching and

transposition invariance [23].

 Myers algorithm doesn’t consider transposition during the calculation of the edit

distance. But, transposition can be achieved by modifying the pattern for every different

 45

possible transposition, and then running the actual algorithm for different patterns

formed. Therefore by considering transposition, Myers algorithm complexity will be

increased by σ times more than the original complexity, which will be O (σmn/w).

In music, an octave is the interval between one musical note and another with half

or double its frequency and is the point where the most aesthetically related pitches

harmonize most closely. For example, if one note has a frequency of 200 Hz, the note an

octave above it is at 400 Hz, and the note, an octave below it is at 100 Hz. The ratio of

frequencies of two notes an octave apart is therefore 2:1. Further octaves of a note occur

at 2n times the frequency of that note (where n is an integer), such as 2, 4, 8, 16, etc. and

the reciprocal of that series. Octave equivalence partitions the notes into twelve

equivalence classes (Table 2.1). The user may have less memory about the melody, so the

humming can be one octave higher or lower to that of the original melody and also the

transcription of the query from wave to MIDI format may cause the same problem. Since

the comparison between the query and database is done based on the actual pitch values,

when the query is an octave apart, the similarity values will be affected if it is not

considered.

During the similarity calculation using the algorithms, octave equivalence is

nothing but the transposing of a pattern string with values that are multiples of 12. That is

the transposition c can have the value {…-48,-36,-24,-12, 0, 12, 24, 36, 48 …}.

Similarity is calculated considering all the possible pitch values i.e. {-127…127}, octave

equivalence transpositions will only be the subset of the total transposition values.

Therefore no modification is required to the algorithms to consider octave equivalence.

 46

http://en.wikipedia.org/wiki/Music
http://en.wikipedia.org/wiki/Interval_%28music%29
http://en.wikipedia.org/wiki/Note
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Hertz

 47

3.3.2 Distributed Matching

Music in the database can be both monophonic and polyphonic. In polyphonic

music, more than one note may be sounded simultaneously. So the pitch string formed

after modifying the database polyphonic MIDI file will be set of equal length strings.

The query is monophonic; it is converted into single string of pitch values. This pitch

string is matched against the collection of strings. This matching is called distributed

matching (Discussed in section 2.2.1). Gene Myers’ algorithm and LCTS algorithm both

deal with distributed matching. Using both the algorithms the similarity values are

calculated.

CHAPTER 4

EXPERIMENTAL EVALUATION

4.1 Testing Interface

 For testing purposes, the interface as shown in Figure 4.1 is implemented.

Figure 4.1: Testing Interface

 48

The testing interface, MIDI file processing, and the algorithms are implemented in Visual

C++.The testing interface mainly performs three steps.

 Ability to record the humming

 Adding MIDI files to the database

 Searching the database to find similar musical files to that of a hummed

tune

The testing interface provides flexibility to hum the tune using a microphone.

‘Start Record’ and ‘Stop’ buttons are used to start and stop the recording of the humming

respectively. By pressing the ‘Play Hummed Tune’ button, the hummed tune that is

recorded can be played. If the humming is not good (i.e. hummed tune has noise, etc),

humming can be recorded again using the ‘Start’ and ‘Stop’ buttons. Recording and

playback of the humming are implemented using Windows API function mciSendString.

This function sends the appropriate command string (‘play’, ‘record’ etc) to an MCI

device (multimedia control interface). The hummed tune is saved in PCM wave format

with sampling rate of 44.1 khz, single channel (mono), bit resolution of 16 bits. The wave

format is converted to MIDI using the Solo Explorer software.

 Adding MIDI files to the database can be done using the interface. The MIDI file

that is to be added to the database can be selected using the ‘browse’ button or by typing

the path of the file in the respective textbox. Once the file is selected, by clicking the

‘Add file’ button, the MIDI file is converted to a binary file (discussed in section 3.2.) by

extracting the note information. Using the ‘Add Folder’ button all MIDI files in a

particular folder can be added to the database.

 49

Searching the database for the original MIDI file of the hummed tune is done by

finding the similarity between the hummed tune and each MIDI file in the database. Both

LCTS and Myers algorithms can be used to find the similarity. As shown in the interface,

using ‘LCTS’ and ‘Myers’ buttons, respective algorithms are used to calculate similarity.

Output of the algorithm contains the sorted similarity values and among them, the top 10

MIDI files (Figure 4.1) are displayed with file names and percentage of similarity.

 All the experiments in this research were run on a computer with Intel Pentium IV

processor 1.86 GHz, 1GB RAM under the Windows XP operating system. The length of

the machine word is 64 bits. The alphabet used in the algorithms is of size 128, and is

comprised of MIDI pitch values {0…127}. Parameters to be considered in all

experiments are:

 Average length of the database MIDI file after modification in string format (n)

 Average degree of polyphony of database files. (h)

 Length of the hummed query MIDI file in string format (m)

 Total transpositions considered. (σ)

4.2 Retrieval accuracy analysis

In this experiment, retrieval accuracies of both the algorithms are compared. The

database in this experiment contains 250 polyphonic musical pieces in MIDI format.

These musical pieces are comprised of folksongs, rhymes, classical, and Beatles

[29][30][31]. The average degree of polyphony (i.e. number of notes playing at a

particular time period.) of musical pieces in the database is four. A total of 150 humming

samples are used in this experiment. Among the 150 samples, 50 samples are collected

 50

from three different users, using the testing interface. The remaining 100 humming

samples are collected from Erdem Unal and S.S. Narayanan [28]. The average length of

the humming samples (m) is 45. All possible transpositions (σ) i.e. 256 are considered

during similarity calculation. LCTS algorithm also considers the δ-matching with (δ=1)

during similarity calculation. Figure 4.2 shows the percentage of humming samples that

produces the correct target MIDI file in the database using both the algorithms. The

LCTS algorithm returns correct result within the top 5 with an accuracy of 61%, and the

Myers algorithm with an accuracy of 56%. LCTS algorithm performs better in terms of

accuracy; one of the reasons for it is δ-matching, which allows slight distortion in pitch

value during the similarity calculation. In Figure 4.2 the top 1, top 3, top 5 and top 10

results are shown.

0

10

20

30

40

50

60

70

80

Top 1 Top 3 Top 5 Top 10

%
 o
f c
or
re
ct
 r
es
ul
ts

Rankings

Myers Algorithm

Lcts Algorithm

Figure 4.2: Retrieval rankings of the humming samples.

 51

 The response time (i.e. the time taken for the similarity calculation) is calculated

for each of the humming sample for both the algorithms. Using these response times, the

average response time is calculated for this experiment. The average response time for

Myers algorithm is 250 milliseconds, and LCTS algorithm is 340 milliseconds.

 The same experiment is repeated by considering only the transpositions of two

octaves higher, and two octaves lower. In this case, 48 different possible transpositions

should be considered. The retrieval accuracy changes < 2% in both algorithms. Figure 4.3

shows the retrieval accuracy of both algorithms. The average response time of the Myers

algorithm reduces to 75 from 250 milliseconds. The average response time for LCTS

algorithm reduces to 145 from 340 milliseconds.

0

10

20

30

40

50

60

70

80

Top 1 Top 3 Top 5 Top 10

%
 o
f c
or
re
ct
 r
es
ul
ts

Rankings

Myers Algorithm

Lcts Algorithm

Figure 4.3: Retrieval of humming samples considering fewer transpositions

 52

4.3 Response Time

Response time is the time taken for calculating the similarity values between the

query MIDI file and the files in the database. In this section the response time of both the

algorithms are compared by altering the values of some of the interesting parameters. The

parameters considered are the database size, query length (m) and average degree of

polyphony of database files. Response times are measured by varying one parameter at a

time, and using a fixed value for other parameters. The results for each experiment were

averaged over 20 repetitions to smooth out any small variations that occur. For the

purpose of this experiment, 500 MIDI files are collected from internet which includes

folksongs, rock songs, and ringtones.

In this experiment, variation in the response time is observed when the size of the

database changes. Different size datasets {100, 200, 300 …} are created from the MIDI

files so that the average length of the database MIDI file in string format is about 250 and

average degree of polyphony is 3. The response times for different datasets are recorded

for a query of length 45. Figure 4.4 shows the response time variation of the two

algorithms with different database sizes. The x-axis of the graph indicates the size of the

database and the y-axis indicates the response time in milliseconds. As shown in the

Figure 4.4 the response time increases with the database size; however, the increase in

Myer’s algorithm is less when compared to LCTS Algorithm.

 53

y = 1.068x + 1.8
R² = 0.998

y = 1.918x ‐ 10.8
R² = 0.992

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Re
sp
on

se
 T
im

e
(M

ill
iS
ec
on

ds
)

Number of Songs

Myers Algorithm

Lcts Algorithm

Linear (Myers Algorithm)

Linear (Lcts Algorithm)

Fig 4.4: Response time comparison with database size

The response time is often affected by the length of the query. In this section

response time is studied by varying the length of the query on a fixed database. The

database in this experiment consists of 250 MIDI files. The average length of the

database files in string format is 250, and the average degree of polyphony is 3. Figure

4.5 shows the variation of response time with query length for both the algorithms. The

x-axis of the graph indicates the length of the query and the y-axis indicates the response

time in milliseconds. For smaller query length, LCTS algorithm has less response time

than the Myers algorithm. But as the query length increases, the Myers algorithm has a

better response time.

 54

y = 1.068x + 1.8
R² = 0.998

y = 1.918x ‐ 10.8
R² = 0.992

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Re
sp
on

se
 T
im

e
(M

ill
iS
ec
on

ds
)

Number of Songs

Myers Algorithm

Lcts Algorithm

Linear (Myers Algorithm)

Linear (Lcts Algorithm)

Fig 4.5: Response time comparison with query length

The variation of the response time with average degree of polyphony is

considered here. If the database contains only monophonic MIDI files then the average

degree of polyphony will be 1. To observe the variation datasets are created from the

MIDI files each containing approximately about 50 MIDI files. Each dataset vary in the

average degree of polyphony. Response times of both the algorithms are recorded on

different datasets. Figure 4.5 shows how both algorithms vary with the degree of

polyphony. Myers algorithm is independent on the degree of polyphony, so the response

time doesn’t change to great extent as degree of polyphony increases. LCTS algorithm

approximately varies linearly with the increase in degree of polyphony.

 55

0

100

200

300

400

500

600

700

0 2 4 6 8

Re
sp
on

se
 T
im

e
(M

ill
is
ec
on

ds
)

Avg Degree of Polyphony

Lcts Algorithm

Myers Algorithm

Fig 4.6: Response time comparison with Average degree of polyphony

 56

CHAPTER 5

CONCLUSION

5.1 Summary

 In spite of the growth of digital music libraries, or generically speaking, any

multimedia database, it is really useful only if users can find what they are seeking in an

efficient manner. Query-by-humming is one of the efficient ways of retrieving musical

information. Finding the best matching database target to a melodic query has been of

great interest in the music information retrieval world. Most of the research in music

retrieval is focused on monophonic music. However, most music is polyphonic with

multiple notes playing the same time. This research is focused on content-based music

information retrieval from a polyphonic MIDI music database using a monophonic query.

Pitch and duration features of a note are used for music retrieval purpose.

 Approximate string matching techniques are used for calculating the similarity

between the hummed tune and the database with polyphonic MIDI music files. Two bit-

parallel approximate string matching algorithms Myers and LCTS are adapted to the

context of music information retrieval in polyphonic database. Modifications are done to

the algorithms in order to consider the distributed matching, transposition invariance and

octave displacement. Retrieval accuracies of both the algorithms are compared on

database of 250 polyphonic MIDI files, using 150 humming samples.

 57

LCTS algorithm returns the correct result within the top 5, 61% of the time, and

Myers algorithm 54% of the time. LCTS algorithm is better in terms of accuracy; one of

the reasons is δ-matching used in the algorithm which allows slight distortion in pitch

value during the query transcription from wave to MIDI format. Response times are

calculated by varying different parameters like the query length, degree of polyphony and

size of the database. Even though Myers algorithm performs better than LCTS, the

response time of both algorithms is less than 1 sec on a database of 250 songs.

5.2 Future Extension

 In this research, the conversion of humming tune (wave format) to MIDI is

performed using third party software. As a future extension, this can be built into the

current framework the conversion using the pitch tracking algorithms. Moreover, it

would be interesting to convert the framework to be accessible remotely. This allows the

user to hum the query remotely (client-server architecture) and retrieve the similar songs

from music a database.

 58

REFERENCES

1. A. Ghias, J. Logan, and D. Chamberlin. Query by Humming. In Proceedings of

ACM Multimedia 95, pages 231-236, November 1995.

2. MIDI Manufacturers Association. The complete MIDI 1.0 detailed specification,

1996.

3. Boyer R.S., Moore J.S. A fast String Searching Algorithm. Communications of the

ACM. 20:762-772, 1977.

4. Richard M. Karp, Michael O. Rabin. Efficient randomized pattern-matching

algorithms. IBM Journal of Research and Development 31 (2), 249-260, 1987.

5. R. A. Baeza-Yates, G. H. Gonnet. A New Approach to Text Searching.

Communications of the ACM 35(10), 74-82 , 1992.

6. K. Lemstrom, J. Tarhio. Detecting monophonic patterns within polyphonic sources.

In Proceedings of Content-Based Multimedia Information Access Conference

Proceedings, 2000.

7. Tetsuya Kageyama, Kazuhiro Mochizuki, and Yosuke Takashima. Melody

Retrieval with Humming. In Proceedings of the International Computer Music

Conference, pp.349-351, September 1993.

8. Smith, L., & Medina, R. Discovering themes by exact pattern matching. In

Proceedings of the Second Annual International Symposium on Music Information

Retrieval 2001. pp. 31-32 2001.

 59

http://www.research.ibm.com/journal/rd/312/ibmrd3102P.pdf
http://www.research.ibm.com/journal/rd/312/ibmrd3102P.pdf
http://www.sigmod.org/dblp/db/indices/a-tree/g/Gonnet:Gaston_H=.html
http://www.sigmod.org/dblp/db/journals/cacm/cacm35.html#Baeza-YatesG92

9. Needleman, S. B. and C. D. Wunsch. A General Method Applicable to the Search

for Similarities in the Amino Acids Sequences of Two Proteins, Journal of

Molecular Biology 48:443-453, 1970.

10. M. Mongeau and D. Sankoff. Comparison of musical sequences. Computers and

the Humanities, 24:161–175, 1990.

11. R. J. McNab, L. A. Smith, I. H.Witten, C. L. Henderson, and S. J. Cunningham.

Towards the digital music library: Tune retrieval from acoustic input. In

Proceedings First ACM Conf. on Digital Libraries, pages 11–18, Bethesda, MD,

USA, 1996.

12. Lemstrom, K. and S. Perttu. SEMEX - An efficient Music Retrieval Prototype. In

Proceedings of International Symposium on Music Information Retrieval 2000.

13. S. Wu and U. Manber. Fast text searching allowing errors. Communications of the

ACM v.35 n.10, pages 83-91, Oct. 1992.

14. E. Myers. A fast bit-vector algorithm for approximate string matching based on

dynamic programming, J.Assoc Comput.Mach 46, 3, 395-415(1999).

15. C. S. Iliopoulos and M. Kurokawa. Exact and Approximate Distributed matching

for musical Melodic recognition 2001.

16. L. Prechelt and R. Typke. An interface for melody input. ACM Transactions on

Computer-Human Interaction, 8(2):133–149, 2001.

17. B. Pardo and M. Sanghi. Polyphonic Music Sequence Alignment for Database

Search. International Conference on Music Information Retrieval. 2005.

 60

18. Roger Dannenberg, Ning Hu. Understanding search performance in Query-by-

humming Systems. In Proceedings of the International Symposium on Music

Information Retrieval 2004.

19. A. Uitdenbogerd and J. Zobel. Melodic Matching Techniques for Large Music

Databases, in Proceedings of the ACM Multimedia Conference 1999.

20. J.Pickens. A survey of feature selection techniques for Music Information

Retrieval. In Proceedings of 2nd International Symposium on Music Information

Retrieval 2001.

21. A.L. Uitdenbogerd, and J. Zobel. An architecture for effective music information

retrieval, Journal of the American Society for Information Science and

Technology, 55(12), 1053-1057, 2004.

22. Ukkonen, E. Finding approximate patterns in strings. J. Algorithms 6, 132–137,

1985.

23. K. Lemstrom and G. Navarro. Flexible and efficient bit-parallel techniques for

transposition invariant approximate matching in music retrieval. In Proceedings

10th International Symposium on String Processing and Information Retrieval

2003.

24. C. Yang. Peer-to-peer architecture for content-based music retrieval on acoustic

data. In Proc. World Wide Web Conference, pages 376–383, 2003.

25. Sangbo Park, Suckchul Kim, Eenjun Hwang and Kwanjung Byeon. Automatic

Voice Query Transformation for Query-by-Humming Systems, Proceedings of the

Ninth International Conference on Internet and Multimedia Systems and

Applications, pages 197-202, 2005.

 61

http://www.cs.rmit.edu.au/%7Ealu
http://www.cs.rmit.edu.au/%7Ejz
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/p/Park:Sangbo.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hwang:Eenjun.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Byeon:Kwanjung.html

 62

26. Valeriy Lobaryev, Gene sokolov, Alexandr Gordyeve. Sloud Query-by-Humming

Search Music Engine 2006.

27. W.Chai and B. Vercoe. Melody retrieval on the web. In Proceedings of Multimedia

Computing and Networking 2002.

28. Erdem Unal, Shrikanth Narayanan, Maverick H.-H. Shih, Elaine Chew, and C.-C.

Jay Kuo. Creating Data Resources for Designing User-centric Front-ends for Query

by Humming Systems. ACM Multimedia Systems Journal, Special Issue on Music

Information Retrieval, 2005.

29. Free polyphonic ringtones. http://www.free-nokia-ringtones.uk.com/nokia-

ringtones-midi-A.html. Last accessed February 20 2008.

30. Free MIDI File database. http://www.mididb.com/. Last accessed February 20,

2008.

31. Free MIDI files. http://www.8notes.com/midi/. Last accessed February 20,2008

http://www.free-nokia-ringtones.uk.com/nokia-ringtones-midi-A.html.%20Last%20accessed%20February%2018,2008
http://www.free-nokia-ringtones.uk.com/nokia-ringtones-midi-A.html.%20Last%20accessed%20February%2018,2008
http://www.mididb.com/
http://www.8notes.com/midi/

VITA

Ravikumar Nidadavolu

Candidate for the Degree of

Master of Science

Thesis: CONTENT-BASED RETREIVAL OF MUSIC USING MONOPHONIC

QUERIES ON A DATABASE OF POLYPHONIC, MIDI INFORMATION.

Major Field: COMPUTER SCIENCE

Biographical:

Personal Data: Born in Tanuku, Andhra Pradesh, India on August 8,1983

Education:
Received B.Tech in Information Technology from the Andhra University,
Vizag, Andhra Pradesh, India in 2004.
Completed the requirements for the Master of Science with a major in
Computer Science at Oklahoma State University, Stillwater, Oklahoma in May,
2008.

Experience:

Graduate Assistant in Scholarship and Financial Aid department, OSU, Stillwater

Oklahoma.

ADVISER’S APPROVAL: Dr. Blayne E. Mayfield

Name: Ravikumar Nidadavolu Date of Degree: May, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: CONTENT-BASED RETREIVAL OF MUSIC USING MONOPHONIC

QUERIES ON A DATABASE OF POLYPHONIC, MIDI
INFORMATION

Pages in Study: 62 Candidate for the Degree of Master of Science

Major Field: Computer Science

Due to the large amount of musical data available on the internet in recent years,
efficient and intuitive methods are required for searching the musical data. Musical
search services, such as the iTunes provides, support querying capabilities on the basis of
metadata tags (title, artist, etc) associated with the musical data. The natural way of
searching musical data is to search by its content rather than secondary features like title,
genre etc, because the content is usually more memorable. In this research, content-based
music retrieval is performed on a polyphonic MIDI music database where the query is a
hummed tune. Two approximate string matching algorithms, LCTS and Myers
algorithms are modified, applied to the problem, and retrieval performance is calculated.
Response times of the algorithms are calculated by altering the values of some of the
interesting parameters such as the query length, degree of polyphony and size of the
database.

