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CHAPTER 1

INTRODUCTION

1.1. Background

Freefonn composite structures result from combining advanced composite

materials with rapid prototyping (RP) technology. Advanced composite materials

provide these structures with high strength, while RP technology allows the

structures to be built without reliance upon part-specific rigid tooling.

Advanced composites (also known as engineered composites) are a class of

materials consisting of high strength, high modulus fibers suspended in a resin

matrix. The fibers give the material its strength, while the resin matrix bonds the

fibers together and helps transfer load from one fiber to the next. In general,

advanced composites have high strength-to-weight ratios, which makes them very

useful in the aerospace industry. A main disadvantage of composite materials,

though, is that one often requires special tooling (i.e., fonns or molds) to fabricate a

composite part. The tooling can be quite expensive or difficult to obtain, and every

unique structure may require its own special tool.

Rapid prototyping is a set ofmanufacturing processes for fabricating physical

objects directly from three-dimensional computer-aided-design (CAD) models.

1



There are numerous different RP construction techniques and build materials, but

they all share the same general approach: a computer model of the desired object is

sliced mathematically into thin layers, and then the RP fabricator reads th'e geometry

of each slice and builds the desired object in a layerwise additive fashion.

Traditionally, RP parts are used only for visualization of structures and testing the fit

of assembly components since the structures generally have relatively low strength.

Research is currently being performed at Oklahoma State University to

utilize rapid prototyping parts as a substructure upon which composite laminates are

fabricated. On one hand, this "freefonn composite manufacturing" is a technique for

embedding strength (via composite materials) into the RP part. On the other hand, it

is a technique for manufacturing advanced composite parts without the need for

expensive tooling (the RP part itself serves as the tool). By either interpretation, the

result is fast, cost-efficient production of stron.g, lightweight structures.

As the viability of freefonn composite parts increases, so does the need for

analysis tools to evaluate these structures. Just as with other manufactured products,

good design of freeform composites requires prior understanding of the stresses and

strains that the part will experience in service. The current standard for gaining this

type of infonnation is finite element analysis.

Numerous software packages exist for perfonning finite element analysis of

structures. Amon.g them are ANSYS,CADRE,ABAQUS, and ProIMECHANICA.

For this research, ProlMECHANICA has been identified as the software of choice

because it interfaces so well with the Pro/ENGINEER solid modeling software often

used to generate the CAD models for RP construction.
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1.2. Research Objective

The objective of this research is to evaluate the ProlMECHANICA software

as a tool for performing finite element analysis of freefonn composite structures.

Specifically, we wish to analyze several composite beam test specimens obtained

through freefonn composite construction, and we want to model their response to an

ASTM three-point bending test. After running the ProlMECHANICA analysis, we

will compare the FEM computational results to experimental results obtained in

OSU's mechanical engineering laboratories. The computer models can then be

modified and re-analyzed to study the effects of changing the geometry or

composition of the structures.
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CHAPTER 2

LITERATURE REVIEW

This research project involves the finite element analysis of freefonn

composite structures using Pro/MECHANICA. As discussed in the preVIOUS

chapter, freeform composite structures result from the combination of rapid

prototyping technology and advanced composite materials.

To provide a thorough background for this research, the present chapter gives

an overview of advanced composite materials and rapid prototyping technology,

followed by an investigation of the finite element method and PTC's

ProlMECHANICA software package.

2.1. Advanced Composite Materials

A composite material is typically defined as any material made up of two or

more constituent materials, such that the properties of the composite are superior to

those of the constituents acting independently. The term "advanced composites" (or,

alternatively, "engineered composites") refers to a class of materials manufactured

from high performance fibers suspended in a resin matrix, offering structural

performance far superior to conventional materials.
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The development of advanced composites began in the 1960's, motivated by

the need for strong yet lightweight manufacturing materials for the aerospace

industry. As materials were dev'eloped, they quickly found application ·n other

manufacturing markets as well, and they are now utilized in a great number of

products ranging from recreational equipment to industrial robotics.

Advanced composites offer numerous advantages over c'onventional

materials. Among these are the following [Advanced Composites Group, 199'9]:

• Extended life cycle. Composites offer excellent fatigue life and very good
resistance to environmental degradation and corrosion. Furthennore,
composites can have outstanding impact resistance.

• High strength and stiffness. The high specific modulus and strength of
composites enables the construction of very strong and stiff structures, with
substantial weight savings.

• Design efficiency. Composite structures can be designed to give exacting
perfonnance characteristics. By aligning fiber orientation with the direction
ofprinciple stresses, the designer can maximize structural efficiency.

Advanced composites thus offer the advantages of lower weight,higher stiffness,

greater strength, and improved durability.

Advanced composite materials consist of two principal compon,ents:

reinforcing fibers and a homogeneous resin matrix. The following sections describe

these components in detail.

2.1.1. Reinforcing Fibers

The reinforcing fibers in advanced composites provide the material's high

strength. The percentage of fibers (by volume) in the material is typically 10 to 60

percent [Kalpakjian, 1997].
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Reinforcing fibers are most commonly made of glass, carbon, aramid,

polyethylene, or boron. Glass fibers are the most frequently used and least

expensive of the fibers. Carbon has higher strength and stiffuess values but is m·ore

expensive. Aramid fibers (commonly marketed under the trade name Kevlar®) are

among the toughest fibers available and are normally applied to areas where there is

a likelihood of impact. Like Kevlar, polyethylene (also known as Spectra®) can

absorb and dissipate energy well and is commonly used in impact areas. It is lighter

than Kevlar, but it is also more expensive and has a relatively low melting point.

Boron fibers exhibit high strength and stiffness and are resistant to high

temperatures, but they have a high density an~ are expensive.

The fibers in advanced composites may be randomly dispersed in the resin

matrix or may be aligned in specific orientations. When all the fibers in the material

are oriented along a single direction, the material is termed a uni-directional

composite or uni-directional tape. Alternatively, fibers may be woven together to

fonn a cloth-like fabric that has reinforcement fibers oriented in multiple directions.

These composite fabrics are available in numerous different weave patterns based on

the particular configuration in which fibers are interlaced with one another. Three of

the more common weave patterns are illustrated in Figure 2.1 below.

The plain weave (Figure 2.la.) is an "over-under" pattern in which fibers

pass alternatively above and below each other. A twill weave is constructed of fibers

passing above and below a particular number of cross fibers. For example, a 2x2

twill (Figure 2.1b) has fibers passing over two fibers and then under two fibers.

Adjacent fibers are offset by one cross fiber, and this creates a "herring bone" or

6



diagonal pattern in the fabric. The satin weave consists of fibers passing over a

particular number of cross fibers and then under one cross fiber. For example, a 5

harness satin weave has fibers passing over four fibers and then under one, as

illustrated in Figure 2.1c.

P·lain Weave:

• • • • •

• • • • •
(a)

2x2 T¥/ill Weave:

• •• • •••• • • • •• • • • •
• • • • •
• • • •.. • • ·.'• • • •

• • • • •
• • '... '

• • • • •
• • • • • •

(b)

5 Hamess Satin Weewe:

(e)

Figure 2.1: Common weave patterns of carbon fiber fabric [Advanced Composites Group,
1999J.

In this research effort, two different composite fabrics were utilized: a 2x2

twill and a plain weave. The reinforcing fibers in both fabrics were carbon.
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2.1.2. Resin Matrix

The resin matrix in advanced composite materials has two main functions:

• Support the fibers and transfer load from one fiber to the next.

• Protect the fibers against physical damage and the environment.

Transferring loads is important in order to distribute stresses in the material.

Supporting the fibers keeps them in the correct position and orientation to carry the

applied load. Protecting the fibers is necessary since the fibers themselves are

generally brittle and may be sensitive to moisture or other contaminants.

Several different resin types are commonly used in composites. The most

frequently used ·are epoxy resins, which exhibit good corrosion resistance and high

toughness. Polyester resins are also frequently used; they are less expensive than

epoxies but do not have as good mechanical properties. Phenolic resins are

commonly used when fire resistance is a primary concern (i.e., aircraft interiors); in

a fire they give off less smoke and toxic fumes than epoxy or polyester resins.

Cyanate ester resins are found in high-temperature applications; although they are

expensive, they can retain their mechanical properties at extremely high service

temperatures.

The two composite materials in this research effort both utilized epoxy resin

systems.

2.2. Rapid Prototyping

Rapid prototyping (RP), also known as solid freefonn fabrication (SFF),

refers to a set of manufacturing processes for producing complex solid objects
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directly from a computer model without part-specific tooling or final assembly.

These processes are often categorized based on the initial fonn of their materials,

and as such they can be classified as (1) liquid-based, (2) solid-based, or (3) powder­

based systems [Kai & Fai, 1997].

Liquid-based rapid prototyping systems begin with a liquid photocurab e

resin and build the desired three-dimensional object using laser radiation (usually in

the ultraviolet range) to solidify the resin layer-by-Iayer. An example of this method

is the stereolithography process commercialized by 3D Systems. Solid-based rapid

prototyping utilizes solid material in the form of wire, pellets, or rolls as its starting

material; the desired three-dimensional object is produced using processes analogous

to extrusion, lamination, or ink-jet printing. Examples of solid-based RP include

Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LaM), and

Multi-Jet Modeling (MJM). Finally, powder-based rapid prototyping systems begin

with powder (in grain-like fonn) and employ a laser or glue-like adhesive to bind the

grains into the desired solid object. Examples include Selective Laser Sintering

(SLS) and 3-Dimensional Printing (3DP).

This research effort utilizes products made by two of the above methods,

stereolithography and Fused Deposition Modeling. The following sections discuss

these technologies in greater detail.
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2.2.1. Stereolithography

Stereolithography (SL) was developed in the mid-1980's by inventor Charles

Hull. The first Stereolithography Apparatus (SLA) for producing SL parts was

marketed in 1988 by Hull's company, 3D Systems [3D Systems, 2002].

The stereolithography process begins with a three-dimensional CAD model

of the desired object. The CAD model is then tessellated, approximating the

surfaces of the solid model with triangles, and saved as a STereoLithography (STL)

file. The STL file is essentially a list of the x, y, z coordinates of each triangle's

three vertices, along with an index describing the orientation of the surface nonnal

[Jacobs, 1996]. The geometry described by the STL file is then "sliced" horizontally

into cross-sections (typically 10-20 cross-sections/millimeter) and saved as a SLIce

(SLI) file that will guide the SLA's laser as each layer of the object is built.

Fabrication of the solid object takes place in a Stereolithography Apparatus.

This machine initially contains a vat of liquid photopolymer, with an elevator

platform slightly below the surface of the liquid. The first (bottom) layer of the part

is built on the platform, along with any auxiliary support structures needed to

stabilize the part, by directing a focused ultraviolet laser downward onto the surface

of the liquid. Computer-controlled mirrors aim the laser so that it traces the desired

geometry, and the photopolymer cures (solidifies) where it is illuminated by the UV

laser. After the first layer is completed, the elevator platform moves downward by

the height of one layer. Liquid resin flows over the solidified layer, and a recoater

blade moves across the surface to remove excess resin. The second layer of the part

is then traced by the laser, solidifying in contact with the previous layer. This
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process continues, adding to the structure layer-by-Iayer, until the entire three­

dimensional object has been fabricated, from bottom to top [Kietzman, 1999].

The completed part is then raised out of the vat, and excess resin is drained

off. Any remaining uncured resin is cleaned off the part using a solvent, and the

solid support structures are carefully removed. Finally, the object is placed in a

postcure chamber, where it is flooded with ultraviolet radiation to achieve full resin

strength [Jacobs, 1996].

2.2.2. Fused Deposition Modeling

Fused Deposition Modeling (FDM) was developed at Stratasys, Inc., in the

late 1980's. The process was patented and commercialized by Stratasys in 1992

[Stratasys, Inc., 2002].

Like stereolithography, the FDM process begins with a three-dimensional

CAD model of the desired object. This model is converted to an STL file (or,

alternatively, to an Initial Graphics Exchange Specifications, IGES, file) for

processing by Stratasys QuickSlice® software. QuickSlice® slices the model into

horizontal layers (typically 10-20 layers/millimeter), and a companion software,

SupportWork™, detects and generates any necessary support structures [Kai & Fai,

1997].

The FDM fabricator uses spools of thennoplastic filament as its starting

materiaL The filament is fed into an extrusion head, where it is heated to just ab,ove

its flow point. As the head is guided in the x-y plane by a control computer reading

the QuickSlice files, the molten thermoplastic is extruded through a nozzle and
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deposited on demand. The material cools and quickly solidifies as it exits the

nozzle, fonning a layer of the part. As with stereolithography, the object is built

upon a platform or table which lowers as each layer is completed. In this way, th,e

FDM process builds parts from bottom to top in a layer-by-layer additive fashion

[Jacobs, 1996].

The extrusion head is actually a dual-tip mechanism that can dispense two

modeling materials simultaneously. Often, the desired part is built from one

material, and any auxiliary support structures are constructed of a secondary

material. After the object is completely built, the supports can be easily snapped off

because the bond between the two materials is relatively weak. However, the recent

introduction of water-soluble support materials has made this post-processing even

easier, as the supports can simply be washed away, leaving the desired part.

2.3. Finite Element Analysis

Finite element analysis (FEA) is a powerful tool for obtaining the numerical

solution of a wide range of problems in engineering and mathematical physics.

Typical areas of application for FEA include structural analysis, heat transfer, fluid

flow, mass transport, and electromagnetic potential [Logan, 1993].

For many real life systems, finding an exact (analytical) solution is not

possible. An exact solution generally involves the solution of ordinary or partial

differential equations, and this is often unobtainable for complicated structures or

boundary conditions. Finite element analysis, however, models the solution region

by dividing it into an equivalent system of smaller regions (finite elements)
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interconnected at nodes. The governing differential equations for each element are

then replaced by algebraic approximations, and the problem reduces to solving a

system of simultaneous algebraic equations rather than solving the governing

differential equations over the entire region.

The essential ideas of finite element analysis began to appear in literature in

the 1940's. In 1941, Hrenikoff proposed that the elastic behavior of a continuous

plate would be similar, under certain loading conditions, to a framework of

physically separate one-dimensional rods and beams, connected together at discrete

points [Hrenikoff, 1941]. Two years later McHenry further refined the idea of using

one-dimensional elements to solve for the stresses in continuous solids [McHenry,

1943]. Also in 1943, Courant proposed breaking a continuous region into triangular

segments and using piecewise interpolation (or shape) functions over the subregions

to model torsion problems in elasticity [Courant, 1943]. In 1955, Argyris took the

well-established framework-analysis procedures and refonnulated them into a matrix

format ideally suited for newly-introduced digital computers [Argyris, 1955].

The first use of two-dimensional elements was by Turner, Clough, Martin,

and Topp in 1956 [Turner, et aI., 1956]. They analyzed aircraft wing panels using an

assemblage of simple triangular panels, and they derived stiffness matrices for

triangular and rectangular plane stress elements as well as truss and beam elements.

The term "finite element" was first introduced by Clough in 1960 when he used both

triangular and rectangular elements for plane stress analysis [Clough, 1960].

Finite element analysis was first applied to three-dimensional problems with

the development of a stiffuess matrix for tetrahedral elements in 1961 [Martin,

13



1961]. Additional types of three-dimensional elements were studied by Argyris in

1964 [Argyris, 1964].

Finite element analysis of non-structural problems was first presented in

1965 when Zienkiewicz and Cheung applied the method to field problems

[Zienkiewicz, et al., 1965]. Finite elements could then be used to solve problems ·n

fluid flow and heat transfer. More recently, finite element analysis has been applied

to nonlinear problems, large-disp acement behavior, and electric fields, with new

areas of application still being discovered [Logan, 1993].

2.3.1. Implementation ofFEA

The general steps of the finite element method are presented in this section.

For simplicity, we focus our discussion on the structural stress-analysis problem and

assume we are perfonning a two-dimensional (plane stress) analysis. However, the

ideas presented here are analogous to those used to solve non-structural (i.e., heat

transfer and fluid mechanics) problems, and the equations can readily be extended

into three dimensions.

• Step 1 of the finite element method is to divide the solution region into

subdivisions or elements. For example, if our analysis involved the thin plate shown

in Figure 2.2a below, we might discretize the region using triangular elements as

shown in Figure 2.2b. Alternatively, we could use four-sided quadrilateral elements,

or for a three-dimensional analysis we could use tetrahedra, bricks, or wedges.

14



y

~x
z

(a)
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~igure 2.2: Thin plate discretized using triangular elements.

• Step 2 is the development of element equations - algebraic approximations

of the system's governing equations, applicable to eaeh element. The system's

governing equations are often differential equations expressing a conservation or

balance of some physical property such as mass, momentum, or energy. They may

also be integral equations expressing a variational principle, such as the

minimization of potential energy for conservative mechanical systems [Burnett,

1987].

Deriving element equations from the governing equations is an exercise in

finite element theory and is the foeusof many finite element textbooks. These

element equations are often. expressed in matrix form as [ke
] {qe} = {f}, where [ke

]

represents the stiffness matrix of element e, {qe} is the vector of nodal

displacements, and {f} is the vector of nodal forces. The stiffness matrices for

common types of elements (triangles, quadrilaterals, tetrahedra, bricks, etc.) are

15



well-established and can be found in literature, as can fonnulas for determining {f}

for various loading conditions. The nodal displacements {qe} are the unknowns of

the analysis.

For our thin plate example, the equations of stress equilibrium are

Eq.l

where (}x, (}y, and rxy are components of stress, andIx andh are intemalloads that act

on every material point inside the plate (such as gravity).

The constitutive relations (stress-strain equations) that describe the material's

elastic response are

E
r == y

xy 2(1 + v) xy

Eq.2

where ex, &y, and yxy are components of strain, and E and v are the material's Young's

modulus and Poisson's ratio.

Finally, the strain-displacement relations that describe the purely geometric

aspects of the defonnation are

au
&==­

x ax

8v
&=-

y Oy
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au Ovr =-+-
xy Oy ax

where u and v are components of displacement In the x- andy-direct·ons,

respectively.

Combining Equations 1 through 3 yields two second-order partial differential

equations which are the governing equations for our problem:

E a2u E a2v E a2u
1- y2 8x2 + 2(1- y) 8xOy + 2(1 + y) Oy2 =- Ix

Eq.4
E a2 v E a2u E a2v

1- y2 Oy2 + 2(1- y) mOy + 2(1 + y) 8x2 =- I y

The governing equations are approximated by element equations which can

be written in the form

k I1 k 12 k16 ql J;
k 21 k 22 k 26 q2 12= Eq.5

k61 k 62 k 66 q6 16

We can compute values for kij and fi using formulas derived in finite element texts.

The coefficients kij are related to the partial derivative terms in the governing

equations and can be computed from the Young's modulus, Poisson's ratio, and

nodal coordinates of an element. The values offi are related to the internal loads Ix

andh in the governing equations and can be computed from knowledge of the body

forces, traction loads, and point loads acting on the element.
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• Step 3 is to assemble the individual element equations generated in Step 2

into a "global" set of equations which characterizes the response of the entire

system. This can be done using a method of superposition and often results in a very

large number of equations. The global equations are often expressed in matrix fonn

as Eq.6

[K] {Q} == {F}

where [K] represents the global stiffness matrix, {F} is the global force vector, and

{Q} is a vector ofunknown nodal displacements.

Our thin plate shown in Figure 2.2 would involve relatively few global

equations because it is meshed with so few elements, but a more complicated

problem could easily yield more than one million equations in the global set.

• Step 4 requires us to modify the global equation set to account for

boundary constraints. Physically, these constraints prevent rigid body motion of the

structure. Mathematically, they change [K] from a singular matrix to a nonsingular

matrix so that the global equation set is solvable.

The thin plate in Figure 2.2 is constrained along its lower boundary. The

displacement of all nodes on this portion of the boundary is therefore taken as zero,

and the corresponding displacement variables can be eliminated from the global

equation set.

• Step 5 is the solution of the global equation set to detennine the nodal

displacements {Q}. This can be done using conventional numerical analysis

techniques for solving linear systems.
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• Step 6 involves the computation of stress, strain, and any other quantities

of interest. These can be computed from the displacements detennined in Step 5

using the necessary equations of solid or structural mechanics.

For our thin plate example, the strains &x, ~, and Yxy for each element can be

computed from the element's nodal displacements, and the corresponding stresses

can then be calculated as

Eq. 7

E
T = Y

xy 2(1 + v) xy

In summary, we see that the finite element method is one in which a

continuous quantity, such as the displacement throughout a body, is approximated by

a discrete model composed of a set ofpiecewise-continuous functions defined within

each finite element [Logan, 1993].

2.3.2. The H-Method and the P-Method

The finite element method can be subdivided into two categories based on

the nature of the elements used. The frrst category, known as the h-method, relies on

first-order interpolating polynomials (also called shape functions) to describe the

internal behavior (i.e., deflection) of an element. The second category, called the p-

method, utilizes higher-order polynomials to characterize an element's internal
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behavior, thereby enabling an element to more accurately capture gradients and other

complexities of the field variable [Parametric Technology Corporation, 1999].

The h-method is considered the more traditional approach because it was the

technique implemented in the earliest commercially available finite element software

programs. Although the mathematical theory behind the p-method was developed

about the same time, digital computers at that time were only able to do the

computations necessary to solve problems using the h-method. As the processing

power of computers later increased, it became possible and practical to solve

problems using the p-method.

The following sections discuss the two different methods in more detail and

discuss some advantages of using a p-method solver.

2.3.2.1. The H-Method

As mentioned previously, the h-method uses first-order interpolating

polynomials to describe the behavior of an element. In order to achieve accurate

results for a problem, an FEM analysis based on the h-method usually requires a

relatively dense mesh of very tiny elements.

To illustrate this, consider the cantilever beam shown in Figure 2.3a below.

The deflection of the beam (based on conventional beam theory) is a third-order

function of the horizontal position, as illustrated in Figure 2.3b.
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(a) (b)

Figure 2.3: Cantilever beam with end load.

If we analyze the beam using a single h-element, the resulting deflection

would be as shown in Figure 2.4a. We clearly need additional elements to accurately

portray the deflection along the length of the beam.

If we use two h-elements to analyze the beam, the deflection is closer to the

theoretical solution (see Figure 2.4b), but the beam's behavior is still somewhat

unrealistic. For example, we see a discontinuity at the center of the beam, and we

see rotation of the beam at its cantilevered end.

We can achieve a better solution by using three h-elements (Figure 2.4c), and

even better by using four h-elements (Figure 2.4d). We see that using more elements

improves the solution, but an infinite number of elements would be required to

exactly match the third-order closed-fonn solution for the deflection.
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(a)

(c)

(b)

(d)

Figure 2.4: Using h-elements to model the cantilever beam.

The process of decreasing element size in order to improve accuracy IS

known as h-convergence. When successively fmer element meshes produce

negligible change in the results, we conclude that the analysis has converged to an

accurate solution.

As an alternative example of using h-elements in FEA, suppose we are

modeling a structure within which the stress varies as shown in Figure 2.5a.

Using h-elements, the displacement in any given element is a linear function

of position. The strain throughout the element is therefore constant (since strain is

computed as the derivative ofdisplacement), and the stress in the element (computed

from constitutive relations) is also constant. H-elements would therefore model the

stress distribution as shown in Figure 2.5b - as a series of constant, discontinuous

stresses. Reducing element size would improve the accuracy of the stress values

(see Figure 2.5c), but the FEM analysis would still yield discontinuous stresses

throughout the structure and would fall short ofpredicting the highest stress.
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Figure 2.5: Using h-elements to model a stress distribution.

2.3.2.2. The P-rvlethod

Unlike the h-method, which uses linear shape functions and relies on mesh

refmement to improve the results, the p-method allows for increasing the internal

mathematical complexity of the elements to achieve better solution accuracy. In the

p-method, convergence to an accurate solution is pursued by increasing the order of

the polynomial shape function within each element rather than repeatedly remeshing

the problem with smaller elements [Parametric Technology Corporation, 1999].

Consider again our cantilever beam example (shown again in Figure 2.6a).

We have already seen that modeling the problem with a single first-order element

produces poor results. Suppose, though, that we now use a p-element, and the

deflection of the element is represented by a second-order shape function. The

deflected shape of the element would more closely resemble the true curvature of the

beam and would avoid the unrealistic discontinuities observed in the h-element

analyses. If our p-element instead employs a third-order shape function, we would

capture the true deflected shape exactly, as shown in Figure 2.6b below.
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(a) (b)

Figure 2.6: Using one p-element to model the cantilever beam.

If we were to repeat this analysis using fourth-order and higher shape

functions, we would observe that increasing the polynomial order does not change

our FEM solution. We would therefore conclude that the third-order shape function

had accurately captured the results.

Hence, in the p-method convergence is obtained by increasing the order of

the shape functions on each element. The mesh stays the same for every iteration,

called a p-Ioop pass, and we conclude that our finite element analysis has converged

when successively higher polynomial orders produce negligible change in the results

[Toogood, 2001].

Suppose now that we are trying to capture the stress distribution discussed in

the previous section and illustrated again in Figure 2.7a. Recall that first-order

elements (h-elements) represented the stress distribution as a series of constant,

discontinuous stresses. If we instead use p-elements with second-order shape

functions, then the stress distribution within each element varies linearly, and our

model (still with relatively few elements) provides a much better representation of

the stress distribution (see Figure 2.7b). If we use higher-order p-elements, we can

capture the stress distribution exactly, as depicted in Figure 2.7c.
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Figure 2.7: Using p-elements to model a stress distribution.

2.3.2.3. Advantages of the P-Method

As described previously, p-method finite elements can embody considerably

more mathematical complexity than their h-method counterparts. Because of this

capability, there are several advantages in using the p-method of finite element

analysis [Toogood, 2001].

• Limits on element size and shape are not nearly as restrictive for p-

elements as they are for h-elements. P-elements are allowed to exhibit greater aspect

ratio, skewness, and so on because they can capture more complex behavior over a

given distance. This is particularly beneficial when utilizing automatic mesh

generators to produce the finite element mesh. [These mesh generators can produce

very poor meshes for h-elements but tend to be much more effective with p-

elements.]

• In general, fewer higher-order elements are needed to achieve the same

degree of accuracy in the final results. This means that the finite element mesh for a

problem can be more coarse than a corresponding mesh of h-elements, and this can
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reduce computational effort during the analysis (although this advantage diminishes

as the order ofpolynomials gets higher).

• Convergence of the analysis can be evaluated without repeatedly

remeshing the part. Instead, one simply uses the existing mesh and increases the

polynomial order associated with the elements. If the higher-order analysis produces

negligible change in the results, then the analysis has converged.

2.4. ProlMECHANICA

ProlMECHANICA is a suite of engineering analysis tools provided by

Parametric Technology Corporation (PTC). In addition to the structural finite

element analysis package utilized in this research effort, Mechanica also embodies

tools to analyze the dynamic and thennal perfonnance of mechanical systems.

Within ProIMECHANICA, there are two basic modes of operation: independent

mode and integrated mode. Choosing which operating mode to use essentially

detennines how closely Mechanica interacts with its cousin application,

Pro/ENGINEER. The difference between the two modes is described in the

following section.

2.4.1. Integrated Mode and Independent Mode

Integrated mode pennits the use of ProlMECHANICA functionality from

within the Pro/ENGINEER user interface. This mode offers a seamless transition

from the ProlE solid modeling engine to the ProlM finite element engine and back

agaIn. Furthennore, any changes that are made to the model in Mechanica (i.e.,
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during an optimization study) are automatically updated in ProlE and in any

downstream deliverables (engineering drawings, CNC machine toolpaths, etc.) This

provides a truly integrated design analysis software in which a model can be created,

analyzed, and optimized, all from a single user interface.

Independent mode, on the other hand, incorporates a user interface that is

quite different from the ProlE environment. Upon invoking independent mode, all

ties with ProlE are severed. Therefore, any changes made to the model in

Mechanica have no effect on the ProlE part or downstream deliverables. These

changes must be manually updated by re-opening the model in ProlE and making the

necessary modifications.

Unfortunately, a few Mechanica commands and result displays are not yet

available in integrated mode. Thus, independent mode offers the widest range of

ProlMECHANICA functionality. However, PTC is constantly working to migrate

the functionality of independent Mechanica into integrated mode, and with each new

release the integrated mode comes closer to offering all of Mechanica's standalone

functionality [Parametric Technology Corporation, 2002].

For this research effort, integrated mode was selected as the preferred mode

of operation in order to capitalize on the design functionality of both

Pro/ENGINEER and ProIMECHANICA.

.2.4.2. Convergence

ProlMECHANICA utilizes the p-method of fmite element analysis. As with

other p-method solvers, Mechanica converges to an accurate solution by increasing
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the internal mathematical complexity of elements during an analysis rather than

repeatedly remeshing the problem with fmer and finer meshes.

Mechanica uses polynomial shape functions to fonnulate the behavior of

each element, and each shape function may, if necessary, increase up to a ninth-order

polynomial during the analysis. [In theory, it would be possible to go to even higher

orders than this, but Mechanica limits the polynomials to ninth-order functions

because higher orders become too computationally expensive.]

At the beginning of an analysis, Mechanica assigns low-order shape

functions to each element, and the finite element solution is computed. After this

initial p-Ioop pass, polynomial orders are increased and a second p-Ioop pass is

perfonned. Mechanica then evaluates the change in the solution using measures

such as von Mises stress and displacement. By comparing these values on an

element-by-element basis, Mechanica detennines which elements in the model need

to have more complex shape functions and which elements are adequately modeled

by the current shape functions. Mechanica increases polynomial orders where

necessary and then perfomls a third p-Ioop pass. This iterative process continues

until all elements converge to a (user-defmed) specified accuracy or until a

maximum specified polynomial order is reached.

This process of performing multiple p-Ioop passes and adaptively (on an

element-by-element basis) working toward convergence over the entire model is

known in Mechanica as Multi-Pass Adaptive Convergence. By adaptively increasing

the polynomial orders, Mechanica's finite element model is efficient to solve, while
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accurately capturing the performance of the structure [Parametric Technology

Corporation, 1999].

After running an analysis, we can assess the convergence of the model by

graphing convergence measures as a function of p-Ioop pass. For example, if we

graph the maximum von Mises stress and maximum displacement versus p-Ioop

pass, the plots may appear as in Figure 2.8 below.
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Figure 2.8: Sample convergence plots from ProIMECHANICA.

The "leveling-off' of these graphs indicates that increased polynomial orders

will cause little change in the results, and we can conclude that the solution is well

converged.

An alternative convergence method, known as Single-Pass Adaptive

Convergence, is also available in Mechanica but was not used in this research effort.

This type of analysis begins with an initial pass where all p-orders are set to 3.

Mechanica assesses the accuracy of the solution based on stress discontinuities at the

element boundaries and computes the final p-order required for each element. A

final solution pass is then made using these polynomial orders. Because this

technique offers the user no intermediate results with which to evaluate solution
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convergence, Single-Pass Adaptive Convergence was never used in this research

effort.

2.4.3. AutoGEM

Pro/MECHANICA contains an automatic mesh generator called AutoGEM.

In integrated mode, AutoGEM is always utilized to produce the finite element mesh.

In independent mode, users may either employ AutoGEM or create the finite

element mesh themselves using manual mesh-definition tools.

AutoGEM utilizes triangles and quadrilaterals to mesh two-dimensional (i.e.,

"shell") geometry; tetrahedra, bricks, and wedges are commonly used for three­

dimensional solid geometry.

Although generation of elements is essentially automatic, users can exert

considerable influence on the size, shape, and density of the elements by modifying

AutoGEM parameters that dictate allowable element geometry. For example, users

can input minimum and maximum allowable angles between adjacent edges and

between adjacent faces of elements (see Figures 2.9a and 2.9b). Users can also

specify the maximum allowable edge tum (the maximum amount of arc to be

allowed on an edge - see Figure 2.9c) and the maximum allowable aspect ratio

(roughly an element's length-to-width ratio).
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Edge Angle

(a) (b) (c)

Figure 2.9: AutoGEM parameters.

Besides altering the AutoGEM parameters described above, users can also

influence the mesh by adding datum points and surface regions to a model. Datum

points are simply reference points that can be "seeded" on a model to gu·de mesh

creation. When AutoGEM is executed, it will respect seed points as required

locations for element nodes. Surface regions are reference features that divide a

physical surface into multiple areas. AutoGEM will treat the boundaries of these

surface regions as curves to which element edges must conform. Datum points and

surface regions are used frequently in this research effort to influence the placement

of element nodes and edges in order to tighten the mesh density in areas of

particularly high stress gradients.
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CHAPTER 3

METHODOLOGY

3.1. Model Development

The initial goal in this research project is to develop a finite element model

that simulates three-point bending tests conducted in OSU's mechanical engineering

laboratories. These tests utilized an Instron 4202 Load Frame to apply a downward

force to test specimens supported on a steel test fixture. The resultant loading

condition is diagrammed in Figure 3.1 below.
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Figure 3.1: Loading condition for three-point bending test.

The actual loading points are 1.375-inch-diameter steel bars. In accordance

with ASTM standards, steel loading pads are located between the loading bars and

the test specimen to avoid localized crushing of the specimen, and a rubber pad is
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placed underneath the mid-span steel pad to help distribute the applied load [ASTM

C 393-00, 2000]. An exploded view of the experimental setup is shown in Figure

3.2.

steel loading pad
(2.75" x 1.75" x 0.125")

loading bar
(part of test fixture)

rnstron head

steel loading pad
(2.75" x 1.75U

)( 0.125U

)

rubber pad
(0.125'1 thick)

test specimen
(12" )( 2" x 1")

steel loading pad
(2.75" x 1.75" x 0.125")

loading bar
(part of test fixture)

test fixture

Figure 3.2: Experimental setup for three-point bending test.

Our finite element analysis needs to accurately model the test specimen and

accurately simulate the application of loads and constraints. To model the test

specimen's geometry, we simply construct a Pro/ENGINEER model that can be

imported into ProIMECHANICA. After entering ProlM, we then assign material

properties and specify the necessary loads and constraints. Material properties,

loads, and constraints are discussed in more detail in the following sections.
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3.1.1. Material Properties

The test specimens modeled in this research are composite beams having a

polymer core sandwiched between carbon fiber facings. Two different polymers

have been used as core materials: a photocurable resin known as RPC 700 ND, and

polycarbonate. Also, two different carbon fiber materials have been used:

LTM25 / CFS003 2x2 twill, and LTM26EL / CFS0508 plain weave.

RPC 700 ND resin is manufactured by Rapid Prototyping Chemicals, a

subsidiary of 3D Systems Corporation. According to the manufacturer, the material

has a tensile modulus of approximately 2,500 MPa after full post-cure (see Appendix

A). The material's density and Poisson's ratio are not furnished by the

manufacturer, but comparison with similar resins suggests values of p == 1.24 g/cm3

and v == 0.38.

The tensile modulus of polycarbonate has been determined through tensile

tests conducted in OSU's mechanical engineering laboratories; it's value is

approximately E == 2,350 MPa. The Poisson's ratio of polycarbonate is estimated

from material property tables to be approximately v == 0.38 [Kalpakjian, 1997], and

the density is assumed to be p == 1.24 g/cm3 from comparison with similar materials.

Material properties for the LTM25 / CFS003 carbon fiber v{ere acquired

from NASA technical memorandum 110286 (see Appendix B). Properties used in

our Pro/MECHANICA analysis are summarized in the following table, with

reference to the coordinate directions shown in Figure 3.3.
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Table 3.1: In-plane properties of LTM25 / CFS003.

Ext, Young's modulus, tens·on (Msi) 7.06

Eyt, Young's modulus, tension (Msi) 7.06

vxy' Poisson's ratio, tension 0.042

GxyJ in-plane shear modulus (Msi) 0.414
t, thickness (in) 0.00904
p, density (lbmlin3

) 0.06

z (3)

I .,Y (2)

L X (1)

Figure 3.3: Coordinate directions for laminate properties.

Although material properties for the LTM26EL / CFS0508 plain weave are

not directly available, it is reasonable to assume they are very similar to those of the

2x2 twill above. Both materials are woven fabrics with 3-K fibers (3,000 carbon

filaments per fiber); the only substantial difference is the weave type (plain weave

versus 2x2 twill). Manufacturers of the fabrics suggest that a plain weave may have

a slightly lower modulus than a 2x2 twill, but data to quantify the difference is

lacking. For this research, it is assumed that the properties in Table 3.1 apply to both

carbon fiber materials.

Although not actually part of the test specimen, material properties of the

rubber and steel components of the experimental setup will also be useful for our

analysis.
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The rubber is a neoprene-based sheet purchased from Texcel. Young's

modulus can be computed from an expression published by Good [Good, 2002]:

E =20.97 * eO.0564*IRHD (psi)

where IRHD is the Shore A hardness of the material. Measurements of the rubber in

this experiment indicate an average durometer of 73 (Shore A), suggesting a

modulus ofE = 1290 psi. Good also reports an average Poisson's ratio for neoprene

(among other rubber types) of v = 0.46. The density of the rubber is reported on

Texcel data sheets as p = 1.42 g/cm3 [Texcel, 2002].

Material properties for steel can be used directly from the ProlMECHANICA

material database. These properties are E = 29 X 106 psi, v = 0.27, and p = 7.827

g/cm3
•

With the necessary material properties now established, we next consider the

application of appropriate loads and constraints.

3.1.2. Boundary Conditions for 3-Point Bending Analysis

When establishing the boundary conditions for our analysis, we want to keep

the model as simple as possible while still capturing the essence of the experimental

loads and constraints.

Recognizing that our interest lies in the stresses and deflections of the

composite beam test specimen, not in the steel test structure or Instron head, we want

to only model and analyze components that directly impact the behavior of the test

specimen. Modeling additional geometry would merely complicate the analysis and

lengthen runtimes.
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For this analysis, therefore, we model only the beam, loading pads, rubber

pad, and a small portion of the test fixture (see Figure 3.4 below). With these

components, it is believed that the experimental loads and constraints can be

accurately simulated in the analysis, as described in the following sections.

test specimen
(12" x 2" x 11

steel loading pad
(2.75·' x 1.75 11 x 0.125 11

)

loading bar
(0. D. =1.375")
(part of test fixture)

rubber pad
(0.125" thick)

steel loading pad
(2.75" x 1.75" x0.125")

loading bar
(0.0. =1.375 11

)

(part of test fixture)

steel loading pad
(2.75" x 1.75 11 x 0.125")

Figure 3.4: Components in FEM model.

3.1.2.1. Loads

The applied load is incorporated into the analysis as a uniform distributed

load acting upon the top surface of the mid-span loading pad, as shown in Figure 3.5

below.
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uniform distributed toad

steel loading pad

loading bar
(part of test fixture)

steel loading pad

test specimen

steel loading pad

loading bar
(part of test fixture)

Figure 3.5: Applied lo'ad in FEM model.

Although this load distribution differs somewhat from the actual

experimental load distribution, the difference will have negligible effect on the test

specimen itself. Recall that the experimental load was actually applied to the

loading pad via the 1.375-inch-diameter cylinder at the end of the fustron head. The

load therefore acted upon a relatively small subregion of the loading pad and was

more concentrated than portrayed in our FEM model. However, the loading pad and

rubber pad distributed the applied load onto the test specimen, effectively dispersing

any stress concentrations. Since our interest is in the stress and defonnation of the

composite beam (not the loading pad or rubber pad), the experimental loading

condition should prove equivalent to the FEM model depicted in Figure 3.5.

To verify the equivalence of the two loading conditions, we employ a simple

homogeneous beam as a test case. First, we analyze the beam's response to a

uniform distributed load acting on the top loading pad as depicted in Figure 3.5. We

then repeat the analysis but model the actual Instron head as the source of the

applied load (see Figure 3.6 below). When we compare the beam's stress and
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Recall from Figure 3.4 that our analysis models only the test specimen,

loading pads, rubber pad, and a small portion of the test fixture. Specifically, the test

fixture has been reduc·ed to its two loading bars. (By excluding the remainder of the

fixture, a much more efficient analysis is achieved.) We will now constrain these

components in ways that simulate the physical constraints present in the system.

Since the test fixture is constructed of steel angle iron, we assume its

deflection during the experiments is negligible and the loading bars are in effect

rigidly supported. We therefore constrain the ends of the loading bars against all

motion, as indicated in Figure 3.7.

We must now create two contact regions so that Mechanica will allow the

loading pads to pivot on the loading bars during the analysis. Without contact

regions, Mechanica would assume that all components are rigidly connected to one

another, as if the entire assembly were one continuous solid. However, defining the

contact region between a loading pad and its corresponding loading bar informs

Mechanica that the two components are free to move apart. This enables the loading

pad to pivot on the loading bar as occurs during the actual experiment.

40



contact region
defined between
loading bar and

loading pad

contact region
defined between
loading bar and

loading pad

Front and back ends of
loading bar constrained
against motion

Figure 3.7: Constraints for FEM model.

Front and back ends of
loading bar constrained
against motion

Since contact regions enable relative motion between the fixed loading bars

and the remainder of the structure, part of our model is now insufficiently

constrained. In essence, the loading pads, rubber pad, and test specimen fonn a

"subassembly" whose downward movement is restricted by the loading bars but

whose lateral movement is unrestrained (contact regions are frictionless in

Mechanica). In other words, the loading bars support the subassembly vertically, but

there is nothing to prevent it from "sliding off' the loading bars laterally.

We th~refore need to constrain the beam subassembly against motion in the

x- and y-directions. A reasonable choice is to constrain the top surface of the mid-

span loading pad in these directions, as this can represent the effect of frictional

forces between the loading pad and the Instron head. Implementing this constraint

gives us a fully-constrained model as desired.

To assess the appropriateness of our loading conditions and constraints

before introducing a more difficult test specimen, we once again employ a simple
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homogeneous beam as a test case. We assume the beam is constructed of RPC 700

ND photocurable resin, and we apply a 600-lbf uniform distributed load to the mid-

span loading pad.

After running the analysis, we animate the beam's deformation and observe

the beam bending downward while the loading pads pivot on the loading bars, just as

we would expect. Furthennore, the stress distribution is consistent with our

expectation for a beam in bending - a fringe plot of bending stress reveals tension in

the lower half of the beam and compression in the upper half of the beam. (See

Figure 3.8 below.)
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Figure 3.8: Bending stress in deformed test specimen.

The results indicate that we have chosen appropriate loading conditions and

constraints. This is encouraging, but we are somewhat concerned by the runtime of

the analysis. This test specimen was a simple rectangular beam, and yet it required
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more than 50 minutes to complete. For more sophisticated test specimens, which

may include multiple materials and complex internal structure, we could easily face

runtimes on the order of hours or even days. We should therefore seek ways of

simplifying the analysis in order to reduce the required computational effort.

The following sections investigate the use of symmetry and other means to

simplify the analysis.

3.1.3. Use of Symmetry

There are two planes of symmetry in this model, as illustrated in Figure 3.9

below. The y-z plane of symmetry divides the structure in half, producing a left side

and right side that are mirror images of one another. Similarly, the x-z plane of

symmetry divides the model in half, producing a front side and back side that are

mirror images. This section evaluates the effectiveness of using symmetry to

simplify the analysis.
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y-z plane of symmetry

}(-z plane of symmetry

Figure 3.9: Planes of symmetry.

Before running our next analysis, the test specimen is made slightly more

complicated by adding carbon fiber facings to the solid RPC 700 ND resin core. The

facings are added to the top and bottom of the test specimen, and each facing

consists of two layers of carbon fiber.

Each layer of carbon fiber is modeled in ProlE as a solid protrusion of

thickness 0.00904 inches. Because of the small thickness, it is necessary when

setting up these analyses to alter the default AutoGEM settings. Specifically, the

default Edge Angle and Face Angle limits are too restrictive to successfully mesh the

facings. The Minimum setting for these parameters needs to be changed from 5° to

1°, and the Maximum needs to be changed from 1750 to 177° in order to generate a

complete mesh of solid tetrahedral elements for the geometry.
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3.1.3.1. Full Model

First, an analysis of the full model is performed. The test specImen IS

subjected to a 600 lbf load, which is uniformly distributed on the mid-span loading

pad as described in previous sections. The analysis is defined as a Multi-Pass

Adaptive analysis seeking a convergence level of 3%.

The analysis generates 11,137 solid tetrahedral elements and shows very

good convergence behavior. The analysis converges to within 3% on Pass 7 with a

maximum polynomial order of 8. Figure 3.10 below contains convergence plots for

the analysis, showing the maximum model displacement and maximum von Mises

stress computed during each p-Ioop pass. Both graphs "level off' nicely, indicating

that the results are well converged. Total runtime for this analysis is 51.41 hours.
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Figure 3.10: Convergence plots for fu I model.

Von Mises stress in the defonned test specimen is shown in Figure 3.11

below. The fringe plot on the left has a scale ranging from 2,500 psi to 22,500 psi to

show the stress distribution in the facings; the plot on the right has a scale ranging

from 100 psi to 900 psi to show the stress distribution in the solid core. Both plots
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reveal stress distributions consistent with our engmeenng intuition for a beam

supported at its ends and loaded in the middle.
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Figure 3.11: Fringe plots of von Mises stress in full model.

3.1.3.2. Half Model

Next, the model is cut in half on the y-z plane of symmetry, and the analysis

is repeated. For the half model, the applied load is 300 lbf, and we must specify

some additional constraints at the plane of symmetry to represent the effects of the

missing half of the model. Appropriate constraints involve fIXing the x-translation,

y-rotation, and z-rotation, and freeing the remaining degrees of freedom - x-rotation,

y-translation, and z-translation. (In Mechanica, the rotation constraints are actually

irrelevant for this analysis since the model consists entirely of solid elements.

However, we will specify the rotational constraints anyway in order to be consistent

with our intuition concerning allowable motion at the plane of symmetry.)

This analysis generates 7,578 solid tetrahedral elements and shows very good

convergence behavior, much like the full model. The analysis converges to within
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3% on Pass 6 with a maximum polynomial order of 7. Total runtime for this

analysis is only 12.93 hours, about one-fourth the runtime of the full model.

Von Mises stress in the deformed test specimen is shown in Figure 3.12

below. Again, the fringe plot on the left has a scale ranging from 2,500 psi to 22,500

psi to show the stress distribution in the facings, and the plot on the right has a scale

ranging from 100 psi to 900 psi to show the stress distribution in the solid core. As

we would expect, the stress distributions are consistent with those for the full model.
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Figure 3.12: Fringe plots of von Mises stress in half model.

3.1.3.3. Quarter Model

Finally, the half-model is cut on the x-z plane of symmetry, and the analysis

is repeated on a quarter of the full model. For this analysis, the applied load is 150

lbf. Appropriate constraints at the x-z plane of symmetry involve fixing the x-

rotation, y-translation, and z-rotation, and freeing the remaining degrees of freedom

- x-translation, y-rotation, and z-translation. (As in the half-model, the rotation
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constraints are actually irrelevant for this analysis since the model consists entirely

of solid. elements.)

This analysis generates 5,519 solid tetrahedral elements and once agam

shows very good convergence behavior. The analysis converges to within 3% on

Pass 6 with a maximum polynomial order of 7. Total runtime for this analysis is

5.46 hours.

Von Mises stress in the deformed test specimen is shown in Figure 3.13

below. As we would expect, the stress distributions are consistent with those for the

full model and the half-model.
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Figure 3.13: Fringe plots of von Mises stress in 1/4 model.

The above fringe plots for the full model, half model, and Yt model appear to

show good qualitative agreement with one another. For a more quantitative

comparison, we now consider the maximum model displacement and maximum von

Mises stress from each analysis. These values are summarized in the following

table, along with other information useful for comparing the different analyses.
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Table 3.2: Comparison of analyses on full model, half model, and 1/4 model.

Full model Half model 1/4 model

Number of Elements (solid tetrahedra) 11,137 7,578 5,519

Max Model Displacement (in) 0.06968 0.06968 0.06968

Max von Mises Stress (psi) 26,433.25 26,434.43 26,435.81

Total Runtime (hours) 51.41 12.93 5.46

Based on these results, we conclude that cutting the model on its symmetry

planes is a very useful and effective means of simplifying the analysis. We observe

essentially no loss of accuracy, yet the runtime of the quarter model is about one-

tenth the runtime of the full model.

3.1.4. Avoidance of Contact Regions

We have achieved substantial improvements in runtime by limiting our

analysis to one-fourth of the full model. However, even with a simple solid-core

composite test specimen, total runtime is nearly 5.5 hours. We would like to

simplify the model even further before analyzing a more complicated (i.e.,

honeycomb core) test specimen.

One way we might reduce the computational effort of this analysis is to

eliminate contact regions from the model. In our current analysis, Mechanica is

spending considerable time computing detailed stress gradients and defonnations

associated with contact regions. Because contact area varies non-linearly with the

applied load, this requires an iterative solution scheme to complete each p-Ioop pass.

This can result in substantially longer runtimes than if no contact region were

present.
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Our quarter model contains a single contact region, located between the

loading bar and loading pad (see Figure 3.14a). Since we are not particularly

interested in the contact stresses within these components, we will now modify our

model so that it does not require contact analysis.

To eliminate the model's contact region, we delete the loading bar from our

model and replace it with a datum curve rigidly connected to the loading pad (see

Figure 3.14b). We then constrain the datum curve to simulate the effects of the

missing loading bar. Specifically, we constrain the curve against y-translation and z­

translation, and against x-rotation and z-rotation. By freeing the remaining two

degrees of freedom (x-translation and y-rotation), we pennit the curve to translate

and rotate in the same way that the loading pad slides and pivots upon the loading

bar.
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Figure 3.14: Contact region in 1/4 model.

To evaluate the accuracy of the new boundary conditions, we analyze a ~-

model composite beam with a 150-lbf applied load, and we compare the results with

the Y4-model analysis presented in the previous section. Our new analysis generates

6,319 solid tetrahedral elements and shows very good convergence behavior, as

illustrated by the convergence plots in Figure 3.15. The analysis converges to within

3% on Pass 6 with a maximum polynomial order of 7. Total runtime for this

analysis is 1.88 hours.
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Figure 3.15: Convergence plots for analysis without contact region.

Von Mises stress in the deformed test specimen is shown in Figure 3.16

below. The fringe plot on the left has a scale ranging from 2,500 psi to 22,500 psi,

while the plot on the right has a scale ranging from 100 psi to 900 psi. The stress

distributions appear very similar to the distributions in the previous section that

included the contact region.
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Figure 3.16: Von Mises stress fringe plots for analysis without contact region.

For a more quantitative assessment, we compare values of maximum model

displacement and maximum von Mises stress from the two analyses. These are
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summarized in the following table. The difference in the results is small (less than

2.5%), yet our new analysis runs in about one-third the time ofour previous analysis.

Table 3.3: Comparison of analyses with and w·thout contact regions.

1/4 model 1/4 model Percent
with contact region wlo contact region Difference

Number of Elements (solid tetrahedra) 5,519 6,319 14.5%
Max Model Displacement (in) 0.06968 0.07139 2.450/0
Max von Mises Stress (psi) 26,435.81 26,788.77 1.34%
Total Runtime (. ours) 5.46 1.875 65.7%

By eliminating the contact region from our analysis, we have thus achieved

substantial increase in runtime with minimal loss of accuracy.

3.1.5. Honeycomb Model

We are now ready to analyze a test specimen with a honeycomb core. Our

initial core will adopt relatively large honeycomb cells to avoid excessive

complexity. As illustrated in Figure 3.17 below, the cells have a diameter of 0.65

inches and a wall thickness of 0.025 inches.

0.025 in

12 in -------~------~.

Figure 3.17: Honeycomb core.

The honeycomb core is coupled with carbon fiber facings on top and bottom

to fonn a composite beam. As in our previous analyses, each facing consists of two

layers of carbon fiber.
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We eliminate contact regions from our model as described in the previous

section. We also take advantage of the model's two symmetry planes so that we

only have to analyze one-fourth of the full model. We then run the analysis with a

150-lbfapplied load, utilizing all solid tetrahedral elements to mesh the geometry.

3.1.5.1. All Solid Elements

We find that our current AutoGEM settings are too restrictive to mesh the

new geometry with solid elements, and we must again modify the limits on the Edge

and Face Angles. In order to generate a complete mesh of solid elements, we change

the maximum allowed Edge and Face Angles from 177° to 179°.

Mechanica then meshes the geometry with 9,738 solid tetrahedral elements

and takes 19.8 hours to complete the run. The analysis ends on Pass 7, when the

maximum polynomial order of 9 is reached. Convergence plots of the maximum

von Mises stress and maximum displacement are shown in Figure 3.18. Both plots

are reasonably well behaved, indicating decent convergence of the solution.
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Figure 3.18: Convergence plots for honeycomb-core test specimen.
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We now generate fringe plots of the von Mises stress in the model, as shown

in Figure 3.19 below. These plots have the same scales as our previous fringe plots

(2,500 psi - 22,500 psi on the left, 100 psi - 900 psi on the right), but we have re-

oriented the model to view its "back side." This allows us to see stresses at the

center of the test specimen, thanks to our cuts on the symmetry planes. (We could

also use Mechanica's cutting plane and capping surface tools to further view the

interior of our model.)
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Figure 3.19: Von Mises stress fringe plots for honeycomb-core test specimen, all solid elements.

Our fringe plots allow us to see that cell walls paralle to the y-z plane carry

substantially less load than the angled walls. In fact, the y-z walls are in the worst

orientation to withstand bending of the beam. In a later section we will explore the

effect ofre-orienting cells so that their walls are parallel to the x-z plane.

Even though the honeycomb cells are rather large in this model, our

computer required 19.8 hours to run this analysis, indicating that the analysis is no

simple task. To see how much symmetry had helped us, we repeated the analysis on
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a half-model of the same test specimen. After running for 57.90 hours, however, the

run crashed due to lack of sufficient hard drive space. Mechanica's computation

output files during the analysis filled up the available 54.3 GB of hard drive space

and needed more room, so the run crashed.

This experience suggests the need to further simplify the analysis if we want

to later analyze larger and more complicated structures. The following section

discusses the use of shell idealizations to simplify the model.

3.1.5.2. Facings Compressed to Shells

A reasonable simplification for our model is to compress the carbon fiber

facings to their midplanes and mesh these components with two-dimensional shell

elements. In general tenns, shell elements are an acceptable idealization for thin

components whose thickness dimension is less than one-tenth of the component's

other dimensions. Our carbon fiber facings, whose thickness is only 0.00904 inches,

certainly satisfy this guideline.

After compressing the facings, we specify properties of the associated shell

elements using Mechanica's laminate layup tool. This tool is convenient for

defining engineering laminates by specifying the materials used, the number of

layers of each material, and the orientation of each layer. To match our model in the

previous section, we specify that each facing consists of two layers of carbon fiber

oriented at 0° in the x-y plane.

When we constrain the symmetry planes of our model, we note that it is now

important to correctly specify both translation and rotation since our shell elements
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possess rotational degrees of freedom. After specifying material properties and

applying the 150-lbfload, we run the analysis.

When we run the analysis, Mechanica meshes the geometry with 1,677 shells

and 7,356 solid elements. The run finishes in 9.2 hours (about one-half the time of

our previous analysis) after completing Pass 6 with a maximum polynomial order of

9. Interestingly, we once again see Mechanica pushing the limits of our computer

during this analysis. The run had to be completed in two parts because the first

attempt crashed after 4.25 hours, reporting that the computer had insufficient swap

space for the analysis; after rebooting the computer to clear the memory, the run

was re-started from its last completed p-Ioop pass and finished the analysis

approximately five hours later.

We now graph the maximum displacement and maximum stress parameters

to evaluate the convergence of the analysis. As shown in Figure 3.20 below, the

displacement parameter appears to converge nicely. The maximum von Mises

stress, however, does not converge and seems unusually high throughout most of the

analysis. (It is possible that the maximum stress might converge if additional p-Ioop

passes could be performed. However, it is likely that the stress would converge to

an excessively high value, as explained below.)
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Figure 3.20: Convergence plots for honeycomb-core test specimen, with facings compressed to
shells.

To understand why the stress value is so high during this analysis, we note

that shells have 6 degrees of freedom (3 translation DOF's and 3 rotation DOF's)

and solids have only 3 degrees of freedom (3 translation DOF's). In a model that

combines shell and solid elements, Mechanica must generate links between solid

elements and adjacent shell elements in order to fully constrain the shell elements

into the model. These links are rigid and can lead to unusually high stress

concentrations at solid-shell junctions. These stress concentrations are the likely

cause of the excessively high stress values reported during the analysis.

Due to link-related stress concentrations, we should keep in mind that some

stress values may be "inflated" at solid-shell junctions. This is one drawback of

using shell idealizations to simplify our model rather than meshing the entire model

with solid elements.

Although the maXImum stress convergence plot does not show IDee

convergence, this need not be our only indication of stress convergence. Rather, we

can place datum points at various locations throughout the model, and we can create
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user-defined measures to monitor the stress values at those locations as the run

progresses.

We therefore repeat the analysis after placing several of these "seed points"

throughout the core and facings. Plotting von Mises stress versus p-Ioop pass at the

seed points generates graphs such as those shown below. These graphs reveal much

nicer stress convergence and give us greater confidence in the results of the analysis.
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Figure 3.21: Stress convergence at seed points within test specimen.

With greater confidence in the convergence of the analysis, we now generate

fringe plots of the von Mises stress (see Figure 3.22). These plots show good

agreement with the fringe plots of the previous section based on all solid elements.
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Figure 3.22: Von Mises stress in honeycomb-core test specimen, with facings compressed to
shells.

For a quantitative comparison between this model and the all-solid model, we

can compare the two models in terms of the stress and displacement values

computed at various seed point locations. The locations of several seed points and

the corresponding stress and displacement values are shown in Appendix D. From

this data, we conclude that the displacement values in our current model are within

about 3% ofthe all-solid model, and our stress values are within about 6%.

In the next section, we investigate further idealization of the model by

meshing not only the facings but also the honeycomb cell walls with shell elements.

3.1.5.3. Core Walls and Facings Are Shells

The honeycomb cell walls, like the carbon fiber facings, comprIse thin-

walled geometry whose thickness is less than one-tenth of the width and height

dimensions. This means that the cell walls are good candidates for shell elements.

We could defme the shells much like we defmed shells for the facings in the

previous section - by specifying the pair of surfaces associated with each wall and
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then allowing Mechanica to compress each wall to its midplane. However, this

becomes quite inefficient for the user (who must specify each wall pair individually)

and for the computer (which must compress each pair to locate the midplane).

Instead, we achieve a more efficient shell model by constructing the core geometry

as a surface model in Pro/E.

When we create the ProlE surface model of the honeycomb core, we

represent each core wall as a two-dimensional surface (thickness = 0) located at the

wall's midplane. Upon transferring the geometry into Mechanica, there is no need to

pair cell wall surfaces and compress them to midplanes because the wall midplanes

are directly available in the surface model. We simply specify the wall thickness

that is represented by each midplane, and Mechanica can immediately nlesh the

geometry with shell elements.

For convenience, we also create surface models of the facings so that we no

longer need to compress the facings to their midplanes during the analysis.

We next specify the material properties of all components and apply the 150­

lbf load. When we run the analysis, Mechanica generates 563 shell elements and

632 solid elements. The analysis requires less than 7 minutes to complete.

The improvement in runtime is impressive, but we observe unexpected (and

unrealistic) displacement behavior when we display the defonned test specimen. As

shown in Figure 3.23 below, Mechanica has pennitted the rubber pad (composed of

solid elements) to penetrate the shell elements of the composite beam test specimen.

Close inspection reveals that the bottom loading pad (also composed of solid

elements) has penetrated the test specimen as well. As a result of this umealistic
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penetration, deflection values are substantially higher than in our previous analyses,

and the model is not producing acceptable results.
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Figure 3.23: Fringe plot of deformed test specimen, showing penetration of rubber pad ·oto
core.

Preventing this behavior requires two modifications to our model. First, we

add a number of datum points to the lower surface of the rubber pad and upper

surface of the loading pad in order to "tie" these components to the composite beam

(see Figure 3.24). These datum points become element nodes shared by the shell

elements of the facings and the tetrahedral elements of the adjoining solid

components. As shared nodes, they tie the components together at discrete

locations. If we could, we would place an infInite number of points on these

surfaces in order to prevent penetration at all locations. Since this is not possible,

however, we make a second modification to the model to achieve almost the same

effect - we idealize the rubber pad's lower surface as a rigid surface. This prevents

the surface from deforming and penetrating the composite beam in between our

discrete datum points. (We could also defme the upper surface of the loading pad as
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rigid, but this seems unnecessary since it is made of steel and therefore is practically

rigid for our loading conditions anyway.)

Top view

/_.../ ..........-- Datum points -----..\

L.~-/
..-../ \

\
\

\
.~ ..,

I
..,., ....... ."" - I

z
Iy
~x

Front viev't/

Figure 3.24: Datum points to "tie" surfaces of rubber pad and loading pad to composite beam.

With these modifications in place, we repeat the analysis. The added datum

points prompt the creation of more elements than before, and Mechanica generates

1,532 shells and 746 solid elements. The run completes on Pass 7 with a polynomial

order of9. Total runtime is 35.7 minutes.

Convergence plots of maximum displacement and maXImum stress are

shown in Figure 3.25 below. Although the displacement has converged nicely, the

von Mises stress shows no indication of convergence. We suspect that the shell-

solid links are to blame. We saw in the previous section that linking a shell surface

to a parallel solid surface can cause unusually high stress values. We now see that
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the singularity is even more pronounced if a shell surface is perpendicular to the

solid face it attaches to.
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Figure 3.25: Convergence plots for honeycomb-core test specimen, with core walls and fac·ngs
modeled as shells.

Using seed points, we assess the stress convergence at various locations on

the core and facings. Plots like those shown below indicate good convergence at

discrete locations within the test specimen even though the overall maximum model

stress did not converge.
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Figure 3.26: Stress convergence at seed points within test specimen.

Fringe plots of von Mises stress are shown in Figure 3.27 below. The plot on

the left illustrates the expected stress distribution in the facings and appears

consistent with our previous honeycomb-core analyses. The plot on the right also

shows reasonable agreement with our previous analyses, except directly beneath the

rubber pad. In this area, we observe unusually low stress values. This results from

defining the bottom of the rubber pad as a rigid surface. Because the surface is not

allowed to defonn, bending stresses in the beam are substantially reduced

immediately beneath this surface. This translates to lower von Mises stress in the

core as shown in the fringe plot.
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Figure 3.27: Von Mises stress in honeycomb-core test specimen, with core walls and facings
modeled as shells.

As we did in the previous section, we compare our current model to the all-

solid model in terms of stress and displacement values at discrete points. We use the

same locations as in the previous section, with the stress and displacement data

summarized in Appendix D. We conclude that the displacement values in our

current model are within 3% of the all-solid model, and our stress values are within

about 16.5%. Thus, we conclude that this model has achieved substantial savings in

runtime over previous models, but is somewhat less accurate in predicting stresses in

the beam.

Unfortunately, Mechanica does not allow us to use cutting planes or capping

surfaces to view the interior of a shell model. Using these tools only reveals stresses

in solid components, as shown in Figure 3.28 below. Thus, we have less capability

to view the stresses in this model, as compared with our previous solid-core models.
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Figure 3.28: Von Mises stress fringe plots using capping surfaces.

We have now investigated three different methods for analyzing our

honeycomb composite beams:

1) Meshing the entire geometry with solid elements.
2) Compressing the facings to their midplanes and meshing with shell

elements.
3) Idealizing the core walls and the facings as shells.

Presumably, the frrst method is the most accurate smce it makes no

simplifying assumptions concerning the geometry. The second method loses some

accuracy by treating the facings as two-dimensional shells, but it is substantially

faster. The third method has more difficulty capturing the true stresses, but it shows

good accuracy in predicting displacements and is significantly faster than both

previous methods.

Our next task is to analyze two honeycomb test specunens which were

recently tested in OSU's mechanical engineering laboratories. For each structure,

we will implement each of the above three modeling methods in hopes of gaining

further insight into the advantages and disadvantages ofeach method.
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3.2. Implementation to Test Specimen A

The first test specimen we wish to analyze is similar to our previous structure

but has a much denser honeycomb core. The cell diameter is 0.18 inches, and the

wall thickness is 0.025 inches. Figure 3.29 below shows the quarter model that we

will analyze.

. y

\j
'L-x

Figure 3.29: Test Specimen A.

Itl this test specimen, the core is made of RPC 700 ND photocurable resin

and the facings each consist of two layers ofLTM25 / CFS003 carbon fiber fabric.

We first evaluate the effectiveness of idealizing the model using shell

elements. To do so, we apply a 150-lbf load and compare the stresses, deflections,

and runtimes based on each of our three analysis methods:

1) All solid elements.
2) Facings compressed to shells.
3) Core and facings meshed as shells.

We next compare our computational results to experimental results. We

therefore analyze the model under several load magnitudes to generate a load-
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deflection curve. We then compare this curve with a load-deflection curve generated

experimentally by testing the composite beam in the lab.

3.3. Implementation to Test Specimen B

The second test specimen we wish to analyze has a much larger cell size and

contains an "outer wall" around the core. The cell diameter of this specimen is 1.0

inches, and the thickness of the cell walls and the core's outer wall is 0.035 inches.

Figure 3.30 below shows the quarter model we will analyze.

outer wall

Figure 3.30: Test Specimen B.

Test Specimen B contains different materials from the preVIOUS test

specimen. The core is made of polycarbonate, and the facings each consist of 2

layers ofLTM26EL / CFS0508.

As with Test Specimen A, we first assess the advantages of idealizing our

model with shell elements. We apply a lOO-lbf load to the test specimen and

compare the stresses, deflections, and runtimes for each of our three analysis

methods.
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We next compare our computational results to experimental results. We

analyze the model under different load magnitudes and generate a load-deflection

curve. We then compare this curve with a load-deflection curve generated

experimentally by testing the composite beam in the lab.

3.4. Effect ofNumber of Carbon Fiber Layers

Using our Test Specimen B model, we next study how changes to the

structure affect the stiffuess of the beam. Specifically, we evaluate changes in the

number of layers of carbon fiber in the facings, changes in the wall thickness, and

changes in the orientation of the core. We use the third analysis method (idealizing

the core walls and facings as shells) since we can achieve accurate deflection results

with minimal computational effort.

We first seek to evaluate the benefit of adding additional layers of carbon

fiber to the facings. The core walls in these analyses have a nominal wall thickness

of 0.035 inches. We run a series of analyses, incrementing the number of layers in

each facing from zero to six. For each analysis, we record the deflection at the

bottom of the lower facing when the beam is subjected to a total load of400 lbf.

3.5. Effect of Wall Thickness

Next, we seek to evaluate the benefit of increasing the thickness of the

honeycomb walls (both the outer core wall alld the cell walls). We run a series of

analyses changing the wall thickness from 0.010 inches to 0.100 inches in small

increments. For each analysis, the facings consist of 2 layers of carbon fiber. Once
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again, we record the deflection at the bottom of the lower facing when the beam is

subjected to a load of400 lbf.

3.6. Effect ofCore Orientation

Finally, we wish to evaluate the effect of rotating the core cells 90° (about the

z-axis) from their current orientation. The new orientation is illustrated in Figure

3.31 below. The wall thickness is 0.035 inches and the facings consist of two layers

of carbon fiber.

Figure 3.31: Alternate core orientation based on Test Specimen B.

To gain additional insight, we also rotate the cell orientation of Test

Specimen A by 900 (see Figure 3.32 below). Recall that Specimen A has a cell

diameter of 0.18 inches. After we run the analysis, we compare deflections with the

original core orientation.
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Figure 3.32: Alternate core orientation based on Test Specimen A.
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CHAPTER 4

RESULTS

4.1. Results for Test Specimen A

This section presents the analysis results for Test Specimen A and compares

them to experimental fmdings. As described previously, Test Specimen A has a

dense honeycomb core, with cell diameter 0.18 inches and wall thickness 0.025

inches. Figure 4.1 shows the model under investigation.

Figure 4.1: Test Specimen A.

4.1.1. All Solid Elements

When modeling the geometry entirely with solid tetrahedral elements, the

analysis proves too computationally intensive for our Pentium IV 1.8 GHz computer.
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Mechanica meshed the geometry and completed Pass 1 and Pass 2 of the

analysis in about 2 hours, but the run appeared to "stall" while solving equations in

Pass 3. No progress was shown for several days, and we observed Mechanica

making no use of available System Resources. The analysis had simply halted

without explanation.

We rebooted the computer and set the analysis to "restart" from the

previously completed Pass 2. The analysis proceeded nonnally into Pass 3 but again

froze while solving the finite element equations.

We rebooted the computer once again and restarted the analysis. Mechanica

proceeded as before, getting stuck while solving the Pass 3 equations. Mechanica

was left running for over a week but showed no indication ofprogress.

Based on this experience, we concluded that we simply do not have the

resources to run an analysis of this magnitude.

4.1.2. Facings Compressed to Shells

When we compress the facings of Test Specimen A to shells, we fmd that

Mechanica is unable to generate a complete finite element mesh for the model.

We note that although shells are simpler than solid elements when generating

and solving finite element equations, combining shell geometry and solid geometry

in one model makes the model substantially more difficult to preprocess and mesh.

Not only must the geometry be discretized so that shell nodes coincide with solid

nodes at all solid-shell junctions, but all junctions must acquire links to fully

constrain the shells (having 6 DOF's) to solids (having only 3 DOF's).
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We tried many different combinations of AutoGEM parameter settings, but

none of them enabled the software to successfully mesh the geometry. Even as we

approached Mechanica's built-in limits for the most relaxed allowable AutoGEM

settings, Mechanica failed to generate a complete mesh.

After making over twenty different attempts to mesh the geometry, we

concluded that this particular model is just too complex for Mechanica's

. .
preprocessIng engIne.

4.1.3. Core Walls and Facings Are Shells

When we model the facings and core walls of Test Specimen A as shells, the

analysis runs to completion. Mechanica generates 2,886 shells and 680 solid

elements; the run finishes after completing Pass 7, with a maximum polynomial

order of9. Total runtime for this analysis is 1.65 hours.

Convergence plots of the maximum displacement and maximum stress are

shown in Figure 4.2 below. Both plots show the anticipated behavior for this solid-

shell model; the displacement graph levels off, showing reasonable convergence,

and the stress continues to rise with no sign of convergence. As described

previously, the stress convergence problem is due to shell-solid links causing

abnormally high stress.
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Figure 4.2: Convergence plots for Test Specimen A, with core walls and facings modeled as
shells.

Nonetheless, seed points located in the core and facings (see Appendix E)

show reasonable stress convergence as shown in Figure 4.3 below. We therefore

conclude that our stress results are not entirely inaccurate.
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Figure 4.3: Stress convergence at seed points within Test Specimen A.
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Figure 4.4 shows fringe plots of von Mises stress. The results seem to show

reasonable stress distributions in the facings and throughout most of the core. The

only "problem area" appears directly beneath the rubber pad. As in our previous

honeycomb model, we observe artificially low stress values caused by our

idealization of the rubber pad's lower surface as rigid, necessary to prevent

penetration into the core.
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Figure 4.4: Von Mises stress in Test Specimen A, with core walls and facings modeled as shells.

We notice in the fringe plots that some of the core walls carry very little load

(evidenced by their low stress values) because they are orientated parallel with the y-

z plane. In a later section we will evaluate the increase in stiffness obtained by re-

orienting the core to align these walls parallel with the x-z plane.

4.1.4. Comparison to Experimental Results

The test specimen's weight was measured as 147.9 grams in the lab.

Mechanica indicates the weight of the beam is 145.3 grams, slightly less than the

actual weight. The small difference is perhaps due to the film adhesive used in
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constructing the test speCImen. Since the film adhesive was not expected to

influence the stress or deflection of the test specimen, it was not included in the

ProlMECHANICA model.

We now analyze the test spectmen at several different load values and

generate a load-deflection curve for the model. We can then compare our resu ts

with load-deflection curves obtained experimentally in the lab.

The experimental load-deflection data, obtained by Patterson, was acquired

by testing the composite beam on an Instron load frame [Patterson, 2001]. The

recorded deflections are values displayed by the Instron machine indicating the

vertical displacement of the Instron head. This corresponds to the displacement of

the mid-span steel loading pad in our model. When we plot the computational

results along with two experimental curves obtained in the lab, we have the

following graph.
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Figure 4.5: Load versus deflection curves based on computational and experimental results.
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Figure 4.6: Instron load frame.

To assess the magnitude of error that can be attributed to the Instron's finite

stiffuess, we generate a load-deflection curve from a small steel plate resting directly

upon the Instron's load platform. A simple FEM analysis of the steel plate reveals

that the vertical deflection should be essentially zero (Mechanica reports the value to

be 0.0000124 inches under a 600-lbf load). Experimental data suggests a much

larger deflection, however, as shown in Figure 4.7.
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Figure 4.7: Experimental load versus deflection curve for small steel plate.

The curve shown in this graph allows us to correct for the deflection of the

Instron machine during our experiments. By subtracting this deflection from the

corresponding experimental deflection value at a given load, we obtain the following

"corrected" load-deflection curves.
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Figure 4.8: Test Specimen A load versus deflection curves based on computational and
experimental results, corrected for Instron deflection.
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Although our finite element model still predicts less deflection than the

experimental data, there is noticeable improvement in the agreement of results. For

a 500-lbf load, for example, the corrected experimental deflection is about 0.157

inches. This represents a difference of only 0.044 inches from the FEM deflection.

Another likely source of error involves the deflection of our steel test stand

during the experiments. Recall that the test stand supports the composite beam test

specimens (see Figure 4.9), and we assumed the test stand to be perfectly rigid when

we established boundary conditions for our FEM model. During our experiments, it

is likely that the test stand does in fact defonn under the applied load, which will

increase the apparent deflection of the test specimen. Unfortunately, the magnitude

of the test stand's deflection is difficult to quantify, but it is reasonable to conclude

that this deflection accounts for some of the difference between our experimental

results and FEM results.
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Figure 4.9: Exploded view of experimental setup.

Additional sources of error relate to the material properties and geometry of

the test specimen itself. Our fmite element model assumed that the resin core was

perfectly homogeneous with no voids in the honeycomb walls. Due to real-world

manufacturing limitations, however, it is quite possible that the core contained

internal flaws or contaminants that would weaken the structure, causing greater

deflection than predicted by FEM. Furthermore, the modulus used in our finite

element model assumed that the entire core was fully post-cured. Experience with

RPC resin suggests that material properties are substantially degraded if full post­

cure is not achieved. Experience also suggests the possibility that the core may not

have been fully post-cured by the manufacturer before shipment to OSU. This
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would significantly reduce the stiffness of the test specimen as compared with the

finite element model.

Finally, our finite element model assumed all cell walls had a unifonn

thickness of 0.025 inches. Due to manufacturing limitations, however, the actual

wall thickness varies throughout the core. Measurements of the honeycomb core

indicate that most walls have a thickness between 0.020 inches and 0.030 inches, but

a number of walls fall outside of this range. As we will show in a later section, wall

thickness has a significant effect on the overall stiffuess of a test specimen.

To summarize our comparison of computational and experimental results:

1) The weight of our finite element model closely matches that of the
experimental test specimens.

2) The computational load-deflection curve shows reasonable agreement with
experimental curves.

The computational load-deflection curve predicts slightly less deflection than

observed in the experimental results, but this is not surprising when we consider the

numerous assumptions that must be incorporated into our finite element model

concerning boundary conditions, material properties, and specimen geometry.

4.2. Results for Test Specimen B

This section presents the analysis results for Test Specimen B and compares

them to experimental findings. As described previously, Test Specimen B has a

large-cell honeycomb core (diameter == 1 inch) and has a wall surrounding the

outside of the core. Figure 4.10 shows the model under investigation.
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Figure 4.10: Test Spec-imen B.

482.1. All Solid Elements

When we run the analysis with all solid tetrahedra, Mechanica meshes the

geometry with 8,846 elements. The run lasts 16.6 hours and completes on Pass 7

with a maximum polynomial order of9.

Convergence plots of the maximum von Mises stress andmaxnnum

displacement are shown in Figure 4.11. Both plots are reasonably well behaved,

indicating decent convergence of the solution.
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Figure 4.11: Convergence plots for Test Specimen B, all solid elements.
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Fringe plots of von Mises stress are shown in Figure 4.12 below. The stress

distributions in the core and facings appear similar to previous honeycomb core test

specimens, except for showing lower overall stresses in the facings. (These lower

stresses are simply the result of our lower applied load - 100 lbf instead of 150 lbf.)
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Figure 4.12: Von Mises stress in Test Specimen B, all solid elements.

We again notice that some of the core walls carry very little oad (they have

low stresses) due to their orientation. They therefore provide little contribution to

the beam's stiffness. In a later section we will reorient the core by 90° and evaluate

the beam's new stiffness.

4.2.2. Facings Compressed to Shells

After we compress the facings to their midplanes, Mechanica generates 1,623

shell elements and 5,247 solid elements.. This run lasts 12.35 hours (four hours less

than the all-solid analysis) and completes on Pass 7 with a maximum polynomial

order of9.

Convergence plots of maximum displacement and maX1ll1um stress are

shown in Figure 4.13 below.. The displacement parameter appears to converge well.
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The maxImum von Mises stress, however, does not gIve a clear indication of

convergence and is an order of magnitude higher than in the all-solid analysis. The

poor convergence and unusually high stress is again related to the solid-shell links

required in this model.
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Figure 4.13: Convergence plots for Test Specimen B, with facings compressed to shells.

Because the maximum model stress does not show nice convergence, we

seek an alternative indication of stress convergence for our model. We again place

datum points at various locations in the model (shown in Appendix F) and monitor

the stress convergence at these locations. Plotting von Mises stress versus p-Ioop

pass at the seed points generates graphs such as those shown below. The graphs

suggest that the stress is in fact converging, and they give us greater confidence in

the results of the analysis.
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Figure 4.14: Stress convergence at seed points within Test Specimen B, with facings
compressed to shells.

We see from the fringe plots in Figure 4.15 below that the stress distribution

basically matches the distribution predicted by the all-solid model. The only

apparent discrepancy is in the lower facing near the beam's center, where our current

model predicts somewhat higher stresses. These high stresses can be attributed to

solid-shell links between the core and facing.
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For a quantitative comparison between this model and the all-solid model, we

can compare the two models in terms of the stress and displacement values

computed at our seed points. The stress and displacement values are tabulated in

Appendix F. From this data, we conclude that the displacement values in our

current model are within about 3% of the all-solid model, and our stress values

average within about 6%.

Thus, by compressing the facings to shells we achieved significant savings in

time with little loss of accuracy.

4.2.3. Core Walls and Facings Are Shells

When we model the facings and core walls as shells, the analysis runs even

faster. Mechanica generates 1,470 shells and 461 solid elements; the run finishes

after completing Pass 7, with a maximum polynomial order of 9. Total runtime for

this analysis is about 24 minutes.

Convergence plots of the maximum displacement and maximum stress are

shown in Figure 4.16 below. Both plots show the anticipated behavior for this type
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of model; the displacement graph levels off nicely, showing good convergence, and

the stress continues to rise, with no sign of convergence. (A though at first glance

the displacement does not appear to level off to a constant value, notice the small

scale on the y-axis. The difference between displacement values at Pass 6 and Pass

7 is less than 1%.) The stress convergence problem is again due to shell-solid links

causing extremely high localized stresses.
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Figure 4.16: Convergence plots for Test Specimen B, with core walls and facings modeled as
shells.

Seed points located in the core and facings show reasonable stress

convergence, however. (See Figure 4.17 below.) We therefore conclude that our

stress results at most locations throughout the test specimen are valid.
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Figure 4.17: Stress convergence at seed points within Test Specimen B, with core walls and
facings modeled as shells.

Figure 4.18 shows fringe plots of von Mises stress. The plots seem to agree

with our previous two analyses of this specimen, except in the cell walls directly

beneath the rubber pad. In these walls we observe artificially low stress values

caused by our idealization of the rubber pad's lower surface as rigid, necessary to

prevent penetration into the core.
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To assess the accuracy of our current model, we compare it to the all-solid

model in terms of stress and displacement values at discrete points. Using the same

locations as in the previous section, we acquire the stress and displacement data

summarized in Appendix F. We conclude that the displacement values in our

current model are within 3% of the all-solid model, and our stress values average

within about 9%.

We conclude that this model has achieved substantial savings in runtime over

our previous models. The model is somewhat less accurate in predicting stresses,

especially near the beam's center, but its deformation shows good agreement with

our previous models.
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4.2.4. Comparison to Experimental Results

Mechanica does a very good job of predicting the weight of Test Specimen

B. The test specimen's weight was measured as 74 grams in the lab; Mechanica

indicates the weight of the beam is 73.4 grams.

To generate a load-deflection curve, we now analyze the test specimen at

several different load values. The resulting curve is plotted in Figure 4.19, along

with two curves obtained experimentally by Fullwood [Fullwood, 2002]. These

curves (shown in pink in Figure 4.19) represent the original deflection data obtained

from the Instron load frame. The red curves result from "correcting" the data to

account for the deflection of the Instron machine, as described previously.
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Figure 4.19: Test Specimen B load versus deflection curves based on computational and
experimental results, corrected for Instron deflection.

For a given load, our [mite element model predicts slightly less deflection

than suggested by the experimental results. For example, at a load of 400 lbf the

FEM deflection is 0.123 inches and the (corrected) experimental deflection is about
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0.147 inches, a difference of 0.024 inches. As discussed earlier, potential causes for

the discrepancy include the following:

1) Deflection of the steel test fixture.
2) Internal flaws or contaminants in the honeycomb core.
3) Variations in the core's wall thickness due to manufacturing limitations.

With these factors in mind, it is not surprising that the experimental stiffness falls

slightly short of the computational stiffuess since real-world boundary conditions,

material properties, and specimen geometry necessarily fall short of the ideal model

depicted by FEA.

4.3. Effect ofNumber of Carbon Fiber Layers

We now evaluate the effect of adding additional layers of carbon fiber to the

facings of Test Specimen B. The polycarbonate core in this study has a nominal

wall thickness of 0.035 inches, and we increment the number of layers in each facing

from zero to six. For each case, we record the beam's weight and the deflection at

the lower facing's center point when the beam is subjected to a total load of 400 Ibf.

Table 4.1 below summarizes the results of our study, and the results are

shown graphically in Figure 4.20. Deflection is plotted in blue using the left scale,

and weight is plotted in pink against the right scale.
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Table 4.1: Effect of number of carbon fiber layers.

# layers CF Beam deflection Beam full weight

.(in) (gf)

0 1.390 50.9

1 0.166 62.7

2 0.108 74.5

3 0.089 86.3
4 0.079 98.2

5 0.072 110.0

6 0.068 121.8
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Figure 4.20: Effect of number of carbon fiber layers.

From the above plot, we conclude that using two layers rather than one layer

of carbon fiber substantially increases the beam's stiffness. Adding additional layers

increases the stiffness even more, but the benefits are less for each succeeding layer.

The beam's total weight increases by 11.8 grams for each layer added.
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4.4. Effect ofWall Thickness

Next we evaluate the effect of changing the thickness of the walls in the

polycarbonate core of Test Specimen B. The test specimen incorporates two layers

of carbon fiber in each facing, and we increment the wall thickness from 0.010

inches to 0.100 inches. For each case, we record the beam's weight and the

deflection at the lower facing's center point when the beam is subjected to a total

load of400 lbf.

Table 4.2 below summarizes the results of our study, and the results are

shown graphically in Figure 4.21. Deflection is plotted in blue using the left scale,

and weight is plotted in pink against the right scale.

Table 4.2: Effect of wall thickness.

wall thickness Beam deflection Beam full weight

(in) (in) (gf)

0.010 0.233 38.2

0.015 0.176 45.4

0.025 0.129 60.0

0.035 0.108 74.5

0.045 0.097 89.1

0.055 0.089 103.6

0.065 0.084 118.2

0.075 0.079 132.7

0.100 0.072 169.1
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Figure 4.21: Effect of core wall thickness.

We conclude that changing the wall thickness has a substantial effect on the

beam's stiffness, especially for thicknesses less than about 0.040 inches. Also, we

see that the weight of the test specimen increases by approximately 14 grams for

every 0.010 inches added to the wall thickness.

4.5. Effect of Core Orientation

We now evaluate the effect of rotating the honeycomb core by 90° (about the

z-axis) from its original orientation. Except for the new cell orientation, the

geometry is identical to the original test specimen.

The following table compares the weight and deflection of the original Test

Specimen B to the weight and deflection our new structure. We see that the

deflection of the new structure is slightly larger, and the weight is slightly more. We

therefore conclude that the original orientation was the more favorable geometry,

although the difference in performance is small.
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Table 4.3: Test Specimen B comparison of core orientations.

Deflection of mid-span
Model Beam full weight loading pad under

400-lbf applied load

(gf) (in)
Original

73.4 0.1230
Test Specimen B

Alternate
73.6 0.1265

Core Orientation

As an alternative example, we also rotate the core of Test Specimen A by 900

and compare the new weight and deflection to the original specimen. Table 4.4

below summarizes the weights and the deflection under a 600-1bf load. Based on

this infonnation, we conclude that the new orientation is preferable to the original

orientation since the new geometry is stiffer and saves on weight.

Table 4.4: Test Specimen A comparison of core orientations.

Deflection of mid-span

Model Beam full weight loading pad under

600-lbf applied load

(gf) (in)

Original 145.3 0.1312
Test Specimen A

Alternate 141.8 0.1244
Core Orientation
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

ProlMECHANICA has been shown to be a useful tool for perfonning fmite

element analysis of freefonn composite structures.

Three different methods of analyzing these structures were investigated in

this research. The first method, modeling the entire structure with solid tetrahedral

elements, proved somewhat prohibitive because it was so computationally intensive.

The second method, in which carbon fiber facings were compressed to their mid­

planes and meshed with shell elements, enabled an analysis to run faster.

Comparing stress and displacement values of the second method to those of the first

method suggested that the two analyses were in reasonably good agreement. The

third method, idealizing the core walls as well as the facings with shell elements,

substantially speeded up the analysis but was noticeably detrimental to the stress

results.

Using each of the above three methods, we analyzed two freeform composite

test specimens that had recently been tested in OSU's mechanical engineering labs.

We saw reasonably good agreement between our computational results and
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experimental results. Although FEA slightly overpredicted the experimental

stiffuess, the discrepancy can be attributed to analyzing "perfect" material properties,

geometry, and boundary conditions. The real-world properties and behavior of any

structure will naturally fall short of these idealizations.

Finally, we investigated the effects of altering the number of laminate layers

in the facings, the thickness of the core walls, and the core orientation. We observed

that our structure becomes stiffer as we increase the number of carbon fiber layers or

the cell wall thickness, but the gain in stiffuess is accompanied by a direct increase

in weight. Analyzing core orientations for two different honeycomb geometries

revealed that a longitudinal (rather than transverse) orientation of cell walls will

sometimes (but not always) result in a stiffer structure.

5.2. Recommendations

Further research is recommended concerning the failure criteria of freefonn

composite structures. In this research effort, we predicted the stiffness and weight of

our structures, but we did not predict the failure point of the specimens. Further

knowledge of failure properties of the core materials and carbon fiber facings could

add to the usefulness of the finite element models.

Additionally, research into the capabilities of alternative software packages is

recommended. Although ProlMECHANICA solved some very difficult analyses in

this research effort, the software definitely has its limitations. In particular, the pre­

processing capabilities of Mechanica seem inadequate for very complicated
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geometries, and these are the nonn rather than the exception in freeform composite

fabrication.
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APPENDIX A: RPC 700 ND RESIN DATA SHEET

700 :tID Resin Data [Rapid Prototyping Chemicals, 2002]

Properties
MEASUREMENT
Penetration Depth CD P)
Critical Exposure (Ec)
Viscosity of liquid resin

Green flex-modulus after 10 min.
Green flex-modulus after 1 hour
Flexural modulus after post-cure

Tensile mo dulus after post-cure
Tensile strength after post cure
Elongation to break
Shore D
I mpact after post-cure, unnotched
Glass transition, T~

METHOD
Window panes
Windowpanes
Brookfield @ 30°C

ISO 527
ISO 527
ISO 527

ISO 179
DSC

106

VALUE
4.6 mils (0.12mm)
10.6 mJ/cm2

500 cps

130 MPa
270 MPa
2400 MPa

2500 MPa
71 MPa
12..5%
82
30 kJ/m2
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APPENDIX B: LTM25 / CFS003 2x2 TWILL DATA SHEET

Properties reproduced from NASA technical memorandum 110286 [Cruz, et al.,
1996].

Property Value
E1\ Longitudinal modulus, tension (Msi) 7.06
VI2t, major Poisson's ratio, tension 0.042
EI

c
, Longitudinal modulus, compression (Msi) 7.20

VI2
c

, major Poisson's ratio, compression 0.033
E2t, Transverse modulus, tension (Msi) 7.52
V2I t, minor Poisson's ratio, tension 0.028
E2c, Transverse modulus, compression (Msi) 7.54
V21 c, minor Poisson's ratio, compression 0.035
G12

5
, in-plane shear modulus (Msi) 0.414

F1tu, Longitudinal ultimate stress, tension (Ksi) 81.6
F1CU, Longitudinal ultimate stress, compression (Ksi) 93.1
F2tu, Transverse ultimate stress, tension (Ksi) 88.8
F2CU, Transverse ultimate stress, compression (Ksi) 81.7
F12

5u
, in-plane shear ultimate stress (Ksi) 12.2

El tu, longitudinal ultimate strain, tension (Jlin/in) 11,100

El cu,longitudinal ultimate strain, compression (J.lin/in) 12,900

E2tu, transverse ultimate strain, tension (J.linlin) 11,400

E2CU, transverse ultimate strain, compression (J.lin/in) 10,800

V12
5u

, in-plane ultimate strain (J.lin/in) 29,600

Vr, Fiber volume fraction (%) 46.9

t, Thickness (in) 0.00904

T, Cure temperature (OF) 160 for 10hrs
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APPENDIX c: COMPARISON OF TWO LOADING CONDITIONS

Applied load is 600 lbf
Beam is constructed ofRPC 700 ND photocurable resin.

Stress distributions from
uniform distributed load.
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Stress distributions from
incorporation of Instron head.
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Uniform distributed load Incorporation of Instron head
1,208 tetrahedra 1,642 tetrahedra

FEM mesh 2 contact regions 3 contact regions

Max displacement of 0.2028 0.2029
test specimen (in)
Max von Mises stress 3,959 3,964
within test specimen (psi)
Analysis run time (minutes) 54.41 104.03
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APPENDIX D: COMPARISON OF DISPLACEMENT AND STRESS VALUES
AT SEED POINT LOCATIONS IN HONEYCOMB CORE TEST SPECIMEN

Seed point locations:

TO~J \/ie'vv

Front \liev'l)'
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-.:
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J!(

E D

.-.. 1 T
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Comparison ofAll-Solid Model to Facings-Compressed Model:

Displacements at Seed Points:

Location Displacement Value (in) 10
/0 errorl

All Solid Elements Facings Compressed to Shells
Point A 0.146310 0.151759- 3.72
Point B 0.176080 0.183315 4.11
Point C 0.091173 0.093391 2.43
Point D 0.005554 0.005451 1.87
Point E 0.196907 0.202443 2.81
Point F 0.161166 0.165871 2.92
Point G 0.077256 0.079206 2.52

Average Percent Error:

Von Mises Stress at Seed Points:

2.91

Location Von Mises Stress (psi) 1% errorl
All Solid Elements Facings Compressed to Shells

Point A 24,777.63 27,649.42 11.59
Point B 31,217.12 33,249.61 6.51
Point C 16,057.41 16,730.23 4.19
Point D 2,694.78 2,703.90 0.34
Point E 1,301.37 1,415.78 8.79

Point F 5,202.10 5,301.88 1.92

Average Percent Error:
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Comparison of All-Solid Model to Surface Model:

Displacements at Seed Points:

Location Displacement Value (in) 10/0 errorl
All Solid Elements Core and Facings Are Shells

Point A 0.146310 0.144593 1.17
Point B 0.176080 0.173628 1.39
Point C 0.091173 0.089880 1.42
Point 0 0.005554 0.005459 1.71
Point E 0.196907 0.185749 5.67
Point F 0.161166 0.158171 1.86
Point G 0.077256 0.075496 2.28

Average Percent Error:

Von Mises Stress at Seed Points:

2.21

Location Von Mises Stress (psi) 1% errorl
All Solid Elements Core and Facings Are Shells

Point A 24,777.63 27,217.11 9.85
Point B 31,217.12 33,927.65 8.68
Point C 16,057.41 16,697.80 3.99
Point D 2,694.78 2,759.50 2.40
Point E 1,301.37 403.96 68.96
Point F 5,202.10 5,475.31 5.25

Average Percent Error:
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APPENDIX E: SEED POINT LOCATIONS IN TEST SPECIMEN A

Seed point locations:
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APPENDIX F: COMPARISON OF DISPLACEMENT AND STRESS VALVES
AT SEED POINT LOCATIONS IN TEST SPECIMEN B

Seed point locations:
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Comparison ofAll-Solid Model to Facings-Compressed Model:

Displacements at Seed Points:

Location Displacement Value (in) 1% errort
All Solid Elements Facings Compressed to Shells

Point A 0.088279 0.090730 2.78
Point B 0.102586 0.105333 2.68
Point C 0.087650 0.090064 2.75
Point D 0.061150 0.062857 2.79
Point E 0.023013 0.023636 2.71
Point F 0.114467 0.117598 2.74

Average Percent Error:

Von Mises Stress at Seed Points:

2.74

Location Von Mises Stress (psi) 1% errort
All Solid Elements Facings Compressed to Shells

Point A 19,449.67 19,038.52 2.11
Point B 21,258.87 23,198.70 9.12
Point C 2,617.43 2,555.17 2.38
Point D 2,549.69 2,594.67 1.76
Point E 500.81 551.71 10.16

Point F 580.25 609.29 5.00

Average Percent Error:
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Comparison of All-Solid Model to Surface Model:

Displacements at Seed Points:

Location Displacement Value (in) 1% errorl
All Solid Elements Core and Facings Are Shells

Point A 0.088279 0.086944 1.51
Point B 0.102586 0.099604 2.91
Point C 0.087650 0.086248 1.60
Point 0 0.061150 0.061086 0.10
Point E 0.023013 0.023590 2.50
Point F 0.114467 0.108093 5.57

Average Percent Error:

Von Mises Stress at Seed Points:

2.37

Location Von Mises Stress (psi) 1% errorl
All Solid Elements Core and Facings Are Shells

Point A 19,449.67 18,996.68 2.33
Point B 21,258.87 22,523.26 5.95
Point C 2,617.43 2,470.84 5.60

Point D 2,549.69 2,558.03 0.33

Point E 500.81 427.99 14.54

Point F 580.25 455.47 21.50

Average Percent Error:
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