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CHAPTER I 

INTRODUCTION 

The accurate prediction of thennodynamic properties of mixtures is essential in 

nearly every area of chemical engineering for process design and optimization 

calculations. The most convenient tool for the description of equilibrium phase behavior 

has long been recognized to be analytic equations of state (Prausnitz, 1977). The term 

"equations of state" is used in a broad sense to include mathematical description of 

volumetric behavior, derived properties, mixture behavior and phase equilibrium of 

fluids. 

Historically, the most commonly used equations of state are the cubic van der 

Waals type equations such as the Peng-Robinson (Peng and Robinson, 1976) and the 

Redlich-Kwong (Redlich and Kwong, 1949) equations. \Vhile cubic equations are 

capable of representing the qualitative features of vapor-liquid systems, their largely 

empirical nature limits the interpretation that can be placed upon the equation parameters. 

These commonly used cubic equations also suffer from several shortcomings, including 

the inability to predict accurate liquid densities and an overall loss of accuracy in the 

critical region. In addition, cubic equations of state cannot accurately describe the 

behavior of mixtures containing polar or associating molecules and mixtures containing 

molecules with large difference in size, without elaborate tuning efforts (Gasem et aI. , 

1993). 

The greatest utility of cubic equations is for phase equilibrium calculations 



involving mixtures (see, e.g., Prausnitz et aI. , 1986; Walas, 1985; Anderko, 1990). The 

assumption inherent in such calculations is that the same equation of state can be used 

both for pure fluids and mixtures, once a satisfactory procedure for obtaining the mixture 

parameters from pure fluid parameters is identified. This is accomplished using mixing 

rules, the most commonly used ones being the van der Waals one-fluid mixing and 

combining rules. The use of the van der Waals mixing rules can be justified on 

theoretical grounds at low densities (Sandler et aI., 1994). However, a shortcoming of 

these mixing rules is that they are applicable only to mixtures of relatively moderate 

solution (in contrast to pvT) non-ideality. In fact , the limitations imposed by these 

mixing rules is considered one of the prime reasons for the inability of the conventional 

cubic equations to successfully describe the behavior of mixtures containing polar or 

associating molecules and mixtures containing molecules with a large difference in size. 

For such mixtures, the alternative approach has been the use of activity coefficient 

models for the condensed phase and an equation of state for the vapor phase (Prausnitz, 

1977). However. as will be shown later, this approach also has it's drawbacks, which are 

more fundamental. 

To avoid the use of activity coefficient models and to improve the predictive 

abilities of the conventional equations of state, various mixing rules have been proposed, 

which will be discussed briefly in a subsequent chapter. However, most of these mixing 

rules also have fundamental drawbacks and are not very widely used (Sandler et aI. , 

1994). Recently, a new set of mixing rules, which are also theoretically sound were 

introduced by Wong and Sandler (1992). Orbey and Sandler (1995a) proposed a 

reformulation of these mixing rules . The predictive abilities of these modified Wong-
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Sandler (MWS) mixing rules are not very well known, and the need exists for evaluating 

their ability to describe the behavior of complex mixtures. 

An alternative approach has been suggested to address some of the limitations of 

the current vapor-liquid equilibrium (VLE) framework (Gasem, 1989). The basic 

premise of this new method is to use a fugacity deviation function to augment the 

fugacity generated from an equation of state. As mentioned previously, an equation of 

state with the conventional mixing rules cannot represent the behavior of highly non-ideal 

solutions. The hypothesis is that a systematic correction to the fugacities calculated from 

the equation of state may alleviate this problem without altering the mixing rules. 

The main goal of this work was to assess the efficacy of this new VLE 

framework. The specific objectives of the study were to 

1. Evaluate the effect of a fugacity deviation function correction on the phase 

behavior predictive abilities of an equation of state. 

2. Evaluate the comparable phase behavior predictive abilities of the equation of 

state using the modified Wong-Sandler (MWS) mixing rules. 

3. Compare the above with the conventional methods for calculating phase 

equilibrium properties, i.e., using an equation of state for both phases or an 

equation of state for the vapor phase with an activity coefficient model for the 

liquid phase. 

The Peng-Robinson equation of state was selected for the purposes of this evaluation. 

Chapter II of this thesis presents a brief review of the various mixing rules used 

for cubic equations of state. Chapter III contains discussions involving the fugacity 

deviation function. Chapter IV presents the results and comparisons of the fugacity 
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deviation function approach with the conventional approaches and the MWS mixing 

rules. Chapter V contains conclusions and recommendations from the current work. 
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CHAPTER II 

LITERA TURE REVIEW 

A Brief Review of Mixing Rules 

The most convenient form for representation of equilibrium phase behavior for 

process design and optimization calculations has long been recognized as that of analytic 

equations of state (Prausnitz, 1977). The most commonly used equations of state are the 

cubic van der Waals type equations such as the Peng-Robinson (Peng and Robinson, 

1976) and the Redlich-Kwong (Redlich and Kwong, 1949) equations. For the application 

of these equations to mixtures, the mixture parameters are obtained from pure component 

parameters using mixing rules. The most commonly used mixing rules are the van der 

Waals one-fluid mixing rules (Gasem et aL., 1993) 

(2-1) 

b = "" z.zb L.. L.. 1 J I) 
(2-2) 

In addition, combining rules are needed for the parameters a ij and b ij . The usual 

combining rules are 

(2-3) 

1 
b . = -(b + b.)(l + D) 

I) 2" JJ I) 
(2-4) 

where eij and Dij are empirical "binary interaction parameters" obtained by fitting 

equation of state predictions to experimental data. 

5 



Equating a cubic equation of state with the virial expansion, which has a sound 

theoretical basis at low densities, should lead to a quadratic composition dependence of 

the second virial coefficient (Sandler et aI., 1994). This provides a justification for the 

van der Waals mixing rules at low densities. In fact, until recently, these were the only 

mixing rules in general use, and they were used at all densities. Since there are no results 

from statistical mechanics which are generally valid at high densities, the theoretically 

correct composition dependence ofthe mixture equation of state parameters at these 

conditions is unknown. 

A shortcoming of the van der Waals mixing rules is that they are applicable only 

to mixtures of relatively moderate solution (in contrast to pvT) non-ideality. The 

combination of a cubic equation of state and the van der Waals mixing rules can only 

represent mixtures which have approximately the same degree of solution non-ideality as 

can be described by regular solution theory (Sandler et aI., 1994). However, many 

mixtures of interest in the chemical industry exhibit much greater non-ideality and have 

been described traditionally by activity coefficient (excess Gibbs free energy) models 

(Prausnitz, 1 977). To improve the capabilities of the cubic equations of state and thus, 

avoid the use of free energy models, various mixing rules have been proposed to describe , ---- -
highly non-ideal mixtures (see, e.g., Sandler et aI., 1994). 

Huron and Vidal (1979) used a combination of an equation of state and an excess 

Gibbs free energy model to develop the Huron-Vidal mixing rules. The mixing rule for 

the b parameter is the same as Equation (2-2), and the mixing rule for the a parameter is 

6 



(2-5) 

where G E is the molar excess Gibbs free energy, and cr is a numerical constant which 

depends on the equation of state being used. This mixing rule was the first to combine a 

free energy model with an equation of state to represent highly non-ideal solutions. 

Implementing this approach with the Wilson or NRTL models (Walas, 1985) has been 

very successful for describing some highly non-ideal systems. Nevertheless, it suffers 

from a number of theoretical and computational difficulties. First, the mixing rule was 

developed by equating the excess Gibbs free energy obtained from an equation of state to 

that obtained by an excess Gibbs free energy model at infinite pressure. This use of free 

energy models at infinite pressure is inconsistent as these models were developed for low 

pressures. Second. this mixing rule is not always capable of describing simple systems 

which have traditionally been described by the van der Waals mixing rules. Third, it does 

not satisfy a theoretical requirement that the second virial coefficient have a quadratic 

composition dependence. Fourth, the parameters obtained by the use of this mixing rule 

are different from the parameters obtained by the direct use of the same free energy 

model. Thus, one cannot use the parameter tables developed for the free energy models 

with this approach. 

An entirely different approach has been to add an additional composition ---_ .. - .------ - - - _ .. -_ ..... _._----_ .•. - - -----. __ ... ---.. ~~ 

dependence to the combining rule of the a parameter in the van der Waals mixing rules, 

generally leaving the b parameter unchanged. Examples are the combining rules of 

Panagiotopoulos and Reid (1986) 

7 



(2-6) 

Adachie and Sugie (1986) 

c = K + D (z. - z.)· 
I) IJ IJ 1 J 

(2-7) 

Sandoval et al. (1989) 

c . = K .. z + Kz. + O.s(K .. + K . )(1- z· - z) 
I) IJ 1 )1 1 I) JI 1 J 

(2-8) 

Shwartzentruber and Renon (1989a, 1989b) 

mijz i -mjizj ( ) 
C = K .. + D z· + z · 

I) I) lJ m .. z . + m .. z. 1 ) 
I) 1 )1) 

(2-9) 

where in this last equation, K;j = Kj; ,D ij = -Dj; ,mji = Dij - m ij , Kii = D j; = o. 

However, these combining rules, when used with the van der Waals mixing rules, do not 

satisfy the theoretical boundary condition of a quadratic composition dependence of the 

resulting second virial coefficient. A second problem associated with the combining 

rules of Equations (2-6) through (2-9) is the so-called Michelsen-Kistenmacher (1990) 

syndrome, in which a mixing rule is not invariant to the subdivision of a component in 

two or more identical components. Another problem, also pointed out by Michelsen and 

Kisterunacher (1990), is that the added composition-dependent term depends explicitly on 

mole fractions rather than on a mole ratio. Consequently, the added terms become less 

important as the number of components in a mixture increases. For example, the value of 

an will be different in binary and multicomponent mixtures with the same species 1: 

species 2 mole ratio. 

To achieve the objective of satisfying the theoretical low density limit of a 

quadratic composition dependence of the second virial coefficient, there has been some 

8 
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research on density-dependent mixing and/or combining rules also (Michel et aI., 1989; 

Copeman and Mathias, 1986; Sandler et aI., 1986). However, a density-dependent 

mixing rule introduces the conceptual problem that the order of the equation of state with 

respect to density changes depending on the number of components, which violates the 

one-fluid model. For example, the volume dependence of an equation of state would 

change even if a pure species is mixed with one of its isomers. Moreover, the resultant 

higher order equation of state poses numerical difficulties in implementation and 

increased computation time. 

Wong and Sandler (1992) developed a set of mixing rules for cubic equations of 

state which equates the excess Helmholtz free energy at infinite pressure from an 

equation of state to that from an activity coefficient model. Use of the Helmholtz free 

energy insures that the second virial coefficient calculated from the equation of state has a 

quadratic composition dependence, as required by statistical mechanics. The basic 

equations for the mixture parameters of a cubic equation of state, a and b are 

(2-10) b= E 

A " a j 

1- aRT - L. Zj RTb . 
. I 

(2-11 ) 

In the above equations, A E is the molar excess Helmholtz free energy, and a is a 

numerical constant which depends on the equation of state being used (e.g. , a = -0.62323 

for the Peng-Robinson equation of state). The combining rule for the cross second virial 

coefficient in Equation (2-10) is 

9 



(2-12) 

The parameter C jj as used in the Wong-Sandler (WS) mixing rule is a second virial 

coefficient binary interaction parameter and is different from the parameter Cij as used in 

the van der Waals mixing rule (Equation 2-3). The functionality for the excess 

Helmholtz free energy comes from any of the excess Gibbs free energy models currently 

used. The relation between the two is 

(2-13) 

where vE is the molar excess volume. At low pressures, the term pvE is very small and to 

a good approximation, we have 

(2-14) 

Also, the excess free Helmholtz energy is essentially independent of pressure (or density) 

and thus, the value of A E obtained from Equation (2-14) can be used at infinite pressure, 

l.e. 

(2-15) 

The WS mixing rules, when used with a modified version of the Peng-Robinson equation 

of state (Stryjeck and Vera, 1986), have been shown to be reasonably successful in 

correlating the phase behavior of highly non-ideal mixtures (Wong et at. , 1992; Huang 

and Sandler, 1993; Orbey et aI., 1993 ; Huang et aI. , 1994; Eubank et aI. , 1995; Voutsas, 

et a1. , 1995). 

Recently , Orbey and Sandler proposed a reformulation of these mixing rules 

(Orbey and Sandler, 1995a). The proposed reformulation ensures that the mixing rules 

10 
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go smoothly from activity coefficient-like behavior to the van der Waals mixing rules by 

variation of their parameters. This is important for the description of multi component 

mixtures in which only some of the binary pairs require mixing rules of the WS type, 

while other binaries can be described by the van der Waals mixing rules. Thus, 

multicomponent mixtures containing both types of binaries can be described in a unified 

framework. In the modified Wong-Sandler (MWS) mixing rules, the basic equations for 

b and a, Equations (2-10) and (2-11), remain the same, but the combining rule for the 

cross virial coefficient, Equation (2-12) is modified to 

(2-16) 

This ensures that the van der Waals one-fluid mixing and combining rules with the usual 

definition of the binary interaction parameter will be recovered. The interaction 

parameter Cij as used in the MWS mixing rule is the same as the parameter C jj used in the 

van der Waals mixing rule (Equation 2-3). The MWS mixing rules can be used only with 

certain free energy models, like the van Laar (Walas, 1985) or the modified NRTL 

(Huron and Vidal, 1979), if they are to be used in multi component systems of the type 

described above. The use of these models in the MWS mixing rules ensures that the van 

der Waals mixing rules are obtained for some model parameter values. The use of other 

free energy models is not incorrect, but the van der Waals mixing rule cannot be obtained 

if these models are used. 

The suggested reformulation is a matter of convenience for the use of the 

relatively complex MWS mixing rules with the more commonly used and simpler van der 

Waals mixing rules. The choice of a free energy model ceases to be a factor if the MWS 

11 
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mixing rules, by themselves, are chosen to describe all the binaries of a multi component 

system. The MWS mixing rules have been shown to correlate the behavior of some 

systems containing alcohols and alkanols (Orbey and Sandler, 1995b). However, the 

range of applicability of these mixing rules and their correlative abilities, in general, are 

not very well known. One of the objectives of this work was to evaluate the MWS 

mixing rules for their ability to correlate the behavior of non-ideal mixtures. 

12 
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CHAPTER III 

A FUGACITY DEVIATION FUNCTION 

Deviation Functions 

The following discussion gives a brief overview of deviation functions and their 

significance (see, e.g., Abbott and Nass, 1986; Denbigh, 1981). It is rarely practical to 

work directly with a mixture property M. M may not be defined unambiguously , and 

thus, in principle, may not allow direct experimental determination. Internal energy (U) 

and entropy (S) are prime examples of such properties. Similarly, the Gibbs free energy 

(G) and the enthalpy (H) are defined in terms of U and S. Moreover, a mixture property 

is usually not represented by a simple sum of the pure fluid property contributions, i.e. 

M:t:.'Mn. L..J J J 
(3-1 ) 

where M j is a pure fluid molar property, and nj .represents the mole number of species i. 

The partial molar property concept allows us to define a mixture property in terms 

of constituent contributions. Thus, we can state that 

M='Mn L..J 1 J (3-2) 

where Mj is a partial molar property. The property change due to mixing can be written 

as 

(3-3) 

13 
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To overcome the problems involved in dealing with a mixture property directly, the 

concept of deviation functions was introduced. In this approach, mixture properties are 

calculated in tenns of their deviations from a particular reference model under the same 

conditions. 

M D = M - M ref or 

(3-4) 
M D = SM mix - 8M~rx 

Desirable attributes of the selected reference model include (Abbott and Nass, 1986) 

1. The model should reflect some molecular description for the mixture at hand. 

2. The model should have an analytical expression, preferably a simple one. 

3. The deviation function should have unambiguous limits. 

For gases, the reference model usually used is the ideal (or perfect) gas law and 

the deviation function is called a residual property. For liquid solutions, the reference 

model usually used is the ideal liquid solution and the deviation function is called an 

excess property. Fugacity coefficients and activity coefficients are probably the two most 

important quantities used in phase equilibrium calculations. These quantities are, in fact, 

dimensionless deviation functions and represent deviations from a perfect gas mixture 

and an ideal liquid solution, respectively. The fugacity coefficient for a component of a 

mixture, $ i , can be defined as 

(3-5) 

where ~i is the actual chemical potential of the component, ~:g is the chemical potential 

of the component evaluated by the ideal gas model under the same conditions, and fj and 

14 



Pi are the fugacity and partial pressure ofthe component, respectively. In the above 

equation, T is the temperature of the mixture and R is the universal gas constant. 

Similarly, the activity coefficient for a component of a mixture y; can be defined by 

(3-6) 

where [ref = z. f 
1 1 1 

In Equation (3-6), /l; ' is the chemical potential of the component evaluated by the ideal 

liquid solution model under the same conditions, and fj is the fugacity ofthe pure 

component at a selected reference state. 

The criterion of equilibrium between any number of phases at a given temperature 

and pressure is 

I 2 3 . 
/li = /l j = /lj = ... = /If (3-7) 

for i = 1,n 

j = I, m 

where n and m are the number of components in the mixture and the number of phases, 

respectively. Thus, at equilibrium, the chemical potential of each component should be 

equal in all phases. Now, the fugacity of a component of a mixture is related to its 

chemical potential by 

/l ; = /l~ + RTln f; (3-8) 

In Equation (3-8), /l~ is a function of temperature only. Thus, it is the chemical potential 

of pure i at unit fugacity . Since ).l~ is a function of temperature only, the criterion of 

equilibrium for two or more phases in equilibrium at a given temperature and pressure in 

15 
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tenns of chemical potentials can also be written as 

Afl_fA2 _fA3 __ fA j 
i - i - i - ... - i 

for i = 1,n 

j = I, m 

(3-9) 

Thus, at equilibrium, the fugacity of each component should be equal in all phases. This 

criterion of equilibrium is, in principle, sufficient for practical phase equilibrium 

calculations. The fugacity of a component in a mixture is usually calculated by means of 

Equation (3-5) or (3-6). Fugacity coefficients in Equation (3-5) can be calculated from an 

equation of state used to model the behavior of the system. This method of handling 

phase equilibrium problems using an equation of state for all phases is often called the 

(~/~) approach. The criterion of vapor-liquid equilibrium using the (~/~) approach can be 

written as 

(3-10) 

for i = 1, n 

In Equation (3-10), x and y represent liquid and vapor phase mole fractions and the 

superscripts 1 and v refer to the liquid and vapor phase, respectively . However, most 

equations of state are not highly accurate in modeling the behavior of condensed phases, 

especially complex mixtures. Due to this, phase equilibrium calculations using this 

approach have no1 been very successful for many systems. Figure 1 is an example of the 

inability of an equation of state equipped with the van der Waals mixing rules to handle 

the behavior of highly non-ideal systems. For all figures in this study, the continuous 

lines represent model predictions and the symbols represent experimental data, with the 
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Figure 1. Representation of Vapor-liquid Equilibrium for the Ethyl Acetate + Water 
System at 323.2 K Using the Peng-Robinson Equation of State Equipped with the van der 
Waals Mixing Rules. 
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filled symbols representing the liquid phase. 

An alternative approach has been to calculate the fugacities in the liquid phase by 

means of Equation (3-6) and the fugacities in the vapor phase by means of Equation (3-

5). The activity coefficients are calculated by means of excess Gibbs free energy models. 

This method of handling phase equilibrium calculations is called the split (Y/$) approach. 

The criterion of vapor liquid equilibrium using the (Y/$) approach can be written as 

(3-11) 

for i = 1, n 

The reference fugacity in the above equation is a pure component reference fugacity , 

which depends on the reference state used to define Yi. For subcritical components, the 

reference state is usually the pure liquid state at the temperature and pressure of the 

solution. For supercritical components, a hypothetical state corresponding to 

extrapolation along the Henry's law gradient to a mole fraction of unity is used as a 

reference state. In the preceding discussion, it might be noted that, for both the methods, 

by same "conditions", we mean the same temperature, pressure and composition as these 

are the independent variables generally used in phase equilibrium calculations. 

Limitations ofthe Split (Y/$) Approach 

As mentioned previously, many systems which cannot be modeled by equations 

of state are handled by means of activity coefficient (excess Gibbs free energy) models. 

These models have been reasonably successful in modeling the equilibrium behavior of 

many systems. However, the primary problem with these models is the need for 
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assumption of reference states. They cannot be applied to systems where even one 

component does not exist as a liquid at the same temperature and pressure as that of the 

solution, unless hypothetical reference states are assumed (Denbigh, 1981). Further, even 

for systems whose components are liquids at the same temperature and pressure as that of 

the solution, the implications of an ideal solution, as defined by the Lewis-Randall rule, 

are sometimes confused with the Raoult 's law model (Peng, 1990). As pointed out by the 

same author, for a system which follows Raoult's law, in the two-phase region, neither 

the vapor nor the liquid is an ideal solution in a strict sense. In addition, he showed that 

the use of hypothetical reference states to qualify the model fluids of Raoult ' s law at VLE 

conditions as ideal solutions may lead to confusion, if not inconsistency, in Gibbs energy 

analysis. Wilczek-Vera and Vera (1990) have recently reexamined and organized the 

common reference states used for activity coefficients. However, the need for such 

organization is a pointer to the ambiguities in activity coefficient models. Additional 

limitations of the (y/~) method include difficulties in applying it to the critical region and 

the need for a separate method for calculating volumetric properties (Prausnitz et aI. , 

1986). 

Proposed Method 

The equation of state (~/~) approach has inherent limitations in that it cannot 

model phase equilibrium for systems which exhibit appreciable solution (in contrast to 

pvT) non-ideality (Sandler et aI., 1994). As mentioned previously, the main problem 

with this approach is the accurate representation of liquid phase behavior. An attempt 
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was made to alleviate this drawback by correcting the liquid phase fugacities obtained 

using an equation of state by a deviation function (Gasem, 1989). The fugacity deviation 

function, say e; , can be defined by 

(3-12) 

where, f; is the actual fugacity of the component and ftOS is the fugacity calculated by 

the equation of state used to model the solution behavior. There are two important limits 

at which the value of e; needs to be defined. These are 

(3-13) 
A 

8; ~ 1 as p ~ 0 

This makes the fugacities calculated by the equation of state applicable at the limits of the 

pure components. Also, this would allow the Equations (3-7) through (3-9) to be 

applicable to this particular approach and eliminate any ambiguities regarding limiting 

behavior for different systems. However, other limiting conditions may be used to define 

the pure component limits. 

Accordingly, the chemical potential of a component of a phase can be expressed 

by 

II . = I I 0 + R TIn 8. r eos 
r' ] r' , I I (3-14) 

The total Gibbs free energy of a phase is defined by (Denbigh, 1981 ) 

(3-15) 

Substituting the value of the chemical potential from Equation (3-14) 
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G = "n.ll ? + RT" n . ln f cos + RT" n · In 8 ~ lr- I ~ I I ~ I I 
(3 -16) 

If the solution behavior is modeled solely by the equation of state, the last term would be 

zero . Therefore, the excess free energy (with reference to the particular equation of state) 

is 

G E = RT" n· In8 eos ~ I I 
(3 -1 7) 

If we di fferentiate the above expression at constant temperature and pressure 

(3 -18) 

The Gibbs-Duhem equation for a given phase is (Denbigh, 1981) 

-SdT + Vdp- In jd~ j = 0 (3 -19) 

At a constant temperature and pressure, substituting for the chemical potential from 

Equation (3-14), the above equation can be ritten as 

The second term on the left hand side of the above equation has to be equal to zero to 

satisfy the Gibbs-Duhem equation for the conventional equation of state approach. Thus, 

the first term is also equal to zero. It follows from the preceding discussion, that at a 

constant temperature, pressure and mole numbers of the other components of the mixture 

(n), Equation (3-18) can be written as 

( OG :OSJ . = RTln8 j an 
I T,I' ,II J 

(3-21 ) 

Thus, if an expression can be obtained for the excess Gibbs energy, G ;05 ' the coefficients 

8 j for the individual species can be determined by differentiating G ;05 with respect to I1j. 
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F or convenience, the fugacity deviation function e i can also be correlated by any of the 

conventional activity coefficient models (or any correlation that obeys the Gibbs-Duhem 

relation). However, such a strategy is not optimum in deriving the full benefit of this 

approach. 

This approach may be called the (e/~) approach to distinguish it from the (~/~) 

approach. In terms of deviation functions, this method essentially involves selecting an 

equation of state as the reference model for evaluating mixture properties. Figure 2 

compares the deviation functions 8 (deviation from an equation of state) and y (deviation 

from an ideal solution) obtained for the acetone + water system at 373.2 K. Figure 3 

compares the fugacities calculated by the (e/~) approach, the (~/~) approach and an ideal 

solution for the same system. These figures are shown for illustrative purposes only and 

no inference regarding the relative magnitudes of the deviation functions can be drawn 

from them. However, one should normally expect the deviation function e to be smaller 

than y, since an equation of state is generally a better reference model than an ideal 

solution. Also, e can be expected to show maxima or minima, when plotted as a function 

of composition, and a model for 8 should be able to handle such behavior. 

Calculating the Fugacity Deviation Function from Experimental Data 

An equation for the calculation of 8 i from experimental data can be derived in the 

same manner as the equation for the fugacity coefficient, which is derived below 

(Denbigh, 1981 ). For each component of a mixture, we have the following relation 
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Figure 2. Comparison of Deviation Functions Generated from the (y/~) Approach and the 
(e/~) Approach for the Acetone (l) + Water (2) System at 373.2 K 

23 

-, 
:;! -
l --::::> ... 
t: .. 

Ed 



-

-... ca 
.c -

4.00 "T"""-----------------------__. 

3.00 

(9/cjJ) Approach 

(cjJ/cjJ) Approach 

Ideal Solution 

,,-

~ ._ 2.00 // 
o 
as 
0) 1 
::l 

LL 
- - - / 

1.00 / 

-
/--. -- 2 --

0.00 ~----...... ----..... ----_---___ ---...IIiIiI 
0.00 0.20 0.40 0.60 0.80 1.00 

Mole Fraction Acetone (1) 

Figure 3. Comparison of Fugacities Calculated by the (8/cjJ) Approach, the (~/~) 
Approach and the Ideal Solution Model for the Acetone (1) + Water (2) System at 373.2 
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=v 
1 

(3-22) 

where the differentiation is at a constant temperature and composition, and the term on 

the right hand side of the equation is the partial molar volume ofthat component Thus, at 

a given temperature and composition 

(3-23) 

Under the same conditions, we have 

dll=RTdlnf ,..., I (3-24) 

Thus 

RTdlnf =v.dp 
. I I 

(3-25) 

Subtracting RTd lnp; from both sides 

= vidp - RTd lnp - RTlnz; (3-26) 

Integrating at constant temperature and composition from p = 0 to the desired system 

. pressure p, we obtain 

(3-27) 

The above result is due to the limiting condition that the fugacity of a component 

approaches its partial pressure as total system pressure approaches zero. For a perfect gas 

mixture, Vi = RT/p , and the integrand in the above equation is zero. Thus, the fugacity is 

25 



equal to the partial pressure. 

The derivation so far has been limited to the (~/~) approach. For the (8/~) 

approach, the derivation for the calculation of 8 j is similar except that Equation (3-26) 

can now be written as 

RTd In(SjfjeOS /pj) = v';dp - RTd InPi 

= v;dp - RTd Inp - RTlnz j (3-28) 

RTdln9i + RTdln(i\'oo IpJ = (Vi -R:) dp (3-29) 

The second term on the left hand side of the above equation can be replaced by the right 

hand side of Equation (3-26) 

~ ( RTJ (. RT) RTdln8 j + v~os -p dp = I Vj -p dp (3-30) 

The superscript on the partial molar volume indicates that it is the partial molar volume 

calculated by the equation of state, so as to distinguish it from the actual partial molar 

volume. Rearranging 

(3-3 I) 

As before, integrating at constant temperature and composition from p = 0 to the pressure 

p at which the value of 8 j is to be calculated. we obtain 

I 8~ 1 Pf(~ -eos) d n · =- v-v p 
I RT I I 

o 
(3-32) 
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Again, the above result is due to the limiting condition that ej approaches unity as the 

system pressure approaches zero. Thus, the fugacity coefficient ~i represents deviations 

from the ideal gas model , whereas ej represents deviations from an equation of state. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The proposed method discussed in the previous chapter was evaluated using a 

database comprised of non-ideal systems at low pressures (generally handled by the split 

(y/~) approach) and asymmetric mixtures containing supercritical fluids with 

hydrocarbons at high pressures (generally handled by the equation of state (~/~) 

approach). Following are detailed descriptions of the different methods studied and the 

results obtained. 

Model Evaluations 

Desirable attributes of a thermodynamic framework for calculating phase 

equilibrium problems include 

1. A sound theoretical basis 

2. Ability to represent existing experimental data with good precision 

3. Model parameters that are amenable to generalizations 

As shown in the previous chapter, the proposed (e/~) approach is theoretically 

rigorous and can be derived from the basic equations of classical thermodynamics. The 

MWS mixing rules also have a sound theoretical basis. Both these methods essentially 

use an excess Gibbs free energy model to extend the applicability of equations of state to 

non-ideal systems. However, the MWS mixing rules use the excess model withln the 

mixing rules employed by the equation of state, whereas the (e/~) approach uses the 
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excess model to account for the deviations from an equation of state. In this study, both 

of these methods were compared with the conventional methods used for phase 

equilibrium calculations, i.e., the split (y/~) approach for low pressure systems and the 

equation of state (4)I~) approach employing van der Waals mixing rules for high pressure 

systems. 

The primary purpose of this study was to evaluate the precision of the proposed 

method in correlating binary vapor-liquid equilibrium of the systems considered. 

Therefore, model evaluations for all systems were done on an isotherm-by-isotherm 

basis, i.e., model parameters were regressed for individual isotherms of each system. 

However, for a model to be useful in practice, a single set of parameters should normally 

be able to represent the phase behavior of a system with reasonable accuracy. For this 

purpose, the temperature dependence of the model parameters for the (e/~) approach was 

investigated for a number of sample systems. This is discussed in brief later in this 

chapter. 

Four different methods were evaluated in this study for correlating binary vapor-

liquid equilibrium (VLE) of the systems considered. The four VLE methods are listed in 

Table I as specific case studies. In Case 1, the Peng-Robinson equation of state is used 

with the van der Waals mixing rules for the vapor phase (with no interaction parameters), 

and the NRTL model (Renon and Prausnitz, 1965) is used for the liquid phase. The 

Peng-Robinson equation (Peng and Robinson, 1976) is given as follows 

p= 
v-b 

aCT) 
(4-1) 

RT 

v( v + b) + b( v - b) 
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where 

(4-2) 

b = 0.07780RTc I Pc (4-3) 

and 

(4-4) 

a(T)1/2 = 1 + K(1- T: /2) (4-5) 

K = 0.37464 + 1.542260) - 0.269920)2 (4-6) 

The equations for the van der Waals mixing rules are sho'Ml in Chapter II (Equations 2-1 

to 2-4). The NRTL model can be 'Written as 

GE . ["",Z.G .. 1.] '" L.. j J JI JI 
-=Lz 
RT 1'1 LkzkGki 

(4-7) 

G = exp(-a .. 1 .. ) 
Jl IJ JI (4-8) 

The expression for the activity coefficients is 

(4-9) 

In this case, the parameters to be regressed are the model parameters 1 12 , 121 and an. This 

is the split (yl$) approach. Case 1 has been used for non-ideal low pressure systems only, 

as excess free energy models are more suited for such systems. 

In Case 2, the Peng-Robinson equation of state, equipped with the van der Waals 

mixing rules employing two interaction parameters (C ij and D ij) , is used. The parameters 

to be regressed are the interaction parameters Cij and D jj . Case 2 has been used for high 
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pressure systems only, as equations of state with the van der Waals mixing rules 

generally cannot handle the behavior of highly non-ideal systems (Sandler et aI., 1994). 

In Case 3, the Peng-Robinson equation of state equipped with the MWS mixing 

rules is used. The equations for the MWS mixing rules are shown in Chapter II 

(Equations 2-10, 2-11 and 2-16). The excess model used with these mixing rules was a 

modified NRTL model (Huron and Vidal, 1979). The equations for the modified NRTL 

model are the same as Equations (4-7) and (4-9). Only Equation (4-8) is changed to 

(4-10) 

where bj is the equation of state co volume parameter (Equation 4-3 ). In this case, the 

parameters to be regressed are the interaction parameter Cij and the excess model 

parameters 't n, "C2 1 and 0. 12, Cases 2 and 3 both represent variations of the (~/~) approach. 

However, in this study, a reference to the (~/~) approach, without any mention of the 

mixing rules used, should be understood as a reference to Case 2, as it is the more 

commonly used approach. 

In Case 4, the Peng-Robinson equation of state is used with the van der Waals 

mixing rules employing one interaction parameter (C ij), and a fugacity deviation function 

correction is applied to the calculated liquid fugacity. The fugacity deviation function 

used in this case was the Redlich-Kister model (Walas, 1985) 

In(\ = Z;[B+C(3zl-~)+D(zl-~)(5zl-~)] (4-11) 

(4-12) 

The excess Gibbs free energy model from which these equations are derived is 
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~T = zl z2[8+C(ZI -z2)+D(ZI- Z2) 2+ ..... ] (4-13) 

In this case, the parameters to be regressed are the interaction parameter Cjj and the model 

parameters B, C and D. This is the proposed (8/cjl) approach. The Redlich-Kister model 

was selected, in preference to some other models, after some preliminary trials. 

However, it was not selected for theoretical reasons but as a flexib le model to explore the 

merits of this method. Eventually, one should seek a more precise excess model to 

account for deviations in phase behavior beyond the reference equation of state. 

Case 

2 

., 

.) 

4 

TABLE! 

CASES STUDIED IN MODEL EVALUATIONS 

Description 

The Split (y/cjl) Approach 
Peng-Robinson equation of state with the van der Waals mixing rules 
(with no interaction parameters) for the vapor phase and the NRTL 
model for the liquid phase. This case is used for non-ideal low pressure 

. systems only. 

The (cjl/cjl) Approach with the van der Waals Mixing Rules 
Peng-Robinson equation of state using the van der Waals mixing rules 
with two interaction parameters (C jj and D jj ). This case is used for high 
pressure systems only. 

The (cjl/cjl) Approach with the MWS Mixing Rules 
Peng-Robinson equation of state with the MWS mixing rules. Excess 
model used with the mixing rules is the modified NRTL model. 

The New (8/cjl) Approach 
Peng-Robinson equation of state using the van der Waals mixing rules 
with one interaction parameter (C ij ) , and a fugaci ty deviation function 
correction applied to the calculated liquid fugacity. The Redlich-Kister 
model is used for the fugacity deviation function . 
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The model evaluations were performed using the GEOS software developed at 

Oklahoma State University (Gasem, 1988-1996). For the MWS mixing rules, some 

subroutines had to be added to the original source code. Validation cases studied for the 

modified program are presented in Appendix A. Results previously published in 

literature using the MWS mixing rules were replicated using the modified program, thus 

validating the proper implementation of the MWS mixing rules. The model parameters 

were regressed to minimize deviations in bubble point pressure predictions only. The 

objective function used for minimization was 

_ np(s( p~xp _ p~al ) 2 

SS - L exp 
;=1 Pi 

where, the superscripts exp and cal refer to experimental and calculated values 

(4-14) 

respectively. The summation is over the total number of points (npts) in the data set. The 

quality of fit was assessed by calculating the root-mean-squared error (RMSE), 

percentage average absolute deviation (%AAD) and BIAS for each data set. Definitions 

of these statistics are given in the Nomenclature. 

Database Used 

The four methods discussed in the previous section were evaluated using a 

database comprised of non-ideal systems at low pressures as well as asymmetric systems 

at high pressures. Only binary vapor-liquid equilibrium data were used in this study. At 

low pressures, a majority of the systems considered involved water with different 

compounds. The compounds were chosen to represent several classes of chemicals 

(alcohols, acids, aldehydes, ethers, ketones, etc.). Some other systems exhibiting ncar-
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ideal behavior were also considered. The data for most low pressure systems were taken 

from the DECHEMA Chemistry Data Series (DECHEMA, 1977). At high pressures, the 

database consisted of binary mixtures of different hydrocarbons with ethane, carbon 

dioxide, nitrogen and hydrogen. The hydrocarbons were chosen to represent several 

classes of compounds (n-alkanes, naphthenes and aromatics). The data for these systems 

were taken from an extensive database previously compiled at Oklahoma State University 

(Raghunathan, 1996). The sources and range of data used are shown in Tables B.I- B.V 

of Appendix B. Table B.VI in Appendix B lists the physical constants (Tc' Pc and (0) used 

in the evaluation and their sources. Physical constants and the vapor pressure model for 

compounds involved in the systems at low pressure have been taken from Aspen Plus™ 

(AspenTech, 1995). The vapor pressure model and the constants used in the model are 

listed in Table B.VII in Appendix B. 

Evaluation Results 

Evaluation results for the four case studies outlined in Table I are presented here. 

The results for Cases 1-3 are presented in Appendix C. The results for the (8/~) approach 

(Case 4) are summarized in Tables U-VI. 

Low Pressure Systems 

The results for Cases I and 3 for the non-ideal low pressure systems are shown in 

Tables C.I and c.n of Appendix C. As mentioned previously, Case 2 was not studied for 

non-ideal low pressure systems, as equations of state with the van der Waals mixing rules 

often cannot handle the behavior of these systems. The results for Case 4 are shown in 
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Table II. Case 1 shows the best results of the three cases studied (RMSE = 0.0074 bar, 

%AAD = 1.02 for bubble point pressures; RMSE = 0.0160, %AAD = 2.67 for vapor 

compositions of the first component). The overall results for these systems are 

essentially similar for Case 3 (RMSE = 0.0091 bar, %AAD = 1.84) and Case 4 (RMSE = 

0.0094 bar, %AAD = 1.58) for bubble point pressure predictions. The deviations in 

predicted vapor compositions of the first component are also fairly similar (RMSE = 

0.0406, %AAD = 7.42 for Case 3 and RMSE = 0.0407, %AAD = 7.68 for Case 4). 

Deviations in predicted vapor compositions of the first COmponent of each system only 

hav~ been reported in this study. Deviations in predicted vapor compositions of the 

second component have not been reported and will be different for aU systems. 

Figures 4-7 show vapor-liquid equilibrium plots for a few sample systems, 

comparing the different methods evaluated. The figures indicate that good representation 

of the phase behavior is obtained in Cases 3 and 4. In addition, dramatic improvement in 

the quality of the fit near the pure limits (comparable to Case 1) is realized when the pure 

component vapor pressures are used, as shown by Figures 4 and 7. 

Asymmetric High Pressure Svstems 

The results for Cases 2 and 3 for the binary ethane + hydrocarbon systems are 

presented in Tables c.nI and C.IV of Appendix C. As mentioned previously, Case 1 was 

not studied for high pressure systems as activity coefficient models are not well suited for 

such systems. The results for Case 4 are shown in Table III. Deviations in bubble point 

pressures only have been reported for systems at high pressure, since most of the 

available data is in the T-p-x form (no vapor phase measurements). The results for the 
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TABLE II 

RESUL TS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES AND VAPOR COMPOSITIONS 
OF NON-IDEAL SYSTEMS AT LOW PRESSURES USING THE (8/$) APPROACH: CASE 4 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP C· 
'.I 

B C 0 RMSE BIAS %AAD RMSE BIAS %AAD 
(K) (Bar) (Bar) 

Methanol + 318.2 -0.0379 -0.6072 0.5324 0.0716 0.005 -0.001 1.54 
Water 313.1 ·0.0494 -0.5151 0.4447 0.0166 0.002 0.000 0.90 0.017 -0.011 1.94 

298.1 -0.0909 0.3038 0.2694 0.0512 0.004 -0.002 1.84 0.039 0.024 5.49 

Ethanol + 298.2 -0.0005 -1.8320 1.3010 -1.2480 0.001 0.000 1.93 0.062 0.053 11.54 
Water 303.2 0.0010 -1.7590 1.3280 -1.0690 0.001 0.000 0.38 

308.2 0.0016 -1.7400 1.1720 -1.2020 0.002 0.000 0.91 

2-Propanol + 298.2 -0.2700 1.8000 -0.5400 0.3300 0.004 0.002 4.70 0.073 0.070 13.57 
Water 328.2 -0.1975 0.6851 -0.0050 -0.4394 0.002 0.000 0.69 0.014 0.011 1.99 

Water + 323.2 0.0000 -2.2380 -2.0160 -2.2480 0.001 0.000 0.56 0.111 -0.101 16.34 
I-Butanol 343.2 0.0023 -1.7240 -1.9370 -2.0070 0.004 -0.001 1.05 0.069 -0.063 10.34 

363.2 0.0031 -1.3320 -1.7850 -1. 7330 0.008 0.000 1.03 0.043 -0.037 6.58 
403.2 -0.2110 1.4060 0.4790 0.1975 0.033 -0.002 0.77 0.023 -0.016 2.77 

Water + 343.2 -0.2253 0.7680 -0.0236 -0.7387 0.008 0.000 2.47 
2-Pentanol 363.2 -0.2 190 0.8650 -0.0061 -0.5073 0.011 -0.002 l.02 

',"-'lnII\JNi' .",f,v"tr .. ~ vaun, u'J.V 
!~~\.!..~~ ..... _. - .-

NO 
PTS 
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TABLE II (Continued) 

13lH3BLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP Cij B C D RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Water + 294.2 -0.2318 1.2670 -0.0151 -0.1594 0.003 0.000 3.35 0.047 -0.042 4.59 6 
I-Hexanol 313.2 -0.2269 1.1990 -0.0155 -0.2153 0.000 0.000 1.06 0.082 -0.000 6.3-t 8 

Allyl Alcohol + 294.2 -0.0012 -1.7430 1. 6610 -1. 0960 0.000 0.000 0.21 4 
Water 298.2 -0.0009 -1.7530 1.5570 -0.9711 0.000 0.000 0.15 4 

303.2 -0.0003 -1.7340 1.4270 -1.1590 0.000 0.000 0.41 4 
'..oJ 308.2 0.0004 -1.6950 1.1990 -1.3620 0.000 0.000 0.04 4 
-:J 

313.2 0.00 19 -1.6700 1.2750 -0.9204 0.000 0.000 0.18 4 

Water + 278.2 -0.3081 1.0600 0.2531 0.0147 0.000 0.000 2.18 0.022 -0.018 1.94 8 
2-Butoxyethanol 318.2 -0.2975 1.1240 0.2335 0.0139 0.002 -0.001 1.30 0.017 -0.015 1.62 8 

358.2 -0.2862 1.2010 0.2642 -0.0225 0.002 0.000 0.33 0.010 -0.007 0.90 7 

Water + 363.2 -0.1642 0.8960 -0.0820 -0.1670 0.014 -0.003 2.31 0.079 -0.074 9.54 13 
Cyc1ohexanol 

Water + 372.8 -0.0729 -0.8137 -1.0170 0.3959 0.029 -0.006 2.57 0.038 0.01 2 16.31 13 
Acetic Acid 412.6 -0.1987 0.7499 0.1872 0.1354 0.038 -0.009 0.72 0.020 0.002 4.61 13 

Water + 333.2 -0.2043 1.4790 0.0009 0.1389 0.007 -0.003 3.71 0.039 0.006 4.37 17 
Propionic Acid 373.2 -0.1862 0.9262 0.0050 0.2004 0.011 -0.001 1.28 0.047 0.024 7.59 15 
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TABLE II (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP Cij B C 0 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Acetone + 373.2 -0.2517 0.9625 0.1794 -0.3036 0.040 0.002 0.95 0.027 0.016 9.49 22 
Water 323 .2 -0.3190 1.7050 0.0330 0.0018 0.005 -0.002 0.67 15 

308.2 -0.3280 1.7660 0.0415 -0.0435 0.005 -0.001 1.18 0.013 0.007 1.01 19 

2-Butanone + 333.2 -0.3437 2.3480 -0.2490 -0.0248 0.003 0.000 0.35 20 
Water 

'JJ 
00 

Diethy 1 Ether + 308.2 -0.0876 3.3520 4.5360 -9.0500 0.011 -0.004 1.13 13 
Water 298.2 -0.0637 1.2710 5.4430 -7.8780 0.012 -0.001 2.16 13 

Acetonitrile + 323.2 -0.3081 2.6010 -0.0006 0.4536 0.002 0.000 0.41 14 
Water 333.2 -0.3002 2.3980 -0.0187 0.3545 0.001 0.000 0.18 0.040 0.020 5.62 14 

Water + 333.2 -0.0062 -2.9090 -0.5949 -1.0040 0.005 -0.002 4.19 12 
Ethanolamine 351 .2 -0.0007 -2.6930 -0.6225 -0.8286 0.008 -0.003 4.53 12 

364.9 0.0023 -2.5030 -0.7449 -0.8433 0.010 -0.003 3.70 12 

Tetrahydrofuran + 298.2 -0.2636 1.7040 0.2883 0.0153 0.002 0.000 0.70 19 
Water 

"'U~H" '1\11' "1'. Vir"~, ~~'..!'..!..~~ .... - .. _. _ ..... 
VlJ' uJ.V ,1 
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SYSTEM TEMP C. IJ 
(K) 

Acetaldehyde + 283.2 -0.3508 
Water 293.2 -0.3579 

303.2 -0.6103 
373.2 -0.1679 

Water + 323.2 -0.1542 
w Nitromethane 313.2 -0.1550 
\0 

296.2 -0.1607 
294.2 -0.1640 

Water + 318.2 -0.2829 
2-Methylpyridine 308.2 -0.2986 

298.2 -0.2674 

Ethyl Acetate + 323.2 -0.4655 
Water 343 .2 -0.4658 

353.2 -0.4766 

Acetonitrile ·t 333.2 0.0287 
tert-Butanol 

TABLE II (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

B C 0 RMSE BIAS %AAD RMSE BIAS %AAD 
(Bar) (Bar) 

2.5300 0.0379 0.8854 0.030 -0.012 3.30 
2.3320 -0.0037 0.7346 0.037 -0.014 2.75 
5.9040 -2.3280 1.6490 0.041 -0.014 2.05 
1.6230 5.1890 2.9950 0.075 -0.005 2.43 0.033 0.012 4.56 

2.7570 -0.0037 -0.1848 0.009 -0.001 3.83 0.084 -0.029 21.58 
2.8540 -0 .2034 -0.1367 0.003 0.000 2.47 0.083 -0.024 17.37 
3.1 240 -0.2692 -0.0693 0.002 0.000 2.60 0.092 -0.030 20.25 
3.2420 -0.2724 -0.0471 0.001 0.000 2.49 0.098 -0.026 21.54 

0.9271 0.7078 0.0473 0.001 0.000 1.24 
1.1110 0.8202 0.3697 0.001 0.000 0.75 
0.4768 0.3739 0.0352 0.001 0.000 1.80 

3.7090 -1.6770 1.3410 0.002 0.000 0.68 0.045 0.042 8.31 
3.6050 -1.5580 1.3970 0.005 0.000 0.65 0.036 0.033 7.31 
3.7080 -1.6740 1.4300 0.006 0.000 0.52 0.031 0.029 6.77 

0.4595 0.3437 0.1408 0.006 0.000 0.85 0.032 -0.022 6.09 

I,I.'U'H".NII 'fIl,t',1,,1 ri'~Vll' Li~V 
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NO 
PTS 

5 
5 
5 
5 

16 
7 
7 
7 

10 
10 
10 

9 
9 
9 

11 



f, 

TABLE II (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP C jj B C D RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

1 ,3-Butadiene + 305.0 0.0030 1.0420 0.1892 0.1437 0.014 -0.003 0.52 16 
Acetonitrile 329.9 0.0010 1.0250 0.1646 0.1120 0.022 -0.005 0.38 22 

Methyl tert-Butyl Ether 313.2 0.0000 1.0000 -0.1120 0.1794 0.008 0.001 1.54 0.034 0.025 7.11 33 
+ Acetonitrile 

+- Methanol + 298.2 -0.0515 -0.8073 0.9702 -0.2691 0.006 0.000 4.42 0.068 -0.042 15.18 19 
0 

tert-Butanol 313.2 -0.0499 -0.6961 0.7419 -0.3760 0.012 0.001 4.51 13 

tr-l ,3-Pentadiene + 303.2 -0.0002 0.8787 -0.1751 -0.0736 0.023 0.004 3.86 9 
Acetonitrile 313.2 0.0024 0.9072 -0.1737 -0.1107 0.019 0.004 1.85 9 

Dimethyl Sultide + 263.2 -0.0033 1.1110 0.4701 0.3550 0.001 0.000 0.67 8 
Methanol 273.2 -0.0030 l.1470 0.4493 0.3694 0.001 0.000 0.53 8 

288.2 -0.0044 1.2060 0.4028 0.3386 0.002 0.000 0.53 8 

Methyl Mercaptan + 269.2 -0.0517 2.3110 0.4755 0.4054 0.012 -0.005 1.43 7 
Methanol 278.2 -0.0526 2.2520 0.4480 0.2978 0.010 -0.004 0.85 8 

288.2 -0.0501 2.1810 0.4110 0.1798 0.016 -0.005 1.19 8 

I. ",,'H'HIt'''''' I(tI,":/1.7 r .. IVJJ' U.l.V 
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TABLE II (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT I 

SYSTEM TEMP C·· IJ B C 0 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Methyl Mercaptan + 263.2 -0.0108 0.0564 0.0559 0.0708 0.001 0.000 0.43 5 
Dimethyl Sulfide 273.2 -0.0024 -0.0540 0.0296 0.0781 0.001 0.000 0.30 5 

288.2 -0.0039 -0.0190 0.0732 0.1250 0.009 -0.003 0.56 5 

I-Butene + 310.9 -0.0519 0.5330 -0.0402 0.0605 0.004 0.000 0.07 0.002 0.001 0.90 9 
1,3-Butadiene 324.8 -0.0004 -0.0028 -0.0101 -0.0973 0.008 0.001 0.12 0.003 0.000 0.77 9 

338.7 -0.0674 0.5196 -0.0099 0.0017 n.OO2 0.000 0.02 0.000 0.000 0.06 9 

Methanol + 311 0.0000 1.7670 0.0478 0.1571 0.005 -0.001 1.22 0.015 0.003 1.59 7 
Dimethyl Disulfide 336 -0.0069 1.6490 0.0544 0.0983 0.001 0.000 0.09 0.006 -0.004 0.57 10 

OVERALL MODEL STATISTICS 
BUBBLE POINT PRESSURE V APOR COMPOSITION 

RMSE = 
BIAS 
%AAD = 
NOPTS = 

0.0094 
-0.0012 

1.58 
797 

Bar 
Bar 

" ... H HIlI/'ili ,.,.Itt :fI.1 f fiV.u' u,,AV 
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RMSE = 0.0407 
BIAS -0.0011 
%AAD 7.68 
NOPTS = 418 
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Figure 4. Representation of Vapor-Liquid Equilibrium for the 2-Propanol + Water 
System at 298.2 K Using the Different Cases Studied. Experimental Data Are from 
Sazonov (1986) 

1.00 

Figure 4(A): No Tuning of Pure Component Parameters for Case 3 and Case 4 
Figure 4(B): Tuned Pure Component Parameters for Case 3 and Case 4 
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Figure 5. Representation of Vapor-Liquid Equilibrium for the 2-Propanol + Water 
System at 323.2 K Using the Different Cases Studied. Experimental Data Are from 
Tunik and Zharov (1980). 
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Figure 6. Representation of Vapor-Liquid Equilibrium for the Acetonitrile + Water 
System Using the Different Cases Studied. Experimental Data at 323.2 K Are from 
Wilson et a1. (1979) and at 333.2 K Are from Sugi and Katayama (1983). 
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Figure 7. Representation of Vapor-Liquid Equilibrium for the Acetonitrile + Tert­
Butanol System Using the Different Cases Studied. Experimental Data Are from Nagata 
(1989) 

Figure 7(A): No Tuning of Pure Component Parameters for Case 3 and Case 4 
Figure 7(B): Tuned Pure Component Parameters for Case 3 and Case 4 
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three cases studied indicate that aU three models show essentially similar results. Case 2 

(RMSE = 0.43 bar, %AAD = 1.17) and Case 3 (RMSE = 0.42 bar, %AAD = 0.88) do 

slightly worse than Case 4 (RMSE = 0.19 bar, %AAD = 0.51). 

The results for Cases 2 and 3 for the binary carbon dioxide + hydrocarbon systems 

are presented in Tables C.V and C.VI of Appendix C. The results for Case 4 are shown 

in Table IV. The results again show the same trend. Case 4 (RMSE = 0.28 bar, %AAD = 

0.58) does marginally better than Case 2 (RMSE = 0.78 bar, %AAD = 0.96) and Case 3 

(RMSE = 0.36 bar, %AAD := 0.78). 

The results for Cases 2 and 3 for the binary nitrogen + hydrocarbon systems are 

presented in Tables C.VII and C.VIII of Appendix C. The results for Case 4 are shown in 

Table V. Case 2 (RMSE = 2.24 bar, %AAD = 1.91 ), Case 3 (RMSE = 2.27 bar, %AAD 

= 1.57) and Case 4 (RMSE = 2.08 bar, %AAD = 1.54) show essentially the same results, 

albeit, on a reLative (%AAD) basis, Case 2 does slightly worse than Cases 3 and 4. 

However, the model parameters for Case 3 are not stable for some systems, and 

difficulties in convergence were experienced. Typically, systems for which convergence 

was difficult resulted in large values for the parameter t)2' The nitrogen + n-decane 

system offers an example for thc convergence problem. In this case, one data point at 

410.9 K did not converge. Thus, the parameters were optimized after discarding that 

particular point, and the isotherm was not included in the overall analysis. 

The results for Cases 2 and 3 for the binary hydrogen + hydrocarbon systems are 

presented in Tables C.IX and C.X of Appendix C. The results for Case 4 are shown in 

Table VI. Case 2 (RMSE = 1.81 bar, %AAD = 1.02) and Case 3 (RMSE = 2.08 bar, 
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TABLE III 

RESULTS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
OF ETHANE + HYDROCARBON SYSTEMS USING THE (8/~) APPROACH: CASE 4 

SOLVENT TEMP C ij B C D RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 303.2 0.1568 -0.9050 -0.0146 0.2373 0.130 -0.003 0.69 10 
323.2 0.0158 -0.0185 0.0330 -0.0723 0.1 25 0.002 0.69 10 
343.2 -0.0003 0.0209 0.0309 -0.0583 0.377 -0.001 1.42 7 
363.4 0.0189 -0.0000 0.0332 -0.0295 0.239 0.004 0.74 11 

+>- n-Decane 311.1 0.0159 -0.0923 -0.0201 0.0477 0.060 0.002 0.44 10 
-J 

344.4 0.0131 -0.0976 -0.0024 0.0279 0.144 0.014 0.57 7 
377.8 0.0139 -0.1114 0.0071 0.0252 0.075 0.000 0.14 6 
411.1 0.0052 -0.0717 0.0529 0.0515 0.053 0.002 0.11 7 

n-Hexadecane 285 .0 0.0502 0.0092 -0.7400 0.1736 0.197 0.019 0.56 5 
305.0 0.0261 -0.2532 -0.0217 -0.0007 0.294 -0.047 0.86 5 
325.0 -0.0120 0.0567 0.2123 0.0711 1.166 0.029 1.71 5 

n-Docosane 320.0 0.0449 -0.5603 -0.1785 0.0362 0.077 -0.008 0.23 6 
340.0 0.0543 -0.6170 -0.1923 0.0048 0.282 -0.003 0.41 8 
360.0 0.0564 -0.5994 -0.1683 0.0051 0.075 -0.004 0.28 6 

n-Octacosane 348.2 -0.0018 -0.4236 0.0187 0.0642 0.161 -0.001 0.84 10 
373 .2 -0.0116 -0.3315 0.0310 0.1378 0.072 0.000 0.32 7 

• : ! ~.., r I ~ ~ "'i .! ~ ~ ".. ~ I "" ~ ... - I 
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TABLE III (Continued) 

SOLVENT TEMP C· IJ B C D RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

423.2 -0.0060 -0.4069 -0.0014 0.0677 0.058 0.004 0.17 7 

n-Hexatriacontane 373.2 -0.0170 -0.4904 -0.0144 0.0486 0.072 0.005 0.34 7 
423.2 -0.0259 -0.4551 0.0243 0.2005 0.034 -0.001 0.08 6 

n-Tetratetracontane 373.2 -0.0433 -0.6004 0.0689 0.1370 0.167 0.003 0.74 9 
423.2 -0.0770 -0.4294 0.0015 0.0744 0.104 0.000 0.64 7 

.,. Benzene 323.2 0.0551 -0.1236 -0.1302 -0.0394 0.062 -0.001 0.40 7 
00 

373.2 0.0528 -0.1322 -0.0878 -0.0161 0.047 -0.002 0.14 7 
423.2 0.0388 -0.0549 -0.0116 0.0240 0.116 0.003 0.27 7 
298.2 -0.0178 0.6029 -0.0433 -0.1248 0.256 -0.022 0.63 7 

Toluene 313.1 0.0449 0.0241 -0.1470 -0.0839 0.123 0.014 0.33 8 
393.1 0.0247 -0.0293 0.0267 -0.0261 0.382 0.008 0.51 9 
473.2 0.0290 -0.0123 0.0525 -0.0642 0.254 0.030 0.75 9 

Naphthalene 373.2 0.0377 0.1120 -0.1217 -0.0809 0.166 0.001 0.24 10 
423.2 0.0299 0.0959 -0.0861 -0.0347 0.182 -0.005 0.31 7 

Cyclohexane 323.2 0.0102 0.0080 -0.0439 -0.0042 0.105 0.018 0.36 8 
373.2 0.0054 -0.0002 -0.0208 -0.0167 0.123 -0.009 0.31 7 
423.2 0.0106 0.0000 -0.0051 -0.0016 0.058 0.001 0.12 6 
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TABLE III (Continued) 

SOLVENT TEMP C jj B C D RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Phenanthrene 383.2 0.0411 0.2325 -0.109\ -0.0982 0.597 0.000 0.85 6 
423 .2 0.0360 0.2040 -0.0830 -0.0641 0.134 -0.003 0.12 6 

Pyrene 433.2 0.1037 -0.0729 0.0293 0.1333 0.629 0.010 0.81 6 

OVERALL MODEL STATISTICS 

RMSE 0.1894 Bar ... BIAS 0.0021 Bar 
\0 

%AAD 0.51 
NOPTS 266 
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TABLE IV 

RESULTS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
OF CARBON DIOXIDE + HYDROCARBON SYSTEMS USING THE (8/4» APPROACH: CASE 4 

SOLVENT TEMP C I) B C D RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 277.9 0.1957 -0.4845 -0.2046 -0.0931 0.106 -0.015 0.46 8 
344.3 0.1864 -0.1696 0.0491 0.0587 0.174 0.002 0.49 8 
387.6 0.2320 0.0028 0.2948 0.1014 0.194 -0.006 0.35 7 

n-Decane 310.9 0.1081 0.1189 -0.0675 -0.0867 0.305 -0.037 0.34 11 
VI 410.9 0.0931 0.0373 0.0669 0.0149 0.053 -0.009 0.08 6 
0 

510.9 0.1230 0.0381 0.0669 0.0901 0.254 -0.005 0.49 6 

n-Hexadecane 463 .1 0.0858 -0.0634 0.1438 0.2276 0.052 0.000 0.12 4 
542.9 0.0990 -0.0435 0.1357 0.0920 0.073 0.000 0.14 4 
623 .6 0.1464 -0.0000 0.0846 0.0436 0.024 -0.002 0.06 4 

n-Docosane 323.2 0.0848 0.0346 0.1077 0.0803 0.301 -0.012 0.70 14 
348.2 0.0698 -0.0019 0.1387 0.0842 0.409 -0.017 1.05 19 
373.2 0.0620 -0.0038 0.1056 0.0701 0.477 -0.015 1.36 11 

n-Octacosane 348.2 0.0571 -0.0044 0.2491 0.1731 0.450 -0.019 0.65 8 
423 .2 0.0100 -0.0109 0.2832 0.2398 0.674 -0.036 1.79 7 
573.5 -0.0010 -0.0467 0.2462 0.2730 0.100 0.003 0.30 5 

I~Lj",i"lU"'U .. ~.~"" r_" -----



T ABLE IV (Continued) 

SOLVENT TEMP C· I) 
B C D RMSE BIAS %AAD NO 

(K) (Bar) (Bar) PTS 

n~ Hcxatriacontane 373.2 0.0724 ~0.3614 0.0000 0.0610 0.178 ~0.006 0.36 10 
423.2 0.0721 ~0.4458 0.0000 0.0864 0.318 ~0.017 0.41 8 

n-Tetratetracontane 373.2 -0.0025 -0.1796 0.2272 0.1523 0.379 -0.027 0.85 7 
423.2 ~0.0114 -0.3421 0.1346 0.1478 0.219 -0.012 0.47 7 

Benzene 298.2 0.0650 0.1347 -0.0255 0.0145 0.632 -0.137 0.95 8 
344.3 0.0717 0.0727 -0.0004 -0.1214 0.099 -0.002 0.08 16 

VI 413.6 0.0762 -0.0111 -0.0378 0.0601 0.445 -0.010 0.44 9 

Toluene 353.4 0.0971 0.0530 -0.0208 0.1440 0.200 -0.003 0.81 8 
373.2 0.1214 0.0016 0.2442 0.3914 0.440 0.004 1.41 7 
393.2 0.1233 -0.0042 0.1835 0.3749 0.554 -0.008 1.16 7 

Naphthalene 373.2 0.1096 0.0653 -0.1852 -0.0741 0.128 -0.001 0.19 7 
423.2 0.1002 0.0309 -0.2333 -0.1408 0.107 -0.002 0.14 7 

Cyclohexane 348.2 0.1027 0.2443 -0.1246 -0.1076 0.223 -0.008 0.37 6 
373.2 0.1240 0.0710 -0.1214 -0.0402 0.065 0.000 0.11 7 
423 .2 0.1171 0.0518 -0.0796 -0.0227 0.063 0.002 0.07 7 

Phenanthrene 383.2 0.0973 0.3249 -0.0148 -0.0000 0.386 -0.023 0.76 7 
423.2 0.0810 0.2990 0.0049 -0.0000 0.175 -0.010 0.28 7 
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IV 

SOLVENT 

Pyrene 

TEMP 
(K) 

433.2 

OVERALL MODEL STATISTICS 

RMSE 0.2812 Bar 
BIAS -0.0143 Bar 
%AAD 0.58 
NOPTS 264 

C IJ 

0.1258 

TABLE IV (Continued) 

BCD 

0.1752 -0.0129 -0.0017 

;t.i~~" ;,.u.u .. . . .. ... 

RMSE 
(Bar) 

0.469 

BIAS 
(Bar) 

-0.010 

%AAD 

0.55 

NO 
PTS 

7 
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TABLE V 

RESULTS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
OF NITROGEN + HYDROCARBON SYSTEMS USING THE (8/~) APPROACH: CASE 4 

SOLVENT TEMP Cij B C 0 RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 250.0 0.0363 0.2157 -0.0835 -0.0254 0.294 -0.009 0.47 9 
277.0 0.0167 0.1408 -0.3702 -0.2855 0.860 -0.040 2.60 12 
311.1 0.0078 0.1662 -0.0252 0.0372 1.419 -0.040 0.85 16 
344.4 -0.0095 0.1392 -0.0046 0.0708 0.244 -0.015 0.58 12 

VI n-[)ecane 310.9 0.3298 -0.7235 -0.4038 0.0013 2.450 -0.053 1.16 22 
uJ 

344.3 0.3586 -0.6668 -0.3724 0.0055 5.278 -0.338 2.58 30 
410.9 0.4456 -0.5339 -0.3727 -0.2549 4.073 -0.202 2.77 20 

n-Hexadecane 462 .7 0.1617 0.0238 0.0016 -0.0190 0.653 -0.074 0.44 8 
543 .5 0.1372 0.0364 0.0023 0.0000 0.492 0.018 0.36 7 
623.7 0.1483 0.0719 -0.0445 -0.0365 0.504 -0.003 0.29 7 

n-Eicosane 323.2 0.2479 0.1584 -0.0527 -0.0996 0.520 -0.023 0.34 8 
373 .2 0.2245 0.1210 -0.0270 -0.0797 0.232 0.000 0.26 6 
423.2 0.2047 0.0908 -0.0040 -0.0503 0.232 -0.004 0.24 6 

n-Octacosane 348.2 0.2410 0.3396 -0.0762 -0.2235 0.580 -0.034 0.53 7 
373.2 0.2298 0.3210 -0.0291 -0.1895 0.468 -0.046 0.48 6 
423 .2 0.2061 0.2764 0.0103 -0.1107 0.657 -0.095 0.46 6 

,,"it' "4 .................... L ..... 



SOLVENT TEMP C· IJ 

(K) 

n-Hexatriacontane 373.2 0.4851 
423.2 0.4944 

Benzene 348.2 0.0290 
373 .2 0.0060 
398.2 0.1070 

Toluene 323.2 0.0823 
'Jl 348.2 0.0631 
.+:.. 

Cyclohexane 366.4 0.0684 
410.8 0.0467 

OVERALL MODEL STATISTICS 

RMSE 2.0802 Bar 
BIAS -0.1749 Bar 
%AAD 1.54 
NOPTS = 243 

TABLE V (Continued) 

B 

0.1463 
0.1346 

0.0030 
0.0126 
0.0250 

0.0048 
-0.0531 

0.0087 
0.0213 

C D 

-0.0744 -0.0979 
-0.0443 -0.0729 

-0.9985 -0.6714 
-0.9367 -0.6706 
-0.1219 0.0421 

-1.2540 -0.7585 
-l.4510 -l.0780 

-0.2283 0.0051 
-0.2518 -0.1813 

, ..... , •• I ... ~ ............ 
a"-""'- __ 

l 

RMSE BIAS %AAD NO 
(Bar) (Bar) PTS 

0.193 -0.006 0.20 6 
0.228 -0.003 0.11 6 

1.637 -0.034 0.74 6 
0.944 -0.029 0.51 6 
0.634 -0.017 0.25 7 

2.565 -0.067 l.46 6 
3.840 -0.311 3.97 6 

7.813 -2.300 8.56 9 
1.337 -0.052 l.83 9 
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TABLE VI 

RESUL TS FOR THE REPRESENT A TION OF BUBBLE POINT PRESSURES 
OF HYDROGEN + HYDROCARBON SYSTEMS USING THE (8/~) APPROACH: CASE 4 

SOLVENT TEMP C jj B C D RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 327.7 0.1641 0.0383 -0.1675 0.0458 1.402 -0.042 1.38 13 
361.0 0.2395 0.0099 -0.2441 -0.0909 1.626 -0.042 1.30 11 
394.3 0.3730 -0.0018 -0.1643 -0.0095 2.641 0.126 1.92 12 

n-Decane 462.5 0.4473 0.0035 -0.0077 0.0678 0.994 0.155 0.97 7 
Vl 503.4 0.3551 0.1037 -0.0727 -0.0602 1.449 -0.025 0.82 7 
v, 

543.0 0.4486 0.1061 -0.0473 -0.0278 0.722 -0.009 0.50 7 

n-Hexadecane 461.7 0.3073 0.0299 -0.0108 0.0000 0.604 0.009 0.57 7 
542.3 0.4214 0.0143 0.0058 0.0138 0.115 0.015 0.09 7 
622.9 0.4842 0.1044 -0.0001 -0.0001 0.342 0.002 0.33 7 
664.1 0.5610 0.1232 -0.0385 -0.0216 0.779 0.005 0.55 8 

n-Eicosane 323.2 0.2357 0.1467 -0.0327 -0.0062 0.197 -0.003 0.17 7 
373.2 0.2231 0.1334 -0.0133 -0 .0223 0.385 -0.018 0.52 9 
423.2 0.1967 0.1192 -0.0029 -0.0134 0.181 -0.002 0.26 6 

n-Octacosane 348.2 0.2538 0.0665 -0.0311 -0.0209 0.195 -0.011 0.2 1 6 
373.2 0.2331 0.0515 -0.0184 -0.0233 0.069 0.007 0.06 5 
423.2 0.1906 0.0149 0.0006 -0.0143 0.375 0.065 0.46 9 
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TABLE VI (Continued) 

SOLVENT TEMP C. IJ B C D RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Hexatriacontane 373.2 0.1631 0.0335 0.0339 0.0000 0.401 -0.029 0.31 6 
423.2 0.0777 0.0054 0.0411 -0.0000 0.286 0.003 0.26 6 

Benzene 323.2 0.1489 0.2062 -0.0974 0.0416 0.110 -0.001 0.10 6 
373.2 0.1498 0.1937 -0.0937 0.0241 0.180 -0.005 0.27 6 
423 .2 0.1629 0.2032 -0.0746 0.0076 0.032 -0.005 0.05 6 

Toluene 461.9 0.3616 -0.0001 -0.3906 -0.2272 0.526 0.011 0.47 5 

U"o 502.2 0.4069 0.0000 -0.4083 -0.2935 0.966 -0.083 0.42 7 
0\ 

542.2 0.6132 -0.0012 -0.1862 -0.0468 0.610 0.004 0.46 6 

Naphthalene 373.2 0.1478 0.1645 -0.1713 0.0202 0.323 -0.006 0.34 6 
423.2 0.1643 0.1590 -0.1272 0.0069 0.728 -0.024 0.54 8 

Cyclohexane 310.9 0.2625 -0.0028 0.0040 0.2716 1.505 -0.105 1.00 13 
344.3 0.2475 0.0071 -0.2700 0.0112 1.234 -0.052 0.26 14 
377.6 0.2775 0.0368 -0.2419 -0.0513 1.270 -0.005 0.35 13 
410.9 0.3215 0.0800 -0.1320 -0.0678 1.647 -0.016 0.43 13 

Phenanthrene 398.2 0.1930 0.2427 -0.0216 -0.0141 0.706 -0.017 0.47 7 
423.2 0.1911 0.2407 -0.0204 -0.0157 1.010 0.238 0.75 6 
448.2 0.1890 0.2389 -0.0223 -0.0166 0.120 0.014 0.13 6 
473.2 0.1826 0.2369 -0.0302 -0.0127 0.665 0.037 0.29 6 
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TABLE VI (Continued) 

SOLVENT TEMP Cij BCD RMSE 

~ ~~ 

Pyrene 433.2 

OVERALL MODEL STATISTICS 

RMSE 0.8525 Bar 
BIAS 0.0007 Bar 
%AAD 0.56 
NO PTS = 274 

0.2292 0.1325 -0.1465 

........ '" _ .. .......... ---

0.0127 0.303 

BIAS 
(Bar) 

-0.004 

%AAD 

0.22 

NO 
PTS 

6 
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%AAD = 1.13) show essentially similar results. Case 4 (RMSE = 0.85 bar, %AAD = 

0.56) does marginally better than Cases 2 and 3. However, Case 3 again showed 

convergence problems. The hydrogen + n-hexadecane system at 622.9 K and the 

hydrogen + benzene system at 423.2 K each had one non-convergent point. Again, the 

parameters were optimized after discarding the non-convergent points, and the particular 

isotherms were not included in the overall analysis. 

The results for Case 2 have been taken, for the most part, from Raghunathan 

(1996). The parameters reported in that study were re-optimized for some systems, where 

it was felt that better results could be obtained. 

Discussion 

The overall results for the different types of systems studied here are summarized 

in Table VII. The results for non-ideal low pressure systems show that the (y/~) approach 

(Case 1) does better than both Cases 3 and 4. However, this should be expected since the 

(y/~) approach uses a vapor pressure model to get accurate pure component vapor 

pressures. The calculations using the MWS mixing rules (Case 3) and the (e/~) approach 

(Case 4) were performed without any tuning of pure fluid parameters to get accurate 

vapor pressures. Accurate representation of pure component vapor pressures is one of the 

important factors affecting phase equilibrium predictions. Figures 4(B)and 7(B), 

representing vapor-liquid equilibrium for the 2-propanol + water system and the 

acetonitrile + tert-butanol system respectively, are excellent examples which illustrate the 

above point. In these figures, the acentric factors of the individual components were 
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VI 
\0 

TYPE OF 
SYSTEMS 

Low Pressure 
Systems 

Ethane + 
Hydrocarbons 

Carbon dioxide + 
Hydrocarbon 

Nitrogen + 
Hydrocarbons 

Hydrogen + 
Hydrocarbons 

TABLE VII 

SUMMARY OF RESULTS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
FOR THE CASES STUDIED 

CASE 1 CASE 2 CASE 3 CASE 4 
RMSE %AAD RMSE %AAD RMSE %AAD RMSE %AAD 
(Bar) (Bar) (Bar) (Bar) 

0.007 1.02 0.009 1.84 0.009 1.58 

0.430 1.17 0.416 0.88 0. 189 0.51 

0.780 0.96 0.357 0.78 0.281 0.58 

2.235 1.91 2.275 1.57 2.080 1.54 

1.809 1.02 2.297 1.25 0.853 0.56 

NO 
PTS 

797 

266 

264 

243 * 

274* 

* - The nWl1ber of points analyzed for Case 3 for these systems was slightly less than thi s number due to convergence problems. 



tuned to generate accurate pure component vapor pressures for Cases 3 and 4. A 

comparison of Figures 4(B) and 7(8) with Figures 4(A) and 7(A) respectively, shows 

improved accuracy for Cases 3 and 4, which may be ascribed to good pure component 

parameters. Moreover, the parameters reported in the DECHEMA Chemistry Data Series 

were used as initial guesses to optimize systems for Case 1. The parameters in the 

DECHEMA Chemistry Data Series were optimized to minimize deviations in activity 

coefficients for data sets which included vapor compositions. This might explain the 

substantial disparity in predicted vapor compositions between Case 1 and the other two 

cases, which were optimized to minimize deviations in bubble point pressures only. 

The overall results for the asymmetric high pressure systems considered here 

indicate that both Cases 3 and 4 show better results than Case 2. However, this should be 

expected of four-parameter models like the ones used in this study compared to an 

equation of state with only two interaction parameters. However, the point in question is 

not the correlative ability of models for specific systems, but developing a framework 

which can be used for a wider variety of systems than is currently possible. To this 

extent, both the MWS mixing rules and the (8/~) approach have proved successful. The 

use of either approach also eliminates the need for reference states for calculating 

fugacities, which is a major drawback of the (y/~) approach. 

Parity in the correlative abilities of the MWS mixing rules and the proposed (8/~) 

approach is a positive and significant outcome. The results indicate that amending the 

VLE framework offers the same correlative capabilities without resorting to complexity 

in the mixing rules. 
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The current MWS mixing rules are limited to use with cubic equations of state 

only, whereas the (8/4» approach can be used with any equation of state. Also, as stated 

previously, the MWS mixing rules are limited to certain excess energy models and 

parameter values if they are to be used with the van der Waals mixing rules in 

multicomponent systems. However, there is no such limitation on the (8/4» approach, as 

its function is to model deviations from any equation of state with any set of mixing 

rules. The (8/4» approach, being an amendment to the VLE framework, offers a direct 

means of extending the applicability of equations of state to highly non-ideal systems, has 

potential for more useful generalizations, and reduces the need for developing complex 

mixing rules like the MWS mixing rules. Moreover, the (8/4» approach is very easy to 

implement with existing computational algorithms for any equation of state. 

The model evaluations in this study were limited to binary systems only. 

However, the (8/4» approach may be extended to systems containing three or more 

components. For extension to multicomponent systems (ternary or higher), excess free 

energy models structurally akin to the NRTL or Wilson model are recommended for 8. 

These models can be applied to multi component systems with binary parameters, whereas 

models like the Redlich-Kister model need ternary or higher parameters for such systems. 

The analysis for all the systems studied here was done on an isotherm-by­

isotherm basis, i.e., model parameters were regressed for individual isotherms of each 

system. This represents the ultimate ability of any model to correlate phase behavior. 

However. in practice, a single set of parameters is generally used to represent the phase 

behavior of a system over a range of temperature. For this purpose, the temperature 
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dependence of the model parameters for the (8/4» approach was investigated for certain 

sample systems and is discussed in brief in the next section. 

Temperature Dependence of the Model Parameters for the (8/4» Approach 

The temperature dependence of the model parameters for the (8/4» approach was 

investigated using five systems. The systems chosen were acetone + water, ethane + n­

octacosane, carbon dioxide + n-decane, nitrogen + n-hexadecane and hydrogen + toluene. 

The temperature dependence was investigated using three different cases. Case 4, as 

discussed in the previous section, is the correlation of the vapor-liquid equilibrium of the 

system with individual parameters for each temperature. Case 4a is the prediction of 

vapor-liquid equilibrium of the system at all temperatures using parameters obtained for 

the lowest temperature. Case 4b is the correlation of vapor-liquid equilibrium ofthe 

system at all temperatures using one set of regressed parameters. The results for the 

representation of bubble point pressures for the three cases are shown in Table VIII . The 

model parameters obtained for Case 4b are shown in Table IX. The model parameters for 

Cases 4 and 4a were taken from the appropriate tables of results for Case 4 from the 

previous section. The predicted vapor-liquid equilibrium curves are also shown in 

Figures 8-13. 

The results for the acetone + water system are shown on two separate figures 

(Figures 8 and 9) due to a different scale being required for the highest temperature. Case 

4, as expected, shows the best results for all the systems considered here. Case 4a is in 

good agreement with the experimental data at 323.2 K, but at 373.2 K, it predicts slightly 
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different bubble point pressures. The same observation applies to results for Case 4b, but 

it shows a qualitatively better fit than Case 4a. Both cases predict vapor compositions on 

the higher side of experimental data. The results for the ethane + n-octacosane system 

(Figure 10) indicate that all three cases yield essentially similar results. The results for 

the carbon dioxide + n-decane system are shown in Figure 11 . Case 4a predicts slightly 

higher bubble point pressures for the 410.9 K and 510.9 K isotherms. Case 4b, however 

shows excellent agreement with the data for all isotherms. The results for the nitrogen + 

hexadecane system, shown in Figure 12, indicate excellent results for both Case 4a and 

4b. The results for the hydrogen + toluene system are shown in Figure 13 . In this case, 

the results for Cases 4a and 4b are the same, i. e., the parameters for the lowest isotherm 

(461.9 K) gave a fit comparable to the fit given by the parameters regressed for the 

complete data set. Thus, only a single curve has been drawn for both cases. There is 

good qualitative agreement with the data for both isotherms, but at higher pressures, the 

predicted bubble point pressures are slightly lower. 

In general, the results for Case 4a indicate that the model parameters, though not 

temperature independent, show good qualitative fits for temperatures higher than the 

temperature at which they were obtained. Case 4b shows slightly better results, which 

indicates that a single set of parameters could be used over a range of temperature to give 

reasonably accurate predictions. Table X compares the results for Case 4b with the 

results obtained using the conventional approaches (Cases 1 and 2 described in the 

previous section) on a system-by-system basis, i.e., one set of parameters for a system. 

The model parameters for the conventional approaches are listed in Table XI. The 
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comparison shows that the (e/~) approach does marginally better than the (~/~) approach 

(Case I) for systems at high pressures and does slightly worse than the (y/~) approach 

(Case 2) for the acetone + water system. The overall results indicate that Case 4 is 

required for very accurate predictions using the (e/~) approach. Also, an inspection of 

the results in Tables II-VI for Case 4 shows that the parameters for most systems are 

stable and should be amenable to generalizations in terms of temperature. 

64 

--



TABLE VIII 

TEMPERATURE DEPENDENCE OF THE MODEL PARAMETERS FOR THE (SIc!» APPROACH 

DEVIATIONS IN PREDICTED BUBBLE POINT PRESSURES 
CASE 4 CASE 4a CASE4b 

SYSTEM TEMP RANGE RMSE %AAD RMSE %AAD RMSE %AAD NO 
(K) (Bar) (Bar) (Bar) PTS 

Acetone + 308.2 - 373.2 0.019 0.95 0.128 4.23 0.082 3.12 56 
Water 

Ethane + 348.2 - 423.2 0.105 0.49 0.257 1.09 0.214 0.94 24 
0'\ n-Octacosane 
VI 

Carbon dioxide + 310.9 - 510.9 0.226 0.31 3.244 5.06 1.491 2.84 23 
n-Decane 

Nitrogen + 462.7 - 623.7 0.554 0.37 2.263 1.66 2.820 1.56 22 
n-Hexadecane 

Hydrogen + 461. 9 - 542.2 0.725 0.45 8.264 3.02 8.264 3.02 18 
Toluene 

J 



SYSTEM 

Acetone + 
Water 

Ethane + 
n-Octacosane 

TABLE IX 

MODEL PARAMETERS FOR THE (e/~) APPROACH 
FOR A SYSTEM-BY-SYSTEM ANALYSIS: CASE 4b 

TEMP RANGE (K) C · I) B C 

308.2 - 373.2 -0.3743 2.0240 -0.2768 

348.2 - 423.2 -0.0014 -0.4135 0.0007 

Carbon dioxide + 310.9 - 510.9 0.1231 -0.0285 -0.1048 
n-Decane 

Nitrogen + 462.7 - 623.7 0.1106 0.0778 0.0000 
n-Hexadecane 

Hydrogen + 461. 9 - 542.2 0.3616 -0.0001 -0.3906 
Toluene 
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Figure 8. Representation of Vapor-liquid Equilibrium for the Acetone + Water System at 
308.2 K and 323.2 K Using the (e/~) Approach. Experimental Data at 308.2 K Are from 
Lieberwerth and Schuberth (1979) and at 323.2 K Are from Chaudhary et al. (1980) 
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Figure 9. Representation of Vapor-liquid Equilibrium for the Acetone + Water System at 
373.2 K Using the (e/~) Approach. Experimental Data Are from Griswold and Wong 
(1952) 
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Figure 10. Representation of Vapor-liquid Equilibrium for the Ethane + n-Octacosane 
System Using the (e/~) Approach. Experimental Data Are from Robinson and Gasem 
( 1987) 
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Figure 11 . Representation of Vapor-liquid Equilibrium for the Carbon Dioxide + n­
Decane System Using the (e/~) Approach. Experimental Data Are from Reamer and 
Sage (1963) 
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Figure 12. Representation of Vapor-Liquid Equilibrium for the Nitrogen + n-Hexadecane 
System Using the (e/~) Approach. Experimental Data Are from Lin et al. (1981) 
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Figure 13. Representation of Vapor-Liquid Equilibrium for the Hydrogen + Toluene 
System Using the (8/<1» Approach. Experimental Data Are from Simnick et al. (1978) 
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TABLE X 

COMPARISON OF RESULTS FOR THE REPRESENTATION OF BUBBLE POINT 
PRESSURES BETWEEN THE (e/~) APPROACH (CASE 4b) AND THE 

CONVENTIONAL APPROACHES (CASE 1 OR CASE 2) 
FOR A SYSTEM-BY-SYSTEM ANALYSIS 

CASE 4b (e/~) CASE 1 OR2 
SYSTEM TEMP RANGE RMSE %AAD RMSE %AAD 

(K) (Bar) (Bar) 
- .- .--.---- .-

Acetone + 308.2 - 373.2 0.082 3.12 0.066 2.81 (y/~) 

Water 

Ethane + 348.2 - 423.2 0.214 0.94 1.041 3.54 (~/~ ) 
n-Octacosane 

Carbon dioxide + 310.9 - 510.9 1.49 1 2.84 l.389 2.87 (~/~) 
n-Decane 

itrogen + 462.7 - 623 .7 2.820 1.56 2.680 1.98 (~/~) 
n-Hexadecane 

Hydrogen + 461.9 - 542.2 8.264 3.02 8.973 4.87 (~/~) 
Toluene 
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TABLE XI 

MODEL PARAMETERS OBTAINED FOR THE CONVENTIONAL APPROACHES 
(CASE 1 OR CASE 2) FOR A SYSTEM-BY-SYSTEM ANALYSIS 

SYSTEM 

Acetone + 
Water 

Ethane + 
n-Octacosane 

Carbon dioxide + 
n-Decane 

Nitrogen + 
n-Hexadecane 

Hydrogen + 
Toluene 

TEMP 
RANGE(K) 

308.2 - 373.2 

e· IJ D IJ 

348.2 - 423.2 -0.0058 -0.0200 

310.9-510.9 0.1014 0.0120 

462.7 - 623.7 0.1756 0.0013 

461.9 - 542.2 0.7515 -0.0343 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The primary goal of this work was to evaluate the merits of a proposed 

amendment to the current framework for phase equilibrium calculations. A new 

deviation function was introduced, wherein the fugacities generated from an equation of 

state are augmented by a fugacity deviation function. A secondary goal of this work was 

to evaluate the correlative abilities of the reformulated Wong-Sandler (MWS) mixing 

rules. Both ofthese approaches were compared with the conventional approaches for the 

correlation of phase equilibrium, i.e., using an equation of state with the van der Waals 

mixing rules and the split ('Y/~) approach. The evaluations were conducted using a 

database comprised of non-ideal binary systems at low pressures and binary asymmetric 

mixtures containing supercritical fluids with hydrocarbons at high pressures. Following 

are specific conclusions and recommendations which can be made based on this work. 

Conclusions 

1. The proposed method (called the (e/~) approach) can successfully correlate the 

binary vapor-liquid equilibrium of highly non-ideal low pressure systems as well 

as asymmetric high pressure systems. Bubble point pressures were correlated 

within 2% deviation for low pressure systems and within 1 % deviation for high 

pressure systems. 

2. The MWS mixing rules show accuracy comparable to the (8/~) approach for 

75 

-



... 

correlating the binary vapor-liquid equilibrium of the systems considered here. 

Thus, the use of either approach extends the applicability of equations of state to 

highly non-ideal systems. However, the proposed amendment to the VLE 

framework offers direct means for handling various types of systems, potential for 

more useful generalizations and simpler implementation. 

3. The temperature dependence of the model parameters for the (8/<1» approach was 

investigated using a number of sample systems. The results show that good 

qualitative fits are obtained using a single set of parameters over a range of 

temperature. However, a set of parameters for each temperature is recommended 

for high precision. 

Recommendations 

1 . The model used in this work for the fugacity deviation function was selected, 

based on limited preliminary trials. Effective modeling, using the current 

advancements in molecular thermodynamics, should be attempted to develop a 

theoretically sound model. This, in tum, might lead to generalizability of model 

parameters, if not reasonable a priori prediction of phase behavior for systems for 

which experimental data are not available. 

2. The extension ofthis approach to volumetric as well as calorimetric properties 

should be explored through using different pure component limits for the fugacity 

deviation function. 

3. The applicability of the (8/~) approach to multicomponent systems (ternary or 
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higher) should be investigated. 

4. The temperature dependence and generalizability of the model parameters for the 

(e/~) approach should be addressed. 
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This appendix contains the validation cases for the computer program used to 

implement the MWS mixing rules. Two subroutines in an existing computer program, 

GEOS (Gasem, 1988-1996), were modified to simulate the MWS mixing rules. For 

validation of the modified program, two systems previously correlated by the same 

mixing rules by Orbey and Sandler (l995b) were used. The systems used were butane + 

ethanol and pentane + ethanol. The data for the butane + ethanol system were taken from 

Holderbaum et a1. (1991) and for the pentane + ethanol system from Scott et al. (1987). 

For purposes of validation, a modifi.ed version of the Peng-Robinson equation of state 

(Stryjeck and Vera, 1986) was used. The physical properties were also the same as used 

by Orbey and Sandler. The model parameters reported by the same authors were used to 

predict the vapor-liquid equilibrium of the above systems. The predicted results are 

shown in Figures A.I and A.2. The symbols represent experimental data and the 

continuous lines represent model predictions. The results in Figures A.I and A.2 show 

the same behavior depicted by Figures 4 and 6 of Orbey and Sandler (1995b), thus 

validating the computer program's ability to properly implement the MWS mixing rules. 
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Fig. A.I. Representation of Vapor-Liquid Equilibrium for the Butane + Ethanol System 
Using the Reformulated Wong-Sandler Mixing Rules. Solid Lines Represent Four­
Parameter Fit to 298.3 K. Experimental Data Are from Holderbaum et al. (1991) 
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Figure A.2. Representation of Yap or-Liquid Equilibrium for the Pentane + Ethanol 
System Using the Reformulated Wong-Sandler Mixing Rules. Solid Lines Represent 
Four Parameters Fit to 373 K Data; Dashed Lines Represent Two Parameters Fit to 373 
K Data. Experimental Data Are from Scott et al. (1987) 
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This appendix contains the sources and range of binary VLE data and pure 

component physical properties used in this study. The sources and range of binary VLE 

data used are shown in Tables B.I-B.V. Table B.VI lists the physical constants (Tc• Pc and 

ro) used in the evaluation and their sources. Physical constants and the vapor pressure 

model for compounds involved in the systems at low pressure have been taken from 

Aspen Plus™ (AspenTech, 1995). The vapor pressure model and the constants used in the 

model are listed in Table B.VII. 
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1 

TABLE B.I 

LOW PRESSURE BINARY VLE DATA USED IN MODEL EVALUATIONS 

System Temperature Pressure Range First Component First Component Reference 
Range (K) (Bar) Liquid Mole Vapor Mole 

Fraction Range Fraction Range 

Methanol + 298.2 0.0420 - 0.1615 0.0444 - 0.9361 0.2777 - 0.9817 Kooner et al. (1980) 
Water 313.1 0.1404 - 0.3134 0.1499 - 0.8607 0.6279 - 0.9572 Wresky (1913) 

318.2 0.1813 - OA077 0.1220 - 0.8390 Zharov and Pervukhin (1972) 

Ethanol + 298.2 0.0442 - 0.0774 0.0523 - 0.7810 0.3164 - 0.8161 Dobson (1925) 
\0 Water 303.2 - 308.2 0.0720 - 0.1326 0.1000 - 0.9000 D' Avila and Cotrim (1973) 
V.> 

2-Propanol + 298.2 0.0426 - 0.0665 0.0240 - 0.9097 0.2420 - 0.8580 Sazonov (1986) 
Water 328.2 0.2337 - 0.3353 0.0320 - 0.7300 OA190 - 0.7230 Tunik and Zharov (1980) 

Water + 323.2 - 403.2 0.0707 - 3.3160 0.0776 - 0.9951 0.2970 - 0.9247 Kharin et al. (1969) 
I-Butanol 

Water + 343.2 - 363 .2 0.1485 - 0.9250 0.0160 - 0.9990 Zou and Prausnitz (1987) 
2-Pentanol 

Water + 294.2-313.2 0.0080 - 0.0759 0.0540 - 0.9990 0.8370 - 0.9860 Filippov et al. (1977) 
I-Hexanol 



TABLE B.I (Continued) 

System Temperature Pressure Range First Component First Component Reference 
Range (K) (Bar) Liquid Mole Vapor Mole 

Fraction Range Fraction Range 

Allyl Alcohol + 294.2 - 313.2 0.0377 - 0.1128 0.1740 - 0.7880 Ewert (1936) 
Water 

Water + 278.2 - 358.2 0.0019 - 0.5944 0.0703 - 0.8986 0.7193 - 0.9880 Scatchard and Wilson (1964) , 
2-Butoxyethanol 

Water + 363.2 0.1397 · 0.7451 0.0180 - 0.9980 0.4350 - 0.9770 Gorodetsky and Olevsky (1960) 

\0 Cyclohexanol 
~ 

Water + 372.8 - 41 2.6 0.6205 - 3.5922 0.0313 - 0.9937 0.0582 - 0.9953 Freeman and Wilson (1985) 
Acetic Acid 

Water + 333.2 - 373.2 0.0491 - 1.0296 0.0080·0.9850 0.0419 - 0.9850 Rafflenbeul and Hartrnarm 
Propionic Acid (1978) 

Acetone + 308.2 0.1833 - 0.4561 0.0500 - 0.9500 0.7060 - 0.9720 Lieberwirth and Schuberth 
Water (1979) 

323.2 0.3005 - 0.8170 0.0290 - 0.9796 Chaudhary et al. (1980) 
373.2 1.1101 - 3.6887 0.0033 - 0.9770 0.0902 - 0.9780 Griswold and Wong (1952) 

2-Butanone + 3.B.2 0.3718 - 0.61 46 0.0134 - 0.9250 Zou and Prausnitz (1987) 
Water 



TABLE B.I (Continued) 

System Temperature Pressure Range First Component First Component Reference 
Range (K) (Bar) Liquid Mole Vapor Mole 

Fraction Range Fraction Range 

Di-Ethyl Ether + 298.2 0.1727 - 0.7189 0.0020 - 0.9900 Signer et al. (1969) 
Water 308.2 0.1876 - 1.0466 0.0014 - 0.9901 Villamanan et al. (1984) 

Acetonitrile + 323.2 0.2283 - 0.3 815 0.0328 - 0.9472 Wilson et aI. (1979) 
Water 333.2 0.4305 - 0.5622 0.0300 - 0.9471 0.4209 - 0.8939 Sugi and Katayama (1978) 

Water + 333.2 - 364.9 0.0l31 - 0.6910 0.0690 - 0.9440 Nath and Bender (1983) 

'-0 Ethanolamine 
VI 

Tetrahydrofuran + 298.2 0.1547 - 0.2223 0.0500 - 0.9500 Signer et al. (1969) 
Water 

Acetaldehyde + 283.2 - 303.2 0.2398 - 1.3350 0.1000 - 0.9000 D' Avila and Silva (1970) 
Water 373.2 1.7732 - 4.8636 0.0100 - 0.1500 0.4800 - 0.7950 Byk et at. (1963) 

Water + 294.2 - 313.2 0.0367 - 0.1667 0.0340 - 0.9940 0.2560 - 0.8270 Filippov et al. (1977) 
Nitromethane 323.2 0.17l3 - 0.2623 0.0330 - 0.9970 0.1090 - 0.9650 Schuberth (1964) 

Water + 298.2 - 318.2 0.0217 - 0.1079 0.1270 - 0.9531 Abe et al. (1978) 
2-Methylpyridine 



TABLE B.I (Continued) 

System Temperature Pressure Range First Component First Component Reference 
Range (K) (Bar) Liquid Mole Vapor Mole 

Fraction Range Fraction Range 

Ethyl Acetate + 323.2 - 353 .2 0.1707 - 1.3506 0.0021 - 0.9439 0.2207 - 0.8565 Kharin et aI. (1968) 
Water 

Acetonitrile + 333.2 0.4645 - 0.5700 0.1020 - 0.9720 0.2370 - 0.9490 Nagata (1989) 
tert-Butanol 

1,3-Butadiene + 305.0 - 329.9 0.7260 - 6.3950 0.0560 - 0.9130 Laird and Howat (1990) 
'-D Acetonitrile 
0'1 

Methyl tert-Butyl 313.2 0.2565 - 0.6102 0.0122 - 0.9902 0.1237 - 0.9868 Mato and Berro (1991) 
Ether + Acetonitrile 

Methanol + 298.2 0.0612 - 0.1626 0.0773 - 0.9523 0.1535 - 0.9880 Polak et al. (1970) 
tert-Butanol 313.2 0.1395 - 0.3457 0.0155 - 0.9658 Oracz (1989) 

tr-l ,3-Pentadiene + 303.2 - 313.2 0.3560 - 0.9466 0.1000 - 0.9000 Gromov et al. (1969) 
Acetonitrile 

Dimethyl Sulfide + 263.2 - 288.2 0.0845 - 0.4501 0.1042 - 0.9642 Jackowski (1980) 
Methanol 



l 

TABLE B.I (Continued) 

System Temperature Pressure Range First Component First Component Reference 
Range (K) (Bar) Liquid Mole Vapor Mole 

Fraction Range Fraction Range 

Methyl Mercaptan + 269.2 - 288.2 0.2846 - 1.3884 0.1078 - 0.9399 Kim and Rousseau (1985) 
Methanol 

Methyl Mercaptan + 263.2 - 288.2 0.1720 - l.3315 0.0819 - 0.9022 Jackowski (1980) 
Dimethyl Sulfide 

I-Butene + 310.9-338.7 4.1640 - 8.6850 0.1000 - 0.9000 0.1051 - 0.9009 Lawrence and Swift (1974) 
'.0 1,3-Butadiene 
-......l 

Methanol + 310.9 - 335.9 0.2417 - 0.9619 0.1221 - 0.9802 0.7031 - 0.9734 Zudkevitch et a1. (1990) 
Dimethyl DiSulfide 



TABLE RII 

BINARY VLE DATA FOR ETHANE + HYDROCARBONS USED IN MODEL EVALUATIONS 

Solvent Temperature Pressure C2H6 Liquid Mole C2H6 Vapor Mole Reference 
Range (K) Range (Bar) Fraction Range Fraction Range 

n-Butane 303.2 - 363.4 4.41 - 53.26 0.0440 - 0.8370 0.1690 - 0.9510 Lhotak and Wichterle (1981) 
n-Decane 311.1-411.1 4.23 - 82.36 0.1050 - 0.6380 Bufkin (1986) 
n-Hexadecane 285.0 - 325.0 12.44 - 49.93 0.1990 - 0.8750 DeGoede et ai. (1989) 
n-Docosane 320.0 - 360.0 7.25 - 71.43 0.0541 - 0.8530 Peters et al. (1988) 
n-Octacosane 348.2 - 423.2 5.63 - 43.94 0.1020 - 0.5200 Robinson and Gasem (1987) 
n-Hexatriacontane 373.2 - 423.2 3.68 - 47.60 0.0870 - 0.5310 Robinson and Gasem (1987) 

\0 n-Tetratetracontane 373.2 - 423.2 3.87 - 31.70 0.0990 - 0.5160 Robinson and Gasem (1987) 
00 

Benzene 323.2 - 423.2 4.78 - 84.59 0.0490 - 0.6000 Bufkin (1986) 
298.2 7.76 - 38.01 0.1200·0.9300 Ohgaki et ai. (1976) 

Toluene 313.1 - 473.2 6.30 - 114.80 0.0270 - 0.9050 0.3410 - 1.0000 Richon et al. (1991) 
Naphthalene 373.2 - 423.2 21.45 - 104.28 0.0850 - 0.4930 Bufkin (1986) 
Cyclohexane 323.2 - 423.2 3.26 - 77.71 0.0490 - 0.6010 Bufkin (1986) 
Phenanthrene 383.2 - 423 .2 22.64 - 116.53 0.0810 - 0.3130 Bufkin (1986) 
Pyrene 433.2 28.57 - 99.18 0.0720 - 0.2090 Bufkin (1986) 



TABLE B.Ill 

BINAR Y VLE DATA FOR CARBON DIOXIDE + HYDROCARBONS USED IN MODEL EV ALUA nONS 

Solvent Temperature Pressure CO2 Liquid Mole CO2 Vapor Mole Reference 
Range (K) Range (Bar) Fraction Range Fraction Range 

n-Butane 277.9 - 387.6 3.45 - 62.12 0.0390 - 0.7538 0.1789 - 0.9636 Pozo de Fernandez et al. (1989) 
n-Decane 310.9 - 510.9 6.89 - 86.18 0.0450 - 0.8640 Reamer and Sage (1963). 
n-Hexadecane 463.1 - 623.6 20.06 - 50.87 0.0912 - 0.2350 0.7860 - 0.9955 Sebastian et al. (1980) 
n-Docosane 323.2 - 373.2 9.62 - 71.78 0.0830 - 0.5930 Fall and Lukes (1984) 
n-Octacosane 348.2 - 423.2 8.07 - 96.04 0.0700 - 0.6170 Gasem (1986) 
n-Hexatriacontane 373.2 - 423.2 5.24 - 86.53 0.0620 - 0.5020 Gasem (1986) 

\0 n-Tetratetracontane 373.2 - 423.2 5.79 - 70.81 0.0800 - 0.5020 Gasem (1986) 
\0 

Benzene 298.2 8.94 - 57.73 0.1060 - 0.9130 0.9815 - 0.9959 Ohgaki et a1. (1976) 
344.3 68.95 - 109.20 0.4530 - 0.8460 0.9320 - 0.9410 Nagarajan and Robinson (1987) 
413.6 38.70 - 153.90 0.1430 - 0.7010 0.8660 - 0.9080 lnomata et al. (1987) 

Toluene 353.4 - 393.2 5.20 - 64.50 0.0190 - 0.3610 0.7540 - 0.9800 Kim et al. (1986) 
Naphthalene 373.2 - 423.2 13.90 - 104.50 0.0470 - 0.3360 Barrick et al. (1987) 
Cyclohexane 348.2 - 423.2 19.80 - 104.30 0.1030 - 0.5770 Anderson et al. (1988) 
Phenanthrene 383.2 - 423.2 18.80 - 106.20 0.0470 - 0.2290 Barrick et a1. (1987) 
Pyrene 433.2 7.30 - 105.70 0.0140 - 0.1720 Barrick et al. (1987) 



TABLE B.lV 

BINARY VLE DATA FOR NITROGEN + HYDROCARBONS USED IN MODEL EV ALUA TIONS 

Solvent Temperature Pressure N2 Liquid Mole N2 Vapor Mole Reference 
Range (K) Range (Bar) Fraction Range Fraction Range 

n-Butane 250.0 - 344.4 4.83 - 157.85 0.0040 - 0.2680 0.1830 - 0.9840 Brown et al. (1989) 
n-Decane 310.9 - 410.9 17.24 - 344.74 0.0385 - 0.3980 0.9270 - 1.0000 Azamoosh and McKetta (1963) 
n-Hexadecane 462.7 - 623 .7 20.12 - 254.60 0.0380 - 0.5360 0.8060 - 0.9980 Lin et al. (1981) 
n-Eicosane 323.2 - 423 .2 38.25 - 172.29 0.0610 - 0.2120 Tong (1994) 
n-Octacosane 348.2 - 423 .2 42.99 - 164.71 0.0730 - 0.2580 Tong (1994) 
n-Hexatriacontane 373.2 - 423.2 52.80 - 179.85 0.1050 - 0.2970 Tong (1994) 

0 
Benzene 348.2 - 398.2 62.11 - 307.12 0.0345 - 0.2044 0.9168 - 1.0000 Lin et al. (1981) 

0 Toluene 323.2 - 348.2 36.40 - 353.50 0.0180 - 0.1590 Llave and Chung (1988) 
Cyc10hexane 366.4 - 410.8 17.53 - 275.93 0.0090 - 0.2910 0.7130 - 0.9720 Shibata and Sandler (1989) 



TABLE B.V 

BINARY VLE DATA FOR HYDROGEN + HYDROCARBONS USED IN MODEL EVALUATIONS 

Solvent Temperature Pressure H2 Liquid Mole H2 Vapor Mole Reference 
Range (K) Range (Bar) Fraction Range Fraction Range 

n-Butane 327.7- 394.3 27.93 - 168.76 0.0210 - 0.2660 0.2130 - 0.9320 Klink et aI. (1975) 
n-Decane 462.5 - 543.0 19.26 - 255.14 0.0251 - 0.3825 0.6025 - 0.9891 Sebastian et al. (1980) 
n-Hexadecane 461.7 - 622.9 20.09 - 252.71 0.0311 - 0.4458 0.8083 - 0.9995 Lin et al. (1980) 
n-Eicosane 323.2 - 423.2 22.30 - 129.10 0.0273 - 0.1289 Park (1993) 
n-Octacosane 348.2 - 423.2 28.60 - 131.00 0.0452 - 0.1728 Park (1993) 
n-Hexatriacontane 373.2 - 423.2 35.60 - 167.50 0.0677 - 0.2271 Park (1993) 

0 Benzene 323.2 - 423.2 25.50 - 157.30 0.0103 - 0.0585 Park (1993) 
Toluene 461. 9 - 542.2 30.30 - 253.72 0.0082 - 0.2581 0.2100 - 0.9430 Simnick et al. (1978) 
Naphthalene 373.2 - 423.2 42.90 - 193.90 0.0160 - 0.0570 Park (1993) 
Cyclohexane 310.9 - 410.9 34.47 - 551.58 0.0125 - 0.2919 0.8582 - 0.9973 Berty et al. (1966) 
Phenanthrene 398.2 - 473.2 26.13 - 252.30 0.0084 - 0.0840 Malone and Koyabashi (1990) 
Pyrene 433.2 51.70 - 197.30 0.0160 - 0.0580 Park (1993) 

J 



TABLEB.VI 

PHYSICAL PROPERTIES USED IN MODEL EVALUATIONS 

Compound Tc Pc Source 

(K) (Bar) 

Nitrogen 126.3 33.9 0.039 Ambrose (1978) 
Hydrogen 33.2 13.0 -0.218 Reid et a1. (1977) 
Ethane 305.4 48.8 0.099 Reid et a1. (1977) 
Carbon Dioxide 304.1 73 .8 0.239 Reid et a1. (1977) 
n-Butane 425.2 38.0 0.199 Reid et a1. (1977) 
n-Decane 617.7 21.2 0.489 Reid et a1. (1977) 
n-Hexadecane 722.0 14.1 0.742 Reid et a1. (1977) 
n-Eicosane 770.5 11.2 0.874 Gasem (1986) 
n-Docosane 791.7 10.2 0.938 Bader (1993) 
n-Octacosane 845.4 8.3 1.107 Gasem (1986) 
n-Hexatriacontane 901.1 6.8 1.285 Gasem (1986) 
n-Tetratetracontane 944.3 6.0 1.418 Gasem (1986) 
Cyclohexane 553.5 40.7 0.212 Reid et a1. (1977) 
Benzene 562.2 48.9 0.212 Reid et a1. (1977) 
Toluene 591.8 41.0 0.263 Reid et a1. (1977) 
Naphthalene 748.4 40.5 0.302 Reid et al. (1977) 
Pyrene 938.2 26.0 0.830 Park (1993) 
Phenanthrene 873.2 33.0 0.540 API (1979) 
Water 647.1 220.6 0.345 AspenTech (1995) 
Methanol 512.6 81.0 0.564 AspenTech (1995) 
Ethanol 513.9 61.5 0.645 AspenTech (1995) 
2-Propanol 508.3 47.6 0.668 AspenTech (1995) 
I-Butanol 563.1 44.2 0.593 AspenTech (1995) 
ten-Butanol 506.2 39.7 0.612 AspenTech (1995) 
2-Pentanol 560.4 37.1 0.563 AspenTech (1995) 
I-Hexanol 611.4 35.1 0.579 AspenTech (1995) 
Allyl Alcohol 545 .0 56.2 0.569 AspenTech (1995) 
2-Butoxyethanol 633.9 32.7 0.521 AspenTech (1995) 
Cyclohexanol 650.0 42.6 0.373 AspenTech (1995) 
Acetic Acid 592.0 57.9 0.467 AspenTech (1995) 
Propionic Acid 600.8 46.2 0.575 AspenTech (1995) 
Acetone 508.2 47 .0 0.307 AspenTech (1995) 
2-Butanone 535.5 41.5 0.323 AspenTech (1995) 
Diethyl Ether 466.7 36.4 0.281 AspenTech (1995) 
Acetonitrile 545.5 48.3 0.338 AspenTech (1995) 
Ethanolamine 678.2 71.2 0.447 AspenTech (1995) 
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TABLE B.YI (Continued) 

Compound Tc Pc Source 

(K) (Bar) 

T etrahydrofuran 540.2 51.9 0.225 AspenTech (1995) 
Acetaldehyde 466.0 55.5 0.291 AspenTech (1995) 
Nitromethane 588.2 63.1 0.348 AspenTech (1995) 
2-Methylpyridine 621.0 43.8 0.278 Aspen Tech (1995) 
Ethyl Acetate 523.3 38.8 0.366 AspenTech (1995) 
1,3-Butadiene 425.2 42.8 0.190 AspenTech (1995) 
Methyl tert-butyl ether 497.1 34.3 0.266 AspenTech (1995) 
trans-I,3-Pentadiene 500.0 37.4 0.116 AspenTech (1995) 
Dimethyl Sulfide 503.0 55.3 0.193 Aspen Tech (1995) 
Methyl Mercaptan 470.0 72.3 0.158 AspenTech (1995) 
I-Butene 420.0 40.4 0.191 AspenTech (1995) 
Dimethyl Disulfide 606.0 53 .6 0.265 AspenTech (1995) 
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TABLE B.VII 

ASPEN PLUS™ VAPOR PRESSURE CONSTANTS 

Compound VPl VP2 VP3 VP4 VP5 VP6 VP7 Tmin Tmax 
(K) (K) 

Water 7.3649E+02 -7.2582E+04 0.0 0.0 -7.3037E+Ol 4.1653E-05 2.0 273.2 647.1 
Methanol 8. I 768E+02 -6.8766E+04 0.0 0.0 -8.7078E+Ol 7.1926E-05 2.0 175.5 512.6 
Ethanol 7.4475E+02 -7. 1643 E +04 0.0 0.0 -7.3270E+Ol 3.1340E-05 2.0 159.1 513.9 
2-Propanol 7.6964E+02 -7.6238E+04 0.0 0.0 -7.4924E+OI 5.9436E-17 6.0 185.3 508.3 
I-Butanol 9.3 1 73E+02 -9.1 859E+04 0.0 0.0 -9.7464E+OI 4.7796E-17 6.0 184.5 563.1 
Tert-Butanol 1.7231E+03 -1. 1 590E+05 0.0 0.0 -2.2118E+02 I.3709E-04 2.0 299.0 506.2 

0 
2-Pentanol 1.2314E+03 -1.0534E+05 0.0 0.0 -I.4295E+02 3.9737E-05 2.0 200.0 560.4 

~ I-Hexanol 1.1731 E+03 -l.I239E+05 0.0 0.0 -1.3149E+02 9.3676E-I7 6.0 228 .6 611.4 
Allyl Alcohol 5.9100E+02 -6.84I7E+04 0.0 0.0 -4.9185E+Ol -5.8895E-18 6.0 144.2 545.1 
2-Butoxyethanol 1.5080E+03 -1. 1728E+05 0.0 0.0 -1.8883E+02 1. 1294E-04 2.0 199.2 633.9 
Cyclohexanol 1.3501E+03 -1.2238E+05 0.0 0.0 -1.5702E+02 1.0349E-16 6.0 296.6 650.0 
Acetic Acid 5.3270E+02 ·6.3045E+04 0.0 0.0 -4.2985E +01 8.8865E-17 6.0 289.8 592.0 
Propionic Acid S.4552E+02 -7.1494E+04 0.0 0.0 -4.2769E +01 1.1843E-17 6.0 252.5 600.8 
Acetone 6.9006E+02 -S .S996E+04 0.0 0.0 -7.098SE+Ol 6.2237E-05 2.0 178.S S08.2 
2-Butanone 7.2698E+02 -6. I 436E+04 0.0 0.0 -7.5779E+Ol 5.6476E-05 2.0 186.5 535.5 
Diethyi Ether 1.3690E+03 -6.9543E+04 0.0 0.0 -1. 9254 E +02 2.4508E-Ol 1.0 156.9 466.7 
Acetonitrile 5.8302E+02 -5.3856E+04 0.0 0.0 -5.4954E+Ol 5.3634E-05 2.0 229.3 545.6 
Ethanolamine 9.2624E+02 -1.0367E+05 0.0 0.0 -9.4699E+Ol 1.9000E-17 6.0 283.7 678.2 
Tetrahydrofuran 5.4898E+02 -S.30S4E+04 0.0 0.0 -4.7627E+Ol 1.4291E-16 6.0 164.7 540.2 
Acetaldehyde 1.9369E+03 -8.0367E+04 0.0 0.0 -2.9502E+02 4.3678E-OI 1.0 150.2 466.0 
Nitromethane 8.741IE+02 -7. 1332E+04 0.0 0.0 -9.7786E+Ol 7.9061 E-05 2.0 244.6 588.2 



TABLE B.VII (Continued) 

Compound VPl VP2 VP3 VP4 VPS VP6 VP7 Tmin Tmax 
(K) (K) 

2-Methylpyridine 8.4039E+02 -7.S582E+04 0.0 0.0 -9.0927E+Ol 4.9333E-05 2.0 206.4 621.0 
Ethyl Acetate 6.6824E+02 -6.2276E+04 0.0 0.0 -6.4100E+Ol 1.7914E-16 6.0 189.6 523.3 
1,3-Butadiene 7.3522E+02 -4.S643E+04 0.0 0.0 -8.1958E+Ol 1.1580E-04 2.0 164.3 425.2 
Methyl tert-butyl ether 5.5875E+02 -5.1316E+04 0.0 0.0 -4.9604E+OI 1.9123E-16 6.0 164.6 497.1 
Trans-l,3-Pentadiene 6.7926E+02 -5.1459E+04 0.0 0.0 -7.2358E+OI 4.9370E-02 1.0 18S.7 500.0 
Dimethyl Sulfide 8.3485E+02 -5.7117E+04 0.0 0.0 -9 .4999E +01 9.8449E-05 2.0 174.9 503.0 
Methyl Mercaptan S.4150E+02 -4.3377E+04 0.0 0.0 -4.8127E+0 I 4.5000E-16 6.0 150.2 470.0 
I-Butene 6.8490E+02 -4.3S02E+04 0.0 0.0 -7.4124E+Ol 1.0503E-04 2.0 87.8 420.0 

0 
Dimethyl Disulfide 8.8320E+02 -7.1936E+04 0.0 0.0 -9.9328E+Ol 7.3060E-05 2.0 188.4 606.0 

v.. 

Aspen Plus vapor pressure model 

In(P) = VPI + (T VP2 ) + VP4 * T + VPS * In(T) + VP6 * (T VP7) 
+ VP3 



APPENDIX C 

EV ALUA TION RESULTS FOR CASES 1-3 
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This appendix contains the results obtained for Cases 1-3 in this study. The 

results for low pressure systems are shown in Tables C.I and C.II. As mentioned 

previously, Case 2 was not used for these systems. Similarly, Case 1 was not used for 

high pressure systems, the results for which are listed in Tables C.1lI - C.X. 
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00 

TABLE C.l 

RESUL TS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES AND VAPOR COMPOSITIONS 
OF NON-IDEAL SYSTEMS AT LOW PRESSURES USING THE SPLIT (y/~) APPROACH: CASE 1 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP 'tn 't2! a l2 RMSE BIAS %AAD RMSE BIAS %AAD 
(K) (Bar) (Bar) 

Methanol + 318.2 -0.1022 0.8432 0.3105 0.005 -0.001 1.63 
Water 313 .1 -0.0733 0.6688 0.3869 0.003 0.001 0.85 0.046 -0.037 5.27 

298.1 -0.0760 0.6497 0.2914 0.001 0.000 0.67 0.005 0.001 0.65 

Ethanol + 298.2 0.0031 1.5010 0.2790 0.001 0.000 1.15 0.007 0.001 1.16 
Water 303 .2 0.0098 1.5690 0.2780 0.001 0.000 0.95 

308.2 0.0165 1.5940 0.3352 0.003 0.001 1.83 

2-Propanol + 298.2 0.5455 1.8530 0.5278 0.001 0.000 0.98 0.015 0.006 2.67 
Water 328.2 0.4515 2.1230 0.4723 0.002 0.000 0.39 0.036 -0.031 6.06 

Water + 323.2 4.2240 0.1507 0.3333 0.001 0.000 0.98 0.015 -0.007 2.17 
I-Butanol 343.2 3.9190 0.2196 0.3298 0.003 0.000 0.94 0.008 0.005 1.16 

363 .2 3.6880 0.3347 0.3572 0.011 0.001 1.38 0.014 0.008 2.14 
403.2 3.3990 0.2679 0.3857 0.032 0.000 0.93 0.012 -0.004 1.85 

Water + 343.2 4.4250 0.4144 0.3231 0.003 0.000 0.56 
2-Pentanol 363 .2 4.5340 0.3743 0.3256 0.005 0.000 0.45 

NO 
PTS 
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TABLE C.I (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP LI2 Ln al~ RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Water + 294.2 4.8970 0.7196 0.3005 0.000 0.000 1.53 0.020 0.016 1.76 6 
I-Hexanol 313.2 3.0380 0.8016 0.3515 0.002 -0.001 2.99 0.017 0.012 1.36 8 

Allyl Alcohol + 294.2 0.1594 1.9290 0.1927 0.000 0.000 0.94 4 
Water 298.2 0.1268 1.9790 0.2352 0.001 0.000 1.01 4 

303.2 0.0951 2.0150 0.2918 0.001 -0.00 I 1.85 4 

0 
308.2 0.0876 2.1240 0.2923 0.000 0.000 0.45 4 

'-D 313.2 0.1002 2.0130 0.2975 0.001 -0.001 0.80 4 

Water + 278.2 2.7330 0.2309 0.4658 0.000 0.000 0.56 0.008 -0.006 0.68 8 
2-Butoxyethanol 318.2 2.9960 0.2193 0.4423 0.001 0.000 0.79 0.011 -0.009 0.96 8 

358.2 3.2050 0.2289 0.4429 0.001 0.000 0.35 0.008 -0.006 0.77 7 

Water + 363.2 4.5740 1.0660 0.4161 0.011 -().OOI 1.92 0.028 0.002 2.94 13 
CyclohexanoI 

Water + 372.8 0.6053 -0.2151 0.0722 0.023 -0.010 2.06 0.023 0.007 5.78 13 
Acetic Acid 412.6 0.8418 -0.3466 0.2282 0.028 -0.001 0.69 0.021 0.005 4.73 13 

Water + 333.2 1.5970 1.4690 0.7296 0.001 0.000 0.40 0.034 0.0)9 4.87 17 
Propionic Acid 373.2 1. 7450 0.7571 0.8424 0.010 0.000 1.25 0.050 0.033 7.33 15 



TABLE C.I (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP tl2 't21 a l2 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Acetone + 373.2 0.6341 1.8710 0.4727 0.052 0.008 1.44 0.008 0.004 2.50 22 
Water 323.2 1.0600 1.6400 0.5013 0.001 0.000 0.12 15 

308.2 0.8413 1.3870 0.3654 0.002 0.000 0.39 0.008 -0.007 0.86 19 

2-Butanone + 333.2 1.0040 2.7720 0.3665 0.003 0.000 0.32 20 
Water 

0 Diethyl Ether + 308.2 1.5720 3.4790 0.2167 0.005 -0.001 0.71 13 
Water 298.2 2.2910 3.7070 0.4220 0.012 -0.003 2.09 13 

Acetonitrile + 323.2 1.0510 1.8970 0.4198 0.002 0,000 0.45 14 
Water 333.2 1.0560 1.8920 0.4469 0.001 0.000 0.17 0.009 0.008 1.22 14 

Water + 333.2 0.6943 -1.3170 0.2837 0.00.1 0.001 2.32 12 
Ethanolamine 351.2 0.7682 -1.1910 0.3859 0.005 0.000 3.07 12 

364.9 0.7498 -1.1100 0.4076 0.011 0.005 3.10 12 

Tetrahydrofuran + 298.2 1.8360 2.2200 0.4583 0.000 0.000 0.15 19 
Water 



~ 

TABLE C.I (Continued) 

BUBBLE POINT VAPOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP TI2 T21 an RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Acetaldehyde + 283.2 1.7570 1.2470 0.7123 0.003 -0.001 0.38 5 
Water 293.2 1.6050 0.8963 0.7852 0.007 -0.002 0.55 5 

303.2 1.1230 0.9914 0.9000 0.022 -0.007 l.05 5 
373.2 1.9410 1.7530 0.7336 0.073 -0.009 2.39 0.042 -0.008 6.26 5 

Water + 323.2 3.1270 0.3031 0.1215 0.009 ~0.001 3.20 0.040 -0.003 9.53 16 

..... Nitromethane 313.2 2.7280 0.7054 0.1104 0.003 0.000 1.42 0.014 0.002 2.31 7 

..... 296.2 2.7440 0.8837 0.0855 0.001 0.000 1.06 0.010 -0.001 1.95 7 
294.2 2.6560 1.0320 0.0948 0.001 0.000 1.20 0.013 0.000 2.69 7 

Water + 318.2 2.7890 -0.3225 0.3813 0.001 0.000 1.27 10 
2-Methylpyridine 308.2 2.8360 -0.2918 0.3888 0.001 0.000 l.07 10 

298.2 2.8570 -0.3456 0.3832 0.001 0.000 2.18 10 

Ethy 1 Acetate + 323.2 0.7413 3.6390 0.2428 0.008 0.000 2.20 0.013 0.001 2.23 9 
Water 343.2 0.2463 3.9850 0.1826 0.017 -0.001 1.88 0.013 0.000 2.28 9 

353.2 0.2419 3.9770 0.1856 0 .024 -0.001 1.90 0.014 0.001 2.56 9 

Acetonitrile + 333.2 0.3370 0.6855 0.2293 0.003 0.000 0.39 0.004 0.001 0.75 11 
Tert-Butanol 



TABLE C.I (Continued) 

BUBBLE POINT VAPOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP 't 12 't 21 an RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

1 ,3-Butadiene + 305.0 1.3120 0.6366 0.5732 0.010 -0.001 0.38 16 
Acetonitrile 329.9 1.2190 0.5703 0.5505 0.014 -0.002 0.30 22 

Methyl tert-butyl ether 1- 313.2 0.7046 0.8747 0.5588 0.001 0.000 0.21 0.007 -0.005 1.67 33 
Acetonitrile 

Methanol + 298.2 -0.1641 -0.1862 0.9000 0.001 0.000 1.13 0.006 0.000 0.<)8 19 
tv Tert-Butanol 313.2 -0.1129 -0.2789 0.6659 0.002 -0.001 0.78 13 

Trans-l ,3-Pentadiene + 303.2 1.2410 0.8353 0.6068 0.014 -0.001 2.22 9 
Acetonitrile 313.2 1.0290 0.8990 0.5925 0.006 0.000 0.69 9 

Dimethyl Sulfide + 263 .2 1.7230 0.6684 0.2832 0.004 -0.003 2.92 8 
Methanol 273.2 1.8950 0.8983 0.4288 0.003 0.000 1.50 8 

288.2 1.8340 1.0480 0.5180 0.003 0.000 0.56 8 

Methyl Mercaptan + 269.2 2.2820 0.8299 0.4998 0.004 -0.001 0.50 7 
Methanol 278.2 2.0270 0.6531 0.4630 0.004 0.000 0.46 8 

288.2 1.9280 0.3879 0.3358 0.009 -0.001 0.70 8 



TABLE C.I (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP 'til 't21 U l2 RMSE BIAS %AAD EUvlSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Methyl Mercaptan + 263.2 -0.2830 0.3331 0.9000 0.002 0.000 0.79 5 
Dimethyl Sulfide 273.2 -0.4375 0.6728 0.9000 0.002 0.000 0.45 5 

288.2 -0.2191 0.1650 0.0100 0.004 -0.002 0.25 5 

I-Butene + 310.9 -0.2350 0.3913 0.9000 0.006 -0.002 0.11 0.002 0.001 0.82 9 
l,3-Butadiene 324.8 -0.0208 -0.0032 0.0100 0.027 0.008 0.36 0.004 0.001 1.19 9 

...... 338.7 0.1852 -0.1268 0.9000 0.003 -0.001 0.02 0.001 0.000 0.18 9 ...... 
w 

Methanol + 311.0 1.0400 1.0290 0.0981 0.001 0.000 0.33 0.006 0.000 0.53 7 
Dimethyl Disulfide 336.0 1.2230 0.9481 0.3682 0.00] 0.000 0.13 0.011 -0.008 1.02 10 

OVERALL MODEL STATISTICS 
BUBBLE POINT PRESSURE V APOR COMPOSITION 

RMSE 0.0074 Bar RMSE = 0.0160 
BIAS = -0.0002 Bar BIAS -0.0006 
%AAD = 1.02 %AAD 2.67 
NOPTS 797 NOPTS = 418 



TABLE C.II 

RESULTS FOR THE REPRESENT AnON OF BUBBLE POINT PRESSURES AND VAPOR COMPOSITIONS 
OF NON-IDEAL SYSTEMS AT LOW PRESSURES USING THE (~/~) APPROACH (MWS MIXING RULES): CASE 3 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP c · IJ 1:(2 "t~ I a(2 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Methanol + 318.2 -0.0827 0.8755 0.3692 0.5851 0.010 -0.006 2.83 7 
Water 313.1 -0.1102 0.8179 0.3244 0.5371 0.003 -0.002 1.17 0.013 -0.010 1.46 11 

298.1 -0.0654 1.0790 0.1682 0.8032 0.005 -0.003 2.75 0.034 0.022 4.69 13 ---~ Ethanol + 298.2 0.3410 0.6888 -0.0892 0.9000 0.001 -0.001 1.47 0.063 0.056 11.69 10 
Water 303.2 0.3540 0.6598 -0.1152 0.6570 0.003 -0.001 3.11 5 

308.2 0.3509 0.6320 -0.1174 0.7445 0.004 0.000 2.79 5 

2-Propanol + 298.2 0.0626 1.5370 0.1698 0.5681 0.004 0.002 4.47 0.066 0.066 11 .53 12 
Water 328.2 0.0021 1.4990 0.6362 0.4.345 0.002 0.000 0.57 0.016 0.014 2.60 9 

Water + 323.2 0.4452 1.9300 0.8610 0.5895 0.004 0.000 3.24 0.110 -0.105 16.51 6 
I-Butanol 343.2 0.2946 1.9030 1.3530 0.5337 0.008 -0.001 2.49 0.067 -0.066 10.40 6 

363 .2 0.3642 1.8110 1.3740 0.6421 0.014 0.000 1.64 0.039 -0.038 5.87 6 
403.2 0.1882 1.9710 1.7480 0.5269 0.027 0.000 0.85 0.025 -0.015 3.00 6 

Water + 343.2 0.3341 0.0537 1.5840 0.3010 0.010 0.000 3.25 17 
2-Pentanol 363.2 0.1711 1.4310 1.8020 0.3533 0.014 -0.002 1.46 19 



TABLE cn (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT I 

SYSTEM TEMP C IJ t\2 t 21 u 12 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Water + 294.2 -0.2023 -0.0126 3.1270 0.2999 0.004 -0.002 4.24 0.040 -0.030 4.07 6 
I-Hexanol 313.2 -0.1904 -0.0562 3.0310 0.1319 0.000 0.000 1.23 0.078 -0.058 6.15 8 

Allyl Alcohol + 294.2 0.0990 1.9760 2.4160 0.5759 0.000 0.000 0.22 4 
Water 298.2 0.0953 1.7970 2.7870 0.5643 0.000 0.000 0.08 4 

303.2 0.0956 1.6320 3.0400 0.5498 0.000 0.000 0.54 4 

- 308.2 0.0887 1.5730 2.9270 - 0.5433 0.001 0.000 1.33 4 
VI 313.2 0.0787 1.4730 2.9680 0.5124 0.000 0.000 0.27 4 

Water + 278.2 -0.2646 0.8488 2.2260 0.2242 0.000 0.000 3.89 0.025 -0.020 2.12 8 
2-Butoxyethanol 318.2 -0.2954 0.7318 2.3000 0.2447 0.003 -0.001 2.75 0.021 -0.017 1.86 8 

358.2 -0.2666 0.9020 2.3240 0.2871 0.005 -0.001 0.88 0.011 -0.008 1.04 7 

Water + 363 .2 0.0794 3.7410 2.2700 0.4281 0.010 0.000 1.84 0.080 -0.076 9.72 13 
Cyclohexanol 

Water + 372.8 -0.5682 7.4920 1.7800 0.3693 0.027 -0.007 2.55 0.041 0.007 9.59 13 
Acetic Acid 412.6 -0.1314 1.1580 1.0070 0.8938 0.038 -0.007 0.78 0.020 0.003 4.53 13 

Water + 333.2 -0.0382 2.8760 2.2980 0.5058 0.008 -0.003 4.87 0.041 0.005 4.78 17 
Propionic Acid 373.2 -0.2703 4.6990 2.0610 0.4050 0.013 -0.003 1.52 0.048 0.028 5.50 15 



TABLE C.1I (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP C ij L12 L21 a l2 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Acetone + 373.2 0.0575 1.8580 1.2150 0.6575 0.044 0.005 1.10 0.028 0.019 9.80 22 
Water 323.2 0.0000 2.2420 0.9619 0.6086 0.008 -0.003 0.93 15 

308.2 0.0131 2.1880 -0.0007 0.5536 0.007 -0.003 1.64 0.012 0.008 1.01 19 

2-Butanone + 333.2 0.2826 2.5240 1.0900 0.6074 0.003 0.000 0.31 20 
Water 

0\ Diethyl Ether + 308.2 0.2432 3.9870 1.1300 0.4117 0.003 0.000 0.46 13 
Water 298.2 0.2698 3.8600 1.9790 0.5072 0.012 0.000 2.00 13 

Acetonitrile + 323.2 0.3862 3.4100 0.7865 0.6802 0.002 0.000 0.55 14 
Water 333.2 0.3538 3.0790 0.9062 0.7095 0.002 0.000 0.29 0.041 0.022 5.78 14 

Water + 333.2 0.0194 -4.2880 2.5870 0.2662 0.005 -0.001 5.75 12 
Ethanolamine 351.2 0.0366 -3 .3740 1.2450 0.2150 0.009 -0.005 5.44 12 

364.9 0.0352 -3.3030 1.1450 0.1804 0.012 -0.001 4.51 12 

Tetrahydrofuran + 298.2 0.1220 2.5890 1.6590 0.5766 0.003 -0.001 1.39 19 
Water 

j 



TABLE C.1I (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP C I) 1:12 1:21 a 12 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Acetaldehyde + 283.2 0.2555 9.6840 0.6774 0.4287 0.001 0.000 0.22 5 
Water 293.2 0.2468 8.3890 0.2362 0.4994 0.005 0.000 0.52 5 

303.2 0.2292 2.6510 0.5501 1.2680 0.038 -0.019 1.82 5 
373.2 0.2382 0.4550 1.3090 1.3040 0.067 -0.004 1.97 0.032 0.016 4.42 5 

Water + 323.2 -0.0001 0.6341 3.7370 0.2721 0.010 -0.002 3.95 0.083 -0.029 21.41 16 
Nitromethane 313.2 -0.0001 0.6277 4.1130 0.2730 0.003 -0.001 2.13 0.081 -0.023 17.29 7 

--..) 296.2 -0.0001 0.5643 4.4510 0.2591 0.002 -0.001 2.34 0.085 -0.025 18.87 7 
294.2 -0.0001 0.6112 4.5470 0.2606 0.002 -0.001 3.04 0.087 -0.019 19.22 7 

Water + 318.2 0.6470 2.0280 -0.2123 0.1005 0.001 0.000 1.11 10 
2-Methylpyridine 308.2 0.6969 2.3370 -0.2098 0.3021 0.001 0.000 1.76 10 

298.2 0.5850 3.1930 -0.1425 0.1978 0.001 0.000 1.98 10 

Ethyl Acetate + 323.2 0.0796 3.0350 0.0601 0.3264 0.004 -0.001 1.08 0.043 0.038 7.86 9 
Water 343.2 0.0366 3.2140 0.4665 0.3320 0.012 -0.001 1.25 0.037 0.029 7.53 9 

353.2 0.1026 3.1600 0.2548 0.3376 0.017 -0.002 1.17 0.034 0.025 7.27 9 

Acetonitrile + 333.2 0.2317 1.9230 -0.0087 0.9000 0.004 0.001 0.57 0.032 -0.021 5.91 11 
tert-Butanol 



TABLE C.II (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP C · IJ 1'12 1'2 J a 12 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

1 ,3-Butadiene + 305.0 0.0221 2.1290 0.8441 0.5197 0.007 0.000 0.31 16 
Acetonitrile 329.9 0.11 09 1.7260 0.7515 0.6464 0.013 -0.001 0.29 22 

Methyl tert-Butyl Ether 313.2 0.0995 1.1800 1.3940 0.7027 0.007 0.001 1.33 0.037 0.026 8.15 33 
+ Acetonitrile 

...... Methanol + 298.2 ....... 0.4154 -1.7240 0.0794 0.9000 0.006 -0.001 4.55 0.072 -0.038 16.22 19 
00 tert-Butanol 313.2 0.3499 -1.4960 0.0053 0.9000 0.012 0.000 4.83 13 

tr-l ,3-Pentadiene + 303.2 -0.6116 3.2930 -0.2328 0.0370 0.023 0.003 3.80 9 
Acetonitrile 313.2 -0.5970 3.3150 -0.1378 0.0403 0.019 0.004 1.90 9 

Dimethyl Sulfide + 263.2 0.0443 2.7120 0.6012 0.3894 0.002 0.000 1.95 8 
Methanol 273.2 0.0879 2.6620 0.8002 0.4564 0.003 0.000 1.33 8 

288.2 0.0109 2.9190 1.2100 0.4565 0.002 0.000 0.53 8 

Methyl Mercaptan + 269.2 0.3181 3.4680 0.7034 0.6450 0.002 0.000 0.24 7 
Methanol 278.2 0.1961 2.8070 0.6495 0.5470 0.005 -0.001 0.59 8 

288.2 0.2140 2.4290 0.5103 0.5277 0.010 -0.001 0.76 8 



TABLE C.II (Continued) 

BUBBLE POINT V APOR COMPOSITION 
PRESSURE OF COMPONENT 1 

SYSTEM TEMP C· I) "t 12 "t21 a l2 RMSE BIAS %AAD RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Methyl Mercaptan + 263 .2 -0.1938 0.6533 0.0926 0.9000 0.001 0.000 0.57 5 
Dimethyl Sulfide 273.2 -0.1936 0.6680 0.1240 0.9000 0.002 -0.001 0.46 5 

288.2 -0.2016 0.9301 0.1157 0.8997 0.009 -0.003 0.60 5 

I-Butene + 310.9 -0.3260 0.8622 0.9888 0.8838 0.003 0.000 0.06 0.002 0.000 0.77 9 
1,3-Butadiene 324.8 -0.1678 0.2207 0.3189 0.1052 0.021 0.006 0.27 0.003 0.000 0.92 9 

338.7 -0.0061 0.1967 -0.0934 0.9000 0.003 -0.001 0.02 0.000 0.000 0.12 9 
-..0 

Methanol + 311 0.0090 1.9060 2.2200 0.3596 0.003 0.000 0.92 0.018 0.002 1.86 7 
Dimethyl Disulfide 336 0.2440 0.6603 1.7230 0.5309 0.001 0.000 0.08 0.006 -0.003 0.54 10 

OVERALL MODEL STATISTICS 
BUBBLE POINT PRESSURE V APOR COMPOSITION 

RMSE 0.0091 Bar RMSE 0.0406 
BIAS -0.0008 Bar BIAS = -0.0006 
%AAD = 1.84 %AAD 7.42 
NOPTS = 797 NOPTS 418 



TABLE C.III 

RESUL TS FOR THE REPRESENT A TION OF BUBBLE POINT PRESSURES 
OF ETHANE + HYDROCARBON SYSTEMS USING THE (~/~) APPROACH 

(V AN DER WAALS MIXfNG RULES): CASE 2 

SOLVENT TEMP C ii Dij RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 303.2 0.0168 -0.0141 0.230 -0.020 1.85 10 
323.2 0.0326 -0.0257 0.160 0.020 0.85 10 
343 .2 0.0213 -0.0223 0.360 O.OlD 1.38 7 
363.4 0.0428 -0.0351 0.230 0.010 0.74 11 

n-Decane 311.1 0.0119 -0.0059 0.080 -0.010 0.75 10 
344.4 0.0039 0.0000 0.300 0.090 1.59 7 
377.8 0.0092 -0.0121 0.090 -O.OlD 0.31 6 
411.1 0.0145 -0.0213 0.070 -O.OlD 0.29 7 

n-Hexadecane 285.0 0.0284 -0.0160 0.340 -0.030 1.61 5 
305.0 0.0233 -0.0139 0.270 0.270 1.22 5 
325.0 0.0068 -0.0005 1.320 0.120 3.64 5 

n-Docosane 320.0 0.0288 -0.0209 0.520 -0.072 1.63 6 
340.0 0.0315 -0.0215 1.570 -0.210 2.98 8 
360.0 0.0241 -0.0208 0.920 -0.1 34 2.07 6 

n-Octacosane 348.2 -0.0007 -0.0197 0.180 -0.050 0.90 10 
373.2 0.0061 -0.0193 0.170 -0.020 l.28 7 
423 .2 0.0098 -0.0264 0.140 -0.030 0.86 7 

n -Hexatriacontane 373.2 -0.0208 -0.0198 0.060 -0 .010 0.6] 7 
423.2 -0.0 175 -0.0287 0.260 -0.040 1.35 6 

n-Tetratetracontane 373.1 -0.0296 -0.0256 0.170 -0.010 1.21 9 

423.2 -0.0807 -0.0197 0.150 -0.020 1.12 7 

Benzene 323.2 0.0139 0.0286 0.110 0.020 0.72 7 

373.2 0.0040 0.0301 0.170 0.020 0.55 7 

423.2 0.0067 0.0203 0.100 0.010 0.24 7 

298.2 0.0190 0.0307 0.320 -0.040 1.28 7 

Toluene 313. ] 0.0]58 0.033 2 0.260 0.110 l.20 8 

120 



TABLE c.nI (Continued) 

SOLVENT TEMP C. IJ Djj RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

393.1 0.0100 0.0000 2.170 -1.360 3.38 9 
473.2 0.0100 0.0000 2.470 -1.300 2.76 9 

Naphthalene 373.2 0.0240 0.0240 0.3 10 0.030 0.51 10 
423.2 0.0218 0.0203 0.190 O.OlD 0.35 7 

Cyclohexane 323.2 -0.0012 0.0138 0.060 0.010 0.48 8 
373.2 0.0000 0.0060 0.100 0.000 0.34 7 
423.2 0.0098 0.0004 0.080 -0.010 0.16 6 

Phenanthrene 383.2 0.0400 0.0175 0.620 0.040 1.04 6 
423.2 0.0404 0.0155 O.llD 0.010 0.18 6 

Pyrene 433.2 0.0576 0.0121 0.470 0.010 0.67 6 

OVERALL MODEL STATISTICS 

RMSE 0.4297 Bar 
BIAS -0.0909 Bar 
%AAD 1.17 
NOPTS 266 
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TABLE C.lV 

RESULTS FOR THE REPRESENTA nON OF BUBBLE POINT PRESSURES 
OF ETHANE + HYDROCARBON SYSTEMS USING THE (~/~) APPROACH (MWS MIXING RULES): CASE 3 

SOLVENT TEMP c.. 
IJ L12 L21 a 12 RMSE BIAS %AAD NO 

(K) (Bar) (Bar) PTS 

n-Butane 303.2 -0.0084 -0.0889 0.1772 0.0880 0.279 -0.028 1.82 10 
323.2 0.0665 -0.0047 -0.0933 0.0100 0.187 0.001 0.93 10 
343.2 0.0297 -0.1499 0.0347 2.0520 0.363 0.016 1.37 7 
363.4 0.0000 0.IJ49 0.0000 0.0884 1.213 -0.275 2.27 11 

tv 
n-Decane 311.1 -0.0021 -1.6610 0.5665 0.1829 0.090 0.000 0.69 10 

tv 344.4 -0.0022 -1.6710 0.5494 0.2245 0.136 0.000 0.57 7 
377.8 0.0049 -1.6550 0.5040 0.2319 0.093 0.007 0.19 6 
41l.1 -0.0070 -1.6800 0.5926 0.3521 0.071 -0.008 0.19 7 

n-Hexadecane 285.0 0.0566 -1.7360 0.5025 0.2353 0.290 0.005 1.09 5 
305.0 0.0193 -1.7910 0.6380 0.5190 0.216 -0.020 0.85 5 
325.0 -0.0721 -2.0410 0.9332 0.6312 0.874 -0.016 1.46 5 

n-Docosane 320.0 0.0524 -2.0510 0.7252 0.7251 0.070 -0.002 0.34 6 
340.0 0.0481 -2.1070 0.6811 0.6735 0.123 -0.005 0.50 8 
360.0 0.0568 -2.0430 0.6353 0.7027 0.144 -0.008 0.46 6 

n-Octacosane 348.2 0.0250 -2.1260 0.6319 0.8454 0.177 0.005 0.89 10 
373.2 -0.0184 -2. 1460 0.5808 0.7821 0.1 22 0.004 0.63 7 



TABLE CJV (Continued) 

SOLVENT TEMP Cij "C 12 "C 21 a 12 RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

423.2 -0.0420 -2.1640 0.5392 0.7982 0.079 0.001 0.25 7 

n-Hexatriacontane 373.2 -0.5118 -2.1240 0.7677 1.0480 0.057 -0.001 0.37 7 
423.2 0.0291 -2.3080 0.5057 0.8643 0.124 -0.008 0.47 6 

n-Tetratetracontane 373.2 -0.0271 -2.3760 0.5513 0.9840 0.251 0.002 0.92 9 
423.2 -0.3928 -2.3660 0.4764 0.8989 0.093 -0.002 0.61 7 

N 
Benzene 323.2 -0.0019 0.2051 0.4956 0.7838 0.068 0.013 0.43 7 

VJ 373.2 -0.0283 0.1575 0.3831 0.5795 0.050 0.001 0.15 7 
423.2 -0.0056 0.0089 0.3068 0.5366 0.117 -0.003 0.21 7 
298.2 -0.0055 0.3158 0.5773 0.5866 0.345 -0.113 0.97 7 

Toluene 313.1 0.0031 -1.6790 1.6840 0.2476 0.136 0.006 0.38 8 
393.1 -0.0020 -3.1180 2.4670 0.1790 0.349 0.011 0.45 9 
473.2 0.0436 -2.1290 1.5900 0.2589 1.124 0.282 1.37 9 

Naphthalene 373.2 -0.21 28 0.9338 0.3908 0.0100 1.248 0.045 1.43 10 
423.2 -0.3094 0.0701 0.6753 0.0307 0.496 0.144 0.50 7 

Cyclohexane 323.2 -0.0289 0.2716 0.0673 0.0100 0.042 0.001 0.21 8 
373.2 -0.0097 0.1711 0.0092 0.0837 0.115 -0.004 0.34 7 
423.2 0.0000 0.2439 0.0115 1.4510 0.097 -0.043 0.15 6 

--==, 



----------------------~~ 

TABLE C.IV (Continued) 

SOLVENT TEMP C· IJ L I~ L 21 a l2 RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Phenanthrene 383.2 0.1987 1.1000 0.2353 0.0100 3.751 0.715 4.80 6 
423.2 0.1694 0.9156 0.2164 0.0100 1.528 0.426 2.13 6 

Pyrene 433.2 0.6370 0.4979 0.3409 1.4280 0.485 0.048 0.74 6 

OVERALL MODEL STATISTICS 

RMSE = 0.4155 Bar 
BIAS = 0.0258 Bar N 

~ %AAD 0.88 
NOPTS = 266 

~ 



TABLEC.V 

RESULTS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
OF CARBON DIOXIDE + HYDROCARBON SYSTEMS USING THE 
(~/~) APPROACH (V AN DER WAALS MIXING RULES): CASE 2 

SOLVENT TEMP Cij D · 1J RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 277.9 0.1088 0.0215 0.170 0.039 0.96 8 
344.3 0.1240 0.0088 0.160 -0.002 0.47 8 
387.6 0.1671 -0.0261 0.220 0.004 0.48 7 

n-Decane 310.9 0.0987 0.0168 0.500 -0.027 0.98 11 
410.9 0.1222 -0 .0135 0.080 0.000 0.09 6 
510.9 0.1333 0.0034 0.350 -0.021 0.81 6 

n-Hexadecane 463.1 0.0461 -0.0003 0.210 0.023 0.60 4 
542.9 0.1308 -0.0307 0.110 -0.001 0.22 4 
623.6 0.1970 -0.0318 0.050 0.000 0.14 4 

n-Docosane 323.2 0.1034 -0.0046 0.280 -0.005 0.68 14 
348.2 0.0982 -0.0095 0.400 -0.026 1.02 19 
373.2 0.0854 -0.0080 0.490 -0.016 1.42 11 

n-Octacosane 348.2 0.1031 -0 .0126 0.090 0.000 0.16 8 
423.2 0.0827 -0.0198 0.890 -0 .077 1.95 7 
573.5 -0.0525 -0.0048 0.380 -0.013 1.20 5 

n -H exatriacontane 373.2 0.0624 -0.0133 0.370 -0.018 0.76 10 
423.2 0.0612 -0.0220 0.740 -0.054 0.90 8 

n-Tetratetracontane 373.2 0.0494 -0.0162 0.360 -0.023 0.70 7 
423.2 0.0207 -0.0221 0.490 -0.039 0.81 7 

Benzene 298.2 0.0675 0.0132 0.680 -0.223 1.08 8 
344.3 0.0582 0.0246 7.220 1.054 2.88 16 
413 .6 0.0525 0.0210 0.930 0.036 0.70 9 

Toluene 353.4 0.0707 0.0287 0.270 -0.070 1.62 8 
373.2 0.0678 0.0316 0.320 -0.080 2.19 7 
393.2 0.0516 0.0474 0.610 -0.100 2.29 7 
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TABLE C.V (Continued) 

SOLVENT TEMP C · IJ Djj RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

Naphthalene 373.2 0.0790 0.0292 0.200 -0.006 0.29 7 
423.2 0.0739 0.0277 0.270 -0.002 0.40 7 

Cyclohexane 348.2 0.0968 0.0532 0.330 0.060 0.77 6 
373.2 0.0989 0.0436 0.090 0.010 0.17 7 
423.2 0.1066 0.0328 0.060 0.000 0.06 7 

Phenanthrene 383.2 0.0996 0.0207 0.330 -0.049 0.76 7 
423.2 0.0937 0.0185 0.170 0.000 0.28 7 

Pyrene 433.2 0.1150 0.0140 0.440 0.030 0.76 7 

OVERALL MODEL STATISTICS 

RMSE .- 0 .. 7802 Bar 
BIAS 0.0433 Bar 
%AAD 0.96 
NOPTS 264 
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TABLE C.VI 

RESUL TS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
OF CARBON DIOXIDE + HYDROCARBON SYSTEMS USING THE (~/~) APPROACH (MWS MIXING RULES): CASE 3 

SOLVENT TEMP C · I) 1'12 1'21 all RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 277.9 0.0723 0.7746 0.8973 0.0100 0.110 -0.009 0.63 8 
344.3 0.1178 -0.1319 0.8195 0.0124 0.172 -0.001 0.49 8 
387.6 0.1717 -0.3998 0.7128 0.0100 0.233 0.007 0.52 7 

n-Decane 310.9 0.0779 3.0030 0.5106 0.0100 1.272 0.015 3.24 11 
....... 410.9 0.2315 1.0740 0.2262 0.1290 0.204 -0.009 0.30 6 
tv 
-l 510.9 0.1297 0.9910 0.2320 0.0111 0.306 0.01 ] 0.77 6 

n-Hexadecane 463.1 0.0569 0.0126 0.2756 0.0577 0.208 0.024 0.59 4 
542.9 0.4361 0.7813 -0.0073 0.7529 0.327 -0.069 0.66 4 
623.6 0.2323 0.8440 0.1363 1.5000 0.278 -0.064 0.61 4 

n-Docosane 323.2 0.2777 9.1190 0.4450 0.0251 0.390 -0.035 0.89 14 
348.2 0.6952 4.8840 0.2827 0.0115 0.485 -0.038 1.31 19 
373.2 0.8019 3.8120 0.1979 0.0107 0.539 -0.042 1.47 11 

n-Octacosane 348.2 0.7375 -2.4560 1.6260 1.0050 0.066 0.000 0.15 8 
423.2 0.3615 -2.3500 0.9982 0.9227 0.778 -0.069 1.75 7 
573.5 0.0293 -2.1400 0.4083 0.6882 0.309 0.024 1.16 5 



, ---

TABLE C.VI (Continued) 

SOLVENT TEMP CiJ 1'12 1'21 a 12 RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Hexatriacontane 373.2 0.3455 -2.7030 1.2370 0.8817 0.174 -0.004 0.44 10 
423.2 0.0176 -2.7180 1.0290 0.8748 0.201 0.001 0.29 8 

n-Tetratetracontane 373 .2 -0.0036 -2.2740 1.2860 1.2680 0.297 -0.033 0.60 7 
423 .2 0.0712 -2.2690 0.8700 1.1950 0.083 -0.002 0.20 7 

Benzene 298.2 0.1073 -0.5483 0.8887 0.4725 0.593 -0.105 0.99 8 
344.3 0.0614 -0.4436 0.8053 0.2503 0.197 0.003 0.16 16 

N 
413 .6 0.0522 -0.3646 0.5380 0.5564 0.852 -0.017 0.73 9 

00 

Toluene 353.4 0.2968 -0.0035 0.6429 3.0780 0.250 -0.008 0.85 8 
373.2 0.3864 0.0280 0.6021 4.8200 0.443 -0.009 1.13 7 
393.2 0.3319 0.1598 0.6912 4.2120 0.537 0.005 0.98 7 

Naphthalene 373.2 0.1688 2.0070 0.7200 1.4800 0.119 -0.001 0.21 7 
423.2 0.0885 3.7130 0.6046 1.5960 0.202 -0.002 0.33 7 

Cyclohexane 348.2 0.1129 0.2722 0.9060 0.6028 0.305 -0.009 0.62 6 
373.2 0.1436 0.0767 0.7819 0.8828 0.062 0.001 0.11 7 
423 .2 0.1518 -0.0855 0.6255 1.1080 0.063 0.000 0.07 7 

Phenanthrene 383 .2 0.9982 1.6170 0.5293 2.8620 0.347 0.010 0.66 7 
423.2 0.9283 8.2670 0.3632 4.1230 0.184 -0.001 0.30 7 



N 
'-0 

SOLVENT 

Pyrene 

TEMP 
(K) 

433 .2 

OVERALL MODEL STATISTICS 

RMSE 0.3574 Bar 
BIAS -0.0141 Bar 
%AAD = 0.78 
NO PTS = 264 

C IJ 

0.8043 

TABLE C. VI (Continued) 

'1: 12 '1: 21 a 12 

2.4980 0.2351 0.0104 

RMSE 
(Bar) 

0.420 

BIAS 
(Bar) 

-0.010 

%AAD 

0.58 

NO 
PTS 

7 



TABLE C.VIl 

RESUL TS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
OF NITROGEN + HYDROCARBON SYSTEMS USING THE (~/~) APPROACH 

(V AN DER WAALS MIXING RULES): CASE 2 

SOLVENT TEMP C · IJ 
D .. 

IJ RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butanc 250.0 0.0387 0.0334 0.290 0.020 0.53 9 
277.0 0.0421 0.0332 0.660 0.050 2.13 12 
311.1 0.0272 0.0360 1.300 0.020 0.90 16 
344.4 0.0290 0.0361 0.200 -0.050 0.53 12 

n-Decane 310.9 0.1094 0.0007 3.440 -1.200 3.56 22 
344.3 0.1112 -0.0001 5.240 -0.820 3.67 30 
410.9 0.1390 0.0097 4.240 0.310 2.80 20 

n-Hexadecane 462.7 0.1868 -0.0010 0.550 0.030 0.42 8 
543 .5 0.1321 0.0091 0.370 0.020 0.40 7 
623.7 0.0827 0.0466 0.600 0.090 0.76 7 

n-Eicosane 323.2 0.3076 0.0015 0.230 0.050 0.15 8 
373.2 0.2832 0.0014 0.340 0.050 0.42 6 
423.2 0.2703 0.0000 0.280 0.030 0.35 6 

n-Octacosane 348.2 0.3928 0.0032 0.380 0.020 0.36 7 
373.2 0.4001 0.0024 0.580 0.050 0.55 6 
423.2 0.3679 0.0041 0.290 -0.020 0.22 6 

n-Hexatriacontane 373.2 0.3961 0.0113 0.380 0.040 0.40 6 
423.2 0.4193 0.0114 0.300 0.030 0.32 6 

Benzene 348.2 -0.0007 0.0634 0.980 0.110 0.70 6 
373.2 -0.0051 0.0619 2.590 -0.170 1.18 6 
398.2 -0.0835 0.0892 0.790 -0.090 0.44 7 

Toluene 323.2 -0.1349 0.1149 6.690 -0.409 2.74 6 
348.2 0.2029 0.0127 7.820 -0.668 5.70 6 

Cyclohexane 366.4 -0.0017 0.0453 4.140 -0.280 6.47 9 
410.8 -0.0365 0.0592 1.310 0.190 1.77 9 
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TABLE C.VII (Continued) 

OVERALL MODEL STATISTICS 

RMSE = 2.2353 Bar 
BIAS = -0.2055 Bar 
%AAD 1.91 
NO PTS 243 
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TABLE C.VIII 

RESUL TS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
OF NITROGEN + HYDROCARBON SYSTEMS USING THE (~/~) APPROACH (MWS MIXING RULES): CASE 3 

SOLVENT TEMP Cij 't 12 't21 a l2 RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 250.0 0.4476 -0.1059 0.5746 1.1080 0.253 -0.004 0.48 9 
277.0 0.1174 0.4348 0.5313 0.9640 1.008 -0.027 2.64 12 
311.1 -0.3177 0.6030 0.7588 1.0470 1.298 -0.036 0.88 16 
344.4 -0.3243 0.5423 0.6343 0.0565 0.414 -0.002 0.73 12 

....... n-Decane 310.9 0.3572 10.2300 0.3153 0.2715 4.599 -0.042 1.99 22 
V.) 

IV 344.3 0.2838 10.9900 0.2845 0.2989 5.918 -0.150 2.83 30 
*410.9 0.2491 10.5400 0.2772 0.3240 4.278 0.481 2.64- 19 

n-Hexadecane 462.7 0.1500 1.4570 0.1206 0.0119 0.605 -0.034 0.43 8 
543.5 0.2610 1.1800 0.1033 0.2288 0.528 -0.009 0.35 7 
623.7 0.5266 1.3460 0.1133 0.1959 2.253 0.122 1.10 7 

n-Eicosane 323.2 0.3378 5.4090 0.3469 0.0134 0.216 0.005 0.15 8 
373.2 0.2648 3.5390 0.2555 0.0100 0.410 -0.016 0.36 6 
423.2 0.2379 2.5270 0.2051 0.0663 0.306 -0.003 0.30 6 

n-Octacosane 348.2 0.4801 8.3360 0.3724 0.0101 0.371 -0.008 0.33 7 
373.2 0.4398 7.0360 0.3451 0.0281 0.621 -0.017 0.48 6 
423.2 0.5137 4.5330 0.3042 0.0731 0.257 -0.002 0.19 6 



TABLE C.VIIl (Continued) 

SOLVENT TEMP C IJ 1" 12 1"2 J aJ~ RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Hexatriacontane 373.2 0.7969 11.3900 0.4683 0.0116 0.240 -0.005 0.18 6 
423.2 0.8362 7.3200 0.4308 0.0486 0.245 -0.002 0.15 6 

Benzene 348.2 0.5579 -2.9530 2.2230 0.0979 1.172 -0.027 0.60 6 
373.2 -0.1652 -2.9300 2.2450 0.0498 1.994 -0.105 0.72 6 
398.2 -0.1826 -3.1770 2.1890 0.0128 1.465 -0.010 0.53 7 

Toluene 323.2 0.7075 12.2100 0.0017 0.0830 3.946 -0.253 1.70 6 - 348.2 0.4085 7.2900 0.0083 0.0864 6.422 -1.151 5.42 6 
Vol 
Vol 

Cyclohexane 366.4 0.3887 1.7660 0.1766 0.1229 4.910 0.524 7.17 9 
410.8 -0.1141 1.9150 0.2012 0.0359 1.303 -0.175 1.78 9 

OVERALL MODEL STATISTICS 

RMSE = 2.2749 Bar 
BIAS = -0.0551 Bar 
%AAD = 1.57 
NOPTS 223 

* - Isotherm with non-convergent point(s) which were discarded from the data set. Isotherm not included in overall analysis. 



TABLE C.IX (Continued) 

SOLVENT TEMP C· Ij D·· Ij 
RMSE BIAS %AAD NO 

(K) (Bar) (Bar) PTS 

Naphthalene 373.2 0.3905 0.0000 1.970 -0.760 2.22 6 
423.2 0.4127 0.0000 1.170 -0.400 1.46 8 

Cyclohexane 310.9 -0.5594 0.1601 10.990 4.614 2.39 13 
344.3 -0.5148 0.1719 5.260 -0.141 1.18 14 
377.6 -0.2350 0.1365 1.220 -0.026 0.31 13 
410.9 0.1334 0.0743 2.830 -0.11 I 0.80 13 

Phenanthrene 398.2 0.3921 -0.0002 1.420 -0.500 1.11 7 
423.2 0.3995 0.0000 1.620 -0.600 1.32 6 
448.2 0.4100 0.0005 1.040 -0.430 1.07 6 
473.2 0.0090 0.0398 0.660 -0.090 0.45 6 

Pyrene 433 .2 0.4367 0.0016 1.720 -0.710 1.80 6 

OVERALL MODEL STATISTICS 

RMSE = 1.8092 Bar 
BIAS = 0.0936 Bar 
%AAD 1.02 
NOPTS = 274 
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TABLE C.X 

RESULTS FOR THE REPRESENTATION OF BUBBLE POINT PRESSURES 
OF HYDROGEN + HYDROCARBON SYSTEMS USING THE (~/~) APPROACH (MWS MIXING RULES): CASE 3 

SOLVENT TEMP C · I) 't 12 1"21 a 12 RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Butane 327.7 -0.0952 -0.0116 1.0690 1. 7150 1.403 -0.048 1.35 13 
361.0 0.1210 2.4860 0.4725 0.1179 1.539 -0.056 1.27 11 
394.3 0.1156 4.0190 0.5672 0.1180 1.671 -0.085 1.50 12 

n-Decane 462.5 0.9112 3.6200 0.1173 0.0498 2.543 0.079 1.46 7 
....- 503.4 0.9112 3.6200 0.1173 v.> 0.0498 7.307 -2.441 8.97 7 
0\ 543.0 1.0588 3.6320 0.1079 0.0102 1.694 0.035 0.87 7 

n-Hexadecane 461 .7 0.4945 2.1000 0.1687 0.0 108 0.483 0.012 0.55 7 
542.3 0.5086 1.8920 0.1581 0.0274 0.324 0.042 0.29 7 

*622.9 0.9468 2.4010 0.1936 0.0378 0.980 0.064 0.63 6 
664.1 1.3420 8.6200 0.0930 0.0569 2.828 0.111 2.15 8 

n-Eicosane 323.2 0.7797 2.6750 0.3903 0.0278 0.232 0.002 0.21 7 
373 .2 0.5800 0.5499 0.3449 0.2669 0.377 -0.003 0.51 9 
423.2 0.5947 -0.3153 0.2876 0.0204 0.171 0.011 0.26 6 

n-Octacosane 348.2 0.5136 9.43 30 0.1l94 0.0100 0.186 0.004 0.22 6 
373 .2 0.3775 8.2040 0.0953 0.0237 0.056 0.000 0.06 5 
423.2 0.1392 5.3570 0.0578 0.0654 0.359 -0.004 0.43 9 



TABLE C.X (Continued) 

SOLVENT TEMP Cjj 1 12 1"21 0,12 RMSE BIAS %AAD NO 
(K) (Bar) (Bar) PTS 

n-Hexatriacontane 373.2 -0.0079 8.1850 0.0692 0.0808 0.512 0.077 0.37 6 
423 .2 0.0039 0.1896 0.0486 0.3550 0.522 -0.163 0.67 6 

Benzene 323.2 0.9250 4.7730 0.3 t 73 0.0508 0.058 0.000 0.08 6 
373.2 1.1679 4.1700 0.2283 0.0880 0.205 0.008 0.32 6 

*423.2 1.2739 3.6770 0.1524 0.1034 0.130 0.006 0.17 5 

Toluene 461.9 1.1374 5.6860 0.0887 0.0927 0.968 -0.043 0.64 5 

w 502.2 1.1374 5.6860 0.0887 0.0927 5.042 2.035 1.70 7 
-..I 542.2 l.1374 5.6860 0.0887 0.0927 7.773 1.536 3.48 6 

Naphthalene 373.2 1.1192 1.9590 0.7386 0.0348 0.403 0.000 0.39 6 
423.2 1.1380 1.1270 0.6694 0.1132 0.731 0.003 0.55 8 

Cyclohexane 310.9 1.0330 7.1300 0.6939 0.2132 7.097 -0.154 2.07 13 
344.3 1.0338 9.2240 0.6523 0.2169 6.244 -0.029 1.47 14 
377.6 0.9591 11 .0400 0.6220 0.2258 3.405 0.103 1.06 13 
410.9 0.7279 13 .2 100 0.6293 0.2272 l.937 0.064 0.53 13 

Phenanthrene 398.2 0.6374 3.9530 0.6450 0.0511 0.663 -0.012 0.45 7 
423.2 0.7630 3.3750 0.6131 0.0657 0.695 -0.031 0.60 6 
448.2 0.7200 2.8970 0.5892 0.0803 0.141 -0.005 0.13 6 
473.2 0.8449 2.5190 0.5684 0.1107 0.729 -0.001 0.31 6 



w 
00 

SOLVENT 

Pyrene 

TEMP 
(K) 

433 .2 

OVERALL MODEL STATISTICS 

RMSE 
BIAS 
%AAD 
NOPTS 

2.0805 Bar 
0.0192 Bar 

1.13 
261 

C ij 

1.2043 

TABLE C.x (Continued) 

1" 12 1"21 U l 2 

4.3010 0.5838 0.0106 

RMSE 
(Bar) 

0.344 

BIAS 
(Bar) 

0.001 

O{'AAD 

0.27 

* - Isotherm with non-convergent point(s) which were discarded from the data set. Isotherm not included in overall analysis. 

NO 
PTS 

6 
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