
crystallization communications

Acta Cryst. (2013). F69, 891–894 doi:10.1107/S1744309113017594 891

Acta Crystallographica Section F

Structural Biology
and Crystallization
Communications

ISSN 1744-3091

Preliminary X-ray crystallographic analysis of
b-carbonic anhydrase psCA3 from Pseudomonas
aeruginosa

Melissa Pinard,a Shalaka

Lotlikar,b Marianna A.

Patrauchanb* and Robert

McKennaa*

aDepartment of Biochemistry and Molecular

Biology, University of Florida, PO Box 100245,

Gainesville, FL 32610, USA, and bDepartment

of Microbiology and Molecular Genetics,

Oklahoma State University, Stillwater,

OK 74078, USA

Correspondence e-mail:

m.patrauchan@okstate.edu, rmckenna@ufl.edu

Received 17 May 2013

Accepted 26 June 2013

Pseudomonas aeruginosa is a Gram-negative bacterium that causes life-

threatening infections in susceptible individuals and is resistant to most

clinically available antimicrobials. Genomic and proteomic studies have

identified three genes, pa0102, pa2053 and pa4676, in P. aeruginosa PAO1

encoding three functional �-carbonic anhydrases (�-CAs): psCA1, psCA2 and

psCA3, respectively. These �-CAs could serve as novel antimicrobial drug

targets for this pathogen. X-ray crystallographic structural studies have been

initiated to characterize the structure and function of these proteins. This

communication describes the production of two crystal forms (A and B) of �-CA

psCA3. Form A diffracted to a resolution of 2.9 Å; it belonged to space group

P212121, with unit-cell parameters a = 81.9, b = 84.9, c = 124.2 Å, and had a

calculated Matthews coefficient of 2.23 Å3 Da�1 assuming four molecules in the

crystallographic asymmetric unit. Form B diffracted to a resolution of 3.0 Å; it

belonged to space group P21212, with unit-cell parameters a = 69.9, b = 77.7,

c = 88.5 Å, and had a calculated Matthews coefficient of 2.48 Å3 Da�1 assuming

two molecules in the crystallographic asymmetric unit. Preliminary molecular-

replacement solutions have been determined with the PHENIX AutoMR wizard

and refinement of both crystal forms is currently in progress.

1. Introduction

Carbonic anhydrases (CAs) are mainly zinc metalloenzymes that

catalyze the reversible hydration of carbon dioxide to bicarbonate

and a proton (Krishnamurthy et al., 2008). CAs are ubiquitously

expressed and are found in almost all living organisms, where they

play a vital role in various physiological processes. Such processes

include respiration, pH regulation, CO2 fixation, photosynthesis and

ion transport (Supuran, 2008). There are five evolutionary and

structurally distinct classes of CA: �-CA (expressed in vertebrates

and the only class found in mammals), �-CA (found in plants, fungi

and prokaryotes), �-CA (found only in archaebacteria and diatoms)

and �-CA and �-CA (found in diatoms) (Aggarwal et al., 2013).

Depending on the coordination of the Zn2+ in the active site,

�-CAs are divided into two subclasses or clades designated type I and

type II (Lotlikar et al., 2013). Type I �-CAs have an ‘open’ active site

with a Zn2+ ion tetrahedrally coordinated by two Cys residues, one

His residue and a water molecule for catalysis, and show activity both

above and below pH 8 (Smith & Ferry, 1999; Covarrubias et al., 2005,

2006; Nishimori et al., 2010). Type II �-CAs have a ‘closed’ active site

with the Zn2+ coordinated by a His, an Asp and two Cys residues

(Cronk et al., 2001, 2006; Covarrubias et al., 2005, 2006) and show no

catalytic activity below pH 8 owing to the absence of a coordinated

water molecule. However, above pH 8 a nearby conserved Arg

residue forms a salt bridge to the Zn2+-coordinated Asp residue and

this liberates this position, allowing a solvent molecule to coordinate

to the Zn2+, which allows catalytic activity (Covarrubias et al., 2006).

Pseudomonas aeruginosa is commonly associated with biofilm

infections of the lungs, heart, wounds and urinary tract and is of great

concern in immunocompromised individuals (Richard et al., 1994;

Mesaros et al., 2007). These infections are becoming increasingly

difficult to treat using traditional antibiotic therapy and are often not

eradicated by host defensive processes (Jesaitis et al., 2003; Walters et
# 2013 International Union of Crystallography
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al., 2003). Therefore, the development of alternative drug therapies

is of high importance. Earlier sequence analysis of the P. aeruginosa

PAO1 genome has revealed three genes, pa0102, pa2053 and pa4676,

encoding �-CAs which share 28–45% amino-acid sequence identity

and belong to the two clades of �-CAs. We also showed that all three

enzymes are expressed in PAO1 cells, contain Zn2+ and hydrate CO2

(Lotlikar et al., 2013). These enzymes may be involved in the

formation of CaCO3 deposits and thus cause soft-tissue calcification,

which is commonly associated with chronic bacterial infections

(Banks et al., 2010). Therefore, �-CAs could serve as potential targets

for developing alternatives to the conventional antibiotic, inhibitor-

based treatments of P. aeruginosa infections. The design and devel-

opment of inhibitors that exhibit a high affinity for the bacterial

�-CA, but have no effect on human �-CAs, require detailed analysis

of the crystal structures of the P. aeruginosa �-CAs.

2. Materials and methods

Cloning, protein expression and purification were carried out as

described previously (Lotlikar et al., 2013). Briefly, a pET15b plasmid

construct containing the pa4676 gene PCR-amplified using P. aeru-

ginosa PAO1 genomic DNA as a template was transformed into

Escherichia coli Tuner(DE3) cells for the production of a His-fusion

protein. The cells were grown at 310 K in LB medium containing

100 mg ml�1 ampicillin and 0.05 mM ZnSO4. At an A600 of 0.6, fusion-

protein expression was induced for 3 h at 310 K by the addition of

isopropyl �-d-1-thiogalactopyranoside (IPTG) to a final concentra-

tion of 1 mM and of 0.5 mM ZnSO4. Cells were harvested by

centrifugation and resuspended in 20 mM Tris pH 7.9, 5 mM imida-

zole, 150 mM NaCl. They were then lysed by sonication. The super-

natant was loaded onto Ni2+-charged IMAC columns and washed

with 20 mM Tris pH 7.9, 60 mM imidazole, 150 mM NaCl. Protein was

eluted with 20 mM Tris pH 7.9, 300 mM imidazole, 150 mM NaCl. To

ensure purity from other proteins, the elution fractions were resolved

using SDS–PAGE followed by Coomassie Blue R-250 staining. The

selected fractions were then dialyzed against 20 mM Tris–HCl pH 7.9,

150 mM imidazole, 100 mM NaCl, 10% glycerol for 2 h and then

against 20 mM Tris–HCl pH 7.9, 50 mM imidazole, 50 mM NaCl, 5%

glycerol for 1 h, with final dialysis (three times, 1 h each) and storage

in 20 mM Tris–HCl pH 8.3. The �-CA psCA3 was concentrated using

an Amicon Ultra-15 Centrifugal Filter Unit (Millipore, Billerica,

Massachusetts, USA) and its concentration was determined by UV–

Vis spectroscopy at 280 nm using a molar extinction coefficient of

36 440 M�1 cm�1.

Initial crystallization screening was performed in 96-well Intelli-

Plate sitting-drop vapor-diffusion crystallization plates (Art Robbins

Instruments, Sunnyvale, California, USA) using Hampton Research

Crystal Screen 2, PEG/Ion, PEG/Ion 2 and an in-house sodium citrate

screen (screening conditions varied from 1.1 to 1.8 M sodium citrate,

Tris–HCl pH 7.1–8.1) prepared by the Rigaku Alchemist DT. Drops

consisting of protein solution at 10 mg ml�1 (in 20 mM Tris–HCl

pH 8.3) and precipitant solution at two different ratios (1:1 and 2:3

protein:precipitant solution) were equilibrated at 290 K against a

60 ml reservoir containing precipitant solution.

Two crystal forms (A and B) of �-CA psCA3 were obtained.

Crystals of both forms A and B were cryoprotected using the preci-

pitant solution with 20% glycerol prior to cooling in a nitrogen

stream.

Diffraction data for crystal form A were collected on an in-house

R-AXIS IV++ image-plate detector using an RU-H3R rotating Cu-

anode generator (� = 1.5418 Å) operating at 50 kV and 22 mA. Data

were collected with a crystal-to-detector distance of 150 mm and a

0.5� oscillation angle with an exposure time of 1800 s per image over

180 frames.

Diffraction data for crystal form B were collected at the F1 station

at Cornell High Energy Synchrotron Source (CHESS F1; � =

0.9177 Å) on an ADSC Q-270 detector using the microfocused beam.

Data were collected with a crystal-to-detector distance of 150 mm

and a 0.5� oscillation angle with an exposure time of 20 s per image

over 110 frames.

The data sets were integrated, merged and scaled using HKL-2000

(Otwinowski & Minor, 1997). Phasing was carried out with the

PHENIX suite of programs (Adams et al., 2010) using the auto

molecular-replacement procedure to obtain the initial phases using

a previously solved �-CA structure with water molecules removed

(PDB entry 1g5c; Strop et al., 2001) and with 18% sequence identity

to psCA3.

3. Results and discussion

The �-CA psCA3 was overexpressed and isolated with a typical yield

of 50 mg per litre of bacterial culture. Two crystal forms (A and B) of

psCA3 were grown by the sitting-drop vapor-diffusion method.
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Figure 1
Optical photograph of �-CA psCA3 crystals from P. aeruginosa. (a) Form A, grown
in 1.2 M sodium citrate, 20 mM Tris–HCl pH 7.2 at 290 K. (b) Form B, grown in
2.2 M ammonium sulfate, 0.1 M malic acid, 0.1 M imidazole pH 7.5 at 290 K. The
bar indicates 0.05 mm.



Crystal form A was grown from a precipitant consisting of 1.63 M

sodium citrate pH 7.4 (Fig. 1a). Diffraction data to 2.9 Å resolution

were collected in-house (Fig. 2). The crystals were shown to belong

to space group P212121, with unit-cell parameters a = 81.9, b = 84.9,

c = 124.2 Å and an Rmerge of 11.8%. Data-collection statistics and

processing parameters are summarized in Table 1. Considering the

P212121 space group and a molecular mass of 24 200 Da, a Matthews

coefficient (VM; Matthews, 1968) of 2.23 Å3 Da�1 was calculated

assuming the presence of four molecules in the crystallographic

asymmetric unit.

Crystal form B was grown from a precipitant consisting of 2.2 M

ammonium sulfate, 0.1 M malic acid, 0.1 M imidazole pH 7.5 (Fig. 1b).

Diffraction data to 3.0 Å resolution were collected at CHESS F1. The

crystals were shown to belong to space group P21212, with unit-cell

parameters a = 69.9, b = 77.7, c = 88.5 Å and an Rmerge of 7.6%. Data-

collection statistics and processing parameters are summarized in

Table 1. Considering the P21212 space group and a molecular mass

of 24 200 Da, a Matthews coefficient (VM; Matthews, 1968) of

2.48 Å3 Da�1 was calculated assuming the presence of two molecules

in the crystallographic asymmetric unit.

Currently, we are optimizing these psCA3 crystallization condi-

tions in an effort to obtain better diffracting crystals. One approach

is to cocrystallize psCA3 with a sulfonamide inhibitor such as acet-

azolamide that would serve to stabilize the protein, thus promoting

crystallization. Sulfonamides are potent inhibitors of CAs (Alterio et

al., 2012) and acetazolamide is a known inhibitor of another �-CA:

that from the unicellular green alga Coccomyxa (Huang et al., 2011).

Although this approach has been shown to produce better ordered

crystals, the drawback is that the active site is inhibited and the

structural study to understand the enzyme mechanism is somewhat

limited.

A potential reason for obtaining lower-resolution diffraction data

from seemingly visually ‘good’ crystals could be that the cryopro-

tectant (20% glycerol with precipitant solution) used in both cases

failed to successfully protect the crystals during the cooling process,

as indicated by the higher than expected mosaicity spread of �0.8�.

Using an alternative cryoprotectant such as 50%(v/v) Paratone-N

and 50%(v/v) paraffin oil, a combination which works well for protein

crystals (Hope, 1988), may help in minimizing damage during flash-

cooling.

In conjunction with the use of different screening conditions,

inhibitors and alternate cryoprotectants, microseeding is another

approach that will be considered in an attempt to obtain better

diffracting crystals. That is, transfer of the available submicroscopic

crystals of psCA3 into the protein–precipitant drop, which may aid in

the nucleation process.

Once the optimum conditions have been resolved, the hanging-

drop variant of the vapor-diffusion method in 24-well plates can be

adopted to grow larger crystals of psCA3.

Initial electron-density maps were viewed for both crystal forms

using the graphics program Coot (Emsley & Cowtan, 2004); they

show that psCA3 packs as a dimer of dimers in both crystal forms.

We are now refining the two crystal form structures and this will

give us an insight into the psCA3 active site in order to understand

its catalytic mechanism and also enable us to perform a comparative

study to determine whether crystal packing has any effect on the

structures. Furthermore, we can now start a structure-based drug-

screening study to develop new inhibitors for the bacterial �-CA.
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Figure 2
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detector distance was 150 mm, with 0.5� oscillation angle and an exposure time of
1800 s. The circle represents 2.9 Å resolution.

Table 1
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Values in parentheses are for the outermost resolution shell.
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Completeness (%) 95.0 (90.6) 76.1 (81.5)
Mean I/�(I) 13.8 (3.2) 24.5 (12.3)
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† Rmerge is defined as
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ � 100, where Ii(hkl)

is the intensity of an individual reflection and hI(hkl)i is the average intensity for this
reflection; the summation is over all intensities.
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