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Abstract

Although the field of High Performance Computing (HPC) has been evolv-
ing rapidly, the development of standardized software systems – MPI, OpenMP,
LAPACK, PETSc and others – has in principle made HPC accessible to a wider
community. However, relatively few scientists and engineers take advantage of
computational science and engineering (CSE) in their research, in part because of
the considerable degree of sophistication about computing that HPC appears to re-
quire. Yet the fundamental concepts of HPC are fairly straightforward and have
remained relatively stable over time. These facts raise an important question: can
scientists and engineers with relatively modest computing experience learn HPC
concepts well enough to take advantage of them in their research?

To answer this question, HPC educators must address several issues. First,
what are the fundamental issues and concepts in CSE? Second, what are the fun-
damental issues and concepts in HPC? Third, how can these ideas be expressed in
a manner that is clear to a person with relatively modest computing experience?
Finally, is classroom exposure sufficient, or is guidance required to assist investi-
gators in incorporating HPC into their research codes?

We discuss an effort, now underway, to develop materials that express sophis-
ticated scientific computing concepts in a manner accessible to a broad audience.
These materials, now partially completed, will address many of the above ques-
tions, employing plain English, analogies and narratives to target this population.
In addition, we examine a programmatic approach that incorporates not only the
use of these materials but also the crucial contribution of followup.
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1 Introduction
Computational science and engineering (CSE) and High Performance Computing
(HPC) are inextricably linked, because of the tremendous computing resources re-
quired by many of the problems of greatest scientific and engineering interest. The
CSE community has recognized, quite rightly, that its body of methodologies has
reached a sufficient level of sophistication and power that it can now take its place
beside theory and experimentation in a triad of research strategies, each with a
roughly equal contribution to scientific understanding. However, this perspective
is not shared among the academic community as a whole: while theory and exper-
imentation are taught at every level of science and engineering education, compu-
tational approaches are much less frequently encountered, and when covered are
often addressed in considerably less depth. We conjecture that a primary reason for
this inconsistency is that cutting edge CSE appears to require substantial sophis-
tication about computing, and since many scientists and engineers receive only
modest training in this area, many practitioners and educators believe that CSE is
beyond the reach of much of their community. The ongoing increase in computing
power and capability has made many large scale CSE problems practicable, but
the lack of training has left many avenues of investigation unexamined.

Moore’s Law[22] has been borne out over the last several decades, leading to
a situation in which high performance systems are available at very low prices, in
large part because of the rise of Linux clusters. Built from commodity off the shelf
parts and employing open source and other free or inexpensive software, these
systems provide tremendous computational capability at staggeringly low prices,
typically less than a dollar per megaflop.

Thus, the rise of Linux clusters has lead to a situation in which a great many re-
searchers could employ CSE in their investigations, but for their lack of familiarity
with these techniques. Yet many of these investigators could be the best people to
engage in this kind of endeavor, because of both their strong scientific background
and their strong desire to conduct cutting edge research. To ameliorate this situ-
ation, we believe that new pedagogical strategies must be developed, taking into
account the capabilities of this target population, with their strong mathematics
and science backgrounds but scant computing experience.

To achieve this goal, CSE and HPC educators must address several issues.
First, what are the fundamental issues and concepts in CSE? Second, what are the
fundamental issues and concepts in HPC? Third, how can these ideas be expressed
in a manner that is clear to a person with relatively modest computing experience?
Finally, is classroom exposure sufficient, or is guidance required to assist investi-
gators in incorporating HPC in their research codes?

A helpful way to describe the fundamental issues of CSE is as a chain of ab-
stractions: phenomenon, physics, mathematics (continuous), numerics (discrete),
algorithm, implementation, port, solution, analysis and verification. In general,
physics, mathematics and numerics are addressed well by existing science and en-
gineering curricula – though often in isolation from one another – and therefore
instruction should be provided on issues relating primarily to the later items, and
on the interrelationships between all of them. For example, algorithm choice is
a fundamental issue whose gravity is seldom appreciated by those who have less
computing experience; a common mistake is to solve a linear system by invert-
ing the matrix of coefficients, without regard for performance, conditioning, or
exploitation of the properties of the matrix.



As for HPC, the literature tends to agree on the following fundamental issues:
the storage hierarchy; instruction-level parallelism; high performance compilers;
shared memory parallelism (e.g., OpenMP [1],[16]); distributed parallelism (e.g.,
MPI [21],[23]). The pedagogical challenge is to find ways to express the basic
concepts with minimal jargon and maximal intuitiveness.

Although expressing these concepts in a manner appropriate for the target au-
dience can be challenging, it does not need to be daunting. For example, the use
of analogies and narratives to explain these concepts can capture the fundamental
underlying principles without distracting the students with technical details. Once
the students understand the basic principles, the details of how to implement HPC
solutions are much easier to digest: we believe that first they should learn about
the forest, and then come to understand the trees.

However, it is probably not reasonable, in many cases, to expect novice pro-
grammers to immediately understand how to apply HPC concepts to their science.
We conjecture that acceptable results require, as a follow on, regular interactions
with experienced HPC practitioners to provide the needed insight and practical
advice to move research forward.

As for the smaller subpopulation that already enjoys considerable computing
experience, we expect that the proposed pedagogical methods will not only pro-
vide a valuable perspective on the fields of CSE and HPC, but will also give this
group experience with means of explaining their pursuits to people outside their
discipline — a need too often overlooked in science and engineering education.

In August 2001, the University of Oklahoma (OU) established the OU Super-
computing Center for Education & Research (OSCER) [8] as a division of the
Department of Information Technology, with a mandate to provide not only hard-
ware and software, but more importantly HPC education and research facilitation.
In particular, OSCER’s mission is to teach the use of HPC in scientific comput-
ing to everyone on OU’s three campuses that uses, or desires to use, HPC in their
research or coursework.

To address this need, OSCER has instituted several new programs, including:

• a workshop series, originally presented in Fall of 2001 and being repeated in
Fall of 2002 (and likely to become an annual event), titled “Supercomputing
in Plain English” (originally titled “Supercomputing & Science”);

• “rounds,” in which OSCER personnel visit face to face with each individual
research team — including undergraduates, graduates, faculty and staff —
week by week, exchanging ideas and experiences to develop near- and long-
term action plans for moving the HPC aspects of the research forward, with
the members of the research team responsible for implementation;

• proposal facilitation, including partnering directly with individual research
teams on specific projects, as well as providing text for proposals describing
not only OSCER’s resources but also OSCER’s role in providing advising
and mentoring for students involved in such projects.

At Worcester Polytechnic University, the Parallel & Distributed Computing
Applications Team has been providing a service similar to OSCER’s HPC rounds,
with the same purpose in mind: assisting researchers in the integration of com-
putational science and HPC. These corresponding efforts at our two institutions
has led us to a new collaboration. Under the NSF’s Combined Research & Cur-
riculum Development (CRCD) program, we are beginning a project to study the
effectiveness of the teaching methods discussed here.



2 Computational Science & Engineering
The traditional approach to engineering and science education incorporates theory
and experimentation to explore the physical and biological phenomena of the nat-
ural world. Experimentation allows the scientist to probe a given phenomenon,
which in turn provides insight for deeper inquiry, as well as validation of the math-
ematical models that comprise the theory. Theoretical models that are derived
from physical principles and mathematics provide a means of predicting antici-
pated phenomena and behavior.

With improvements in computing performance, a third method of scientific in-
vestigation has become available to researchers. Computer simulation bridges the-
ory and experimentation: the former, in the guise of model and numerical method
development; the latter, in that it allows one to probe and examine physical phe-
nomena heretofore inaccessible, either because of location (e.g., hydrocarbon flow
through rocks) or because of the intractable cost of instrumentation (e.g., ocean-
atmosphere flows).

As with any experiment, the procedure must be performed carefully and accu-
rately to assure reliable results. In the context of numerical simulation, this means
that at every stage of the hierarchy of computational science, researchers must
ensure that the approach they take is correct, accurate and appropriate: a good nu-
merical method will not help bad mathematics, an efficient algorithm will not help
an inappropriate numerical method, and so on. For large scale computations, the
fact that a model, numerical method or algorithm works in principle is not enough;
the choice must also incorporate sufficient parallelism to render the numerical ex-
periment practicable. Therefore, for problems of considerable size, the strategy
most likely to bear reliable results requires the integration of mathematics, com-
puter science and application — and so cooperation between practitioners of these
disciplines is a critical contributor to success. It is the overlap of these fields that
has led to the generalization now referred to as CSE, and that is evident in the
fundamental issues associated with the discipline:

• symbolic expression of a physical system by means of a continuous mathe-
matical model;

• the discretization of the mathematical problem;
• the choice of numerical technique;
• implementation of the algorithm;
• verification of the code.

The first item is generally part of the training associated with an individual
scientific field, while the second and third are the purview of mathematicians, the
fourth is within the realm of computer science and the last relates to the specific
field under consideration. Though researchers know their disciplines well and can
recognize computational artifacts when they surface, few have the time and oppor-
tunity to investigate all the relevant disciplines associated with CSE.

As a result, the standard approach has been to teach formal concepts within
a computational course associated with a particular field; for example, computa-
tional biological processes, computational fluid dynamics or computational me-
chanics. These courses generally cover issues such as accuracy and stability of
various numerical schemes, methods of discretization in both time and space, and
solution techniques. (For the sake of this discussion we use “solution” to mean
the discrete approximation to the continuous solution.) In many cases, the primary



objective of the course is to enable students to think about these issues as they
relate to the use of “canned-ware.” Yet commercial software packages typically
trail the achievements of the research community by several years, and the man-
ner in which these systems are employed in classrooms can differ substantially
from how they are used in a research context. Therefore, enlarging the population
of scientific software developers is a crucial component in advancing the state of
computational research. Clearly, a large portion of the material covered in these
courses is pertinent to a variety of application areas, and furthermore, scientists and
engineers with a background in calculus, differential equations and linear algebra,
as well as at least modest experience with programming, have the tools necessary
to understand the key features of computational science and parallel computing.
However, it is rare that any of these kinds of courses present the issues associated
with the development of code for parallel simulation.

The scientific investigations that our target population of researchers seek to
undertake require large scale computing. At the same time, dual processor ma-
chines are common enough that they are becoming the workstations of choice.
This confluence of need and available technology suggests that a new presentation
of the issues of computing as they relate to scientific research is in order. The tradi-
tional paradigm, involving researchers referencing a standard set of computational
methods commonly applied to their field, along with some numerical linear alge-
bra, no longer provides investigators the exposure and experience required to easily
use current computing power to good advantage. To bridge this gap, we propose
to take a fresh view of each of the fundamental issues of CSE, recognizing that
each falls within some domain of engineering, mathematics, science or computer
science, but that all are required to fully prepare the student or researcher.

In general, the target audience is well schooled in applying the governing equa-
tions of their discipline to a small set of idealized cases that can be solved in closed
form. The typical participant is capable of stating the assumptions and constraints
of a physical system and of simplifying the system based on these conditions.
Thus, they are capable of deriving the mathematical statement of the continuous
problem, thereby satisfying the first fundamental issue of CSE.

For these students to develop simulation codes, they must next approximate
the continuous problem by a discrete model. For problems expressed as partial
differential equations, the most popular methods are finite difference and finite el-
ement schemes, although other approaches, such as boundary element and spectral
element schemes, are employed by a smaller subset of the research community.
Most textbooks begin with finite difference methods, developing the mathematics
and analysis of hyperbolic, elliptic and parabolic equations, each of which require
slightly different treatment[27]. Idealized problems, typically presented in one
dimension, are used to illustrate a variety of different discretizations and the lin-
ear systems that arise from these strategies. At this level, little is said about how
one solves the linear system, beyond basic ideas of linear algebra and the desire,
often unachievable, to express the system as a tridiagonal matrix. The underly-
ing assumption has been that computing is serial, so that a tridiagonal solver is
computationally efficient and straightforward to implement. While this approach
provides a pathway to discussion of a subset of the issues associated with com-
putational science, a more comprehensive procedure is required if sophisticated
research ability is the goal. For example, while parallel implementations of tridi-
agonal solvers exist, they only obtain parallel efficiencies of between 0.3 and 0.5
based on the choice of algorithm[29]; that is, they may be insufficient for certain



problems of scientific and engineering interest.
To achieve the goal of preparing students and researchers to utilize HPC and

parallel resources, we suggest a top down approach. We begin not with the ideal-
ized problems but with the general statement of the physical problem. From this
general statement we form smaller subproblems associated with well known and
well understood mathematical equations; e.g. Helmholtz, Poisson and Laplace
Equations. In certain disciplines, such as fluid dynamics, we still have a coupled
system of equations and the focus must turn to algorithm and numerical discretiza-
tion choice. For problems of this type, some sort of splitting is required to separate
the physical mechanisms that are to be solved explicitly from those to be solved
implicitly. In the field of fluid dynamics, there is the added constraint of pres-
sure, which is a global quantity. Indeed, the global pressure solve forms the major
bottleneck of computational fluid dynamics on parallel architectures.

Thus the first step in this approach requires the student to take a slightly more
abstract view and state the continuous problem as a set of subproblems of the form
Lu = f , whereL is a matrix operator, andu andf are vectors. The student can now
choose between a variety of discretization schemes, such as finite difference, finite
element or spectral elements (h-p finite elements). It is clear that at this step we are
at the interface between mathematics and science, but though this approach is well
known within certain communities, it is not broadly presented at the undergraduate
or early graduate student level.

It is at this point in the development that we turn to computer science. In-
herent in the choice of appropriate numerical techniques are the issues associated
with parallel computing, such as data locality, message passing and the minimiza-
tion of global operations, as well as the issues of HPC, which are described be-
low. The vast majority of scientists and engineers do not have the resources to
explore multiple methods and to write parallel solver code. For this population,
PETSc[13],[14],[12] and other toolkits offer the opportunity to explore a variety
of fast, efficient parallel solvers. Therefore, once the physical system has been
transformed to a system of subproblems, we encourage these researchers to ex-
plore the use of toolkits.

The final step in development is code validation. Unfortunately, this step is
often not well understood by young researchers and graduate students. Though
not trivial in practice, validation of scientific code is accomplished in a straight-
forward manner. Within each of the science and engineering disciplines, there
are well known closed form solutions that can test several elements of a larger
code. In addition, the interplay between experimentation and computation allows
researchers to compare their results to physical data. It is important to understand
that correctly completing a benchmark simulation is not enough; one should com-
plete a resolution study in both time and space, and verify that the results match
the expected accuracy. This verification step is often overlooked, and for time de-
pendent problems applied to physical situations spanning large times, it is often
unclear whether or not artifacts exist. Satisfying this final issue of computational
science provides the confidence that the simulation code is robust and accurate; to
be confident of performance we need to consider the fundamental HPC issues.

Students of HPC and parallel computing need a different approach. While we
would hope that these students will have experience with numerical linear alge-
bra, we believe that a top down approach provides better exposure to the issues of
parallel computing. Indeed, as students begin to grapple with the issues of data lo-
cality, message passing and parallel computing, they need to consider these issues



from the beginning of the software development process, as they move from the
continuous to the discrete model. Even without numerical linear algebra, the ma-
terial should begin with the continuous model, break it into smaller sub-problems
and discuss the solver techniques within the larger presentation on discretization.

With the creation of PETSc and other parallel toolkits, we best serve our target
audience by presenting the issues surrounding the use of parallel solvers. From that
perspective, we can assist them in the development and deployment of methods
that produce matrices for which the efficient solvers are appropriate.

3 Fundamental Issues of High Performance
Computing
HPC, as a discipline, is largely concerned with software design and implementa-
tion issues associated with achieving maximal performance for a given algorithm;
the choice of the algorithm itself — for example, an iterative solver for a system
of linear equations — is more properly the focus of computational science than of
HPC. For the most part, the issues that most affect HPC are:

• the storage hierarchy [17], [19], [20], [30],
• instruction-level parallelism [17]. [18]. [19], [20], [28], [30],
• high performance compilers [17], [19], [28], [30],
• shared memory parallelism (e.g., OpenMP) [17], [19], [30],
• distributed parallelism (e.g., MPI) [17], [18].
• scientific libraries [28], [30],
• I/O [30],
• visualization [18].

In addition, the past several years have seen the rise of the issue of remote, hetero-
geneous (i.e., Grid-based) computing.

The pedagogical challenge for the discipline of HPC is to find means of ex-
pressing these basic concepts in a manner that is approachable by scientists and
engineers who have strong mathematical and scientific backgrounds but modest
software development experience. Thus, teaching strategies for HPC require min-
imal jargon and maximal intuitiveness.

3.1 OSCER Workshops Fall 2001
OSCER has been developing and presenting a prototype workshop series to serve
this need. In this section, we discuss the strategies developed, the experiences
encountered, and ideas for future improvements. The original slides for the first
incarnation of this workshop series, presented in Fall 2001, can be found at
http://www.oscer.ou.edu/education 2001fall.html

The workshop series is split into seven sessions, each of which is presented to
a mixed audience of undergraduate students, graduate students, faculty and staff,
with a wide range of mathematical and scientific background, computing experi-
ence and application area of interest. Sessions are conducted in a loose, highly
interactive style, with constant multiway dialogue during each session. The first
session presents a broad overview of HPC as a discipline, and then the subsequent
five sessions each cover a single topic: the storage hierarchy; instruction-level par-
allelism; high performance compilers; shared memory parallelism (e.g., OpenMP);



distributed parallelism (e.g., MPI). The final session is a “grab-bag” of topics pre-
sented in less depth: scientific libraries; I/O formats; visualization. Wherever pos-
sible, analogies and narratives are used to illustrate fundamental concepts.

3.1.1 Overview Session

The first session consists of brief looks at several of the topics that are to be covered
in later sessions. The session begins with a statement of the goals of the series, a
brief history of OSCER (in fall 2001, the first session took place on the day that
OSCER officially opened for business), a broad definition of “supercomputing”
and HPC, and the uses and users of HPC, particularly at OU.

Next, the basic issues underlying HPC, as described above, are outlined. Then,
several of them are briefly presented, beginning with the storage hierarchy. For the
benefit of those with modest computing experience, some very basic notions about
computer organization are included, in particular a brief description of the CPU,
primary storage (i.e., cache and RAM), secondary storage (hard disk, CDROM,
etc), and I/O devices. Also incorporated here is a brief explanation of what cache
does and how it helps performance. Immediately following is the Laptop Example.

The Laptop Example

The storage hierarchy pervades computing at all levels, from desktop to super-
computing. It can be described as a relationship between speed, price and size:

• fast storage is expensive and therefore computers tend to have little of it;
• slow storage is inexpensive and therefore computers tend to have a lot of it.

This point becomes more clear when applied to a familiar computer, so the
laptop of the presenter is a straightforward choice, since it is visible to the atten-
dees. In Fall 2001, the following table was presented (prices were accurate as of
late August 2001, and therefore were already out of date for this publication):

Item Peak Speed Size Cost
(MB/sec) (MB) ($/MB)

Registers 16,800 [26] 112 bytes unknown
Cache Memory (L2) 11,200 [25] 0.25 $400 [3]

Main Memory (100 MHz) 800 [4] 256 $1.17 [3]
Hard Drive 100 [6] 30,000 $0.009 [3]

Ethernet (100 Mbps) 12 unlimited charged monthly
CD-RW 3.6 [5] unlimited $0.0015 [2]

Phone modem (56 Kbps) 0.007 unlimited free (local call)

The table demonstrates a specific incarnation of the storage hierarchy, in terms
that anyone who regularly uses a PC can understand. Most importantly, it shows
the orders of magnitude of differences in performance between the various levels
of the hierarchy: cache is 14 times faster than RAM, which is 8 times faster than
a hard drive, which is 8 times faster than 100 Mbps ethernet, and so on. As a
followon to the Laptop Example, a brief mention is made of storage use issues:
register reuse, cache reuse, data locality and I/O efficiency.

The next topic touched on during this session is Instruction Level Parallelism
(ILP), with a precis of the ILP material (Section 3.1.3, below).

The final major HPC topic addressed in the Overview session is multithread/
multiprocess parallelism, which is described using the Jigsaw Puzzle Analogy.



The Jigsaw Puzzle Analogy
The jigsaw puzzle analogy was presented “live” by using workshop attendees

as physical models for shared memory and distributed parallelism. One or a few at
a time, several attendees are asked to come to the front of the room to participate
in putting together a jigsaw puzzle, to illustrate parallel programming concepts.

An Analogy for Shared Memory Parallelism

Suppose that Lloyd is working on a certain jigsaw puzzle, and that it
takes him an hour to complete the puzzle.(Here, a participant sits at a
table in the front of the room, with an appropriate jigsaw puzzle.)

Now, suppose that Julie sits down at the table across from him, and
works with him on the puzzle.(Another participant sits at the table,
across from the first.)

For the sake of argument, let’s assume that half the puzzle is grass and
the other half is sky. If Lloyd does the grass and Julie does the sky,
how long will it take the two of them?

Here, the audience will offer answers that will either be “half an hour” or “a little
more than half an hour,.” leading to a discussion of issues such as:

If Lloyd and Julie both try to grab a piece out of the pile at the same
time, will that slow them down? What if they grab for the same piece
at the same time?(They demonstrate.)

Can Lloyd and Julie work completely independently, or will they need
to work together at the horizon — that is, on the interface between
their parts?

Will these issues slow them down? How much? How long will it take
the two of them, if one of them can do it in an hour?

These questions lead to a discussion of fundamental concepts such as contention
for shared resources (particularly shared memory) and communication between
threads at the interfaces between subdomains.

Now suppose that Henry and Jerry sit at the table as well.(Two more
participants sit at the table, around the sides.)

Will there be more contention for the shared resource, or less, or the
same amount? What about communication at the interfaces? How
long will it take the four of them?

By this time, the issues of contention and communication are becoming clearer.

Now suppose that four more people sit at the corners of the table. How
long will it take the eight of them? Can we keep adding people around
the table and continue to get speedup?

At this stage, the discussion turns to the concept of diminishing returns.



Extending the Analogy to Distributed Parallelism

Now suppose that we have two tables, with Lloyd sitting at one and
Julie at the other. And suppose we have some way to pull apart the
pile of pieces so that Lloyd gets half the pile and Julie gets half the
pile. (The other participants step aside, and Julie goes to another table,
with half the pile of pieces.)

Remembering that Lloyd can do the puzzle in an hour, how long will
it take Lloyd and Julie now? What will they do differently, compared
to sitting at the same table and sharing the same pile of pieces? Will
they ever reach for the same piece? How will they do the horizon?

These questions lead to a discussion of the tradeoff between contention for shared
resources and the high cost of remote communication, and the need for Lloyd and
Julie to bring together their halves of the puzzle, or even their tables, at the end of
the process.

If Lloyd’s part is easier than Julie’s, will they be ready to do the hori-
zon at the same time? If not, what will Lloyd do after he finishes his
part? What will be the impact on speedup?

Here, the discussion touches on load balancing and blocking under synchronous
communication.

Now let’s add a couple more tables, with Henry at one and Jerry at
the other.

Do we need to split up the pieces into smaller piles? What if there’s no
straightforward way to split up the pieces so that the piles are roughly
equal size?

These questions lead to a discussion of the differing levels of difficulty of data
decomposition for various applications; that is, some problems decompose trivially
(e.g., a uniform Cartesian mesh can be broken into roughly equal-sized chunks),
while others are extremely difficult to decompose.

If we have four tables instead of two, how much time will be spent
communicating: more, less or the same? Can we come up with ways
to make communication more efficient? Can Lloyd and Julie commu-
nicate at the same time that Henry and Jerry do? Can we guarantee
that they will, or will it depend on how we break up the piles of pieces?

Can we keep adding more and more tables? What will be the impact
on speedup?

Extending the Analogy to Hybrid Parallelism

Suppose that we have several tables, all properly set up, but each table
has several people at it. Each table can share a pile of pieces, but
the tables are independent except for communicating at the interfaces
between them.

Would this be a good idea or a bad idea? What would be the impact on
performance? What does this depend on? Would the group’s overall
performance be improved if each table has people who work really
well together?



Why Use HPC?
At the end of the Overview session, the attendees are asked the most funda-

mental question about the relationship between HPC and their research: “Why
bother with HPC at all?”

It’s clear that making effective use of HPC takes quite a bit of effort,
both learning and programming. That seems like a lot of trouble to go
to just to get your code to run faster.

It’s nice to have a code that used to take a day run in an hour. But if
you can afford to wait a day, what’s the point of HPC? Why go to all
that trouble just to get your code to run faster?

The answer:

What HPC gives you that you won’t get elsewhere is the ability to do
bigger, better, more exciting science.

3.1.2 Storage Hierarchy Session

This session is begins with, and expands upon, the Laptop Example as presented
in the Overview session (Section 3.1.1, above), and provides substantially more
detail about computer organization issues that affect performance. Where possible,
timing tests on simple code fragments demonstrate the principles being discussed.

After the Laptop Example, the topic of computer organization is examined,
with greater detail about registers, cache and main memory, and about the rela-
tionships between them. The section on registers is concerned with basic issues:
what registers are, how they are used, how many registers a typical CPU has. The
section on cache describes what cache is, and how fast cache is compared to main
memory. This is followed by a section briefly describing main memory. These
three sections capture the distinctions between registers, cache and main memory:

• Registers ... hold data that are being used right now ....
• [Cache is] a very special kind of memory where data reside that are about

to be used ....
• [Main memory is] where data reside for a program that is currently running

....

Then, the relationship between cache and main memory is described, including an
explanation of cache lines and mapping strategies — direct, fully associative, set
associative — that gives information on the advantages of each strategy. Finally,
the benefit of having cache is explored.

The next section is on data locality, and begins by noting that, if a problem size
is substantially larger than cache, then most of the data is outside of cache. After
definingcache hitandcache miss, it is noted that:

If all of your data is small enough to fit in cache, then when you run
your program, you’ll get almost all cache hits ... which means that
your performance might be excellent!

Of course, most problems are not small enough to fit entirely in cache, espe-
cially the small caches of current commodity processors (e.g., 512 KB L2 cache
on a Pentium 4). So, how can the cache hit rate be improved?

Use the same solution as in Real Estate:
Location, Location, Location!



This statement leads into a discussion of data locality, including temporal and spa-
tial locality. As proof of the importance of locality, a simple code example is timed,
comparing two similar loops, one that fills an array from start to finish, and another
that fills the same array in a randomly permuted order. A graph of loop runtime
for various array sizes is given, showing a factor of 6 to 8 improvement for the
ordered fill versus the randomly permuted fill. (Actually, part of the performance
difference is the result of pipelining, but this fact is not mentioned at this stage.)

Next, a much more compelling example is explored: matrix-matrix multiply.
Initially, the naive, hand-coded version is presented, based simply on the mathe-
matical definition of the matrix-matrix multiply operation:

DO c = 1, nc
DO r = 1, nr

dst(r,c) = 0.0
DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO ...

The performance of the hand-coded version of this routine is compared against the
Fortran 90 intrinsic,MATMUL, and is shown to be substantially worse, 4 to 5 times
slower for large matrices.

This example leads directly into a discussion of tiling. A new version of the
code is presented, using tiling:

SUBROUTINE matrix_matrix_mult_tile ( &
& dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)

...
DO c = cstart, cend

DO r = rstart, rend
if (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO ...

END SUBROUTINE matrix_matrix_mult_tile

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq

CALL matrix_matrix_mult_tile( &
& dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, &
& qstart, qend)

END DO ...



This tiled version is timed using a variety of tile sizes (from the full problem
size down to 2 x 2), on a variety of problem sizes (from 512 x 256 up to 2048 x
1024). All problem sizes show essentially the same behavior, with the performance
curves having the same shape (in a log-log plot) regardless of problem size, and
with the best performance found at tile sizes of 64 x 64 x 32 (32,768 bytes) through
32 x 32 x 32 (12,288 bytes) on a 700 MHz Pentium III. Smaller tile sizes than
this take longer, leading to a discussion of the overhead associated with procedure
calls. In addition, this example demonstrates that, in some cases, tiling can be as
straightforward as wrapping the original, non-tiled version of an algorithm in a few
loops that decompose the dataset into tiles.

The final sections of this session are concerned with slower technologies: hard
disk, virtual memory and the Internet. The portion on hard disk explains that disk is
slower than RAM because mechanical devices are slower than electronic devices;
that is, objects move slower than electrons. Then, I/O strategies are discussed:

Read and write the absolute minimum amount.
• Don’t reread the same data if you can keep it in memory.
• Write binary instead of characters.
• Use optimized I/O libraries like NetCDF and HDF.

The section on virtual memory gives an overview of what virtual memory is
and how it works, and how to exploit data locality to minimize page faults. The
section on the Internet simply cautions that one should avoid using it in situations
in which performance is important. Finally, the storage use strategies presented
in the Overview session (Section 3.1.1, above), are repeated, as a summary of the
issues associated with the storage hierarchy.

3.1.3 Instruction-Level Parallelism Session

This session begins with an intuitive definition of instruction-level parallelism:

Instruction-Level Parallelism is a set of techniques for executing mul-
tiple instructions at the same time within the same CPU.

The underlying assumption of this session is that many of the attendees have very
modest computer science background — that is, as little as a single programming
course — and thus they have little or no awareness of current processor architec-
ture. So, the extent of their understanding of computer organization is as a simple
Von Neumann model of purely serial computation — that is, execution of exactly
one instruction at a time.

As a result, this session is anticipated to be the most daunting for many in the
target population, not only because they lack sufficient background information to
be aware of the advances in computer engineering that have enabled instruction-
level parallelism, but also because their unfamiliarity with low-level constructs
such as assembly language and microcoding poses challenges in explaining con-
cepts such as cycles, superscalar execution and instruction pipelines.

Therefore, an important aspect of this workshop session is the introduction of
these fundamental concepts in a manner that is accessible to those inexperienced
in computing, but at the same time is not tedious for the computationally sophisti-
cated. The solution that we have adopted is to present the most basic background
information as quickly and concisely as possible — in our case, a mere three slides,
describing the concept of ILP, giving examples of instructions, and defining “cy-
cle” — with additional information scattered throughout the presentation, often



subtly. For example, rather than dwelling on the concept of an assembly-level in-
struction — or even identifying it with the term “assembly,” which in this context
is neither necessary nor especially helpful — we present brief program fragments
along with their translations into pseudo-assembly:

z = a * b + c * d

1. Loada into R0
2. Loadb into R1
3. Multiply R2 = R0 * R1
4. Loadc into R3
5. Loadd into R4
6. Multiply R5 = R3 * R4
7. AddR6 = R2 + R5
8. StoreR6 into z

Scalar Execution
In fact, the above example is used to introduce the concept of scalar execution,

as a lead-in to concepts such as superscalar, pipeline, superpipeline and vector,
because scalar execution is intuitive: it corresponds directly to many basic pro-
gramming constructs in Fortran and C. Immediately following this example we
present the same example, showing not only the above set of pseudo-assembly in-
structions but also, side-by-side, the same set of instructions in a different order —
specifically, steps 1 through 3 are swapped with steps 4 through 6, and, within 4
through 6, steps 4 and 5 are swapped:

z = a * b + c * d
1. Loada into R0
2. Loadb into R1
3. Multiply R2 = R0 * R1
4. Loadc into R3
5. Loadd into R4
6. Multiply R5 = R3 * R4
7. AddR6 = R2 + R5
8. StoreR6 into z

1. Loadd into R4
2. Loadc into R3
3. Multiply R5 = R3 * R4
4. Loada into R0
5. Loadb into R1
6. Multiply R2 = R0 * R1
7. AddR6 = R2 + R5
8. StoreR6 into z

This side-by-side comparison illustrates the concept of independent sequences
of instructions, which is perhaps the most fundamental property required to achieve
parallel computation. Attendees are asked some fundamental questions:

• If some of these instructions can have their order changed, can all of them?
• How can we tell when order matters and when it doesn’t?

These questions lead to an informal discussion of dependency analysis.

Superscalar Execution
Immediately following the side-by-side comparison, we introduce the concept

of superscalar execution:



z = a * b + c * d
1. Loada into R0 AND loadb into R1
2. Multiply R2 = R0 * R1 AND

loadc into R3 AND loadd into R4
3. Multiply R5 = R3 * R4
4. AddR6 = R2 + R5
5. StoreR6 into z

The advantage of this approach is that, without overtly focusing on formal
definitions and details of computer organization, we have introduced superscalar
execution in an intuitive manner. Given that many in our target population have
an unsophisticated understanding of processor architecture, we speculate that the
notion that a processor may be capable of multiple instructions simultaneously,
though a new idea to many, will not be difficult to assimilate, nor will it strongly
conflict with their preconceived notions of how processors behave, because for
many of them their prior understanding is sufficiently vague and weak that the new
information does not contradict an existing prejudice.

Loops
It is unlikely that this execution strategy — superscalar execution on a single

statement — will impress most users, who will note that total runtime is reduced
by only a few nanoseconds; specifically, the effective number of steps is reduced
from 8 to 5. (For simplicity, we assume that all operations take the same amount
of time, though we caution the attendees that in real life this is not the case.) At
this point, we introduce loops.

Loops demonstrate the value of superscalar operation: in many cases, the indi-
vidual iterations of a loop are independent of one another, so the superscalar units
of the processor can work on them concurrently. Again, this concept is fairly intu-
itive for the target population, because we avoid such topics as scheduling, which
are complicated without being, at this stage, especially enlightening.

Pipelining
On the one hand, pipelining can be explained intuitively, via analogies such as
bucket brigades and assembly lines. On the other hand, the details of pipelining
can be opaque, because the stages of the pipeline — instruction fetch, instruction
decode, operand fetch and so on — are unfamiliar to many in the target popula-
tion. Therefore, we avoid dwelling on the details of pipelining, focusing instead
on pipelined performance, by showing benchmarks of loops that perform vari-
ous operations. In addition, we discuss the kinds of constructs that can interrupt
pipelining, such as index arrays, complicated loop bodies, premature loop exits,
procedure calls and I/O. Finally, we briefly present superpipelining and vectoriza-
tion, which are both relatively straightforward to explain.

Because of the comparatively high degree of technical detail in this session,
our concern has been that participants would become lost or frustrated, so we in-
sert into the presentation, at strategic moments, slides that simply read “Don’t
panic!”[9]. We then explain why they shouldn’t panic:

In general, the compiler and the CPU will do most of the heavy lifting
for instruction-level parallelism.

BUT:
You need to be aware of ILP, because how your code is structured
affects how much ILP the compiler and the CPU can give you.



In the context of instruction-level parallelism, the overarching issue for the
target population is not the details of how ILP behaves, but rather the fact that,
through sufficiently careful code implementation, they can induce a high perfor-
mance compiler to produce a highly efficient executable. That is, they need not
specifically concern themselves with targeting ILP, because compilers will do most
of the work for them; rather, they should be aware of the kinds of constructs that
compilers can optimize effectively, as well as those that stymie compilers. This
discussion leads naturally into the next session, which presents high performance
compilers and how to work well with them.

3.1.4 High Performance Compilers Session

This session consists of two major parts: dependency analysis and “stupid com-
piler tricks.” The purpose of the session is to give the target audience strategies
for improving performance by assisting the compiler in finding the best way to
optimize a code. Also, this session sets the stage for discussions about parallelism.
(Much of the material is derived from [17].)

In the section on dependency analysis, we define dependency analysis and dis-
tinguish between control dependencies and data dependencies. We also examine
loop carried dependencies and reductions, and show timings that compare loops
that do or do not have loop carried dependencies, demonstrating the extent to which
these dependencies inhibit performance.

The section on “stupid compiler tricks” is split into two parts, on tricks that
compilers play and on tricks to play with compilers. The tricks that compilers
play include scalar optimizations (copy propagation, constant folding, dead code
removal, strength reductions, common subexpression elimination, variable renam-
ing), and loop optimizations (hoisting and sinking of loop invariant code, induction
variable simplification, iteration peeling, loop interchange, unrolling, inlining).
The tricks to play on compilers include compiler options (particularly optimiza-
tion levels, including timing tests of various loops with and without optimization),
profiling and hardware event counters. This section prepares participants for prac-
tical hands-on use of HPC, providing a context for discussion during rounds.

3.1.5 Shared Memory Parallelism Session

The session on shared memory parallelism begins with a contrast between the for-
est and the trees:

• The Trees: We like multiprocessing because, as the number of
processors working on a problem grows, we can solve our prob-
lem in less time.

• The Forest: We like multiprocessing because, as the number of
processors working on a problem grows, we can solve bigger
problems.

After a brief look at jargon (threads versus processes), we examine Amdahl’s
Law[10], not as a formal construct, but as a means of examining the importance of
parallelization throughout an application:

Rule of Thumb: When you write a parallel code, try to make as much
of the code parallel as possible, because the serial part will be the
limiting factor on parallel speedup.



We probe this rule by examining some benchmarks of an example parallel code
exhibiting sublinear speedup.

Next, we touch on granularity and parallel overhead, followed by repeating the
shared memory portion of the Jigsaw Puzzle Analogy (above). Immediately after,
we discuss the fork-join model of multithreading, as a lead-in to OpenMP.

About half of this session is devoted to OpenMP, which has become thede
facto standard for shared memory parallel programming in the HPC community.
Because most of the concepts are very new to the target audience, we begin with
the notion of a compiler directive and show some OpenMP examples, thereby in-
troducing an implied outline of this portion of the session.

We then introduce a first OpenMP program, which is a simple “Hello, world.”
A sample run, which includes setting theOMPNUMTHREADSenvironment vari-
able, not only shows parallel execution but captures nondeterministic ordering,
with several runs showing the outputs of various threads in different orders.

Next, we examine thePARALLEL DOdirective, because for most of the target
audience, much of what they need is covered by parallel loops. This leads nat-
urally to discussion of concepts such as chunks, private versus shared data, load
balancing, synchronization and barriers, critical sections and reductions. Finally,
we examine a simple strategy for parallelizing an existing serial code: placing
parallel loop directives above the most important loops in the code.

3.1.6 Distributed Parallelism Session

The distributed parallelism session begins with the Desert Islands Analogy.
The Desert Islands Analogy

The purpose of this analogy is to capture the Single Program Multiple Data
(SPMD) programming model that underlies MPI, and that therefore is one of the
primary means of obtaining parallelism on clusters. The primary focus of this
analogy is on the seeming incongruity between the isolation of processes from one
another — that is, the fact that all data are private to their local process — and
the cooperative nature of their behavior. This analogy requires substantially more
exposition than the jigsaw puzzle analogy.

Suppose that Lloyd is in a little hut on his favorite desert island.(Here,
Lloyd would be asked to name his favorite island, and that name would
be substituted throughout the discussion.)

In his little hut are a few things: a desk, a chair, a phone, a pencil,
a calculator, and two sheets of paper, one with instructions, the other
with numbers.

There are a couple different kinds of instructions: some that involve
calculations on the list of numbers, and some that involve voicemails.

For example, a calculation instruction might say:
• add the 137th number to the 928th and put the result in the 673rd

slot;
• compare the 54th number to the 816th, and:

– if they’re the same, perform a certain sequence of instruc-
tions;

– if they’re different, perform another sequence of instructions.

(These kinds of instructions would be recognizable by anyone with
even a semester of programming experience.)



On the other hand, a voicemail instruction might say:

• dial 555-0127 and leave a voicemail containing the 962nd num-
ber;

• call your voicemail box and collect a voicemail from 555-0063,
and place the number contained in that voicemail into the 163rd
slot.

If Lloyd is in a hut on an island, is he specifically aware of anyone
else? Does he know whether anyone else is working on the same prob-
lem as he is? Does he know who’s at the other end of the phone line?

Now, suppose Julie is on another island somewhere, in the same kind
of hut, with the same kind of equipment.(Here, Julie would likewise be
asked to name her favorite island.)Suppose that she has the same list
of instructions as Lloyd, but a different set of numbers on her sheet and
a different set of phone numbers for getting and leaving voicemails.

Is Julie specifically aware of anyone else? Does she know whether
anyone else is working on the same problem as she is? Does she know
who’s at the other end of the phone line? Does she know that Lloyd is
working from the same set of instructions, but with different data and
phone numbers?

Now, suppose that Henry and Jerry are also in huts on islands, with the
same instructions but different data and phone numbers. And suppose
that the phone numbers that the four of them call are each others’:
Lloyd leaves voicemails for and gets voicemails from Julie, Henry and
Jerry, and so on.

Could the four of them be working on the same problem together, even
though they’re not specifically aware of each other?

This last question draws attention to a counterintuitive parallel programming
paradigm: several seemingly independent processes that, through proper algorithm
design, operate in concert to solve a problem far larger than the workload of any
one of them.

Notice that Lloyd can’t see Julie’s data or Henry’s or Jerry’s, Julie
can’t see any of the other three’s, and so on. That is, everyone’s data
are private: there’s no way for anyone to share data, except by leaving
voicemails.

A fundamentally important issue in message passing is the twin costs of passing a
message: latency and bandwidth. Fortunately, long distance telephone charges are
an excellent analogy.

When you make a long distance phone call, you typically have to pay
two costs:

• Connection charge: the fixed cost of connecting your phone to
someone else’s, even if you’re only connected for a second;

• Per-minute charge: the cost per minute of talking, once you’re
connected.

If the connect charge is large, then you want to make as few calls
as possible, and to exchange as much information as possible during
each call.



From this analogy, we can immediately map to distributed parallelism concepts:
independent processes, private data, communication via message passing, latency
and bandwidth. In addition, we present the concept of load balancing, both for its
own sake and also to introduce the concept of data decomposition.

This discussion is followed by a brief overview of MPI, with modest code
examples to illustrate basic concepts. Here, MPI terminology is introduced, along
with a small subset of MPI routines. As with the Shared Memory Parallelism,
above, we discuss the issue of indeterminant ordering of parallel execution. We
also examine the encapsulation of messages, as well as collective communications.
Finally, we end with an example: coverting a serial Monte Carlo application, which
is embarrassingly parallel, to an MPI application, and use it as a springboard to
examine asynchronous communication and communication hiding.

3.1.7 Grab Bag Session: Scientific Libraries, I/O and Visualization

This session examines three disparate topics, but in substantially less depth than
the other sessions.

As an introduction to this session, the chain of computational science abstrac-
tions is presented, to provide context for the discussion of scientific libraries.

Scientific Libraries
Scientific libraries are presented to discourage many of the bad habits described

in Section 2. Specifically, the section covers:

1. The availability of solver libraries
2. The “do’s and don’ts” of solving systems of linear equations

Don’ts:

• Don’t invert the matrix (x = A−1b). That’s much more
costly than solving directly.

• Don’t write your own solver code. There are people who
devote their whole careers to writing solvers. They know a
lot more about writing solvers than we do.

Do’s:

• Do use standard, portable solver libraries.

• Do use a version that’s tuned for the platform you’re running
on, if available.

• Do use the information that you have about your system to
pick the most efficient solver.

3. Knowing the properties of the matrix (e.g., symmetric, positive definite,
banded, sparse);

4. Specific solver libraries (LAPACK[11], ScaLAPACK[15], PETSc).

LAPACK is used to illustrate these principles. It is briefly described, and then
an example of LAPACK use is shown, to give the audience a sense of the assemble-
solve-disassemble approach. Then, ScaLAPACK and PETSc are briefly discussed,
followed by a brief look at the circumstances under which each of the three li-
braries is appropriate.



I/O Libraries
I/O libraries are presented in order to alert participants about two issues: per-

formance and portability. The first of these issues is critical at runtime, because a
badly chosen I/O method will slow a code down substantially. The second is im-
portant in the long run, because data stored in a non-standard format can become
unreadable when it’s ported to a new platform — and especially when the original
platform is decommissioned.

This topic begins with text output, showing that the ASCII approach, while
fully portable, is very inefficient for data with many significant figures. This ap-
proach is contrasted with outputting native binary, which can be substantially more
efficient, but which has two costs: readability and portability. However, readability
is not a major issue, because one can always write a program to output the binary
data in text, and because large data files — the kind for which I/O performance is
important — aren’t typically examined by eye, because of their sheer size. How-
ever, binary portability is a substantial problem, leading into a mention of portable
formats such as NetCDF[24] and HDF[7]. The advantages of this approach are
presented.

Visualization
The final section, on visualization, is fairly straightforward and intuitive: the

standard case is made for visualization (that contemporary scientific datasets are
too large to look at value by value), and then examples of several species of vi-
sualization are presented: contour lines, slice planes, isosurfaces, streamlines and
volume rendering.

4 The Importance of Followup
Obviously, communicating the breadth, depth and complexity of HPC in a modest
number of workshops is impossible, and therefore doing so is not a goal of this
approach. (Indeed, this point is raised in the Overview workshop.) Instead, re-
searchers need substantial followup, both concurrent with and subsequent to the
workshops, in order to apply HPC expertise to specific applications, but without
requiring application scientists to become HPC experts in order to begin making
progress.

Over the past year, OSCER has established HPC rounds, in which OSCER
personnel work directly with research teams, meeting regularly (e.g., weekly) with
several different groups to exchange ideas about applying HPC and computational
science to their specific projects. Typically, this process occurs in three phases:

• a learning phase, in which the OSCER representative learns about the appli-
cation and the research team learns how basic HPC strategies relate to their
application;

• a development phase, in which appropriate optimization and parallelization
strategies are discussed and implemented;

• a refinement phase, in which the initial methods are improved through pro-
filing and other analysis techniques, leading to greater speedup, portability
and so on.

In fact, these three phases overlap considerably, and in particular the learning phase
is continual.



The importance of this approach cannot be overstated, and especially important
is the availability of one or a few persons whose role is to develop and maintain
expertise on HPC and computational science issues. This base of expertise can
serve as a springboard to improving and expanding the nature, breadth and depth
of computational research being conducted at an entire institution, at minimal cost
to any individual research group.

A typical PhD-granting institution has a dozen or more research groups that
can benefit from this kind of consultation, and a quick back-of-the-envelope calcu-
lation shows that 90 minutes a week of this person’s time (combining teaching and
rounds) is roughly half a month of Full Time Equivalent per year. So, if each of
these research groups incorporates into their external funding proposals a line item
for half a month of the HPC expert’s time, a sizable portion (perhaps all) of this
person’s time can be funded externally. The burden on each of the individual teams
is minimal, while each benefits substantially from this person’s presence. Further-
more, this process spirals upward, as the HPC expert gains experience across a
wide range of applications and computational approaches. Because this person is
directly engaged in several projects, they receive credit on relevant publications
in diverse topics, leading not only to their enhanced professional development but
also to an improved reputation not only for themselves but also for their institution,
thereby leading to increased probability of funding for any given project in which
they participate.

5 Summary and Future Work
The ideas discussed in this paper are the springboard for a new project being con-
ducted under the National Science Foundation’s Combined Research and Curricu-
lum Development program. Our goal is to apply these pedagogical strategies by in-
corporating this content into engineering and physical science coursework, taught
not only by members of the project team but more importantly by instructors out-
side the team. This exercise will serve as a crucial testbed of the conjectures pre-
sented here.

One of the lynchpins of this project will be to present the materials described
here, in a suitable form, to a nanotechnology course taught at OU by Lee, Newman
and Neeman. In addition to tracking student attitudes and experiences, we will
also provide a Monte Carlo simulation code for them to parallelize, working with
the students to help them develop an appropriate solution. To achieve this, we
will first parallelize the code ourselves, and then remove the parallel constructs,
thereby guaranteeing that the code is in a form appropriate for parallelization. A
similar approach will be taken by Mullen in a CFD course taught at WPI. Finally,
the materials will be used by an instructor outside the project team in a course over
which the project team has no control.

The approach to CSE and HPC education and research described in this paper
— an admittedly cursory introduction to complicated, intricate material that uses
plain English, analogy and narrative, combined with regular face-to-face interac-
tion with an expert — has already borne fruit on a number of projects underway at
OU, and is expected to meet with substantial success over the next several years.
We believe that this strategy is not only effective but also cost effective, and we ex-
pect that it will become more popular within the scientific computing community
in years to come.
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