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CHAPTER I 

INTRODUCTION AND LITERATURE SURVEY 

This thesis addresses the design and simulation 

of the building blocks for Trinary Backpropagation (TRIT) 

algorithm. TRIT is a modified form of the Backpropagation 

(BP) [1,2] algorithm for Artificial Neural Networks {ANN) 

and is also referred to as Trinary Backpropagation 

algorithm. Architecture for parallel on-board learning based 

on the TRIT algorithm is the aim of this work. TRIT 

quantizes the BP algorithm, by updating the weights of a 

Multi-Layer Perceptron {MLP) network, in parallel. The 

weight updates are not unique for each and every element of 

the weight matrix but can be only one of the three values 

an increment, decrement of the same magnitude, or zero. 

This results in large saving in silicon, because of the 

reduced complexity of the weight updates. Also the same 

weight matrix is used both in the forward propagation and 

back propagation mode resulting in area reduction by two. 

Larger layer sizes can be implemented in lesser area because 

of this modification to BP algorithm. On-board learning is 

the goal of this research, which will widen the scope of the 
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ANN applications. 

1.1 Introduction 

The resurgence of interest in Artificial Neural 

Networks (ANN) that started in the late eighties has led to 

a host of new potential applications for these ANN models 

[3]. These Neural Network models offer great potential in 

the areas of speech processing, image recognition and 

pattern classification due to their high fault tolerance and 

parallel computation capability (4]. 

The complexity of these neural networks does not stem 

from the complexity of the individual components but from 

the multitude of ways in which a large collection of the 

components can interact. These network models reflect highly 

parallel, regular, and modular architectures that make them 

attractive for Very Large Scale Integrated (VLSI) systems 

[5]. The implementation of such models in hybrid VLSI 

analog/digital circuitry is one of the active current 

research areas [6]. 

The technologies used in special purpose ANN 

implementations are broadly classified as analog [7,8], 

digital or mixed analog/digital (hybrid) IC's [9], optical 

and electro-optical [10]. 



1.2 Comparison of analog and 
digital ANN's 

3 

Analog VLSI neural networks perform better than digital 

circuits in specific applications. Current studies [11] 

indicate that 109 to 1011 interconnections can be achieved 

with analog circuits, a rate much higher than digital 

circuits [11]. Analog VLSI ANN's make use of very simple 

building block which are reconfigurable and versatile. The 

simple building block approach simplifies the design time, 

making efficient use of the Computer Aided Design (CAD) 

tools. The design of simple well-defined analog cells that 

can be interconnected to achieve different linear and/or 

nonlinear functions is the key to the success of the analog 

ANN approach. This approach will bring neural nets VLSI 

design a step closer towards automation. Also, some of the 

traditional analog design requirements such as accurate 

absolute component values, device matching, precise time 

constants, etc are often of a lesser concern in Neural Nets 

applications because computational precision of individual 

neurons is not of paramount importance [12]. 

Schnieder and Card [13] have discussed the effect of 

the low-accuracy components on the design of ANN chips. 

They argue that ANN's with in-situ learning i.e. networks in 

which the synapses contain circuitry which performs local 

computation of weight updates, can adapt the weights to 

compensate for component to component variations present in 



analog networks. In fact, this thesis attempts to 

incorporate many of the transistor imperfections in the 

simulations for testing the validity of our algorithm. The 

results are discussed in Chap II of this thesis. Frye et. 

al. [14] have proved that the average error becomes less 

than 4% in an adaptive ANN, which uses hardware components 

with 30% variation. 

Analog rather than digital VLSI has been identified as 

a major technology for future ANN applications. A large 

effort is being devoted to the ANN implementation in analog 

Metal Oxide Semiconductor (MOS) VLSI [5]. Efficient tools 

for the synthesis at both circuit and layout levels, 

simulation and testing of large scale analog IC's are being 

developed [12]. 

1.3 Comparison of current and 
Voltage mode approaches 

Many of the neural network functions involve current 

4 

rather than voltage. The summing of many signals is readily 

achieved when those signals are currents. The dynamic range 

of the signals are greatly increased when MOS transistors 

are operated over the range from weak to strong inversion. 

This dynamic range is very critical for the scaled VLSI 

technologies which are expected to see a reduction in supply 

voltages. The frequency of operation is also potentially 

increased due to lower impedance internal nodes, and reduced 



full scale swing [12]. Reduced power consumption and 

increased speed of operation are the other inherent 

advantages of the analogue current-mode approach [15]. 

For the reasons outlined above, we make full use of 

current-mode processing in analog VLSI for the 

implementation of the TRIT algorithm. 

1.4 Learning 

5 

ANN models include : Hopfield, Hamming, Single layer 

perceptrons, Multilayer perceptrons {MLP), Grossberg and 

Carpenter, Boltzmann machines, Kohonen Self-organizing maps, 

Bidirectional associative memories, and Neocognitrons. The 

discussion of all these types of networks is beyond the 

scope of this thesis but will include a review of BP and 

MLP's. 

Backpropagation {BP) is a supervised learning scheme 

used in multi-layer perceptrons {feed-forward networks). 

The backpropagation networks are very attractive in 

applications such as pattern and speech recognition, 

waveform classification, etc. 

It has been shown that the multi-layer perceptrons 

(MLP), can approximate any function of interest to any 

degree of accuracy. 

shown in Figure 1. 

subclass of ANN's. 

The multilayer perceptron network is 

MLP are an important and popular 

They have simple dynamics because of the 
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Figure 1. Multi Layer Perceptrons {MLP) 
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absence of feedback paths. The simple dynamics ensures the 

stability of the multi-layer perceptrons. Also the 

existence of powerful learning and adaptation algorithms for 

these networks make them very attractive from the 

engineering perspective. 

The learning capability of ANN's is one of the most 

intriguing and challenging areas in theoretical 

neuroscience. Some researchers (16] have used fixed 

interconnection weights between processing units to 

implement learning in ANN's using the various algorithms 

discussed before. This however limits the application of 

the network. There has been several attempts [17-22] to 

address the problem of modifiable weight circuitry. 

Learning historically requires connectionist elements to 

have a considerable amount of circuitry, and, hence, a 

large amount of silicon area in addition to high inaccuracy 

(11]. On-chip learning procedures has been reported by 

several authors [17,18]. Furman et.al [18] used a dynamic 

memory cell and circuitry for weight modification and 

storage to implement the BP algorithm. They attempted 

analog storage in digital fashion by storing graded charges 

on a capacitor. The value of the charge represents the 

weight value which complicates the whole circuitry. 

Alspector [17] implemented an digitaljanalog weight 

stochastic learning network. In Alspector's work, the 

weights are subjected to fixed increment or decrement at 



each step of the learning process. 

1.5 Review of Standard 
Backpropagation 

[27,28] 

Standard BP can be represented as 

Oi = Ii (Unit i an input unit) 

= F(I: wiioi + bi) (otherwise) 
~ 

(1) 

8 

where Ii is the external input to the unit i, wij is the 

weight associated with the interconnection from the jth 

processing unit in the network to the ith unit, bi is the 

bias or the offset term, and F is the sigmoidal activation 

function for the hidden and output units. Propagation in the 

forward direction can be represented by the following 

equations 

-ao = p 

ak+l = r+l (Wk+lak + ]Jk+l) k=1,2, ... M-1 

a= aM 

(2) 

while the backpropagation of the error can be represented as 

oM = -FM' (nM) (t - a) 

oM = -Fk' (nk) wk+l Tok+l k=M-1, M-2, ... , 1 

(3) 
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Weights and offsets are changed according to 

k =1, 2, .. . M 
(4) 

k =1, 2, .. . M 

The BP algorithm tends to converge very slowly. Also 

the incremental changes in delta (error propagating) and 

output vectors near convergence are extremely small. The 

weight and bias changes are proportional to the error. As 

the error becomes too small, the weight change becomes too 

small as the circuit approaches a stable weight 

configuration. Based on the noise figure of the analog 

process, the incremental changes can be too small to be 

implemented practically in analog hardware. The lower bound 

on the convergence error is set by the limitation of the 

analog hardware. The signal to noise ratio (S/N) expected 

for our circuit is 60dB. So if the network fails to 

converge in this range of signal changes, the noise in the 

circuit takes over. The final circuit state then becomes 

dependent on the noise present in the circuit. 

The potential difficulties associated with computing 

and imposing graded weight updates in parallel in analog 

hardware have led researchers to investigate better and 

easier methods of parallel learning procedures in which 

weight changes are coarsely quantized [6]. Small 

modifications of learning procedures can considerably 

enhance the computational power of neural networks and can 
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make practical implementation of such networks easier [23]. 

Peterson & Hartman [24] examined the effect of update 

quantization into two states (increment or decrement) on the 

performance of a mean field theory learning algorithm. 

Alspector et. al. [17] implemented a hybrid digitaljanalog 

circuit in which weights are subjected to fixed increments 

or decrements per step of the learning process. M.Marchesi 

studied the effect of restricting the weights in multi-layer 

perceptrons to powers-of-two or sums of powers-of-two. A 

learning procedure based on backpropagation was used for a 

neural network with these discretized weights [25]. 

Shoemaker [6] proposed a modified Sgn-Sgn or trinary 

learning algorithm, which forces the same weight update 

increment for all elements in the network for efficient 

implementation of backpropagation in electronic perceptrons 

which will henceforth be referred as TRIT algorithm. Several 

electronic neural network solutions have been offered to 

date, but none with parallel onboard TRIT learning. The 

importance of on-board learning has been demonstrated by 

Frye, Wong et. al. [14] They argue that performance of the 

hardware when it learns by simulation is much poorer than 

that of obtained by learning on the network itself. 

In our architecture, charge is stored on an 

electrically isolated floating gate of aMOS device [6], 

which would represent the weight value. However, precise 

control of increments of charge, and hence change in 
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weights, is difficult in existing technology because the 

charge tunneling in the gate of a floating MOS device is 

difficult to control [6] due to extreme nonlinearities. If 

a unique and small weight change has to be accomplished on 

each element of the weight matrix, it will require a very 

large and complex circuitry even for small layers. The 

routing complexities related to high voltage problem and 

individual program control also necessitate a large area of 

silicon. Therefore it is advantageous from an 

implementation perspective to increment or decrement all 

the elements of the weight matrix in parallel across an 

entire network [6] or at the very least a complete row or 

column simultaneously. 

Trinary Backpropagation (TRIT) is a simple variant of 

the classical BP algorithm which makes the practical 

implementation of on-board chip learning feasible. In this 

algorithm, the weight changes are assumed to be only one of 

the three values: an increment, a decrement of the same 

magnitude, or zero. 

The TRIT algorithm allows a parallel implementation of 

learning rules with coarsely quantized parameter changes in 

analog integrated circuitry [6]. Conceptually, the 

implementation of the trinary algorithm is relatively easy 

and eliminates the need for complicated circuitry for weight 

updates [6]. However, the dynamic range of the weight 

updating will be limited practically by the lack of local 
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control at the elemental weight cell. 

Trinary Backpropagation uses the same forward and 

backward equations. The change of algorithm from the 

regular BP is in the weight and bias modification after the 

values of deltas are calculated as: 

awii = TJaioi 

= 0 

/ibi = T)Sgn(l)i) 

= 0 

( 1oj1 )?:: el, 1ai1 )?:: e:a> 

(jojl < el, 1ai1 < e:a> 

(jai ~ e2 ) 

(jl)jl ( E:a) 

(5) 

where ~, E1 ,E 2 are positive constants. For constant 

~, the learning process correspond to motion on a lattice in 

a weight/bias space, which is in a direction of decreasing 

sum- square error for each training pattern pair, although 

not generally in the direction of steepest descent. E1 ,E 2 

are current or voltage programmable constants. 

The derivative F(sj) is implemented in a piecewise 

fashion as follows: 

for 

= RH for F(si) >Vf (6) 

The programming circuitry will conceptually consist of 

a three position switch: 

1) One position allows application of a programming 

current or voltage pulse to the weight circuit 

which would increment the stored charge by a 

discrete amount. This is equivalent to a fixed 

positive increment in the weight value. 
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2) A second position allows decrementing the stored 

charge by tunneling off charge. This is equivalent 

to a fixed discrete decrement of the weight value. 

3) The third and final position leaves the circuit 

open and prevents any program modification of the stored 

charge. This is equivalent to zero change or no change in 

weight matrix. 

1.6 Advantages 

The primary advantage is the on-board chip learning 

implementation. It makes it practically feasible to train 

any network by building application specific hardware. It 

conserves area in case of VLSI implementation. 

The network is inherently faster than the standard BP. 

So it is possible to build real time systems with this 

algorithm, which can be used in Natural Language Processing, 

Vision control etc. 

This algorithm has been proved to be faster in 

convergence than the standard BP and even the BP with 

adaptive weight modification. Therefore it is our intention 

to realize faster convergence through hardware learning. 

From the simulations, it can be stated that the 

component-to-component variation has a negligible effect on 

the convergence property on hardware implementation. Thus 

hardwired TRIT Neural Networks appear to be robust and error 
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tolerant of the imperfections in poorly matched devices. 

Because of the enormity of the processing nodes involved, 

damage to a few nodes or links does not significantly impair 

their functionality. 

Massively parallel Analog hardware networks, which are 

very fast and operate in parallel, can be developed based on 

these simulation which prove that the Algorithm is 

convergent for small benchmark problems. 

Such hardware, which can be used to test the validity 

of the practical implementation of ANN's and collective 

systems, can be designed for various specific applications. 

The software learning accomplished on Von-Neumann 

computers does not exploit the inherent parallelism of the 

Neural Networks [14]. By using Hardware rather than Software 

learning, the Neural Networks inherent parallelism is fully 

utilized. 

TRIT implementation can be easily understood from the 

single layer system diagram (Figure 2) which consists of an 

input function, and output circuit function (F(.)), a delta 

input function, a delta output function and the weight 

matrix array. 

1.7 Literature Survey 

Several CMOS analog implementations of ANN's have been 

reported in the literature. Some are inspired by biological 
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Figure 2. IC Signal Flow Floor Plan 
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models [23] while some are derived from artificial models. 

They are dedicated to signal processing, image processing or 

pattern recognition without or with in-situ learning. They 

include digital or continuous valued analog signals. These 

networks use different learning algorithms like Hopfield, 

Grossman, Backpropagation etc. Also some of these works 

involve the building of basic cells on a chip with their 

test results. Since it is very difficult to discuss all the 

building block approaches of all the types of learning 

algorithms, we restrict our discussion to VLSI 

implementation of backpropagation learning of ANN's which 

have been fabricated. 

Boser et.al [4] implemented an optical digit recognizer 

on a neural network chip which is trained by 

backpropagation. It recognizes handwritten digits from a 

20x20 pixel image with 2.9% miss-classifications compared to 

a typical value of 2.5% for human beings. The network 

consists of 133000 connections of 3500 neurons arranged in 5 

layers. The throughput of the chip is 130MC/s and the 

operating frequency is 20MHz. 

Nijhuis et.al (26] have fabricated a collision 

avoidance neural network in a 2 micron double metal CMOS 

technology. They had used fully digital network which was 

laid out using standard cell library. It has an operating 

frequency of 20MHz and 10M interconnects per second. The 

chip consists of 12 neurons and 144 synapses and 134 I/O 



pads. 

1.8 Proposal for Hardware 
Implementation of TRIT 

17 

We propose the hardware implementation of potentially 

useful TRIT model in 2 micron Thin-Film Silicon-on-Sapphire 

(TSOS) process. 

The most significant reasons for preferring TSOS over 

bulk process is the reduced Vr variation due to reduction of 

bulk threshold parameter (y) and that Thin oxide film of 

250°A facilitates electron tunneling. The TSOS Process has 

both depletion and enhancement mode devices. 

TSOS devices are made with epitaxial silicon islands on 

a sapphire substrate. There is no body (substrate) contact 

on the device. The threshold voltage Vr for a n-channel 

transistor is given by 

(7) 

where 

= Vr at zero source to body potential 

y = bulk threshold parameter 

= strong inversion potential 

= source to body potential 

For TSOS devices, Vr = Vro· The threshold shifts are 

minimized to a great extent. Also source-to-body and drain­

to-body capacitances are negligible reducing parasitics and 

increasing Bandwidth (BW). 
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The electronic implementation of TRIT BP involves 

building sub-components or blocks. The final architecture 

can be realized be interconnecting such blocks on a single 

substrate. Being a parallel processing structure, 

Backpropagation networks are both iterative and highly 

structured. The building blocks take advantage of that fact 

simplifying design and testing at both cell and the system 

levels. This thesis addresses the design, simulation, and 

layout, of these basic building blocks. System level 

integration is beyond the scope of this thesis. 

The proposed IC is universal in the sense that a single 

IC implements each layer of a multilayer perceptron. There 

is one to one relationship between the weight matrix and 

each IC. The building block is at least theoretically 

extensible in the horizontal fashion to any number of 

layers. However the maximum number of neurons is fixed 

vertically by fabrication and limited by the pin count. The 

power supply rails also limit the magnitude of the 

backpropagated term which would limit their horizontal 

extension. The vertical extension is the number of neurons 

per layer of the chip. The horizontal extension is the 

number of layers used in an application. Normally three­

layer networks with an hidden layer is sufficient to 

approximate any function to a reasonable degree [28). 

As opposed to traditional voltage mode analog signal 

processing, in which inherently current signals are 
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converted to the voltage domain before any analog signal 

processing takes place, a recently reintroduced, current 

mode analog signal processing approach is taken. The 

current mode approach takes advantage of 1) the convenience 

of summing inner product and backpropagtion currents 2) the 

bidirectionality of triode Floating gate CMOS based weight 

multipliers. The use of current rather than voltage as an 

active parameter can result in higher gain, accuracy, and 

wider bandwidth due to the reduced voltage excursion at 

dynamic nodes [15]. 

Simulations were performed using SPICE. Layouts are 

accomplished by using CAD layout tool MAGIC. All circuits 

are fabricated using NRaD's fabrication facilities. 

Chapter II will discuss the software implementation of 

this model. Chapter III will focus on the design, 

simulation, and performance testing of all building blocks. 

Chapter IV will offer conclusions based on the results and 

suggestions for the future work connected with investigation 

of this proposed hardware implementation. 



CHAPTER II 

TRIT MODEL SIMULATIONS 

This chapter discusses the software program developed 

to test and validate the behavioral aspects of the TRIT 

algorithm. The purpose of the simulations is to test the 

convergence properties of the TRIT algorithm with variation 

in learning rate and E2 under non-ideal conditions. The 

component non-idealities are incorporated in the TRIT 

simulations. The TRIT algorithm will be compared to the 

Standard Backpropagation in the speed of convergence and its 

sensitivity to device imperfections. A character mapping 

and a pattern fitting problem will be used to establish the 

base line performances. The programs were developed in 

Matlab. 

In VLSI circuits, effects including random offsets and 

mismatch, system distortion, frequency response, and 

temperature variations perturb the system outputs [7]. The 

effects that dominate the error in the system depends on 

the system implementation. In our simulations, we have 

attempted to include most of the device imperfection effects 

that play a major role in our implementation. The variation 

20 
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in transconductance, the VT mismatch, and the channel length 

modulation parameter (~ effect are the major concerns in 

analog circuit inaccuracies. The errors due to the above­

-mentioned inaccuracies in current conveyors, weight matrix, 

and output function (F(.)) will be discussed in this 

chapter. 

2.1 Trit Program Description 

A program which calculates the initial weight matrix, 

biases and does the feed-forward calculation is run first 

and is enclosed in Appendix c. 

The program sets all the values of the weight and bias 

elements to 0.5 so that all the circuit points are started 

at the same initial condition. A random number 

corresponding to 5% variation of the weight elements is 

added to all the elements of the network. This number 

simulates the error present in the multiplier circuit. The 

reason is that the multiplier and the weight update circuits 

are non-ideal and a detailed analysis of the errors is 

presented in Appendix D. The current conveyors are driven 

by an opamp which is non-ideal. The opamp error is due to 

the mismatch of the input transistors as shown in Figure 13. 

This mismatch of the transistors introduces both VT and ~ 

errors. Also the current mirroring transistors in current 

conveyor (see Figure 8) is not ideal because of the channel 
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length modulation parameter (A) effect. Dynamic cascading 

is utilized to reduce the Aeffect. The resulting effective 

A is then negligible compared to the VT and p errors. The p 

error is reduced by laying out the transistors Ml and M2 in 

a common centroid geometry and maintaing moderate 

geometries. These errors are represented by adding a 5% 

random number to the following elements of the network. 

In the main program, shown in Appendix A, the values of 

E1 , e 2 and ~ are set. The value of the learning rate 

determines the number of iterations needed by the network to 

converge. Then the iteration is started as shown by a 

flowchart in Figure 3 & 4 . If the steady state error (SSE) 

is less than 0.1, the program is terminated. 

If SSE is greater than 0.1, the following procedure is 

started 

The values of & and & are calculated. The values 

of ~s determine whether the bias elements are to be 

adjusted. The values of ~s and outputs at the previous 

node corresponding to the weight matrix determines whether 

the weight matrix has to be updated. The region where the 

weights are to be updated are clearly shown in Figure 5. As 

seen from the Figure, if the values of & and Oj are 

greater than the threshold values, then and only then, are 

the corresponding weight elements Wij updated. Otherwise 

the corresponding value of that weight element Wij remains 

unchanged. Similarly if and only if, the value of & is 



Update bias 
vectors 

Figure 3. Flowchart of the TRIT program 
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Calculate outputs 
Add V T and P noise 

Plot errors 

Figure 4. Flowchart of the TRIT program 
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greater than that of E2 , the bias elements are updated. 

After the modification of weights a noise term of 0.01 

(o? is added to each element of the weight and bias matrix. 

The value of .01 stems from the fact that the values of the 

weight matrix and the bias elements vary from 0.5 to 1.5 and 

the noise floor is assumed to be atleast 60dB down and 

centered around the mean value of 1.0. The input vector is 

multiplied by the multiplier circuit which is explained in 

Chapter III. The analysis of the multiplier circuit 

indicate a maximum error of 1% due to the ~ and threshold 

mismatch. Appendix D analyses the errors in the multiplier 

circuit. This error effect is introduced in the simulations 

by adding a value of 0.01. 

The forward computation is now completed and the output 

error has been determined. The output error is plotted with 

respect to the number of epochs to observe the behavior of 

the network. Since there is always a finite range of weight 

values, which depends on the dynamic range of the weight 

multiplier circuit, weight variation is bounded. The upper 

limit is set at ±3 and the lower limit at ±0.2V. Also the 

squashing current conveyor or each layer outputs is also not 

ideal due to Vr and ~effects. This effect is not 

symmetrical. A detailed analysis of the effect is shown in 

Appendix D. This effect is taken care of by adding the 

noise values to the output values at each layer. 



2.2 standard BP Program Description 

A copy of the program is enclosed in Appendix B. The 

same initial weight matrix and the feedforward values are 

used to start the program. 
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First the value of ~ is set. Then the iteration is 

started. The SSE is checked for a value less than 0.1. If 

it is less than 0.1, the program is terminated. Else the 

following procedure is continued. 

The weight matrix and the bias vector elements are 

modified according to the Standard BP formulas. The forward 

computation is completed and the network output is 

calculated. The network output is subtracted from the 

desired output to get the output steady state error. The 

error is plotted with respect to the number of epochs to 

observe the behavior of the network. Further the next loop 

is started by checking the Steady State Error (SSE) and 

calculating the values of ~s. 

2.3 Adaptive BP Program Description 

The adaptive modification is enclosed in Appendix c. 

The backpropagation networks typically employ adaptive 

modification to eliminate local minima or to speed up the 

convergence of the network. The speed of convergence is 

increased by increasing the learning rate if the error 



vectors tend toward minima and vice versa. 

If the value of steady state error decreased in 

successive iterations, the value of learning rate ~' is 

multiplied by a factor of 1.07. If the steady state error 

increased in successive iterations, the learning rate is 

decreased by a factor of 1.02. 
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If the steady state error is constant, the value of e 2 

is decreased. Care is taken to test that the value of e 2 is 

not decreased by more than a factor of 1000. e 2 was started 

initially with 0.02. If the steady state error was constant 

in successive iterations, then the values of E2 was halved. 

If the value of error was constant even though the value of 

E2 is reduced by a factor of 1000, the network was 

considered as nonconvergent. The argument proposed is that 

the variation of this parameter E2 in an actual network is 

limited by the noise floor of the network. We assume a SNR 

of 60dB or noise floor of -60dB. Then if we reduce the 

value of E2 below 60dB, the noise in the circuit takes over, 

and it becomes practically impossible to control the 

circuit. 

2.4 Testing Procedures 

The initial simulations were performed to provide 

evidence for comparing the convergence properties of back 

propagation with this three-state or trinary quantization of 
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weights and bias updates with those of standard back 

propagation when applied to the same problems. During each 

iteration of the learning trial, the pairs of the 

input/desired output patterns in the training set were 

presented in a fixed sequence to the network and weights 

updated for each, and then the network output was tested 

over all pairs of the training set. This was continued till 

the convergence was obtained. 

Convergence was defined such that all errors between 

desired and actual network outputs were required in 

magnitude to be smaller in magnitude than 0.1. As 

mentioned earlier the values of W1i and b 1 's are varied by 

adding a random constant at every iteration. 

A character-mapping and a pattern-matching problem was 

selected. The number of hidden units and the learning rate 

were varied for standard BP, whereas for the trinary scheme, 

the value of € 2 is also varied. The value of € 1 was set 

at 0.33. The initial weights were set to be 0.5 + a random 

number (a=0.2). 

2.5 Results 

Table 1 depicts the result of the simulations in which 

the number of hidden units and the learning rate were 

varied. The striking result is the difference in the 

convergence time of the two algorithms. Standard BP takes a 
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very long time to converge. After a range of correcting the 

weights, the network goes through a prolonged phase in which 

the improvement is very low. In fact the learning rate has 

to be large (>.2) for the standard BP to converge. As the 

number of hidden units is increased, the number of 

iterations goes down significantly. For learning rates less 

than 0.1, it performs very poorly compared to the trinary 

algorithm. 

In the case of trinary BP as shown in Table 1, for 

learning rates less than 0.05, it is 5 to 10 times faster 

than standard BP. But for a learning rate in the range of 

0.3, it is even 15 times faster than BP. But it is 

doubtful whether trinary algorithm can have such a large 

learning rate because the RMS weight correction may be very 

large per iteration. However this simulation gives a feel 

for the convergence of the trinary algorithm and its 

relative speed of convergence compared to the standard BP. 

The reason for rapid convergence of the trinary algorithm 

may be due to the scaling imposed upon the weight and bias 

vectors updates by quantization and its investigation is 

beyond the scope of this thesis. 

Failure to converge within the iteration limit occurred 

for the TRIT problem whenever the value of € 2 was set to be 

greater than 0.01 for the various numbers of hidden units 

and the learning parameters. This occurs because the SSE 

limit set was 0.1 and unless the delta terms become smaller 



Algor Nh • 
i-- 10 
ttll 

BP 440 
(0.3) 

TRIT 9 
BP (.3) 

TABLE I 

CONVERGENCE COMPARISION OF STANDARD 
BP AND TRIT 

-- -" 

Nh = Nb • Nb " Nb = Nb • Nh • 
20 40 10 20 40 10 

260 145 >500 490 290 >500 
(.3) (.3) (.1) (.1) (.15) (.05) 

9 9 45 33 27 158 
(.3) (.3) (.1) (.1) ( .1) (.02> 
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Nh., Nh = 
20 40 

>500 >500 
< .05) (.05) 

53 54 
( .05) (.05) 



than 0.01, convergence is not possible. if the delta terms 

fall below E2 the weight corrections ceases due to 

quantization and the network doesn't converge. 

2.6 Comparison of Adaptive BP and TRIT 
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It is clear from the simulations that BP with adaptive 

weight modification is slower than the TRIT implementation 

in speed of convergence. See the results of simulation 

shown in Table 2. 

The TRIT BP is 2 times faster than the Adaptive weight 

modified BP. The number of iterations remains constant for 

the variation of the number of hidden units in Standard BP 

with adaptive weight modification while it varies very 

little in TRIT BP. So based on our limited simulation 

results, even the adaptive weight modification of BP 

will not result in comparatively faster in convergence than 

the TRIT. 

2.7 summary 

These simulations give a feel for the potential success 

of a TRIT based algorithm. The TRIT algorithm is found to 

be faster in convergence compared to the BP algorithm. The 

component-to-component variation appears to have an 

negligible effect on the convergence property of TRIT, which 



TABLE II 

CONVERGENCE COMPARISION OF ADAPTIVE 
BP AND TRIT 

Alqo Nh = Nh = Nh = 
ri-- 20 40 60 
thm 

BP 74 74 74 

TRIT 41 42 47 
BP 
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is encouraging because the analog hardware components are 

inherently low-accuracy components. The various building 

blocks that went into this development of TRIT hardware and 

their simultion results are discusssed in Chapter III. 



CHAPTER III 

SYSTEM BUILDING BLOCKS 

This chapter presents the design and simulation results 

for the basic building blocks of the TRIT algorithm. The 

proposed architecture takes advantage of the 

bidirectionality of the current conveyors and the EEPROM 

CMOS based weight multipliers. The architecture of the 

network is shown in Figure 2. The EEPROM based weight 

multipliers are arranged in a matrix form as shown in the 

Figure 2. The input circuit consists of two current 

conveyors driving the weight matrix. The current conveyor 

functions as a processing element and as well as a bi­

directional voltagejcurrent buffers (BiVI) (52]. The 

current conveyor based weight matrix drivers are shown in 

Figure 6. The current conveyors on the input side (CC1 and 

CC2 ) function as voltage buffers driving a single weight 

matrix column. The current conveyor CC3 is used as current 

controlled current source. The current conveyor CC4 

functions as an output buffer, driving a non-linear mapping 

(squashing) function (F(.)). The derivative circuit, which 

is used to find the delta vectors, is also shown in the 
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system architecture. A weight adjustment logic, based on 

the TRIT algorithm, is needed for the weight update during 

network learning. 
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From this discussion, it is clear that the current 

conveyors form the most basic element of this architectural 

approach and care must be taken to specify their 

performance. This is necessary for the inputjoutput 

circuits to interface properly, because both the input and 

the output circuits are made up of current conveyors. The 

following section is a brief summary of the interface 

specifications. 

3.1 TRIT Interface Specifications 

Linear Limiting Squashing CCII+ 

I in ( Full Scale) : 50uA @X = ±0. 5V 

Iout (Sat) : ±3uA 

Iout (sat) = ~ VwtrsVrs/4 

Raut>10MEG at Iout <=3uA 

RL =4/ ( ~ *VwtFS) 

Input & output Biasing CCII+ 

X:±2.5V 

Y: Iout>=±1500uA @ Z= ±2V 

z:scale 1:1 at Follower and 1:1 @mirror 

Raut>=lMEG @50uA ( Cascoded) 



Current Error<=l% 

Delta CCII+ 

X:±2.5V 

Y: Iout>=±50uA @ Z= ±0.5V 

Z:Scale 1:1 at follower and 1:1 @ mirror 

Raut>=lMeg @50uA ( Cascoded) 

current Error<=l% 

3.2 Current Conveyors 

3.2.1 Introduction 
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A current conveyor is a four terminal device which 

performs many useful analog signal processing functions when 

used in arrangment with other electronic elements. Current 

conveyors are functionally flexible and versatile. They can 

form an integral part of all I/O circuits [49-51]. Current 

conveyors offer several advantages over conventional 

operational amplifiers. They provide the highest gain 

bandwidth product of the process, which depends only on the 

opamp used [48]. They are used within this thesis as a 

practical building block for the implementation of the TRIT 

algorithm. 

The block diagram of a current conveyor (CC) is shown 

in Figure 7. Class-I (CCI±) and class-II (CCII±} conveyors 

have well defined properties [52]. A CCII± can be expressed 
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as: 

Vx = 1 0 0 Ix r
iy
1 

ro 0 0
1 

rVy
1 (8) 

Iz 0 ±1 0 Vz 

From the above equation it is clear that no current 

flows into terminal Y. The voltage applied to terminal Y 

will cause an equal voltage to appear on terminal X. 

Terminal Y exhibits an infinite input impedance and terminal 

X exhibits a zero input impedance. An input current Ix on 

terminal X causes an equal current to flow into or out of 

the high impedance output terminal z. The positive sign 

indicates that at any instant both, Ix and I 2 are in the 

same direction (CCII+) while the minus sign denotes the 

opposite directions of the currents signifying CCII-. 

The current CCII configuration allows convenient 

switching between the current conveyor mode and the Voltage 

controlled Voltage Source (VCVS) mode. This choice supports 

the generation of matrix inverse function which is essential 

for implementing backpropagation. 

"The CCII may be viewed as an ideal transistor" [45]. 

The ideal behavior of the NMOS (MFN in Figure 8) transistor 

can be achieved by using it in the negative feedback loop of 

the operational amplifier. The current can only flow away 

from the X terminal. If a PMOS (MFr) transistor is used in 

the feedback loop, current will be restricted to flow into 

the x terminal. Bi-directional current flow can be achieved 
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z 

Figure 8. Current Conveyor Symbol 
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by using a complementary pair of MOS transistors (MrN and 

Mrp) in the opamp feedback loop. This drain current of MrN 

and Mrp can be mirrored to the output node z. Thus the 

input current Ix is conveyed to the output current I 2 • This 

is a CCII+ realization, since both Ix and I 2 simultaneously 

flow in the same direction. 

The bi-directional voltagejcurrent (BiVI) buffers 

which are based on the current conveyor concept, are shown 

in Figure 6. These buffers provide the dual function of 

voltage drivers and current sources/sinks to isolate the W 

matrix in the forward/reciprocal mode. During the feed 

forward cycle, the buffers on the input side are configured 

as voltage controlled voltage sources, and the buffers on 

the output side are configured as current controlled current 

sources. The output side consists of a current conveyor 

driving the non-linear squashing function F(.) which 

develops the output voltage to the next layer. A nearly 

identical structure is duplicated to achieve 

Backpropagation. Each current conveyor accepts current in 

the input mode or supplies the drive voltage (and current) 

to the weight row matrix (math column). 

During the forward propagation cycle the Ypoint of CC1 

and cc2 are tied to oi while the Y point of CC3 and CC4 are 

grounded. The voltage controlled voltage source configured 

cc ensures Vx1=Vy1 • This results in voltage Oi being applied 

across the drain to source of both the floating gate and 
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reference transistors in the ith row. The current flowing 

in the reference transistor is mirrored and applied to the 

floating gate column. Due to the presence of the weight 

charge on the floating gate, these currents will differ by 

the inner product of the applied voltage (01 ) and the stored 

weights. The difference or signal current oj is then 

measured by CC3 • current squashing is accomplished by the 

modified CC3 • The current controlled current source 

configured CC ensures lz 3=Ix3 • This current is the input to 

a linear saturating function which limits the current to 

3uA. Similarly, if all the column currents are summed in 

the X4 terminal then the resulting current indicates the 

multiplied value of the input weight vectors and the weight 

matrix. 

During back propagation a voltage Van is applied to 

the Y inputs of both CC3 and CC4 with the Y inputs of CC1 

and cc2 grounded resulting in role reversal of CC's with the 

I 6'out current available at the Z output of CC1. I6'out 

must be further processed (multiplied by a derivative) to 

compute ~out. The whole approach critically depends on the 

high accuracy of the CC's. The following section presents 

the design of CC1 through CC4 • 
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3.2.2 High Power Conveyor 

3.2.2.1 Design 

The high power current conveyor CC2 must be able to 

supply the total weight current in one column of the weight 

matrix. The signal swing is also determined by the two 

current conveying transistors MFN and Mrp as shown in Figure 

9. The two transistors have to be saturated for 

satisfactory performance. The total weight current in one 

column is 

IHPCC = 100*3*5=1500uA 

To source/sink this current, the sourcejsink 

transistors, MIPAI MrN, MrNAI and MFP must be sized 

appropriately. For a weight current of 1500uA and an output 

swing of ±3.5V {Section 3.1). 

(W/LhrN =2*I/ ( ( AV) 2 * Kn) = 2*1500/ ( ( 3. 5-VTN) 2*48) = 10 

{W/LhrP =2*I/( (AV) 2 * Kpl = 2*1500/( (2.5-VTN) 2*21) = 20 

We expect a output swing (at z terminal) of at least 

±2V. This is because, the weight transistor drain to source 

voltage swing is determined by this Z terminal. The dynamic 

range of the weight multipliers depend on the Z terminal 

swing. The length of the cascading transistors (M9 and M10) 

was fixed to be 2um, while the length of the mirroring 

transistor was 6um (MINA and MINB). The long mirroring 

transistor was selected to reduce the channel length 
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Figure 9. Current Conveyor circuit 



modulation parameter (~ effect and to reduce local 

geometric and doping mismatches. 

So ( ~V)Mto= ( ~V)MrPa/V ( 6/2) 

( ~Vh9 = ( ~VhrNa/V ( 6/2) 

( ~VhiPa/V ( 6/2) +( ~V)MIPB = 3+VTP 

(~V)MrNa/V(6/2) +(~VhrNa = 3-VTN 

where (~VhrNa = V(2*IziJ\rNa) 

and ( ~V)MIPB = V( 2*!ziJ\IPa) 

Iz = 1500uA, k0 =48 1 Js,=21 

Solving these equations, we get 

(W/LhrPB s:: 75 

and (W/L)MINB= 37 • 5 • 
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(9) 

(1.0) 

(l.l.) 

(12) 

(13) 

(14) 

For a unity ratio current mirror, the dimensions of the 

transistors MIPA and MINA are same as that of MIPB and MINB 

respectively. 

6um, 

(W/L)MINA=(W/LhrNa= 37.5 

(W/LhrPA=(W/LhiPa= 75. 

Since we have fixed the length of the transistors at 

WMINA = WMINB = 6*37.5 = 225um 

WMIPA = WMIPB = 6*75 = 450um 

WMINA = WMINB = 2*116 =232um 

WMIPA = WMIPB = 2*240 = 480um 

The result is that the widths are very large for the 

mirror transistors. This is due to the design objective of 

maintaining at least a 2V swing at the output (Z terminal), 
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while sinking such a large current in the mA range. This 

large current will translate into large ~v drop across the 

mirroring and the cascoding transistors (MIPB and MlO, MINB 

and M9). For the required Z output swing, we need to have 

only a 2V (~V) drop across the two large current carrying 

transistors. This causes the widths of these transistors to 

be large to reduce the ~V value across the transistors. 

The design requirement for the Z terminal output swing 

of 2V would necessitate P-transistor widths of 900um. 

Therefore for pragmatic reasons, the Z terminal swing was 

reduced to lV for final fabrication. 

The revised values of (W/L)'s for the mirrors 

considering a value of lV output swing in Z terminal are 

WMIPA = WMrrs = 180um 

WMrNA = WMrNs = 9 Oum 

WM 9 = 90um 

WM1o = 180um 

3.2.2.2 Simulations 

The D.C., and A.C. characteristics of the high power 

current conveyor are shown in Figures 10 & 11 respectively. 

The D.C. curve shows that the output current tracks the 

input current in the range of 1.5mA. The MIPA and MINA 

current indicate the mirroring currents, while MIPB and MINB 

indicate the mirrored currents. The simulated error between 
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these two currents is found to be less than 1% (@ 1.5mA), 

which indicates that our objective of accurate current 

conveying is achieved at the required output swing. The 

output swing is determined by forcing the z terminal to 

remain at 1 V while sweeping the input current. The ~db 

point can be determined from the A.C. characteristics. The 

A.C. characteristic of Figure 11 was obtained by biasing the 

circuit at an d.c. input current of 1uA. For specific 

applications, the full power bandwidth is also an important 

criterion which is computed from the slew rate. 

3.2.3 Low Power Conveyor 

The output current requirement is 150uA, which is 1/10 of 

the high power conveyors's current. We want the same swing 

as the high power conveyor in z, but at reduced current 

value. So the dimensions of all the transistors are the 

scaled values (by 10) of that of the high power current 

conveyor as follows 

(W/L)rN = 1 

(W/L)MP = 2 

WMIPA = WMIPB 

WMINA = WMINB 

WMlO = 18um 

WM9 = 9um 

= 18um 

= 9um 



3.2.3.1 Simulations 

The D.C. characteristics of the low power current 

conveyor is shown in Figure 12. The D.C. output current 

follows the input current in the range of 150uA and the 

current error due to A effect (excluding AP and AVr) is 

again found to be less than 1%. 

3.2.4 Opamp 
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A simple self-compensating opamp is chosen for the 

required opamp function for the CCII due to its simplicity 

and the moderate offset demands of the CCII structure. This 

circuit results in a stable, self-compensated, minimum area 

opamp structure. The bandwidth of the opamp can be 

increased by increasing the bias currents at the expense of 

the power dissipation. More complex opamps will produce a 

better performance than this opamp but with increased area. 

The weakness of the opamp is the offset. However, since 

offset is adjusted as a part of backpropagation learning, 

offset requirements will not be stringent. Also 

practically, with an open loop gain of at least 60dB offset 

performance will be limited more by the threshold matching 

of the input differential pair. Future refinement beyond 

the scope of this thesis will focus on Bandwidth and output 

swing improvement. The opamp determines the performance and 
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the dynamic range of the CC circuit. The circuit diagram of 

the opamp is shown in Figure 13. 

3.2.4.1 Analysis of Opamp 

In all the subsequent discussions, the symmetry of the 

opamp is exploited to reduce the redundancy of the equations 

i.e. M1 and M2, M3 and M4 and M6 and M7 are assumed to be 

symmetric and matched transistors. 

Output Swing 

Positive : It is obvious that to maintain M6 in 

saturation, the output voltage V0 is limited to 

(15) 

Negative : To maintain M8 in saturation, the negative 

output voltage swing is limited to 
(16) 

Input Common Mode Range 

The input common mode range VcMR- is given by 
(17) 

VCMR- ~ VGM5 - V'INM5 + V7NM1 

Because VGMS - VrNMs is the minimum voltage to 

maintain M5 in saturation and the gate voltage of M1 should 

be at least a Vr above its source voltage. VcMR- will be 

less than VGMS because VrNMl >= VrNMs. and there is a 
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threshold shift associated with Ml and not with M5. The 

threshold shift is due to the fact that the source of Ml is 

at a different potential than its substrate. 

The input common mode range Vcr~R+ is given by 

VCMR- ~ VGM5 - VTNM5 + VTNMl 

(18) 

The voltage VGM 3 - VTPMJ is the voltage to maintain M3 in 

saturation and the gate voltage of Ml should be a V7 above 

its drain voltage to maintain it in saturation. 

Output Resistance 

The output resistance of the opamp is 

where 

r 0 == IJ. M6 * ( r dsMlll r dsM3 ) II IJ. MB * r dsMl 0 

IJ. M6 == 1 I ( I DM6 *A M6 ) * g mM6 

rdsMlO = 1/ (IDM6*AM6) 

g mM6 == v ( 2 p I DM6) 

(19) 

(20) 

So in order to maintain high output impedance, the A!s 

of the transistors M8, M6 and MlO should be high. Since the 

channel length modulation parameter is inversely 

proportional to the length, the lengths of M6, M8 and M10 

are made reasonably high to ensure a high output impedance. 

Gain 

The gain of the opamp is given by 

(21) 
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The value of ro is given by Equation 18. 

Gain-Bandwidth Product (GBW) 

The GBW is given by 

GBW ::: gmH1/ Col 

where col :; CL + co 

Co = CdbMs+CdbM6 

Co< CL 

(22) 

Since 

col :; co :; CL 

Slew Rate 

The Slew rate (SR) is given by 

(23) 

where Iss is current through M5. So it is 

advantageous to increase the value of the width of M5 to 

increase input CMR and SR. 

Cut-off Frequency 

The cut-off frequency ~db is given by 

c..>3db = 1/roCo 

where ro and C0 are given previously. 

3.2.4.2 Biasing Circuit of the opamp 

(24) 

The bias circuit that forms a part of the opamp circuit 

is shown in Figure 13. The transistor M3B sets up the gate 
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voltage for M6. By varying the gate voltage of M6, the 

required output positive output swing can be achieved. The 

transistors M6B and MlOB mirror the input current to the 

transistors MSB and M9B. The reason for using two stack 

mirroring transistors is to achieve the required matching 

with the transistors M6, MS and MlO in addition to 

cascading. M2B controls the gate voltage of MJ and M4. The 

gate voltage of MJ and M4 and the widths effectively control 

the output current. The transistor M7B controls the gate 

voltage of MS. By controlling the gate voltage of MS, the 

required output swing in the negative direction can be 

achieved. The lack of symmetry in the biasing voltage of MS 

is apparent. This can be corrected in future versions by 

including a transistor to match that of MlO. The lack of 

symmetry produces an offset voltage as evident from the D.C. 

characteristics in Figure 14. The transistors MSB, M4B and 

MlB are used for mirroring and matching purposes. The gate 

voltage of M5 is set by dimension of MlOB and the current 

through it. 

The design criteria from Section 3.1 results in the 

following biasing constraints. 

Bias current 50uA 

output swing ±3.5V 

since we desire an output swing of +3.5V the gate 

voltage of M6 should be at least 3.5+VTP to maintain M6 in 

saturation i.e. the gate to source drop on the transistor 



voltage of M6 should be at least 3.5+VTP to maintain M6 in 

saturation i.e. the gate to source drop on the transistor 

M3B should be (3.5+VTP)V. 

So VGM3B = VGM7,M6 = (3.5 + VTP)V = 2.63V 

(24) 

Substituting the values of 

IarAs = 50uA 

VTP = 0.92V 

J\3a = 2*IarAs/(2.5-0.92) 2 = 39 

(W/Lh3a = 39/21 = 2 
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Similarly the negative output swing is -3.5V. So the 

gate voltage of M7B should be -3.5+VTN to maintain M8 in 

saturation. The gate to source drop on M7B should be (-

3. 5+VTN) V 

~+Vm=2.6V 
~~ 

Solving for M7B by substituting the values 

1.\?B = 2*IarAs/(2.6-0.92) 2 = 41 

(W/L)M?B = 1 

(25) 

The gate to source voltage on M5, M3 and M4 should be 

at least 1.5VT to reduce the effect of VT mismatch. 

VGSM3,M4= VGsMZB = v'(2*IarAs/ J\za) + VTP 

= -/(2*57/21*9) + 0.92 = 1.7V > 1.5VT 
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and a load capacitance of 0.5pF with a resulting slew rate 

of 50/0.5=100Vjusec. However after layout and simulation 

50uA current was not sufficient. Resimulations resulted in 

a current of 57uA. The lOOVjusec requirement should result 

in a peak full power frequency of 

fP=SR/2!Ypp = 2*100/2~4)=8MHZ 

3.2.4.3 Power Circuit Design 

The transistors Ml and M2 were laid out in a common­

centroid geometry to minimize DC offset. To facilitate the 

common centroid design in Magic, each cell has a (W/L) ratio 

of 6/2. The only consideration in the design of transistors 

M6, MB, and MlO is that their lengths should be sufficiently 

large to achieve output impedance of the opamp. High output 

impedance translates into high gain of the opamp. The 

increase in capacitance with their increase in length of the 

transistors is negligible compared to the output capacitance 

of 0.5pF. The design of M5 influences the slew Rate and the 

negative Power Supply Rejection Ratio (PSRR). So increasing 

the width of M5 will provide an increased CMRR, increased 

input common Mode Range (CMR) and increased Slew Rate (SR}, 

which have no significant impact on our design objectives. 
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3.2.4.4 Simulations 

The D.C., A.C., and transient characteristics of the 

opamp are shown in Figure 14, 15 & 16. The D.C. 

characteristics show an offset output voltage of 2.26V. The 

A.C. characteristics indicate the the gain-bandwidth product 

is 20MHz and a gain of 72dB. This shows that gain achieved 

is higher than the design objectives. The transient 

characteristics indicate a negative slew rate of 16Vjusec 

and a positive slew rate of 4Vjusec . 

3.2.5 Sguashing function 

3.2.5.1 Design 

Figure 17 shows the linear limiting version of the 

squashing cc. 

Squashing is achieved by addition of two transistors's 

at each conveyor half. This generates a linear limiter 

function. One of the two transistors (MS2N) results in 

additional current branch to the supply rail. The upper 

transistor in the traditional mirror branch takes on the 

classical follower role (MFN), while the lower transistor 

(MSlN) serves to limit the current that can be mirrored to 

the z output. The saturation level is a function of the 

gate bias and geometry of the lower Transistor (MS1N) of 
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Fig 14. D.C. characteristics of op-amp 
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branch one. Once the current in the mirrored path 

saturates, all additional current is routed to the supply 

rails through the secondary path (MS2N). This results in a 

linear limited function with a globally programmable 

saturation limit. 

The transistor MS2N should be large enough to supply 

the current for the entire column of the weight matrix once 

the transistor M1 saturates. The saturation current was 

fixed at 1500uA. 

The opamp output swing is ±3.5V. So the source of MFN 

should be 3.5V + V1pto maintain MFN in conduction. The 

source of MS2N, the X terminal, is assumed to be at 2V 

during the forward propagation. So the gate to source 

voltage of MS2N is 3. 5V+VTP-VTN· 

The current requirement is 

32*VmMAX* ft.r*VPP for a 32 column matrix 

100*VmMAX* ft.r*VPP for a 100 column matrix 

(WIL)MS2N= 2* (I) I ( ( 3 • 5-VTN-VTN) *kn) 

= 14 for a 32x32 weight matrix 

= 43 for a 100xlOO weight matrix 

(WILhs2 p = 2* (I) I ( ( 3 • 5-VTN-VTN) *kn) 

= 27 for a 32x32 weight matrix 

= 85 for a 100x100 weight matrix 
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3.2.5.2 Simulations 

Figure 18 shows the D.c. characteristics of the 

squashing current conveyor. The saturation current is fixed 

to be ±3uA. 

3.2.5.3 Approximate Sigmoid function 

There are many approaches for the saturation function 

in ANN's : Linear saturation function, s-shaped sigmoid 

function, Hyperbolic tangent etc. The sigmoid function 

generation circuit is discussed in this section. 

A MOS device has a nonlinear output I-V characteristic. 

It can be utilized as a sigmoid function. The derivative 

has to be generated as a piecewise linear function. The 

gain can be obtained from the slope of the output-input 

curve of the MOS transistor. 

In Figure 19 , V1n , Vc, and Io are the input voltage, 

the gain control voltage, and output current respectively. 

The design of all the MOS devices ensure that they operate 

in the saturation region for the entire range of input 

voltage. Applying KVL around the loop shown in Figure 19, 

V1 = V GSH5 + V GSMB + V DSM9- V GSH7- V GSM6 

=ff+V,;+~ 2::-+V,+V,._-~ 2:; -VTl-~ 2::- -Vu (26) 

= VDSM9 
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Figure 19. Sigmoidal Function (Single Quadrant) 



69 

The equation above assumes that the transistors M5 M6 
I I 

M7 and MS are matched. The TSOS process ensures almost 

exact cancellation of Vr's. Low y in TSOS process results 

in Vr = Vro. In regular orbit process, Vr of transistors M5, 

M6 and MS would be of different values and the circuit may 

fail. 

Two quadrant operation can be achieved by adding PMOS 

transistors to the circuit in Figure 20. Depending on the 

polarity of the input voltage, the N and P transistors would 

conduct. Symmetry in two quadrants is maintained by the 

proper selection of device geometries in respective parts. 

Transistors M11-14 act as mirroring transistors, 

transferring the drain current of M9 and M10 to the output 

load. The linear and saturation regions of M9 and M10 

almost approximates the Sigmoid function. 

A family of curves can be generated by adjusting the 

value of the control voltage Vc, varying the gain of the 

circuit. The transitors M16-M22 reduces the steady state 

power dissipation. 

3.2.5.3.1 Simulations The D.C. and A.C. 

characteristics of the sigmoid function are shown in Figure 

21 & 22 respectively. The symmetry of the D.C. curve is 

maintained by matching the n-half and p-half of the 

squashing circuit. 
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3.2.6 Dynamic cascode biasing 

The requirements for the current mirrors to be used 

with all the current conveyors are : linear current gain, 

high output impedance, wide output voltage swing, small 

input bias voltage, and a good high frequency response. The 

ability to satisfy the requirements depends on the type of 

current mirror chosen [45]. There are basically five types 

of current mirrors in CMOS technology [45]: simple current 

mirror, cascode or stacked current mirror,Wilson current 

mirror, Improved Wilson current mirror and cascode current 

mirror with improved biasing. The tradeoff can be a high 

output impedance and good current conveying capacity for a 

reduced output swing. Simple current mirrors have poor 

mirroring accuracy and low output impedance but have large 

output voltage swing. The stacked or cascode configurations 

suffer from reduced output swing but have high output 

impedance and good accuracy. 

The current conveyor is at the heart of this building 

block approach. A simple current mirror will not achieve 

the required current conveying accuracy. Therefore cascode 

mirrors were used in all the circuits. The cascode mirrors 

have the disadvantage of reduced output swing. But since 

our crucial requirement is an accurate current transfer 

ratio, we selected cascode mirrors with dynamic biasing 

circuit as shown in Figure 23. 
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Figure 23. Dynamic cascode biasing circuit 
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The transistor MJ is used to mirror a portion of 

current that flows through the cascading transistor MlNB. 

It is mirrored by the P-current mirrors. The Aeffect is 

not completely eliminated because the mirroring (P-mirrors) 

are not 100% accurate, and there is a Aeffect at junction 

of MPl and M3. The Aeffect on the mirrors and MJ node can 

be reduced by making the lengths of all the cascade biasing 

transistors large. Further improvement is possible by 

cascading MPl and MP2 as well as MJ. 

3.3 Derivative Circuits 

The derivative circuit of the linear saturating curve 

is shown in Figure 24. The backpropagtion vector consists 

of the derivative of the output vectors of the previous 

stage. So the derivative circuit must accomplish 

multiplying the output vector with the function value. The 

approximate sigmoid circuit derivative circuit acts as a 

transconductance transferring the input voltage to an output 

current. The derivative of that output current can be 

achieved as a peicewise linear derivative function. It 

needs another complex circuitry to multiply the derivative 

current and the output voltage. 

The linear derivative circuit has two impedance states 

- low and high. The low impedance state indicates slow 

learning, while the higher impedance state indicates high 
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Figure 24. Derivative Circuit 
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learning. The derivative circuit is shown in Figure 24. As 

soon as the drain voltage of the transistor MSlN becomes Vr, 

it saturates. This point corresponds to the knee of the 

linear saturating curve, when the transistor MS2N takes over 

conduction from MSlN. The comparator CRl switches from low 

to high state, which drives the output of the nor gate to 

high output state. Since the gate of load transistor ML is 

connected to the output of the "nor" gate, it starts 

conducting and the current Iin gets a low resistance or 

high conductance path. The output voltage goes from high 

impedance state to low impedance state. Similar actions 

occur in the p-half as the transistor MSlP saturates, and 

the output goes from the high impedance state to the low 

impedance state. This low state will drive the 

corresponding delta vectors to low values. The reduced 

value of delta vectors will prevent learning, because the 

output vectors in that layer exceeds a certain value, or is 

saturated. Two types of comparators (CRl and CR2) are used 

to trip at two different saturation points of MSlN and MS2N 

[56]. 

3.4 Weight Matrix 

Neural networks "learn" by modifying weights 

(synapses). The weights must be alterable and should take 

a wide range of positive and negative values. The 



incremental weight changes should be small (33]. If 

continuous weight values are used, then there is a need to 

store these values. This storage requirement imposes a 

quantization effect either because of digital storage and 

A/D converters, or by using analog storage and countering 

the effect of noise. The effective noise in the system 

determines the dynamic range of analog values that can be 

stored and retrieved. i.e. the resolution. An even more 

stringent requirement is the development of high density 

storage medium which is readily accessible in IC form. 

Digital storage with A/D and D/A's will not have the 

required chip density. Therefore analog storage is the 

solution [34]. 
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There are variety of a methods of producing analog 

storage. Capacitors and integrators will allow the stored 

charge to degrade too fast. In pure analog storage there is 

no noise margin, and, hence no possibility of signal 

restoration. An analog signal can only be maintained, with 

memory decay, and the design objective is to maintain the 

signal as long as necessary. 

An analog memory element can be characterized by: 

(!)location, on-chip or off-chip (2) volatility, volatile 

or nonvolatile (3) programming/erasing method, electrical or 

non-electrical, and (4) the precision in bits. 

storage of analog weights necessitates, 1) truly non­

volatility, for long term retention of the stored knowledge, 
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2) on-chip and rapid programmability, to expedite the 

network learning by minimizing read and write times, and 3) 

application specific yet simple, for ease of fabrication, 

analog memories. Discrete programming of true analog 

memories results in finite resolution, usually specified in 

bits. 

Several analog memory designs have been presented in 

the literature [36]. Furman and Abidi [18] presented a feed 

forward network with back error propagation. The weights 

are stored as charges on capacitors on the nodes at 

cryogenic temperatures. Card and Schniedel have used 

capacitors with positive or negative charges with periodic 

refreshing using training data. Bibyk et. al. [37] used 

floating gate MOS transistors to store charges. Hubbard, 

Schwartz and Howard [29] introduced a circuit utilizing 

dynamic charge storage on MOS capacitors. Hoecht et. al. 

[38] presented a method in which a finite number of charge 

levels can be stored on a MOS capacitor. These charge 

levels are preserved by a sense circuitry and regular 

refreshes. Additional analog designs [39-42] are also 

present in the literature. 

The favorable learning feature of the TRIT model is 

that the weights are varied in parallel and across the whole 

network. This eliminates the need for a complex circuitry 

to locate the weights. As the magnitude of the weight 

changes are predetermined, the weight modification is 
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further simplified. The floating-gate analog semiconductor 

memories has been proposed by a number of researchers [43] 

as a suitable analog medium for the long-term storage 

of the weights. Y.Tsividis and s.satyanarayana [44] had 

suggested storing analog voltages at the gate capacitance of 

the MOS transistor itself. The inherent non-linearity of a 

transistor can be cancelled by using complementary input 

voltages through the matched weighing transistor, or by 

passing the same voltages through the complementary weighing 

transistors: the n-channel and the p-channel. Learning 

takes place by addressing the proper capacitors and charging 

them according to a specified learning algorithm. Once the 

MOS weights have settled (RC time constant), the capacitors 

are periodically accessed for reading, charging and 

refreshing. This scheme suffers from a relatively short 

retentivity resulting in decreased accuracy. As a result, 

the network becomes "absent minded", forgetting information 

shortly after learning. 

3.4.1 Floating gate analog CFGA) memories 

Floating gate analog memories are alterable and non­

volatile. They provide local on-chip weight storage on the 

floating gate of a transistor. It is small, consumes less 

power, has slow memory decay and is compatible with standard 

fabrication processes. The extra gate layers are used to 
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store trapped charges on a floating gate. once trapped 

these charges produce a shift in the gate to source voltage 

which varies the current through the transistor. This type 

of memory element exhibits long term retention because no 

discharge path is available since the gate is surrounded by 

the dielectric material Si02 • This memory transistor is 

operated in the triode region where non-linearity of the 

transistor is fairly low. Usually depletion devices are 

used to eliminate the floating bias. 

The charge on the floating gate of a transistor 

represent the value of the weight. As the network learns, 

the strength of the synapse increases. That is the 

electrical equivalent of dumping more charge on the floating 

gate, i.e., programming and thereby modulating the 

electrical conductivity of the synapse (PMOS). Thus during 

programming, the electrical conductivity of the synapse is 

expected to increase. The P-sense transistor was 

specifically chosen to achieve this desired operation. 

While programming, the floating gate acquires electrons 

which develop a negative potential on the floating gate of 

the P-MOS sense transistor. The floating gate voltage tends 

to become more negative as programming proceeds. Therefore, 

the drain current through the device increases, i.e., 

conductivity increases. 

until recently, the memories discussed above required a 

special fabrication process such as ultrathin window, 
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nitrite trap oxide, or a conventional textured polysilicon. 

Usually, these special processes are expensive, immature. 

and simply not available in many design environments, 

especially universities. In order to fulfill the need of an 

analog neural network designers for programmable memories, 

existing standard CMOS process without modifications had to 

be improvised to provide a solution to realize floating gate 

memories. Recently several such implementations have been 

reported [45-46]. The interested reader is referred to the 

earlier work in this field by S.Patil [47]. 

A number of these floating gate analog memories can be 

interconnected suitably to form a weight matrix structure. 

The same weight matrix can be used in both forward and back 

propagation increasing both density and yield. 

current summing is used for the common analog 

computation of the inner product of the weight vector and 

the input vector. current summing offers more dynamic range, 

which is of importance in signal processing applications. 

The linearity is due to summing of the non-linear elements 

currents of the transconductor into a virtual ground. The 

common mode nonlinear terms are eliminated, while the 

difference currents develop an inner product computation 

with wide dynamic range. The compact method of multiplying 

for inner product uses a single Transistor per cell. 

From the Figure 
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(27) 

(28) 

The output current as shown in Figure 26 is 

(29) 

The TRIT backpropagation IC consists of this analog 

EEPROM weight matrix surrounded by current conveyors. 

3.4.2 Weight Adjustment Circuit 

The weight adjustment circuitry is shown in Figure 27 & 

28. The circuit implements the TRIT algorithm based on the 

values of the delta and output vectors. The comparator CHl 

switches from high to low state, if the input delta value 

exceeds e 2 • CH2 switches from high to low, if the value of 

delta vector becomes less than € 2 • The switching of either 

comparators results in a high state latched in latch (N9 and 

NlO). The complemented output of the latches is fed to the 

transmission gate, which is clocked. The latch states are 

"OR"ed, clocked and fed to a NOR gate. The other input of 

the NOR gate is the strobe (STR) control signal. A high 

state at any of the latches is translated to an INC signal 
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being high. 

Similar actions take place for the comparator CH2's 

output, which results in DEC signal being high, if the delta 

vector is less than E2 • Similar logic can be implemented 

for the output (0) vectors. 

3.5 Sample and Hold (S/H) circuit 

3.5.1 Introduction 

The dynamic current copier (current self-calibrating 

circuit, and dynamic current mirror, etc.) is used. The 

gate capacitor of the MOS device is used to store the 

information for a short period of time since the gate of a 

MOS device practically has infinite input impedance. Figure 

29 shows the basic N-copier cell. To sample the input 

current, switches S1 and S2 are closed. The gate capacitor 

CGs of M1 will charge to voltage VGs required by the 

transistor to achieve the drain current I 0 • If M1 is in 

saturation, the gate voltage is given by: 

(30) 

The switch S1 and S2 are opened successively. The 

circuit goes into hold phase and stores the current 

information as the capacitor voltage in the gate of Ml. 
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Figure 29. Basic Sample and Hold Circuit 
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Since the gate voltage of Ml is coupled to transistor M2 and 

M3, an equivalent current can sink through M2 at the hold 

phase. The P-copier cell can be achieved by replacing the 

NMOS with a PMOS transistor, and by reversing the direction 

of currents. In such a case, the cell will source I 0 when 

connected to the load. The copier cells need not be 

accurately matched. An error current (AI) is present due 

to: (1) charge sharing between the gate capacitor CGs and 

switch capacitor CGssw· ( 2) channel length modulation 

parameter (3) junction leakage associated with S1 , causing 

a steady discharge of the storage capacitor, 

The minimum dimension switches, Msp and MsN are used to 

reset the gate voltage or hold capacitors. A dummy switch 

can be added in series with the switching transistor to 

further minimize the effect of charge sharing. The channel 

length modulation error is reduced by cascoding the current 

sampling and holding transistors. Dynamic biasing of these 

cascode transistors gives improved cascoding and improved 

current transfer ratio. MeN, MrPA, MIPs, MRN are used for 

dynamic biasing circuitry . 

3.5.2 Errors in S/H circuit 

3.5.2.1 Charge Injection Error 

The switching transistor is made conductive by mobile 
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carriers that are attracted into the channel by the gate 

voltage during its closing. For charge equilibrium, the 

total charge of the mobile carriers in the channel must be 

equal to the total charge stored on the gate. The charge is 

stored on the gate in strong inversion. In N-copier when 

switch S1 opens, a fraction ~ of q is dumped on the 

capacitor CG51 , which causes an error in the stored voltage. 

This voltage error (~V) in turn creates a relative error in 

the output current of the copier. ~v can be decreased by 

making the switch gate oxide capacitance a small percentage 

of the CGsN where one limit is given by the area of the CGsN· 

It can also be decreased by reducing the total charge q in 

the channel which in turn reduces the fraction ~ that flows 

onto CGsN. This can be achieved by minimizing the gate area 

WxL and/or by controlling the gate voltages of the switch or 

increasing VGsN· Similar treatment applies to the P-copier 

for determination of the error due to the charge injection. 

The factor ~ determines the amount of charge that is dumped 

on the source. 

3.5.2.2 Switch Feedthrouqh Error 

This contribution is due to the clock voltage that is 

coupled to the gate via CGo· The clock voltages is 

partially transferred to the gate via the capacitive network 

as, 
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(31) 

where V42 is the clock voltage and CGo is gate to drain 

capacitance of the transmission gate. The change in the 

gate voltage multiplied by the transconductance reflects an 

error in the drain current. This error is reduced by 

connecting a dummy transistor in series with the switching 

transistor [47]. 

3.5.2.3 Cascade Configurations 

The contribution due to the channel length modulation 

produces change in the drain current as the drain to source 

voltage changes. The Aeffect is reduced by cascading the 

transistors using a regulated cascade structure as shown in 

Figure 30. 

3.5.3 Simulations 

The transient simulation of the sample and hold circuit 

is shown in Figure 31. The output current is out of phase 

with the input current. The output current is the sampled 

and stored value of the input current. 
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Figure 28. Sample and Hold Circuit 
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CHAPTER IV 

CONCLUSIONS AND FUTURE PROSPECTS 

The design of the basic building blocks for the TRIT 

algorithm in (TSOS) process is completed. A single weight 

matrix is used in both the forward and backpropagation mode 

resulting in reduction of area by two. A Matlab program 

which partially simulates the transistor mismatches in this 

architecure was also developed. The TRIT program with the 

transistor imperfections demonstrate faster convergence than 

BP and insensitivity to MOS parameter variation. 

The system level integration of the TRIT model will 

require the exact specification of all the system 

parameters. The optimal values of learning rate, E1 , and E2 

should be investigated. The forward propagation parameters 

like IsAT' Im, V0 and the backpropagtion parameters like 

&'s, Rt and~ should be specified at the system level. 

The fabricated blocks have to be tested thoroughly to 

test their effectiveness and further refined. The high 

power current conveying transistors are very large. The 

derivative circuit can be further improved. 

Floating gate memories provide the best answer to 
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electrically programmable/erasable non-volatile 

semiconductor memories. Reduction in cell size, improvement 

in performance, and circuit density will be the products of 

the floating gate memories research. so future developments 

in FGA memories have to be followed closely to be adopted 

for our design. 

For effective learning, local or on-chip storage and 

modification of the weight is the preferred solution. The 

task of weight updates is complex since it involves issues 

related to high voltage, learning algorithm, and weight 

storage. Precise control of the weight needs extensive 

experimentation to mathematical model and understand the 

programming and erasing behaviors of Floating gate memories. 

The on-chip generation of high voltage poses an 

additional challenge. However, the tunneling physics and 

high voltage pulse generation are two separate issues and 

initially should by handled separately for conceptual 

testing and understanding, and then should be combined 

together. Other issues relating to the weight matrix are 

cell layout, placement, and signal routing. Cell layout 

will have a direct impact on both the silicon area as well 

as on the cell performance. Significant expertise is 

required to arrive at the optimal design. A suitable signal 

routing scheme is required since the weight matrix is 

expected to be dominated by routing wires. In this regard, 

high voltage concerns such as field threshold, reverse 



breakdown etc. need special attention. 

The process maturity will play an very important role 

in TRIT design. Also better analog simulation tools which 

represents the transistor more excatly has to be used to 

further improve the design efficiency. 
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APPENDIX A 

STARTUP PROGRAM 

% program to do initial calculations 

for i=l:63 
p=[p sin(8*pi/63*i)] ; 

end; 

p=p'; 
t=p; 

hidden_units=64; 

for m=l:hidden units 
for n=l:64 

end; 
end; 

for j=l:lOO 
vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.02, 

break; 
end; 

end; 
wl(m,n)=0.5+vari; 

for m=l:hidden units 
for n=l:64 

end; 
end; 

for j=l:lOO 
vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.02, 

break; 
end; 

end; 
w2(n,m)=vari+0.5; 

for m=l:hidden_units 
for n=l:l 106 



end; 
end; 

for j=l:lOO 
vari=rand-0.5; 
vari==vari/25; 
if abs(vari)<=0.02, 

break; 
end; 

end; 
bl(m,n)=vari+0.5; 

for m=l:64 

end; 

for n=l:l 

end; 

for j=l:lOO 
vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.02, 

break; 
end; 

end; 
b2(m,n)=vari+0.5; 

for n=l:hidden units 
for m=1:1-

end; 
end; 

for m=l:l 

for k=1:64 
n1(n,m)=w1(n,k)*p(k,m)+bl{n,m); 
a1(n,m)=nl(n,m); 

end; 

if n1(n,m)>l 
al ( n, m) =1. o; 

end; 
if nl(n,m)<-1 

al{n,m)=-1.0; 
end; 

for n=1:64 

end; 
end; 

for k=1:hidden units 
n2(n,m)=w2(n,k)*a1(k,m)+b2(n,m); 
a2(n,m)=n2(n,m); 

end; 

if n2(n,m)>l 
a2(n,m)=l; 

end; 
if n2(n,m)<-1 

a2 (n ,m)=-1. o; 
end; 

107 



e=t-a2; 

sse=O; 

for i=l:64 

end; 

for n=l:l 
sse=e(i,n)A2+sse; 

end; 
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APPENDIX B 

TRIT PROGRAM 

epsilon2=input('Enter the value of epsilon2:'); 

learning_rate=input('Enter the value of learning 
rate:') 

epsilonl=0.33; 

errors=(sse]; 

hidden_units=64; 

examp=O; 

% random # of 0.02 is generated 

for n=1:64 
for m=l:hidden units 

end; 
end; 

for j=l:lOO 
vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.02, 

break; 
end; 

end; 
noisewl(m,n)=vari; 

for n=l:hidden units 
for m=l:64 

end; 
end; 

for j=l:lOO 
vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.02, 

break; 
end; 

end; 
noisew2(m,n)=vari; 
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% beta variation 

for n=l:l 
for m=l:hidden units 

end; 
end; 

for n=l:l 

for j=l:lOO 
vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.02, 

break; 
end; 

end; 
delbetal(m,n)=vari; 

for m=l:64 

end; 
end; 

% VT variation 

for n=l:l 

for j=l:lOO 
vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.02, 

break; 
end; 

end; 
delbeta2(m,n)=vari; 

for m=l:hidden units 

end; 
end; 

for n=l:l 

for j=l:lOO 
vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.2, 

break; 
end; 

end; 
delvtal(m,n)=vari; 

for m=l:64 
for j=l:lOO 

vari=rand-0.5; 
vari=vari/25; 
if abs(vari)<=0.2, 

break; 
end; 

end; 
delvta2(m,n)=vari; 
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end; 
end; 

% iteration starts 

for i=1:250 
check=sse; 
if sse<=0.1, 

i=i-1, 
break; 

end; 

% calculation of deltas 

for m=1:64 

end; 

for n=1:1 
d2(m,n)=t(m,n)-a2(m,n); 
if abs(n2(m,n))>=1.0, 

d2(n,m)=O; 
end; 

end; 

d2=t-a2; 
d1=w2'*d2; 

% weight & offset correction 

for m=1:hidden units 
for n=1:1 

end; 
end; 

for n=1:1 

if abs(n1(m,n))>=1, 
d1(m,n)=O; 

end; 

for m=1:hidden units 

end; 
end; 

for n=1:1 

if d1(m,n)>=epsilon2, 
b1(m,n)=b1(m,n}+learning_rate; 

end; 
if d1(m,n)<=-epsilon2, 

b1(m,n)=b1(m,n)-learning_rate; 
end; 

for m=1:64 
if d2(m,n)>=epsilon2, 

b2(m,n)=b2(m,n)+learning_rate; 
end; 
if d2(m,n)<=-epsilon2, 

b2(m,n)=b2(m,n)-learning_rate; 
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end; 
end; 

end; 

for m=1:64 
for n=1:hidden units 

if abs(d2(m))>=epsilon2, 
if abs(al(n))>=epsilonl, 

if d2(m)*al(n)>=O 
w2(m,n)=w2(m,n)+ 
learning_rate + 

noisew2(m,n); 
end; 
if d2(m)*al(n)<=O 

w2(m,n)=w2(m,n)-
learning rate + 

noisew2(m,n); 
end; 

end; 
end; 
if abs(w2(m,n))<=0.2, 

if w2(m,n)<O, 
w2(m,n)=-0.2; 

end; 
if w2(m,n)>O, 

w2(m,n)=0.2; 
end; 

end; 
if abs(w2(m,n))>3, 

if w2(m,n)<O, 
w2(m,n)=-3; 

end; 
if w2(m,n)>O, 

w2(m,n)=3; 
end; 

end; 
end; 

end; 

for m=1:64 
for n=1:hidden units 

if abs(d1(n))>=epsilon2, 
if abs(p(m))>=epsilonl, 

end; 

if d1(n)*p(m)>=O 
w1(n,m)=w1(n,m)+ 

learning rate + 
noisewi (n,m); 

end; 
if d1(n)*p(m)<=O 

w1(n,m)=w1(n,m)­
learning_rate + 

noisewl(n,m); 
end; 
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end; 
end; 

end; 
if abs(w1{n,m))<=0.2, 

if w1(n,m)<O, 
w1(n,m)=-0.2; 

end; 

end; 
if w1(n,m)>O, 

w1(n 1 m)=0.2; 
end; 

if abs(wl(n,m))>=3, 
if wl(n,m)<0 1 

w1(n,m)=-3; 
end; 

end; 

if wl(n,m)>O, 
wl(n 1 m)=3; 

end; 

% calculation of outputs 

for n=1:64 
for m=1:1 

end; 
end; 

for m=1:1 

for k=1:64 
n1(n,m)=w1(n,k)*p(k,m)+bl(n 1 m); 
a1(n,m)=nl(n 1 m); 

end; 

if n1(n 1 m)>1 
a1(n,m)=l.O; 

end; 
if n1(n,m)<-1 

a1 (n 1 m)=-1. 0; 
end; 

for n=l:64 

end; 
end; 

% addition of noise 

for k=l:hidden units 
n2(n 1 m)=w2(n 1 k)*al(k 1 m)+b2(n,m); 
a2(n 1 m)=n2(n 1 m); 

end; 

if n2(n 1 m)>l 
a2(n,m)=l; 

end; 
if n2(n 1 m)<-1 

a2 ( n 1 m) =-1. 0; 
end; 
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for m=1:64 114 
for n=1:1 

end; 
end; 

if a2(m,n)>-0.5, 
a2(m,n)=(1+de1beta2(m,n))*a2(m,n); 

end; 
if a2(m,n)<=0.5, 

a2(m,n)=(1+delvta2(m,n))*a2(m,n); 
end; 

for m=1:hidden units 
for n=l:l-

end; 
end; 

e=t-a2; 

sse=O; 

if al(m,n)>-0.5, 
al(m,n)=al(m,n)*(l+delbetal(m,n)); 

end; 
if al(m,n)<=-0.5, 

al(m,n)=al(m,n)*(l+delvtal(m,n)); 
end; 

% plotting of errors 

for m=l:64 

end; 

end; 

for n=1:1 
sse=sse+e(m,n)A2; 

end; 

errors=(errors sse); 

ploterr(errors); 

hold on; 



APPENDIX C 

STANDARD BP PROGRAM 

errors=[sse]; 

% iteration starts 

for i=1:2SO 

if sse<=0.1, 
i=i-1, 
break; 

end; 

% calculation of deltas 

for m=1:5 
for n=1:3 

d2(m,n)=t(m,n)-a2(m,n); 
if abs(n2(m,n))>=1.0, 

d2(n,m)=O; 
end; 

end; 
end; 

d1=w2'*d2; 

% weight & offset correction 

for m=1:hidden units 
for n=1:3 

if abs(n1(m,n))>=1, 
dl(m,n)=O; 

end; 
end; 

end; 

for n=1:3 

end; 

for m=1:hidden units 
bl(m,n)=bl(m,n)+learning_rate*dl(m,n); 

end; 
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for n=l:3 

end; 

for m=1:5 
b2(m,n)=b2(m,n)+d2(m,n)*learning_rate; 

end; 

for m=1:5 

end; 

for n=l:hidden units 
w2(m,n)=w2(m,n)+d2(m)*al(n)*learning_rate; 

end; 

for m=1:5 

end; 

for n=l:hidden units 
wl(n,m)=wl(n,m)+p(m)*dl(n)*learning_rate; 

end; 

% calculation of outputs 

for n=l:hidden_units 
for m=1:3 

end; 
end; 

for m=l:3 

for k=1:5 
nl(n,m)=wl(n,k)*p(k,m)+bl(n,m); 
al(n,m)=nl(n,m); 

end; 

if nl(n,m)>1 
a1(n,m)=l.O; 

end; 
if nl(n,m)<-l 

a1(n,m)=-1.0; 
end; 

for n=1:5 

end; 

for k=1:hidden units 
n2(n,m)=w2(n,k)*a1(k,m)+b2(n,m); 
a2(n,m)=n2(n,m); 

end; 

if n2(n,m)>1 
a2(n,m)=l; 

end; 
if n2(n,m)<-1 

a2(n,m)=-l.O; 
end; 
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end; 

e=t-a2; 
sse=O; 

for m=l:S 
for n=l:3 

sse=sse+e(m,n)A2; 
end; 

end; 

%if i==l, 
check=sse*2; 

end; 

if check==sse, 
epsilon2=0.5*epsilon2, 

end; 

%if check>sse, 
learning_rate=l.07*learning_rate; 

end; 

%if check<sse, 
learning_rate=learning_rate/1.02; 

end; 

errors=(errors sse]; 

%plot(errors); 

%hold on; 

end; 
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APPENDIX 0 

ERRORS IN MULTIPLIER CIRCUIT 

0.1 Error in multiplier 

IoN=( J\+4(3) [ (Vl-(VrN±4Vr)-V/ /2] 

lop=( f.\+4(3) [ (Vl-(VTP±4Vr)-V//2] 

Assuming ~=A 

Io=2 f)/1 V2 +24f)/1 V2 ± 2 (.MVTV2 ± 24VTV241) 

= Ideal term + ERROR 

where the last term can be neglected 

ERROR= 2 f)/1 V2 ( AAf 13 ± 4VT/V1) 

So Io= 2f)/1Vz(1+ 4Aff3 ± 4Vr/Vd 

AAff}=1-2% 

Assuming V1~0.5-1V 

and AVT=5-10mV 

AVT error is 1% 

0.2 Error in output [F(.)] function 

Due to AVT and 4(3 errors, the output is modified. The 

output current is proportional to the square of the gate to 
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source voltage. So error ~n transconductance due to aJi and 

AVT can be derived as follows: 

AI = f3<Ve-VT) 2 - ( f3 ± Af3)[ (Ve-VT ± AV1 ) ] 2 

AI = 13( AVe) 2 - ( f3 ± Af3) [ (AVe ± AVT)] 2 

Simplifying 

AI = fMVe( AWf3 ± 2AVrfVc) 

IF AVe=VT , VT error is 1-2% 

The f3 error can be considered as a slope error or addition 

of noise. 
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