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ABSTRACT: There are numerous test-specimen configurations for determining the
static shear modulus of composites. Selection of specimen configuration depends primar-
ily on product component configuration. Two-ring specimens in use are the split-ring twist
specimen and the four-point-loading ring-twist specimen. The latter is more advantageous,
since it uses an intact ring. However, reported validation tests on aluminum rings showed a
large error in predicted shear modulus. The present paper provides an improved analysis
that takes into account the tilting of the cross section on the loading bar.

INTRODUCTION

SINCE FIBER-REINFORCED COMPOSITES have considerably lower shear
moduli/elastic moduli ratios than homogeneous materials, shear deformation is

more important in composite structures. Consequently, a great variety of specimen
configurations has been proposed and used for determination of shear moduli of
composites (Tarnopol’skii and Kincis, 1984).

The crux of the selection of an appropriate shear test is the geometric configura-
tion of material available for the specimen. Thus, if the specimen material is in the
form of a thin laminate, the following tests may be used: panel shear or picture
frame (Penton, 1960), plate twist (Whitney, 1967), rail shear (Whitney et al.,
1971), ± 45-degree tension, and off-axis tension (Chamis and Sinclair, 1977), cru-
ciform sandwich beam (Jones, 1975), and Iosepescu (for shear strength only). If
the specimen configuration is in the form of a bar, the three-point and five-point
beam tests (Pfafrod et al., 1972) and the torsion bar test may be used. A popular
product configuration, especially for filament-wound material, is a long tube, for
which the torsion tube test (Whitney, 1967) can be used. However, in many in-
stances, there is insufficient axial length of material available for the torsion tube
test. For this case, ring tests are appropriate. The split-ring test, sometimes called
the Douglas split-ring test, was introduced by Greszczuk (1968). Later, to avoid
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the need for actually forming a split, Kintsis and Shlitsa (1978) and Greszczuk
(1979, 1981) introduced the four-point-load ring test (see Figure 1).

To validate the four-point-load ring setup and data-reduction equations,
Greszczuk (1979) used a 6061-T6 aluminum-alloy ring. The result was a predicted
shear modulus about 9.3% higher than the well-established value. The purpose of
the present analysis is to develop an improved data-reduction equation taking into
account these additional effects, which were neglected in the equation presented
by Greszczuk (1979):

! cross-sectional tilting action that moves the effective radius of support inward
from the center of the cross section

! out-of-plane transverse shear deformation

ANALYSIS

A schematic diagram of the test setup used by Greszczuk is shown in Figure 1.
Now consider one half of the plan view as shown in Figure 2. Here P represents the
total applied load; thus, in Figure 1 each load point carries a load of P/2. However,
in Figure 2, due to the “cuts” at points A and C, these points carry only half of the
load at these points, namely, P/4. Also, due to the cuts, resisting bending moments,
MA and Mc, must be placed at points A and C, respectively. It is noted that the load
points are neither at the centroid of the cross section nor at the inner edge of the
cross section, but are at an “effective” radius Re, due to the loading not being dis-
tributed uniformly across the whole cross section of the ring.

Taking moments about line AC and noting that Mc = MA due to symmetry gives

(1)

Now consider the equilibrium of the cross section located at a circumferential
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Figure 1. Schematic diagram of the four-point-load test setup (from Greszczuk, 1979).
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position angle θ, measured from cross section A (see Figure 3). The bending mo-
ment, torque, and transverse shear at the center of the cross section at θ are given by

(2)

(3)

(4)

where R is the mean radius of the ring.
The total strain energy in one quarter of the ring (arc AB) is the sum of those due

to bending, twisting, and transverse shear:

(5)

where A = cross-sectional area of the ring, Eθ = circumferential elastic modulus,
Gθz = shear modulus associated with shear stress τθz (see Figure 4), I = rectangular
area moment of inertia of the cross section about its neutral axis for out-of-plane
bending, J = torsional factor for the cross section, and K = transverse shear correc-
tion factor.

Now for a rectangular cross section

(6)
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Figure 2. Loading of one half of the ring.
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Figure 3. Free-body diagram: (a) schematic and (b) plan view.
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where a = axial depth of the cross section, b = radial width of the cross section and
β = dimensionless coefficient that depends upon the cross-sectional geometry and
the orthotropic shear moduli via the ratio d defined as

(7)

where Grθ is the orthotropic shear modulus associated with the shear stress τrθ (see
Figure 4). It is noted that the roles of a and b (and Grθ and Gθz) are the reverse of
those assigned by Lekhnitskii (1981).

According to Castigliano’s theorem, the out-of-plane deflection δ is given by

(8)

Substituting Equations (1)–(4) into Equation (5) and performing the necessary
integration in Equation (8) yields
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Figure 4. Shear stress components.
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(9)

For the simplified case considered by Greszczuk (1979), Re → R and 1/K → 0.
Then

(10)

Solving for Gθz in Equation (9), one obtains

(11)

Knowing the dimensions of the ring, the elastic modulus Eθ, and measuring δ/P,
one can use Equation (11) to predict the shear modulus. The elastic modulus could
be determined by strain or deflection measurements in a diametral tension (or
compression) test.

VALIDATION FOR ISOTROPIC MATERIAL

The data for Greszczuk’s 6061-T4 aluminum-alloy ring are listed below:

From these data, the following additional parameters are determined:
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Unfortunately, Greszczuk (1979) did not give the value of δ/P in his test. How-
ever, he gave the value of G obtained by his formula, Equation (10) above: 28.3
GPa (4.1 × 106 psi). Working backward, this corresponds to δ/P = 0.000324 cm/N
(0.000586 in/lb).

The value of the effective radius of load application depends upon the degree of
tilt of the cross section. The lower bound of Re is the inside radius, Ri; this corre-
sponds to the case of the cross section being completely lifted off the loading bar
except at the inside corner. If the load distribution is triangular with the maximum
intensity being at the inside corner, Re = Ri +(b/3). If the distribution is parabolic,
Re + Ri + (2/5)b.

Table 1 lists the values predicted for G corresponding to the different cases.
The accepted value for the shear modulus of aluminum alloy is 25.9 to 26.2 GPa

(3.75 to 3.80 millions of psi). It is noted that the present data reduction with a load-
ing distribution somewhere between a triangular and a parabolic distribution ap-
pears to reduce the error in prediction of the shear modulus.

Also, it is noted that inclusion of the effect of transverse shear deformation in-
creases the predicted shear modulus by only about 1.5%, which is not very signifi-
cant.

APPLICATION TO A COMPOSITE RING

Greszczuk (1979) also presented data for a ring constructed of
cross-ply-laminated T300/F178 graphite/epoxy. The data are as follows:
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0.262 cm (0.103 in)b =

4 40.0470 cm (0.00113 in )J =

0.632 cm (0.249 in)a =

Table 1. Predicted values of the shear modulus of aluminum ring.

Loading Case
Re

cm (in)

G, GPa (millions of psi)

Without
Transverse

Shear

With
Transverse

Shear

Corner contact 7.823 (3.080) 19.2 (2.78) 19.6 (2.84)
Triangular contact distribution 8.016 (3.156) 25.0 (3.63) 25.4 (3.69)
Parabolic distribution 8.057 (3.172) 26.3 (3.81) 26.7 (3.87)
Uniform contact 8.113 (3.194) 28.3 (4.10) 28.7 (4.16)

8.33 cm (3.28 in)R =
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The derived parameters are as follows:

Table 2 shows the values predicted by the various methods. It is clear that for
this material there are only small differences among the various equations.

It should be pointed out that the present analysis is strictly applicable only to
macroscopically orthotropic specimens, e.g., circumferential wrap. However, it
would probably be a good approximation in the case of many layers of a regular
layup, e.g., cross-ply or angle-ply.

CONCLUDING REMARKS

An improved equation for predicting the torsional shear modulus from
four-point ring-twist test data has been developed, validated by application to iso-
tropic-material (6061 aluminum alloy) data, and also applied to high-strength
graphite-epoxy data.

In the case of aluminum, the improvements in predicting shear modulus were
significant, but in the case of graphite-epoxy, the improvement was not very signif-
icant. In both instances the effects of transverse shear deformation were negligible.
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4 40.00282 cm (0.0000677 in )J =

/ 0.0193 cm/N (0.0338 in/lb)Pδ =

8.306 cm (3.27 in), based on a parabolic load distributioneR =

680.83 GPa (11.72 10 psi)Eθ = ×

2 20.165 cm (0.0256 in )A =

4 40.005515 cm (0.0001325 in )I =

0.249 for / 2.42 and / 1r za b G Gθ θβ = = =

Table 2. Predicted values of the shear modulus G z of
graphite-epoxy ring.

Approach G z, GPa (millions of psi)

Equation (11) 4.08 (0.592)
Equation (11) without TSD 4.07 (0.590)
Greszczuk’s equation 4.17 (0.604)
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