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PREFACE

Computer programs belong to the authors who design, write, and test them.

Authorship identification is concerned with detennining the likelihood of a particular

author having written some piece(s) of code, usually based on other code samples from

the same programmer. Java is a popular object-oriented computer programming

language. Programming fingerprints attempt to characterize the features that are unique to

each programmer. This thesis was an investigation to identify a set of software metrics

that could be used for authorship identification of Java programs. A program written in

visual C++ was utilized to extract the metrics. Multivariate discriminant analyses with the

statistical package SAS were used to evaluate the metrics for authorship identification.

The main objective of this study was to extract a set of software metrics of Java

source code that could be used as fingerprints to identify the author of the Java code. For

this purpose, a program was designed and implemented to extract metrics from the source

code. The interface was developed using visual C++ with Microsoft Visual Studio 6.0.

The contributions of the selected metrics to authorship identification were measured by a

statistical process, canonical discriminant analysis, witll tIle statistical software package

SAS. Among the 56 extracted metrics, 48 metrics were identified as being contributive to

authorship identification. The authorship of 62.6-67.2% of the Java programs could be

correctly identified with the extracted metrics. The identification rate could be as high as
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85.8%, with derived canonical variates. Moreover, layout metrics played a more

important role in the authorship identification than the other metrics.
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CHAPTER I

INTRODUCTION

1.1 Importance and Possibility of Authorship Identification

With the widespread use of computers, software authorship identification has

become an issue of concern. Computer software is not only a kind of intellectual property

whose copyright should be protected, but also a functional text that may bring about

unexpected consequences on computer systems. In many situations, it may be necessary

to identify the source of a piece of software. When a system is attacked and pieces of

code as viruses or logic bombs are available, tracing the source of such code is of high

interest. Other situations include resolution of authorship disputes, proof of authorship in

court, and proof of code re-engineering [Krsul and Spafford 1996].

At least four areas benefit directly from the findings of research in authorship

analysis. They are the legal community that can count on the evidence provided to

support authorship claims, the academic sector that may use the evidence provided to

support authorship claims of students, the industry that can identify the author of a

previously unidentified piece of code, and the real-time intrusion detection systems that

may be enhanced by including authorship information [Krsul and Spafford 1996]

[Kilgour et al. 1997].



It is popular these days to identify a criminal, who has been charged with a crime,

by DNA fingerprinting from blood, hair, etc. This is based on the belief and evidence that

human DNA sequences are individuaL Software is a piece of written text that Cal1 be

compiled or interpreted to run on a computer. The question is: Is it possible to extract

something like human DNA fingerprints from software to verify authorship of this kind

of written text?

Authorship identification in literature is an ancient topic, but research in the area

is still continuing. A typical example is to identify the author(s) of Shakespeare's works

[Elliot and Valenza 1991]. Why can the authors of the works of literature be identified

based on the written texts? This is because of the belief that an author's expressions,

dependence on certain words or phases, the frequency of individual words, preference to

use short or long sentences, and so on might be individually associated with the author's

education and personality [Mosteller and Wallace 1964] [Gray et aL 1997] [Oman and

Cook 1991] [Spafford and Weeber 1993]. All these contribute to a profile of individual

authorship characteristics [Oman and Cook 1991] which can be used to identify the

author of written text. A similar hypothesis is also held for handwriting identification that

people's handwritings are as distinctly different from one another as their individual

natures and as their own fingerprints [Cha and Srihari 2000].

Although computer program code is less flexible in format than literature works

due to the requirements of compilers or interpreters, there is still ample room for

programmers to develop their own programming styles [Gray et al. 1997]. The

relationship between programs and programmers psychologically exists in the manner in

which they approach the problem-solving process and the manner of programming to
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which they are accustomed [Kilgour et aL 1997]. In this way, tl1e task of software code

authorship analysis is parallel to written text authorship analysis [Sallis 1994]. Thus, the

ideas and methods used for traditional textual analysis and forensics can be transferred to

software analysis [Kilgour et al. 1997].

A number of research efforts have been undertaken to examine the origins of

computer code. However, most of them have been on plagiarism detection [Donaldson et

al. 1981] [Whale 1990] [Prechelt et al. 2000].

1.2 Authorship Analysis Is Different from Plagiarism Detection

Plagiarism detection is a concept that can be easily mixed with authorship

identification. Although they both examine the code text of computer programs and

authorship verification can be used as proof for plagiarism detection of software in the

academic community [Kilgour et al. 1997], authorship verification is markedly different

from plagiarism detection. Plagiarism is a situation that may occur among software

companies as well as in academic settings.

Software plagiarism has been defined as a general fonn of software theft:

complete, partial, or modified replication of software without the permission of the

original author [Moreaux 1991]. For example, to detect plagiarism in a computer science

course, the students' assignments are compared to see if some are suspiciously similar.

The extremely similar programs strongly suggest that one student's code may have been

derived from another's [MacDonell et al. 1999]. In such cases, there is no need to refer

back to the collected works of a programmer because the programs being compared are

functionally equivalent [Sallis et al. 1996]. However, authorship identification is to assign
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a pIece of code to a programmer, according to how well the code match.es the

programming style profile established previously for the programmer.

The purposes of plagiarism detection and authorship identification are different

While plagiarism detection measures similarity of two pieces of code, authorship

identification does not. Plagiarism detection cannot tell if different pieces of code were

written by the same person, and authorship identification cannot determine how similar

two programs are. Thus they may lead to conclusions that may seem controversial.

As Moreaux indicated [Moreaux 1991], plagiarized replications do not need to

keep the programming style of the original code. For example, let us assume code PJ is a

plagiarized version by programmer Sam of code J by programmer Bob. After copying

from Bob, Sam changed some programming style of PJ to his own. In detail, say old

comments were replaced with new ones, variables were renamed to what he was more

comfortable with, indentation and bracket placements were altered to his favorites, and

"while" loops were changed to "for" loops. When code PJ and code J are subjected to

plagiarism detection, they will be suspiciously similar. However, for the purpose of

authorship identification, they are from distinct authors.

Nevertheless, plagiarism detection IS closely related with authorship

identification, because they both examIne the text of computer programs and use

analogous methods. Authorship analysis may use metrics and methods usually utilized

for plagiarism detection.
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1.3 Objectives

An early goal of identifying program authorship was to detennine software theft

and to prevent plagiarism of Pascal programs [Oman and Cook 1989]. It was argued that

using only software complexity metrics only was not adequate to define a relationship

between programs and programmers.

To improve the accuracy of C program authorship identification, Krsul and

Spafford [Krsul and Spafford 1996] employed a comprehensive set of measurements to

extract programming style. They divided over fifty metrics into three categories:

programming layout metrics, programming style metrics, and programming structure

metrics. Programming layout metrics includes such fragile metrics as comment

placement, indentation, bracket placement, and while lines. These metrics can be easily

altered by a code fonnatter and pretty printer. Also, the text editor used to compose the

program can modify these metrics by changing the [onnat to its default or to a preferred

layout.

Programming style metrics are related to the code layout metrics, but are more

difficult to change. Such metrics include variable length, comment length, naming

preference, and preference of loop statements.

Programming structure metrics are assumed to be dependent on programming

experience and the ability of the programmer. Example metrics in the category of style

metrics are mean number of lines of code per method/function, data structure usage and

preference, and the cyclomatic complexity number [McCabe 1976]. Although so many

measurements were collected, many were eliminated and a smaller set remained for the
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final analysis [Krsul and Spafford 1996]. It can be argued that the information hidden in

the unselected measurements was ignored.

Other research groups have examined the authorship of computer programs

written in C++ [Sallis et al 1996] [Gray et al. 1997] [MacDonell et al. 1999]. A

dictionary-based system called IDENTIFIED was developed to extract source code

metrics for authorship analysis [Gray et al. 1998]. Satisfactory results were obtained for

C++ programs using case-based reasoning, feed-folWard neural network, and multiple

discriminant analysis [MacDonell et al. 1999]. The concept of software forensics has also

been introduced into program source code authorship analysis. Software forensics is an

area of software science aimed at authorship analysis of computer source code. As stated

by Sallis and his colleagues [Sallis et aI. 1996], software forensics is also a super set of

all metrics that can be used for authorship analysis.

However, little infonnation about authorship identification of Java source code

can be found in the open literature. The objective of the proposed thesis is to extract

software metrics from Java source code for authorship identification. Therefore, a set of

metrics of Java source code is recommended in this thesis work for authorship

identification.
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CHAPTER II

LITERATURE REVIEW

Computer code is a special category of written text that can be executed on

computers. We can explore the question of authorship in literature (i.e., literary works) in

order to get a better perspective on the question of code authorship.

2.1 Authorship Analysis in Literature

Computers have frequently been used to analyze literary style [Holmes 1985]

[Kenny 1986] [Kjell and Frieder 1992]. The objectives were to characterize authors by

the values of parameters extracted automatically from the written text. The

characterizations were then used to resolve authorship disputes, and to display changes in

an author's style with time or other factors such as mood [Kjell and Frieder 1992].

Homles [Holmes 1985] divided the features of literary style into three groups: word and

sentence features, vocabulary features, and syntactic features.

In as early as 1887, authorship of Shakespearean plays was explored using word

length distribution statistics [Kjell and Frieder 1992]. It was assumed that works from

different authors would exhibit different frequency distributions for word and sentence

lengths. Distribution of functional words such as articles and connectives was employed
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for a stylometric study of the New Testalnent [Kenny 1986]. In a sinlilar way, sentence

lengths were used to resolve authorship disputes in the Federalist Paper [Mosteller and

Wallace 1964], and to examine the authorship of The Quiet Don [Kjetsaa 1979]. Very

often, a combination of a1 these features was involved [Stratil and Oakley 1987].

Besides stylometric parameters mentioned above, letter-tuple frequency statistics

was used to discriminate between two authors writing in a similar style [Kjell 1994]

[Kjell and Frieder 1992]. An N-tuple is a sequence of n contiguous letters in the text.

After non-alphabetic characters such as punctuation and spaces are discarded and

uppercase letters are converted to lowercase letters, tuple extraction proceeds by a

shifting n-character window through the text one letter at a time. Thus adjacent tuples

overlap by n-l letters and a tuple may contain characters from more than one word. The

relative frequencies of the n-tuples are calculated based on the total occurrence of all n

tuples.

Advantages of uSIng letter-tuples are: easy feature extraction from text,

effectiveness, avoidance of lexical analysis as in word frequency statistics, and large

amount of data resulting in less variation within a class [Kjell 1994]. However, it has not

been clearly explained why it works. If tuple frequencies encode the favorite words of the

respective authors, using those words directly would be more efficient. It is not clear why

2-tuples, i.e., ordered pairs with two letters, are the most effective in authorship analysis

among n-tuples for n from 1 to 5 [KjeII 1994] [Kjell and Frieder 1992].
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2.2 Authorship Analysis of Software

Authorship analysis for computer software is different fron1 and more difficult

than that in literature. First, the stylistic characteristics are not the same. Program

compilers and interpreters require strict format of computer text code. Next, people may

reuse code, and software may be developed by teams of programmers. Also, code

formatters and pretty printers can alter a program's appearance [Krsul and Spafford

1996]. In brief, computer code text is less flexible than text in literature, suggesting more

difficulty of authorship analysis in program code than in the literature. However, room

still exits for personalizing computer text code at least in the following aspects [Gray et

al. 1997].

• The manner in which the task is achieved, such as the algorithms used to solve

problems.

• Source code layout such as indentation and spacing.

• Stylistic manners utilized to implement algorithms.

• Choice of the computer platfonn, programming language, compiler, and editor.

In other words, these features (algorithm, layout, style, and environment) are

programmer-specific. Thus, it is essential to extract discriminant software metrics

associated with these features for authorship analysis of software.

2.2.1 Executable Code as Source

Sometimes, only executable object code is presented for examination. The

common examples of this kind are viruses, worms, logical bombs, and Trojan horses

which may attack systems [Krsul and Spafford 1996]. After compilation, much evidence

9



disappears including layout, comments, and variable names. Ho ever some features still

remain as listed below [Spafford and Weeber 1993] [Gray et al. 1997].

• Data structures and algorithms that are indicators of the programmer's background.

Programmers typically prefer to use algorithms and data structures that they were

taught in class and with which they feel comfortable.

• Compiler and system infonnation.

• Level of programming skill and areas of knowledge SUC}1 as the level of sophistication

and optimization.

• Use of system and library calls.

• Present errors. Programmers tend to make similar errors.

• The symbol table provided in the object code that has been produced using a debug

mode.

Although a lot of information about the hardware platfonn and compiler can be obtained

from metrics of object code, and the executable code can even be decompiled, there is

considerable information loss [Gray et al. 1997]. For instance, a number of programs may

produce the same executable code. This may account for why so far most authorship

analyses deal with computer source code.

2.2.2 Program Code as Source

More often than object code, source code is presented for examination. The text

of source code contains at least the following set of characteristic information that may be

used for authorship analysis [Spafford and Weeber 1993] [Gray et al. 1997].

• Programming language choice
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• Code formatting

• Commenting style

• Variable naming convention

• Spelling and grammar of comments

• Use of language features

• Sizes of routines

• Errors

• Code reuse

Various software metrics associated with these features have been considered for

authorship identification purpose.

An early work on identifying program authorship was reported by Oman and

Cook [Oman and Cook 1989]. They built a Pascal source code analyzer and extracted a

set of Boolean measurements based on whether or not the following items occurred in the

source code.

• Inline comments on the same line as a source code statements

• Blocked comments (two or more COffilnents occurring together)

• Keywords followed by comments

• Lower case characters only (all source code)

• Upper case characters only (all source code)

• Case used to distinguish between keywords and identifiers

• Underscore used in identifiers

• BEGIN followed by a statement on the same line

• THE follo\ved by a statement on the same line

11



• Multiple statements per line

• Blank lines in program body

They found that these Boolean measurements were not adequate to characterize

programming style and to identify authorship. Many of the Boolean measurements were

proven inappropriate in measuring prograln-specific features [Krsul and Spafford 1996].

Krsul and Spafford [Krsul and Spafford 1996] developed a comprehensive set of

metrics for C program authorship analysis based on a large amount of rules and metrics

introduced in previous research efforts (such as [Oman and Cook 1991] and [Conte et al.

1986]). These metrics were divided into three categories: programming layout metrics,

programmIng style metrics, and programming structure metrics [Krsul and Spafford

1996].

Programming layout metrics, as shown in Table 2.1, are associated with layout of

programs and thus are fragile and easily alterable, for example by a code formatter.

Programming style metrics, as given in Table 2.2, are also related to the layout of code

but are difficult to change. The program structure metrics referred to those that were

supposed to be dependent on programming ability and the experience of the programmer,

Table 2.3 lists some metrics in this category.

12



Table 2.1 Programming layout metrics for C programs [Krsul and Spafford 1996]

Metric Description

STYI A list ofmetrics indicating indentation style inside functions

STYI a Indentation of C statements within surrounding blocks

STYI b Percentage of open braces ({) that are along a line

STYlc Percentage of open braces ({) that are the first character in a line

STYld Percentage of open braces ({) that are the last character in a line

STYl e Percentage of close braces (}) that are along a line

STYI f Percentage of close braces (}) that are the first character in a line

STYlg Percentage of close braces (}) that are the last character in a line

STYlh Indentation of open braces ({)

STYl i Indentation of close braces (})

STY2

STY3

STY4

STY5

Indentation of statements starting with the "else" keyword

The use of a separator between function names and parameter lists

The use of a separator between function return type and function name

A vector of metrics specifying comment style

STY5a Use ofborders to highlight comments

STY5b Percentages of code lines with tnline comments

STY5c Ratio of lines of block style conlments to lines of code

STY6 Ratio of white lines to lines of code

13



Table 2.2 Programming style metrics for C programs [Krsul and Spafford 1996]

Metric

PROl

PR02

Description

Mean program line length in tenns of characters

A vector of metrics of name lengths

PR02a Mean local variable name length

PR02b Mean global variable name length

PR02e Mean function name length

PR02d Mean function parameter name length

PR03 A list of metrics of name convention

PR03a Percentage of variable names that start with an uppercase letter

PR03b Percentage of function names that start with an uppercase letter

PR03c Is the underscore character used in names?

PR04

PROS

PR06

PR07

Ratio of global variable count to local variable count

Ratio of global variable count to lines of code

Preference of either "\vhile", "for", or "do" loops

Are comments merely an echo of the code
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Table 2.3 Programming structure metrics for C programs [Krsul and Spafford 1996]

Metric

PSMI

PSM2

PSM3

PSM4

PSM5

PSM6

PSM7

PSM8

PSM9

PSMIO

PSMll

PSM12

PSM13

Description

Percentage of "int" function definitions

Percentage of "void" function definitions

Use of debugging symbols or keywords

Use of the assert macro

Average lines of code per function

Ratio of variable count to lines of code

Percentage of static global variables

Ratio of decision count to lines of code

Is the keyword "goto" used?

A list of complexity metrics (such as the Cyclomatic complexity number

[McCabe 1976])

Error detection after system calls

Does the programmer rely on internal representations of data objects?

Do comments agree with code?

As stated by Spafford and Weeber [Spafford and Weeber 1993], a feature was

said to be writer-specific if it showed small variations in the writings of one author and

large variations over the writings of different authors. Unfortunately, the two criteria for

metric selection were not necessarily correlated. Elimination of metrics that showed large

variation among programs of one programmer, also surprisingly eliminated those metrics

that showed large variation among different programmers as well, resulting in
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unsatisfactory classifications. To solve the problem, a tool was built to visualize for each

metric the variation of each programmer and the variation alTIOng programmers. A much

smaller set of metrics, than those mentioned in Tables 2.1 2.2, and 2.3, was chosen for

final statistical analysis [Krsul and Spafford 1996].

Authorship analysis was also explored by another research group. Gray and his

colleagues [Gray et a1. 1998] proposed that the metrics listed in Table 2.4 might be

related to authorship.

Table 2.4 Metrics proposed by Gray and his colleagues [Gray et a1. 1998] for possible

relationship to authorship

Metric

Metric 1

Metric 2

Metric 3

Metric 4

Metric 5

Metric 6

Metric 7

Description

Mean length of source code lines in tenns of number of characters

Mean variable name length in terms of number of characters

Whether or not pointers are used

Mean length of a function in lines of code

Ratio of comment lines to non-comment lines of code

Ratio of blank lines to non-blank lines

Whether or not global variables are used

In addition, Gray and his colleagues [Gray et a1. 1998] suggested that the

following traditional software metrics, usually used for plagiarism detection, might also

be utilized for authorship analysis.

• Volume measured by Halstead's V == nlogN [Halstead 1977]
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• Control flow measured by McCabe's V(G) == number of binary branches [McCabe

1976]

• Structure meaSllred by Leach's coupling assessment [Leach 1995]

• Data dependency measured by Bieman and Debnath's GPG assessment [Bieman and

Debnath 1985]

• Nesting depth measured by program nesting depth and average nesting depth

[Dunsmore 1984]

• Control structure measured by Nejrneh's NPATH [Nejrneh 1988]

To extract metrics for authorship analysis, a system called IDENTIFIED

(Integrated Dictionary-based Extraction of Non-language-dependent Token Information

for Forensic Identification, Examination, and Discrimination) was developed. It was

claimed that the system could extract most of these measurements automatically [Gray et

al. 1998].

Using the IDENTIFIED system, MacDonell and his colleagues [MacDonell et al.

1999] extracted 26 measurements from each standard C++ program for authorship

analysis. Table 2.5 lists most of these measurements.
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Table 2.5 Measurements extracted by the IDENTIFIED system [Gray et al. 1998] for

authorship analysis of C++ source code [MacDonell et al. 1999]

Measurement Description

CAPS Proportion of letters that are upper case

CCN McCabe's cyclomatic complexity number, V(G)

COM Proportion ofLOC that are purely comments

COND-1 Average number of#ifper NCLOC

COND-2 Average number of#ifdefper NCLOC

COND-3 Average number of#ifndefper NCLOC

COND-4 Average number of #else per NCLOC

COND-5 Average number of#endifper NCLOC

DEC Average number of decision staten1ents per NCLOC

DEC-IF Average number of if statements per NCLOC

DEC-SWITCH Average number of switch statements per NCLOC

DEC-WHILE Average number of while statements per NCLOC

ENDCOM Proportion of end-of-block braces labeled with comment

GOTO Average number of gotos per non-comment LOC (NCLOC)

INLCOM Proportion of LOC that have inline comments

LOC Non-white space lines of code

LOCCHARS Mean number of characters per line

SPACE-l Proportion of operators with white space on both sides

SPACE-2 Proportion of operators with white space on the left side

SPACE-3 Proportion of operators with white space on the right side

SPACE-4 Proportion of operators with white space on neither side

WHITE Proportion of lines that are blank
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CHAPTER III

FEATURE ANALYSIS AND METRICS EXTRACTION

3.1 Feature Analysis of Programs Written in Java

Java is one of the popular programming languages for application development

[Lewis and Loftus 1998]. It is an object-oriented language similar to C++, but simplified

to eliminate language features that cause common programming errors. Java source code

files are compiled into bytecode, which can then be executed by a Java interpreter.

Compiled Java code can run on most computers because Java interpreters and runtime

environments, known as Java Virtual Machines (VMs), exist for most operating systems

such as UNIX, the Macintosh as, and Windows. Bytecode can also be converted directly

into machine language instructions by a just-in-time compiler. Java is also a general

purpose programming language with a number of features that make the language well

suited for use on the World Wide Web. Java applets can be downloaded from a Web

server and run on a computer by a Java-compatible Web browser such as Netscape

Navigator or Microsoft Internet Explorer. Compared to C/C++, Java has no pointers, no

global functions that are defined outside classes, automatic garbage collection, etc.
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3.2 Data Source and Metrics

The data that was used for authorship analysis in this study was from three

origins. The first part of tIle data was from computer science classes. To protect the

students' privacy, all names were removed from the program texts. The programs were

grouped per individual programmer. Forty groups of data were thus collected with each

group containing four to six programs.

To be generic with respect to the data sources, a set of programs was collected

fronl Internet shareware. Five groups of programs were collected from the following

URL addresses:

• fip://ftp.ai.mi1.edu/pub/caroma/tools/1999-07-

05/doc/edu/mit/ai/psg/traveler/examplesl

• http://www.devx.comJsourcebankJsearch.asp

• http://math.hws.edu/eck/

• ftp://ftp.fct.unl.pt/.2/documents/published/oreilly/nutsheII/java/examples

• ftp://ftp.ccl.net/pub/chemistry/software/SOURCES/JAVA

Seven to ten pieces of Java source code were collected for each group of programs.

The third source for data was from a fellow graduate student who voluntarily

shared her programs with the author. This sample contains six programs.

The lengths of all of the sample programs in the collection ranged from several

hundred to several thousand lines of Java source code.

To extract metrics for authorship identification, the Java programs were subjected

to a Windows application that was developed by the author. The Windows application

was developed with Visual C++ and MFC with the software package Microsoft Visual
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Studio 6.0. When the application is run, a window opens and the input Java program is

scanned. A set of metrics (see Section 3.2) are extracted from the Java program. The

metrics values are added to a file of Microsoft Access 2000 that is connected with the

Windows application by an ODBC Microsoft Access driver.

The database file of Microsoft Access 2000 contains one large table in which each

metric is one column. Each row of the table contains metric values of one Java program.

When the Windows application finishes the scanning of one program, the metric values

are added to one row under the corresponding metric names.

The C++ program that was developed by the author for metrics extraction

contains nine header files (.h), eight source files (.cpp), four resource files, and one

readme text file. Total number of lines in the source files is approximately 5000. The

header files and source files are listed in Appredix C.

The metrics that were extracted and collected in this study for Java program

authorship identification were adapted from the metrics used by Krsul and Spafford for C

programs [Krsul and Spafford 1996], the metrics proposed by Gray and his colleagues

[Gray et a1. 1998], and the metrics utilized for C++ source code [MacDonell et a1. 1999].

Tables 3.1, 3.2 and 3.3 list the extracted metrics for programming layout, programming

style, and programming structure, respectively.
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Table 3.1 Programming layout metrics extracted fronl the source code of Java programs

Metric

STYl

Description

A list of metrics indicating indentation style

STYla Percentage of open braces ({) that are along a line

STY1 b Percentage of open braces ({) that are the first character in a line

STYlc Percentage of open braces ({) that are the last character in a line

STY 1d Percentage of close braces (}) that are along a line

STY1e Percentage of close braces (} ) that are the first character in a line

STY1 f Percentage of close braces (}) that are the last character in a line

STYlg Average indentation in white spaces after open braces ({)

STYlh Average indentation in tabs after open braces ({)

STY2 A vector of metrics specifying comment style

STY2a Percentages of pure comment lines among lines containing comments

STY2b Percentages of "II" style comments among "II" and "1*" style comments

STY3

STY4

STY5

STY6

STY7

STY8

Percentages of condition lines where the statements are on the same line as

the condition

Average white spaces to the left side of operators #

Average white spaces to the right side of operators #

Ratio of blank lines to code lines (including comment lines)

Ratio of comment lines to non-comment lines*

Ratio of code lines containing comment to code lines without any comments
#: Operators included "+", "-", "*", "I", "%", "==" and "+==", "-==''', "*==", "1==", "%==", and

"== =="

*: Comment lines are pure comment lines. Non-comment lines include lines with inline
C0111ments.
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Table 3.2 Programming style metrics extracted from the source code of Java programs

Metric

PROl

PR02

Description

Mean program line length in tenns of characters

A vector of metrics of name lengths

PR02a Mean variable name length *

PR02b Mean function name length

PR03 Character preference of uppercase, lowercase, underscore, or dollar sign for

name convention

PR03a Percentage of uppercase characters

PR03b Percentage of lowercase characters

PR03c Percentage of underscores

PR03d Percentage of dollar signs

PR04 Preference of either "while", "for", or "do" loops

PR04a Percentage of "while" in total of "while", "for", and "do"

PR04b Percentage of "for" in total of "while", "for", and "do"

PR04c Percentage of "do" in total of "while", "for", and "do"

PR05 Preference of either "if-else" or "switch-case" conditions

PR05a Percentage of"if' and "else" in total of "if', "else", "switch", and "case"

PR05b Percentage of"switch" and "case" in total of"if', "else", "switch", and "case"

PR05c Percentage of "if' in total of "if' and "else"

PR05d Percentage of "switch" in total of "switch" and "case"

*. Variables included only nine common data types: "short", "int", "long", "float",
"double", "byte", "char", "Boolean", and "string".
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Table 3.3 Programming structure metrics extracted [roln the source code of Java programs

Metric Description

PSMI Average non-comment lines per class/interface

PSM2 Average number of primitive variables per class/interface

PSM3 Average number of functions per class/interface

PSM4 Ratio of interfaces to classes

PSM5 Ratio of primitive variable count to lines afnon-comment code

PSM6 Ratio of function count to lines of non-comment code

PSM7 A list of ratios of keywords to lines of non-comment code

PSM7a Ratio of keyword "static" to lines of non-comment code

PSM7b Ratio of keyword "extends" to lines of non-comment code

PSM7c Ratio of keyword "class" to lines of non-comment code

PSM7d Ratio of keyword "abstract" to lines of non-comment code

PSM7e Ratio of keyword "implements" to lines of non-comment code

PSM7f Ratio of keyword "import" to lines of non-comment code

PSM7g Ratio of keyword "instanceof' to lines of non-comment code

PSM7h Ratio of keyword "interface" to lines of non-comment code

PSM71 Ratio of keyword "native" to lines of non-comment code

PSM7j Ratio of keyword "new" to lines afnon-comment code

PSM7k Ratio of keyword "package" to lines of non-comment code

PSM71 Ratio of keyword "private" to lines of non-comment code

PSM7n1 Ratio of keyword "public" to lines of non-comment code

PSM7n Ratio of keyword "protected" to lines of non-comment code

PSM70 Ratio of keyword "this" to lines of non-comment code

PSM7p Ratio of keyword "super" to lines of non-comment code

PSM7q Ratio of keyword "try" to lines of non-comment code

PSM7r Ratio of keyword "throw" to lines afnon-comment code

PS:rv17s Ratio of keyword "catch" to lines of non-comment code

PSM7t Ratio of keyword "final" to lines of non-comment code
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CHAPTER IV

DATA ANALYSIS, RESULTS, AND DISCUSSION

Fifty six metrics were extracted from the Java programs. The values of the 56

metrics were calculated for each of the 46 groups of programs. Each group contained 4 to

10 programs (see Section 3.2 for details). With so much infonnation (so many metric

values), one question might come up first: "Do all metrics contribute significantly to the

authorship prediction?" The answer is: some do and the others might not. Thus, the first

step for data analysis might be to extract contributive infonnation from the obtained data

set and to reduce informative noise. One way of information extraction is to select a set

of contributive variables. Those variables can be selected manually or automatically, as

explained in the following two sections.

4.1 Manual Variable Selection for Classification Analysis

To select contributive variables to the classification from the metrics set, several

factors need to be considered. The first consideration is the significance of each

individual variable for the group classification.

The significance level was measured by a statistical procedure called one-way

ANOYA (analysis of variance) [SAS 1990]. One-way ANOYA was performed for each
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individual variable with the SPSS statistical package (Version 11.0.1, SPSS Inc.,

Chicago, IL). Sums and mean squares between groups and within groups were calculated.

F values (statistical ratios of mean square (variation) between groups to mean square

(variation) within groups) and significance levels for group classification were then

computed for each metric. To be a little conservative, the significance level to select was

set at 0.15. This would not lose ilnportant information carried by those intennediate

significant metrics.

The second aspect considers the relationship among the variables. With the SPSS

statistical package, Pearson's correlations were perfonned among all of the metrics. A

Pearson's correlation coefficient between two variables signals t11e linearity of them. To

measure the statistical perfonnance, a two-tailed significance test was specified. If the

correlation coefficient between two variables is 1.0 or -1.0, this indicates that the two

metrics carry the same information, and thus keeping one of them would be enough. One

example is the relationship between PR05a (percentage of "if' and "else" in total of "if',

"else", "switch", and "case") and PR05b (percentage of "switch" and "case" in total of

"if', "else", "switch", and "case"). They carry the san1e infonnation and thus keeping

either one is enough. However, one metric may be derived from two or more other

metrics, as listed in Table 4.1. This may introduce redundancy in the data sets. Thus, to

reduce the redundancy, one metric in a derivation variable set should be discarded. As to

which one should be excluded from the data set depends on their correlation with each

other and their significance in the group prediction. Theoretically, a variable with low F

value, low significance level in the classification, and high correlation with other

variable(s) would be excluded.
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Table 4.1 Derivation metrics sets

Metrics derivation set

1

2

3

4

5

Metrics and derivation fOffilula

STYla + STYlb + STYlc == 1

STYld + STYle + STYlf== 1

PR03a + PR03b + PR03c + PR03d == 1

PR04a + PR04b + PR04c == 1

PR05a + PR05b == 1

STYl a: Percentage of open braces ( {) that are along a line
STYlb: Percentage of open braces ({) that are the first character in a line
STYle: Percentage of open braces ({) that are the last character in a line
STYld: Percentage of close braces (}) that are along a line
STYI e: Percentage of close braces (} ) that are the first character in a line
STYI f: Percentage of close braces (}) that are the last character in a line
PR03a: Percentage of uppercase characters
PR03b: Percentage of lowercase characters
PR03c: Percentage of underscores
PR03d: Percentage of dollar signs
PR04a: Percentage of "while" in total of "while", "for", and "do"
PR04b: Percentage of "for" in total of "while", "for", and "do"
PR04c: Percentage of "do" in total of "while", "for", and "do"
PR05a: Percentage of "if' and "else" in total of "if', "else", "switch", and "case"
PR05b: Percentage of "switch" and "case" in total of "if', "else", "switch", and "case"

4.2 Automatic Variable Selection for the Classification Analysis

Contributive variables were also selected automatically by a statistical procedure

called stepwise discriminant analysis (SDA). Stepwise discriminant analysis was

perfonned with the SAS statistical package (Version 8.0, SAS Institute Inc., Cary, NC).

A model of forward stepwise analysis was specified for SDA. The discrimination was

built step by step. At each step, all variables were reviewed and evaluated to determine

which one would contribute most to the discrimination among groups. That variable

would then be included in the model, and the process started again. To be a little

conservative~ the statistical significance level to enter was set at 0.15. If all significance
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levels of variables in the discrilnination between groups were n10re than 0.15, the process

would stop.

In this model of variable selection, variable correlation and derivation were all

taken care of by the statistical procedure. For example, if one of the two highly correlated

variables was included in the model, the significance level of the other variable would

drop dramatically. The reason was that the variation of the second variable was largely

represented by the first variable and the variation had already been included in the

calculation.

4.3 Classification Analyses

After a set of contributive variables was selected, a statistical procedure called

canonical discriminant analysis (CDA) was used for the classification. CDA was

performed with the statistical package SAS (Version 8.0, SAS Institute Inc., Cary, NC).

For CDA, a parametric method based on a normal distribution within each class was used

to derive linear discriminant function with pooled covariance matrices. Canonical

variates, linear combi11ations of metrics, were also derived from the metrics variables.

Canonical variates summarize between-class variations [SAS 1990]. Due to very limited

number of samples for each group (i.e., 4 to 10), cross-validation was specified in CDA

analysis. So each program was classified by the discriminatory rule that was computed

after the sample was deleted from the data set. In this way, samples would not affect thelr

own classification and hence a realistic estimation of perfonnance would be obtained

[SAS 1990]. Classification accuracy was calculated as the percentage of correctly

allocated samples.
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4.4 Data Sets

Since one Java program may involve more than two source files, each sample can

be either one Java source file, or all the Java source files for each compilation in which

the main function is compiled. So there are two approaches. Also, contributive variables

can be extracted either manually or automatically. Thus, four data sets and four

corresponding result sets were obtained. The data sets were labeled A, B, C, and D, as

shown in Table 4.2.

Table 4.2 Four data sets of different data treatments

Sample Source Variable Selection Method

Each Java source file as a
sample

All Java source files for each
compilation as a sample

Manually

A

B

Stepwise Discriminant Analysis

C

D

When each Java source file is treated as a sample, the total number of samples is

259. When a sample is associated with one compilation, the total sample number is 225.

To capture and reflect the difference, another metric was added to the variable set. The

metric was FPC (File Per Compilation) that represents the number of Java source files per

compilation. For individual metrics, its values might miss in some cases. For instance,

n1etrie PROSe is tl1e perce11tage of "if' in total of "if' alld "else", as shown in Table 3.2.

If a program did not use any "if' or "else", the value of PROSc would miss for the

program since the denominator would be zero.
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4.5 Results and Discussion

Table 4.3 shows the selected metric sets after the variable selection process. In

general, similar metric sets were selected by both approaches (i.e., based on source files)

of variable selection. Most variables chosen by one method (i.e., either manual or

automatic) were also selected by the other method. Nevertheless, the small difference

between the two variable sets reflects different philosophies behind the two variable

selection approaches. In manual variable selection, the process was static and thus no

statistical information would change after a metric was included. In contrast, selection by

SDA was dynamic and thus the selection of a variable would alter the significance of the

remaining variables, because the correlation and interaction among the variables were

taken into account.

To show the difference between the two approaches (i.e., based on source files),

one example might be the selection ofmetrics STYla (percentage of open braces ({) that

are along a line), STYlb (percentage of open braces ({) that are the first character in a

line), and STYlc (percentage of open braces ({) that are the last character in a line) in

data sets A and C. In both data sets A and C, each Java file was treated as a sample. The

difference is that in data set A, variables were selected manually but in data set C,

variables were selected automatically. For data set A, one-way ANOVA was performed

and the results showed that the F values of STYla, STYlb, and STYlc were 72.8, 13.7,

and 80.3, respectively. Although all of them were below the e11try level of significance,

only two of them could be included since one can be derived from the other two, as

indicated in Table 4.1. Pearson's correlation revealed that STY1a was highly correlated
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with STYlc (R==O.932 and P<O.OOl). Thus STYle and STYlb were manually selected

for data set A.

During automatic selection by SDA for data set C, STYlc was first selected since

its F value was the highest. The selection of STYle decreased tIle F value of STYla

dramatically to 14.8 and increased the F value of STYlb a little bit to 14.8. Subsequent

inclusion of other variables also altered the perfonnance of STYla and STYlb in the

discrimination. The final result was that STYla retained in data set C but STY1b was

discarded. Thus STYla and STYle were automatically selected for data set C.

In Table 4.3, it was also observed that the total number of selected variables for

data sets C and D (in which, variables were selected automatically) were higher thaIl

those for data sets A and B (in which, variables were selected manually). In other words,

stepwise discriminant analysis retained more metrics than manual selection. This might

be due to the different procedures of the two variable-selection methods.

For all data sets, metric PR05d was excluded because of too many mISSIng

values. It indicates that statements with "switch" and "case" were seldom used in the data

source. Another metric, PSM7i, was discarded due to the constancy of its values, i.e., the

values were all zeros. It seems that the keywords "native" were not used in the data

source.

For both data sets Band D, metric FPC, i.e., files per compilation, was selected. It

in1plies that separating a program into a number of source files might be a good piece of a

programmer's fingerprint.
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Table 4.3 Selected metric sets for the four data treatments (for explanation/detail on the
first column metrics, refer to Tables 3.1,3.2, and 3.3)

Data Treatments
Metrics A B C D
FPC # + +
STY1a + +
STY1b + +
STY1e + + + +
STY1d +
STY1e + + + +
STY1f + + +
STY1g + + + +

STY1h + + + +
STY2a + + + +
STY2b + + + +
STY3 + + + +

STY4 + + + +
STY5 + + + +
STY6 + + + +
STY? + + + +
STY8 + + + +
PR01 + + + +

PR02a + + +
PR02b + + + +

PR03a + + +
PR03b + + + +
PR03e

PR03d + + + +
PR04a +
PR04b +

PR04e + + + +
PR05a +
PR05b +
PROSe + + + +

PR05d*

PSM1 + + + +

PSM2 +
PSM3 + + + +
PSM4 + +
PSM5 + +
PSM6 + + + +
PSM7a + +
PSM7b + + + +
PSM?e + + + +
PSM7d + + + +

continued on next page
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Table 4.3 Selected metric sets for the four data treatnlents (for explanation/detail on the
first column metrics, refer to Tables 3.1,3.2, and 3.3) (continued)

Data Treatments
Metrics A B C D
PSM7e
PSM7f

PSM7g

PSM7h
PSM7i*

PSM7j

PSM7k

PSM71
PSM7m

PSM7n
PSM70

PSM7p
PSM7q

PSM7r
PSM7s
PSM7t
Total number of
selected metrics

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
45

+
+
+
+

+
+
+
+

+
+
+
+
+

41

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
46

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+

48

#: FPC: The number of Java source files per compilation when a sample was associated
with one compilation.

*: PR05d was excluded due to too many missing values, PSM7i was constant because
the variations of its values were zeroes.

+: Checked variables were selected.
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Table 4.4 lists the classification accuraCIes of discrimiant analysis. The

classification accuracies were calculated with the selected metrics, or the derived

canonical variates. The total number of canonical variates which were derived was equal

to the number of selected metrics for the discriminant allalysis. However, it is often the

case that initially several canonical variates summarized the majority of between-group

variations. To be a little conservative, first 20 canollical variates were used in the

discriminant analysis, and they summarized over 97% of the between-group variations.

The canonical correlations of canonical variates after the 20th with groups were

insignificant (P<O.15) for all data sets.

As shown in Table 4.4, based on the original metric values, the authorship of

62.6-67.2% of Java source files could be assigned correctly to their 46 original authors.

With the derived canonical variates, the percentages could be higher, up to 85.8%. This

indicates that the authorship identification was effective and those metrics were

contributive.

When each compilation was treated as one sample, in data sets Band D, the

classification accuracies were higher than those when each Java source file was used as a

sample, in data sets A and C. For the case of each source file as a sample, the variation of

the metric values tends to increase within groups. One example of the reason could be

that some files were short while some others were relatively long. However, treating each

source file as a sample did not enlarge the between-class variation since the data source

in each group did not change. Consequently, increased \vithin-class variation would

surely reduce the discriminant ability between groups and result in less classification

accuraCIes.
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No difference was revealed between the classifications with the original metric

sets selected by the two approaches (i.e., manual and automatic selection). The

classification accuracies were 62.7% and 67.2% when the metrics were selected manually

while those values were 62.6% and 66.6% when the metrics were chosen by SDA.

However, the two approaches of variable selection (i.e., manual and automatic) affected

the classification results when canonical variates were used. In Table 4.4, it was observed

that the highest classification accuracy of data set C, 80.0%
, was higher than that of data

set A, 77.6%. So was the highest classification accuracy of data set D, 85.80/0, compared

to that of data set B, 82.5%. It implies that SDA retained more between-class variations

than the manual selection of the metrics.

To measure how much the between-class variation was kept in the metrics

selected by SDA, a discriminant analysis with all of the metrics was perfonned. The

result showed that the classification accuracy was 64.3% with the original metrics, and

the best classification was 82.6% with the canonical variates in the case of each Java

source file considered as one sample. When each compilation was treated as one sample,

the classification accuracies were 66.2% with the original metrics and up to 87.0% with

the canonical variates, respectively. Comparing the classification accuracies with those

obtained for data sets C and D, it is evident that SDA retained almost all of the between

class variations in the data source.

In classifications with high accuracies, Java programs from the Internet shareware

sources and from a fellow graduate student were all correctly assigned to their own

classes. However, misclassification occurred frequently among the Java programs from

computer science classes. The levels of the programmers taking the same computer
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science course might be very similar. Moreover some example pseudo codes may have

been given by the instructors or in the respective textbooks. These factors would no doubt

reduce the between-class variations and increase the difficulty of authorship

identification. The results imply that the classification would be more efficient if the

diversity of data sources increases.

Table 4.4 Classification accuracies (%) with selected metrics and derived canonical

variates (CY) (as in Table 4.3, also for details on the data sets, see Table 4.2)

Data Sets
Variables A B C D
Selected
metrics 62.7 67.2 62.6 66.6

CYI 19.8 17.7 18.6 16.1
CYl-2 41.0 39.0 41.3 38.2
CYl-3 52.1 51.0 54.3 54.1
CYl-4 57.5 60.6 57.3 61.9
CYl-5 64.1 67.7 65.1 66.2
CYl-6 66.4 72.1 69.0 72.6
CY1-7 70.7 76.1 71.5 75.8
CYl-8 71.6 76.8 70.7 78.1
CYl-9 71.7 78.7 72.9 81.6
CY1-10 70.6 79.5 73.7 82.0
CYl-ll 70.8 78.2 72.3 84.4
CVl-12 72.6 80.2 74.5 85.2
CYl-13 76.0 81.1 79.2 84.4
CY1-14 76.5 80.2 79.7 85.8
CYl-15 76.9 82.0 79.6 85.8
CYl-16 77.1 81.2 80.0 85.4
CYl-17 77.6 81.6 77.8 84.9
CV1-18 77.0 81.6 78.2 84.4
CVl-19 77.0 82.5 78.4 84.9
CVl-20 76.9 81.9 78.8 83.9

Note: Classification accuracy was calculated as the percentage of correctly allocated
samples.

To detennine which metrics contributed more to the classification, the

con1positions of canonical variates vvere examined. Figure 4.1 displays the changes of
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classification accuracy after a canonical variate was added to the classification model.

The change represents the contribution of the added canonical variate to the classification

because all canonical variates are orthogonal to one another. It was shown in Figure 4.1

that most of the contribution came from the first several (especially the first 5) canonical

variates. This agrees with the results shown in Table 4.4 that the classification accuracies

with the first 5 canonical variates exceeded those obtained with the original metrics.

CV1 CV2 CV3

--+-A
B

--,.-- C
~D

nth Canonical Variate

Figure 4.1 Contributions of individual canonical variates to the classification. A, B, C,

and D refer to the data sets as described in Table 4.2. CVi represents the i th

canonical variate. The numbers on y axis stand for the percentage changes

of classification accuracy after adding a canonical variate into the

discriminant analysis.

Figures 4.2 and 4.3 show the canonical structure of the first five canonical

variates for data sets A and C, respectively. The canonical structures were not be affected

by the order how the metrics are listed in the figures. The canonical structure coefficients

reveal how important each metric is for the canonical variate [SAS 1990]. Generally, the

layoLlt tnetrics played a more important role in the classifications than the style and
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structure metrics. In the first canonical variate (CVl), the n1etric STY 1c was very

important. More metrics including STYlc, STYle, STYlf, STYlg, STYlh STY2a,

STY2b, STY3, STY5, PR02b, PSM5, PSM7e, and PSM71 were importal1t for CY2. CV3

could be interpreted roughly as STY4 + STY5 while CV5 could be expressed as STYlg

STYlh. STY3 was important in CY4. However, contributions from the other n1etrics

could not be neglected.

Sinlilar canonical structures were revealed for data set B, C, and D. From the

canonical structures, the effectiveness of the metrics selection process might be revealed.

As discussed before (see Section 4.5), manual selection chose STY} b and STYle for data

set A but SDA selected STYla and STYle for data set C, among STYla, STYlb, and

STYlc. In canonical structures, as shown in Figures 4.2, STYlb was not important for

the first essential canonical variates. In contrast, STY1a had much higher coefficients for

the first several canonical variates of data set C, as shown in Figures 4.3. As a

consequence, it is hard to conclude that selection of STYla resulted in a better

classification for data set C.
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coefficients range from 1.0 to -1.0 and reveal how important each metric is.

The higher the absolute value of the coefficient, the more important the metric

is for the canonical variate [SAS 1990] (continued on next page),
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CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

The thrust of this thesis work was to extract Java program metrics for authorship

identification. Chapter I introduced the importance and possibility of authorship

identification.

Chapter II reviewed the literature of authorship analyses. The reviewed aspects

included target computer languages and metrics which were extracted for that purpose.

In Chapter III, the features of computing language Java were analyzed. A set of

56 metrics of Java programs was proposed for authorship analysis. Forty six groups of

programs were diversely collected. The metric values were calculated with a computer

program designed and implemented by the author.

In Chapter IV, the metric values were analyzed and the results were discussed.

Metrics vvere selected for the classification purposes according to their significance.

Classifications were perfonned on the extracted metrics with the derived canonical

variates using a statistical procedure called canonical discriminant analysis. Classification

accuracies were compared in aspects of sample sources and metric selection methods. To
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explain the contribution of each nletnc to the classification, canonical structure

coefficients were explored.

In conclusion, the authorship identification was effective and the extracted

metrics were contributive. A set of metrics was proven contributive to the authorship

identification. Among these metrics, outstanding metrics were STYle (percentage of

open braces ({) that are the last character in a line), STYlg (average indentation in white

spaces aftEr open braces ({)), STYlh (average indentation in tabs after open braces ({)),

STY3 (percentages of condition lines where the statements are on the same line as the

condition), STY4 (average white spaces to the left side of operators), and STY5 (average

white spaces to the right side of operators), etc. Thus, this study not only provided a set of

contributive metrics but also added another approach of problem solving for authorship

identification.

5.2 Future Work

Authorship identification is a very broad project. TIle work that was dOlle in this

thesis is a small part of it. Suggestions for future work include conducting a controlled

experiment to test the extracted metrics using more programmers at more diverse

programming levels and with more diverse experiences. Also more metrics could be

extracted and tested for the classification models. Such metrics include classic measures

such as McCabe's cyclomatic complexity metric [McCabe 1976].

Finally, much more work is expected to establish a powerful real system for

authorship identification with a large database. After searching the database with a set of

44



metric values that are obtained from a progranl the result will list a list of programmers

in an order of likelihood of having written the program.
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ANaYA

Author

Authorship
Identification

CDA

CY

F Value

IDENTIFIED

LaC

MFC

NCLOC

ODBC

APPENDIX A

GLOSSARY

Analysis of variance, a statistical procedure where a response or
dependent variable is measured under experin1ental conditions
ide11tified by classification or independent variables [SAS 1990].

One who designs, writes, and tests pieces of computer code.

Detennining the likelihood of a particular author having written some
pieces of code, usually based on other code samples from the same
programmer.

Canonical Discriminant Analysis, a statistical procedure to find the
linear combinations of the quantitative variables that best summarize
the differences among the classes [SAS 1990].

Canonical Variate, linear combination of the quantitative variables that
summarizes the differences among the classes.

A statistical ratio of mean squares (variations) between groups to mean
squares (variations) within groups.

Integrated Dictionary-based Extraction of Non-language-dependent
Token Information for Forensic Identification, Examination, and
Discrimination, a metric extraction system developed by Gray and his
colleagues [Gray et al. 1998].

Number of lines of code, a software metric.

Microsoft Foundation Class Library, a collection of classes that are
\vritten in C++ and can be used in building application programs. The
MFC Library saves a programmer time by providing code that has
already been written. MFC Library included classes for graphical user
interface elements such as \vindows, frames, menus, tool bars, and
status bars.

Number afnon-comment lines of code, a software metric.

Open DataBase Connectivity, a standard method of sharing data
bctvvcen databases and otller progran1S.
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Programnling
Style

SDA

Software
Forensics

V(G)

A distincti e or characteristic Inanner present in conlputer programs
written by a programmer.

Stepwise Discriminant Analysis, a statistical procedure to find a subset
of quantitative variables that best reveals differences anl0ng the classes.

An area of software science that aims at authorsh·p analysis of
computer source code. It is the use of measurement extracted from
software source code or object code for legal or official purposes.

McCabe's Cyclomatic Complexity Number [McCabe 1976].
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APPENDIXB

PROGRAMS FOR CANONICAL DISCRIMINANT ANALYSIS (CDA) AND

STEPWISE DISCRIMINANT ANALYSIS (SDA) WITH SAS (VERSION 8)

CDA Processes

/*
Before the procedure, an Excel file contaInIng the metrics values was imported as
dataset_file. The CDA processes first perfonn a discriminant analysis with the metrics,
and then discriminant analyses with the first 20 canonical variates that were derived from
the metrics.
*/

proc discrim can data==dataset file crossvalidate pool==yes crosslisterr out==output
ncan==20;
class pn;
var /*variables for the analysis such as*/ STYlb STYld STYle STYlg STYlh;
run;

proc discrim data==output list crosslist method==nonnal;
class pn;
var canI;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var call} can2 ;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var can 1 can2 can3 ;
run;
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proc discrim data==output list crosslist method==normal;
class pn;
var can 1 can2 can3 can4 ;
run;

proc discrim data==output list crosslist method==J1onnal;
class pn;
var can I can2 can3 can4 can5 ;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var can 1 can2 can3 can4 canS can6;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var cani can2 can3 can4 can5 can6 can7;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var can 1 can2 can3 can4 canS can6 can7 can8 ;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var can I can2 can3 can4 canS can6 can7 can8 can9 ;
run;

proc discrim data==output list crosslist method==nonnal;
class pn;
var cani can2 can3 can4 can5 can6 can7 can8 can9 caniO ;
run;

proc discrim data==output list crosslist method==nonnal;
class pn;
var can 1 can2 can3 can4 can5 can6 can7 can8 can9 can I0 canI1 ;
run;

proc discrim data==output list crosslist method==nonnal;
class pn;
var can I can2 can3 can4 canS can6 can7 can8 can9 canlO canil can12 ;
run;
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proc discrim data==output list crosslist method==nom1aI;
class pn;

var can I can2 cal13 can4 canS can6 can7 can8 can9 can10 can11 can12 can 13 .,
run;

proc discrin1 data==output list crosslist method==nonnal;
class pn;

var can I can2 can3 can4 canS can6 can? can8 can9 caniO canI1 can12 canI3 can14 ;
run;

proc discrim data==output list crosslist method==nonnal;
class pn;
var cani can2 can3 can4 canS can6 can? can8 can9 canIO canll can12 canl3 canI4
canI5;
run;

proc discrim data==output list crosslist method==nonnal;
class pn;
var canI can2 can3 can4 can5 can6 can7 can8 can9 canlO canil can12 canI3 can14
canI5 can16;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var cani can2 can3 can4 canS can6 can7 can8 can9 canIO canII canl2 canI3 can14
canIS canl6 canl7;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var can1 can2 can3 can4 can5 can6 can7 can8 can9 can 10 can 11 can 12 can 13 can14
can 15 can16 canI7 canl8;
run;

proe discrim data==output list crosslist method==normal;
class pn;
var canI can2 can3 can4 canS can6 can7 can8 can9 canlO canll canI2 canI3 can14
canIS canI6 canI7 canI8 can19;
run;

proc discrim data==output list crosslist method==normal;
class pn;
var can1 can2 can3 can4 canS can6 can7 can8 can9 can 10 can 11 can12 can 13 can14
canI5 can16 canI7 canI8 canI9 can20;
run;
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SDA Processes

/*
Stepdisc is a procedure of variable selection. Variables depending on a class variables are
selected according to their contributions to the variation among the classes.
Stepforward (method==FW) add variables one by one into the variable set until no
significant variables are available.
Stepbackward (method==BW) selects all variables and then renlove variables one by one
from the set until no variable is not significant.
*/
proc stepdisc data==metric_dataset method==FW;
class pn;
var /*variables for the analysis such as*/ STYI b STYld STYle STYlg STYlh ;
run;
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APPENDIX C

SELECTED PROGRAM LISTINGS OF THE WINDOWS APPLICATIO FOR
METRICS EXTRACTION

Follows list all C++ head files and source files in the implementation of the
Window Application for the metrics extraction with Microsoft Visual Studio 6.0.

AddMetrics.h
Indent.h
MainFnn.h
MetricsSet.h
Resource.h
StdAfx.h
ThesisProject.h
ThesisProjectDoc.h
ThesisProjectView.h

AddMetrics.cpp
Indent.cpp
MainFrm.cpp
MetricsSet.cpp
ThesisProject.rc
StdAfx.cpp
ThesisProject.cpp
ThesisProj ectDoc.cpp
ThesisProjectView.cpp

The total number of Head files (.h) is 9 and total number of Source files (.cpp) is
8. There are also four resource files and one readme file. The Total number of lines in the
source files is approximately 5,000. The source code of ThesisProjectDoc.cpp that
extracts metrics is listed as follows.

// ThesisProjectDoc.cpp: implementation of the CThesisProjectDoc class
//deal with the extraction of metrics from text code.

#include "stdafx.h"
#include "ThesisProject.h"
#include <string.h>
#include "ThesisProjectDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS FILE[] FILE
#endif

IMPLEMENT_DYNCREATE(CThesisProjectDoc, CDocument)

BEGIN MESSAGE MAP (CThesisProjectDoc, CDocument)
-ON_COMMAND (ID_DATABASE_ADD, OnDatabaseAdd)

END MESSAGE MAP()
- -

// CThesisProjectDoc construction/destruction

CThesisProjectDoc: :CThesisProjectDoc()
{

// TODO: add one-time construction code here
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fileName = "";
fileOpened = false;
loginld = "";
program_number = 0;
codeLines = 0;
blankLines = 0;
m_pMetricsSet NULL;

//comment variables
pureComment= 0; /*lines begin with // or /*, only spaces are

allowed before it*/
inlineComment= 0; //lines of comment after a code statement
blockEndComment= 0; //a kind of inline comment, }// ... or }/* ...
slashComment= 0; /*lines of comment with //. this is to detn

preference of // or /* */
slashStarComment= Oil/lines of comment with /*

//curly bracket style counts
pureOpenCurly= 0; //line of open curly brackets alone a line
beginWithOpenCurly= 0; //lines begin with open curly brackets,
endWithOpenCurly= 0; /*lines ending with open curly brackets,

after spaces ok */
pureCloseCurly= 0; //line of close curly brackets alone a line
beginWithCloseCurly= 0; /*lines begin with close curly brackets,

spaces are allowed before. not inlude alone a line*/
endWithCloseCurly= 0; /*lines ending with close curly

brackets/spaces are allowed after. not inlude alone a line*/
//indentation of lines just after open curly bracket

//indentation of line after if/else/while/for/switch/case without {
decisionSameLine= 0; / /condition and statement code are at same

lines
decisionSeparateLine= 0;//

//operator separation spaces;
operatorCount= O;/*number of operators, operators: +-*/%= and +=

/= %= and ==*/
beforeSpace= 0; //spaces before operator
afterSpace= Oil/spaces after operator

//variable and subroutine counts
variableCount= O;//toatl variables declared

subroutineCount= Oil/number of subroutine count
//identifier length

variableNameLength= Oil/total length in characters.
functionNameLength= O;/*/toatl length in char. */
I/chracter count. this is to detn preference of nameAfter or name after

upcaseCount= O;//upcase characters
lowercaseCount= 0; //lowercase
underscoreCount= Oil/underscore
dollarSignCount= Oil/underscore

//keywords count, structure preference
forCount= Oi
whileCount= 0;
doCount= 0; /*percentage of above three can detn preference of

for while or do*/
ifCount= 0;
elseCount= 0;
s\,."itchCount= OJ
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delete m-pMetricsSet;

return *m_pMetricsSet;

caseCount=O; Ilpercentageof above detn preference of if else or
switch case
Ilfollowing keywords are based on code line number

staticCount= 0;
extendsCount= 0;
classCount= 0;
abstractCount= 0;
finalCount= 0;
implementsCount= 0;
importCount= 0;
instanceofCount= 0;
interfaceCount= 0;
nativeCount= 0;
newCount==O;
packageCount= 0;
privateCount= 0;
protectedCount= 0;
publicCount= 0;
superCount= 0;
tryCount= 0;
catchCount= 0;
thisCount= 0;
throwCount= Oillinclude throw and throws

slashStarFlag = false;

Iidestructor
CThesisProjectDoc: :-CThesisProjectDoc()
{

}

Ilfor database
MetricsSet& CThesisProjectDoc: :GetMetricsSet(void)
{

}

Ilreceive a line and find the last open curly bracket
bool CThesisProjectDoc: :findLastOpenCurly(const CString& cstr)

Iluse a DFA to solve
Ilinput: {, I, *, space, others
Iistates: 0-5 in which 1 and 4 are accepted states

1*
0-->0: space, * and others
0-->1: {

0-->2: I
1-->1: space and {
1- - >3: I
1-->5: * and others
2-->1: {

2-->5: I or *
2-->0: space and others
3-->1: {

3-->4: / or *
3-->5: space and others
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input = 0;
, I ,) input 1;

'*') input 2;
') input 3;

'\n') input = 4;

4-->4: all
5-->5: all
*1

int i = 0, length = cstr.GetLength();
int state = 0, input = 0;
int tab I e [6 ] [6] = {{ 1 , 2 , 0 , 0 , 0 , 0 } ,
{l,3,S,l,S,l},
{1,5,5,O,O,2},
{1,4,4,5,5,3},
{4,4,4,4,4,4},
{S,S,S,S,S,S}};
while (i<length) {

if (cstr[iJ == '{')
else if (cstr[i]
else if (cstr [i]
else if (cstr[i]
else if (cstr[iJ
else input = 5;
state = table [state] [input] ;
i++;

}
if (state == 1 II state
return false;

4) return true;

Ilreceive a line and find the last open curly bracket
baal CThesisProjectDoc: :findLastCloseCurly(canst CString& cstr) {

Iluse an DFA to solve
Ilinput: {, I, *, space, others
Iistates: 0-5 in which 1 and 4 are accepted states

1*
0-->0: space, * and others
0-->1: {
0-->2: I
1-->1: space and {
1-->3: I
1-->5: * and others
2-->1: {

2-->5: I or *
2-->0: space and others
3-->1: {

3-->4: I or *
3-->5: space and others
4-->4: all
5-->5: all

*1
int i = 0, length = cstr.GetLength();
int state = 0, input = 0;
int tabIe [6 J [6] = {{ 1 , 2 , 0 , 0 , 0 , 0 } ,

{1,3,5,l,5,1},

{l,S,S,O,O,2},
{l,4,4,5,S,3},
{4,4,4,4,4,4} ,

{S,s,S,S,S,5}};
Nhile (i<length) {

if (cstr [iJ == ,} I) input 0;
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II') input
'*1) input

1) input
'\n') input

else
else
else
else
else
state
i++;

if (cstr [i]
if (cstr [i]
if (cstr [i]
if (cstr [i]
input = 5;
= table [state] [input] ;

1 ;
2 ;

3 ;
= 4;

}
if (state == 1 II state
return false;

4) return true;

II TODO: add storing code here

II TODO: add loading code here

Ilopen database here
BOOL CThesisProjectDoc: :OnNewDocument()
{

if (!CDocument: :OnNewDocument())
return FALSE;

II TODO: add reinitialization code here
II (SDI documents will reuse this document)
if (m pMetricsSet== NULL) {

II Create the odbc set.
m_pMetricsSet = new MetricsSet(&ffi_DB);
II Get the default connection string
CString connectStr = m_pMetricsSet->GetDefaultConnect();
II Open the database.
m_DB.Open(NULL, FALSE, FALSE, connectStr, FALSE);
II Open the ODBC set
m_pMetricsSet->Open() ;

}

return TRUE;

II CThesisProjectDoc serialization

void CThesisProjectDoc: :Serialize(CArchive& ar)

if (ar.IsStoring())
{

}
else
{

}

II CThesisProjectDoc diagnostics

#ifdef DEBUG
void CThesisProjectDoc: :AssertValid() const

CDocument: :AssertValid();

void CThesisProjectDoc: : Dump (CDumpContext& de) canst
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CDocument: : Dump (dc) ;
{

}
#endif //_DEBUG

//open a source file and get metrics
BOOL CThesisProjectDoc: :OnOpenDocument(LPCTSTR lpszPathName)
{

if (!CDocument: :OnOpenDocument(lpszPathName))
return FALSE;

fileName = lpszPathNamei//copy file name
//reset metrics to default values

fileText.clear() ;
loginld = ""i
program_number = 0i

codeLines = Oi
blankLines = Oi
pureComment= 0; /*lines begin with // or /*, only spaces are

allowed before it*/
inlineComment= 0; //lines of comment after a code statement
blockEndComment= 0; //a kind of inline comment, }// ... or }/* ...
slashComment= 0; /*lines of comment with / /. this is to detn

preference of // or /* */
slashStarComment= Oil/lines of comment with /*

//curly bracket style counts
pureOpenCurly= 0; //line of open curly brackets alone a line
beginWithOpenCurly= 0; //lines begin with open curly brackets,
endwi thOpenCurly= 0; / *lines ending wi th open curly

brackets/spaces are allowed after. not inlude alone a line*/
/*spaces are allowed before. not inlude alone a line, use

trimming space*/
pureCloseCurly= 0; //line of close curly brackets alone a line
beginWithCloseCurly= 0; /*lines begin with close curly brackets,

spaces are allowed before. not inlude alone a line*/
endWithCloseCurly= Oi /*/lines ending with close curly

brackets/spaces are allowed after. not inlude alone a line*/
//indentation of lines just after open curly bracket

//indentation of line after if/else/while/for/switch/case without {
decisionSameLine= 0; /*condi tion and statement code are at same

lines*/
decisionSeparateLine= 0;//

//operator separation spaces;
operatorCount= Oi/*number of operators, operators: +-*/%= and +=

/= %= and == */
beforeSpace= 0; //spaces before operator
afterSpace= Oil/spaces after operator

//variable and subroutine counts
variableCount= Oi//toatl variables declared

subroutineCount= Oil/number of subroutine count
//identifier length

variableNameLength= oil/total length in characters.
functionNameLength= O;/*toatl length in char. */
//chracter count. this is to detn preference of nameAfter or name after

upcaseCount= Qi//upcase characters
lowercaseCount= 0; //lowercase

62



underscoreCount= Oil/underscore
dollarSignCount= Oil/underscore

I/keywords count, structure preference
forCount= 0;
whileCount= 0;
doCount= 0; / *percentage of above three can detn preference of

for while or do*/
ifCount= 0;
elseCount= 0;
switchCount= 0;
caseCount = O;I*percentageof above detn preference of if else or

switch case*/
//following keywords are based on code line number

staticCount= 0;
extendsCount= OJ

classCount= 0;
abstractCount= OJ

finalCount= 0;
implementsCount= 0;
importCount= 0;
instanceofCount= 0;
interfaceCount= 0;
nativeCount= 0;
newCount=O;
packageCount= 0;
privateCount= 0;
protectedCount= 0;
publicCount= 0;
superCount= 0;
tryCount= OJ

catchCount= OJ

thisCount= 0;
throwCount= O;/Iinclude throw and throws

slashStarFlag = false;
extractMetrics(fileName) ;
return TRUE;

//extract metrics and called by openDocument
void CThesisProjectDoc: :extractMetrics(CString& filename)

// open and read file
ifstream in(fileName, ios: :inlios: :nocreate);
char str[512]; II, name [256] , current [256] ;
CString cstr;
if (in.bad()) {I/give a message if file error

AfxGetMainWnd()->MessageBox(fllnput file
MB_OKIMB_ICONEXCLAMATION) ;

return
}
fileOpened = true;
while (in) {

in.getline(str, 512);
cstr.Format(l%s", str);
fileText.push_back(cstr) ;
CString cstrl(cstr);
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cstr.TrimRight() ;
cstr.TrimLeft() ;
if (cstr.GetLength()==O)

blankLines++;
continue;

}
else codeLines++;

Ilfor indentation
int k = findOpenCurly(cstr);
if (k>O)

addIndentMem(cstr1, findOpenCurly(cstr));
else if (k<O) Iidelete indent from memeory

for (int n=O; n>k; n--)
indentMem.pop_back() ;

if (!indentMem.empty()) addIndent(cstr1);
Ilcondition word count and whether same line with statement

conditionCount(cstr) ;
IloperatorSpace: before and after operators

operatorSpace(cstr) i

Ilvariable counts and length
variableHandle(str) ;

Ilupper, lower, underscore case count
caseHandle(cstr) ;
keywordHandle(cstr) ;

Ilfor curly styles
if (cstr.Compare("{")==O) pureOpenCurly++;
else if (cstr.Compare("}")==O) pureCloseCurly++;
else {

if (cstr[O]==' {') beginWithOpenCurly++; Iinot include
pure curly lines

else if (findLastOpenCurly (cstr)) endwi thOpenCurly++;
II such as .. . }II, but not include pure curly lines

if (cstr[O]=='} ') beginWithCloseCurly++;
else if (findLastCloseCurly(cstr))

endWithCloseCurly++;
}

if (cstr.GetLength() >1)
if (slashStarFlag) pureComment++;
else if (cstr [0] == I I I && cstr [1] == 1/ r )

{ pureComment++; slashComment++;}
else if (cstr [0] ==' I' && cstr [1] == I * I )

{pureComment++; slashStarComment++;
if (findStarSlash (cstr)) slashStarFlag

Ilfind after 1*
else slashStarFlag = true;

false;

}
else if (findSlashSlash(cstr))
{inlineComment++;slashComment++;}llfind first
else if (findSlashStar (cstr)) {

inlineComment++;slashStarComment++;
if (! findStarSlash (cstr)) slashStarFlag = true;

Ilfind after 1*
else slashStarFlag = false;
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}llfind first

}llend of if
Iitake care of 1* and *1
flagSlashStar(cstr) ;

}llend of while

in.close() i

Ilfind II style
bool CThesisProjectDoc: :findSlashSlash(CString& cstr)
{

Ilif II is beturn 1* and *1 then is false
int i = cstr.GetLength();
int j = 0;
bool slashStar = false;
while (j < i-I) {

if (cstr[j]=='I' && cstr[j+1] == '*') slashStar = true;
else if (slashStar && cstr[jJ=='I' && cstr[j+1] ,*,)

slashStar = false;
else if ((!slashStar) && cstr[j]=='/1 && cstr[j+1J == 'I')

return true;
j++;

}
return false;

Ilfind 1* style
bool CThesisProjectDoc: :findSlashStar(CString& cstr)
{

Ilif II is beturn 1* and *1 then is false
int i cstr.GetLength() i

int j 0 ;

while (j < i-I) {
if (cstr [j] ==' I 1 && cstr [j +1] == I * I) return true i

else if ( cstr[j]==I/' && cstr[j+1] == 'II) return false;
j++i

}
return false;

Ilfind *1
bool CThesisProjectDoc: :findStarSlash(CString& cstr)
{

Ilif II is beturn 1* and *1 then is false
int i cstr.GetLength();
int j 0;
while (j < i-I) {

if (cstr[jJ=='*' && cstr[j+1] == 'I') return true;
else if ( cstr[j]=='I' && cstr[j+1] == 'I') return false;

j ++ i

}
return false;
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Ilfind {
int CThesisProjectDoc: :findOpenCurly(const CString& cstr)

bool slashStar = slashStarFlag, slsl = false;
int open = 0, close = 0;
int i =- cstr.GetLength();
int j = 0;
while (j < i-I) {

if (cstr[j] == ,{, && (!slashStar)) open++;
if (cstr [j] == ,}, && (! slashStar)) close++;
if (cstr[j]=='*' && cstr[j+1] == 'I')

if (slashStar) slashStar = false;
else if (cstr[j]=='/' && cstr[j+1] == ,*,)

if (tslashStarFlag) slashStarFlag = true;
else if ( cstr [j] ==' I 1 && cstr [j +1] == 'I')

{ slsl = true; break;}
j ++;

}
if (cstr[i-l] == '{I && !slsl) open++;//last char is {
else if (cstr[i-l] == ,}, && !slsl) close++;lllast char is
return (open - close);

Ilremember indentation
void CThesisProjectDoc: :addlndentMem(const CString& cstr, int k)

if (k<=O) return;
int space=O, tab=O;
int i = cstr.GetLength();
int j = 0;
while (j < i) {

if (cstr[j]==1 r) space++;
e 1 s e i f (cst r [j] == '\ t I) tab++ ;
else break;
j ++;

}
indentStructure ind;
ind.indentSpace = space;
ind.indentTab = tab;
for (j= 0; j<k; j++)

indentMem.push_back(ind) ;

//add indentaiton
void CThesisProjectDoc: :addlndent(const CString& cstr)

int space=O, tab=O;
int i = cstr.GetLength();
int j = 0;
whi Ie (j < i ) {

if (cstr[j]==' I) space++;
else if (cstr[j] == '\t 1

) tab++;
else break;
j++;

} ) .
indents.indentSpace += space-indent~em.back( .lndentSpace;
indents.indentTab += tab-indentMem.back() .indentTab;
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indents.indentLine++;

Iiset flag of 1* status
void CThesisProjectDoc: :flagSlashStar(canst CString& cstr)

int i = cstr.GetLength() i

int j = 0;
while (j < i-I) {

if (cstr[jJ=='*' && cstr[j+1J == 'I')
if (slashStarFlag) slashStarFlag = false;

else if (cstr[j]=='I' && cstr[j+l] == 1*')

if (!slashStarFlag) slashStarFlag = true;
else if ( cstr[j]=='I' && cstr[j+l] == 'I') return;
j ++;

I/count condition statements
vaid CThesisProjectDoc: :conditionCaunt(canst CString& cstr)

bool forFlag = false, otherFlag = false;
int i = cstr.GetLength();
int j = 0;
if (i>=2 && cstr [0] ==' i' && cstr [1] == 'f')

{ifCount++i otherFlag=truei}
else if (i>=2 && cstr[OJ=='d' && cstr[l]== la')

{docaunt++;otherFlag=true;}
else if (i>=3 && cstr[OJ=='f' && cstr[l]== '0' && cstr[2]=='r')

{forCount++;forFlag = true;}
else if (i>=4 && cstr[O]=='e' && estr[l]== '1' && cstr[2]=='s' &&

cstr[3]=='e')
{elseCount++iotherFlag=truei}

else if (i>=4 && estr[O]=='c' && cstr[l]== 'a' && estr[2]=='s' &&
cstr[3]=='e')

{caseCount++;otherFlag=truei}
else if (i>=5 && cstr[O]=='w' && cstr[l]== 'h' && cstr[2]=='i' &&

cstr[3]=='l' && cstr[4] == 'e')
{whileCount++;otherFlag=truei}

else if (i>=5 && cstr[O]==ls' && cstr(l]== 'w' && cstr[2J=='i' &&
estr[3]=='t' && cstr[4] == 'e' && cstr[S] == 'hi)

{switchCount++;otherFlag=true;}

if (otherFlag && (findSemieolon(estr»O))
decisionSarneLine++;

else if (forFlag && (findSemicolon(estr»2))
decisionSameLine++;

else if (forFlag I I otherFlag)
decisionSeparateLine++;

I/find ; for variable count
int CThesisProjeetDoc::findSernicolon(const CString& cstr)

int sernie = 0;
bool slashStar = false;
int i = cstr.GetLength();
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int j = 0;
while (j < i-I) {

if (cstr [j J == ';' ) semic++;
else if (cstr[j]==l/' && cstr[j+l] == '*')

break;
else if ( cstr(j]==,/r && cstr[j+lJ == III) break;
j++i

}
if (cstr [i-I]
return sernic;

'; ') semic++;

Iloperators: +-*1%= and += -= *= 1= %= and ==
void CThesisProjectDoc: :operatorSpace(const CString& cstr )

if (slashStarFlag) return;
bool after = false;
int i = cstr.GetLength() i

int j = 0, ki
while (j < i ) {

if (j<i-l && cstr[j] 1/ 1 && (cstr[j+l] '*' II
cstr[j+1J == 'I')} break; Ilin case begin with

if (cstr [j J == '+' II cstr [j] == ,_, II cstr [j] '*' II cstr [j]
== I I ' II cstr [j] == '%' II cstr [j] == '= I) {

if (findOperants(cstr, j»)
operatorCount++i
for (k = j-l; k>=O; k--) {

if (cstr[k]==' ,) beforeSpace++;/lbefore spaces
else break;

}
if (j<i-l && cstr[j+l]=='=') j++; Iljump over =,
for (k = j+l; k<i; k++) {

if (cstr [k] ==' ,) afterSpace++;
else break;

}I/for
}/Iif
j ++;

}//while

I/find operants
bool CThesisProjectDac: :findOperants (canst CString& cstr, int k)
{

int left = k-l;
int right = k+1;
int len = cstr.GetLength();
bool bstring = false;
if (len>k+l && cstr[k+1J=='=') right++i Ilfor +=, *= etc
while (left>O && cstr [left] == ' ')

left--;
if (left>=O && !isalpha(cstr[leftJ) && lisdigit(cstr[left]) &&

cstr [left] ! = I I && cstr [left] ! = ' ) r && cstr [left] ! == '$ I &&
cstr [left] ! = I] I && cstr [left] ! = '" 1&& cstr [left] ! = I \ I I

return false;
if (left>=O && cstr[left] '"') Illeft is a string

bstring == true;
while (left>=O && !bstring ) { / /check first char
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if (cstr [left] == ' ,) break;
if (cstr [left] == 1\\'

II cstr [left] 1/1 II cstr [left] tit)

return false;
left--;

}
bstring = false; //reset
while (right<len && cstr[right] I)

right++;
//test first char

if (right<len && !isalpha(cstr[rightJ) && !isdigit(cstr[right])
&& cstr [right] ! = I '&& cstr [right] ! = I ( 1 && cstr [right] ! = '$ I &&
cstr [right] ! = 1 IT '&& cstr [right] ! = 1 \ ' , )

return false;
if (right<len && cstr[right] == '"')

bstring = true;
while (right<len && !bstring ) {//check first char

if (cstr[right] == ' ') break;
if (cstr [right] == '\ \ 1 II cstr [right] == 1 I'

I I cstr [right] == '/')
return false;

right++;

int quote = 0;
left = k-l;
while (left>=O) {

if (cstr[left--]=='Il') quote++;
}
if (quote%2) return false;
return true;

//count case of letters
void CThesisProjectDoc: :caseHandle(const CString& cstr)

int i = cstr.GetLength();
int j = 0;
while (j < i ) {

if (cstr[j] == 1 I) underscoreCount++;
else if (cstr[j] == '$') dollarSignCount++;
else if (isupper(cstr[j])) upcaseCount++;
else if (islower(cstr[j])) lowercaseCount++;
j++i

//count keywords
void CThesisProjectDoc: :keywordHandle(const CString& cstr)
{

char str[512];
char *token;
strcpy(str/ cstr); //copy the cstring to a char array
char seps [] = " /; { } () II i

token = strtok( str, seps ); //get token
while( token != NULL)
{
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if (strcmp(token, "staticn)==o ) staticCount++;
else if (strcmp(token, "extends")==O ) extendsCount++i
else if (strcmp(token, "class")==O ) classCount++;
else if (strcmp(token, "abstract")==O ) abstractCount++i
else if (strcmp(token, nfinal")==O ) finalCount++i
else if (strcmp(token, "implements")==O ) implementsCount++;
else if (strcmp(token, limport")==O ) importCount++;
else if (strcmp(token, "instanceof")==O ) instanceofCount++;
else if (strcmp(token, "interface")==O ) interfaceCount++i
else if (strcmp(token, "native")==O ) nativeCount++i
else if (strcmp(token, "new")==O ) newCount++i
else if (strcmp(token, npackagen)==O ) packageCount++;
else if (strcmp(token, "private")==O ) privateCount++i
else if (strcmp(token, "protected")==O ) protectedCount++;
else if (strcmp(token, "public")==O ) publicCount++i
else if (strcmp(token, "super")==O ) superCount++;
else if (strcmp(token, "try")==O ) tryCount++;
else if (strcmp(token, "catch")==O ) catchCount++i
else if (strcmp(token, "this")==O ) thisCount++i
else if (strcmp (token, II throw" ) ==0 II strcmp (token,

"throws") ==0) throwCount++i
II Get next token:
token = strtok( NULL, seps );

1* count variables and name length, nine common data types: short,
int,long, float, double, byte, char boolean, and String*/
void CThesisProjectDoc: :variableHandle(char* str)

bool type false, openBracket false, closeBracket false,
variable=false, equal = false;

bool openCurly = false, closeCurly = false;
int isldentifier =0;
char var[128];
string temp;
temp = nextIdentifier(str, iSIdentifier);
if (!isIdentifier) return; /Inot variables
else if (!type && isldentifier && (strcmp(temp.c_str(), "int")==O

strcmp(temp.c_str(), "shortlf)==O I Istrcmp(temp.c_str(), "long")==O
strcmp(temp.c_str(), "float")==O I Istrcmp(temp.c_str(), "double")==O
strcmp(temp.c str(), "boolean")==O II

strcmp(temp.c_st~(), "byte")==O I I strcmp(temp.c_str(), "char")==O
I Istrcmp(temp.c_str(), "String")==O » {

type = true;
iSIdentifier = 0;

}
else if (!type && (strcmp(temp.c_str(), "static")==O I I

strcmp(temp.c str(), "final")==O I I strcmp(temp.c_str(), "private")==O
I I strcmp(temp.c_str(), "protectedJl)==O I Istrcmp(temp.c_str(),
npublic")==O) )

else return;

while (temp.size() != 0) {
temp= nextldentifier(str, isIdentifier);
if (temp.size() == 0) return;
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if (!type && (strcmp(temp.c_str(), "static")==O I I
strcmp(temp.c_str(), Ifinal")==O I Istrcmp(temp.c_str{), "private")==O
I I strcmp(temp.c_str(), "protected")==O I Istrcmp(temp.c_str(),
"public") ==0) )

continue;

if (!type && isldentifier && (strcmp(temp.c str() I

"int")==O II strcmp(temp.c_str(), "short")==O I Istrcmp(temp.c_str() ,
"long")==O I I strcmp(temp.c_str(), "floatlf)==O I Istrcmp(temp.c_str(),
"double")==O I I strcmp(temp.c str(), "booleanlf)==O
I Istrcmp(temp.c_str(), "byte")==o I I strcmp(temp.c_str(), "char")==O
I Istrcmp(temp.c_str(), "String")==O ) )

{ type = true;isldentifier = O;}
else if (isldentifier && type) {

strcpy(var, temp.c str(»; //copy the last identifier
variable = true;
iSldentifier = 0;

&&type&&,,] ,,) ==0

}
else if (strcmp(temp.c_str(), "//")==0) return;
else if (strcmp(temp.c_str(), "/*")==0 ) return;
else if (strcmp(temp.c_str(), "[")==0 && type)

openBracket = true;
if (strcmp(temp.c_str(),else

openBracket)

", ,,) ==0 && variable &&

", ") ==0 && variable &&

" ; II) ==0 && variable &&

II ; ") ==0 && variable &&

openBracket = false;
else if (strcmp(temp.c_str(), "[")==0 && variable)

openBracket = true;
else if (strcmp(temp.c str(), II] ")==0 && openBracket)

openBracket = false;
else if (strcrnp (temp. c_str () ,

!openBracket && equal && !openCurly)
equal = false;

else if (strcmp (temp. c_str () ,
!openBracket && !equal && !openCurly)

addVariable(var) ;
else if (strcmp(temp.c_str(),

!openBracket && equal && !openCurly)
equal = false;

else if (strcmp(temp.c_str(),
!openBracket && !equal && !openCurly) {

addVariable(var) ;
type = false; variable false;
equal = false;

}
else if

!openBracket) {
(strcmp(temp.c_str() , "=") ==0 && variable &&

equal = true;
addVariable(var) ;

}
else if

!openBracket)
(strcmp(temp.c_str() , " { ,,) ==0 && variable &&

else
openBracket)

openCurly = true;
if (strcmp(temp.c_str(), "}")==O && variable &&

openCurly = false;
else if (strcrnp(temp.c_str(), "(")==0 && variable)

return;
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else {
type = false; variable
equal = false;

}//end of while

false;

//identify and add a variable to count
void CThesisProjectDoc: :addVariable(char* str)

CString cstr;
cstr.Format("%s", str);
cstr.TrimLeft();
cstr.TrimRight() ;
variableCount++;
variableNameLength += cstr.GetLength();

II This function resturn the char * of next identifier
string CThesisProjectDoc: :nextldentifier(char* str, int& iSldentifier)
{

string strg(str);

int length = 0, blank = 0;
char *word;
while (*str == ' , II *str '\t'll*str == '\n')

{str++; blank++;}
word = str; I/pointing to the beginning of char array
if (isalpha (* (str+length» II (* (str+length) '$') II

(*(str+length) == ' f»~ {
while - (isalpha(*(str+length» I lisdigit(*(str+length» I I

(*(str+length) '$')11 (*(str+length) I»~ {
length++;

}
isldentifier = 1;

}
else if (* (str+length) ==' / ,) {

length++;
if (* (str+length) ==' /' II * (str+length) ==' *')

length++;
}
else {

length++;

word += length-I;
*word++ = '\0';
strcpy(str, word); /*this is necessary since str is cut by just

above statement*/
if (strg.length()==blank)

return strg.substr(O, 0);
return strg.substr(blank, length);
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Ilfor menu of add database
void CThesisProjectDoc: :OnDatabaseAdd()
{

II TODO: Add your command handler code here
DAddMetrics Dialog;
if (Dialog.DoModal() == IDOK) {

if ((loginId.GetLength() == 0) I I (program_number == 0))
AfxGetMainWnd () - >MessageBox ( "Please Specify login ID and

Program number first","Alert!", MB_OKIMB_ICONEXCLAMATION);
else AddMetrics();

Iladd metrics to database
void CThesisProjectDoc::AddMetrics()

try {
m-pMetricsSet->AddNew();

m-pMetricsSet->m_blankLines = blankLines;
m_pMetricsSet->m_codeLines = codeLines;
m_pMetricsSet->m_loginId = loginld;
m_pMetricsSet->m_Program_Number = program_number;
m_pMetricsSet->m_abstractCount = abstractCount;
ffi_pMetricsSet->m_afterSpace = afterSpace;
m_pMetricsSet->m_beforeSpace = beforeSpace;
m_pMetricsSet->m_beginWithCloseCurly = beginWithCloseCurly;
m_pMetricsSet->m_beginWithOpenCurly = beginWithOpenCurly;
ffi_pMetricsSet->m_caseCount = caseCount;
m_pMetricsSet->m_catchCount = catchCount;
ID-pMetricsSet->ID_classCount = classCount;
ID_pMetricsSet->m_decisionSameLine = decisionSameLine;
ID_pMetricsSet->m_decisionSeparateLine = decisionSeparateLine;
m_pMetricsSet->m_doCount = doCount;
m_pMetricsSet->m_dollarSignCount = dollarSignCount;
ffi_pMetricsSet->ID_elseCount = elseCount;
m_pMetricsSet->m_endWithCloseCurly = endWithCloseCurlYi
m_pMetricsSet->m_endWithOpenCurly = endWithOpenCurly;
m_pMetricsSet->m_extendsCount = extendsCount;
ID_pMetricsSet->ffi_finalCount = finalCount;
m_pMetricsSet->m_forCount = forCount;
ffi_pMetricsSet->m_ifCount = ifCountj
m-pMetricsSet->m_implementsCount = implementsCount;
m_pMetricsSet->m_importCount = importCount;
m~MetricsSet->m_inlineComment= inlineComment;
ffi_pMetricsSet->ffi_instanceofCount = instanceofCount;
m_pMetricsSet->m_interfaceCount = interfaceCount;
m_pMetricsSet->m_lowercaseCount = lowercaseCount;
m_pMetricsSet->m_nativeCount = nativeCount;
m_pMetricsSet->ffi_neWCount = newCount;
m_pMetricsSet->m_operatorCount = operatorCount;
m_pMetricsSet->ID_packageCount = packageCount;
ffi_pMetricsSet->ffi-privateCount = privateCount;
m pMetricsSet->m-protectedCount = protectedCount;
m=pMetricsSet->m_publicCount = publicCount;
m_pMetricsSet->m-pureCloseCurly = pureCloseCurly;
m_pMetricsSet->m-pureComment = pureComment;
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ffi_pMetricsSet->ffi_pureOpenCurly = pureOpenCurly;
ffi_pMetricsSet->m_slashCornment = slashCornment;
ffi_pMetricsSet->m_slashStarComment = slashStarComment;
m_pMetricsSet->m_staticCount = staticCount ;
m_pMetricsSet->m_superCount = superCount;
m_pMetricsSet->m_switchCount = switchCount;
rn_pMetricsSet->m_thisCount = thisCount;
m-pMetricsSet->m_throwCount = throwCount;
m_pMetricsSet->m_tryCount = tryCount;
m_pMetricsSet->rn_underscoreCount = underscoreCount;
m_pMetricsSet->m_upcaseCount = upcaseCount;
rn_pMetricsSet->m_variableCount = variableCount;
m-pMetricsSet->ffi_variableNameLength = variableNameLength;
ffi_pMetricsSet->m_whileCount = whileCount;
if (m-pMetricsSet->CanUpdate())

m-pMetricsSet->Update() ;
m_pMetricsSet->Requery() ;

}//end of try
catch(CDBException *theException) {

AfxMessageBox(theException->m strError);
}//end of catch -

}//end of method
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