STABILITY, COUPLING, AND COHESION OF

OBJECT-ORIENTED SOFTWARE SYSTEMS

By
SAROSH JALAL KHAN
Bachelor of Engineering
in Computer Systems Engineering
N.E.D. University of Engineering and Technology
Karachi, Pakistan

1990

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July 1993

OKLAHOMA STATE UNIVERSITY

STABILITY, COUPLING, AND COHESION OF

OBJECT-ORIENTED SOFTWARE SYSTEMS

Thesis Approved:

! .

4
Thesis Advisor
) V

IS
/L/b»~‘ 2. 4 X 52[21
«

<
s

Bean of the Graduate College

11

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Dr. Mansur H. Samadzadeh who
always proved to be a continuous source of invaluable help and guidance throughout my
graduate work. Without his close attention, critical evaluation, and immense dedication,
this research work wouldn’t have been possible.

I would also like to extend my appreciation to my other graduate committee
members Drs. Blayne Mayfield and H. Lu. Their cooperation and suggestions helped me
to stream through my research work with ample guidance.

I am also grateful to all the people and associations whom I contacted from time
to time throughout the internet for their prompt reply to my queries.

Finally I extend my appreciation to my parents Mr. and Mrs. Kafeel A. Khan.
Their love, supervision, and faith in my abilities was an inspiration and motivation of

immeasurable value.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTIONccovicireinrenesesssosnessssessonsasssssossosssasassessssossasssssssssssssassaes 1
II. SOFTWARE DESIGN APPROACHES AND ISSUESccocevvuenennnnes 3
2.1 Design MethodOIOGIEScccoveiirucneissnancsnsinseisunsanssesussassssssssseonses 3

2.1.1 Conventional Design Methodologiescccocevenrircrcnnsenen 3

2.1.2 Object-Oriented Designccoccereneircnenesinsensucsissinesscessessenss 4

2.1.3 Which Design Method to Choose?c.cocoververincscscnsccncsnsans 5

2.2 Design Factors in the Object-Oriented Paradigmcccceeuvveneene 7

2.2.1 COUPUNE ...cucvvriiritirinririiintirecssssisassssisessessssssasssissessesessessessane 7

2.2.2 CONCSION ...cceveereerecnerercncsessasssasancasssnsnsosssnssasssssssssassassssssassasss 10

2.2.3 SADILLY ...covireeennereenssssnsuecenssssessssssssssessnssssssssssessessssssssasones 13

III. SOFTWARE METRICSccocecrunninnnansicicncsasssssssessnsssssssssssssssssessssescas 14
3.1 Existing Metrics for Conventional Software Systems 15

3.2 A Proposed Metrics Suite for O-O Designsccccocceeercrcnucrnnscencas 16

3.2.1 Weighted Methods per Classccoeevererruncnsisnscnseecsnssennes 16

3.2.2 Depth of Inheritance TTeeccccoereresersncscsonsursresucsessesaesesenne 17

3.2.3 Number of Childrencuuevrecrsinvenrennensnscssensensecssessenes 17

3.2.4 Coupling Between ODbJECtScovvvurrrrnneirecssecsensunsaceesessene 18

3.3 A Stability Metric for O-O Designsccccocevvninnreniisnncsnssesnseenes 19

IV. EXPERIMENT FRAMEWORKcciciiiieninernnenenassassesscesessenssssssseses 24
4.1 Experiment Definitioncccucvevvuesnrinssnsesnnsisnessisiessesssessnssseanes 24

4.2 Experiment Planningc.ccccconicccennnensersansccssnsnnccsesessessasssssssonsosees 24

4.2.1 Software Used in the Experimentcccoecenuceueesenseeneens o 25

4.3 Experiment OPETationcccccceereuessesssaosssssosssssssssssessassessesassessesseses 25

4.3.1 Programs Used to Collect Dataccccoceveurueuccncsccnnncrcainens 25

4.3.2 Data Collection PrOCESSccccceeveressirucscsssssesessassessesseseessssenes 30

V. MEASUREMENTS AND ANALYSIScnniininncsescsesissesssesnens 33
V1. SUMMARY, CONCLUSIONS, AND FUTURE WORKccceceevennn 44

iv

Chapter Page

REFERENCESuiirriiiintismntnninnsisissscsssssssssissssismsssssssesmsssssssssasssssssassssasases 47

APPENDIXESoiniiiitinisinsisiississssissssisssessssssssssssssssssssssssssssssessasssssnsssasass 50

APPENDIX A - GLOSSARY AND TRADEMARK INFORMATION........... 51

APPENDIX B - COLLECTED DATA AND METRIC LISTINGS 56
APPENDIX C - C++ RESERVED AND NONEXECUTABLE

WORD LISTS ...cuoiiiiiiniiiiienssienesissesinescssesssssasssesens 139

APPENDIX D - PROGRAM LISTINGScoccvviimiiiiiiniitiisnnnensinessnenne 143

Table

5

LIST OF TABLES

Page

. TESTBED PROGRAM SOURCESooitterreeeteteeteieene 26
. TESTBED PROGRAM SIZEScoomiirtintciiinennieectinessensessssenes 27
. STATISTICS FOR CLASSES IN INTERVIEWS (VER. 2.6) 34
. CORRELATIONS BETWEEN SELECTED METRICS FOR

INTERVIEWS (VER. 2.6) ...cocoviiiiriiiiiiiiciniiientetceera s 34
. STATISTICS OF THE MEASUREMENTS FOR

INTERVIEWS (VER. 2.6)cccovivmiiririiitiniitiniiintee st sseiesnesannes 34
. STATISTICS FOR CLASSES IN INTERVIEWS (VER. 3.0.1) 36
. CORRELATIONS BETWEEN SELECTED METRICS FOR

INTERVIEWS (VER. 3.0.1) .cucovniiiriiiiiiiiiicictciee st seeenenns 36
. STATISTICS OF THE MEASUREMENTS FOR

INTERVIEWS (VER. 3.0.1) c..coeeeiiiiiiiniiiicinnntciet et nnns 36
. STATISTICS FOR CLASSES IN INTERVIEWS (VER. 3.1) 38
. CORRELATIONS BETWEEN SELECTED METRICS FOR

INTERVIEWS (VER. 3.1) .ottt et nns 38
. STATISTICS OF THE MEASUREMENTS FOR

INTERVIEWS (VER. 3.1) c.cooriiiiiiiiniicniiinniinitsreeeis et seae s 38
. STATISTICS FOR CLASSES IN BORLAND TURBO

C++ CLASS LIBRARY (VER. 1.0.1) oottt 40
. CORRELATIONS BETWEEN SELECTED METRICS FOR

BORLAND TURBO C++ CLASS LIBRARY (VER. 1.0.1) 40

Table Page

XIV. STATISTICS OF THE MEASUREMENTS FOR BORLAND
TURBO C++ CLASS LIBRARY (VER. 1.0.1)ccviiviiicvcicneiracenens 40

XV. STATISTICS FOR CLASSES IN GNU C++ CLASS
LIBRARY (VER. 1.4)uiiiriiisinsininsesissssisnesesssissssssssssssssssssssssses 41

XVI. CORRELATIONS BETWEEN SELECTED METRICS FOR GNU
C++ CLASS LIBRARY (VER. 1.4)cuccvenriineirinnsineniscnnnsessssnsesens 41

XVII. STATISTICS OF THE MEASUREMENTS FOR GNU C++
CLASS LIBRARY (VER. 1.4)cuuuiiirinsienninncsssnssssessnsnsesssnens 41

CHAPTER I
INTRODUCTION

This thesis covers concepts related to software complexity in the context of software
design and software maintenance issues. The intricate job of designing a software system
requires innovation and profound thinking so as to develop a stable system that would incur
a minimum of the inevitable costs due to maintenance in the later part of the life cycle of
a system.

To achieve the goal of building a stable and maintainable software system,
appropriate software engineering tools, techniques, and methodologies need to be followed
closely. Some of the major software engineering concepts involved are briefly mentioned
in this thesis. These concepts range from software quality features, viewed with reference
to the users’ perception of the system, to the design maintenance measures that should be
taken into account during the software development process.

Software metrics are discussed in this thesis as design maintenance measures relevant
to object-oriented designs. The study performed and reported as a part of this thesis, is
aimed at judging the quality of software systems developed in a professional production
environments. The techniques used to measure the size and complexity of software systems
help to predict the future maintenance requirements. Adherence to and the use of design
evaluation concepts discussed in this thesis should make systems more maintainable and

easier to adapt to the changing requirements.

2

The discussion of design factors in this thesis focuses around and involves the
emerging and somewhat nascent concepts of Object-Oriented Analysis (OOA) and Object-
Oriented Design (OOD). The goal is to view the key issues of traditional design in the
framework of the object-oriented paradigm.

The main question that arises is: Is it necessary to incorporate the relatively new
object-oriented paradigm in the system design and analysis phases? This question can be
answered by looking at some of the basic differences that exist between the object-oriented
and traditional views of system development [Coad90] as discussed in the next chapter.

Chapter II is a discussion of software design approaches and some design issues that
are relevant to the experiment performed in this study. Chapter III describes some of the
software metrics used to analyze programs. The metrics suite includes the Stability* metric
defined to measure the design stability of a program. Chapter IV describes the experimental
process used to collect data resulting from using metrics discussed in this thesis. Chapter
V discusses the analysis of the collected measurements of the design factors discussed in

this thesis. Chapter VI summarizes and concludes with recommendations for future work.

CHAPTER II
SOFTWARE DESIGN APPROACHES AND ISSUES
2.1 Design Methodologies

Design is a multistep process in which representations of data structure, program
structure as well as the description of procedures are formulated based on the requirements
analysis phase of the software development life cycle [Coad90]. Design activities conducted
during software development in general include data design, architectural design, procedural
design, and interface design [Pressman92]. In the following subsections, a number of design

methodologies are discussed.

2.1.1 Conventional Design Methodologies

Different design methodologies involve viewing a design specification from different
perspectives. One such perspective is viewing a system in terms of the functions that the
system is to perform, and beginning the design process by decomposing the system into a
hierarchy of functions and sub-functions. This is a conventional design approach in which
the focus is on the processing that is required by the system [Coad90].

Another perspective is viewing a system in terms of the information flow through
the system. The information flow undergoes a series of transformations as it evolves from

input to output [Pressman92). This approach, which is called a data flow oriented design,

4

consists of a number of different mappings that transform the information flow through the
program structure. Data flow diagram (DFD) is used as a graphical tool in a data flow
oriented design to depict the flow of information through the system.

Data structure oriented design is another conventional design methodology which
focuses on the information domain (similar to the data flow oriented design approach).
However, in this case the design process utilizes the information structure rather than the
information flow through the system.

In the next section, the object-oriented design method is defined which is used in this

thesis to discuss the issues of coupling, cohesion, and stability.

2.1.2 Object-Oriented Design

The idea of object-oriented design originates from the concept of data structure-
oriented design with the additional attributes of inheritance, classification, and
communication of components in a software system [Coad90]. The design process involves
the mapping of real-world objects into a framework of system objects with interactions
among the objects as "natural” as they are in the real-world situation.

It is also customary in a real-world situation to perform actions on an entity (which,
in the framework of software development, is a set of data structures) [Budd91]. For
example, consider actions (functions) that could be performed on an automobile object. An
automobile object is composed of a set of data structures and contains other objects such
as wheel, steering, and engine.

The mapping of real-world entities to objects in the framework of software systems

is quite natural and leads to the design process of decomposing the problem space into a

5

"set of objects" or Abstract Data Types (ADT) performing certain "actions" (functions) on
their set of "data structures”. The overall system is then designed and organized by defining

the structure of the system in terms of classification and assembly structures [Coad90].

2.1.3 Which Design Method to Choose?

Different specifications of a given problem space (resulting from requirements
analysis) can be used to make design decisions about a software system. A major point to
consider here is that, when designing a system for a real-world situation, the norms and
relationships of the actual world must be taken into account. A common observation is that
during the life cycle of a system, the percentage of requirement changes is far greater than
the percentage of data definition changes [Meyer80]. Here requirement changes means the
changes that the users of a system may ask for during the testing or maintenance phase of
the development life cycle. The requirement changes may involve adding a new feature or
otherwise modifying the existing software product.

The process of modification in the maintenance phase may require restructuring of
the information flow through a system. This observation motivates a system designer to
base a system design on the data contained in the problem space, i.e., the information
structure of a system rather than the information flow through a system [Coad90].

If the requirement changes are frequent, the use of information flow through a
system as a primary structuring criterion may make a program structure brittle [Meyer80].
In such a situation, the object-oriented method of system design can be a better choice than
the conventional methods. In this method, the program structure is based upon the objects

(sce APPENDIX A) that every system or a subsystem manipulates rather than the overall

6

functions that the system is meant to ensure. The objects are selected based upon the
information structure of a system with additional attributes of inheritance, classification, and
communication of components in a software system. The functional design comes later
when the actions, which can be performed on the data structures contained in an object, are
defined. Hence subsequent program changes will be limited to the boundaries of objects
which are encapsulations of data structures and the functions defined on those data
structures. This approach controls the ripple effect [Yau80] (see APPENDIX A) and
confines the changes to a relatively small portion of the program.

The functional decomposition of a system (a necessary step of functional design)
makes it strongly bound, thus making it difficult to alter in order to accommodate new
features or to change with the changing requirements [Coad90]. The data flow design
approach too has a strong functional emphasis and hence has the same rigidity to changes.
The data structure oriented design approach, though similar to the object-oriented design
approach, lacks abstraction and encapsulation (information hiding) [Coad90]. The object-
oriented design approach, unlike data structure oriented design, encapsulates data items and
processing rather than just processing alone, which results in better modularization of
software.

The use of a streamlined object-oriented design process should result in a software
system that is relatively easier to maintain. In the objects-oriented design approach, the
objects are encapsulations of functions and data with maximum information hiding and
autonomy of the respective parts. This can result in "loosely-coupled” objects interacting

with one another with small and clear interfaces.

7

The above discussion maintains that if the changing requirements in the maintenance
part of the system is the primary concern, the emphasis should be placed on designing a
system with as many autonomous agents or objects as possible. These autonomous agents
can then be assembled to build the entire system. The objects and the functions within the
objects can be arranged in such a manner to attain a minimum amount of coupling and a
maximum amount of cohesion for the overall stability of the system. The terms coupling
and cohesion are discussed in the next section of this thesis and also mentioned in

APPENDIX A.
2.2 Design Factors in the Object-Oriented Paradigm

Coupling, cohesion, and stability are three major design factors in any design
methodology. Various types of coupling and cohesion were formulated by Stevens et al.
[Stevens74] and later revised by Booch, Budd, Pressman, and others for object-oriented
systems [Booch91][Budd91][Pressman92]. The notions of coupling, cohesion, and stability

are described in the three subsections below.

2.2.1 Coupling

In order to define the notion of coupling, we need to first define connectivity.
According to Pressman, "connectivity indicates the set of components that are directly
invoked or used as data by a given component” [Pressman92]. For example, a module is
connected to another module if it directly causes the other to begin execution, or accesses
the other module’s data elements. Coupling is hence defined as "a measure of

interconnections among modules in a software structure” [Pressman92]. The complexity of

8
a systtm can be decreased by designing a system with weakest possible coupling
[Stevens74].

Different types of coupling are discussed below [Budd91]. These types are arranged,
according to their strengths of the association that they represent among modules in a
system, form the highest to the lowest: internal, global, control, parameter, subclass.

Internal coupling occurs when the connection is to another module’s internal data
components. Hence a module can change the internal components of another module. For
example, consider the following code segment.

class Terminal {

int term_address;

public:

int get_term_address();
void read_terminal();

)

class Commands{

public:

void set_term_address(Terminal t);

get_command(Terminal t);

}

class Data{

public:
void set_term_address(Terminal t);
get_data(Terminal t);

}

In the above code segment, the Data and Commands classes can set the value of the
term_address in the class Terminal. This is an example of internal coupling when a class
can change a variable defined in another class.

Global coupling occurs when a group of modules share a common area of storage
or data region. This situation can results in an increase in complexity. This common area

of storage is termed by Stevens et al. [Stevens74] as the common environment. The

9

common environment couples every module sharing it to every other such module without
regard to the existence of a functional relationship or its absence. This results in
strongly-coupled modules or objects.

Control coupling involves an element of control such as a switch, a flag, or a signal
sent from one module to another, which may control a sequence of operations in the other
module. Consider the following code segment for control coupling.

class Command {
int terminal_address;
int parse;
public:
void execute_command();
process_command(Terminal t, Files f);

}’

class Files {
public:
read_command(int parse);
read_data();
)

void Command::process_command (Terminal t, Files f)

{
t.read_terminal(terminal_address,parse);
f.read_command(int parse);

}

void File::read_command (int parse, Terminal t, Files f)
{
if (parse == TRUE){

}.
if (parse == FALSE){
)
)
In the above code segment, the parse control variable is passed from the process_command

procedure to the read_command procedure. The read_command procedure receives the parse

10

variable and sends back a parsed or an unparsed command, depending upon the value of the
parse control variable.

Parameter coupling is the most benign type and involves parameters passed during
function calls. It is different from control coupled since the variables passed are only used
for the function’s own internal calculation. Parameters can also be passed back to the calling
function.

Subclass coupling is encountered in object-oriented systems. It occurs in the class
structure of the system where classes are bound by their inheritance hierarchy. An example
can be the following code segment.

class Shape {

)

class 2D_Shape::public Shape(

)

class 3D_Shape::public Shape(

)

Classes 2D_Shape and 3D_Shape inherit functions and data variables from their common
parent class Shape. Hence classes 2D_Shape and 3D_Shape are coupled to the class Shape.
A change made in a member function of the class Shape may change the behavior of both

classes 2D_Shape and 3D_Shape.
2.2.2 Cohesion

Cohesion is defined as "an indication of the strength of association among data
elements and functions in a module” [Stevens74]. When defining classes, the attempt should

be made to maximize binding (an indicator of cohesiveness of a module). Different types

11
of cohesion are given below [Budd91]. These types are arranged according to their strengths
of association within a module or object. The following list is given from the lowest to the
highest cohesion: coincidental, logical, temporal, communicational, sequential, functional,
data.

Coincidental binding occurs when there is no meaningful relationship among the
elements in a module. This kind of binding takes place if a program is split arbitrarily into
parts for modularization [Stevens74]. For example consider the following class A.

class Af{

p.ublic:

void get_terminal_address();
void exec_command();

void read_data();
}

In the above class, the member functions are not functionally related. Hence the class cannot
be characterized as doing a single function, seen from a higher level of abstraction. The
functions exec_command(), get_terminal_address(), and read_data() have coincidental
cohesion.

Logical binding requires the functional elements to have some logical relationship
in the module, e.g., a module having all the input/output operations as shown in the class
A given below.

class A{

phblic:

void read_data();
void read_command();

void write_result();

}

12

Temporal binding occurs when the elements of a module must be used at
approximately the same time, e.g., all initialization operations as depicted in the following
class.

class A{

public:
-\;;)id initialize_array();
void initialize_table();
);

Communicational cohesion exists when the elements of a module or the methods in
a class are grouped, say, because they access the same input/output data. The module acts
as a manager for the data. The class A given below exhibits communicational cohesion,
since it manipulates a single file through its member functions.

class A{

;;ublic:
;;)id get_commands_from_file();
void get_data_from_file();
5

In the case of sequential cohesion, the elements of a module are linked since they
have to be executed in a particular order. The member functions in the following example
of a class are grouped together since they perform a sequence of operations on the given
data in the particular order given.

class A{

p.ublic:

get_data();
process_data();

print_data();
)

13

Functional cohesion and data cohesion are the types of cohesion required in a
system to bind the objects strongly in a program structure. Functional cohesion occurs when
the elements of modules (or the member functions of a class) are functionally related, i.e.,
when they are performing a single function. Data cohesion is typical of object-oriented
systems [Budd91]. It occurs when a module defines internally a set of data values and

export routines (public) that use the internal data structures [Coad90].

2.2.3 Stability

Design stability is defined as the resistance to the amplification of changes in a
software system [Yau85]. Stability is one of the important quality attributes of program
design [Yau80][Yau85][Smith92]. The stability of a program is affected by the ripple effect
produced as a consequence of a program modification. Hence, stability can also be defined
as "the resistance to the potential ripple effect that the program would have when it is
modified" [Yau85].

A design stability measure called Stability* was developed during this study, which
is presented in Section 3.3 of this thesis report. This measure is based upon the assumptions
(see APPENDIX A) that the different objects in a system make about one another. For
example, lack of data abstraction and information hiding can result in modules possessing
a large number of assumptions [Yau85]. Design stability can be calculated by measuring the
assumptions that different objects in a software system makes about one another when they

communicate through their public interfaces.

CHAPTER II

SOFTWARE METRICS

Software metrics can be classified as either process or product metrics [Conte86]
depending upon whether they quantify the attributes of the development process and the
development environment, or the attributes of the software product. Whether it is a process
metric or a product metric, a software metric should accurately reflect the difficulty that a
programmer or analyst encounters in performing such tasks as designing, coding, testing,
or maintaining a software system. Software metrics help to quantify the various aspects of
design complexity and program complexity [Samadzadeh89]. Several design metrics have
been proposed for software systems. Some of these are generalizations of product metrics
that have been widely used. In this study, it is assumed that one of the attributes of design
quality can be measured based on the number of modifications made to a system after the
individual modules have been coded, unit tested, and delivered for system integration. This
constitutes a concrete process measure that was used in the experimental part of this study.

Product metrics were used in this study to find a number of quantifiable design
attributes of an object-oriented system. This "backtracking" or hindsight analysis was
necessitated due to lack of a standard design methodology for object-oriented systems and
the fact that design documents for commercial products are generally not available. Product
metrics are influenced by the design process employed during the development life cycle

of a software system [Conte86}. Hence, measurements from the product metrics can be used

14

15

to evaluate and estimate the design process and the development techniques for a software
system. The results of such evaluations can be subsequently used in a predictive or even

prescriptive capacity.
3.1 Existing Metrics for Conventional Software Systems

Some of the established software product metrics used in the software development
process are given here. The purpose is to compare and analyze the previously existing
metrics when applied to object-oriented software systems.

The most well-known and widely-used metric for determining the size of a program
is the lines of code metric (LOC). LOC is defined as [Conte86]:

A line of code is any line of program text that is not a comment or
a blank line, regardless of the number of statements or fragment of
statements on the line. This specifically includes all lines
containing program headers, declarations, and executable and non-
executable statements.

Halstead defined a family of metrics called Software Science [Halstead77]. A
computer program is considered in Software Science to be a collection of tokens that can
be classified as either operators or operands. Software Science measures are functions of the
counts of these tokens. The four basic counts defined by Halstead are: n,: number of unique
operators, n,: number of unique operands, N,: total occurrences of operators, and N,: total
occurrences of operands. Some of the metrics based on these counts are: Vocabulary: n =
n,+n,, Length: N = N,+N, as estimated by n, log, n, + n, log, n,, and Volume: V = N log,
n.

Cyclomatic Complexity was introduced by McCabe [McCabe76] [McCabe89], whose

objective was to determine the number of paths through a program that must be tested to

16

ensure complete coverage and to rate the difficulty of testing or understanding a program.
McCabe’s formula for cyclomatic the complexity number is defined as V(G) = e - n + 2p,
where V(G) is the cyclomatic complexity, e is the number of edges, n is the number of
nodes, and p is the number of connected components in the control flow graph of the
program. It can be shown that another formula for V(G) is V(G) = DE + 1, where DE is

the number of binary predicates in a program.

3.2 A Proposed Metrics Suite for O-O Designs

Object-oriented design can be classified into object design and method design
[Booch91]. Objects design involves three definition steps: 1) objects, 2) attributes of objects,
and 3) communication among objects. Method design involves defining the procedures that
implement the attributes and operations exercised by the objects.

Some terms have to be defined first before discussing the metrics suite proposed for
object-oriented designs [Chidamber91]. Objects in the following discussion are represented
by a class [Stroustrup91]. An object is an abstract data type (ADT) consisting of data
structures (attributes) and functions (operations) defined on those data structures.

In the following discussion of the object-oriented framework, properties of an object

are represented by instance variables and methods.

3.2.1 Weighted Methods per Class

Consider a Class Cl1, with methods M;, M,, ..., M,. Let c,, ¢c,, ..., ¢, be the static

complexity of the methods. Then

17
n
WMC=ZX ¢
i=1
If the static complexities are assumed to be unity, then WMC = n, which is the number of
methods. In this simple case it can be argued that the complexity of an object is determined
by the cardinality of its set of operations. The cardinality of an object, in terms of the
number of methods, indicates the amount of time and effort that would be required to
develop and maintain the object. Larger number of methods in an object can have a
cumulative effect on the complexity of the subclasses that inherit its methods. Objects

having higher number of methods are likely to be more application specific, thus reducing

the possibility of reuse in general.

3.2.2 Depth of Inheritance Tree

Depth of inheritance tree (DIT) represents the height of a class in the inheritance
hierarchy. The DIT measure indicates the number of ancestor classes that can potentially
affect each class. The scope of the attributes and operations of an object increases as it goes
deeper in the inheritance hierarchy. The complexity of an object generally increases as the
number of methods that it inherits from its ancestors increases. The DIT measure can be

helpful in the design of a class with respect to the reuse of inherited methods.

3.2.3 Number of Children

The number of children (NOC) metric is the number of immediate subclasses
subordinated to a class in the class hierarchy. This measure also relates to the scope of

attributes and operations. It indicates how many subclasses are going to inherit the methods

18

of the parent class. The reusability of methods through inheritance increases if the class
hierarchy has more depth than breadth. A better generalization and specialization structure
requires classes that are higher up in the hierarchy, in order to have more subclasses than
the classes that are lower in the hierarchy [Chidamber91]. A class having a larger number
of subclasses may require intensive testing and debugging due to its potentially higher

degree of subclass coupling (see Section 2.2.1).

3.2.4 Coupling Between Obijects

For a class, coupling between objects (CBO) is a count of the number of non-
inheritance related couples with other classes. A couple or a connection is established when
an object acts upon another object, i.e., a method of one object uses the methods or the
instance variables of another object [Chidamber91]. Excessive coupling among objects,
outside of the inheritance hierarchy, in general defies modular design and hinders reuse. The
more independent an object is, the easier it would be to reuse it in another application.
Coupling increases the ripple effect (see the next section) as a result of a modification in
one part of a program. Higher coupling could be a result of low encapsulation or low
modularity in a design, which are important determinants of the quality of a software
system. CBO can be used to determine how complex the testing of various parts of a design
are likely to be. Hence this measure can be used to predict the future maintenance effort of

a system.

19
3.3 A Stability Metric for O-O Designs

This section describes the Stability* metric used to measure the stability of the design
of a program. The metrics is based upon the assumptions [Chanon74] that different objects
in a program make about one another due to the connections or couples (see APPENDIX
A) established as a result of parameter coupling. The stability, as defined earlier, is "the
resistance to the potential ripple effect that the program would have when it is modified"
[Yau85]. Hence the stability of a program is calculated in terms of the ripple effect
produced as a consequence of a program modification. The ripple effect can be calculated
by counting the number of assumptions (see APPENDIX A) that the different objects in a
system make about one another. The lack of data abstraction and information hiding can
result in strongly connected modules possessing a large number of assumptions
[Yau85][Torres91].

In the derivation of the Stability* metric, each object or class is assumed to have
attributes (instance variables) and operations (methods or member functions) that can be
used by other classes in the system, here called the public interface of that class. The
interfaces of the classes can be analyzed for calculating the assumptions that different
classes make about one another due to parameter coupling (see Section 2.2.1).

In the rest of this section some terms are defined that are needed to describe the
stability metric discussed in this section. The metric is originally derived by Yau and
Collofello [Yau85] and is revised here to incorporate the terms and notions of the object-
oriented paradigm.

Let C, be the ith class in a design document, where 1 <=1i <= n, and n is the

number of classes in the system. For each class C,, identify the following interfaces:

20

C. = {classes with which class C; communicates}

C’. = {classes that communicate with class C,}.

Let M;; = {m; | m, is the jth function of class C,, where 1 <= j <= t;} and ¢t is the
total number of methods (public) in class C..

Assume that the system only has parameter coupling. Another type of coupling,
specific to object-oriented programs, called subclass coupling (see section 2.2.1) is ignored
here. The reason being that the stability metric is build around the notion of invocation
complexity [McClure78]. Hence classes are assumed to communicate through non-
inheritance related connections or couples.

Let N = {n_ | n, is a function of classes in C_ U C’_ and 1 <= k <=t} where t_is
the total number of methods (public) of classes in C, U C’..

The methods involved in the interface of class C; with classes in C.UC’, are defined
as follows.

Ic;m; = {methods n, belonging to N invoked by methods my of class C;}

I’c;m; = {methods n, belonging to N that invoke methods my of class C;}

Two sets of interfaces can be defined as follows in terms of the parameters passed
and received by the functions in Ic;m; and I'c;m.

Pmy,n, = {parameters passed when invoking methods n, of C; by m; of C;},
where G is the class under consideration and C; belongs to C,, and n, belongs to Ic;m,.
Similarly,

P’m,,n, = {passed parameters retuned from m, of C; to n, of C}},

where C, is the class under consideration and C; belongs to C’, and n, belongs to I'cym,.

21

Stability*, as mentioned earlier, is based upon the assumptions that different classes
in a program make about one another. A class can make assumptions about the data
(attributes) and functional (operational) elements of the class it is coupled to or
communicates with. The assumptions for each class are calculated by totalling the
assumptions for each variable type passed in and out of the public interface, and the
assumptions that a class makes about the functions and data elements of classes that it
communicates with. The idea is that a class with a higher number of operations (a larger
public interface) has a larger assumption count due to the higher number of parameters
being passed in and out of the public interface. The assumptions made by a class C; about
a parameter p can be determined by the following algorithm which is based on the
algorithm given by Yau and Collofello [Yau85]:

(a) If parameter p is a class in the system, then increase the assumption count by the
number of public member functions and instance variables in the class. The argument here
is that the class C,, whose stability is being analyzed, communicates with the class that is
passed as a parameter through the public interface. The class C; makes assumptions equal
to the number of public member functions and data elements of the class that is passed as
a parameter.

(b) If parameter p is a user-defined data type, then increment the assumption count by 1.
This assumption count is essentially arbitrary and subject to further empirical study for a
more accurate expected value.

(c) Increment the assumption count by 2 for each system-defined data type. In this case, one
assumption is for the value that the parameter may have and the second is for the type of

the parameter p.

22
Using the above algorithm, the assumptions made by class C; about parameters in

Pmy,n, can be calculated as follows.
TA = {total number of assumptions made by class C; about Pmy,n, }
Using the same algorithm discussed above, the following set can also be calculated.
TA’ = {total number of assumptions made by class C; about P’m;,n, }

The ripple effect is defined in terms of the assumptions made by a class. The class
under consideration is C.. Hence the ripple effect due to a change made in class C, is the
sum of the assumptions made by C; about Pm,n, and the assumptions made by C; about
P’my,n,. Let REC, be the ripple effect due a change made in class C,. Since, in the proposed
metric, the ripple effect is calculated by counting the number of assumptions that the
different objects in a system make about one another, therefore we have

REC, =TA + TA’.

The design stability of a class C; is defined as the reciprocal of the ripple effect due

to that class plus 1. If DSC, is the design stability of a class C;, then

DSC; = 1/(1+REC).
Note that if the ripple effect due to a change made in class C, is equal to 0, i.e., if REC, =
0, then the design stability of class G is equal to 1, i.e., DSC, = 1.

A program’s design stability (PDS) is the sum of the ripple effects due to all classes
defined in the program, or

PDS = 1/(1+ZREC)
where 1 <=i <= n, G is the ith class in the system, and n is the total number of classes

defined in the system.

23
The metrics described in this chapter are used in the experimental process discussed

in Chapter IV to analyze software written for object-oriented applications. As discussed in

the next chapter automated tools were employed to collect data for statistical analysis.

CHAPTER IV
EXPERIMENT FRAMEWORK

This chapter discusses the experimental process performed during this study, the
experiment planning, software used for collecting data, and the data collection process. The
experiment in this study involves the metrics analysis of object-oriented software systems
written by professional programmers. The study follows the experimental framework
described by Basili [Basili86][Smith92]. The study consists of four phases: 1) definition, 2)

planning, 3) operation, and 4) interpretation. The following sections describes these phases.
4.1 Experiment Definition

The objective of this pilot experiment is to apply and test metrics, described in this
thesis, for software systems resulting from object-oriented designs. This prototype empirical
study is an attempt to validate a suite of metrics by applying them on widely distributed,
commercially available object-oriented programs. The experiment also uses some previously
existing product metrics for the purpose of comparison, and evaluates their validity for

object-oriented software.

4.2 Experiment Planning

The experiment needed source code of professionally-written, widely-distributed

object-oriented programs. The programs had to be of considerable complexity and length

24

25

to get significant results from the measurements. For this purpose, some of the source codes
of programs available at various fip sites throughout the internet were utilized. The source
code search was done using the DYNIX/ptx operating system running on Sequent Symmetry
S-81. The programs were downloaded on 3.5" diskettes for analysis using the MS-DOS

operating system running on an IBM-PC.

4.2.1 Software Used in the Experiment

The programs used for analysis and application of software metrics were:
InterViews (versions 2.6, 3.0.1, 3.1)
Borland Turbo C++ Class Library (version 1.0.1)
GNU C++ Class Library (version 1.4)

The program names and their sources are given in TABLE I. Some of the bulk

features related to the size of the programs are shown in TABLE II

4.3 Experiment Operation

The following two subsections describe the tools developed during this research
work to collect data as a result of applying the software metrics and the data collection

process using these tools.

4.3.1 Programs Used to Collect Data

The data collected during this study was obtained partially from a pre-written
software package and partially by tools developed as a part of the experiment.

The existing conventional product metrics (see Section 3.1) such as lines of code

26

TABLE I
TESTBED PROGRAM SOURCES
PROG NAME VERSION APPLICATION SOURCE
InterViews 2.6 Graphical Interface | interviews@stanf-
for X Windows ord.edu
System (developed by
the MIT X
Consortium)
InterViews 3.0.1 > ”
InterViews 3.1 > ”
Borland Turbo 1.0.1 Class Library Borland
C++ Class to Develop O-O International
Library Applications in
C++
GNU C++ Class 14 Class Library julian.uwo.ca
Library to Develop O-O (developed by
Applications in the Free Software
GNU C++ Foundation)

(LOC), cyclomatic complexity (VG), Vocabulary (n), program length (N), and Volume (V)

were calculated using PC-METRIC version 1.2 (Set Laboratories, Inc., Portland, OR) for

C++ programs. The Stability* (STAB), depth of inheritance tree (DIT), number of children

(NOC), weighted methods per class (WMC), and coupling between objects (CBO) were

calculated using tools developed during the experiment (see APPENDIX D).

The inputs to the PC-METRIC program are the header (filename.h) and the

implementation (filename.cpp) files. The outputs of the program are the class report

(filename.cls), complexity report (filename.rpt), and the class hierarchy (filename.cht) files.

27

TABLE 11
TESTBED PROGRAM SIZES
PROG NAME #CLASSES SIZE #IMPLEMEN- #HEADER
(in Kbytes) TATION FILES
FILES
Interviews 136 782K 77 69
(2.6)
InterViews 100 520K 52 75
(3.0.1)
InterViews 145 875K 66 76
(3.1
Borland 30 251K 20 22
Turbo C++
Class
Library
(1.0.1)
GNU C++ 40 300K 40 35
Class
Library
(1.4

Descriptions of these files is given in the next section.

PC-METRIC uses a file named CPPRESWO.TAB for a list of C++ operators (see
APPENDIX C). Two other files, C’CPNONEX.TAB and CPPTURNO.TAB, contain a sorted
list of C++ nonexecutable words for standard C++ and TURBO C++ (see APPENDIX C).
A number of the items in CPPRESWO.TAB are not part of standard C++, which are
explained below.

In C++, a parenthesis has three uses: it can change the default ordering of arithmetic

28

operations, it follows a function call, or it follows a control statement [METRIC90]. To
distinguish among these uses, three different parentheses are defined in the file
CPPRESWO.TAB: "(" indicates an arithmetic parentheses, "(c" indicates a parentheses
following a control statement, and "(p" indicates a parentheses following a function call.
Each of these is a different use of parentheses and, therefore, each is considered to be a
different operator.

In C++, the asterisk, *, has two uses: as a multiplication sign and as a pointer (see
APPENDIX A) [METRIC90]. To distinguish between these uses, two asterisks are defined:
"*" indicates multiplication and "*p" indicates a pointer. Since these have different
meanings, each is counted as a different operator.

In C++, the ampersand, &, has two uses: as a unary AND operator and as an address
operator [METRIC90]. To distinguish between these uses, two ampersands are defined: "&"
indicating the unary AND, and "&p" indicating the address operator. Since these have
different meanings, each is counted as a different operator.

Certain items in the list of reserved words are not counted. These are the items that
must be paired with another item and consist of: }, |, while when associated with do, and
":" when associated with "?". Also not counted are the single quote, ’, and the double quote,
". These signal the start of a string and are counted as part of the string.

Any statement preceded by one of the words in the CPPNONEX.TAB file or the
CPPTURNO.TAB file is considered nonexecutable and, hence, ignored.

The following control structures increment the cyclomatic complexity count: if, while
(unassociated with do), do, for, ?:, and case. Occurrences of else do not increment the

count.

29
The STABILITY-MET program developed during this study is built around the

algorithm originally developed by Yau and Collofello {Yau85] and modified here to account
for the notions of object-oriented designs. The algorithm is modified based upon the amount
of information passed in and out of the public interface of classes in a program. Each piece
of information has its assumption count [Chanon74] which accumulates to give the potential
ripple effect for the class. Stability is the inverse of the potential ripple effect [Yau85].

The inputs to the STABILITY-MET program are the header (filename.h) files and an
assumption file (filename.list). The assumption file contains the assumptions recorded for
each class and each data type (e.g., integer, character, etc.) in a program, because it is
assumed that the parameters passed in and out of the public interface of a class can either
be some other class or a data type. The formation of the assumption table in the
filename.list is automated by a program called GENLIST. The assumption file generated by
the GENLIST program is utilized by the STABILITY-MET program to calculate the Stability*
metric for the classes in a program whose stability is being measured.

The INHERIT-MET program calculates the depth of inheritance tree (DIT) and the
number of children (NOC) for the classes in the program. It utilizes one of the output files
called class hierarchy table (filename.cht), generated by PC-METIRC, to calculate the two
metrics.

The METHOD-MET program extracts information about the number of methods and
data items in the classes from the class report file (filename.cls) generated by PC-METRIC
and calculates the weighted method per class (WMC) metric.

The COUPLING-MET program calculates the coupling between objects metric

(CBO). The inputs to this program are the header (filename.h) files and a file containing the

30
names of all the classes in a program. The COUPLING-MET program then calculates the

number of couples or connections for each class in a program by examining its public

interface.

4.3.2 Data Collection Process

The programs used for analysis were arranged as multiplc header files. In this style
of program arrangement, a ".h" file and its associated ".cpp" file can be seen as a module
in which the ".h" file specifies an interface and the ".cpp"” file specifies an implementation
[Stroustrup91]. The programs (implementation and header or interface files) were
downloaded from the Computer Science Department computer (Sequent Symmetry S-81)
to an IBM-PC through Kermit for analysis.

The files were first run through PC-METRIC. Three kind of files were generated that
were used to calculate VG, n, N, VOL, and LOC metrics. The files are named complexity
(filename.tpt), class (filename.cls), and class hierarchy (filename.cht) reports. The data
contained in the files generated by PC-METIRC are described below.

The complexity report contains information pertinent to each member function. It
includes the fields for function name, unique operators (nl), unique operands (n2), total
operators (N1), total operands (N2), length (N), volume (V), cyclomatic complexity (VG),
and the lines of code (LOC). The class report contains information pertinent to each class
in the program being analyzed. It includes the field for class name, number of private
protected, public, and total members. The class hierarchy report lists all base classes and
their derived classes.

The STAB-MET program generates the stability report file named szab.out. This file

31

contains information pertinent to each class in the program being analyzed. It includes the
fields for the class name being analyzed, the data type or class name passed as parameters
for the class being analyzed, number of occurrence of a particular data type or class name,
the assumption count for each parameter, the total assumption count for each parameter, the
potential ripple effect, and the value of Stability* metric for the class being analyzed.

The INHERIT-MET program uses the class hierarchy file (filename.cht) generated
by the PC-METRIC program. It generates an output file named inherit.out. This file contains
fields for the class name and the values for the DIT and NOC metrics.

The COUPLING-MET program generates the coup.out file. This file contains fields
for the name of each class in a program and the names of classes to which that class is
coupled. The total number of couples gives the value of the CBO metric for a particular
class.

The WMC-MET program generates a binary file containing records for classes with
fields for each metric being analyzed in this experiment. It also calculated the WMC metric
for classes in a program and stores them in the output binary file called mer-table.

The SIGMA-MET program uses the report file (filename.rpt) generated by the PC-
METRIC program. This file contains the values of product metrics used for conventional
programs, discussed in Section 3.1, for all the functions in a program. The SIGMA-MET
program calculates these metrics for all the classes in a program. Each metric value for a
class is obtained by adding the metric values for all member function in that particular class.
Let M, be the value of a particular metric for a member function M in a class C. If there

are n member functions in a class C, then

32
n .
G=IM,
i=1
where C is the value of that particular metric for class C. The metrics used for this purpose
are Lines of Code (LOC), Vocabulary (n), Length (N), Volume (V), and the Cyclomatic
Complexity (VG).

The GATHER program uses the output files generated by the STABILITY-MET,
INHERIT-MET, COUPLING-MET, WMC-MET, and SIGMA-MET programs and merges
them into a single file named metric.dat, which is used as a part of the statistical analysis
for the metrics described in this study.

Using the software metrics discussed in this study, the above steps of the experiment
resulted in raw data and measurements for the test bed programs. The interpretation of the

data collected is described in the next chapter.

CHAPTER V

MEASUREMENTS AND ANALYSIS

The data collected as a result of applying the software metrics to the testbed
programs is of the ordinal scale. It means that the data can be ordered and has the properties
of equality and rank. Other possible scales for data are nominal, interval, and ratio
[Conte86]. Nominal scale data has the property of equality only. Interval scale data has
meaningful differences and properties of equality and rank. Ratio scale data has the
properties of equality, rank, meaningful differences, and meaningful ratios. In the case of
ordinal scale data, average value is not very meaningful. Hence median and mode values
are used for a particular metric in a population to describe the central tendency of the data.
Spearman correlation was used because it is more appropriate for data that can be ranked
[Conte86].

A total of 137 classes were analyzed for InterViews version 2.6. Table III shows the
measurements. The columns are friend classes and functions (FRCLS and FRF), inline
functions (INLF), private functions and variables (PRIF and PRIV), protected functions and
variables (PROF and PROY), public functions and variables (PUBF and PUBYV), total
members (TOTMEM), and virtual functions (VIRF). The values of these variables for the
classes in the system show non-zero skewness indicating that the mean probably cannot be
a useful measure. The standard deviations were highest for the public and total members.

Therefore, frequency distribution graphs for these member functions were analyzed and it

33

TABLE Il

STATISTICS FOR CLASSES IN INTERVIEWS (VER. 2.6)

FRCLS FRF INLF PRIF PRIV PROF PROV PUBF PUBV TOTMEM VIRF
CASES 137 137 137 137 137 137 137 137 137 137 137
MINIMUM O 0 0 0 0 0 0 0 0 0 0
MAXIMUM 5 1 10 21 22 16 11 64 12 109 15
MEAN 0.24 0.00 0.36 1.47 1.39 1.61 1.38 7.43 0.46 13.76 1.83
STAN DEV 0.69 0.08 1.38 2.93 3.38 2.88 2.32 9.83 1.84 15.59 2.68
SKEWNESS ~ 3.72 11.57 5.01 3.51 3.87 2.50 1.87 3.24 4.54 2.99 2.09
KURTOSIS 17.31 132.00 26.69 15.46 17.19 6.89 2.91 12.64 21.00 11.85 5.25
MEDIAN 0 0 0 1 0 0 0 4 0 8 1
TABLE IV
CORRELATIONS BETWEEN SELECTED METRICS FOR INTERVIEWS
(VER. 2.6)
CBO DIT Loc n N NOC PUB STAB VG VOL WMC
CBO 1.000
DIT 0.150 1.000
LoC 0.235 -0.541 1.000
n 0.360 -0.406 0.917 1.000
N 0.349 -0.372 0.909 0.964 1.000
NOC 0.161 =-0.050 0.107 0.052 0.026 1.000
PUB 0.190 -0.471 0.746 0.784 0.687 0.061 1.000
STAB -0.553 -0.336 =-0.207 -0.324 =-0.315 -0.164 =-0.175 1.000
VG 0.287 -0.419 0.916 0.939 0.914 0.081 0.797 =-0.265 1.000
VoL 0.354 -0.355 0.894 0.949 0.996 0.011 0.650 =-0.323 0.897 1.000
WMC 0.234 -0.380 0.787 0.840 0.749 0.120 0.935 =-0.313 0.862 0.714 1.000
TABLE V

STATISTICS OF THE MEASUREMENTS FOR INTERVIEWS (VER. 2.6)

CBO DIT LoC n N NOC PUB STAB VG VOL WMC
OF CASEs 119 119 119 119 119 119 119 119 119 119 119
MINIMUM 0 0 7 4 4 0 0 0.001 1.000 8 0
MAXTMUM 9 5 1067 1604 5786 14 64 1 221 31295 95
MEAN 1.87 2.09 126.32 188.29 469.43 0.79 8.44 0.05 22.38 2272 11.51
STAN DEV 1.41 1.42 170.16 263.03 767.79 2.11 10.15 0.18 32.40 4027 13.30
SKEWNESS 2.22 0.12 3.30 3.03 3.95 4.21 3.13 4.84 3.42 4.25 3.22

KURTOSIS 9.21 -0.84 13.52 10.78 20.39 20.82 11.48 22.39 14.84 23.47 13.73
MEDIAN 2 2 65 89 208 0 5 0 11 942 7

35

was found that most of the classes have 6 total and 4 public members. The Spearman
correlation matrix in TABLE IV shows that, as expected, LOC has strong correlations with
n, N, VG, VOL, WMC and the number of public members. WMC also has strong
correlations with n, N, VG, and VOL. STAB (Stability") has a negative correlation with
CBO (coupling between objects). This result supports the viewpoints expressed in this study
about the effect of parameter coupling on program stability. The Stability* metric also shows
negative correlations with the depth of inheritance tree (DIT) and the vocabulary of the
system (n). This is in accordance with the derivation of stability in terms of the potential
ripple effect as explained in Section 3.3 of this thesis report. TABLE V shows high values
of the sum of cyclomatic complexities and volumes for the member functions in the classes
being analyzed.

The collected data for InterViews (version 2.6) shows that there are 32 inheritance
structures. The average number of children at each level for a class decreases as the depth
of inheritance tree increases, showing that the inheritance tree is thicker at the top. The
classes deep in the hierarchy have fewer number of children. This trend indicates that the
classes higher up in the hierarchy are expected to be used more frequently and need
extensive testing and debugging.

A total of 100 classes were analyzed for InterViews version 3.0.1. Table VI shows
zero values for friend functions (FRF) which indicates better information hiding or
encapsulation. There is a sharp increase in the number of virtual functions (VIRF) in version
3.0.1 as compared to version 2.6, which shows an increase in the degree of polymorphism
in the inheritance structure. Table VII again shows a high negative correlation between

Stability* (STAB) and the coupling between objects (CBO). Table VIII shows a better

TABLE VI

STATISTICS FOR CLASSES IN INTERVIEWS (VER. 3.0.1)

36

FRCLS FRF INLF PRIF PRIV PROF PROV PUBF PUBV TOTMEM VIRF
CASES 100 100 100 100 100 100 100 100 100 100 100
MINIMUM O 0 0 0 0 0 0 0 0 1 0
MAXIMUM 1 0 2 8 15 8 0 94 20 96 67
MEAN 0.07 0.00 0.02 0.31 1.95 0.48 0.00 11.24 0.85 14.83 7.60
STAN DEV 0.25 0.00 0.20 1.07 2.61 1.11 0.00 13.59 3.27 15.17 10.72
SKEWNESS 3.37 0.00 9.84 5.02 2.76 4.12 0.00 3.08 4.80 2.59 2.90
KURTOSIS 9.36 0.00 95.01 28.92 8.80 2