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CHAPTER 1

INTRODUCTION

The modern theory for elementary particle physics, the Standard Model (SM),

has been tested in a variety of experiments since its formulation by Sheldon Glashow,

Steven Weinberg and Abdus Salam 1 in the sixties. In the SM, all known interactions,

except gravity, are described by a gauge theory based on the direct product group

SU(3)c × SU(2)L × U(1)Y , where SU(3)c is the color gauge group responsible for

the strong interaction, while SU(2)L and U(1)Y are the gauge groups of the weak

and hypercharge interactions. The diagonal subgroup U(1)em of SU(2)L × U(1)Y

describes the electromagnetic interaction, which is left intact after spontaneous sym-

metry breaking. In the SM the known quarks and leptons are organized into three

generations:

QLi =

(

ui

di

)

L

, LLi =

(

νi

ei

)

L

, uRi, dRi, eRi, i = 1, 2, 3 (1.1)

where ui (di) denotes the three generations of up (down)–type quarks u, c, t (d, s, b)

and ei (νi) denotes the charged leptons (neutrinos) of the three generations, namely,

the electron e (νe), muon µ (νµ) and the tau τ (ντ ). The subscripts L and R denote

respectively their left– and right–handed chiralities. Under SU(2)L, only the left–

handed fermions transform as doublets. The experimentally determined masses of

the charged leptons and the quarks are

me = 0.5109989 MeV, mµ = 105.65836 MeV, mτ = 1.77699 GeV,

mu(1 GeV) ≃ 5.1 MeV, mc(mc) ≃ 1.27 GeV, mt(mt) = 167 GeV,

md(1 GeV) ≃ 8.9 MeV, ms(1 GeV) ≃ 130 MeV, mb(mb) ≃ 4.25 GeV.(1.2)

1
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From this we see that there is a strong hierarchy among the masses: the fermions in

the third generation are the heaviest, while those from the first generation are four to

five orders of magnitude lighter. This is accommodated in the SM (but not explained)

by choosing certain hierarchical “Yukawa couplings”: In the SM, the mass term of a

fermion arises from the Yukawa interactions:

LY = Y f
ij f̄LifRjH. (1.3)

Here H is the Higgs douplet scalar field. fLi and fRj are left and right–handed SM

fermions of ith and jth flavors respectively. The fermion mass matrices are given

in terms of the Yukawa couplings and the vacuum expectation value (VEV) of the

Higgs field: (mf )ij = Y f
ij 〈H〉. Thus, once SU(2)L is broken by nonzero VEV of the

Higgs field the term given in Eq. (1.3) leads to the mass term. Y f
ij are to be chosen

hierarchically to fit the observed fermion masses.

Due to the mismatch between the weak and the mass eigenstates of the quarks,

there are inter–generation mixings in the couplings of the charged W± gauge bosons

described by a unitary matrix called the CKM matrix. The magnitudes of the CKM

matrix elements – deduced from experimental results of weak decays and the unitarity

condition – are found to be:

VCKM ≃







0.9750 0.222 0.003

0.222 0.9741 0.04

0.009 0.039 0.999






. (1.4)

In the SM, the neutrinos are massless. But recent experimental results indicate

otherwise. It is found that the electron neutrinos coming from the sun change or

oscillate to other types of neutrinos. The same fact is found for the muon neutri-

nos from the atmosphere. These oscillation patterns are a strong indication that the

neutrinos have small but nonzero masses. This suggests the presence of additional

right-handed neutrinos, probably very heavy, to accommodate the small left–handed

neutrino masses. These experiments also measured the inter–generation mixings in

the lepton sector and found them to be completely different in magnitude from the

quark mixings. Contrary to the small quark mixings, they are found to be large.

Current experiments are sensitive only to the absolute values of the differences be-

tween the light neutrino masses. This leads to two possible scenarios: hierarchical
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and inverse hierarchical neutrino masses. In the hierarchical scenario, for example,

one can choose the following best fit values for the neutrino masses

mνe ≃ 2.7 × 10−3 eV,

mνµ ≃ 6.4 × 10−3 eV,

mντ ≃ 8.6 × 10−2eV, (1.5)

and the leptonic mixing matrix given by

VMNS ≃







0.848 −0.526 ≤ 0.18

0.349 0.619 −0.72

−0.4 −0.59 −0.7013






. (1.6)

The SM, while highly successful in explaining all experimental data, does not provide

an explanation for the observed hierarchy in the masses and mixings of quarks and

leptons. In particular, it leaves the following central questions unanswered:

•The origin of generations: Why are there three generations of fermions?

•The origin of masses and their hierarchy: What mechanism sets the fermion

masses to the values observed in Nature? Why do they have such different

masses?

•The origin of mixing: Why are the weak and mass eigenstates different, thereby

causing the inter–generation mixings among quarks (small) and leptons (large)?

These observations are some of the main reasons for high energy physicists to seek a

theory beyond the SM.

There is one question, however, somewhat grander in terms of energy scale, one

should pose before turning to the questions listed above. A seemingly natural energy

scale that could set a mass parameter is the Planck mass, MPlanck =
√

~c/Gn =

1.2 × 1019 GeV, where quantum corrections from gravity becomes strong enough to

be considered, at least hypothetically. Nature chooses a completely different way.

The mass scale we observe in collider experiments is far below, seventeen orders

of magnitude smaller than the natural mass scale MPlanck. In the SM, this low

energy scale is chosen by the VEV of a scalar field called the Higgs particle. The

fermions and W±, Z bosons acquire their masses through the Higgs mechanism at
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the electroweak symmetry breaking scale around 102 GeV, which is set by the VEV

of the Higgs field. The known long–range electromagnetic and the short–range weak

interactions result from the symmetry breaking SU(2)L × U(1)Y → U(1)em at this

scale. The smallness of the fermion masses compared to the Planck mass is the result

of the chirality dependent SU(2)L gauge symmetry, which acts only on the left–

handed fermions. This chirality dependent nature of weak interactions forbids the

SM fermions from acquiring a mass until this electroweak symmetry breaking occurs.

On the other hand, the vital input of the SM is the mass of the Higgs field. In

general, quantum corrections to the mass of a scalar field are quadratic in the energy

scale (presumably MPlanck) which completely falsify the assumption that the mass of

the Higgs particle is around 102 GeV, unless a severe fine–tuning is performed. This

significant shortcoming of the SM is called the gauge hierarchy problem.

The most widely pursued solution to the gauge hierarchy problem is Supersym-

metry (SUSY), a symmetry which puts fermions and bosons into a common multiplet,

called supermultiplets. This guarantees the stability of the mass of a scalar particle

against the quadratic corrections. The key result of SUSY is that the quadratic cor-

rections from bosonic and fermionic components come with opposite sign and exactly

cancel out.

If SUSY were an exact symmetry of Nature it would lead to a complete de-

generacy in the masses of the fermionic and bosonic partners in a supersymmetric

multiplet. Thus SUSY must be broken if it has anything to do with real world. Phe-

nomenologically consistent SUSY breaking is the most difficult part in SUSY model

building. The reason is the following. There is a powerful mass sum rule which rules

out any possibility to construct a realistic model using only the SM fields. Therefore,

one is forced to introduce a “hidden” sector where SUSY is broken dynamically and

its effect transmitted to the visible sector by some type of interactions. The most

widely studied scenario is the gravity mediated SUSY breaking or mSUGRA (min-

imal Supergravity) in its simplest form. The mass splittings between the fermionic

and bosonic superpartners are characterized by a few parameters called soft SUSY

breaking parameters. These are chosen such that quadratic divergences in the Higgs

boson mass is not reintroduced. In general, non–minimal gravity mediation predicts

disastrously large flavor changing neutral currents and CP–violations. This is avoided
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by the simple choice of soft parameters of mSUGRA referred to as universal bound-

ary conditions. Even in this case flavor symmetries that may be present can induces

FCNC effects at an interesting level which can be tested in future experiments, as we

will show.

In this thesis I describe our research on the Supersymmetric flavor and Grand

Unified Theories, which address the questions of fermion mass hierarchy and mixings,

in particular, on their experimental implications such as flavor violation and CP–

violation. This thesis contains six chapters.

In the second and third chapters, we consider a SUSY version of the SM, called

Minimal Supersymmetric Standard Model (MSSM), in gravity mediated supersym-

metry breaking scenario. The results are based on work done in collaboration with

Kaladi S. Babu and Ilia Gogoladze 2,3. The gauge sector is extended by an anomalous

flavor U(1) gauge symmetry of string origin. Under this U(1) symmetry the three gen-

erations carry different charges, which leads to the observed fermion mass and mixing

hierarchy upon spontaneous symmetry breaking. It has far–reaching phenomenolog-

ical consequences such as flavor changing neutral currents and CP–violations. We

show that the flavor violating muon decay (µ → eγ) and the electric dipole moments

of the electron and neutron are all in an experimentally interesting range.

In the fourth chapter of the thesis, I describe our work on split supersymmetric

spectrum for superpartners of the MSSM fields 4. When the mass spectrum of the

supersymmetric particles display hierarchical values between the scalar partners of the

SM model fermions and the gauginos the fermionic superpartners of the SM gauge

bosons it is called Slit supersymmetry. We have shown that the anomalous U(1) and

a hidden sector based on SU(Nc) gauge group which becomes strongly coupled at

some intermediate scale Λ ∼ 1012÷1015 GeV, naturally induces split supersymmetric

spectrum. We start with the review of the previously known global version of such

models. Based on that analysis we calculate the supergravity corrections to the

soft parameters. These results show that the results from the global limit are not

destabilized by the supergravity corrections. In an explicit models these are necessary

since the sparticles neutral under the anomalous U(1) obtain their soft masses only

through the gravitational corrections.
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The fifth chapter of the thesis describes our study on an SU(5) SUSY Grand

Unified Theory (GUT) 5. We study a special class of theories called finite GUTs.

A theory is finite, if the quantum corrections to the gauge and Yukawa couplings

vanish to all orders of perturbation theory. Phenomenologically interesting models

have been built only in supersymmetric theories. Under the criteria of finiteness,

the beta–functions of the gauge and Yukawa couplings, which quantify the quantum

corrections, vanish to all orders of perturbation theory. These criteria highly constrain

the possible solutions leading to a single parameter in the theory, the gauge coupling.

All other couplings are given in terms of the gauge coupling. Earlier attempts in

this direction have achieved partial success in predicting a naturally large top mass,

yet failed to explain the observed masses for lighter generations and mixings in the

quark sector. We employ non–Abelian family symmetries to obtain a finite SU(5)

grand unified model, which in turn enables us to accommodate the quark masses and

mixings.

The sixth chapter contains work done in collaboration with Gerhart Seidl on

the description of the fermion mass hierarchy in a deconstructed manifold 6. The

deconstruction is an alternative ultraviolet completion of extra–dimensional theories

via four–dimensional product gauge theories. We have considered a two–dimensional

disk and its deconstruction by a product U(1)n gauge theory space on which the SM

fermions from different generations live at different sites, in other words, transform

under different U(1)’s. Compactifying this deconstructed space to RP 2 manifold for

anomaly cancelation we were able to obtain the mass matrices for the SM fermions

compatible with their experimentally known values.

Finally in chapter 7 we summarize our main results and conclude. Appendix A

contains some useful formulas used in our numerical studies for lepton flavor violation

and electric dipole moments in second and third chapters.



CHAPTER 2

ANOMALOUS U(1)A GAUGE SYMMETRY AS

THE FLAVOR SYMMETRY AND LEPTON

FLAVOR VIOLATION

2.1 Introduction

The observed hierarchy in the fermion masses and mixings is one of the most

puzzling features of Nature. Extended symmetries are often speculated to address

these problems. Family–dependent U(1) symmetry is a widely studied extension.

An attractive scenario is the Froggatt–Nielsen scheme 7 . In this scenario all the

Yukawa couplings are assumed to be of order one, but the ones which generate the

light fermion masses arise only as nonrenormalizable operators suppressed by powers

of a small parameter ǫ ≡ 〈S〉/M , where 〈S〉 is the flavor symmetry breaking order

parameter and M is a more fundamental mass scale. With the flavor U(1) charges of

fermions differing only by order one, large hierarchy factors, such as mu/mt ∼ 10−6,

are explained.

A natural origin for the flavor U(1) symmetry is the anomalous U(1)A gauge

symmetry of perturbative Heterotic string theory 8. The small expansion parameter ǫ

arises in a natural way in anomalous U(1) models through the Fayet–Iliopoulos term

induced by the gravitational anomaly 9. Such models have been extensively studied in

the literature for understanding the fermion mass hierarchy puzzle 2,10. The purpose

of this chapter is to present a class of models compatible with all low energy data, and

then study their phenomenological implications in flavor changing neutral currents.

Low energy supersymmetry can potentially induce excessive flavor violation in

processes such as K0 − K0 mixing and µ → eγ decay if the soft supersymmetry

breaking Lagrangian takes its most general form. This potential problem is usually

avoided in minimal supergravity (mSUGRA) by assuming a universal form for the

soft SUSY breaking terms at the gauge unification scale. The soft SUSY breaking

7
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part of the MSSM lagrangian is given by

−Lsoft =

{

Af
ij f̃if̃

c
j H +

1

2

∑

i=1,2,3

M i
1/2λiλi + BµHuHd + h. c.

}

+
∑

(

m̃2
f

)

ab
f̃ †

a f̃b + m̃2
Hu

|Hu|2 + m̃2
Hd
|Hd|2 . (2.1)

Here
(

m̃2
f

)

ab
is the scalar soft mass matrix of sfermions f̃a (a = 1 ÷ 6), Af

ij are the

soft trilinear A–terms and Mi, (i = 1, 2, 3) are the gaugino masses for U(1)Y , SU(2)L

and SU(3)c gauge groups. H is the up (down) type Higgs doublet Hu (Hd) for f = u

(f = d, e). Bµ is the soft Higgs mass parameter or B–term. Then the universal initial

condition for the soft parameters are

m̃2
fi

= m2
0,

Af
ij = A0Y

f
ij ,

M i
1/2 = M1/2. (2.2)

The first two conditions guarantee the absence of SUSY flavor problem. The gaug-

ino masses (in addition to the Higgs mass paramter µ) are chosen to be real for the

absence of SUSY CP–problem. The last condition is chosen to guarantee the gauge

coupling unification. There two additional parameters in mSUGRA: the sign of su-

persymmetric µ–term and tan β defined as the ratio of the vacuum expectation values

of the up–type and the down–type Higgs doublets: tanβ ≡ 〈Hu〉/〈Hd〉. If there is

no source of LFV at the high scale the first two conditions in Eq. (2.2) ensure the

absence of LFV at low energy scale.

Even with these conditions as the initial values for the soft parameters at the

fundamental scale, which we choose to be the string scale, Mst = 1017 GeV, a family–

dependent anomalous U(1)A symmetry will induce flavor changing processes. In the

present case, such violations will be generated through the renormalization group evo-

lution (RGE) of the SUSY breaking parameters between Mst and the U(1)A breaking

scale quantified by the flavor gauge boson mass MF . We derive general expressions

for the evolution of these parameters in the presence of higher dimensional operators.

Our results can be applied to a wide class of Froggatt–Nielsen models.

We have found several sources of flavor violation. As we will see, it is natural

that the flavor U(1) gauge symmetry responsible for explaining the fermion mass
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hierarchy breaks spontaneously at a scale MF slightly below the fundamental Planck

(or string) scale, MF ∼ Mst/50. In the momentum interval MF ≤ µ ≤ Mst, the

U(1)A gaugino is active and will contribute differently to the soft masses of different

families. Because TrU(1)A, the sum of U(1)A charges of all matter fields, is not

zero in anomalous U(1) models, there are nonuniversal RGE contributions to the soft

scalar masses arising from the D–term proportional to the respective flavor charges.

Furthermore, the trilinear A–terms will receive vertex corrections from the U(1)A

gaugino that are not proportional to the respective Yukawa couplings.

In this part of the thesis we present the result of our investigation of the com-

bined effects of nonuniversality for lepton flavor violating (LFV) decays µ → eγ and

τ → µγ in an anomalous U(1)A model. Quantitative predictions for the branching

ratios are presented in a class of models of fermion mass hierarchy.

We find that the branching ratio for µ → eγ is around the current experimental

limit. In our analysis we also include the right–handed neutrino–induced LFV effects,

which have been widely studied in the literature 11–14. These effects turn out to be

significant in some but not all cases that we study.

The structure of this chapter is as follows. In 2.2 we describe the anomalous

flavor U(1) models of fermion mass hierarchy, in 2.3 we present our fermion mass fits

for the model. In 2.4 we give the radiative corrections to the soft SUSY breaking

parameters from the flavor U(1) gauge symmetry. Section 2.5 is devoted to the

numerical analysis of the branching ratios for the process µ → eγ and τ → µγ.

In 2.5.1 we outline the qualitative features of flavor violation arising from various

sources. 2.5.2 has our numerical results. The conclusions of this chapter are given in

Section 2.6.

2.2 Anomalous U(1)A Models

In this Section we review briefly the idea of explaining fermion mass hierarchy

with a flavor dependent U(1) symmetry. We focus on a specific class of anomalous

U(1)A models. There are many other models which will also fall into this category

and will lead to similar results 10,15. In these models families are distinguished by their

anomalous U(1) charges. The U(1)A symmetry is broken spontaneously by an MSSM
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singlet flavon field S which acquires a vacuum expectation value (VEV) slightly be-

low the string scale Mst. This provides a small expansion parameter ǫ = 〈S〉/Mst

needed for explaining the fermion mass hierarchy. U(1) invariance forbids renormal-

izable Yukawa couplings for the light families, but would allow them through effective

nonrenormalizable couplings suppressed by a factor (S/Mst)
nij (for the fermion mass

operator connecting flavors i and j) with nij being positive integers. Even with all

couplings being of order one, hierarchical masses for different flavors are naturally

realized 7. Although this mechanism will work with any flavor U(1), anomalous U(1)

models are attractive since they would also provide a natural understanding for the

smallness of ǫ ∼ 0.2 10, which arises from the one–loop induced Fayet–Illiopoulos

D–term 9 by demanding that SUSY is left unbroken near Mst.

Consider the following fermion mass matrices studied in Ref. 2:

Mu ∼ 〈Hu〉







ǫ 8−2α ǫ 6−α ǫ 4−α

ǫ 6−α ǫ4 ǫ2

ǫ 4−α ǫ2 1






, Md ∼ 〈Hd〉ǫp







ǫ 5−α ǫ 4−α ǫ 4−α

ǫ3 ǫ2 ǫ2

ǫ 1 1






,

Me ∼ 〈Hd〉ǫp







ǫ 5−α ǫ3 ǫ

ǫ 4−α ǫ2 1

ǫ 4−α ǫ2 1






, MνD

∼ 〈Hu〉ǫs







ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1






,

Mνc ∼ MR







ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1






⇒ M light

ν ∼ 〈Hu〉2
MR

ǫ2s







ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1






. (2.3)

Here Mu, Md and Me are the up–quark, down–quark, and the charged lepton mass

matrices (written in the basis uMuu
c, etc.). MνD

is the Dirac neutrino mass matrix,

and Mνc is the right–handed neutrino Majorana mass matrix. The light neutrino

mass matrix M light
ν is derived from the seesaw mechanism 16. The neutrino mass

matrix is given by

Lν = − (ν, νc)

(

0 MT
νD

MνD
Mνc

) (

ν

νc

)

. (2.4)

Upon integrating out the heavy right–handed neutrinos νc one finds the light neutrino

mass matrix as follows:

M lihgt
ν = MνD

1

Mνc

MT
νD

. (2.5)
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When MR ∼ 1014 GeV and MνD
∼ 102 GeV, this mechanism leads to light neutrino

masses, for exapmple, (M light
ν3

) ∼ 0.1 eV for the heaviest light neutrino mass. We

have not exhibited order one coefficients in the matrix elements of Eq. (2.3). The

quark and lepton mass matrices arising from Eq. (2.3) are fully consistent if ǫ ∼ 0.2.

The exponent p appearing in the overall factor ǫp multiplying Md and Me is assumed

to take values 0, 1 or 2 corresponding to large (∼ 20), moderate (∼ 10), and small

(∼ 5) values of tan β (≡ 〈Hu〉/〈Hd〉) respectively.

The parameter α is allowed to take two values, 0 and 1, corresponding to Model 1

(α = 0) and Model 2 (α = 1). The two models differ only in the masses and mixings

of the first family. Both models give excellent fits to the fermion masses and mixings

including neutrino oscillation parameters. Their predictions for LFV are however

noticeably different, which we analyze in Section 2.5.2.

A general form of the superpotential which can explain the fermion masses and

mixing hierarchy through the Froggatt–Nielsen mechanism has the form

W = yu
ijQiu

c
jHu

(

S

Mst

)nu
ij

+ yd
ijQid

c
jHd

(

S

Mst

)nd
ij

+ ye
ijLie

c
jHd

(

S

Mst

)ne
ij

+ yν
ijLiν

c
jHu

(

S

Mst

)nν
ij

+
1

2
MRijν

c
i ν

c
j

(

S

Mst

)nνc

ij

+ µHuHd , (2.6)

where i, j = (1, 2, 3) are family indices, nu
ij, nd

ij, ne
ij, nν

ij and nνc

ij are positive inte-

gers fixed by the choice of U(1)A charge assignment ∗. yu
ij etc. are Yukawa coupling

coefficients which are all taken to be of order one. Here µ is the Higgsino mass pa-

rameter which should be of order 102 GeV for consistency with electroweak symmetry

breaking. The smallness of µ compared to the string scale may be explained by the

Giudice–Masiero mechanism, where µ gets related to the SUSY breaking scale 17.

We assume such a mechanism explains the origin of the µ term. MR in Eq. (2.6) is

the right-handed neutrino (νc
i ) mass scale, which is taken to be of order 1014 GeV.

∗The definition of the Yukawa couplings here differs from that of Ref. 2 and
3 by factors nf

ij!. The normalization in Eq. (2.6) is the consistent normalization
corresponding to our RGE analysis where we adopted the effective Yukawa couplings

to be Y f
ij ≡ yf

ijǫ
nf

ij .
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Although it is possible to explain the value of MR through operator such as (S4/M3
st),

here we assume it to be an input mass parameter.

The soft supersymmetry breaking terms which will induce LFV have the form

given by

−Lsoft =

{

au
ijQ̃iũ

c
jHu

(

S

Mst

)nu
ij

+ ad
ijQ̃id̃

c
jHd

(

S

Mst

)nd
ij

+ ae
ijL̃iẽ

c
jHd

(

S

Mst

)ne
ij

+ aν
ijL̃iν̃

c
jHu

(

S

Mst

)nν
ij

+
1

2
B′MRij ν̃

c
i ν̃

c
j

(

S

Mst

)nνc

ij

+
1

2

∑

i=1,2,3

M i
1/2λiλi +

1

2
MλF

λF λF + BµHuHd + h. c.

}

+
∑

(

m̃2
f

)

ab
f̃ †

a f̃b + m̃s
2|S|2 + m̃2

Hu
|Hu|2 + m̃2

Hd
|Hd|2 . (2.7)

Here a tilde stands for the scalar components of the matter superfields, and λi and

λF are the MSSM gauginos and the flavor U(1)A gaugino. (M i
1/2, MλF

) and ((m̃2
f )ab,

m̃2
s) are the gaugino and scalar soft masses respectively. f̃a stands for the MSSM

sfermions including the right–handed sneutrinos. Note that the generalized A–terms

in Eq. (2.7) has the same structure as the corresponding superpotential terms of Eq.

(2.6).

We assign flavor U(1)A charges to the MSSM fields such that the observed

fermion mass and mixing hierarchies are obtained with all Yukawa couplings being

order one. As we will show explicitly, the expansion parameter ǫ = 〈S〉/Mst is nat-

urally of order 0.2 in anomalous U(1) models. We use the idea of “lopsided” mass

matrices for generating large neutrino mixings 18, while maintaining small quark mix-

ings. This can be seen by examining, for example, θν
23 ∼ (M light

ν )23/(M
light
ν )33 ∼ O(1)

and Vcb ∼ (Mq)23/(Mq)33 ∼ O(ǫ2). WA in Eq. (2.6) contains MSSM singlet fields Xk

which would be needed for anomaly cancelation. The U(1) charge assignment shown

in Table 2.1 will lead to the texture of Eq. (2.3).

We use the Green–Schwarz (GS) mechanism 8 for anomaly cancellation associ-

ated with U(1)A gauge symmetry. Heterotic superstring theory when compactified to

four dimensions contains the Lagrangian terms L ⊃ ϕ(x)
∑

i kiF
2
i + iη(x)

∑

i kiFiF̃i,

where ki are the Kac–Moody levels, ϕ(x) is the dilaton field and η(x) is its axionic

partner. The Green–Schwarz mechanism makes use of the transformation η(x) →
η(x)− θ(x)δGS, and the gauge variation for the U(1)A gauge field, Vµ → Vµ + ∂µθ(x).
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Field U(1)A Charge Charge notation

Q1, Q2, Q3 4 − α, 2, 0 qQ
i

L1, L2, L3 1 + s, s, s qL
i

uc
1, uc

2, uc
3 4 − α, 2, 0 qu

i

dc
1, dc

2, dc
3 1 + p, p, p qd

i

ec
1,e

c
2,e

c
3 4 + p − s − α, 2 + p − s, p − s qe

i

νc
1, νc

2, νc
3 1, 0, 0 qν

i

Hu, Hd, S 0, 0, −1 (h, h̄, qs)

TABLE 2.1. The flavor U(1)A charge assignments for the MSSM fields and the flavon
field S in the normalization of qs = −1. Here α is 0 (1) for Model 1
(Model 2). In the third column we list the generic notation for the
charges used in the RGE analysis.

The U(1)A anomalies are cancelled by the GS mechanism 8 which requires

A1

k1

=
A2

k2

=
A3

k3

=
AA

3kA

=
Agravity

24
, (2.8)

where Ai and AA are the coefficients U(1)2
Y ×U(1)A, SU(2)2

L×U(1)A, SU(3)2
C×U(1)A

and U(1)3
A gauge anomalies respectively ∗. ki and kA are the Kac–Moody levels.

Agravity is the mixed gravitational anomaly coefficient which is given by the trace of

the U(1)A charges over all fields. With the non–Abelian levels k2 = k3 = 1, which is

the simplest possibility, from Table 2.1 and Eq. (2.8) one finds

A2 =
19 − 3α + 3s

2
,

A3 =
19 − 3α + 3p

2
. (2.9)

This implies that p = s. Furthermore,

A1 =
5

6
(19 − 3α + 3p) , (2.10)

which fixes the level k1 to be 5/3.

With p = s the charges given in Table 2.1 are compatible with SU(5) unification.

In string theory gauge coupling unification can occur without a simple covering group.

∗Here we include factor of 1/3 for the U(1)A cubic anomaly due to three identical
external gauge boson legs which was not included in our previous discussion.2
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The string unification condition is 19

k1g
2
1 = k2g

2
2 = k3g

2
3 = kAg2

F = 2g2
st . (2.11)

There is subtlety in choosing the coefficient in front of the string coupling20 which

we became aware of after completing the project: according to perturbative string

calculation, instead of 1 which we chose earlier2, it may be more proper to choose

2. This and the factor 1/3 for U(1)3
A anomaly have been accommodated in our later

project on EDM discussed in chapter 3. Our result k1 = 5/3 is what is needed

for consistency of the observed unification of gauge couplings in the MSSM. The

discrepancy in the unification scale derived from low energy data versus perturbative

string theory evaluation can be reconciled in the context of M–theory by making use

of the radius of the eleventh dimension 21. We assume such a scenario.

From now on we shall assume the SU(5) normalization for g1. If one assumes

that the field content of the model is just the one listed in Table 2.1, the gravitational

anomaly Agravity would not satisfy the GS condition. One simple solution is the

introduction of additional MSSM singlet (hidden sector) fields Xk. Then Eq. (2.8)

leads to the following result:

Agravity = 5 (13 − 2α + 3p) +
∑

k

qX
k = 12(19 − 3α + 3p) , (2.12)

where qX
k are the U(1)A charges of the extra fields Xk. From this, one gets

∑

k qX
k =

(163 − 26α + 21p). We assume for simplicity that all the Xk fields have the same

flavor charge equal to 1. The number nX of Xk fields is then fixed to be

nX = 163 − 26α + 21p . (2.13)

We are now in a position to determine the level kA as well as the U(1)A gauge

coupling gF at the unification scale. We renormalize the U(1)A charges by a factor

|qs| so that the charge of the flavon field is now −|qs|. |qs| is determined by demanding

g2
F = g2

2 at the unification scale. Eq. (2.8) and the number nX in Eq. (2.13) then fix

|qs| to be

|qs| =

√

19 − 3α + 3p

10(4 − α)3 + 5[(1 + p)3 + 2p3] + nX
. (2.14)
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ǫ p = 0 p = 1 p = 2

α = 0 0.250 0.270 0.288

α = 1 0.230 0.250 0.270

TABLE 2.2. Numerical values for the small expansion parameter ǫ corresponding to
different fermion mass hierarchy structure. See chapter 3 for different
values.

For p = (0, 1, 2) one has |qs| = (0.165, 0.172, 0.166) for Model 1 (α = 0) and |qs| =

(0.225, 0.228, 0.203) for Model 2 (α = 1) .

The Fayet–Iliopoulos term for the anomalous U(1)A, generated through the

gravitational anomaly, is given by 9

ξ =
g2

stM
2
st

192π2
|qs|Agravity , (2.15)

where gst is the unified gauge coupling at the string scale. By minimizing the potential

V =
|qs|2g2

F

8

(

ξ

|qs|
− |S|2 +

∑

a

qf
a |f̃a|2 +

∑

k

qX
k |Xk|2

)2

(2.16)

in the unbroken supersymmetric limit we obtain

ǫ =
〈S〉
Mst

=

√

g2
stAgravity

192π2
. (2.17)

The numerical values of ǫ derived from Eq. (2.17) for different p and α are listed

in Table 2.2 by making use of Eq. (2.14). This is the small expansion parameter

appearing in the mass matrices of Eq. (2.3). Here we took g2
st/4π ≃ 1/24.

The mass of the flavor U(1)A gauge boson is found to be

MF =
|qs|gF 〈S〉√

2
. (2.18)

Between the string scale Mst and MF the flavor gaugino contributes to flavor violating

processes. This mass can now be determined:

MF =

(

Mst

51.0
,

Mst

49.3
,

Mst

50.9

)

for p = (0, 1, 2) , (2.19)

in the case of Model 1 and

MF =

(

Mst

39.7
,

Mst

39.2
,

Mst

43.0

)

for p = (0, 1, 2) , (2.20)

in the case of Model 2.
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2.3 Fermion Mass Fits

Here we present numerical fits to the fermion masses and mixings for Model 1

and Model 2 adopted for the calculation of the branching ratios for LFV processes.

These fits will be used in our quantitative analysis of lepton flavor violation.

As input at low energy we choose the following values for the running quark

masses 22

mu(1 GeV) = 5.11 MeV, mc(mc) = 1.27 GeV, mt(mt) = 167 GeV,

md(1 GeV) = 8.9 MeV, ms(1 GeV) = 130 MeV, mb(mb) = 4.25 GeV. (2.21)

The CKM mixing matrix elements are chosen to be |Vus| = 0.222, |Vub| = 0.0035,

|Vcb| = 0.04 and η = 0.33 (the Wolfenstein parameter of CP–violation). Using two–

loop QED and QCD renormalization group equations we obtain these running pa-

rameters at the SUSY breaking scale, MSUSY = 500 GeV, with αs(MZ) = 0.118, to

be

rf ≡ mf (MSUSY )

mf (mf )
, (2.22)

where

(rt, rb, rτ , ru, rc, rd,s, re,µ) = (0.943, 0.605, 0.991, 0.395, 0.442, 0.398, 0.989) .(2.23)

Using two–loop SUSY RGE evaluation above MSUSY we obtain the Yukawa couplings

at the U(1)A breaking scale (∼ 1015 GeV) to be

(Yu, Yc, Yt) =
(

5.135 × 10−6, 1.426 × 10−3, 0.538
)

,

(Yd, Ys, Yb) =
(

3.459 × 10−5, 5.052 × 10−4, 2.768 × 10−2
)

,

(Ye, Yµ, Yτ ) =
(

1.024 × 10−5, 2.118 × 10−3, 3.572 × 10−2
)

,

(Yν1 , Yν2 , Yν3) =
(

3.515 × 10−4, 8.419 × 10−4, 1.131 × 10−2
)

, (2.24)

for tan β = 5,

(Yu, Yc, Yt) =
(

4.999 × 10−6, 1.389 × 10−3, 0.518
)

,

(Yd, Ys, Yb) =
(

6.844 × 10−5, 9.997 × 10−4, 5.470 × 10−2
)

,

(Ye, Yµ, Yτ ) =
(

2.027 × 10−5, 4.192 × 10−3, 7.094 × 10−2
)

,

(Yν1 , Yν2 , Yν3) =
(

1.708 × 10−3, 4.105 × 10−3, 5.519 × 10−2
)

, (2.25)
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for tan β = 10, and

(Yu, Yc, Yt) =
(

4.996 × 10−6, 1.387 × 10−3, 0.518
)

,

(Yd, Ys, Yb) =
(

1.40 × 10−4, 2.045 × 10−3, 0.113
)

,

(Ye, Yµ, Yτ ) =
(

4.132 × 10−5, 8.545 × 10−3, 0.147
)

,

(Yν1 , Yν2 , Yν3) =
(

8.551 × 10−3, 2.059 × 10−2, 0.278
)

, (2.26)

for tan β = 20. |Vub|, |Vcb|, |Vtd| and |Vts| are multiplicatively renormalized by an

RGE factor of 0.9 in going from the low energy scale to the U(1)A breaking scale.

We have determined the Dirac neutrino Yukawa couplings as follows. First we

note that the anomaly cancellation conditions in Eq. (2.8) implies p = s, which means

that the Dirac neutrino Yukawa couplings are fixed to be of the same order as the

charged lepton Yukawa couplings. Now, if one takes the right–handed Majorana neu-

trino mass matrix to be proportional to the transpose of the Dirac neutrino Yukawa

coupling matrix for simplicity, Mνc = Y T
ν MR ǫp, then the light neutrino mass matrix

is given by

M light
ν = YνM

−1
νc Y T

ν v2 sin2β = Yν
v2 sin2 β

MR ǫp
. (2.27)

This simplified choice is certainly consistent with the fermion mass structures we

have chosen in Eqs. (2.3). We adopt this choice in our analysis. Y ν is determined

from a fit to the light neutrino oscillation parameters with MR = 1014 GeV. This fit

corresponds to mνe = 2.7 × 10−3 eV, mνµ = 6.4 × 10−3 eV and mντ = 8.6 × 10−2 eV

and the leptonic mixing matrix given by

VMNS =







0.848 −0.526 −0.0409

0.349 0.619 −0.72

−0.4 −0.59 −0.7013






. (2.28)

We also consider a scenario where the Dirac neutrino Yukawa couplings are maximized

by choosing MR = 4 × 1014 GeV. In this case we have

(Yν1 , Yν2 , Yν3) =
(

1.406 × 10−3, 3.368 × 10−3, 4.530 × 10−2
)

for tan β = 5,

(Yν1 , Yν2 , Yν3) =
(

6.843 × 10−3, 1.645 × 10−2, 0.222
)

for tan β = 10,

(Yν1 , Yν2 , Yν3) =
(

3.514 × 10−2, 8.464 × 10−2, 1.237
)

for tan β = 20. (2.29)
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There is some freedom in choosing the overall scale of Yν consistent with Yν3 being of

order one (see Eq. (2.3)). If both MR and Yν are increased by a common factor, the

observable M light
ν will remain unchanged (see Eq. (2.27)). Different choices of Yν will

lead to different contributions to LFV from the νc sector. We illustrate this variation

with two choices of Yν .

We now present our fits to the observables of Eqs. (2.24)–(2.29) consistent

with the texture of Eq. (2.3). This cannot be done uniquely since the right–handed

rotation matrices are unknown from low energy data, so we make a specific choice. In

our lepton flavor violation analysis we shall make use of this specific fit. One should

bear in mind that there are uncertain coefficients of order one in the Yukawa matrices

of our fit, which can lead to an order of magnitude uncertainty in the branching ratios

for LFV processes.

We introduce the following notation:

Y f
ij ≡ yf

ij ǫnf
ij . (2.30)

This is the effective Yukawa couplings below the flavor scale MF we have used in our

fermion mass fit. In Model 1, a good fit to the Yukawa couplings matrices is found

to be

Y u = yu
33







3.91 ǫ8 0.226 ǫ6 0.375 ǫ4

0.226 ǫ6 1.91 ǫ4 0.499 ǫ2

0.375 ǫ4 0.499 ǫ2 1






,

Y d = yd
33 ǫp







(1.56 + 0.115i) ǫ5 (0.909 + 0.054i)ǫ4 (0.658 + 0.131i) ǫ4

−2.89 ǫ3 1.02 ǫ2 1.22 ǫ2

(−0.878 + 0.88 × 10−3i) ǫ 0.412 + 0.11 × 10−6i 1 + 0.73 × 10−6i






,

Y e = ye
33 ǫp







1.89 ǫ5 1.57 ǫ3 0.812 ǫ

0.487 ǫ4 2.14 ǫ2 0.316

1.10 ǫ4 1.52 ǫ2 1






,

Y ν = yν
33 ǫp







1.51 ǫ2 −0.358 ǫ −0.438 ǫ

−0.358 ǫ 0.339 0.485

−0.438 ǫ 0.485 1






. (2.31)
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Here

yu
33 = ( 0.539, 0.523, 0.519) ,

yd
33 = ( 0.650, 0.257, 0.106) ,

ye
33 = ( 0.840, 0.333, 0.139) ,

yν
33 = ( 0.225, 0.219, 0.221) , (2.32)

for (p = 2, 1, 0) which we shall associate with tan β = ( 5, 10, 20). Here we have

taken ǫ = 0.2. For simplicity we assumed the leptonic Yukawa couplings to be all

real.

In Model 2 we have the following fit for the Yukawa coupling matrices:

Y u = yu
33







0.876 ǫ6 1.30 ǫ5 0.499 ǫ3

1.30 ǫ5 2.59 ǫ4 0.993 ǫ2

0.499 ǫ3 0.993 ǫ2 1






,

Y d = yd
33 ǫp







(3.01 + 0.13i) ǫ4 (2.66 + 0.13i)ǫ3 (1.21 + 0.13i) ǫ3

1.79 ǫ3 2.26 ǫ2 1.42 ǫ2

(1.00 + 0.33 × 10−3i) ǫ 0.987 + 0.582 × 10−5i 1 + 0.21 × 10−5i






,

Y e = ye
33 ǫp







1.19 ǫ4 1.68 ǫ3 0.579 ǫ

0.892 ǫ3 2.18 ǫ2 0.350

1.36 ǫ3 1.45 ǫ2 1






,

Y ν = yν
33 ǫp







1.53 ǫ2 −0.329 ǫ −0.406 ǫ

−0.329 ǫ 0.293 0.449

−0.406 ǫ 0.449 1






. (2.33)

Here

yu
33 = ( 0.535, 0.52, 0.515) ,

yd
33 = ( 0.650, 0.257, 0.107) ,

ye
33 = ( 0.840, 0.333, 0.139) ,

yν
33 = ( 0.233, 0.228, 0.229) , (2.34)

for three different values of p = (2, 1, 0) identified with tan β = ( 5, 10, 20).
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2.4 Generalized RGE Analysis of Soft SUSY

Breaking Parameters

In this Section we give a general RGE analysis of the soft SUSY breaking

parameters including higher dimensional operators as shown in Eqs. (2.6) and (2.7).

This includes the effects of the flavor U(1)A gaugino sector. Our analysis of this

section should apply to a large class of Froggatt-Nielsen models.

It turns out that the generalized RGEs, although derived in the momentum

range MF ≤ µ ≤ Mst, can conveniently be written in terms of the effective Yukawa

couplings introduced in Eq. (2.30). For this reason, let us introduce the following

notation:

Af
ij ≡ af

ij ǫnf
ij . (2.35)

The one–loop β–functions for the soft scalar masses of the sleptons are found in the

momentum range MF ≤ µ ≤ Mst to be

β
(

m̃2
L

)

ij
= β

(

m̃2
L

)MSSM

ij
+

1

16π2

{

(

m̃2
LY ν†Y ν + Y ν†Y νm̃2

L

)

ij

+2
(

Y ν†m̃2
νY

ν + m̃2
Hu

Y ν†Y ν + Aν†Aν
)

ij

+2qL
i g2

F δij

(

σ − 4qL
i (MλF

)2
)}

, (2.36)

β
(

m̃2
e

)

ij
= β

(

m̃2
e

)MSSM

ij
+

1

16π2
2qe

i g
2
F δij

(

σ − 4qe
i (MλF

)2
)

, (2.37)

β
(

m̃2
ν

)

ij
=

1

16π2

{

2
(

m̃2
νY

νY ν† + Y νY ν†m̃2
ν

)

ij

+4
(

Y νm̃2
νY

ν† + m̃2
Hu

Y νY ν† + AνAν†)
ij

+2qν
i g

2
F δij

(

σ − 4qν
i (MλF

)2
)}

. (2.38)

Similarly the β–functions for the squark soft masses are given by

β
(

m̃2
Q

)

ij
= β

(

m̃2
Q

)MSSM

ij
+

1

16π2
2qQ

i g2
F δij

(

σ − 4qQ
i (MλF

)2
)

, (2.39)

β
(

m̃2
u

)

ij
= β

(

m̃2
u

)MSSM

ij
+

1

16π2
2qu

i g2
F δij

(

σ − 4qu
i (MλF

)2
)

, (2.40)

β
(

m̃2
d

)

ij
= β

(

m̃2
d

)MSSM

ij
+

1

16π2
2qd

i g
2
F δij

(

σ − 4qd
i (MλF

)2
)

. (2.41)



21

Here σ is defined as

σ = 3 Tr
(

2qQm̃2
Q + qum̃2

u + qdm̃2
d

)

+ Tr
(

2qLm̃2
L + qem̃2

e + qνm̃2
ν

)

+qsm̃
2
s +

∑

k

qX
k m̃2

Xk
, (2.42)

where m̃Xk
is the soft mass of the extra particles Xk and the trace is over family

space. Here β (m̃2
L)

MSSM
ij stands for the MSSM β–function without the νc or the

flavor U(1)A contributions 23.

Li Li

fa, S, Xk

Li Li

λF

Li

(a) (b)

Figure 2.1. (a) Trace correction from DA–term to the soft scalar masses and (b)
U(1)A gaugino–induced corrections to the soft masses.

The contributions proportional to σ in Eqs. (2.36)–(2.41) arise from the di-

agram in Figure 1 (a) which has its origin from the U(1)A D–term. We call this

the trace contributions. For a non–anomalous U(1) gauge symmetry with universal

scalar masses the trace term would vanish. However, for an anomalous U(1) gauge

symmetry, trace of the flavor charges is not zero, so this term will induce flavor non–

universal masses. The diagram in Figure 1 (b) is the source of flavor non–universal

contributions proportional to the gaugino mass MλF
in Eqs. (2.36)–(2.41).

Now we give the expressions for the one–loop contributions to the β–function

of the SUSY breaking A–terms of Eq. (2.7). There are two types of contributions to

the β–functions of Af
ij: one from the gaugino and the other from the A–terms. The

flavor gaugino contribution arises from diagrams such as the one in Figure 2.2. The

A–term contribution to β
(

af
)

cannot have the flavon field S propagating in the loop,

so that contribution is included in the MSSM piece.
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The gaugino vertex contribution to β
(

Ae
ij

)

(see Figure 2.2) is

β(ae
ij)

V =
1

4π2
MλF

g2
F ye

ij

(

qL
i qe

j + qL
i h̄ + qe

j h̄ + ne
ijqs(q

L
i + qe

j + h̄) +
1

2
ne

ij(n
e
ij − 1)q2

s

)

. (2.43)

Eq. (2.43) is obtained by summing all possible gaugino exchange diagrams.

x

ej
c

Hd

S, nij
e

Li

λF

ej
c

Li

Figure 2.2. U(1)A gaugino–induced vertex correction diagram for A–terms.

We now list the full one–loop β function for each Af
ij. This generalizes the

results of Martin 24.

β(Ae)ij = β(Ae)MSSM
ij +

1

16π2

{

Ae
[

Y ν†

Y ν − 2
(

(qL
i )2 + (qe

j )
2 + h̄2

)

g2
F

]

+2Y eY ν†

Aν
}

ij
+

1

4π2
g2

F Ze
ijY

e
ijMλF

, (2.44)

β(Aν)ij =
1

16π2

{

Aν
[

5Y ν†

Y ν + Y e†Y e + Tr
(

3Y uY u†

+ Y νY ν†
)

−3g2
2 − 3g2

1/5 − 2
(

(qL
i )2 + (qν

j )2 + h2
)

g2
F

]

+2Y ν
[

2Y ν†

Aν + Y e†Ae + Tr
(

3AuY u†

+ AνY ν†
)

+3M1g
2
1/5 + 3M2g

2
2

]}

ij
+

1

4π2
g2

F Zν
ijY

ν
ijMλF

, (2.45)

β(Au)ij = β(Au)MSSM
ij +

1

16π2

{

Au
[

Tr
(

Y νY ν†
)

− 2
(

(qQ
i )2 + (qu

j )2 + h2
)

g2
F

]

+2Y uTr
(

AνY ν†
)}

ij
+

1

4π2
g2

F Zu
ijY

u
ij MλF

, (2.46)

β(Ad)ij = β(Ad)MSSM
ij − 1

8π2
g2

F Ad
ij

(

(qQ
i )2 + (qd

j )
2 + h̄2

)

+
1

4π2
g2

F Zd
ijY

d
ijMλF

. (2.47)
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Here we defined the combination of the U(1)A charges Zf
ij as

Zu
ij = qQ

i qu
j + qQ

i h + qu
j h + nu

ijqs(q
Q
i + qu

j + h) +
1

2
nu

ij(n
u
ij − 1)q2

s ,

Zd
ij = qQ

i qd
j + qQ

i h̄ + qd
j h̄ + nd

ijqs(q
Q
i + qd

j + h̄) +
1

2
nd

ij(n
d
ij − 1)q2

s ,

Ze
ij = qL

i qe
j + qL

i h̄ + qe
j h̄ + ne

ijqs(q
L
i + qe

j + h̄) +
1

2
ne

ij(n
e
ij − 1)q2

s ,

Zν
ij = qL

i qν
j + qL

i h + qν
j h + nν

ijqs(q
L
i + qν

j + h) +
1

2
nν

ij(n
ν
ij − 1)q2

s . (2.48)

From the charges listed in Table 2.1 we have

Ze = −







( 11, 13, 16) ( 4, 6, 9) ( 1, 3, 6)

( 10, 11, 13) ( 3, 4, 6) ( 0, 1, 3)

( 10, 11, 13) ( 3, 4, 6) ( 0, 1, 3)






(2.49)

in Model 1 (α = 0) and

Ze = −







( 7, 9, 12) ( 4, 6, 9) ( 1, 3, 6)

( 6, 7, 9) ( 3, 4, 6) ( 0, 1, 3)

( 6, 7, 9) ( 3, 4, 6) ( 0, 1, 3)






(2.50)

in Model 2 (α = 1) for the three different values of p = (0, 1, 2).

2.5 Lepton Flavor Violating Decays

2.5.1 Qualitative analysis

The branching ratios of the lepton flavor violating decays li → ljγ in the SM

are predicted to be extremely small and beyond the reach of any future experiments,

due to suppression by a large scale such as GUT or Planck scale. Even, in the case of

non–zero neutrino mass, induced by see-saw mechanism, the right–handed neutrino

scale is too high to be experimentally significant. On the other hand, in the presence

of low energy supersymmetry, LFV effects can be quite significant. In particular,

LFV induced by the right–handed neutrino Yukawa couplings in the MSSM can lead

to µ → eγ and τ → µγ decay rates near the current experimental limits 11–14.

Here we focus on flavor violation in leptonic processes. The slepton soft masses

are more sensitive to the U(1)A gaugino corrections compared to those in the squark

sector. This is because flavor violation in the squark sector is diluted due to the
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fact that the squarks receive large gluino mass corrections which are flavor universal.

This is called the gluino focusing effect25. This is especially so when one considers the

cosmological constraints on the lightest SUSY particle (LSP) mass. Demanding that

the neutralino LSP constitutes an acceptable cold dark matter imposes the condition

m0 ≃ M1/2/4.4 in the context of supergravity models. This condition results from the

coannihillation mechanism 14,26 for diluting the dark matter density which requires

τ̃R mass to be about 5 ÷ 15 GeV above the LSP mass. The approximate formulae

for the sfermion soft masses in terms of the universal soft scalar mass m0 and the

common gaugino mass M1/2 (for small to medium tan β) are 25

m̃2
L ≃ m2

0 + 0.52M2
1/2,

m̃2
e ≃ m2

0 + 0.15M2
1/2,

m̃2
Q ≃ m2

0 + 6.5M2
1/2,

m̃2
u ≃ m̃2

d ≃ m2
0 + 6.1M2

1/2. (2.51)

From these expressions with m0 ≃ M1/2/4.4 we see that the gaugino focusing effects

make the squark soft masses universal and heavier than those of sleptons so that they

are much less sensitive to any flavor violating contributions.

The right–handed neutrino induced LFV effects in our models depend on the

overall factor ǫp in Eq. (2.3). These processes will be suppressed for p = 1, 2 corre-

sponding to low values of tanβ.

There are three different sources of LFV in our models: (i) RGE effects between

Mst and the U(1)A symmetry breaking scale MF induced by the U(1) gaugino, (ii)

RGE effects between Mst and the right–handed neutrino mass scale MR induced by

the neutrino Dirac Yukawa couplings, and (iii) the U(1)A D–term. Here we discuss

only the RGE effects (i) and (ii). We call them the flavor gaugino induced LFV

and νc–induced LFV. We give approximate formulas for these LFV processes by

integrating the relevant β–functions derived in Section 3.

We adopt the minimal supergravity scenario (mSUGRA) for supersymmetry

breaking given by Eq. (2.2). We assume universality of scalar masses and propor-

tionality of the A–terms and the respective Yukawa couplings at the string scale.

Gaugino mass unification is also assumed.

The various flavor violating effects are summarized below:
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(1) Right-handed neutrino contributions to the scalar soft masses arising from

Eq. (2.36) proportional to the Dirac neutrino Yukawa couplings:

δ
(

m̃2
L

)νc

ij
≃ −

(

Y ν†Y ν
)

ij

(

3 m0
2 + A2

0

) ln (Mst/MR)

8π2
. (2.52)

(2) Trace correction from DA–term in Eqs. (2.36) and (2.37) from Figure 1(a):

δ
(

m̃2
L

)A

ij
≃ −qL

i |qs|g2
F δij

(

3 m2
0

∑

i=1,3

(

nu
ii + nd

ii

)

+m2
0

∑

i=1,3

(ne
ii + nν

ii) + nXm2
0 − m̃2

s

)

ln (Mst/MF )

8π2
,

δ
(

m̃2
e

)A

ij
≃ −qe

i |qs|g2
F δij

(

3 m2
0

∑

i=1,3

(

nu
ii + nd

ii

)

+m2
0

∑

i=1,3

(ne
ii + nν

ii) + nXm2
0 − m̃2

s

)

ln (Mst/MF )

8π2
. (2.53)

(3) Gaugino mass correction from Figure 1(b):

δ
(

m̃2
L

)G

ij
≃

(

qL
i gF

)2
δij (MλF

)2 ln (Mst/MF )

2π2
,

δ
(

m̃2
e

)G

ij
≃ (qe

i gF )2 δij (MλF
)2 ln (Mst/MF )

2π2
. (2.54)

(4) Right–handed neutrino induced vertex correction to the Ae–terms (see Eq.

(2.44)):

δAe
ij ≃ −3A0

(

Y e Y ν†Y ν
)

ij

ln (Mst/MR)

16π2
. (2.55)

(5) Flavor gaugino vertex correction to the Ae–terms arising from Figure 2 (see

the last term of Eq. (2.44)):

δAe
ij ≃ −MλF

gF
2Y e

ijZ
e
ij

ln (Mst/MF )

4π2
. (2.56)

In addition, we have flavor charge dependent wave function renormalization of

the A–terms as given in Eq. (2.44). These are however not significant since they

are diagonalized simultaneously with the corresponding Yukawa couplings. On the

other hand, the vertex corrections to the A–terms given in Eqs. (2.55) and (2.56) will

induce nonproportionality in going from Mst to MF .
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The matrix elements Ze
ij in Eq. (2.56) are given in Eqs. (2.49) and (2.50) for

different values of p. The elements in the (1, 2) block of Ze are rather different from

each other, suggesting that the gaugino vertex contributions can be very important for

the process µ → eγ. On the other hand, the elements in the second and the third rows

are identical, hence, Ae
23 and Ae

33 run at the same rate as their corresponding Yukawa

couplings do in the short momentum interval. Therefore, this vertex correction for

the process τ → µγ is always suppressed in models with the texture of Eq. (2.3).

For µ → eγ we find that the most dominant effect is from the flavor gaugino

contributions to the soft masses. This is due to the following reason. It is proportional

to the flavor charge squared and to the flavor gaugino mass squared (recall that we

have m0 ≃ M1/2/4.4), both of which are large. On the other hand, the trace contribu-

tions to the soft masses depend linearly on the flavor charges and are proportional to

m2
0, which make them relatively small although the trace of the U(1)A charges itself

is large. The right–handed neutrino contributions are significant only for p = 0. For

other values of p the νc–contributions to the branching ratio for li → ljγ is suppressed

by ǫ4p.

We find that the gaugino contribution to the τ → µγ decay rate is always

suppressed since τL and µL have the same flavor charges and since the τR–µR mixing

angle is of order ǫ2. The only significant effect to this process is from the right–handed

neutrino effects when p = 0.

The terms we are interested in are the ones proportional to the U(1)A gaugino

mass MλF
and the term proportional to σ in the β–functions. Beside these, the

A–term β–functions contain a flavor dependent piece which arises from the wave–

function renormalization. Since the corresponding Yukawa β–functions contain the

same terms, these are simultaneously diagonalized, and do not lead to flavor violation.

2.5.2 Numerical results for the LFV

In this Section we present our numerical results for the LFV processes µ → eγ.

We adopt the mSUGRA scenario for the SUSY breaking parameters. At the string

scale, taken to be Mst = 1017 GeV, we assume a universal scalar mass m0 and a

common gaugino soft mass M1/2. The unified gauge coupling at 2 × 1016 GeV is

taken to be αG ≃ 1/24. We assume the U(1)A gauge coupling gF to be equal to g2
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at the string scale. We evolve the soft SUSY breaking parameters from Mst to the

U(1)A gaugino mass MF ≃ Mst/50 (see Eq. (3.12). We use the numerical values of

the Yukawa couplings in Section 2.3 for this evolution. For our numerical calculations

we used the formulas for the soft masses and the branching ratios of LFV processes

given in Appendix A.1 and A.2.

We take m0 = M1/2/4.4 so that the relic abundance of neutralino dark matter

can be reproduced correctly. With this choice we always find the neutralino to be the

LSP with the τ̃R mass higher than the LSP mass by 5−15 GeV. We impose radiative

electroweak symmetry breaking condition. The SUSY higgs mass parameter µ is

chosen to be positive which is favored by b → sγ.

We take M1/2 to vary in the range 250 GeV to 1 TeV. The lower value satisfies

the lightest higgs boson mass limit. We present the results for three different values

of tan β = (5, 10, 20). The corresponding values of the exponent p are taken to be

p = (2, 1, 0). The results are presented for two different values of A0 = (0, 300) GeV.

When tan β = 20, the lower limit on M1/2 is around 300 GeV, or else the radiative

electroweak symmetry breaking would fail.

In Figure 2.3 and 2.4 the combined effect for µ → eγ is plotted for Model 1 and

2 respectively.

In Figure 2.5 we plot B (µ → eγ) induced solely by the right–handed neutrino

Yukawa couplings. This result is identical for Models 1 and 2 since neutrino textures

are the same for the two models. In Figure 2.6 we plot the branching ratio induced by

the right–handed neutrino effects and the flavor gaugino effects for Model 1. Figure

2.7 has the same plot for Model 2. In Figure 2.8 (2.9) we plot B (µ → eγ) induced by

the trace term and the right–handed neutrino for Model 1 (2). Figure 2.10 (2.11) is

a plot of the branching ratio including the effects of A–terms and νc for Model 1 (2).

Figures 2.12 and 2.13 are the branching ratios for τ → µγ including all LFV effects

for Model 1 and Model 2. Figure 2.14, which is valid for both Models 1 and 2, has

the branching ratios for τ → µγ induced only by the νc Yukawa coupling effects.

From these figures we see that the decay µ → eγ is within the reach of forthcom-

ing experiments. Discovery of τ → µγ decay will strongly hint, within our framework,

an origin related to the right–handed neutrino Yukawa couplings.
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Figure 2.3. Branching ratio for the process µ → eγ including all corrections for
Model 1. The solid line corresponds to A0 = 300 GeV and the
dashed line corresponds to A0 = 0 GeV. For tan β = 20 we give
two sets of curves, the upper one corresponds to the maximal value
of the neutrino Yukawa coupling Y ν . Here and in other plots, the
straight horizontal line corresponds to the current experimental limit
B(µ → eγ)exp < 1.2 × 10−11 given in Particle Data Book27.
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Figure 2.4. Branching ratio for the process µ → eγ including all corrections for
Model 2.
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Figure 2.5. Branching ratio for the process µ → eγ induced by only the right–handed
neutrino Yukawa coupling effects. This result holds for both Models 1
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Figure 2.6. Branching ratio for the process µ → eγ induced by the gaugino corrections
(plus νc effects) for Model 1.
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Figure 2.7. Branching ratio for the process µ → eγ induced by the gaugino corrections
(plus νc effects) for Model 2.
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Figure 2.8. Branching ratio for the process µ → eγ induced by the trace correction
(plus νc effects) for Model 1.
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Figure 2.9. Branching ratio for the process µ → eγ induced by the trace correction
(plus νc effects) for Model 2.
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Figure 2.10. Branching ratio for the process µ → eγ from the vertex corrections (plus
νc effects) for Model 1.
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Figure 2.11. Branching ratio for the process µ → eγ from the vertex corrections (plus
νc effects) for Model 2.
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Figure 2.12. Branching ratio for the process τ → µγ including all the effects for
Model 1.
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Figure 2.13. Branching ratio for the process τ → µγ including all the effects for
Model 2.
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Figure 2.14. Branching ratio for the process τ → µγ induced by only the right–handed
neutrino Yukawa coupling effects for Models 1 and 2.
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2.5.3 Programming on RGEs

To obtain low energy spectrum for the SUSY particles I have written a code

in the programming language Fortran 90. In particular, this code accommodates the

soft masses of scalar particles with flavor dependent initial values at the unification

scale. As a check, we compared our code to the already existing programs such as

SUSPECT 2 27, which allows for only universal initial conditions. We have calcu-

lated the soft mass parameters at low energy beginning with the flavor independent

mSUGRA initial conditions for the soft parameters and it agreed upto a few percent,

which is the precision of our program. The decoupling of the right–handed neutrinos

are properly taken into account at each right–handed mass eigenvalue by diagonaliz-

ing the neutrino Majorana mass matrix, which has not been accommodated in other

existing codes. The RGEs are upto two–loop for the gauge couplings and the third

generation Yukawa couplings. In the fermionic and sfermionic sector of the MSSM all

the mass parameters and couplings are calculated in the flavor basis. This enables one

to study numerically any SUSY flavor models. In the following I will briefly describe

the structure of our code. The code contains several subroutines for RG evolutions

which use the standard numerical fourth order Runga–Kutta method 28 for ordinary

differential equations. Before full running from the UV scale down to the weak scale

one needs to determine the radiative electroweak symmetry breaking scale, MSUSY ,

taken to be the geometric mean value of the left–handed and the right–handed stop

masses. The SUSY threshold, M0
SUSY , is chosen to be 500 GeV as the initial trial

value. The SM fermion masses are evolved from their respective low energy values

to M0
SUSY using the two–loop QED and QCD beta functions. From M0

SUSY to UV

(in our case this is the flavor symmetry breaking scale) first we use RGEs of only

SUSY parameters: the gauge and Yukawa couplings. For consistent quark and lepton

mixings, we take into account the CKM matrix, and the MNS mixings. The neutrino

Dirac Yukawa couplings are introduced at the right handed neutrino mass scale ac-

commodating the seesaw mechanism. The MSSM beta functions, now with the soft

parameters with the universality conditions, are then used to run down to M0
SUSY .

After several iterations, now choosing MSUSY =
√

mt̃L
mt̃R

in each iteration, the value

for the radiative electroweak breaking quickly converges. Once this is done we again
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evolve the SUSY parameters up to MF . Here we introduced unitary rotations on the

SM fermions to obtain desired structure of fermion mass matrices for our flavor model.

The flavor dependent corrections from U(1)A sector are then added to the universal

soft parameters. To study other flavor models one can replace this part by simply

choosing flavor dependent initial conditions to the soft parameters. Then using full

flavor dependent RGEs, we evolved the soft parameters down to the electroweak scale.

After this, we used the Lapack package 29 for diagonalizing sfermion mass matrices.

The spectrum of the sparticles are now determined and one can calculate branching

ratios of LFV decays, and EDMs. For this I wrote small subroutines which calculate

our numerical results and stores them in output files.

2.6 Conclusions

In this chapter I have presented our study on lepton flavor violation induced

by a flavor–dependent anomalous U(1) gauge symmetry of string origin in a class of

models which addresses the fermion mass hierarchy problem via the Froggatt–Nielsen

mechanism. We have derived a general set of renormalization group equations for the

evolution of soft SUSY breaking parameters in the presence of higher dimensional

operators. These results should be applicable to a large class of fermion mass models.

We have shown that the U(1)A sector induces significant flavor violation in the

SUSY breaking parameters during the RGE evolution from the string scale to the

flavor symmetry breaking scale, even though this momentum range is very short. We

have identified several sources of flavor violation: the U(1)A gaugino contribution to

the scalar masses which is flavor dependent, a contribution proportional to the trace of

U(1)A charge which is also flavor dependent, non–proportional A–terms arising from

the U(1)A gaugino vertex correction diagrams, and the U(1)A D–term. In addition,

there are flavor violating effects in the charged lepton sector arising from the right–

handed neutrino Yukawa couplings, which have also been included in our numerical

analysis. The resulting flavor violation in the leptonic decays µ → eγ and τ → µγ

are found to be in the experimentally interesting range.

Adopting the minimal supergravity scenario for SUSY breaking, and choosing

parameters such that the needed relic abundance of neutralino dark matter is realized,

we have presented results for the branching ratios B(µ → eγ) and B(τ → µγ) in two
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specific models of fermion masses. Figures 2.3 and 2.4 are our main results for the two

models for B(µ → eγ), while Figures 2.13 and 2.14 are our results for B(τ → µγ).

The former should be accessible to forthcoming experiments, while the latter is also

in the observable range. Although we focused on two specific fermion mass textures

these effects should be significant in a large class of models.



CHAPTER 3

ELECTRIC DIPOLE MOMENTS FROM

FLAVOR SYMMETRY

3.1 Introduction

In the SM the electric dipole moments of the electron, muon and the neutron

are predicted to be extremely small and beyond reach of planned experiments (as-

suming that the QCD CP–violating θ–term is zero). In the presence of low energy

supersymmetry these EDMs can exceed the current experimental limits if soft SUSY

breaking parameters are complex 30–36. We assume m0, M1/2 and A0, and the Higgs

mass parameters µ and Bµ to be real. Thus the only source of CP–violation is in the

complex Yukawa couplings. This is needed for the CKM CP–violation in the quark

sector and it is natural to assume that the leptonic Yukawa couplings are complex as

well.

In this chapter, we study the electric dipole moments of the electron, muon and

neutron for Model 1 from chapter 2. A family–dependent anomalous U(1)A symmetry

will induce permanent electric dipole moments, even when there is no additional CP

violating phases beyond that of Yukawa couplings. In the present case, such violations

will be generated through the renormalization group evolution (RGE) of the SUSY

breaking parameters between Mst and the U(1)A breaking scale quantified by the

flavor gauge boson mass MF .

We have identified several sources of CP-violations from the same RGE effects

which lead to LFV discussed in the previous chapter. When the supersymmetric

Higgs mass term, µ, and the universal soft SUSY breaking parameters M1/2, A0 and

B0 are all chosen to be real, the primary sources for EDM are the trilinear A–terms

which couples left and right–handed sfermions. As we discussed in great detail in the

previous chapter, the trilinear A–terms will receive vertex corrections from the U(1)A

gaugino that are not proportional to the respective Yukawa couplings. This means

43
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that at the U(1)A breaking scale MF the proportionality condition for the A–terms

Eq. (2.2) can no longer be satisfied. Since the Yukawa couplings are complex, upon

the diagonalization of the Yukawa couplings, the diagonal entries of A–terms will be

complex in general. This source of CP–violation, as we will show, lead to permanent

EDMs that are in the experimentally interesting range.

We will assume in the present chapter universal SUSY breaking spectrum that

is also CP–invariant so that excessive EDMs are not induced from the fundamental

soft SUSY breaking parameters.

The EDMs that we find in the context of models of fermion mass hierarchy

are induced purely by complex Yukawa couplings. The phases in the Yukawa cou-

plings are believed to be the source for the observed CP–violation in the K and B

meson systems (CKM CP–violation). It is thus reasonable to assume all Yukawa

couplings, including the leptonic Yukawa couplings, to be complex. These effects

would survive down to the SUSY breaking scale and can lead to observable phenom-

ena. With complex Yukawa couplings, this flavor violation will also lead to EDMs

for the electron (de), muon (dµ), the neutron (dn), and the deuteron (dD) even with

universal and CP–conserving soft SUSY breaking terms at the string scale. We find

de ∼ (10−26 − 10−27) e cm and dn ∼ 10−27 e cm, which are within reach of next

generation experiments. There are proposals to improve the current limit on elec-

tron EDM, |de| ≤ 1.6 × 10−27 e cm 37, by about two to four orders of magnitude 38.

There are also proposals which would improve the current neutron EDM limit from

|dn| ≤ 6.3 × 10−26 e cm 39 by a factor of 5 40. Supersymmetry may reveal itself in

these experiments before direct discovery at the Large Hadron Collider, if the current

ideas of solving the fermion mass hierarchy problem are correct.

Lepton EDMs may arise even without flavor gauge symmetry from complex

neutrino Yukawa couplings responsible for the seesaw mechanism in the context of

low energy SUSY. This effect has received much attention recently 41,42. We have

computed such effects for de and dµ, but found them to be much less significant

compared to the flavor U(1) induced effects. For example, we find de ∼ 10−29 e

cm for large tan β from the neutrino Yukawa coupling effects, to be compared with

de ∼ 10−26 e cm from the flavor U(1) sector. There has been study of similar effects

from GUT threshold43.
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The structure of this chapter is as follows. In 3.2 we briefly review EDM. In

Section 3.3 we determine the small expansion parameter in Model 1 discussed in

previous chapter. In 3.4.1 the qualitative analysis of the EDM is discussed. In 3.4.2

we give our fermion mass fit which use for the numerical calculations of EDMs in

Section 3.4.3. In Figure 3.1 and 3.4 we show the results for the electron and the

neutron EMD. The conclusions of the this chapter are given in Section 3.5.

3.2 Electric Dipole Moments: Brief Review

The expectation value of electric dipole moment is defined as

~D =

∫

~xρ(~x)d3x, (3.1)

where ρ(~x) is the charge density. From this definition one can see that in the pres-

ence of violation of both parity P and time reversal T symmetries, a stable particle,

elementary and composite, can have a non zero EDM. The reason is that D is pro-

portional to the spin of the particle. Spin is odd under T and even under P , while

D has the opposite symmetry proerties: even under T and odd under P . One of the

fundamental assumptions in modern particle physics is the validity of CPT theorem

–CPT symmetry is unbroken. Therefore a nonvanishing EDM implies both P and

CP are violated. The experimental discoveries of P and CP violation have brought

a breakthrough in particle physics and the latter has been well accommodated in the

SM via the CKM matrix.

For better or worse, the SM predictions for the permanent EDMs for leptons

and quarks are too small to be accesible by any foreseeable experiment. Thus hand

an experimental discovery of a permanent electric dipole moment would usher a new

physics beyond the SM. In particular, supersymmetry has multiple sources for CP–

violation. If these complex phases are chosen arbitrarily, various CP– violating pro-

cesses would have grossly exceeded already existing stringent experimental bounds.

This is called the SUSY CP–problem. In minimal supergravity case, the choices of

soft parameters are such that these problems are avoided by fiat – viz. choosing all

soft SUSY breaking parameters and µ term to be real. One should keep in mind that
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mSUGRA scenario is not fundamentally justified, but is suggested by the experimen-

tal constraints. In addition to these sources, supersymmetric parameter µ–term must

be chosen to be real.

The EDM of a spin–1
2

particle f is defined by one of the electromagnetic form–

factors in the matrix element of current Jµ as

〈f(p′)|Jµ(0)|f(p)〉 = ū(p′)Γµ(q)u(p), (3.2)

where

Γ(q) = F1(q
2)γµ + F2(q

2)iσµνγ
µ

+ FA(q2)
(

γµγ5q
2 − 2mfγ5qµ

)

+
1

2mf

F3(q
2)iσµνγ5γ

µ. (3.3)

Then EDM is given by

df = −F3(0)

2mf

, (3.4)

which is expressed by the following term in the Lagrangian

LEDM = − i

2
df ψ̄σµνγ5ψF µν . (3.5)

3.3 Anomaly Discussion for Model 1

Here we consider the anomaly discussion in the case of Model 1 of chapter 2.

Later we consider the EDMs only for this case (similar analysis can be done for Model

2.). The U(1)A anomalies are cancelled by the Green–Schwarz mechanism 9 which

requires

A1

k1

=
A2

k2

=
A3

k3

=
AA

3kA

=
Agravity

24
. (3.6)

Observe that here we have included the proper normalization of the U(1)A cubic

anomaly: the factor 1/3 in front of the cubic anomaly AF has a combinatorial origin

owing to the three U(1)A gauge boson legs. We require string unification of all the

gauge couplings including that of the U(1)A, gF , at the fundamental scale Mst
19:

kig
2
i = kF g2

F = 2g2
st. (3.7)
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Here we choose the string coupling unifications with factor. For a clear discussion of

the coefficients in Eqs. (3.6)–(3.7) see Ref. 22. Then the last equality in Eq. (3.6)

now becomes

Agravity = Tr (q) = 12(19 + 3p). (3.8)

As before, this does not match Eq. (3.8). To match the anomaly we introduce MSSM

singlet fields Xk obeying Tr (q)X = Agravity −Tr (q)MSSM = 163 + 21p. Although this

is quite different from what we found in Eq. (2.13), they lead to similar expansion

parameter, which is the most inportant parameter of the model. If all the Xk fields

have the same charge equal to +1, they will acquire masses of order Mstǫ
2 through the

coupling XkXkS
2/Mst and will decouple from low energy theory. For other choices

of the charge of Xk these masss can be different. For example, if the charge is equal

to +1/2, their masses will be of order Mstǫ; if the charge is +2 the masses will be of

order Mstǫ
4. We will consider only the case where the Xk fields have charge +1.

From the Green–Schwarz anomaly cancelation condition AF /(3kF ) = A2/k2,

we have

Tr (q3)

3kA

=
19 + 3p

2k2

, (3.9)

from which we find the normalization of the U(1)A charge |qs| = 1/
√

kA to be

|qs| = (0.179, 0.186, 0.181) for p = (0, 1, 2) . (3.10)

For the Model 1 ( α = 0), we find the small expansion parameter to be

ǫ = (0.177, 0.191, 0.204) for p = (0, 1, 2) . (3.11)

As we can see the value of the expansion parameter ǫ has not changed too much

compared to what we have found in Chapter 2. Correspondingly the masses of the

U(1)A gauge boson is found to be

MF =

(

Mst

54.5
,

Mst

52.5
,

Mst

53.9

)

for p = (0, 1, 2) . (3.12)

In the momentum range below Mst and above MF , these gauge particles will be active

and will induce flavor dependent corrections to the sfermion soft masses and the A–

terms. It is these effects which induce EDMs for the electron, muon and the neutron

at low energies.
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3.4 Electric Dipole Moments from Anomalous U(1) Symmetry

3.4.1 Qualitative analysis for U(1)A induced EDM:

We now give approximate expressions for the U(1)A gauge sector RGE correc-

tions to the soft parameters between the string scale and the U(1)A breaking scale

MF . The U(1)A corrections to the soft masses for the left–handed slepton are obtained

from Eq. (2.36) to be

δ
(

m2
L̃

)A

ij
≃

(

4(qL
i MλF

)2 − qL
i m2

0Tr (q)
)

(|qs|gF )2δij
log (Mst/MF )

8π2
, (3.13)

and a similar expression for the right–handed slepton masses with the interchange

(L̃, qL) → (ẽ, qe). There are analogous corrections in the squark sector. The correc-

tions to the A–terms are obtained from Eq. (2.47) as

δAe
ij ≃ −MλF

gF
2Y e

ijZ
e
ij

log (Mst/MF )

4π2
, (3.14)

where Zij are biliear combinations of the flavor charges given by 2

Ze
ij = qL

i qe
j + qL

i h̄ + qe
j h̄ + ne

ijqs(q
L
i + qe

j + h̄) +
1

2
ne

ij(n
e
ij − 1)q2

s . (3.15)

Numerical values of Ze
ij for our model are given in Eq. (2.49). Note that these cor-

rections in Eqs. (3.13) and (3.14) are flavor dependent. Due to the flavor dependent

nature of these corrections, the fermion and the corresponding sfermion mass matri-

ces cannot be diagonalized simultaneously. This was the source of the flavor violation

discussed earlier. For the same reason, with complex Yukawa couplings Y f
ij , nonzero

EDMs for the fermions will be induced.

Let us now estimate the EDM of the electron arising from the corrections in Eqs.

(3.13) and (3.14). There are three flavor dependent matrices in the leptonic sector,

not including the neutrino Yukawa matrix Y ν . They are the leptonic Yukawa matrix

Y e and the matrices of U(1)A charges Q̂L = diag (1 + p, p, p) and Q̂e = diag (4, 2, 0)

for the lepton doublets and singlets (see Table 2.1). In the mass eigenbasis for the

charged leptons Q̂L and Q̂e will develop complex off diagonal entries, with the phases

arising from Y e through the unitary matrices that diagonalize Y e. This is the basic

source for the EDM. The corrections given in Eq. (3.13) will generate EDM of the

electron through the product of slepton mixings in (1i)LL, (ii)LR and (i1)RR (for
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i = 2, 3). The induced EDM will be de ∝ Im
[(

U †Q̂LY eQ̂eV †
)

11

]

, where U and

V are unitary matrices which diagonalize Y e, Y e = UY e
daigV

†. There are additional

corrections which are quadratic in Q̂L and Q̂e. The corrections to the A–terms in Eq.

(3.14) will also induce EDM directly through (LR) mixings. Combining these effects

we arrive at the following approximate expression for de:

de/e ≃ αvdMB̃

8π cos2 θW

1

m2
l̃

A

(

M2
B̃

m2
l̃

)

(|qs|gF )2log (Mst/MF )

8π2
×

∑

i=2,3

[

Cm
i + CA

i

]

Im

[

Y e
1iY

e
i1

Y e
ii

]

, (3.16)

where Cm
i and CA

i denote the contributions from the soft masses and the A–terms

respectively. They are given by

Cm
i =

(|qs|gF )2log (Mst/MF )

8π2

m4
0 (A0 − |µ| tan β)

m6
l̃

HL
i HR

i ,

HL
i = 4

(

M1/2/m0

)2 (

(qL
i )2 − (qL

1 )2
)

− (qL
i − qL

1 )Trq,

CA
i = 2

M1/2

m2
l̃

(Ze
i1 − Ze

11) . (3.17)

Here HR
i is obtained from HL

i by the replacement qL
i → qe

i . ml̃ is the average slepton

mass and MB̃ is the Bino mass. The function A (X) is given by

A(X) =
1 − X2 + 2X log X

(1 − X)3 . (3.18)

We see explicitly that the complex Yukawa couplings along with nonuniversal U(1)A

charges lead to nonzero EDM.

To estimate the size of this effect we choose the approximations m0 = M1/2 ≃
MSUSY . Following the mass matrices given in Eq. (refmassM01) we take |Y e

ij| ≃ ǫne
ij+p.

We consider here only the contribution from the (13) mixing, since the U(1)A charge

difference is the largest between the first and the third generations in Q̂e. Then we

find

de/e ∼
(

10−27cm
)

×
(

500GeV

ml̃

)2

× MB̃

(

O(10)
M4

SUSY (|µ| tan β)

m6
l̃

+ O(1)
MSUSY

m2
l̃

)

Arg [Y e
13Y

e
31] , (3.19)
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where

B(X) =
3 − 4X + X2 + 2 log X

(1 − X)3 . (3.20)

From this estimate we see that the electron EDM induced by the U(1)A gauge cor-

rections is in the experimentally interesting range and already puts constraint on the

soft SUSY breaking parameters. The actual numerical result is quite sensitive to the

choice of m0 and M1/2. In our numerical calculations we have chosen m0 = M1/2/4.4

for low tan β for cosmological reason. In this case the O(10) coefficient in Eq. (3.19)

will be reduced to an O(1) number. For large tanβ this coefficient will remain as

O(10).

Let us now compare the anomalous U(1) induced EDM with the right–handed

neutrino induced effects12,41,42. The latter effects induce EDM which are given by

di ∝ [(Y ν)† ΛY ν , (Y ν)† Y ν ], (3.21)

where Λij = log(MGUT /(Mνc)i)δij. Here (Mνc)i is the mass of the right–handed

neutrino of flavor i. With our texture for the neutrino mass matrices dictated by

U(1)A symmetry we find the right–handed neutrino induced EDM to be de ∼ 10−29 e

cm, which is two to three orders magnitude smaller than the anomalous U(1)A induced

effects. In our numerical analysis we present separately our results for the electron

EDM arising from the right–handed neutrino effects.

3.4.2 Fermion mass fit for Model 1

Here we present the numerical fits to the fermion masses and mixings adopted

for the calculation of the EDMs. As input at low energy for the running quark masses

and their running factors rf we choose the same values we used for the case of LFV

discussion as in Eqs. (2.21) and (2.23). The CKM mixing matrix is chosen in the

standard parametrization with θ12 = 0.221, θ13 = 0.005, θ23 = 0.043 and the complex

phase δ = 0.86. Then these masses at MSUSY are used to calculate the Yukawa

couplings in DR scheme. Using one loop SUSY RGE evolution above MSUSY we

obtain the Yukawa couplings at the U(1)A breaking scale (MF ∼ 1015 GeV) to be

(Yu, Yc, Yt) = (5.2803 × 10−6, 1.4663 × 10−3, 0.55636),
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(Yd, Ys, Yb) = (3.4465 × 10−5, 5.0294 × 10−4, 2.8292 × 10−2),

(Ye, Yµ, Yτ ) = (1.0390 × 10−5, 2.1484 × 10−3, 3.6245 × 10−2),

(Yν1 , Yν2 , Yν3) = (1.2107 × 10−3, 1.9662 × 10−3, 3.2170 × 10−2), (3.22)

for tan β = 5,

(Yu, Yc, Yt) = (5.0995 × 10−6, 1.4161 × 10−3, 0.53199),

(Yd, Ys, Yb) = (1.3851 × 10−4, 2.0213 × 10−3, 0.11524),

(Ye, Yµ, Yτ ) = (4.1780 × 10−5, 8.6437 × 10−3, 0.14818),

(Yν1 , Yν2 , Yν3) = (5.8781 × 10−3, 9.5054 × 10−3, 0.15647), (3.23)

for tan β = 20 and

(Yu, Yc, Yt) = (5.2880 × 10−6, 1.4686 × 10−3, 0.59327),

(Yd, Ys, Yb) = (4.2275 × 10−4, 6.1693 × 10−3, 0.41255),

(Ye, Yµ, Yτ ) = (1.2722 × 10−4, 2.6479 × 10−2, 0.51817),

(Yν1 , Yν2 , Yν3) = (3.0041 × 10−2, 4.8554 × 10−2, 0.8260), (3.24)

for tan β = 50. Slight differences compared to the fit values used in Section 2.3 of

chapter 2 are due to our improved treatment of the SUSY threshold and different

choices of neutrino mass matrices compared to a simple assumption we made in

chapter 2.

We have determined the Dirac neutrino Yukawa couplings as follows. The right–

handed Majorana neutrino mass matrix is taken to be proportional to the Dirac

neutrino Yukawa coupling Mνc = YνM
0
Rǫp. Yν is determined from a fit to the light

neutrino oscillation parameters with M0
R = 4× 1014 GeV. This corresponds to mνe =

2.7 × 10−3 eV, mνµ = 6.4 × 10−3 eV and mντ = 8.6 × 10−2 eV and the lepton mixing

matrix given by

VMNS =







0.8494 −0.5262 −0.04

0.3915 0.5775 0.7164

−0.3539 −0.6242 0.6965






. (3.25)

In the following, we present our fits to the texture of Eq. (refmassM01) which have

been used in our numerical calculations for tanβ = 5 (We have similar fits upto an
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overall factor for tanβ = 20, 50). This fit is not unique, and so can lead to order one

uncertainty in our EDM results. The following fit is found by applying bi-unitary

transformations with complex phases on the diagonal Yukawa coupling matrices. We

introduce a notation for the Yukawa couplings:

Y
f
ij ≡ y

f
ijǫ

nf
ij . (3.26)

At the U(1)A breaking scale we have the following fit (for tanβ = 5):

Y u =







(−0.231 + 0.242 i) ǫ8 (−1.66 + 0.792 i) ǫ6 (−0.159 − 0.127 i ) ǫ4

(−1.89 + 2.33 i) ǫ6 (−0.796 + 2.25 i) ǫ4 (−0.262 + 2.95 × 10−2 i) ǫ2

(3.75 − 3.76 i) ǫ4 (3.94 − 3.93 i) ǫ2 0.510 − 1.22 × 10−5 i






, (3.27)

Y d = ǫ2







(2.17 + 0.841 i) ǫ5 (0.377 − 6.49 × 10−2 i) ǫ4 (1.36 + 0.425 i) ǫ4

(1.93 − 0.668 i) ǫ3 (0.354 − 0.944 i) ǫ2 (1.34 − 1.50 i) ǫ2

(0.225 − 0.131 i) ǫ 0.223 − 0.119 i 0.635 − 7.12 × 10−3 i






, (3.28)

Y e = ǫ2







(1.86 + 2.28 i)ǫ5 (−0.275 − 0.364 i) ǫ3 (0.786 + 0.359 i) ǫ

(−0.355 + 2.03 i)ǫ4 (0.955 + 7.82 × 10−2 i) ǫ2 0.449 + 0.435 i

(1.19 + 0.792 i)ǫ4 (−3.09 + 3.54 i) ǫ2 0.632 − 1.49 × 10−3 i






, (3.29)

Y ν = ǫ2







(1.30 − 9.53 × 10−3 i) ǫ2 (−0.247 − 2.62 × 10−2 i) ǫ (−8.42 − 3.26 i) × 10−2 ǫ

(−0.247 − 2.62 × 10−2 i) ǫ 0.625 + 1.89 × 10−3 i 0.540 + 2.99 × 10−3 i

(−8.42 − 3.26 i) × 10−2 ǫ 0.540 + 2.99 × 10−3 i 0.593 + 2.62 × 10−3 i






.(3.30)

3.4.3 Numerical results for the EDM

In this Section we present our numerical results for the electron, muon, neutron

and the deuteron electric dipole moments. We choose µ > 0 for all cases except in

Fig. 3.1 where we also show results for µ < 0. The anomalous U(1) gauge coupling

gF is chosen to be g2
F /4π = 1/24, consistent with string unification. The soft SUSY

breaking parameters are evolved from Mst to the U(1)A breaking scale MF ≃ Mst/50

(see Eq. (3.12)) including the U(1)A gaugino/gauge boson corrections.

We present our results for the EDM for three values of the parameter tan β,

small (5), medium (20) and large (50). As explained earlier in the LFV analysis, we

take m0 = M1/2/4.4 for low and medium values of tanβ consistent with the dark
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matter constraint 44. For large tanβ we also allow the choice m0 = M1/2, since

alternative mechanisms for reproducing the right relic abundance of LSP become

available in this case 45.

The electron EDMs induced by the flavor U(1) gaugino/gauge boson contribu-

tion are plotted against the universal gaugino mass M1/2 in Figure 3.1. In Figure 2.4

we plot the EDM of the neutron arising from the flavor U(1) gauge boson/gaugino

effects.

As input at Mst we choose the Yukawa coupling matrices given in Eqs. (3.27)–

(3.30) (for tanβ = 5). These are obtained by extrapolating the low energy Yukawa

couplings to Mst and applying bi-unitary transformations at Mst to generate the

texture given in Eq. (refmassM01). As for the neutrino Dirac Yukawa couplings,

we choose Y ν to be such that in the flavor basis (after the bi–unitary rotations) it

exhibits approximately the structure given in Eq. (refmassM01) with (Y ν)33 ∼ ǫp.

For a given choice of hierarchical light–neutrino spectrum this would uniquely fix

the right–handed neutrino mass matrix through the seesaw mechanism. Mνc will

then have the form given in Eq. (refmassM01). We set (Mνc)33 = M0
Rǫ2p with

M0
R ≃ 4 × 1014 GeV. The eigenvalues of the right–handed neutrino mass matrix

are important for the lepton EDMs induced by the right–handed neutrino threshold

effects. It should be noted that the unitary rotations applied on the diagonal Yukawa

matrices at Mst are not unique, except that they should conform to the fermion mass

matrix structure shown in Eq. (refmassM01). So our fits should be taken only as

indicative, and not definitive. We expect differences of order one in our numerical

results on EDM arising from the arbitrariness in these unitary matrices.

In Figure 3.1 the electron EDM induced by the U(1)A gaugino/gauge boson

contributions to the soft masses and A–terms are plotted as a function of M1/2 for

three values of tan β. We see that some parts of the parameter space are already

excluded by the current experimental upper bound de ≤ 1.6 × 10−27 e cm and that

the other parts are in the range which will be tested by next generation electron EDM

experiments 38.

In Figure 3.2 we plot the muon EDM as a function of SUSY breaking parame-

ters. We find dµ to be in the range (10−25 − 10−28) e cm for most of the parameter

space. This value is somewhat smaller than than de(mµ/me), which would be the
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naive expectation based on the scaling of lepton masses. This happens for the fol-

lowing reason. The second and third family left–handed charged sleptons have the

same U(1)A charge, so the flavor gauge bosons/gaugino will not generate any mass

splitting between these sleptons. The mixing in the right–handed charged slepton

sector is suppressed by a factor ǫ2 for all tan β, compared to the suppression factor

ǫ between the first and the second generations. On the other hand, we find quite an

enhancement of the muon EDM for the choice m0 = M1/2 and tan β = 50. For this

choice, the electron EDM is well above the experimental bound. Since the two EDMs

are induced by independent phases, it is possible to choose the parameters such that

the electron EDM is below the experimental limit and at the same time the muon

EDM is at the level of ∼ (10−25 − 10−24) e cm, although we do not attempt such

an explicit solution here. It should also be pointed out that parts of the parameter

space where dµ is large is already ruled out by the experimental upper limit for the

radiative decay µ → eγ for the numerical fits shown 2. The remaining regions will be

put to experimental scrutiny by future experiments 46.

In Figure 3.3 we present for comparison, the electron EDM arising solely from

the right–handed neutrino threshold effects 12. With the proper decoupling of the

right–handed neutrinos 42 we find our results to be in rough agreement with those

found by others 12,41,42. Nevertheless these effects, which yield at most de ∼ 10−29e cm,

are much smaller compared to the U(1)A effects.

In Figure 3.4 we plot the neutron EDM versus M1/2. In Figure 3.5 we plot

the deuteron EDM. Details of the calculations are given in Appendix A.3. In both

cases our numerical results are in the interesting range which should be accessible to

proposed experiments in the near future. We find the contributions from the CKM

phase to be of the same order as the contributions from the U(1)A gaugino/gauge

boson sector. Figures 3.4–3.5 include both these effects. The flavor sector contribution

to the neutron EDM is somewhat smaller compared to the leptonic EDM due to the

gluino focusing effect. (The squarks receive flavor universal contributions for their

masses below MF from the gluino, which tends to suppress flavor violation and thus

dn, see Eq. (2.51))

We have also studied the constraint on the chromoelectric dipole moment for

the strange quark dC
s arising from 199Hg EDM 35,36. This bound reads as |dC

s | ≤
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5.8 × 10−25 e cm. This constraint is easily satisfied in our model. The down–type

squark mixing in the (23) sector is suppressed by a factor ǫ2 for the right–handed

squarks, and is vanishing to leading order for the left–handed squarks, similar to the

case of µ − τ mixing. Consequently, we find the chromoelectric EDM of the strange

quark to be about two to three orders of magnitude below the experimental limit.

The soft SUSY breaking bilinear B–term and the gaugino masses will develop

complex phases via the one–loop and two–loop RGE corrections respectively arising

from the A–term contributions. In our model we find these corrections to be negligible

compared to the U(1)A flavor gaugino/gauge boson effects.

3.5 Conclusions

In this chapter I have presented the results of our study on the electric dipole

moments of the electron, muon and the neutron induced by a flavor dependent U(1)

symmetry which explains the hierarchy of fermion masses and mixings in a natural

way via the Froggatt-Nielsen mechanism. This U(1) symmetry may be identified as

the anomalous U(1) of string theory. This symmetry is broken spontaneously at a

scale MF slightly below the string scale, MF ∼ Mst/50. In the momentum regime

MF ≤ µ ≤ Mst, the flavor U(1)A gauge boson sector will be active and will contribute

to the soft SUSY breaking parameters in a flavor dependent fashion. This is the main

source of the EDM that we have studied here. We adopt the minimal supergravity

scenario for SUSY breaking, and assume that the soft SUSY breaking parameters are

universal and real. The complex Yukawa couplings will still induce phases in the soft

SUSY masses and the A-parameters, leading to the generation of EDM.

We have presented our numerical results for the electron, muon and the neutron

EDMs in Figures 3.1–3.5 as functions of supersymmetry breaking parameters. de and

dn are very close to the current experimental limits, de ∼ (10−26 − 10−27) e cm and

dn ∼ 10−27 e cm. For the case of the muon, although dµ is rather small for low

tan β, in the case of large tan β ∼ 50, for certain choices of phases in the Yuakawa

couplings, we have found the induced the EDM to be as large as (10−23 − 10−24) e

cm, which might be accessible to future experiments 46. In the leptonic sector, these

EDMs are much larger than the ones induced by the neutrino seesaw sector, which

yields, for example, de ∼ 3 × 10−29 e cm with our texture of fermion mass matrices
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dictated by flavor symmetries. In Figure 3.2 we present our results for the induced

de arising from the neutrino seesaw sector. Discovery of electric dipole moments for

the electron, muon and the neutron can shed light on one of the fundamental puzzles

of Nature, viz., the origin mass for elementary particles.
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Figure 3.1. Electric Dipole Moment of the electron induced by the flavor gaug-
ino/gauge boson. The horizontal line shows the current experimental
limit on de. We have chosen here m0 = M1/2/4.4. For tan β = 50
we show an additional case with m0 = M1/2 (the uppermost curve).
For tan β = 20 and A0 = 300 GeV we find a cancelation between the
A–term contributions given in Eq. (2.47) and the soft left/right mass
contributions in Eq. (2.36) for our particular fit of the Yukawa cou-
plings. This cancelation disappears for the choice of negative µ–term
(the curve labeled by µ < 0).
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Figure 3.2. Electric Dipole Moment of the muon induced by the flavor gauge correc-
tions. Here m0 = M1/2/4.4. For tan β = 50, we also present results for
the case m0 = M1/2.
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Figure 3.3. Electric Dipole Moment of the electron induced purely by the
right–handed neutrino threshold corrections. The notation is the same
as in Fig. 3.1.
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Figure 3.4. Electric Dipole Moment of the neutron induced by the flavor gaug-
ino/gauge boson corrections. Here m0 = M1/2/4.4, with an additional
case m0 = M1/2 shown for tan β = 50. The horizontal line is the
current experimental limit.
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Figure 3.5. Electric Dipole Moment of the deuteron induced by the flavor gaug-
ino/gauge boson corrections. Here m0 = M1/2/4.4, with an additional
case m0 = M1/2 shown for tan β = 50.



CHAPTER 4

SPLIT SUPERSYMMETRY FROM

ANOMALOUS U(1)

4.1 Introduction

As noted in previous chapters, it is widely believed that supersymmetry

may be relevant to Nature. There are four major observations which may justify this

belief: (i) Supersymmetry (SUSY) can stabilize scales associated with spontaneous

symmetry breaking. (ii) Unification of gauge couplings works well in the minimal

SUSY extension of the Standard Model (SM). (iii) SUSY provides a natural candidate

for cold dark matter. (iv) Supersymmetry is a necessary ingredient of superstring

theory, which may eventually lead to a consistent quantum theory of gravity. Among

these, reasoning (i), when applied to stabilize the electroweak scale, would suggest

that all superpartners of the SM particles must have masses below or around a TeV.

This is indeed what was assumed in almost all applications of supersymmetry to

particle physics in the past twenty five years. The second and third observations above

would only require that a subset of superpartners be lighter than a TeV, while the last

one allows SUSY to be broken anywhere below the Planck scale, MPlanck = 1.2×1019

GeV. This is because, among the superpartners, if the split members of a unifying

group (SU(5), SO(10), etc), namely the gauginos and the Higgsinos, are lighter than

a TeV, while the complete multiplets (the scalar partners of SM fermions) are much

heavier, unification of gauge couplings would work just as well. The lightest of these

SUSY particles would still be a natural candidate for cold dark matter.

A scenario dubbed as “Split Supersymmetry”, in which the spin 1/2 super-

particles, namely, the gauginos and the Higgsinos, have masses of order TeV while

the spin zero superparticles (squarks and sleptons) are much heavier, has recently

been advocated 47. This scenario gives up the conventionally employed naturalness

criterion, since the light SM Higgs boson is realized only by fine–tuning. Such a

62



63

finely tuned scenario, it is argued, may not be as improbable as originally thought

47. This is because in any theory with broken SUSY one has to cope with another,

even more severe, fine-tuning, in the value of the cosmological constant. A cosmic

selection rule, an anthropic principle 48, may be active in this case. If so, a simi-

lar argument may also explain why the SM Higgs boson is light 49. Supersymmetry

plays no role in solving the hierarchy problem here. Recent realization of a string

landscape 50, which suggests the existence of a multitude of string vacua, may justify

this approach. Probabilistically, the chances of finding a vacuum with a light SM

Higgs (along with a small cosmological constant) may not be infinitesimal, given the

existence of a large number of string vacua 51.

Split Supersymmetry has a manifest advantage over TeV scale supersymmetry:

Unacceptably large flavor changing neutral current (FCNC) processes 52, fermion

electric dipole moments, and d = 5 proton decay rate, which generically plague TeV

scale SUSY are automatically absent in Split Supersymmetry. Various aspects of this

scenario have been analyzed by a number of authors 53,54.

In this chapter we address the Split Supersymmetry scenario from a theoretical

point of view. Perhaps the most important question in this context is a natural

realization of the split spectrum. Although it may be argued that R–symmetries

would protect masses of the spin 1/2 SUSY fermions and not of the squarks and

sleptons, in any specific scenario for SUSY breaking there is very little freedom in

choosing the relative magnitudes of the two masses. We will focus on SUSY breaking

triggered by the anomalous U(1) D–term of string origin coupled to a SUSY QCD

sector 55. Each sector treated separately would preserve supersymmetry, but their

cross coupling breaks it. We make extensive use of exact results known for N = 1

SUSY QCD 56. In this scenario, the squarks and sleptons receive SUSY breaking

masses at the leading order from the anomalous U(1) D–term, while the gauginos

acquire masses only at higher order. The Higgsino mass also arises at higher order

and is similar in magnitude to the gaugino mass. Thus, a naturally split spectrum

is realized. The anomalous U(1) D–term also provides a small expansion parameter

which we use to explain the mass and mixing hierarchies of quarks and leptons.

We present complete models which are consistent with anomaly cancelation, and

which lead to naturally Split SUSY spectrum. A somewhat similar analysis has been
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carried out by Nath et. al.57, our approach is different in that we present complete

models without assuming a hidden sector and address the fermion masses and mixing

hierarchy problems. Our spectrum is also quite different, especially as regards the

gravitino mass. We note that with flavor–dependent charges, the anomalous U(1) D–

term contributions to the squark and slepton masses generically lead to large FCNC

processes with sub–TeV scalars 58, this problem is absent in the Split Supersymmetry

scenario.

4.2 Supersymmetry Breaking by Anomalous U(1) and Gaugino

Condensation

In this Section we review supersymmetry breaking induced by the D–term

of anomalous U(1) symmetry 55,59 coupled to the strong dynamics of N = 1 SUSY

gauge theory 56. Each sector separately preserves supersymmetry, so an expansion

parameter (the cross coupling) is available. Exact results of supersymmetric gauge

theories can then be applied. Here we focus on the global supersymmetric limit, in

Section 4.2.1 we extend the analysis to supergravity. In addition to the SM fields,

these models contain an SU(Nc) gauge sector with Nf flavors. The “quark” (Q) and

“antiquark” (Q̃) fields of the SU(Nc) sector are also charged under the U(1)A. U(1)A

is broken by a SM singlet field S carrying U(1)A charge of −1. The Standard Model

fields carry flavor–dependent U(1)A charges so that the hierarchy in fermion masses

and mixings is naturally explained. A small expansion parameter ǫ ∼ 0.2 is provided

by the ratio ǫ = 〈S〉 /MPl by the induced Fayet–Iliopoulos D–term for the U(1). To

see this, we recall that the apparent anomalies in U(1)A are canceled by the Green–

Schwarz mechanism 8 we discussed in chapters 2 and 3. The anomalies are canceled

if the following conditions are satisfied:

Ai

ki

=
AN

kN

=
AA

3kA

=
Agravity

24
= δGS. (4.1)

Here we now include AN , the anomaly coefficient for SU(Nc)
2 × U(1)A. These con-

ditions put severe restrictions on the choice of U(1)A charges and SU(Nc) sector.

String loop effects induce a nonzero Fayet–Iliopoulos D–term for the U(1)A

given by 9

ξ =
g2

stM
2
Pl

192π2
Agravity , (4.2)
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where gst is the string coupling at the unification scale MPl, related to the SM gauge

couplings at that scale as

kig
2
i = 2g2

st . (4.3)

The scalar potential receives a contribution from the D-term given by

VD =
D2

A

2
=

g2
A

2

(

ξ − |S|2 + qQ|Qi|2 + qQ̃|Q̃ĩ|2 +
∑

i

qi|φi|2
)2

. (4.4)

Here S is the flavon field with charge −1, Qi and Q̃ĩ are the “quark” and “antiquark”

fields belonging to the fundamental and antifundamental representaions of an SU(Nc)

gauge group with U(1) charges qQ and qQ̃. φi in Eq. (4.4) stand for all the other

fields, and includes the SM sector.

In our models, all fields except S, will have positive U(1)A charges, so ξ will turn

out to be positive. The potential of Eq. (4.4) will minimize to preserve supersymmetry

by giving the negatively charged S field a vacuum expectation value, which would

break the U(1)A symmetry. To zeroth order in SUSY breaking parameters, 〈S〉 = S0,

where

S0 ≡
√

ξ =

√

g2
stAgravity

192π2
MPl ≡ ǫMPl. (4.5)

Here ǫ ∼ 0.2 will provides a small expansion parameter to explain the hierarchy of

quark and lepton masses and mixings.

As for the N = 1 SUSY QCD sector, we consider the gauge group SU(Nc) with

Nf flavors of quarks and antiquarks, and apply the well–known exact results56. For

concreteness we choose Nf < Nc. These results have been applied to TeV scale SUSY

breaking by Binetruy and Dudas 55 in the presence of anomalous U(1) symmetry.

These models actually lead to a Split Supersymmetry spectrum, as we will show. We

also generalize the results of Binetruy and Dudas55 to include supergravity corrections

(in Section 4.2.1). In Section 4.3, we apply these results to explicit and complete

models.

The effective superpotential we consider has two pieces:

Weff = Wtree + Wdynamical, (4.6)

where Wtree is the tree–level superpotential, while Wdynamical is induced dynamically

by nonperturbative effects. Since the Q and the Q̃ fields are charged under U(1)A, a



66

bare mass term connecting them is not allowed. A mass term will arise through the

coupling

Wtree =
Tr

(

λQQ̃
)

Sn

Mn−1
∗

(4.7)

when 〈S〉 = S0 is inserted. Here the trace is taken over the Nf flavor indices of the

Qi and Q̃ĩ fields. M∗ is a mass scale at which this term is induced. The most natural

value of M∗ is MPl, which is what we will use for our numerical analysis, but we allow

M∗ to be different from MPl for generality. We have used the definition

n = qQ + qQ̃ (4.8)

for the sum of the U(1) charges of Q and Q̃. As we will see later the choice n = 1,

which would correspond to a renormalizable superpotential will be phenomenolog-

ically unacceptable. From the exact results given by Seiberg 56, the dynamically

generated superpotential is known to be (for Nf < Nc)

Wdynamical = (Nc − Nf )





Λ3Nc−Nf

det
(

QQ̃
)





1/(Nc−Nf )

. (4.9)

Here Λ is the dynamically induced scale below which the SU(Nc) sector becomes

strongly interacting:

Λ ∼ MPle
− 2π

αNc
(3Nc−Nf ) , (4.10)

where αNc is the SU(Nc) gauge coupling constant at MPl. For Nf = Nc − 1, the

gauge symmetry is completely broken, and Eq. (4.9) is induced by instantons. For

Nf < Nc − 1, the gauge symmetry is reduced to SU(Nc − Nf ) and the gaugino

condensate of this symmetry induces Eq. (4.9).

Below the scale Λ the effective theory can be described in terms of Nf × Nf

mesons Z ĩ
j:

Z ĩ
j = QjQ̃

ĩ with (̃i, j = 1, .., Nf ). (4.11)

Neglecting small supersymmetry breaking effects, we can describe the theory below

Λ along the D–flat directions Qi = Q̃i in terms of the Z fields. We can make the
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following replacements in the D–term and the superpotential: qQ|Qi|2 + qQ̃|Q̃ĩ|2 →
nTr

(

Z†Z
)1/2

and QjQ̃
ĩ → Z ĩ

j. We use the notation

m = λ
Sn

0

Mn−1
∗

, (4.12)

with m identified as the mass matrix of the Z field (upto small supersymme-

try breaking effects). Then the F–term for the Z fields, defined as (FZ)ĩ
j =

2
[

(

Z†Z
)1/2

]ĩk̃

∂W/∂Z k̃
j , is found to be

(FZ)ĩ
j = 2





(

Z†Z
)1/2

(

m −
(

Λ3Nc−Nf

det (Z)

)1/(Nc−Nf ) (

1

Z

)

)T




ĩ

j

. (4.13)

This theory preserves supersymmetry, as FZ = 0 can be realized with 〈Z〉 6= 0 and

given by

(Z0)
ĩ
j ≡

(

det (m) Λ3Nc−Nf
)1/Nc

(

1

m

)ĩ

j

. (4.14)

Note that this result holds only in the presence of a nonvanishing VEV 〈S〉, so that

m is nonzero.

So far we treated the U(1)A D–term and the ensuing superpotential for the Z

fields separately. The two sectors are however coupled through Wtree of Eq. (4.7).

Owing to this coupling, supersymmetry is actually broken. This is evident by exam-

ining the F–term of the S field,

FS = n
Tr(mZ0)

S0

6= 0. (4.15)

Similarly FZ is also nonzero. The VEVs of S and Z fields will shift from the su-

persymmetry preserving values of Eqs. (4.5) and (4.14) when the full potential is

minimized jointly. To find the soft SUSY breaking parameters we need to calculate

these corrections.

The scalar potential of the model in the global limit is given by

V = |FS|2 +
1

2
Tr(FZ(Z†Z)−1/2F †

Z) +
1

2
D2

A. (4.16)

We expand the fields around the SUSY preserving minima:

S = S0 + δS Z ĩ
j = (Z0 + δZ)ĩ

j (4.17)
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with δS/S0 ≪ 1, δZ/Z0 ≪ 1. For simplicity we assume the coupling matrix λ to

be an identity matrix, λi
j = λδi

j, in which case Zj
i = Zδj

i can be chosen. The VEV

〈Z〉 = Z0 arising from Eq. (4.14) in this case becomes

Z0 =
Λ3

m

(m

Λ

)Nf /Nc

. (4.18)

We make an expansion in the supersymmetry breaking parameter ∆ defined as

∆ ≡ Z0/S
2
0 =

Λ3

mS2
0

(m

Λ

)Nf /Nc

≪ 1. (4.19)

From the minimization of the scalar potential with respect to these shifted fields,

we find

〈S†S〉 = S2
0

[

1 + ∆ (nNf ) − ∆2

(

n2N2
f

2N2
c g2

A

)

{

g2
An (Nc − Nf ) (2Nc − Nf )

− 2Nc (Nc − nNf )
m2

S2
0

}

+ O(∆3)

]

, (4.20)

〈Z〉 = Z0

[

1 − ∆

{

n2Nf (Nc − Nf ) (2Nc − Nf )

2N2
c

}

+ O(∆2)

]

.

This agrees with the results of Binetruy and Dudas55, except that there are two

apparent typos in Eq. (2.22) of that paper.

Now the F and the D–terms are given by

〈FS〉 = mS0∆ (nNf )

(

1 + ∆
nNf

2

(

n − 1 +
nNf (Nc − Nf ) (2Nc − Nf )

N2
c

))

,

〈FZ〉 = mZ0∆
(

n2Nf

)

(

Nf

Nc

− 1

)

, (4.21)

〈DA〉 = m2∆2 (nNf )
2

(

nNf

Nc

− 1

)

/gA.

Consequently, the scalar soft masses induced from the D–term of anomalous U(1) are

m2
f̃i

= qfi
m2

0, (4.22)

where

m2
0 = m2∆2 (nNf )

2

(

nNf

Nc

− 1

)

. (4.23)

There is a simple interpretation of these results in terms of the gaugino condensate

(for Nf < Nc − 1), which is given by 60

〈λαλα〉 = e2iπk/(Nc−Nf )Λ3
(m

Λ

)Nf /Nc

, k = 1 − (Nc − Nf ). (4.24)
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The soft scalar masses are simply proportional to the gaugino condensate. We will

make use of these results in Section 4.3. Note that had we chosen n = 1 these

results would have led to negative squared masses for scalars since Nf < Nc, and

qfi
is positive, which is unacceptable. Note also that the D–term contributions are

proportional to the U(1)A charges, so they are zero for particles with zero charge.

4.2.1 Gravity corrections to the soft parameters

In this Section we work out the supergravity corrections to the soft param-

eters found in the global SUSY limit in the previous section. Our reasons for this

extension are two–fold. First, we wish to show explicitly that supergravity corrections

do not destabilize the minimum of the potential that we found in the global limit.

Second, the main contribution to the masses of scalars with zero U(1) charge will

arise from supergravity corrections. In our explicit models, we do have particles with

zero charge.

It is conventional in supergravity to add a constant term to the superpotential

in order to fine–tune the cosmological constant to zero:

W = Wglobal + β. (4.25)

We separate the constant into two parts, β = β0 +β1, such that β0 cancels the leading

part of the superpotential in which case 〈W 〉 = β1. The F–term contribution to the

scalar potential in supergravity is given by

VF = M4
Ple

G
(

Gi

(

G−1
)i

j
Gj − 3

)

, (4.26)

where

Gi ≡ ∂G/∂φ∗
i , Gi ≡ ∂G/∂φi, Gi

j ≡ ∂2G/∂φ∗
i ∂φj. (4.27)

We will assume for illustration the minimal form of the Kähler potential. In our

model it is given by

G =
|S|2
M2

Pl

+ 2
Tr(Z†Z)1/2

M2
Pl

+
∑

i

|φi|2
MPl

+ ln

( |W |2
M6

Pl

)

. (4.28)

Then the scalar potential is given by

V = VF + VD, (4.29)



70

with

VF = e(|S|
2+2Tr(Z†Z)1/2+

∑

i |φi|2)/M2
Pl

(

∣

∣

∣

∣

FS + S∗ W

M2
Pl

∣

∣

∣

∣

2

(4.30)

+
1

2
Tr

[(

F †
Z + Z

W

M2
Pl

)

(

Z†Z
)−1/2

(

FZ + Z† W

M2
Pl

)]

(4.31)

+
∑

i

∣

∣

∣

∣

Fφi
+ φ∗

i

W

M2
Pl

∣

∣

∣

∣

2

− 3
|W |2
M2

Pl

)

, (4.32)

and

VD =
g2

2

(

Gi (Ta)
i
j φj

)2

M4
Pl. (4.33)

In our case for Gi = φi/M2
Pl + ∂W/∂φ∗

i /W , so M2
PlGi (Ta)

i
j φj = φ∗

i (Ta)
i
j φj, which is

identical to the D term of global supersymmetry (Note that the term ∂W/∂φi(Ta)
i
jφ

j

vanishes due to the gauge invariance of W ).

Including these supergravity corrections, by minimizing the potential we find

〈S†S〉 = 〈S†S〉global + 2∆2S2
0ǫ

2

[

−
n2N2

f

4g2
AN2

c

{

ng2
A (Nc − Nf )

2 + 2Nc (nNf + Nc)
m2

S2
0

}

− β̃1nNf

4g2
AN2

c

{

g2
A (Nc − Nf )

2 (2Nc + n (Nc − Nf )) + 2Nc (nNf − 4Nc)
m2

S2
0

}

]

, (4.34)

〈Z〉 = 〈Z〉global − ∆
(

Z0ǫ
2
) Nc − Nf

2N2
c

[

n2Nf (Nc − Nf ) + β̃1 {2Nc + n (Nc − Nf )}
]

,

where the subscript “global” denotes the contributions found in global SUSY case in

Eq. (4.20). Here we have introduced a dimensionless parameter β̃1 defined through

the relation

β1 =
(

β̃1mS2
0

)

∆. (4.35)

From the condition that the vacuum energy is zero at the minimum for the

vanishing of the cosmological constant, β̃1 is found to be

β̃1 ≃ ±nNf√
3ǫ

(

1 ± ǫ√
3

+
2

3
ǫ2

)

. (4.36)

Eq. (4.35) ensures that the cosmological constant remains zero to the scale of strong

dynamics. With these corrections the soft scalar masses from the D–term are now

given by

m2
f̃

=
(

m2
f̃

)

global
+ qfm

2
0

ǫ2

nNf − Nc

[

Nc + nNf + β̃1 (1 − 4Nc/(nNf ))
]

. (4.37)
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Note that the shifts in the masses are small, suppressed by a factor of ǫ ≃ 0.2.

The gravitino mass is determined to be

m3/2 ≃ m
β̃1∆S2

0

M2
Pl

≃ nNfΛ
3

√
3S0MPl

(m

Λ

)Nf /Nc

. (4.38)

In addition to the D–term corrections, all scalar fields receive a contribution to their

soft masses from the term
∣

∣

∣

∣

φ∗
i

W

M2
Pl

∣

∣

∣

∣

2

= m2
3/2|φi|2. (4.39)

For particles neutral under the anomalous U(1)A these are the leading source for soft

masses. With the assumed minimal Kähler potential, note that these soft masses are

equal to the gravitino mass.

So far we assumed the minimal form of the Kähler potential for illustration.

There is no justification for this assumption. In fact, within Split Supersymmetry,

since there are no excessive FCNC processes, an arbitrary form for the Kähler poten-

tial is permissible phenomenologically. The effects of such a nonminimal G can be

understood in terms of higher dimensional operators suppressed by the Planck scale.

Scalar fields can acquire soft SUSY breaking masses through the terms

L ⊃
∫

(φ∗
i φ

i)
|S|2
M2

Pl

d4θ . (4.40)

The resulting masses are m2
f̃i

= cim
2
3/2, with ci being order one (flavor–dependent)

coefficients. We will allow for such corrections.

4.3 Explicit Models

In this section we consider a class of models based on flavor–dependent

anomalous U(1) symmetry and apply the results of the previous section. These

models were developed to address the pattern of fermion masses and mixings 2,10.

As noted earlier, the anomalous U(1) D–term provides a small expansion parameter

ǫ = 〈S〉 /MPl ∼ 0.2, which can be used to explain the mass hierarchy. We assign

charge qi to fermion fi and charge qc
j to fermion f c

j , such that the mass term fif
c
j H

will arise through a higher dimensional operators with the factor (S/MPl)
qi+qc

j and

thus suppressed by a factor ǫqi+qc
j . By choosing the charges appropriately the observed
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mass and mixing hierarchy can be explained, even with all Yukawa coefficients being

of order one.

With sub–TeV supersymmetry this approach to fermion mass and mixing hi-

erarchy cannot be combined with supersymmetry breaking triggered by anomalous

U(1), since the D–terms will split the masses of scalars leading to unacceptable FCNC.

Within Split Supersymmetry, however, these two approaches can be combined, which

is what we analyze now.

The superpotential of the class of models under discussion has the following

form:

W =
∑

f

yf
ijfiHf c

j

(

S

MPl

)nf
ij

+
MRij

2
νc

i ν
c
j

(

S

MPl

)nνc

ij

+ µHuHd

+
Tr (λZ) Sn

Mn−1
Pl

+ (Nc − Nf )

(

Λ3Nc−Nf

det (Z)

)1/(Nc−Nf )

+ WA (S,Xk) . (4.41)

Here Xk are the SM singlet fields necessary for the cancelation of gravitational

anomaly. We will focus on the sub-class of such models studied in Ref. 2 and de-

scribed in chapters 2 and 3. The mass matrices for the various sectors in Ref. 2 are

given by:

Mu ∼ 〈Hu〉







ǫ 8−2α ǫ 6−α ǫ 4−α

ǫ 6−α ǫ4 ǫ2

ǫ 4−α ǫ2 1






, Md ∼ 〈Hd〉ǫp







ǫ 5−α ǫ 4−α ǫ 4−α

ǫ3 ǫ2 ǫ2

ǫ 1 1






,

Me ∼ 〈Hd〉ǫp







ǫ 5−α ǫ3 ǫ

ǫ 4−α ǫ2 1

ǫ 4−α ǫ2 1






, MνD

∼ 〈Hu〉ǫp







ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1






,

Mνc ∼ MR







ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1






⇒ M light

ν ∼ 〈Hu〉2
MR

ǫ2p







ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1






. (4.42)

Although not unique, these mass matrices would lead to small quark mixings and large

neutrino mixings. Note that the neutrino masses are hierarchical in this scheme.

The charge assignment which leads to these mass matrices is given in Table

4.1 ∗ Here we use SU(5) notation for the fields in the first column for simplicity,

∗These are the same as in Table 2.1 of chapter 2 displayed in SU(5) notation.
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Field Anomalous flavor charges

101, 102, 103 4 − α, 2, 0

51, 52, 53 1 + p, p, p

νc
1, νc

2, νc
3 1, 0, 0

Hu, Hd, S, Q, Q̃ 0, 0, −1, n/2

TABLE 4.1. The flavor U(1)A charge assignment for the MSSM fields, the SU(Nc)
fields Q and Q̃ and the flavon field S in the normalization where
qS = −1.

although we do not explicitly assume SU(5) unification. There are two parameters,

p and α, which can take a set of discrete values. The parameter p takes values

p = 2 (1, 0) corresponding to low (medium, high) value of tanβ (the ratio of the two

Higgs VEVs). Actually, in Split Supersymmetry, since tanβ ∼ 1 is also permitted,

p = 3 is also allowed. α appears in the mass of the up–quark, both α = 0 and

α = 1 give reasonable spectrum. We also consider the case where the charge of 5̄1 is p

(rather than 1 + p) in Table 4.1. This case would have mass matrices which are very

similar to those in Eq. (4.42). The main difference in this case is that all elements

of M light
ν will be of the same order, which would lead to larger Ue3. This scenario

has been widely studied 61, sometimes under the name of neutrino mass anarchy 62.

The charge assignment of Table 4.1, as well as its above–mentioned variant, explain

naturally the mass and mixing hierarchy of quarks and leptons, including small quark

mixings and large neutrino mixings.

The Green–Schwarz anomaly cancelation conditions for these models are given

by

A1

k1

=
Ai

ki

=
ANc

kN

=
nNf

2kN

=
19 − 3α + 3p

2ki

or
18 − 3α + 3p

2ki

(4.43)

with Ai being the (SM)2 × U(1)A anomalies for i = 2 − 3. Their equality is au-

tomatically satisfied, due to the SU(5) compatibility of charges, provided that the

Kac–Moody levels ki for the SM gauge groups U(1)Y , SU(2)L and SU(3)c are chosen

to be, for example, 5/3, 1 and 1 respectively. For Agravity, one needs to introduce

extra heavy matter Xk (with charge +1) which decouple at or near the Planck scale
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(a detailed discussion has been given by Babu et. al.2). In Eq. (4.1) the first p–

dependent factor applies to the charge assignment of Table 4.1, while the second one

corresponds to the variant with 5̄1 carrying charge p. For every choice of charge we

can compute the expansion parameter ǫ from ǫ =
√

g2
stAgravity/(192π2). We find for

α = 0 and for the charges of Table 1, ǫ = 0.174 (0.187, 0.199) for p = 0 (1, 2). The

results are very similar for other choices.

Eq. (4.43) allows for only a finite set of choices for n, Nc and Nf . First

of all, all these must be integers. Secondly, the mass parameter m of the meson

fields of SU(Nc) must be of order Λ or smaller, otherwise these mesons will decouple

from the low energy theory, affecting its dynamics. Thirdly, the dynamical scale

Λ is determined for any choice of charges, due to the string unification condition,

Eq. (4.3). (We will confine to Kac–Moody level 1 for the SU(Nc) as well as the SM

sectors.) This should lead to an acceptable SUSY breaking spectrum. Consistent

with these demands, we find four promising cases. (i) n = 5, Nf = 5, p = 2, α = 0;

(ii) n = 6, Nf = 4, p = 2, α = 0; (iii) n = 7, Nf = 3, p = 1, α = 1; and (iv)

n = 6, Nf = 3, p = 1, α = 1. Here (i) has 5̄1 charge equal to p + 1, while the other

three cases has it to be equal to p. We will see that the choices Nc = 6 or 7 yield

reasonable spectrum.

4.3.1 The spectrum of the model

Now we turn to the spectrum of the model. We set the gaugino masses at the

TeV scale. (The Higgsinos will turn out to have masses of the same order.) We then

seek possible values of the scale Λ and the mass parameter m0 (the scalar mass) that

would induce the TeV scale gaugino masses. The spectrum will turn out to be that

of Split Supersymmetry. The main reason for this is that the leading SUSY breaking

term, the U(1)A D–term, generates squark and slepton masses, but not gaugino and

Higgsino masses.

Supersymmetry breaking trilinear A terms are induced in the model by the

same superpotential W (Eq. (4.41)) that generates quark and lepton masses, once

the S field acquires a nonzero F component:

L ⊃ yf
ij

∫

d2θfif
c
j H

(

S

MPl

)nf
ij

= Y f
ij

(

qf
i + qfc

j

)

f̃if̃
c
j H

FS

S
. (4.44)
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Here Y f
ij ≃ yf

ijǫ
nf

ij are the effective MSSM Yukawa couplings, with nij = qfi
+ qc

fj
, the

sum of the anomalous charge of the SM fermions fi and f c
j . Substituting results from

the previous section, Eqs. (4.20) and (4.21), we find

Af
ij = Y f

ij

(

qf
i + qfc

j

)

nNf
Λ3

S2
0

(m

Λ

)Nf /Nc

. (4.45)

These A–terms are induced at the scale Λ. The messengers of supersymmetry

breaking are the meson fields of the SU(Nc) sector, which have masses of order Λ.

In the momentum range m0 ≤ µ ≤ Λ, the spectrum is that of the MSSM and there

is renormalization group running of all SUSY breaking parameters as per the MSSM

beta functions. This implies that once the A–terms are induced, they will generate

nonzero gaugino masses through two–loop MSSM interactions. These are estimated

from the two–loop MSSM beta functions to be∗

M i
g̃(m0) ≃ − g2

i

(16π2)2

(

Cb
i Y

2
b + Cτ

i Y 2
τ

) m0
√

nNf/Nc − 1
ln

(

Λ2/m2
0

)

, (4.46)

where Cb
i = (14/5, 6, 4) and Cτ

i = (18/5, 6, 0) for i = 1 − 3. Yb and Yτ are the

MSSM Yukawa couplings of the b–quark and the τ–lepton. From the requirement

that M i
g̃ ∼ 1 TeV we can estimate Λ and m0, which will enable us to obtain the full

spectrum of the model. Assuming that m ∼ Λ, for the Bino mass we obtain (for

p = 2, or tanβ ∼ 5):

MB̃(m0) ∼ −10−5m0. (4.47)

The mass of the Wino is somewhat larger than this, and that of the gluino is somewhat

smaller (compare the coefficients Cb
i and Cτ

i ), all at the scale m0. There is significant

running of these masses below m0 down to the TeV scale. This running is the largest

for the gluino 53 which increases its mass, while it is the smallest for the Bino, which

decreases its mass. Consequently, at the TeV scale, we have the normal mass hierarchy

MBino ≤ MWino ≤ Mgluino.

In addition to the SM gauge interactions, the gauginos receive masses from

the anomaly mediated contributions 63. These contributions may be suppressed in

specific setups such as in 5 dimensional supergravity 47. We will allow for both a

∗The one–loop finite corrections arising from diagrams involving the top–quark
and the stop–squark are negligible since At = 0 and µ ∼ TeV ≪ mt̃.
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suppressed and an unsuppressed anomaly mediated contributions to gaugino masses.

These contributions are given by

Mgaugino =
β(g)

g
Fφ (4.48)

where Fφ is the F–component of the compensator superfield. With our setup as

described in the previous section, Fφ is equal to the gravitino mass, so the Wino

mass, for eg., will be about 3 × 10−3 of the gravitino mass, or about 10−3m0. If we

set the Wino mass at 1 TeV, m0 will be of order 106 GeV in such a scenario.

As we stated in the previous section, only a limited choice of n and Nf are

allowed from the mixed anomaly cancelation conditions. We have considered four

cases with nNf = 25, 24, 21, or 18. Our results for the spectrum are listed in Table

2. In each case we studied different values of Nc > Nf . Nc = 6, 7 give the correct

dynamical scale Λ which leads to TeV scale gauginos. The scalar masses are found

to be of order 106 GeV in the case of unsuppressed anomaly mediated contribution

(cases 1 and 3), and of order 108 GeV for the suppressed case (all the other cases).

Clearly this is a Split Supersymmetry spectrum. In the computation of Table 2 we

assumed g2
Nc

/(4π) = 1/28 at MPl = 2.4× 1018 GeV. The mass m for the meson fields

is computed in terms of an effective coupling λ̂ ≡ λ
(

MPl

M∗

)n−1

. We expect λ̂ to be of

order one from naturalness, if M∗ is the same as MPl. We list the mass m in terms of

λ̂ in the third column in Table 2. Note that the scalar masses from anomalous U(1)

D–term are proportional to the U(1) charges, and therefore vanish for Hu, Hd and

103 fields. These fields will however acquire masses from supergravity corrections.

The U(1)A symmetry does not forbid a bare µ term in the superpotential.

However, it can be banished by a discrete Z4 R–symmetry 64. Under this Z4, all

the SM fermion superfields (scalar components) have charge +1, the gauginos have

charge +1, the Z field has charge +2 and the SM Higsses and the S fields have charge

zero. This symmetry has no anomaly, as a consequence of discrete Green–Schwarz

anomaly cancelation. The SM2 × Z4 and SU(Nc)
2 × Z4 anomaly coefficients are

A3 = 3, A2 = 2 − 1 = 1 and ANc = Nc. The GS condition for discrete Z4 anomaly

cancelation is that the differences Ai − Aj should be an integral multiple of 2, which

is automatic when Nc is odd.
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(p, α, n, Nf , Nc) Λ (GeV) m (GeV) /λ̂ m0 MB̃ (m0) (GeV) µ (GeV) /λµ

(2, 0, 5, 5, 6) 3 × 1012 8 × 1014 6 × 105λ̂5/6 5λ̂5/6 600/λ̂1/6

(2, 0, 5, 5, 7) 4 × 1013 8 × 1014 9 × 107λ̂5/7 600λ̂5/7 9 × 104/λ̂2/7

(2, 0, 6, 4, 6) 8 × 1012 1 × 1014 7 × 105λ̂2/3 5λ̂2/3 700/λ̂1/3

(2, 0, 6, 4, 7) 8 × 1012 1 × 1014 1 × 108λ̂4/7 640λ̂4/7 105/λ̂3/7

(1, 0, 7, 3, 6) 2 × 1013 3 × 1013 1 × 106λ̂1/2 100λ̂1/2 1600/λ̂1/2

(1, 0, 7, 3, 7) 1 × 1014 3 × 1013 2 × 108λ̂3/7 104λ̂3/7 2 × 105/λ̂4/7

(1, 1, 6, 3, 6) 2 × 1013 1 × 1014 2 × 106λ̂1/2 200λ̂1/2 3000/λ̂1/2

TABLE 4.2. The spectrum of the model for different choices of p, α, n, Nf and Nc.
In computing Λ, we use Eq. (10) with αNc = 1/28 at the Planck scale.
The Bino mass estimate is very rough, and includes only the two–loop
MSSM induced contributions.

One can write the following effective Lagrangian for the µ term that is consistent

with the Z4 R symmetry:

L ⊃
∫

d2θHuHd
Tr(λµZ)Sn

Mn+1
Pl

= λµNf
〈ZSn〉
Mn+1

Pl

HuHd. (4.49)

This leads to

µ = λµǫ
nNf

Λ3

mMPl

(m

Λ

)Nf /Nc

. (4.50)

The numerical results for µ–term are given in the last column of Table 4.2 using this

relation.

The SUSY breaking bilinear Higgs coupling, the Bµ term, arises from the La-

grangian

L ⊃
∫

d4θHuHd

λB1|S|2 + λB2Tr
(

Z†Z
)1/2

M2
Pl

=
λB1|F 0

S |2 + λB2Nf |FZ |2/|Z0|
M2

Pl

HuHd, (4.51)

leading to

Bµ = m2
0

(

Nc

nNf − Nc

)2 (

λB1ǫ
2 + λB2n

2Nf
Λ3

mM2
Pl

(m

Λ

)Nf /Nc
)

. (4.52)

The second term in Eq. (4.52) is small compared to the first. From this we see that

the 2× 2 Higgs boson mass matrix has its off–diagonal entry of the same order as its
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diagonal entries. Recall that the diagonal entries are of order m2
3/2, since the U(1)A

charges of Hu and Hd are zero. Fine–tuning can then be done consistently so that

one of the Higgs doublets remain light, with mass of order 102 GeV.

Even when the Z4 R symmetry is not respected by gravitational corrections, the

induced µ term and gaugino masses are of order TeV. There can be a new contribution

to the µ term in this case, arising from

L ⊃
∫

d4θHuHd
(ZSn)∗

Mn+2
Pl

. (4.53)

This µ term is however smaller than that from Eq. (4.50). Similarly, gaugino masses

can arise from

L ⊃
∫

d4θWαW α ZSn

Mn+2
Pl

(4.54)

which is also smaller than the SM induced corrections.

For the scalars neutral under U(1)A (Hu, Hd and 103), the D–term contribution

to the soft masses vanish. We should take account of the subleading supergravity

corrections then. Since these corrections are suppressed by a factor of ǫ2 in the mass–

squared, we should worry about potentially large negative corrections proportional to

the other soft masses arising from SM interactions through the RGE in the momentum

range m0 ≤ µ ≤ Λ. We have examined this in detail and found consistency of the

models.

For the masses of zero charge fields we write

m2
φ̃i

= cim
2
3/2 + δ

(

m2
φ̃i

)

(4.55)

with δ
(

m2
φ̃i

)

denoting the MSSM RGE corrections. The most prominent one–loop

radiative corrections are

δ
(

m2
f̃3

)1−loop

≃ − (Yb)
2 m2

0

16π2

p

(nNf/Nc − 1)

nNf

Nc

ln

(

Λ2

m2
f̃

)

,

δ
(

m2
Hd

)1−loop ≃ −
{

3(Yb)
2 + (Yτ )

2
} m2

0

16π2

p

(nNf/Nc − 1)

nNf

Nc

ln

(

Λ2

m2
f̃

)

(4.56)

where f̃3 = (Q̃3, ẽc
3). Similar corrections for Hu and ũc

3 scalar components are small.

Since p = 2, we have low tanβ ∼ 5, so these corrections are not large, although not

negligible. For example, for the down–type Higgs bosons we have

δ
(

m2
Hd

)1−loop ∼ −2 × 10−3m2
0. (4.57)
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If the supergravity corrections to the mass–squared of Hd is larger than 3 × 10−2m0,

it will remain positive down to the scale m0.

There is an important two–loop correction to the scalar masses arising from the

gauge sector:

δ
(

m2
φ̃

)2−loop

≃ −g4 m2
0

(16π2)2
(nNf )Kφln

(

Λ2

m2
f̃

)

(4.58)

where Kφ = (63/15, 16/5, 6/5 and 9/5) for φ̃ = (Q̃, ũc, ẽc and Hu). This correction

is estimated to be

(

m2
f̃

)2−loop

∼ −10−2m2
0. (4.59)

We see that these corrections are, although close to the gravitino contribution, at a

safe level. We conclude that Split Supersymmetry is realized consistently in these

models.

4.4 Conclusions

In this chapter I presented our work where we proposed concrete models

for supersymmetry breaking making use of the anomalous U(1) D–term of string

origin. The anomalous U(1) sector is coupled to the strong dynamics of an N = 1

SUSY gauge theory where exact results are known. The complete models we have

presented also address the mass and mixing hierarchy of quarks and leptons. We have

generalized the analysis of Binetruy and Dudas55 to include supergravity corrections,

which turns out to be important for certain fields in these models which carry zero

U(1) charge. Table 4.2 summarizes our results on the spectrum of these models. This

spectrum is that of Split Supersymmetry. The gaugino and the Higgsino masses are

of the same order, when these are set at the TeV scale, the squarks and sleptons have

masses in the range (106 − 108) GeV. This provides an explicit realization of part of

the parameter space of Split supersymmetry 47.

The experimental and cosmological implications of Split Supersymmetry have

been widely studied 52–54,57. We conclude by summarizing the salient features that

apply to our framework. (i) Gauge coupling unification works well, in fact somewhat

better than in the MSSM. When embedded into SU(5) symmetry, proton decay via
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dimension six operators will result, with an estimated lifetime for p → e+π0 of order

(1035−1036) yrs. There is no observable d = 5 proton decay in these models. (ii) The

lightest neutralino, which is charge and color neutral, is a natural and consistent dark

matter candidate. (iii) The gluino lifetime is estimated to be of order 10−7 seconds

or shorter for squark masses in the range 106 ÷ 108 GeV in these models. There is

no cosmological difficulty with such a mass. (iv) The gravitino mass is or order 107

GeV, thus there is no cosmological gravitino abundance problem. (v) The low energy

theory is the SM plus the neutralinos and the charginos of supersymmetry. All other

particles acquire masses either near the Planck scale or through strong dynamics at

a scale Λ ∼ 1014 GeV.



CHAPTER 5

FINITE GRAND UNIFIED THEORY AND

QUARKS MASS MATRICES

5.1 Finite Grand Unified Theory

The evolutions of the gauge couplings of the standard model, given by their

β–functions, show that they meet at a single point at a very high energy around 1016

GeV. This fact seems to suggest that they might have a common origin from a larger

gauge group structure which contains all three SM gauge groups. Such an idea of

unification of the three interactions based on a simple group SU(5) was formulated

first by H. Georgi and S.L. Glashow in 1974 65.

While the number of effective parameters in the grand unified theories with

higher symmetries might be smaller than the SM, because of the necessity to break

the higher symmetry, the actual number of parameters are often larger than the SM.

Thus it becomes natural to ask whether it is possible to have a realistic theory in

which there is a smaller number of parameters.

Indeed, there exists a certain class of supersymmetric Yang–Mills theories,

where one may achieve this goal. These are the so–called finite theories wherein

the β functions for the gauge coupling and the Yukawa couplings vanish to all orders

in perturbation theory. Certain conditions must be satisfied for a SUSY Yang–Mills

theory to be finite. One of them is the vanishing of the one–loop gauge β function.

This requirement constrains the spectrum of the theory essentially fixing it (upto

discrete possibilities), once the gauge group is specified. A second requirement for

finiteness is the vanishing of all the anomalous mass dimensions of the chiral super-

fields at one–loop. This would fix all the Yukawa couplings in terms of the gauge

coupling, at one–loop order. This type of one–loop finiteness also implies that the

theory is finite to two loops 66. For the theory to be finite to all loops, the Yukawa

couplings must have unique power series expansions in terms of the gauge coupling

81
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67. With this condition satisfied, the theory would have only one coupling – the gauge

coupling. The Yukawa couplings are unified with the gauge couplings. This “reduc-

tion of couplings” is one of the key ingredients of finiteness 68–71. Certainly this makes

the idea of finiteness an attractive direction to pursue in reducing the number of free

parameters. One might hope that these type of theories may arise from superstring

theory. Vanishing of the β functions lead to conformal invariance, which is one of

the cornerstones of string theory. Indeed there have been several attempts to derive

a grand unified theory from superstring theory as its low energy 4-D limit 21,72. The

approach we adopt in this thesis toward finiteness is that of Lucchesi et. al. 67. Dif-

ferent approaches to finite theories have been discussed, for example, by Leigh and

Strassler73, and Ermushev et. al 74.

It will be extremely interesting to uncover finite theories that are phenomeno-

logically viable, at least in a broad sense. Attempts have been made along this line

with some success. An immediate question any finite theory should address is the

consistency with the observed masses and mixings of the quarks. The Yukawa cou-

plings are not arbitrary parameters in finite theories due to the reduction of couplings.

The mass of the top–quark has been predicted within finite theories, and shown to be

in good agreement with experiments 75. The masses of the lighter generation quarks

have also been consistently accommodated in this context. However, the mixing be-

tween all three generations has not been implemented successfully thus far. This is

the major point we have addressed which I present in this part of the thesis.

The model based on finite SUSY SU(5) theory can induce the correct pattern

of quark mixing and masses. Additional flavor symmetries are necessary to meet

the criterion for finiteness that the power series expansion of the Yukawa couplings in

terms of the gauge coupling be unique. We find that non–Abelian discrete symmetries

are extremely useful here. Abelian symmetries that we have tried were not sufficient

to make the expansion coefficients of the Yukawa couplings unique, non–Abelian

continuous symmetries such as SU(2) and SU(3) are too restrictive to allow the

needed Yukawa couplings. The models that we present are based on discrete family

symmetries (Z4)
3 × P , the tetrahedral symmetry A4 and S4 symmetry.

In Section 5.1.1, I review briefly the conditions for finiteness, starting from

the RGEs for a generic supersymmetric theory. From one of the criteria, namely
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vanishing of the one loop gauge β function, it is not hard to see that finite models

with phenomenologically favorable particle spectrum can be found more easily in

SU(5) than in other groups 76. Some general results of practical interest are given

for finite SU(5) models. In Section 5.2 we propose three different finite models and

analyze them in detail. We show that realistic quark masses and mixing angles can be

generated. This enables us to address more detailed questions such as the decay rate

of the proton, which is perhaps one of the thorniest problems faced by SUSY GUTs.

Generically finite theories are problematic 77, we give some plausible resolutions.

5.1.1 Finite Theories: A brief review

The one loop gauge and Yukawa beta functions and the one loop anomalous

dimension of the matter fields in a generic SUSY Yang–Mills theory are given by 66:

β(1)
g =

g3

16π2

(

∑

R

T (R) − 3C2(G)

)

(5.1)

γ
(1)i
j = λiklλjkl − 2C2(R)g2δi

j (5.2)

β
(1)
ijk =

1

16π2
[λijpγ

p
k + (k ↔ i) + (k ↔ j)] (5.3)

where T (R), C2(R) and C2(G) are the Dynkin indices of the matter fields and the

quadratic Casimirs of the matter and gauge representations respectively. λijk and

β
(1)
ijk are the Yukawa couplings and the one–loop Yukawa β function of λijk defined by

the following superpotential:

W =
λijk

3!
φiφjφk (5.4)

The criteria of all loop finiteness for N = 1 supersymmetric gauge theories can be

stated as follows 67: (i) The theory should be free from gauge anomaly, (ii) the gauge

β-function vanishes at one loop:

β(1)
g = 0, (5.5)

(iii) there exists solution of the form λ = λ(g) to the conditions of vanishing one-loop

anomalous dimensions

γ
(1)i
j = 0, (5.6)
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and (iv) the solution is isolated and non-degenerate when considered as a solution of

vanishing one-loop Yukawa β-function:

β
(1)
ijk = 0. (5.7)

If all four conditions are satisfied, the dimensionless parameters of the theory would

depend on a single gauge coupling constant and the β functions will vanish to all

orders.

The first step is to choose the gauge group. From (i), we see that the vanishing

of the one loop gauge β function puts a strong constraint on the particle content,

leaving only discrete set of possibilities. It seems hard to find phenomenologically

viable models other than in SU(5) 76. For example, if one chooses SO(10) to be

the gauge group, and tries to build a finite model with necessary particle content in

the traditional sense, one quickly “runs” out of the Dynkin indices: according to Eq.

(5.1) the sum of the Dynkin indices over the matter fields should be equal to 24 in

this case. On the other hand, field content of the traditional SO(10) GUT is 3 × 16

of fermions, 54, 45, 10 + 10′ and 16 + 16 of Higgs, if the gauge symmetry is to be

broken by renormalizable terms in the superpotential. Then, since the sum of the

Dynkin indices of these fields is equal to 32, one ends up exceeding the gauge Dynkin

index. Much the same result can be reached for SU(6) etc. While it will be of great

interest to uncover finite models other than SU(5), here we will confine ourselves to

the case of finite SU(5).

Beginning with the particle content of minimal SUSY SU(5) theory with three

families of fermions belonging to 3 × (10 + 5̄), an adjoint 24 Higgs (Σ) and (5 +

5̄) Higgses one sees that vanishing of the one–loop gauge β function requires the

introduction of additional fields whose Dynkin indices add up to 3. This happens if

there are three additional 5+5 matter fields, which may be either Higgs–like bosonic

fields or vector–like fermionic fields. This is in fact the most promising case from

phenomenology. There are two other possibilities, viz., adding 10 + 10 or adding

10 + 5 + 2 × 5. In the first case, realistic quark masses cannot arise, in the second

case one would be left with a fourth family of fermions which remains light to the

weak scale. For phenomenological reasons we do not pursue these two alternatives,

and choose to work with 3 × {5 + 5} plus the minimal SUSY SU(5) spectrum.
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The finiteness criteria require that Eqs. (5.5)-(5.7) should give a unique set

of solutions to the Yukawa couplings. The equations are linear in the square of the

absolute values of the couplings. Hence one expects the solutions to the Yukawa cou-

plings to be either zero or of order the gauge coupling. They are not free parameters

anymore. In order to satisfy the hierarchy in masses of the fermions, one can choose

the VEVs of the Higgs bosons to be hierarchical. Naively this would need at least

three Higgs multiplets coupling to the up–quark sector, and three multiplets coupling

to the down–quark sector. It is interesting that finite SU(5) spectrum admits the

needed Higgs, which can be as many as 4 in each sector. We will be interested in the

case where at least three of the 5+5 fields are Higgs–like (viz., they develop VEVs of

the order the electroweak scale). In fact, we shall see shortly that independent of this

phenomenoligical requirement, the vanishing of the one–loop anomalous dimensions

necessitates that at least three pairs of 5+5 have Yukawa couplings to the three fam-

ilies of fermions. We will focus on inducing realistic mixing among the three families

of quarks, which has not been achieved in earlier analyses 75.

To search for a finite model, one has to write down a specific superpotential

and try to find a set of solutions satisfying the criteria that all the Yukawa coupling

wave function renormalization factors vanish at one–loop. We consider the following

superpotential (assuming an unbroken R–parity):

W =
3

∑

i,j=1

∑

a

(

1

2
ua

ij10i10jHa + da
ij10i5̄jH̄a

)

+
∑

ab

kabHaΣH̄b +
λ

3
Σ3 + f 5Σ 5̄. (5.8)

Here i, j = (1 − 3) are family indices and a and b are Higgs indices. a and b run

from 1 to either 3 or 4. If it is up to 4, the last term is absent. H and H̄ denote the

5 + 5 fields and Σ the adjoint chiral matter field responsible for the GUT symmetry

breaking. Note that in order to have a successful doublet–triplet mass splitting, at

least one of the couplings f , kab should be non–vanishing.

From Eq. (5.8), the anomalous dimensions of Eq. (5.1) can be written in matrix

form as:

γ10i10j
= 3(uau

†
a)ij + 2(dad

†
a)ij −

36

5
g2δij
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γ5̄i5̄j
= 4(d†

ada)ij −
24

5
g2δij

γHaHb
= 3Tr(u†

aub) +
24

5
(kk†)ab −

24

5
g2δab

γH̄aH̄b
= 4Tr(dad

†
b) +

24

5
(k†k)ab −

24

5
g2δab (5.9)

γ5 = γ5̄ =
24

5
f 2 − 24

5
g2

γ24 = Tr(k†k) + f 2 +
21

5
λ2 − 10g2.

According to the third criteria, Eq. (5.6), in order to have finite theory, all these

anomalous mass dimension have to be zero. Thus, the problem of finding a finite

model shifts to the problem of finding a set of solutions, where all the anomalous

dimensions in Eq. (5.9) vanish. Let us introduce a new notations for the matrices:

U ≡ uau
†
a, D ≡ dad

†
a, D′ ≡ d†

ada, Ũab ≡ Tr(u†
aub),

D̃ab ≡ Tr(dad
†
b), K ≡ k†k, K̃ ≡ kk†, (5.10)

where the trace is over the generation indices. From Eq. (5.10), it follows that the

number of H fields coupling to 10i10j should be equal to the number of H fields

coupling to 10i5j fields. Furthermore, at least 3 H fields (and 3 H fields) must have

such couplings. To see this let us take the trace of the matrices of the anomalous

dimensions in Eq. (5.9) over both the fermionic indices and the Higgs indices. One

gets:

3Tr(U) + 2Tr(D) = 3 × 36

5
g2

4Tr(D′) = 3 × 24

5
g2

3Tr(Ũ) +
24

5
Tr(K̃) = nH × 24

5
g2 (5.11)

4Tr(D̃) +
24

5
Tr(K) = nH̄ × 24

5
g2,

where nH and nH̄ are the number of the Higgs fields coupling to the three family of

fermions in the up–sector and the down–sector respectively. Subtracting the third

equation from the last in Eq. (5.11), we get

4Tr(D̃) − 3Tr(Ũ) = (nH̄ − nH) × 24

5
g2.

Observing the following relation

Tr(U) = Tr(Ũ), T r(D) = Tr(D′) = Tr(D̃),
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one finds that

nH = nH̄ . (5.12)

One can also see that the matrices K and K̃ in Eq. (5.10) vanish if nH = nH̄ = 3.

That is, kab = 0 for all (a, b). Doublet–triplet splitting can be achieved in this case

since f 6= 0 is allowed. If nH = nH̄ ≤ 2, no solution exists for Eq. (5.11). We conclude

that at least three Higgs multiplets must couple to the fermion fields in finite SU(5).

Vanishing of the right–hand side of Eq. (5.10), needed for finiteness, will in

general lead to parametric solutions. In order to satisfy the condition for all–loop

finiteness, additional symmetries are usually necessary. Under these extra symmetries

different Higgs multiplets will have different charges, which would prevent them from

coupling to the same set of fermion fields. If two different Higgs multiplets H1 and H2

coupled to the same fermion fields, say 101102, then γH1H2 will not vanish in general,

and so the theory will not be finite. We now present a classification of the Yukawa

coupling matrices which ensures in a simple way that the off–diagonal entries of the

anomalous dimension matrices are all automatically zero. While this classification is

not the most general, it can be applied to a wide class of models. Let us write the

superpotential Eq. (5.8) in the following form:

W =
1

2
10i10jV

u
ij + 10i5jV

d
ij + . . . , (5.13)

where

V u
ij = ua

ijHa, V d
ij = da

ijH̄a . (5.14)

The structures of V u matrices which automatically have all off–diagonal anomalous

dimensions to be zero is obtained as follows. Consider the case where three pairs of

(H, H̄) couple to the chiral families. There are four distinct forms for the matrix V u:

V (1) ≡







u11H1 u12H3 u13H2

u12H3 u22H2 u23H1

u13H2 u23H1 u33H3






V (2) ≡







u11H2 u12H1 0

u12H1 u22H3 u23H2

0 u23H2 u33H3







V (3) ≡







u11H3 u12H1 0

u12H1 u22H3 u23H2

0 u23H2 u33H3






V (4) ≡







u11H1 0 0

0 u22H3 u23H2

0 u23H2 u33H3






. (5.15)



88

The form of V d in this case is identical to Eq. (5.15), except that uij is replaced by

dij and Hi by H̄i. While V u is a symmetric matrix, V d is asymmetric. Any given

Higgs field appears at most once in a given row or column in all the matrices of Eq.

(5.15). This guarantees that all off–diagonal γ function entries are zero. It can be

shown that Eq. (5.15) is the most general set of matrices that satisfy this constraint

(upto relabeling of generation number and Higgs number), provided that there is no

cancellation between various terms to generate a zero in the off–diagonal γ matrix.

It is possible that such cancellations occur in the presence of non–Abelian flavor

symmetries, but not with Abelian symmetries. Even for the case of non–Abelian

symmetries, we have found the classification of Eq. (5.15) very useful.

If four pairs of (H + H̄) couple to fermion families, the matrix V u can have the

following four structures (upto relabeling of generation and Higgs indices):

V (1) ≡







u11H1 u12H4 u13H2

u12H4 u22H2 u23H1

u13H2 u23H1 u33H3






V (2) ≡







u11H2 u12H1 0

u12H1 u22H2 u23H4

0 u23H4 u33H3







V (3) ≡







u11H3 u12H1 u13H2

u12H1 u22H2 u23H4

u13H2 u23H4 u33H3






V (4) ≡







u11H3 u12H1 u13H2

u12H1 u22H3 u23H4

u13H2 u23H4 u33H3






. (5.16)

V d in this case will have similar structure, assuming that its form is similar to V u. In

all cases, one can easily verify that the off–diagonal contributions to the anomalous

dimension matrices are all zero.

5.2 The Quark Mixing in Finite GUT

It is possible to find solutions for the vanishing of the anomalous dimensions

of Eq. (5.9) with the forms of V u and V d given as in Eq. (5.15)-(5.16). We have

examined all possible cases, including V u taking the form of V (i) while V d taking the

form of V (j) with i and j not necessarily the same. We found parametric solutions

wherein one or (typically) more parameters are not determined. That would forbid

a unique expansion of the Yukawa couplings in terms of the gauge coupling, one of

the requirements of finiteness. It is possible to remove this arbitrariness by imposing
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additional flavor symmetries. An example of this type are proposed here and ana-

lyzed in detail. In the first example, isolated non–degenerate solution to the Yukawa

couplings is obtained by imposing the tetrahedral group A4.

5.2.1 (Z4)
3 × P model

Let us give the transformation properties of the fields under the discrete symme-

try we impose. The symmetries are (Z4)
3, identified as the Z4 subgroup of generation

number, and a permutation symmetry acting on both the fermion and the Higgs

generations. The fields transform under (Z4)
3 as:

101 : (i, 1, 1), 102 : (1, i, 1), 103 : (1, 1, i),

5̄1 : (i, 1, 1), 5̄2 : (1, i, 1), 5̄3 : (1, 1, i),

(H1, H̄1) : (−1, 1, 1), (H2H̄2) : (1,−i,−i), (5.17)

(H3, H̄3) : (1, 1,−1), (H4, H̄4) : (1,−i,−i).

The action of the permutation symmetry P on the fields is as follows:

101 ↔ 103, 5̄1 ↔ 5̄3, H1 ↔ H3, H̄1 ↔ H̄3,

102 ↔ 102, 5̄2 ↔ 5̄2, H2 ↔ H4, H̄2 ↔ H̄4.

The most general SU(5) × (Z4)
3 × P invariant superpotential is:

W = a(101101H1 + 103103H3) + b(101102H4 + 102103H2)

+ c(1015̄1H̄1 + 1035̄3H̄3) + d(1015̄2H̄4 + 1035̄2H̄2) (5.18)

+ e(1025̄1H̄4 + 1025̄3H̄2) + k(H1H̄1Σ + H3H̄3Σ) +
λ

3
Σ3.

The matrices V u and V d (defined in Eq. (5.16)) for this model are then:

V u =







a H1 bH4 0

bH4 0 bH2

0 bH2 a H3






V d =







c H̄1 d H̄4 0

e H̄4 0 e H̄2

0 d H̄2 c H̄3






, (5.19)

and the coupling matrix of the Higgs fields to the adjoint field is given by:

K = diag(k, 0, k, 0).
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Note that all superpotential couplings can be made real by field redefinitions.

One can then take all parameters of Eq. (5.18) to be real and positive. This is an

important point for the solution to be non–degenerate.

The condition (iii) of the criteria for finiteness (vanishing of all the anomalous

dimensions) leads to the following simple system of equations:

3(a2 + b2) + 2(c2 + d2) =
36

5
g2, 3(2b2) + 2(2e2) =

36

5
g2,

c2 + e2 =
6

5
g2, 2b2 =

8

5
g2, (5.20)

a2 +
8

5
k2 =

8

5
g2, d2 + e2 =

6

5
g2,

2d2 =
6

5
g2, a2 +

6

5
k2 =

6

5
g2.

This gives a unique solution which is isolated and non-degenerate:

(

a2, b2, c2, d2, e2, k2, λ2
)

=

(

4

5
g2,

4

5
g2,

3

5
g2,

3

5
g2,

3

5
g2,

1

2
g2,

15

7
g2

)

. (5.21)

There is no sign ambiguity for the Yukawa couplings themselves, since they have all

been made real and positive.

Let us now turn to the question of comparing the predictions of Eq. (5.21) with

experiments. First of all, all three families of quarks mix with one another, so realistic

CKM mixings become possible, unlike earlier attempts within finite GUTs. Setting

the overall factor a〈H3〉 = 1, we can write the mass matrix Mu for the up–type quarks

in the following form:

Mu =







cu
11ǫ

4
u cu

12ǫ
3
u 0

cu
21ǫ

3
u 0 ǫu

0 ǫu 1






, (5.22)

where ǫu ≡ 〈H2〉
〈H3〉 , cu

11ǫ
4
u ≡ 〈H1〉

〈H3〉 and cu
12ǫ

3
u ≡ 〈H4〉

〈H3〉 . The mass matrix for the down–

type quarks, Md, has a similar form, with ǫu replaced by ǫd and cu
ij replaced by cd

ij.

These matrices are generalizations of the Fritszch form. Note that Eq. (5.22) is a

special case of texture V (2) in Eq. (5.16). The mass eigenvalues are obtained in the

approximation ǫu ≪ 1, cu
ij ∼ 1 to be:

mu ≃
(

cu
11 + (cu

12)
2) ǫ4

u

mc ≃ −ǫ2
u + (1 − cu

12)
2 ǫ4

u

mt ≃ 1 + ǫ2
u − ǫ4

u (5.23)
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in units of a 〈H3〉. Similar expressions hold in the down–type quark sector. The CKM

mixing elements are then given by:

Vus = cu
12ǫu − cd

12ǫd + O(ǫ3)

Vcb = ǫd − ǫu + O(ǫ3) (5.24)

Vub = cu
12ǫuǫd − cu

12ǫ
2
u + O(ǫ4),

where ǫd and cd
12 correspond to the down quark sector. (For simplicity, we have

assumed all parameters to be real. This assumption is not necessary, realistic CP

violation can also arise from Eq. (5.22).)

Observe that the mass hierarchy between generations can be accommodated in

this model by assuming a hierarchy in the VEVs of the Higgs doublets. We have in

mind a scenario where only one pair of Higgs doublets survive below the GUT scale,

to be identified as Hu and Hd of MSSM. These are linear combinations of all four of

the original Higgs doublets. That would enable all Hi (i = 1 − 4) to acquire VEVs.

The Hu field of MSSM is dominantly H3, but has small (of order ǫu) component of

H2 in it, and even smaller components of H4 (of order ǫ3
u) and H1 (of order ǫ4

u) in

it. These amounts are dictated by the bilinear terms in the superpotential involving

Hi and H̄i fields (W ∼ mijHiH̄j). These bilinear terms are assumed to break the

(Z4)
3 × P symmetry softly. We see that the desired mass hierarchy is reproduced in

this way.

Since the Yukawa couplings of the third generation quarks are fixed in this model

in terms of the gauge coupling, the mass of the top quark and the parameter tanβ are

determined. Let us denote the MSSM Yukawa couplings of the top and the bottom

quarks to Hu and Hd fields to be yt and yb respectively. To a good approximation,

Hu is H3 and Hd is H̄3. Thus we see from Eq. (5.21) that yt ≃ (
√

4/5)g and

yb ≃ (
√

3/5)g, both of which are fixed in terms of αG ≃ 1/25. We now extrapolate

these Yukawa couplings to the weak scale using the MSSM renormalization group

equations. The top quark mass and the parameter tanβ can be predicted using the

relations

mt = mb
yt

yb

√

yb
2

v2

mb
2
− 1 ≃ ytv

tan β =
mt

mb

yb

yt

, (5.25)
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where v = 174 GeV. With mb(mb) taken to be 4.4 GeV and with α3(mZ) = 0.118 we

find the numerical values to be:

mt = 174 GeV

tan β = 53. (5.26)

The predicted value of mt is nicely consistent with the experimentally determined

value, tan β tends to be large in this class of models.

There is one other non–trivial prediction in this model, because of the zeros

present in Eq. (5.22). We take it to be a prediction for the strange quark mass. From

Eqs. (5.24) and (5.23) we find ms(1 GeV) ≃ 80 MeV, if we take Vcb ≃ 0.043,mb(mb) =

4.4 GeV, mc(mc) = 1.37 GeV, Vus = 0.22 and Vub = 0.004. This value of ms is on the

low side, but may be consistent with recent lattice evaluations 78. We also note that

since tan β is predicted to be large, the finite threshold corrections to Vcb through

chargino–stop exchange is significant 79. This could modify Vcb by as much as 30%.

With a 30% reduction in Vcb arising from this diagram, we predict ms(1 GeV ) ≃ 100

MeV, which is quite acceptable.

5.2.2 A4 finite model

Now we present a different model that leads to realistic quark mixings and

masses. It is based on SU(5) × A4 symmetry. A4 is the group of even permutations

of four objects. It is the symmetry group of a regular tetrahedron. This group has

irreducible representations (denoted by the dimensions) 1, 1′, 1′′ and 3. The 1′ and

1′′ are complex conjugate of each other. The product 3 × 3 decomposes as

3 × 3 = 1 + 1′ + 1′′ + 3 + 3. (5.27)

If we denote the components of 3 as (a, b, c), the various terms are given by 80:

1 = a1a2 + b1b2 + c1c2

1′ = a1a2 + ω2b1b2 + ωc1c2 (5.28)

1′′ = a1a2 + ωb1b2 + ω2c1c2,

where ω = e2iπ/3. (Note that 1 + ω + ω2 = 0.)
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The transformations properties of the fields of SU(5) under A4 are:

10i : 3 5̄i : 3 (5.29)

(Ha, H4) : 3 + 1′ (H̄a, H̄4) : 3 + 1′ Σ = 1,

where i = 1 ÷ 3 and a = 1 ÷ 3. Using the algebra presented in Eq. (5.28), the

superpotential invariant under SU(5) × A4 symmetry is:

W = a(101101 + ω102102 + ω2103103)H4

+ c(1015̄1 + ω1025̄2 + ω25̄3103)H̄4

+ b[(101102 + 102101)H1 + (101103 + 103101)H2 + (102103 + 103102)H3]

+ d[(1015̄2 + 1025̄1)H̄1 + d(1015̄3 + 1035̄1)H̄2 + (1025̄3 + 1035̄2)H̄3]

+ k(H̄1H1 + H̄2H2 + H̄3H3)Σ +
λ

3
Σ3. (5.30)

By field redefinition the ω factors can be removed from W . Actually, all the coupling

constants in Eq. (5.30) can be made real and positive. The condition of vanishing

anomalous dimensions for this model can be written as follows:

3(a2 + 2b2) + 2(c2 + 2d2) =
36

5
g2

4(c2 + 2d2) =
24

5
g2

3(3a2) =
24

5
g2 (5.31)

3(2b2) +
24

5
k2 =

24

5
g2

4(3c2) =
24

5
g2

4(2d2) +
24

5
k2 =

24

5
g2.

This gives the following isolated and non-degenerate solution:

a2 = b2 =
8

15
g2, c2 = d2 =

2

5
g2, k2 =

1

3
g2. (5.32)

The resulting up–quark mass matrix can be written as:

Mu =

√

8

15
g〈H4〉







1 1 + ǫ1 1 + ǫ2

1 + ǫ1 1 1 + ǫ3

1 + ǫ2 1 + ǫ3 1






, (5.33)
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where

ǫ1 =
〈H1〉
〈H4〉

− 1, ǫ2 =
〈H2〉
〈H4〉

− 1, ǫ3 =
〈H3〉
〈H4〉

− 1, (5.34)

with a similar form for the down–type quark matrix. We can accommodate the mass

hierarchy by taking ǫ1,2,3 ≪ 1. This structure has been considered by Fishbane and

Kaus 81, where it has been shown to agree well with experimental data.

In the A4 model, since all Hi have almost equal VEVs, 〈H4〉 ≃ 〈Hu〉 /2. Fur-

thermore, from Eq. (5.33), we have mt ≃ 3
√

8/15g 〈H4〉, so that yt = (
√

6/5)g at the

GUT scale. Similarly, yb = (
√

9/10)g at the GUT scale. These boundary conditions

lead to the predictions

mt = 177 GeV

tan β = 53. (5.35)

As shown by Fishbane and Kaus 81, all the quark mixing angles can be correctly

reproduced in this model.

5.2.3 S4 model

We now present a third example based on S4 symmetry. This symmetry alone

would lead to a one parameter family of solutions for the Yukawa couplings. Although

we have not found a symmetry that will uniquely fix this parameter, we suspect that

such a symmetry might actually exist. Keeping this in mind, we proceed to analyze

this model. S4 is the permutation symmetry operating on four objects. It has the

following irreducible representations: (1, 1′, 2, 3, 3′) 82. We choose the following

assignment of the chiral superfields under S4:

10i : 3, (Ha, H4) : 3 + 1, Σ : 1,

5̄i : 3, (H̄a, H̄4) : 3 + 1, (5.36)

The superpotential invariant under this symmetry is

W = a[(101103 + 103101)H1 + (102103 + 103102)H2 + (101101 − 102102)H1]

+ b(101101 + 102102 + 103103)H4

+ c[(1015̄3 + 1035̄1)H̄1 + (1025̄3 + 1035̄2)H̄2 + (1015̄1 − 1025̄2)H̄4]
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+ d(1015̄1 + 1025̄2 + 1035̄3)H̄4 (5.37)

+ k(H1H̄1 + H2H̄2 + H3H̄3)Σ

+ k4H4H̄4Σ +
λ

3
Σ3.

The V u and V d matrices that arise from this superpotential are:

V u =







a〈H3〉 + b〈H4〉 0 a〈H1〉
0 b〈H4〉 a〈H2〉

a〈H1〉 a〈H2〉 −a〈H3〉 + b〈H4〉






, (5.38)

V d =







c〈H̄3〉 + d〈H̄4〉 0 c〈H̄1〉
0 d〈H̄4〉 c〈H̄2〉

c〈H̄1〉 c〈H̄2〉 −c〈H̄3〉 + d〈H̄3〉






. (5.39)

The coupling matrix k connecting the Higgs fields (H, H̄) and the adjoint field Σ is:

k = diag(k, k, k, k4).

The condition for vanishing anomalous mass dimensions is then:

3(2a2 + b2) + 2(2c2 + d2) =
36

5
g2

4(2c2 + 2d2) =
24

5
g2

4(2d2) +
24

5
k2 =

24

5
g2

4(3d2) +
24

5
k4

2 =
24

5
g2 (5.40)

3(2a2) +
24

5
k2 =

24

5
g2

3(2b2) +
24

5
k4

2 =
24

5
g2

3k2 + k4
2 +

21

5
λ2 =

24

5
g2.

The solution to this set of equations has one free parameter. We choose it be k4, in

which case the solution is:

(

a2, b2, c2, d2
)

=

(

8

15
g2 +

4

15
k4

2,
8

15
g2 − 4

15
k4

2,
2

15
g2 +

1

5
k4

2,
2

15
g2 − 1

5
k4

2

)

(

e2, k2, λ2
)

=

(

2

5
g2 − 2

5
k4

2,
1

3
g2 − 1

3
k4

2,
15

7
g2

)

. (5.41)
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To eliminate this undetermined parameter k4 one needs to introduce an additional

symmetry. A Z2 symmetry can set k4 = 0, but if this Z2 commutes with S4, it will

also set some other parameters to be zero. We suspect a Z2 that does not commute

with the S4 symmetry might set k4 equal to zero, while preserving the solution in Eq.

(5.41). We find the model phenomenologically interesting for this case. The mass

matrix for the up–type quarks is:

Mu =

√

8

15
g







〈H3〉 + 〈H4〉 0 〈H1〉
0 〈H4〉 〈H2〉

〈H1〉 〈H2〉 −〈H3〉 + 〈H4〉






, (5.42)

and a similar form for the down–type quarks.

To explain the mass hierarchy, we first set the (1, 1) entry of the mass matrices

both in the up and the down sectors to be zero by choosing 〈H3〉 and 〈H4〉 as:

〈H3〉 + 〈H4〉 ∼ 0, 〈H̄3〉 + 〈H̄4〉 ∼ 0.

Furthermore, we take 〈H1〉 and
〈

H̄1

〉

to be smaller than 〈H2〉 ∼ 〈H4〉. One immediate

observation from the structure is that the rotation between the second and the third

generations is large. These large rotations from the up and the down sectors will

cancel out. Let us define 〈H2〉
〈H4〉 =

√
2(1 + δu). In the limit ǫu ≡ 〈H1〉

〈H4〉 → 0, the rotation

in the second and third generations is:

(

1
√

2(1 + δu)
√

2(1 + δu) 2

)

. (5.43)

Form this one finds

mc

mt

= −4

9
δu, (5.44)

where mc and mt are the masses of charm and top quarks. The rotation angle is:

tan(2θu
23) = 2

√
2(1 + δu). (5.45)

The large rotation angle will cancel out in Vcb, leaving only the smaller corrections

proportional to δu,d. The large rotation in the 2-3 space will induce an entry equal to

ǫu sin θu
23 〈H4〉 in the (1,3) element. From this, we obtain the following relations for
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the quark mixing angles:

Vcb =
1

2
√

2

∣

∣

∣

∣

ms

mb

± mc

mt

∣

∣

∣

∣

Vus =

∣

∣

∣

∣

√

md

ms

±
√

mu

mc

∣

∣

∣

∣

(5.46)

Vub = 2
√

2

∣

∣

∣

∣

√
mdms

mb

±
√

mumc

mt

∣

∣

∣

∣

.

These are of the right order of magnitude, although in detail, the magnitude of Vcb

is somewhat smaller than what is needed and Vub is on the larger side. We consider

this general agreement with experiments to be encouraging.

5.3 Conclusions

I have presented in this chapter several models for quark masses and mixings

in the context of finite SU(5) GUT. These theories are attractive candidates for an

underlying theory, since the β functions for the gauge and Yukawa couplings vanish

to all orders in perturbation theory. The requirements on the theory to be finite

also leads to Yukawa–gauge unification, leading to a single coupling constant in the

theory.

The models presented are based on non–Abelian discrete symmetry, which seem

to be necessary to obtain isolated and non–degenerate solutions to the Yukaw cou-

plings when expressed as power series in terms of the gauge coupling. We find it

interesting that realistic quark masses and mixings can be generated in such a frame-

work.

There are several open questions, many of which cannot be addressed until

after finding a consistent quark mixing scheme. An important question finite theories

should address is how to avoid rapid proton decay. Because all the Yukawa couplings,

including those of the light generations, are order of g, color triplet exchange will

generate a large amplitude for proton decay through d = 5 operators 77. This may

simply be a technical problem associated with using SU(5) as the gauge group. One

can envision other groups without the color triplets, although no realistic model of

this type are known to us. Within finite SU(5), there are ways to suppress the

troublesome proton decay operators. For example, if the SUSY particle spectrum is

such that the gauginos are light (of order 100 GeV), while the squarks are very heavy
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(of order 100 TeV or larger), the d = 5 proton decay problem goes away. Although

this choice may not be that attractive from the point of view of solving the gauge

hierarchy problem, we emphasize that finiteness of the theory says nothing per se

about the scale of SUSY breaking. A third alternative is to suppose that the masses

of all the extra color triplets in the theory are much heavier than the GUT scale, even

larger than the Planck scale.

In the framework of SU(5) finite GUT, the following question arises naturally:

Is it possible to generate small neutrino masses? If right–handed neutrinos are intro-

duced as SU(5) singlets, they can have no Yukawa couplings with the other fields,

due to the demand of finiteness. We mention two possibilities to induce small neu-

trino masses. One is through bilinear R- parity violating terms of order the weak

scale 83. That does not contradict the requirements of finiteness. Another possibil-

ity is to make use of Planck suppressed higher dimensional operators, which can be

constructed within finite SU(5).

As we have shown in Section 5.1.1, within finite SU(5), all four pairs of 5 + 5

fields present in the theory must be Higgs–like. This is needed for achieving doublet–

triplet splitting. If one pair were fermionic, the bad mass relations of SU(5), viz.,

ms = mµ and md = me could have been corrected by terms such as 5̄i5 bilinear mass

terms along with 5̄Σ5 coupling. Since that is not possible, one has to rely on either

Planck suppressed operators or finite gaugino diagrams to split the masses of leptons

versus down type quarks 84. Both possibilities appear to be viable.



CHAPTER 6

QUARK AND LEPTON MASS MATRIX FROM

DECONSTRUCTION

6.1 Introduction

As we have stressed many times in earlier chapters there are many reasons for

extending the Standard Model (SM) should be extended. The main questions which

the SM does not provide any answer are to the gauge hierarchy problem, charge quan-

tization, and the origin of fermion masses and mixings. Supersymmetry (SUSY) and

four-dimensional (4D) Grand Unified Theories (GUT’s) give partial solutions to the

first two of the above problems but not to the latter. To understand the observed

pattern of fermion masses and mixing angles, it seems therefore necessary that a new

ingredient must be added, which allows to distinguish between the generations in a

controlled way. For this purpose, one usually advocates a flavor symmetry. Generally,

models based on continuous non-Abelian flavor symmetries are highly dependent on

the details of the flavor symmetry breaking, without referring to deeper underlying

dynamics. The models using an Abelian flavor symmetry, on the other hand, have as

a common feature that the three generations carry different charges. At least from a

bottom–up point of view, however, generation–dependent charges seem to be some-

what contrary to the spirit of GUT’s, wherein the adhoc assignment of hypercharges

to the quarks and leptons is explained.

In recent years, higher–dimensional theories opened up new possibilities for

obtaining hierarchical fermion masses. 85,86. For example, instead of assuming that

the quarks and leptons carry generation–dependent charges under a flavor symmetry,

the generations might be distinguished by their position in an extra dimension. A

hierarchy of Yukawa couplings could then arise from the overlap of the spatial wave–

functions of the matter fields in the extra dimension 87. It would now be interesting

to simulate or reproduce this higher–dimensional mechanism in a conventional 4D

99
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field theory, which is manifestly gauge–invariant and renormalizable. This can be

achieved by employing the idea of dynamically generated extra dimensions, called

deconstruction 88,89. In deconstruction,∗ one considers the extra dimensions as an

infrared effect of an ultraviolet complete theory described by a product of 4D gauge

groups Πi

⊗

Gi. The deconstructed dimensions are represented in a “theory space”

90, where the gauge groups Gi correspond to “sites” that are connected by “links”,

like in a transverse lattice gauge theory 91. Such a view of extra dimensions has rich

theoretical and phenomenological implications covering studies in different directions

and energy scales. These studies include, for example, electroweak symmetry breaking

92, GUT-type of models 93,94, supersymmetry breaking 90,95–97, and fermion masses

and mixings 98–100.† Yet, a realistic deconstructed model, which gives all the observed

fermion masses and mixing angles in the framework of a GUT, has not been proposed

so far. This was the aim of the work done by Gerhart Seidl and myself which I present

in the present chapter.

The 4D product GUT’s which exhibit a higher-dimensional correspondence via

deconstruction, have the advantage that dangerous proton decay operators can be

easily suppressed by discrete symmetries. The doublet–triplet splitting problem, for

example, can be solved in a model proposed by Witten 93, which is based on a 4D

SUSY SU(5) product GUT that is obtained from deconstruction. Here we extend

this model by a U(1)N theory space. The different generations of quarks and lep-

tons populate this space and are located at different sites in such a way, that the

fermion masses and mixings emerge naturally. A simple linear structure of the prod-

uct group space, corresponding to a single extra dimension, seems to be too restrictive

to account for the entire fermion mass and mixing pattern of the SM. Therefore, we

start instead with a deconstructed two-dimensional disk, which can be part of an even

larger structure, the so called “spider web theory space” introduced by Arkani-Hamed

et. al. 90. They showed that when the spider web theory space is converted into the

real projective plane RP 2, supersymmetry breaking can be viewed as arising from a

∗For an early approach in terms of infinite arrays of gauge theories, see Halpern
et. al. 90.

†Deconstruction has, for example, also been applied to neutrino oscillations 101, the
Casimir effect 102, instantons 103, gravity 104, and calculable models of the “landscape”
of string vacua 105.
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topological obstruction due to a nontrivial first homology group H1(RP 2) = Z2. In

spider web theory space, one can therefore simultaneously account for SUSY breaking

and the generation of fermion masses and mixings.

To ensure the consistency of our model, we have to address the anomalies asso-

ciated with the enlarged gauge symmetry in four dimensions. Anomaly–cancelation in

theory space has been previously discussed by many authors97,99,101,102. The cancela-

tion of the anomalies is generally carried out by introducing appropriate Wess–Zumino

terms 103, which represent non-decoupling effects of heavy fermions in the low–energy

theory. We apply this approach to our spider web theory space. In addition, we ex-

amine the continuum limit of Chern–Simons terms, which, however, do not contribute

to the anomalies.

The chapter is organized as follows. In Section 6.2, we present our model. In

Section 6.2.1, we review the solution to the doublet–triplet splitting problem in an

SU(5)′ × SU(5)′′ product GUT. Next, in Section 6.2.2, we introduce our model for

the quark and lepton masses based on a U(1) spider web theory space. We also

comment in this Section on supersymmetry breaking via the nontrivial topology of

RP 2. The generation of the fermion masses and mixings is described in Section 6.3.

The predictions for the up–quarks, down–quarks/charged leptons, and neutrinos are

presented in Sections 6.3.1, 6.3.2, and 6.3.3. The anomaly cancelation in our model

is discussed in Section 6.4. Finally, we give our conclusions in Section 6.5.

6.2 Deconstructed U(1)

It has been proposed by Witten, that the doublet–triplet splitting problem can

be solved in an 4D SUSY SU(5)′ × SU(5)′′ product GUT model, which arises from

deconstruction 93 (a similar approach has been given earlier by Barbieri et al. 104). In

this Section, we will build upon this setup and extend it to a model, which reproduces

the observed fermion masses and mixings. We will first begin in Section 6.2.1 with a

brief review of the known solution to the doublet–triplet splitting problem, which we

then take in Section 6.2.2 as a starting point for introducing our model of quark and

lepton masses.
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6.2.1 Doublet–triplet splitting in SU(5)′ × SU(5)′′

Following the doublet–triplet splitting mechanism proposed by Witten and Bar-

bieri et al., one assumes a 4D gauge group G = SU(5)′ × SU(5)′′, in which the SM

gauge group GSM = SU(3)C ×SU(2)L ×U(1)Y is embedded as a diagonal subgroup.

The model possesses a discrete global symmetry F = ZN which commutes with G.

At the GUT scale, the symmetry group G × F is spontaneously broken down to

GSM × F ′, where F ′ is a linear combination of F and the ZN subgroup of the hyper-

charge subgroup U(1)′′Y of SU(5)′′. The MSSM Higgs doublets are contained in the

SU(5)′ × SU(5)′′ representations

(5,1)H + (1,5)H , (6.1)

i.e., the Higgs superfield that gives masses to the up quarks transforms under the

fundamental representation of SU(5)′ and is a singlet under SU(5)′′. The Higgs which

generates the down quark and charged lepton masses, on the other hand, is in the

antifundamental representation of SU(5)′′ and is an SU(5)′ singlet. Under G ⊃ GSM ,

the Higgs fields in Eq. (6.1) decompose as 5H = (Q,H) and 5
H

= (Q̃, H̃), in which

H and H̃ are the MSSM Higgs doublets, whereas Q and Q̃ are their corresponding

color triplet partners. The crucial point which now allows to solve the doublet–

triplet splitting problem is here that the unbroken discrete symmetry F ′ commutes

with SU(5)′ but not with SU(5)′′. As a result, F ′ acts on the whole multiplet 5H

but distinguishes in 5
H

between the triplet and doublet components Q̃ and H̃. One

can therefore have an F ′-invariant coupling Q̃Q in the superpotential while a µ-

term-type coupling ∼ HH̃ is (at the GUT scale) forbidden by F ′, which solves the

doublet–triplet splitting problem.

When including quarks and leptons in this model, it is necessary that F ′ can

forbid all dangerous baryon number violating operators, which would otherwise me-

diate proton decay. This becomes indeed possible 93, when we assume that under

SU(5)′ × SU(5)′′ the matter superfields transform as

(10,1)i + (5,1)i + (1,1)i, (6.2)

where the subscript i = 1, 2, 3 is the generation index. In other words, we suppose

that the SM quarks and leptons are in non-trivial representations of the first factor
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SU(5)′ and singlets under SU(5)′′. Notice in Eq. (6.2), that we have completed each

generation by one “right-handed” (i.e., SM singlet) neutrino required to obtain small

neutrino masses via the type-I seesaw mechanism 16. Since the down quark and

charged lepton masses can thus only emerge from non–renormalizable operators, this

may provide a reason why the down quarks and charged leptons are generally lighter

than the up quarks. Apart from this generic property, however, it would be desirable

to have in this model a more complete understanding of the observed masses and

mixings of quarks and leptons. For this purpose, we will in the next Section attempt

to associate the observed fermion masses and mixing angles with the coupling of the

Higgs and matter fields in Eqs. (6.1) and (6.2) to the theory space of a deconstructed

U(1) symmetry.

6.2.2 U(1) theory space

To address the fermion mass hierarchy in the model reviewed in Section 6.2.1,

we will assume that the matter fields “live” in a U(1) product group theory space,

which describes a deconstructed manifold. The fermion mass hierarchy arises from

placing the different generations in Eq. (6.2) on distinct points in the deconstructed

manifold. Although there may be many possibilities, we will first confine ourselves

to a theory space, which is topologically a two–dimensional disk. The reason for our

choice is that a supersymmetry breaking mechanism can be made readily available

in such a theory space 90. We comment on a possible implementation of this idea

in our model at the end of this Section. Our deconstructed manifold is conveniently

represented by the “moose” 105 or “quiver” 106 diagram in Fig. 6.1, which describes

a spider web theory space, that is topologically equivalent with a two-dimensional

disk. The center of the spider web theory space is surrounded by k concentric circles.

Each such circle is defined by N sites and each site i, where i = 0, 1, 2, . . . , kN ,

symbolizes one Gi ≡ U(1)i gauge group. The total gauge group of our model is

therefore SU(5)′×SU(5)′′×U(1)kN+1 where U(1)kN+1 ≡ ΠkN
i=0U(1)i. For definiteness,

we have in Fig. 6.1 depicted the case k = 2 and have explicitly labeled only the sites

in the inner part of the disk. When compactifying the disk later on the real projective

plane RP 2, we will require that N = 4m, where m is some integer. In our spider

web theory space, two neighboring sites are connected by a single directed link. The
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G5 G0 G1G2G3G4
G6 G7 GN

Figure 6.1. Spider web theory space for the deconstructed U(1) gauge theory. Each
point or site i, where i = 0, 1, . . . , 2N , is associated with a gauge group
Gi ≡ U(1)i. An arrow which connects two groups Gi and Gj and
points from i to j denotes a single chiral link superfield φi,j that is
charged under Gi ×Gj as (+1,−1) and is a singlet under all the other
gauge groups. The first, second and third generations are placed on the
the sites corresponding to G1, G5, and G0, respectively (gray circles).
For N even, the disk is fitted together by triangular plaquettes with
alternating orientations. The dotted lines represent possible insertions
of extra U(1)i gauge groups.
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general organization of the links and their directions is summarized in Fig. 6.1 for

the example of k = 2. In Fig. 6.1, an arrow connecting two sites i and j that points

from i to j denotes a chiral link superfield φi,j, which is charged under Gi × Gj as

(+1,−1). Under all the other U(1) factors and SU(5)′ × SU(5)′′, however, the link

fields φi,j transform only trivially.

It is important to note in our model that for even N , the directions of the

link fields in the spider web theory space are such that each small triangular or

quadratic plaquette has a definite orientation. Any two neighboring plaquettes have,

consequently, opposite orientations. With a single directed link superfield connecting

two neighboring sites, only this kind of configuration allows to have Wilson-loop-type

contributions (in the sense of usual lattice gauge theory) to the superpotential from

every plaquette in Fig. 6.1. As we will see later, the directions of the link fields

are crucial for generating a realistic hierarchy of Yukawa couplings. In what follows,

we are interested in the D–flat directions |φ0,i| = |φi,i+1| ≡ v (i = 1, . . . , N) in the

classical moduli space of vacua: All scalar components of the chiral link superfields

have vacuum expectation values (VEV’s) with a universal magnitude v. Such a VEV

v breaks the U(1) product gauge group spontaneously down to the diagonal subgroup

U(1)diag. Henceforth, we will refer to the field theory defined by our spider web theory

space also as the “U(1) theory space” of our model.

Let us now describe how the three generations are incorporated in our theory

space. We suppose that each generation in Eq. (6.2) is put on a separate site (see

Fig. 6.1): the first generation “lives” on site 1, the second on site 5, and the third on

site 0 in the center of the disk.∗ This is achieved by giving the first, second and third

generations nonzero U(1) charges exactly under the gauge groups U(1)1, U(1)5, and

U(1)0, respectively, while we assume that they are singlets under all the other U(1)

factors. Next, we have to specify on the three sites the U(1) charge assignment to the

matter fields within each generation. We choose the U(1) charges for the fermions in

each generation to be compatible with SO(10) as follows

SO(10) ⊃ SU(5)′ × U(1)1 : 161 = 10(−1)1 + 5(3)1 + 1(−5)1, (6.3)

∗Instead of putting the second generation on site 5, we could also choose any
site i on the boundary as long as i is odd for the desired link direction of φi,0 and
i, N − i ≥ 5.
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SO(10) ⊃ SU(5)′ × U(1)5 : 162 = 10(1)2 + 5(−3)2 + 1(5)2, (6.4)

SO(10) ⊃ SU(5)′ × U(1)0 : 163 = 10(1)3 + 5(−3)3 + 1(5)3, (6.5)

where the parenthesis contains the the corresponding U(1)i charge of the multiplets

and the subscript denotes the generation index. In Eqs. (6.3), we have, as compared

to Eq. (6.2), only kept the transformation properties of the matter fields under SU(5)′

since they all transform trivially under SU(5)′′. Note also in Eq. (6.3), that we have

made use of an overall sign ambiguity in the branching rule and assumed that the

U(1)1 charges of the first generation are “flipped” with respect to the corresponding

U(1)5 and U(1)0 quantum numbers in Eqs. (6.4) and (6.5). We emphasize that the

two lighter generations are connected to the third generation by link fields φ1,0 and

φ5,0, which point toward the center. This orientation is crucial for generating realistic

fermion masses and mixings.

At this point, it is important to emphasize that we employ in Eqs. (6.3) the

SO(10) branching rules only as a mere guideline or organizing principle for the U(1)

charge assignment to the multiplets in Eq. (6.2). Our model does therefore not possess

an actual SO(10) gauge symmetry (ther have recently been studies on flavor models

in SO(10) framework107). Choosing the SO(10) branching rules as a prescription for

the U(1) charge assignment, however, has several attractive features. One obvious

advantage is, e.g., that the quark and lepton sectors are automatically anomaly-free,

such that the discussion of anomalies is restricted to the Higgs and link fields only.

One major feature of our model is that the fermion mass hierarchy is due to

the “location” of the different generations on distinct points in theory space (up to

the overall sign ambiguity of the U(1) generators [cf. Eqs. (6.3)]). This is different,

e.g., from usual anomalous U(1) models 2,10), where the fermion mass hierarchy is

understood in terms of flavor–dependent charges under a single U(1). Notice, that

the U(1) charge assignment in Eqs. (6.3) resembles a gauged B − L symmetry 108,

whose deconstruction has been discussed by Skiba and Smith 99.

Next, let us consider how the Higgs fields in Eq. (6.1) couple to the U(1) theory

space. The U(1) charge assignment to the third generation in Eq. (6.5) already

fixes the transformation properties of (5,1)H . Specifically, to obtain a large top

Yukawa coupling in our model, we suppose that (5,1)H carries a U(1)0 charge −2

and is a singlet under all the other U(1) gauge groups. The Higgs field (5,1)H is
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therefore located as a site variable together with the third generation on the center

of the disk. It is interesting to note, that the U(1)0 charge assignment to 5H becomes

compatible with SO(10) when considering the 5H as part of the decomposition 10H =

5H(−2)+5
H

(2) under SO(10) ⊃ SU(5)′×U(1)0, which is also in agreement with the

choice of the U(1)0 generator in Eq. (6.5). All matter and Higgs superfields which are

located on the disk have in common, that they are singlets under the second factor

SU(5)′′. In contrast to this, we assume that (1,5)H in Eq. (6.1), which is the only

non-trivial SU(5)′′ representation, carries no U(1) charge at all and is thus not part

of the U(1) theory space.

In order to break U(1)diag, which is not observed at low energies, we assume

a single vectorlike pair of chiral superfields f and f , which resides on the center of

the disk. The fields f and f are charged under U(1)0 as +1 and −1, respectively,

and are singlets under all the other U(1) and SU(5) gauge groups. In what follows,

we will suppose that the scalar components of the fields f and f acquire VEV’s

〈f〉 ≃ 〈f〉 ≃ 〈φi,j〉 ≃ v, i.e., it is assumed that all U(1)i symmetries including U(1)diag

are broken around the same scale v.

As mentioned earlier, we have an interesting possibility of supersymmetry break-

ing in spider web theory space. Supersymmetry breaking can be implemented in a

number of different ways for our case. Among these we find the mechanism discussed

by Arkani-Hamed and company 90 to be attractive and unique in deconstruction. In

the remainder of this Section, we will briefly comment on this mechanism.

Arkani-Hamed et. al have shown that 90, different types of theory space preserve

supersymmetry only locally, viz., the interactions on each plaquette are manifestly

supersymmetric. If, however, the topology of theory space has a nontrivial first

homology group, supersymmetry breaking can be seen as a topological effect. A

deconstructed manifold with this property can, e.g., be obtained from the disk in

Fig. 6.1, when we identify diametrically opposite sites and links on the boundary,

which yields a real projective plane RP 2 with first homology group Z2 (this requires

in our case N = 4m, where m is some integer). The phase differences between the

gauge couplings gi associated with the gauge groups U(1)i and the corresponding

gauge-Yukawa couplings hi = gie
iθi for the interaction ∼ hiψ

†λiφ (where ψ and φ

denote the fermionic and scalar components of a link field connected to the site i with
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gaugino λi), can be removed separately in each plaquette by field redefinitions. In

this sense, supersymmetry is preserved “locally”. Globally, however, there can remain

one phase in the product of all the couplings hi, which cannot be rotated away. On

RP 2, this phase is either +1, which will lead to exact global supersymmetry, or −1

for maximal supersymmetry breaking 90. The phase being −1 rather than arbitrary,

as it would be the case on a circle, can be considered as an advantage of the spider-

web theory space. The supersymmetry breaking effects are suppressed by a factor

m2
SUSY ∼ Πig

2
i /(4π)2v2 (where i runs over half of the boundary of the disk in Fig. 6.1)

due to a number of N loops to account for the nontrivial global twist of RP 2, which

can easily produce a TeV scale supersymmetric spectrum. With this mechanism, one

can now address both the fermion mass hierarchy and supersymmetry breaking in

the same theory space.

6.3 Quark and Lepton Masses

6.3.1 Up quark sector

With the representation content outlined in Section 6.2, we are now in a position

to determine the fermion masses in our model. Let us first consider the up quark sec-

tor. In the notation of Eqs. (6.1) and (6.2), the up quark Yukawa couplings arise from

G-invariant terms of the type ∼ (5,1)H(10,1)i(10,1)j in the superpotential. Depend-

ing on the location of the (10,1)i matter multiplets on the disk, these terms may

be renormalizable or non–renormalizable. The mass of the top-quark, e.g., emerges

from the gauge-invariant renormalizable operator (5,1)H(10,1)3(10,1)3, with a top

Yukawa coupling of order one. This coupling is renormalizable because the third gen-

eration is situated together with (5,1)H on the center of the disk carrying SO(10)

compatible U(1)0 charges.

Since the first two generations are located at some distance away from the center,

gauge-invariance under the deconstructed U(1) requires that all other up quark mass

terms come from non–renormalizable operators involving the link fields φi,j, which

connect the center with the first two generations. The associated effective Yukawa

couplings will thus be suppressed by inverse powers of the cutoff scale Λ of the effective

theory, thereby producing hierarchical mass and mixing parameters in the fermion



109

sectors. In writing down the Yukawa couplings, it is of great importance that we

work in a supersymmetric model, where the particular directions of the link fields

as defined in Fig. (6.1) constrain the allowed renormalizable and non–renormalizable

terms due to the holomorphicity of the superpotential. The charm quark mass, e.g.,

arises dominantly from a non–renormalizable dimension-eight operator of the type

Λ−4φ2
0,4φ

2
4,5(5,1)H(10,1)2(10,1)2, which involves two powers of the link fields φ0,4

and φ4,5. Here, the product of links φ0,4φ4,5 connects the second generation with the

Higgs (5,1)H in the center along the shortest “path” on the disk consistent with

the holomorphicity of the superpotential. Similarly, the second and third generations

mix via the dimension-six term Λ−2φ0,4φ4,5(5,1)H(10,1)3(10,1)2 associated with the

same path.

Different from the two heavier generations, the mass and mixing terms of the

first generation must originate from U(1)diag violating operators, which involve the

U(1)diag-breaking fields f or f that live in the center of the disk. This difference

arises because the first generation carries, with respect to the heavier two genera-

tions, opposite charges under U(1)diag. The up quark mass, e.g., is generated by

the non–renormalizable term Λ−6f 4φ2
1,0(5,1)H(10,1)1(10,1)1, involving four powers

of f . This operator contains also two powers of the link field φ1,0, which connects

the first generation with the center. The link field φ1,0 appears therefore also in the

operator Λ−3f 2φ1,0(5,1)H(10,1)3(10,1)1, which mixes the up with the top quark.

Correspondingly, the term Λ−5f 2φ1,0φ0,4φ4,5(5,1)H(10,1)1(10,1)2 is responsible for

the mixing of the up quark with the charm quark. This operator contains the prod-

uct of links φ1,0φ0,4φ4,5, which represents on the disk the shortest connection via

holomorphic couplings between the up quark and the charm quark.

In total, the most general gauge-invariant superpotential containing the renor-

malizable and non–renormalizable terms which are relevant for the up quark masses

therefore reads

W ⊃ (5,1)H(10,1)3(10,1)3 +
φ2

0,4φ
2
4,5

Λ4
(5,1)H(10,1)2(10,1)2

+
f 4φ2

1,0

Λ6
(5,1)H(10,1)1(10,1)1 +

φ0,4φ4,5

Λ2
(5,1)H(10,1)3(10,1)2

+
f 2φ1,0

Λ3
(5,1)H(10,1)3(10,1)1 +

f 2φ1,0φ0,4φ4,5

Λ5
(5,1)H(10,1)1(10,1)2 + . . . ,(6.6)
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where the dots denote negligible higher-order terms and where we have not explicitly

written the different Yukawa couplings of order one. When all the link and site fields

φi,j and f acquire their VEV’s around the deconstruction scale v, the up quark mass

matrix is then given by the well–known texture

Mu = 〈H〉







ǫ6 ǫ5 ǫ3

ǫ5 ǫ4 ǫ2

ǫ3 ǫ2 1






, (6.7)

where we have introduced the small symmetry-breaking parameter ǫ ≡ v/Λ ≃ 0.2.

Since the texture in Eq. (6.7) can already fully account for the observed CKM angles,

the down quark mixing should not become too large in order to avoid conflict with

experiment. As we will see in Section 6.3.2, the mixing in the down sector does indeed

not exceed the up quark mixing.

6.3.2 Down quark and charged lepton sectors

The construction of the down quark and charged lepton Yukawa coupling terms

goes along the same lines as for the up quarks in Section 6.3.1, except for the dif-

ference that the matter fields and (1,5)H transform in G under different SU(5) fac-

tors. The down quark and charged lepton Yukawa couplings must therefore emerge

from G-invariant terms ∼ (5,5)H(1,5)H(10,1)i(5,1)j, where (5,5)H denotes in the

doublet–triplet splitting mechanism reviewed in Section 6.2.1 a linear combination of

Higgs superfields which transforms under SU(5)′×SU(5)′′ as a bifundamental repre-

sentation. When (5,5)H acquires its VEV at the GUT scale, G × F is broken down

to the low-energy subgroup GSM × F ′ (see Refs. 93,104).

To generate the down quark and charged lepton masses, we assume two such

bifundamental Higgs superfields Φ+ and Φ−, which are put as site variables on the

center of the disk and transform under SU(5)′×SU(5)′′×U(1)0 as Φ+ ∼ (5,5)H(+2)

and Φ− ∼ (5,5)H(−2), where in each of the last two expression the second parenthesis

contains the value of the U(1)0 charge. Under all the other U(1)i groups, Φ+ and Φ−

transform trivially. By the same arguments as in Section 6.3.1, we then find for the

relevant superpotential terms responsible for the down quark charged lepton masses

W ⊃ Φ+

Λ′ (1,5)H(10,1)3(5,1)3 +
φ2

5,0Φ+

Λ2Λ′ (1,5)H(10,1)2(5,1)2



111

+
φ2

0,2φ
2
2,1Φ−

Λ4Λ′ (1,5)H(10,1)1(5,1)1 + . . . , (6.8)

where the dots denote irrelevant higher-order operators and where we have not explic-

itly written the Yukawa couplings of order one. In Eq. (6.8), the scale Λ′ is related to

the GUT–scale MGUT
≃ 1016GeV by Λ′ ≃ MGUT

/ǫ′, where ǫ′ ∼ 0.1. Observe that Λ′

is a common factor to the down sector parameterizing tanβ and thus plays no role for

the flavor structure. When Φ+ and Φ− acquire similar VEV’s 〈Φ+〉 ≃ 〈Φ−〉 ∼ MGUT
,

the mass matrix of the down quarks and charged leptons takes the form

Md = ǫ′〈H̃〉







ǫ4 ǫ6 ǫ3

ǫ10 ǫ2 ǫ2

ǫ8 ǫ3 1






, (6.9)

where the rows and columns are spanned by the (10,1)i and (5,1)j, respectively, and

where we have a moderate tanβ ≡ 〈H〉/〈H̃〉 ∼ 10. In total, one therefore obtains for

the quark and charged lepton mass ratios

mu : mc : mt = ǫ6 : ǫ4 : 1, (6.10)

md : ms : mb = ǫ4 : ǫ2 : 1, (6.11)

me : mµ : mτ = ǫ4 : ǫ2 : 1. (6.12)

The CKM angles are of the orders

Vus ∼ ǫ, Vcb ∼ ǫ2, Vub ∼ ǫ3. (6.13)

In Eq. (6.9), we observe that the charged lepton mixing angles are . ǫ3. The large

leptonic mixing angles must therefore be almost entirely generated in the neutrino

sector. The neutrino masses and mixing angles will be discussed now.

6.3.3 Neutrino masses

Following the generic approach 100, we shall relate the absolute neutrino mass

scale to the deconstruction scale via a dynamical realization of the type-I seesaw

mechanism, where the inverse lattice spacing ∼ v is identified with the usual B − L

breaking scale v ≃ 1014 GeV . To leading order, the total effective 3 × 3 neutrino

mass matrix Mν can thus be written as Mν = −MDM−1
R MT

D, where, as usually, MD
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denotes the Dirac neutrino mass matrix and MR is the right-handed Majorana mass

matrix. The qualitative difference between MD and MR is, of course, that MD is

protected by GSM down to the electroweak scale, while MR can already emerge at

the deconstruction scale v through the Yukawa interactions between the right-handed

neutrinos (which are vectorial with respect to G) and the link fields.

When determining MD and MR in the same way like Mu and Md in Sections 6.3.1

and 6.3.2, however, we find that the minimal theory space introduced in Section 6.2.2

would only give small neutrino mixing angles. To arrive at a large neutrino mix-

ing, one may deviate from minimality and add extra link fields to our U(1) theory

space. Specifically, we assume that each of the directed link superfields φi,j defined

in Section 6.2.2 is accompanied by a pair of vectorlike chiral link superfields χi,j and

χj,i which point into opposite directions and acquire universal VEV’s of the order

〈χi,j〉 ≃ 〈χj,i〉 ≃ v. While φi,j carries the Gi ×Gj charges (+1,−1), the fields χi,j and

χj,i are charged under Gi ×Gj as (+8,−8) and (−8, +8), respectively. One can check

that the incorporation of the link fields χi,j and χj,i has no effect on our results in

Section 6.3.1 and 6.3.2 for the charged fermion mass ratios and CKM angles summa-

rized in Eqs. (6.10). In contrast to this, the extra Yukawa interactions between the

χj,i and the right-handed neutrinos introduce a large off-diagonal term in MR, which

results in a large atmospheric neutrino mixing angle θ23 ∼ 1. This is a generalization

of the scenario for soft breaking of the Le−Lµ−Lτ lepton number in the right-handed

sector 109.

A fully realistic description of bilarge neutrino mixing with normal neutrino

mass hierarchy can then be obtained by adding on the sites extra Higgs superfields

known from standard realizations of the seesaw mechanism. For example, we can

assume an SU(5)′×SU(5)′′ singlet Higgs superfield (1,1)H , which is placed together

with the second generation on the site 5. The (1,1)H carries a charge −10 under U(1)5

and is a singlet under all the other U(1)i groups. This U(1)5 charge assignment

becomes compatible with SO(10) on the site 5, when we identify (1,1)H with the

SU(5)′ singlet in the decomposition

SO(10) ⊃ SU(5)′ × U(1)5 : 126
H

= 1H(−10) + 15H(6) + . . . , (6.14)

where we have only written the subrepresentations relevant for Mν . The (1,1)H

couples to the right-handed neutrinos via a renormalizable term (1,1)H(1,1)2(1,1)2,
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thereby supplementing MR with an additional parameter. Choosing 〈(1,1)H〉 ≃ ǫ7v,

the effective neutrino mass matrix comes to the familiar form

Mν = ǫ
〈H〉2

v







ǫ4 ǫ2 ǫ

ǫ2 1 1

ǫ 1 1






. (6.15)

Taking ∼ 4×10−2 eV as the heaviest active neutrino mass, we find from Eq. (6.15) for

the deconstruction scale a value v ≃ 1014 GeV , which is of the order the usual B −L

breaking scale. In its present form, however, the 2-3 subblock of Mν in Eq. (6.15) has

a determinant which is much smaller than ǫ, so that the solar mixing angle would be

close to maximal.

In order to obtain a large but not maximal solar mixing angle, we can invoke

the type-II seesaw mechanism 110, which provides a contribution of order ∼ ǫ to the

2-3 subblock of Mν in Eq. (6.15), thus suppressing θ23 down to values ∼ π/6. The

type-II seesaw mechanism may be implemented in our model by adding on the center

of the disk a pair of conjugate Higgs superfields as site variables, that transform under

SU(5)′ × SU(5)′′ × U(1)0 as (15,1)H(6) and (15,1)H(−6), respectively, but which

are singlets under all the other U(1)i gauge groups ( a phenomenological implications

has been discussed by, e.g., Rossi 111). The U(1)0 charges of these Higgs fields are

SO(10) compatible, as can be seen from the branching rule in Eq. (6.14), by replacing

the gauge group U(1)5 by U(1)0. The superpotential couplings for the type-II seesaw

mechanism involve a renormalizable term M15(15,1)H(15,1)H , where M15 is some

high mass scale. Now, after integrating out the heavy Higgs fields, the contribution to

the 3-3 element of Mν in Eq. (6.15) is of the order ∼ ǫ9〈H〉2/M15. If M15 ≃ 109 GeV ,

then the total effective neutrino mass matrix Mν can assume a similar form like in

Eq. (6.15), with the difference that the determinant of the 2-3 subblock is now of the

order ∼ ǫ. For our choice of parameters, the model can thus lead to a normal active

neutrino mass hierarchy

m1 : m2 : m3 = ǫ : ǫ : 1, (6.16)

where m1, m2, and m3 are the active neutrino masses with solar and atmospheric mass

squared differences of the orders ∆m⊙ ≃ 10−4eV and ∆m2
atm ≃ 10−3eV , respectively.

In this case, we then have a small reactor angle θ13 ∼ ǫ, a large but not maximal solar
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angle θ12 ∼ 1 and a large atmospheric angle θ23 ∼ 1, which can be maximal. Our

model can therefore accommodate current global fits to neutrino oscillation data 112.

6.4 Anomaly Cancelation

Although the SO(10) compatible U(1) charge assignment to the fermions in

Eqs. (6.3) is anomaly-free, the Higgs field sector in its present form would contain

anomalies. Note that, in our spider web theory space, any Higgs superfield with

anomalous coupling is either a link field φi,j or must be situated as a site variable on

a single site. The anomalies coming from these site variables may be directly canceled

by simply adding in a standard fashion extra fields on the sites where they reside. In

contrast to this, we shall now consider the possibility to cancel the pure and mixed

anomalies associated with the link fields φi,j without introducing any new fields in

the low-energy effective theory.

First, we will discuss the pure (i.e., non-mixed) and gauge-gravitational anoma-

lies. When the topology of the spider web theory space in Fig. 6.1 is that of a disk,

the link fields φi,j would give rise to pure and gauge-gravitational anomalies on each

site of the boundary. Interestingly, these anomalies are completely eliminated, when

the spider web theory space is, instead, compactified on the real projective plane

RP 2. Observe that the removal of the pure and gauge-gravitational anomalies by

compactifying on RP 2 relies in an essential way on our requirement to have a definite

orientation for each small plaquette in Fig. 6.1. The compactification on RP 2 alone,

however, does not remove the mixed anomalies induced by the link fields.

Now, let us discuss the cancelation of the mixed gauge anomalies. To this

end, we add Wess–Zumino (WZ) terms 103, which can be viewed as emerging from

integrating out heavy fermions with large Yukawa couplings. The mass scale of these

extra fermions is one or two orders of magnitude above the inverse lattice spacing

v ∼ 1014 GeV . In doing so, we follow Refs. 97,101, wherein the case of a deconstructed

fifth dimension has been analyzed. Let us consider in Fig. 6.1 a site i 6= 0 which is

not in the center (a similar argumentation holds for i = 0). The site i is connected

to its four neighboring sites j1, j2, j3, and j4 by the link fields φi,j1 , φi,j2 , φj3,i, and

φj4,i. Note that φi,j1 and φi,j2 point from i to j1 and j2, while φj3,i and φj4,i point

from j3 and j4 toward the site i. The directions of the link fields are a result of the
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property of our theory space, that two neighboring small plaquettes have alternating

orientations. Under an infinitesimal chiral gauge transformation on the site i, the

vector multiplet Vi belonging to the gauge group U(1)i transforms as Vi → Vi +

i(Λi − Λi), where Λi is the gauge parameter. Denoting by jµ
i the chiral current

associated with the gauge transformation at the site i, we can arrange in the one-

loop 3-point function 〈0|Tjµ
i jν

kjρ
l |0〉 the anomalies symmetrically among the three

involved currents. In a superfield language, the anomalous variation of the link field

Lagrangian Llink
corresponding to the gauge transformation Λi can then be written

as

δΛi
Llink

= − i

12π2

∫

d2θ Λi

[

W α
j1

Wα,j1 − 2W α
i Wα,j1 + (j1 ↔ j2)

−W α
j3

Wα,j3 + 2W α
i Wα,j3 + (j3 ↔ j4)

]

+ h.c., (6.17)

where Wα,i denotes the supersymmetric field strength of the gauge group U(1)i. An

analogous expression to Eq. (6.17) holds for the mixed anomalies δΛ0Llink
, associated

with a chiral gauge transformation Λ0 on the site 0 in the center of the theory space.

The mixed anomalies δΛi
Llink

can be canceled in the low-energy effective theory by

appropriate WZ terms, which are constructed from local polynomials in the link fields

φi,j and gauge multiplets Vi. To remove the mixed anomalies δΛi
Llink

in Eq. (6.17),

we add to our model the WZ terms

Li

WZ
= − 1

24π2

∫

d2θ
{

log(φi,j1/v)
[

(C1 − 1)W α
i Wα,i + (C1 − 1)W α

j1
Wα,j1

+(C1 + 2)W α
i Wα,j1 ] + log(φj3,i/v)

[

(C1 − 1)W α
i Wα,i + (C1 − 1)W α

j3
Wα,j3

+(C1 + 2)W α
i Wα,j3 ]} −

C2

24π2

∫

d4θ
[

(ViDαVj1 − Vj1DαVi)(W
α
i + W α

j1
)

(ViDαVj1 − Vj1DαVi)(W
α
i + W α

j1
)
]

+ (j1 ↔ j2) + (j3 ↔ j4) + h.c., (6.18)

where C1 and C2 are some suitable parameters. In Eq. (6.18), the terms with factors

C1 and C2 match in the continuum limit onto six-dimensional (6D) Chern–Simons

couplings, when taking the sum of these operators around a plaquette. To see this,

let us consider the quadratic plaquette shown in Fig. 6.2 as a part of the spider web

theory space, which is spanned by the sites i, j, k, and l. From Eq. (6.18), we find

that the sum of all terms with factors C1 and C2, which correspond to the plaquette,

is given by

Lijkl

CS
= − C1

24π2

∫

d2θ log(φi,j)
[

Wα,iW
α
i + Wα,jW

α
j + Wα,iW

α
j

]
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Figure 6.2. Plaquette in the spider web theory space, considered for the Chern–Simons
terms.

− C2

24π2

∫

d4θ
[

(ViDαVj − VjDαVi)(W
α
i + W α

j )
]

+((i, j) ↔ (j, k)) + ((j, k) ↔ (k, l)) + ((k, l) ↔ (l, i)) + h.c., (6.19)

where we have indicated in the last line a cyclic permutation of the four sides of

the plaquette. We parameterize the link fields attached to the site i as φi,j =

v√
2
e(Σi,j+iGi,j)/v and φl,i = v√

2
e(Σl,i+iGl,i)/v. In the continuum limit, Gi,j and Gl,j be-

come Gi,j → A5 and Gl,i → −A6, where A5 and A6 are the 5th and 6th components

of the U(1) gauge field of the 6D theory. Expanding around the site i, the term Lijkl

CS

in Eq. (6.19) matches in the continuum limit onto

Lijkl

CS
→ − 1

24π2
ǫµνρσ [3C1(∂4A5 − ∂5A4)∂µAν∂ρAσ − 4C2∂4Aµ∂5Aν∂ρAσ] , (6.20)

which reproduces the 6D Chern–Simons term LCS
= −(C1/8π

2)ǫαβµνρσ [∂αAβ∂µAν∂ρAσ]

for the choice C2 = (3/2)C1. To determine the constant C1, note in Eq. (6.18) that the

effective moduli fields log(φi,j) transform under gauge transformations on the neigh-

boring sites as log(φi,j) → log(φi,j) + 2i(Λi − Λj). As a consequence, the anomalous

variation δΛi
Li

WZ
of the WZ term in Eq. (6.18) obeys δΛi

LWZ
= −δΛi

Llink
and thus

cancels the mixed anomalies in Eq. (6.17) when C1 = 0, i.e., the Chern–Simons term

has to vanish.
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6.5 Conclusions

In this chapter of the thesis, I have presented a model proposed by Gerhart Seidl

and myself, wherein the observed fermion masses and mixing angles emerge from a de-

constructed U(1) theory space. We have extended a supersymmetric SU(5)′×SU(5)′′

product GUT, which has been previously suggested for solving the doublet–triplet

splitting problem 93,104, by a deconstructed U(1) theory space with disk structure.

The different generations of the SM fermions live at different sites of the disk. Upon

breaking the U(1) product group by the link fields around the B − L breaking scale

v ≃ 1014 GeV, the effective Yukawa couplings and mixing matrices of the fermions

are correctly reproduced through non–renormalizable operators. The U(1) charge as-

signment to the fermions is compatible with SO(10) and, thus, free from anomalies.

This is a major difference compared to usual, e.g., anomalous U(1) models, where the

SM generations differ by flavor–dependent charges, which appears to be somewhat

adhoc from a bottom–up point of view. The neutrino mass matrix receives contribu-

tions from both type–I and type–II seesaw mechanisms. Among many possibilities,

we have advocated the supersymmetry breaking scenario suggested by Arkani-Hamed

et. al. 90, which is unique to deconstructed models. To do so, the original disk theory

space is thought to be part of a larger structure, viz., a spider web theory space. When

diametrically opposite sites and links on the boundary of this space are identified, we

arrive at an RP 2 manifold with nontrivial first homology group Z2. The interactions

on each plaquette are here required to be manifestly supersymmetric. The nontrivial

global twist of RP 2 can be viewed as the source of supersymmetry breaking. Thus,

both the fermion mass matrix structures and supersymmetry breaking can now be

addressed in the same theory space, which we find interesting and economic. The

choice of the charges for the link fields, which defines a direction for the links con-

necting two sites, is such that neighboring plaquettes have alternating orientations.

As a consequence, all the sites have the same number of “ingoing” and “outgoing”

link fields. This arrangement insures that the contributions to the pure and gravita-

tional anomalies on each site vanish automatically. We cancel the mixed anomalies,

along the line of Refs. 97,101, by Wess–Zumino terms, which can be considered as a

result of integrating out heavy fermions with masses one or two orders of magnitude
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above the B − L breaking scale. We have examined possible Chern–Simons terms

on a rectangular plaquette, which nevertheless do not play a role in the anomaly

cancelations, and have shown that they have a correct 6D continuum limit.

It would be clearly interesting to develop descriptions of our model based on

gauge groups like SO(10) or E6 with a universal GUT/deconstruction scale. In possi-

ble variations of our model one could (as proposed, e.g., by Skiba and Smith 99) also

think of shifting anomalies between the gauge groups using a deconstructed version

of the anomaly inflow mechanism known from string theory 113.



CHAPTER 7

SUMMARY AND CONCLUSIONS

In this thesis I have presented the research topics I have pursued during my

Ph. D. study which primarily consist of the fermion mass hierarchy and theoretical

ideas of flavor symmetry, grand unification and deconstructed theory space.

The second and third chapters of the thesis describe our study on lepton flavor

violation and electric dipole moments induced by a flavor–dependent anomalous U(1)

gauge symmetry of string origin in models which address the fermion mass hierar-

chy problem via the Froggatt–Nielsen mechanism. We have derived a general set of

renormalization group equations for the evolution of soft SUSY breaking parameters

in the presence of higher dimensional operators appearing in these models. These

results should be applicable to a large class of fermion mass models.

The anomalous U(1) of string theory is broken spontaneously at a scale MF

slightly below the string scale, MF ∼ Mst/50. In the momentum regime MF ≤ µ ≤
Mst, the flavor U(1)A gauge boson sector will be active and will contribute to the

evolution of the soft SUSY breaking parameters in a flavor dependent fashion. We

have shown that the U(1)A sector induces significant lepton flavor violation and elec-

tric dipole moments in the SUSY breaking parameters through the RGE evolution

from the string scale to the flavor symmetry breaking scale, even though this mo-

mentum range is very short. We have identified several sources of these phenomena:

the U(1)A gaugino contribution to the scalar masses which is flavor dependent, a

contribution proportional to the trace of U(1)A charge which is also flavor dependent,

and non–proportional A–terms arising from the U(1)A gaugino vertex correction di-

agrams. The resulting flavor violation in the leptonic decay µ → eγ, and the electric

dipole moments for the electron and neutron are found to be in the experimentally

interesting range. Discovery of the lepton flavor violation and electric dipole moments

for the electron and the neutron can shed light on one of the fundamental puzzles of

Nature, viz., the origin of mass for elementary particles.
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The fourth chapter of the thesis contains our work on a concrete realization of

SUSY breaking using interference between anomalous U(1) flavor gauge symmetry of

heterotic string and strongly coupling SU(Nc) sector with Nf flavors of quarks and

antiquarks. We have shown that the resulting supersymmetric spectrum is that of

Split SUSY. In particular, sfermions and gravitino are found to have masses of order

106 ÷ 108 GeV and 105 ÷ 107 GeV respectively, while gauginos and the Higgsinos are

in the 102 ÷ 103 GeV mass range. We have calculated the leading order supergravity

corrections to the previously known results 55. These calculations are vital to realistic

models. Using these, we have presented a class of explicit models of Split SUSY.

We have checked one and two–loop radiatively induced corrections to sfermion soft

masses which give negative contributions –if dominant they would lead to tachyonic

solutions– and have shown that they are at the safe level. We have shown that they

do not lead to any conflict with current constraints. In some cases, the gluino life

time is estimated to be 10−7 seconds, in the range where it leads to interesting collider

signals, as noted by Arkani-Hamed and Dimopoulos 47.

In the fifth chapter of the thesis I have presented models for quark masses and

mixings in the context of finite SU(5) GUT. These theories are attractive candidates

for an underlying theory, since the β functions for the gauge and Yukawa couplings

vanish to all orders in perturbation theory. The requirements on the theory to be

finite also leads to Yukawa–gauge unification, leading to a single coupling constant

in the theory. The models presented are based on non–Abelian discrete symmetries,

which seem to be necessary to obtain isolated and non–degenerate solutions to the

Yukawa couplings when expressed as power series in terms of the gauge coupling. We

find it interesting that realistic quark masses and mixings can be generated in such a

framework. The discrete groups we have used are (Z4)
3 × P , A4 and S4. In the case

of (Z4)
3 ×P and A4 we have found unique nondegenerate solutions which ensure the

finiteness of the models to all order of perturbation theory while in the case of S4 we

have found a model which is two–loop finite.

In the sixth chapter of the thesis, I have presented a model, wherein the ob-

served fermion masses and mixing angles emerge from a deconstructed U(1) theory

space. We have extended a supersymmetric SU(5)′×SU(5)′′ product GUT, which has

been previously suggested for solving the doublet–triplet splitting problem 93,104 , by a
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deconstructed U(1) theory space with disk structure. The different generations of the

SM fermions live at different sites of the disk. Upon breaking the U(1) product group

by the link fields around the B−L breaking scale v ≃ 1014 GeV, the effective Yukawa

couplings and mixing matrices of the fermions are correctly reproduced through non–

renormalizable operators. For the neutrino mass matrix we employ both type–I and

type–II seesaw mechanisms. We have advocated the supersymmetry breaking sce-

nario which is unique to deconstructed models. The nontrivial global twist of RP 2

can be viewed as the source of supersymmetry breaking. In our model, both the

fermion mass matrix structures and supersymmetry breaking can be addressed in the

same theory space. We have chosen the charge arrangement which insures the pure

and gravitational anomalies on each site vanish automatically. We cancel the mixed

anomalies by Wess–Zumino terms. We have examined possible Chern–Simons terms

on a rectangular plaquette and have shown that they have a correct 6D continuum

limit.
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mades, L. E. Ibañez, and F. Marchesano, JHEP 0207, 009 (2002); T.j. Li and
T. Liu, Eur. Phys. J. C 28, 545 (2003); M. Dine, Y. Nir, and Y. Shadmi, Phys.
Rev. D 66, 115001 (2002); S. Rakshit, G. Raz, S. Roy, and Y. Shadmi, Phys.
Rev. D 69, 095006 (2004); C. S. Huang, J. Jiang, and T. Li, Nucl. Phys. B
702, 109 (2004); C. D. Carone, Phys. Rev. D 71, 075013 (2005).

95. M. A. Luty and R. Sundrum, Phys. Rev. D 65, 066004 (2002); T. Kobayashi,
N. Maru, and K. Yoshioka, Eur. Phys. J. C 29, 277 (2003); D. B. Kaplan,
E. Katz, and M. Unsal, JHEP 0305, 037 (2003).

96. C. Csaki, J. Erlich, C. Grojean, and G. D. Kribs, Phys. Rev. D 65, 015003 (2002).

97. E. Dudas, A. Falkowski, and S. Pokorski, Phys. Lett. B 568 (2003) 281.

98. D. E. Kaplan and T. M. P. Tait, JHEP 0111, 051 (2001); H. Abe, T. Kobayashi,
N. Maru, and K. Yoshioka, Phys. Rev. D 67, 045019 (2003); G. Seidl, hep-
ph/0301044; P. Q. Hung, A. Soddu, and N. K. Tran, Nucl. Phys. B 712, 325
(2005); C. D. Froggatt, L. V. Laperashvili, H. B. Nielsen, and Y. Takanishi,
arXiv:hep-ph/0309129.

99. W. Skiba and D. Smith, Phys. Rev. D 65, 095002 (2002).

100. K. R. S. Balaji, M. Lindner, and G. Seidl, Phys. Rev. Lett. 91, 161803 (2003).

101. A. Falkowski, H.P. Nilles, M. Olechowski, and S. Pokorski, Phys. Lett. B 566,
248 (2003).

102. J. Giedt, E. Poppitz, and M. Rozali, JHEP 0303, 035 (2003); C. T. Hill and
C. K. Zachos, Phys. Rev. D 71, 046002 (2005).

103. J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971); E. Witten, Nucl. Phys. B
223, 442 (1983).

104. R. Barbieri, G. R. Dvali, and A. Strumia, Phys. Lett. B 333, 79 (1994).

105.H. Georgi, Nucl. Phys. B 266, 274 (1986).

106.M.R. Douglas and G. Moore, arXiv:hep-th/9603167.

107. K. Matsuda, Y. Koide, T. Fukuyama, and H. Nishiura, Phys. Rev. D 65, 033008
(2002), Erratum-ibid. D 65, 079904 (2002); T. Fukuyama and N. Okada, JHEP
0211, 011 (2002); B. Bajc, G. Senjanović, and F. Vissani, Phys. Rev. D 70,
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APPENDIX A

In this Appendix we give the formulas used in our numerical calculations. These

include the definitions of the mass eigenstates and the mixings of the sfermions and

the gauginos in the basis where the charged lepton and quark mass matrices are

diagonal.

A.1 Sfermions, Higgsinos and Gauginos

First we give the definitions of the mass eigenstates of the SM superpartners

and write the interaction part of the lagrangian in terms of these states. The fermion

generations are denoted by li (charged leptons), νi (neutrinos), ui (up–type quarks)

and di (down–type quarks) with i, j = 1, ..., 3. The corresponding sfermions in two–

component Weyl basis are f̃i (superpartners of the left–handed SU(2)L doublets), f̃ c
i

(right–handed SU(2) singlets). The sfermion mass matrices are given by

L ⊃ −
(

f̃ †, f̃ c†
)

(

m2
L m2

LR
†

m2
LR m2

R

) (

f̃

f̃ c

)

, (A.1)

where each entry are 3 × 3 mass matrix in generation space. They are given by

m2
L = m̃2

f + m2
f + M2

Z cos 2β
(

T f
3L − Qf

em sin2 θW

)

, (A.2)

m2
R = m̃2

fc + m2
f − M2

Z cos 2β
(

T f
3L − Qf

em sin2 θW

)

, (A.3)

m2
LR = −Afv sin β/

√
2 − mfµ cot β for (f = u, ν), (A.4)

m2
LR = Afv cos β/

√
2 − mfµ tan β for (f = d, l). (A.5)

Here T f
3 and Qf

em are the third component of weak isospin and the electric charge of

fermion f with mass mf . Upon diagonalization

U fM2U f† = (diagonal), (A.6)
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the mass eigenstates are given by

f̃x = U f
x,if̃i + U f

x,i+3f̃
c
i (x = 1, ..., 6). (A.7)

Then one obtains the following inverse transformations:

f̃i = U f
i,x

†
f̃x, (A.8)

f̃ c
i = U f

i+3,x

†
f̃x, (A.9)

ν̃i = U ν
i,x

†ν̃x (here x = 1, ..., 3.) (A.10)

The mass eigenstates of the guaginos and higgsinos are admixture of both gauge

and higgs sector. Depending on their electric charges they are called neutralinos and

charginos. In the MSSM neutralinos are linear combinations of bino B̃ (superpartner

of the Hypercharge gauge field B ), neutral wino W̃3 (superpartner of the W3–boson),

and two neutral components of higgsinos H̃u and H̃d:

L ⊃ −1

2

(

B̃, W̃3, H̃
0
u, Ñ0

d

)

MN

















B̃

W̃3

H̃0
u

Ñ0
d

















+ h.c (A.11)

where MN denotes the neutralino masses, given by a 4 × 4 matrix:

MN =















MB̃ 0 −MZ sin θW cos β MZ sin θW sinβ

0 M2 MZ cos θW cos β −MZ cos θW sinβ

−MZ sin θW cos β MZ cos θW cos β 0 −µ

MZ sin θW sin β −MZ cos θW sinβ −µ 0















.(A.12)

This symmetric matrix is diagonalized by an orthogonal transformation:

ONMN(ON)T = (diagonal). (A.13)

The charginos are linear combinations of wino W̃− (superpartner of W−) and

the charged component of higgsino. The mass terms for them are given by

L ⊃ −
(

¯̃W
−
R, ¯̃H

−
dR

)

(

M2

√
2MW cos β

√
2MW sin β µ

) (

W̃−
L

H̃−
uL

)

+ h.c.. (A.14)
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This asymmetric mass matrix, which we call MC is diagonalized by two orthogonal

transformations OC
L and OC

R as

OC
RMCOC

L = (diagonal). (A.15)

Thus the neutralinos and charginos are Majorana and Dirac spinors respectively

χ̃0
a = χ̃0

aL + χ̃0
aR for a = 1, ..., 4 (A.16)

χ̃−
a = χ̃−

aL + χ̃−
aR for a = 1, 2. (A.17)

With these definitions now we write the interaction terms for the SM fermions

with the neutralinos and the charginos:

Lint = f̄i

(

N
R(f)
ixa PR + N

L(f)
ixa PL

)

χ̃0f̃x

+ l̄i

(

C
R(l)
ixa PR + C

L(l)
ixa PL

)

χ̃−ν̃x

+ ν̄i

(

C
R(ν)
ixa PR + C

L(ν)
ixa PL

)

χ̃+l̃x

+ d̄i

(

C
R(d)
ixa PR + C

L(d)
ixa PL

)

χ̃−ũx

+ ūi

(

C
R(u)
ixa PR + C

L(u)
ixa PL

)

χ̃+d̃x + h.c.. (A.18)

The coefficients NL(R) and CL(R) are given as

N
R(l)
ixa = − g2√

2

{

(

−(ON)a2 − (ON)a1 tan θW

)

U l
x,i

+
mli

MW cos β
(ON)a3U

l
x,i+3

}

, (A.19)

N
L(l)
ixa = − g2√

2

(

mli

MW cos β
(ON)a3U

l
x,i + 2(ON)a1 tan θW U l

x,i+3

)

, (A.20)

N
R(ν)
ixa = − g2√

2

(

(ON)a2 − (ON)a1 tan θW

)

Uν
x,i, (A.21)

N
L(ν)
ixa = 0, (A.22)

C
R(l)
ixa = −g2(O

C
R)a1U

ν
x,i, (A.23)

C
L(l)
ixa =

g2√
2

mli

MW cos β
(OC

L )a2U
ν
x,i, (A.24)

C
R(ν)
ixa = −g2(O

C
L )a1U

l
x,i, (A.25)

C
L(ν)
ixa =

g2√
2

mli

MW cos β
(OC

L )a2U
l
x,i+3. (A.26)



133

A.2 Formulas for Lepton Flavor Violations

Here we give the formulas for the lepton flavor violations in MSSM11, which

have been used in our numerical calculations.

The LFV processes in the presence of the low energy SUSY are induced by the

loop corrections from neutralinos and charginos:

AL,R
a = A(a)L,R

a + A(c)L,R
a (a = 1, 2). (A.27)

Here the amplitudes with (n) and (c) superscripts denote contributions from neutrali-

nos and charginos respectively. The amplitudes from neutralinos are

A
(n)L
1 =

1

576π2
NR

ixaN
R∗
jxa

1

m2
l̃x

F1

(

M2
χ̃0

a

m2
l̃x

)

, (A.28)

A
(n)L
2 =

1

32π2

1

m2
l̃x

(

NL
ixaN

L∗
jxaF2

(

M2
χ̃0

a

m2
l̃x

)

+ NL
ixaN

R∗
jxa

Mχ̃0
a

mlj

F3

(

M2
χ̃0

a

m2
l̃x

))

, (A.29)

A(n)R
a = A(n)L

a |L↔R. (A.30)

Here Mχ̃0
a
(a = 1, ..., 4) and m2

l̃x
(x = 1, ..., 6) are the eigenvalues of the neutralino and

the charged slepton mass matrices. The chargino contributions are

A
(c)L
1 = − 1

576π2
CR

iaxC
R∗
jax

1

m2
ν̃x

F4

(

M2
χ̃−

a

m2
ν̃x

)

, (A.31)

A
(c)L
2 = − 1

32π2

1

m2
ν̃x

(

CL
iaxC

L∗
jaxF5

(

M2
χ̃−

a

m2
l̃x

)

+ CL
iaxC

R∗
jax

Mχ̃−
a

mlj

F6

(

M2
χ̃−

a

m2
l̃x

))

, (A.32)

A(c)R
a = A(c)L

a |L↔R, (A.33)

where Mχ̃−
a

and m2
ν̃x

(a = 1, 2 and x = 1, ..., 3) are the chargino and the sneutrino

mass eigenvalues respectively. The functions Fi (i = 1, ..., 6) are given by

F1(X) =
1

(1 − X)4

(

2 − 9X + 19X2 − 11X3 + 6X3Log (X)
)

, (A.34)
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F2(X) =
1

6 (1 − X)4

(

1 − 6X + 3X2 + 2X3 − 6X2Log (X)
)

, (A.35)

F3(X) =
1

(1 − X)3

(

1 − X2 + 2XLog (X)
)

, (A.36)

F4(X) =
1

(1 − X)4

(

16 − 45X + 36X2 − 7X3 + 6 (2 − 3X) Log (X)
)

, (A.37)

F5(X) =
1

6 (1 − X)4

(

2 + 3X − 6X2 + X3 + 6X2Log (X)
)

, (A.38)

F6(X) =
1

(1 − X)3

(

−3 + 4X − X2 − 2Log (X)
)

. (A.39)

Once amplitudes are known it is now straightforward to calculate the branching ratios

for the lepton flavor violating processes:

Γ(l−j → l−i γ) =
αem

4
m2

lj

(

|AL
2 |2 + |AR

2 |2
)

, (A.40)

B(l−j → l−i γ) =
Γ(l−j → l−i γ)

Γtotal
= Γ(l−j → l−i γ) × τlj

~
. (A.41)

Here τlj is the lifetime of lepton lj.

A.3 Formulas for Electric Dipole Moments

We list here the formulas for the electric dipole moments of leptons and quarks

in the MSSM32, which we have used in our numerical analysis.

The EDMs of elementary fermions are sum of neutralino, chargino and for

quarks gluino contributions which we denote as dN
f , dC

f and dG
q . In addition to these,

the quarks receive contributions from chromoelectric and purely gluonic dimension–

six operators 114. We have not considered here the latter one, since these effects turn

out to be small. The effective EDM operator df for a spin–1
2

particle is given by

L = − i

2
df ψ̄σµνγ5ψF µν (A.42)

The EDM df in general has the following components in a supersymmetric theory:

dN
fi

/e =
α

8π sin2 θW

6
∑

x=1

4
∑

a=1

Im
(

N fi
xa

) Mχ0
a

m2
f̃x

Qf̃x
A

(

M2
χ0

a

m2
f̃x

)

,
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dC
u /e =

−α

8π sin2 θW

6
∑

x=1

2
∑

b=1

Im (Cu
xb)

Mχ̃+
b

m2
d̃x

(

B

(

M2
χ̃+

b

m2
d̃x

)

− 1

3
A

(

M2
χ̃+

b

m2
d̃x

))

,

dC
d /e =

−α

8π sin2 θW

6
∑

x=1

2
∑

b=1

Im
(

Cd
xb

)
Mχ̃+

b

m2
ũx

(

2

3
A

(

M2
χ̃+

b

m2
ũx

)

− B

(

M2
χ̃+

b

m2
ũx

))

,

dG
qi
/e = −αs

3π

6
∑

x=1

Im (Gqi
x )

Mg̃

m2
q̃x

Qq̃i
A

(

M2
χ̃+

b

m2
ũx

)

, (A.43)

where

A(X) =
1 − X2 + 2X log X

(1 − X)3 ,

B(X) =
3 − 4X + X2 + 2 log X

(1 − X)3 . (A.44)

Here Mχ̃0
a
, Mχ̃+

b
and Mg̃ are the neutralino, chargino and the gluino masses respec-

tively. m2
f̃x

(x = 1, ..., 6) are the eigenvalues of the sfermion mass matrices. The

coefficients N f
xa, Cf

xb and Gq
x are given by

N fi
xa = NR(fi)

xa NL(fi)∗
xa =

[√
2 tan θW Qfi

(

ON
)

1a
U f

i+3,x − Kf

(

ON
)

a′a
U f

i,x

]

×
[

−
√

2
{

tan θW (Qfi
− Tfi

)
(

ON
)

a1
+ T3fi

(

ON
)

a2

}

U f∗
i,x

− Kf

(

ON
)

a′a
U f∗

i+3,x

]

,

Cu
xb = C

R(u)
xb C

L(u)∗
xb = Ku

(

OC
R

)∗
b2

Ud
1,x

[(

OC
L

)

b1
Ud

4,x − Kd

(

OC
L

)

b2
Ud

4,x

]∗
,

Cd
xb = C

R(d)
xb C

L(d)∗
xb = Kd

(

OC
L

)∗
b2

Uu
i1

[(

OC
R

)

b1
Uu

1,x − Ku

(

OC
R

)

b2
Uu

4,x

]∗
,

Gqi
x = U q

i,xU
q∗
i+3,x, (A.45)

where Ku = mu/(
√

2MW sin β) and Kl,d = ml,d/(
√

2MW cos β). ON and OC
L , OC

R

matrices diagonalize the neutralino and chargino mass matrices respectively. The

index a′ of ON in the neutralino contribution formula takes value of 3(4) for T3f =

−1
2
(1

2
). The chromoelectric dipole moments d̃q for quarks are defined as

LCEDM = − i

2
gsd̃q q̄T

aσµνγ5qG
µνa. (A.46)

The contributions to d̃q from neutralino, chargino and gluino are given by

d̃N
qi

=
g2

32π2

6
∑

x=1

4
∑

a=1

Im (N qi
xa)

Mχ0
a

m2
q̃x

A

(

M2
χ0

a

m2
q̃x

)

,
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d̃C
q =

−g2

32π2

6
∑

x=1

2
∑

b=1

Im (Cq
xb)

Mχ̃+
b

m2
q̃x

A

(

M2
χ̃+

b

m2
q̃x

)

,

d̃G
qi

=
αs

4π

6
∑

x=1

Im (Gqi
x )

Mg̃

m2
q̃x

C

(

M2
χ̃+

b

m2
q̃x

)

, (A.47)

where

C(X) =
1

6 (1 − X)2

(

10X − 26 +
2XlogX

1 − X
− 18logX

1 − X

)

. (A.48)

We use the QCD sum rule based estimate 115 to evaluate the neutron and the deuteron

EDMs:

dn = 0.7 (dd − 0.25du) + 0.55
(

d̃d + 0.5d̃u

)

,

dD = 0.5 (dd + du) − 0.6
(

d̃d − d̃u + 0.3
(

d̃d + d̃u

))

. (A.49)

Here the running factors are d̃q (1 GeV) ≃ 0.91d̃q (MZ) and dq(1 GeV) ≃ 1.2dq(MZ).
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include: Anomalous flavor U(1) symmetry and its experimental implications,
finite GUT models with discrete family symmetry, and a product GUT model
in a 2D deconstructed theory space. The second and third chapters of the thesis
describe our study of lepton flavor violation (LFV) and electric dipole mo-
ments (EDM) induced by a flavor–dependent anomalous U(1) gauge symmetry
of string origin. The models considered also address the fermion mass hierarchy
problem successfully. We have shown that the U(1) sector induces significant
LFV and EDMs through the SUSY breaking parameters. These effects arise via
renormalization group evolution of the parameters in the momentum regime
between the string and the anomalous U(1) breaking scale. The fourth chap-
ter of the thesis contains our work on a concrete realization of SUSY breaking
using interference between the anomalous U(1) flavor gauge symmetry and a
strongly coupled SU(Nc), leading to the so called Split SUSY spectrum where
the sfermions and the gravitino acquire masses of order 105÷108 GeV while the
gauginos and the Higgsinos have masses of order 102 ÷ 103 GeV. We have cal-
culated the leading order supergravity corrections and have presented a class of
explicit models of Split SUSY which are phenomenologically consistent. In the
fifth chapter I have presented models for realistic quark masses and mixings in
the context of finite SU(5) GUT wherein the β functions for the gauge and the
Yukawa couplings vanish to all orders in perturbation theory. The models pre-
sented are based on non–Abelian discrete symmetries. In the case of (Z4)

3 × P
and A4 symmetries we have found models finite to all order of perturbation
theory while in the case of an S4 symmetry we have found a model which is
two–loop finite. In the sixth chapter I have presented a model wherein the ob-
served fermion masses and mixing angles emerge from a deconstructed U(1)
theory space with a disk structure in SU(5)′×SU(5)′′ product GUT. Below the
B − L breaking scale, the effective Yukawa couplings and mixing matrices of
the fermions are correctly reproduced through non–renormalizable operators.
In our model, both the fermion mass matrix structures, and supersymmetry
breaking (as a global twist of RP 2) can be addressed in the same theory space
consistent with phenomenology and anomaly cancelation.
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