
A VISUAL AID FOR THE LEARNING OF 

TREE-BASED DATA STRUCTURES 

BY 

HUNG-CHE SHEN 

Bachelor of Science 

Feng Chia University 

Taichung, Taiwan R.O.C. 

1989 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
May, 1994 



A VISUAL AID FOR THE LEARNING OF 

TREE-BASED DATA STRUCTURES 

Thesis Approved: 

Thesis Advi~ 

) ·/ 

lv1 1 ,--~ fJ 'II I y ';,.,._-;: "' ._. ~ 

I/! • .... 

: / (..{ L.- (~.<_-·---

Dean of the Graduate College 

ii 



ACKNOWLEDGEMENTS 

I wish to express my sincere appreciation to my major 

advisor Dr. K. M. George for his thorough guidance and 

helpful advisement throughout my graduate study and writing 

of this thesis. Without him, the fulfillment of this thesis 

will be impossible. 

I am grateful to Dr. J. P. Chandler for serving on my 

committee. He gave me invaluable suggestions and directions 

about the programs in this thesis. I am also grateful to 

other committee member, Dr. M. Neilsen, for his advisement 

during the course of this work. 

My deepest appreciation is extended to my father, 

Zenyu and my mother, Chufong for their encouragement, 

love, and support for my graduate study here. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION. . • • . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

II. LITERATURE REVIEW................................ 6 

Visualization Design........................ 6 
User Interface. • . . . . . . . . . . . . . • . . . . . . . . . . . . . . 1 o 

III. ABSTRACT SYSTEM MODEL ............................ 14 

Interactive Service Model ................... 14 
Contextual Diagrams of Functionality ........ 17 

IV. SOFTWARE DESIGN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 

Development Process ......................... 20 
Data Type Declaration ....................... 22 
Algorithm Decomposition ....•................ 24 
Visualization Design .•...................... 28 
Component Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 
User Interface Design ....•.................. 39 

V. SYSTEM OVERVIEW. . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . 4 0 

Main Menu................................... 41 
A VL Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 
B-Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 
Red-Black Tree.............................. 44 
Splay Tree.................................. 44 

VI. SUMMARY AND FUTURE WORK .......................... 61 

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 

APPENDIX - USER'S MANUAL~ . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . 66 

iv 



LIST OF TABLES 

Table Page 

I. Decomposition of Insertion in Trees ............. 26 

II. Functions Specified Using Pre- and Post-
Condition..................................... 27 

III. Abstract Data Type in Tree Algorithms 
Visualization................................. 31 

IV. Comparison of Bresenham's Algorithm and 
Animation Algorithm ........................... 34 

v 



LIST OF FIGURES 

Figure Page 

1. The Architecture of the TBDSV System Running 
on Its Environment ............................... 11 

2. Main Functions of TBDSV System ..................... 15 

3. Trees and Their Operations ......................... 16 

4. Input Output Diagram of TBDSV System ............... 17 

5. Display Type and Its Contents ...................... 18 

6. System Formulation ................................. 21 

7. Storage Structure for a Node of AVL Tree and 
Its Declaration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 

8. Storage Structure for a Node of Red-Black Tree 
and Its Declaration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 

9. Storage Structure for a Node of B-Tree and 
Its Declaration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 

10. Storage Structure for a Node of Splay Tree and 
Its Declaration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 

11. Insertion of AVL Tree With Action .................. 28 

12. Tree's Hierarchic Structures ....................... 31 

13. Algorithm for Animation ............................ 35 

14. Overview of the TBDSV System ....................... 41 

15. Main Menu.......................................... 45 

16 . A VL Tree - 1 • • • . . . • . • • • . • • . . • . • • . • . • . • • • • . . . . . . . . . . 4 6 

vi 



Figure 

17. AVL Tree 

AVL Tree 

AVL Tree 

AVL Tree 

2 .. 

3 •• 

4. 

5. 

AVL Tree - 6. 

B Tree 

B Tree 

B Tree 

1. 

2. 

3 •• 

B Tree- 4 ..... 

Red-Black Tree 1 ... 

Red-Black Tree - 2. 

Splay Tree 

Splay Tree 

1 ... 

2. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. Splay Tree - 3 ••.•••.•••••••••••••••...••••.•..••.• 

vii 

Page 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 



CHAPTER I 

INTRODUCTION 

House (10] explains the importance of graphics: 

"Graphics have been used for centuries to effectively 

communicate information among people and aid comprehension 

of complex information. Because patterns and shapes are 

inherently less abstract than numbers and languages" (p. 

29). Furthermore, it is common knowledge that pictures 

convey information more readily and permit better retention 

than textual or verbal representations of the same 

information. And that is why graphics can have such an 

immense application. We can easily find graphics 

applications in every aspect of our daily lives. 

During the past 20 years, with hardware and software 

techniques for creating and manipulating graphics displays 

advancing, computers have revolutionized their ways in 

creating graphics that make the applications of graphics 

much more efficient and widespread. Nowadays computer 

graphics have become one of the most exciting and rapidly 

growing fields in computer science. Computer graphics is a 

very active and rapidly changing technology. This field has 

greatly affected such diverse areas as business, military, 

industry, science, entertainment, education, and research 

1 



2 

than ever before. 

The extreme value of computer graphics applications in 

education is easily seen by the fact pointed out by Davis 

[ 4] : 

Students fooling around with ... orbits in the many-body problem 
that have been graphically displayed have found periodic solutions whose 
existence defies our keenest analytical analysis. 

House [10] mentions one of the favorable merits of 

graphics applications in education in term of human brain. 

The perceptual work is done by the right hemisphere of human 

brain that initially processes pictorial information. Then 

the left hemisphere of human brain does the analysis work. 

If we use more pictures than words, more of the brain will 

be involved in processing pictorial information than in 

processing numerical or textual information. This results in 

the increased understanding, and consequently better recall, 

of pictorial information. 

Knowing of those benefits that graphics can provide 

arouses our motivations of this research in using computer 

graphics as an aid for learning of data structures. We all 

know that the teaching learning process of data structures 

is not an easy job. If computer-assisted instruction is 

available, it would complement the traditional lecture 

course in data structures. 

The primary purpose of this thesis is to devise a 

method of using computer graphics for helping students 

learning tree-based data structures. We call it "Tree-based 



Data Structures Visualization" system, or TBDSV system. 

Then what is visualization? Gershon [7] states that 

"Visualization is the process of transforming information 

into a visual form, enabling users to observe the 

information." The term "Visualization" with its basis in 

computer graphics is still quite a new word. As for the 

pioneering work of visualization done successfully in some 

scientific disciplines such as molecular modeling and 

medical imaging, the word "visualization" has gained rapid 

and widespread acceptance. 

3 

The primary goal of this TBDSV system is to explore how 

this visual aid in computer can be used to promote the 

learning interests and learning efficiency of data 

structures by providing an innovative medium of 

communication. In this TBDSV system, students can choose 

from a set of tree-based algorithms. Then they can observe 

and explore the dynamic behavior of data structures through 

graphical displays. In addition to showing the dynamic 

behaviors of algorithms, it also illustrates the logical 

organizations of data structures. Rather than using pens or 

drawing charts on papers, this learning method makes a 

fundamental improvement possible in the way we understand 

and think about algorithms and data structures. Besides the 

applications to learning and instruction, the "Data 

Structure Visualization" system can be used as a tool for a 

beginner who wants to write programs of those tree-based 

data structures. By observing graphical simulations of the 



trees' behaviors, the user can get the idea of the inner 

workings of those tree-based programs. 

4 

This visualization system is developed on the X Windows 

system, because X Windows provide a set of tools to build 

graphical objects. These tools are available in Oklahoma 

State University Computer Science Department's laboratory 

that is equipped with NCO X-terminals that have graphics 

displays connected by Ethernet.Furthermore, one important 

advantage of using the X Windows system lies in the fact 

that it provides a smooth and flexible open system user 

interface at a time when users are growing increasingly 

accustomed to window-style interfaces. 

We have visualized typical data structures, namely AVL 

tree, Red-Black tree, B-tree, and Splay tree in our TBDSV 

system. These trees are important data structures that 

appear often in courses of data structures, file structures, 

etc. 

The remaining chapters of this thesis are arranged as 

follows: 

Chapter II describes related work, and illustrates the areas 

that this study needs. Chapter III provides an abstract 

system model which is used as a method of requirements 

derivation based on examining the system from several 

different viewpoints. Chapter IV is on software design. This 

chapter covers the software design process, design 

strategies and design quality. The implementation of TBDSV 

system and the outcome of the implementation are given in 



5 

Chapter v. Finally, summary and future work for this thesis 

are disscussed in Chapter VI. 



CHAPTER II 

LITERATURE REVIEW 

The development process of "Algorithm Visualization" 

requires concepts from several areas. The areas closely 

related to this thesis are (1) algorithm design, (2) 

visualization design, and (3) user interface. In the 

following sections, works related to this thesis are 

reviewed. 

Visualization Design 

Gershon [7] stated that "if one could use the 

flexibility of display devices to feed information through 

preattentive visual processes, one would enable the user to 

perceive the desired information efficiently and fast. 

Methods are based on the sensitivity of the human visual 

system to motion and the ease at which electronic display 

devices could change their display." Thus, in the 

visualization design, we must first take the human visual 

perception areas into consideration. 

In order to develop the part of visualization with 

formal models and precise semantics, we divide it into two 

components. They are static displays and dynamic displays: 

Static displays show the image of data and their 

relationship, and overall structures, etc. 

6 



Dynamic displays show the behaviors of algorithms and 

indicate the sequences inside the codes of the algorithms. 

Tree-based graphs are static structures. The 

difficulties of showing the tree-based graphs lie in the 

7 

fact that the growing of tree can easily exceed the boundary 

of window. Therefore, in the graph layout algorithms, We 

focus upon the aspects Eades [5] has listed: 

.Maximize display symmetry 
.Avoid edge crossings 
.Avoid bends in edges 
.Keep edge lengths uniform 
.Distribute vertices uniformly 

There are three visualization systems listed below, 

which are described in the literature. They are being 

categorized as static because they show more of the 

relationships and orders among data items than of the 

dynamic behavior of programs. 

The first system is a program of addressing Linked-List 

Visualization for Debugging. This system is called VIPS 

(Visualization and Interactive Programming Support debugging 

system). VIPS uses UNIX's symbolic debugger, DBX, to execute 

the program to be debugged. What makes this debugging tool 

different is that it displays linked list as syntax trees. 

In improving VIPS's ability to visualize linked lists, 

Shimomura [18] and !soda [18] considered four requirements 

that VIPS should meet: 1. Easy shape recognition. 2. Easy 

change detection. 3. Selective display. 4. Rapid drawing. 

The second system is described as "Using visualization 

tools to understand concurrency" by Zernik [22] et al. They 



8 

point out that "programming large-scale parallel machines is 

daunting because parallelism makes program execution much 

more complex and difficult to understand." In their 

visualization tool, it uses graphs to provide a logical view 

of execution. Views are organized according to computational 

threads, messages, synchronization events, and so on. This 

tool can be used to overcome the concurrency bugs, giving 

the user a clear picture of concurrency. 

The third is 11 An implementation of data structures 

display system" by Lee [11]. The primary functions of this 

system are: 

1. graphically display a variety of data structures, 

2. allows the users to execute and study the immediate 

effects of each step of an operation on a particular 

data structure. 

The available implementations of data structures in 

this system include B-Tree, binary search tree, and linked­

list. Since Lee's data structures display system is shown on 

VT100-type terminals. Its display types are more rigid 

compared with our TBDSV system that has graphics displays on 

X terminal using the X Windows environment. 

In the following, we will introduce a more vivid type 

of display than the static displays mentioned above. It is 

dynamic displays. Dynamic displays show the graphic objects 

that change location, size, and figure. This is the area of 

algorithm animation. 

There are a few algorithm animation systems available 



9 

for education now. The well-known ones are Balsa and Balsa­

II. They were used as teaching aids in learning data 

structures at Brown University. According to Brown [2], "the 

user can watch execution of an algorithm through various 

views. Each view is displayed in a window on the screen." 

Although those systems contain an extensive library of 

sophisticated animations and have been used for more than 

seven years, they are not widely used. Their drawbacks are 

that it requires internal Macintosh coding to create new 

animation view, and programs being animated must be executed 

in Macintosh. So the portability is not good enough. 

Stasko [20] has designed and implemented a framework 

and system called "Tango" which facilitates algorithm 

animation. It is designed to support three programming 

activities, namely understanding programs, evaluating 

existing programs, and developing new programs. In his 

system, Stasko [20] has simplified animation design by 

developing an algorithm animation framework that is based on 

four abstract data types: locations, images, paths, and 

transitions. He has set up a good method for algorithm 

animation. In his system, to produce an animation, the user 

must 

. annotate the program with the necessary algorithm 

operation. 

. design animation scenes to implement the animation 

actions . 

. create a control file specifying the mapping from the 



algorithm operations to the animation scenes. 

Thus the main application of this system is on 

debugging the user's algorithms, and designing the 

algorithms. 

User Interface 

The user interface of a system is often the criterion 

by which that a system is judged. If the user interface is 

too difficult to use or understand, it may cause this 

software system to be discarded, no matter how good its 

10 

functionalities are. Especially for a software to be an aid 

for the learners, we cannot overemphasize the importance of 

user interface. 

Sommerville [19] formulated many principles that are 

important for the design of user interface. They are: 

(1) The interface should use terms and concepts which are 
familiar to the anticipated class of users. 

(2) The interface should be appropriately consistent. 
(3) The user should not be surprised by the system. 
(4) The interface should include some mechanism which allows 

users to recover from their errors. 
(5) The interface should incorporate some form of user 

guidance. 

Our system is developed in the X Window environment, 

that is good for designing a graphical user interface. In 

developing the graphical user interface, we follow the 

guidelines listed above. 

Marcus et al.[14] introduces an implementation-oriented 

model of graphical user interface as shown in the figure 

below. This model assumes that interactive application 

programs are running under the control of a window 



algorithm operations to the animation scenes. 

Thus the main application of this system is on 

debugging the user's algorithms, and designing the 

algorithms. 

User Interface 

The user interface of a system is often the criterion 

by which that a system is judged. If the user interface is 

too difficult to use or understand, it may cause this 

software system to be discarded, no matter how good its 

10 

functionalities are. Especially for a software to be an aid 

for the learners, we cannot overemphasize the importance of 

user interface. 

Sommerville [19] formulated many principles that are 

important for the design of user interface. They are: 

(1) The interface should use terms and concepts which are 
familiar to the anticipated class of users. 

(2) The interface should be appropriately consistent. 
(3) The user should not be surprised by the system. 
(4) The interface should include some mechanism which allows 

users to recover from their errors. 
(5) The interface should incorporate some form of user 

guidance. 

Our system is developed in the X Window environment, 

that is good for designing a graphical user interface. In 

developing the graphical user interface, we follow the 

guidelines listed above. 

Marcus et al.[14] introduces an implementation-oriented 

model of graphical user interface as shown in the figure 

below. This model assumes that interactive application 

programs are running under the control of a window 



11 

management system that manages the use of the screen and the 

input devices. 

Application (Algorithm Visualiza-

I 
tion) 

UIMS TBDSV system 

Interaction technique toolkit) 

Window management system 
and graphics package 

Operating system (UNIX) 

Hardware (Sequent) 

Figure 1. The Architecture of the TBOSV System Running 
on Its Environment 

Retting [17] points out that the process of building an 

interface involves two steps: 

1) Write the User Interface Standards Manual. 
2) Design the Interface. 

In writing the user interface standards manual, one 

should have the symbols concepts listed below. Retting [17] 

states that four aspects of the symbols that make up the 

interface: 

.Lexical Structure-What symbols are there? 
.Syntactic Structure-How do they relate to each other? 
.Semantics-How do they relate to the things they represent? 
.Pragmatics-How do they relate to the users? 

From the overall visualization systems reviewed, we can 

find that all the systems take some steps and require 

roughly the same overhead for visualizing algorithms. 

In Lee's [11] data structures display system, the 



12 

user's algorithm texts must be translated before the system 

can work on this algorithm. It requires the user to be 

familiar with the Algorithm Specification Language. 

In Brown's [2] Balsa system, animating an algorithm 

involves three steps. The first step is to split the program 

into three components: the algorithm itself, various input 

generators, and various views that present the animated 

pictures of the algorithm in action. The second step is to 

implement each component. The third step is to identify for 

Balsa those views and input generators, and to give textual 

name for each algorithm, input generator, and view. In 

Stasko's [20] Tango system, it also takes three steps to 

produce an animation. 

With a view to decreasing the overhead of producing the 

visualization for algorithm, We have developed a ready-to­

use data structures visualization system in this study. 

However this feature will be at the cost of visualizing 

user's input algorithms. This system stresses mainly on an 

education aid but not a debugging tool for users. 

The similarity between our system and the above systems 

mentioned is that they all provide the instructional 

function that helps user understand programs. The 

differences between our system and others are that (1) this 

system needs no preliminary work before the user visualizing 

the algorithms, (2) the visualization part of this system 

is developed using some X Window primitives and without the 

aid of any animation package and is portable, and (3) this 



system cannot accept user's input algorithms for 

visualization. 

13 

In this visual aid, we have chosen tree-based data 

structures - AVL tree, Splay tree, Red-Black tree and B-tree 

for visualization, because those are parts of structures 

lectured on data structure courses. Besides, this kind of 

visual aid can save time and efforts for the learning of 

tree-based data structures and their properties. 



CHAPTER III 

ABSTRACT SYSTEM MODEL 

In this chapter, we describe an abstract model of the 

visualization system. In this abstract system model, we 

first characterize this visualization system as an 

interactive service model, then we want to establish the 

contextual diagrams of this system's functionalities. 

Interactive Service Model 

In this interactive service model, the main goal is to 

provide an interactive environment that the user can get the 

tutorial guidance step by step. To achieve this goal, we 

call the users who utilize the "Tree-based Data structure 

Visualization system" end-users. The end-users watch and 

interact with this system on the X terminal. In the end­

user's model, the users of this system environment are 

always in a "setup-and-run" loop: 

Setup: The end-user chooses from a variety of tree 

algorithms that he or she wants to learn in the 

display. The end-user also decides which operation 

to be performed in this algorithm, and what the 

input values to each of those operations should 

be. 

14 



15 

Run: The end-user runs the algorithm step by step in an 

interactive environment. The end-user can watch 

the whole process of the algorithm running in the 

view windows on the screen. While the algorithm is 

running, the end-user can decide to examine any 

operation on this algorithm, such as insertion, 

deletion, or tracing back, and event replaying. 

The following figures, figure 2 and figure 3 specify 

abstract external behaviors of the 11 Data Structure 

Visualization System". 

It deals with the general dialog patterns between the 

system and the user. 

Se ec AVL ree I I I Call AVL tree. 
1 t t 

Select B tree 
1 I I Call B tree. 

Select 
Red-Black tree 

I tree ·I I 
Call Red-Black 

What tree 
do you t--- Select Splay tree I I want? 1 Call Splay tree. 

Help I I 1 
Explain this system 

Quit 
I Leave this systern.j 
I 

Figure 2. Main Functions of TBDSV System 

Figure 2 shows the main menu of this system and the 

tree data structures provided for the users. 



16 

Insert Data 

Delete Data 

AVL-Tree Search Data 
Visualization 

Undo Data 
B-Tree 

Main Visualization 
Menu Demonstration 

Red-Black tree 
Visualization Random input 

Splay-Tree Clear window & 
Visualization restart 

Quit 

Red-Black Tree 

Help 

Figure 3. Trees and Their Operations 

Figure 3 shows that we can choose four trees' 

visualization from main menu. There are many operations 

available for the tree's visualization. The first three 

functions, insert data, delete data, and search data, 

account for the basic operations in the tree's definition, 

and others are erlated to the animation. Undo data is the 

function that makes the users see the previous versions of 

tree before the current operation is issued. Demonstration 

is the function that shows the tree's operations and their 

implementations automatically without the user's input. All 



17 

of the operations on the tree can be restarted by the clear 

function. The help function works as a documentation for the 

above functions, and the quit function will bring the user 

back to the main menu. The function named "Red-Black tree" 

is the one that displays a textual description about 

this tree. 

Contextual Diagrams of Functionality 

The contextual diagrams describe the system's interface 

to the outside world and functionality inside this system. 

In the following diagrams, figure 4 is about the system 

inputs, the system outputs, and figure 5 is about the types 

of display on the screen, and the contents included in each 

type. 

Keyboard 
or Mouse 

Mouse 

Menu of 
Command 

Input Generator 

Command 

Data 

Figure 4. Input Output Diagram of TBDSV System 

Dis­
play 

In figure 4, keyboard and mouse are the input devices 

we use. We can select the command we want from the menu by 

these input devices. If this command needs input data, we 

can use mouse to drive the input generator which produces 

the data for this command. Menu and input generator are 

collections of buttons which are made visible and to be 

selected by the users. 



Tree's 

Display 

Static ..___. 
.-- Graph & Text~ 

Animation 
Scene 

Pseudo 
Code for 

.-------------~~Tree 

~ Description 
of tree 

Figures 

r- Templates 
of Tree 

Annotating ..____... 
Window !I 

L Mapping 
Algorithm 

...---- Insertion 

t-- Deletion 

Trees' ~-----~ Search 
Operations !I 

~------------~~~~ L_ Undo 

f-- Demo 

18 

'------ Clear Tre~ 

Figure 5. Display Type and Its Contents 

In figure 5, we show the functionality of all kinds of 

displays that contribute to the tree's visualization. An 

animation scene is a window created for the dynamic display 

of tree's operations (like insertion, deletion, and search). 

Besides, animation scenes are annotating windows that 

contain graphics of tree's templates and their mapping 

algorithm. The description of the tree is a brief textual 



19 

introduction and graphics templates of this tree. Annotating 

window will emerge to illustrate the behaviors shown on the 

animation scene. 



CHAPTER IV 

SOFTWARE DESIGN 

Development Process 

The algorithm visualization system is designed by 

following a process model. This process model involves the 

activities shown below: 

(1) Data type declaration The data type and storage 

structure for every tree are declared. 

(2) Algorithm decomposition It is necessary to decompose 

an algorithm into a set of functions that best 

represents the tree's distinct behaviors. 

(3) Visualization design We first specify four kinds of 

abstract data types in visualization, and use those 

data types to achieve trees' visualization. 

(4) Component design This part designs the services 

provided by this system. As figure 3 has shown, those 

are services for every tree. Each service is viewed as 

a component. 

(5) User interface design The user interface will rely on 

windows, pull-down menu and pointing devices. This 

design is characterized by support for graphical as 

20 



21 

well as for textual information display. 

The above activities are correlated to each other. In 

figure 6, we illustrate their sequential relationship. This 

approach allows the following: as errors or imperfections 

are detected, the information will be fed back to allow 

earlier design stages to be refined. 

Data Types 
Declaration 

of Trees 

I 
I 

Ill Programs 
of Trees 

I 

IIIII 

Algorithms 
of Trees 

I 

I 
Visualized 
Program 

I 

II II 

Visualization 
Design 

I 

I 
Objects of 
Visualized 
Trees 

I 

Component 
Design 

I 

Interface 
Design 

I 

111111 1111111111111 11111111111111 TBDSV system II 

Figure 6. system Formulation 

In Figure 6 the box with double lines represents the 

major products in this formulation. And the bold lines 

indicate the major products which are not finished in 

linear order but rather in the order with feedback. 



22 

Data Type Declaration 

Data structures and algorithms constitute a program. In 

this first stage of software design, we describe the storage 

structures used to accommodate the various possible node 

formats for each tree. 

c language type declarations are used to specify the 

storage structures. Not only is the algorithm coding based 

on them, but also the well-defined data structures have the 

fundamental information for showing the images of the trees. 

Figure 7 shows the declaration and type of data 

structure for every node in the AVL tree. The balance factor 

is computed using the formula: 

Balance factor = left_height - right_height. 

typedef struct tree_node { /* Build a binary tree */ 
struct tree node *left; /* node for AVL. */ 

char data[20]; /* the balance factor is */ 
int left_height; /* left_height - right_height */ 
int right_height; 

struct tree_node *right; 
}NODE; 

1*--------------------~-----------------------------*l 
NODE *root; 

Balance factor 

Data 

left right 

Figure 7. Storage Structure for a Node 
of AVL Tree and Its Declaration 



Figure 8 shows the declaration and type of data 

structure for every node in the Red-Black tree. Color is 

determined by the expression : Color = r : b ? potential<O 

potential >0. 

typedef struct tree_node { /* Build a binary tree */ 
struct tree_node *left; /* node for Red-Black tree. */ 

char data[20]; /*the potential is the value*/ 
int potential; /* to determine the color. */ 
int color; 

struct tree_node *right; 
}NODE; 

!*----------------------------------------------------*/ 
NODE *root; 

Color 

Data 

left right 

Figure 8. Storage Structure for a Node 
of Red-Black Tree and Its Declaration 

23 



24 

Figure 9 shows the declaration and type of data 

structure for every node in the B-tree. 

~· Keycount T Key array CHILD array 

PageO 2 3 4 5 

PageS 

;==r KeyCount T Key array CHILD array 

NIL NIL NIL 

typedef BTPAGE { /* ld a B-tree node */ 
short KEYCOUNT; /* number of key in page */ 
char KEY[MAXKEYS]; /*the actual keys */ 
short CHILD[MAXKEYS+1]; /*pointer to relative record*/ 
} PAGE; /* numbers of descendants */ 

!*----------------------------------------------------*! 

Figure 9. Storage Structure for a Node 
of B-Tree and Its Declaration 

Figure 10 shows the declaration and type of data 

structure for every node in the splay tree. 

Left data parent right 

I I I I I 

typedef struct tree_node { /* Build a binary tree node */ 
struct tree_node *left; /* for splay tree. */ 

char data[20]; 
struct tree_node *parent; 
struct tree_node *right; 
}NODE; 

!*--------------------------------------------------*! 
NODE *root; 

Figure 10. Storage Structure for a Node 
of Splay Tree and Its Declaration 



25 

Algorithm Decomposition 

Algorithm decomposition consists of the following steps: 

Step 1: Write a c program according to the algorithm that 

is planned to be visualized. The program of the 

algorithm must be modulized according to a 

functional viewpoint. For example, for the AVL 

tree to be modulized, it will include "search", 

"insertion", and "deletion" modules. 

Step 2: Test this program thoroughly. This process 

includes "Validation & Verification." 

When the data type for those trees is determined, the 

next step is to code the algorithms for every operation of 

trees. The coding of the algorithms for those trees must be 

precise in accordance with the definitions of those trees. 

In addition to this point, the programs of those trees are 

built out of modules, which are composed of procedures and 

functions. 

In every kind of tree-based data structure, its 

operations consists of many basic operations, and 

those operations constitute the behavior of trees. 

Those basic operations include the functions of 

insertion, deletion, and search for the trees. But for the 

reason that the tree behaviors are to be visualized, the 

above operations must be sub-divided into a set of functions 

according to the tree's attributes. In table I, we list the 

functions that are needed for the completion of every tree's 

insertion. Those functions are the 



26 

decompositions of insertion, and they are invoked in 

sequence. 

TABLE I 

DECOMPOSITION OF INSERTION IN TREES 

Tree type Operation of Insertion 
(Including restructing) 

AVL Tree 1. Insert_key(root); 
2. Count_balance _factor(root); 
3. Rotation(root); 

Red-Black 1. Insert_key(root); 
Tree 2. Count_potential(root); 

3. Rotation(root); 
4. Recolor(root); 

B-Tree 1. Insert_key(root); 
2. Splitting(root); 
3. Promotion(root); 

Splay 1. Insert_key(root); 
Tree 2. Zig_left(root); 

3. Zag_right(root); 
4. Zig_and_Zag(root); 

After we have decomposed the tree operations into the 

functions so that they have their own peculiar behaviors, 

the next step is to specify each function using pre- and 

post- conditions. A pre-condition is a specification of the 

value of the function's inputs. And a post-condition is a 

specification of the value of the function's output. The 

difference between them defines how this function transforms 

its inputs to its outputs. Since every function in a program 

is closely related, one function's post-condition is another 

function's pre-condition. 

This analysis of every function's pre- and post-

condition will be very helpful for the next stage in the 



designing of tree's visualization. In the table 2, we 

specify all functions with pre- and post-conditions in the 

insertion module of AVL tree. 

TABLE II 

FUNCTIONS SPECIFIED USING PRE- AND POST-CONDITION 

Functions in the 
Insertion Module. 

1. Insert_Key(key). 

Pre-Condition. 

Root = NULL. 

Post-Condition. 

Create Root. 

27 

Root !=NULL. 
(Balanced Tree) 

Binary Tree. 
(may be unbalanced) 

2. Count_Balance(key) 

3. Rotation(key). 

Binary Tree. Binary Tree with 
New Balance 
Factor in Each 
Node. 

(may be unbalanced) 

Unbalanced AVL-Tree. 
Binary Tree. 

From the table II, we can visualize the first function 

abstractly that it may create a root node or become an 

unbalanced·binary tree. In the second function, we can show 

the new balance factors of the nodes in this unbalanced 

tree. In the function of rotation, the focus is on the 

processing of transforming an unbalanced tree to an AVL 

tree. 

Knowing the pre- and post- conditions of each function, 

we can thus give all functions their expected actions in the 

process of visualization. For the previous example of 

insertion in AVL tree, the algorithms of each function with 

its action is given in figure 11. One thing we need to point 



out is that the action and the actual code are all 

independent of each other. 

Insert_act(root,key) 
{ 

If (insert_key = any_node in this tree) 
{ 

} 

Create message window; 
Show error message; 
return root; 

If (root=NULL) 
{ 

} 

Create a node; 
Draw data string in it; 
root=new_node(insert_key); 

else if (root_key > Insert_key) 
{ 

} 

Blink the root key; 
root=root->left; 
Insert_act(root,key); 

else if (root_key < Insert_key) 
{ 

Blink the root key; 
root=root->right; 
Insert_act(root,key); 

Return root; 

Figure 11. Insertion of AVL Tree with Action 
(the underlined code specifies the added 

action to the normal code) 

Visualization Design 

Of all the design activities in this system, 

visualization design is the most important part that 

28 

determines if this visualization system is a success or not 

in terms of usage. 

We consider the following requirements that the 

visualization design should meet: 



29 

(1) Easy shape recognition: It must be easy for viewers to 

associate the shape or color with the data type it 

represents. 

(2) Easy change detection: The viewers must easily detect 

what operation has been done in each step and the 

transformation effected by this operation. 

(3) Rapid drawing: When a figure or text is to be drawn, it 

must be drawn rapidly to meet the fast response time. 

(4) Selective display: Each time the screen only shows the 

necessary figure and information for the current 

operation. 

Developing a good visualization will involve the 

aesthetic knowledge and that is beyond the scope of this 

study. In crder to simplify animation design and provide a 

model that supports smooth, continuous image movement, 

Stasko[l2] have developed an algorithm animation component 

that helps design animation actions to simulate the 

algorithm's operations. 

In this component's formal model, it contains four 

abstract data types. They are the graphical images, the 

locations of images and other objects, the images' 

transitions, and the paths that modify those transitions. 

The following gives the definitions of those four abstract 

data types. 

Images: An image is a graphical object that undergoes 

changes in location, size, color, etc. throughout the frames 

of an animation. Primary images include lines, rectangles, 



30 

circles, and texts. Composite images are collections of 

primary images with geometric relationships to one another, 

as defined by a list of primary images in a local coordinate 

system. 

Locations: A location is a position identified by an 

(x,y) coordinate pair in the animation coordinate system. 

The ability to save and reference particular locations is an 

important tool for animation design. Locations often denote 

a particular variable in a program, while the image at that 

locations denotes the variable's value. 

Paths: A path designates the magnitude of change in 

image attributes from one frame to the next. Images can only 

be modified through paths; for example, images are moved or 

colored along paths, and their visibility is changed along 

the paths. A path is formally defined as a finite ordered 

sequence of real-valued (x,y) coordinate pairs, where each 

pair designates a relative offset from the previous 

position. The length of a path p, denoted by IPI, is the 

number of coordinate pairs it includes. 

Transitions: A transition uses a path parameter to 

modify an image's position or appearance, and to give an 

animation action. Like images, transitions have an 

extensible definition that does not restrict the framework 

to a predefined set of types. Simple transitions are defined 

by a transition type, the image being altered, and a path­

argument modifier. Typical transition types include move, 

resize, color, fill, raise, lower, delay, and alter 



31 

visibility. 

With those four abstract data types in mind, we can 

create animations of algorithms by assembling collections of 

image, location, path, transition, and association 

operations that accomplish desired animation actions. In 

table III, we list the four abstract data types used in this 

work to produce the animation scenes. 

TABLE III 

ABSTRACT DATA TYPES IN TREE ALGORITHMS VISUALIZATION 

Images Locations Paths Transitions I 
.Lines • (X y) .Distance .State cues I 

l .Rectangles Coordinate Between Image .Sound 
.Circles Pairs (rectangles, .Highlighting 
.Color circles, etc.) .Continuous 
.Texts 

I 
.Discrete 

1\ I 

In the trees' images, the rectangles and circles 

represent the nodes in the trees, and the directions of 

lines coming out of the nodes indicate the relationship 

between nodes. Besides, color is used when there are two 

kinds of nodes, red and black in the red-black tree. The 

text written or attached on the previous images is the 

information for the images. The following figure illustrates 

trees' images. 



Oat~ 
(a) (b) 

Figure 12. Tree's Hierarchical Structures (a) A Binary 
Tree Structure. (b) A B-tree Structure of 
Order 4. 

32 

,I 

I 
I 

l 
II 
1) 

II 

IJ 

Before the images can be shown, we must give them their 

positions in the display window. In the windowing system, 

the origin of this display window is located on the upper-

left corner of the window. 

The paths are set up for the use of transitions. Once 

the locations are determined, the paths are set. For some 

path operations, examples are Insert_node(key) - receive 

locations from the root node down to the leaf node, and 

Delete_node(key) - receive two locations and create a path 

between them. In an animation, the location of node to be 

deleted is the motion's ending point and the location of 

deleted node's successor is the motion's starting point. 

Different transition types use path arguments in 

different ways. In the above table, we have listed four 

kinds of transitions in the tree algorithms' animation. 

The first method of transitions is state cues. State 

cues are to show changes in the state of an algorithm's 

data structures by changing the images of their graphical 



33 

representations on the screen. For example, in the function 

search(key), we make the tree node blinking when it is 

compared with the search key. The viewers can observe when 

and which of the nodes are being compared. That produces the 

effect of state cues. 

The second method of transition is by sound. In the 

process of a tree's animation, sound can add rhythm to the 

motions of tree's operations. And different sounds remind 

the users what kind of situation happens. 

The third technique of transition is by highlighting. 

With highlighting, we can attract the viewers' attentions to 

the images that have been highlighted. For example, in B 

tree's visualization, we can highlight the node that is 

going to split after inserting one more key into this node. 

Continuous Transition 

Continuous transition means the displays of the 

algorithm's motions which are shown in a smooth way as 

viewed by the human eyes. London[20] states the importance 

of smooth updates (continuous transitions): 

Often it is even better to show smooth transitions 
between states; if a structure changes and the new state 
simply flashes on the screen, the viewer is typically startled 
and cannot see immediately without some mental effort how the 
new image evolved from the previous one. 

However, achieving the smooth transitions of the 

algorithm in action is not an easy job. Brown[2] points out 

that "Unless a good animation package is provided, 

incremental transitions are often tedious and difficult to 

program." Without the animation package, we take advantage 



34 

of Bresenham's line and circle algorithms to apply them in 

the continuous transitions. 

In the trees' algorithm animation, the motions include 

the node being created after insertion, the nodes' rotations 

for balancing the height, and a series of nodes' movements 

after deletion of nodes. Here we use Bresenham's line-

drawing algorithm to create the motions for which the images 

move by the straight lines. However, Bresenham's circle-

drawing algorithm is used to create the motion of rotation. 

But before the Bresenham's algorithms can be used in 

the animation, some modifications are made in the 

Bresenham's algorithm. Table IV lists the differences 

between the Bresenham's algorithm and the modified algorithm 

we need. And we summarize the animation algorithm in figure 

13. 

1 

2 

3 

TABLE IV 

COMPARISON OF BRESENHAM'S ALGORITHM AND 
ANIMATION ALGORITHM 

Bresenham's Algorithm Animation Algorithm 

Set the Pixel Value Plot the Image on the 
on the Screen. Screen. 

Input a Line's Input Multi-Lines(Paths) 
Endpoints. Endpoints(Locations) 

Purpose: Draw Line Purpose: Produce 
Animation 

The Bresenharn's circle drawing algorithm can also be 

adapted to create the circular paths in continuous 

transition. 



35 

Discrete Transition 

In contrast to continuous transition which has a smooth 

motion, the discrete transition is achieved by an abrupt 

erase-and-repaint method. This way can be used for the 

efficient displays for the viewers. For example, on the 

1. Input paths. If there are paths a, b, c, d, then 
store two endpoints of each path:(axl,ayl), (ax2,ay2), 
(bxl,byl), (bx2 1 by2), (cxl,cyl), (cx2,cy2), (dxl,dyl), 
(dx2,dy2). 

2. The starting point of every motion is the first endpo­
int of its path. In path a, the starting point is 
(axl,ayl). 

3. Compute the distances in each path's both directions. 
In path a, the distances are (delta_x,delta_y). 
delta_x=jax2-axll, delta_y=jay2-ayll. 

4. Compute the direction of the increment in each path; 
an increment of 0 means either a vertical or 
horizontal line. 

5. Determine which distance is greater in each path. 
If delta_x>delta_y, then distance is delta_x, else 
distance is delta_y. 

6. Select the longest distance from all the path. 
For (i=O;i<=distance+l;;i++) 

{ 
Move_Image_a(axl,ayl); 
Move_Image_b(bxl,byl); 
Move_Image_c(cxl,cyl); 
Move_Image_d(dxl,dyl); 
Determine axl+l or ayl+l and bxl+l or byl+l 

and cxl+l or cyl+l and dxl+l or dyl+l 

Figure 13. Algorithm for Animation 



36 

left-bottom corner of the animation scene show an 

instructional window. In this instructional window, the 

animation is achieved by discrete transition. With discrete 

transition in the display, the viewer can quickly get the 

picture frame that annotates the algorithm's each motion. 

Component Design 

Basic Operations 

Insertion, deletion, and search are the basic 

operations for the tree algorithms. Each component must 

invoke the input generator for its input data, then call the 

insert, delete, or search function. 

Input Generators 

The input generator provides data for the algorithm to 

manipulate the operations of insertion, deletion and search. 

In order for the users to control what data is provided, the 

input generator is designed in a graphical user interface 

mode in order for the user to use easily, and feel in 

control of the process of algorithm visualization. 

The input generator is the main driver that makes the 

trees work. The selection of input data has a great impact 

on the implementation of tree and messages conveyed from the 

tree's visualization. Brown[l9] found that "small amounts of 

data work best for introducing a new algorithm, whereas 

large amounts of data help develop an intuitive 

understanding of an algorithm's behavior." 

In order for this visualization system to achieve those 

goals, We propose three kinds of input generators for the 



37 

trees' operations. The first one is the number input 

generator that shows a specific range of numbers available 

for the user to choose as input data. The second one is text 

input generator which provides varieties of alphabet and 

strings for the user to choose from as input data. 

To use the above two input generators, the user first 

uses mouse device to click on the data he wants. Then the 

data he chooses and the pre-set operation (like insertion, 

deletion, search) are combined to make the tree operate 

accordingly. 

The third, and the last kind of input generator uses 

the UNIX system's built-in random number generator, rand(). 

This function, rand(), uses a multiplicative congruential 

random-number generator with period 2A32 that returns 

successive pseudorandom numbers in the range form 0 to 

(2Al5)-l. Then we can use the equation, rand() mod RANGE, to 

get the random number in the range we want. 

Demonstration Function 

This function implements a tree's algorithm 

automatically and produces a series of animations without 

accepting the user's input data. We use this function to 

demonstrate every kind of operations and templates to the 

users who have no knowledge of this tree. To familiarize the 

user with the tree, we can freeze the template of each 

operation for a few minutes in this animation scene. 

Undo Function 

The undo function makes the user ignore the current 



38 

operation on this tree and recover from the past version of 

tree. This function is useful when the user makes a wrong 

choice or the user wants to view the motion again. This 

function only permits the user to go back to the previous 

version of tree one step. 

Help and Instruction Functions 

The help function gives the user a quick reference to 

the usage or purpose of every function in this system. The 

instruction function is designed to give a user an outline 

describing the tree. This outline may include the definition 

and attribute, and the application of this tree. 

Furthermore, the tree algorithms as pseudo codes are also 

given by this instruction function. The tree's textual 

algorithm associated with the algorithm animation will help 

the user to comprehend all aspects in this tree. In this 

instruction function, different fonts and some figures are 

used to help the user get the main points and to make the 

text easier to read. 

User Interface Design 

The user interface for this TBDSV system is achieved by 

graphical user interface that is based on X Windows. Two 

features are provided in the user interface for this TBDSV 

system. They are direct manipulation and menu system. 

are: 
The advantages of direct manipulation and menu system 

. Users who are in command of the system need not 

fear it . 

. Users can get immediate feedback and the time for 



39 

users to learn to implement this system is short . 

. User's input errors are minimized with the 

feature of menu system. And typing effort is 

minimized by using the input device of mouse. 

In the next chapter, we provided a description of this 

TBDSV system as seen by a user. 



System Overview 

We dedicate the first part of this chapter to the 

implementation details of the TBDSV system. Then we give 

some snapshots from the TBDSV system running in X terminal. 

Figure 14 shows the TBDSV system and the environment 

upon which the TBDSV system is built. This overall 

architecture depicts the system's interface to the users and 

the resources that are used by this system. The input 

devices for the user are mouse and keyboard. The resources 

used by this TBDSV system are Xlib, Xt Intrinsics, and C 

compiler. 

40 



41 

Display 

Function Buttons Graphics 
\~or k stat ion 

System's 
Source 
Programs 

II 

Input 

Data 

Sets 

X lib 

II 

Animation 
Scenes 

Annotator 
Window 

Algorithm 
Window 

Xt 
Intrinsics 

Figure 14. Overview of The TBDSV System 

Main Menu 

Figure 15 shows the main menu form which user can 

choose the tree algorithms he wants to examine. Whenever the 

tree for visualization is chosen, the system will go into 

that tree's main loop. A typical interactive Xlib program 

consists of an endless loop. This endless loop is usually 

called the main event loop (but it is not really endless, 

because one of the actions would no doubt be 'quit'). 

The structure of such an interactive program might be 

summarized as: 



/* structure of a main event loop */ 
do FOREVER 

event read_next_event(); 
switch (type of event) 

CASE event 1 : action 1; 
CASE event 2 : action 2; 
CASE ............... . 

CASE default : QUIT 
end 

In the tree visualization's main loop , it contains the 

main processing activities listed below: 

42 

Expose event: This event is always being handled. It creates 

the environment for activity. It is the scene 

before the user implements the tree's 

operations. In this event menu windows are 

displayed, and some lines and rectangles for 

the frame of this display are drawn. 

Pointer event: When the mouse button is pressed, the pointer 

event is created. Each time the function 

window is clicked, it will call this 

function's component. If this function needs 

input data, the next pointer event is 

expected. When the input data is clicked, the 

animation scene will show the animation 

pictures complemented with statistics window 

and annotating window. 

Keyboard input event: This event is created when the 

keyboard is pressed. Any menu items and input 

data can be selected by keyboard. 



43 

Keyboard mapping event: This event is created to protect 

the program from unexpected keyboard 

configuration modification. 

Figure 16 shows that when the help button is pressed 

during tree's implementation, there will be a brief 

explanation of every function's usage and purpose. There are 

altogether 11 functions for all of the trees' implementation 

in this TBDSV system, They include the basic functions like 

insertion, deletion, search and some additional functions 

like undo, demo, instructional, etc. When the basic 

functions are chosen, the input data set must be also chosen 

to make those basic functions operate. 

In the rest of this chapter, we will give a series of 

diagrams as examples of AVL tree, B-tree, Red-Black tree, 

and splay tree implementations. 

AVL Tree 

Figure 17 shows the introductory description of AVL 

tree. This description includes the textual definition of 

AVL tree, and some figures that account for all the AVL 

tree rotations, and furthermore the user can also 

see the algorithms of elementary implementation for the AVL 

tree by pressing the page down button as shown in Figure 18. 

Figure 19 shows the AVL tree in motion for rotation when 

data 1, 2, and 3 are added to the AVL tree and result in 

unbalance. Figure 20 and figure 21 show that after 

balancing, the user can see the annotating window that 



depicts how the rotation is achieved and its mapping 

algorithm. 

B-Tree 

44 

Figure 22 shows the definition and properties of B­

Tree. Figure 23 and figure 24 show the pseudo codes of B­

Tree's implementations. Figure 25 shows the scene for B­

Tree's visualization. The nodes with highlighting mean those 

nodes have data in them. This tree is a fixed three level 

and order 5 B-Tree. The annotating window shows the 

information of current operation that are the key inserted, 

the current B-Tree by in-order traversal, and previous B­

Tree by in-order traversal. 

Red-Black Tree 

Figure 26 shows the instructional function provided by 

the Red-Black tree. This function also includes Red-Black 

tree's property, templates of insertion, algorithms, etc. 

Figure 27 shows what a Red-Black tree looks like in the 

display. 

Splay Tree 

Figure 28 shows the instructional function provided by 

the splay tree. This function introduces the splay tree's 

purpose and the ways it is implemented, and the algorithms 

for the implementations. Figure 29 shows the splay tree 

after the insertion of data 1, 2, 3, 4, 5 , 6 and 7. Figure 

30 shows what the splay tree looks like after the user 

applies the splay function on the node with data 7. 



t-rj 
t-J· 
'-'l 
~ 
1'1 
ro 
~ 
U1 . 
3: 
Q) 
t-J· 
:::3 

3: 
ro 
:::3 
~ 

(( 

Animation of Trees 
C~S~7Aai8R~ 
~:K.M.~ 

By:~H.C. 
~~lJJl 

This is a visual aid 
for learning tree-based 
Data Structures. 
Choose one tree then 
Click OK to continue. 



'ADD I BY I I CLEAR IRAHDOIII louu II A VL Treej [3 

Main Functions 
Use Mouse to Cllck 

Purpoaea 

lano I Insert nt.Diber key~ choose nl.Diber. 

I I KEY 

(oELftE) 
I SEARCH I 
!mmo I 
jo~:~m l 
ICLUR I 

Insert text key~ choose key. 

Delete DOde fro• AVL tree~ w1 th key. 

&e.ilrcb DOde fro• AVL tree~ with key. 

Go btack. to tba previous tree w1 th one step. 

Cle.ar the displily of tree, ilnd i~l...uutlons. 

I RAIIDOlll Insert mmber ( 0-99) to AVL tree randoal y. 

jomT I Go ~ck. to .atn -nu. 

I AVL T. I Introduce tba fe.ature of AVL tree. 

{HELP f To le.ave this balp~ click close. 



'ADD I KEY I 

t-rj 
I-'· 
\.0 c:: 
t1 
CD 

~ 
'-J . 
> <: 
t-t 

1-3 
t1 
CD 
CD 

N 

lcr.Erm I IRANDOx I lomT I [ AVL Tree! 8 

***Metaphor of AVL Tree *** IPg Down I 
A VL (Adelson-Velsktl and Landis) tree Ia a binary eeard:t tree with a balance condition. 

The balance coodltloa 1.8 easy to maintain, and It enaare. that the cleptb c:4 the tree 111 O(log n). 
For every node In the tree, the helebt of the left and rleht subtree. can d.l:tfer by at moat L 
There are four ldnda of unbalanced status, the solutions are below: 

c ® 
-2 B 0. -1 A 

B 8 
ll_rotate lr_rotate 

=======> =======> 

+10 
A 

~ 
B 

rrJOtat.e 

~ 
ri.Jotat.e 

=======> =======> 

~ 
~ 



w 

I DELrrE I I SEARCH I I UHDO fcr.EAR IIWIDOH I !om lj AVL Tree I E:3 
*** Algorithm of A VL-Tree *** (Pg Down I 

FUDction Insertion( t , key) 1• t is AVL tr .. , key is insert kay •1 
( 

if (t is a.pty ) 
( 

Cr~te DeW node. 
Set uU. for node. 
Tree grows uller. 

alBe lf (kay < t->key) 

Inaert DOd• to t->laft. 
if (Tr .. gorws ullar) 

( 1• ~lance f~ctor is •1 
Check balance fiactor 

( 

1• laft~ight- right~ight •1 

case -1 : if the ~lance f~ctor of t->laft 
is iilso -1. Than do single left 
left roution. 

case 0 

case 1 

if tb. bil.lance factor of t->laft 
is 1. then do double left-right ro~tion. 
Tba tree didn' t grow ullar. 
Insert left sub-tr .. , so Mt 
billa.t~Ce f.ilctor to -1. The tr .. 
grows U.llar. 
Insert left sub-tree, so set 
the ~l,ance f~ctor to 0. 
Tba tree didn't grow ~llar. 



I ADD I BY I (nELftE I I SEARCH I I UNDO fn£1«> I CLEAR I IRANDOH I (om:T ljAVL Tree! ~ 
1 

li12I 0 

-m 

Type: Slntle-Left Rotatloo. 

@ /."-.._ 
'• ===> @ D 

'tJ 



N 
0 . 

U1 

I DEIZrE I 'SEARCH I I UHDO 

TJpe: Slnele-Rl&bt Rotadon. 
@(-ptr • (-ptr 

' / '-ptr1->e ===> @ ptr1->o 

0 

IRAHD011I iouu II A VL Tree I ~ 

... Aieorlthm ... 
wtd rT _rotatton<t«llE eeptr) 
{ 

} 

NJIE eptr1 
ptr1 = (eptr)->rt~trt: 
(llptr)->rtWlt = ptr1->left.: 
ptr1->left = (eptr): 
<eptr>->bal_factor = O: 
(eptr) = ptr1: 

U1 
0 



8 
11 
CD 
CD 

'ADD I KEY I 

Type: Double-Rlebt Rotation. 

@ 

cC. 



N 
N 

ttl 

8 
t1 
(1) 
(1) 

I ADD KEY' 

..... 

••• Metaphor. of B Tree ••• 
In 1972, R. Bayer& E. McCre:lght propoaed.asearch treetbatlanotblnary.Thlatreela 

lmo'Wil aa a B-tree. B-tree of order m has the followln£ properties: 

L Eveey node baa a maximumo of m descendent& 

2. Eveeynocleexcept the root and the leaves has at least [m/2] d.escendeota. 

3. The root ha8 at lea..t two descendlmta. 

4.. All of the lea '¥1M~ appear on the same level. 

5. A noolea:f node with k descend& coo tabla k - 1 keys. 

6.. A left node coo tabu at least [m/2] - 1 keys and no more than m - 1 keys 

B-treetl are bunt upward. from the leaf level, 80 creation ofnew 

nod.ell alWWJ1111tart8 at the leaf level. 

The power afB-treee Ilea In the facta that they are balanced (no 

overly loa• bnmcb.-); they are llb.allow (requlrlne few aeeka); they 

accomod.ate random cleletl0118 and in8ertlooa at a reladvely low C08t 

wblle remalnlne In balance; and th~ euanmtee at least 60'1, storasze utlllzadon.. 

2 ,......,......_-.., 

Node2 3 In H KIO 3 8 5 

Node3 2 IE G !NIL NIL NIL 

Part af Order-4 B Tree Contenta ofNODEfornode 2 & 3 
l1l 
N 



I ADD KEY 

••• Algor#thm of B-Tree ••• 
FUHCTIOII: ~reb ( RRH, KEY', FOUND , FOOND....,POB) 

if RRH =:. IIIL than 1• stopping cond.i tion for tba recursion •1 
return HOT FOUND 

else 

read~· RRN into PAGE 
look through PAGE for KEY', setting POS equal to tba 

po•ition where KEY occures or should occur• 
if KEY WilS found then 

FOtDID_RRN : = RRH 1• current RRH conuins tha key •1 
romm_pos : = ros 
return FOUND 

el- 1• follow CHILD reference to next level down •1 
return( &eilrch(PAGE. CBILD[POS], J(£Y, FOUHD_RRN, FOUHD_p()S)) 

eu:lif 
eu:lif 

eu:l FDIICTIOII 
FmiCTIOM: insert ( CORREHT _RRII, KEY PROim _ILCBILD, PROim_J.(JlY) 

IPg Down I 

U1 
w 



I ADD KEY 

••• Algo!#thm of B- Tree ••• 
rtJHCTIOII: insert ( CURREHTJUUI, KEY PROIK>_R_CHILD, PROJm_J(EY) 

if CURREHT..JlRH = NIL than /• pttst botto• of tree •1 
PR0 1m _JCEY : = 'KEY 
PROimJLCHILD : = IIIL 
return PROIIOTIOll 1• pro.ota original key and MIL •1 

el .. 
r.ad ~ge at CURRENT _,RRH into PAGE 
search for KEY in PAGE. 
let P08 :• the position wbare KEY occurs or sbould occur. 

if KEY foUDd t.ben 
iB8Ua error -·~e imlica tiDJ duplicate key 
return ERROR 

if RETIJRII_VALOE == W PROimTIOii or ERROR then 
retUED RET1JR)(_ VALUE 

el•if t.t..re is space in PAGE for P _B_J(EY then 

else 

in.ert P ...JJ...J.C'£'1 aDd P _IJJtRII (pro., ted fro• below) in PAGE 
return 110 PROimTIOH 

split ( P _B_J{EY, P _B_JUUI, PAGE, PROl«>J(EY, PROI!m_ILCHILD, IIIERPAGE) 
write PAGE to file at CDRREHT _,RRN 

write IIEWPAGE to file at rrn PROI«>_R._CHILD 
return PROIIOTIOIII /• pro.otiog PROimJ(EY aDd PROI!m....:R._CRILD •/ 

eudif 

eDd F'DHCTIOII 

fP9 Down l 



~ 
1-'· 
\.0 
c 
t1 
(1) 

1:-J 
U1 . 
tJ:J 

8 
t1 
(1) 
(1) 

~ 

I ADD KEY 

1 0 I 

2 

3 

' 5 

6 

7 U r 

8 v • 
9 w t 

A X u 

B y y 

c z w 

D • ][ 

3 la ln.8erted. now. 
(((13)5(78)B(CE))F((GJ)Q(UVW)Z(dfhj))) 

Previoua Tree: 
((1578)B(CE)F(GJ)Q(UVW)Z(dfbj)) 

I RANDOM' I CLEAR I I QUIT IB-TREEI §§! 

U1 
U1 



E\J 
0\ . 

\ann I KEY J !CLEAR I IRAIIDOK I !omT I §ED-BLACKTreeJ 1:§3 

••• Metaphor_ of Red-Black Tree ••• 
A red-black tree Is a binary tree In which each node lB colored reel or black 

In a way -tiafyln~ the followln~ CODBtralnta : 

(1) AU external nodes are black. 

(ti) (black constraint). All paths from the root to an external node 

contain the same number of black nodes. 

(ttl) (red constrain). The parent of any red node, if 1t exists, Is black. 

The caaea of Insertion. Symmetric casea are not mown: 

D QROOT • 0 

d ===> d 

.. 2 0 .. 2 

I 'o===> I \ 1 a' 'o ,a eo. 
0 d 'o 



JADD I Kft I DEIZrE I I SEARCH I I UNDO 

• Template. of Red-Black Tree • 



N 
CD . 

IADD I J(EY I I SPLAY I I DELErE I I mmo I CLEAR I IRAHDOIII loUIT II Splay Tree I §3 

+++ Metaphor.ofSPIAYTree ••• 
Splay tree are based on the fad that the O(n) worst-ease time per operation for binary 

aearch tree. ill not bad. as loo.e BB It oceura relatively infrequently. 
Any one acceea, e'Velllf It ta.kea O(n), la still likely to be extremely fast. 
The splll'flne lltrateJa la 11sted below: 

IE 

p ~ 
~ 

Z1e-Z12 
=======> 

z 

~ ~ 

Zae-Zie 

=======> 

LTI 
CD 



~ 
~ 
~ 
~ 
~ 
~ 
~ 

Figure 29. Splay Tree - 2 

59 



w 
0 . 

w 

I CLEAR I I RAIIDOK I lauiT II Splay Trw: I §3 

• Template. at Splay Tree • 

A.\ /Q D 
® ===> ® 

B \ I c o e 
C D A B 

Zae-Zae 



CHAPTER VI 

SUMMARY AND FUTURE WORK 

Due to the advance of technology in computer graphics 

and the advent of windowing techniques, visualization is 

applied immensely in every area of science and engineering. 

In view of the fact that teaching and learning of data 

structures and algorithms in the classroom is a process that 

takes much time and is not effective sometimes, many systems 

for data structures and algorithms visualization have been 

invented. 

In this study, using a systematic design process we 

have implemented a visualization system called TBDSV system. 

Since the first AVL tree visualization is finished, due to 

the design process, it only takes very limited time to 

develop the following Red-Black tree's, B-tree's, and 

Splay tree's visualization. 

The TBDSV system is easy to use. We devise the strategy 

of modified Bresenham's Line Drawing algorithm to achieve 

the animation pictures. Using only integer arithmetic, this 

animation algorithm is proved to be efficient, and the 

animation pictures which it produces are very smooth. 

61 



The source code for this TBDSV system is available 

through the department of Computer Science. Information on 

the source code can be obtained by sending a request by e­

mail to the address: kmg@a.cs.okstate.edu. 

62 

Due to the limited time, this system primarily focused 

on the visualization of AVL tree, Red-Black tree, B tree, 

and Splay tree algorithms. In addition to those tree-based 

algorithms, there are still many kinds of algorithms that 

need to be visualized if we want to ease the learning of 

them such as the sorting algorithms, the searching 

algorithms, the string processing algorithms, the graph 

algorithms, the geometric algorithms, and the mathematical 

algorithms. Visualizing other algorithms are considered 

future work. 



REFERENCES 

[1] Atkinson, M. P., Baily, P. J., Chisholm, K. J., 

Cockshott, W. P. and Morrison, R. "The Persistent 

Object Management System," Soft. Pract. Experience, 

Vol 13, pp. 56-72, (1983). 

[2] Brown, M. H., Algorithm Animation, The MIT Press, 

(1987). 

[3] Brown, M. H.; Hershberger, J., Color and Sound in 

Algorithm Animation, IEEE Computer Graphics and 

Applications, Vol 12, pp. 52-63, (1992). 

[4] Davis, P.J. "Visual Geometry, Computer Graphics and 

Theorems of Perceived Type," presented at the Missoula 

Conf. on the Influence of Computing on Mathematical 

Research and Education, August, (1973). 

[5] Eades, P.; Tamassia, R., Algorithms For Drawing Graphs: 

An Annotated Bibliography, Unpublished Technical 

Report, Brown University, Department of Computer 

Science, (1989). 

[6] Folk, M,J. and Zoellick, B., File Structures, Addison­

Wesley Pub. Co., (1992). 

[7] Gershon, N.D. From Perception To Visualization, Computer 

Graphics, Vol 27, pp. 414-417, (1992). 

[8] Hearn, D. and Baker, M.P., Computer Graphics, Prentice­

Hall, Inc., Englewood Cliffs, N.J., (1986). 

63 



[9] Horowitz, E.; Shani, S., Fundamentals of Data 

Structures in Pascal, Pitman Pub. Ltd, pp. 226-294, 

(1984). 

[10] House, W.C., Interactive Computer Graphics systems, 

Petrocelli Books, Inc, (1982). 

64 

[11] Lee, W. "An Irnplernentatation of A Data Structures 

Display System," Unpublished Master's thesis, Oklahoma 

State University, (1988) 

[12] Litwinowicz, P.C., Inkwell: A 2.5-D Animation System, 

Computer Graphics, Vol 25, pp. 113-122, (1991). 

[13] London, R. L.; Duisberg, Animating Programs Using 

Smalltalk, Computer, Vol. 18, pp. 61-71, (Aug, 1985). 

[14] Marcus, A.; Darn, A. v., User-Interface Developments for 

the Nineties, Computer, Vol 24, pp. 49-57, (1991). 

[15] Mendez, R.H., Visualization in Supercomputing, 

Springer-Verlag, (1990). 

[16] Myers, E. W. Efficient Applicative Data Types. In 

Conference Record Eleventh Annual ACM Symposium on 

Principles of Programming Languages, pp. 66-75. 1984. 

[17] Retting, M., Interface Design When You Don't Know How, 

communications of the ACM, Vol 35, pp. 29-34, (1992). 

[18] Shirnornura, T.; !soda, s., Linked-List Visualization for 

Debugging, IEEE Software, Vol 17, pp. 44-51, (1991). 

[19] Sommerville, I., Software Engineering, Addison-Wesley 

Pub . co . , ( 1 9 9 2 ) . 



[20] Stasko, J. T., Tango: A Framework and System for 

Algorithm Animation, Computer, Vol 23, pp. 27-38, 

(1990). 

[21] Thalmann, D., Scientific Visualization and Graphic 

Simulation, John Wiley & Sons, (1990). 

65 

[22] Zernik, D,; Snir, M.; Malki, D., Using Visualization 

Tools To Understand Concurrency, IEEE Software, Vol 18, 

pp. 8 7-9 2 ' ( 19 9 2 ) . 



APPENDIX 

USER'S MANUAL 

66 



67 

Main Menu 

The TBDSV system has full mouse support. Once the 

system has been running, the main menu is as figure 15 

shows. And you will be asked to select the buttons by mouse. 

They are: 

AVL Click this button to observe AVL tree. 

I! : Click this button to observe B-tree. 

Red-Black Click this button to observe Red-Black tree. 

Splay : 

Quit 

Help 

Ok 

Cancel 

Click this button to observe Splay tree. 

Click this button to leave TBDSV system. 

Click this button to get textual explnation. 

When any button for tree is select, click this 

button to go into the tree's implementation. 

Before you click OK button, you can use this 

button and select other tree again. 

Tree Windows 

When you go into one of the trees, you will have the 

following buttons for this tree's implementation. 

They are: 

ADD When you click this button, you will have a table 

that contains many numbers, then click any number 

to insert key to this tree. 

Key As the button of ADD, this button insert key in 

character but not digital. 

Delete When you click this button, you will have a table 

that contains numbers or characters, then click any 

numbers or characters to delete key from this tree. 



Search 

68 

When you click this button, you will have a table 

that contains numbers or characters, then click any 

numbers or characters to search for that key in 

this tree. 

Click this button to go back to the previous tree 

with one step. For example, when you insert a key 

to this tree, you can use undo to go back to the 

previous tree without the key inserted. 

Click this button, and the system will show this 

tree's implementations automatically. 

Clear : Click this buootn to clear screen and start again. 

Random : Click this button to insert a number (from o to 99) 

Quit : 

AVL T. 

to this tree randomly. 

Click this button to go back to main menu. 

In AVL tree, click this button to get the feature 

of AVL tree. 

Click this button to get textual explanation of 

every button. 



VITA 

Hung-Che Shen 

Candidate of the Degree of 

Master of Science 

Thesis: A VISUAL AID FOR THE LEARNING OF TREE-BASED DATA 
STRUCTURES 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Pingtung, Taiwan, October 4, 
1967, the son of Zenyu Shen and Chufong Lin. 

Education: Received Bachelor of Science Degree in 
Computer Science from Feng Chia University at 
Taichung, Taiwan in May, 1989; completed 
requirements for the Master of Science degree at 
Oklahoma State University in May, 1994. 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077

