A VISUAL AID FOR THE LEARNING OF

TREE-BASED DATA STRUCTURES

BY
HUNG-CHE SHEN
Bachelor of Science
Feng Chia University
Taichung, Taiwan R.O.C.

1989

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 1994

A VISUAL AID FOR THE LEARNING OF

TREE-BASED DATA STRUCTURES

Thesis Approved:

C o)

~—Thesis Advisor

%(‘/MMZ@/

: ; . A :
Y= Sl e —

Dean of the Graduate Colleqge

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my major
advisor Dr. K. M. George for his thorough guidance and
helpful advisement throughout my graduate study and writing
of this thesis. Without him, the fulfillment of this thesis
will be impossible.

I am grateful to Dr. J. P. Chandler for serving on my
committee. He gave me invaluable suggestions and directions
about the programs in this thesis. I am also grateful to
other committee member, Dr. M. Neilsen, for his advisement
during the course of this work.

My deepest appreciation is extended to my father,
Zenyu and my mother, Chufong for their encouragement,

love, and support for my graduate study here.

iii

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. .. it eterntnannconena et et c e 1
IT. LITERATURE REVIEW. ...ttt teeeeeentoneteacecassnnaes 6
Visualization Design..... et e et 6

User Interface....... e e Ceeecee e eae s 10

ITI. ABSTRACT SYSTEM MODEL.ttt ttenrenanascananns 14
Interactive Service Model...........vivuvu-n. 14

Contextual Diagrams of Functionality........ 17

IV, SOFTWARE DESIGN. :tcteeeeresnsesancnsnsesscannon 20
Development ProCess......c.cieeeeeeoscnoenas 20

Data Type Declaration........ceceeeeeeneenns 22

Algorithm Decomposition.........coeuveeencens 24
Visualization Design..........eeieivnneennen 28

component DeSign........oceiieeniennneenanns 36

User Interface Design.......ciieeeneencronns 39

V. SYSTEM OVERVIEW.t ittt eteereeencoacsnssssncesas 40
Main MenuU......oiiiieeeneneeaeoannaecnnsosans 41

AVL Tree. ..o i et iieeeneeenoessnaenasonnnocns 43
B-Tree...... e cecec et st s e e i 44

Red-Black Tree.......iireeeroesanenoecsonans 44

Splay Tree.i ittt eeeecnosnonnanoaanans 44

VI. SUMMARY AND FUTURE WORK.ttt itnesneanns 61
REFERENCES . it i ittt it tceseencseasonsanssacasns t e e s e e s e e 63
APPENDIX — USER’S MANUAL ..ttt vttt encerocecassassnsacssssns 66

iv

LIST OF TABLES

Table Page
I. Decomposition of Insertion in Trees........ cee.. 26

II. Functions Specified Using Pre- and Post-
Condition............ et te ettt 27

III. Abstract Data Type in Tree Algorithms
Visualization.....cecoeveeeinnnns et eiaan e 31

IV. Comparison of Bresenham’s Algorithm and
Animation Algorithm........ et et ... 34

LIST OF FIGURES

Figure Page
1. The Architecture of the TBDSV System Running
on Its Environment.........cieivenn.. e e .. 11
2. Main Functions of TBDSV System....cceieeeeeeeennnn- 15
3. Trees and Their Operations........ e e e es e so. 16
4. Input Output Diagram of TBDSV System..... e 17
5. Display Type and Its Contents...........cccvvin. .. 18
6. System Formulation............. et e e cee e 21
7. Storage Structure for a Node of AVL Tree and
Its Declaration.....oeeeeeeniieeeeneenneneenennnns 22
8. Storage Structure for a Node of Red-Black Tree
and Its Declaration........iiiieiiieneeecanennnns 23
9. Storage Structure for a Node of B-Tree and
Its Declaration. ... iieeiiienesoceescannonnns 23
10. Storage Structgre for a Node of Splay Tree and
Its Declaration.....oeeeeeeeeeeeeecencnoncanonnos 24
11. Insertion of AVL Tree With Action..... e see e 28
12. Tree’s Hierarchic Structures........... e 31
13. Algorithm for Animation........... e e et 35
14. Overview of the TBDSV System..... e eeseeac e 41
15. Main Menu...... e e e cie e e aaeeen ceeereae. 45
16, AVL Tree = 1. . ieeeeeeoeeecessossssasosssossnscsesses 46

vi

Figure

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

AVL Tree - 2...

AVL Tree - 3...

AVL Tree - 4...

AVL Tree - 5...

AVL Tree = 6.ciceeeces e e oo

B Tree - 1.....
B Tree - 2.....
B Tree - 3.....
B Tree - 4.....
Red-Black Tree
Red-Black Tree
Splay Tree - 1.
Splay Tree - 2.

Splay Tree - 3.

oo e a0 e D I R I I R
................... ¢ o et e v s e
e s 08 00 00 R A I) o s 00 e = s 0 e
@ e 0 s 0 e e s s o v e s e s e e e s e s e e
26 0 000 e 0 e s o 2 a0 e ¢ o
P O I R T S P T I S v e
................. ¢ e e 8 s s e 00 e e
4 e e 5 5 80000000008 0aee * o8 a0 e .o
2 e 8 8 2 006000000 s 00000 s e e s 0.
e o e 0 0 e e s 0 00 e s s s 0 e . .
............ D N I I
o s e s s e s s e e s e s e s e e e s e aerr e
e a0 00 e a0 e o 0000 000 R
e n e o ® o 8 s 08000 a2 ae s s e a0 a0

vii

49

50

51

52

53

54

55

56

57

58

59

60

CHAPTER 1
INTRODUCTION

House [10] explains the importance of graphics:
"Graphics have been used for centuries to effectively
communicate information among people and aid comprehension
of complex information. Because patterns and shapes are
inherently less abstract than numbers and languages" (p.
29). Furthermore, it is common knowledge that pictures
convey information more readily and permit better retention
than textual or verbal representations of the same
information. And that is why graphics can have such an
immense application. We can easily find graphics
applications in every aspect of our daily lives.

During the past 20 years, with hardware and software
techniques for creating and manipulating graphics displays
advancing, computers have revolutionized their ways in
creating graphics that make the applications of graphics
much more efficient and widespread. Nowadays computer
graphics have become one of the most exciting and rapidly
growing fields in computer science. Computer graphics is a
very active and rapidly changing technology. This field has
greatly affected such diverse areas as business, military,

industry, science, entertainment, education, and research

than ever before.

The extreme value of computer graphics applications in
education is easily seen by the fact pointed out by Davis
[4]:

Students fooling around with ... orbits in the many-body problem
that have been graphically displayed have found periodic solutions whose
existence defies our keenest analytical analysis.

House [10] mentions one of the favorable merits of
graphics applications in education in term of human brain.
The perceptual work is done by the right hemisphere of human
brain that initially processes pictorial information. Then
the left hemisphere of human brain does the analysis work.
If we use more pictures than words, more of the brain will
be involved in processing pictorial information than in
processing numerical or textual information. This results in
the increased understanding, and consequently better recall,
of pictorial information.

Knowing of those benefits that graphics can provide
arouses our motivations of this research in using computer
graphics as an aid for learning of data structures. We all
know that the teaching learning process of data structures
is not an easy job. If computer-assisted instruction is
available, it would complement the traditional lecture
course in data structures.

The primary purpose of this thesis is to devise a
method of using computer graphics for helping students

learning tree-based data structures. We call it "Tree-based

Data Structures Visualization" system, or TBDSV system.

Then what is visualization? Gershon [7] states that
"Visualization is the process of transforming information
into a visual form, enabling users to observe the
information." The term "Visualization" with its basis in
computer graphics is still quite a new word. As for the
pioneering work of visualization done successfully in some
scientific disciplines such as molecular modeling and
medical imaging, the word "visualization" has gained rapid
and widespread acceptance.

The primary goal of this TBDSV system is to explore how
this visual aid in computer can be used to promote the
learning interests and learning efficiency of data
structures by providing an innovative medium of
communication. In this TBDSV system, students can choose
from a set of tree-based algorithms. Then they can observe
and explore the dynamic behavior of data structures through
graphical displays. In addition to showing the dynamic
behaviors of algorithms, it also illustrates the logical
organizations of data structures. Rather than using pens or
drawing charts on papers, this learning method makes a
fundamental improvement possible in the way we understand
and think about algorithms and data structures. Besides the
applications to learning and instruction, the "Data
Structure Visualization" system can be used as a tool for a
beginner who wants to write programs of those tree-based

data structures. By observing graphical simulations of the

trees’ behaviors, the user can get the idea of the inner
workings of those tree-based programs.

This visualization system is developed on the X Windows
system, because X Windows provide a set of tools to build
graphical objects. These tools are available in Oklahoma
State University Computer Science Department’s laboratory
that is equipped with NCD X-terminals that have graphics
displays connected by Ethernet.Furthermore, one important
advantage of using the X Windows system lies in the fact
that it provides a smooth and flexible open system user
interface at a time when users are growing increasingly
accustomed to window-style interfaces.

We have visualized typical data structures, namely AVL
tree, Red-Black tree, B-tree, and Splay tree in our TBDSV
system. These trees are important data structures that
appear often in courses of data structures, file structures,
etc.

The remaining chapters of this thesis are arranged as
follows:

Chapter II describes related work, and illustrates the areas
that this study needs. Chapter III provides an abstract
system model which is used as a method of requirements
derivation based on examining the system from several
different viewpoints. Chapter IV is on software design. This
chapter covers the software design process, design
strategies and design quality. The implementation of TBDSV

system and the outcome of the implementation are given in

Chapter V. Finally, summary and future work for this thesis

are disscussed in Chapter VI.

CHAPTER II
LITERATURE REVIEW

The development process of "Algorithm Visualization"
requires concepts from several areas. The areas closely
related to this thesis are (1) algorithm design, (2)
visualization design, and (3) user interface. In the
following sections, works related to this thesis are
reviewed.

Visualization Design

Gershon [7] stated that "if one could use the
flexibility of display devices to feed information through
preattentive visual processes, one would enable the user to
perceive the desired information efficiently and fast.
Methods are based on the sensitivity of the human visual
system to motion and the ease at which electronic display
devices could change their display." Thus, in the
visualization design, we must first take the human visual
perception areas into consideration.

In order to develop the part of visualization with
formal models and precise semantics, we divide it into two
components. They are static displays and dynamic displays:
Static displays show the image of data and their

relationship, and overall structures, etc.

Dynamic displays show the behaviors of algorithms and
indicate the seguences inside the codes of the algorithms.

Tree-based graphs are static structures. The
difficulties of showing the tree-based graphs lie in the
fact that the growing of tree can easily exceed the boundary
of window. Therefore, in the graph layout algorithms, We
focus upon the aspects Eades [5] has listed:

.Maximize display symmetry

.Avoid edge crossings

.Avoid bends in edges

.Keep edge lengths uniform

.Distribute vertices uniformly

There are three visualization systems listed below,
which are described in the literature. They are being
categorized as static because they show more of the
relationships and orders among data items than of the
dynamic behavior of programs.

The first system is a program of addressing Linked-List
Visualization for Debugging. This system is called VIPS
(Visualization and Interactive Programming Support debugging
system). VIPS uses UNIX’s symbolic debugger, DBX, to execute
the program to be debugged. What makes this debugging tool
different is that it displays linked list as syntax trees.
In improving VIPS’s ability to visualize linked lists,
Shimomura [18] and Isoda [18] considered four requirements
that VIPS should meet: 1. Easy shape recognition. 2. Easy
change detection. 3. Selective display. 4. Rapid drawing.

The second system is described as "Using visualization

tools to understand concurrency" by Zernik [22] et al. They

point out that "programming large-scale parallel machines is
daunting because parallelism makes program execution much
more complex and difficult to understand." In their
visualization tool, it uses graphs to provide a logical view
of execution. Views are organized according to computational
threads, messages, synchronization events, and so on. This
tool can be used to overcome the concurrency bugs, giving
the user a clear picture of concurrency.

The third is "An implementation of data structures
display system" by Lee [11]. The primary functions of this
system are:

1. graphically display a variety of data structures,

2. allows the users to execute and study the immediate
effects of each step of an operation on a particular
data structure.

The available implementations of data structures in
this system include B-Tree, binary search tree, and linked-
list. Since Lee’s data structures display system is shown on
VT100-type terminals. Its display types are more rigid
compared with our TBDSV system that has graphics displays on
X terminal using the X Windows environment.

In the following, we will introduce a more vivid type
of display than the static displays mentioned above. It is
dynamic displays. Dynamic displays show the graphic objects
that change location, size, and figure. This is the area of
algorithm animation.

There are a few algorithm animation systems available

for education now. The well-known ones are Balsa and Balsa-
IT. They were used as teaching aids in learning data
structures at Brown University. According to Brown [2], "the
user can watch execution of an algorithm through various
views. Each view is displayed in a window on the screen."
Although those systems contain an extensive library cf
sophisticated animations and have been used for more than
seven years, they are not widely used. Their drawbacks are
that it requires internal Macintosh coding to create new
animation view, and programs being animated must be executed
in Macintosh. So the portability is not good enough.

Stasko [20] has designed and implemented a framework
and system called "Tango" which facilitates algorithm
animation. It is designed to support three programming
activities, namely understanding programs, evaluating
existing programs, and developing new programs. In his
system, Stasko [20] has simplified animation design by
developing an algorithm animation framework that is based on
four abstract data types: locations, images, paths, and
transitions. He has set up a good method for algorithm
animation. In his system, to produce an animation, the user
must
annotate the program with the necessary algorithm
operation.

design animation scenes to implement the animation

actions.

create a control file specifying the mapping from the

10

algorithm operations to the animation scenes.

Thus the main application of this system is on
debugging the user’s algorithms, and designing the
algorithms.

User Interface

The user interface of a system is often the criterion
by which that a system is judged. If the user interface is
too difficult to use or understand, it may cause this
software system to be discarded, no matter how good its
functionalities are. Especially for a software to be an aid
for the learners, we cannot overemphasize the importance of
user interface.

Sommerville [19] formulated many principles that are
important for the design of user interface. They are:

(1) The interface should use terms and concepts which are
familiar to the anticipated class of users.

(2) The interface should be appropriately consistent.

(3) The user should not be surprised by the system.

(4) The interface should include some mechanism which allows
users to recover from their errors.

(5) The interface should incorporate some form of user
guidance.

Our system is developed in the X Window environment,
that is good for designing a graphical user interface. In
developing the graphical user interface, we follow the
guidelines listed above.

Marcus et al.[14] introduces an implementation-oriented
model of graphical user interface as shown in the figure
below. This model assumes that interactive application

programs are running under the control of a window

10

algorithm operations to the animation scenes.

Thus the main application of this system is on
debugging the user’s algorithms, and designing the
algorithms.

User Interface

The user interface of a system is often the criterion
by which that a system is judged. If the user interface is
too difficult to use or understand, it may cause this
software system to be discarded, no matter how good its
functionalities are. Especially for a software to be an aid
for the learners, we cannot overemphasize the importance of
user interface.

Sommerville [19] formulated many principles that are
important for the design of user interface. They are:

(1) The interface should use terms and concepts which are
familiar to the anticipated class of users.

(2) The interface should be appropriately consistent.

(3) The user should not be surprised by the system.

(4) The interface should include some mechanism which allows
users to recover from their errors.

(5) The interface should incorporate some form of user
guidance.

Our system is developed in the X Window environment,
that is good for designing a graphical user interface. In
developing the graphical user interface, we follow the
guidelines listed above.

Marcus et al.[14] introduces an implementation-oriented
model of graphical user interface as shown in the figure
below. This model assumes that interactive application

programs are running under the control of a window

11

management system that manages the use of the screen and the

input devices.

Application (Algorithm Visualiza-
tion)
UIMS TBDSV system

Interaction technique toolkit

Window management system
and graphics package

Operating system (UNIX)

Hardware (Sequent)

Figure 1. The Architecture of the TBDSV System Running
on Its Environment
Retting [17] points out that the process of building an
interface involves two steps:

1) Write the User Interface Standards Manual.
2) Design the Interface.

In writing the user interface standards manual, one
should have the symbols concepts listed below. Retting [17]
states that four aspects of the symbols that make up the
interface:

.Lexical Structure-What symbols are there?

.Syntactic Structure-How do they relate to each other?

.Semantics-How do they relate to the things they represent?

.Pragmatics-How do they relate to the users?

From the overall visualization systems reviewed, we can
find that all the systems take some steps and require

roughly the same overhead for visualizing algorithms.

In Lee’s [11] data structures display system, the

12

user’s algorithm texts must be translated before the system
can work on this algorithm. It requires the user to be
familiar with the Algorithm Specification Language.

In Brown’s (2] Balsa system, animating an algorithm
involves three steps. The first step is to split the program
into three components: the algorithm itself, various input
generators, and various views that present the animated
pictures of the algorithm in action. The second step is to
implement each component. The third step is to identify for
Balsa those views and input generators, and to give textual
name for each algorithm, input generator, and view. In
Stasko’s [20] Tango system, it also takes three steps to
produce an animation.

With a view to decreasing the overhead of producing the
visualization for algorithm, We have developed a ready-to-
use data structures visualization system in this study.
However this feature will be at the cost of visualizing
user’s input algorithms. This system stresses mainly on an
education aid but not a debugging tool for users.

The similarity between our system and the above systems
mentioned is that they all provide the instructional
function that helps user understand programs. The
differences between our system and others are that (1) this
system needs no preliminary work before the user visualizing
the algorithms, (2) the visualization part of this system
is developed using some X Window primitives and without the

aid of any animation package and is portable, and (3) this

13

system cannot accept user’s input algorithms for
visualization.

In this visual aid, we have chosen tree-based data
structures - AVL tree, Splay tree, Red-Black tree and B-tree
for visualization, because those are parts of structures
lectured on data structure courses. Besides, this kind of
visual aid can save time and efforts for the learning of

tree-based data structures and their properties.

CHAPTER III

ABSTRACT SYSTEM MODEL

In this chapter, we describe an abstract model of the
visualization system. In this abstract system model, we
first characterize this visualization system as an
interactive service model, then we want to establish the
contextual diagrams of this system’s functionalities.

Interactive Service Model

In this interactive service model, the main goal is to
provide an interactive environment that the user can get the
tutorial guidance step by step. To achieve this goal, we
call the users who utilize the "Tree-based Data Structure
Visualization System" end-users. The end-users watch and
interact with this system on the X terminal. In the end-
user’s model, the users of this system environment are
always in a "setup-and-run" loop:

Setup: The end-user chooses from a variety of tree
algorithms that he or she wants to learn in the
display. The end-user also decides which operation
to be performed in this algorithm, and what the
input values to each of those operations should

be.

14

15

Run: The end-user runs the algorithm step by step in an
interactive environment. The end-user can watch
the whole process of the algorithm running in the
view windows on the screen. While the algorithm is
running, the end-user can decide to examine any
operation on this algorithm, such as insertion,
deletion, or tracing back, and event replaying.

The following figures, figure 2 and figure 3 specify

abstract external behaviors of the "Data Structure
Visualization System".
It deals with the general dialog patterns between the

system and the user.

Select AVL tree

Call AVL tree.

Select B tree

Call B tree.

Select
Red-Black tree

Call Red-Black tree.

What tree
do you || Select Splay tree
want? Call Splay tree.
Help
Explain this system
Quit

Leave this system.

Figure 2. Main Functions of TBDSV System

Figure 2 shows the main menu of this system and the

tree data structures provided for the users.

Insert Data

Delete Data

AVL-Tree —
Visualizationj—

Search Data

Main
Menu

B-Tree
Visualization

Undo Data

Red-Black tree
Visualization

Demonstration

Random input

Splay-Tree
Visualization

Clear window &
restart

Quit

Red-Black Tree

Help

Figure 3. Trees and Their Operations

Figure 3 shows that we can choose four trees’

visualization from main menu. There are many operations

available for the tree’s visualization.
functions,
account for the basic operations in the tree’s definition,
and others are erlated to the animation.
function that makes the users see the previous versions of
tree before the current operation is issued. Demonstration

is the function that shows the tree’s operations and their

insert data,

delete data,

The first three

and search data,

Undo data 1s the

16

implementations automatically without the user’s input. All

17

of the operations on the tree can be restarted by the clear
function. The help function works as a documentation for the
above functions, and the quit function will bring the user
back to the main menu. The function named "Red-Black tree"
is the one that displays a textual description about
this tree.
Contextual Diagrams of Functionality

The contextual diagrams describe the system’s interface
to the outside world and functionality inside this system.
In the following diagrams, figure 4 is about the system
inputs, the system outputs, and figure 5 is about the types

of display on the screen, and the contents included in each

type.
Keyboard Menu of
or Mouse Command — Command
Dis-
User play
Mouse Input Generator|— Data

Figure 4. Input Output Diagram of TBDSV System
In figure 4, keyboard and mouse are the input devices
we use. We can select the command we want from the menu by
these input devices. If this command needs input data, we
can use mouse to drive the input generator which produces
the data for this command. Menu and input generator are
collections of buttons which are made visible and to be

selected by the users.

18

Pseudo
Code for
Tree
Description
of tree
Figures
Static
— Graph & Text Templates
of Tree
Annotating}|
Window L
Mapping
Algorithm
Tree’s
Display
Insertion
Deletion
— Animation Trees’ Search
Scene Operations B
Undo
Demo
Clear Tregj

Figure 5. Display Type and Its Contents

In figure 5, we show the functionality of all kinds of
displays that contribute to the tree’s visualization. An
animation scene is a window created for the dynamic display
of tree’s operations (like insertion, deletion, and search).
Besides, animation scenes are annotating windows that
contain graphics of tree’s templates and their mapping

algorithm. The description of the tree is a brief textual

19

introduction and graphics templates of this tree. Annotating
window will emerge to illustrate the behaviors shown on the

animation scene.

CHAPTER 1V

SOFTWARE DESIGN

Development Process

The algorithm visualization system is designed by

following a process model. This process model involves the

activities shown below:

(1)

(2)

(3)

(4)

(5)

Data type declaration The data type and storage
structure for every tree are declared.

Algorithm decomposition It is necessary to decompose
an algorithm into a set of functions that best
represents the tree’s distinct behaviors.
Visualization design We first specify four kinds of
abstract data types in visualization, and use those
data types to achieve trees’ visualization.

Component design This part designs fhe services
provided by this system. As figure 3 has shown, those
are services for every tree. Each service is viewed as
a component.

User interface design The user interface will rely on
windows, pull-down menu and pointing devices. This

design is characterized by support for graphical as

20

21

well as for textual information display.

The above activities are correlated to each other. In
figure 6, we illustrate their sequential relationship. This
approach allows the following: as errors or imperfections
are detected, the information will be fed back to allow

earlier design stages to be refined.

Data Types Algorithms
Declaration of Trees
of Trees
I |
|
I1ll Programs Visualization
of Trees Design
! |
|
Visualized Component
11111l Program Design
l]
I
Il objects of Interface
Visualized Design
Trees

i

PRRRRD MERRRRRRRERE MR | TBDSV System

Figure 6. System Formulation

In Figure 6 the box with double lines represents the
major products in this formulation. And the bold lines
indicate the major products which are not finished in

linear order but rather in the order with feedback.

22

Data Type Declaration

Data structures and algorithms constitute a program. In
this first stage of software design, we describe the storage
structures used to accommodate the various possible node
formats for each tree.

C language type declarations are used to specify the
storage structures. Not only is the algorithm coding based
on them, but also the well-defined data structures have the
fundamental information for showing the images of the trees.

Figure 7 shows the declaration and type of data
structure for every node in the AVL tree. The balance factor
is computed using the formula:

Balance factor = left_height - right_height.

typedef struct tree_node { /* Build a binary tree */
struct tree_node *left; /* node for AVL. */
char data[20]: /* the balance factor is */
int left_height; /* left_height - right_height */
int right_height;
struct tree_node *right;
})NODE;

NODE *root;

Balance factor

Data

1eft¥ ‘right

Figure 7. Storage Structure for a Node
of AVL Tree and Its Declaration

23

Figure 8 shows the declaration and type of data

structure for every node in the Red-Black tree. Color is
r : b ? potential<0 :

determined by the expression Color =

potential >0.

typedef struct tree_node { /* Build a binary tree */

struct tree_node *left; /* node for Red-Black tree. */
char data[20]; /* the potential is the value */

int potential; /* to determine the color. * /

int color;
struct tree_node *right;

}NODE;

NODE +*root;

Color

Data

1eft$ lright

Figure 8. Storage Structure for a Node
of Red-Black Tree and Its Declaration

24

Figure 9 shows the declaration and type of data

structure for every node in the B-tree.

r—~wA KeyCount r-— Key array r- CHILD array

Page0 4 A B C D 1 2 3 4 5

r~—— KeyCount r-~ Key array r~» CHILD array

Page5 2 E F NIL NIL NIL

typedef BTPAGE |{ /* Build a B-tree node *x/
short KEYCOUNT; /* number of key in page */
char KEY[MAXKEYS]; /* the actual keys * /
short CHILD[MAXKEYS+1]; /* pointer to relative record */
} PAGE; /* numbers of descendants * /

T e * /

1

Figure 9. Storage Structure for a Node
of B-Tree and Its Declaration

Figure 10 shows the declaration and type of data

structure for every node in the splay tree.

Left data parent right

{ I ?]]

typedef struct tree_node { /* Build a binary tree node */
struct tree_node *left; /* for splay tree. * /
char data[20];
struct tree_node *parent;
struct tree_node *right;
}NODE;

NODE *root;

Figure 10. Storage Structure for a Node
of Splay Tree and Its Declaration

25

Algorithm Decomposition

Algorithm decomposition consists of the following steps:

Step 1: Write a C program according to the algorithm that
is planned to be visualized. The program of the
algorithm must be modulized according to a
functional viewpoint. For example, for the AVL
tree to be modulized, it will include "search",
"insertion", and "deletion" modules.

Step 2: Test this program thoroughly. This process
includes "validation & Verification."

When the data type for those trees is determined, the
next step is to code the algorithms for every operation of
trees. The coding of the algorithms for those trees must be
precise in accordance with the definitions of those trees.
In addition to this point, the programs of those trees are
built out of modules, which are composed of procedures and
functions.

In every kind of tree-based data structure, its
operations consists of many basic operations, and
those operations constitute the behavior of trees.

Those basic operations include the functions of
insertion, deletion, and search for the trees. But for the
reason that the tree behaviors are to be visualized, the
above operations must be sub-divided into a set of functions
according to the tree’s attributes. In table I, we list the
functions that are needed for the completion of every tree’s

insertion. Those functions are the

26

decompositions of insertion, and they are invoked in

Sequence.

TABLE I

DECOMPOSITION OF INSERTION IN TREES

Tree type Operation of Insertion
(Including restructing)

AVL Tree 1. Insert_key(root);
2. Count_balance_factor(root);
3. Rotation(root);

Red-Black |1. Insert_key(root);
Tree 2. Count_potential(root);
3. Rotation(root);
4., Recolor(root);
B-Tree 1. Insert_key(root);
2. Splitting(root);
3. Promotion(root);
Splay 1. Insert_key(root):;
Tree 2. Zig_left(root);
3. Zag_right(root);
4. Zig_and_Zag(root);

After we have decomposed the tree operations into the
functions so that they have their own peculiar behaviors,
the next step is to specify each function using pre- and
post- conditions. A pre-condition is a specification of the
value of the function’s inputs. And a post-condition is a
specification of the value of the function’s output. The
difference between them defines how this function transforms
its inputs to its outputs. Since every function in a program
is closely related, one function’s post-condition is another
function’s pre-condition.

This analysis of every function’s pre- and post-

condition will be very helpful for the next stage in the

27

designing of tree’s visualization. In the table 2, we
specify all functions with pre- and post-conditions in the

insertion module of AVL tree.

TABLE II

FUNCTIONS SPECIFIED USING PRE- AND POST-CONDITION

Functions in the
Insertion Module.

Pre-Condition.

Post-Condition.

1. Insert_Key(key).

Root = NULL.

Root !=NULL.
(Balanced Tree)

Create Root.

Binary Tree.
(may be unbalanced)

Binary Tree with
New Balance
Factor in Each
Node.

(may be unbalanced)

2. Count_Balance(key) Binary Tree.

Unbalanced AVL-Tree.

Binary Tree.

3. Rotation(key).

From the table II, we can visualize the first function
abstractly that it may create a root node or become an
unbalanced binary tree. In the second function, we can show
the new balance factors of the nodes in this unbalanced
tree. In the function of rotation, the focus is on the
processing of transforming an unbalanced tree to an AVL
tree.

Knowing the pre- and post- conditions of each function,
we can thus give all functions their expected actions in the
process of visualization. For the previous example of

insertion in AVL tree, the algorithms of each function with

its action is given in figure 11. One thing we need to point

out is that the action and the actual code are all

independent of each other.

Insert_act(root,key)
{
If (insert_key = any_node in this tree)
{
Create message window;
Show error message;
return root;
}
If (root=NULL)
{

Create a node:;
Draw _data string in it;
root=new_node(insert_key);

}
else if (root_key > Insert_key)
{
Blink the root key:
root=root->left;
Insert_act(root,key);

}
else if (root_key < Insert_key)
{
Blink the root key:
root=root->right;
Insert_act(root,key);

}
Return root;

Figure 11. Insertion of AVL Tree with Action
(the underlined code specifies the added
action to the normal code)
Visualization Design

Oof all the design activities in this system,
visualization design is the most important part that
determines if this visualization system is a success or not
in terms of usage.

We consider the following requirements that the

visualization design should meet:

29

(1) Easy shape recognition: It must be easy for viewers to
associate the shape or color with the data type it
represents.

(2) Easy change detection: The viewers must easily detect
what operation has been done in each step and the
transformation effected by this operation.

(3) Rapid drawing: When a figure or text is to be drawn, it
must be drawn rapidly to meet the fast response time.

(4) Selective display: Each time the screen only shows the
necessary figure and information for the current
operation.

Developing a good visualization will involve the
aesthetic knowledge and that is beyond the scope of this
study. In crder to simplify animation design and provide a
model that supports smooth, continuous image movement,
Stasko[12] have developed an algorithm animation component
that helps design animation actions to simulate the
algorithm’s operations.

In this component’s formal model, it contains four
abstract data types. They are the graphical images, the
locations of images and other objects, the images’
transitions, and the paths that modify those transitions.
The following gives the definitions of those four abstract
data types.

Images: An image is a graphical object that undergoes
changes in location, size, color, etc. throughout the frames

of an animation. Primary images include lines, rectangles,

30

circles, and texts. Composite images are collections of
primary images with geometric relationships to one another,
as defined by a list of primary images in a local coordinate
system.

Locations: A location is a position identified by an
(x,Y) coordinate pair in the animation coordinate system.
The ability to save and reference particular locations is an
important tool for animation design. Locations often denote
a particular variable in a program, while the image at that
locations denotes the variable’s value.

Paths: A path designates the magnitude of change in

image attributes from one frame to the next. Images can only
be modified through paths; for example, images are moved or
colored along paths, and their visibility is changed along
the paths. A path is formally defined as a finite ordered
sequence of real-valued (x,y) coordinate pairs, where each
pair designates a relative offset from the previous
position. The length of a path p, denoted by |p|, is the
number of coordinate pairs it includes.

Transitions: A transition uses a path parameter to

modify an image’s position or appearance, and to give an
animation action. Like images, transitions have an
extensible definition that does not restrict the framework
to a predefined set of types. Simple transitions are defined
by a transition type, the image being altered, and a path-
argument modifier. Typical transition types include move,

resize, color, fill, raise, lower, delay, and alter

31

visibility.

With those four abstract data types in mind, we can
Create animations of algorithms by assembling collections of
image, location, path, transition, and association
operations that accomplish desired animation actions. In
table III, we list the four abstract data types used in this
work to produce the animation scenes.

TABLE III

ABSTRACT DATA TYPES IN TREE ALGORITHMS VISUALIZATION

Images Locations Paths Transitions
.Lines (X Y) .Distance .State cues
.Rectangles Coordinate| Between Image .Sound
.Circles Pairs (rectangles, .Highlighting
.Color circles, etc.) |.Continuous
.Texts .Discrete

| | |]

In the trees’ images, the rectangles and circles
represent the nodes in the trees, and the directions of
lines coming out of the nodes indicate the relationship
between nodes. Besides, color is used when there are two
kinds of nodes, red and black in the red-black tree. The
text written or attached on the previous images is the

information for the images. The following figure illustrates

trees’ images.

32

)|

o
o)
+
o)

Data Data z {{
]

(a) (b)

| U —

Figure 12. Tree’s Hierarchical Structures (a) A Binary
Tree Structure. (b) A B-tree Structure of
Order 4.

Before the images can be shown, we must give them their
positions in the display window. In the windowing systen,
the origin of this display window is located on the upper-
left corner of the window.

The paths are set up for the use of transitions. Once
the locations are determined, the paths are set. For some
path operations, examples are Insert_node(key) - receive
locations from the root node down to the leaf node, and
Delete_node(key) - receive two locations and create a path
between them. In an animation, the location of node to be
deleted is the motion’s ending point and the location of
deleted node’s successor is the motion’s starting point.

Different transition types use path arguments in
different ways. In the above table, we have listed four
kinds of transitions in the tree algorithms’ animation.

The first method of transitions is state cues. State
cues are to show changes in the state of an algorithm’s

data structures by changing the images of their graphical

33

representations on the screen. For example, in the function
search(key), we make the tree node blinking when it is
compared with the search key. The viewers can observe when
and which of the nodes are being compared. That produces the
effect of state cues.

The second method of transition is by sound. In the
process of a tree’s animation, sound can add rhythm to the
motions of tree’s operations. And different sounds remind
the users what kind of situation happens.

The third technique of transition is by highlighting.
With highlighting, we can attract the viewers’ attentions to
the images that have been highlighted. For example, in B
tree’s visualization, we can highlight the node that is
going to split after inserting one more Key into this node.

Continuous Transition

Continuous transition means the displays of the
algorithm’s motions which are shown in a smooth way as
viewed by the human eyes. London[20] states the importance
of smooth updates (continuous transitions):

Often it is even better to show smooth transitions

between states; if a structure changes and the new state

simply flashes on the screen, the viewer is typically startled
and cannot see immediately without some mental effort how the

new image evolved from the previous one.

However, achieving the smooth transitions of the
algorithm in action is not an easy job. Brown[2] points out
that "Unless a good animation package is provided,
incremental transitions are often tedious and difficult to

program." Without the animation package, we take advantage

34

of Bresenham’s line and circle algorithms to apply them in
the continuous transitions.

In the trees’ algorithm animation, the motions include
the node being created after insertion, the nodes’ rotations
for balancing the height, and a series of nodes’ movements
after deletion of nodes. Here we use Bresenham’s line-
drawing algorithm to create the motions for which the images
move by the straight lines. However, Bresenham’s circle-
drawing algorithm is used to create the motion of rotation.

But before the Bresenham’s algorithms can be used in
the animation, some modifications are made in the
Bresenham’s algorithm. Table IV lists the differences
between the Bresenham’s algorithm and the modified algorithm

we need. And we summarize the animation algorithm in figure

13.

TABLE IV

COMPARISON OF BRESENHAM'’S ALGORITHM AND
ANIMATION ALGORITHM

Bresenham’s Algorithm | Animation Algorithm
1 Set the Pixel Value Plot the Image on the
on the Screen. Screen.
2 Input a Line’s Input Multi-Lines(Paths)
Endpoints. Endpoints(Locations)
3 Purpose: Draw Line Purpose: Produce
Animation

The Bresenham’s circle drawing algorithm can also be
adapted to create the circular paths in continuous

transition.

35

Discrete Transition

In contrast to continuous transition which has a smooth

motion, the discrete transition is achieved by an abrupt

erase-and-repaint method. This way can be used for the

efficient displays for the viewers. For example, on the

Input paths. If there are paths a, b, c, d, then
store two endpoints of each path:(axl,ayl), (ax2,ay?),
(bx1,byl), (bx2,by2), (cxl,cyl), (cx2,cy2), (dxl,dyl),
(dx2,dy2).

The starting point of every motion is the first endpo-
int of its path. In path a, the starting point is
(axl,ayl).

Compute the distances in each path’s both directions.
In path a, the distances are (delta_x,delta_y).
delta_x=|ax2-ax1l|, delta_y=|ay2-ayl].

Compute the direction of the increment in each path;
an increment of 0 means either a vertical or
horizontal line.

Determine which distance is greater in each path.
If delta_x>delta_y, then distance is delta_x, else

distance is delta_y.

Select the longest distance from all the path.
For (i=0;i<=distance+l;;i++)
{
Move_Image_a(axl,ayl);
Move_Image_b(bxl,byl);
Move_Image_c(cxl,cyl):;
Move_Image_d(dx1l,dyl);
Determine ax1l+1l or ayl+l and bxl+l or byl+l
and cxl1l+1 or cyl+l and dxl+1 or dyl+l

Figure 13. Algorithm for Animation

36

left-bottom corner of the animation scene show an
instructional window. In this instructional window, the
animation is achieved by discrete transition. With discrete
transition in the display, the viewer can quickly get the
picture frame that annotates the algorithm’s each motion.
Component Design
Basic Operations

Insertion, deletion, and search are the basic
operations for the tree algorithms. Each component must
invoke the input generator for its input data, then call the
insert, delete, or search function.

Input Generators

The input generator provides data for the algorithm to
manipulate the operations of insertion, deletion and search.
In order for the users to control what data is provided, the
input generator is designed in a graphical user interface
mode in order for the user to use easily, and feel in
control of the process of algorithm visualization.

The input generator is the main driver that makes the
trees work. The selection of input data has a great impact
on the implementation of tree and messages conveyed from the
tree’s visualization. Brown[19] found that "small amounts of
data work best for introducing a new algorithm, whereas
large amounts of data help develop an intuitive
understanding of an algorithm’s behavior."

In order for this visualization system to achieve those

goals, We propose three kinds of input generators for the

37

trees’ operations. The first one is the number input
generator that shows a specific range of numbers available
for the user to choose as input data. The second one is text
input generator which provides varieties of alphabet and
strings for the user to choose from as input data.

To use the above two input generators, the user first
uses mouse device to click on the data he wants. Then the
data he chooses and the pre-set operation (like insertion,
deletion, search) are combined to make the tree operate
accordingly.

The third, and the last kind of input generator uses
the UNIX system’s built-in random number generator, rand().
This function, rand(), uses a multiplicative congruential
random-number generator with period 2732 that returns
successive pseudorandom numbers in the range form 0 to
(2~15)-1. Then we can use the equation, rand() mod RANGE, to

get the random number in the range we want.

Demonstration Function
This function implements a tree’s algorithm
automatically and produces a series of animations without
accepting the user’s input data. We use this function to
demonstrate every kind of operations and templates to the
users who have no knowledge of this tree. To familiarize the
user with the tree, we can freeze the template of each
operation for a few minutes in this animation scene.
Undo Function

The undo function makes the user ignore the current

38

operation on this tree and recover from the past version of
tree. This function is useful when the user makes a wrong
choice or the user wants to view the motion again. This
function only permits the user to go back to the previous
version of tree one step.
Help and Instruction Functions

The help function gives the user a quick reference to
the usage or purpose of every function in this system. The
instruction function is designed to give a user an outline
describing the tree. This outline may include the definition
and attribute, and the application of this tree.
Furthermore, the tree algorithms as pseudo codes are also
given by this instruction function. The tree’s textual
algorithm associated with the algorithm animation will help
the user to comprehend all aspects in this tree. In this
instruction function, different fonts and some figures are
used to help the user get the main points and to make the
text easier to read.

User Interface Design

The user interface for this TBDSV system is achieved by
graphical user interface that is based on X Windows. Two
features are provided in the user interface for this TBDSV
system. They are direct manipulation and menu system.

The advantages of direct manipulation and menu system
are:

. Users who are in command of the system need not

fear it.

Users can get immediate feedback and the time for

39

users to learn to implement this system is short.
User’s input errors are minimized with the
feature of menu system. And typing effort is
minimized by using the input device of mouse.

In the next chapter, we provided a description of this

TBDSV system as seen by a user.

CHAPTER V
System Overview

We dedicate the first part of this chapter to the
implementation details of the TBDSV system. Then we give
some snapshots from the TBDSV system running in X terminal.

Figure 14 shows the TBDSV system and the environment
upon which the TBDSV system is built. This overall
architecture depicts the system’s interface to the users and
the resources that are used by this system. The input
devices for the user are mouse and keyboard. The resources
used by this TBDSV system are Xlib, Xt Intrinsics, and C

compiler.

40

41

Display :
Function Buttons Graphics
Workstation
Input N N O
Data Animation
Scenes
System’s Sets
Source Annotator| |Algorithm
Programs Window Window
F— Mouse

Keyboard

X1lib Xt C
Intrinsics Compiler

Figure 14. Overview of The TBDSV System

Main Menu
Figure 15 shows the main menu form which user can

choose the tree algorithms he wants to examine. Whenever the
tree for visualization is chosen, the system will go into
that tree’s main loop. A typical interactive Xlib program
consists of an endless loop. This endless loop is usually
called the main event loop (but it is not really endless,
because one of the actions would no doubt be ‘quit’).

The structure of such an interactive program might be

summarized as:

42

/* structure of a main event loop */
do FOREVER
event = read_next_event();
switch (type of event)
CASE event 1 : action 1;
CASE event 2 : action 2;
CASE

................

CASE default : QUIT
end

In the tree visualization’s main loop , it contains the

main processing activities listed below:

Expose event: This event is always being handled. It creates
the environment for activity. It is the scene
before the user implements the tree’s
operations. In this event menu windows are
displayed, and some lines and rectangles for
the frame of this display are drawn.

Pointer event: When the mouse button is pressed, the pointer
event is created. Each time the function
window is clicked, it will call this
function’s component. If this function needs
input data, the next pointer event is
expected. When the input data is clicked, the
animation scene will show the animation
pictures complemented with statistics window
and annotating window.

Keyboard input event: This event is created when the
keyboard is pressed. Any menu items and input

data can be selected by keyboard.

43

Keyboard mapping event: This event is created to protect
the program from unexpected keyboard
configuration modification.

Figure 16 shows that when the help button is pressed
during tree’s implementation, there will be a brief
explanation of every function’s usage and purpose. There are
altogether 11 functions for all of the trees’ implementation
in this TBDSV system, They include the basic functions like
insertion, deletion, search and some additional functions
like undo, demo, instructional, etc. When the basic
functions are chosen, the input data set must be also chosen
to make those basic functions operate.

In the rest of this chapter, we will give a series of
diagrams as examples of AVL tree, B-tree, Red-Black tree,
and splay tree implementations.

AVL Tree

Figure 17 shows the introductory description of AVL
tree. This description includes the textual definition of
AVL tree, and some figures that account for all the AVL
tree rotations, and furthermore the user can also
see the algorithms of elementary implementation for the AVL
tree by pressing the page down button as shown in Figure 18.
Figure 19 shows the AVL tree in motion for rotation when
data 1, 2, and 3 are added to the AVL tree and result in
unbalance. Figure 20 and figure 21 show that after

balancing, the user can see the annotating window that

44

depicts how the rotation is achieved and its mapping
algorithm.
B-Tree

Figure 22 shows the definition and properties of B-
Tree. Figure 23 and figure 24 show the pseudo codes of B-
Tree’s implementations. Figure 25 shows the scene for B-
Tree’s visualization. The nodes with highlighting mean those
nodes have data in them. This tree is a fixed three level
and order 5 B-Tree. The annotating window shows the
information of current operation that are the key inserted,
the current B-Tree by in-order traversal, and previous B-
Tree by in-order traversal.

Red-Black Tree

Figure 26 shows the instructional function provided by
the Red-Black tree. This function also includes Red-Black
tree’s property, templates of insertion, algorithms, etc.
Figure 27 shows what a Red-Black tree looks like in the
display.

Splay Tree

Figure 28 shows the instructional function provided by
the splay tree. This function introduces the splay tree’s
purpose and the ways it is implemented, and the algorithms
for the implementations. Figure 29 shows the splay tree
after the insertion of data 1, 2, 3, 4, 5 , 6 and 7. Fiqgure
30 shows what the splay tree looks like after the user

applies the splay function on the node with data 7.

NUS} UTeW °GT 2aInbTJ

AVL B

Red
Black

SPLAY| |QUIT HELP

(<

Animation of Trees

€))

C Science Thesis Research
%:K.M.Gewgw

By : Shexn, H.C.
December, 1223

This is a visual aid

for learning tree-based
Data Structures.
Choose one tree then
Click OK to continue.

OK CANCEL

1R/

200 | |

e e o e e

AVL Tree

1 - @915 TAV ‘91 @iInb1d

Main Functions

Use Mouse to Click

Purpoees

Insert number key, choose number.
Insert text key, choosa key.

Delete node from AVL tree, with key.
fisarch node from AVL tree, with key.

Go back to the previous tree with one step.

Show the examples of AVL tree’s implementation.

Clear tha display of tree, and implementations.
Insert nusber (0-99) to AVL tree randomly.

Go Back to main msnmu.

Introduce the feature of AVL tree.

JEEIEUERIEEL

To leave this help, click close.

97

LT 2aInb14d

Z - 931l "IAV

[pmere] [searca| |wwo | fomwo | [euear | [rawvon] Jourr || AV Tree| [w=

*** Metaphor of AVL Tree ***

AVL (Adelson—Velskli and Landis) tree is abnary search tree with a balance condition.
The balance condition is easy to maintain, and it ensures that the depth of the tree s O(log n).
For every nods In the tree, the height of the left and right subtrees can differ by at most 1.

There are four kinds of unbalanced status, the solutions are below:

o & ®
| @
; "*—”“” X

i e AR

LY

20| rev |

o] [men] [ooo] [] [mo] [moor] [| [AVL Tree

€ - @921 TJAVY °"8T 2anbld

*** Algorithm of AVL—-Tree ***

Function Insertion(t , key) /* t is AVL tree, key is insert key */
{

if (t 1is empty)
(
Create new node.
Set data for node.
Tree grows taller.
}
else if (key < t->key)
(
Insert node to t->left.
if (Tree gorws taller)
{ /* Balance factor is =/
Check balance factor = /* left_height- right_height =/
(
case -1 : if the balance factor of t->left
is also -1. Then do single left
left rotation.
if the balance factor of t->left
is 1. then do double left-right rotation.
The tree didn’t grow taller.
case 0 : Insert left sub-tree, so set
balance factor to -1. The tree
grows taller.
case 1 : Insert left sub-tree, so set
the balance factor to 0.
The tree didn’t grow taller.

8t

p - @915 TAY 61 21nbrd

| |pereTE | [sEarcE| [owwo | [pEwo | [cuear | [rawoom| fowit || AV Tree

7 1

71 En e

8da
12135|58 81
133659 82

1 386183

1639628 Type : Single-Left Rotation.
174016386 ©

[
1841|6487 ‘o, = @ O
1942|6588 e
20436684
21446790
22456891

~ e o» ol A

6v

¢ - 9915 TAV "0Z 2anbT4

ﬂm I |nm.lm:| [mncn] Immo l lnnno] |ct.m\nJ [mumox] IQUIT] AVL Tree
01124147170
0225148 71
0326|497
042715073

81517

37

0831547
0932|557
1033|5679
1134|5780
12135|5881

615982
14376083
15138/61\8
16391628 Type : Single-Right Rotation. >+ Algorithm ***
17140163186 @‘w e vold rr_rotat 1on(NOTE sptr)
1841|6487 e, === @ D ¢ sote wrt
194216588 g e orion 2 poolefts

ptri->left = (sptr):

204316689 (sptr)->bal_factor = 0;
21144/67)90 y TS
2214516891
D NALLN N

0s

9 - 9934l 'IAV

]]] [

[rasmon |

AVL Tree

3015376

1z @2anbtg

S477
]

0831
0932/55|7
33
3

11134/57180

5679
L2

35|5881

12
133659 821
1

376083

3861|8

163916218

1714016386

18416487

194216588

2043|6689

2144|6790

2245|6891

Type : Double-Right Rotation.

Di@ - e

TS

ADD KEY

[peueTe] [searcs| [wwo | oewo | [rawvon| fcuen B-TREE

[=4

I - @31L 9 -2z @Inb1d

*** Metaphor of B Tree ***

In 1972, R Bayer & E. McCreight proposed a search tree that is not binary. This tree s

known asa B-tree. B-tree of order m has the following properties :
L. Every node has a maximumo of m descendents.
2. Every node except the root and the leaves has at least (m/2] descendents.
3. The root has at least two descendents.
4. All of the leaves appear on the same level.
5. Anonleaf node with k deecends contains k ~ 1 keys.
6 A left node containa at least [m/2] - 1 keys and no more than m - 1 keys
B-trees are built upward from the leaf level, so creation of new
nodes always starts at the leaf level.
The power of B-trees lies in the facts that they are balanced (no
overly long branches); they are shallow (requiring few seeks); they
accomodate random dslotions sand insertions at a relatively low cost

while remaining in balance; and they guarantee at least 50% storage utilization.
2

DHK
Node2 |3 |D H K|O0 3 8 5
0 3 8 5 Node3 | 2 |E G |NIL NIL NIL
ABLC ElG 1g Ly
Part of Order-4 B Tree Contents of NODE fornode 2 & 3

2§

[peuete] [sarca] wwo | fomwo | |wawvon| feuear | Jourr | | B-TREE

HE

Z - 9211 9 ‘€z @2anb1a

+++ Algorithm of B-Tree ***

FUNCTION: search (RRN, KEY, FOUND , FOUND_POS)

if RRN == NIL than /* stopping condition for the recursion */
return NOT FOUND
else
read page RRN into PAGE
look through PAGE for KEY, setting POS equal to ths
position where KEY occures or should occure
if XEY was found then
FOUMD_RRN := RRN /* current RRN contains the key */
FOUND_POS := POS
return FOUND
else /* follow CHILD reference to next level down */

return({ search(PAGE . CHILD[POS], KEY, FOUMD_RRN, FOUND_POS))
endif
endif

emd FUNCTIOM
FUNCTION: insert (CURRENT_RRM, KEY PROMO_R_CHILD, PROMO_KEY)

€S

€ - 9911 d vz 2aInbtd

frere] [[mwo | [] [mon]

B-TREE

*** Algorithm of B-Tree ***

FUNCTION: insexrt (CURRENT_RRN, KEY PROMO_R_CHILD, PROMO_KEY)

if CURRENT_RRN = NIL then /* past bottom of tree */

PROMO_KEY := KEY

PROMO_R_CHILD := NIL

return PROMOTION /* promote original key amd NIL ¢/
else

read page at CURRENT_RRN into PAGE

search for KEY in PRAGE.

let POS := the position where KEY occurs or should occur.

if KEY found then

issue error message indicating duplicate key
return ERROR

RETURN_VALUE := insert(PAGE.CHILD{POS], KEY, P_B_RRN, P_B_XEY)

if RETURM _VALUE == NO PROMOTION or ERROR then
return RETURMN_VALUE

elseif there is space in PAGE for P_B_KEY then
insert P_B_XEY and P_B_RRN (promoted from below) in PAGE
return NO PROMOTION

else
split(P_B_KXEY,P_B_RRN,PAGE, PROMO_KEY, PROMO_R_CHILD, NEWNPAGE)
write PAGE to file at CURRENT_RRN
write MEWPAGE to file at rrm PROMO_R_CHILD

return PROMOTION /* promoting PROMO_KEY and PROMO_R_CHILD */
endif

end FUNCTIOM

Pg Down

¥s

ADD KEY

[peuere] [smarca] oo | [oewo | [rawvos| [cuear | fourr |

¥ - 9211 d °GZ 2anb14

B-TREE
1ot -
2 p
3/1Qln
4 IR (0
5 |8
6 T 9 5B Z
7_|U |r
8 (Vs
9 Wit
A X |u
B|Y|v
clz |w

13 q
D |a |x
E Db |y 718 ﬁ UV[W
F lc |z
G la |t CE d}(hj
Hle |8
) Y L
d g |8 3 is insertod now.
K |h |% (((13)5(78)B(CE))F((GIJ)Q(TUVN)Z(dfh{)))
Ll |A Previous Tree:
((1578)B(CE)FP(GJ)Q(UVR)Z(dfhj))
M |&

S¢S

gz 2anbt4d

1 - 2935 Moerd-pad

ENEER

] [remnce] (oo] [omo | [eomn | [mwmon] [sorr] [Rem-pLACK Trod [

*** Metaphor of Red-Black Tree ***
A red-black tree Is a binary tree

in a way satisfying the following constraints :
() All external nodes are black.

(i) (black constraint). All paths from the root to an externai node

contain the same number of black nodes.

(i) (red constrain). The parent of any red node, If it exists, is black.

The cases of insertion. Symmetric cases are not shown:

in which each nods is colored red or black

®° @ 2

O O /o ROOT /o 0 /o/ \o”o/ \o\
E{ \3 S = 5 o

X O e° @

@2 @)
O/ \o===> /\ [\ == [/ \

O/ O/ O \O O

®o OIO\ O e°e®e] O &0 O

94

+,2 @2anb1g

¢ - 9915 Yoeld-pdy

D

peeee | [searcu] fmwo | fomwo | [euzar | [raspox |

| [RED-BLACK Tree

QOO0

QO

4871
4972
50

N Q) (W b

52
30153

08

3115

10

323

3315679

11

34)5780

12

355881
3659 %
% |

8

60

W
1® 1N

16

slga
628

17406336

18

41/64,87
L .

19

42|6588

20

43/66,89

21

22

45|6891

23

4R16Q 0N

* Templates of Red-Black Tree ¢

@’ @)
/O/ o = /./0 \y 1
O O

LS

1 - @911 Aerds *gz 2InbTd

200 | rev |

[sriav | [pmere] [wwo | [ome | [cuear | [mwwou] [ewir || Splay Tree | [r=d

*** Metaphor of SPLAY Tree ***

Splay tree are based on the fact that the O(n) worst-case time per operation for binary
search trees la not bad, as long as it occurs relatively infrequently.
Any one access, even If It takes O(n), is still likely to be extremely fast,
The splaying strategy is listed below:

8¢

59

1689\SPcc
P6 L9 FIIC
68199(EP DS

8(€9|cPpl
mmww~vwm
SIEIOFYL T

29l6EPT
8|1918E|ST

T8BSSERT
PEZSFETT
pZOSIEEDT
Z[cS|ZEBO
ZZFS[TERD
5Z[ESI0EZ0

Zicsle
741 §9

9414

Figure 29. Splay Tree - 2

N

[22)

v
< A O N %
FopopororSt

1] Aopdg

amd| [momers| | wwanw| | owaa| | oman| |sizma| | awas|

KEY seray | [perere] oo | |omwo | fcuear | {rawpom| [guiT | Splay Tree

71

72

07305376
08

3
i
(%]

¢ - @911 Aerds °of 2Inb1d

S IO S 4«9 4 B
S o [N) [’ s
B [[
%ﬂ%‘mm\'
NERE.
NINEN N

093255
10335679
11/34/57180
123;3331
133659821
14376083
1538618

1639628 * Tomplates of Splay Tree *
174063186

1841|6487 A.\ /O D
1942|658 @® ===> ®
201436689 B \O ./ c
214467,90 c D A B

2245|6891 Zag-Zag

le Bt P Xl ale Fale

09

CHAPTER VI
SUMMARY AND FUTURE WORK

Due to the advance of technology in computer graphics
and the advent of windowing techniques, visualization is
applied immensely in every area of science and engineering.

In view of the fact that teaching and learning of data
structures and algorithms in the classroom is a process that
takes much time and is not effective sometimes, many systems
for data structures and algorithms visualization have been
invented.

In this study, using a systematic design process we
have implemented a visualization system called TBDSV system.
Since the first AVL tree visualization is finished, due to
the design process, it only takes very limited time to
develop the following Red-Black tree’s, B-tree’s, and
Splay tree’s visualization.

The TBDSV system is easy to use. We devise the strategy
of modified Bresenham’s Line Drawing algorithm to achieve
the animation pictures. Using only integer arithmetic, this
animation algorithm is proved to be efficient, and the

animation pictures which it produces are very smooth.

61

62

The source code for this TBDSV system is available
through the department of Computer Science. Information on
the source code can be obtained by sending a request by e-
mail to the address: kmg@a.cs.okstate.edu.

Due to the limited time, this system primarily focused
on the visualization of AVL tree, Red-Black tree, B tree,
and Splay tree algorithms. In addition to those tree-based
algorithms, there are still many kinds of algorithms that
need to be visualized if we want to ease the learning of
them such as the sorting algorithms, the searching
algorithms, the string processing algorithms, the graph
algorithms, the geometric algorithms, and the mathematical
algorithms. Visualizing other algorithms are considered

future work.

REFERENCES

(1] Atkinson, M. P., Baily, P. J., Chisholm, K. J.,
Cockshott, W. P. and Morrison, R. "The Persistent
Object Management System," Soft. Pract. Experience,
Vol 13, pp. 56-72, (1983).

[2] Brown, M. H., Algorithm Animation, The MIT Press,

(1987).

[3] Brown, M. H.; Hershberger, J., Color and Sound in
Algorithm Animation, IEEE Computer Graphics and
Applications, Vol 12, pp. 52-63, (1992).

[4] Davis, P.J. "Visual Geometry, Computer Graphics and
Theorems of Perceived Type," presented at the Missoula
Conf. on the Influence of Computing on Mathematical
Research and Education, August, (1973).

[5] Eades, P.; Tamassia, R., Algorithms For Drawing Graphs:
An Annotated Bibliography, Unpublished Technical
Report, Brown University, Department of Computer

Science, (1989).

[6] Folk, M,J. and Zoellick, B., File Structures, Addison-

Wesley Pub. Co., (1992).

[7] Gershon, N.D. From Perception To Visualization, Computer

Graphics, Vol 27, pp. 414-417, (1992).
[8] Hearn, D. and Baker, M.P., Computer Graphics, Prentice-

Hall, Inc., Englewood Cliffs, N.J., (1986).

63

64

[9] Horowitz, E.; Shani, S., Fundamentals of Data

Structures in Pascal, Pitman Pub. Ltd, pp. 226-294,
(1984).

[10] House, W.C., Interactive Computer Graphics Systems,
Petrocelli Books, Inc, (1982).

[11] Lee, W. "An Implementatation of A Data Structures
Display System," Unpublished Master’s thesis, Oklahoma
State University, (1988)

[12] Litwinowicz, P.C., Inkwell: A 2.5-D Animation System,

Computer Graphics, vol 25, pp. 113-122, (1991).

[13] London, R. L.; Duisberg, Animating Programs Using
Smalltalk, Computer, Vol. 18, pp. 61-71, (Aug, 1985).

[14] Marcus, A.; Dam, A. V., User-Interface Developments for
the Nineties, Computer, Vol 24, pp. 49-57, (1991).

[15] Mendez, R.H., Visualization in Supercomputing,

Springer-vVerlag, (1990).

[16] Myers, E. W. Efficient Applicative Data Types. In
Cconference Record Eleventh Annual ACM Symposium on
Principles of Programming Languages, pp. 66-75. 1984.

[17] Retting, M., Interface Design When You Don’t Know How,
Communications of the ACM, Vol 35, pp. 29-34, (1992).

[18] Shimomura, T.; Isoda, S., Linked-List Visualization for

’

Debugging, IEEE Software, Vol 17, pp. 44-51, (1991).

[19] Sommerville, I., Software Engineering, Addison-Wesley

Pub. Co., (1992).

[20]

[21]

[22]

65

Stasko, J. T., Tango: A Framework and System for
Algorithm Animation, Computer, Vol 23, pp. 27-38,
(1990).

Thalmann, D., Scientific Visualization and Graphic
Simulation, John Wiley & Sons, (1990).

Zernik, D,; Snir, M.; Malki, D., Using Visualization
Tools To Understand Concurrency, 1EEE Software, Vol 18,

pp. 87-92, (1992).

APPENDIX

USER’S MANUAL

66

67

Main Menu

The TBDSV system has full mouse support. Once the

system has been running, the main menu is as figure 15

shows. And you will be asked to select the buttons by mouse.

They are:

AVL : Click this button to observe AVL tree.

B : Click this button to observe B-tree.

Red-Black : Click this button to observe Red-Black tree.
Splay : Click this button to observe Splay tree.

Quit : Click this button to leave TBDSV system.

Help : Click this button to get textual explnation.
ok : When any button for tree is select, click this

button to go into the tree’s implementation.

Cancel : Before you click OK button, you can use this

button and select other tree again.

Tree Windows

When you go into one of the trees, you will have the

following buttons for this tree’s implementation.

They are:

ADD : When you click this button, you will have a table

that contains many numbers, then click any number

to insert key to this tree.

‘?7

As the button of ADD, this button insert key in

character but not digital.

Delete :

: When you click this button, you will have a table

that contains numbers or characters, then click any

numbers or characters to delete key from this tree.

Search :

Demo :

Clear :

Random :

Quit :

AVL T. :

68

When you click this button, you will have a table
that contains numbers or characters, then click any
numbers or characters to search for that key in
this tree.

Click this button to go back to the previous tree
with one step. For example, when you insert a key
to this tree, you can use undo to go back to the
previous tree without the key inserted.

Click this button, and the system will show this
tree’s implementations automatically.

Click this buootn to clear screen and start again.
Click this button to insert a number (from 0 to 99)
to this tree randomly.

Click this button to go back to main menu.

In AVL tree, click this button to get the feature
of AVL tree.

Click this button to get textual explanation of

every button.

VITA
Hung-Che Shen
Candidate of the Degree of

Master of Science

Thesis: A VISUAL AID FOR THE LEARNING OF TREE-BASED DATA
STRUCTURES
Major Field: Computer Science
Biographical:
Personal Data: Born in Pingtung, Taiwan, October 4,
1967, the son of Zenyu Shen and Chufong Lin.
Education: Received Bachelor of Science Degree in

Computer Science from Feng Chia University at
Taichung, Taiwan in May, 1989; completed
requirements for the Master of Science degree at
Oklahoma State University in May, 1994.

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077

