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Abstract 

 As computer technology continues to improve, resources are becoming 

increasingly available for running an ensemble of NWP simulations with sufficient 

resolution that convection parameterization is no longer needed and individual storms 

can be captured on the grid scale. Due to past limitations on technology, research into 

the optimal design of convection-allowing ensembles has remained limited. 

 The purpose of ensembles is to account for forecast uncertainty that arises due to 

errors in the forecast process. There are errors in the initial conditions resulting from 

incomplete spatiotemporal sampling of the atmosphere and measurement error. There 

are errors in the lateral boundary conditions that drive limited-area models (as is the 

case for current experimental convection-allowing ensembles). There are also errors 

associated with the model formulation caused by numerical error from discretization of 

the model grid, truncation of numerical schemes, and inadequate subgrid-scale physics 

parameterizations that provide source and sink terms for the resolved-scale variables. 

This dissertation focuses on methods of accounting for uncertainty in assorted model 

physics components. 

 Three research projects were performed using the WRF model with 4 km grid 

spacing. One investigated methods of accounting for microphysics uncertainty. Another 

investigated the impact of adding a stochastic model error representation scheme. The 

third project investigated methods of accounting for uncertainty in the land-surface 

model component.  

 Two methods of perturbing the microphysics were compared: perturbing fixed 

parameters within a single scheme and using multiple schemes. The latter, termed 
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mixed microphysics, was found to generate somewhat more skillful and more reliable 

probabilistic forecasts of precipitation, although the former, termed perturbed parameter 

microphysics, also performed well. 

 A stochastic model error scheme that was originally created to improve large-

scale forecasts in the ECMWF model was converted for use in the WRF model. The 

stochastic kinetic energy backscatter, or SKEB, scheme injects kinetic energy at all 

scales using a forced power spectrum. Its utility in a convection-allowing ensemble was 

analyzed and found to add significant ensemble spread while also reducing ensemble 

mean error. The SKEB scheme does not perturb any moisture variables, but was 

successful in causing slight improvements to precipitation forecasts. 

 The final portion of this dissertation features an exploratory study to determine a 

perturbation strategy for the land-surface model component. Literature review revealed 

many uncertainties in current land-surface models that have not been accounted for in 

prior experimental convection-allowing ensembles. A set of perturbations that reflect 

uncertainty in the calculation of sensible and latent heat flux was determined and 

applied to a small set of cases. The sensitivity of convection forecasts to these 

perturbations was assessed and compared to that from other physics perturbations 

(microphysics and PBL physics). It was also determined that adding land-surface model 

perturbations to other existing physics perturbations further increases ensemble 

diversity and improves probabilistic forecasts of precipitation. 

 Overall, it is encouraging that the WRF provides a wealth of resources for 

accounting for model physics uncertainty in convection-allowing NWP forecasts. 

  



1 

 

Chapter 1. Background and Motivation 

1.1 Introduction  

 Ensemble forecasting is a method of using multiple numerical weather 

prediction (NWP) model simulations to account for the inherent uncertainty a weather 

forecast. A model ensemble consists of multiple independent (aka, deterministic) NWP 

simulations that cover the same forecast time. Individual realizations of the ensemble, 

called members, do not need to be initialized at the same time or use the same NWP 

model core, boundary conditions, or model physics options. Variations in any of these 

are sufficient to render an ensemble forecast. The number of members, referred to as 

ensemble size, can vary from a few to as many as one desires or as much as 

computational expense allows. For large-scale atmospheric ensemble forecasting, 

ensemble sizes typically range from 10 to as many as 50. Such ensembles are typically 

referred to as ensemble prediction or ensemble forecast systems (EPS or EFS). Either 

term may be used interchangeably throughout this dissertation. 

 Ensemble forecasts aim to account for the sources of error in a deterministic 

NWP forecast. One major source of error is the initial condition. Initial condition error 

results from an incomplete and inaccurate specification of the atmospheric state: the 

atmosphere is not measured at every location; instruments that sample the atmosphere 

contain error; and interpolation is required to map observations to the model grid, which 

can also generate error. Clearly, any NWP forecast initialized using data with nonzero 

error will contain nonzero error. The boundary conditions supplied to drive the model 

integration are a second source of error for the same reasons as for initial condition 

error. Boundary condition error is especially important for model domains with limited 
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areal extent, but it is present in all model domains due to incomplete and errant 

specification of the lower (i.e., surface) and upper (i.e., upper atmosphere or edge of 

space) model domain boundaries. A third source is from an imperfect construction of 

the NWP model. Error will result merely from discretizing the spatial and temporal 

dimensions in an NWP model since the real atmosphere is continuous. However, this 

source of error is controllable and at least somewhat predictable since the numerical 

methods used in the models have known error characteristics. Perhaps more 

importantly, there are many atmospheric processes that occur on a temporal and spatial 

scale too small to be resolved by the model domain, called subgrid-scale processes. A 

parameterization scheme is required to include the effects of these processes on the 

scales the model can resolve. Obviously, not parameterizing a real process at all will 

result in forecast error. So merely including the parameterization should reduce error, 

but the parameterization itself represents an additional source of model error. This 

dissertation focuses on methods of accounting for model error from uncertainties in 

physical parameterization schemes. The focus is also on convective-scale modeling 

(also referred to as storm-scale), which refers to using a rather highly refined model grid 

capable of approximately containing features as small as thunderstorms. Such model 

domains are limited in horizontal extent, and thus boundary conditions are a significant 

issue, but they will not be covered here. Initial condition error will also not be 

investigated. 

 What follows is background discussion of ensemble forecasting followed by a 

history of the uses of ensembles for weather prediction, and finally discussion 
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motivating the exploration of methods for accounting for sources of model error in a 

convection-allowing ensemble presented in this dissertation. 

1.2 Background on ensemble forecasting 

 A general goal of ensemble forecasting is to assess the uncertainty in a forecast. 

Another way to describe this goal is to inform how a forecast may err if some 

component in the forecast process is wrong. For example, suppose the output from a 

single NWP forecast for 2-m temperature is 280 K. If that forecast is wrong, a user has 

no information on what the actual verifying 2-m temperature may be. The forecast value 

of 280 K may represent the best guess from the NWP forecast system, but it only 

contains that single piece of information. An ensemble provides an extra dimension of 

information (additional moments of the forecast distribution, whereas the singular NWP 

forecast only provides one moment) that can be very useful to a user. An ensemble 

forecast for the same variable verifying at the same location and same time with an 

ensemble mean of 280 K could forecast a range from 276 K to 284 K with a fairly 

symmetric distribution, or it could forecast a range from 279 K to 287 K with a highly 

right-skewed distribution. This extra information could cause a user to make a different 

decision on a meteorologically sensitive issue than the one they would make if only a 

single-valued forecast was available. This simple example illustrates the value that 

ensembles can provide. Some basic theory and additional examples can be found in 

Richardson (2001) and Zhu et al. (2002). It should be noted that every forecast contains 

some uncertainty and therefore can be represented as a distribution. Therefore, it is also 

consistent to say that the goal of ensemble forecasting is to mimic the underlying 

forecast distribution. 
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 A perfect ensemble requires an infinite ensemble size to fully populate the 

forecast distribution and eliminate sampling uncertainty, and therefore cannot be 

realized in practice. However, an ideal ensemble, which can be realized, produces 

probabilistic forecasts with certain desirable characteristics. One characteristic is 

statistical reliability. Reliability is the amount of agreement between a probabilistic 

forecast and the corresponding frequency of occurrence of the event for a given 

probability. Reliability is one component of the Brier score (Brier 1950), and hence can 

be analyzed numerically (see appendix for a breakdown of the Brier score). It can also 

be analyzed using a graphical technique called a reliability diagram (see Chapter 2). For 

instance, suppose an ensemble forecasts a probability of 45% that 24-hour precipitation 

will accumulate to greater than 10 mm. The ensemble would be perfectly reliable if the 

verifying 24-hour precipitation accumulation exceeded 10 mm 45% of the time when 

such a probability was forecast. Clearly, such a forecast must be issued many times so 

that such a probability can be numerically realized, as any single instance of an event 

carries a probability of occurrence of either 0% or 100%. Hence, like the other 

characteristics of an ideal ensemble, reliability is best assessed over a large enough 

period of time for a sufficiently large sample to be obtained. 

 Another desirable trait of an ensemble is high resolution. Resolution is another 

component of the Brier score and can also be evaluated both numerically and 

graphically using a reliability diagram (see Chapter 2). Resolution measures the 

difference between forecast probability and climatological frequency, and is consistent 

with forecast sharpness (probabilities close to 0% and 100%; Murphy 1993). An 

ensemble that consistently forecasts a probability of occurrence of an event close to the 
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climatological frequency is of little value since similar forecast accuracy could be 

obtained by using the climatological value for every forecast. Therefore, an ensemble 

with higher resolution forecasts probabilities greatly different from the climatological 

probability. However, high resolution is meaningless if the forecasts are unreliable (i.e., 

highly error prone). An ideal ensemble has both high resolution and perfect reliability 

(Toth et al. 2001). 

 Another characteristic of an ideal ensemble is that the verifying value is 

statistically indistinguishable from any given ensemble member. This characteristic can 

be assessed using rank histograms (Hamill 2001; see Chapter 2). A rank histogram 

shows where within the forecast distribution the verifying value tends to be located over 

a large number of samples. The rank histogram for an ideal ensemble is flat, which 

means that the verifying value could be any one of the ensemble members (Hou et al. 

2001). This characteristic can also be expressed by stating that the verification and 

ensemble members appear to be drawn from the same distribution, the “truth” 

distribution. 

 Yet another trait is that the ensemble spread increases with time at a similar rate 

to the ensemble error. This trait is desirable is because it is assumed that the initial 

condition and model perturbations are drawn from the truth distribution and thus 

represent error, so the divergence of ensemble member forecasts with time should be 

similar to the divergence of any given member (or the ensemble mean) from the true 

atmospheric state. This characteristic can be analyzed by examining time series of 

ensemble diversity and ensemble error. A common measure of each quantity is the 
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ensemble standard deviation and the root mean square error of the ensemble mean 

(RMSE), defined below: 

 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 (1.1), 

 𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 = √
1

𝑀
∑(𝑥𝑓̅̅̅ − 𝑥𝑡)

2

𝑀

 (1.2). 

In (1.1) and (1.2) N represents ensemble size, an overbar represents an ensemble mean 

value, xi represents the value of a field from one ensemble member, the subscript f 

denotes a forecast value, the subscript t denotes the true value (while the true value is 

never known and observed values contain error, observed values can be used when 

averaging over a large number of cases so long as there is no long term bias), and M 

represents the number of independent cases. If the ensemble members and true state are 

being drawn from the same distribution then, after averaging over a large number of 

cases, the mean squared quantities in the formulas above should be approximately the 

same (e.g., Wang and Bishop 2003). Due to sampling uncertainty, the ratio of spread to 

RMSE should not be exactly 1.0, but rather √𝑁 − 1 √𝑁 + 1⁄  (Leutbecher and Palmer 

2008). It should be noted that there are other measures of ensemble diversity and quality 

(e.g., Grimit and Mass 2007). However, standard deviation and RMSE of the ensemble 

mean are arguably the most commonly used measures, and will also be used throughout 

this dissertation. 
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1.3 History of ensemble forecasting 

 Operational ensemble forecasting in a large scale capacity (i.e., for entire 

regions, nations, or collections of nations) officially began at the National 

Meteorological Center (now the National Center for Environmental Prediction; NCEP) 

and the European Center for Medium-Range Weather Forecasts (ECMWF) in 

December 1992 (Tracton and Kalnay 1993; Molteni et al. 1996). Other major weather 

agencies such as the Canadian Meteorological Center followed within a few years (e.g., 

Houtekamer et al. 1996). The theory and experimentation that provided the basis for 

ensemble forecasting methods was developed and conducted many years prior, 

however. During the 1950s through the 1970s many approaches to accounting for 

forecast error from newly developed NWP models were investigated, headed by 

pioneers such as Edward Lorenz, Cecil Leith, Philip Thompson, and Edward Epstein 

(Lewis 2005). Philip Thompson was among the first to discuss how forecast errors were 

related to initial condition errors and how such errors would impact predictability 

(Thompson 1957). Edward Lorenz is frequently credited for discovering that the 

atmosphere is a chaotic dynamical system, and provides a detailed lecture and 

demonstrations of chaos in his book The Essence of Chaos (Lorenz 1993). Lorenz 

showed, using the results from an accidental discovery involving the use of truncated 

numerical values in intermediate calculations of an NWP simulation, that the 

atmosphere is nonperiodic and NWP simulations exhibit sensitive dependence to small 

changes in initial conditions, which today atmospheric scientists and forecasters 

recognize as a fundamental limit on the predictability of atmospheric phenomena. 

Edward Epstein investigated stochastic-dynamic prediction – the notion of integrating 
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individual moments of a probability distribution forward in time – and Cecil Leith 

investigated the use of Monte Carlo methods – taking random draws from assumed 

probability distributions that represent initial condition uncertainty – to account for 

initial condition error (Epstein 1969; Leith 1974). 

 While currently existing methods to account for forecast uncertainty (from 

initial condition uncertainty) in operational model ensembles still resemble some of the 

earlier methods suggested by these pioneers, recent developments, especially since the 

late 1990s, have diverged somewhat from the earlier ideas. In particular, the assumption 

that the forecast model itself was perfect, and thus only initial condition uncertainty was 

worth investigating, has been dropped. Stensrud et al. (2000) was one of the earliest 

papers to document the use of mixed physics parameterizations in ensemble forecasts 

and demonstrated that a model error approach can result in ensemble diversity that 

cannot be represented by only initial condition uncertainty. Probabilistic forecasts of 

many atmospheric quantities were improved using this technique. The current 

operational Short-Range Ensemble Forecast (SREF) system run by NCEP, a multi-

model, multi-physics, and initial condition ensemble, was born out of this paper 

combined with the investigations of Du et al. (1997), Hamill and Colucci (1997), and 

Hou et al. (2001). Since then, many other papers covering the development of a mixed 

physics approach in global scale and mesoscale ensembles have been published (e.g., 

Eckel and Mass 2005; Clark et al. 2008; Hacker et al. 2011; Berner et al. 2011; Stensrud 

and Yussouf 2003, 2007; Wandishin et al. 2001). The diversity in many of these studies 

was generated using different planetary boundary layer, cloud microphysics, deep 

convection, and radiation parameterization schemes. However, the research also was 
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limited to coarser grid domains and simpler physics options. Research using these 

methods at higher resolutions and using more sophisticated physics is less common. 

 Nearly contemporaneously with the addition of model error methods, model 

ensembles run at grid spacings sufficient to represent individual thunderstorms 

emerged, with developments continuing through the current day. Until very recently 

(within the last five years or so) the use of these storm-scale ensembles has been limited 

to experimental and research purposes over very small horizontal domains and very 

short time ranges. But with continued increases in computational resources over the 

next few years, model domains, forecast lengths, and ensemble configuration have 

gradually expanded, and operational use of storm-scale ensembles over large regions 

such as the continental United States (CONUS) is likely to begin soon. 

 The earliest application of storm-scale ensembles was for severe storm 

forecasting over the Great Plains of the U.S. The Center for Analysis and Prediction of 

Storms (CAPS) at the University of Oklahoma was among the first, if not the very first, 

entity to carry out a storm-scale ensemble forecast in real time for the first Verifications 

Of Rotation in Tornadoes Experiment in 1995 (Sathye et al. 1996). Other experimental 

uses of storm-scale ensembles followed in later years using similar configurations (e.g., 

horizontal domain extent of 500 km or less, forecast length of 12 hours or less; Elmore 

et al. 2003). By the mid-2000s, CAPS had begun much more expansive real-time 

experimental storm-scale forecasting of severe weather in support of the National 

Oceanic and Atmospheric Administration Hazardous Weather Testbed (NOAA/HWT) 

spring forecasting experiment (SFE), conducted annually since at least 2000 (see, e.g., 

Kong et al. 2007). In 2015, what is now called the Storm-Scale Ensemble Forecast 
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system (SSEF) was run using 20 members, each with 3 km grid spacing over a domain 

that encompassed the entire CONUS with a forecast length of 60 hours. The SSEF 

design was used as a model for the design of storm-scale ensembles used to conduct the 

experiments in this dissertation. 

1.4 Motivation for this work 

 Technology advances have allowed for continual improvement in available 

computational resources for running NWP models. As a result, grid spacing has 

gradually decreased, allowing for smaller scale features to be resolved by the models. A 

particularly major achievement made possible by reduced grid spacing is the ability to 

explicitly resolve thunderstorms. Traditional scaling arguments suggest that since 

individual thunderstorms have length scales of O(10 km), then grid spacings of O(1 km) 

should be sufficient to resolve them. Weisman et al. (1997) suggested a threshold grid 

spacing of 4 km for deep moist convection. Bryan et al. (2003) later reduced that 

threshold, suggesting that grid spacings of O(100 m) are required to sufficiently resolve 

all convective-scale circulations. This has left the range of model grid spacings between 

as a sort of gray zone wherein domains are referred to as “convection allowing” as 

opposed to “convection resolving” because traditional deep convection parameterization 

was not meant to be used at grid spacings of O(1 km) (Molinari and Dudek 1992) where 

individual deep convective storms are not fully resolved. Without the use of hybrid 

convection parameterizations, greater emphasis falls on the cloud microphysics 

component, in particular, to handle the effects of thunderstorms. Accordingly, the 

opportunity to account for model error by varying the microphysics has been opened. 

Other physics components, such as planetary boundary layer, radiation, and land-
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atmosphere exchange (also referred to as the land-surface model) are also important 

subgrid scale physical processes. Research into accounting for model error by varying 

these physics components in convective-scale ensembles is relatively new, although 

there have been many studies over the past several years (e.g., Bouttier et al. 2012; 

Johnson et al. 2011ab; Johnson and Wang 2012, 2013; Kong et al. 2007, 2011; Leoncini 

et al. 2010; Romine et al. 2014; Ropnack et al. 2013; Xue et al. 2008, 2009). However, 

the sources of model error are commonly lumped together in prior studies. The research 

in this dissertation isolates the impact of accounting for sources of model error from 

separate physics components, specifically, microphysics and land-surface model. 

 There remains much research to be conducted on specific methods for 

accounting for error from the microphysics. Many previous studies have indicated the 

sensitivity of convective-scale NWP forecasts to microphysics scheme. In particular, 

simulations of supercell thunderstorms and squall lines have been found to be sensitive 

to the complexity of the microphysics scheme (Morrison et al. 2009; Dawson et al. 

2010; Bryan and Morrison 2012; Putnam et al. 2014), the value of particle size 

distribution parameters (Gilmore et al. 2004; Snook and Xue 2008; Tong and Xue 

2008), and treatment of specific water phase change processes (Morrison and Milbrandt 

2011). However, research is absent on which of these particular methods of accounting 

for microphysics uncertainty in a convective-scale ensemble provides better 

probabilistic forecasts of deep moist convection. 

 Research on accounting for uncertainty in the land-surface model (LSM) 

component for convective-scale ensemble forecasts is generally nonexistent. Many prior 

studies on LSMs have focused on implementation of changes and improvements to 
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individual schemes, with research aimed at global-scale and long-term forecasting (e.g., 

the Project for Intercomparison of Land-surface Parameterization Schemes; Henderson-

Sellers et al. 1996) rather than high-resolution, short-term forecasting. Other research 

looking at LSM uncertainty in storm-scale forecasts have concentrated on the soil state 

uncertainty rather than the physical processes within the schemes (e.g., Sutton et al. 

2006 and Aligo et al. 2007). LSM uncertainty has been accounted for to some degree in 

past iterations of the SSEF for the NOAA/HWT SFE (e.g., Xue et al. 2011). However, 

the degree to which the uncertainty has been accounted for is rather limited, and 

probably does not adequately reflect the full degree of uncertainty present within the 

LSM component. Therefore, more thorough research into methods for perturbing the 

LSM component in a storm-scale ensemble is warranted. 

 Finally, an investigation into accounting for an additional type of model error 

called stochastic model error is presented. Stochastic model error is meant to account 

for subgrid-scale uncertainty that is not, or cannot, be represented by existing physical 

parameterization schemes. Schemes using random numbers have thus been developed 

to attempt to account for this type of error. Much of the preliminary work on accounting 

for stochastic model error was conducted using the ECMWF ensemble system (e.g., 

Buizza et al. 1999; Shutts 2005; Berner et al. 2009) as an example. It may seem silly to 

use random numbers in a weather forecast, but even Edward Lorenz recognized the 

utility in random number processes in the 1970s (Lorenz 1975). Research conducted so 

far on stochastic model error has used global-scale models which do not resolve 

convective-scale processes. This fact has motivated the testing of one particular 

stochastic model error scheme in a storm-scale ensemble. 
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 These three major topics regarding model error sources in a storm-scale 

ensemble are covered in this dissertation, with one chapter devoted to each. Methods of 

verification, a very important aspect of determining optimal ensemble design, are 

presented in Chapter 2. In Chapter 3, separate methods for accounting for microphysics 

uncertainty are compared. In Chapter 4, a stochastic kinetic energy backscatter scheme 

to account for random errors is discussed. In Chapter 5, methods for accounting for 

land-surface model uncertainty are discussed. Chapter 6 provides a closing discussion 

on what has been learned from these investigations. 
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Chapter 2. Forecast Verification 

2.1 Introduction 

 Verification is a critical component to the forecast process despite being 

performed after the associated meteorological event has passed. Forecasts must be 

vetted for their accuracy so their value to users can be determined. Verification is also 

the best means by which forecast systems (whether human, machine, or hybrid) can be 

compared. Verification is not a simple process. Verification is also not without its 

uncertainties. There are many different methods of verifying a given forecast, especially 

when considering high-resolution forecasts. Many of the common methods, as well as 

others used in this dissertation, are described below. 

2.2 Essential probabilistic verification metrics 

 Perhaps the simplest verification method is based on the difference between the 

forecast value and the verifying value, called simply, error. Ideally, the comparison 

should be made between the forecast and the true atmospheric state. Since the true 

atmospheric state is never known, an observation or analysis (from a very short range 

forecast or interpolation operator) is used as a substitute. Clearly, error at a single point 

in space or time does not provide much information about the overall quality of a 

forecast. Therefore, mean error – typically called bias – is calculated over a reasonably 

sized spatiotemporal domain: 

 𝑏𝑖𝑎𝑠 =
1

𝑁
∑ 𝑓𝑖 − 𝑜𝑖

𝑁

𝑖=1

 (2.1). 
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where N is the number of spatiotemporal points over which the bias is computed, f 

represents a forecast value, and o represents a verifying value. The sign of the bias is 

very useful in determining deficiencies in the forecast. The absolute value of the 

summand can also be used to calculate the mean absolute error, in which sign does not 

matter. However, a simple and strictly proper scoring rule that is commonly used is the 

mean squared error, in which the summand in (2.1) is squared. The root mean square 

error (RMSE) results when taking the square root of the result: 

 𝑅𝑀𝑆𝐸 = √
1

𝑁 − 1
∑(𝑓𝑖 − 𝑜𝑖)2

𝑁

𝑖=1

 (2.2). 

The mean squared error approach can be applied to probabilistic forecasts. In this case, f 

and o are restricted to the probability range [0,1] and the radical is removed, resulting in 

the Brier score (BS; Brier 1950; eqn. 2.3), perhaps the most common method of 

verifying probabilistic forecasts. The Brier score can be arithmetically decomposed into 

three terms as follows: 

𝐵𝑆 ≡
1

𝑀
∑(𝑓𝑖 − 𝑜𝑖)2

𝑀

𝑖=1

=
1

𝑀
∑ 𝑁𝑘(𝑓𝑘 − 𝑜𝑘̅̅ ̅)2 −

1

𝑀
∑ 𝑁𝑘(𝑜𝑘̅̅ ̅ − 𝑜̅)2

𝐾

𝑘=1

+ 𝑜̅(1 − 𝑜̅)

𝐾

𝑘=1

 

 = 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (2.3). 

In the decomposition, M refers to the number of independent forecasts, K the number of 

probability categories with values defined as 𝑓𝑘 =
𝑖

𝐾
 ∀ 𝑖 ∈ [0,1, … , 𝐾 − 1, 𝐾] 

(equivalent to the number of ensemble members plus one), Nk is the number of 

occurrences of forecast probability fk, 𝑜𝑘̅̅ ̅ is the conditional observed frequency for 

forecasts of probability fk, and 𝑜̅ is the climatological frequency of occurrence of the 

event. The first term on the RHS of (2.3) is the mathematical expression for reliability. 
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The second term represents resolution, and the third term is called uncertainty and is a 

function only of the climatology of the event, and is independent of the forecast system. 

It can be shown that the Brier skill score (BSS), which is a normalized BS compared to 

that from a reference forecast, can be expressed as 

 𝐵𝑆𝑆 =
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
 (2.4). 

Unlike the BS which is 0.0 for a perfect forecast and has no upper limit, the BSS is 1.0 

for a perfect forecast, 0.0 for a forecast that is identical in quality to the reference, and 

negative for a forecast that is poorer than the reference. When the reference forecast is 

climatology, the BSS gives an indication of whether the forecast system has any skill 

relative to climatology. Since BSS = 0 implies resolution and reliability are the same, a 

“no skill” line can be drawn on an attributes diagram that represents half the distance 

between perfect reliability and zero resolution (Fig. 2.1). All three of the BS 

components can be visualized on an attributes diagram. An inset showing the 

distribution of fk can be added, which indicates the amount of weight the values at any 

point contribute to either component. 

 A rank histogram is constructed by ordering ensemble members and considering 

the space between each consecutive pair of members as bins. Therefore, a rank 

histogram has N+1 bins for N ensemble members. A count is added to a bin when the 

verifying value falls in the space between the corresponding pair of ensemble members 

(Fig. 2.2). A large number of samples/forecasts are needed to obtain a robust estimate of 

the ensemble quality using a rank histogram. The shape of the rank histogram provides 

an indication of ensemble performance (Hamill 2001). The ideal rank histogram is 

perfectly flat, indicating a proper distribution of ensemble members where the verifying 
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value is equally likely to be any one of the ensemble members, meaning any of the 

ensemble members are a possible representation of the truth. The rank histogram for a 

biased ensemble contains an uneven distribution of frequency mass between the left and 

right halves with the specific shape (e.g., linear slope, local maximum, or the largest 

counts in the outermost bin) reflecting the severity and consistency of the bias. A “U-

shaped” rank histogram, where the outermost bins have the largest counts, indicates an 

ensemble with too little variability (aka, underdispersive). Conversely, an upside-down-

U-shaped rank histogram, with most counts towards the middle of the rank histogram, 

indicates an ensemble with too much spread (overdispersive). 

2.3 Contingency table verification 

 A large number of commonly used verification metrics require a contingency 

table which also requires dichotomous forecasts. Dichotomous forecasts are those for 

which the forecast can be reduced to a “yes” or “no” that a meteorological event will 

occur. For continuous fields, this can be done by applying a threshold value to be 

exceeded or not exceeded. The corresponding verification value is also “yes” or “no” 

regarding whether the event actually occurs or the threshold value is exceeded. A 

contingency table contains the frequency of the four possible scenarios involving 

dichotomous forecast verification (Table 2.1). 

Table 2.1. A 2 x 2 contingency table for dichotomous forecasts. 

 forecast: yes forecast: no 

observation: yes hit (A) miss (B) 

observation: no false alarm (C) correct null (D) 
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Counts are derived from each grid point where the forecast and observation fields are 

both valid. Contingency table metrics used for verification in this dissertation are 

defined below. 

2.3.1 Probability of detection (POD) 

 
𝑃𝑂𝐷 =  

𝐴

𝐴 + 𝐵
 (2.5) 

 The probability of detection is defined as the fraction of observed events that 

were forecast to occur. POD ranges from 0.0 (no observed events were forecast) to 1.0 

(each event was forecast to occur). A higher POD corresponds to a more accurate 

forecast. 

2.3.2 Probability of false detection (POFD) 

 𝑃𝑂𝐹𝐷 =
𝐶

𝐶 + 𝐷
 (2.6) 

 The probability of false detection is defined as the ratio of the number of events 

that were incorrectly forecast to occur to the number of times the event did not occur. 

Like POD, POFD also ranges from 0.0 to 1.0. However, unlike POD, a perfect forecast 

has a POFD of 0.0. POFD is sometimes confused with the false alarm rate, defined as 

the ratio of the number of events that were incorrectly forecast to occur to the number of 

times the event did occur. The false alarm rate was not used in this dissertation. 

 The POFD can be combined with the POD and plotted graphically to create a 

Receiver Operating Characteristic (ROC) curve (Mason 1982; Fig. 2.3), which is a 

method of verifying probabilistic forecasts. Typically the area under the ROC curve is 

calculated to integrate the contribution from each forecast threshold. Since probabilistic 

thresholds of ≤0% (every forecast is a “yes”) and >100% (every forecast is a “no”) are 
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included to fill the real number space and complete the ROC curve, a forecast with no 

skill has an area of 0.5. ROC areas range from 0.0 to 1.0, with a perfect forecast having 

a ROC area of 1.0. 

2.3.3 Frequency bias 

 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑖𝑎𝑠 =
𝐴 + 𝐶

𝐴 + 𝐵
 (2.7) 

 Frequency bias is defined as the ratio of the number of events forecast to occur 

to the number of events that occurred. Frequency bias can also be thought of as an areal 

bias in the context of the area of a forecast object or areal coverage of an event above 

some threshold. Frequency bias ranges from 0.0 to infinity, with a perfect forecast 

having a frequency bias of 1.0. 

2.3.4 Equitable threat score (ETS) 

 
𝐸𝑇𝑆 =

𝐴 − 𝑟

𝐴 + 𝐵 + 𝐶 − 𝑟
 

 

(2.8a) 

 
𝑟 =

(𝐴 + 𝐶)(𝐴 + 𝐵)

𝐴 + 𝐵 + 𝐶 + 𝐷
 (2.8b) 

 The equitable threat score is a threat score with adjustments made for getting 

“yes” forecasts correct by random chance, represented by r. ETS ranges from -⅓ to 1.0, 

with  any value less than 0.0 indicating “no skill” relative to a random forecast. There is 

a similar score that accounts for achieving correct “no” forecasts by chance also, called 

the Heidke skill score, but it is not commonly used in verifying precipitation forecasts 

from mesoscale and storm-scale models, and was not used in this dissertation. 
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2.4 Neighborhood verification 

 It has been shown that traditional verification metrics such as mean error, 

RMSE, and ETS may not adequately reflect the true accuracy of high-resolution 

forecasts compared to coarser-resolution forecasts (Mass et al. 2002). This is because 

these scores can be very sensitive to small displacement errors, both in space and time, 

of features that may otherwise be subjectively judged to be skillfully forecast. 

Ahijevych et al. (2009) discusses this issue further and reviews other methods of 

verification that may be more appropriate for high-resolution QPF verification that is 

performed throughout this dissertation. The neighborhood approach is used heavily as 

the chosen method of alternative verification throughout this dissertation (Ebert 2009; 

Schwartz et al. 2010). Some of the verification metrics discussed in section 2.3 can be 

extended to a neighborhood. 

 The ETS can be extended to neighborhood by allowing hits, misses, and false 

alarms to be determined using a neighborhood around each grid point. Clark et al. 

(2010b) provide more details and examples. NETS is best used to verify deterministic 

forecasts rather than ensemble mean forecasts, especially for feature-based fields like 

precipitation and reflectivity (A. Clark 2015, personal communication). 

 A ROC curve can be constructed using probabilistic forecasts based on spatial 

and/or temporal neighborhoods either instead of, or in addition to, ensemble members. 

  Roberts and Lean (2008) and Schwartz et al. (2010) introduce the fractions skill 

score (FSS), the neighborhood based analog to the BSS. The FSS is defined as 

 𝐹𝑆𝑆 =
𝐹𝐵𝑆𝑤𝑜𝑟𝑠𝑡 − 𝐹𝐵𝑆

𝐹𝐵𝑆𝑤𝑜𝑟𝑠𝑡
 (2.9a), 
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where   

 𝐹𝐵𝑆 =
1

𝑁
∑(𝑁𝐹𝑖 − 𝑁𝑂𝑖)

2

𝑁

𝑖=1

 (2.9b), 

where NFi and NOi are neighborhood probabilities of an event, the former including 

spatiotemporal coverage in the forecast as well as ensemble coverage, and the latter 

using only observed coverage, at each grid point, and N is the total number of grid 

points. The FBS is essentially identical to the BS except for the fact that the observed 

value is allowed to take on values other than 0.0 and 1.0. In theory, the “worst” 

(highest) FBS occurs when there is absolutely no overlap between forecast and 

observed neighborhoods with a nonzero probability for a given event. In that case, one 

of the terms in the square of the summand can be eliminated, giving 

 𝐹𝐵𝑆𝑤𝑜𝑟𝑠𝑡 =
1

𝑁
[∑ 𝑁𝐹𝑖

2

𝑁

𝑖=1

+ ∑ 𝑁𝑂𝑖
2

𝑁

𝑖=1

] (2.9c). 

Therefore, like the BS and BSS, the FBS and FSS of a perfect forecast is 0.0 and 1.0, 

respectively, whereas negative FSS values indicate poorer performance compared to a 

reference forecast, in this case, the poorest forecast field possessing the same spatial 

forecast coverage, but rearranged such that the forecast probability at any point is as far 

from the truth as possible. In essence, the FBS measures the difference in 

spatiotemporal coverage of neighborhood probability forecasts and observations and, 

like other neighborhood based verification metrics, partially rewards forecasts for being 

“close” to observations without requiring the forecast location to be perfect. Roberts 

and Lean (2008) also discuss how the FSS can be used alternately to determine at which 

spatial scales a forecast becomes of sufficient quality, with comparisons made using the 

smallest neighborhood size at which FSS exceeds a certain value. In this dissertation, a 
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simple comparison between neighborhood coverage between differently configured 

ensembles is preferred, so FBS is used preferentially to FSS. 

2.5 Object based verification 

 Another alternative method of verification is object based verification. Object 

based verification is best applied to fields such as precipitation or radar reflectivity that 

are more feature based (i.e., contain small objects against a background of zero values) 

rather than plainly continuous fields such as temperature or geopotential height. The 

reason for using object based verification measures is the same as for using 

neighborhood verification measures. The choice of which to use is more arbitrary since 

well-established methods of either neighborhood or object based verification have yet to 

emerge. The general formulation of object based verification is to identify features or 

objects in a given field. Objects are identified generally based on a fuzzy logic engine, 

and objects in the forecast are compared to objects in observations. A wide variety of 

metrics can be computed based on the comparison between forecast and observed 

objects. The Method of Object based Diagnostic Evaluation is a popular object based 

verification tool (Davis et al. 2006). It has been used for storm-scale verification, both 

in a deterministic sense (e.g., Duda et al. 2013) and in an ensemble sense (e.g., Johnson 

and Wang 2012). 

 I chose arbitrarily not to use object based verification in this dissertation. 
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Figures 

 

 
 

Fig. 2.1. Example reliability diagram for 0-12 hour probabilistic forecasts of 

measureable precipitation. Reliability is visualized as the sum of the vertical distances 

between the forecast values (black line) and perfect reliability (cyan line), while 

resolution is the sum of the vertical distances between the forecast values and 

climatology (horizontal light gray line). A forecast histogram is included in the inset. 
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Fig. 2.2. Example rank histogram for a 20-member ensemble over 10,000 random 

forecasts. 
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Fig. 2.3. Example ROC curve using the same forecast data used for Fig. 2.1. 

Percentages at each point refer to the probability threshold used to calculate each 

POD/POFD pair. 
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1
Chapter 3. Comparing Methods of Accounting for Microphysics 

Uncertainty  

3.1 Introduction 

 Research on methods of perturbing model physics in convective-scale ensemble 

forecasts is young. Although research related to convective-scale ensemble prediction 

has increased in the last few years (e.g., Kong et al. 2006, 2007ab; Xue et al. 2007; 

Mittermaier 2007; Clark et al. 2008, 2010; Schwartz et al. 2010; Vie et al. 2011; 

Johnson et al. 2011ab; Johnson and Wang 2012, 2013; Johnson et al. 2013ab; Ropnack 

et al. 2013; Caron 2013), many questions addressing the optimal design of convection-

allowing model ensembles remain. Perhaps the most actively researched convective-

scale features are those that produce precipitation. Specifically, convective storms and 

mesoscale convective systems, which are dominantly warm-season phenomena, are 

explicitly simulated without cumulus parameterization. 

 Warm-season QPF skill has historically been poor compared to that from the 

cold season (Ralph et al. 2005). Additionally, growth rates of forecast errors for 

convective scales can be highly nonlinear (Hohenegger and Schar 2007). Therefore, 

extensive research that optimizes convective-scale ensemble model forecasting to 

improve warm-season probabilistic quantitative precipitation forecasting is needed.  

 There are many ways to address model error in an ensemble. One particular way 

is to represent error stochastically (Buizza et al. 1999; Berner et al. 2009). Another way 

is by using multiple models and varied physics options within a given model (e.g., 

Doblas-Reyes et al. 2000; Hou et al. 2001; Ebert 2001; Hagedorn et al. 2005; Xue et al. 

                                                 
1
 This chapter is published as Duda, J. D., X. Wang, F. Kong, and M. Xue, 2014: Using varied microphysics 

to account for uncertainty in warm-season QPF in a convection-allowing ensemble. Mon. Wea. Rev., 
142, 2198–2219. 
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2007, 2008, 2009, 2011; Kong et al. 2007b, 2010, 2011, Candille 2009; Berner et al. 

2011; Hacker et al. 2011; Charron et al. 2011; Johnson et al. 2011ab; Johnson and 

Wang 2012). Since convection is explicitly represented by microphysics 

parameterizations in high resolution NWP simulations, warm-season QPF can be very 

sensitive to uncertainties in microphysics (MP) parameterizations. Earlier studies have 

investigated the sensitivity of convective-scale features like supercell thunderstorms and 

squall lines to complexity of, and the values of parameters used in, particle size 

distributions in microphysics schemes (Gilmore et al. 2004; Snook and Xue 2008; Tong 

and Xue 2008; Morrison et al. 2009; Dawson et al. 2010; Putnam et al. 2013). Great 

sensitivity of accumulated precipitation and cold pool size and intensity to parameters 

that describe rain, graupel, and hail size distributions has been found. It has also been 

found that simulations using multi-moment MP schemes produce more realistic 

reflectivity structures and more realistic stratiform precipitation regions in squall lines. 

However, most of these studies were conducted in an idealized and/or deterministic 

framework. 

 In this chapter the use of varied microphysics in a convection-allowing forecast 

in an ensemble and real data framework is examined. Two approaches to addressing 

model error from uncertainties in the microphysics are tested. In one approach the 

values of some parameters within a single MP scheme are varied. This way one can 

address uncertainty by sampling the distribution of possible values of parameters 

significant to cloud and precipitation physics. The perturbed parameters in this study 

include the intercept parameters for precipitation particle size distributions (PSD) and 

graupel density. The resultant ensemble is hereafter denoted as perturbed parameter 
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microphysics (PPMP). A single-moment MP scheme is used for testing this approach. 

These parameters were chosen based on earlier studies that examined the uncertainty 

ranges of PSD-related parameters and showed great sensitivities of modeled storm 

dynamics and precipitation forecasts to these parameters (Gilmore et al. 2004; Snook 

and Xue 2007; Tong and Xue 2008; Jung et al. 2010; Yussouf and Stensrud 2012). In 

the second approach separate MP parameterizations are used. Not only can this 

approach address uncertainty in parameter values, but it can also address uncertainty in 

the microphysical processes within the parameterization schemes. The resultant 

ensemble is hereafter denoted as mixed microphysics (MMP). Most of the MP 

parameterizations used in the MMP ensemble predict two moments of at least one of the 

precipitating species. Therefore this experiment also enables an investigation into 

whether an ensemble using various sophisticated MP parameterizations is superior to 

one using simpler and more computationally efficient MP parameterizations with 

perturbed parameters. This research presents a step in the investigation of how to best 

sample the microphysics errors in a convection-allowing ensemble for warm-season 

QPF. 

 The purpose of this research is two-fold. One purpose is to examine the 

effectiveness of different approaches to accounting for model microphysics error in 

convective-scale PQPF via conducting various verifications. The mixed results from a 

comparison of the MMP and PPMP ensembles as shown later motivated investigation 

of the combination of the approaches; the combination of the MMP and PPMP 

ensembles formed a third ensemble, called the pooled ensemble. The second purpose is 

to examine and compare the systematic behaviors of the various microphysical 
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variables over a broad range of cases for the MP schemes that comprise the MMP and 

PPMP ensembles in convection-allowing forecasts to facilitate ensemble design in the 

future. 

3.2 Experimental setup 

3.2.1 Model description 

 Version 3.2.1 of the Weather Research and Forecasting (WRF) model, 

Advanced Research WRF (ARW) dynamic core (Skamarock et al. 2008), was used as 

the NWP model. The WRF-ARW was the primary NWP model used in the Storm-Scale 

Ensemble Forecast system (SSEF) conducted by the Center for Analysis and Prediction 

of Storms and used in the NOAA Hazardous Weather Testbed (HWT) 2011 Spring 

Experiment (Kong et al. 2011). The 2011 Spring Experiment extended from late April 

to early June, which included 35 cases (generally one case each weekday from 27 April 

to 10 June; Kong et al. 2011). Forecasts were initialized at 0000 UTC and ran for 36 

hours over the contiguous United States model domain (see Fig. 3.1).  

 Ten members were designed to investigate which approach to addressing model 

error due to microphysics uncertainty results in a more skillful ensemble. All other 

aspects of the model configuration, including initial and lateral boundary conditions, as 

well as other physics parameterizations, were identical among the ten members. The 

members used six different MP schemes including Thompson (Reisner et al. 1998; 

Thompson et al. 2008), Ferrier (Ferrier et al. 2002, 2003; Ferrier 2005), Morrison 

(Morrison et al. 2009), Milbrandt-Yau (M-Y; Morrison and Milbrandt 2011), WRF 

single-moment – 6 class (WSM6; Hong and Lim 2006a), and WRF double-moment – 6 

class (WDM6; Lim and Hong 2010). Relevant characteristics and parameters of the 
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members and MP schemes are given in Table 3.1 and a description of the differences 

between the members is given in section 3.6. The MMP ensemble contained six 

members which used the Thompson, Ferrier, M-Y, Morrison, WDM6, and WSM6 

schemes. The PPMP ensemble contained five members, each of which used the WSM6 

scheme but with different values of the rain and graupel intercept parameter of the 

respective PSDs and different graupel densities. The graupel density ranges between 

values typical of graupel and hail, while the intercept parameters take values within 

observed uncertain ranges (see discussions in Tong and Xue 2008 on the uncertain 

ranges of values). The WSM6 scheme was a member of both ensembles. To investigate 

whether a combination of the above two approaches to addressing microphysics error is 

superior to either approach alone, a third ensemble – the “pooled” ensemble – was 

comprised of members from the PPMP and MMP ensembles. 
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Table 3.1. Description of the ten SSEF members used in this study. The first six 

members (in bold) comprised the MMP ensemble, whereas the bottom five members 

(in italics) comprised the PPMP ensemble. 

 

Member name and 

scheme (perturbation) 

# of 

classes
! 

Double 

moment 

species 

N0r 

(m
-4

) 

N0g 

(m
-4

) 

ρg 

(kg 

m
-3

) 

αr αg 

Thompson 6 rain, ice - varies 400 0 0 

Ferrier+
o
 3 - 8x10

6 
- - - - 

Morrison 6 

rain, 

graupel, 

snow, ice 

- - 400 0 0 

Milbrandt-Yau* 7 all but vapor - - 400 2 0 

WDM6 6 
rain, cloud 

water 
- 4x10

6 
500 1 0 

WSM6 (control) 6 - 8x10
6
 4x10

6
 500 0 0 

WSM6 (M1) 6 - 8x10
6
 4x10

4
 913 0 0 

WSM6 (M2) 6 - 8x10
7
 4x10

6
 500 0 0 

WSM6 (M3) 6 - 8x10
5
 4x10

2
 913 0 0 

WSM6 (M4) 6 - 8x10
5
 4x10

3
 913 0 0 

*Milbrandt-Yau scheme adds hail as a separate class with ρh = 900 kg m
-3

 and αh = 3 
o
Ferrier+ scheme treats all condensate species as one 

!
Water classes (species) include vapor, liquid cloud drops, frozen cloud ice particles, 

rain, snow, graupel, and hail. Hail was the least common species included. 

 

 The initial conditions were generated by the Advanced Regional Prediction 

System three-dimensional variational data assimilation and cloud analysis system (Gao 

et al. 2004; Xue et al. 2003; Hu et al. 2006) using 0000 UTC operational 12 km North 

American Mesoscale (NAM) model analyses as the background field. The data 

assimilated include Weather Surveillance Radar – 1988 Doppler radial velocity and 

reflectivity, surface pressure, horizontal wind, temperature, and specific humidity from 

the Oklahoma Mesonet, surface aviation observations, and wind profiler data. The 

boundary conditions were provided by 12-km NAM model forecasts initialized at 0000 

UTC. The Noah land-surface model (Ek et al. 2003), and the MYJ boundary-layer 
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parameterization (Mellor and Yamada 1982; Janjić 2002) were used for all ten 

members. 

3.2.2 Verification methodology 

 Verification was performed over a portion of the model domain containing the 

central and southern United States (Fig. 3.1). This domain was chosen because the 

environment in this region during the late spring and early summer supports organized 

and intense convection with tight spatial gradients. Therefore the verifications in this 

region are a representative evaluation of the skill of convective-scale warm-season QPF. 

A variety of verification metrics were used, including grid-point-based, contingency-

table-based, and neighborhood-based metrics. These metrics are introduced as they are 

encountered. Probabilistic verification was computed using uncalibrated model output. 

Therefore, probability of precipitation (PoP) was computed as the proportion of 

members in which a specified 1-hour precipitation amount threshold
2
 was exceeded. 

PoP values across the verification domain constituted the probabilistic QPFs (PQPF) 

verified in this study. 

 Verifying precipitation data were provided by the National Mosaic and Multi-

Sensor Quantitative Precipitation Estimation (QPE) project (NMQ) of the National 

Severe Storms Laboratory (Zhang et al. 2011). The NMQ QPEs were regridded to the 

verification domain using bilinear interpolation. Verifications were performed on one-

hour accumulated precipitation fields. The NMQ QPEs have been used in other studies 

to verify storm scale precipitation forecasts (e.g., Johnson and Wang 2012, 2013; 

Johnson et al. 2013ab). 

                                                 
2
 The thresholds tested included, in mm, 0.254, 2.54, 6.35, 12.7, and 25.4, which convert to the 

following in inches: 0.01, 0.10, 0.25, 0.50, and 1.00. 
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The MMP, PPMP, and pooled ensembles contained six, five, and ten members, 

respectively. Earlier studies have shown that verification scores can be sensitive to 

ensemble size (Richardson 2001). The purpose of the study is to investigate different 

methods of accounting for microphysics scheme errors in a storm-scale ensemble. To 

minimize the impact of different ensemble sizes on this purpose, a single ensemble size 

was used for verification. Since the PPMP ensemble had the smallest size at five 

members, five members were selected randomly from each of the MMP and pooled 

ensembles to constitute a resample. One-hundred such resamples were obtained for each 

of the MMP and pooled ensembles.  The verification scores were averaged over these 

resamples for the MMP and pooled ensembles before being compared with the scores 

from the PPMP ensemble. The choice of 100 resamples follows earlier studies using 

bootstrap resampling techniques in statistical significance tests (e.g., Wang and Bishop 

2005). In addition, each five-member resample from the pooled ensemble was selected 

such that each resample was randomly composed of either two or three members from 

the MMP and PPMP ensembles to ensure each of the MMP and PPMP ensembles were 

equally represented in the resample of the pooled ensemble. 

3.3 Verification of quantitative precipitation forecasts 

3.3.1 Verification of individual members 

 The existence of particularly skillful or unskillful members could impact the 

overall ensemble performance (Ebert 2001). Therefore, individual members were first 

verified. Fig. 3.2 shows the average hourly precipitation forecast errors. A periodic 

trend, featuring local maxima around 0000 UTC (0- and 24-hour forecasts) was 

observed. This trend has been commonly observed in the SSEF in the past (e.g., Clark 
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et al. 2009; Johnson and Wang 2012) and in other verification scores in this chapter. 

The relative maxima around forecast hours 0 and 24 identify “convection maxima”, or 

diurnal peaks in convective activity around 0000 UTC, which corresponds to 7 or 8 PM 

local time in the central and eastern U.S. The convection maximum around forecast 

hour 0 will hereafter be referred to as the first convection maximum, while that around 

forecast hour 24 will be called the second convection maximum. The convection 

minima, on the other hand, refer to the reduced convective activity centered near 

forecast hours 12 and 36. 

Significant variation among members accompanied the mean precipitation errors 

in the first few forecast hours (i.e., f01
3
-f04) as each member adjusted from the initial 

conditions that contained cloud and hydrometeors created by the cloud analysis with 

radar reflectivity data assimilation (Fig. 3.2). At the first convection maximum, the 

Thompson and M-Y schemes produced too little precipitation whereas all other 

schemes produced too much. The overproduction was very large in the WDM6, WSM6 

(control), and WSM6-M1 schemes. All members produced too little precipitation during 

the convection minima. During the second convection maximum large variation was 

found in the mean errors as some members produced too much precipitation (all from 

the PPMP ensemble) whereas others produced too little. In particular the WSM6-M3 

and WSM6-M4 members had a larger positive bias in the f18-f24 period while the M-Y 

scheme had a much larger negative bias in the f18-f30 period. 

The frequency biases (the ratio of the number of grid points at which forecast 

precipitation exceeded a threshold to the number of grid points at which precipitation 

was observed to have exceeded that threshold) of the WSM6-M3 and WSM6-M4 

                                                 
3
 f01 means forecast hour 1. This symbolism will be used throughout the remainder of the chapter. 
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schemes were not appreciably higher than those of other members at f18-f24 for lower 

thresholds (Fig. 3.3), but they increased significantly for the higher thresholds, 

indicating those members over-forecast heavy precipitation episodes. The overall 

negative error for the M-Y scheme is consistent with its frequency biases, which were 

almost exclusively below 1.0, indicating a consistent trend to under-forecast 

precipitation at all thresholds. The increased variability in frequency biases among the 

different schemes at high thresholds is related to the counts in each cell of the 2x2 

contingency table. It is rare for 12.7 mm or 25.4 mm of precipitation to fall in one hour, 

occurring only within the cores of stronger thunderstorms. Therefore, the contingency 

table has small numbers of hits, false alarms, and misses at these thresholds – a few 

thousandths of a percent of the total number of grid points at which verification was 

performed. Since frequency bias depends on the number of hits, false alarms, and 

misses, seemingly large differences in frequency bias can appear between different 

schemes. 

 Regarding equitable threat scores (ETS), a large decrease in skill from very high 

values within the first one or two forecast hours was observed (Fig. 3.4). This higher 

skill at early forecast hours can be attributed to the initialization of pre-existing 

convection within the initial condition resulting from the assimilation of radar data (e.g., 

Xue et al. 2008; 2013), the effects of which wore off quickly. The benefits to 

assimilating radar data for very short range convective scale QPF on the order of a few 

hours have been observed in previous SSEF forecasts (e.g., Johnson and Wang 2012; 

Kong et al. 2011; Xue et al. 2008, 2009, 2011, 2013). ETSs were very similar among 

the members with a few exceptions; the Thompson and Morrison schemes had higher 
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ETSs than the other members for most forecast hours at the lightest threshold. The 

improved performance of those schemes dwindled with increasing threshold. No 

member appeared to perform worse except for the WDM6 scheme around f30. ETSs for 

the PPMP members were tightly clustered, and no single member stood out except for 

around f06, when the WSM6-M3 and WSM6-M4 schemes were slightly inferior at 

moderate thresholds. ETSs were highly variable at the highest thresholds, owing to the 

decreased numbers of hits, false alarms, and misses in the contingency table due to 

limited samples. 

 Verification metrics based on grid-point values such as the ETS may give a 

misleading interpretation of the skill of high-resolution precipitation forecasts due to the 

small horizontal scale of features compared to the horizontal scale of acceptable spatial 

errors (Baldwin et al. 2001). For that reason it is more appropriate to consider 

neighborhood-based verification metrics. One such measure of neighborhood-based 

verification is applied to the Brier score and is referred to as the fractions Brier score 

(FBS; Roberts and Lean 2008; Schwartz et al. 2010). Despite being a probabilistic 

verification metric, the FBS can be computed for deterministic forecasts by constructing 

probabilistic forecasts based on spatial neighborhoods (Theis et al. 2005). A square 

neighborhood of radius 48 km (12 grid points) was used for all verifications in this 

chapter applied to a neighborhood (Johnson and Wang 2012), including those for both 

deterministic and ensemble forecasts. Thus, FBS is a mean square difference between 

the forecast PoP in a spatial neighborhood and the proportion of observed precipitation 

events in a neighborhood around a given point. A diurnal cycle was present in the FBSs, 

and the highest FBSs (poorest performance) occurred at the second convection 
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maximum for low thresholds and at the first convection maximum for the highest 

thresholds (Fig. 3.5). The Thompson and M-Y schemes were commonly the best for a 

given threshold and forecast lead time. However, the WSM6-M3 and WSM6-M4 

schemes had better FBSs around the second convection maximum at the 2.54-mm 

threshold. The WDM6 scheme commonly had the worst FBSs around the second 

convection maximum, except at the highest threshold, indicating consistently poor 

performance of that member around that time of forecast. Among the PPMP members, 

the WSM6-M2 scheme typically had the worst FBS around the convection maxima, 

while the WSM6-M3 scheme frequently had the worst FBS away from the convection 

maxima. 

 The area under the relative operating characteristic curve (ROC; Mason 1982) 

for each member was computed using neighborhood forecasts verified against single-

point observations. The ROC areas indicate that the M-Y scheme was commonly the 

worst performing scheme, especially around the second convection maximum (Fig. 

3.6). The Thompson and Morrison schemes had larger (better) ROC areas for the lower 

thresholds, but the WSM6-M3 and WSM6-M4 schemes had larger areas at the highest 

thresholds and for later forecast hours. For the lower thresholds the envelope of scores 

from the MMP ensemble members tended to contain those of the PPMP ensemble 

members, implying more variability in skill within the MMP ensemble than within the 

PPMP ensemble. At higher thresholds, however, the ROC areas of the PPMP ensemble 

members tended to be larger than most of those of the MMP ensemble members. 

 The metrics discussed here indicate that members of the MMP ensemble 

commonly under-predicted both the amount and areal coverage of precipitation, 
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especially at high thresholds. In contrast, members of the PPMP ensemble were 

generally less biased. However, these PPMP members were also generally less skillful, 

with a few exceptions. Superior skill was frequently noted with the Thompson and 

Morrison schemes in agreement with Clark et al. (2012), and inferior performance was 

commonly seen with the WDM6 scheme, although the ordering of skill was somewhat a 

function of metric, forecast lead time, and threshold. The WSM6 scheme frequently 

ranked near the middle of all schemes and near the middle of the WSM6 perturbation 

schemes. 

3.3.2 Verification of the MMP, PPMP, and pooled ensembles 

 All of the following discussion refers to the mean values of verification scores 

from the 5-member resamples except where otherwise noted. The significance of the 

difference was determined using the standard deviation of the scores from the 

resamples, similar to the method used in Wang and Bishop (2005). Here, means 

differing by three standard deviations or more are declared to represent ensembles 

having statistically significantly different skill. The larger value of the standard 

deviations between the ensembles compared was used. After about f04, the magnitude 

of the mean error of the ensembles was around one order of magnitude less than the 

season-average rain amounts per grid point, which ranged from 0.10 to 0.30 mm (Fig. 

3.7b). This was especially true during f12–f27. For early and late forecast hours the 

errors were about of the same order of magnitude as the average precipitation amount at 

each grid point, which indicates that bias at these forecast hours could be significant. 

The ensembles were biased low during f04–f18 and f24–f36 (Fig. 3.7a). The bias was 

variable among different ensembles during f18–f25 and in the first 3 hours of the 
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forecast. For the first 3 hours the ensembles produced too much precipitation, with the 

PPMP ensemble producing the most precipitation and the MMP ensemble being the 

least positively biased. During f21-f23, the PPMP and MMP ensembles had similar 

absolute biases, with the MMP ensemble biased low and the PPMP ensemble biased 

high. During f18-20 and f24-25, the PPMP ensemble was less negatively biased than 

the MMP ensemble. The exceptionally low bias of the M-Y scheme is the leading cause 

of this low bias in the MMP ensemble, as the remaining members of the MMP 

ensemble were less biased during that period. The bias for the pooled ensemble was, as 

expected, between that of the MMP and PPMP ensembles. Around the second 

convection maximum the pooled ensemble had a nearly zero mean error. The bias for 

the full 10-member pooled ensemble was nearly identical to that of the resampled 

pooled ensemble. The same was true for the full 6-member MMP ensemble compared 

to the resampled MMP ensemble. The frequency biases were consistent with the mean 

errors (not shown), regardless of precipitation accumulation thresholds. 

 The reliability of the ensembles was evaluated through examination of rank 

histograms (Hamill 2001). Easily recognizable signatures that represent the dispersion 

and bias characteristics of ensembles can be illustrated by rank histograms. Note that to 

reduce the impact of ensemble size on evaluating the flatness of the rank histogram, 

resampled ensembles with an ensemble size of five were used. The under-dispersive 

nature of all ensembles is apparent (Fig. 3.8). The under-dispersion was generally worse 

during the first 10 forecast hours and better around the second convection maximum. 

The left skew of the histograms is consistent across all forecast hours with varying 

degrees of magnitude. Also, while it has been shown that a composite of signals may 
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result in rank histograms that give a misleading impression of the reliability of an 

ensemble (Hamill 2001), rank histograms computed from a few localized subsets and a 

scattered subset of the domain (counts were obtained from grid points widely separated 

in space) revealed the same signatures as those using all data points. Therefore the 

aggregated signatures are unlikely to be the result of a combination of high bias in some 

regions of the domain and low bias in other regions. Although all ensembles are under-

dispersive, a way of quantifying the extent of under-dispersion is by the proportion of 

values that fall within the outer bins of the histogram normalized by the proportion of 

values expected to be located in each bin of a flat histogram (ext; upper-right corner of 

each panel in Fig. 3.8). The values of ext indicate that the MMP and PPMP ensembles 

were under-dispersive to about the same extent, although the value of ext indicates that 

the MMP ensemble was slightly better than the PPMP ensemble. The value of ext for 

the pooled ensemble is in between that of MMP and PPMP. Note that in this study, the 

ensembles only accounted for the microphysics scheme errors. Early work analyzing the 

SSEF that included perturbations to represent other sources of forecast errors has shown 

flatter histograms (cf. Fig. 8a of Clark et al. 2009; Fig. 15 of Xue et al. 2011). 

 We now consider the neighborhood-based FBS. A diurnal cycle was observed 

with the FBSs. For the highest two thresholds the highest (worst) scores occurred during 

the first convection maximum, whereas for the remaining thresholds the worst scores 

occurred around the second convection maximum (Fig. 3.9). This behavior is identical 

to that seen in the FBSs for the individual members (section 3.3.1). The best FBSs 

occurring at f01-f02 were likely due to the improved initial conditions due to the 

assimilation of radar data. At most thresholds and forecast lead times the MMP 
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ensemble performed better than the PPMP ensemble. The biggest exception was around 

the second convection maximum for the 2.54-mm and 6.35-mm thresholds, when the 

skill of the MMP ensemble was equal to that of the PPMP ensemble. The FBSs of the 

pooled ensemble were generally smaller than those of the PPMP and nearly identical to 

those of the MMP ensemble. The largest difference between the MMP and pooled 

ensembles occurred around the convection maxima at the highest two thresholds where 

the MMP ensemble had statistically significantly better FBSs than the PPMP ensemble. 

The FBSs of the full 10-member pooled ensemble were generally similar to those of the 

resampled pooled ensemble. However, the full 10-member pooled ensemble was 

generally better around the second convection maximum for the lower thresholds, thus 

showing the positive impact from using a larger ensemble during periods of intense 

convective activity at longer lead times. 

 Probabilistic forecasts derived from spatial neighborhoods are further evaluated 

by computing the area under ROC curves. Scores decreased only slightly with 

increasing threshold and forecast hour (Fig. 3.10), and all scores were greater than the 

no-skill value of 0.5. The spread among resampled scores was small. This is probably 

due to the larger number of samples used to compute scores (several thousand for 

neighborhood verification). At the lowest two thresholds the MMP ensemble was 

generally more skillful than the PPMP ensemble. At the highest two thresholds the 

PPMP ensemble was more skillful than the MMP ensemble. At the low thresholds the 

ROC area of the pooled ensemble was nearly identical to that of the MMP ensemble. At 

the high thresholds the ROC area of the pooled ensemble was between that of the MMP 

and PPMP ensemble with better scores than the MMP for most lead times. These results 
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are consistent with the ROC area for the individual members (section 3.3.1). The ROC 

area for the full 10-member pooled ensemble was larger than that for the other 

ensembles at all forecast hours and precipitation thresholds, suggesting the positive 

impact of using a larger ensemble. This result is consistent with Clark et al. (2011).   

 The ensemble verification presented here suggests that the MMP ensemble was 

more skillful than the PPMP ensemble according to FBSs for most lead times and 

thresholds and less skillful than the PPMP at high thresholds according to ROC areas. 

While this result may seem contradictory, each metric assesses different aspects of the 

ensemble PQPF. The FBS measures the mean squared error of the neighborhood PQPF 

relative to the neighborhood coverage of observed precipitation, whereas the ROC 

measures the ability of the ensemble to distinguish between “yes” and “no” forecasts for 

precipitation exceeding a threshold. The pooled ensemble did not outperform the MMP 

or PPMP ensemble except for at a small number of thresholds, forecast hours, and 

metrics. 

  The resampling allowed for an examination of the impact of ensemble size in 

the quality of the forecasts. Differences between the full 6-member and the 5-member 

resampled MMP ensemble were generally imperceptible. However, when differences 

were found it was generally the full 6-member MMP ensemble that was superior. There 

were larger, more noticeable differences between the full 10-member and 5-member 

resampled pooled ensembles than between the full and resampled MMP ensembles. The 

full 10-member pooled ensemble was always better than the resampled pooled 

ensemble. 



43 

 

 The preceding discussion implies that the relative skill of using a combination of 

mixed MP schemes and perturbing parameters within a single MP scheme to sample the 

microphysics errors can be dependent on methods of verification and the precipitation 

thresholds. Using a combination of the two methods generally is no more skillful than 

using either approach separately. Ensemble size seems to have as large an impact on the 

quality of the forecasts as the method used to construct the ensembles. 

3.4 A comparison of the microphysical parameters 

 Microphysics parameters such as the intercept parameters for PSDs and particle 

density have been shown to impact the simulation of convective systems. Specifically, 

Gilmore et al. (2004), Snook and Xue (2008), Dawson et al. (2010), and Morrison and 

Milbrandt (2011) have shown that the dynamics and precipitation patterns in supercells, 

in particular, are sensitive to the values of the rain and hail intercept parameters, graupel 

and hail density, and the number of predicted moments of the PSD for precipitating 

species in bulk microphysics schemes. Motivated by these earlier studies, two methods 

to account for microphysics scheme errors in convection allowing ensembles were 

tested within the CAPS SSEF system in 2011. In the PPMP ensemble, the rain and 

graupel intercept parameters and the graupel density were perturbed within a single 

microphysics scheme. Alternatively, the MMP ensemble contained a variety of 

microphysics schemes. To facilitate developing a strategy to optimally account for 

microphysics scheme errors in the ensemble, in addition to evaluating the ensembles 

using objective verification scores, we examined the systematic behaviors of various 

microphysical variables from the PPMP and MMP ensemble members. The following 

analysis is meant to answer the following questions: How did the prescribed intercept 



44 

 

parameters for rain and graupel in the WSM6 schemes compare to those retrieved from 

the double-moment microphysics schemes? How different are the microphysics 

parameters between single and double-moment schemes? How did the WDM6 and 

WSM6 schemes in particular compare? 

 Using the method discussed in section 3.6, various parameters in these MP 

schemes were retrieved from the prognosed moments’ fields. Parameters were not 

retrieved from the Ferrier+ scheme due to significant differences between that scheme 

and the others regarding the treatment of the water species. Numerous additional 

assumptions regarding the rain and graupel PSDs would be required to retrieve 

parameters from the Ferrier+ scheme. Since the graupel intercept parameter is 

diagnosed from the mixing ratio internally in the Thompson scheme, the graupel 

intercept parameter was not retrieved from it. We chose specifically to examine mean 

mass particle diameter, particle surface area, number concentration, mixing ratio, and 

intercept parameter for the rain and graupel PSDs. The former two parameters serve as 

proxies for the tendencies for rain evaporation and cold pool formation (Dawson et al. 

2010) which can have a large impact on the organization and lifetime of convective 

systems (Rotunno et al. 1988; Snook and Xue 2008). 

 Vertical profiles of horizontally averaged microphysical parameters for rain are 

shown in Fig. 3.11, while those for graupel are shown in Fig. 3.12. We only consider 

rain and graupel since the PPMP ensemble only perturbed the parameters associated 

with these two species. The average was computed over only those grid boxes at which 

the mixing ratio exceeded 10
-6

 kg kg
-1

, a general threshold to distinguish precipitating 

from non-precipitating grid boxes (the counts can be seen in Figs. 3.11f and 3.12f). The 
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profiles were also averaged over all forecast hours. For rain the discussion will focus 

generally below 3 km, a common height of the freezing level during the experiment, 

where rainfall is the dominant precipitation type. On the other hand, the discussion for 

graupel will focus on the lowest 10 km. 

 As pointed out earlier, the prescribed values of intercept parameters in the 

PPMP members were chosen based on values reported in the literature (Snook and Xue 

2008; Tong and Xue 2008; Yussouf and Stensrud 2012). Fig. 3.11d shows that the 

effective rain intercept parameters sampled by the MMP members generally laid in a 

similar range as those prescribed to the members of the PPMP scheme, although that for 

the WDM6 scheme is anomalously high, and the 8x10
5
 m

-4
 value used for the PPMP 

members seems somewhat low. Other microphysical variables such as raindrop size, 

total raindrop surface area, rain number concentration and mixing ratio sampled by the 

MMP members also in general laid in the same range as those in the PPMP ensemble 

(Fig. 3.11). The Morrison scheme was the only scheme to give meaningful results for 

the graupel intercept parameter (Fig. 3.12d), and the values from that scheme line up 

nicely with the values from the unperturbed WSM6 scheme (4x10
6
 m

-4
) except for the 

vertical variation of nearly three orders of magnitude. Except for the Morrison scheme, 

which exhibited different behavior than the other schemes, the WSM6 schemes in the 

PPMP ensemble tended to produce less of the various graupel quantities examined, 

including surface area, number concentration, and mixing ratio (Fig. 3.12). The 

Thompson scheme produced the least graupel mixing ratio, however (Fig. 3.12e). The 

effective graupel intercept parameters retrieved from the Morrison scheme most closely 
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resemble those of the control value of 4 x 10
6
 m

-4
 (Fig. 3.12d), suggesting that the 

perturbed values of the graupel intercept parameters may be too low. 

 Among the single-moment members that comprised the PPMP ensemble, the 

behavior was found to be consistent with the prescribed intercept parameters. WSM6-

M2 was designed to represent small raindrops. For a given mixing ratio, mean drop size 

decreases with increasing intercept parameter. WSM6-M2 was the only scheme for 

which the rain intercept parameter was perturbed high compared to the control value 

(Table 3.1). While the rain mixing ratios are not identical between the single-moment 

members, differences of approximately 1 to 2 orders of magnitude are required for this 

rule to be violated. That was not the case at any level or time in this experiment (Fig. 

3.11e). Similarly, the larger rain drop sizes for WSM6-M3 and WSM6-M4 compared to 

those of the WSM6-M2 and WSM6 (control) schemes are also consistent given that the 

rain intercept parameter for WSM6-M3 and WSM6-M4 is lower than it is for WSM6 

(control) and WSM6-M2. Given the similarity in mixing ratio, it is also sensible that 

WSM6-M2 also had the largest number concentration of rain and the largest total 

raindrop surface area, while WSM6-M3 and WSM6-M4 had smaller number 

concentrations and surface areas. The vertical profiles of rain number concentration and 

raindrop surface area were very similar between pairs of members (e.g., M3 compared 

to M4 and control compared to M1) that used the same set of intercept values because 

these parameters are derived from the only free moment, mixing ratio. Slight 

differences in the mixing ratios correspond to slight differences in these other retrieved 

parameters. Similar arguments apply to the retrieved graupel variables. WSM6-M3 and 

WSM6-M4 were meant to contain large hail-like particles. Therefore it makes sense 
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that these schemes have the largest graupel (Fig. 3.12a), smallest number concentration 

(Fig. 3.12c), and smallest surface area (Fig. 3.12b). Similarly, WSM6 and WSM6-M2 

contained smaller and more numerous graupel particles. Interestingly, the graupel 

mixing ratios above about 3 km were ranked according to prescribed graupel intercept 

parameters for the WSM6 schemes. 

 The profiles from the double-moment schemes contained more variation in the 

vertical than those from the single-moment scheme members (Figs. 3.11 and 3.12). This 

behavior is likely the result of the ability of the double-moment schemes to account for 

size sorting of rain and graupel and other processes causing size distribution to change, 

since they contain separate predictive equations for the additional moment of number 

concentration (see, for example, Riesner et al. 1998, Milbrandt and Yau 2005, Morrison 

et al. 2005, and Lim and Hong 2010). The overall increase in mean mass diameter of 

raindrops towards the surface in the double-moment schemes is an indication that 

smaller raindrops are evaporating during their descent from the mid-levels; some 

completely evaporate before reaching the ground. This is consistent with the decrease of 

number concentration and surface area towards the surface, although there is some 

anomalous behavior seen in the Thompson scheme, where the number concentration 

and intercept parameter increase in the lowest two to three model levels (Fig. 3.11c,d). 

The rain mixing ratio generally decreases from a height of about 3 km towards the 

ground. The general decrease supports the notion that rain is evaporating in unsaturated 

downdrafts or due to entrainment of unsaturated environmental air. Graupel mixing 

ratio and number concentration also decrease below about 3 km (except for Thompson; 

Fig. 3.12e) as graupel melts below the freezing level. The Morrison scheme is the only 
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one that predicts number concentration for graupel that gave meaningful results. In the 

Morrison scheme, only larger particles are left below the freezing level as the smaller 

particles completely melt (the lavender trace in Fig. 3.12a). Among the double-moment 

schemes considered, WDM6 produced the smallest rain drops and very large rain 

number concentrations compared to the other schemes. This behavior of WDM6 has 

been noted and modifications to the scheme to reduce the number concentration are 

underway by the scheme developers (K.-S. Lim 2012, personal communication). The 

M-Y scheme tended to produce larger raindrops and larger rain surface area than the 

Morrison scheme. This is opposite of what was found in Morrison and Milbrandt (2011) 

regarding comparisons between those schemes. However, the versions of the schemes 

used in that study are slightly different from those used in this study. Namely, the shape 

parameters of the drop size distribution differ (αr = 0 was used in the M-Y scheme of 

Morrison and Milbrandt (2011), whereas αr = 2 in this study). However, the graupel 

parameters examined in this study are identical to those in Morrison and Milbrandt 

(2011), and the similar mixing ratios between the MY and Morrison schemes in this 

study disagree with the results of Morrison and Milbrandt (2011), which found that the 

MY scheme tended to produce more graupel. Also, above 3 km, the MY and Morrison 

schemes produced more graupel mixing ratio (Fig. 3.12e) than the single-moment 

schemes for graupel. 

 The design of the WDM6 and WSM6 schemes makes them more similar to each 

other than any other pair of schemes in this study (not including the WSM6 schemes 

with perturbed parameters). The major differences between the WDM6 and WSM6 

schemes include the number of moments predicted for rain, the shape parameter of the 
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rain drop size distribution, and the addition of cloud condensation nuclei as a prognostic 

variable in the WDM6 scheme. There are also minor differences in how some 

microphysics processes like accretion rates are parameterized. The retrieved rain 

variables for WDM6 and WSM6 were quite different, however. The WDM6 scheme 

produced the smallest rain drops overall, corresponding to the largest drop 

concentration and surface areas as well. It also produced more rain mixing ratio, slightly 

greater radar reflectivity (not shown), but similar domain-accumulated precipitation 

(also not shown). Since the graupel distributions had the same shape parameter, 

differences in the graupel variables were reduced compared to those in the rain 

variables. The WSM6 scheme tended to produce less graupel mixing ratio near the 

surface (Fig. 3.12e). This is likely related to how some of the graupel and rain processes 

were parameterized. It is beyond the scope of the study to isolate the specific impact 

from incorporating the major differences one at a time. However, the results herein are 

generally in agreement with those obtained in Lim and Hong (2010) in which the same 

versions of both schemes were compared. 

3.5 Summary and conclusions  

Two approaches to accounting for uncertainty of the MP parameterization in 

warm-season QPF in a convection-allowing ensemble were examined. The two 

approaches include a set of completely different MP parameterizations (MMP) and a set 

of different numerical values of a set of parameters within a single MP scheme (PPMP). 

The combination of the two approaches was also tested. These approaches were 

implemented within the storm-scale ensemble framework of the Center for Analysis and 

Prediction of storms at the University of Oklahoma, and tested during the NOAA HWT 
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2011 Spring Experiment (27 April – 10 June 2011). An ensemble of convection-

allowing WRF-ARW simulations were run in real-time at 4 km resolution over the 

contiguous United States for 35 cases during the period. The two ensembles tested – 

MMP and PPMP – along with an ensemble comprised of members from both 

ensembles, had six, five, and ten members, respectively (one member belonged to both 

ensembles). To minimize the impact of ensemble size on the comparison between 

approaches to accounting for microphysics errors, scores for the MMP and pooled 

ensembles were obtained from an average of 100 five-member resamples. 

It was found that, in general, the MMP ensemble was more skillful than the 

PPMP ensemble (based on WSM6) with variations dependent on the metric chosen, the 

forecast lead time, and precipitation threshold. The MMP ensemble was more skillful 

for FBSs for most lead times and thresholds, but the PPMP ensemble was more skillful 

for high thresholds when ROC areas were examined. The rank histograms of the MMP 

ensemble were slightly flatter than those of the PPMP and pooled ensembles. The MMP 

ensemble was also somewhat more biased, but mostly due to one member. Also, the 

combined approach where both sophisticated MP schemes and perturbed parameters 

within a simpler single-moment MP scheme were used was no more skillful than the 

better of the MMP and PPMP ensembles. Since all PPMP members were based on 

WSM6, the skill of those members was limited by the skill of WSM6. Therefore, the 

results obtained here may not apply to perturbed parameter ensembles generated by 

perturbing other microphysics schemes. The similarity in the performances of the MMP 

and PPMP ensembles was sensible, however, since the WSM6 scheme frequently 
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ranked in the middle of the microphysics schemes considered and near the middle of the 

WSM6 perturbation schemes as shown in section 3.3.1. 

 The QPF from individual members was also examined. Verification scores 

varied more among members of the MMP ensemble than among members of the PPMP 

ensemble for low and moderate thresholds. Large variation was found in the bias during 

the first and second convection maxima. The WSM6-M3 and WSM6-M4 schemes 

showed the largest positive bias in the mean errors and in the frequency biases at 

highest two thresholds during the second convection maximum. The M-Y scheme 

showed the largest negative bias. PPMP members were generally less biased, but were 

also less skillful at all but the highest thresholds. The skill of individual members 

depended on the thresholds and methods of verification. For example, for ETSs, the 

Thompson and Morrison schemes were the most skillful at the lightest two thresholds 

whereas the WDM6 scheme was the least skillful at low and moderate thresholds at 

later lead times. For FBSs, the Thompson scheme showed the highest skill at moderate 

thresholds, and both Thompson and Morrison showed the highest skill at the highest 

threshold. The Ferrier+ and WDM6 schemes were the least skillful at moderate 

thresholds at the second convection maximum. For ROC areas, the WSM6-M3 and 

WSM6-M4 schemes were the best at the highest thresholds. The M-Y scheme was the 

least skillful at the second convection maximum. 

 In addition to evaluating the ensembles using objective verification scores, the 

systematic behaviors of the members using retrieved microphysics parameters relevant 

to this study were examined. The range of the retrieved rain intercept parameters from 

the double-moment members is, in general, consistent with the range of perturbed rain 
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intercept parameters for the PPMP members. The retrieved graupel intercept parameter 

values suggest the perturbed graupel intercept values used in the PPMP members were 

too low. The behavior of the PPMP members was found to be consistent with the 

prescribed values of the rain and graupel intercept parameters and graupel density. 

Behavior was more variable for the double-moment members, and causes of differences 

in retrieved parameters among these MP schemes are more complex than differences 

among the single-moment members owing to the differences in parameterizations of 

individual processes within each scheme. The WDM6 scheme tended to produce a very 

large number of small raindrops, whereas the M-Y scheme tended to produce very large 

raindrops. 

 Although resampling of the pooled ensemble with an equal size as the PPMP 

and MMP ensembles was no more skillful than the better of the PPMP and MMP 

ensembles, the full 10-member pooled ensemble showed better skill than other 

ensembles tested for nearly all lead times, thresholds, and metrics. This result brings up 

an interesting point in that increasing ensemble size had a significant impact in the skill 

of the ensembles tested (see also Clark et al. 2011; Ebert 2001). One easy way to 

populate the ensemble is to perturb the parameters for a given physical parameterization 

scheme such as the PPMP. 

 This study represents one step towards developing a strategy for the optimal 

design of a convection-allowing ensemble prediction system. Ideally, members of an 

ensemble should represent random draws from the probability distribution of truth for a 

given forecast system and each member should be equally possible to represent the 

truth. The design of PPMP and MMP ensemble may violate such rules. The parameters 
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used in PPMP ensemble were not randomly perturbed. The MMP ensemble is 

composed of different microphysics schemes with each scheme having its own bias. In 

addition, only the uncertainty in QPF associated with varied microphysics was tested, 

but uncertainty in QPF from model error can also come from errors in other physics 

parameterizations such as the boundary-layer, radiation, and surface-atmosphere 

exchangegb. Since only QPF was examined, it cannot be determined whether either 

approach is more skillful at predicting other meteorological fields such as surface 

temperature, relative humidity, wind speed, or geopotential height at other levels in the 

troposphere. Thus future studies should also examine the impacts of varied 

microphysics on other fields. The specific conclusions may also be dependent on the 

specific choices of the MP schemes used in the ensemble, and to the way parameters are 

perturbed. Future studies should investigate ways to use variations in these 

parameterizations to better design convection-allowing model ensembles, as their use 

will be more strongly desired in the future for operational weather forecasting purposes. 

3.6 Appendix – microphysics vocabulary 

 Except for the Ferrier+ scheme, all of the MP schemes used in this experiment 

use similar assumptions for the PSDs of the various classes. They all use the following 

model: 

 𝑛𝑥(𝐷𝑥) = 𝑁0𝑥𝐷𝑥
𝛼𝑥𝑒−𝜆𝑥𝐷𝑥 (3.1), 

where subscript x refers to one of the water species (r – rain, g – graupel, i – cloud ice, s 

– snow, h – hail, c – cloud water; the subscript will be dropped hereafter), n is the 

volumetric concentration of spherical particles of diameter D to D + ∆D, N0 is the 

intercept parameter, λ is the slope parameter, and α is the shape parameter. Note that 
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when α = 0, this reduces to the inverse-exponential distribution. The p
th

 moment of the 

PSD is given by 

 𝑀(𝑝) = ∫ 𝐷𝑝
∞

0

𝑛(𝐷)𝑑𝐷 =
𝑁0

𝜆𝛼+𝑝+1
𝛤(𝛼 + 𝑝 + 1) (3.2), 

where Γ is the gamma function and 𝛤(𝑍) = (𝑍 − 1)! when Z is an integer. Three 

moments would be required to fully characterize this PSD without making any 

assumptions. Typically the three moments include the mixing ratio – which is 

proportional to the 3
rd

 moment of the PSD, number concentration – the 0
th

 moment of 

the PSD, and reflectivity factor – the 6
th

 moment. Each moment requires its own set of 

conservation equations for each species, which increases the complexity of the scheme 

and also increases computation time. However, use of a greater number of moments has 

been shown to increase the realism of simulations of squall-lines at convection-allowing 

resolutions (Morrison et al. 2009). Four schemes in this study – Thompson, Morrison, 

M-Y, and WDM6 – use two moments for some species. All are double-moment for 

rain, and two (Morrison and M-Y) are double-moment for graupel as well. Species 

mixing ratio and number concentration are the two moments used in these schemes. 

While the other schemes are only single-moment, other moments can be derived using 

manipulations of (3.1) and (3.2). For instance, the number concentration can be 

determined by 

 𝑁𝑡 = {[𝑁0𝛤(𝛼 + 1)]𝑑 [
𝑞𝜌𝑎

𝑐

𝛤(𝛼 + 1)

𝛤(𝛼 + 4)
]

𝛼+1

}

1
𝛼+𝑑+1⁄

 (3.3), 

where ρa is air density and c and d are related through the mass-diameter relationship: 

𝑚(𝐷) = 𝑐𝐷𝑑 and q is the species mixing ratio. In this chapter we retrieved the intercept 

parameter for the double-moment schemes using (3.3). However, the meaning of the 
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intercept parameter becomes non-physical when the shape parameter is nonzero. 

Therefore, the “normalized” intercept parameter, which is the intercept parameter for an 

exponential distribution with the same liquid water content and mean volume diameter 

(Testud et al. 2001), is used instead. The total surface area of particles is proportional to 

M(2): 

 
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 =  𝜋𝑀(2) =

𝜋𝑁𝑡(𝛼 + 2)(𝛼 + 1)𝐷𝑚
2

(
𝛤(𝛼 + 4)
𝛤(𝛼 + 1)

)

2
3⁄

 
(3.4), 

where it has been assumed that α is an integer and d = 3, which is true for both rain and 

graupel, and Dm is the mean mass diameter. The mean mass diameter – the size that 

splits the PSD into two equal halves – is given by 

 𝐷̅ = (
𝜌𝑎

𝑐𝑥

𝑞

𝑁𝑡
)

1
3⁄  (3.5). 
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Fig. 3.1. Model domain (circled “1”) and verification domain (circled “2”) used in this 

study.  
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Fig. 3.2. Domain- and case-average mean error of 1-hr QPF for individual members. 
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Fig. 3.3. Same as Fig. 3.2 except for frequency biases at the various thresholds 

indicated. 
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Fig. 3.4. As in Fig. 3.3 except for ETS.  
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Fig. 3.5. As in Fig. 3.3 except for FBS.  
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Fig. 3.6. As in Fig. 3.3 except for area under the ROC curve. 
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Fig. 3.7. (a) Domain- and case-average mean error of 1-hr ensemble mean QPF. 

Diamonds across the bottom indicate forecast hours at which the difference between the 

MMP and PPMP ensembles was significant, with the color indicating which ensemble 

was superior, whereas filled circles across the top indicate forecast hours at which the 

difference between the MMP and pooled ensembles was significant. (b) Domain-

average 1-hr ensemble mean QPF and ST4 QPF (black line).  
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Fig. 3.8. Rank histograms for 1-hr QPF integrated over all forecast hours. (a) and (b) – 

MMP ensemble; (c) and (d) – PPMP ensemble; (e) and (f) – pooled ensemble. The 

parameter ext, defined as the ratio of the proportion of values in the extreme ranks to 

the proportion of values in the extreme ranks of a flat histogram, is displayed in the 

upper right of each panel. A rank histogram of a perfectly dispersive ensemble is 

indicated by the dotted black line in each panel. 
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Fig. 3.9. FBSs for 1-hr ensemble mean QPF for the various thresholds indicated in the 

upper right of each panel. Significant differences are indicated as in Fig. 3.7. 
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Fig. 3.10. Same as Fig. 3.9 except for area under the ROC curve.  
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Fig. 3.11. Vertical profiles of area-average microphysics parameters: a) mean mass 

raindrop diameter (mm); b) raindrop surface area (m
2
); c) rain number concentration 

(drops m
-3

); d) Normalized rain intercept parameter (m
-4

); e) rain mixing ratio (kg kg
-1

); 

f) number of grid points at which the rain mixing ratio exceeded 10
-6

 kg kg
-1

. 
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Fig. 3.12. Same as in Fig. 3.11 except for graupel. 
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4
Chapter 4. Impact of a Stochastic Kinetic Energy Backscatter Scheme 

4.1 Introduction 

 Current methods used to represent model error in a convection-allowing 

ensemble include multi-parameter, wherein fixed parameters within a physics 

parameterization scheme are varied (Hacker et al. 2011; Yussouf and Stensrud 2012; 

Chapter 3), mixed physics, where separate microphysics and boundary layer schemes 

are used (Johnson et al. 2011ab; Xue et al. 2011 and references therein; Chapter 3), and 

multi-model, where separate dynamic cores are used (Ebert 2001; Wandishin et al. 

2001; Kong et al. 2009; Candille 2009; Johnson and Wang 2012; and Du et al. 2014). 

The Storm Prediction Center also uses a multi-model ensemble in which each member 

is a convection-allowing forecast provided by either the National Centers for 

Environmental Prediction or the National Severe Storms Laboratory (see 

www.spc.noaa.gov/exper/sseo). This chapter focuses on a different method of 

representing model error in an ensemble – stochastic perturbations using a stochastic 

kinetic energy backscatter scheme. 

 Research into the use of stochastic perturbations in ensemble forecasting is 

motivated by the results from prior research showing the benefit of using random 

perturbations. Buizza et al. (1999), for example, showed that merely including 

multiplicative random perturbations to the physical tendencies using simple 

spatiotemporal correlations was sufficient to increase ensemble spread and improve 

probabilistic precipitation forecasts. This method was based on the notion that the 

physical parameterizations handle subgrid-scale processes which are inherently random.  

                                                 
4
 This chapter is published as Duda, J. D., X. Wang, F. Kong, M. Xue, and J. Berner, 2016: Impact of a 

stochastic kinetic energy backscatter scheme on warm season convection-allowing ensemble forecasts. 
Mon. Wea. Rev., 144, 1887–1908. 
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The parameterizations take large-scale flow as input and thus are considered an 

ensemble average impact from subgrid-scale processes. The random perturbations 

therefore account for the variability in the subgrid-scale processes. Mason and Thomson 

(1992), on the other hand, used a SKEB scheme in a large eddy simulation to improve 

near-surface flow. Similarly, Shutts (2005) developed a cellular automaton stochastic 

backscatter scheme (CASBS) which inserted random perturbations into the model, but 

structured differently than the scheme in Buizza et al. (1999), and based on a different 

justification. The purpose of CASBS was to include a subgrid-scale process missing 

from global NWP models. The scheme injected kinetic energy (KE) into the model 

domain to counteract excessive energy dissipation coming from numerical diffusion and 

interpolation, mountain and gravity wave drag, and deep convection. Not only did 

CASBS correct the KE spectrum of the European Centre for Medium-Range Weather 

Forecasting (ECMWF) model, it also improved the spread and skill of 500 hPa 

geopotential height forecasts. Without CASBS the model failed to correctly simulate 

mesoscale circulations conforming to the observed k
-5/3

 power law (Nastrom and Gage 

1985). Berner et al. (2009) built off the work of Shutts (2005) and developed a spectral 

stochastic kinetic energy backscatter scheme (SSBS) which was implemented in the 

ECMWF ensemble prediction system in 2011 (ECMWF, 2012). The SSBS scheme was 

later modified for use in the Weather Research and Forecasting (WRF) model by Berner 

et al. (2011), who determined that the SKEB scheme gave superior ensemble mean 

forecasts of many fields compared to an ensemble using only physics variations. Their 

work was performed using a horizontal grid spacing of 45 km. 
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 The use of SKEB schemes in operational EPSs has increased recently. Similar 

versions of the SSBS scheme have been introduced into the Canadian EPS (Charron et 

al. 2010), the Met Office Global and Regional EPS (Tennant et al. 2011), and the 

United States Air Force Weather Agency mesoscale ensemble (Hacker et al. 2011). The 

impact of SKEB has been overwhelmingly beneficial, including increased spread with a 

maintained or reduced root-mean square error (rmse) of the ensemble mean, and 

improved probabilistic forecasts of upper-level winds, temperatures, heights, and 

precipitation. 

 Prior research into the effectiveness of a SKEB scheme on probabilistic 

forecasts has been limited to global or otherwise coarse-grid scale EPSs. It remains to 

be determined how useful or valid such a scheme is for a convective-scale EPS. Such 

study is still limited. For example, Romine et al. (2014) compared ensemble forecasts at 

3 km grid spacing using two stochastic perturbation methods, the SKEB scheme and the 

stochastically perturbed parametrization tendencies scheme (Buizza et al. 1999; Palmer 

et al. 2009). They found the SKEB scheme to provide a balance between increased 

ensemble spread and forecast bias change. The focus of this chapter is to compare 

ensemble forecasts using the SKEB scheme to a mixed-physics ensemble which is 

typically used in convection-allowing ensemble forecast system design. The following 

questions are investigated: is the stochastic error representation method (SKEB in this 

case) compatible with a mixed-physics approach in a convective-scale forecast? What is 

the impact of including SKEB perturbations on top of the typically used mixed-physics 

method in convection-allowing ensemble forecasts? A 4-km WRF ensemble including a 
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portion of the United States and featuring warm season cases is adopted to achieve this 

goal. 

The rest of this chapter is organized as follows. The SKEB scheme is described 

briefly in section 4.2. The experiment design is described in section 4.3. Results follow 

in section 4.4. A summary and conclusions follows in section 4.5. 

4.2 The SKEB scheme 

4.2.1 Mathematical formulation 

 Stochastic parameterizations are developed to represent model error and can 

generate ensemble spread by perturbing the forecast trajectory. For this purpose, a 

SKEB scheme is employed that adds stochastic, small-amplitude perturbations to the 

rotational component of horizontal wind and potential temperature tendency equations 

at each time step. The scheme is briefly outlined here; full details can be found in 

Berner et al. (2011). 

 Let ψ(x,y,t) be a 2D-streamfunction-forcing pattern expressed in 2D-Fourier 

space: 

 𝜓 (𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜓𝑘,𝑙(𝑡)𝑒2𝜋𝑖(
𝑘𝑥
𝑋

+
𝑙𝑦
𝑌

)

𝐾/2

𝑘=−𝐾/2

𝐿/2

𝑙=−𝐿/2

 (4.1). 

Here, ψk,l denotes the spectral coefficient of the perturbation field with k and l the (K-1) 

and (L-1) wavenumber components in the zonal x- and meridional y-direction in 

physical space and t denotes time. The representation in spectral space allows for 

control of the spatial length scales of the perturbations as a function of wavenumber. 

Subsequently, the rotational wind components are obtained by differentiation, the 

pattern transformed back to gridpoint space, and the perturbations added to the 
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momentum tendency equations. The perturbations to the potential temperature 

tendencies are generated analogously. The WRF implementation allows for a 2D or 3D 

perturbation pattern to be generated. Here, we follow Berner et al. (2011) and use the 

same 2D pattern to perturb the tendencies in all vertical levels. 

 To introduce spatial and temporal correlations, each spectral coefficient ψk,l is 

evolved as a first-order autoregressive  process: 

 𝜓𝑘,𝑙(𝑡 + ∆𝑡) = 𝛼𝜓𝑘,𝑙(𝑡) + √𝛼 − 1𝑔𝑘,𝑙𝜀(𝑡) (4.2), 

where α is the linear autoregressive parameter determining the temporal decorrelation 

time, gk,l is the wavenumber-dependent noise amplitude, and ε a Gaussian white-noise 

process with mean 0.0 and variance 1.0. The noise amplitude gk,l  determines the 

variance spectrum of the forcing and is given by the power law, 𝑔𝑘,𝑙 = 𝑏𝑛𝑝, where n is 

the wavenumber, p is an assumed constant slope, and b is the amplitude defined as in 

eqn. (4) of Berner et al. (2009), chosen so that a fixed amount of KE is injected into the 

flow each time the forcing is applied. The autoregressive parameter determines the 

decorrelation time τ of the pattern, 𝜏 = ∆𝑡 (1 − 𝛼)⁄ , where Δt is the model time step. In 

principle, each spectral coefficient can be associated with a different decorrelation time, 

but for practical reasons, the same decorrelation time is chosen for all spectral 

coefficients. The SKEB scheme was originally motivated by the notion that upscale and 

downscale cascading energy resulted in net forcing for the resolved flow from 

unresolved scales (Shutts 2005) and the perturbation amplitude was proportional to the 

instantaneous dissipation rate. Here, the simplifications in Berner et al. (2011), where it 

is assumed the dissipation rate is constant in space and time, are used. Since the forcing 
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is no longer state-dependent the perturbations can be considered as additive noise with 

prescribed spatial and temporal correlation.  

4.2.2 Tuning the scheme 

 The autoregressive parameter α (related to the decorrelation time of the forcing 

field), the slope of the power spectrum for the perturbations, and the amplitude of the 

perturbations are adjustable parameters which can be tuned for a specific application. 

Sensitivity tests were conducted to determine if the default settings of Berner et al. 

(2011) – obtained for forecasts with a horizontal resolution of 45 km – are also optimal 

for the much higher horizontal resolution used here. The cases selected, 13 April 2012, 

14 June 2012, and 23 June 2013 (none of which are part of the experiment period; 

section 4.3), featured warm season precipitation episodes exhibiting a wide variety of 

convective modes and magnitude of large-scale dynamic forcing, thus allowing for a 

general tuning of the scheme over a range of scenarios. This approach also avoids issues 

related to in-sample tuning to generalize the results. 

 Berner et al. (2009) informed the slope of the forcing spectrum, p, using coarse-

graining cloud-resolving model output (Shutts and Palmer 2007). Rather than following 

this strategy and coarse-grain output from large-eddy simulations, the slope of the 

power spectrum herein is determined empirically. For this purpose the default value of 

the spectral slope was perturbed in the positive and negative directions by 20%, 40%, 

and 80%. The decorrelation time was perturbed similarly. Additionally, the sensitivity 

to the amplitude of the perturbations was tested by varying the backscatter dissipation 

rates for wind and temperature, respectively, by several orders of magnitude. We did 

not test every combination of parameter values. Instead we evaluated an arbitrary set 
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that focused on changing only one parameter at a time, although we did test a few sets 

of coupled parameter perturbations. This method was not intended to be comprehensive, 

and it is possible that other combinations of values may yield yet better ensemble 

statistics and may represent a better tuning of the scheme. 

 Sensitivity tests using larger wind and temperature amplitudes for the 

perturbations generated drastically increased ensemble spread relative to the default 

values. However, as these perturbation amplitudes increased, the member forecasts 

looked increasingly different from verifying precipitation analyses (not shown) and 

hence were subjectively judged to be degraded. Therefore we chose the default values 

of the wind and temperature perturbation amplitudes. An example of the structure of the 

perturbation tendency fields for u-wind and temperature is shown in Fig. 4.1. 

 While ensemble performance was not obviously superior for any single 

combination of decorrelation time and spectral slope values, examination of ensemble 

spread helped to indicate a tendency for a 40% reduction in decorrelation time coupled 

with a 40% increase in the spectral slope to produce the best agreement between spread 

and rmse of the ensemble mean for several synoptic scale fields such as temperature, 

geopotential height, wind, and moisture (Figs. 4.2 and 4.3). While improvement of 

probabilistic quantitative precipitation forecasts (PQPF) at the convective scale is 

emphasized, precipitation forecasts were not strongly sensitive to the choice of 

decorrelation time or spectral slope (not shown). Therefore, we used 6480 s for the 

decorrelation time and 2.567 for the spectral slope for both wind and temperature 

perturbations. This combination did not always result in the best precipitation forecasts 

according to Brier score of 1-hr accumulated precipitation at various thresholds, but it 
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did not always result in the poorest precipitation forecast either (not shown). 

Independently, Ha et al. (2015) performed limited sensitivity tests of SKEB scheme 

parameters in cycled simulations with WRF at a resolution of 15 km and determined 

that the default parameters performed well. This together with our findings points to the 

generality of the parameter settings in WRF, at least for application to forecasts in the 

mid-latitudes. 

 Only one set of tunable parameter values of the SKEB scheme was used for all 

experiments involving the use of SKEB. In other words, the same values were used in 

the SKEB scheme for each combination of physics options used in the ensembles tested. 

It is likely that the optimal parameters for the SKEB experiment may not be the same as 

those actually used given the potential dependence of SKEB parameters to the choice of 

physics. Therefore the comparison between the SKMP and MP ensembles may not 

maximize the value of adding SKEB on top of mixed physics.  However, the conclusion 

of added value from including SKEB on top of mixed physics should not change 

qualitatively. 

4.2.3 Impact on WRF KE spectra 

 The original motivation for using a SKEB scheme was to counteract excessive 

dissipation in the ECMWF model, in part caused by the use of a semi-Lagrangian time 

stepping scheme (Shutts, 2005). The ECMWF ensemble is a global ensemble and is 

typically not run at non-hydrostatic, convection-allowing resolutions. At lower 

horizontal resolution the KE spectrum of NWP models typically does not capture the 

observed transition from the k
-3

 spectrum characterizing the synoptic scale to the 

shallower k
-5/3 

spectrum in the mesoscale (Nastrom and Gage, 1985). The ECMWF 
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implementations of SSBS were able to capture this transition by simulating under-

represented mesoscale variability (Shutts, 2005; Berner et al., 2009). It is an area of 

active research if the existence of a k
-5/3 

spectrum in a NWP model is necessary for 

reliable ensemble predictions with forecast target times of few days, since it is 

associated with faster error growth (e.g., Lorenz, 1969; Rotunno and Snyder, 2007). 

 Following Skamarock (2004) we computed KE spectra from WRF simulations 

at horizontal resolutions of 1 km and 4 km (Fig. 4.4). At both resolutions the KE spectra 

are characterized by a k
-5/3 

slope which drops off above wavenumbers of 0.02 m
-1

 and 

0.001 m
-1

 for the 4 km and 1 km resolutions, respectively. The slope in the simulations 

at 1 km continues through the meso-γ scale, which indicates that the drop in the tail of 

the spectrum in the 4 km simulation is due to numerical truncation error rather than a 

characteristic of the circulation pattern. For the tuning parameters chosen the 

simulations using the SKEB scheme do not show any appreciable difference in KE 

structure from simulations that do not use the SKEB scheme which confirms that the 

scheme does not introduce artificial energy. Arguably, it would have been desirable to 

tune the scheme so that the KE spectra at coarser resolution resemble more those at 1 

km, but given that WRF has already a k
-5/3

 spectrum at the chosen resolution, the benefit 

might be small. 

4.3 Experiment setup 

 To compare two methods of accounting for model error, SKEB and mixed-

physics, and to evaluate the impact of adding SKEB on top of the multiple physics 

approach, three ensembles were constructed. Two ensembles contained mixed physics 

(microphysics, boundary layer, and land-surface model) that only differed in use of the 
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SKEB scheme. The ensemble that did not use the SKEB scheme is hereafter called the 

MP ensemble, whereas the ensemble that did is hereafter called the SKMP ensemble. 

The MP ensemble resembles the common mixed-physics design of the storm scale 

ensemble forecast system produced by CAPS at the University of Oklahoma for the 

SPC/NSSL HWT spring forecasting experiment (see, for example, Xue et al. 2011). 

Additionally, to test whether stochastic error representation alone is sufficient for use in 

an ensemble compared to mixed-physics error representation alone, a third ensemble, 

the SK ensemble, was constructed that contained no physics diversity; different random 

number seeds were used to supply diversity in the SKEB scheme. The configuration of 

each ensemble is shown in Table 4.1. Seven members comprised each ensemble. The 

choice of seven members represents a balance between computational resources, 

availability of various physical parameterization schemes, and adequate representation 

of the forecast probability distribution. This size is reasonably adequate to produce 

precipitation forecasts at a spatial scale of 50 km (section 4.4.3) that are statistically 

indistinguishable from a larger ensemble that would better populate a probability 

distribution (Clark et al. 2011). Since the focus of the study is on representation of 

model error, neither initial condition nor lateral boundary condition perturbations were 

used. 
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Table 4.1. Configuration of the ensembles. The last column indicates the integer value 

of the random number seed used to generate pseudo-random numbers in the FORTRAN 

code that the WRF is built on. The SK ensemble used the same physics configuration as 

member 1, but the random number seed varied among the members as indicated. 

 

Member Microphysics PBL LSM seed 

m1 (control) Morrison YSU Noah 2 

m2 Ferrier MYNN2.5 RUC 3 

m3 WSM6 YSU Noah 4 

m4 Thompson MYJ Noah 5 

m5 MY ACM2/QNSE* RUC 6 

m6 WDM6 MYJ RUC 7 

m7 NSSL QNSE Noah 8 

*The PBL scheme for member 5 was switched from ACM2 to QNSE starting with the 

case initialized at 0000 UTC 8 May due to difficulties resulting from the interaction 

between the ACM2 PBL scheme and the other physics options in that member. 

 

 The Advanced Research WRF (ARW) dynamics core (Skamarock et al. 2008) 

of the WRF model, version 3.4.1, was used to conduct the simulations. The model 

domain encompassed a large portion of the central and eastern U.S. (Fig. 4.5) where 

deep convection is climatologically favored during the late spring and early summer, 

the period during which the experiment was conducted. We tested 31 cases spanning 

May 2013. There were a number of active severe weather days in the model domain 

during this period, so the results of this study should be representative of the overall 

ability of the SKEB scheme in a convective-scale EPS for warm season events. Each 

case was initialized at 0000 UTC and integrated for 30 hours. The grid spacing for all 

members was 4 km with 20 s model time step. NAM model analyses valid at 0000 UTC 

were used as the initial conditions, and NAM model forecasts from 0000 UTC for each 

case were used as the lateral boundary conditions. 

 Verification was performed on a number of fields, including temperature, wind, 

height, and various moisture variables at multiple atmospheric pressure levels, as well 

as 1-hr accumulated precipitation. Rapid Refresh (RAP; Brown et al. 2011; Weygandt 
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et al. 2011; rapidrefresh.noaa.gov) analyses were used as verifying data for upper-air 

fields. METAR and mesonet observations obtained from the Meteorological 

Assimilation Data Ingest System (MADIS; https://madis.noaa.gov/) were used to verify 

2-m temperature and dewpoint and 10-m winds. Only observations passing quality 

control checks were used for verification. A motivation behind verifying surface fields 

using observations rather than a RAP analyses is representativeness of surface values. 

The fine-scale detail in the WRF can be better verified using observations than by using 

a 13-km grid spacing model analysis (RAP; which does not resolve features smaller 

than 26-km in wavelength). Even though observing stations are spread farther apart than 

the RAP model grid points, they are still capable of capturing small scale features such 

as individual thunderstorms at certain locations. The signal from a single sample would 

certainly be wiped out when performing a gridded analysis. However, the WRF model 

can capture features as small as 8 km in size. For this reason, it was not required for 

observations to pass spatial continuity quality control checks to be included in the 

verification. This freedom increases the chances of the model being rewarded for 

forecasting a minimally-resolved thunderstorm and associated cold pool in the right 

place at the right time such that the corresponding observation also sampled the storm. 

Verifying precipitation data were provided by the National Mosaic and Multi-Sensor 

Quantitative Precipitation Estimation (QPE) project (NMQ) produced by the National 

Severe Storms Laboratory (Zhang et al. 2011). The NMQ QPEs (native grid at 0.01° 

resolution) were regridded to the verification domain using bilinear interpolation. 

Verifications were performed using one-hour accumulated precipitation. The NMQ 

QPEs have been used in earlier studies to verify storm-scale precipitation forecasts 
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(e.g., Johnson and Wang 2012; Johnson et al. 2013; Chapter 3). PQPFs were 

constructed without calibration or bias correction as the number of members in which a 

threshold value was exceeded. 

4.4 Results 

4.4.1 Skill of physics packages 

 The WRF-ARW offers a large set of different physics packages (mainly 

microphysics and PBL), and many of those schemes were used in the MP and SKMP 

ensembles. The skill of individual packages was examined first to facilitate the 

comparison between the SK, MP, and SKMP ensembles. 

 The rmse of the MP ensemble members for a large number of fields is shown in 

Fig. 4.6. Especially for upper tropospheric winds and heights (Figs. 4.6a-d), the scores 

were clustered tightly; only member m5 stood out as a poorer physics package for these 

fields. For lower tropospheric fields (Figs. 4.6e-l), there was more diversity in the rmse 

among the members. After about forecast hour 12 or so, two members, m1 and m3, 

which both used the YSU PBL scheme (Hong et al. 2006b) and Noah land-surface 

model (Ek et al. 2003), tended to perform better than the other members. This was 

especially apparent in near-surface fields such as wind, temperature, and dewpoint 

(Figs. 4.6j-l). In this regime (warm season over mid-latitude plains) the YSU scheme 

appears to be a better PBL scheme as verified here. The difference between members 

m1 and m3 was the choice of microphysics scheme; member m1, on which the SK 

ensemble is based, used the Morrison microphysics scheme (Morrison et al. 2009), 

noted as one of the better multi-moment microphysics schemes in Chapter 3, whereas 

member m3 used the simpler WRF single moment 6-class microphysics scheme (Hong 
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and Lim 2006a). These members were not as skillful for 1-hr precipitation at forecast 

hours 6-21, and member m3 was less skillful than member m1 after forecast hour 14. 

However, member m1 was somewhat less biased than most other members in some 

fields, although it did not always have the smallest bias (not shown). Members m5 and 

m6 were frequently among those with the highest rmse, especially after forecast hour 18 

(Figs. 4.6e-l). Finally, there was a notable clustering by land-surface model in the 2-m 

temperature and dewpoint fields (Figs. 4.6k,l). Such stark contrast in rmse suggests the 

forecast distributions for these fields was likely bimodal in some cases.  Future work 

will investigate ways to better account for land-surface model uncertainties to better 

populate the forecast distribution and to determine if such a bimodal distribution reflects 

the underlying truth error distribution or is an artifact associated with LSMs scheme 

behavior. 

 Overall, the bias and rmse characteristics for the individual members indicates 

that the SK ensemble was based on a relatively skillful set of physics parameterizations 

and thus could be expected to provide forecasts competitive with those from the MP and 

SKMP ensembles, which use mixed physics. 

4.4.2 Ensemble spread-error agreement and dispersion 

4.4.2.1 Against RAP analyses 

4.4.2.1.1 Spread, RMSE, and rank histograms 

 We first examine the spread-error relationship of the ensembles for several 

fields. The ensemble spread, averaged over the 31 cases and the verification domain, is 

shown for several fields in Fig. 4.7. The addition of the SKEB scheme added a large 
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amount of spread to the upper-tropospheric fields in the SKMP ensemble. For fields 

such as hgt500 and u500__ (see Table 4.2 for field abbreviations), the amount of added 

spread exceeded 100% at forecast hour 36. Fig. 4.4b shows that, for the u-wind 

component, spread was added at nearly all but the finest scales, with relatively more 

diversity added at the largest scales where the perturbation amplitudes were also the 

largest. There was also increased spread in the SKMP ensemble at fields in the lower 

troposphere, although not as much as was added above. There was even an increase in 

spread in moisture fields (pwat__ and accppt) despite those fields not being directly 

perturbed. The spread in the SKMP ensemble was higher than that in the MP ensemble 

at all forecast hours after forecast hour 1, and the difference in spread between the MP 

and SKMP ensembles generally increased with time throughout the 30-hour forecast, 

but especially after forecast hour 6 or so, after which time model spin-up was complete. 

Additionally, the spread in the SK ensemble was also much larger than that in the MP 

ensemble for upper-tropospheric fields. At middle and lower tropospheric levels, the SK 

ensemble had lower spread than the MP ensemble until about forecast hour 5, after 

which the order was reversed. 
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Table 4.2. Abbreviations for field names used for verification. 

Field name Description (units) 

hgt500 500 hPa geopotential height (m) 

v850__ 850 hPa v-wind component (m s
-1

) 

v500__ 500 hPa v-wind component (m s
-1

) 

u500__ 500 hPa u-wind component (m s
-1

) 

u250__ 250 hPa u-wind component (m s
-1

) 

sph850 850 hPa specific humidity (g kg
-1

) 

pwat__ precipitable water (mm) 

tmp850 850 hPa temperature (K) 

tmp500 500 hPa temperature (K) 

accppt 1-hr accumulated precipitation (mm) 

 

 Given the general under-dispersive nature of many ensembles (e.g., Chapter 3), 

increased spread is an attractive result. However, increased spread does not necessarily 

mean the forecast error was sampled more appropriately. A large spread can result from 

incorrectly sampling forecast errors, which could lead to degradation of the ensemble 

mean forecast or member forecasts that are extremely different from one another and 

therefore lead to a degraded probabilistic forecast. The forecast quality is first examined 

via the rmse of the ensemble mean, also shown in Fig. 4.7. For most fields there was not 

a numerically large difference in the rmse among the three ensembles. However, for 

several fields, the rmse of the SKMP ensemble was lower than that of the MP ensemble 

at a large number of forecast hours (e.g., tmp500, v850__, sph850, pwat__, tmp850, and 

accppt), and that difference is statistically significant using a t-test at α = 0.05. The 

fields showing the biggest decrease in rmse were concentrated in the lower troposphere, 

suggesting the SKEB scheme is quite effective in perturbing fields at lower levels when 

also coupled with physics perturbations, an observation also made by Hacker et al. 

(2011) and Berner et al. (2011) for their studies at 45 km grid spacing. Since the 

magnitude of the wind and temperature tendencies for SKEB perturbations is not 
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dependent on height, the relative magnitude of the perturbations is larger in the lower 

troposphere, which may have played a role in the greater improvement there. The 

decreased rmse in moisture fields such as pwat__ and sph850 is particularly interesting 

since they are not directly perturbed by the SKEB scheme. This decrease in rmse could 

come from improvement in precipitation and thunderstorm processes, which are directly 

impacted through the lower-tropospheric wind and temperature perturbations. There are 

a few fields for which the rmse of the ensemble mean of the SKMP ensemble was 

higher compared to the MP ensemble. However, the degradations were limited to winds 

and heights at 500 hPa and above. The increase in rmse of the hgt500 field in particular 

could be related to changes in the number of thunderstorms present in the forecasts 

caused by lower tropospheric wind and temperature perturbations. An individual 

thunderstorm can strongly perturb the height field through non-hydrostatic vertical 

accelerations. 

 The rmse of the ensemble mean in the SK ensemble was commonly higher than 

that in the MP ensemble at early lead times in most fields (black dots across the top of 

each panel in Fig. 4.7). However, in the middle of the forecast period, and for lower 

tropospheric fields like tmp850 and v850__, the SK ensemble had a lower rmse than the 

MP ensemble. In the tmp850 and sph850 fields, the SK ensemble had a lower rmse than 

MP ensemble generally after forecast hour 12. The SK ensemble also had a lower rmse 

than the MP ensemble for pwat__ between forecast hours 16 and 25. Also in the tmp850 

field the SK ensemble had a lower rmse than even the SKMP ensemble for forecast 

hours 15-29 and in the v850__ field for forecast hours 15-22. 
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 The increased dispersion in large-scale fields is further supported through 

examination of rank histograms. For nearly every large-scale field examined, the rank 

histograms at nearly every forecast hour were flatter in the SKMP ensemble than in the 

MP ensemble (Fig. 4.8). It should be noted that observation error was not incorporated 

into any verifications in this study. Error in the observation data sources is either 

unknown or undocumented. Therefore it is inappropriate to make claims regarding 

proper ensemble dispersion. Instead we can only discuss the differences in dispersion 

among the ensembles. It should also be noted, however, that given the broad similarities 

between this study and that of Berner et al. (2015), where the order of performance of 

various methods of representing model error was not a function of inclusion of 

observation error, it is not expected that the increased spread, flatter rank histograms, 

and lower rmse of the SKMP ensemble over the MP ensemble is conditional on 

inclusion of observation error. 

 The rank histograms for the SK ensemble were also generally flatter than those 

of the MP ensemble after the first few forecast hours, but not as flat as those of the 

SKMP ensemble, again suggesting that this method of accounting for stochastic error is 

at least as effective as a mixed-physics approach after the added perturbations have had 

time to accumulate and create diversity among the members. For accppt the rank 

histograms were not noticeably flatter in the SKMP ensemble than the MP ensemble, 

although the positive bias in that field makes dispersion characteristics less pertinent. 

4.4.2.1.2 Case study 

 The increased ensemble spread and member diversity can be illustrated via some 

atmospheric fields from a representative case. We chose the case initialized at 0000 
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UTC 19 May 2013 as it contained a severe weather event associated with a mesoscale 

feature (a dryline) forced by a synoptic-scale upper-level trough. The impacts of the 

perturbations on scales ranging from synoptic to storm scale can be seen. First we 

examine the 500 hPa height field (Fig. 4.9). Even after the model spun up convection 

across portions of western Kansas and Oklahoma in the early forecast hours (not 

shown), the 5760 m height contours in the MP ensemble at later forecast hours show 

little diversity in areas near and upstream of that convection, which had propagated into 

eastern Kansas at the valid time in Fig. 4.9. Compared to the same height contours in 

the SK and SKMP ensembles, it is clear that the perturbations in the SKEB scheme 

have generated some synoptic-scale diversity. The SK and SKMP ensembles have 

larger area-averaged ensemble standard deviations (upper right of each panel in Fig. 

4.6) than the MP ensemble. While there are still displacement errors (bias) relative to 

the RAP analysis of that contour in all ensembles, there are members in the SKMP 

ensemble for which the contour is more accurately placed due to the increased diversity 

in the ensemble. 

 The impacts of increased diversity on mesoscale aspects of the forecast are 

illustrated using precipitable water in Fig. 4.10. The 25-mm contour delineates the 

dryline extending generally southwestward from central Oklahoma across central 

Texas. In the late morning to mid-afternoon before convective initiation, the dryline 

surged eastward before settling at its most eastward location late in the afternoon (not 

shown). During one particular afternoon hour (1700 UTC, Fig. 4.10), each ensemble 

placed the dryline too far east in northern Texas and across Oklahoma. However, there 

was additional diversity in the SKMP ensemble compared to the MP ensemble in which 
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one or two SKMP ensemble members contained a more westward dryline than in the 

MP ensemble, closer to the RAP analyzed dryline location. The MP ensemble was more 

biased and overconfident on the location of the dryline in eastern Oklahoma, whereas 

the SKMP ensemble gave a more reasonable uncertainty estimate, having members that 

varied more on the longitudinal placement of the dryline. 

 Water vapor mixing ratio at 2 m illustrates increased spread at the convective 

scale (Fig. 4.11). A contribution from the mesoscale variability in the location of the 

dryline combined with a contribution of diversity on the convective scale resulted in 

larger ensemble spread in the SKMP ensemble compared to that in the MP ensemble 

along the dryline in Oklahoma and Texas. There was a small region of enhanced 

ensemble spread in northwest Oklahoma near a bulge in the dryline. The valid time of 

the data in Fig. 4.11 is one or two hours before convection first developed near that 

dryline bulge. The pattern of 1-hr accumulated precipitation from each member in the 

SKMP and MP ensembles (not shown) suggests there is more variability in the location, 

coverage, and intensity of the storms that developed near this dryline bulge in the 

SKMP ensemble compared to the MP ensemble. This difference in variability of 

precipitation is likely related to the variability in 2-m mixing ratio through changes in 

buoyancy of surface-based parcels. While there is also mesoscale variability in the 

placement of the dryline and the bulge in the SK ensemble, there is generally very little 

spread in 2-m mixing ratio near the dryline bulge compared to that in the SKMP and 

MP ensembles. The 1-hr accumulated precipitation fields in the SK ensemble also 

appear very similar among members, thus corroborating the lower diversity compared 
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to the SKMP and MP ensembles (see section 4.4.2.1.1 for a discussion on the lack of 

diversity in the SK ensemble). 

4.4.2.2 Against observations from MADIS 

 Verifications of surface variables against METAR and mesonet observations 

(from MADIS) are shown in Figs. 4.12 and 4.13. Similar to other fields verified against 

RAP analyses, the spread was larger (a few percent to as high as 25%) in the SKMP 

ensemble than the MP ensemble for all surface fields by forecast hour 30. The increase 

in spread was accompanied by almost no change in the rmse of the ensemble mean for 

2-m temperature and dewpoint. For 10-m winds the rmse of the ensemble mean in the 

SKMP ensemble was lower than that in the MP ensemble for all forecast hours, and the 

difference is statistically significant generally after forecast hour 6. Rank histograms 

(not shown) for 2-m temperature and dewpoint and 10-m wind components were 

slightly flatter in the SKMP ensemble than the MP ensemble, but the difference was not 

as remarkable as for fields verified against RAP analyses. Brier scores for exceedance 

of certain values of dewpoint and wind speed (Fig. 4.13) also suggest the SKMP 

ensemble produced better probabilistic forecasts at nearly every forecast hour and 

threshold compared to the MP ensemble. In particular, the SKMP ensemble had lower 

Brier scores than the MP ensemble at high dewpoint thresholds, especially between 

forecast hours 18-24, which correspond to the mid-late afternoon, a time when 

convective available potential energy is likely to be at its daily maximum and 

convective inhibition is likely to be at its daily minimum. Therefore, the SKMP 

ensemble may provide an improved forecast of the thermodynamic environment in a 

large-scale environment overall supportive of convective storms. 
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The SK ensemble spread was much lower than the MP ensemble spread, 

especially at earlier forecast hours, and especially for 2-m temperature and dewpoint 

(Fig. 4.12). The ensemble spread difference in the 10-m wind component fields was 

smaller than in the 2-m temperature and dewpoint fields. The lack of physics diversity 

in the SK ensemble likely negatively impacted the ensemble forecasts in these fields. 

This was also seen in Berner et al. (2011). The rmse of the ensemble mean was 

significantly lower in the SK ensemble compared to the MP and SKMP ensembles for 

2-m temperature and dewpoint generally between forecast hours 12 and 24 and 

significantly higher elsewhere. The SK ensemble had a significantly lower rmse than 

the MP and SKMP ensembles for 10-m wind components throughout the forecast. The 

SK ensemble had lower Brier scores than both of the SKMP and MP ensembles for 

light to moderate 10-m wind speeds and also for all but the highest 2-m dewpoint 

thresholds during the mid-late afternoon (Fig. 4.13). The physics package used for the 

SK ensemble is chiefly responsible for the superior near-surface wind, temperature, and 

dewpoint forecasts (section 4.4.1). This result suggests the potential of simplifying the 

ensemble design in the future by selecting the best physics parameterization scheme and 

using a stochastic method to sample stochastic model errors which relieve the need of 

maintaining multiple physics schemes that are not necessarily independent from each 

other.   

4.4.3 PQPF skill 

 The spread of 1-hr accumulated precipitation in the SKMP ensemble was greater 

than that in the MP ensemble after the first few forecast hours (Fig. 4.7). Additionally, 

the rmse of the ensemble mean of the SKMP ensemble was lower than that of the MP 
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ensemble at most forecast hours, with the SKMP ensemble being significantly better 

from forecast hours 7-24. Each ensemble had a positive bias of around 0.01-0.05 mm 

during the second half of the forecast period, and the SKMP ensemble was slightly 

more biased than the MP ensemble (not shown). The SK ensemble had less spread than 

the MP ensemble from forecast hours 1-12 and 21-30. The rmse of the ensemble mean 

was similar between the two ensembles during these periods. In the period of forecast 

hour 13-19, however, the SK ensemble had increased spread and decreased rmse 

compared to the MP ensemble. However, this time period corresponds to the morning 

and midday time when precipitation is less common, so the inference that the SK 

ensemble provides better PQPFs during this period may not be robust. The SK 

ensemble was less positively biased at forecast hours 20-25. 

 In spite of the bias, several grid-point and neighborhood-based probabilistic and 

traditional verification measures suggest PQPFs were improved by the use of the SKEB 

scheme in the SKMP ensemble. Considering Brier scores (Fig. 4.14), the SKMP 

ensemble had a lower Brier score than the SKMP ensemble at nearly all forecast hours 

for light and moderate accumulation thresholds (0.254 and 6.35 mm). With a lower 

climatological occurrence of precipitation exceeding 25.4 mm per hour, there was less 

difference in the Brier score between the SKMP and MP ensembles, and due to a 

relatively larger standard error, the differences were less likely to be significant. The SK 

ensemble also had lower Brier scores than the MP ensemble during the middle portion 

of the forecast period. The duration in which the SK ensemble had lower Brier scores 

generally decreased with increasing threshold except for at the 25.4-mm threshold, 



91 

 

where the SK ensemble had significantly lower Brier scores than the MP ensemble over 

nearly the entire forecast range. 

 The fractions skill score (FSS; Roberts and Lean 2008) was used as a 

neighborhood-based verification (see section 2.4) metric. A neighborhood radius of 48 

km (12 grid points as in Johnson and Wang 2012; Romine et al. 2014 used a similar 

neighborhood radius of 50 km for precipitation verification) was used for all 

neighborhood based scores presented as in Chapter 3. There was very little distinction 

in FSSs between the SKMP and MP ensembles at the lightest threshold (Fig. 4.15). The 

SKMP ensemble had slightly higher FSSs during the middle part of the forecast 

(forecast hours 9-24) for moderate and heavy rain thresholds, but the FSSs of the SKMP 

ensemble were slightly lower than those of the MP ensemble generally after forecast 

hour 24 at all thresholds. The SK ensemble generally had lower FSSs than the MP 

ensemble except after forecast hour 23 at the lightest threshold (0.254 mm) and a few 

sporadic moments in the range of forecast hours 12-18 at the other thresholds. The 

difference in FSSs between the SK and MP ensembles at heavy rain thresholds was 

especially large, providing further evidence of the need to incorporate physics 

uncertainty into a convective-scale ensemble for heavy precipitation forecasting. 

 A neighborhood-based version of the Receiver Operating Characteristic (ROC) 

curve was also calculated (Mason 1982; see sections 2.3.2 and 2.4). The area under the 

ROC curve (ROC area) is shown in Fig. 4.15 as a function of 1-hr precipitation 

threshold for a few select forecast hours. Each ensemble produced skillful QPFs for 

light rain thresholds after spin-up issues settled. Depending on forecast lead time, ROC 

area tended to peak at either the very lightest threshold or the light-moderate (2.54-mm 
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or 6.35-mm) thresholds and decreased steadily with increasing threshold. For example, 

at forecast hour 17 (the time of the minimum in domain average precipitation) the 

highest ROC areas occurred at the lightest threshold and decreased steadily through the 

highest threshold, whereas at forecast hour 25 (the diurnal peak in precipitation), the 

highest ROC areas occurred at the 2.54- and 6.35-mm thresholds and decreased more 

slowly towards both higher and lower thresholds. The shape of the plot at forecast hour 

21, during a sharp increase in domain average precipitation, contained features similar 

to those at both forecast hours 15 and 27. As a function of forecast lead time, skill 

generally increased until the late part of the forecast with some oscillation leading up to 

the peak around forecast hour 26-28, corresponding to evening on the next day. The 

exception is at the lightest threshold (0.254 mm), where skill peaked at forecast hour 16 

and slowly declined afterward (not shown). In general ROC areas agreed with FSSs in 

that the SKMP ensemble had higher scores than the MP ensemble mostly during the 

middle portion of the forecast (forecast hours 6-24). Outside of that range, the 

ensembles had approximately the same skill. Reduced overall sample size likely 

explains the noisy pattern at the higher thresholds. 

4.5 Conclusions 

 As a step towards improving the design of convection-allowing EPSs, the 

impact of a stochastic kinetic energy backscatter scheme was evaluated for a set of 

warm season cases over a large portion of the continental U.S. Three seven-member 

ensembles were constructed for the testing. The SK ensemble contained no physics 

diversity among the members, but the SKEB scheme was employed. Diversity in this 

ensemble came from the random seed used to generate the pseudo-random numbers. 
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The MP ensemble was a mixed-physics ensemble containing variations in the 

microphysics, planetary boundary layer, and land-surface model parameterizations. The 

SKEB scheme was not active in the MP ensemble. The SKMP ensemble had the same 

mixed-physics configuration as the MP ensemble with the SKEB scheme turned on. 

These ensembles were designed to answer the following questions regarding 

convective-scale ensemble forecasting: 

1) Can a stochastic error representation scheme (SKEB in this case) add meaningful 

ensemble information and improve the forecast distribution? 

2) Is the stochastic error representation method compatible with a mixed-physics 

approach? If so, does the combination of these methods further improve probabilistic 

forecasts on the convective-scale? 

 Each ensemble member had 4 km grid spacing (no convection parameterization 

was used) and was initialized at 0000 UTC, running for 30 hours to give a complete day 

1 forecast of next-day severe weather and heavy precipitation. Both large-scale fields 

such as temperature, height, and winds above the boundary layer, as well as 2-m 

temperature, 2-m dewpoint, 10-m wind components, and 1-hr accumulated precipitation 

were verified using both grid-point and neighborhood probabilistic verification metrics. 

 The SKEB scheme is designed to (1) correct for insufficient kinetic energy near 

the grid scales of a forecast model and (2) add spread to the ensemble. The SKEB 

scheme injects kinetic energy into the model at all scales through additive perturbations 

to the rotational wind and temperature fields. The NWP model used in this study does 

not appear to suffer from excessive kinetic energy dissipation in the mesoscales, and 

thus (1) was not of major concern. For a reasonably tuned SKEB scheme, a positive 



94 

 

impact on ensemble spread and probabilistic forecasts was found. Neither robust nor 

comprehensive tests of the parameters for optimal tuning of the scheme were 

performed; optimal tuning of the scheme for use at the convective-scale is left for future 

work. 

 The SKEB scheme was successful in accomplishing (2). Marked gains in 

ensemble spread were noted in nearly every field verified, especially large-scale fields. 

Spread was even increased in fields that were not directly perturbed (i.e., specific 

humidity, dewpoint, and precipitation), although the increase in spread in those fields 

was reduced compared to the increase in other fields that were directly perturbed. The 

increase in spread is also confirmed through examining the rank histograms. Histograms 

in the SKMP ensemble were flatter than those from the MP ensembles. The increased 

spread was accompanied by a reduction in the rmse of the ensemble mean. Some of 

these reductions were statistically significant.  

 Quantitative precipitation forecasts were also improved. Since the SKEB 

scheme does not correct individual grid point errors in deterministic forecasts nor does 

it perturb the moisture field directly, the connection between the SKEB scheme and 

precipitation is convoluted and indirect, occurring through changes in stability of air 

parcels on the convective scale as well as through changes in the wind field that provide 

forcing for convection initiation and affect ongoing storms. The perturbations are very 

small, so the changes are subtle but can accumulate over time periods long enough to 

impact the evolution of the near-surface wind and temperature field enough to affect the 

initiation or maintenance of convection. It is difficult to determine the precise factors 

that impact the change in PQPF skill from the use of the SKEB scheme given the 
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random nature of the perturbations. For some individual cases ensemble forecasts are 

bound to be improved through a better representation of the uncertainty of the 

atmospheric state. 

 The performance of the SK ensemble was competitive with the other ensembles 

despite the lack of physics diversity. It contained almost as much spread as the SKMP 

ensemble at many forecast hours and in many fields (thus exceeding that from the MP 

ensemble) and also had flatter rank histograms than the MP ensemble. The rmse of the 

SK ensemble mean was also similar to that of the SKMP and MP ensembles. There 

were even forecast hours and thresholds at which precipitation skill scores in the SK 

ensemble were better than either of the MP or SKMP ensembles. However, in 

agreement with Berner et al. (2011), the spread of the SK ensemble was much lower in 

the boundary layer compared to the MP ensemble. Thus it seems the best choice is to 

combine the uncertainty in the physical processes impacting temperature, wind, and 

moisture in the boundary layer by using mixed physical parameterizations with the 

uncertainty in the dynamics and in other unparameterized subgrid-scale processes by 

using the SKEB scheme. Hacker et al. (2011) and Berner et al. (2015) also found the 

combination of a SKEB scheme and physics diversity to give the best forecasts at and 

below 700 hPa for convection-parameterizing resolutions. Additionally, similar to 

Chapter 3, the performance of the SK ensemble is likely sensitive to the physics 

parameterization options used (Morrison microphysics, YSU PBL, and Noah land-

surface); this combination was shown to be more accurate than most of the other 

combinations used in the MP ensemble, and the SKEB scheme parameters were tuned 

for this particular combination and were not changed when used with other physics 
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combinations. Since the optimal parameters for the SKEB scheme may be dependent on 

the choice of physics, the comparison between the SK and SKMP ensembles may not 

maximize quantitatively the added value of including the SKEB scheme on top of the 

mixed-physics approach.  

This study is among the first to examine the effect of combining stochastic 

methods with traditionally used mixed-physics methods for convection allowing 

ensemble design. Given the resources needed to maintain various physics schemes, 

future research is still needed to explore to what extent a mixed-physics method is 

needed in the presence of a stochastic method. It is also acknowledged that the 

conclusion may also be dependent on the diagnostic and verification methods adopted.

 The experiment presented in this chapter did not incorporate initial or lateral 

boundary condition perturbations to isolate the impact of the model-error representation 

on the ensemble forecasts. Such perturbations could further broaden the forecast 

probability distribution and reduce or eliminate poor forecasts (present in this study but 

not discussed) caused by inadequate initial and lateral boundary conditions. Future work 

should incorporate such initial and lateral boundary condition error representation using 

advanced ensemble based data assimilation (Johnson et al. 2015) with model-error 

representation to further improve convective scale ensemble forecasts. 
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Figures  

 
 

Fig. 4.1. Example forcing tendencies for the u-wind (top; m s
-2

) and temperature 

(bottom; K s
-1

) fields. 
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Fig. 4.2. Bias (top), RMSE (bottom dotted), and spread (bottom solid) of the u-wind 

component at 500 hPa verified against RAP analyses for a test case initialized at 1200 

UTC 13 April 2012. SKEB scheme settings are colored according to the key at top. 

Numbers indicate the percentage perturbation from the default values of the SKEB 

scheme (3 hr for decorrelation time tau, 1.83 for the spectral slope). 
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Fig. 4.3. Same as Fig. 4.2 except for the v-wind component at 850 hPa for a test case 

initialized at 1200 UTC 23 June 2013. 
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Fig. 4.4. (a) Kinetic energy spectra from WRF simulations with grid spacings of 4 km 

and 1 km (24 hour forecasts from different initializations). The solid red and black 

spectra are from otherwise identical WRF simulations at 4 km grid spacing where one 

uses the SKEB scheme and the other does not. A reference k
-5/3

 slope is included in 

dashed black. (b) Spectral decomposition of u-wind spread from one case, also a 24 

hour forecast. 
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Fig. 4.5. Model (thick black) and verification (thinner gray) domains. 
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Fig. 4.6. Member rmse for (a) u-wind at 250 hPa (m s
-1

), (b) u-wind at 500 hPa (m s
-1

), 

(c) 500-hPa geopotential height (m), (d) temperature at 500 hPa (K), (e) temperature at 

850 hPa (K), (f) v-wind at 850 hPa (m s
-1

), (g) specific humidity at 850 hPa (g kg
-1

), (h) 

precipitable water (mm), (i) 1-hr accumulated precipitation (mm), (j) u-wind at 10 m (m 

s
-1

), (k) temperature at 2 m (K), and (l) dewpoint at 2 m (K). 
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Fig. 4.7.  Verification domain-average ensemble mean rmse (solid) and ensemble 

spread (dashed). Red dots across the bottom indicate forecast hours at which the rmse of 

the SKMP ensemble was statistically significantly lower than that of the MP ensemble, 

whereas black dots indicate the opposite. Similarly, across the top of each panel, blue 

dots indicate when the SK ensemble had a significantly lower rmse than the MP 

ensemble, whereas black dots indicate the opposite. 
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Fig. 4.8.  Rank histograms for 500 hPa geopotential height at forecast hour 29 (top), 850 

hPa v-wind at forecast hour 23 (middle), and precipitable water at forecast hour 29 

(bottom). 

 



105 

 

 
 

Fig. 4.9. Ensemble standard deviation (shaded, m) of 500-hPa geopotential height valid 

1100 UTC 19 May 2013. Individual member 5760-m height contours (light blue) and 

the analyzed 5760-m height contour from a RAP analysis (gold) are also shown. Area-

averaged ensemble spread is indicated in the upper right of each panel. 
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Fig. 4.10. As in Fig. 4.9 except for precipitable water (mm, 25 mm contour is displayed) 

valid 1700 UTC 19 May 2013. Individual member contours are in green, whereas the 

RAP analyzed contour is shown in the thick black line. 
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Fig. 4.11. As in Fig. 4.9 except for 2-m water vapor mixing ratio (g kg
-1

, 12 g kg
-1

 

contour is displayed) at 1900 UTC 19 May 2013. Individual member contours are in 

green, whereas the RAP analysis contour is the thick gold line. 
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Fig. 4.12. Same as Fig. 4.7 except for the indicated fields verified against METAR 

observations. 
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Fig. 4.13.  Brier scores for (top row) 10-m wind speed, (middle and bottom rows) 2-m 

dewpoint forecasts at the indicated thresholds. 
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Fig. 4.14.  Brier scores for the indicated 1-hr accumulation thresholds. Colored dots 

represent statistically significant differences as in Fig. 4.7. 
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Fig. 4.15. (left column) Fractions skill scores for the indicated 1-hr accumulation 

thresholds; (right column) area under the ROC curve at the indicated forecast hours for 

various 1-hr accumulation thresholds. No statistical significance testing was performed 

on the FSSs or ROC areas. 
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Chapter 5. Sensitivity of Convection Forecasts to Land-Surface Model 

and Implications for Ensemble Design 

5.1 Introduction and Motivation 

 The state of the land surface and associated surface-atmosphere exchange 

processes exert a strong degree of control over the spatial and temporal patterns of deep 

moist convection via the impacts from turbulent sensible and latent heat fluxes (e.g., 

Anthes 1984; Rabin et al 1990; Clark and Arritt 1995; Pielke 2001; and Segele et al. 

2005). Additionally, a correct specification of the land-surface state, i.e., greenness 

vegetation fraction, leaf area index, soil texture, and land use is also critical in 

accurately forecasting deep moist convection, especially during the warm season when 

the ground surface is exposed (i.e., no snow or ice cover) and vegetation is green and 

photosynthetically active (Kurkowski et al. 2003; Robock et al. 2003; Godfrey et al. 

2005; Miller et al. 2006). Therefore, correct representation of surface-atmosphere 

exchange processes in land-surface models (LSM) coupled to numerical weather 

prediction (NWP) models is critical for accurate forecasts of thunderstorms and heavy 

precipitation. 

 Much of the prior research on the sensitivity of forecasts of deep moist 

convection to surface-atmosphere exchange processes have indicated that the initial soil 

moisture state exerts the most influence. Sutton et al. (2006), for example, showed that 

the amount of diversity in convection-permitting forecasts of precipitation due to use of 

different initial soil moisture analyses can rival that from using varying convection 

parameterizations in coarser simulations. Aligo et al. (2007) illustrated the level of 

sensitivity of convective-scale forecasts to soil moisture perturbations and found some 

skill in probabilistic precipitation forecasts based on an ensemble using only those 



113 

 

perturbations. Trier et al. (2008) determined that the variation in initial soil moisture 

state exerted more influence on forecasts of precipitation than choice of LSM. Finally, 

while poor coverage of observations is a major source of uncertainty in soil moisture 

analyses, more dense observations will not eliminate uncertainty, as soil moisture has 

been shown to be highly spatially heterogeneous even within a small area (Basara 

2001). 

 While the importance of an accurate initial soil moisture state for convection 

forecasts cannot be ignored, there is additional uncertainty in the formulation of 

physical processes related to energy fluxes. Chen et al. (1997) compared various 

methods for parameterizing surface sensible heat exchange in the LSM used by NCEP 

for their operational mesoscale model and noted sensitivity to the formulation of the 

stability term and the thermal roughness length in calculating turbulent sensible heat 

flux. Numerous other studies have also identified sensitivity of precipitation forecasts to 

the specification of an empirical constant used to calculate the thermal roughness length 

(Zilitinkevich 1995; Chen et al. 1997), which is used in the formulation of the exchange 

coefficient in the sensible heat flux calculation (Marshall et al. 2003; LeMone et al. 

2008; Chen et al. 2010; Trier et al. 2004, 2011). These studies have shown not only 

sensitivity, but that various fixed values of this constant may result in better agreement 

between simulated and observed heat fluxes and better precipitation verification scores 

than others depending on the scenario. Numerous studies have also suggested that the 

computation of latent heat flux from plant transpiration contains many uncertainties. 

Perhaps the most important is the resistance term, whether stomatal resistance or 

generic canopy resistance, which governs how effectively plants release water through 
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their leaves into the environment and how effectively that water can be carried out of 

the canopy and into the lower atmosphere (Chen and Dudhia 2001; Jackson et al. 2003; 

Godfrey and Stensrud 2010; Kumar et al. 2011). It should be noted that implementation 

of a more mixed or comprehensive set of variations based on these uncertainties in an 

ensemble forecast framework has not been attempted. 

 Among the major physics components in convection-allowing NWP forecasts, 

which include cloud microphysics, boundary layer, radiation, and surface-atmosphere 

exchange/LSM, the LSM component remains one for which uncertainty is only 

minimally accounted for, even in ensembles that sample model error by using mixed 

physics (see Clark et al. 2009, 2011, Kong et al. 2007, and Xue et al. 2008, for 

examples of experimental convection-allowing ensemble configurations). Even in 

ensembles that include mixed LSM parameterizations, the variability is usually limited 

to one of two schemes, the frequently used Noah LSM (Chen and Dudhia 2001; Ek et 

al. 2003; these two papers have been cited nearly 2600 times), and the Rapid Update 

Cycle (RUC) LSM (Smirnova et al. 1997, 2000, 2015; total citations among these 

papers is over 200), which is sensible considering these schemes are used operationally. 

However, large uncertainties exist within these and other LSMs which have not been 

accounted for in convection-allowing ensembles. In this study, an effort to sample LSM 

uncertainty and investigate the sensitivity of forecasts of convection to perturbations to 

LSM-related parameters is documented. The implications of adding such LSM 

perturbations to other physics perturbations in convection-allowing ensemble forecast 

systems are also discussed. 
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 The remainder of this chapter is organized as follows. A brief exposition on the 

uncertainties within the LSM component and the role it plays in the WRF model is 

given in section 5.2. The specific LSMs used in this study are introduced and briefly 

described in section 5.3. The experimental setup is described in section 5.4. Two case 

studies illustrating the diversity and sensitivity of forecasts of deep moist convection to 

various physics perturbations are detailed in sections 5.5 and 5.6. The broader 

implications of accounting for the LSM uncertainties in convection-allowing ensemble 

forecasts are discussed in detail in section 5.7. A summary and conclusions follows in 

section 5.8. 

5.2 The role of the land-surface model in the WRF 

 In the WRF model, the LSM is partially coupled to the surface layer 

parameterization scheme in that some of the duties in the surface-atmosphere exchange 

process are shared between the two, with arrays being passed from one to the other 

where needed. In some NWP models, the two separate schemes may actually be 

combined into a single scheme. 

 The LSM component has two main roles in WRF simulations: 1) to calculate 

and pass heat and moisture flux values to the atmospheric component via the planetary 

boundary layer (PBL) scheme, and 2) to evolve the soil state and any additional 

parameterized vegetation state. The chief prognostic variables unique to the LSM 

component include soil temperature, soil moisture (soil liquid water is used when sub-

surface ice is present), and skin temperature. If a LSM parameterizes vegetation, then 

related arrays such as canopy water content and leaf-area index may also be 

prognosticated. When snow or ice is present, LSMs typically also integrate snow/ice 
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areal cover, depth, and water content. The surface layer scheme handles the near-surface 

wind, temperature, and moisture. In the WRF, surface layer schemes are also designed 

to calculate turbulent energy fluxes in the event that a LSM is not used (so that any 

changes to the near-surface atmosphere can be fed back into the rest of the atmosphere). 

5.2.1 Formulation of land-surface models 

 Land-surface models use the surface energy budget as a guide. The surface 

energy budget is expressed as 

 𝑅𝑛𝑒𝑡 = 𝐻 + 𝐿𝐸 + 𝐺 (5.1), 

where Rnet is the net radiation, the difference between the incoming and outgoing 

components of the shortwave and longwave radiation (several of which are calculated in 

the radiation parameterization scheme), H is the turbulent sensible heat flux, which 

transports heat into the atmosphere, LE is the latent heat flux, which carries moisture 

away from the surface, and G is the ground heat flux, which transports heat into the soil. 

In essence, the land-state evolution is driven by the net radiation and how it is 

partitioned into these three basic energy components. LSMs in the WRF do not strictly 

close the energy budget equation. Rather, each term is calculated independently, with 

the assumption that the equation should be approximately true. The LSMs in the WRF 

contain subroutines that decide whether to terminate model integration if the residual 

becomes too large. One particular scheme dumps the residuals into the history file. 

Cursory examinations of the residuals suggest that they are of O(1 W m
-2

) but are 

highly variable in space and time. Residuals occasionally exceed 10 W m
-2

. While LE 

represents water vapor flux at the surface, in LSMs in the WRF it acts primarily as a 
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diagnostic value; the moisture flux (not coupled to the latent heat of vaporization) is 

passed to the PBL scheme so moisture can be distributed throughout the atmosphere. 

5.2.2 Uncertainty in the LSM 

 The construction of LSMs contains many uncertainties. Such uncertainties 

include the formulation of the energy fluxes, the numerical methods used to 

approximate the governing equations of heat and water transport within the soil, and 

soil and vegetation state parameters. Most of the attention paid to LSM uncertainty in 

this work regards the first source of uncertainty. Sources of uncertainty in the sensible 

and latent heat fluxes are of chief importance. 

5.2.2.1 Sensible heat flux 

 A general formula for sensible heat flux is 

 
𝐻 = 𝜌𝐶𝑝

𝑇𝑠 − 𝑇𝑎

𝑟ℎ
 (5.2), 

where ρCp serves to convert between radiative transfer and kinematic units, Ts 

represents the surface (skin) temperature, Ta represents the near-surface temperature, 

and rh is resistance to sensible heat flux. The uncertainty in the formulation of H rests in 

the formulation of the resistance term. Resistance to sensible heat flux is the result of 

properties of the atmosphere within the thin layer immediately in contact with the 

ground surface where molecular processes dominate over macroscopic processes. It is 

thought that sensible heat flux effectively originates not at the surface, but at a small 

elevation above the surface. Similar to the roughness length for wind, the thermal 

roughness length, z0h, is defined as the height at which heat flux originates, with the 

resistance coming from the layer between the ground surface and z0h. Thermal 
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roughness length is effectively impossible to measure, and must be calculated. A 

number of formulations of z0h have been proposed. One popular formulation 

(Zilitinkevich 1995) used in the LSM in the operational NAM model is to assume z0h is 

related to the momentum roughness length by 

 𝑧0𝑚

𝑧0ℎ
= exp (kC√𝑅𝑒∗) (5.3), 

where z0m is the momentum roughness length, k is the von-Karman constant, Re
*
 is the 

stress Reynolds number, and C is an empirical parameter whose value is unknown. 

Chen et al. (1997) suggest a standard value of 0.1, but values ranging from 0.01 to 2 

have been used in the literature (Zilitinkevich 1995; Marshall et al. 2003; Trier et al. 

2004, 2011; LeMone et al. 2008, 2010). Varying C with location, based on land cover 

and/or soil texture, has also been proposed, but has not been shown to be clearly 

superior (Trier et al. 2011). Still other formulations of C and z0h itself have been offered 

(e.g., Chen and Zhang 2009; Chen et al. 2010). Therefore, there is much support in the 

literature on the uncertainty of the calculation of the thermal roughness length. Many of 

the above cited papers compared energy flux forecasts to observed values at a limited 

number of points in an attempt to implement improvements to a given LSM. 

Accounting for this uncertainty in a convection-allowing ensemble has not been 

attempted. 

5.2.2.2 Latent heat flux 

 Latent heat flux can be formulated similarly to sensible heat flux as 

 
𝐿𝐸 = 𝜌𝐿𝑣𝑀

𝑞𝑣,𝑔 − 𝑞𝑣,𝑎

𝑟𝑣
 (5.4), 
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where Lv is the latent heat of vaporization, M is moisture availability or soil moisture 

stress factor, qv,g and qv,a represent moisture terms at ground level and in the near-

surface atmosphere, and rv is the resistance to latent heat flux. This formula is more 

useful in illustrating the underlying physics, and is not always practical since the term 

qv,g is ambiguous. There are methods that approximate this formula or make 

assumptions about what qv,g represents. However, it is more common in contemporary 

LSMs to partition the total latent heat flux into three components: 1) bare soil 

evaporation, 2) canopy water evaporation, and 3) plant transpiration. The total latent 

heat flux is then calculated as the sum of the three components. The formulations for 

these three components are highly varied among existing LSMs. In addition, the 

calculation of the resistance is very complicated in many schemes, and there are many 

different ways to formulate the resistance calculation. 

5.3 Description of LSMs used 

 Four land-surface models were used in this study. The LSMs vary considerably 

in structure, complexity, and in the formulation of physical processes. However, each is 

complex enough to provide reasonable convective-scale forecasts. 

5.3.1 Noah 

 The Noah LSM is currently used in the operational NAM and is the oldest LSM 

studied here. However, the Noah LSM also has a long and well documented history of 

updates, improvements, and performance evaluation, and has grown considerably in its 

complexity since its initial development in the 1980s. The scheme originated at Oregon 

State University as a combination of a soil model with a potential evaporation scheme 

and a canopy model (Mahrt and Ek 1984; Mahrt and Pan 1984; Pan and Mahrt 1987) 
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with further refinements added by Noilhan and Planton (1989). The most recent full 

update (including documentation of updates) is provided by Ek et al. (2003), although 

other improvements have been investigated by Godfrey and Stensrud (2010), Chen et al. 

(2010), and Kumar et al. (2011). It is unknown whether these improvements have been 

implemented in the operational version of the scheme. They have not been implemented 

in the version used in this study. 

 The Noah LSM contains four soil layers with centers at depths of 5, 25, 70, and 

150 cm and a soil bottom at 2 m below ground. The model contains a single combined 

bare soil/canopy/snow layer. It uses 19 soil texture classes from the STAS dataset and 

27 land-use categories from the U.S. Geological Survey (USGS). 

5.3.2 Rapid Update Cycle (RUC) 

 The RUC LSM (Smirnova et al. 1997) was designed to be used with the RUC 

model (now replaced by the Rapid Refresh model). The overall construction of the RUC 

LSM is similar to that of the Noah LSM. The following differences from the Noah LSM 

are noted. Either 5 or 8 soil layers can be used, with 5 being the default value. With five 

soil layers, the layer centers are at depths of 0.5, 10, 30, 100, and 230 cm with soil 

bottom at 3 m below ground. The model uses a modified version of the 19 soil texture 

categories from the STAS dataset, as well as a modified version of the 27 land use 

categories from the USGS plus an additional category for lakes. One particularly 

important difference between the Noah and RUC LSMs is in the parameterization of 

resistance to plant transpiration. The Noah uses the “F-factor” method from Nolihan 

and Planton (1989), whereas the RUC uses values from a lookup table. 
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5.3.3 Pleim-Xiu (PX) 

 The PX LSM is described by Gilliam and Pleim (2010) and references therein. It 

is meant to be coupled to a specific PBL parameterization scheme (the Asymmetric 

Convective Model, version 2; ACM2). It was designed for retrospective simulations 

using a soil nudging algorithm and data assimilation and has also been used in air 

quality studies. Gilliam and Pleim (2010) note that it has not been tested in a forecast 

mode and with soil nudging turned off, both of which are the case in this study. 

 The PX LSM contains two soil layers at 0-1 cm and 1-100 cm below the surface. 

Therefore, the soil model can be considered to be a force-restore type. The scheme uses 

a similarly complex formulation as the Noah scheme for latent heat flux and was 

included in this study based on its availability within the WRF. It uses 16 soil categories 

with values derived from Noilhan and Planton (1989) and Jacquemin and Noilhan 

(1990). Plant transpiration is computed independent of vegetation or land use type. 

5.3.4 Noah-MP 

 The multiparameterization-Noah LSM – or Noah-MP – was introduced by Niu 

et al. (2011). It is based on the Noah LSM, but with a large number of expansions. The 

soil structure and number of soil texture and land use categories is identical to that of 

the Noah LSM. Many of the expansions were added to make the new scheme more 

appropriate for climate-scale simulations. However, many expansions are also relevant 

to forecasting warm-season diurnally forced convection. Particularly important changes 

include the addition of a vegetation canopy separate from the ground surface, a semi-

tiling approach where fluxes over the bare soil and vegetated portions of the grid box 

are calculated separately as well as within in the vegetation canopy, and adding 
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calculations to account for gaps in canopy coverage. A dynamic vegetation model was 

also added to the scheme. While unique among the features of the LSMs studied here, 

the dynamic vegetation model was thought to be unlikely to cause perceptible changes 

over the course of convective-scale model integrations of length on the order of a day or 

so, and was not used. The namesake of this scheme comes from the fact that many 

important physical processes within the model, such as computation of stomatal 

resistance and exchange coefficients, were expanded to allow for multiple formulations 

to be used. In total, multiple formulations exist for 12 different processes in the version 

of the Noah-MP scheme used here. For most processes, there are only two choices, but 

for some processes, up to four options were available. Of the 12 processes that contain 

multiple options, five were considered important to convective-scale forecasts. These 

options are detailed in section 5.4.  

5.4 Experimental setup 

 Based on the uncertainties within available LSMs in the WRF, a series of 

perturbations was developed. These perturbations were then implemented in a set of 10-

member ensembles using the Advanced Research WRF (WRF-ARW; Skamarock 

2008), version 3.6.1 with 4 km grid spacing. 

  One perturbation method is to C in (5.3), hereafter the CZIL parameter. 

Ensemble members were generated by sampling from the following set of values: {0.1, 

0.25, 0.5}. It should be noted that due to the separation of duties between the coupled 

LSM and surface layer schemes in the WRF, exchange coefficients for heat and 

moisture are not computed in all but the Noah-MP LSMs. Rather, they are computed 

within the surface layer scheme code and passed to the LSM scheme code. In particular, 
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the surface layer scheme used in the control member, the Mellor-Yamada-Nakanishi-

Niino (MYNN; Nakanishi and Niino 2009), was used to make the perturbations to 

CZIL. The choice of using MYNN rather than a different scheme was a combination of 

opportunity and choice. Some of the surface layer schemes used for the physics 

perturbations in this study do not use CZIL to calculate z0h or do not use z0h to calculate 

the exchange coefficient. Of those that do (MYNN, MYJ, and YSU), the MYNN 

scheme was chosen arbitrarily. 

 A second perturbation methodology was to use the various 

multiparameterization options in the Noah-MP scheme. To date, no studies exist 

documenting the performance of the Noah-MP scheme in convection-allowing 

forecasts, neither deterministically nor in an ensemble framework by using different 

choices of processes. This study offers a first attempt to document the performance of 

the Noah-MP scheme in convection-allowing ensemble forecasts. The various 

multiparamterization options do not require coupling, so ensemble members were 

generated by comprehensively sampling from the available options for each process 

while making sure no members used identical sets of options. The options can be set in 

the WRF namelist, making for a very simple method of generating ensemble members 

without having to recompile the model. There are 18 combinations of these options. 

Details on specific options can be found in Niu et al. (2011), but the perturbed options 

are summarized briefly here. The set of options used in various ensemble members is 

shown in Table 5.1.2. Namelist option opt_crs refers to a method used in computing 

plant stomatal resistance: Ball-Berry and Jarvis methods are available. Namelist option 

opt_sfc refers to a method for computing the exchange coefficient for heat: the method 
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used in the operational Noah scheme (eqn. 5.3) and a method based on more general 

Monin-Obukhov similarity theory is available. Namelist option opt_btr refers to a 

method of computing a soil moisture stress factor for computing stomatal resistance: the 

method used in the Noah scheme using soil moisture and two methods using matric 

potential (but different functional forms) are available. Namelist option opt_rad refers to 

a method for accounting for solar radiation interacting with the vegetation canopy: a 

modified two-stream method, a two-stream method applied to the entire grid cell, and a 

two-stream approximation applied only to the vegetated portion of the grid cell are 

available. Finally, namelist option opt_tbot refers to heat flux at the bottom of the soil 

(at 2 m depth): zero heat flux or heat flux assuming an annual mean temperature at 8 m 

depth are the available options. 

 The third perturbation strategy was to use multiple LSMs. The multitude of 

differences including soil structure, soil texture and land use classification, and 

formulation of physical processes among the LSMs provides an excellent opportunity to 

test the effectiveness of using a mixture of LSMs in an ensemble configuration. 

 Three ensembles were constructed. A control ensemble, referred to as the fixed-

LSM, hereafter FLSM, ensemble contains no LSM perturbations. It uses the Noah LSM 

with CZIL = 0.1 (the default value). Physics perturbations are applied by using a 

mixture of microphysics, PBL, and surface layer parameterizations (Table 5.1.1). In 

contrast, the mixed-LSM, hereafter MLSM, ensemble applies the LSM perturbations. 

To consider the effectiveness of just the LSM perturbations alone, a third ensemble, the 

LSM-only (hereafter LSMO) ensemble, was constructed using the LSM perturbations 

but with fixed microphysics, PBL, and surface layer parameterizations.  
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Table 5.1.1. Description of member physics. PBL scheme abbreviations that have not 

been defined in the text are as follows: MYJ = Mellor-Yamada-Janjić, YSU = Yonsei 

University, ACM2 = Asymmetric Convective Model version 2. The asterisk denotes a 

suggested coupling by scheme designers. Text in italics indicates the configuration of 

the LSMO members. FLSM members are configured as shown in the bold text, each 

using the Noah (CZIL=0.1) LSM. MLSM members are configured as shown in each 

row. The control member has the configuration of the top row. 
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Table 5.1.2. Noah-MP LSM namelist options. 

 

LSM opt_crs opt_sfc opt_btr opt_rad opt_tbot 

Noah-MP1 1 1 1 3 2 

Noah-MP2 2 2 2 2 2 

Noah-MP3 1 2 3 1 2 

Noah-MP4 2 2 1 3 1 

Noah-MP5 1 1 2 2 1 

 

 The effectiveness of the LSM perturbations against the other physics 

perturbations was evaluated using a small number of case studies. The case studies 

featured diurnally driven deep moist convection either strongly forced by large-scale 

processes, by mesoscale features, or with weak large-scale forcing. In each case severe 

weather was reported, but the degree of severity and the spatial coverage, as well as 

storm mode, differed among the cases. Two case studies will be discussed in detail to 

highlight the sensitivity of convection forecasts to the various LSM perturbations as 

well as differentiate the impacts of the LSM perturbations from those of the 

microphysics and PBL perturbations. These cases were preferred since a relevant 

portion of the model domain in each case in which severe convection occurred was 

sampled by the Oklahoma and West Texas Mesonets, which offer easily accessible 

archived observations with high spatial and temporal density as well as observations of 

soil fields. Data from both networks were used for qualitative analysis and verification 

in both cases. The model domain was centered in different locations to best contain the 

events of interest in each case, but covered most of the CONUS. 
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5.5 Case study 1: 13-14 June 2010 

5.5.1 Overview and observations 

 This case was part of a multi-day outbreak of severe weather, with organized 

convection occurring daily and severe weather occurring nearly every day between 10-

15 June across the Great Plains. The particular event of focus in this case initiated as 

tornadic supercells in the early afternoon of 13 June in the Texas and Oklahoma 

panhandles, with continuous redevelopment leading to upscale growth into a substantial 

mesoscale convective system (MCS) that impacted much of Kansas, Missouri, and 

Oklahoma through 1200 UTC on 14 June. A few dozen reports of severe hail, wind, and 

tornadoes resulted from this event (see the Storm Prediction Center severe weather 

events archive at http://www.spc.noaa.gov/exper/archive/events/ for more information).  

 A high-amplitude synoptic scale trough was present to the west of the Plains. 

Slowly moving, it was present for several days leading up to the event and lifted 

northward, only glancing the Plains, on 13-14 June. Nonetheless, coupled with very 

high moisture content for early June across the Plains, the trough provided a conducive 

environment for daily thunderstorms, including sufficient vertical wind shear for 

supercells. The organized convection in this case was largely the result of mesoscale 

driven processes, however: the main forcing for initiation and redevelopment was the 

intersection of an outflow boundary (OFB) from the previous day’s convection with a 

dryline (Fig. 5.1). Widespread severe convection across the central and southern high 

Plains persisted through the overnight and into the morning of 13 June, leaving a well-

defined OFB that sank as far south as far northern Oklahoma and the northern Texas 

panhandle before slowly lifting during the afternoon. Meanwhile, a dryline formed 
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across west Texas and mixed east during the afternoon. A bulge in the dryline formed, 

with the nose near the Lubbock, Texas latitude. The dryline and OFB met in the 

northern Texas panhandle. The presence of these two boundaries means there were 

three air masses present: a cT air mass behind the dryline and two mT airmasses – one 

east of the dryline and south of the OFB, and the other north of the OFB, cooler than the 

mT air mass to its south, but still warm. 

 As the PBL grew and destabilized through the early afternoon, lift along the 

triple point was sufficient to initiate convection near Spearman, Texas between 1700 

and 1800 UTC (not shown). More robust development occurred just east of there over 

the next few hours, and by the late afternoon there was a line of intense cells across 

northeast portions of the Texas panhandle extending across the eastern Oklahoma 

panhandle. Some of these storms produced tornadoes, primarily between 2100 and 2200 

UTC. After that, continuous development along and to the northeast of the triple point 

combined with new development along the lifting OFB across northwest Oklahoma 

resulted in gradual upscale evolution to an MCS. The continuous redevelopment near 

the OFB was likely aided by continuous inflow of undisturbed very moist and warm air 

from the south. 

5.5.2 Control member forecast 

 In a general sense, the event was forecast similarly on the mesoscale by each 

member of each ensemble. Therefore, a detailed evaluation of the forecast will only be 

presented for the control member. Substantial differences from the control member 

forecast will be noted in later sections. Simulations were initialized at 0000 UTC 13 

June 2010 and run for 36 hours. 
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 The control member forecast the previous day’s overnight convection 

sufficiently well. It placed the weakly organized convection slightly south of where it 

occurred, but the motion, morphology, and duration were well forecast. Despite the 

displacement of convection, the control member forecast the OFB close to where it was 

observed across Oklahoma. To the west, in the Texas panhandle, the OFB was forecast 

slightly south of where the observations suggest it was. The exact position is not well 

known due to the paucity of observations in the Texas panhandle. 

 The control member forecast of the afternoon evolution of the OFB and PBL 

was not as good. Observed surface winds just north of the OFB remained strongly 

backed to the E or ESE through 1900-2000 UTC, gradually veering to the SE by the late 

afternoon. In the model, surface winds veered much more quickly, reaching SE to SSE 

in the same area by 1900 UTC. In fact, winds across the entire region were veered from 

the observations
5
, including in the warm sector across the rest of Oklahoma and along 

the dryline in Texas. Observed surface winds in Oklahoma were generally from 150-

180° throughout the afternoon, whereas in the model, near-surface winds struggled to 

stay backed of about 165° in central and eastern Oklahoma, and closer to 180° in 

western Oklahoma and nearby portions of Texas, where observed winds remained 

especially backed (to around 150° or more easterly) through the late afternoon (Fig. 

                                                 
5
 Wind components at the first model level were used to represent near-surface wind vectors in this 

study. Observed wind vectors are at a height of 10 m above ground level, whereas the first model level 
is typically around 30 m above ground in the southern Plains. However, wind vectors at the lowest 
model level are very similar to diagnosed 10-m winds in the model, with speed and direction differences 
of around 1-2 m s

-1
 and 5 degrees or less except in areas affected by precipitation. Therefore, the 

differences between model and observed winds in this environment is truly a model error rather than 
representativeness error. More generally, 10-m winds and 2-m temperature and moisture fields are 
diagnosed in the surface layer scheme. Due to issues with some members producing unrealistic 2-m 
temperature and mixing ratio values, these diagnostic fields were not used in analyzing forecast 
accuracy. Throughout this paper biases in near-surface fields will not be discussed unless they are 
deemed to be legitimate forecast errors with magnitudes larger than those that would occur due to 
representativity differences between first model level fields and surface fields. 
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5.2). Dryline evolution was also poorly forecast; it mixed quickly eastward in the 

model, reaching close to the boundary between western Oklahoma and the eastern 

Texas panhandle by 0000 UTC 14 June, around 100 km too far east. There was also a 

bulge forecast, but it was farther north, nudging up against the triple point region (Fig. 

5.3). Additionally, the model developed a double-dryline structure in which there were 

two south-north oriented gradients of moisture in the PBL separated by distances that 

varied among members but was approximately 100 km. The western gradient was more 

prominent in terms of the magnitude of the moisture gradient and the wind shift and 

appears to be the model’s interpretation of the main dryline. East of the eastern gradient, 

moisture quality was well forecast. Between the gradients, however, moisture gradually 

lessened from east to west. This structure was not sampled by the surface observations. 

Not only was this double-dryline forecast not represented in the observations, but CAPE 

was reduced and CIN increased between the gradients compared to RUC analyzed 

values (Fig. 5.4). With little easterly component to the winds to advect moisture from 

the east, air parcels from within the region between the gradients advected drier air 

towards the triple point and OFB. 

 The control member forecast initiation of cellular convection between 2000 and 

2100 UTC, approximately two to three hours late (Fig. 5.5). Due to only a slight 

displacement error in the OFB across the Texas panhandle, the location of initiation in 

the model was close to where it was in the observations, located only a few tens of 

kilometers to the east. Remnant moisture pooled along the OFB, forming a narrow 

tongue of higher moisture content that extended west towards the triple point with the 

dryline. As solar radiation warmed the lower atmosphere, CAPE increased and CIN 
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decreased, so modest amounts of convergence in the PBL were able to force parcels to 

their levels of free convection (LFC) along the OFB just northeast of the triple point, 

resulting in convection initiation. 

 Splitting storms were evident in forecast reflectivity within a few hours of 

initiation with the right member exhibiting hourly maximum updraft helicity (integrated 

between 2 and 5 km above ground level; HMUH) exceeding 50 m
2 

s
-2

 for several hours, 

suggesting it was a supercell (Kain et al. 2008). However, convection failed to 

redevelop along the OFB. Additional convection initiated later across north-central 

Oklahoma also forced via convergence from the weakening OFB (Fig. 5.5), with yet 

additional development farther north in Kansas a few hours later. However, most of this 

convection dissipated with no meso-alpha-scale organization noted (Fig. 5.5). 

Eventually, the model developed widespread convection across northern Oklahoma and 

southern Kansas into the overnight, bringing it eastward. However, the model was 

several hours too late, and the convection moved in the wrong direction. 

5.5.3 Sensitivity in the FLSM ensemble 

5.5.3.1 Reflectivity evolution 

 Changes to both microphysics and PBL schemes appeared to play significant 

roles in the simulation of the cold pool and OFB associated with the previous overnight 

convection, as no pairs of FLSM members that shared either microphysics or PBL 

schemes appeared strongly more similar than any other pair of members in their 

depictions of the extent and strength of the cold pool or the placement of the OFB. The 

forecast reflectivity in each member was similar on the mesoscale, as each member 

forecast a non-linear MCS that developed as the model spun up, persisting through to 
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the next morning, then dissipating at various rates between 1200 and 1800 UTC 13 June 

(not shown). There were differences on the storm-scale, however. As an example, 

members MYNN-MO, MYJ-T, MYJ-MY, YSU-WD, MYNN-F, YSU-T, and YSU-MO 

depicted development of scattered cellular convection behind the sinking OFB across 

the Texas panhandle whereas the other members either depicted no additional 

development on the OFB or depicted a small number of larger, stronger cells. 

 Sensitivity of initiation is illustrated using simulated composite reflectivity in 

the mid-afternoon in Fig. 5.6. Discrete cells developed in the Texas and Oklahoma 

panhandles and southwestern Kansas first just before 1900 UTC in members MYJ-T, 

MYJ-MY, and ACM-WS. Convection initiated last in that region in members MYNN-

MO and MYNN-N, doing so around 2100, although in members YSU-WD, MYNN-F, 

YSU-T, and YSU-MO, convection was weak and limited in areal extent before 2100. 

Storms did not develop in the same location in each member, not even when accounting 

for differences in forcing mechanisms. In general, however, initiation occurred in a 

region of focused convergence and moisture pooling along or near the OFB/dryline 

triple point. In members MYJ-T and MYJ-MY the veering of near-surface winds in the 

late morning north of the original OFB was so rapid that the original OFB along the 

southern edge of the cold pool dissipated while the northern edge of the cold pool in 

southern and central Kansas became a focused boundary (Fig. 5.7). Convection initiated 

simultaneously along this northern boundary and at the triple point in the northeast 

Texas panhandle in member MYJ-T, while initiation was limited to the triple point in 

member MYJ-MY. Initiation also occurred right on the triple point in member ACM-

MY, but in member ACM-WS it was displaced from the triple point by 75 km in an 
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area of moisture pooling. The OFB tended to wash out in these members as well. In 

members MYNN-F and MYNN-N, the original OFB remained focused long enough for 

initiation to occur both along the OFB and the triple point. In members YSU-T and 

YSU-MO, both of which used the YSU PBL scheme, the OFB became somewhat ill-

defined, and convection initiated in areas with localized strong convergence and where 

moisture pooling was more noticeable. Initiation in member YSU-WD was similar to 

that in members MYNN-F and MYNN-N rather than YSU-T and YSU-MO, even 

though it used the same PBL scheme as the latter members. 

  Each member generally failed to correctly capture the continuous 

redevelopment along and northeast of the triple point and the subsequent upscale 

evolution to an MCS. Each member captured the secondary development of convection 

across north-central Oklahoma that occurred within an hour or two of the primary 

development, although member MYNN-N contained only small isolated cells that did 

not grow upscale, unique behavior among FLSM members, likely related to the NSSL 

microphysics. Each member forecast an additional wave of development across north-

central Oklahoma and south-central Kansas after 0000 UTC 14 June. This development 

resembled the observed reflectivity evolution, although several hundred kilometers 

northeast and several hours late. While this new development persisted through the end 

of the simulation in each member, resulting in an expansive complex of convection 

across eastern Kansas and portions of Missouri, the simulated reflectivity fields do not 

suggest a well-defined convective and stratiform precipitation region as seen in 

observed reflectivity. Member MYNN-N forecast only a small area of moderate 

convection (based on simulated reflectivity values), whereas members MYJ-MY, YSU-
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WD, ACM-WS, YSU-T, and YSU-MO forecast a large area of reflectivity with a 

protruding reflectivity fine line along the southern and eastern flank late in the 

simulation, indicative of a surging gust front (Fig. 5.8). The fine line was especially 

apparent in member YSU-WD. 

5.5.3.2 Mesoscale environment and PBL structure 

 As discussed above, the location of initiation was closely tied to the location of 

the OFB and triple point. The orientation and latitudinal position of the OFB varied 

among the members. In members MYNN-MO, YSU-WD, MYNN-F, and MYNN-N, 

the OFB contained an extended segment oriented west-east across northwestern 

Oklahoma, whereas in members MYJ-T, MYJ-MY, YSU-T, and YSU-MO, the OFB 

was aligned more southwest-northeast. Also in members MYNN-MO, YSU-WD, 

MYNN-F, and MYNN-N (but also MYJ-T and MYJ-MY), a similar magnitude of 

moisture convergence was maintained along the OFB, whereas the convergence was 

much more broken or spotty in members YSU-T and YSU-MO. The OFB made it the 

furthest south in member MYNN-F, in which the Ferrier microphysics may have played 

a role. Research not presented in Chapter 3 indicated the M-Y and WDM6 microphysics 

schemes tended to produce colder and more expansive cold pools. However, there was 

no noticeable tendency for the OFB to be further south in members MYJ-MY, YSU-

WD, and ACM-MY, which used those schemes. Given the forecast hour, there was 

probably a lot of interaction between the microphysics and PBL components to mask 

any tendencies in areas impacted by significant precipitation. 

 Location and timing differences may have been related somewhat to 

thermodynamic differences as well. Mixed-layer CAPE (MLCAPE) was the largest, 
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exceeding 3000 J kg
-1

 by 1900 in a widespread area along and south of the OFB and 

east of the dryline, in members MYJ-T and MYJ-MY in which convection developed 

earlier than in other members. However, MLCAPE was among the lowest in member 

ACM-WS, only exceeding 2500 J kg
-1

 in a small area of northwest Oklahoma, although 

that was where initiation occurred. MLCAPE in members MYNN-MO and MYNN-N 

had intermediate values (Fig. 5.9). Overall, initiation tended to occur in or near the 

region of largest MLCAPE, suggesting the controlling influence of moisture pooling 

along boundaries in this case. Decrease of MLCIN did not appear to play a major role in 

timing or location of initiation, as values decreased below -10 J kg
-1

 along the OFB and 

dryline by 1800 to 1900 UTC in every member (not shown). 

 The character of the double-dryline region may have also impacted initiation via 

the size and magnitude of the source region of parcels with reduced CAPE and 

increased CIN (section 5.5.2). It also tended to cluster by PBL scheme. Members using 

the ACM2 scheme were overall drier ahead of the dryline and had a broad and smooth 

moisture gradient. They also had a straighter south-north orientation to the dryline with 

no noticeable bulge, and a wider dry tongue that extended further north towards the 

Oklahoma panhandle. Also in these members there was very little CIN more than a few 

tens of kilometers away from the dryline, consistent with the notion of the PBL being 

deeply mixed in these members. In members that used the MYNN and MYJ schemes, 

on the other hand, The width of the double dryline region varied meridionally and the 

gradient within the double dryline region was overall more spatially heterogeneous. The 

dryline also arced more towards the southwest in west central Texas than in members 

using the ACM2 scheme. Behavior in members that used the YSU scheme was 
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intermediate between that from members that used the ACM2 and MYNN/MYJ 

schemes. In some MYJ and YSU members, there was even an indication of a secondary 

minimum in moisture within the double dryline region (not shown). Since wind 

direction within the double dryline region was nearly uniformly southerly in all 

members, then failure of redevelopment along the triple point can be explained using 

the same logic as for the control member. 

 Ultimately, it is probably impossible to determine the specific forcing 

mechanism that prompted initiation given the model configuration. The one-hour model 

output frequency means many storm-scale processes (e.g., lift by individual PBL eddies 

or horizontal convective rolls) that are probably very important to initiation were not 

captured. Even if sufficiently frequent output was available, however, such features 

responsible for convection initiation will not be fully resolved on a 4-km grid. A grid 

with spacing of 1 km to 100 m would be needed for adequate analysis (e.g., Xue and 

Martin 2006; Markowski et al. 2006). Therefore, it would be unreasonable to assume 

the specific mechanism could even be identified in this domain, or would represent an 

actual circulation. 

 Since the only variability in the FLSM ensemble came from microphysics and 

PBL differences, and since no significant precipitation fell in the warm sector during the 

daytime (therefore, microphysics diversity played no role in differences between 

ensemble members), an examination of PBL structure may also elucidate causes of 

thermodynamic differences among ensemble members. Point soundings taken in 

multiple locations show the PBL mixed thoroughly in all members, so that assumption 

will be maintained throughout all future discussion on PBL structure. West of the 
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dryline, members ACM-WS and ACM-MY generally had the driest, deepest, and 

warmest PBLs during the daytime, although near-surface potential temperature was 

very similar among all members (Figs. 5.10a,b,c). Members MYJ-T and MYJ-MY were 

the most moist near the surface. Members using the YSU scheme were also among the 

more moist members during the afternoon. Members using the MYNN scheme were 

similarly dry as those using the ACM2 scheme. PBL growth rates diverged strongly 

during the afternoon, resulting in maximum PBL heights that differed by several 

hundred meters (Fig. 5.10a). The rankings of late-afternoon PBL heights do not 

correlate well with sensible heat fluxes, however (not shown). Since the definition of 

PBL top differs among the schemes, some of the differences in PBL height in Figs. 

5.10a,d,g do not correspond to differences in physical processes. Point soundings in Fig. 

5.11 reveal discrepancies between the subjectively analyzed PBL top and the 

numerically calculated PBL top in some members. In particular, the PBL top in 

members MYJ-T and MYJ-MY appears to be much closer to that in members MYNN-

MO, MYNN-F, and MYNN-N (MYNN scheme), which suggests the numerically 

calculated PBL top in the MYJ scheme is slightly higher than that analyzed. One feature 

of note, however, is a shallow secondary mixed layer above the top of the PBL in the 

late afternoon in members MYNN-MO, MYNN-F, and MYNN-N which may explain a 

rapid decrease in near-surface mixing ratio just before 0000 UTC 14 June in those 

members (Fig. 5.10c). 

 In the warm sector east of the dryline, the average behavior of the members was 

similar to that west of the dryline. Members ACM-WS and ACM-MY had the warmest, 

deepest, and driest PBLs (Figs. 5.10d,e,f). Members MYJ-T and MYJ-MY were the 
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most moist, and there was a range of about 1.5 g kg
-1

 in average mixing ratio between 

FLSM ensemble members during the afternoon (Fig. 5.10f). Oddly, in member MYNN-

N the PBL was noticeably cooler and shallower, almost an outlier among the FLSM 

ensemble members, although members MYNN-MO and MYNN-F were also among the 

cooler members. Despite the higher PBL moisture content compared to areas closer to 

and behind the dryline, a shallow layer with absolutely stable lapse rates remained 

above the top of the PBL in the warm sector (not shown), thus precluding development 

of convection, especially given the absence of forcing for ascent. 

 Behavior north of the OFB was more mixed due to the variable size of the 

region (Figs. 5.10g,h,i). However, there was still a tendency for members ACM-WS and 

ACM-MY to be warm and dry, members MYJ-T and MYJ-MY to be moist, and 

members MYNN-MO, MYNN-F, and MYNN-N to be cool and moist. Members using 

the YSU scheme were in the middle in terms of heat and moisture content. 

5.5.4 Sensitivity in the LSMO ensemble 

5.5.4.1 Reflectivity evolution 

 On the mesoscale, the forecast evolution of the previous day’s convection was 

very similar among the members of the LSMO ensemble, much more similar than 

among the members of the FLSM ensemble. The mesoscale environment around the 

time of initiation of the tornadic supercells was also similar among the members. 

However, there were still noticeable differences among the LSMO ensemble members 

in terms of timing of initiation and subsequent evolution of convection. For example, 

members MP2 and MP5 contained a large, strong cell in the northeast Texas panhandle 

at 2000 UTC while the other members were either lacking in storm coverage or only 
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had low reflectivities just before storm initiation, which would follow by 2100. 

However, members MP1, Z50, Z25, and MP4 still only had a single small cell or a 

cluster of very small cells at 2100. By 2200, however, robust convection had initiated in 

all members (Fig. 5.12). Splitting storms were evident in all members, and updraft 

helicity (not shown) suggested the right split rotated, even if only briefly, in each 

member. 

 Similar to the evolution in the FLSM ensemble, the LSMO ensemble members 

failed to maintain the initial cells. In fact, the initial storms had almost completely 

dissipated in members MP2 and MP5 by 2300, followed by member RUC and to some 

extent member MP4, by 0100 UTC 14 June. Convection was maintained longer in other 

members. Secondary development of robust convection also occurred near the north-

central Oklahoma/south-central Kansas border shortly after the primary initiation in the 

Texas panhandle, similar to the FLSM ensemble. However, coverage and longevity of 

this development was limited, especially in members RUC, Z50, and MP4. Additional 

redevelopment occurred in some form in all members generally after 0300. However, 

also similar to the FLSM ensemble, the LSMO ensemble members did not adequately 

evolve that convection into an MCS. However, many members forecast a large complex 

of storms in eastern Kansas into western Missouri overnight (Fig. 5.13). In member 

Z50, in particular, there was evidence of somewhat well-defined convective and 

stratiform zones, and in members MP2, Z50, and MP5, hints of surging outflow were 

noted in reflectivity. In member PX, on the other hand, there was little indication of any 

attempt by the model to develop mesoscale organization of existing convection, and 
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most of it had dissipated or was dissipating by 0900, a time when a leading convective 

line/trailing stratiform precipitation MCS was still present in observed reflectivity. 

 In summary, mesoscale error growth appears to be much slower in the LSMO 

ensemble than in the FLSM ensemble with respect to evolution of organized 

convection. However, by late in the simulation, differences had grown sufficiently as to 

cause noticeable differences in radar representation of meso-alpha-scale convective 

activity. 

5.5.4.2 Mesoscale environment 

 Likely due to the reduced impact of LSM perturbations on mesoscale evolution 

during the night, the meso-alpha-scale features important to convection initiation, 

chiefly the OFB, were very similar among the LSMO ensemble members by the late 

morning of 13 June. The OFB was present in virtually the same location and with 

similar structure and orientation in each member throughout the early afternoon (not 

shown), thus providing most of the explanation for the similarity in location of initiation 

of convection. However, there were noticeable mesoscale differences in terms of the 

moisture quality and temperature. In particular, members RUC and PX were noticeably 

more moist everywhere (Figs. 5.14c,f,i), although the drying west of the dryline in 

member RUC was considerably greater than in any other members, rendering it one of 

the drier members by the early evening. Member MP4 was also moist west of the 

dryline, but not in the warm sector. Members MP4 and PX tended to be cooler with 

shallower PBLs in both air masses, and member MP2 was also cool (point soundings 

show this better than air mass averaged quantities, not shown). Member RUC was 

cooler in the warm sector, but not behind the dryline, for reasons that will be explained 
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later. Members MP1, MP3, and MP5 had the warmest and driest, and some of the 

deepest, PBLs in the warm sector in the afternoon (Figs. 5.14d-f). Overall, differences 

among the members in near-surface mixing ratio and potential temperature of 1-2 g kg
-1

 

and 1-2 K, respectively, were common throughout the late morning and afternoon 

across Oklahoma and Texas. The moisture variability is similar to that from the FLSM 

ensemble, but the temperature variability is larger in the LSMO ensemble. North of the 

OFB, members Z01, Z50, and Z25 were the warmest and driest instead of members 

MP1, MP3, and MP5. Members RUC, MP4, and PX were cool, but member MP4 was 

dry. 

 Since the drier members tended to be warmer and vice versa, differences in 

equivalent potential temperatures (theta-e), which is highly correlated with CAPE, were 

rather small. Near the OFB, theta-e tended to be largest in members MP1, MP5, and PX 

(not shown), in which the maximum CAPE prior to initiation also tended to be larger by 

up to 500-1000 J kg
-1

 in very localized areas (Fig. 5.15). Unlike the FLSM ensemble, 

MLCAPE exceeded 3000 J kg
-1

 in all members, so there was less variability in CAPE 

among LSMO members than among FLSM members in this case. Since member MP2 

had less CAPE but was one of the first members to develop a strong storm, stability 

indices alone cannot explain differences in initiation timing. The focus and strength of 

near-grid-scale forcing probably provides the ultimate explanation for timing 

differences, but as described in section 5.5.3.2, it is probably impossible to analyze 

those forcings in this case. Like in the FLSM ensemble, however, there was focused 

low-level convergence on the near-grid-scale in each member prior to initiation (not 

shown) 
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5.5.4.3 Surface energy flux impacts on the lower atmosphere 

 The primary feedback from the LSM component to the atmospheric component 

of the WRF occurs through the sensible heat flux and moisture flux. Since these 

processes are bottom boundary layer conditions for the atmosphere, LSM perturbations 

would be expected to be the most apparent in the lower atmosphere, namely, within the 

nocturnal stable boundary layer and the afternoon convective boundary layer. 

Therefore, the focus of the rest of this section is on surface energy fluxes. 

 Early afternoon sensible heat flux at is shown in Fig. 5.16. Large differences 

among the members can be found, especially in western Texas and eastern New 

Mexico, suggesting much more diversity than in the FLSM ensemble south of the OFB 

and especially west of the dryline. In this area sensible heat flux is the largest in 

members MP1, RUC, and MP5. Members MP1 and MP5 use the generic Monin-

Obukhov method in the Noah-MP LSM (Niu et al. 2011) to calculate the surface 

exchange coefficient, and the exchange coefficient for heat is much larger over most of 

the region in those members compared to most other members, including the other 

Noah-MP members (not shown). The higher exchange coefficient means that for a 

given temperature difference between the lowest model level and the surface (skin 

temperature) more heat is transported from the surface into the atmosphere, which 

should result in higher near-surface temperatures and warmer and deeper PBLs. There 

is a stark contrast between members MP1 and MP5 and members MP2, MP3, and MP4, 

the latter of which use the Chen et al. (1997) method to calculate the exchange 

coefficient. The exchange coefficient in these latter members is much lower, restricting 

transport of heat away from the surface. As a result, there is an accumulation of heat at 
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the surface, and the energy is instead forced to be transported deeper into the soil, which 

is manifest as larger ground heat flux and warmer soil temperatures (Fig. 5.17d-f). The 

opposite is true for members MP1 and MP5. Sensible heat flux values are also 

consistent with the values of CZIL in members Z01, Z25, and Z50. In the MYNN 

surface layer scheme, as CZIL increases, z0h decreases, so the exchange coefficient 

decreases, as does sensible heat flux. Member Z50 uses CZIL=0.5 and has the smallest 

sensible heat flux compared to members Z01 and Z25. Member Z01 uses CZIL=0.1 and 

has the largest sensible heat flux. Because it also has a higher exchange coefficient, 

sensible heat flux is among the highest in the LSMO ensemble west of the dryline in 

member RUC. However, east of the dryline, member RUC is closer to the ensemble 

mean in terms of sensible heat flux. As a result, there is less vertical mixing in the PBL 

east of the dryline in member RUC, and it remains one of the cooler and more moist 

members. 

 Surface moisture flux is of chief importance in driving variability in moisture 

content among LSMO members. The magnitude of moisture flux is dependent on many 

factors, including soil moisture availability, moisture contrast between the surface and 

the lower atmosphere, amount of condensed water present on the vegetation canopy, 

and exchange coefficients, but since each LSM parameterizes moisture flux differently, 

exchange coefficient formulations for a given process like plant transpiration differ 

among the members. Therefore, differences in total moisture flux are the result of a 

combination of differences in the formulation and calculation of each of the factors that 

contribute to it, which can make a comparison among schemes less straightforward. In 

spite of this difficulty, an attempt to classify and explain the differences will be made. 
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 Moisture flux accumulated over the daytime of 13 June and prior to initiation is 

shown in Fig. 5.18. There is a large overall increase in moisture flux from west to east 

across the region, the result of not only a west-east increase of soil moisture, but also of 

an increase in vegetation density across the region. Across Texas and western 

Oklahoma moisture flux is especially larger in members RUC and PX with more 

isolated areas of larger moisture flux in members MP1, MP2, and MP4. Moisture flux is 

the lowest in member MP3. The streaky nature of the large moisture flux in member 

RUC is the result of large bare soil evaporation (not shown), with some of the liquid 

provided by the previous overnight convection. On average, however, bare soil 

evaporation in member RUC was higher than in any other member regardless of 

antecedent soil moisture. While bare soil evaporation was also high in member PX, 

plant transpiration drove much of the higher moisture flux in that member (not shown). 

The overall low moisture flux in member MP3 was the result of rather low plant 

transpiration, unique behavior among members that used the Noah-MP scheme. There 

were large differences in the spatial patterns of both ground evaporation
6
 and especially 

plant transpiration among Noah-MP members, suggesting an effective perturbation 

strategy by varying opt_crs, opt_btr, and opt_rad, all of which should influence these 

processes. 

 A detailed examination of the moisture flux behaviors in the LSMO ensemble 

members is offered using Fig. 5.19, taken from a point near the Oklahoma Mesonet site 

at Chandler. There is a significant clustering of total surface moisture flux: members 

using the Noah scheme and the RUC and PX schemes have the most moisture flux 

                                                 
6
Because of the semi-tiling approach in the Noah-MP LSM, bare soil evaporation is only one component 

of the full moisture flux from ground evaporation. 
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during the daytime, whereas members using the Noah-MP scheme have much less 

moisture flux. Since there was very little precipitation during the simulation at this 

location, there was correspondingly little canopy water evaporation, so ground 

evaporation and plant transpiration provided effectively all of the total moisture flux. 

The overall large bare soil evaporation in members RUC and PX is apparent, although it 

should be noted that there were grid points at which these members did not have the 

largest bare soil evaporation. The exchange coefficient for bare soil evaporation in 

members PX and RUC was much larger than that for ground evaporation in the Noah-

MP members (not shown). Most of the total moisture flux was due to plant transpiration 

in the Noah members, while the PX LSM also calculated very large plant transpiration. 

The soil moisture tendency in the PX scheme is likely a result of the soil structure. It 

uses only two layers to 1 m depth, shallower than the other schemes. Thus it is 

presumably easier for moisture to move into the atmosphere from the deep layer. The 

PX scheme also uses different land cover/vegetation categories than the other members, 

so perhaps that is part of the cause of differences as well. It should also be noted that, 

although the RUC LSM uses the same soil texture and land use categories as the Noah 

and Noah-MP LSMs, the threshold values of soil parameters (e.g., wilting, saturation, 

and soil matric potential parameters) are different in the RUC LSM. An additional 

simulation was run by swapping these values from those used in the Noah scheme to 

determine if these parameter differences were the cause of the greatly different moisture 

flux behavior in member RUC. Only minor changes to moisture flux were noted in the 

additional run, suggesting that is not the cause. 
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 In two of the Noah-MP members, plant transpiration decreased to nearly zero 

during portions of the daytime (Fig. 5.19f), caused by stomatal resistance reaching very 

large values (not shown). Stomatal resistance is in the denominator of the exchange 

coefficient for plant transpiration in the Noah-MP LSM, so the drop in plant 

transpiration is due to the drop in the exchange coefficient. In Noah-MP members in 

which plant transpiration did not approach zero, stomatal resistance instead became 

very low during the daytime, thus the exchange coefficient became large and 

transpiration proceeded. The behavior of plant transpiration in specific Noah-MP 

members varied by location, however. Regardless of location, the exchange coefficient 

for transpiration tended to be very similar in members MP1 and MP5. The exchange 

coefficients in members MP2 and MP4 were very similar at some locations, but at other 

locations they differed greatly. The behavior of the exchange coefficient in member 

MP3 was intermediate between the other pairs of members. At locations where rain did 

not fall during the simulation, the exchange coefficient decreased during the day, but 

not as much as it did in members where plant transpiration ceased. At rainy locations, 

the exchange coefficients tended to be very similar among all of the Noah-MP 

members. The exchange coefficient for transpiration in members Z01, Z25, Z50, and 

PX reached similar, but slightly larger, magnitudes as members MP1 and MP5 during 

the daytime (not shown). The resultant transpiration in members Z01, Z25, Z50, and PX 

was thus larger than that in members using the Noah-MP LSM, although that is 

probably not the only factor explaining the difference in transpiration between sets of 

members. The exchange coefficient for transpiration was largest in member RUC, but 

perhaps due to the difference in formulation of plant transpiration in the RUC LSM 



147 

 

(i.e., the use of a plant coefficient from a lookup table), transpiration was more similar 

to that of the members using the Noah-MP LSM rather than being overwhelmingly 

larger than all other members, as implied by the large exchange coefficient. 

 In general, the RUC LSM parameterized the largest bare soil evaporation, 

although other members, especially those using the Noah-MP LSM, occasionally had 

similar values. Also, the PX LSM parameterized the largest plant transpiration, although 

at some locations members using the Noah LSM and some of the members using the 

Noah-MP LSM had similar or larger values. It is also worth noting that at locations 

where no precipitation was forecast, soil moisture was almost identical between 

members, with differences in 5-cm soil moisture content differing among the members 

by less than 1%. However, forecasts of soil moisture were not always good. At the 

Chandler mesonet site, for example, there was a bias of around 0.15 m
3
 m

-3
 in both 5-

cm and 25-cm soil moisture in all members except PX, in which the bias was highly 

variable in time. However, the soil moisture tendency forecast was good at the Chandler 

site, where very little precipitation was forecast. This was the case at other sites where 

soil moisture observations were available as well. Biases in forecast soil moisture are 

likely the result of either poor initial soil conditions provided by the NAM model 

analysis or representativeness errors resulting from interpolating from a 12 km grid. 

5.6 Case 2: 19-20 May 2013 

5.6.1 Overview and observations 

 There was a regional outbreak of severe weather on both 19 and 20 May 2013, 

with over 1000 combined reports of severe weather, the majority of which were in the 

Plains and Midwest. The focus of these two events was in Kansas and Oklahoma, where 
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numerous tornadoes, several rated EF2 and higher, occurred. In particular, an EF4 

tornado occurred near Shawnee, Oklahoma on the 19th and an EF5 tornado struck 

Moore, Oklahoma on the 20th. 

 The synoptic scale pattern was favorable for a large severe weather outbreak. A 

deep and slow moving trough sat over the Rocky Mountains with a strong jet for late 

May across the Plains. Lower atmospheric moisture was also high, with surface 

dewpoints ranging from 67-72°F (Fig. 5.20). Finally, a common triggering mechanism 

for the region, a dryline, was present both days, with a strong moisture gradient across 

the dryline. The resultant high instability, high shear, and strong triggering mechanism 

provided the necessary ingredients for severe weather. 

 The evolution of storms each day is summarized briefly as follows. The first 

storms developed along the dryline in south-central Kansas around 1900 UTC 19 May. 

Within an hour, additional storms developed just west of Oklahoma City, Oklahoma 

with additional storms partially filling in along the dryline between Oklahoma City and 

Wichita, Kansas, as well as southwest of Oklahoma City. All storms quickly became 

supercellular. After a series of storm interactions, three main supercells remained across 

central Oklahoma by 2200, producing a few of the strong tornadoes. Meanwhile, to the 

north, storms across the Kansas-Oklahoma border rapidly became linear by the late 

afternoon, but additional storms redeveloped along the tail end of the line in north-

central Oklahoma, achieving supercellular characteristics briefly. These storms 

continued producing severe weather well into the evening, finally gradually weakening 

after 0600 UTC 20 May. 
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 A stationary front had moved into northern Oklahoma and eastern Kansas by the 

morning of the 20th. The dryline remained in southern Oklahoma and Texas. Storms 

rapidly developed along both boundaries around 1900 UTC. Several discrete cells 

developed along the dryline in southern and central Oklahoma with little space between 

them. Therefore, storm interaction played a role in which storms survived to produce 

tornadoes, including the EF5 that impacted Moore, which occurred at around 2000. By 

late in the afternoon, a string of large and strong thunderstorms existed, stretching from 

near Wichita Falls, Texas northeast through northern Missouri. These storms slowly 

grew upscale to form a squall line after 0000 UTC 21 May, when the simulations for 

this case ended. 

 It should be noted that observations from the Oklahoma mesonet, as well as 

from National Weather Service observing locations in Kansas and Oklahoma were 

insufficiently dense to determine why storms formed in the specific locations that they 

did on 19 May, although Trier et al. (2015) provide some insights. Meso-gamma-scale 

thermodynamic variability along the dryline appears to have played a significant role. 

5.6.2 Control member forecast 

 Simulations in this case were initialized at 1200 UTC 19 May 2013 and 

integrated for 36 hours. The initialization time represents a major difference from the 

first case, since the initiation of the target storms in this case was within the first 12 

forecast hours, whereas in the first case, the target storms developed after forecast hour 

18 and after an intervening episode of convection. Therefore, unlike the first case, initial 

condition errors had less time to impact the forecast and upscale growth of storm scale 

error was not a significant factor in the forecast skill of this case. 
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 The control member predicted the storm mode and location with great accuracy 

on the 19th. However, some mesoscale aspects of the forecast were not as good. As in 

the first case, winds near the surface were veered in the model compared to the 

observations. Observed wind directions at 1900 UTC ranged from 170°-190° 

throughout Oklahoma east of the dryline. In the model, near-surface winds were 

uniformly from about 180°-190° (Fig. 5.21). Also, the dryline was rotated in the model 

compared to the observations. The observed dryline was oriented south-north, whereas 

in the model the dryline was oriented more SSW-NNE and was farther east by a few 

10s of kilometers than in the observations. There was some evidence of moisture 

pooling along the dryline in north-central Oklahoma and south-central Kansas in the 

observations. Moisture pooling was also suggested in the model, but to a lesser extent. 

In general, the model appeared to be too dry near the surface by 1-2 g kg
-1

. Unlike the 

first case, no obvious double-dryline structure was apparent, which is somewhat at odds 

with a study of the same case using a similar configuration of the model (Trier et al. 

2015). 

 Storms initiated between 2000 and 2100 in Butler County, Kansas, about one 

county too far east compared to observed reflectivity (Fig. 5.22), and about 1-2 hours 

late. These storms progressed northeastward, but did not evolve into a linear 

configuration as in the observations, instead remaining cellular and discrete. 

Meanwhile, in Oklahoma, a storm initiated in Oklahoma and Lincoln Counties just after 

2100, almost two hours late (Fig. 5.22). However, the storm was in approximately the 

same location as an observed storm at the time. Additional storms developed shortly 

after, one in particular, in Pottawattamie and Seminole Counties, very near where an 
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EF4 tornado occurred near Shawnee. These meso-gamma-scale aspects of the forecast 

are of remarkable accuracy for a model with 4 km grid spacing. However, the forecast 

evolution of convection afterward did not match the observed evolution of convection 

as closely. Whereas the observed discrete storms in Oklahoma dissipated from 

northeast-southwest in the late afternoon to early evening, the modeled storms 

maintained their intensity and expanded in coverage as they moved into northeast 

Oklahoma (Fig. 5.22). Also, there was no redevelopment in north-central Oklahoma in 

the model, but due to the spurious storms forecast by the model, the forecast reflectivity 

resembled observed reflectivity in southeast Kansas and northeast Oklahoma in the 

evening. 

 While the reflectivity forecast was fairly accurate despite a late initiation, other 

aspects of the control forecast differed from observations. Observed surface winds 

backed throughout the afternoon and into the early evening, reaching 150° in many 

areas, especially in south-central Oklahoma, and even to 135° within the cold pool of 

the central Oklahoma storms as the cold pool advected northwestward into north-central 

Oklahoma. Winds also backed in the model, but not enough to match the observations. 

Wind directions only reached about 180° in south-central Oklahoma, but did reach 160° 

in portions of eastern Oklahoma. Near-surface winds in north-central Oklahoma backed 

significantly within the cold pool of the forecast storms, matching the observed winds in 

the cold pool. However, the observations suggested a separation between the cold pool 

air mass and the dryline, which remained approximately stationary throughout the day. 

No such separation was evident in the forecast, as the dryline mixed eastward somewhat 

until the early evening when it halted and began to retrograde. Forecast storms appeared 
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to remain mostly anchored to the dryline until about 2300, an hour or so later than any 

hint of anchoring in the observations. Finally, the cold pool was too dry in the model 

compared to the observations. Observed dewpoint temperatures at stations impacted by 

the cold pool from the Oklahoma storms bottomed out in the 60-65 °F range before 

rebounding, which converts to mixing ratio values of approximately 11.5-13 g kg
-1

. 

Forecast near-surface mixing ratio values dropped to less than 11 g kg
-1

 over a several-

county area in north-central Oklahoma, with some locations dropping below 8 g kg
-1

. 

Such errors with moisture content are likely related to microphysical processes. Errors 

with dryline position are probably the result of PBL scheme errors. 

 Around midday on 20 May, the forecast dryline and front were too far east 

compared to the observations, by over 100 km for the stationary front in northern 

Oklahoma, and by approximately 50 km for the dryline in southern Oklahoma. Also, the 

moisture gradient was much too relaxed in the model, where the rich moisture was 

displaced more than 100 km east of the forecast dryline, but where the observations 

suggested rich moisture remained immediately against the dryline. Also, as on the 19th, 

forecast near-surface winds were veered relative to the observations by 10-30°. Storms 

developed in the model around 2000, 1-2 hours too late, and as a result of the eastward 

bias of the surface boundaries, about 100 km east of observed storms (Fig. 5.23). 

However, forecast convection developed into a broken line of intense storms in eastern 

Oklahoma, roughly matching the observed convective morphology. 

 In summary, much like in the first case, errors from the PBL scheme likely 

caused errors with the evolution of the moisture content and winds within the PBL 

during the hours leading up to convection initiation. Also, the forecast dryline had an 
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eastward bias. Storms also developed a few hours late, not uncommon with 4 km 

forecasts of explicit convection, but acquired a similar morphology as in observed radar 

imagery. 

5.6.3 Sensitivity in the FLSM ensemble 

5.6.3.1 Reflectivity evolution 

 With essentially no convection impacting Oklahoma or far southern Kansas at 

any point in the simulation prior to initiation of the severe storms on the afternoon of 19 

May, FLSM ensemble members behaved very similarly, both in the mesoscale 

environment and in terms of the location and morphology of the initial storms. There 

were differences in timing of initiation, however. Members MYJ-T, MYJ-MY, YSU-

WD, MYNN-F, and to a lesser extent, YSU-MO initiated convection entirely in 

southern Kansas between 1900 and 2000 UTC. The convection initiated right along the 

dryline in a SSW-NNE oriented broken line from Sumner to Marion Counties, Kansas, 

a few tens of kilometers east of where observed convection developed. Initiation of 

convection occurred in the remaining members by 2100, also with a slight easterly bias 

(Fig. 5.24). A solid line of higher reflectivity was already present in some members by 

that time, matching the observed convective morphology. By 2100, the first members to 

develop storms in Oklahoma, MYJ-T and MYJ-MY, had done so in essentially identical 

locations in central and southern Oklahoma, followed within an hour by the remaining 

members. In general, as would be expected, development and early evolution of 

convection was very similar in members that used the same PBL scheme. Also, only in 

members MYJ-T and MYJ-MY did storms develop in southern Oklahoma. In the other 

members, storm coverage in Oklahoma was limited to the northern half of the state. 
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 Similar to the control member, most other members of the FLSM ensemble did 

not properly handle the later evolution of convection. The ensemble members failed to 

continuously redevelop convection trailing behind the initial storms that formed in 

southern Kansas. However, at or after 0300 UTC 20 May, convection developed in 

northeast Oklahoma and southeast Kansas, behind the initial wave of storms, in all 

members except MYNN-MO, MYNN-F, and MYNN-N (not shown), similar to 

observed reflectivity. The forcing mechanism for this new development was a band of 

convergence resulting from accelerated southeasterly flow from the cold pool of the 

first wave of storms colliding with west and northwest winds behind the advancing 

dryline (combining with a weak cold front) in a region with 1000-2000 J kg
-1

 of 

MLCAPE and less than 100 J kg
-1

 of MLCIN. It should be noted that this evolution 

requires dryline-forced storms to have moved away from the boundary (section 5.6.2). 

 In the early afternoon of 20 May, storms first developed in members MYJ-T and 

MYJ-MY; they developed along and south of the Red River in Texas around 1900 

UTC. Development of storms in Oklahoma occurred latest (around 2100) in members 

MYNN-MO, MYNN-F, and MYNN-N (Fig. 5.25). Storms developed at least one hour 

late and around 100 km too far east in each member. While a broken line of storms 

developed from central Texas northeastward into central Missouri in all members, the 

coverage of storms along the dryline and front varied among the members, with 

differences again appearing to be clustered by PBL scheme (not shown). Members 

MYJ-T and MYJ-MY contained three or four large clusters of storms with little else 

along the boundaries. Members MYNN-MO, YSU-WD, YSU-T, and YSU-MO, on the 

other hand, developed a configuration featuring generally uniform storm sizes nearly 
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equally spaced along the boundaries. Members ACM-WS and ACM-MY also had more 

uniform coverage of storms along the boundaries, but convection tended to fill in the 

gaps along the line as the simulation progressed. By 0000 UTC 21 May – the end of the 

forecast – these members forecast a nearly filled squall line extending northeastward 

from central Texas into western Illinois, whereas in the other members, there were large 

gaps in storm coverage, but the areal extent of storms was similar. 

5.6.3.2 Mesoscale environment prior to convection initiation 

 The forecast in members using the same PBL scheme evolved nearly identically 

before initiation of storms on 19 May. There were only very small differences in dryline 

placement even among members using different PBL schemes, however. Point 

soundings east of the dryline also show the strong dependence on PBL scheme (Fig. 

5.26). The vertical profile includes a very moist, yet capped environment was present in 

the warm sector with an elevated mixed layer atop the growing PBL, resulting in 

extreme instability, but also strong capping. The lifting and removal of this cap by large 

scale ascent can clearly be seen at later forecast hours (not shown). PBL depth ordering 

among members was similar to that in case #1, with the ACM2 scheme producing the 

deepest PBLs, the MYJ scheme producing the shallowest PBLs, and the other two 

schemes in between. Temperature in the PBL was very similar among ensemble 

members (Figs. 5.27c,d), leaving moisture content as the largest difference between 

members. Members using the MYJ scheme tended to be the most moist in both air 

masses (Figs. 5.27e,f) while members using the ACM2 scheme were the driest. 

Members using the MYNN and YSU schemes had very similar mixing ratios. These 

behaviors are consistent with those from case study #1. It may be that in this case study, 
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the stronger synoptic scale forcing was able to overwhelm any sensitivity to PBL 

scheme and force a relatively consistent dryline position among the members. 

 There was more variability in the heat and moisture fields east of the 

dryline/front in the afternoon of 20 May, owing to differences in convective evolution 

the previous evening. However, the same tendencies were still present. 

 Thermodynamic fields also clustered by PBL scheme. Members MYJ-T and 

MYJ-MY had the highest MLCAPE near the dryline, forecasting a narrow band of over 

3500 J kg
-1

 in northern Oklahoma by 1900 UTC 19 May, whereas members ACM-WS 

and ACM-MY forecast less than 3000 J kg
-1

 in the same area. The remaining members 

had between 3000 and 3500 J kg
-1

 MLCAPE (Fig. 5.28). All members had less than 10 

J kg
-1

 MLCIN in the area by 1900 UTC. It should be noted that, according to a RUC 

analysis, the observed MLCAPE was over 4000 J kg
-1

 in northern Oklahoma at the 

time, so all members underforecast instability, some by more than 1000 J kg
-1

. It seems 

reasonable, then, that convection initiated first in MYJ-T and MYJ-MY since they were 

the most moist and had the highest CAPE and lowest LFCs, assuming forced ascent was 

similar among the members (of which there is little reason to suspect otherwise), and 

vice versa for ACM-WS and ACM-MY. 

 At 1800 UTC 20 May, all FLSM members depicted a weakly active cold front 

extending northeastward from its intersection with the dryline around Oklahoma City, 

Oklahoma, with the dryline extending SSW from there. The location of the cold front 

differed by 50-100 km among members and there were differences in the structure of 

the moisture gradient along it and the near-surface winds behind it. While most 

members had light W or SW winds immediately behind the front, in member MYJ-MY 
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there were light NE winds behind the front in Oklahoma. Also in member MYJ-MY, 

the front bulged northwestward coincident with a divergent near-surface wind pattern 

associated with very light precipitation falling along the front around that time. 

Members MYJ-T and MYJ-MY also had the highest CAPE among the FLSM ensemble 

members across Oklahoma at 1800 UTC. 

 The location of the dryline and the moisture gradient was very similar among 

the FLSM ensemble members. The gradient was diffuse, with mixing ratio gradually 

decreasing from around 14-15 g kg
-1

 in the warm sector to 3-4 g kg
-1 

over a 100-km 

distance. Near-surface winds also gradually veered from S or SSW to SW or WSW over 

that same distance. In member MYJ-MY the winds were backed around 10° compared 

to the other members, which was the most extreme difference in wind direction in the 

FLSM ensemble. 

 The most noticeable diversity at 1800 was with the location of the portion of the 

cold front that extended into the dry air behind the dryline in Oklahoma. A west-east 

oriented thermodynamic boundary with an associated wind shift was present, but in a 

much different location and shape in each member (not shown). In member YSU-T, the 

boundary was oriented perfectly west-east and extended from Dewey to Logan County. 

In member MYNN-N, on the other hand, the boundary had surged southward, arcing 

from Beckham County southeastward towards Kiowa and Comanche Counties and then 

northeastward across Caddo and Grady Counties before joining the dryline. Member 

MYJ-MY had a similar placement as member MYNN-N, but with the boundary 

displaced northward a few tens of kilometers. Other members were within the two 
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extremes presented above. While these differences were substantial, they did not appear 

to play a role in the location or timing of development of convection a few hours later. 

5.6.4 Sensitivity in the LSMO ensemble 

5.6.4.1 Reflectivity evolution 

 Initiation of storms in south central Kansas occurred between 2000 and 2100 

UTC 19 May in each member (Fig. 5.29). In members Z01, Z25, Z50, MP1, and MP5 

the morphology was a small cluster of cells with one dominant cell located in Butler 

County in each of those members. In members MP2, MP3, and MP4 only one large cell 

was present (but with a small secondary cell developing), also in Butler County. Only a 

small storm or two was present in members RUC and PX, located in nearly identical 

locations across Butler and Cowley Counties. A storm also developed in central 

Oklahoma in members MP1 and MP5 by 2100. Storms developed in central Oklahoma 

in the remaining members over the next two hours, with initiation latest in members 

RUC and PX. 

 The convective morphology over the next few hours was similar in each 

member – that of a broken line of cells extending from far southeastern Nebraska and 

southwestern Iowa through central and eastern Oklahoma – with varying degrees of 

filling along the line (not shown). Only member PX exhibited any tendency for 

immediate linear growth with the storms in Kansas. Members MP2, MP3, and PX had a 

mostly filled line by 0100 UTC 20 May, whereas larger gaps remained in the other 

members. In the extreme case – member RUC – only two storms (both supercells 

according to HMUH) were forecast in Oklahoma before 0100. Additionally, convection 

also tended to develop sequentially down the dryline in most members, although with 
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different frequencies. In members MP1, MP2, MP5, and PX, three to four additional 

cells developed along the dryline after the initial cell and south of where it developed. 

In member Z50, no additional cells developed in central Oklahoma after the first one. 

 Subsequent reflectivity evolution differed from that in the FLSM ensemble. 

While LSMO ensemble members also generally failed to correctly evolve the 

convection into the late evening, in only member RUC did secondary development 

occur across southeastern Kansas. This was due to the lack of storm coverage in this 

member across northeastern Oklahoma and southeastern Kansas. In member RUC, the 

air mass recovered behind the initial storms that developed in Kansas and a substantial 

amount of instability remained into the evening. Forcing was provided by a 

combination of the dryline and an eastward advancing OFB from post-dryline storms 

that developed farther to the west, in central Kansas, in the late afternoon. This 

evolution was different from that in the other members, where convergence was present 

in a similar location, but there was insufficient instability to support new convection. As 

a result, convection was absent from all but the eastern most column of counties in 

Oklahoma by 0500, except in member MP5, which contained a weak and dying cell 

across east-central Oklahoma (not shown). 

 In the early afternoon of 20 May, storms first developed in members MP1, MP2, 

and RUC. In member MP1, the first cell developed in central Texas, whereas in 

member MP2, two storms developed in Oklahoma, one in the northeastern corner of the 

state and one in the south-central portion. In member RUC, storms developed in both 

Texas and Oklahoma (Fig. 5.30). In each member, initiation occurred along the 

combined dryline/front. Storms formed in the remaining members over the next two 
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hours, with initiation latest in member PX. The location of the first storm varied along 

the combined dryline/front. A small storm developed in far northeastern Oklahoma or 

far southeastern Kansas in each member, but development was preferred across central 

Texas in members Z01, Z25, Z50, and MP1, and straddling the Red River in members 

MP5 and RUC. Initial convection expanded more quickly in member MP2, but by 2200 

UTC each member had similar storm coverage (not shown). Convective morphology 

was a broken line of cells with varying degrees of coverage along the line. By the end of 

the forecast, there were large breaks in the line in members MP1 and RUC, whereas the 

line remained almost completely filled in members MP2 and PX. Overall, however, 

storm coverage and morphology among LSMO members was less diverse than among 

FLSM ensemble members. Each member contained rotating storms in various locations 

along the line (according to HMUH, not shown), but HMUH did not reach larger values 

until 2200 or later, indicating a late bias in the forecast of strongly rotating storms. If the 

eastward bias of the forcing boundaries was offset, then some members forecast rotating 

storms near Moore, Oklahoma. 

5.6.4.2 Mesoscale environment 

 Dryline location on the afternoon of 19 May in the LSMO ensemble was 

approximately as variable as that in the FLSM ensemble, with differences of 20 km or 

less among members (not shown). However, there was more diversity in the moisture 

content both throughout the warm sector and immediately west of the dryline in 

Oklahoma. West of the dryline, members RUC, MP4, and PX were generally the 

coolest and most moist, and members MP4 and PX had the shallowest PBLs (Figs. 

5.31a,c,e). Member PX was overall the most moist owing to very high moisture flux 
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(Fig. 5.32c) and rapid drying in member RUC during the afternoon. Members MP1 and 

MP5, and to some extent MP3, were overall warmer and drier with deeper PBLs, owing 

to larger sensible heat flux and reduced moisture flux, especially in members MP1 and 

MP5 (Figs. 5.32a,c). This behavior is the same as in case #1. The reason for the drying 

in member RUC is related to dramatic PBL growth in that member (Fig. 5.31a). There 

is a frequency difference or phase offset in the diurnal cycle of sensible heat and 

moisture flux in the RUC LSM compared to the other LSMs. As can be seen in Fig. 

5.32, moisture flux in member RUC reached approximately the same maximum value 

as in member PX, but two hours earlier (moisture flux peaked at about the same time in 

all other members), and decreased sharply afterward, becoming the member with the 

lowest moisture flux west of the dryline by about 2200 UTC. Sensible heat flux 

followed a complementary behavior by reaching a maximum comparable to that of 

members MP1 and MP5, but one hour later (and later than all other LSMO ensemble 

members) with a sharp increase beginning shortly after initialization (at which point it 

had the second smallest sensible heat flux). Between 2100 and 0000 UTC, member 

RUC had the highest sensible heat flux, exceeding some members by as much as 200 W 

m
-2

. This behavior favors slow growth and a tendency to keep PBL averaged moisture 

at a higher level than other members early in the day, followed by rapid growth, 

heating, and drying towards early evening, which is consistent with the time tendency 

seen in point soundings (not shown). Strangely enough, this behavior was generally not 

present east of the dryline except on the second day of the forecast. It was seen in case 

#1, however, but also only west of the dryline. 
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 East of the dryline, member RUC was much more moist throughout the depth of 

the PBL with mixing ratios 1.5-2.0 g kg
-1

 higher than the other members (Fig. 5.31f), 

the result of large moisture flux (Fig. 5.32d). The PBL was also cooler and shallower 

(Figs 31b,d). Members Z01 and PX were also more moist than average, although 

moisture dipped in member PX during the late afternoon, perhaps due to an increase in 

sensible heat flux (Fig. 5.32b). On the other hand, members MP1 and MP5 had much 

warmer PBLs, which were also noticeably drier and deeper as well, similar to the first 

case. Members MP2 and MP3 were also somewhat more dry and warm, but to a lesser 

extent. 

 Consistent with being more moist east of the dryline, MLCAPE was also highest 

in the vicinity of the dryline in member RUC with maximum values exceeding 4000 J 

kg
-1

 in north-central Oklahoma by 2200 UTC (Fig. 5.33). In members MP1 and MP5, 

maximum MLCAPE barely exceeded 3000 J kg
-1

 in the same area. In most of the other 

members, maximum MLCAPE did not exceed 3500 J kg
-1

; if it did, it was only at a 

small number of grid points. In general, this level of variability is similar to or slightly 

less than that seen in the FLSM ensemble (not shown). |MLCIN| decreased to less than 

10 J kg
-1

 in south-central Kansas in all members by 1800-1900 UTC, and in Oklahoma 

by 2000 (not shown), suggesting nearly complete removal of any resistance to initiation 

by early afternoon across the entire region. Despite being more moist, CIN was not 

appreciably lower in member RUC than any other member, although the region of near 

zero CIN extended further east of the dryline in that member than in other members. 

This behavior in the thermodynamic fields is consistent with differences in PBL heights 

among the members. Members MP1 and MP5 – having deeper, drier, and warmer PBLs 
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– still mixed enough to remove CIN at the expense of reduced theta-e and hence, 

CAPE. The PBL was shallower and cooler, but more moist in member RUC, so theta-e 

and hence CAPE was higher, but the structure of the capping layer above the PBL was 

similar to that in the former members, thus resulting in similar levels of CIN. 

 Differences in the timing of initiation are likely related to meso-gamma-scale 

variations that are hard to pin down on a 4 km grid, as discussed with case #1. However, 

in each member, initiation in southern Kansas was preceded by a local maximum in 

forcing, whether integrated convergence or vertical motion near the top of the PBL. It 

should be noted that this forcing was not present in members RUC and PX at the same 

hour it was present in the other members, as initiation was somewhat delayed in 

members RUC and PX compared to the other members. But it was present the next 

hour, just as initiation was occurring. Initiation in central Oklahoma was not preceded 

by any particularly strong forcing maximum. Rather, there was a broad area of 

convergence along the dryline in central Oklahoma in each member. 

 There was considerably more variability in the mesoscale environment by early 

afternoon on 20 May, consistent with the longer lead time and for more time for 

differences in the previous day’s convection to cause divergence of ensemble members. 

For instance, MLCAPE was more variable along the fronts in Oklahoma and Texas than 

it was along the dryline the day before (not shown). While there were similar 

differences in the magnitude of maximum MLCAPE, the member with the largest value 

and the location of the maximum were in much different locations among ensemble 

members, ranging from central Texas in members Z01 and PX, for example, to areas of 

eastern Oklahoma in members MP2 and MP4 (Fig. 5.34). However, |MLCIN| decreased 
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to near-zero values just before initiation in each member and over a similar area, similar 

to the day before. Additionally, the variability in thermodynamics along and just east of 

the boundaries was larger than that in the FLSM ensemble (not shown). This indicates 

that a combination of direct perturbations to the LSM component and the interaction 

between LSM perturbations and convective evolution were sufficient to cause more 

diversity in 30+-hour forecasts than perturbations to microphysics and PBL 

parameterizations. This further suggests that it may take longer for LSM perturbations 

to generate large ensemble diversity, but once a sufficient amount of time has passed, 

the generated diversity can be substantial. 

5.7 Implications for storm-scale ensemble design 

5.7.1 Ensemble diversity 

 Overall ensemble forecast quality can only be approximated here due to the 

small sample size – only a few cases were examined. Notwithstanding, the effectiveness 

of the LSM perturbations compared to the other physics combinations can still be 

evaluated. Since many limited-area, convection-allowing ensembles not incorporating 

lateral boundary perturbations tend to be underdispersive (Nutter et al. 2004 provides 

some insights), increased spread is generally preferable, as it indicates a greater 

tendency for the ensemble dispersion to reflect the underlying forecast uncertainty and 

capture the full range of variability in the verifying atmospheric state. 

 Ensemble spread in the two cases followed a diurnal cycle, with some 

departures from that behavior. For example, mixing ratio spread at 925 and 850 hPa in 

case #1 increased approximately linearly through almost the entire forecast before 

leveling off somewhat (Fig. 5.35). This behavior was not seen at other levels or in other 
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fields. I speculate that it could be related to the nocturnal boundary layer wind 

maximum. There were also differences in the rate of spread growth between the cases. 

In case #1, spread increased rapidly during the first six forecast hours before leveling 

off, then decreasing slightly (following the diurnal cycle), whereas in case #2, spread 

growth within the first six forecast hours was slower, but then accelerated during the 

subsequent six hours before following the diurnal cycle. This may be due to different 

initialization times and where initialization lay within the diurnal cycle, and also due to 

the meteorological scenario. The development of an MCS during the spin up period in 

case #1 may be responsible for immediate rapid spread growth. In case #2, the sensible 

weather was comparatively quiescent during the early portion of the forecast, but 

became very active during the severe weather outbreak which began around forecast 

hour 9. Maximum spread during any portion of the forecast was slightly larger in case 

#1 than in case #2, likely reflecting overall larger uncertainty in the evolution of the 

atmosphere in case #1, which was more mesoscale driven, compared to case #2, which 

was strongly forced on the large scale. 

 As seen for both cases in Fig. 5.35, the MLSM ensemble had larger spread than 

the FLSM ensemble at nearly all forecast hours and in all fields, but especially in fields 

closer to the surface. This includes not only horizontal winds, temperature, and mixing 

ratio, but also stability indices such as surface-based and mixed-layer CAPE and CIN 

(not shown), although the difference in CIN spread between the FLSM and MLSM 

ensembles was very small. It was hypothesized early in the research that members that 

used the RUC and PX LSMs may be outliers since they are formulated more differently 

than the Noah and Noah-MP LSMs, which are formulated more similarly. Therefore, 
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spread from nine-member sub-ensembles with each member of each ensemble removed 

was also examined for robustness in the signal. Results suggest that members RUC and 

PX were indeed outliers since sub-ensemble spread with those members removed was 

much lower than with other members removed (Fig. 5.36). However, even with these 

outlier members accounted for, the MLSM ensemble spread was still generally larger 

than that of the FLSM ensemble especially for temperature and mixing ratio, indicating 

the LSM perturbations added diversity to the ensemble by perturbing the model in a 

dimension not perturbed by microphysics and PBL variations. It is encouraging to see 

spread of the horizontal wind components in the MLSM ensemble was also somewhat 

larger than in the FLSM ensemble, likely the result of feedbacks between the 

thermodynamic and kinematic aspects of the model. It is also encouraging to note that 

temperature and mixing ratio spreads from the LSMO and FLSM ensembles were 

comparable at a subset of forecast hours, indicating that LSM perturbations alone were 

almost as effective at generating ensemble diversity as a combination of microphysics 

and PBL physics perturbations. 

5.7.2 Precipitation verification 

 Increased ensemble spread is not desirable if it is accompanied by a degraded 

forecast. Probabilistic forecasts of one-hour accumulated precipitation were verified 

using Stage IV precipitation analyses as verifying data. The data were regridded to 

match the model grid using bilinear interpolation. PQPFs were constructed using a 50 

km circular neighborhood (similar to Chapters 3 and 4). The results were fairly similar 

among a variety of metrics, so only the fractions Brier score (Schwartz et al. 2010) is 

discussed (Fig. 5.37). There was very little difference in forecast performance between 
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the FLSM and MLSM ensembles in each case. At a small number of forecast hours the 

MLSM ensemble was slightly better, but the opposite was true at other forecast hours. 

The LSMO ensemble performed more poorly than either the FLSM or MLSM 

ensembles, although only slightly so during the periods in each case where convection 

was active. This is broadly consistent with the spread comparison between the FLSM 

and LSMO ensembles in that microphysics and PBL perturbations were slightly more 

effective in making skillful PQPFs than just LSM perturbations. However, some 

member forecasts from the LSMO ensemble were better than those from either of the 

FLSM or MLSM ensembles (not shown). In general, individual member verification 

was most tightly clustered in the LSMO ensemble and least so in the MLSM ensemble. 

While certain members had biases and scores that stood out from the rest of the 

ensemble for specific metrics, thresholds, or forecast hours, no member was 

consistently an outlier as either a more or less skillful member. 

5.7.3 Perturbation methodology 

 Three strategies for generating LSM perturbations were used in this study: 

multiple separate LSMs (hereafter multi-LSM), altering a set of similar parameters or 

processes within the Noah-MP LSM (hereafter perturbed parameter), and varying one 

specific parameter with documented uncertainty (the CZIL parameter in the Noah 

members). Since only three members contained CZIL diversity, that particular method 

was not compared to the other two. However, the results suggest there is value in 

perturbing this parameter, although better results may be achieved in future work by 

using a more disparate set of values. Four separate LSMs were used in this study, and 

they comprise a multi-LSM sub-ensemble. Five members used the Noah-MP LSM with 
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changes only to the formulation of a set of physical processes and comprise a perturbed 

parameter sub-ensemble. It is natural to consider whether either approach individually is 

better than the combination of approaches. Ensemble spread and precipitation 

verification were used to answer the question of which perturbation method is better. 

 The results were consistent between the two cases: the multi-LSM approach 

resulted in larger spread for temperature and moisture, and in some locations for the 

horizontal wind components, too (Fig. 5.38). The signal was more apparent at lower 

levels. This is particularly interesting since the multi-LSM sub-ensemble only included 

four members, a smaller size than the perturbed parameter sub-ensemble, and ensemble 

size in the range of a few to 10 members was shown to significantly impact ensemble 

spread  in Chapter 3. Despite having fewer members, the multi-LSM sub-ensemble, 

using separate LSMs with more diversity in soil structure and formulations of physical 

processes, contained greater diversity than changing the formulation of a few processes 

within a single LSM. However, there was notable uncertainty when checking the 

statistical robustness of the results by examining spread from sub-ensembles with 

various members removed. In particular, removing either the RUC or PX LSM from the 

multi-LSM sub-ensemble caused a large decrease in spread (not shown), commonly to 

the point where it became smaller than that of the perturbed parameter sub-ensembles. 

Since these LSMs were only used in one member each, and since 8 of the 10 ensemble 

members used Noah LSMs, the experimental design may have forced this result. At the 

same time, however, there is support for the utility of separate LSMs to generate 

ensemble diversity rather than perturbing parameters within a single LSM, a result also 

found in Chapter 3. However, the caveat to this is the same as that in Chapter 3 in that it 
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is typically more difficult to develop and maintain a suite of separate LSMs than it is to 

perturb parameters within a single LSM that can be updated with less effort. 

 Verification of one-hour accumulated precipitation was also consistent between 

the cases. The scores were very similar between the sub-ensembles. When they differed, 

the result is as follows. Fractions Brier scores were better in the multi-LSM sub-

ensemble than in the perturbed parameter sub-ensemble in the second half of the 

forecast, whereas they were better for the perturbed parameter sub-ensemble at the 2.54- 

and 12.7-mm thresholds in the first half of the forecast (Fig. 5.39). The area under the 

ROC curve also suggests the multi-LSM sub-ensemble was more skillful during the 

second half of the second case, but not of the first case, where the sub-ensemble with 

better scores alternated in time (not shown). 

5.8 Summary and conclusions 

 The sensitivity of convective-scale forecasts to model physics perturbations of 

the WRF model, with an emphasis on perturbations to the LSM component, were 

evaluated for two cases involving intense deep moist convection that produced severe 

weather in the Plains region of the U.S. One case was strongly forced by synoptic scale 

processes and included a major severe weather outbreak including multiple tornadic 

supercells. The other case was weakly forced on the synoptic scale and was more 

dependent on mesoscale features (i.e., an outflow boundary left by an MCS from the 

previous night). Three ensembles were configured, each with 10 members, perturbing 

different combinations of WRF model physics components. The case studies focused on 

differences in sensitivity of the forecasts of convection and precipitation between two of 

the ensembles, the FLSM ensemble in which the same LSM was used with varying 
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microphysics and PBL parameterizations, and the LSMO ensemble which included 

LSM perturbations but used the same microphysics and PBL scheme. There were 

multiple purposes of conducting this experiment. One purpose was to determine if 

adding LSM perturbations to other physics perturbations already used in experimental 

storm-scale ensembles improved ensemble spread and probabilistic forecasts. The LSM 

component contains uncertainties that have not been sampled in prior experimental 

storm-scale ensemble forecast systems. Another purpose was to document the 

variability that LSM perturbations alone can generate in a convective-scale NWP 

forecast. A third purpose was to document the performance and behavior of a new 

LSM, the multiparameterization-Noah (Noah-MP), which has not yet been used in 

experimental warm- season convective-scale forecasts. 

 The case studies suggest LSM perturbations may take longer to grow before 

generating sufficient ensemble diversity to meaningfully alter the mesoscale details of 

the ensemble forecast compared to microphysics and PBL perturbations. However, 

given sufficient integration time, the LSM perturbations can grow and cause ensemble 

diversity to exceed that generated by only microphysics and PBL parameterizations. 

Generally, LSM perturbations can cause storm scale differences to emerge even after 6-

9 hours of forecast integration assuming the forecast period includes the daytime during 

which surface-atmosphere exchange processes are active. However, an ensemble in 

which only the LSM component is perturbed is not recommended. 

 Adding LSM perturbations to the FLSM ensemble to construct the MLSM 

ensemble had a positive impact on ensemble diversity and PQPFs. Ensemble spread in 

the MLSM ensemble was larger than that of the FLSM ensemble for many fields in the 
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lower atmosphere, with differences generally diminishing with ascent. This was the 

case even after accounting for possible outlier members in the MLSM ensemble, which 

included the members that used the RUC and PX LSMs. Verification of PQPFs also 

suggested a positive benefit of adding LSM perturbations, although the difference in 

scores between the FLSM and MLSM ensemble was small, impeding the ability to draw 

robust conclusions regarding the effectiveness of the added perturbations on 

precipitation forecasts. 

 Three methods were used to generate perturbations to the LSM component. One 

method was to use separate LSMs (multi-LSM). Four LSMs were used in this study: 

Noah, Noah-MP, RUC, and PX. The second method was to alter the namelist options 

controlling the formulation of various physical properties within the Noah-MP LSM 

(perturbed parameter). Five members were generated using this approach (one 

overlapping with the multi-LSM approach). The third method was to perturb the CZIL 

parameter in the Noah LSM. Three values were used (one overlaps with a member used 

in the multi-LSM approach). A separate test regarding which particular perturbation 

methodology – multi-LSM or perturbed parameter – was more effective at increasing 

ensemble diversity revealed that using separate LSMs may be preferable. However, 

there may be difficulties in developing and maintaining separate LSMs, a difficulty that 

would not be encountered using a perturbed parameter approach. No additional testing 

was performed comparing the perturbation of CZIL to the other two methods. 

 The Noah-MP LSM offered a convenient way to generate ensemble members by 

changing namelist options for parameters thought to be important for warm season 

forecasts. It should be noted that one particular option for calculating the surface 
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exchange coefficient in the Noah-MP LSM seemed flawed, however. The calculated 

exchange coefficients were too low, causing skin temperature, and subsequently, 

ground heat flux and soil temperature to be too high. This caused large error in soil 

temperatures and 2-m temperatures, which is not desirable in ensemble design, which 

seeks to address uncertainties rather than perturb a value or process to the point of being 

unreasonable. Interestingly, soil moisture and precipitation forecasts were not degraded 

in members using this particular option, somewhat neutralizing my opinion regarding 

this parameter. 

 It is important to stress that this was an exploratory study on LSM perturbations. 

The perturbation methodology, although based on literature review and convenience of 

available code in the WRF model, may have faults. It is not guaranteed that the 

particular set of perturbations applied in this study is the best such set of perturbations 

to use. It is certainly not the only possible set of perturbations. Future work should 

consider using other combinations of namelist options to generate ensemble members 

using the Noah-MP LSM (18 possible combinations are possible), as well as determine 

how sensitive each option actually is. Both prior research and the results herein suggest 

that convective-scale forecasts are not as sensitive to handling heat flux at the bottom of 

the soil (opt_tbot) as they are to calculating the surface exchange coefficient (opt_sfc). 

It may turn out that not all 18 combinations of Noah-MP options would contribute 

meaningfully to ensemble diversity. Finally, it may be necessary to perturb CZIL over a 

larger range, as literature review suggests a wider range of values may be necessary to 

capture all variability associated with that parameter. It may also be useful to include 

other methods of calculating the thermal roughness length, some of which do not 
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include CZIL. The important result from this work, however, is that adding a reasonable 

set of LSM perturbations appears to improve convective-scale ensemble forecast 

performance. 
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Figures 

 

 
 

Fig. 5.1. Surface dewpoint (°F) and 10-m wind barbs (kt) valid 1900 UTC 13 June 

2010. Green contours represent analyzed dewpoint contours, while gray shading 

represents mean sea-level pressure, with lighter shades representing lower pressure. 
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Fig. 5.2. Wind direction error (degrees, color shaded) between a RUC analysis and the 

control member forecast at 1800 UTC 13 June 2010. Green colors denote areas where 

the forecast wind directions are veered relative to the RUC analyzed winds. Forecast 

wind barbs (kts) are shown in black, whereas RUC analyzed wind barbs are in purple. 

  



176 

 

 

 
 

Fig. 5.3. 2-m mixing ratio differences (g kg
-1

, color shaded) between the control 

forecast and a RUC analysis, valid at 2000 UTC 13 June 2010. Brown shades denote 

where the control forecast was drier than the RUC analysis. Forecast wind barbs (kts) 

are in black, whereas RUC analysis wind barbs are in purple. 
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Fig. 5.4. Control member forecast mixing ratio (g kg
-1

, color shaded) and wind barbs 

(kts) at the first model level with forecast SBCAPE (black) and RUC analyzed 

SBCAPE (white) contoured at 2100 UTC 13 June 2010. The 100-J kg
-1

 contour is 

dashed for both sources. The two moisture gradients composing the double dryline 

structure are indicated in brown arcs. 
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Fig. 5.5. Control member forecast composite reflectivity (dBZ) with observed 

reflectivity (contoured every 10 dBZ starting at 30 dBZ in progressively thicker black 

contours) from indicated radar sites, except in the bottom panel.  
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Fig. 5.6. Simulated composite reflectivity (dBZ) from FLSM ensemble members; a 21-

hour forecast valid 2100 UTC 13 June 2010. 
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Fig. 5.7. Forecast mixing ratio (g kg
-1

, color shaded), wind barbs (kts), and moisture 

convergence (transparent brown shades) at the first model level, MLCAPE (J kg
-1

, 

white contours), and forecast reflectivity (dBZ, color shades above 20 dBZ) from select 

FLSM ensemble members at 1800 UTC 13 June 2010. 
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Fig. 5.8. As in Fig. 5.6 except for a 32-hour forecast valid 0800 UTC 14 June 2010. 
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Fig. 5.9. Maximum MLCAPE (J kg
-1

) between 1900 and 2100 UTC 13 June 2010 from 

FLSM ensemble members. 
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Fig. 5.10. Air mass averaged (a), (d), (g) PBL height, (b), (e), (h) potential temperature, 

and (c), (f), (i) mixing ratio (a)-(c) behind the dryline, (d)-(f) east of the dryline, and (g)-

(i) north of the OFB for FLSM ensemble members. 
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Fig. 5.11. Point forecast skew-T/log-P diagram for FLSM ensemble members at 2200 

UTC 13 June 2010. The location is at (lat,lon) = (34.3°N,101.0°W).  
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Fig. 5.12. Same as Fig. 5.6 except from the LSMO ensemble and valid at 2200 UTC 13 

June 2010. 



186 

 

 
 

Fig. 5.13. Same as Fig. 5.8 except from the LSMO ensemble. 
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Fig. 5.14. Same as Fig. 5.10 except for the LSMO ensemble. 
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Fig. 5.15. Surface-based CAPE (J kg
-1

) at 2000 UTC 13 June 2010 for LSMO ensemble 

members. 
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Fig. 5.16. Sensible heat flux (W m
-2

) at 1900 UTC 13 June 2010 in the LSMO 

ensemble. 
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Fig. 5.17. Terms in the surface heat budget from LSMO ensemble members: (a) 

sensible heat flux (W m
-2

), (b) difference between skin temperature and temperature at 

the first model level (K), (c) exchange coefficient for heat (unitless), (d) and (f), soil 

temperature at 5 and 20 cm depth, and (e) ground heat flux (W m
-2

). The location is at 

(lat, lon) = (33.168° N, 100.568° W), corresponding to the West Texas Mesonet site 

near Jayton, Texas (KJTS). Soil temperature observations are included in (d) and (f). 
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Fig. 5.18. Accumulated moisture flux (kg m
-2

 s
-1

) between 1200 and 2000 UTC 13 June 

2010 from LSMO ensemble members.  
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Fig. 5.19. (a) Surface moisture flux, (b) bare soil evaporation, (d) canopy water 

evaporation, and (f) plant transpiration (kg m
-2

 s
1
). Soil moisture at (c) 5 cm and (e) 25 

cm depths from the LSMO ensemble at (lat, lon) = (36.65°N, 96.80°W), with observed 

soil moisture provided by the Oklahoma Mesonet site located near Chandler, 

Oklahoma. One-hour accumulated precipitation (mm) is also dotted and scaled to the 

right-hand vertical axis in (d). 
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Fig. 5.20. Observed 2-m temperature and dewpoint (°F) and 10-m wind barbs (kts) from 

various sources indicated by color of temperature observations, including the Oklahoma 

Mesonet (light red), West Texas Mesonet (yellow), and National Weather Service 

(white) at 1900 UTC 19 May 2013. An objective analysis of dewpoint (°C) is color 

shaded. 
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Fig. 5.21. Same as Fig. 5.3 except valid at 1900 UTC 19 May 2013. 
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Fig. 5.22. Same as Fig. 5.5 except for the times indicated. Only observed reflectivity 

from indicated sites is plotted. 
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Fig. 5.23. Same as Fig. 5.22 except for the times indicated. 
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Fig. 5.24. Simulated composite reflectivity (dBZ) from FLSM ensemble members; a 9-

hour forecast valid 2100 UTC 19 May 2013. The following counties in Kansas are 

shaded in light blue from southwest to northeast: Sumner, Sedgwick, Harvey, and 

Marion. 
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Fig. 5.25. Same as Fig. 5.24 except valid at 2000 UTC 20 May 2013 (a 32-hour 

forecast). 



199 

 

 
 

Fig. 5.26. Same as Fig. 5.11 except a 7-hour forecast valid at 1900 UTC 13 May 2013 

and taken from (lat, lon) = (35.375°N, 97.14°W), between Oklahoma City and 

Shawnee, OK. 
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Fig. 5.27. Air mass averaged (a),(b) PBL height (m); (c),(d) near-surface potential 

temperature (K); and (e),(f) near-surface mixing ratio (g kg
-1

) (a),(c),(e) behind the 

dryline, and (b),(d),(f) in the warm sector for FLSM ensemble members. 
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Fig. 5.28. MLCAPE (J kg
-1

) at 1900 UTC 19 May 2013 from FLSM ensemble 

members. 
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Fig. 5.29. Same as Fig. 5.24 except from the LSMO ensemble. Butler and Cowley 

Counties, Kansas are shaded light blue. 
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Fig. 5.30. Same as Fig. 5.25 except for members of the LSMO ensemble. 
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Fig. 5.31. Same as Fig. 5.27 except for the LSMO ensemble members. 
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Fig. 5.32. Air mass averaged (a),(b) sensible heat flux and (c),(d) moisture flux (a),(c) 

behind the dryline and (b),(d) in the warm sector for case #2 from LSMO ensemble 

members. All units are W m
-2

. 
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Fig. 5.33. Maximum MLCAPE (J kg
-1

) between 2000 and 2200 UTC 19 May 2013 

from LSMO ensemble members. 
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Fig. 5.34. Same as Fig. 5.33 except for between 1800 and 2000 UTC 20 May 2013. 
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Fig. 5.35. Ensemble spread for the indicated fields over a subset of the model domain 

covering most of the southern Plains. The bold solid (thin dashed) lines are for case 1 

(2). 
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Fig. 5.36. Ensemble spread as in Fig. 5.31 except for the case initialized at 0000 UTC 

13 June 2010. 10-member ensemble spread is shown in the bold lines, whereas the thin 

lines with symbols delineate spread of 9-member ensembles with the indicated member 

removed. 
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Fig. 5.37. Fractions Brier scores for one-hour accumulated precipitation at the following 

thresholds: (top) 0.254 mm, (middle) 2.54 mm, (bottom) 12.7 mm. Solid lines indicate 

case #1 scores with case #2 scores in dashed lines. 
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Fig. 5.38. Same as Fig. 5.31 except for a 4-member multi-LSM sub-ensemble and a 5-

member perturbed parameter sub-ensemble. 
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Fig. 5.39. As in Fig. 5.33 except comparing ensemble perturbation methodologies. 
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Chapter 6. Summary and Future Work  

6.1 Summary 

 The purpose of this dissertation was to investigate convection-allowing 

ensemble design. Since such a topic is so broad, focus was directed towards model error 

sources. Initial and boundary condition error are equally critical components as model 

error in making accurate and reliable probabilistic forecasts, but detailed work on those 

error sources belongs to dissertations and papers by other students and researchers (e.g., 

Johnson and Wang 2016). 

 The WRF model was used as the primary tool for this investigation due to its 

community design and high utility. A large number of physical parameterizations have 

been designed by members of the atmospheric research and NWP community, and by 

allowing their codes to be implemented into the WRF model, a vast array of physical 

parameterizations is available which was ideal for this research.  

 The specific topics covered in this dissertation included perturbation methods 

for microphysics and surface-atmosphere exchange (LSM) physics, as well as addition 

of a physical parameterization previously missing from WRF model physics suites that 

is also applicable to ensemble forecasting. By “perturbation methods,” I mean methods 

of addressing uncertainty by changing some aspect of the physics component. While a 

perturbation is traditionally considered in the atmospheric sciences to be a displacement 

from some established state, when separate microphysics schemes or LSMs are used, it 

can be hard to argue that one particular scheme is “established” while the other is a 

perturbation from it. However, the spirit of the term “perturbation” is that of a change or 
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difference between two schemes meant to perform the same task, which reconciles the 

discrepancy between the traditional definition and its use herein. 

 Two methods of microphysics perturbations were tested. One was called mixed 

microphysics and used a set of separate microphysics schemes. The schemes were 

among the more sophisticated available in the WRF. The other method was called 

perturbed parameter microphysics in which members were created by varying fixed 

parameters (rain and graupel size distribution intercept parameters and graupel density) 

within a single microphysics scheme. Results suggested that while the mixed-

microphysics method tended to be somewhat better, neither method was clearly superior 

to the other in generating reliable and properly dispersive probabilistic forecasts. 

 Exploratory research on methods of perturbing the LSM component was 

described in this dissertation. The purpose of this work was to fill in a gap in existing 

research on how to best perturb the LSM component for ensemble forecasting in 

general. Three methods of perturbation were tested, including mixed LSM, where 

separate LSMs were used, a perturbed parameter approach using varied values of a 

fixed constant (CZIL in the thermal roughness length calculation) within a single LSM, 

and a second perturbed parameter approach in which formulations for physical 

processes were varied rather than constant parameters. A new LSM, the Noah-MP, was 

used for this approach. Results showed that adding LSM perturbations added diversity 

to forecasts already incorporating other physics perturbations. Moreover, it was shown 

that forecasts of deep convection can be almost as sensitive to LSM perturbations as to 

a combination of microphysics and PBL perturbations. 
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 A missing physical parameterization was added to the WRF. Prior research 

suggested that excessive kinetic energy dissipation from three sources (numerical 

interpolation and diffusion, deep convection, and mountain/gravity wave drag) was 

occurring in the ECMWF model. The SKEB scheme was designed to randomly inject 

kinetic energy into the model to replace the lost energy. The inclusion of a random 

number process allowed testing of the effectiveness of the SKEB scheme in improving 

probabilistic forecasts at the convective scale. The results showed an overwhelming 

improvement in probabilistic forecasts that used the SKEB scheme on top of other 

physics perturbations, specifically through increased spread. Additionally, perturbations 

from the SKEB scheme could also improve forecasts above the PBL even when no 

physics diversity was incorporated into the ensemble design. 

6.2 Overall thoughts and future work 

 Some additional observations and thoughts on convective-scale ensemble design 

are now discussed. The specific method of accounting for uncertainty may not be 

important. The results from Chapter 3 suggest that neither method of perturbing the 

microphysics scheme was dramatically better than the other as the pooled ensemble 

using both methods did not outperform either method. While the mixed microphysics 

method showed marginally better results, the difficulty associated with maintaining a 

large enough or diverse enough set of complex microphysics schemes may make this 

method difficult to implement operationally. 

 On a related note, other aspects of the ensemble design may be more important 

than the method of perturbing model physics. Using the results from the microphysics 

uncertainty estimation in Chapter 3, it seemed that ensemble size made a larger 
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difference in verification statistics than method of perturbing microphysics. In general, 

choosing an appropriate ensemble size for testing scientific questions about ensemble 

design was somewhat arbitrary. Different ensemble sizes were used in the different 

studies in this dissertation, but the same general principles were used to determine 

ensemble size. A balance was sought between available computer resources and 

sufficient sample size to avoid invalid results due to poor statistical robustness. The 

variety of available physics parameterizations was also an important limitation in 

studies of physics uncertainty. There are a large number of available microphysics and 

PBL schemes in the WRF, although not all are appropriate for convective-scale 

simulations. There are far fewer LSMs and radiation schemes, and only one or two of 

each may be appropriate, which imposes limitations on the number of ensemble 

members that can be constructed. It was discovered over the course of the projects 

comprising this dissertation that either some sets of physics combinations did not work 

well together or some schemes would not run successfully for certain cases. For 

instance, there were cases for which the ACM2 and QNSE PBL schemes caused the 

WRF to terminate either immediately or early in a simulation, and thus the case had to 

be thrown out. Also, while somewhat unrelated, Warner et al. (1997) and Nutter et al. 

(2004) point out that a judicious selection of model domain can alleviate problems 

associated with not perturbing lateral boundary conditions. Specifically, constraints on 

error growth are reduced on larger domains. This single fact justifies the use of as large 

of a domain size as is practically possible. Strictly speaking from a standpoint of model 

error representation, however, this fact is not relevant. But from an overall ensemble 

design standpoint, it is important. 
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 Finally, including a random number process has a surprisingly positive impact 

on ensemble forecasts. The SKEB scheme in particular seems like a very good scheme 

to use to improve probabilistic forecasts at the convective scale. The one drawback is 

that it requires tuning, and different sets of parameters may be required for different sets 

of model physics. While no other stochastic model error schemes were tested in this 

dissertation, other research suggests the stochastically perturbed parameterization 

tendencies (SPPT; Palmer et al. 2009) and even the cellular automaton stochastic 

backscatter scheme (CASBS; Shutts 2005) may also be viable options. Perhaps more 

important than the specific stochastic model error scheme is simply insertion of a 

random number process. Also as opposed to perturbed parameter approaches with other 

physics components (e.g., microphysics and LSM), large ensemble membership can be 

generated with a fraction of the effort by using different random number sequences. 

 This work was part of a broader research project investigating optimal ensemble 

design at the convective scale. To keep the project focused, initial and lateral boundary 

condition error was not accounted for in any of the studies covered in this dissertation. 

While this was necessary to isolate the impact of methods for accounting for model 

error, it also means none of the results explicitly incorporated a full set of methods to 

account for all forecast error sources. Therefore, the results from this research 

underestimate the benefits of applying model perturbations, and the verifications, 

especially for QPFs, are likely poorer than they would be if initial and lateral boundary 

condition perturbation methods were also included. The results from this work were not 

applied to official SSEF runs for recent NOAA HWT SFEs (i.e., 2014 and 2015 

program documents available at forecast.caps.ou.edu and by manipulating URLs 
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within), so there is currently no published research on combining the impacts from the 

model error perturbation methods researched herein with those from initial and lateral 

boundary condition perturbation methods being researched contemporaneously by 

others at the University of Oklahoma. Such changes should be implemented in the 

SSEF for upcoming SFEs so a more complete understanding of the utility of all of these 

methods can be realized. 

 The results presented in this dissertation are promising, however, as they 

indicate that the variety of options already present in the WRF model can be used 

effectively to account for model error in convection-allowing probabilistic forecasts. 
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Appendix A – List of abbreviations 

ACM2  Asymmetric convective model version 2 

ARW  Advanced Research WRF 

BS  Brier score 

BSS  Brier skill score 

CAPE  Convective available potential energy 

CAPS  Center for Analysis and Prediction of Storms 

CASBS Cellular automaton stochastic backscatter scheme 

CIN  Convective inhibition 

CONUS Contiguous (lower 48) United States 

ECMWF European Centre for Medium-range Weather Forecasts 

EFS  Ensemble forecast system (see also EPS) 

EPS  Ensemble prediction system (also see EFS) 

ETS  Equitable threat score 

FBS  Fractions Brier score 

FSS  Fractions skill score 

HMUH Hourly-maximum updraft helicity 

HWT  Hazardous Weather Testbed 

KE  Kinetic energy 

LFC  Level of free convection 

LSM  Land-surface model 

MADIS Meteorological Assimilation Data Ingest System 

MCS  Mesoscale convective system 
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METAR Meteorological Terminal Air Report 

MLCAPE Mixed-layer CAPE 

MLCIN Mixed-layer CIN 

M-Y  Milbrandt-Yau 

MYJ  Mellor-Yamada-Janjić 

MYNN Mellor-Yamada-Nakanishi-Niino 

NAM  North American Mesoscale 

NCEP  National Center for Environmental Prediction 

NETS  Neighborhood ETS 

NICS  National Institute of Computational Science 

NMQ  National mosaic and multi-sensor QPE 

NOAA  National Oceanic and Atmospheric Administration 

NSF  National Science Foundation 

NWP  Numerical weather prediction 

OFB  Outflow boundary 

OSCER University of Oklahoma Supercomputing Center for Education and 

Research 

PBL  Planetary boundary layer 

POD  Probability of detection 

POFD  Probability of false detection 

PoP  Probability of precipitation 

PSD  Particle size distribution 

PQPF  Probabilistic QPF 
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PX  Pleim-Xiu 

QNSE  Quasi-normal scale elimination 

QPE  Quantitative precipitation estimate 

QPF  Quantitative precipitation forecast 

RAP  Rapid Refresh 

RHS  Right hand side 

RMSE  Root mean square error 

ROC  Receiver (or relative) operating characteristic 

RUC  Rapid Update Cycle 

SBCAPE Surface-based CAPE 

SBCIN Surface-based CIN 

SFE  Spring forecasting experiment 

SKEB  Stochastic kinetic energy backscatter 

SREF  Short-range ensemble forecast system 

SSBS  Spectral stochastic kinetic energy backscatter 

SSEF  Storm-scale ensemble forecast system  

USGS  United States Geological Survey 

WDM6 WRF double moment 6-class 

WSM6 WRF single moment 6-class 

WRF  Weather Research and Forecasting 

XSEDE Extreme Science and Engineering Discovery Environment 

YSU  Yonsei University 


