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Abstract

Recent developments in computing and technology, along thighavailability of large
amounts of raw data, have contributed to the creation of nediegctive techniques and
algorithms in the fields of pattern recognition and macheeriing. Some of the main
objectives for developing these algorithms are to idergédtterns within the available data
or to make predictions, or both. Great success has beenvadhigth many classifica-
tion techniques in real-life applications. Concerning byrdata classification in particular,
analysis of data containing rare events or disproportenkss distributions poses a great
challenge to industry and to the machine learning communityis study examines rare
events (REs) with binary dependent variables containingyrtiares more non-events (ze-
ros) than events (ones). These variables are difficult tdigrand to explain as has been
demonstrated in the literature. This research combinesenants corrections on Logistic
Regression (LR) with truncated-Newton methods and appliesetiiechniques on Kernel
Logistic Regression (KLR). The resulting model, Rare-Evenighted Kernel Logistic
Regression (RE-WKLR) is a combination of weighting, regularag approximate nu-
merical methods, kernelization, bias correction, andiefiiimplementation, all of which

enable RE-WKLR to be at once fast, accurate, and robust.



Chapter 1

Introduction

Politics, national security, weather forecasting, mddi@gnosis, image and speech recog-
nition, and bioinformatics, are but a few of the fields in whpgattern recognition and ma-
chine learning have been applied. Predictive tasks whosmmes are quantitativee@l
numbers) are calledegression and tasks whose outcomes are qualitathiedry, cate-
gorical, or discretg are calledclassification The most fundamental method to address re-
gression problems is theast squaresnethod, whildogistic regressiors the fundamental
method for classification. The available data from whichdprive tasks are constructed
are referred to as thieaining data The resulting model performance and accuracy are
assessed using data called tbsting data

Most of the traditional models and algorithms are based enagsumption that the
classes in the data are balanced or evenly distributed. Yow@ many real-life applica-
tions the data is imbalanced, and when the imbalance ise&trihis problem is termed the
rare eventgroblem or theambalanced datgproblem. Logistic Regression (LR), has been
proven to be a powerful classifier. The advantages of usingieRhat it has been exten-
sively studied [1], and recently it has been improved thioting use of truncated-Newton’s
methods [2, 3]. Furthermore, with regard to rare events (REK8gp and Zeng [4] applied
the appropriate corrections on the LR method. Kernel LagRegression (KLR) [5, 6],
which is a kernel version of LR, can perform as good as Suppestdy Machines (SVM)
[7], which is considered to be the state-of-the-art metttadthermore, like LR, KLR can
provide probabilities and extend to multi-class classiitaproblems [8, 9]. Maalouf and

Trafalis [10] recently demonstrated the effectivenesswidated Newton’s method when



applied to KLR.

Research Objectives

The primary objectives of this dissertation are the follogyi

» To develop a general classification algorithm that is fafficient, and accurate
when applied to non-linearly separable datasets. The peapalgorithm is termed
Truncated-Regularized Kernel Logistic Regression (TR-KLRJ anbased on the

Truncated-Regularized Iteratively Re-weighted Least Sspi@FR-IRLS) algorithm
[2].

» To develop fast and robust adaptations of TR-KLR in imbatghand rare events
data. The proposed algorithm is termed Rare-Event Weighexdd{ Logistic Re-
gression (RE-WKLR).

 To gain significantly higher accuracy in predicting rarem® with diminished bias

and variance.

Research Contributions
The principal contributions of this dissertation are thiofeing:

» The TR-KLR algorithm is the result of the combination of rgization, approxi-
mate numerical methods, kernelization and efficient imgletation. When evalu-
ated against SVM and TR-IRLS, using non-linearly separabiarigiand multiple
class datasets, TR-KLR is as accurate as, and much fasterSNam, as well as

more accurate than TR-IRLS .

» Weighting, regularization, approximate numerical mehdernelization, bias cor-

rection, and efficient implementation are critical to emapIRE-WKLR to be an



effective and powerful method for predicting rare events.m@ared to SVM and
TR-KLR, using non-linearly separable small and large binang+events datasets,
RE-WKLR is as fast as TR-KLR and much faster than SVM. In addjt®B-WKLR

is statistically significantly more accurate than both SVitd dR-KLR.

Scope of the Dissertation

Chapter 2 provides a summary of the literature on the curesgarch and publications in
the areas of learning from imbalanced and rare events datgt&tB gives an overview and
analysis of Logistic Regression models. Chapter 4 deriveKéneel Logistic Rregression
model and implements the Truncated-Regularized KerneldtiogRregression (TR-KLR)
algorithm with some numerical results. Chapter 5 descrilo@sKernel Logistic Regres-
sion can be used to solve rare events and data imbalancep®birough the Rare-Event
Weighted Kernel Logistic Regression (RE-WKLR) algorithm. Nuive results are pre-
sented in Chapter 6, and Chapter 7 addresses the conclusiduntaredwork.



Chapter 2

Rare Events and Imbalanced Datasets Research: An Overview

Summary

Rare events data, and imbalanced or skewed datasets arewenyant in data mining and
classification. However, these types of data are difficulpredict and to explain as has
been demonstrated in the literature. The problems arise Yevious sources. This chapter

surveys the latest research on data mining in relation weaents and imbalanced data.

Introduction

Rare events (REs), class imbalance, and rare classes ataldntiprediction and hence
human response in the field of data mining and particulartg dessification. Examples
of rare events include fraudulent credit card transactibhl word mispronunciation [12],
tornadoes [13], telecommunication equipment failureq,[d4 spills [15], international
conflicts [16], state failure [17], landslides [18, 19],itralerailments [20], rare events in a
series of queues [21] and other rare events.

By definition, rare events are occurrences that take plade avignificantly lower
frequency compared to more common events. Given theirqo&ecy, rare events have an
even greater importance when correctly classified. Howelerimbalanced distribution
of classes calls for correct classification. The rare classgmts several problems and
challenges to existing classification algorithms [4, 22].

King and Zeng [4] state that the problems associated with Rém fom two main

sources. First, when probabilistic statistical methodshsas LR, are used, they underes-



timate the probability of rare events, because they tencktbi®ised towards the majority
class, which is the less important class. Second, commadg data collection strategies
are inefficient for rare events data. A trade-off exists leemvgathering more observations
(instances) and including more informational, usefulafales in the data set. When one of
the classes represents a rare event, researchers tentbt eety large numbers of obser-
vations with very few explanatory variables in order to ud# as much data as possible of
the rare class. This in turn could significantly increaseddi@ collection cost and not help
much with the underestimated probability of detecting e iclass or the rare event.
In the machine learning literature, several problems astst with REs and imbal-

anced data have been identified. According to Weiss [22]bhst common problems

associated with rare events are the following:

» Lack of Data: Absolute RarityAbsolute Rarity is where the number of examples
associated with the minority class is small in the absolatess. This makes it very
difficult for any classifier to detect regularities withiretihare events or rare classes

[22].

» Relative Lack of Data: Relative Raritgometimes rare events or minority classes,
are not rare in the absolute sense, but they are rare retather events, objects,
or classes. This also makes it difficult to detect patterss@ated with rare events
or classes [23]. Consider a certain cancer data with 10,08thebes and a 100:5
between-class imbalance. The majority class examplesutaumber those of the
minority class, despite the fact that 500 examples in theontinclass may not be

considered “rare.”

 Class Distribution.When datasets are divided into training and testing, most cla
sifiers assume that the distribution of the training set éssame as the testing set.
However, the training set might be imbalanced while theriggtet might not, and the

other way around [24, 25]. This problem is always referregistthesample selection



bias[26]. When this occurs, an inductive model constructed froloieaed training
set may not be as accurate on an unbiased testing set as @treicted without any

selection bias in the training set [27].

Improper Evaluation MetricsThe most commonly used evaluation metriclassi-
fication accuracywhich computes the fraction of correctly classified exasgin-
stances). The problem with this metric is its bias towardsrtiajority class (the
class with output zero) at the expense of the minority cléss ¢lass with output
one) [24, 25]. Consider for example a classifier classifyirdataset with 100 in-
stances and 100:5 imbalance between the classes. Althbisgtidssifier may miss

all of the five examples of the minority class, #scuracywould still be 95%.

Inappropriate Inductive BiasInductive bias can be thought of as a predisposition
for one explanation rather than another [28]. In machinenieg, inductive bias is
essential in the sense that it makes learning more efficieadbstraining the search
space [29]. An example of inductive bias would be the assiom@if a linear func-
tion in linear regression [30]. Another example is the dffeicprior probabilities

on the classification outcome. However, when dealing wite svents, the gener-
alization bias, such as the maximum-generality bias, car hanegative impact on
learning rare events, because it selects the most geneddl@nditions that satisfy

the majority class [22, 31].

Small Disjunctsin rule-based classifiers, such as decision trees, smalhdis are

inductive set of rules that correctly classify small tragniexamples [31]. Jo and
Japkowics [32] argue that class imbalance, per se, may ndtebebstacle to the
performance of classifiers, but rather class imbalancesléadmall disjuncts that
are more prone to errors. Some of the main reasons behinattgprformance of
small disjuncts are the bias [31], attribute noise, missitigbutes, and the size of

the training set [33, 34].



» Data Fragmentation. Strategies such as divide-and-conquer, which partitibes t
data into small groups, can lead to data fragmentation. Paggentation can lead

to absolute lack of data within a single partition [35].

* Noise. Noise within datasets can have a major negative impact oddtextion of
rare events due to its obstruction of the rare instances.céjeiorming decision

boundaries around the rare classes would be very difficR]t [2

Given these most common problems associated with REs, tloeviing is a summary of

the latest techniques for handling REs and imbalanced datase

2.1 Evaluation Metrics

Classificationaccuracyis the most commonly used method to assess the accuracy of the
classifier. However, as stated earlier, in REs, accuracyeplamre weight on the majority
class, and hence it should not be used as a measure of accuRiey and imbalanced data.
For binary classification in REs, the rare class is considéregositive class while the ma-
jority class is considered either class zero or the negatass. Table 2.1 shows tloen-
fusion matrix(CM) for binary classification. In the matrixue positive(T P) corresponds

to the number of correctly classified positive instanéalse negativéF N) corresponds to

the number of positive instances classified as negdtise positivg(FP) corresponds to

the number of negative instances classified as positivetraachegativg T N) corresponds

to the number of correctly classified negative instancen.efal. [36] list several widely

Table 2.1: Confusion matrix for binary classification.
Predicted Class =1 Predicted Class =0

Actual Class =1 TP FN
Actual Class =0 FP TN

used metrics which can be derived from CM. According to therimadccuracyis defined



by
TP+TN
TP+FP+FN+TN

Accuracy= (2.1)

The counts in CM can be expressed as percentagestrdeositive ratgT PR), or sen-
sitivity, is defined as the fraction of positive examples that areectyr predicted by the

model, i.e.,
TP

TPR= 5 N

(2.2)

while thetrue negative rat TNR), or specificity is defined as the fraction of negative

examples that are correctly predicted by the model, i.e.,

TN

TNR=+NTFp

(2.3)

Thefalse positive rat€FPR) is the fraction of negative examples predicted as a pesitiv

class, i.e.,
FP

FPR= ———
TN+FP’

(2.4)

and finally, thefalse negative ratéFNR) is the fraction of positive examples predicted as
a negative class, i.e.,
FN

FNR=—— . 2.
TP+FN (2.5)

Precision P) and RecallR) are useful for applications in which the detection of orasslis
more important than the detection of the other class [3@ciBion measures the fraction of
the predicted positive instances that are actually cqrvdute Recall measures the fraction
of class instances that are correctly predicted. Higherdicates lowei P, while higher

Rindicates loweF N. Precision and recall are defined by

TP

" TP+FP’ (2.6)
TP

“TPIEN (2.7)



In addition, Precision and Recall can be summarized byihaetric, which is defined as

B 2xTP
- 2xTP+FP+FN’

F1 (2.8)

and it represents a harmonic mean betwBeandR. Recall is equivalent t@robability
of detection(POD), a metric widely used in meteorology [13]. Another impaitteneteo-
rology metric, similar to thé-; measure is the Critical Success Ind&8&() [37], which is

defined as
TP

=
s TP+FP+FN’

(2.9)

and hence this metric is not affected by the number of non-R&digtions. Furthermore,
Cohen’s Kappa Indexx( is another useful metric for REs prediction evaluation [38].
The index determines the agreement between the model ditg. rea index value of one
indicates perfect prediction and a value of zero indicatedetter prediction than mere
chance.

Another alternative metric, widely used in the medical fiesdthe Receiver Operating
Characteristic (ROC) analysis and the Area Under Curve (AUQ)ca®d with it. The
ROC is a trade off between false positive raidR) and true positive rateT(PR (sensi-
tivity). Points correspond t& PR are plotted on the axis and points correspond T®°R
are plotted on thg axis. Therefore, a good classifier is one which generategptiiat are
located on the upper left corner of the diagram. A randomgjugsvould be located along
the main diagonal [39]. AUC does not favor one class over therpand hence it is not

biased against the rare class [22].



2.2 Algorithm Level Techniques

2.2.1 Threshold Method

Many classifiers, such as logistic regression, Naive Bayesiflers, and Neural Networks,
produce a score, or a probability, that reflects the degreitth an instance or an example
belongs to a certain class. Varying the threshold of the neeshiip degree classification
could improve the classification accuracy [22, 40]. Thegshadd method is related to the
error costs and class distribution [25]. If the error costd alass distribution are found,

then setting the appropriate threshold would be a straogh#rd task.

2.2.2 Learn Only The Rare Class

Sometimes, when classifiers learn classification ruleslfalasses, the rare classes may
be ignored [22]. Therefore, under certain conditions, olass approach (the rare class)
may perform better than two-class approaches [41]. Tedesiguch as HIPPO [42] and
RIPPER [43] are examples of such an approach. HIPPO uses| metnaorks to learn
only the rare class by recognizing patterns within thatI&PPER selects the majority
class as its default class and learns the rules for detetttengninority class. It employs
a general-to-specific strategy to iteratively grow a ruld ammeasure to choose the best
conjunct to be added to the rules. The algorithm stops whemule starts covering the
majority class examples. Therefore, RIPPER generates fraesthe rarest class to the

most common class.

2.2.3 Cost-Sensitive Learning

Cost-Sensitive (CS) approaches are based on the fact thatltleeof a correctly classified
rare (positive) example exceeds that of a majority (negatilass. Hence, greater costs are
assigned tdalse negativegmisses) than téalse positivegfalse alarms) [44]. CS learning

then seeks to minimize the number of high-cost errors antbtiaémisclassification cost.

10



Another related method is MetaCost [45], which makes ereseld classifiers cost sensi-
tive. MetaCost relabels the training examples with theimgsied minimal-cost classes,
and then applies the error-based classifier to the modifelitig set. Weighted Random
Forest (WRF) [46] is another CS classifier. Random Forest (RF)if4&h ensemble of
decision trees, generated from bootstrap samples of timnigadata using random feature
selection. The WRF method assigns more weights to the mindasgs (higher misclassi-
fication cost), thereby penalizing misclassification of thi@ority class. Chen et. al [46]
claim that this algorithm is useful for extremely imbaladdata.

Iterative techniques, such a&sostingare also related to CS learning. Iterative algo-
rithms such as AdaBoost [48] assign different weights on rhi@ing distribution in each
iteration. After each iteration, boosting increases theghts associated with incorrectly
classified examples and decreases the weights associabethevcorrectly classified ones.
A variant of AdaBoost, AdaCost [49], has been shown useful dregking the problem of
rarity and imbalance in data. Analysis of boosting techagjunowever, shows that boost-
ing is tied to the choice of the base learning algorithm [30, Fhus, if the base learning
algorithm is a good classifier without boosting, then boagstvould be useful when that
base learner is used in REs.

One problem with CS methods is that specific information or isodifficult to obtain
[22, 52]. Another problem is that covering more positiverapées occur at the expense of
generating more false alarms [36]. As a comparison withdxsesinpling techniques, both
Maloof [53] and Weiss [54] found that both CS learning and samgpperform equally.
Weiss [54] however found that CS learning has an advantage déwasets of size larger

than 10,000 examples are used.

2.2.4 Other Methods

» More Appropriate Inductive BiasSeveral attempts have been suggested to select an

inductive bias that would perform well in rare events. Madmmspecificity bias and

11



instance-based learning algorithms are examples of suthoae The suggested
methods have shown only limited success. Weiss [22] pdsitsthis may be the
result of using overall classification accuracy rather tfemusing on the benefits of

small disjuncts.

Non-Greedy Search TechniqueSenetic algorithms are increasingly used in data
mining because of their ability to skip local minima in sdang for the global min-
imum [14, 55]. Another method is the association-rule ngregstem which is able

to find rare associations.

Utilize Knowledge/Human InteractiorkKnowledge and human interaction help im-
proving the data mining process, especially for very diffigwoblems. In many
rare event problems, decisions involve qualitative assests and judgment. This
includes a better description of examples, addition of nuseful features, and dis-
covery of results that warrant further investigation. Retdg international conflicts
[16] is an example of data mining which requires both quatiwi¢ and qualitative

assessments.

Two Phase Rule Inductioliometimes it is difficult to maximize both precision and
recall. PNRule algorithm [56] uses two-phase rule inducind focuses on precision
and recall separately. The first phase focuseseoall by inducing rules with high
accuracy. The second phase focusegmtisionthrough rules that remove false

positives from the records covered by the first phase.

Biased Minimax Probability Machine (BMPMJhe Minimax Probability Machine
(MPM) [57] is a novel classifier which estimates the worssechound on the prob-
ability of misclassification of future data points. The BMPMoposed by Huang et
al. [58], can control the decision hyperplane in favor of there important class.
However, the means and the covariance matrices have to iablyegstimated for

good accuracy.

12



2.3 Data Level Techniques

2.3.1 Feature Selection

Zheng et al. [59] argue that existing feature selection nwegsare not appropriate for im-
balanced data. The authors propose a feature selectioeviraik, which selects features
for positive and negative classes separately, and thencikptombines them. The re-
sults show improvement on the performance of both Naive Bagdsegularized Logistic

Regression methods.

2.3.2 Sampling

Sampling is undoubtedly one of the most important techriqualealing with REs. The
underlying concept behind sampling is minimizing the dffeicrareness by changing the
distribution of the training examples. Sampling techngjaensist of basic sampling and
advanced sampling. Van Hulse [60] provides a comprehessimey on both random and
intelligent data sampling techniques and their impact aroua classification algorithms.
Seiffert et al. [61] observed that data sampling is verydtife in alleviating the problems

presented by rare events.

Basic Sampling Methods

Basic sampling methods consistofder-samplingndover-sampling36]. Under-sampling
balances the training set by eliminating examples from tlagority class. This strategy
risks degrading the performance of the classifier becausexhmples eliminated may
contain useful information. Over-sampling creates id=itexamples of the minority class
in order to make the training set more balanced. Over-sagpghus can increase the
computational time. In addition, over-sampling risks efiting, since it involves mak-

ing identical copies of the minority class. Drummond andtel¢62] found that under-

sampling using C4.5 (a decision tree algorithm) is most &ffedor imbalanced data.
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Maloof [53] showed, however, that under-sampling and ®ampling are almost equiv-
alent using Naive Bayes and C5.0 (a commercial successor t9. Gdyakowicz [63] also

came to similar conclusion, but found that under-samplnggrhajority class works better
on large domains. Prati et al. [64] proposed over-samplorglined with data cleaning
methods as a possible remedy, but without providing conehevidence. Weiss [54] found
that there is no clear winner between under-sampling andsampling, and whether one
should be chosen over the other is highly dependent on tlesetat King and Zeng [4]

advocate under-sampling of the majority class when sizdistnethods such as logistic
regression are employed, based on the dependent variabiharidling rare events data.
However, they state that such designs are only consistergféinient with the appropriate

corrections.

Advanced Sampling Techniques

Advanced Sampling Techniques use intelligence when adalimgmoving examples, or
when they combine under-sampling and over-sampling. Bataret al. [65] and Han et
al. [66] examined the performance of intelligent sampleghniques, such as the Synthetic
Minority Over-Sampling TEchnique (SMOTE) and Borderlin®¥STE. The SMOTE al-
gorithm adds non-replicated minority-class examples fthenline segments that join the
k minority-class neighbors. Thus, while SMOTE is an overglamg algorithm, it avoids
the problem of over-fitting. However, in the presence of £lagerlap, SMOTE does not
perform better than data editing techniques that focus oroveng noisy instances and
atypical patterns from the majority class [67]. BorderlBBIOTE over samples only the
minority class instances that are near the borderline lestvilee classes [66]. SMOTE-
Boost [68] is another algorithm that uses boosting. The dlgaoralters the distribution
of the training data by adding new minority-class exampEegSMOTE algorithm. Ac-
tive learning techniques have been recently implementethss imbalance data and show

promising results. Ertekin et al. [69] proposed an efficigetive learning method which
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selects informative instances from the training datasgtead of using the entire training
dataset. Such a strategy is useful for very large datasets.

Another strategy, suggested by Kubat and Matwin [70], is-Sited Selection (OSS)
which under-samples by removing majority class examplasdhe considered redundant
or noisy. Laurikkala [71] argues that Hart's Condensed Nstddeighbor (CNN) rule, used
by OSS, is sensitive to noise, and proposed the Neighbor@teahing rule (NCL), which
emphasizes more on data cleaning rather than data reducfinother method, which
involves hierarchical classification, is proposed by Lilet[@2]. The method consists of
two stages. The first stage identifies most of the majoritgsckexamples and eliminates
them. The second stage discriminates between the mindagg and the greatly reduced
majority class examples lying near the decision boundary.

Balanced Random Forest (BRF) [46] combines under-samplingemsiemble learn-
ing by artificially altering the class distribution, thugpresenting classes more equally in
each tree with more computation efficiency. Another meti@dster-Based Oversampling
(CBO) [32] is shown to be effective in handling both class inalbak and small disjuncts si-
multaneously. The CBO algorithm utilizes re-sampling thtoalystering the training data
of each class separately then performing random over-sagnpluster by cluster. The ad-
vantage of this method is that it considers both betweessdfabalance and within-class
imbalance, then over-sampling the data to rectify thesealanzes simultaneously. An-
other cluster-based algorithm, Classification using |OtsterinG (COG), recently pro-
posed by Wu et al. [73] is also proving effective in rare egseatdta, when applied using
Support Vector Machines (SVM). The idea is to use clustewitlgin each class to generate

linearly separable balanced subclasses.

2.4 Kernel-Based Methods

In recent years, interest in kernel-based methods has breamng because they provide

state-of-art techniques for many applications. Most os¢hkernel-based methods, how-
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ever, are presented in the literature along the SVM methdt¥! inimizes the total error
while maximizing the margin between the support vectors)(@&wl the separating hyper-
plane [7]. However, highly imbalanced data degrade theopmdnce of SVM [74]. This
degradation stems from various sources. Since SVM triesitomize the total error, it
is then biased towards the majority class, because the Skeominority class may be
positioned far from the separating hyperplane [74, 75].tharmore, in the case of abso-
lute rarity, the number of SV of the minority class is simphadequate to guarantee good
classification performance [76].

A number of methods has been proposed in the literature tedgrthis SVM prob-
lem. Akbani et al. [74] incorporated SMOTE with Different G®$SDC) into SVM. The
SDC algorithm uses different error costs for different sésin order to move the boundary
away from the minority class. In addition SDC uses SMOTE tdenidne minority class
instances more densely distributed, hence allowing thedeny to be more well defined.
SVM ensembles method [77] is another example of the use @radd sampling in SVM.
The SVM ensembles method works by decomposing the majdags @xamples int&
subsets, depending on the number of the minority class eeampll of the examples of
the minority class are then combined with each subset frenmiijority class. Next, SVM
is trained independently on each of these subsets. Firatlyajority vote is used on the
combined SVM results. The advantage of SVM ensembles istthedserves all of the ex-
amples that belong to the majority class without any lossaté dThe only disadvantage is
its assumption that a good class distribution is known. €ktanation, however, increases
the learning time.

Another example is the Granular Support Vector MachineseRiage Under-sampling
(GSVM-RU) algorithm [78], which combines classificationtvunder-sampling methods.
The GSVM-RU algorithm is based on the Granular Support \fddtachines (GSVM) al-
gorithm which combines the principles from statisticalrteéag theory and the granular

computing theory in a systematic and formal way [79]. The GBivhproves classifica-
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tion effectiveness by establishing a trade-off betweeallsignificance of a subset of data
and global correlation among different subsets of data. B&lso improves efficiency by
eliminating redundant data locally through parallel cotagion. The GSVM-RU method
directly uses SVM for under-sampling. First, GSVM-RU retaall of the minority class
examples and forms a positive information granule. Sectihamajority class examples
which are SV form a negative information granule, consgstih Negative Local Support
Vectors (NLSVs). Then these NLSVs are extracted from thgimai training data, and
combined with the positive granule, to form a smaller tragndataset. This process is re-
peated several times until multiple negative informatioanglles are formed. After that,
the remaining majority examples in the original training & simply discarded. An ag-
gregation operation is then performed to selectively agagpesthe examples in the negative
granules with all the positive examples. Finally, SVM is ratedl in the aggregate dataset

for classification.

2.5 Conclusion

This chapter provides a summary of the literature on the mgsbrtant investigations in

the areas of learning from imbalanced and rare events dedblens related to imbalance
or REs result from many factors. The size of the dataset, ttelition of classes, data
duplication, the choice of classifier, and class overlapdmelevant to the end products of
classification. As Gu et al. [80] mentioned, deeper undedstey of the basics would help
in designing better methods for dealing with the problemeafhing with imbalanced and
REs data.

17



Chapter 3

Logistic Regression: An overview

Summary

Logistic Regression (LR) is one of the most important sta@g$procedures for the analysis
of binary and proportional response data. This chapteeptes review of the LR method
along with the recent developments on both the algorithevelland on dealing with REs

and imbalanced data.

3.1 Logistic Regression

Let X € R"™9 be a data matrix where is the number of instances (examples) ahi$
the number of features (parameters or attributes),yalnel a binary outcomes vector. For
every instance; € RY (a row vector inX), wherei = 1...n, the outcome is eithgf = 1 or

y; = 0. Let the instances with outcomesypf= 1 belong to the positive class (occurrence
of an event), and the instances with outcorgies O belong to the negative class (non-
occurrence of an event). The goal is to classify the instapes positive or negative. An
instance can be thought of as a Bernoulli trial (tatedom componehtwith an expected
valueE(y;) or probability p;.

A linear model to describe such a problem would have the mfdrm

y=XB+E¢, (3.1)
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whereeg is the error vector, and where

Y1 1 X1 X2 - Xig Bo
Y2 1 X1 X2 -+ Xog B1

y= X = B = ,ande =
Yn 1 X1 X2 -+ Xnd B

€1

&2

€n

(3.2)

The vector is the vector of unknown parameters such that- [1,x] andf3 < [BO,BT].

From now on, the assumption is that the intercept is includéde vector3. Now, sincey

is a Bernoulli random variable with a probability distribari

Pi, ifyi =1,
P(yi) =

1-pi, ifyi=0;

then the expected value of the response is

E(yi) = 1(pi) +0(1— pi) = pi = XiB,

with a variance
V(i) = pi(1—pi)-
It follows from the linear model
Yi =XiB+&
that
1—pi, ify;=1with probabilityp;;
& =

—pi, if yj = 0 with probability 1— pj;

Thereforeg; has a distribution with an expected value

E(&)=Q-pi)(pi+(—p)(d—pi) =0,
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and a variance

V(e) = E(g9)—E(a)=(1-p)*(p)+(—p)*(1-p)—(0) (3.9)

~ p(1-p). (3.10)

Since the expected value and variance of both the respodstharrror are not constant
(heteroskedastic), and the errors are not normally digeih the least squares approach
cannot be applied. In addition, singec {0,1}, linear regression would lead to values
above one or below zero. Thus, when the response vectorasybihe logistic response
function, as shown in Figure 3.1, is the appropriate one.

The logistic function commonly used to model each positiv&ancex; with its ex-
pected binary outcome is given by

gib 1

E(yi =1/x,B) =pi = 156 ~ 15 exp’ fori=1,...n (3.11)

The logistic (logit) transformation is the logarithm of theéds of the positive response, and

is defined as

Caln) — P\ _ .
ni=g(pi) =1In (1——0) = Xif3. (3.12)

In matrix form, the logit function is expressed as
n =Xg. (3.13)

The logit transformation function is important in the setisa it is linear and hence it
has many of the properties of the linear regression modélRIrthis function is also called
the canonical link function which relates the linear predicter to E(y;) = p; through
g(pi). In other words, the functiog(.) links E(y;) to x; through the linear combination
of x; and 3 (the systematic componé@ntFurthermore, the logit function implicitly places

a separating hyperplang + (X, 3) = 0, in the input space between the positive and non-
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Figure 3.1: Logistic Response Function

positive instances.

The most widely used general method of estimation is the adetfimaximum likeli-
hood (ML) (see Appendix A). The ML method is based on the joint @bility density of
the observed data, and acts as a function of the unknown pé&eesnn the model [81].

Now, with the assumption that the observations are indeg@nthe likelihood function

n n i ¥ =i
L(B) = [ (1-m) " =] (%) (1%) . e

and hence, the log-likelihood is then

n iB
INL(B) = i; (yi In (ﬁm) +(1—-yi)In (ﬁ)) : (3.15)

Amemiya [82] provides formal proofs that the Maximum Likedod (ML) estimator for
LR satisfies the ML estimators’ desirable properties (segefplix A). Unfortunately, there
is no closed form solution to maximizelli{ 3) with respect tg3. The LRmaximum likeli-
hood estimate@LE) are therefore obtained using numerical optimizatisethods, which

start with a guess and iterate to improve on that guess. Otteeahost commonly used
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numerical methods is the Newton-Raphson method, for whiath, the gradient vector and

the Hessian matrix are needed:

) (32 o
- i_i ()ﬁxij (ﬁ) — (1= yi)x;j (%)) (3.17)
- 3 (1P~ (1= (R) (3.18)
_ i_i(x”- (i~ ) =0, (3.19)

wherej = 0,...d andd is the number of parameters. Each of the partial derivats/dsen

set to zero. In matrix form, equation (3.19) is written as

9(B) =OgInL(B) =X (y—p) =0. (3.20)

Now, the second derivatives with respecftare given by

92 2 —Xij Xik€P
agap LB =2 ((1+exil3)(1+ é‘iﬁ)) (3.21)
- 3 (~X(pL—p)) (3.22)

If v; is defined agi(1— p;) andV = diag(vs, ....Vh) then the Hessian matrix can be ex-
pressed as

H(B) = O5InL(B) = —XTVX. (3.23)

Since the Hessian matrix is negative definite, then the Gibgeftinction is strictly concave,

with one global maximum. The Liformation matrixis given by

1(B) = —E[H(B)] = XTVX. (3.24)
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The variance of is thenV(B) = 1(B) "1 = (XTvX)™L.

Over-fitting the training data may arise in LR [1], espegiallhen the data are very
high dimensional and/or sparse. One of the approaches tweenler-fitting is through
guadraticregularization known also asidge regressionwhich introduces a penalty for
large values of3 and to obtain better generalization [83]. The regularizaglikelihood

can be defined as

n iB
InL(B) = i;(yi|n<1fexiﬁ>+(1—yi)|n(1+lé(i3)>—%IIBIIZ 325

2 gYixiB A 5
= i;In (m) —§||B|| ) (3.26)

. L A . L
whereA > 0 is the regularization parameter ag¢||ﬁ\|2 is the regularization (penalty) term.
For binary outputs, the loss function or the deviance (DEShe negative log-likelihood

and is given by the formula [1, 2]

DEV(B) = —2InL(B). (3.27)

A

Minimizing the devianc®EV () given in (3.27) is equivalent to maximizing the log-
likelihood [1]. Recent studies showed that tbenjugate gradien{CG) method, when
applied to the method dgteratively re-weighted least squard&LS) provides better results

to estimatg3 than any other numerical method [84, 85].

3.2 lteratively Re-weighted Least Squares

One of the most popular techniques used to find the MLE isfthe iteratively re-weighted
least squares (IRLS) method, which uses Newton-Raphsonithlgoto solve LR score
equations. Each iteration finds thweighted least squard8VLS) estimates for a given set

of weights, which are used to construct a new set of weight [8he gradient and the
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Hessian are obtained by differentiating the regularizkelihood in (3.26) with respect to

B, obtaining, in matrix form
OgInLL(B) =X"(y—p)—AB =0, (3.28)

O5InL(B) = —=XTVX —Al, (3.29)

wherel is ad x d identity matrix. Now that the first and second derivatives @btained,

the Newton-Raphson update formula on the- 1) —th iteration is given by

~(c+1)

BV Z B9 L (XX AN LXT(y—p) — A8, (3.30)

Sinceﬁ(c) = (XTVX +A1)"L(XTVX + Al )fi(c), then (3.30) can be rewritten as
B = (XTX + A1) XT (VX B + (y—p)) (3.31)
= (XTVX +A1)"IXTvz©), (3.32)

wherez(©) = Xfa’(c) +V~1(y—p) and is referred to as the adjusted response [8].

Despite the advantage of the regularization paramaten forcing positive definite-
ness, if the matrixX VX 4 A1) were dense, the iterative computation could become unac-
ceptably slow [2]. This necessitates the need for a “tratiebeftween convergence speed
and accurate Newton direction [86]. The method which presisuch a trade-off is known

as the truncated Newton’s method.

3.2.1 TR-IRLS Algorithm

The WLS subproblem,
(XTVX +A1DB S = XTvz(©), (3.33)
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is a linear system od equations and variables, and solving it is equivalent toinmix

e+ B e (XTVZ(C)). Komarek and

ing the quadratic functlor%B XTVX +)\I)B
Moore [87] were the first to implement a modified linear CG to ragpnate the New-
ton direction in solving the IRLS for LR. This technique is ealtruncated-regularized
iteratively-reweighted least squar€BR-IRLS). The main advantage of the CG method is
that it guarantees convergence in at mbsteps [86]. The TR-IRLS algorithm consists
of two loops. Algorithm 1 represents the outer loop which ditide solution to the WLS
problem and is terminated when the relative difference ofadee between two consecu-
tive iterations is no larger than a specified threshmldAlgorithm 2 represents the inner

loop, which solves the WLS subproblems in Algorithm 1 throtigé linear CG method,

which is the Newton direction. Algorithm 2 is terminated witae residual

(c+1)

(e = (XTvX +A1)B 7 —xTvz(©

is no greater than a specified threshgldFor more details on the TR-IRLS algorithm and

implementation, see Komarek [2].

Algorithm 1: LR MLE using IRLS
~(0)

Data: X,y, B

Result 8
1 begin
2 c=0
3 while \%\ > & and ¢ < Max IRLS Iterationglo
4 fori«—1tondo
5 I@i:m%xi@, [+ Conpute probabilities */
6 v,_f).(l Bi); [+ Conpute weights =*/
7 —xB + )Ell rl).)) /= Conpute the adjusted response =/
8 V =diag(vi, ..., Vn)
g (XTVX +AX)B Y = xTvz(© ; /+ Conpute B via WS */
10 | c=c+1
11 end

Default parameter values are given for both algorithms 8% are shown to provide

25



Algorithm 2 Linear CGA=XTVX +AX,b=XTVvz

Data: A,b [3

Result B such thaAB b
1 begin
2 r<°):b—AB(O); /[« Initialize the residual =/
3 c=0
4 | while [|r®*D]12 > g and ¢ < Max CG lterationsdo
5 if c=0then
6 L © =
7 else

L 20 = f:ftil e / + Updat e A-Conjugacy enforcer =/

9 d(©tD) — p(c+l) 4 7(0)g(©) /+ Update the search direction =/
10 s© = %- [+ Conpute the optimal step length */
1 B =39 4 g . /+ Cbtain approximate solution x/
12 rctd) —r(© _goadctd) /= Update the residual =/
13 | c=c+1
14 end

adequate accuracy on very large datasets. For Algorithimelmiaximum number of iter-
ations is set to 30 and the relative difference of devianpestiold,&;, is set to 0.01. For
Algorithm 2, the ridge regression parametgy,is set to 10 and the maximum number of
iterations for the CG is set to 200 iterations. In additiorg @G convergence threshold,
&7, is set to 0.005, and no more than three non-improving iteratare allowed on the CG
algorithm.

Once the optimal MLE foff? are found, classification of any giver th instancex;, is

carried out according to the following rules

A 1, ifn>0o0rp >05;
Vi = (3.34)

0, otherwise.

Aside from the implementation simplicity of TR-IRLS, the maidvantage of the al-
gorithm is that it can process and classify large datasetslittle time, compared to other

methods such as SVM. In addition, the TR-IRLS accuracy is coafppa to that of SVM.
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Furthermore, the algorithm does not require parametengunThis is an important char-
acteristic when the goal is to classify large and balancéaiséés.

Despite all of the aforementioned advantages of TR-IRLS, lfezrighm is not designed
to handle rare events data, and it is not designed to handi#-ssymedium size datasets

that are highly non-linearly separable [10].

3.3 Logistic Regression in Rare Events Data

3.3.1 Endogenous (Choice-Based) Sampling

Almost all of the conventional classification methods argdobon the assumption that the
training data consist of examples drawn from the same bligtan as the testing data (or
real-life data) [25, 26]. Likewise igeneralized linear mode(&LM), likelihood functions
solved by methods such as LR are based on the concepts ofmaaaopling oexogenous
sampling [4, 88]. To see why this is the case [82, 89], undedoan sampling, the true
joint distribution ofy andX is P(y|X)P(X), and the likelihood function based orbinary

observations is given by

Lrandom= u P(yi|xi, B)P(Xi). (3.35)

Under exogenous sampling, the sampling isxoaccording to a distributiorfi (X), which
may not reflect the actual distributid?(X), and theny is sampled according to its true

distribution probabilityP(y|X). The likelihood function would then be

LExogenous™ .l_!P(Yi I%i, B) f(xi). (3.36)

As long as the ML estimator is not relatedR¢oX) or f(X), then maximizingLrandomOr

ILExogenoudS €quivalent to maximizing

n

L=[]Pwib.) (3.37)
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which is exactly the likelihood maximized by LR in (3.14) [26

While the ML method is the most important method of estimatidgtn a great advan-
tage in general applicability, it is well-known that MLE dfd unknown parameters, with
exception to the normal distribution, aasymptotically biaseth small samples. The ML
properties are satisfied mainly asymptotically, meanin Wie assumption of large sam-
ples [81, 90]. In addition, while it is ideal that sampling &her random or exogenous
since it is reflective of the population or the testing dasrdution, this sampling strategy
has three major disadvantages when applied to REs. Firsgtanabllection surveys, it
would be very time consuming and costly to collect data omt&svthat occur rarely. Sec-
ond, in data mining, the data to be analyzed could be verg lergrder to contain enough
REs, and hence computational time could be big. Furthermdrde the ML estimator is
consistent in analyzing such data, it is asymptoticallyséthin the sense that the proba-
bilities generated underestimate the actual probalsildfeoccurrence. In other words, the
results are asymptotically biased. Cox and Hinkley [91] mtedt a general rough approxi-

mation for the asymptotic bias, developed originally by Co& &nell [92], such that

E(B-B)= —2—1ni3°igoi”, (3.38)

whereizo—E | (%) ] iss=E[(35) (%) . andizo—E | (35) ] are evaluated .
1

Following King and Zeng [4], ifpi = Tre P

then the asymptotic bias is

_LE[(0.5—p)((1— p)%yi + BF(1—w))] ?

B N S (Co- VYR E ey 339
p—05
—n‘p(l—‘p)’ (3.40)

wherep is the proportion of events in the sample. Therefore, as bsig is less than
0.5 and/orn is small, the bias in (3.40) will not be equal to zero. Funthere, the vari-

ance would be large. To see this mathematically, consigevaniance matrix of the LR
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estimator,é, given by .
V(B) = [Z\pi(l— pi)XiTXi] : (3.41)

The variance given in (3.41) is smallest when the (il — p;), which is affected by
rare events, is closer to 0.5. This occurs when the numbened & large enough in the
sample. However, the estimate pf with observations related to rare events is usually
small, and hence additional ones would cause the variarar®povhile additional zeros at
the expense of events would cause the variance to increa38][4he strategy is to select
ony by collecting observations for whicy) = 1 (the cases), and then selecting random
observations for whicly; = 0 (the controls). The objective then is to keep the variance
as small as possible by keeping a balance between the nuriheeerds (ones) and non-
events (zeros) in the sample under study. This is achievedghendogenousampling or
choice— basedsampling. Endogenous sampling occurs whenever samptgiseales based
on the dependent variablg)( rather than on the independent (exogenous) variadle (
However, since the objective is to derive inferences aldipopulation from the sam-
ple, the estimates obtained by the common likelihood usurg pndogenous sampling are
inconsistent. King and Zeng [4] recommend two methods ofmedion for choice-based

sampling prior correctionandweighting
3.3.2 Correcting Estimates Under Endogenous Sampling

Prior Correction

Consider a population dfl examples witht as the proportion of events arid — 1) as
the proportion of non-events. Let the event of interesybel in the population with a
probability p. Let n be the sample size withand (1 —Y) representing the proportions of

events and non-events in the sample, respectively. Them, be the probability of the
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event in the sample, argl= 1 be a selected event. By the Bayesian formula [93, 94],

P(s=1ly=1)P(y=1)
(s=1y=1)P(y=1)+P(s=1y=0)P(y=0)
(f)p
_ (3.43)

o+ () ap

If the sample is random, thgn=1 and 1-y=1— 1, hencep™= f and there is no incon-

p=Ply=1s=1)= 5 (3.42)

“<\

[

sistency. When endogenous sampling is used to analyze indealaor rare events data,
T < (1-71),andy~ (1-Y), and hence # p, regardless of the sample size.

Now, assuming thgt &ndp arelogit probabilities, and let; = (%) ,andvg = (g)
then equation (3.43) can be rewritten as

vVip

D= —— — 3.44
P V1p+vo(1—p) (3.44)
The odd of (3.44) is then
p 218
O=_-"_— . 3.45
1-p  vo(1-p) (5.45)
and the log odds is
In(0) = In <%> +In(p) —In(1—p), (3.46)
0

which implies that

xB = In K?) (%y)] +xB. (3.47)

Prior correction is therefore easy to apply as it involvely oorrecting the intercept [4, 94],

[0 A

thereby making the corrected logit probability be

Bo, such that

i = ! fori=1...n. (3.49)

NCEET
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Prior correction requires knowledge of the fraction of @gein the populationz. The
advantage of prior correction is its simplicity. Howevdrgtmain disadvantage of this
correction is that if the model is misspecified, then estesain bothﬁo andB are less

robust than weighting [4, 88].

Weighting

Under pure endogenous sampling, the conditioning iX @ather thary [89, 95], and the

joint distribution ofy andX in the sample is

fs(y, X|B) = Rs(Xly, B)Ps(y), (3.50)

wheref is the unknown parameter to be estimated. Yet, siicga matrix of exogenous
variables, then the conditional probability Xfin the sample is equal to that in the popu-

lation, orPs(X|y,B) = P(X]y,B). However, the conditional probability in the population

is
P(Xly,B) = %, (3.51)
but
Fy, X|B) = P(y[X, B)P(X), (3.52)
and hence, substituting and rearranging yields
(. XIB) = e PLYX. BIP(X) (359
— GPUXBIP(X), (3.59)
where g = zsgi The likelihood is then
Lensogeraus [ ] g PO BIPCX) (3.55)
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where% = (2) Yi + (i y) (1—-vVi). Therefore, when dealing with REs and imbal-
anced data, it is the likelihood in (3.55) that needs to beimied [82, 88, 89, 96, 97].
Several consistent estimators of this type of likelihoodehbeen proposed in the litera-
ture. Amemiya [82] and Ben Akiva and Lerman [98] provide anedbent survey of these
methods.

Manski and Lerman [96] proposed theighted exogenous sampling maximum likeli-
hood (WESML), and proved that WESML yields a consistent and asytigatily normal
estimator so long as knowledge of the population probghsitavailable. More recently,
Ramalho and Ramalho [99] extended the work of Manski and Lef@®&jrto cases where
such knowledge may not be available. Knowledge of populatiobability or proportions,

however, can be acquired from previous surveys or existatglzhses. The log-likelihood

for LR can then be rewritten as

Q.

InLL(Bly,X) = |“ P(yi[xi, B) (3.56)

eVlXB
_ Zl <1+ex| ) (3.57)
|XB
—le.ln T of (3.58)
Qi

wherew; = ﬁ. Therefore, in order to obtain consistent estimators,ikedithood is multi-
plied by the inverse of the fractions. The intuition behineigihting is that if the proportion
of events in the sample is more than that in the populatiam the ratio(%) <1land

hence the events are given less weight, while the non-evemikl be given more weight
if their proportion in the sample is less than that in the papon. This estimator, how-

ever, is not fully efficient, because the information ma&quality does not hold. This is
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demonstrated as

_E [Smglnp(wx,m] £E [(gmﬁlnp(wx,ﬁ)) (gmﬁlnp(y,xﬁ))T] . (3.59)

and for the LR model it is

- [% i:i (%) pi(1— IOi)Xin] # [%é (%)2 pi(1— Di)Xin] : (3.60)
LetA = %i (%) pi(1— pi)xixj, andB = %i (%)2 pi(1— pi)xix;, then the asymp-
totic variance matrix of the estimat@ is given by thesandwich estimatesuch that
V(B)=A"1BA1[82, 88, 96].

Now that consistent estimators are obtained, finite-saingpieevent bias corrections
could be applied. King and Zeng [4] extended the small-sarbfs corrections, as de-
scribed by McCullagh and Nelder [100], to include the weighligelihood (3.58), and
demonstrated that even with choice-based sampling, tfesections can make a differ-
ence when the population probability of the event of intelebw. According to McCul-
lagh and Nelder [100], and later Cordeiro and McCullagh [1@14, bias vector is given
by

bias(B) = (XTVX) IXTVE, (3.61)

where& = Qi (pi — 3), andQ; are the diagonal elements @f= X (XTVX)~1XT, which
is the approximate covariance matrix of the logistic linkiétion . The second-order

bias-corrected estimator is then

B = 3 —bias(B). (3.62)

As for the variance matri¥ (B) of B, it is estimated using

~ 2 A~
VB = (0g) VB, (3.63)
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Since(n_i_id> 2 <1, thenV(ﬁ) < V([?), and hence both the variance and the bias are now
reduced.

The main advantage then of the bias correction method peapbyg McCullagh and
Nelder [100] is that it reduces both the bias and the varifcelrhe disadvantage of this
bias correction method is that it is corrective and not pnéve, since it is applied after the
estimation is complete, and hence it does not protect agaiinste parameter values that
arise from perfect separation between the classes [102, Héhce, this bias correction
method can only be applied if the estimatér,has finite values. Firth [104] proposed a

preventive second-order bias correction method by penglthe log-likelihood such that

n eYixiB 1

which leads to a modified score equation given by

d n
a5, "L(B) = 3 (6%~ P +h (05— p)) =0 (3.65)

whereh; is thei-th diagonal element of the hat matrix
H =ViX(XTvX) XV, (3.66)

A recent comparative simulation study by Maiti and PradH&5], however, showed
that the bias correction of McCullagh and Nelder [100], pdeg the smalleshean squared
error (MSE) when compared to that of Firth [104] and others using CRrdeiro and
Barroso [106] more recently derived a third-order bias ada® estimator and showed that
in some cases it could deliver improvements in terms of bi@sMSE over the usual ML
estimator and that of Cordeiro and McCullagh [101].

The challenge remains on finding the best class distribinitme training dataset. First,

when both the events and non-events are easy to collect @incimavailable, then a sam-
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ple with equal number of ones and zeros would be generallynopt [107, 108]. Second,
when the number of events in the population is very smallgdwsion is then how many
more non-events to collect in addition to the events. Ifexlhg more non-events is inex-
pensive, then the general judgment is to collect as manyewents as possible. However,
as the number of non-events exceed the number of events aitggnal contribution to the
explanatory variables’ information content starts to drapd hence the number of zeros
should be no more than two to five times the number of ones [4].

Applying the above corrections, offered by King and Zeng @png with the rec-
ommended sampling strategies, such as collecting all oa#adable events and only a
matching proportion of non-events, could (1) significamtbcrease the sample size under
study, (2) cut data collection costs, (3) increase the reeateprobability, and, (4) enable
researchers to focus more on analyzing the variables.

Given all of the improvements made on the LR method, its ugichgy assumption of
linearity, as evident in its logit function in (3.13), is eft violated [8]. With the advance-
ment of kernel methods, the search for an effective nonrpaitéc LR model has become

possible.
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Chapter 4

Kernel Logistic Regression Using Truncated Newton Method

Summary

The combination of regularized Kernel Logistic RegressiKIoR), truncated-Newton method,
and Iteratively Re-weighted Least-Squares has led to a fpolwsassification method us-
ing small-to-medium size datasets. Compared to SupporoWédachines (SVM) and
TR-IRLS on twelve benchmark publicly available datasets, mpppsed algorithm is as
accurate as, and much faster than, SVM, as well as more aedha@ TR-IRLS. The

proposed algorithm also has the advantage of providingdimediction probabilities.

4.1 Introduction

Logistic Regression (LR) is an essential data mining tecteniquclassifying binary datasets.
Recently, there has been arevival of LR importance througimtiplementation of methods
such as the truncated Newton. Truncated Newton methodshere effectively applied
to solve large scale optimization problems. Komarek and td¢®] were the first to show
that the truncated-regularized iteratively re-weigheskt squares (TR-IRLS) can be effec-
tively implemented on LR to classify large datasets, antitt@n outperform the support
vector machine (SVM) algorithm. Later on, trust region Nemvimethod [3], which is a
type of truncated Newton, and truncated Newton interiarfpmethods [109] were also
applied on LR to solve large scale problems. SVM [7] is coad a state-of-the-art algo-
rithm for classifying binary data through its implementatiof kernels (see Appendix B).

Kernel Logistic Regression (KLR) [5, 6], which is a kernel versof LR has also proven
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to be a powerful classifier [110]. Just like LR, KLR can natlyrakovide probabilities and
extend to multi-class classification problems [8, 9].

Each one of aforementioned methods has a limitation. LRalihemay be an obsta-
cle to handling highly nonlinearly separable small-to-metsize datasets [2]. SVM does
not naturally extend to multi-class classification and duggrovide probability estimates
[110]. The SVM method also requires solving a constraineabigatic optimization prob-
lem with a time complexity oD(n®) [111] wheren is the number of training instances.
The KLR method is not sparse and requires all of the traimsgainces in its model. Like
SVM, KLR has a time complexity od(n?). Its computation can be slow due to the density
of its matrices [9]. Roth [112] was the first to apply the Conpegaradient (CG) on KLR
and presented its efficiency on multi-class datasets. ZduHastie [110] suggested the
import vector machine (IVM) algorithm in order to take adtage of the SVM sparsity,
thus reducing the time complexity @(n’q?) for binary classification, an®(mrfg?) for
the multi-class classification, whegas the number of import points and is the number
of classes. Keerthi et al. [113] incorporated the popul@ugatial Minimal Optimization
(SMO) algorithm in KLR and showed the results for binary slsation. Karsmakers et
al. [9] offered a fixed-size approach based on the number mb@t vectors to solve a
multi-class KLR problems with the method of alternatingaid. However, accuracy was
compromised for faster computations.

The motivation for this study stems from the success andt@fmess of truncated
Newton methods for solving large scale LR classificatiorbfgms. In this chapter the
speed of the TR-IRLS algorithm is combined with with the accyrgenerated by the use
of kernels for solving non-linear problems. The kernel i@rof the TR-IRLS algorithm
(TR-KLR) is just as easy to implement and requires solving @myunconstrained regu-
larized optimization problem. TR-KLR can also be extendetidandle multi-class clas-
sification problems. To make the evaluation more thorough performance of TR-KLR

is tested on twelve benchmark datasets, six of which arapirlass datasets and six are
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multi-class datasets. In addition, for the multi-classadats, the performance of TR-KLR
is tested using One-Vs.-All (OVA) [7, 114], One-Vs.-One (O)V[115], and Decision-
Directed-Acyclic Graph (DDAG) [116] coding methods.

4.2 Kernel Logistic Regression

In the previous section, it was shown that the first-ordeddamns for LR are given by

OgINL(B) =X"(y—p)—AB =0. (4.1)

By solving for 3,
B = X(y-p)A~t (4.2)
= XTa:_iaixi, (4.3)

where the vector is known as thedual variablg anda = (y — p)A ~ with dimensions
nx 1. Therefore, the vect@® can be expressed as a linear combination of the data points.

Now, the logit vectom can be rewritten as

n = XX'a (4.4)

= Ka, (4.5)

whereK = XXT. The matrixK is referred to as the Gram matrix, which is symmetric
positive semidefinite, withn x n dimensions.

Consider again the logit link function shown in the previohajter,

N =XiB = Po+Xi1P1- - - Xid Bd> (4.6)

where the vectok;, given byx; = [1,%1,...Xq] with i = 1,...n, is ad dimensional row
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Figure 4.1: Mapping of non-linearly separable data fromitiput space to the feature
space.

vector representing features The link function can be considered a simple linear model
for regression, involving a linear combination of the inpariables. Stated differently,
this linear function represents the simplest form of an ifgmapping polynomial basis
function @ of the feature space such thg(ix;) = @[(1,X1,-.-Xq)] = X;. Thus, the logit link

function could be rewritten as

ni = @(Xi)B- (4.7)
In general, the functiorp(.) maps the data from a lower dimensional space into a higher
one (Figure 4.1), such that

@:xecRY— p(x) e FC RN (4.8)

The goal for choosing the mapping is to convert nonlinear relations between the re-
sponse (endogenous) variable and the independent (exag)evariables into linear rela-
tions. However, the transformationg.) are often unknown but the dot product in the

feature space can be expressed in terms of the input vebtorgh the kernel function. In
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the case of KLR, the logit link function could be rewritten as

=)

ni = D aiex),ex;)) (4.9)
=1

= S ajK(Xi,Xj) (4.10)
=1

= :(ia, (4.11)

wherek; is thei-th row in the kernel matrix (x;,Xj) = K. The kernel is a transformation
function that must satisfy Mercer’s necessary and suffi@enditions, which state that a
kernel function must be expressed as an inner product antlmeysositive semidefinite

[117, 118].

Theorem 1 (Mercer’s Theorem) A kernel functioncan be expressed as an inner product

K(u,v) = (@(u), @(v)),
if and only if, for any function fu) such that/ f (u)?dx is finite, then
/K(u,v)f(u)f(v)dudv > 0.

Among the most well known kernels that satisfy Mercer’s teeoare
* Linear Kernel:k (xi,Xj) = (Xi,X;j).

* Polynomial Kernel:k (xi,xj) = ((xi,Xj) +1))P wherep is the degree of the polyno-

mial.

- Radial Basis Function (RBF) Kernet(x;,0x;) = e=VI*—xil)* wherey is the kernel

parameter.

Now,

(4.12)



which implies that

el ekia 1
pl frd 1+el]| fd 1+ekia g 1+e—kia’ (413)
and hence, the regularized log-likelihood can be rewrittéh respect tax as
n A
InL(a Zy. Inpi+ (1—yi)In(1—p)) — Za'Ka, (4.14)
i 2
with a deviance
DEV(a) = —-2InL(a). (4.15)

4.3 Iteratively Re-weighted Least Squares

KLR models can also be fitted using IRLS [9]. The gradient andgtian are obtained by

differentiating InL (o) with respect tax. In matrix form, the gradient is
OgInL(a) =KT(y—p)—AKa. (4.16)

The Hessian with respect tois

D2 InL(a) = —KTVK —AK, (4.17)

whereV is a diagonal matrix with diagonal elemem$1 — p;) for i = 1...n. The Newton-

Raphson update with respectdoon the(c+ 1) —th iteration is

at = a© 1 (KTVK +AK) 1K (y—p) —AKa(©). (4.18)

Sinced® = (KTVK +AK)"L(KTVK +AK)a©, then equation (11) can be rewritten as

&t = (KTVK +AK)"1KTvz(©, (4.19)
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wherez(®© = K© +V~Y(y —p) is the adjusted dependent variable or the adjusted re-

sponse.

4.4 TR-KLR Algorithm

The KLR WLS subproblem,
(KTVK +AK)act) =K Tvz(©), (4.20)

is a systems of linear equations with a kernel mairjwector of adjusted responsesand
a weight matrixV. Both the weights and the adjusted response vector are deqmteowl
a(©, which is the current estimate of the parameter vector. Taasnitial estimatey (©)
can be specified far and solved iteratively, giving a sequence of estimatesabiaterges
to the MLE oféa. The linear CG method can also be applied here, minimizingtiaelratic
function,

6 Y (KTVK +AK)a Y — 6 (KTvzO), (4.21)

NI =

When applied to KLR, the CG method has a time complexitP@i®) in the worst case,

as it converges in at moatsteps. To avoid the long computations that the CG may suffer
from, a limit to the number of CG iterations can be placed, ttreating an approximate,

or truncated Newton direction.

Similar to the TR-IRLS algorithm, Algorithm 3 represents thaim(outer) loop of TR-
KLR and it summarizes the IRLS for KLR and is terminated whenrtiative difference of
deviance between two consecutive iterations is no greladerd specified threshodd. As
with TR-IRLS, the main problem to solve is the WLS in (4.20), whis a linear system of
n equations and variables. This is done through Algorithm 4, which représéhe inner
loop that approximates the Newton direction through the C@ate Algorithm 4 is the

linear CG algorithm and is terminated when the CG residuabs tliean a thresholgb.
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Algorithm 3: KLR MLE using IRLS

Data: K.y, &

Result &
1 begin
2 c=0
3 while \%\ > & and ¢ < Max IRLS Iterationglo
4 fori«— 1tondo
5 f)i:m%xi&; | Conpute probabilities */
6 vi=pi(1-f); [+ Conpute weights =*/
; z :kia(°)+%; /* Conpute adjusted response */
8 V =diag(vi, ..., Vn)
9 (KTVK 4+ AK)éa <°+1> =KTvz(© ; /+ Compute & via WS */
10 | c=c+1
11 end
Algorithm 4: Linear CGA =KTVK +AK,b=KTVz

Data: A,b,&©

Result & such thalAd =b
1 begin
2 | r19=p-AgQ; /* Initialize the residual */
3 c=0
4 | while [|r®*D]12 > g and ¢ < Max CG lterationsdo
5 if c=0then
6 L Z(C) _
7 else

L 7 = r:(f(i)l)(rc(ﬁ)l) ; /* Update A-Conjugacy enforcer */

9 dc+D) = r(ctl) 4 7(©) /* Update the search direction x/
10 s(c)_dr{gxé?c), /* Conpute the optimal step length =/
11 actl = g0 4 z@getd) /* Obtain approximte solution =/
12 r(c+l) — ¢ (©) _g@ad(ct) - /= Update the residual =/
13 | c=c+1
14 end
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With exception to the value a&h, the default parameter values suggested by Komarek
and Moore [87] are used for both algorithms and are showndweige adequate accuracy.
For Algorithm 3, the maximum number of iterations is set toa8@ for the relative dif-
ference of deviance thresholg,, the value 2.5 is sufficient to reach the desired accuracy
and at the same time maintain good convergence speed. Byicfdbs value 2.5 as a
threshold, computational speed is improved while not &figcaccuracy. Should the algo-
rithm reach a certain desired accuracy with a low threstibkh by slightly modifying the
parameters values (e.gr, A) with a larger threshold, the same accuracy can be reached,
hence the robustness of the algorithm. However, in somedasay be advisable to make
this threshold smaller to obtain better accuracy. As forollipm 4, the maximum number
of iterations for the CG is set to 200 iterations. In additibre CG convergence threshold,
&, Is set to 0.005. Furthermore, no more than three non-inipgaterations are allowed

on the CG algorithm.

4.5 Computational Results & Discussion

The performance of the TR-KLR algorithm was examined usireg\tesrbenchmark datasets
(see Table 4.1) found on the UC Irvine website [119], six ofchtare binary classification
datasets, and the other six are multi-class classificatedaséts. The algorithm perfor-
mance was then compared to that of both SVM and TR-IRLS. Thebawtasets used are
Wisconsin Breast Cancer Diagnostic (WBCD), lonosphere, Bupa Disorders, Haber-
man Survival, Pima Indians Diabetes, and Sonar dataseésmlitti-class datasets consist
of Wine, Glass, Iris, Dermatology, Thyroid, and Ecoli datas In addition, the multi-class
classification performance was assessed using three nsethoglvs. all, one vs. one, and

DDAG. The Gaussian Radial Basis Function (RBF) kernel

K (35, ;) = e 202 72010 = gy )? (4.22)
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was used for both the TR-KLR and SVM methods, wheris the kernel parameter. The
values of these parameters that give the best generafizatousually chosen from a range
of different values (generally user-defined), and tunedgign-fold cross-validation (CV).
The datasets were preprocessed using normalization of a afigro and standard devi-
ation of one. All of the computations for TR-IRLS and TR-KLR wer&ried out using
MATLAB version 2007a on a 512 MiB RAM computer for the binarytasets and ona 1.5
GiB RAM computer for the multi-class datasets. As for the SVEthod, MATLAB SVM
Toolbox [120] was used for the binary datasets and MATLAB L\B&toolbox [121] for

the multi-class datasets.

Table 4.1: Datasets.

Dataset Instances Features Classes
WBCD 569 30 2
lonosphere 351 34 2
Liver 345 6 2
Survival 306 3 2
Sonar 208 60 2
Diabetes 768 8 2
Wine 178 13 3
Glass 214 10 6
Iris 150 4 3
Dermatology 358 34 6
Thyroid 215 5 3
Ecoli 336 7 8

4.5.1 Binary Classification

For the binary datasets, Tables 4.2 and 4.3 summarize thputation results for these
three methods with their optimal parameters and accuraspgctively. Table 4.4 shows a
comparison of the total execution time with ten-fold CV usihg three methods. Table 4.3
shows that the TR-KLR method scored as well as or slightlyebéftan SVM on most of
the datasets. In addition, both TR-KLR and SVM performeddrdtian TR-IRLS on four

out of the six datasets, namely, lonosphere, Liver, and ISéswith all kernel methods,

45



parameter tuning is unavoidable as it involves two pararagiige regularization parameter
(A for TR-KLR andC for SVM), and the kernel parametes ©r y for both TR-KLR and
SVM). For TR-IRLS, the only parameter that requires tuningd isWhile Komarek and
Moore [2] observed that the value #fdid not affect the accuracy for large datasets, and
hence they were able to use default values, the same canisaicd&r smaller datasets.
TR-IRLS challenged both TR-KLR and SVM on three datasets, WBCDyi&lr and
Diabetes. This is probably because these datasets are meaglyy separable than the

others, on which TR-IRLS performed worse.

Table 4.2: Optimal parameter values found for the binaagsdatasets.

TR-KLR SVM TR-IRLS
o A o C A

WBCD 54 0.1 50 100 30.0
lonosphere 3.5 0.009 1.9 100.0 30.0

Liver 7.0 0.0009 5.0 10.0 0.05
Survival 50 001 18 1.0 10.0
Sonar 32 005 7.1 100 50.0
Diabetes 50 007 75 10 1.0

Table 4.3: Comparison of ten-fold CV accuracy (%) with 95 % atariice level.
TR-KLR SVM TR-IRLS

WBCD 98.1+1.1 982+ 11 98.1t1.1
lonosphere 93.7+ 2.5 90.6+ 3.1 88.0+ 3.4

Liver 70.1+-4.8 70.1+£4.8 65.3+5.0
Survival 754+48 751+£49 73.8+4.9
Sonar 89.0+£4.3 87945 79.2+55

Diabetes 78.0+29 77.2+3.0 78.0+2.9

With regard to the execution time, Table 4.4 shows that whRelRLS is the fastest,
TR-KLR is still significantly faster than SVM and yet identi¢a it with regard to accuracy
while at the same time more accurate than the regular TR-IRL.Shawn in Table 4.3.

As mentioned earlier, the maximum number of iterations RIt$ was set to 30 while

that of the CG method was set to 200. However, as Komarek andeV|8@] correctly
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Table 4.4: Comparison of ten-fold CV time (in seconds).
TR-KLR SVM TR-IRLS

WBCD 10.6 3305 5.8
lonosphere 3.6 248 2.3
Liver 3.0 209 2.2
Survival 2.1 158 15
Sonar 1.3 58 15
Diabetes 17.0 7374 4.8

Table 4.5: Maximum number of iterations reached by IRLS and Giihd the ten-fold CV
on the binary-class datasets.

IRLS CG
WBCD 2 31
lonosphere 2 32
Liver 1 19
Survival 1 14
Sonar 2 46
Diabetes 1 25

stated, these numbers should never be reached. This otiserapplies also to the TR-
KLR algorithm, as shown in the empirical results in Table fvBere the maximum number
of iterations reached by both algorithms during the ted-fooss validation is displayed
for the binary-class datasets. The maximum iterationshezdon the binary-class datasets
by IRLS in Algorithm 3 was 2 while the maximum CG iterations ingAfithm 4 was 46.

Therefore, the number of iterations is relatively small pamed to the size of the datasets.

45.2 Multi-class Classification

As mentioned earlier, for multi-class classification, tieefprmance of TR-KLR was eval-
uated against both SVM and TR-IRLS using three methods: OVAQQO&hd DDAG.
While LR and KLR can naturally extend to multi-class classificn [9], the aforemen-
tioned multi-class coding schemes were applied in thisystoanake the comparison with
SVM fair. The OVA approach [7, 114] construdtsclassifiers foM classes. Classifief,

is trained to discriminate between clarsind all other classes. Then, the class of instance
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X; corresponds to the maximal value of the functigqix;) such thaCy, = max f(x;) for
m=1,..,M, whereCy, is the class ok;. The OVO approach [115], construc%'vz';l)
binary discriminant functions, one for every pair of clasaad proceeds as the OVA ap-
proach. As for the DDAG approach [116], it also constrdﬂ%’—” classifiers (nodes) in
the training phase. In the testing phase, it utilizes desisiirected-acyclic graph (DDAG),
whereby at each node a binary classifier is constructed andetkt node visited depends
upon the results of this evaluation. If the value of the byrdecision function is zero, the
node exits from the left, otherwise, if the value is one, th@nnode exits from the right.
The final answer is the class assigned by the leaf node visitd final step as illustrated
by Figure 4.2. The root node can be assigned randomly. Thentatyes of DDAG are fast

computational time especially for large-scale problems.
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Figure 4.2: lllustration of DDAG for classification with foglasses.

Table 4.6 lists the optimal parameters used to reach theedesccuracies, which are
shown in Table 4.7. Table 4.6 shows that the parameters aseddh the desired accuracies
are identical for all algorithms using both OVA and DDAG medls. In addition, it appears
that the kernel parameter values ¢r y) and the regularization parameter)(are more
stable using OVO and DDAG as they do not vary much from one si&ttéo another.

Table 4.7 shows the ten-fold CV accuracy with 95% confidenad lkeached by all al-

gorithms using the three multi-class classification meshdulith regard to OVA, TR-KLR
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Table 4.6: Optimal parameter values for the multi-clasaskts C is the SVM regulariza-
tion parameterg is the parameter (width) of the RBF kernel, ahds the regularization
parameter for both TR-IRLS and TR-KLR.

OVA TR-KLR SVM TR-IRLS
o A y C A
Wine 6.0 0005 0.1 1.0 0.5
Glass 1.0 0.0005 0.1 100.0 0.09
Iris 3.0 0.001 0.02 10.0 0.01
Dermatology 50 0.1 0.01 1.0 0.3
Thyroid 1.6 0.004 7.1 0.09 0.005
Ecoli 6.0 001 75 0.01 0.5
0)V/e] TR-KLR SVM TR-IRLS
o A 1% C A
Wine 40 001 001 10 0.5
Glass 1.0 001 01 10 0.5
Iris 50 0.01 0.03 10.0 0.004
Dermatology 5.0 0.02 0.01 1.0 0.3
Thyroid 1.2 0.004 0.1 100 0.005
Ecoli 50 005 03 1.0 0.5
DDAG TR-KLR SVM TR-IRLS
o A 1% C A
Wine 40 001 0.01 10 0.5
Glass 1.0 001 01 10 0.5
Iris 50 0.01 0.03 10.0 0.004
Dermatology 5.0 0.02 0.01 1.0 0.3
Thyroid 1.2 0.004 0.1 100 0.005
Ecoli 50 005 03 10 0.5

49



Table 4.7: Comparison of ten-fold CV accuracy (%) with 95 % ateriice level.

OVA TR-KLR SVM TR-IRLS

Wine 99.47+1.06 99.44+ 1.09 98.36+ 1.86
Glass 74.98+5.80 72.0%4 6.01 65.35+ 6.42
Iris 98.00+ 2.24 97.33+2.58 96.00t 3.14
Dermatology 97.45+ 1.63 97.45+1.72 97.1%1.71
Thyroid 97.64+ 2.03 96.73+ 2.38 95.32+ 2.82
Ecoli 88.90+ 3.36 88.08+ 3.47 88.11t 3.46
OoVvO TR-KLR SVM TR-IRLS

Wine 100.04+ 0.00 99.44+ 1.09 98.36+ 1.86
Glass 7553+ 5.76 72.04 6.01 65.05+ 6.39
Iris 98.00+ 2.24 98.00+ 2.24 98.00+ 2.24
Dermatology 98.00+ 1.35 97.45+ 1.63 97.73+ 1.45
Thyroid 97.66+ 2.02 97.64+ 2.03 97.64+ 2.03
Ecoli 88.46+ 3.42 87.86+ 3.49 88.02t 3.47
DDAG TR-KLR SVM TR-IRLS

Wine 100.04+0.00 99.44+ 1.09 98.36+ 1.86
Glass 75.53+5.76 72.0%4 6.01 65.05+ 6.39
Iris 98.00+ 2.24 98.00+ 2.24 98.00+ 2.24
Dermatology 98.00+ 1.35 97.45+1.63 97.73+ 1.45
Thyroid 97.66+ 2.02 97.644 2.03 97.64+ 2.03
Ecoli 88.46+ 3.42 87.86+ 3.49 88.02t 3.47

performed better than both SVM and TR-IRLS on all datasets. oAt OVO and DDAG
methods, accuracies were identical on both methods. TR-Karelly performed best
using OVO and DDAG except for the Ecoli data, on which OVA pemried slightly better.
The performance of SVM appears consistent using all meth@uisthe other hand, TR-
IRLS accuracies varied depending on the multi-class claasifin method used. TR-IRLS
performed poorer using OVA than using OVO and DDAG, espbcai Iris and Thyroid
datasets. On the Glass data set, TR-IRLS performs pooresawlifference of almost 10
percentage point in accuracy compared to TR-KLR, and 7 peagentoint compared to
SVM.

Similar to the binary-class case, the maximum number otitens reached by both

algorithms during the ten-fold cross validation is disgldyn Table 4.8 for the multi class
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Table 4.8: Maximum number of iterations reached by IRLS and G&d the ten-fold CV
on the multi-class datasets.

OVA 0)Y/0) DDAG
IRLS CG IRLS CG IRLS CG
Wine 2 30 2 37 2 37
Glass 2 44 2 39 2 39
Iris 1 23 2 11 2 11
Dermatology 1 59 2 44 2 44
Thyroid 2 30 2 35 2 35
Ecoli 2 29 2 21 2 21

datasets. As can be observed, the maximum iterations r@&dghRLS in Algorithm 3 is
2 while the maximum CG iterations in Algorithm 4 was 59, indiieg that the number of
iterations is also relatively small compared to the sizéhefdatasets.

As can be seen, the TR-KLR algorithm is relatively easy to en@nt and is as effec-
tive as SVM on small-to-medium size datasets. The TR-KLR ritlym takes advantage
of the speed of the TR-IRLS and the power of the kernel methaasicplarly when the
datasets are neither large nor linearly separable. Andtbreefit to using TR-KLR is that
it uses unconstrained optimization methods whose algostare less complex than those

with constrained optimization methods, such as SVM.
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Chapter 5

Robust Weighted Kernel Logistic Regression in Imbalanced and Rare

Events Data

Summary

Accurate prediction is important in data mining and datasifecation. This chapter devel-
ops my proposed Rare-Event Weighted Kernel Logistic Regre¢RE-WKLR) algorithm

in rare events data with binary dependent variables cantamany times more non-events
(zeros) than events (ones). It also applies the necessanctions to improve the predic-

tion accuracy.

5.1 KLR for Rare Events and Imbalanced Data

Like the LR model, the commonly used maximum likelihood fafation on KLR is not
appropriate for classifying imbalanced and rare events, depecially when endogenous
sampling is performed. The full likelihood function needshbe stated. The likelihood

function should then be

L(aly,K) = f<y,Kra>=gP<y\K,a>P<K> (5.1)

S ik |
= igap(wkh a)P(ki). (5.2)

Now, following the same intuitive concept of Manski and Lam{96], choice-based

sampling can easily be dealt with so long as knowledge of tpulation probability is
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available. The log-likelihood for KLR can then be rewrittas

InL(aly,K) = ZQ' InP(yifki. ) (5.3)
. QI ghkia

= n1+ek| (5.4)
kia

_ Zw,ln 1e+y . (5.5)

wherew; = % As with LR, in order to obtain a consistent estimator, thellitkood is
multiplied by the inverse of the fractions. This produces eighted Maximum Likeli-
hood (WML), and the KLR model becomes a Weighted KLR (WKLR) modektan be
shown that the WML estimator for WKLR is consistent. From thgutarity conditions

(see Appendix A), the WML estimator solves the first-orderdibons

SDaInP(y|K,a) =0. (5.6)

Taking the expectation of the score function with regarcheodample density yields

E Smalnp(ym,a)] :/SDO,InP(y|K,a)%P(y|K,a)P(K)dK (5.7)
:/DaInP(y]K,a)P(y\K,O{)P(K)dK (5.8)
:/E[DaInP(y|K,a)] P(K)dK (5.9)
_o. (5.10)

This estimator, however, like its LR counterpart, is nohyfefficient, because the informa-

tion matrix equality does not hold. This is demonstrated as

Q

—E ﬁD?,lnp(y||<,or)

¢E[(Qma|np( yK,a)) <§DaInP(y|K,a))T], (5.11)
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because

—_E lé (%‘) pi(1— pi)kikj] £E [é (%)Zpi<l_ pi)kikj] , (5.12)

Now, as mentioned in Chapter 4, KLR regularization is usetléform of the ridge penalty
%aTKa, whereA > 0, is a regularization parameter. When regularization i®¢hiced,
none of the coefficients is set to zero [122], and hence thel@mo of infinite parameter
values is avoided. In addition, the importance of the patamelies in determining the
bias-variance trade-off of an estimator [123, 124]. WRheis very small, there is less bias
but more variance. On the other hand, larger valuea @fould lead to more bias but
less variance [125]. Therefore, the inclusion of regukian in the WKLR model is very
important to reduce any potential inefficiency. Howeverreggilarization carries the risk
of a non-negligible bias, even asymptotically [125], thedéor bias correction becomes

inevitable. In sum, the bias correction is needed to acctamany bias resulting from

regularization, small samples, and rare events.

5.1.1 Rare Events and Finite Sample Correction

Like the ordinary LR model, the method for computing the KLiRimability,

1

Pr(Yi =1ja) = pi = 1rekd’

(5.13)

is affected by the problem @f, which is a biased estimate af

Bias Adjustment and Parameter Estimation

Following McCullagh and Nelder [100], the bias in large sagsphay be very small. How-
ever, for samples of smaller size, or for samples in whicmtimaber of parameters is large

compared to the number of instances, the bias may not be db $foathe KLR model,
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the approximate bias vector can be written as
b=E(ad—a), (5.14)

and by following the same methodology used by McCullagh anidiétg100], it can be

shown that the approximate asymptotic covariance matrix isfgiven by
Q=K(KTVK) K, (5.15)

whereV = diag(pi(1— pi)) for i = 1...n. Replacing the kernel matrik with the matrix
K = (K +31), for a very smal > 0, in order to make it invertible, would enable (5.15) to
reduce into

Q= (V)L (5.16)

Let Q; be theit" diagonal element o®, and

§=— (p—> o 517)
p.
api 9°pi

wherep, = an andp = an2 are the derivatives of the KLR logit function, then the bias

|
vectorb can be written in matrix form as

bias(d) = (KTVK) 1K TVE, (5.18)

which is obtained as the vector of regression coefficientls §vas a response vector.
Applying now the formulation suggested by King and Zeng [d]toe weighted LR to
the WKLR model in (5.5), the weighted likelihood can be reteritas

5

Lw(a) = [](p) " (1 — pi)"e-), (5.19)
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wherew; = E andwg = LE Now,
y -y
1 e
pl - E(yl) - <1+e'7i) — p| ) (520)
and hence,
p =wip" (1 pi), (5.21)
and
P =wip" (1 pi)(wy — (1+wp)pi). (5.22)

Finally, the bias vector for WKLR can now be rewritten as

B(a) = (K'DK) KTDE, (5.23)
where thd'" element of the vectaf is now

Gi = 0.5Qi (1 +wap;i —wy), (5.24)

with Q;i as the diagonal elements@f andD = diag(v;w; ) fori = 1...n. The bias-corrected
estimator becomes

& =a—B(a). (5.25)

5.2 lIteratively Re-weighted Least Squares

For WKLR, the gradient and Hessian are obtained by differéngahe regularized weighted

log-likelihood,
enkia A

n
InLw(a) :i;Wilnm—EaTKa, (5.26)
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with respect tax. In matrix form, the gradient is

~

OaInLw(a) =KTW(y—p)—AKa, (5.27)

whereW = diag(w;) andp is the probability vector whose elements are given in (5.13)

The Hessian with respect tois then
02 InLw(a) = —KTDK — AK. (5.28)

The Newton-Raphson update with respeatrton the(c+ 1) —th iteration is

~ ~

61" =& 4 (RTDK +AR) H(RTW(y —p) — ARa®). (5.29)

Sinced® = (KTDK +AK)"L(KTDK +AK)a©, then (5.29) can be rewritten as
ac*l — (KTDK +AK) K TDz9, (5.30)

wherez(® = Ka(®© + D-1(y — p) is the adjusted dependent variable or the adjusted re-

sponse.

5.3 RE-WKLR Algorithm

For WKLR, the WLS subproblem is
(KTDK +AK)actt) = KTpz(©, (5.31)

which is a system of linear equations with a kernel marixvector of adjusted responses
z, and a weight matri®0. Both the weights and the adjusted response vector are depend
on &©, which is the current estimate of the parameter vector. &fbez, specifying an

initial estimated? for & can be solved iteratively, giving a sequence of estimatas th
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converges to the MLE afi. That can be solved using the conjugate gradient (CG) method,

which is equivalent to minimizing the quadratic problem

6D (RTDR +AR)&®+Y — 4 (RTD29). (5-32)

NI =

Similarly, the bias in (5.23) can be computed with CG by sauime quadratic problem

%B(&)(C“)(RTDK +AR)B(G)Y — B(@)© ) (RTDE©). (5.33)

Now, like the TR-KLR algorithm, in order to avoid the long couatations that the CG
may suffer from, a limit can be placed on the number of CG iienat thus creating an

approximate or truncated Newton direction.

Algorithm 5: WKLR MLE Using IRLS

Data: K.y, &%, wi, wy
Result a,B(a),d, f;

1 begin

2 c=0

3 while \%\ > g and ¢ < Max IRLS Iterationslo

4 fori< 1tondo

5 ﬁi:ﬁg; /= Conpute probabilities =/

6 vi=pi(1-pH); /* Conpute variance =*/

7 W = WpYi +Wo(1—Vi); [+ Conpute weights =/

g z :kid(°)+é‘g‘%_%?) ; /* Conpute adjusted response */

9 Qii:\/TlNi; [+ Conpute weighted logit elenents «/

10 B Ei:%Qii((lerl)ﬁi—wl); /+ Conpute the bias response =*/

11 D =diag(viw;); /* Obtain the nxn diagonal weight matrix =*/

12 (KTDK +AK)&Y =KT™Dz(© ; /+ Conpute & via Algorithm2 =/

13 (KTDK +AK)B(a)©D =KTDE®©; / » Conpute B(&) via Al gorithm 3
*/

14 | c=c+1

15 a=a-B(a); [ Conpute the unbiased a */

16 ﬁi:ﬁ;ﬁ; /+ Conpute the optinmal probabilities =*/

17 end

Algorithm 5 represents the main (outer) loop of RE-WKLR, anduinsnarizes the
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Algorithm 6 : Linear CG for computingt. A = KTDK +AK, b =KDz

Data: A,b, &
Result & such thalAda =b
1 begin
2 | rO=p—AaQ; /* Initialize the residual */
3 c=0
4 | while [|r®*D|2 > g and ¢ < Max CG lterationgdo
5 if c=0then
6 L Z(C) _
7 else
L 7© = r:(fﬁ)l)(:;l) ; /* Update A-Conjugacy enforcer */
9 detD) = r(c+D) 4 7(9g(© /* Update the search direction */
10 s(c)—é;(;:d)c; /* Conpute the optimal step length =/
11 Gt =@ 4 ¢© . /+ Cbtain an approxi mate solution */
12 rctd) — (e — ()Ad( ), /= Update the residual =/
13 | c=c+1
14 end
Algorithm 7 : Linear CG for computing the bia# = KTDK +AK, b =KTD&
Data: A,b,B(&)©
Result B(a) such thatAB(a) =b
1 begin
2 | rO=p_AB(@)?; [+ Initialize the residual */
3 c=0
4 | while [|r®*D]12 > g5 and ¢ < Max CG lterationsdo
5 if c=0then
6 L Z(C) —
7 else
TC+1 C+l N
L gt erTHl ; / = Updat e A-Conjugacy enforcer =/
9 d(©tD) = p(e+l) 4 7(0)g(©) /* Update the search direction =/
10 s© = %; [+ Conpute the optimal step length =*/
11 B(a)ct) =B(a)© +@d¢+D;  /+ Cbtain approxi mate sol ution
* [
12 rctd) —r(© _goadctd) /= Update the residual =/
13 | c=c+1
14 end
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IRLS for WKLR. The main problem to solve is the WLS in (5.31), whisla linear system
of n equations and variables. This is accomplished by Algorithm 6, which regeras the
inner loop that approximates the Newton direction throdghlinear CG method. Algo-
rithm 7 is another linear CG for calculating the bias.

Similar to the TR-KLR formulation [10], for Algorithm 5, the aximum number of
iterations is set to 30 and for the relative difference ofideve thresholdg;, the value 2.5
is found to be sufficient to reach the desired accuracy arfieagdame time maintain good
convergence speed. As for Algorithms 6 and 7, the maximumbeurof iterations for the
CG s setto 200 iterations. In addition, the CG convergen@astioldsg, andes, are set to

0.005 and no more than three non-improving iterations dogvat on the CG algorithm.
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Chapter 6

Computational Results, Applications & Discussion

The performance of the RE-WKLR algorithm was examined usingéten benchmark
binary class datasets (see Table 6.1) found on the UC Irvinehe Learning Repository
website [119] and (2) a real-life tornado dataset. Perfoicaaof the algorithm was then
compared to that of both SVM and TR-KLR. In this analysis, thei§3éan Radial Basis
Function (RBF) kernel,

K(Xi,X]) = a0l _ g(—vilixjl])?. (6.1)

was used for all methods, wheeeis the parameter of the kernel. The values of these
parameters which give the best generalization were chosend range of different values
(generally user-defined) and were tuned using the bootstetpod [126]. The bootstrap
method was applied only to the testing sets. The idea behmddotstrap method is to
create hundreds or thousands of samples, céidedstrap samplesy re-sampling with
replacement from the original sample. Each re-sample lasame size as the original
sample [126].

For this study, the total number of bootstrap rourBlswere set to 2500 rounds on all
of the datasets except for the Spam and Tornado dataset®obbstrap accuracyyj had
at most a half width of its 95% confidence interval equal t&0Phe bootstrap sample size
was chosen equal to the testing set size on all of the datd3e¢sto the large size of both
Spam and Tornado data, bootstrap rounds of 200 were fourgpiatieto generate enough

variations.

The overall bootstrap accuracx™) was calculated according to the following. A se-
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guence of sample accuracies,

(1) (1)

a4l (0) (0)

1) _(0
coas)al? el e,

was collected during the bootstrap procedure, where forengound ), aﬁl) = % for
class one, andﬁo) = %, for class zero. After the bootstrap procedure was completed
the average accuracy of each class was computed. Then, fegralgpotstrap procedure,
the accuracy is

A = min{alyy, vy} (6.2)

The overall accuracy reached, with different parametsmsonsidered to b&* = max{A}.
The interval between the.Z" and 975" percentiles of the bootstrap distribution of a
statistic is the non-parametric 95% bootstrap confidentaval. In addition, statistical
significance was established using a multiple comparisaeg#test [127] single tailed
with an adjustedr = 0.017.

All of the datasets were preprocessed using normalizafi@anoean of zero and stan-
dard deviation of one. All of the computations for RE-WKLR and-KLR were carried
out using MATLAB version 2007a on a 3 GiB RAM computer. As foet8VM method,
MATLAB LIBSVM toolbox [121] was used.

6.1 Benchmark Datasets

The benchmark datasets were lonosphere, Sonar, BUPA Ligerdrs, Haberman Sur-
vival, Pima Indians Diabetes, and SPECT Heart Diagnosis. |I®hesphere dataset de-
scribes radar signals targeting two types of electronsenidhosphere: those that show
some structure (good) and those that do not (bad) [128]. TmarSdataset is composed
of sonar signals detecting either mines or rocks [129]. T8 Liver Disorder dataset

consists of blood tests that are thought to be sensitiveséo tisorders that arising from
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excessive alcohol consumption in single males (BEAGLE User’s Guide). The Haber-
man Survival dataset is information on the survival of patsevho had undergone surgery
for breast cancer [130]. The Pima Indian Diabetes dataserites the onset of diabetes
among Pima Indian patients [131]. SPECT Heart is data onaaSiingle Proton Emis-
sion Computed Tomography (SPECT) images. Each patient isifidasinto two cate-
gories: normal and abnormal [132]. Finally, the Spam datesesists of email messages
considered “spam,” based on certain features [133].

The datasets were divided into training and testing set®. sampling schemes on the
training datasets were applied. In the first, the trainingskets were equally divided into
40 instances in each class, chosen randomly, but the sataages were applied to all of
the methods. In the second scheme, the number of non-ewsnéired 40 zeros, but the
number of events was reduced to 15 instances. Due to thedagef the Spam dataset, it
was treated separately, using balanced training samp#3 400, 200, and 300 instances,
and imbalanced training samples with 40 non-events and &fgv100 non-events and 50
events, 200 non-events and 100 events, and 300 non-eveahtd %@ events. To include
rarity, the number of events (ones) in all the testing dasasxcept for the SPECT Heart
dataset, was randomly chosen and made 5% of the number cdvamns (zeros). For the
SPECT Heart dataset, the number of rare events remainedngestasince the original

data includes a rarity of 8% in the testing set.

Table 6.1: Datasets.

Instances Features Class Rarity
0 1 inTesting Set

lonosphere 351 34 225 126 5%
Sonar 208 60 111 97 5%
Liver 345 6 200 145 5%
Survival 306 3 225 81 5%
Diabetes 768 8 500 268 5%
SPECT 267 44 212 55 8%
Spam 4,601 57 2,788 1,813 5%
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6.1.1 Balanced Training Data

For the balanced training dataset, Tables 6.2 and 6.3 suzerthe computation results
for the three methods, including their optimal parametasaccuracy, respectively. Table
6.3 and Figure 6.1 show that the RE-WKLR method scored muclerbiétan SVM and
TR-KLR on all datasets except for the lonosphere and BUPA thata. When RE-WKLR
performed better, the difference in accuracy was largehasis with Sonar, Survival and
Diabetes datasets. In addition, although TR-KLR achievetebaccuracy on the Liver
dataset, the difference was 2%.

A comparison of statistical significance is provided in F&g6.2. Figure 6.2 shows the
accuracy and 95% confidence level obtained by each methdtedrenchmark datasets. It
can be observed that the accuracy of RE-WKLR is noticeablgbt#tan that of SVM on
Sonar, Liver, and Survival datasets and only worse on thesjpimere dataset. With respect
to TR-KLR, the accuracy of RE-WKLR is better than that of TR-KLR amn&r, Survival
and SPECT datasets.

Table 6.2: Benchmark datasets optimal parameter valuedaiéimced training sets.

RE-WKLR SVM TR-KLR
o A o C o A

lonosphere 2.5 0.07 3.0 10.0 6.0 0.04
Sonar 1.0 001 19 10 65 10

Liver 50 0.005 7.0 10.0 6.0 0.005
Survival 22 0.07 20 10.0 6.0 0.04
Diabetes 53 0.05 20 10.0 4.0 0.05
SPECT 74 0.7 13 10.0 8.0 0.001
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Table 6.3: Benchmark datasets bootstrap accuracy (%) cisoparsing balanced training
sets. Bold accuracy values indicate the highest accurachedaby the algorithms being
compared.

RE-WKLR  SVM  TR-KLR

Class 0 1 O 1 O 1
lonosphere 96 89 94 100 98 78
Sonar 83 100 99 67 70 100
Liver 89 63 56 75 65 75

Survival 86° 89 76 78 78 78
Diabetes 71 70*° 68 61 73 61
SPECT 72 73 69 73 51 93

o statistical significance using paired t-test with= 0.017 over both SVM and TR-KLR.
o statistical significance using paired t-test with= 0.017 over SVM.
o statistical significance using paired t-test with= 0.017 over TR-KLR.
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Figure 6.1: Benchmark datasets accuracy comparison wigmbadl training sets.
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Figure 6.2: Benchmark datasets accuracy comparison

95% confidence.
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6.1.2 Imbalanced Training Data

In order to appreciate the robustness and stability of RE-WKbhR number of events in
the training set was reduced to only 15 instances, againech@ndomly. It should be
noted here that this is not an under-sampling scheme bwrrathassumption that only 15
rare-event instances were available. Tables 6.4 and 6.Bhauge the results for these three
methods with their optimal parameters and accuracy, réispsc Table 6.5 and Figure 6.3
show that RE-WKLR performed the best on all of the datasetg@%ceSonar and SPECT,
on which it achieved equal accuracy with TR-KLR.

A comparison of statistical significance with imbalancerting data is provided in
Figure 6.4. As can be observed from Figure 6.4, the accurBREOWKLR is noticeably
better than that of SVM on lonosphere, Sonar, Survival, Bies, and SPECT datasets.
With respect to TR-KLR, the accuracy of RE-WKLR is better thart faTR-KLR on
lonosphere and Survival datasets.

Except for the lonosphere dataset, Figure 6.5 shows thaitdethe reduction, the
RE-WKLR method retained almost the same level of accuracy #eeibalanced training
data, with some improvement on the Survival data. The acguARE-WKLR reaches
100% on the lonosphere dataset with the imabalanced tgaggh In comparison, SVM
accuracy improved on the Liver data after the reductiontdut¢ame worse on both lono-
sphere and Diabetes datasets. The accuracy of TR-KLR on tiee loand improved on

Sonar and SPECT datasets but degraded on both lonospherezanddtasets.
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Table 6.4: Benchmark datasets optimal parameter valuesmittlanced training sets.

RE-WKLR SVM TR-KLR
o A o C o A

lonosphere 9.0 0.007 5.0 10.0 4.0 0.005

Sonar 80 001 4.0 10.0 20.0 0.005
Bupa 3.7 0001 30 100 10 o0.01
Haberman 2.5 0.002 1.0 100.0 1.0 0.01
Pima 27 0.0002 6.0 100 20 0.01

SPECT 57 009 40 100 51 03

Table 6.5: Benchmark datasets bootstrap accuracy (%) usioglanced training sets.
RE-WKLR SVM TR-KLR

Class 0 1 0O 1 O 1
lonosphere 100® 100 99 89 99 67
Sonar 83 100 99 67 83 100
Liver 75 63 81 62 76 50

Survival 88° 89 76 78 82 77
Diabetes 81 70° 90 52 83 61
SPECT 74 80 69 73 76 73

o statistical significance using paired t-test with= 0.017 over both SVM and TR-KLR.
o statistical significance using paired t-test wath= 0.017 over SVM.
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Figure 6.3: Benchmark datasets accuracy comparison witalanbed training sets.
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Figure 6.4: Benchmark datasets accuracy comparison usingamced training sets with
95% confidence level.

69



100 ~
a0 A
80 -
70 4
60 -
50 A
40
30 A
20
10

M RE-WEKLR Balanced
Training

W RE-WELR Imbalanced
Training

100 ~
80 -+
B0 A
70 A
60 -
50 4
40
30 A
20 A

B 5WM Balanced Training

M 5VM Imbalanced
Training

100
o0 -+
BO 4
70
B0
50 - B TR-KLR Balanced
40 A Training

30 W TR-KLR Imbalanced
20 4 Training
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Balanced Training Set on Spam Data

For the balanced training Spam datasets, the optimal paeesrend accuracies are shown
in Tables 6.6 and 6.7, respectively. For samples of 40 iest&rhe accuracy of RE-WKLR
was better than that of SVM and slightly less than that of TRRKlithout any statistical
significance. For samples of 100 instances, SVM performgtits} better than both RE-
WKLR and TR-KLR, whose accuracy is equal. However, as the sasipéeincrease to
200 and 300, the accuracy of RE-WKLR becomes noticeably gréada that of both
SVM and TR-KLR, as indicated by Figures 6.6 and 6.7. Figure Baivs a significant
difference between the RE-WKLR accuracy and that of TR-KLR ana size of 200
while a significant difference exists between RE-WKLR accyi@aad that of SVM when
the sample size is 300. In addition, notice the linear irmeea the accuracy of RE-WKLR

as the sample size increases, indicating consistency withd$ymptotic properties.

Table 6.6: Spam dataset optimal parameter values with badeinaining datasets.

Class Instances RE-WKLR SVM TR-KLR
0 1 o A o C o A

40 40 6.0 0.3 70 1.0 50 0.01
100 100 70 05 180 100 50 01
200 200 70 05 180 1000 7.0 0.5
300 300 30 10 180 100 7.0 0.01

Table 6.7: Spam dataset bootstrap accuracy (%) using leaddaraining sets.

Class Instances RE-WKLR SVM TR-KLR
0 1 0 1 0O 1 O 1

40 40 85 85 89 83 88 86
100 100 89 86 9287 91 86
200 200 90 88 91 86 93 85
300 300 90 89" 94 84 93 88

o statistical significance using paired t-test with= 0.017 over both SVM and TR-KLR.
o statistical significance using paired t-test with= 0.017 over SVM.
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Imbalanced Training Set on Spam Data

Matters became different when imbalance was introducetedrtining set of the Spam

dataset, as shown in in Table 6.9 and Figure 6.8. The acesratiSVM decreased with

the imbalanced training data almost on all sample sizegp¢foea sample with 300 non-

events and 150 events. The TR-KLR accuracy decreased onesamiph 40 non-events

and 15 events, and 100 non-events with 50 events. As showgune6.9, the accuracy of

RE-WKLR is significantly higher than that of both SVM and TR-KLRn @e other hand

the accuracy of RE-WKLR remained almost unchanged, as iratldat Figure 6.10.

Table 6.8: Spam dataset optimal parameter values with anloat training datasets.

Class Instances RE-WKLR SVM TR-KLR

0 1 o A o C o A
40 15 32 003 180 100 50 01
100 50 20 0.06 18.0 100.0 5.0 0.01
200 100 3.0 0.07 16.2 100.0 3.2 0.005
300 150 4.0 0.1 18.0 100.0 40 0.1

Table 6.9: Spam dataset comparison of bootstrap accuracygitg imbalanced training

sets.
Class Instances RE-WKLR SVM TR-KLR
0 1 0 1 0O 1 O 1
40 15 86 85 95 70 94 75
100 50 85 84 91 77 92 78
200 100 90 89 93 79 91 84
300 150 91 91°* 95 87 93 89

o statistical significance using paired t-test with= 0.017 over both SVM and TR-KLR.
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6.2 RE-WKLR for Tornado Detection

The performance of RE-WKLR was evaluated on real-life torndata and then compared
to that of SVM and TR-KLR. The tornado dataset is based on thegR@opadar Mesocy-
clone Detection Algorithm (MDA) attributes, combined witike Near Storm Environment
(NSE) dataset [134]. Application of SVM using the same dettdms been studied by
Trafalis et al. [13, 135, 136], and Adrianto et al. [137] andrid that SVM performed bet-
ter than other methods such as Artificial Neural Networks KAldnd Linear Discriminant

Analysis (LDA).

6.2.1 Tornado Data

The Tornado dataset consists of 83 attributes, 24 of whieldarived from the MDA data,
measuring radar-derivegelocity parameters that describe aspects of the Mesocyclone, in
addition to themonthattribute. The rest of the attributes are from the NSE d&4][which
describes the pre-storm environment on a broader scaleMb#ndata. The attributes of
the NSE data consist afind speeddirection wind sheay humidity lapse rateand the
predispositionof the atmosphere to explosively lift air over specific hésghn addition,

the Tornado dataset consists of a training set and testingTdee training set has 387
tornado observations and 1,144 non-tornado observatiims testing set consists of 387

tornado observations and 11,872 non-tornado observaaodshence the rarity is 3%.

6.2.2 Experimental Results and Discussion

The same experimental setup used on the benchmark datasle¢sprevious section was
also implemented on the tornado data for all algorithms. él@& random under-sampling
was used in the analysis. The optimal parameters and acesiraached by all methods are
shown in Tables 6.10 and 6.11, respectively. Table 6.11 shbe accuracies reached by

the three methods using the original training data with 88i@ado observations and 1,144
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non-tornado observations, in addition to two under-samgpichemes. In the first, the
number of non-tornadoes was made to be twice the numben@does, and in the second,
the number of non-tornadoes was made equal to that of toesadbosen randomly. In
addition, the bootstrap sample size was made to consist of Hie testing set instances

with 200 resampling rounds.

Table 6.10: Tornado dataset optimal parameter values.
Class Instances RE-WKLR SVM TR-KLR

0 1 o A o C o A

1,144 387 20 002 85 100 1.2 01
774 387 1.2 0.3 85 100 12 0.1
387 387 2.0 1.0 8.0 100 12 0.1

Table 6.11: Tornado dataset bootstrap accuracy (%).
Class Instances RE-WKLR SVM TR-KLR

0 1 0 1 0O 1 O 1
1,144 387 95 97 97 92 96 93
774 387 95 95 95 95 95 96
387 387 95 95 93 98 93 98

o statistical significance using paired t-test with= 0.017 over both SVM and TR-KLR.

Table 6.12: Tornado dataset execution time in seconds.
Class Instances RE-WKLR SVM TR-KLR

0 1

1,144 387 616 807 632
774 387 465 784 482
387 387 311 615 322

As shown in the results, when the original dataset is used\WRER performs bet-
ter than both SVM and TR-KLR. The difference between the aciesais statistically
significant as indicated Figure 6.11. However, when the toonado instances were re-

duced to be only twice the tornado instances, all three ndstperformed equally, with no
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significant difference between accuracies. This is ilatsl in Figure 6.12. Now, when
the non-tornado instances were reduced further to be eguléttornado instances, then
RE-WKLR again performed better than SVM and TR-KLR, as shown gufé 6.13. RE-
WKLR maintained the same accuracy in all of the sampling s&semvhile the accuracies
of the other methods vary depending on the sample size andetfree of imbalanced in
the training data. Assuming now that the original trainiragadcould not be reduced for
some reasons, or there are no more than 387 instances oflassfacailable for analysis,
then the RE-WKLR method is the preferred choice. What is moesgéimputational speed
of the RE-WKLR algorithm, measured by CPU time as shown in Taldg,as distinctly
faster than that of SVM, despite the fact that LIBSVM is writt@aainly in C++ while both
the TR-KLR and RE-WKLR algorithms are written purely in MATLABhE time saving
ranges between approximately 24% on the original trainetgget and up to 50% on the

equally distributed classes, as indicated by Table 6.12.
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Chapter 7

Conclusion

In this study, two new powerful adaptations of classificatfgorithms are developed. The
first is a general classification algorithm called the TriedeRegularized Kernel Logistic
Regression (TR-KLR). It is a direct adaptation of the TR-IRLS athm. The TR-KLR
was demonstrated to be relatively easy to implement. It inljmeependent upon the linear
Conjugate Gradient (CG) method. It was shown to be as acculs&¥ sl when tested on
twelve small-to-medium size datasets, half of which arealyirclass and the other are
multi-class datasets. The TR-KLR algorithm takes advantdgiee speed of the TR-IRLS
and the power of the kernel methods.

The second algorithm is the Rare-Event Weighted Kernel ltizgRegression (RE-
WKLR). This algorithm is a further adaptation of the TR-KLR alglom and is designed
specifically for imbalanced and rare events data. It conthseyeral concepts from the
fields of statistics, econometrics and machine learningke 0iR-KLR, the RE-WKLR
algorithm is relatively easy to implement and is robust wheplemented on rare events
and imbalanced data. It was shown that the RE-WKLR is very pvethen applied to
both small and large datasets. The RE-WKLR algorithm takearatdge of bias correction
and the power of the kernel methods, particularly when tha gets are neither balanced
nor linearly separable.

Another benefit of RE-WKLR is that, also in common with TR-KLR, &t it uses
unconstrained optimization methods whose algorithms ese tomplex than those with
constrained optimization methods, such as SVM. As a raestsvand imbalanced data

classifier, RE-WKLR is superior over both TR-KLR and SVM.
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Future Work

Promising results have been demonstrated here, but futwlees could lead to improved

performance of the algorithms. Those studies can

» compare the methods used in this dissertation with diffiekernels and with differ-

ent unconstrained optimization algorithms

« utilize and explore methods such as the trust-region Newaofurther stability and

robustness on both TR-KLR and RE-WKLR
* use intelligent sampling methods to improve the speed ecracy of the algorithms

» compare RE-WKLR with methods developed recently on SVM, sigcte Granular
Support Vector Machines-Repetitive Undersampling (GSVWM)-RIgorithm

» compare RE-WKLR with a kernel version of the Prior Correctioatiod as it is

more straightforward to implement

* implement feature-selection techniques, and methods asi®rincipal Component

Analysis (PCA) to provide further data reduction

* apply RE-WKLR to imbalanced and rare-events multi-clasaskzs
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Appendix A

Maximum Likelihood Estimation

Let X € R™d be a data matrix, whemis the number of instances (examples) drid the
number of parameters, and an outcomes vactR, ory € {0,1}. The objective is to find
an estimatorg, for some unknown true parametér, that would maximize the likelihood
of observing the outcomes. This is thenciple of maximum likelihooflL38].

The joint probability density function, or the joint probbty mass function, is then a
function of 8, given the dataX,y). This function is called thékelihood function and is

denoted byL(6|X,y). From Bayesian statistics, the likelihood can be expressed a

L(8) = f(y,X|8) = P(y[X, 8)P(X), (A1)

whereP(y|X, 0) is the conditional density of given the dat, andP(X) is the marginal
density ofX. Since the objective is to model the behaviowydby finding an estimate of
6 which maximized.(0), then the last termP(X), can be dropped without affecting the

likelihood model. Hence, the likelihood is usually given as

L(8) = P(y|X, 6). (A.2)

Maximizing the likelihood function is equivalent to maxinmg the natural logarithm of

the likelihood (log-likelihood), such that

L(8) = InL(6). (A.3)

94



The log-likelihood function is usually analyzed and caitatl because mathematically it

is a monotonic function and the same vafimaximizes botti.(8) and InL(6).

A.1 Asymptotic Properties of Maximum Likelihood Estimators

Themaximum likelihood (ML) estimatoeseextremunestimators that maximize the likeli-
hood function. The ML estimators have some specific progpril here are four important

properties for the ML estimators:

A.1.1 Asymptotic Consistency

Subject to some weak regularity conditions, ML estimatoesc@nsistent. The property of
consistency essentially means that as the sample sizeagasgthe expected value (mean)
of the ML estimator, gets closer in value to the true unknown population parantet
Mathematically [139],

lim Pr(|6,— 6| <¢&)=1. (A.4)

Nn—oo

In other words, as the sample size increases, the ML estir@sonvithin a small interval,

€ > 0, of the true parametét with certainty (a probability of 1).

The Expected Score

Following Cameron and Trivedi [89], an essential consistergularity condition is that
E[O5P(y[X.0)] 5_ =0, (A.5)

Proof:

/ P(y|X,8)dy = 1. (A.6)
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Differentiating both sides with respect fbyields
T [ PYIX.B)dy =0, (A7)

which implies that

/Dép(y|x, B)dy =0, (A.8)

if the range ofy does not depend ofh. Now,
OgInP(y|X,8) = OgP(y|X, 8)(P(y|X,6)) (A.9)

which implies that

OgP(y|X,8) = TgInP(y|X,0)P(y|X,0), (A.10)

Substituting now yields
/Déln P(y|X,8)P(y|X,8)dy =0, (A.11)
which means that
E[OgInP(y[X,0)] 5y = g(é):/DéInP(y|X,é)P(y|X,é)dy:O, (A.12)

provided that the expectation is with respecPty|X, 8). What this essentially implies is
that by the law of large numbers, the sample score convenga®bability to its expected
value as the sample size increases. The ML estimator is egnextn, and in the limit, the
expected score is equal to zero. Since the expected scayeaste zero only at the true

paramete®, then in the limit,6 = 6.
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A.1.2 Asymptotic Normality

The normality property states that for large samples, Mlinedbrs are normally dis-
tributed. Following Greene [140], consider a first-ordeylda series expansion of the

score,g(é), around the true parameter vectéythen,

9(6) =g(6) +H(6)(6 - 6), (A.13)

whereH () = D% InP(y|X, 8) is the Hessian matrix. Now, from the consistency property,

g(8) =0, hence,

0=g(68)+H(B)(6—-0), (A.14)
and therefore,
6-6=—-H(8)g(0), (A.15)
or
-1
V(B -0)= |- ;H(e)| o) (A16)

Now, if the quantity[—%H(@)}_1 is regarded as constant [141], and by the law of large
numbers and the central limit theoreﬁﬁg(e) — 0thenE(8 — 6) = 0, with the assumption
that there is no bias. Therefor&(8) = 6, which is another way to establish consistency.

As for the variance o8, it is just the outer product of A.16, such that

V(VA(6-8)) = E[V/A(B—6)vn(d— (A.17)
-1
_E H } (%) [—%H(G)] . (A18)
which, if efficiency is established, reduces to
. 1 -1
V(y/n(6—06)) =E {—HH(G)} =11 (A.19)
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wherel is the Fisher information matrix. Finally, following Camarand Trivedi [89],
Definition 1 (Asymptotic Distribution 08) If

A

V(B —8) — (0,171, (A.20)
then in large samplesé is asymptotically normally distributed with
6~/ (0,171, (A.21)

Usually, if asymptotic consistency is established, thenMih estimator converges in prob-

ability to the true parameter value [89].

A.1.3 Asymptotic Efficiency

The efficiency property states that as the sample size isesedhe variance of the ML

estimator approaches a minimum bound established by thedZi@ao theorem.

Theorem 2 (Cramér-Rao Lower Bound) Assuming that the density eatisfies the reg-
ularity conditions, the asymptotic variance of a consistaénd asymptotically normally

distributed estimator of the parameter vectbwill always be at least as large as

[1(6)] = (~E[H(8)])* = (E[g(6)9(6)"]) - (A.22)

A.1.4 Invariance

The following theorem describes the invariance propertylbfestimators [142]:

Theorem 3 If @ is the ML estimator of the parameter vectmand p(0) is a function of

6, thenp(8) is the ML estimator op ().
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Appendix B

Support Vector Machines

Let {(X1,¥1),-..,(Xn,Yn)} be a set of training data where eaghin R" denotes a sample
in the input space with a corresponding outgut {1,0}, fori = 1,2,...n wheren cor-
responds to the size of the training data. The goal is to finedparating hyperplane as
far as possible from the nearest different instances wigitping all the instances in their
correct side. In other words, the objective is to maximizedistanced between the sep-
arating hyperplane(, B) + Bo = 0) and its nearest different instances, while placing the
margin hyperplanesX, 3) + o £ 1) into the separating margin. The vecfbrepresents
the normal of the hyperplane aifld is the offset from the origin. When all the instances
are correctly classified, the problem is calleatd-marginSVM. However, in real-life data,
instances are not all correctly classified, and the probkesoft-marginSVM. The dis-
tance between the separating hyperplane and each of thennhggerplane isd = ﬁ

Mathematically [118], the objective involves solving tledléwing optimization problem:

Minimize : %||[3||2+C.i§i,
Subject to : yi((xi,8) +Bo) > 1— &, (B.1)

& >0,
whereé; is nonnegative slack variable representing the errorss,Tlwhen an instance
is correctly classified by the hyperplane, and is outsidédhefrhargin, the corresponding
slack variableg; = 0. When the instance correctly classified, but is within thegmathen
0 < & < 1. If the instance is misclassified, thén> 1. As for the constant, it is also

nonnegative and it represents the trade-off between maixigiihe margin and minimizing
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the errors. Figure B.1 illustrates the concept of SVM for sifasation.
X2
o %P

Support Vector Points .-’ @ (X,B)+Bo=0

G=0 "~ S (xB)+h=-1
O /Q \\\">\\\\.
’“// Q\,(’i\ \\\
o0 & .
d Misclassified Points
’ (& >1)

X1

Figure B.1: SVM for classification.

Now, the LagrangiafLp) of the primal optimization program (B.1) can be expressed as

n
Lp = SIBIP+CY &
- Herecd

—Zori(yi(<xi,ﬁ>+ﬁo)—1+fi) (B.2)

! n
- Z Hi Eia
|
whereaj, andy; are Lagrange multipliers associated with the constraifitsee Karush-
Kuhn Tucker (KKT) conditions can now be derived from the Laggian by taking the

first-order derivatives okp with regard tof3, Bp andé;, then setting them to zeros. The

minimum to the optimization problem (B.2) is then reachedmwhe

B= iiaiYiXia
.iaiyi =0, (B.3)

ai + K =C,
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and the rest of the KKT conditions are [143]:

Constraint 1 : Vi((Xi,B) +Po) —1+& >0,
Constraint 2 : & >0,
Multiplier Condition 1 : aj > 0,
(B.4)
Multiplier Condition 2 : U >0,

Complementary Slackness 1ailyi({xi, 3) + o) —1+&] =0,

Complementary Slackness 2 : wé =0,

fori=1...n. If & >0, thené; = 1—vV;({x;,B) + o) andy; = 0, hencen; =C. If & =0,
theny; > 0, and hencer; < C. In addition, if & = 0, andy;({x;,8) + o) — 1 =0, then
a; > 0. Otherwise, ify; ((xi, ) + Bo) — 1> 0, thena; = 0.

Therefore, instances that are not on the support vectoe@an are on the correct
side haveé; = a; = 0. Instances on the support vector plane hgve 0, buta; > 0.
Finally, data points on the wrong side of the support vecypelnplane have; = C and{;
balances this violation such that(xi, B) + Bo) — 1+ & = 0. In other words, only a subset
of the Lagrange multipliers would have a nonzero value irstilation, while others would
vanish. Instances for whiaty = 0 are calledsupport vectorgSV).

Now, substituting the values in (B.3) back into (B.2) and replg the dot product

(xi,Xj) with k (xi,X;) gives the following dual optimization problem,

=)

n n
Maximize : Lp = —3 Z aiajyiyjK (xi,xj) + Y ai,
i=1j=1 I
n

Subject to: Zaiyi =0, (B.5)
i=
0<ag;<C.
The dot product in (B.5) was replaced with a functiofx;, x;), called the kernel function.

The kernel function maps the input vectors to a feature sgzteconsists of the inner

products of the mapped vectors [117]. Linear classificat@thods are then applied in that
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feature space. Note that Complementary Slackness 1 and 2lsadiyv= 0 if a; < C. Thus,
any training point for which 6< a; < C can be taken to use Complimentary Slackness 1,

with & = 0 to computg3yp. An alternative way to compui@ is by the following:

1 Nsy

Bo=—;(yi—<xi,l3>), (B.6)

Nsy;

wherengy is the number of support vectors [144]. However, for ketveeted SVM, it is not
necessary to calculate the valueBaf as it is implicitly part of the kernel function [144].

Finally, classification of a new instanoe,is then carried out based on the rule

f(x) = sign [_iyiaiK(xi,x)JrBo , (B.7)

foranyai # 0.
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