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Abstract

Recent developments in computing and technology, along withthe availability of large

amounts of raw data, have contributed to the creation of manyeffective techniques and

algorithms in the fields of pattern recognition and machine learning. Some of the main

objectives for developing these algorithms are to identifypatterns within the available data

or to make predictions, or both. Great success has been achieved with many classifica-

tion techniques in real-life applications. Concerning binary data classification in particular,

analysis of data containing rare events or disproportionate class distributions poses a great

challenge to industry and to the machine learning community. This study examines rare

events (REs) with binary dependent variables containing many times more non-events (ze-

ros) than events (ones). These variables are difficult to predict and to explain as has been

demonstrated in the literature. This research combines rare events corrections on Logistic

Regression (LR) with truncated-Newton methods and applies these techniques on Kernel

Logistic Regression (KLR). The resulting model, Rare-Event Weighted Kernel Logistic

Regression (RE-WKLR) is a combination of weighting, regularization, approximate nu-

merical methods, kernelization, bias correction, and efficient implementation, all of which

enable RE-WKLR to be at once fast, accurate, and robust.
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Chapter 1

Introduction

Politics, national security, weather forecasting, medical diagnosis, image and speech recog-

nition, and bioinformatics, are but a few of the fields in which pattern recognition and ma-

chine learning have been applied. Predictive tasks whose outcomes are quantitative (real

numbers) are calledregression, and tasks whose outcomes are qualitative (binary, cate-

gorical, or discrete) are calledclassification. The most fundamental method to address re-

gression problems is theleast squaresmethod, whilelogistic regressionis the fundamental

method for classification. The available data from which predictive tasks are constructed

are referred to as thetraining data. The resulting model performance and accuracy are

assessed using data called thetesting data.

Most of the traditional models and algorithms are based on the assumption that the

classes in the data are balanced or evenly distributed. However, in many real-life applica-

tions the data is imbalanced, and when the imbalance is extreme, this problem is termed the

rare eventsproblem or theimbalanced dataproblem. Logistic Regression (LR), has been

proven to be a powerful classifier. The advantages of using LRare that it has been exten-

sively studied [1], and recently it has been improved through the use of truncated-Newton’s

methods [2, 3]. Furthermore, with regard to rare events (REs), King and Zeng [4] applied

the appropriate corrections on the LR method. Kernel Logistic Regression (KLR) [5, 6],

which is a kernel version of LR, can perform as good as Support Vector Machines (SVM)

[7], which is considered to be the state-of-the-art method.Furthermore, like LR, KLR can

provide probabilities and extend to multi-class classification problems [8, 9]. Maalouf and

Trafalis [10] recently demonstrated the effectiveness of truncated Newton’s method when
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applied to KLR.

Research Objectives

The primary objectives of this dissertation are the following:

• To develop a general classification algorithm that is fast,efficient, and accurate

when applied to non-linearly separable datasets. The proposed algorithm is termed

Truncated-Regularized Kernel Logistic Regression (TR-KLR) and is based on the

Truncated-Regularized Iteratively Re-weighted Least Squares (TR-IRLS) algorithm

[2].

• To develop fast and robust adaptations of TR-KLR in imbalanced and rare events

data. The proposed algorithm is termed Rare-Event Weighted Kernel Logistic Re-

gression (RE-WKLR).

• To gain significantly higher accuracy in predicting rare events with diminished bias

and variance.

Research Contributions

The principal contributions of this dissertation are the following:

• The TR-KLR algorithm is the result of the combination of regularization, approxi-

mate numerical methods, kernelization and efficient implementation. When evalu-

ated against SVM and TR-IRLS, using non-linearly separable binary and multiple

class datasets, TR-KLR is as accurate as, and much faster than, SVM, as well as

more accurate than TR-IRLS .

• Weighting, regularization, approximate numerical methods, kernelization, bias cor-

rection, and efficient implementation are critical to enabling RE-WKLR to be an

2



effective and powerful method for predicting rare events. Compared to SVM and

TR-KLR, using non-linearly separable small and large binary rare-events datasets,

RE-WKLR is as fast as TR-KLR and much faster than SVM. In addition, RE-WKLR

is statistically significantly more accurate than both SVM and TR-KLR.

Scope of the Dissertation

Chapter 2 provides a summary of the literature on the current research and publications in

the areas of learning from imbalanced and rare events data. Chapter 3 gives an overview and

analysis of Logistic Regression models. Chapter 4 derives theKernel Logistic Rregression

model and implements the Truncated-Regularized Kernel Logistic Regression (TR-KLR)

algorithm with some numerical results. Chapter 5 describes how Kernel Logistic Regres-

sion can be used to solve rare events and data imbalance problems through the Rare-Event

Weighted Kernel Logistic Regression (RE-WKLR) algorithm. Numerical results are pre-

sented in Chapter 6, and Chapter 7 addresses the conclusion andfuture work.

3



Chapter 2

Rare Events and Imbalanced Datasets Research: An Overview

Summary

Rare events data, and imbalanced or skewed datasets are very important in data mining and

classification. However, these types of data are difficult topredict and to explain as has

been demonstrated in the literature. The problems arise from various sources. This chapter

surveys the latest research on data mining in relation to rare events and imbalanced data.

Introduction

Rare events (REs), class imbalance, and rare classes are critical to prediction and hence

human response in the field of data mining and particularly data classification. Examples

of rare events include fraudulent credit card transactions[11], word mispronunciation [12],

tornadoes [13], telecommunication equipment failures [14], oil spills [15], international

conflicts [16], state failure [17], landslides [18, 19], train derailments [20], rare events in a

series of queues [21] and other rare events.

By definition, rare events are occurrences that take place with a significantly lower

frequency compared to more common events. Given their infrequency, rare events have an

even greater importance when correctly classified. However, the imbalanced distribution

of classes calls for correct classification. The rare class presents several problems and

challenges to existing classification algorithms [4, 22].

King and Zeng [4] state that the problems associated with REs stem from two main

sources. First, when probabilistic statistical methods, such as LR, are used, they underes-
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timate the probability of rare events, because they tend to be biased towards the majority

class, which is the less important class. Second, commonly used data collection strategies

are inefficient for rare events data. A trade-off exists between gathering more observations

(instances) and including more informational, useful variables in the data set. When one of

the classes represents a rare event, researchers tend to collect very large numbers of obser-

vations with very few explanatory variables in order to include as much data as possible of

the rare class. This in turn could significantly increase thedata collection cost and not help

much with the underestimated probability of detecting the rare class or the rare event.

In the machine learning literature, several problems associated with REs and imbal-

anced data have been identified. According to Weiss [22], themost common problems

associated with rare events are the following:

• Lack of Data: Absolute Rarity.Absolute Rarity is where the number of examples

associated with the minority class is small in the absolute sense. This makes it very

difficult for any classifier to detect regularities within the rare events or rare classes

[22].

• Relative Lack of Data: Relative Rarity.Sometimes rare events or minority classes,

are not rare in the absolute sense, but they are rare relativeto other events, objects,

or classes. This also makes it difficult to detect patterns associated with rare events

or classes [23]. Consider a certain cancer data with 10,000 examples and a 100:5

between-class imbalance. The majority class examples far outnumber those of the

minority class, despite the fact that 500 examples in the minority class may not be

considered “rare.”

• Class Distribution.When datasets are divided into training and testing, most clas-

sifiers assume that the distribution of the training set is the same as the testing set.

However, the training set might be imbalanced while the testing set might not, and the

other way around [24, 25]. This problem is always referred toas thesample selection
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bias [26]. When this occurs, an inductive model constructed from abiased training

set may not be as accurate on an unbiased testing set as one constructed without any

selection bias in the training set [27].

• Improper Evaluation Metrics.The most commonly used evaluation metric isclassi-

fication accuracy, which computes the fraction of correctly classified examples (in-

stances). The problem with this metric is its bias towards the majority class (the

class with output zero) at the expense of the minority class (the class with output

one) [24, 25]. Consider for example a classifier classifying adataset with 100 in-

stances and 100:5 imbalance between the classes. Although this classifier may miss

all of the five examples of the minority class, itsaccuracywould still be 95%.

• Inappropriate Inductive Bias.Inductive bias can be thought of as a predisposition

for one explanation rather than another [28]. In machine learning, inductive bias is

essential in the sense that it makes learning more efficient by constraining the search

space [29]. An example of inductive bias would be the assumption of a linear func-

tion in linear regression [30]. Another example is the effect of prior probabilities

on the classification outcome. However, when dealing with rare events, the gener-

alization bias, such as the maximum-generality bias, can have a negative impact on

learning rare events, because it selects the most general set of conditions that satisfy

the majority class [22, 31].

• Small Disjuncts.In rule-based classifiers, such as decision trees, small disjuncts are

inductive set of rules that correctly classify small training examples [31]. Jo and

Japkowics [32] argue that class imbalance, per se, may not bethe obstacle to the

performance of classifiers, but rather class imbalance leads to small disjuncts that

are more prone to errors. Some of the main reasons behind the poor performance of

small disjuncts are the bias [31], attribute noise, missingattributes, and the size of

the training set [33, 34].
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• Data Fragmentation.Strategies such as divide-and-conquer, which partitions the

data into small groups, can lead to data fragmentation. Datafragmentation can lead

to absolute lack of data within a single partition [35].

• Noise. Noise within datasets can have a major negative impact on thedetection of

rare events due to its obstruction of the rare instances. Hence, forming decision

boundaries around the rare classes would be very difficult [22].

Given these most common problems associated with REs, the following is a summary of

the latest techniques for handling REs and imbalanced datasets.

2.1 Evaluation Metrics

Classificationaccuracyis the most commonly used method to assess the accuracy of the

classifier. However, as stated earlier, in REs, accuracy places more weight on the majority

class, and hence it should not be used as a measure of accuracyin REs and imbalanced data.

For binary classification in REs, the rare class is consideredthe positive class while the ma-

jority class is considered either class zero or the negativeclass. Table 2.1 shows thecon-

fusion matrix(CM) for binary classification. In the matrix,true positive(TP) corresponds

to the number of correctly classified positive instances,false negative(FN) corresponds to

the number of positive instances classified as negative,false positive(FP) corresponds to

the number of negative instances classified as positive, andtrue negative(TN) corresponds

to the number of correctly classified negative instances. Tan et al. [36] list several widely

Table 2.1: Confusion matrix for binary classification.

Predicted Class = 1 Predicted Class = 0

Actual Class = 1 TP FN
Actual Class = 0 FP TN

used metrics which can be derived from CM. According to the matrix, accuracyis defined

7



by

Accuracy=
TP+TN

TP+FP+FN+TN
. (2.1)

The counts in CM can be expressed as percentages. Thetrue positive rate(TPR), or sen-

sitivity, is defined as the fraction of positive examples that are correctly predicted by the

model, i.e.,

TPR=
TP

TP+FN
, (2.2)

while the true negative rate(TNR), or specificity, is defined as the fraction of negative

examples that are correctly predicted by the model, i.e.,

TNR=
TN

TN+FP
. (2.3)

The false positive rate(FPR) is the fraction of negative examples predicted as a positive

class, i.e.,

FPR=
FP

TN+FP
, (2.4)

and finally, thefalse negative rate(FNR) is the fraction of positive examples predicted as

a negative class, i.e.,

FNR=
FN

TP+FN
. (2.5)

Precision (P) and Recall (R) are useful for applications in which the detection of one class is

more important than the detection of the other class [36]. Precision measures the fraction of

the predicted positive instances that are actually correct, while Recall measures the fraction

of class instances that are correctly predicted. HigherP indicates lowerFP, while higher

R indicates lowerFN. Precision and recall are defined by

P =
TP

TP+FP
, (2.6)

R=
TP

TP+FN
. (2.7)
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In addition, Precision and Recall can be summarized by theF1 metric, which is defined as

F1 =
2×TP

2×TP+FP+FN
, (2.8)

and it represents a harmonic mean betweenP andR. Recall is equivalent toprobability

of detection(POD), a metric widely used in meteorology [13]. Another important meteo-

rology metric, similar to theF1 measure is the Critical Success Index (CSI) [37], which is

defined as

CSI=
TP

TP+FP+FN
, (2.9)

and hence this metric is not affected by the number of non-REs predictions. Furthermore,

Cohen’s Kappa Index (κ) is another useful metric for REs prediction evaluation [18,38].

The index determines the agreement between the model and reality. An index value of one

indicates perfect prediction and a value of zero indicates no better prediction than mere

chance.

Another alternative metric, widely used in the medical field, is the Receiver Operating

Characteristic (ROC) analysis and the Area Under Curve (AUC) associated with it. The

ROC is a trade off between false positive rate (FPR) and true positive rate (TPR) (sensi-

tivity). Points correspond toFPRare plotted on thex axis and points correspond toTPR

are plotted on they axis. Therefore, a good classifier is one which generates points that are

located on the upper left corner of the diagram. A random guessing would be located along

the main diagonal [39]. AUC does not favor one class over the other, and hence it is not

biased against the rare class [22].

9



2.2 Algorithm Level Techniques

2.2.1 Threshold Method

Many classifiers, such as logistic regression, Naive Bayes classifiers, and Neural Networks,

produce a score, or a probability, that reflects the degree towhich an instance or an example

belongs to a certain class. Varying the threshold of the membership degree classification

could improve the classification accuracy [22, 40]. The threshold method is related to the

error costs and class distribution [25]. If the error costs and class distribution are found,

then setting the appropriate threshold would be a straightforward task.

2.2.2 Learn Only The Rare Class

Sometimes, when classifiers learn classification rules for all classes, the rare classes may

be ignored [22]. Therefore, under certain conditions, one-class approach (the rare class)

may perform better than two-class approaches [41]. Techniques such as HIPPO [42] and

RIPPER [43] are examples of such an approach. HIPPO uses neural networks to learn

only the rare class by recognizing patterns within that class. RIPPER selects the majority

class as its default class and learns the rules for detectingthe minority class. It employs

a general-to-specific strategy to iteratively grow a rule and a measure to choose the best

conjunct to be added to the rules. The algorithm stops when the rule starts covering the

majority class examples. Therefore, RIPPER generates rulesfrom the rarest class to the

most common class.

2.2.3 Cost-Sensitive Learning

Cost-Sensitive (CS) approaches are based on the fact that the value of a correctly classified

rare (positive) example exceeds that of a majority (negative) class. Hence, greater costs are

assigned tofalse negatives(misses) than tofalse positives(false alarms) [44]. CS learning

then seeks to minimize the number of high-cost errors and thetotal misclassification cost.
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Another related method is MetaCost [45], which makes error-based classifiers cost sensi-

tive. MetaCost relabels the training examples with their estimated minimal-cost classes,

and then applies the error-based classifier to the modified training set. Weighted Random

Forest (WRF) [46] is another CS classifier. Random Forest (RF) [47]is an ensemble of

decision trees, generated from bootstrap samples of the training data using random feature

selection. The WRF method assigns more weights to the minorityclass (higher misclassi-

fication cost), thereby penalizing misclassification of theminority class. Chen et. al [46]

claim that this algorithm is useful for extremely imbalanced data.

Iterative techniques, such asboostingare also related to CS learning. Iterative algo-

rithms such as AdaBoost [48] assign different weights on the training distribution in each

iteration. After each iteration, boosting increases the weights associated with incorrectly

classified examples and decreases the weights associated with the correctly classified ones.

A variant of AdaBoost, AdaCost [49], has been shown useful in addressing the problem of

rarity and imbalance in data. Analysis of boosting techniques, however, shows that boost-

ing is tied to the choice of the base learning algorithm [50, 51]. Thus, if the base learning

algorithm is a good classifier without boosting, then boosting would be useful when that

base learner is used in REs.

One problem with CS methods is that specific information on cost is difficult to obtain

[22, 52]. Another problem is that covering more positive examples occur at the expense of

generating more false alarms [36]. As a comparison with basic sampling techniques, both

Maloof [53] and Weiss [54] found that both CS learning and sampling perform equally.

Weiss [54] however found that CS learning has an advantage when datasets of size larger

than 10,000 examples are used.

2.2.4 Other Methods

• More Appropriate Inductive Bias.Several attempts have been suggested to select an

inductive bias that would perform well in rare events. Maximum specificity bias and
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instance-based learning algorithms are examples of such methods. The suggested

methods have shown only limited success. Weiss [22] posits that this may be the

result of using overall classification accuracy rather thanfocusing on the benefits of

small disjuncts.

• Non-Greedy Search Techniques.Genetic algorithms are increasingly used in data

mining because of their ability to skip local minima in searching for the global min-

imum [14, 55]. Another method is the association-rule mining system which is able

to find rare associations.

• Utilize Knowledge/Human Interaction.Knowledge and human interaction help im-

proving the data mining process, especially for very difficult problems. In many

rare event problems, decisions involve qualitative assessments and judgment. This

includes a better description of examples, addition of moreuseful features, and dis-

covery of results that warrant further investigation. Predicting international conflicts

[16] is an example of data mining which requires both quantitative and qualitative

assessments.

• Two Phase Rule Induction.Sometimes it is difficult to maximize both precision and

recall. PNRule algorithm [56] uses two-phase rule inductionand focuses on precision

and recall separately. The first phase focuses onrecall by inducing rules with high

accuracy. The second phase focuses onprecisionthrough rules that remove false

positives from the records covered by the first phase.

• Biased Minimax Probability Machine (BMPM).The Minimax Probability Machine

(MPM) [57] is a novel classifier which estimates the worst-case bound on the prob-

ability of misclassification of future data points. The BMPM,proposed by Huang et

al. [58], can control the decision hyperplane in favor of themore important class.

However, the means and the covariance matrices have to be reliably estimated for

good accuracy.
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2.3 Data Level Techniques

2.3.1 Feature Selection

Zheng et al. [59] argue that existing feature selection measures are not appropriate for im-

balanced data. The authors propose a feature selection framework, which selects features

for positive and negative classes separately, and then explicitly combines them. The re-

sults show improvement on the performance of both Naive Bayesand regularized Logistic

Regression methods.

2.3.2 Sampling

Sampling is undoubtedly one of the most important techniques in dealing with REs. The

underlying concept behind sampling is minimizing the effect of rareness by changing the

distribution of the training examples. Sampling techniques consist of basic sampling and

advanced sampling. Van Hulse [60] provides a comprehensivesurvey on both random and

intelligent data sampling techniques and their impact on various classification algorithms.

Seiffert et al. [61] observed that data sampling is very effective in alleviating the problems

presented by rare events.

Basic Sampling Methods

Basic sampling methods consist ofunder-samplingandover-sampling[36]. Under-sampling

balances the training set by eliminating examples from the majority class. This strategy

risks degrading the performance of the classifier because the examples eliminated may

contain useful information. Over-sampling creates identical examples of the minority class

in order to make the training set more balanced. Over-sampling thus can increase the

computational time. In addition, over-sampling risks over-fitting, since it involves mak-

ing identical copies of the minority class. Drummond and Holte [62] found that under-

sampling using C4.5 (a decision tree algorithm) is most effective for imbalanced data.
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Maloof [53] showed, however, that under-sampling and over-sampling are almost equiv-

alent using Naive Bayes and C5.0 (a commercial successor to C4.5). Japkowicz [63] also

came to similar conclusion, but found that under-sampling the majority class works better

on large domains. Prati et al. [64] proposed over-sampling combined with data cleaning

methods as a possible remedy, but without providing conclusive evidence. Weiss [54] found

that there is no clear winner between under-sampling and over-sampling, and whether one

should be chosen over the other is highly dependent on the dataset. King and Zeng [4]

advocate under-sampling of the majority class when statistical methods such as logistic

regression are employed, based on the dependent variable for handling rare events data.

However, they state that such designs are only consistent and efficient with the appropriate

corrections.

Advanced Sampling Techniques

Advanced Sampling Techniques use intelligence when addingor removing examples, or

when they combine under-sampling and over-sampling. Barandela et al. [65] and Han et

al. [66] examined the performance of intelligent sampling techniques, such as the Synthetic

Minority Over-Sampling TEchnique (SMOTE) and Borderline-SMOTE. The SMOTE al-

gorithm adds non-replicated minority-class examples fromthe line segments that join the

k minority-class neighbors. Thus, while SMOTE is an over-sampling algorithm, it avoids

the problem of over-fitting. However, in the presence of class overlap, SMOTE does not

perform better than data editing techniques that focus on removing noisy instances and

atypical patterns from the majority class [67]. Borderline-SMOTE over samples only the

minority class instances that are near the borderline between the classes [66]. SMOTE-

Boost [68] is another algorithm that uses boosting. The algorithm alters the distribution

of the training data by adding new minority-class examples using SMOTE algorithm. Ac-

tive learning techniques have been recently implemented inclass imbalance data and show

promising results. Ertekin et al. [69] proposed an efficientactive learning method which
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selects informative instances from the training dataset instead of using the entire training

dataset. Such a strategy is useful for very large datasets.

Another strategy, suggested by Kubat and Matwin [70], is One-Sided Selection (OSS)

which under-samples by removing majority class examples that are considered redundant

or noisy. Laurikkala [71] argues that Hart’s Condensed Nearest Neighbor (CNN) rule, used

by OSS, is sensitive to noise, and proposed the NeighborhoodCleaning rule (NCL), which

emphasizes more on data cleaning rather than data reduction. Another method, which

involves hierarchical classification, is proposed by Li et al. [72]. The method consists of

two stages. The first stage identifies most of the majority class examples and eliminates

them. The second stage discriminates between the minority class and the greatly reduced

majority class examples lying near the decision boundary.

Balanced Random Forest (BRF) [46] combines under-sampling withensemble learn-

ing by artificially altering the class distribution, thus representing classes more equally in

each tree with more computation efficiency. Another method,Cluster-Based Oversampling

(CBO) [32] is shown to be effective in handling both class imbalance and small disjuncts si-

multaneously. The CBO algorithm utilizes re-sampling through clustering the training data

of each class separately then performing random over-sampling, cluster by cluster. The ad-

vantage of this method is that it considers both between-class imbalance and within-class

imbalance, then over-sampling the data to rectify these imbalances simultaneously. An-

other cluster-based algorithm, Classification using lOcal clusterinG (COG), recently pro-

posed by Wu et al. [73] is also proving effective in rare events data, when applied using

Support Vector Machines (SVM). The idea is to use clusteringwithin each class to generate

linearly separable balanced subclasses.

2.4 Kernel-Based Methods

In recent years, interest in kernel-based methods has been growing because they provide

state-of-art techniques for many applications. Most of these kernel-based methods, how-
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ever, are presented in the literature along the SVM method. SVM minimizes the total error

while maximizing the margin between the support vectors (SV) and the separating hyper-

plane [7]. However, highly imbalanced data degrade the performance of SVM [74]. This

degradation stems from various sources. Since SVM tries to minimize the total error, it

is then biased towards the majority class, because the SV of the minority class may be

positioned far from the separating hyperplane [74, 75]. Furthermore, in the case of abso-

lute rarity, the number of SV of the minority class is simply inadequate to guarantee good

classification performance [76].

A number of methods has been proposed in the literature to remedy this SVM prob-

lem. Akbani et al. [74] incorporated SMOTE with Different Costs (SDC) into SVM. The

SDC algorithm uses different error costs for different classes in order to move the boundary

away from the minority class. In addition SDC uses SMOTE to make the minority class

instances more densely distributed, hence allowing the boundary to be more well defined.

SVM ensembles method [77] is another example of the use of advanced sampling in SVM.

The SVM ensembles method works by decomposing the majority class examples intoK

subsets, depending on the number of the minority class examples. All of the examples of

the minority class are then combined with each subset from the majority class. Next, SVM

is trained independently on each of these subsets. Finally,a majority vote is used on the

combined SVM results. The advantage of SVM ensembles is thatit preserves all of the ex-

amples that belong to the majority class without any loss of data. The only disadvantage is

its assumption that a good class distribution is known. Thisestimation, however, increases

the learning time.

Another example is the Granular Support Vector Machines-Repetitive Under-sampling

(GSVM-RU) algorithm [78], which combines classification with under-sampling methods.

The GSVM-RU algorithm is based on the Granular Support Vector Machines (GSVM) al-

gorithm which combines the principles from statistical learning theory and the granular

computing theory in a systematic and formal way [79]. The GSVM improves classifica-
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tion effectiveness by establishing a trade-off between local significance of a subset of data

and global correlation among different subsets of data. GSVM also improves efficiency by

eliminating redundant data locally through parallel computation. The GSVM-RU method

directly uses SVM for under-sampling. First, GSVM-RU retains all of the minority class

examples and forms a positive information granule. Second,the majority class examples

which are SV form a negative information granule, consisting of Negative Local Support

Vectors (NLSVs). Then these NLSVs are extracted from the original training data, and

combined with the positive granule, to form a smaller training dataset. This process is re-

peated several times until multiple negative information granules are formed. After that,

the remaining majority examples in the original training set are simply discarded. An ag-

gregation operation is then performed to selectively aggregate the examples in the negative

granules with all the positive examples. Finally, SVM is modeled in the aggregate dataset

for classification.

2.5 Conclusion

This chapter provides a summary of the literature on the mostimportant investigations in

the areas of learning from imbalanced and rare events data. Problems related to imbalance

or REs result from many factors. The size of the dataset, the distribution of classes, data

duplication, the choice of classifier, and class overlap areall relevant to the end products of

classification. As Gu et al. [80] mentioned, deeper understanding of the basics would help

in designing better methods for dealing with the problem of learning with imbalanced and

REs data.
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Chapter 3

Logistic Regression: An overview

Summary

Logistic Regression (LR) is one of the most important statistical procedures for the analysis

of binary and proportional response data. This chapter presents a review of the LR method

along with the recent developments on both the algorithmic level and on dealing with REs

and imbalanced data.

3.1 Logistic Regression

Let X ∈ R
n×d be a data matrix wheren is the number of instances (examples) andd is

the number of features (parameters or attributes), andy be a binary outcomes vector. For

every instancexi ∈ R
d (a row vector inX), wherei = 1. . .n, the outcome is eitheryi = 1 or

yi = 0. Let the instances with outcomes ofyi = 1 belong to the positive class (occurrence

of an event), and the instances with outcomesyi = 0 belong to the negative class (non-

occurrence of an event). The goal is to classify the instancexi as positive or negative. An

instance can be thought of as a Bernoulli trial (therandom component) with an expected

valueE(yi) or probabilitypi.

A linear model to describe such a problem would have the matrix form

y = Xβ + ε, (3.1)
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whereε is the error vector, and where
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. (3.2)

The vectorβ is the vector of unknown parameters such thatxi ← [1,xi] andβ ← [β0,β T].

From now on, the assumption is that the intercept is includedin the vectorβ . Now, sincey

is a Bernoulli random variable with a probability distribution

P(yi) =















pi, if yi = 1;

1− pi , if yi = 0;

(3.3)

then the expected value of the response is

E(yi) = 1(pi)+0(1− pi) = pi = xiβ , (3.4)

with a variance

V(yi) = pi(1− pi). (3.5)

It follows from the linear model

yi = xiβ + εi (3.6)

that

εi =















1− pi, if yi = 1 with probabilitypi;

−pi, if yi = 0 with probability 1− pi;

(3.7)

Therefore,εi has a distribution with an expected value

E(εi) = (1− pi)(pi +(−pi)(1− pi) = 0, (3.8)
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and a variance

V(εi) = E(ε2
i )−E(εi) = (1− pi)

2(pi)+(−pi)
2(1− pi)− (0) (3.9)

= pi(1− pi). (3.10)

Since the expected value and variance of both the response and the error are not constant

(heteroskedastic), and the errors are not normally distributed, the least squares approach

cannot be applied. In addition, sinceyi ∈ {0,1}, linear regression would lead to values

above one or below zero. Thus, when the response vector is binary, the logistic response

function, as shown in Figure 3.1, is the appropriate one.

The logistic function commonly used to model each positive instancexi with its ex-

pected binary outcome is given by

E(yi = 1|xi,β ) = pi =
exiβ

1+exiβ
=

1

1+e−xiβ
, for i = 1, . . .n. (3.11)

The logistic (logit) transformation is the logarithm of theodds of the positive response, and

is defined as

ηi = g(pi) = ln

(

pi

1− pi

)

= xiβ . (3.12)

In matrix form, the logit function is expressed as

η = Xβ . (3.13)

The logit transformation function is important in the sensethat it is linear and hence it

has many of the properties of the linear regression model. InLR, this function is also called

the canonical link function, which relates the linear predictorηi to E(yi) = pi through

g(pi). In other words, the functiong(.) links E(yi) to xi through the linear combination

of xi andβ (thesystematic component). Furthermore, the logit function implicitly places

a separating hyperplane,β0 + 〈x,β 〉 = 0, in the input space between the positive and non-
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Figure 3.1: Logistic Response Function

positive instances.

The most widely used general method of estimation is the method of maximum likeli-

hood(ML) (see Appendix A). The ML method is based on the joint probability density of

the observed data, and acts as a function of the unknown parameters in the model [81].

Now, with the assumption that the observations are independent, the likelihood function

is

L(β ) =
n

∏
i=1

(pi)
yi(1− pi)

1−yi =
n

∏
i=1

(

exiβ

1+exiβ

)yi (
1

1+exiβ

)1−yi

, (3.14)

and hence, the log-likelihood is then

lnL(β ) =
n

∑
i=1

(

yi ln

(

exiβ

1+exiβ

)

+(1−yi) ln

(

1

1+exiβ

)

)

. (3.15)

Amemiya [82] provides formal proofs that the Maximum Likelihood (ML) estimator for

LR satisfies the ML estimators’ desirable properties (see Appendix A). Unfortunately, there

is no closed form solution to maximize lnL(β ) with respect toβ . The LRmaximum likeli-

hood estimates(MLE) are therefore obtained using numerical optimizationmethods, which

start with a guess and iterate to improve on that guess. One ofthe most commonly used
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numerical methods is the Newton-Raphson method, for which, both the gradient vector and

the Hessian matrix are needed:

∂
∂β j

lnL(β ) =
n

∑
i=1

(

yi

(

xi j

1+exiβ

)

+(1−yi)

(

−xi j exiβ

1+exiβ

))

(3.16)

=
n

∑
i=1

(

yixi j

(

1

1+exiβ

)

− (1−yi)xi j

(

exiβ

1+exiβ

))

(3.17)

=
n

∑
i=1

(yixi j (1− pi)− (1−yi)xi j (pi)) (3.18)

=
n

∑
i=1

(xi j (yi − pi)) = 0, (3.19)

where j = 0, ...d andd is the number of parameters. Each of the partial derivativesis then

set to zero. In matrix form, equation (3.19) is written as

g(β ) = ∇β lnL(β ) = XT(y−p) = 0. (3.20)

Now, the second derivatives with respect toβ are given by

∂ 2

∂β j∂βk
lnL(β ) =

n

∑
i=1

(

−xi j xikexiβ

(1+exiβ )(1+exiβ )

)

(3.21)

=
n

∑
i=1

(−xi j xik(pi(1− pi))). (3.22)

If vi is defined aspi(1− pi) andV = diag(v1, ....vn) then the Hessian matrix can be ex-

pressed as

H(β ) = ∇2
β lnL(β ) = −XTVX . (3.23)

Since the Hessian matrix is negative definite, then the objective function is strictly concave,

with one global maximum. The LRinformation matrixis given by

I(β ) = −E[H(β )] = XTVX . (3.24)
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The variance ofβ is thenV(β ) = I(β )−1 = (XTVX)−1.

Over-fitting the training data may arise in LR [1], especially when the data are very

high dimensional and/or sparse. One of the approaches to reduce over-fitting is through

quadraticregularization, known also asridge regression, which introduces a penalty for

large values ofβ and to obtain better generalization [83]. The regularized log-likelihood

can be defined as

lnL(β ) =
n

∑
i=1

(

yi ln

(

exiβ

1+exiβ

)

+(1−yi) ln

(

1

1+exiβ

)

)

− λ
2
||β ||2 (3.25)

=
n

∑
i=1

ln

(

eyixiβ

1+exiβ

)

− λ
2
||β ||2, (3.26)

whereλ > 0 is the regularization parameter and
λ
2
||β ||2 is the regularization (penalty) term.

For binary outputs, the loss function or the deviance (DEV) is the negative log-likelihood

and is given by the formula [1, 2]

DEV(β̂ ) = −2lnL(β ). (3.27)

Minimizing the devianceDEV(β̂ ) given in (3.27) is equivalent to maximizing the log-

likelihood [1]. Recent studies showed that theconjugate gradient(CG) method, when

applied to the method ofiteratively re-weighted least squares(IRLS) provides better results

to estimateβ than any other numerical method [84, 85].

3.2 Iteratively Re-weighted Least Squares

One of the most popular techniques used to find the MLE ofβ is the iteratively re-weighted

least squares (IRLS) method, which uses Newton-Raphson algorithm to solve LR score

equations. Each iteration finds theweighted least squares(WLS) estimates for a given set

of weights, which are used to construct a new set of weights [81]. The gradient and the
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Hessian are obtained by differentiating the regularized likelihood in (3.26) with respect to

β , obtaining, in matrix form

∇β lnL(β ) = XT(y−p)−λβ = 0, (3.28)

∇2
β lnL(β ) = −XTVX −λ I , (3.29)

whereI is ad×d identity matrix. Now that the first and second derivatives are obtained,

the Newton-Raphson update formula on the(c+1)− th iteration is given by

β̂
(c+1)

= β̂
(c)

+(XTVX +λ I)−1(XT(y−p)−λβ̂
(c)

). (3.30)

Sinceβ̂
(c)

= (XTVX +λ I)−1(XTVX +λ I)β̂
(c)

, then (3.30) can be rewritten as

β̂
(c+1)

= (XTVX +λ I)−1XT(VX β̂
(c)

+(y−p)) (3.31)

= (XTVX +λ I)−1XTVz(c), (3.32)

wherez(c) = Xβ̂
(c)

+V−1(y−p) and is referred to as the adjusted response [8].

Despite the advantage of the regularization parameter,λ , in forcing positive definite-

ness, if the matrix(XTVX +λ I) were dense, the iterative computation could become unac-

ceptably slow [2]. This necessitates the need for a “trade off” between convergence speed

and accurate Newton direction [86]. The method which provides such a trade-off is known

as the truncated Newton’s method.

3.2.1 TR-IRLS Algorithm

The WLS subproblem,

(XTVX +λ I)β̂
(c+1)

= XTVz(c), (3.33)
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is a linear system ofd equations and variables, and solving it is equivalent to minimiz-

ing the quadratic function12β̂
(c+1)

(XTVX + λ I)β̂
(c+1) − β̂

(c+1)
(XTVz(c)). Komarek and

Moore [87] were the first to implement a modified linear CG to approximate the New-

ton direction in solving the IRLS for LR. This technique is called truncated-regularized

iteratively-reweighted least squares(TR-IRLS). The main advantage of the CG method is

that it guarantees convergence in at mostd steps [86]. The TR-IRLS algorithm consists

of two loops. Algorithm 1 represents the outer loop which finds the solution to the WLS

problem and is terminated when the relative difference of deviance between two consecu-

tive iterations is no larger than a specified thresholdε1. Algorithm 2 represents the inner

loop, which solves the WLS subproblems in Algorithm 1 throughthe linear CG method,

which is the Newton direction. Algorithm 2 is terminated when the residual

r (c+1) = (XTVX +λ I)β̂
(c+1)−XTVz(c)

is no greater than a specified thresholdε2. For more details on the TR-IRLS algorithm and

implementation, see Komarek [2].

Algorithm 1 : LR MLE using IRLS

Data: X,y, β̂
(0)

Result: β̂
begin1

c = 02

while |DEV(c)−DEV(c+1)

DEV(c+1) | > ε1 and c≤ Max IRLS Iterationsdo3

for i ← 1 to n do4

p̂i = 1
1+e−xi β̂

; /* Compute probabilities */5

vi = p̂i(1− p̂i) ; /* Compute weights */6

zi = xi β̂
(c)

+ (yi−p̂i)
p̂i(1−p̂i)

; /* Compute the adjusted response */7

V = diag(v1, ...,vn)8

(XTVX +λX)β̂
(c+1)

= XTVz(c) ; /* Compute β̂ via WLS */9

c = c+110

end11

Default parameter values are given for both algorithms [87]and are shown to provide
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Algorithm 2 : Linear CG.A = XTVX +λX, b = XTVz

Data: A,b, β̂
(0)

Result: β̂ such thatAβ̂ = b
begin1

r (0) = b−Aβ̂
(0)

; /* Initialize the residual */2

c = 03

while ||r (c+1)||2 > ε2 and c≤ Max CG Iterationsdo4

if c = 0 then5

ζ (c) = 06

else7

ζ (c) = rT(c+1)r (c+1)

rT(c+1)r (c) ; /* Update A-Conjugacy enforcer */8

d(c+1) = r (c+1) +ζ (c)d(c) ; /* Update the search direction */9

s(c) = rT(c)r (c)

dT(c)Ad(c) ; /* Compute the optimal step length */10

β̂
(c+1)

= β̂
(c)

+ζ (c)d(c+1) ; /* Obtain approximate solution */11

r (c+1) = r (c)−s(c)Ad(c+1) ; /* Update the residual */12

c = c+113

end14

adequate accuracy on very large datasets. For Algorithm 1, the maximum number of iter-

ations is set to 30 and the relative difference of deviance threshold,ε1, is set to 0.01. For

Algorithm 2, the ridge regression parameter,λ , is set to 10 and the maximum number of

iterations for the CG is set to 200 iterations. In addition, the CG convergence threshold,

ε2, is set to 0.005, and no more than three non-improving iterations are allowed on the CG

algorithm.

Once the optimal MLE for̂β are found, classification of any giveni− th instance,xi, is

carried out according to the following rules

ŷi =















1, if η̂i ≥ 0 or p̂i ≥ 0.5 ;

0, otherwise.

(3.34)

Aside from the implementation simplicity of TR-IRLS, the mainadvantage of the al-

gorithm is that it can process and classify large datasets with little time, compared to other

methods such as SVM. In addition, the TR-IRLS accuracy is comparable to that of SVM.

26



Furthermore, the algorithm does not require parameter tuning. This is an important char-

acteristic when the goal is to classify large and balanced datasets.

Despite all of the aforementioned advantages of TR-IRLS, the algorithm is not designed

to handle rare events data, and it is not designed to handle small-to-medium size datasets

that are highly non-linearly separable [10].

3.3 Logistic Regression in Rare Events Data

3.3.1 Endogenous (Choice-Based) Sampling

Almost all of the conventional classification methods are based on the assumption that the

training data consist of examples drawn from the same distribution as the testing data (or

real-life data) [25, 26]. Likewise ingeneralized linear models(GLM), likelihood functions

solved by methods such as LR are based on the concepts of random sampling orexogenous

sampling [4, 88]. To see why this is the case [82, 89], under random sampling, the true

joint distribution ofy andX is P(y|X)P(X), and the likelihood function based onn binary

observations is given by

LRandom=
n

∏
i=1

P(yi|xi,β )P(xi). (3.35)

Under exogenous sampling, the sampling is onX according to a distributionf (X), which

may not reflect the actual distributionP(X), and theny is sampled according to its true

distribution probabilityP(y|X). The likelihood function would then be

LExogenous=
n

∏
i=1

P(yi|xi,β ) f (xi). (3.36)

As long as the ML estimator is not related toP(X) or f (X), then maximizingLRandomor

LExogenousis equivalent to maximizing

L =
n

∏
i=1

P(yi|xi,β ), (3.37)
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which is exactly the likelihood maximized by LR in (3.14) [26].

While the ML method is the most important method of estimationwith a great advan-

tage in general applicability, it is well-known that MLE of the unknown parameters, with

exception to the normal distribution, areasymptotically biasedin small samples. The ML

properties are satisfied mainly asymptotically, meaning with the assumption of large sam-

ples [81, 90]. In addition, while it is ideal that sampling beeither random or exogenous

since it is reflective of the population or the testing data distribution, this sampling strategy

has three major disadvantages when applied to REs. First, in data collection surveys, it

would be very time consuming and costly to collect data on events that occur rarely. Sec-

ond, in data mining, the data to be analyzed could be very large in order to contain enough

REs, and hence computational time could be big. Furthermore,while the ML estimator is

consistent in analyzing such data, it is asymptotically biased in the sense that the proba-

bilities generated underestimate the actual probabilities of occurrence. In other words, the

results are asymptotically biased. Cox and Hinkley [91] provided a general rough approxi-

mation for the asymptotic bias, developed originally by Cox and Snell [92], such that

E(β̂ −β ) = − 1
2n

i30+ i11

i220

, (3.38)

wherei30 = E

[

(

∂L
∂β

)3
]

, i11 = E
[(

∂L
∂β

)(

∂ 2L
∂β 2

)]

, andi20 = E

[

(

∂L
∂β

)2
]

, are evaluated at̂β .

Following King and Zeng [4], ifpi = 1
1+e−β0+xi

, then the asymptotic bias is

E(β̂0−β0) = −1
n

E[(0.5− p̂i)((1− p̂i)
2yi + p̂2

i (1−yi))]

(E[(1− p̂i)2yi + p̂2
i (1−yi)])

2

(3.39)

≈ p−0.5
np(1− p)

, (3.40)

where p is the proportion of events in the sample. Therefore, as longas p is less than

0.5 and/orn is small, the bias in (3.40) will not be equal to zero. Furthermore, the vari-

ance would be large. To see this mathematically, consider the variance matrix of the LR
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estimator,β̂ , given by

V(β̂ ) =

[

n

∑
i=1

pi(1− pi)xT
i xi

]−1

. (3.41)

The variance given in (3.41) is smallest when the partpi(1− pi), which is affected by

rare events, is closer to 0.5. This occurs when the number of ones is large enough in the

sample. However, the estimate ofpi with observations related to rare events is usually

small, and hence additional ones would cause the variance todrop while additional zeros at

the expense of events would cause the variance to increase [4, 93]. The strategy is to select

on y by collecting observations for whichyi = 1 (the cases), and then selecting random

observations for whichyi = 0 (the controls). The objective then is to keep the variance

as small as possible by keeping a balance between the number of events (ones) and non-

events (zeros) in the sample under study. This is achieved throughendogenoussampling or

choice−basedsampling. Endogenous sampling occurs whenever sample selection is based

on the dependent variable (y), rather than on the independent (exogenous) variable (X).

However, since the objective is to derive inferences about the population from the sam-

ple, the estimates obtained by the common likelihood using pure endogenous sampling are

inconsistent. King and Zeng [4] recommend two methods of estimation for choice-based

sampling,prior correctionandweighting.

3.3.2 Correcting Estimates Under Endogenous Sampling

Prior Correction

Consider a population ofN examples withτ as the proportion of events and(1− τ) as

the proportion of non-events. Let the event of interest bey = 1 in the population with a

probability p̃. Let n be the sample size withy and(1− y) representing the proportions of

events and non-events in the sample, respectively. Then, let p̂ be the probability of the
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event in the sample, ands= 1 be a selected event. By the Bayesian formula [93, 94],

p̂ = P(y = 1|s= 1) =
P(s= 1|y = 1)P(y = 1)

P(s= 1|y = 1)P(y = 1)+P(s= 1|y = 0)P(y = 0)
(3.42)

=

(

y
τ

)

p̃
(

y
τ

)

p̃+
(

1−y
1−τ

)

(1− p̃)
. (3.43)

If the sample is random, theny = τ and 1−y = 1− τ, hence ˆp = p̃ and there is no incon-

sistency. When endogenous sampling is used to analyze imbalanced or rare events data,

τ < (1− τ), andy≈ (1−y), and hence ˆp 6= p̃, regardless of the sample size.

Now, assuming that ˆpandp̃arelogit probabilities, and letν1 =

(

y
τ

)

, andν0 =

(

1−y
1− τ

)

,

then equation (3.43) can be rewritten as

p̂ =
ν1p̃

ν1p̃+ν0(1− p̃)
. (3.44)

The odd of (3.44) is then

O =
p̂

1− p̂
=

ν1p̃
ν0(1− p̃)

, (3.45)

and the log odds is

ln(O) = ln

(

ν1

ν0

)

+ ln(p̃)− ln(1− p̃) , (3.46)

which implies that

xβ̂ = ln

[(

1− τ
τ

)(

y
1−y

)]

+xβ̃ . (3.47)

Prior correction is therefore easy to apply as it involves only correcting the intercept [4, 94],

β0, such that

β̃0 = β̂0− ln

[(

1− τ
τ

)(

y
1−y

)]

, (3.48)

thereby making the corrected logit probability be

p̃i =
1

1+e
ln

[

( 1−τ
τ )

(

y
1−y

)]

−xiβ
, for i = 1. . .n. (3.49)
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Prior correction requires knowledge of the fraction of events in the population,τ. The

advantage of prior correction is its simplicity. However, the main disadvantage of this

correction is that if the model is misspecified, then estimates on bothβ̂0 and β̂ are less

robust than weighting [4, 88].

Weighting

Under pure endogenous sampling, the conditioning is onX rather thany [89, 95], and the

joint distribution ofy andX in the sample is

fs(y,X|β ) = Ps(X|y,β )Ps(y), (3.50)

whereβ is the unknown parameter to be estimated. Yet, sinceX is a matrix of exogenous

variables, then the conditional probability ofX in the sample is equal to that in the popu-

lation, orPs(X|y,β ) = P(X|y,β ). However, the conditional probability in the population

is

P(X|y,β ) =
f (y,X|β )

P(y)
, (3.51)

but

f (y,X|β ) = P(y|X,β )P(X), (3.52)

and hence, substituting and rearranging yields

fs(y,X|β ) =
Ps(y)

P(y)
P(y|X,β )P(X) (3.53)

=
H
Q

P(y|X,β )P(X), (3.54)

where
H
Q

=
Ps(y)

P(y)
. The likelihood is then

LEndogenous=
n

∏
i=1

Hi

Qi
P(yi|xi,β )P(xi), (3.55)
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where
Hi

Qi
=

(

y
τ

)

yi +

(

1−y
1− τ

)

(1− yi). Therefore, when dealing with REs and imbal-

anced data, it is the likelihood in (3.55) that needs to be maximized [82, 88, 89, 96, 97].

Several consistent estimators of this type of likelihood have been proposed in the litera-

ture. Amemiya [82] and Ben Akiva and Lerman [98] provide an excellent survey of these

methods.

Manski and Lerman [96] proposed theweighted exogenous sampling maximum likeli-

hood (WESML), and proved that WESML yields a consistent and asymptotically normal

estimator so long as knowledge of the population probability is available. More recently,

Ramalho and Ramalho [99] extended the work of Manski and Lerman[96] to cases where

such knowledge may not be available. Knowledge of population probability or proportions,

however, can be acquired from previous surveys or existing databases. The log-likelihood

for LR can then be rewritten as

lnL(β |y,X) =
n

∑
i=1

Qi

Hi
lnP(yi |xi,β ) (3.56)

=
n

∑
i=1

Qi

Hi
ln

(

eyixiβ

1+exiβ

)

(3.57)

=
n

∑
i=1

wi ln

(

eyixiβ

1+exiβ

)

, (3.58)

wherewi =
Qi

Hi
. Therefore, in order to obtain consistent estimators, the likelihood is multi-

plied by the inverse of the fractions. The intuition behind weighting is that if the proportion

of events in the sample is more than that in the population, then the ratio

(

Q
H

)

< 1 and

hence the events are given less weight, while the non-eventswould be given more weight

if their proportion in the sample is less than that in the population. This estimator, how-

ever, is not fully efficient, because the information matrixequality does not hold. This is
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demonstrated as

−E

[

Q
H

∇2
β lnP(y|X,β )

]

6= E

[

(

Q
H

∇β lnP(y|X,β )

)(

Q
H

∇β lnP(y|X,β )

)T
]

, (3.59)

and for the LR model it is

−
[

1
n

n

∑
i=1

(

Qi

Hi

)

pi(1− pi)xix j

]

6=
[

1
n

n

∑
i=1

(

Qi

Hi

)2

pi(1− pi)xix j

]

. (3.60)

Let A =
1
n

n

∑
i=1

(

Qi

Hi

)

pi(1− pi)xix j , andB =
1
n

n

∑
i=1

(

Qi

Hi

)2

pi(1− pi)xix j , then the asymp-

totic variance matrix of the estimatorβ is given by thesandwich estimate, such that

V(β ) = A−1BA−1 [82, 88, 96].

Now that consistent estimators are obtained, finite-sample/rare-event bias corrections

could be applied. King and Zeng [4] extended the small-sample bias corrections, as de-

scribed by McCullagh and Nelder [100], to include the weighted likelihood (3.58), and

demonstrated that even with choice-based sampling, these corrections can make a differ-

ence when the population probability of the event of interest is low. According to McCul-

lagh and Nelder [100], and later Cordeiro and McCullagh [101],the bias vector is given

by

bias(β̂ ) = (XTVX)−1XTVξ , (3.61)

whereξi = Qii (p̂i − 1
2), andQii are the diagonal elements ofQ = X(XTVX)−1XT, which

is the approximate covariance matrix of the logistic link function η . The second-order

bias-corrected estimator is then

β̃ = β̂ −bias(β̂ ). (3.62)

As for the variance matrixV(β̃ ) of β̃ , it is estimated using

V(β̃ ) =

(

n
n+d

)2

V(β̂ ). (3.63)
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Since

(

n
n+d

)2

< 1, thenV(β̃ ) < V(β̂ ), and hence both the variance and the bias are now

reduced.

The main advantage then of the bias correction method proposed by McCullagh and

Nelder [100] is that it reduces both the bias and the variance[4]. The disadvantage of this

bias correction method is that it is corrective and not preventive, since it is applied after the

estimation is complete, and hence it does not protect against infinite parameter values that

arise from perfect separation between the classes [102, 103]. Hence, this bias correction

method can only be applied if the estimator,β̂ , has finite values. Firth [104] proposed a

preventive second-order bias correction method by penalizing the log-likelihood such that

lnL(β |y,X) =
n

∑
i=1

ln

(

eyixiβ

1+exiβ

)

+
1
2

ln |I(β )|, (3.64)

which leads to a modified score equation given by

∂
∂β j

lnL(β ) =
n

∑
i=1

(xi j (yi − pi +hi(0.5− pi))) = 0, (3.65)

wherehi is thei-th diagonal element of the hat matrix

H = V
1
2X(XTVX)−1XTV

1
2 . (3.66)

A recent comparative simulation study by Maiti and Pradhan [105], however, showed

that the bias correction of McCullagh and Nelder [100], provides the smallestmean squared

error (MSE) when compared to that of Firth [104] and others using LR.Cordeiro and

Barroso [106] more recently derived a third-order bias corrected estimator and showed that

in some cases it could deliver improvements in terms of bias and MSE over the usual ML

estimator and that of Cordeiro and McCullagh [101].

The challenge remains on finding the best class distributionin the training dataset. First,

when both the events and non-events are easy to collect and both are available, then a sam-
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ple with equal number of ones and zeros would be generally optimum [107, 108]. Second,

when the number of events in the population is very small, thedecision is then how many

more non-events to collect in addition to the events. If collecting more non-events is inex-

pensive, then the general judgment is to collect as many non-events as possible. However,

as the number of non-events exceed the number of events, the marginal contribution to the

explanatory variables’ information content starts to drop, and hence the number of zeros

should be no more than two to five times the number of ones [4].

Applying the above corrections, offered by King and Zeng [4], along with the rec-

ommended sampling strategies, such as collecting all of theavailable events and only a

matching proportion of non-events, could (1) significantlydecrease the sample size under

study, (2) cut data collection costs, (3) increase the rare event probability, and, (4) enable

researchers to focus more on analyzing the variables.

Given all of the improvements made on the LR method, its underlying assumption of

linearity, as evident in its logit function in (3.13), is often violated [8]. With the advance-

ment of kernel methods, the search for an effective non-parametric LR model has become

possible.
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Chapter 4

Kernel Logistic Regression Using Truncated Newton Method

Summary

The combination of regularized Kernel Logistic Regression (KLR), truncated-Newton method,

and Iteratively Re-weighted Least-Squares has led to a powerful classification method us-

ing small-to-medium size datasets. Compared to Support Vector Machines (SVM) and

TR-IRLS on twelve benchmark publicly available datasets, my proposed algorithm is as

accurate as, and much faster than, SVM, as well as more accurate than TR-IRLS. The

proposed algorithm also has the advantage of providing direct prediction probabilities.

4.1 Introduction

Logistic Regression (LR) is an essential data mining technique for classifying binary datasets.

Recently, there has been a revival of LR importance through the implementation of methods

such as the truncated Newton. Truncated Newton methods havebeen effectively applied

to solve large scale optimization problems. Komarek and Moore [2] were the first to show

that the truncated-regularized iteratively re-weighted least squares (TR-IRLS) can be effec-

tively implemented on LR to classify large datasets, and that it can outperform the support

vector machine (SVM) algorithm. Later on, trust region Newton method [3], which is a

type of truncated Newton, and truncated Newton interior-point methods [109] were also

applied on LR to solve large scale problems. SVM [7] is considered a state-of-the-art algo-

rithm for classifying binary data through its implementation of kernels (see Appendix B).

Kernel Logistic Regression (KLR) [5, 6], which is a kernel version of LR has also proven
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to be a powerful classifier [110]. Just like LR, KLR can naturally provide probabilities and

extend to multi-class classification problems [8, 9].

Each one of aforementioned methods has a limitation. LR linearity may be an obsta-

cle to handling highly nonlinearly separable small-to-medium size datasets [2]. SVM does

not naturally extend to multi-class classification and doesnot provide probability estimates

[110]. The SVM method also requires solving a constrained quadratic optimization prob-

lem with a time complexity ofO(n3) [111] wheren is the number of training instances.

The KLR method is not sparse and requires all of the training instances in its model. Like

SVM, KLR has a time complexity ofO(n3). Its computation can be slow due to the density

of its matrices [9]. Roth [112] was the first to apply the Conjugate Gradient (CG) on KLR

and presented its efficiency on multi-class datasets. Zhu and Hastie [110] suggested the

import vector machine (IVM) algorithm in order to take advantage of the SVM sparsity,

thus reducing the time complexity toO(n2q2) for binary classification, andO(mn2q2) for

the multi-class classification, whereq is the number of import points andm is the number

of classes. Keerthi et al. [113] incorporated the popular Sequential Minimal Optimization

(SMO) algorithm in KLR and showed the results for binary classification. Karsmakers et

al. [9] offered a fixed-size approach based on the number of support vectors to solve a

multi-class KLR problems with the method of alternating descent. However, accuracy was

compromised for faster computations.

The motivation for this study stems from the success and effectiveness of truncated

Newton methods for solving large scale LR classification problems. In this chapter the

speed of the TR-IRLS algorithm is combined with with the accuracy generated by the use

of kernels for solving non-linear problems. The kernel version of the TR-IRLS algorithm

(TR-KLR) is just as easy to implement and requires solving onlyan unconstrained regu-

larized optimization problem. TR-KLR can also be extended tohandle multi-class clas-

sification problems. To make the evaluation more thorough, the performance of TR-KLR

is tested on twelve benchmark datasets, six of which are binary-class datasets and six are
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multi-class datasets. In addition, for the multi-class datasets, the performance of TR-KLR

is tested using One-Vs.-All (OVA) [7, 114], One-Vs.-One (OVO) [115], and Decision-

Directed-Acyclic Graph (DDAG) [116] coding methods.

4.2 Kernel Logistic Regression

In the previous section, it was shown that the first-order conditions for LR are given by

∇β lnL(β ) = XT(y−p)−λβ = 0. (4.1)

By solving forβ ,

β = XT(y−p)λ−1 (4.2)

= XTα =
n

∑
i=1

αixi, (4.3)

where the vectorα is known as thedual variable, andα = (y−p)λ−1 with dimensions

n×1. Therefore, the vectorβ can be expressed as a linear combination of the data points.

Now, the logit vectorη can be rewritten as

η = XXTα (4.4)

= Kα , (4.5)

whereK = XXT. The matrixK is referred to as the Gram matrix, which is symmetric

positive semidefinite, withn×n dimensions.

Consider again the logit link function shown in the previous chapter,

ηi = xiβ = β0 +xi1β1 . . .xidβd, (4.6)

where the vectorxi, given byxi = [1,xi1, . . .xid] with i = 1, . . .n, is ad dimensional row
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φ

Input Space Feature Space

Figure 4.1: Mapping of non-linearly separable data from theinput space to the feature
space.

vector representingd features. The link function can be considered a simple linear model

for regression, involving a linear combination of the inputvariables. Stated differently,

this linear function represents the simplest form of an identity mapping polynomial basis

functionφ of the feature space such thatφ(xi) = φ [(1,xi1, . . .xid)] = xi . Thus, the logit link

function could be rewritten as

ηi = φ(xi)β . (4.7)

In general, the functionφ(.) maps the data from a lower dimensional space into a higher

one (Figure 4.1), such that

φ : x ∈ R
d → φ(x) ∈ F ⊆ R

Λ. (4.8)

The goal for choosing the mappingφ is to convert nonlinear relations between the re-

sponse (endogenous) variable and the independent (exogenous) variables into linear rela-

tions. However, the transformationsφ(.) are often unknown but the dot product in the

feature space can be expressed in terms of the input vectors through the kernel function. In
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the case of KLR, the logit link function could be rewritten as

η i =
n

∑
j=1

α j〈φ(xi),φ(x j)〉 (4.9)

=
n

∑
j=1

α jκ(xi ,x j) (4.10)

= k iα , (4.11)

wherek i is thei-th row in the kernel matrixκ(xi ,x j) = K . The kernel is a transformation

function that must satisfy Mercer’s necessary and sufficient conditions, which state that a

kernel function must be expressed as an inner product and must be positive semidefinite

[117, 118].

Theorem 1 (Mercer’s Theorem) A kernel functionκ can be expressed as an inner product

κ(u,v) = 〈φ(u),φ(v)〉,

if and only if, for any function f(u) such that
∫

f (u)2dx is finite, then

∫

κ(u,v) f (u) f (v)dudv ≥ 0.

Among the most well known kernels that satisfy Mercer’s theorem are

• Linear Kernel:κ(xi ,x j) = 〈xi,x j〉.

• Polynomial Kernel:κ(xi ,x j) = (〈xi ,x j〉+1))p wherep is the degree of the polyno-

mial.

• Radial Basis Function (RBF) Kernel:κ(xi ,0x j) = e(−γ||xi−x j ||)2
whereγ is the kernel

parameter.

Now,

ηi = k iα = ln(
pi

1− pi
), (4.12)
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which implies that

pi =
eηi

1+eηi
=

ek iα

1+ek iα
=

1
1+e−k iα

, (4.13)

and hence, the regularized log-likelihood can be rewrittenwith respect toα as

lnL(α) =
n

∑
i=1

(yi ln pi +(1−yi) ln(1− pi))−
λ
2

αTKα , (4.14)

with a deviance

DEV(α) = −2lnL(α). (4.15)

4.3 Iteratively Re-weighted Least Squares

KLR models can also be fitted using IRLS [9]. The gradient and Hessian are obtained by

differentiating lnL(α) with respect toα . In matrix form, the gradient is

∇α lnL(α) = KT(y−p)−λKα . (4.16)

The Hessian with respect toα is

∇2
α lnL(α) = −KTVK −λK , (4.17)

whereV is a diagonal matrix with diagonal elementspi(1− pi) for i = 1...n. The Newton-

Raphson update with respect toα on the(c+1)− th iteration is

α̂(c+1) = α̂(c) +(KTVK +λK)−1(KT(y−p)−λKα(c)). (4.18)

Sinceα̂(c) = (KTVK +λK)−1(KTVK +λK)α̂(c), then equation (11) can be rewritten as

α̂(c+1) = (KTVK +λK)−1KTVz(c), (4.19)
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wherez(c) = K α̂(c) + V−1(y− p) is the adjusted dependent variable or the adjusted re-

sponse.

4.4 TR-KLR Algorithm

The KLR WLS subproblem,

(KTVK +λK)α̂(c+1) = KTVz(c), (4.20)

is a systems of linear equations with a kernel matrixK , vector of adjusted responsesz, and

a weight matrixV. Both the weights and the adjusted response vector are dependent on

α̂(c), which is the current estimate of the parameter vector. Thus, an initial estimatêα(0)

can be specified for̂α and solved iteratively, giving a sequence of estimates thatconverges

to the MLE ofα̂. The linear CG method can also be applied here, minimizing thequadratic

function,
1
2

α̂(c+1)(KTVK +λK)α̂(c+1)− α̂(c+1)(KTVz(c)). (4.21)

When applied to KLR, the CG method has a time complexity ofO(n3) in the worst case,

as it converges in at mostn steps. To avoid the long computations that the CG may suffer

from, a limit to the number of CG iterations can be placed, thuscreating an approximate,

or truncated Newton direction.

Similar to the TR-IRLS algorithm, Algorithm 3 represents the main (outer) loop of TR-

KLR and it summarizes the IRLS for KLR and is terminated when the relative difference of

deviance between two consecutive iterations is no greater than a specified thresholdε1. As

with TR-IRLS, the main problem to solve is the WLS in (4.20), which is a linear system of

n equations andn variables. This is done through Algorithm 4, which represents the inner

loop that approximates the Newton direction through the CG method. Algorithm 4 is the

linear CG algorithm and is terminated when the CG residual is less than a thresholdε2.
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Algorithm 3 : KLR MLE using IRLS

Data: K ,y, α̂(0)

Result: α̂
begin1

c = 02

while |DEV(c)−DEV(c+1)

DEV(c+1) | > ε1 and c≤ Max IRLS Iterationsdo3

for i ← 1 to n do4

p̂i = 1
1+e−xi α̂

; /* Compute probabilities */5

vi = p̂i(1− p̂i) ; /* Compute weights */6

zi = k iα̂(c) + (yi−p̂i)
p̂i(1−p̂i)

; /* Compute adjusted response */7

V = diag(v1, ...,vn)8

(KTVK +λK)α̂(c+1) = KTVz(c) ; /* Compute α̂ via WLS */9

c = c+110

end11

Algorithm 4 : Linear CG.A = KTVK +λK , b = KTVz

Data: A,b, α̂(0)

Result: α̂ such thatAα̂ = b
begin1

r (0) = b−Aα̂(0) ; /* Initialize the residual */2

c = 03

while ||r (c+1)||2 > ε2 and c≤ Max CG Iterationsdo4

if c = 0 then5

ζ (c) = 06

else7

ζ (c) = rT(c+1)r (c+1)

rT(c+1)r (c) ; /* Update A-Conjugacy enforcer */8

d(c+1) = r (c+1) +ζ (c)d(c) ; /* Update the search direction */9

s(c) = rT(c)r (c)

dT(c)Ad(c) ; /* Compute the optimal step length */10

α̂(c+1) = α̂(c) +ζ (c)d(c+1) ; /* Obtain approximate solution */11

r (c+1) = r (c)−s(c)Ad(c+1) ; /* Update the residual */12

c = c+113

end14
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With exception to the value ofε1, the default parameter values suggested by Komarek

and Moore [87] are used for both algorithms and are shown to provide adequate accuracy.

For Algorithm 3, the maximum number of iterations is set to 30and for the relative dif-

ference of deviance threshold,ε1, the value 2.5 is sufficient to reach the desired accuracy

and at the same time maintain good convergence speed. By choosing the value 2.5 as a

threshold, computational speed is improved while not affecting accuracy. Should the algo-

rithm reach a certain desired accuracy with a low threshold,then by slightly modifying the

parameters values (e.g.σ ,λ ) with a larger threshold, the same accuracy can be reached,

hence the robustness of the algorithm. However, in some cases it may be advisable to make

this threshold smaller to obtain better accuracy. As for Algorithm 4, the maximum number

of iterations for the CG is set to 200 iterations. In addition,the CG convergence threshold,

ε2, is set to 0.005. Furthermore, no more than three non-improving iterations are allowed

on the CG algorithm.

4.5 Computational Results & Discussion

The performance of the TR-KLR algorithm was examined using twelve benchmark datasets

(see Table 4.1) found on the UC Irvine website [119], six of which are binary classification

datasets, and the other six are multi-class classification datasets. The algorithm perfor-

mance was then compared to that of both SVM and TR-IRLS. The binary datasets used are

Wisconsin Breast Cancer Diagnostic (WBCD), Ionosphere, Bupa Liver Disorders, Haber-

man Survival, Pima Indians Diabetes, and Sonar datasets. The multi-class datasets consist

of Wine, Glass, Iris, Dermatology, Thyroid, and Ecoli datasets. In addition, the multi-class

classification performance was assessed using three methods; one vs. all, one vs. one, and

DDAG. The Gaussian Radial Basis Function (RBF) kernel

K(xi ,x j) = e(− 1
2σ2 ||xi−x j ||)2

= e(−γ||xi−x j ||)2
(4.22)
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was used for both the TR-KLR and SVM methods, whereσ is the kernel parameter. The

values of these parameters that give the best generalization are usually chosen from a range

of different values (generally user-defined), and tuned using ten-fold cross-validation (CV).

The datasets were preprocessed using normalization of a mean of zero and standard devi-

ation of one. All of the computations for TR-IRLS and TR-KLR werecarried out using

MATLAB version 2007a on a 512 MiB RAM computer for the binary datasets and on a 1.5

GiB RAM computer for the multi-class datasets. As for the SVM method, MATLAB SVM

Toolbox [120] was used for the binary datasets and MATLAB LIBSVM toolbox [121] for

the multi-class datasets.

Table 4.1: Datasets.

Dataset Instances Features Classes

WBCD 569 30 2
Ionosphere 351 34 2
Liver 345 6 2
Survival 306 3 2
Sonar 208 60 2
Diabetes 768 8 2
Wine 178 13 3
Glass 214 10 6
Iris 150 4 3
Dermatology 358 34 6
Thyroid 215 5 3
Ecoli 336 7 8

4.5.1 Binary Classification

For the binary datasets, Tables 4.2 and 4.3 summarize the computation results for these

three methods with their optimal parameters and accuracy, respectively. Table 4.4 shows a

comparison of the total execution time with ten-fold CV usingthe three methods. Table 4.3

shows that the TR-KLR method scored as well as or slightly better than SVM on most of

the datasets. In addition, both TR-KLR and SVM performed better than TR-IRLS on four

out of the six datasets, namely, Ionosphere, Liver, and Sonar. As with all kernel methods,
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parameter tuning is unavoidable as it involves two parameters, the regularization parameter

(λ for TR-KLR andC for SVM), and the kernel parameter (σ or γ for both TR-KLR and

SVM). For TR-IRLS, the only parameter that requires tuning isλ . While Komarek and

Moore [2] observed that the value ofλ did not affect the accuracy for large datasets, and

hence they were able to use default values, the same cannot besaid for smaller datasets.

TR-IRLS challenged both TR-KLR and SVM on three datasets, WBCD, Survival, and

Diabetes. This is probably because these datasets are more linearly separable than the

others, on which TR-IRLS performed worse.

Table 4.2: Optimal parameter values found for the binary-class datasets.

TR-KLR SVM TR-IRLS
σ λ σ C λ

WBCD 5.4 0.1 5.0 10.0 30.0
Ionosphere 3.5 0.009 1.9 100.0 30.0
Liver 7.0 0.0009 5.0 10.0 0.05
Survival 5.0 0.01 1.8 1.0 10.0
Sonar 3.2 0.05 7.1 10.0 50.0
Diabetes 5.0 0.07 7.5 1.0 1.0

Table 4.3: Comparison of ten-fold CV accuracy (%) with 95 % confidence level.

TR-KLR SVM TR-IRLS

WBCD 98.1± 1.1 98.2± 1.1 98.1± 1.1
Ionosphere 93.7± 2.5 90.6± 3.1 88.0± 3.4
Liver 70.1± 4.8 70.1± 4.8 65.3± 5.0
Survival 75.4± 4.8 75.1± 4.9 73.8± 4.9
Sonar 89.0± 4.3 87.9± 4.5 79.2± 5.5
Diabetes 78.0± 2.9 77.2± 3.0 78.0± 2.9

With regard to the execution time, Table 4.4 shows that whileTR-IRLS is the fastest,

TR-KLR is still significantly faster than SVM and yet identical to it with regard to accuracy

while at the same time more accurate than the regular TR-IRLS, as shown in Table 4.3.

As mentioned earlier, the maximum number of iterations for IRLS was set to 30 while

that of the CG method was set to 200. However, as Komarek and Moore [87] correctly
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Table 4.4: Comparison of ten-fold CV time (in seconds).

TR-KLR SVM TR-IRLS

WBCD 10.6 3305 5.8
Ionosphere 3.6 248 2.3
Liver 3.0 209 2.2
Survival 2.1 158 1.5
Sonar 1.3 58 1.5
Diabetes 17.0 7374 4.8

Table 4.5: Maximum number of iterations reached by IRLS and CG during the ten-fold CV
on the binary-class datasets.

IRLS CG

WBCD 2 31
Ionosphere 2 32
Liver 1 19
Survival 1 14
Sonar 2 46
Diabetes 1 25

stated, these numbers should never be reached. This observation applies also to the TR-

KLR algorithm, as shown in the empirical results in Table 4.5, where the maximum number

of iterations reached by both algorithms during the ten-fold cross validation is displayed

for the binary-class datasets. The maximum iterations reached on the binary-class datasets

by IRLS in Algorithm 3 was 2 while the maximum CG iterations in Algorithm 4 was 46.

Therefore, the number of iterations is relatively small compared to the size of the datasets.

4.5.2 Multi-class Classification

As mentioned earlier, for multi-class classification, the performance of TR-KLR was eval-

uated against both SVM and TR-IRLS using three methods: OVA, OVO, and DDAG.

While LR and KLR can naturally extend to multi-class classification [9], the aforemen-

tioned multi-class coding schemes were applied in this study to make the comparison with

SVM fair. The OVA approach [7, 114] constructsM classifiers forM classes. Classifierfm

is trained to discriminate between classm and all other classes. Then, the class of instance
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xi corresponds to the maximal value of the functionfm(xi) such thatCm = max fm(xi) for

m = 1, ..,M, whereCm is the class ofxi. The OVO approach [115], constructsM(M−1)
2

binary discriminant functions, one for every pair of classes and proceeds as the OVA ap-

proach. As for the DDAG approach [116], it also constructsM(M−1)
2 classifiers (nodes) in

the training phase. In the testing phase, it utilizes decision-directed-acyclic graph (DDAG),

whereby at each node a binary classifier is constructed and the next node visited depends

upon the results of this evaluation. If the value of the binary decision function is zero, the

node exits from the left, otherwise, if the value is one, thenthe node exits from the right.

The final answer is the class assigned by the leaf node visitedat the final step as illustrated

by Figure 4.2. The root node can be assigned randomly. The advantages of DDAG are fast

computational time especially for large-scale problems.

Figure 4.2: Illustration of DDAG for classification with four classes.

Table 4.6 lists the optimal parameters used to reach the desired accuracies, which are

shown in Table 4.7. Table 4.6 shows that the parameters used to reach the desired accuracies

are identical for all algorithms using both OVA and DDAG methods. In addition, it appears

that the kernel parameter values (σ or γ) and the regularization parameter (λ ) are more

stable using OVO and DDAG as they do not vary much from one dataset to another.

Table 4.7 shows the ten-fold CV accuracy with 95% confidence level reached by all al-

gorithms using the three multi-class classification methods. With regard to OVA, TR-KLR
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Table 4.6: Optimal parameter values for the multi-class datasets.C is the SVM regulariza-
tion parameter,σ is the parameter (width) of the RBF kernel, andλ is the regularization
parameter for both TR-IRLS and TR-KLR.

OVA TR-KLR SVM TR-IRLS
σ λ γ C λ

Wine 6.0 0.005 0.1 1.0 0.5
Glass 1.0 0.0005 0.1 100.0 0.09
Iris 3.0 0.001 0.02 10.0 0.01
Dermatology 5.0 0.1 0.01 1.0 0.3
Thyroid 1.6 0.004 7.1 0.09 0.005
Ecoli 6.0 0.01 7.5 0.01 0.5

OVO TR-KLR SVM TR-IRLS
σ λ γ C λ

Wine 4.0 0.01 0.01 1.0 0.5
Glass 1.0 0.01 0.1 1.0 0.5
Iris 5.0 0.01 0.03 10.0 0.004
Dermatology 5.0 0.02 0.01 1.0 0.3
Thyroid 1.2 0.004 0.1 10.0 0.005
Ecoli 5.0 0.05 0.3 1.0 0.5

DDAG TR-KLR SVM TR-IRLS
σ λ γ C λ

Wine 4.0 0.01 0.01 1.0 0.5
Glass 1.0 0.01 0.1 1.0 0.5
Iris 5.0 0.01 0.03 10.0 0.004
Dermatology 5.0 0.02 0.01 1.0 0.3
Thyroid 1.2 0.004 0.1 10.0 0.005
Ecoli 5.0 0.05 0.3 1.0 0.5
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Table 4.7: Comparison of ten-fold CV accuracy (%) with 95 % confidence level.

OVA TR-KLR SVM TR-IRLS

Wine 99.47± 1.06 99.44± 1.09 98.36± 1.86
Glass 74.98± 5.80 72.09± 6.01 65.35± 6.42
Iris 98.00± 2.24 97.33± 2.58 96.00± 3.14
Dermatology 97.45± 1.63 97.45± 1.72 97.19± 1.71
Thyroid 97.64± 2.03 96.73± 2.38 95.32± 2.82
Ecoli 88.90± 3.36 88.08± 3.47 88.11± 3.46

OVO TR-KLR SVM TR-IRLS

Wine 100.0± 0.00 99.44± 1.09 98.36± 1.86
Glass 75.53± 5.76 72.09± 6.01 65.05± 6.39
Iris 98.00± 2.24 98.00± 2.24 98.00± 2.24
Dermatology 98.00± 1.35 97.45± 1.63 97.73± 1.45
Thyroid 97.66± 2.02 97.64± 2.03 97.64± 2.03
Ecoli 88.46± 3.42 87.86± 3.49 88.02± 3.47

DDAG TR-KLR SVM TR-IRLS

Wine 100.0± 0.00 99.44± 1.09 98.36± 1.86
Glass 75.53± 5.76 72.09± 6.01 65.05± 6.39
Iris 98.00± 2.24 98.00± 2.24 98.00± 2.24
Dermatology 98.00± 1.35 97.45± 1.63 97.73± 1.45
Thyroid 97.66± 2.02 97.64± 2.03 97.64± 2.03
Ecoli 88.46± 3.42 87.86± 3.49 88.02± 3.47

performed better than both SVM and TR-IRLS on all datasets. As for the OVO and DDAG

methods, accuracies were identical on both methods. TR-KLR generally performed best

using OVO and DDAG except for the Ecoli data, on which OVA performed slightly better.

The performance of SVM appears consistent using all methods. On the other hand, TR-

IRLS accuracies varied depending on the multi-class classification method used. TR-IRLS

performed poorer using OVA than using OVO and DDAG, especially on Iris and Thyroid

datasets. On the Glass data set, TR-IRLS performs poorest witha difference of almost 10

percentage point in accuracy compared to TR-KLR, and 7 percentage point compared to

SVM.

Similar to the binary-class case, the maximum number of iterations reached by both

algorithms during the ten-fold cross validation is displayed in Table 4.8 for the multi class
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Table 4.8: Maximum number of iterations reached by IRLS and CG during the ten-fold CV
on the multi-class datasets.

OVA OVO DDAG
IRLS CG IRLS CG IRLS CG

Wine 2 30 2 37 2 37
Glass 2 44 2 39 2 39
Iris 1 23 2 11 2 11
Dermatology 1 59 2 44 2 44
Thyroid 2 30 2 35 2 35
Ecoli 2 29 2 21 2 21

datasets. As can be observed, the maximum iterations reached by IRLS in Algorithm 3 is

2 while the maximum CG iterations in Algorithm 4 was 59, indicating that the number of

iterations is also relatively small compared to the size of the datasets.

As can be seen, the TR-KLR algorithm is relatively easy to implement and is as effec-

tive as SVM on small-to-medium size datasets. The TR-KLR algorithm takes advantage

of the speed of the TR-IRLS and the power of the kernel methods, particularly when the

datasets are neither large nor linearly separable. Anotherbenefit to using TR-KLR is that

it uses unconstrained optimization methods whose algorithms are less complex than those

with constrained optimization methods, such as SVM.
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Chapter 5

Robust Weighted Kernel Logistic Regression in Imbalanced and Rare

Events Data

Summary

Accurate prediction is important in data mining and data classification. This chapter devel-

ops my proposed Rare-Event Weighted Kernel Logistic Regression (RE-WKLR) algorithm

in rare events data with binary dependent variables containing many times more non-events

(zeros) than events (ones). It also applies the necessary corrections to improve the predic-

tion accuracy.

5.1 KLR for Rare Events and Imbalanced Data

Like the LR model, the commonly used maximum likelihood formulation on KLR is not

appropriate for classifying imbalanced and rare events data, especially when endogenous

sampling is performed. The full likelihood function needs to be stated. The likelihood

function should then be

L(α |y,K) = f (y,K |α) =
H
Q

P(y|K ,α)P(K) (5.1)

=
n

∏
i=1

Hi

Qi
P(yi|k i,α)P(k i). (5.2)

Now, following the same intuitive concept of Manski and Lerman [96], choice-based

sampling can easily be dealt with so long as knowledge of the population probability is
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available. The log-likelihood for KLR can then be rewrittenas

lnL(α|y,K) =
n

∑
i=1

Qi

Hi
lnP(yi|k i,α) (5.3)

=
n

∑
i=1

Qi

Hi
ln

eyik iα

1+ek iα
(5.4)

=
n

∑
i=1

wi ln
eyik iα

1+ek iα
, (5.5)

wherewi =
Qi

Hi
. As with LR, in order to obtain a consistent estimator, the likelihood is

multiplied by the inverse of the fractions. This produces a Weighted Maximum Likeli-

hood (WML), and the KLR model becomes a Weighted KLR (WKLR) model. It can be

shown that the WML estimator for WKLR is consistent. From the regularity conditions

(see Appendix A), the WML estimator solves the first-order conditions

Q
H

∇α lnP(y|K ,α) = 0. (5.6)

Taking the expectation of the score function with regard to the sample density yields

E

[

Q
H

∇α lnP(y|K ,α)

]

=
∫

Q
H

∇α lnP(y|K ,α)
H
Q

P(y|K ,α)P(K)dK (5.7)

=
∫

∇α lnP(y|K ,α)P(y|K ,α)P(K)dK (5.8)

=
∫

E [∇α lnP(y|K ,α)]P(K)dK (5.9)

= 0. (5.10)

This estimator, however, like its LR counterpart, is not fully efficient, because the informa-

tion matrix equality does not hold. This is demonstrated as

−E

[

Q
H

∇2
α lnP(y|K ,α)

]

6= E

[

(

Q
H

∇α lnP(y|K ,α)

)(

Q
H

∇α lnP(y|K ,α)

)T
]

, (5.11)
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because

−E

[

n

∑
i=1

(

Qi

Hi

)

pi(1− pi)k ik j

]

6= E

[

n

∑
i=1

(

Qi

Hi

)2

pi(1− pi)k ik j

]

. (5.12)

Now, as mentioned in Chapter 4, KLR regularization is used in the form of the ridge penalty
λ
2

αTKα , whereλ > 0, is a regularization parameter. When regularization is introduced,

none of the coefficients is set to zero [122], and hence the problem of infinite parameter

values is avoided. In addition, the importance of the parameter λ lies in determining the

bias-variance trade-off of an estimator [123, 124]. Whenλ is very small, there is less bias

but more variance. On the other hand, larger values ofλ would lead to more bias but

less variance [125]. Therefore, the inclusion of regularization in the WKLR model is very

important to reduce any potential inefficiency. However, asregularization carries the risk

of a non-negligible bias, even asymptotically [125], the need for bias correction becomes

inevitable. In sum, the bias correction is needed to accountfor any bias resulting from

regularization, small samples, and rare events.

5.1.1 Rare Events and Finite Sample Correction

Like the ordinary LR model, the method for computing the KLR probability,

Pr(Yi = 1|α) = p̂i =
1

1+e−k i α̂
, (5.13)

is affected by the problem of̂α, which is a biased estimate ofα.

Bias Adjustment and Parameter Estimation

Following McCullagh and Nelder [100], the bias in large samples may be very small. How-

ever, for samples of smaller size, or for samples in which thenumber of parameters is large

compared to the number of instances, the bias may not be so small. For the KLR model,
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the approximate bias vector can be written as

b = E(α̂ −α), (5.14)

and by following the same methodology used by McCullagh and Nelder [100], it can be

shown that the approximate asymptotic covariance matrix ofη is given by

Q = K(KTVK )−1K , (5.15)

whereV = diag(pi(1− pi)) for i = 1...n. Replacing the kernel matrixK with the matrix

K̃ = (K +δ I), for a very smallδ > 0, in order to make it invertible, would enable (5.15) to

reduce into

Q = (V)−1. (5.16)

Let Qii be theith diagonal element ofQ, and

ξi = −1
2

(

p
′′
i

p
′
i

)

Qii , (5.17)

wherep
′
i =

∂ pi

∂ηi
andp

′′
i =

∂ 2pi

∂η2
i

are the derivatives of the KLR logit function, then the bias

vectorb can be written in matrix form as

bias(α̂) = (K̃TVK̃)−1K̃TVξ , (5.18)

which is obtained as the vector of regression coefficients with ξ as a response vector.

Applying now the formulation suggested by King and Zeng [4] on the weighted LR to

the WKLR model in (5.5), the weighted likelihood can be rewritten as

LW(α) =
n

∏
i=1

(pi)
w1yi(1− pi)

w0(1−yi), (5.19)
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wherew1 =
τ
y

, andw0 =
1− τ
1−y

. Now,

pi = E(yi) =

(

1
1+e−ηi

)w1

≡ pw1
i , (5.20)

and hence,

p
′
i = w1pw1

i (1− pi), (5.21)

and

p
′′
i = w1pw1

i (1− pi)(w1− (1+w1)pi). (5.22)

Finally, the bias vector for WKLR can now be rewritten as

B(α̂) = (K̃TDK̃)−1K̃TDξ , (5.23)

where theith element of the vectorξ is now

ξi = 0.5Qii ((1+w1pi −w1), (5.24)

with Qii as the diagonal elements ofQ, andD = diag(viwi) for i = 1...n. The bias-corrected

estimator becomes

α̃ = α̂ −B(α̂). (5.25)

5.2 Iteratively Re-weighted Least Squares

For WKLR, the gradient and Hessian are obtained by differentiating the regularized weighted

log-likelihood,

lnLW(α) =
n

∑
i=1

wi ln
eyik iα

1+ek iα
− λ

2
αTKα , (5.26)
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with respect toα . In matrix form, the gradient is

∇α lnLW(α) = K̃TW(y−p)−λ K̃α , (5.27)

whereW = diag(wi) andp is the probability vector whose elements are given in (5.13).

The Hessian with respect toα is then

∇2
α lnLW(α) = −K̃TDK̃ −λ K̃ . (5.28)

The Newton-Raphson update with respect toα on the(c+1)− th iteration is

α̂(c+1) = α̂(c) +(K̃TDK̃ +λ K̃)−1(K̃TW(y−p)−λ K̃α(c)). (5.29)

Sinceα̂(c) = (K̃TDK̃ +λK)−1(K̃TDK̃ +λK)α̂(c), then (5.29) can be rewritten as

α̂(c+1) = (K̃TDK̃ +λ K̃)−1K̃TDz(c), (5.30)

wherez(c) = K α̂(c) + D−1(y− p) is the adjusted dependent variable or the adjusted re-

sponse.

5.3 RE-WKLR Algorithm

For WKLR, the WLS subproblem is

(K̃TDK̃ +λ K̃)α̂(c+1) = K̃TDz(c), (5.31)

which is a system of linear equations with a kernel matrixK̃ , vector of adjusted responses

z, and a weight matrixD. Both the weights and the adjusted response vector are dependent

on α̂(c), which is the current estimate of the parameter vector. Therefore, specifying an

initial estimateα̂(0) for α̂ can be solved iteratively, giving a sequence of estimates that
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converges to the MLE of̂α . That can be solved using the conjugate gradient (CG) method,

which is equivalent to minimizing the quadratic problem

1
2

α̂(c+1)(K̃TDK̃ +λ K̃)α̂(c+1)− α̂(c+1)(K̃TDz(c)). (5.32)

Similarly, the bias in (5.23) can be computed with CG by solving the quadratic problem

1
2

B(α̂)(c+1)(K̃TDK̃ +λ K̃)B(α̂)(c+1)−B(α̂)(c+1)(K̃TDξ (c)). (5.33)

Now, like the TR-KLR algorithm, in order to avoid the long computations that the CG

may suffer from, a limit can be placed on the number of CG iterations, thus creating an

approximate or truncated Newton direction.

Algorithm 5 : WKLR MLE Using IRLS

Data: K̃ ,y, α̂(0),w1,w0

Result: α̂,B(α̂), α̃, p̃i

begin1

c = 02

while |DEV(c)−DEV(c+1)

DEV(c+1) | > ε1 and c≤ Max IRLS Iterationsdo3

for i ← 1 to n do4

p̂i = 1
1+e−ki α̂

; /* Compute probabilities */5

vi = p̂i(1− p̂i) ; /* Compute variance */6

wi = w1yi +w0(1−yi) ; /* Compute weights */7

zi = k iα̂(c) + (yi−p̂i)
p̂i(1−p̂i)

; /* Compute adjusted response */8

Qii = 1
viwi

; /* Compute weighted logit elements */9

ξi = 1
2Qii ((1+w1)p̂i −w1); /* Compute the bias response */10

D = diag(viwi) ; /* Obtain the n×n diagonal weight matrix */11

(K̃TDK̃ +λ K̃)α̂(c+1) = K̃TDz(c) ; /* Compute α̂ via Algorithm 2 */12

(K̃TDK̃ +λ K̃)B(α̂)(c+1) = K̃TDξ (c); /* Compute B(α̂) via Algorithm 313

*/
c = c+114

α̃ = α̂ −B(α̂) ; /* Compute the unbiased α */15

p̃i = 1
1+e−k̃i α̃

; /* Compute the optimal probabilities */16

end17

Algorithm 5 represents the main (outer) loop of RE-WKLR, and it summarizes the
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Algorithm 6 : Linear CG for computinĝα. A = K̃TDK̃ +λ K̃ , b = K̃TDz

Data: A,b, α̂(0)

Result: α̂ such thatAα̂ = b
begin1

r (0) = b−Aα̂(0) ; /* Initialize the residual */2

c = 03

while ||r (c+1)||2 > ε2 and c≤ Max CG Iterationsdo4

if c = 0 then5

ζ (c) = 06

else7

ζ (c) = rT(c+1)r (c+1)

rT(c+1)r (c) ; /* Update A-Conjugacy enforcer */8

d(c+1) = r (c+1) +ζ (c)d(c) ; /* Update the search direction */9

s(c) = rT(c)r (c)

dT(c)Adc ; /* Compute the optimal step length */10

α̂(c+1) = α̂(c) +ζ (c)d(c+1) ; /* Obtain an approximate solution */11

r (c+1) = r (c)−s(c)Ad(c+1) ; /* Update the residual */12

c = c+113

end14

Algorithm 7 : Linear CG for computing the bias.A = K̃TDK̃ +λ K̃ , b = K̃TDξ
Data: A,b,B(α̂)(0)

Result: B(α̂) such thatAB(α̂) = b
begin1

r (0) = b−AB(α̂)(0) ; /* Initialize the residual */2

c = 03

while ||r (c+1)||2 > ε3 and c≤ Max CG Iterationsdo4

if c = 0 then5

ζ (c) = 06

else7

ζ (c) = rT(c+1)r (c+1)

rT(c+1)r (c) ; /* Update A-Conjugacy enforcer */8

d(c+1) = r (c+1) +ζ (c)d(c) ; /* Update the search direction */9

s(c) = rT(c)r (c)

dT(c)Ad(c) ; /* Compute the optimal step length */10

B(α̂)(c+1) = B(α̂)(c) +ζ (c)d(c+1) ; /* Obtain approximate solution11

*/
r (c+1) = r (c)−s(c)Ad(c+1) ; /* Update the residual */12

c = c+113

end14
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IRLS for WKLR. The main problem to solve is the WLS in (5.31), whichis a linear system

of n equations andn variables. This is accomplished by Algorithm 6, which represents the

inner loop that approximates the Newton direction through the linear CG method. Algo-

rithm 7 is another linear CG for calculating the bias.

Similar to the TR-KLR formulation [10], for Algorithm 5, the maximum number of

iterations is set to 30 and for the relative difference of deviance threshold,ε1, the value 2.5

is found to be sufficient to reach the desired accuracy and at the same time maintain good

convergence speed. As for Algorithms 6 and 7, the maximum number of iterations for the

CG is set to 200 iterations. In addition, the CG convergence thresholds,ε2 andε3, are set to

0.005 and no more than three non-improving iterations are allowed on the CG algorithm.
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Chapter 6

Computational Results, Applications & Discussion

The performance of the RE-WKLR algorithm was examined using (1) seven benchmark

binary class datasets (see Table 6.1) found on the UC Irvine Machine Learning Repository

website [119] and (2) a real-life tornado dataset. Performance of the algorithm was then

compared to that of both SVM and TR-KLR. In this analysis, the Gaussian Radial Basis

Function (RBF) kernel,

κ(xi ,x j) = e(− 1
2σ2 ||xi−x j ||)2

= e(−γ||xi−x j ||)2
, (6.1)

was used for all methods, whereσ is the parameter of the kernel. The values of these

parameters which give the best generalization were chosen from a range of different values

(generally user-defined) and were tuned using the bootstrapmethod [126]. The bootstrap

method was applied only to the testing sets. The idea behind the bootstrap method is to

create hundreds or thousands of samples, calledbootstrap samples, by re-sampling with

replacement from the original sample. Each re-sample has the same size as the original

sample [126].

For this study, the total number of bootstrap rounds (B) were set to 2500 rounds on all

of the datasets except for the Spam and Tornado datasets. Thebootstrap accuracy (A) had

at most a half width of its 95% confidence interval equal to 0.25. The bootstrap sample size

was chosen equal to the testing set size on all of the datasets. Due to the large size of both

Spam and Tornado data, bootstrap rounds of 200 were found adequate to generate enough

variations.

The overall bootstrap accuracy (A∗) was calculated according to the following. A se-

61



quence of sample accuracies,

a(1)
1 , . . . ,a(1)

r , . . . ,a(1)
B ,a(0)

1 , . . . ,a(0)
r , . . . ,a(0)

B ,

was collected during the bootstrap procedure, where for a given round (r), a(1)
r = TP

TP+FN for

class one, anda(0)
r = TN

TN+FP for class zero. After the bootstrap procedure was completed,

the average accuracy of each class was computed. Then, for a given bootstrap procedure,

the accuracy is

A = min{a(1)
avg,a

(0)
avg}. (6.2)

The overall accuracy reached, with different parameters, is considered to beA∗ = max{A}.

The interval between the 2.5th and 97.5th percentiles of the bootstrap distribution of a

statistic is the non-parametric 95% bootstrap confidence interval. In addition, statistical

significance was established using a multiple comparison paired t-test [127] single tailed

with an adjustedα = 0.017.

All of the datasets were preprocessed using normalization of a mean of zero and stan-

dard deviation of one. All of the computations for RE-WKLR and TR-KLR were carried

out using MATLAB version 2007a on a 3 GiB RAM computer. As for the SVM method,

MATLAB LIBSVM toolbox [121] was used.

6.1 Benchmark Datasets

The benchmark datasets were Ionosphere, Sonar, BUPA Liver Disorders, Haberman Sur-

vival, Pima Indians Diabetes, and SPECT Heart Diagnosis. TheIonosphere dataset de-

scribes radar signals targeting two types of electrons in the ionosphere: those that show

some structure (good) and those that do not (bad) [128]. The Sonar dataset is composed

of sonar signals detecting either mines or rocks [129]. The BUPA Liver Disorder dataset

consists of blood tests that are thought to be sensitive to liver disorders that arising from
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excessive alcohol consumption in single males (PC/BEAGLE User’s Guide). The Haber-

man Survival dataset is information on the survival of patients who had undergone surgery

for breast cancer [130]. The Pima Indian Diabetes dataset describes the onset of diabetes

among Pima Indian patients [131]. SPECT Heart is data on cardiac Single Proton Emis-

sion Computed Tomography (SPECT) images. Each patient is classified into two cate-

gories: normal and abnormal [132]. Finally, the Spam dataset consists of email messages

considered “spam,” based on certain features [133].

The datasets were divided into training and testing sets. Two sampling schemes on the

training datasets were applied. In the first, the training datasets were equally divided into

40 instances in each class, chosen randomly, but the same instances were applied to all of

the methods. In the second scheme, the number of non-events remained 40 zeros, but the

number of events was reduced to 15 instances. Due to the largesize of the Spam dataset, it

was treated separately, using balanced training samples of40, 100, 200, and 300 instances,

and imbalanced training samples with 40 non-events and 15 events, 100 non-events and 50

events, 200 non-events and 100 events, and 300 non-events with 150 events. To include

rarity, the number of events (ones) in all the testing datasets, except for the SPECT Heart

dataset, was randomly chosen and made 5% of the number of non-events (zeros). For the

SPECT Heart dataset, the number of rare events remained unchanged, since the original

data includes a rarity of 8% in the testing set.

Table 6.1: Datasets.

Instances Features Class Rarity
0 1 in Testing Set

Ionosphere 351 34 225 126 5%
Sonar 208 60 111 97 5%
Liver 345 6 200 145 5%
Survival 306 3 225 81 5%
Diabetes 768 8 500 268 5%
SPECT 267 44 212 55 8%
Spam 4,601 57 2,788 1,813 5%
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6.1.1 Balanced Training Data

For the balanced training dataset, Tables 6.2 and 6.3 summarize the computation results

for the three methods, including their optimal parameters and accuracy, respectively. Table

6.3 and Figure 6.1 show that the RE-WKLR method scored much better than SVM and

TR-KLR on all datasets except for the Ionosphere and BUPA liver data. When RE-WKLR

performed better, the difference in accuracy was large, as shown with Sonar, Survival and

Diabetes datasets. In addition, although TR-KLR achieved better accuracy on the Liver

dataset, the difference was 2%.

A comparison of statistical significance is provided in Figure 6.2. Figure 6.2 shows the

accuracy and 95% confidence level obtained by each method on the benchmark datasets. It

can be observed that the accuracy of RE-WKLR is noticeably better than that of SVM on

Sonar, Liver, and Survival datasets and only worse on the Ionosphere dataset. With respect

to TR-KLR, the accuracy of RE-WKLR is better than that of TR-KLR on Sonar, Survival

and SPECT datasets.

Table 6.2: Benchmark datasets optimal parameter values withbalanced training sets.

RE-WKLR SVM TR-KLR
σ λ σ C σ λ

Ionosphere 2.5 0.07 3.0 10.0 6.0 0.04
Sonar 1.0 0.01 1.9 1.0 6.5 10
Liver 5.0 0.005 7.0 10.0 6.0 0.005
Survival 2.2 0.07 2.0 10.0 6.0 0.04
Diabetes 5.3 0.05 2.0 10.0 4.0 0.05
SPECT 7.4 0.7 1.3 10.0 8.0 0.001
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Table 6.3: Benchmark datasets bootstrap accuracy (%) comparison using balanced training
sets. Bold accuracy values indicate the highest accuracy reached by the algorithms being
compared.

RE-WKLR SVM TR-KLR
Class 0 1 0 1 0 1

Ionosphere 96 89◦ 94 100 98 78
Sonar 83• 100 99 67 70 100
Liver 89 63⋄ 56 75 65 75
Survival 86• 89 76 78 78 78
Diabetes 71 70• 68 61 73 61
SPECT 72• 73 69 73 51 93

• statistical significance using paired t-test withα = 0.017 over both SVM and TR-KLR.
⋄ statistical significance using paired t-test withα = 0.017 over SVM.
◦ statistical significance using paired t-test withα = 0.017 over TR-KLR.

Figure 6.1: Benchmark datasets accuracy comparison with balanced training sets.
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Figure 6.2: Benchmark datasets accuracy comparison using balanced training sets with
95% confidence.
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6.1.2 Imbalanced Training Data

In order to appreciate the robustness and stability of RE-WKLR,the number of events in

the training set was reduced to only 15 instances, again chosen randomly. It should be

noted here that this is not an under-sampling scheme but rather an assumption that only 15

rare-event instances were available. Tables 6.4 and 6.5 summarize the results for these three

methods with their optimal parameters and accuracy, respectively. Table 6.5 and Figure 6.3

show that RE-WKLR performed the best on all of the datasets except for Sonar and SPECT,

on which it achieved equal accuracy with TR-KLR.

A comparison of statistical significance with imbalanced training data is provided in

Figure 6.4. As can be observed from Figure 6.4, the accuracy of RE-WKLR is noticeably

better than that of SVM on Ionosphere, Sonar, Survival, Diabetes, and SPECT datasets.

With respect to TR-KLR, the accuracy of RE-WKLR is better than that of TR-KLR on

Ionosphere and Survival datasets.

Except for the Ionosphere dataset, Figure 6.5 shows that despite the reduction, the

RE-WKLR method retained almost the same level of accuracy as inthe balanced training

data, with some improvement on the Survival data. The accuracy of RE-WKLR reaches

100% on the Ionosphere dataset with the imabalanced training set. In comparison, SVM

accuracy improved on the Liver data after the reduction but it became worse on both Iono-

sphere and Diabetes datasets. The accuracy of TR-KLR on the other hand improved on

Sonar and SPECT datasets but degraded on both Ionosphere and Liver datasets.
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Table 6.4: Benchmark datasets optimal parameter values withimbalanced training sets.

RE-WKLR SVM TR-KLR
σ λ σ C σ λ

Ionosphere 9.0 0.007 5.0 10.0 4.0 0.005
Sonar 8.0 0.01 4.0 10.0 20.0 0.005
Bupa 3.7 0.001 3.0 10.0 1.0 0.01
Haberman 2.5 0.002 1.0 100.0 1.0 0.01
Pima 2.7 0.0002 6.0 10.0 2.0 0.01
SPECT 5.7 0.09 4.0 10.0 5.1 0.3

Table 6.5: Benchmark datasets bootstrap accuracy (%) using imbalanced training sets.

RE-WKLR SVM TR-KLR
Class 0 1 0 1 0 1

Ionosphere 100• 100• 99 89 99 67
Sonar 83⋄ 100 99 67 83 100
Liver 75 63• 81 62 76 50
Survival 88• 89 76 78 82 77
Diabetes 81 70• 90 52 83 61
SPECT 74⋄ 80 69 73 76 73

• statistical significance using paired t-test withα = 0.017 over both SVM and TR-KLR.
⋄ statistical significance using paired t-test withα = 0.017 over SVM.

Figure 6.3: Benchmark datasets accuracy comparison with imbalanced training sets.
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Figure 6.5: Comparison of algorithms on benchmark datasets with balanced and imbal-
anced training sets.

70



Balanced Training Set on Spam Data

For the balanced training Spam datasets, the optimal parameters and accuracies are shown

in Tables 6.6 and 6.7, respectively. For samples of 40 instances, the accuracy of RE-WKLR

was better than that of SVM and slightly less than that of TR-KLR, without any statistical

significance. For samples of 100 instances, SVM performed slightly better than both RE-

WKLR and TR-KLR, whose accuracy is equal. However, as the samplesize increase to

200 and 300, the accuracy of RE-WKLR becomes noticeably greater than that of both

SVM and TR-KLR, as indicated by Figures 6.6 and 6.7. Figure 6.7 shows a significant

difference between the RE-WKLR accuracy and that of TR-KLR on sample size of 200

while a significant difference exists between RE-WKLR accuracy and that of SVM when

the sample size is 300. In addition, notice the linear increase in the accuracy of RE-WKLR

as the sample size increases, indicating consistency with ML asymptotic properties.

Table 6.6: Spam dataset optimal parameter values with balanced training datasets.

Class Instances RE-WKLR SVM TR-KLR
0 1 σ λ σ C σ λ

40 40 6.0 0.3 7.0 1.0 5.0 0.01
100 100 7.0 0.5 18.0 10.0 5.0 0.1
200 200 7.0 0.5 18.0 100.0 7.0 0.5
300 300 3.0 1.0 18.0 10.0 7.0 0.01

Table 6.7: Spam dataset bootstrap accuracy (%) using balanced training sets.

Class Instances RE-WKLR SVM TR-KLR
0 1 0 1 0 1 0 1

40 40 85⋄ 85⋄ 89 83 88 86
100 100 89 86 92 87 91 86
200 200 90 88• 91 86 93 85
300 300 90 89• 94 84 93 88

• statistical significance using paired t-test withα = 0.017 over both SVM and TR-KLR.
⋄ statistical significance using paired t-test withα = 0.017 over SVM.
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Figure 6.6: Spam dataset accuracy comparison with balancedtraining sets.
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Figure 6.7: Spam dataset accuracy comparison using balanced training sets with 95% con-
fidence level.
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Imbalanced Training Set on Spam Data

Matters became different when imbalance was introduced to the training set of the Spam

dataset, as shown in in Table 6.9 and Figure 6.8. The accuracies of SVM decreased with

the imbalanced training data almost on all sample sizes except for a sample with 300 non-

events and 150 events. The TR-KLR accuracy decreased on samples with 40 non-events

and 15 events, and 100 non-events with 50 events. As shown in Figure 6.9, the accuracy of

RE-WKLR is significantly higher than that of both SVM and TR-KLR. On the other hand

the accuracy of RE-WKLR remained almost unchanged, as indicated by Figure 6.10.

Table 6.8: Spam dataset optimal parameter values with imbalanced training datasets.

Class Instances RE-WKLR SVM TR-KLR
0 1 σ λ σ C σ λ

40 15 3.2 0.03 18.0 10.0 5.0 0.1
100 50 2.0 0.06 18.0 100.0 5.0 0.01
200 100 3.0 0.07 16.2 100.0 3.2 0.005
300 150 4.0 0.1 18.0 100.0 4.0 0.1

Table 6.9: Spam dataset comparison of bootstrap accuracy (%) using imbalanced training
sets.

Class Instances RE-WKLR SVM TR-KLR
0 1 0 1 0 1 0 1

40 15 86 85• 95 70 94 75
100 50 85 84• 91 77 92 78
200 100 90 89• 93 79 91 84
300 150 91 91• 95 87 93 89

• statistical significance using paired t-test withα = 0.017 over both SVM and TR-KLR.
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Figure 6.8: Spam dataset accuracy comparison with imbalanced training sets.
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Figure 6.9: Spam dataset accuracy comparison using imbalanced training sets with 95%
confidence level.
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Figure 6.10: Comparison of algorithms on Spam dataset with balanced and imbalanced
training sets.
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6.2 RE-WKLR for Tornado Detection

The performance of RE-WKLR was evaluated on real-life tornadodata and then compared

to that of SVM and TR-KLR. The tornado dataset is based on the Doppler radar Mesocy-

clone Detection Algorithm (MDA) attributes, combined withthe Near Storm Environment

(NSE) dataset [134]. Application of SVM using the same dataset has been studied by

Trafalis et al. [13, 135, 136], and Adrianto et al. [137] and found that SVM performed bet-

ter than other methods such as Artificial Neural Networks (ANN) and Linear Discriminant

Analysis (LDA).

6.2.1 Tornado Data

The Tornado dataset consists of 83 attributes, 24 of which are derived from the MDA data,

measuring radar-derivedvelocityparameters that describe aspects of the Mesocyclone, in

addition to themonthattribute. The rest of the attributes are from the NSE data [134], which

describes the pre-storm environment on a broader scale thanMDA data. The attributes of

the NSE data consist ofwind speed, direction, wind shear, humidity lapse rate, and the

predispositionof the atmosphere to explosively lift air over specific heights. In addition,

the Tornado dataset consists of a training set and testing set. The training set has 387

tornado observations and 1,144 non-tornado observations.The testing set consists of 387

tornado observations and 11,872 non-tornado observations, and hence the rarity is 3%.

6.2.2 Experimental Results and Discussion

The same experimental setup used on the benchmark datasets in the previous section was

also implemented on the tornado data for all algorithms. However, random under-sampling

was used in the analysis. The optimal parameters and accuracies reached by all methods are

shown in Tables 6.10 and 6.11, respectively. Table 6.11 shows the accuracies reached by

the three methods using the original training data with 387 tornado observations and 1,144
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non-tornado observations, in addition to two under-sampling schemes. In the first, the

number of non-tornadoes was made to be twice the number of tornadoes, and in the second,

the number of non-tornadoes was made equal to that of tornadoes, chosen randomly. In

addition, the bootstrap sample size was made to consist of all of the testing set instances

with 200 resampling rounds.

Table 6.10: Tornado dataset optimal parameter values.

Class Instances RE-WKLR SVM TR-KLR
0 1 σ λ σ C σ λ

1,144 387 2.0 0.02 8.5 10.0 1.2 0.1
774 387 1.2 0.3 8.5 10.0 1.2 0.1
387 387 2.0 1.0 8.0 10.0 1.2 0.1

Table 6.11: Tornado dataset bootstrap accuracy (%).

Class Instances RE-WKLR SVM TR-KLR
0 1 0 1 0 1 0 1

1,144 387 95• 97 97 92 96 93
774 387 95 95 95 95 95 96
387 387 95• 95 93 98 93 98

• statistical significance using paired t-test withα = 0.017 over both SVM and TR-KLR.

Table 6.12: Tornado dataset execution time in seconds.

Class Instances RE-WKLR SVM TR-KLR
0 1

1,144 387 616 807 632
774 387 465 784 482
387 387 311 615 322

As shown in the results, when the original dataset is used, RE-WKLR performs bet-

ter than both SVM and TR-KLR. The difference between the accuracies is statistically

significant as indicated Figure 6.11. However, when the non-tornado instances were re-

duced to be only twice the tornado instances, all three methods performed equally, with no
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significant difference between accuracies. This is illustrated in Figure 6.12. Now, when

the non-tornado instances were reduced further to be equal to the tornado instances, then

RE-WKLR again performed better than SVM and TR-KLR, as shown in Figure 6.13. RE-

WKLR maintained the same accuracy in all of the sampling schemes, while the accuracies

of the other methods vary depending on the sample size and thedegree of imbalanced in

the training data. Assuming now that the original training data could not be reduced for

some reasons, or there are no more than 387 instances of each class available for analysis,

then the RE-WKLR method is the preferred choice. What is more, the computational speed

of the RE-WKLR algorithm, measured by CPU time as shown in Table 6.12, is distinctly

faster than that of SVM, despite the fact that LIBSVM is written mainly in C++ while both

the TR-KLR and RE-WKLR algorithms are written purely in MATLAB. The time saving

ranges between approximately 24% on the original training dataset and up to 50% on the

equally distributed classes, as indicated by Table 6.12.
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Chapter 7

Conclusion

In this study, two new powerful adaptations of classification algorithms are developed. The

first is a general classification algorithm called the Truncated-Regularized Kernel Logistic

Regression (TR-KLR). It is a direct adaptation of the TR-IRLS algorithm. The TR-KLR

was demonstrated to be relatively easy to implement. It is mainly dependent upon the linear

Conjugate Gradient (CG) method. It was shown to be as accurate as SVM when tested on

twelve small-to-medium size datasets, half of which are binary-class and the other are

multi-class datasets. The TR-KLR algorithm takes advantageof the speed of the TR-IRLS

and the power of the kernel methods.

The second algorithm is the Rare-Event Weighted Kernel Logistic Regression (RE-

WKLR). This algorithm is a further adaptation of the TR-KLR algorithm and is designed

specifically for imbalanced and rare events data. It combines several concepts from the

fields of statistics, econometrics and machine learning. Like TR-KLR, the RE-WKLR

algorithm is relatively easy to implement and is robust whenimplemented on rare events

and imbalanced data. It was shown that the RE-WKLR is very powerful when applied to

both small and large datasets. The RE-WKLR algorithm takes advantage of bias correction

and the power of the kernel methods, particularly when the data sets are neither balanced

nor linearly separable.

Another benefit of RE-WKLR is that, also in common with TR-KLR, is that it uses

unconstrained optimization methods whose algorithms are less complex than those with

constrained optimization methods, such as SVM. As a rare-events and imbalanced data

classifier, RE-WKLR is superior over both TR-KLR and SVM.
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Future Work

Promising results have been demonstrated here, but future studies could lead to improved

performance of the algorithms. Those studies can

• compare the methods used in this dissertation with different kernels and with differ-

ent unconstrained optimization algorithms

• utilize and explore methods such as the trust-region Newton for further stability and

robustness on both TR-KLR and RE-WKLR

• use intelligent sampling methods to improve the speed and accuracy of the algorithms

• compare RE-WKLR with methods developed recently on SVM, suchas the Granular

Support Vector Machines-Repetitive Undersampling (GSVM-RU) algorithm

• compare RE-WKLR with a kernel version of the Prior Correction method as it is

more straightforward to implement

• implement feature-selection techniques, and methods such as Principal Component

Analysis (PCA) to provide further data reduction

• apply RE-WKLR to imbalanced and rare-events multi-class datasets
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Appendix A

Maximum Likelihood Estimation

Let X ∈ R
n×d be a data matrix, wheren is the number of instances (examples) andd is the

number of parameters, and an outcomes vectory∈R, ory ∈ {0,1}. The objective is to find

an estimator,̂θ , for some unknown true parameter,θ , that would maximize the likelihood

of observing the outcomes. This is theprinciple of maximum likelihood[138].

The joint probability density function, or the joint probability mass function, is then a

function ofθ , given the data (X,y). This function is called thelikelihood function, and is

denoted byL(θ |X,y). From Bayesian statistics, the likelihood can be expressed as

L(θ) = f (y,X|θ) = P(y|X,θ)P(X), (A.1)

whereP(y|X,θ) is the conditional density ofy given the dataX, andP(X) is the marginal

density ofX. Since the objective is to model the behavior ofy by finding an estimate of

θ which maximizesL(θ), then the last term,P(X), can be dropped without affecting the

likelihood model. Hence, the likelihood is usually given as

L(θ) = P(y|X,θ). (A.2)

Maximizing the likelihood function is equivalent to maximizing the natural logarithm of

the likelihood (log-likelihood), such that

L(θ) = lnL(θ). (A.3)
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The log-likelihood function is usually analyzed and calculated because mathematically it

is a monotonic function and the same valueθ̂ maximizes bothL(θ) and lnL(θ).

A.1 Asymptotic Properties of Maximum Likelihood Estimators

Themaximum likelihood (ML) estimatorsareextremumestimators that maximize the likeli-

hood function. The ML estimators have some specific properties. There are four important

properties for the ML estimators:

A.1.1 Asymptotic Consistency

Subject to some weak regularity conditions, ML estimators are consistent. The property of

consistency essentially means that as the sample size increases, the expected value (mean)

of the ML estimator,θ̂ , gets closer in value to the true unknown population parameter θ .

Mathematically [139],

lim
n→∞

Pr(|θ̂n−θ | < ε) = 1. (A.4)

In other words, as the sample size increases, the ML estimator lies within a small interval,

ε > 0, of the true parameterθ with certainty (a probability of 1).

The Expected Score

Following Cameron and Trivedi [89], an essential consistency regularity condition is that

E
[

∇θ̂ P(y|X, θ̂)
]

θ̂=θ = 0, (A.5)

Proof:
∫

P(y|X, θ̂)dy = 1. (A.6)
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Differentiating both sides with respect tôθ yields

∇θ̂

∫

P(y|X, θ̂)dy = 0, (A.7)

which implies that
∫

∇θ̂ P(y|X, θ̂)dy = 0, (A.8)

if the range ofy does not depend on̂θ . Now,

∇θ̂ lnP(y|X, θ̂) = ∇θ̂ P(y|X, θ̂)(P(y|X, θ̂))−1 (A.9)

which implies that

∇θ̂ P(y|X, θ̂) = ∇θ̂ lnP(y|X, θ̂)P(y|X, θ̂), (A.10)

Substituting now yields

∫

∇θ̂ lnP(y|X, θ̂)P(y|X, θ̂)dy = 0, (A.11)

which means that

E
[

∇θ̂ lnP(y|X, θ̂)
]

θ̂=θ = g(θ̂) =
∫

∇θ̂ lnP(y|X, θ̂)P(y|X, θ̂)dy = 0, (A.12)

provided that the expectation is with respect toP(y|X,θ). What this essentially implies is

that by the law of large numbers, the sample score converges in probability to its expected

value as the sample size increases. The ML estimator is an extremum, and in the limit, the

expected score is equal to zero. Since the expected score is equal to zero only at the true

parameterθ , then in the limit,θ̂ = θ .
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A.1.2 Asymptotic Normality

The normality property states that for large samples, ML estimators are normally dis-

tributed. Following Greene [140], consider a first-order Taylor series expansion of the

score,g(θ̂), around the true parameter vector,θ , then,

g(θ̂) = g(θ)+H(θ)(θ̂ −θ), (A.13)

whereH(θ) = ∇2
θ lnP(y|X,θ) is the Hessian matrix. Now, from the consistency property,

g(θ̂) = 0, hence,

0 = g(θ)+H(θ)(θ̂ −θ), (A.14)

and therefore,

θ̂ −θ = −H(θ)−1g(θ), (A.15)

or
√

n(θ̂ −θ) =

[

−1
n

H(θ)

]−1 1√
n

g(θ). (A.16)

Now, if the quantity
[

−1
nH(θ)

]−1
is regarded as constant [141], and by the law of large

numbers and the central limit theorem1√ng(θ)→ 0 thenE(θ̂ −θ) = 0, with the assumption

that there is no bias. Therefore,E(θ̂) = θ , which is another way to establish consistency.

As for the variance of̂θ , it is just the outer product of A.16, such that

V(
√

n(θ̂ −θ)) = E[
√

n(θ̂ −θ)
√

n(θ̂ −θ)T] (A.17)

= E

[

[

−1
n

H(θ)

]−1(

1
n

)

g(θ)g(θ)T
[

−1
n

H(θ)

]−1
]

, (A.18)

which, if efficiency is established, reduces to

V(
√

n(θ̂ −θ)) = E

[

−1
n

H(θ)

]−1

= I−1, (A.19)
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whereI is the Fisher information matrix. Finally, following Cameron and Trivedi [89],

Definition 1 (Asymptotic Distribution of̂θ ) If

√
n(θ̂ −θ) −→ N (0, I−1), (A.20)

then in large samples,̂θ is asymptotically normally distributed with

θ̂ ∼ N (θ , I−1). (A.21)

Usually, if asymptotic consistency is established, then the ML estimator converges in prob-

ability to the true parameter value [89].

A.1.3 Asymptotic Efficiency

The efficiency property states that as the sample size increases, the variance of the ML

estimator approaches a minimum bound established by the Cramér-Rao theorem.

Theorem 2 (Cramér-Rao Lower Bound) Assuming that the density of yi satisfies the reg-

ularity conditions, the asymptotic variance of a consistent and asymptotically normally

distributed estimator of the parameter vectorθ will always be at least as large as

[I(θ)]−1 = (−E[H(θ)])−1 =
(

E
[

g(θ)g(θ)T])−1
. (A.22)

A.1.4 Invariance

The following theorem describes the invariance property ofML estimators [142]:

Theorem 3 If θ̂ is the ML estimator of the parameter vectorθ andρ(θ) is a function of

θ , thenρ(θ̂) is the ML estimator ofρ(θ).
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Appendix B

Support Vector Machines

Let {(x1,y1), ...,(xn,yn)} be a set of training data where eachxi in R
n denotes a sample

in the input space with a corresponding outputyi ∈ {1,0}, for i = 1,2, ...n wheren cor-

responds to the size of the training data. The goal is to find a separating hyperplane as

far as possible from the nearest different instances while keeping all the instances in their

correct side. In other words, the objective is to maximize the distanced between the sep-

arating hyperplane (〈x,β 〉+ β0 = 0) and its nearest different instances, while placing the

margin hyperplanes (〈x,β 〉+ β0±1) into the separating margin. The vectorβ represents

the normal of the hyperplane andβ0 is the offset from the origin. When all the instances

are correctly classified, the problem is calledhard-marginSVM. However, in real-life data,

instances are not all correctly classified, and the problem is soft-marginSVM. The dis-

tance between the separating hyperplane and each of the margin hyperplane isd = 1
||β || .

Mathematically [118], the objective involves solving the following optimization problem:

Minimize : 1
2||β ||2 +C

n

∑
i=1

ξi ,

Subject to : yi(〈xi ,β 〉+β0) ≥ 1−ξi ,

ξi ≥ 0,

(B.1)

whereξi is nonnegative slack variable representing the errors. Thus, when an instancexi

is correctly classified by the hyperplane, and is outside of the margin, the corresponding

slack variableξi = 0. When the instance correctly classified, but is within the margin, then

0 < ξi < 1. If the instance is misclassified, thenξi > 1. As for the constantC, it is also

nonnegative and it represents the trade-off between maximizing the margin and minimizing
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the errors. Figure B.1 illustrates the concept of SVM for classification.

x1

x2

β0

〈x,β 〉+β0 = −1

〈x,β 〉+β0 = 0

〈x,β 〉+β0 = +1

d

d

Support Vector Points
(ξi = 0)

Misclassified Points
(ξi > 1)

Figure B.1: SVM for classification.

Now, the Lagrangian(LP) of the primal optimization program (B.1) can be expressed as

LP = 1
2||β ||2 +C

n

∑
i=1

ξi

−
n

∑
i

αi(yi(〈xi ,β 〉+β0)−1+ξi)

−
n

∑
i

µiξi,

(B.2)

whereαi , andµi are Lagrange multipliers associated with the constraints.The Karush-

Kuhn Tucker (KKT) conditions can now be derived from the Lagrangian by taking the

first-order derivatives ofLP with regard toβ , β0 andξi, then setting them to zeros. The

minimum to the optimization problem (B.2) is then reached when

β =
n

∑
i=1

αiyixi,

n

∑
i=1

αiyi = 0,

αi + µi = C,

(B.3)
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and the rest of the KKT conditions are [143]:

Constraint 1 : yi(〈xi ,β 〉+β0)−1+ξi ≥ 0,

Constraint 2 : ξi ≥ 0,

Multiplier Condition 1 : αi ≥ 0,

Multiplier Condition 2 : µi ≥ 0,

Complementary Slackness 1 :αi[yi(〈xi ,β 〉+β0)−1+ξi ] = 0,

Complementary Slackness 2 : µiξi = 0,

(B.4)

for i = 1. . .n. If ξi ≥ 0, thenξi = 1−yi(〈xi ,β 〉+β0) andµi = 0, henceαi = C. If ξi = 0,

thenµi > 0, and henceαi < C. In addition, if ξi = 0, andyi(〈xi ,β 〉+ β0)− 1 = 0, then

αi > 0. Otherwise, ifyi(〈xi ,β 〉+β0)−1 > 0, thenαi = 0.

Therefore, instances that are not on the support vector plane and are on the correct

side haveξi = αi = 0. Instances on the support vector plane haveξi = 0, but αi > 0.

Finally, data points on the wrong side of the support vector hyperplane haveαi = C andξi

balances this violation such thatyi(〈xi ,β 〉+β0)−1+ξi = 0. In other words, only a subset

of the Lagrange multipliers would have a nonzero value in thesolution, while others would

vanish. Instances for whichαi = 0 are calledsupport vectors(SV).

Now, substituting the values in (B.3) back into (B.2) and replacing the dot product

〈xi ,x j〉 with κ(xi ,x j) gives the following dual optimization problem,

Maximize : LD = −1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jκ(xi ,x j)+
n

∑
i

αi ,

Subject to :
n

∑
i=1

αiyi = 0,

0≤ αi ≤C.

(B.5)

The dot product in (B.5) was replaced with a functionκ(xi ,x j), called the kernel function.

The kernel function maps the input vectors to a feature spacethat consists of the inner

products of the mapped vectors [117]. Linear classificationmethods are then applied in that
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feature space. Note that Complementary Slackness 1 and 2 showthatξi = 0 if αi <C. Thus,

any training point for which 0< αi < C can be taken to use Complimentary Slackness 1,

with ξi = 0 to computeβ0. An alternative way to computeβ0 is by the following:

β0 =
1

nsv

nsv

∑
i=1

(yi −〈xi,β 〉), (B.6)

wherensv is the number of support vectors [144]. However, for kernel-based SVM, it is not

necessary to calculate the value ofβ0, as it is implicitly part of the kernel function [144].

Finally, classification of a new instance,x, is then carried out based on the rule

f (x) = sign

[

n

∑
i=1

yiαiκ(xi ,x)+β0

]

, (B.7)

for anyαi 6= 0.
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