
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

STUDIES ON DEEP HOLES AND DISCRETE LOGARITHMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

JINCHENG ZHUANG
Norman, Oklahoma

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215212187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


STUDIES ON DEEP HOLES AND DISCRETE LOGARITHMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Qi Cheng, Chair

Dr. Sudarshan Dhall

Dr. Changwook Kim

Dr. Ralf Schmidt

Dr. Krishnaiyan Thulasiraman



c© Copyright by JINCHENG ZHUANG 2014
All Rights Reserved.



To my grandparents and parents.



Acknowledgements

It is with great encouragements and help from my advisor, teachers, friends

and family that I have been able to accomplish the work in this dissertation.

First and formost, I wish to express my gratitude to my advisor, Professor

Qi Cheng. I learned so much from him through discussions during classes,

meetings, and lunch hours. His critical and creative instruction has cultivated

my approach to research. His passion and determination has encouraged me

to explore and work. His optimism and humour has affected me to enjoy

work and life. His guidance and support has helped me to persist during

all these years. He has been a fantastic professor, advisor and friend. I am

grateful for having had the opportunity to work with him.

I also wish to thank my dissertation committee members: Professors Su-

darshan Dhall, Changwook Kim, Ralf Schmidt, and Krishnaiyan Thulasira-

man. They have given me valuable suggestions and comments in the general

exam and during the revision of this dissertation. My thanks also go to the

other faculty and staff in the school of computer science at OU. In addition,

I would like to thank all my teachers and mentors along these years.

Parts of Chapter 3 are from joint work with Prof. Qi Cheng and Dr.

Jiyou Li and previously appeared in [13]. Parts of Chapter 4 are from joint

work with Prof. Qi Cheng and Prof. Daqing Wan and previously appeared

iv



in [16]. It has been a pleasure to work with them. I want to thank them for

helpful discussions. I would like to thank professor E. Thomé for informing
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Abstract

Error-correcting codes and cryptography are two important areas related

to information communication. Generalized Reed-Solomon codes and cryp-

tosystems based on the discrete logarithm problem are important represen-

tatives of these two fields, respectively.

For a linear code, deep holes are defined to be vectors that are further

away from codewords than all other vectors. The problem of deciding whether

a received word is a deep hole for generalized Reed-Solomon codes is co-NP-

complete [14, 31].

In the recent breakthrough paper by Barbulescu, Gaudry, Joux and Thomé

[6, 7], a quasi-polynomial time algorithm (QPA) was proposed for the dis-

crete logarithm problem over finite fields of small characteristics. The time

complexity analysis of the algorithm is based on several heuristics presented

in their paper.

In this dissertation, we shall study the deep hole problem of generalized

Reed-Solomon codes and the discrete logarithm problem over finite fields.

On the one hand, we shall classify deep holes for generalized Reed-Solomon

codes RSq(D, k) in a special case. On the other hand, we shall show that

some of the heuristics in BGJT-algorithm are problematic in their original

forms [6], in particular, when the field is not a Kummer extension. We

xi



propose a solution to the algorithm in non-Kummer cases, without altering

the quasi-polynomial time complexity.
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Chapter 1

Introduction

In this dissertation, we consider problems concerning deep holes of general-

ized Reed-Solomon codes and discrete logarithms over finite fields.

The motivation for the studies stems from the increasing requirements

for transmitting messages over realistic channels, which are often imperfect.

This can be illustrated by the following example. Suppose Alice and Bob

want to communicate over a channel. For the sake of simplicity, we assume

that all the information has been transformed into digital signals. We start

from considering the following abstract channel model as in Figure 1.1, which

includes a source (Alice), a destination (Bob), and a channel.

Alice channel Bob
signal signal

Figure 1.1: Original communication channel model

There are two fundamental issues of consideration:

• Correctness: In reality, there is noise in the channel, which may inter-
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rupt the transmitted signal. If Alice sends the message in the original

form, the message received by Bob may not be the same as sent by

Alice.

• Privacy: The openness of the channel implies that other people, say

Eve, may get the message over the channel. If Alice sends the message

in the plain text form, then Eve can get the text and understand its

meaning.

The main tools developed to solve these problems are error-correcting

code theory and cryptography.

1.1 Error-correcting codes and deep holes for

linear codes

In this section, the problem of transmitting information over noisy channels

is considered as in Figure 1.2. In a seminal paper published in 1948 [66],

Shannon established information theory to solve this problem.

Alice channel

noise

Bob
signal signal

Figure 1.2: Communication channel model with noise

Because of the existence of noise, it may happen that a signal 0 is sent

but a signal 1 is received.
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Example 1. The memoryless binary symmetric channel is defined as follows.

The alphabet is F2 = {0, 1}. The symmetric channel means that it flips each

input bit with crossover probability 0 6 p 6 1. Thus the transmission of a

single bit can be described pictorially as in Figure 1.3.

1

0

1

0

1− p

p

p

1− p

Figure 1.3: Binary symmetric channel

The memoryless channel means that the probability of flipping each bit is

independent from other signals. In other words, let t = t1t2 · · · tn ∈ Fn
2 , r =

r1r2 · · · rn ∈ Fn
2 , we have

P{r received | t transmitted} =
n∏
i=1

P{ri received | ti transmitted},

where P{E} denotes the probability that the event E happens.

In order to detect and correct possible errors of signals during the trans-

mission, the encoding and decoding procedures are introduced as in Figure

1.4.

The encoding procedure is a map that transforms signal alphabets into

codewords, and the decoding is the inverse procedure. One of the funda-

3



Alice encoder channel decoder

noise

Bob
codeword codeword

Figure 1.4: Communication channel model with encoder and decoder

mental results of Shannon [66] is the Noisy-Channel Coding theorem. In-

formally speaking, the theorem asserts that under certain conditions, there

exist codes that make the error probability at the receiver arbitrarily small.

A large number of codes have been designed. Hamming pioneered this field

[32]. Reed and Solomon [59] introduced Reed-Solomon codes in 1960, which

is of importance both in theory and in practice.

For the sake of usefulness, there should exist an efficient decoding algo-

rithm. In practice, the maximum-likelihood decoding is used, which aims to

minimize the error probability. In certain cases, such as the binary symmetric

channel with crossover probability p < 1/2, the maximum-likelihood decod-

ing is equivalent to the nearest-codeword decoding. In the nearest-codeword

decoding, a received word is decoded as the closest codeword under the mea-

sure of Hamming distance. A deep hole of a code is one word which has the

largest distance to the code. In this dissertation, we classify deep holes in a

special case for generalized Reed-Solomon codes.
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1.2 Cryptography and discrete logarithms over

finite fields

Confidentiality is a significant concern in the practice of communication. In

a paper published in 1949 [67], Shannon considered the problem of secure

communication. Figure 1.5 shows a simplified model.

Alice channel

Eve

Bob
message message

Figure 1.5: Communication channel model with eavesdropper

Since there exists a third party over the channel, the encryption and

decryption procedures are introduced to keep the message secure as shown

in Figure 1.6. The goal of an encryption procedure is to make the transformed

message look random to the third party, while the receiver can recover the

original message with the decryption procedure.

Alice encryption channel decryption

Eve

Bob
ciphertext ciphertext

Figure 1.6: Communication channel model with encryption and decryption

The encryption procedure and its inverse are important components of

5



cryptography. In the early era, the confidentiality was usually achieved with

some physical aid. In the modern era, cryptography has put its feet on more

solid foundations [26], such as information theory, computational complexity,

and mathematics.

There are two main branches of ciphers: one is the symmetric-key (or

private-key) cipher and the other is the asymmetric-key (or public-key) ci-

pher. Symmetric-key ciphers are implemented as either stream ciphers or

block ciphers. The considerable advantage of the symmetric-key cipher is

its speed. One of the drawbacks of the symmetric-key cipher is that the

two participants need to share a key before the communication, which is a

problem if there are many users since N users need
(
N
2

)
keys.

In 1976, Diffie and Hellman [20] pioneered the public-key cryptography.

In public-key cryptography, each participant has a pair of keys: one is the

public key and the other is the private key. The public-key ciphers are usually

built on some hard computational problems, among which the integer factor-

ization and discrete logarithms problem over finite fields are two commonly

used ones. For example, Diffie and Hellman [20] designed a key-exchange

scheme based on the discrete logarithms over finite fields. Rivest, Shamir,

and Adleman [60] developed a cryptosystem based on the integer factoriza-

tion. ElGamal [23] established a cryptosystem based on the discrete loga-

rithm problem.

For the sake of security, cryptanalysis efforts have been made to consider

the hardness (or weakness) of these problems underlying these cryptosystems.

In particular, many algorithms have been designed to attack the discrete log-

arithm problem over finite fields. Shor [68] designed a randomized algorithm

to solve the discrete logarithm in polynomial time on a hypothetical quantum

6



computer. Many classical algorithms to compute discrete logarithms have

been developed during the last decades, such as index calculus methods, the

number field sieve, and the function field sieve. The state-of-the-art general

purpose algorithm runs in sub-exponential time on classical computer models

such as Turing machines. Recently, a quasi-polynomial time algorithm [6, 7]

was proposed for the discrete logarithm problem over finite fields of small

characteristics on classical computer models. In this dissertation, we shall

study the original form of this algorithm [6]. Some heuristics are shown to

be problematic and a solution is proposed.

7



Chapter 2

Background

2.1 Basic field theory

Definition 1. A field F is a commutative ring with identity in which each

nonzero element has an inverse. In other words, the set of units F∗ = F\{0}

is an abelian group under multiplication.

Example 2. We can check that the following are fields:

1. Fields with infinite elements: Q,R,C, i.e., the fields of rational num-

bers, real numbers and complex numbers.

2. Fields with finite elements: Z/2Z,Z/11Z. In general, Fp = Z/pZ is a

field, where p is a prime number.

Definition 2. A field with finite elements is called a finite field or a Galois

field.

Definition 3. Let F be a given field. The characteristic of F, denoted by

ch(F), is defined as the smallest positive integer n such that n ∗ 1F = 0 if

such an integer exists and is defined as 0 otherwise.

8



Proposition 1. Let F be a given field. Then ch(F) is either 0 or a prime p.

Example 3. We have the following cases:

1. ch(Q) = 0, where Q is the rational number field.

2. Let p be a prime number. Then ch(Fp) = p.

3. Let p be a prime number, Fp[x] be the integral domain of polynomials

in the variable x with coefficients in Fp and Fp(x) be the fraction field

of Fp[x]. We have ch(Fp(x)) = p.

Definition 4. Let F be a given field. The intersection of all subfields of F,

denoted by K ⊂ F, is called the prime subfield of F.

Proposition 2. We have the following conclusions:

1. If ch(F) = 0, then the prime subfield K of F is isomorphic to Q.

2. If F is a finite field, i.e., |F| < ∞, then the prime subfield K of F is

isomorphic to Fp, where p = ch(F). Furthermore, if the field extension

degree [F : K] = k, then |F| = pk.

Proposition 3. We have the following conclusions:

1. If Fq is a finite field with order q ∈ Z, then q = pk, where p = ch(Fq).

2. Conversely, for each q = pk where p is a prime and k is a positive

integer, there exists a unique finite field of order q up to isomorphism.

The field is the splitting field of f(X) = Xq − X over Fp. All the

elements of Fq are roots of f(X). Furthermore, F∗q is cyclic.

9



2.2 Error-correcting codes

Basically, error-correcting codes add some useful redundant information to

detect and correct errors. More information on error-correcting codes can be

found in books such as [50].

2.2.1 Linear codes

In this section, we shall give a concise description of the linear codes [50]. We

assume the alphabet of the codes is a finite field Fq. We shall first consider

the sending side.

Alice encoder channel

noise

signals
v = v1v2 · · · vk

codeword
x = x1x2 · · ·xn

Figure 2.1: Encoding procedure

As indicated in Figure 2.1, the sent message is divided by blocks. Each

message block is of length k, which is encoded as a codeword of length n > k.

Example 4. In this example, the codeword consists of two parts: the first

part is the same as the message block, i.e., xi = vi for 1 6 i 6 k; the second

part contains the useful redundant symbols, which are called check symbols.

Given the parity check matrix H of the form

H = [A|In−k], (2.1)

10



where A is an (n−k) ∗n matrix and In−k is an (n−k) ∗ (n−k) unit matrix,

the check symbols are determined so that

H



x1

x2
...

xn


= 0,

where the computation is performed in the given field Fq.

Remark 1. In general, a parity check matrix may not have the form given

in (2.1).

Example 5. Suppose k = 1, n = 3 and the linear code is defined over F2.

Let the parity check matrix be

H =

1 1 0

1 0 1

 .
Since k = 1, each block consists of one symbol. Also each codeword x1x2x3

satisfies the conditions:

x1 + x2 = 0, x1 + x3 = 0.

Thus, we have the following encoding table:

message codeword

0 000

1 111

11



This is known as a repetition code.

Example 6. Suppose k = 2, n = 4 and the linear code is defined over F2.

Let the parity check matrix be

H =

0 1 1 0

1 0 0 1

 .
Each message block includes two symbols in this case. Each codeword x1x2x3x4

satisfies:

x2 + x3 = 0, x1 + x4 = 0.

Thus, we have the following encoding table:

message codeword

00 0000

01 0110

10 1001

11 1111

The general definition of linear codes is given below.

Definition 5. A linear code of length n and rank k, denoted by [n, k]q, is a

linear subspace with dimension k of the vector space Fn
q where Fq is the finite

field with q elements. The code has rate (or efficiency) R = k/n.

Remark 2. Let [n, k]q be a given linear code. The elements in the code are

called codewords. Elements in Fn
q are called codes or vectors.

Remark 3. Since we can regard a [n, k]q linear code as a vector space over

Fq of dimension k, there exists a linearly independent basis b1, . . . ,bk such

12



that each codeword u can be written as

u =
k∑
i=1

(cibi), ci ∈ Fq, 1 6 i 6 k.

The matrix G whose rows are b1, . . . ,bk is called a generator matrix. In the

sequel, we assume that the rows of a generator matrix form a basis for the

code.

Definition 6. A linear code [n, k]q is called maximum distance separable (in

short, MDS) if it attains the Singleton bound, i.e., d = n− k + 1.

Now we turn our attention to the receiver’s side shown in Figure 2.2.

Channel decoder Bob

error e

received
r = x + e

decode
v′

Figure 2.2: Decoding procedure

At the receiver’s end, the received message is a mixture of the transmitted

message and the error vector e introduced during the transmission. Given

r = x + e, the decoder needs to decode r as v′ such that it minimizes the

error. This is called the maximum likelihood decoding.

Definition 7. The Hamming distance between two words u,v ∈ Fn
q , denoted

by d(u,v), is the number of their distinct coordinates.

Example 7. Over F3
2, we have d(101, 001) = 1, d(010, 100) = 2, d(000, 111) =

3.

13



Definition 8. The error distance of a received word u ∈ Fn
q to the code

[n, k]q is defined as its minimum Hamming distance to codewords.

Definition 9. The minimum distance of a code, which is denoted by d, is

the smallest distance between any two distinct codewords of the code. The

covering radius of a code is the maximum distance from any vector in Fn
q to

the nearest codeword.

Definition 10. A deep hole of a code [n, k]q is a vector in Fn
q achieving the

covering radius.

Example 8. In Euclidean space R2, the analogous deep holes are shown in

Figure 2.3.

Figure 2.3: Deep holes in R2

2.2.2 Generalized Reed-Solomon codes

Generalized Reed-Solomon codes are of special interest and importance both

in theory and practice of error-correcting codes.

Definition 11. Let Fq be a finite field with q elements and characteristic p.

Let D = {α1, . . . , αn} ⊆ Fq be the evaluation set and vi ∈ F∗q, 1 6 i 6 n, be

14



the column multipliers. The set of codewords of the generalized Reed-Solomon

code RSq(D, k) of length n and dimension k over Fq is defined as

RSq(D, k) = {(v1f(α1), . . . , vnf(αn)) ∈ Fn
q | f(x) ∈ Fq[x], deg(f) 6 k − 1}.

The generalized Reed-Solomon codes are MDS codes and the minimum

distance d = n − k + 1 and the covering radius ρ = n − k. We shall write

generalized Reed-Solomon codes as GRS codes for short. If D = F∗q, it is

called primitive. If D = Fq, it is called a singly-extended GRS code. A GRS

code is called normalized if its column multipliers are all equal to 1. In this

dissertation, we shall work on the normalized GRS without loss of generality.

The encoding algorithm of the GRS code can be described by the linear

map: ϕ : Fk
q → Fn

q , in which a message (a1, . . . , ak) is mapped to a codeword

(f(α1), . . . , f(αn)), where f(x) = akx
k−1 + ak−1x

k−2 + · · ·+ a1 ∈ Fq[x].

Efforts have been made to obtain an efficient decoding algorithm for GRS

codes. Given a received word u ∈ Fn
q , if the error distance is smaller than

n −
√
nk, then the list decoding algorithm of Sudan [70] and Guruswami-

Sudan [30] solves the decoding in polynomial time. However, in general, the

maximum likelihood decoding of GRS codes is NP-hard [31].

2.3 Some results related to additive combi-

natorics

In this section, we introduce some additive combinatorics results that we shall

use later. The first theorem is about the estimation of the size of restricted

sum sets, which was first proved by Dias da Silva and Hamidoune [69]. Then
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Alon et al. [5] gave a simple proof using the polynomial method.

Theorem 1. [5, 69] Let F be a field with characteristic p and n be a positive

integer. Then for any finite subset S ⊂ F we have

|n∧S| > min{p, n|S| − n2 + 1},

where n∧S denotes the set of all sums of n distinct elements of S.

Brakemeier [9] and Gallardo et al. [25] established the following theorem:

Theorem 2. [9, 25] Let n be a positive integer and S ⊂ Z/nZ. If |S| > n
2
+1,

then

2∧S = Z/nZ,

where 2∧S denotes the set of all sums of 2 distinct elements of S.

Example 9. Let n = 7.

1. If S1 = {1, 2, 3}, then 2∧S1 = {3, 4, 5} 6= Z/7Z.

2. If S2 = {0, 2, 3, 6}, then 2∧S2 = {1, 2, 3, 5, 6} 6= Z/7Z.

3. If S3 = {0, 1, 2, 3, 4}, then 2∧S3 = {0, 1, 2, 3, 4, 5, 6} = Z/7Z.

4. If S4 = {0, 1, 3, 5, 6}, then 2∧S4 = {0, 1, 2, 3, 4, 5, 6} = Z/7Z.

Theorem 2 implies the following corollary:

Corollary 1. Let Fp be a prime finite field, S ⊂ F∗p. If |S| > p+1
2

, then each

element of F∗p is the product of two distinct elements of S.

Proof: Let g be a generator of F∗p. Let S ′ = {e|ge ∈ S} ⊂ Z/(p−1)Z. For

any given element α = ga ∈ F∗p, we need to show that there exist two distinct
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elements b 6= c such that ga = gbgc, where b, c ∈ S ′. This is equivalent to

a = b+ c, which follows from Theorem 2. �

2.4 Cryptography

Cryptography stems from the necessity of confidentiality, authentication and

integrity of information communication. There are three most important

primitives, namely symmetric ciphers, asymmetric ciphers, and hash func-

tions.

2.4.1 Asymmetric cryptography

In a seminal paper [20], Diffie and Hellman proposed a new kind of cryp-

tography which is called asymmetric or public-key cryptography. In such

systems, there exits a private key and a public key, hence the name.

The security of such systems relies on the concept of one-way functions,

which is easy to compute in one way but hard to compute inversely. The

existence of such functions implies that P 6= NP . Although nobody can

prove the existence of such functions currently, people believe that there are

some qualified candidates. The discrete logarithm problem over finite fields

is one of the most important candidates, besides the integer factorization

problem and others. The hardness of discrete logarithm problem underpins

the security of the widely adopted Diffie-Hellman key exchange protocol [20]

and ElGamal’s cryptosystem [23].
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2.4.2 The discrete logarithm problem over finite fields

Definition 12. Let Fq be a finite field of characteristic p. Given α, β ∈ F∗q,

the discrete logarithm problem is to find an integer x such that αx = β.

Remark 4. In this dissertation, we only consider the case when α is a prim-

itive element of Fq.

The state-of-the-art general-purpose methods for solving the discrete log-

arithm problem over finite fields are the number field sieve algorithm and

the function field sieve algorithm, which originated from the index-calculus

method. All these algorithms run in sub-exponential time. Let

LN(α) = exp(O((logN)α(log logN)1−α)).

For a finite field Fq, successful efforts have been made to reduce the heuristic

complexity of these algorithms from Lq(1/2) to Lq(1/3). See [1, 2, 19, 28,

41, 42, 52, 58].

A sequence of breakthrough results [27, 37, 38] obtained recently on the

discrete logarithm problem over finite fields culminated in a discovery of a

quasi-polynomial time algorithm for small characteristic fields [6, 7]. For a

finite field Fq2k with k < q, their algorithm runs in heuristic time qO(log k).

This result, if correct, essentially removes the discrete logarithm over small

characteristic fields from hard problems in cryptography.

2.5 Smoothness of integers and polynomials

Most efficient algorithms on the discrete logarithm problem over finite fields

rely on smoothness of integers or polynomials. The basic idea is to reduce
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the discrete logarithm of a bigger norm element to discrete logarithms of

elements of smaller norm.

Definition 13. An integer n =
∏k

i=1 p
ei
i is B-smooth if pi < B for a chosen

upper bound B for all 1 6 i 6 k. A polynomial of degree n over a finite field

Fq is m-smooth if all its irreducible factors have degrees 6 m. Denote the

probability that a random polynomial of degree n (> m) over Fq is m-smooth

by p(n,m).

Remark 5. In [1], the author attributed the term smoothness to R. Rivest.

Odlyzko [55] showed that

p(n,m) = exp((1 + o(1))
n

m
loge

m

n
),

in the case when ch(Fq) = 2, n→∞ and n
1

100 6 m 6 n
99
100 . Lovorn [49] gener-

alized the conclusion to any prime power q. Car [12] obtained an asymptotic

result in terms of Dickman function when m is large compared with n. Pa-

nario et al. [57] showed that the Dickman function approaches the number

of smooth polynomials when m > (1 + ε)(log n)1/k for a positive integer k.

2.6 Lattice theory

In this section, we shall give a brief introduction to the lattice theory. More

information about lattice theory can be found in books such as [53] and [34].
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2.6.1 Basic concepts

Definition 14. A lattice in Rm is the set

L = {
n∑
i=1

xibi|xi ∈ Z},

where n 6 m and b1,b2, . . . ,bn are linearly independent vectors over R and

bi ∈ Rn for 1 6 i 6 n.

Remark 6. Given a lattice L defined as above, we call m,n the dimension

and rank of the lattice L, respectively. If m = n, we call it a full rank lattice.

And we call the set of vectors b1,b2, · · · ,bn a lattice basis and write

B = [b1,b2, . . . ,bn],

where bi is written as a column vector for 1 6 i 6 n. Equivalently, we say

the basis generates the lattice.

Geometrically, the lattice consists of the intersection points of an infinite,

regular n-dimensional grid.

Example 10. Let m = n = 2, i.e., we consider a full rank lattice in R2. Let

the lattice basis be

b1 =

1

0

 , b2 =

0

1

 .
The lattice is generated by B = [b1,b2] ∈ R2×2. Pictorially, it is shown in

Figure 2.4.

Example 11. Let m = n = 2, i.e., we consider a full rank lattice in R2. Let
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b1=(1,0)

b2=(0,1)

Figure 2.4: Lattice generated by b1,b2

the lattice basis be

b′1 =

1

0

 , b′2 =

1

1

 .
The lattice is generated by B′ = [b′1,b

′
2] ∈ R2×2. Pictorially, it is shown in

Figure 2.5.

b′1=(1,0)

b′2=(1,1)

Figure 2.5: Lattice generated by b′1,b
′
2

Remark 7. Graphically, the intersection sets are the same as the last ex-

ample. One can check that the lattice generated by B is the same as the one
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generated by B′. In this case, we call B and B′ equivalent, in other words,

equivalent bases generate the same lattice.

Definition 15. The determinant of a lattice L(B) is the n-dimensional vol-

ume of the fundamental parallelepiped P (B), which is spanned by the basis

vectors. In other words,

P (B) = {Bx : 0 6 xi ≤ 1}.

We denote the determinant of L by det(L).

2.6.2 Computational problems

Minkowski’s convex body theorem [53, page 12] asserts that given any convex

set in Rn, which is symmetric with respect to the origin and with volume

greater than 2n det(L), there exists a non-zero lattice point in the set. As a

corollary, Minkowski’s first theorem implies that the length of the shortest

vector in L satisfies

λ1 <
√
n det(L)1/n.

While no known efficient algorithm can find the shortest vector, or even a

vector within the Minkowski’s bound, there are polynomial-time algorithms

to approximate the shortest vector in a lattice. The Lenstra-Lenstra-Lovasz

(LLL) algorithm can find in polynomial-time a vector whose length is at

most (2/
√

3)n times the length of the shortest vector of a lattice [53, page

33]. The Block-Korkine-Zolotarev (BKZ) algorithm [53] can achieve a better

approximation factor.
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2.6.3 Lattices and groups

Let L(B) be a rank n lattice and let L(B′) be a full rank sublattice of L(B).

Since each column vector of B′ is a linear combination of column vectors of

B, there exists a nonsingular integer matrix T ∈ Zn×n such that

B′ = B ∗ T.

Recall that how we define the congruent classes of integers as an additive

group. Let m ∈ Z, then G = 〈m〉 is a subgroup of Z. Two integers a, b are

equivalent if a− b ∈ G. If they are equivalent, we denote this by

a ≡ b (mod m).

Following a similar procedure, we define an equivalent relation on L(B)

as follows: given two lattice points u,v ∈ L(B), u is equivalent to v if and

only if u− v ∈ L(B′). If they are equivalent, then we denote this by

u ≡ v (mod L(B′)).

Furthermore, we can define an operation on the equivalent classes as

follows:

[u] + [v] = [u + v].

One can check that the quotient G = L(B)/L(B′) is an additive group with

respect to the defined operation. And the map

φ : L(B)→ G = L(B)/L(B′)
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given by

u 7→ [u],

is a group homomorphism, where ker(φ) = L(B′).

Remark 8. There are different representations for the elements of G. Two

well known ways are Hermite Normal Form (HNF) and Smith Norm Form

(SNF).

Definition 16. A square nonsingular integer matrix T ∈ Zn×n is in HNF if

it satisfies the following conditions:

• T is upper triangular, i.e., ti,j = 0 if i > j,

• All diagonal elements of T are strictly positive, i.e., ti,i > 0 for 1 6 i 6

n,

• All non diagonal elements are reduced modulo the corresponding diag-

onal element on the same row, i.e., 0 6 ti,j < ti,i if i < j.

Definition 17. A matrix T ∈ Zn×n is in SNF if it satisfies the following

conditions:

• T is diagonal, i.e., ti,j = 0 if i 6= j,

• All diagonal elements are non negative, i.e., ti,i > 0 for 1 6 i 6 n,

• ti,i|ti+1,i+1 for 1 6 i < n.
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Chapter 3

The Deep Hole Problem of

Generalized Reed-Solomon

Codes

3.1 Statement of the problem

Definition 18. Given a generalized Reed-Solomon code RSq(D, k) with |D| =

n, deep holes of RSq(D, k) are vectors in Fn
q whose distance with the code is

n− k. The deep hole problem is to determine all the deep holes.

Remark 9. The problem of deciding whether a received word is a deep hole

for generalized Reed-Solomon codes is co-NP-complete [14, 31].

Definition 19. Given a word u = (u1, u2, . . . , un) ∈ Fn
q , the Lagrange inter-

polating polynomial of u is defined as:

u(x) =
n∑
i=1

ui

∏
j 6=i(x− αj)∏
j 6=i(αi − αj)

∈ Fq[x],
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where D = {α1, . . . , αn} is the evaluation set.

Remark 10. The Lagrange interpolating polynomial is the only polynomial

in Fq[x] of degree less than n that satisfies u(αi) = ui, 1 6 i 6 n.

Definition 20. We say that a function u(x) generates a vector u ∈ Fn
q if

u = (u(α1), u(α2), . . . , u(αn)).

We have the following conclusions:

1. If deg(u) 6 k−1, then u ∈ RSq(D, k) by definition and d(u, RSq(D, k)) =

0.

2. If deg(u) = k, then it can be shown that u is a deep hole by the

following proposition [45], i.e., d(u, RSq(D, k)) = n− k.

Proposition 4. [45] For k 6 deg(u) 6 n− 1, we have the inequality

n− deg(u) 6 d(u,RSq(D, k)) 6 n− k.

When the degree of u(x) becomes larger than k, the situation becomes

complicated for GRS codes. However, in the case of singly-extended GRS

codes defined over fields with odd characteristic, the situation seems to be

much simpler. Cheng and Murray [14] conjectured in 2007 that the vectors

generated by polynomial of degree k are the only possible deep holes.

Conjecture 1. [14] Let q be an odd prime power. A word u is a deep hole

of RSq(Fq, k) if and only if deg(u) = k.

There is an analogous conjecture for deep holes of primitive Reed-Solomon

codes by Wu and Hong [76].
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Conjecture 2. [76] Let q be an odd prime power. A word u is a deep hole

of RSq(F
∗
q, k) if and only if it satisfies one of the following conditions:

1. u(x) = axk + f6k−1(x), a 6= 0,

2. u(x) = bxq−2 + f6k−1(x), b 6= 0,

where f6k−1(x) denotes a polynomial with degree not larger than k − 1.

Remark 11. Parts of the content in this chapter are joint work with Qi

Cheng and Jiyou Li and previously appeared in [13].

3.2 Related work

Cheng and Murray [14] got the first result related to Conjecture 1 by reducing

the problem to the existence of rational points on a hypersurface over Fq.

Theorem 3. [14] Let u ∈ Fq
q such that 1 6 δ := deg(u)− k 6 q − 1− k. If

q > max(k7+ε, δ
13
3
+ε) for some constant ε > 0, then u is not a deep hole.

Following an approach similar to one in Cheng and Wan [15], Li and Wan

[47] improved Theorem 3 with Weil’s character sum estimate.

Theorem 4. [47] Let u ∈ Fq
q such that 1 6 δ := deg(u)− k 6 q − 1− k. If

q > max((k + 1)2, δ2+ε), k > (
2

ε
+ 1)δ +

8

ε
+ 2

for some constant ε > 0, then u is not a deep hole.

Liao [48] established the following result:

27



Theorem 5. [48] Let r > 1 be an integer. For any received word u ∈ Fq
q, r 6

δ := deg(u)− k 6 q − 1− k, if

q > max(2

(
k + r

2

)
+ δ, d2+ε), k > (

2

ε
+ 1)δ +

2r + 4

ε
+ 2

for some constant ε > 0, then d(u, RSq(Fq, k)) 6 q − k − r, which implies

that u is not a deep hole.

Cafure, Matera, and Privitelli [11] proved the following result with tools

of algebraic geometry:

Theorem 6. [11] Let u ∈ Fq
q such that 1 6 δ := deg(u)− k 6 q − 1− k. If

q > max((k + 1)2, 14δ2+ε), k > (
2

ε
+ 1)δ,

for some constant ε > 0, then u is not a deep hole.

Using Weil’s character sum estimate and Li-Wan’s new sieve [46] for dis-

tinct coordinates counting, Zhu and Wan [77] showed the following result:

Theorem 7. [77] Let r > 1 be an integer. For any received word u ∈ Fq
q, r 6

δ := deg(u)− k 6 q − 1− k, there are positive constants c1 and c2 such that

if

δ < c1q
1/2, (

δ + r

2
+ 1) log2(q) < k < c2q,

then d(u, RSq(Fq, k)) 6 q − k − r, which implies that u is not a deep hole.
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3.3 A criterion for deep holes of MDS codes

By definition, deep holes of a linear code are words that have a maximum

distance to the code. In the case of MDS codes, there is another way to

characterize the deep hole, which connects the concept of deep holes with

the MDS codes. The following is well known:

Proposition 5. Let Fq be a finite field with characteristic p. Suppose G is a

generator matrix for an MDS code C = [n, k]q with covering radius ρ = n−k,

then u ∈ Fn
q is a deep hole of C if and only if

G′ =

 G

u


generates another MDS code.

We give a proof below for the sake of completeness.

Proof: ⇒ Suppose u is a deep hole of C = [n, k]q. We show that G′ is

a generator matrix for another MDS code. Equivalently, we show that any

k + 1 columns of G′ are linearly independent.

Assume there exist k + 1 columns of G′ which are linearly dependent.

Without loss of generality, we assume that the first k + 1 columns of G′

are linear dependent. Consider the submatrix consisting of the intersection

elements of the first k+1 rows and the first k+1 columns of G′. Hence there

exist a1, . . . , ak ∈ Fq, not all zero, such that

(u1, . . . , uk+1) = a1r1,k+1 + · · ·+ akrk,k+1,

where ri,k+1 is the vector consisting of the first k+ 1 elements of the i-th row
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of G for 1 6 i 6 k. Let v = a1r1 + · · · + akrk ∈ C, where ri is the i-th row

of G for 1 6 i 6 k. We have

d(u,v) 6 n− (k + 1) < ρ,

which is a contradiction to the assumption that u is a deep hole of C.

⇐ Now suppose G′ is a generator matrix for an MDS code, i.e., any k+ 1

columns of G′ are linearly independent. We show that d(u, C) = n− k.

Assume that d(u, C) < n − k. Equivalently, there exist a1, . . . , ak ∈ Fq

such that u and v = a1r1+ · · ·+akrk have more than k common coordinates,

where ri is the i-th row of G for 1 6 i 6 k. Without loss of generality, we

assume that the first k + 1 coordinates of u and v are the same. Consider

the submatrix consisting of the first k + 1 columns of G′. Since the rank of

the matrix is less than k + 1, thus the first k + 1 columns of G′ are linearly

dependent, which contradicts to the assumption. �

3.4 Classifying deep holes using deep hole trees

3.4.1 Construction of the deep hole tree

Let Fq = {α1, α2, · · · , αq = 0}. The polynomials in Fq[x] of degree less than

q form a Fq-linear space, with a basis

{1, x, . . . , xk−1,
k∏
i=1

(x− αi), . . . ,
q−1∏
i=1

(x− αi)}.
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Given a polynomial f(x) ∈ Fq[x] with degree q − 1 we have

f(x) = l(x) + c1

k∏
i=1

(x− αi) + · · ·+ cq−k

q−1∏
i=1

(x− αi),

where l(x) is of degree less than k. We want to determine when f(x) generates

a deep hole of RSq(Fq, k). By Proposition 5, f(x) generates a deep hole if

and only if

G′ =

 G

u


generates an MDS code, where G is the generator matrix of RSq(Fq, k), and

u = (f(α1), . . . , f(αq)).

Observe that the function, which generates a deep hole for RSq(D2, k),

also generates a deep hole for RSq(D1, k) if D1 ⊂ D2. Instead of considering

the deep holes for RSq(Fq, k) at the first step, we propose to consider a

smaller evaluation set at the beginning and make it increase gradually. To

be more precise, firstly we determine c1 over D1 = {α1, . . . , αk+1}, then we

determine c2 over D2 = {α1, . . . , αk+2} based on the knowledge of c1, so on

and so forth. We present the result as a tree, which we shall call a deep hole

tree.

Remark 12. Wu and Hong [75] showed that if D = Fq \ {γ1, . . . , γr} then

fγi(x) = 1
x−γi generates a deep hole for RSq(D, k), where 1 6 i 6 r.

Definition 21. Let RSq(D, k) be a given code with D = Fq \ {γ1, . . . , γr}.

We will call deep holes generated by f(x) = xk and fγi(x) = 1
x−γi ,1 6 i 6 r,

expected deep holes.

We can also obtain the expected deep holes from Proposition 5.
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Proposition 6. Let RSq(D, k) be a given code with D = {α1, . . . , αn}. We

have

1. If f(x) = xk ∈ Fq[x], then f(x) generates a deep hole.

2. If f(x) = 1
x−γ , γ ∈ Fq \D, then f(x) generates a deep hole.

Proof: Let the generator matrix of RSq(D, k) be

G =



1 1 · · · 1

α1 α2 · · · αn
...

...
. . .

...

αk−11 αk−12 · · · αk−1n


.

Case 1. Let f(x) = xk. Consider the matrix

G′ =



1 1 · · · 1

α1 α2 · · · αn
...

...
. . .

...

αk−11 αk−12 · · · αk−1n

αk1 αk2 · · · αkn


.

For any subset {β1, . . . , βk+1} ⊂ D, the submatrix of G′ corresponding to the

subset is given by

M =



1 1 · · · 1

β1 β2 · · · βk+1

...
...

. . .
...

βk−11 βk−12 · · · βk−1k+1

βk1 βk2 · · · βkk+1


.
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Since det(M) =
∏

16i<j6k+1(βj−βi) 6= 0, any k+1 columns of G′ are linearly

independent. From Proposition 5, f(x) = xk generates a deep hole.

Case 2. Let f(x) = 1
x−γ , where γ ∈ Fq \D. Consider the matrix

G′ =



1 1 · · · 1

α1 α2 · · · αn
...

...
. . .

...

αk−11 αk−12 · · · αk−1n

1
α1−γ

1
α2−γ · · ·

1
αn−γ


.

For any subset {β1, . . . , βk+1} ⊂ D, the submatrix of G′ corresponding to the

subset is given by

M =



1 1 · · · 1

β1 β2 · · · βk+1

...
...

. . .
...

βk−11 βk−12 · · · βk−1k+1

1
β1−γ

1
β2−γ · · ·

1
βk+1−γ


.

Since
∏k+1

i=1 (βi−γ) det(M) = (−1)k
∏

16i<j6k+1(βj−βi), we deduce det(M) 6=

0. From Proposition 5, f(x) = 1
x−γ generates a deep hole.

�

Motivated by Proposition 6, we construct the expected deep hole tree as

follows:

1. The root node is 1 without loss of generality, i.e., c1 = 1.
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2. There are p − k − 1 branches of the tree, each with distinct length in

[2, p − k]. And we designate the sequence of nodes in a branch with

length l as bl.

• If l = p− k, then bp−k = (0, . . . , 0).

• If 2 6 l 6 p − k − 1, then bl = (c1, . . . , cl), where f = 1
x−αl+1

is

equivalent to c1
∏k

i=1(x− αi) + · · ·+ cl
∏k+l−1

i=1 (x− αi).

Proposition 7. The expected deep hole tree is a subtree of the full deep hole

tree.

Proof: This follows from Remark 12. �

Now we can construct the full deep hole tree based on the expected deep

hole tree.

1. The root node is 1 without loss of generality, i.e., c1 = 1.

2. The children {ci+1} of a node ci, 1 6 i 6 q−k−1 are defined as follows:

given the ancestors (c1, . . . , ci), for γ ∈ Fq, if γ is the child of ci in the

expected deep hole tree, then keep it; otherwise, if

c1

k∏
i=1

(x− αi) + · · ·+ ci

k+i−1∏
i=1

(x− αi) + γ
k+i∏
i=1

(x− αi)

satisfies the property of the function which generates a deep hole as in

Proposition 5, then γ is a child of ci.

That is, we keep the nodes of the expected deep hole tree and add additional

ones if necessary. Now we illustrate the procedure to construct the deep hole

tree by some examples.
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Example 12. Let p = 7, k = 2. The evaluation set is ordered such that

αi = i, 1 6 i 6 7. The expected deep hole tree is shown in Figure 3.1.

1

0

0

0

0

5

6

6

4

4

1

⇐ c1, {1, 2, 3}

⇐ c2, {1, 2, 3, 4}

⇐ c3, {1, 2, 3, 4, 5}

⇐ c4, {1, 2, 3, 4, 5, 6}

⇐ c5, {1, 2, 3, 4, 5, 6, 7}

Figure 3.1: Expected deep hole tree for p = 7, k = 2

Remark 13. We notice the following in Figure 3.1:

1. The root corresponds to the evaluation set D1 = {1, 2, 3}. The expected

deep holes are generated by functions equivalent to
∏2

i=1(x− i).

2. In depth 2, the evaluation set is D2 = {1, 2, 3, 4}. One of the expected

deep holes is generated by the function
∏2

i=1(x− i)+
∏3

i=1(x− i), which

is equivalent to f5 = 1
x−5 .

3. In depth 3, the evaluation set is D3 = {1, 2, 3, 4, 5}. One of the expected

deep holes is generated by the function
∏2

i=1(x − i) + 4
∏3

i=1(x − i) +

4
∏4

i=1(x− i), which is equivalent to f6 = 1
x−6 .

4. In depth 4, the evaluation set is D4 = {1, 2, 3, 4, 5, 6}. One of the

expected deep holes is generated by the function
∏2

i=1(x−i)+5
∏3

i=1(x−

i) + 6
∏4

i=1(x− i) + 6
∏5

i=1(x− i), which is equivalent to f0 = 1
x
.
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5. In depth 5, the evaluation set is D5 = {1, 2, 3, 4, 5, 6, 7}. One of the

expected deep holes is generated by the function
∏2

i=1(x− i).

Example 13. Let p = 7, k = 2. The evaluation set is ordered such that

αi = i, 1 6 i 6 7. The full deep hole tree is shown in Figure 3.2.

1

0

0

0

0

5

6

6

31

4

4

1

63

⇐ c1, {1, 2, 3}

⇐ c2, {1, 2, 3, 4}

⇐ c3, {1, 2, 3, 4, 5}

⇐ c4, {1, 2, 3, 4, 5, 6}

⇐ c5, {1, 2, 3, 4, 5, 6, 7}

Figure 3.2: Full deep hole tree for p = 7, k = 2

Remark 14. There are four more nodes here than the expected deep hole

tree. They are all in depth three.

1. The first additional deep hole is generated by the function
∏2

i=1(x−i)+∏3
i=1(x− i) + 3

∏4
i=1(x− i).

2. The second additional deep hole is generated by the function
∏2

i=1(x−

i) +
∏3

i=1(x− i) + 6
∏4

i=1(x− i).

3. The third additional deep hole is generated by the function
∏2

i=1(x −

i) + 5
∏3

i=1(x− i) +
∏4

i=1(x− i).

4. The fourth additional deep hole is generated by the function
∏2

i=1(x−

i) + 5
∏3

i=1(x− i) + 3
∏4

i=1(x− i).
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Example 14. Let p = 11, k = 5. The evaluation set is ordered such that

αi = i, 1 6 i 6 11. The expected deep hole tree and full deep hole tree are

shown in Figure 3.3.

1

0

0

0

0

0

3

1

6

6

4

2

2

6

6

1

⇐ c1, {1, 2, . . . , 6}

⇐ c2, {1, 2, . . . , 7}

⇐ c3, {1, 2, . . . , 8}

⇐ c4, {1, 2, . . . , 9}

⇐ c5, {1, 2, . . . , 10}

⇐ c6, {1, 2, . . . , 11}

Figure 3.3: Expected and full deep hole tree for p = 11, k = 5

Example 15. Let p = 13, k = 7. The evaluation set is ordered such that

αi = i, 1 6 i 6 13. The expected and full deep hole trees are shown in Figure

3.4.

3.4.2 Some lemmas

Lemma 1. In depth d = 2, the nodes are the same in both the expected deep

hole tree and full deep hole tree.

Proof: We show that in depth d = 2, the nodes are the same in both the

expected deep hole tree and full deep hole tree.
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1

0

0

0

0

0

10

12

6

6

9

11

11

7

7

1

⇐ c1, {1, 2, . . . , 8}

⇐ c2, {1, 2, . . . , 9}

⇐ c3, {1, 2, . . . , 10}

⇐ c4, {1, 2, . . . , 11}

⇐ c5, {1, 2, . . . , 12}

⇐ c6, {1, 2, . . . , 13}

Figure 3.4: Expected and full deep hole tree for p = 13, k = 7

In depth d = 2, the evaluation set is D = {α1, α2, . . . , αk+2}. Designate

the set of nodes in depth 2 of the expected deep hole tree as S. Firstly, we

show that |S| = p − (k + 1). This follows from the fact that the equivalent

functions of the form

f(x) =
k∏
i=1

(x− αi) + c2

k+1∏
i=1

(x− αi), c2 ∈ Fp,

for f(x) = xk and fδ(x) = 1
x−δ take the same value at β ∈ D \ {αk+2} but

pairwise different values at αk+2, where δ ∈ Fp \D.

Next, we show that if c2 /∈ S then f(x) =
∏k

i=1(x−αi) + c2
∏k+1

i=1 (x−αi)

does not generate a deep hole. Consider the following matrix

G =



1 1 · · · 1

α1 α2 · · · αk+2

...
...

. . .
...

αk−11 αk−12 · · · αk−1k+2

f(α1) f(α2) · · · f(αk+2)


,
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where f(i) = 0, 1 6 i 6 k, f(αk+1) =
∏k

i=1(αk+1−αi), f(αk+2) =
∏k

i=1(αk+2−

αi) + c2
∏k+1

i=1 (αk+2 − αi).

Case 1. If

f(αk+2) =
k∏
i=1

(αk+2 − αi) + c2

k+1∏
i=1

(αk+2 − αi)

=
k∏
i=1

(αk+2 − αi)[1 + c2(αk+2 − αk+1)]

= 0,

i.e., c2 = 1
αk+1−αk+2

, then there are k + 1 columns of G, namely, the first k

columns and the last column, which are linearly dependent. Thus f(x) does

not generate a deep hole in this case.

Case 2. Suppose f(αk+2) 6= 0. For any k − 1 elements {β1, . . . , βk−1} ⊂

{α1, . . . , αk}, consider the submatrix

G′ =



1 · · · 1 1 1

β1 · · · βk−1 αk+1 αk+2

...
. . .

...
...

...

βk−11 · · · βk−1k−1 αk−1k+1 αk−1k+2

0 · · · 0 f(αk+1) f(αk+2)


.

Thus det(G′) = 0 is equivalent to

f(αk+1)
k−1∏
i=1

(αk+2 − βi) = f(αk+2)
k−1∏
i=1

(αk+1 − βi),
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that is,

f(αk+2)

f(αk+1)
=

k−1∏
i=1

αk+2 − βi
αk+1 − βi

=
k−1∏
i=1

(1 +
αk+2 − αk+1

αk+1 − βi
).

Hence for each subset {β1, . . . , βk−1} ⊂ {α1, . . . , αk}, there is a unique c2

such that det(G′) = 0.

In total, there are k + 1 elements of candidate c2 such that the corre-

sponding f(x) does not generate a deep hole. This implies that if c2 /∈ S

then f(x) does not generate a deep hole.

In conclusion, in depth d = 2, the nodes in the full deep hole tree are

exactly those in the expected deep hole tree. �

Lemma 2. Let p be an odd prime, k > p−1
2
, d > 2 be a positive integer and

Dd = {α1, . . . , αk+d} ⊂ Fp, δ ∈ Fp \Dd. For any γ ∈ Fp, there exists a subset

{β1, . . . , βk} ⊂ Dd such that the matrix

A =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

1
β1−δ · · ·

1
βk−δ

γ


is singular.
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Proof: Note that det(A) = det(A′) + det(A′′), where

A′ =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

1
β1−δ · · ·

1
βk−δ

0


, A′′ =



1 · · · 1 0

β1 · · · βk 0

...
. . .

... 0

βk−11 · · · βk−1k 0

1
β1−δ · · ·

1
βk−δ

γ


.

Since

k∏
i=1

(βi − δ) det(A′) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 − δ · · · βk − δ 1

β1(β1 − δ) · · · βk(βk − δ) δ

...
. . .

...
...

βk−11 (β1 − δ) · · · βk−1k (βk − δ) δk−1

1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 · · · βk 1

β2
1 · · · β2

k 2δ

...
. . .

...
...

βk1 · · · βkk kδk−1

1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 0

β1 · · · βk 1

β2
1 · · · β2

k 2δ

...
. . .

...
...

βk1 · · · βkk kδk−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 d
dx

1

∣∣∣∣
x=δ

β1 · · · βk
d
dx
x

∣∣∣∣
x=δ

β2
1 · · · β2

k
d
dx
x2
∣∣∣∣
x=δ

...
. . .

...
...

βk1 · · · βkk
d
dx
xk
∣∣∣∣
x=δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)k
d

dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1

β1 · · · βk x

β2
1 · · · β2

k x2

...
. . .

...
...

βk1 · · · βkk xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣
x=δ

= (−1)k
d

dx

[ ∏
16i<j6k

(βj − βi)
k∏
i=1

(x− βi)

] ∣∣∣∣
x=δ

,

thus

det(A′) =
(−1)k∏k

i=1(βi − δ)

∏
16i<j6k

(βj − βi)
d

dx

[
k∏
i=1

(x− βi)

] ∣∣∣∣
x=δ

=
(−1)k∏k

i=1(βi − δ)

∏
16i<j6k

(βj − βi)
k∏
i=1

(δ − βi)
k∑
i=1

1

δ − βi

=
∏

16i<j6k

(βj − βi)
k∑
i=1

1

δ − βi
.

It follows that

det(A) = det(A′) + det(A′′)

=
∏

16i<j6k

(βj − βi)
k∑
i=1

1

δ − βi
+ γ

∏
16i<j6k

(βj − βi).
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Hence det(A) = 0 is equivalent to

k∑
i=1

1

δ − βi
+ γ = 0.

Designate the set { 1
δ−βi | i ∈ Dd} as S1 with cardinality k + d. Since

p−1
2
6 k, 2 6 d, from Theorem 1, we conclude that

|k∧S1| > min{p, k|S1| − k2 + 1}

= p,

which implies that for each γ ∈ Fp, there exists a subset {β1, . . . , βk} ⊂ Dk

such that
∑k

i=1
1

δ−βi + γ = 0. �

Lemma 3. Let p be an odd prime, k > p−1
2
, d > 2 be a positive integer and

Dd+1 = {α1, . . . , αk+d+1 = δ} ⊂ Fp. For any δ′ ∈ Fp, δ
′ /∈ Dd+1, γ ∈ Fp, γ 6=

1
δ−δ′ , there exists a subset {β1, . . . , βk} ⊂ Dd+1 \ {δ} such that the matrix

B =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

1
β1−δ′ · · ·

1
βk−δ′

γ


is singular.
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Proof: Note that det(B) = det(B′) + det(B′′), where

B′ =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

1
β1−δ′ · · ·

1
βk−δ′

1
δ−δ′


, B′′ =



1 · · · 1 0

β1 · · · βk 0

...
. . .

... 0

βk−11 · · · βk−1k 0

1
β1−δ′ · · ·

1
βk−δ′

γ − 1
δ−δ′


.

Since

(δ−δ′)
k∏
i=1

(βi−δ′) det(B′) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 − δ′ · · · βk − δ′ δ − δ′

β1(β1 − δ′) · · · βk(βk − δ′) δ(δ − δ′)
...

. . .
...

...

βk−11 (β1 − δ′) · · · βk−1k (βk − δ′) δk−1(δ − δ′)

1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 · · · βk δ

β2
1 · · · β2

k δ2

...
. . .

...
...

βk1 · · · βkk δk

1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1

β1 · · · βk δ

β2
1 · · · β2

k δ2

...
. . .

...
...

βk1 · · · βkk δk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)k
∏

16i<j6k

(βj − βi)
k∏
i=1

(δ − βi),

we have

det(B′) =
(−1)k

(δ − δ′)
∏k

i=1(βi − δ′)

∏
16i<j6j

(βj − βi)
k∏
i=1

(δ − βi)

=
1

δ − δ′
∏

16i<j6k

(βj − βi)
k∏
i=1

βi − δ
βi − δ′

,

and

det(B′′) = (γ − 1

δ − δ′
)
∏

16i<j6k

(βj − βi).

Hence

det(B) =
1

δ − δ′
∏

16i<j6k

(βj − βi)
k∏
i=1

βi − δ
βi − δ′

+ (γ − 1

δ − δ′
)
∏

16i<j6k

(βj − βi)

=
∏

16i<j6k

(βj − βi)

[
1

δ − δ′
k∏
i=1

βi − δ
βi − δ′

+
γ(δ − δ′)− 1

δ − δ′

]

=

∏
16i<j6k(βj − βi)

δ − δ′

[
k∏
i=1

βi − δ
βi − δ′

+ γ(δ − δ′)− 1

]
.

It follows that det(B) = 0 is equivalent to

k∏
i=1

(1 +
δ′ − δ
βi − δ′

) = 1− γ(δ − δ′).

If |Dd| = k+ 2, we consider the dual version of the equality. From Corol-

lary 1, there exist two distinct elements x, y ∈ Dd such that (1 + δ′−δ
x−δ′ )(1 +

δ′−δ
y−δ′ ) = θ for any θ ∈ F∗p, hence there exist k distinct elements in Dd such
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that
k∏
i=1

(1 +
δ′ − δ
αi − δ′

) = 1− γ(δ − δ′),

for any γ 6= 1
δ−δ′ .

If |Dd| > k + 2, we select a subset D′ ⊂ Dd such that |D′| = k + 2, then

apply the same argument as above. �

Lemma 4. Let p be an odd prime, k > p−1
2
, d > 2 be a positive integer and

Dd+1 = {α1, . . . , αk+d+1 = δ} ⊂ Fp. For any γ ∈ Fp, γ 6= δk, there exists a

subset {β1, . . . , βk} ⊂ Dd+1 \ {δ} such that the matrix

C =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

βk1 · · · βkk γ


is singular.

Proof: Note that det(C) = det(C ′) + det(C ′′), where

C ′ =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

βk1 · · · βkk δk


, C ′′ =



1 · · · 1 0

β1 · · · βk 0

...
. . .

... 0

βk−11 · · · βk−1k 0

βk1 · · · βkk γ − δk


.
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Since

det(C ′) =
∏

16i<j6k

(βj − βi)
k∏
i=1

(δ − βi),

det(C ′′) =
∏

16i<j6k

(βj − βi)(γ − δk),

we have

1∏
16i<j6k(βj − βi)

det(C) =
k∏
i=1

(δ − βi) + γ − δk.

Thus det(C) = 0 is equivalent to

k∏
i=1

(δ − βi) = δk − γ.

Denote S = {δ − α | α ∈ D}. If |Dd| = k + 2, we consider the dual version

of the equality. From Corollary 1, there exist two distinct elements x, y ∈ S

such that xy = θ for any θ ∈ F∗p, hence there exist k distinct elements in S

such that
k∏
i=1

(δ − βi) = δk − γ,

for any γ 6= δk.

If |Dd| > k+ 2, we select a subset S ′ ⊂ S such that S = k+ 2, then apply

the same argument as above. �

3.4.3 The main theorem and the proof

In this section, we establish the following theorem:

Theorem 8. Let p > 2 be a prime number, k > p−1
2
, D = {α1, α2, . . . , αn}

with k < n 6 p. The only deep holes of RSp(D, k) are generated by functions
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which are equivalent to the following:

f(x) = xk, fδ(x) =
1

x− δ
,

where δ ∈ Fp \ D. Here two functions f(x) and g(x) are equivalent if and

only if there exists a ∈ F∗p and h(x) ∈ Fp[x] with degree less than k such that

g(x) = af(x) + h(x).

The basic idea of the proof of Theorem 8 is reducing the problem to some

additive number theory problems.

Proof: Proceed by induction on the depth of the full deep hole tree.

Basis case. This follows from Lemma 1.

Inductive step. We show that if the set of nodes of the full deep hole tree

coincide with the nodes of the expected deep hole tree in the same depth

d > 2, then there are no additional nodes in depth d+ 1 except the expected

ones. Denote the corresponding evaluation set by Dd = {α1, . . . , αk+d} in

depth d and Dd+1 = {α1, . . . , αk+d, αk+d+1 = δ} in depth d + 1. In order to

show there are no new nodes in depth d+1, there are three cases to consider.

Case 1: We show the branch, which corresponds to the function f = 1
x−δ , will

not grow in depth d+ 1. It suffices to show that there exists {β1, . . . , βk} ⊂
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{α1, . . . , αk+d} such that for any γ ∈ Fp and matrix

A =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

1
β1−δ · · ·

1
βk−δ

γ


,

we have det(A) = 0. This follows from Lemma 2.

Case 2: We show that the branch, which corresponds to the function f =

1
x−δ′ , where δ′ /∈ Dk+1, has only one child in depth d+ 1. It suffices to show

that there exists {β1, . . . , βk} ⊂ Dd such that for any δ′ /∈ Dd+1, γ ∈ Fp, γ 6=
1

δ−δ′ and matrix

B =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

1
β1−δ′ · · ·

1
βk−δ′

γ


,

we have det(B) = 0. This follows from Lemma 3.

Case 3: We show that the branch, which corresponds to the function f = xk

has only one child in depth d + 1. It suffices to show that there exists
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{β1, . . . , βk} ⊂ Dd such that for any γ 6= δk and matrix

C =



1 · · · 1 1

β1 · · · βk δ

...
. . .

...
...

βk−11 · · · βk−1k δk−1

βk1 · · · βkk γ


we have det(C) = 0. This follows from Lemma 4.

From the principle of induction, the theorem is proved. �
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Chapter 4

The Discrete Logarithm

Problem over Finite Fields

4.1 Statement of the problem

We start by defining the discrete logarithm problem over finite fields.

Definition 22. Let Fq be a finite field of characteristic p and g ∈ Fq be a

primitive element. Then for each α ∈ F∗q, there exists an integer n such that

gn = α, which is denoted by logg(α). The discrete logarithm problem over

finite fields is determining logg(α) given α.

Example 16. Let p = 11 be a prime number. One can check that 2 is a

primitive root of Z/11Z, i.e., (Z/11Z)∗ = 〈2〉. It is easy to compute the

power of 2 modulo 11 using modular exponentiation. The result is shown in

Table 4.1.

Conversely, we can compute the discrete logarithms of elements based on

2. The result is shown in Table 4.2.
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x 1 2 3 4 5 6 7 8 9 10
2x (mod 11) 2 4 8 5 10 9 7 3 6 1

Table 4.1: Modular exponentiation in Z/11Z

x 1 2 3 4 5 6 7 8 9 10
log2(x) (mod 11) 10 1 8 2 4 9 7 3 6 5

Table 4.2: Discrete logarithms in Z/11Z

Example 17. Consider F23 = F2[x]/(f(x)), where f(x) = x3+x+1 ∈ F2[x]

is irreducible. Let g be a root of f(x). We compute the power of g using

modular exponentiation and discrete logarithms of α ∈ F∗23. The results are

shown in Table 4.3 and Table 4.4, respectively.

x gx

1 g
2 g2

3 g + 1
4 g2 + g
5 g2 + g + 1
6 g2 + 1
7 1

Table 4.3: Modular exponentiation in F23

From the above examples, we can see that computing exponentiations and

discrete logarithms are inverse operations. If the field size is not too large

then both computations are easy. However, in the general case, computing

exponentiation is easy and computing discrete logarithms is hard in the sense

that we have a polynomial-time algorithm for the former problem (such as

exponentiating by squaring) but no such an algorithm for the latter problem.

Because of this property, the discrete logarithm problem over finite fields is

considered a candidate of one-way function used to construct cryptographic

schemes. For example Diffie and Hellman proposed a key exchange protocol
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α logg(α)
g 1
g2 2

g + 1 3
g2 + g 4

g2 + g + 1 5
g2 + 1 6

1 7

Table 4.4: Discrete logarithms in F23

[20] based on the hardness of discrete logarithm problem over finite fields.

ElGamal proposed a cryptosystem [23] based on the hardness of discrete

logarithm problem over finite fields .

Remark 15. Parts of the content in this chapter are joint work with Qi

Cheng and Daqing Wan and previously appeared in [16].

4.2 Related work

Denote

LN(α) = exp(O((logN)α(log logN)1−α)),

LN,c(α) = exp((c+ o(1))((logN)α(log logN)1−α)).

4.2.1 Generic attacks

Consider the problem of solving discrete logarithms over a cyclic group G

with |G| = N . Let g be a primitive element of G. In the first step, we

assume G is a general group, that is, we do not have additional information

on the structure of G.

Shanks [65] proposed the well known baby-step giant-step algorithm,
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which is deterministic. The basis idea of the algorithm is that we can write

logg(α) = i0m+ j0, where m = d
√
Ne and 0 6 i0 6 m− 1, 0 6 j0 6 m. The

algorithm consists of two steps:

• Giant-step: compute a list of L = {αg−j | 0 6 j 6 m} and sort the

list,

• Baby-step: for each 0 6 i 6 m− 1, compute gim; if gi0m = αg−j0 ∈ L,

stop and return i0, j0.

From the baby-step, we get the relation gi0m = αg−j0 , which implies

i0m = logg(α)− j0.

Thus we have

logg(α) = i0m+ j0.

The running time of Shanks’ algorithm is O(
√
N). The space requirement is

O(
√
N).

Pollard [58] proposed two probabilistic algorithms, namely, the so called

kangaroo method and rho method. Both of the algorithms run in expected

time O(
√
N) with less space.

4.2.2 Index calculus method

In [55] and [56], the author attributed the basic ideas of index calculus method

to Western and Miller [74] and Kraitchik [51]. And the author attributed

the invention of the index calculus method to Adleman [1], Merkle [52],

and Pollard [58]. This algorithm is a probabilistic one. It is based on the
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fundamental property of discrete logarithms that

log
n∏
i=1

αi =
n∑
i=1

logαi.

If we get one relation about a set of variables α1, . . . , αm of the form

m∏
i=1

αeii = 1,

then it implies
m∑
i=1

ei logg αi = 0.

If we get sufficiently many such relations, we can solve the linear system

to get the discrete logarithms logg αi for 1 6 i 6 m. In the index calculus

method, this set is called a factor base. The concept of smoothness also plays

an important role in the calculus method.

The general framework consists of three phases:

• Phase 1. Finding relations among the logarithms of elements in the

factor base (such as via guessing and checking),

• Phase 2. Solving the linear equations to get the logarithms of elements

in the factor base,

• Phase 3. Finding individual logarithm by reducing it to the factor base.

Historically, Adleman [1] published the first subexponential time algo-

rithm for the discrete logarithm over finite fields. The original algorithm

solves this problem in a prime field, that is, the field size is a prime. The

asymptotic running time is L(1/2). Adleman’s algorithm relies on similar

ideas used by Morrison and Brillhart [54] for factoring integers. They both
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make use of the concepts of a factor base and smoothness of an element

over the factor base. We describe a modified version of Adleman’s algorithm

briefly according to the general framework. Suppose we are going to solve

the discrete logarithm in Fq where q is a prime and q − 1 =
∏i=n

i=1 p
ei
i . Sup-

pose F∗q = 〈g〉 and we want to compute logg(α). The plan is to solve logg(α)

(mod p
ej
j ), 1 6 j 6 n first, then calculate logg(α) (mod q − 1) using Sun Zi

Theorem (Chinese Remainder Theorem).

1. Choose a bound B = L(1/2, c), where c is a small constant. The factor

base includes all positive prime numbers less than B. Randomly guess

an integer e and test whether ge is B-smooth. If so, we get

ge =
∏
p<B

pep ,

which implies

e =
∑
p<B

ep logg(p).

Repeat this until enough linear equations are collected.

2. Solve the linear equations using Gaussian elimination over Z
p
ej
j

. Thus

we get the discrete logarithms of elements in the factor base.

3. To compute the target logg(α), we repeat choosing a random integer

m until αgm is B-smooth. If so, then we can compute logg(α) from the

knowledge of the discrete logarithms of elements in the factor base.

Hellman and Reyneri [33] generalized Adleman’s algorithm to a field of

fixed characteristic p ∈ Z. The asymptotic running time of their algorithm is

L(1/2). In a field of composite order |Fq| = pk, the elements are represented
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as polynomials. In this case, Hellman and Reyneri [33] make use of smooth-

ness of a polynomial. Consider the field F2k = F2[x]/(f(x)) for example,

where f(x) ∈ F2[x] is irreducible with degree k. Suppose F∗2k = 〈g〉 and we

want to determine logg(α). We still follow the general framework to describe

the modified algorithm.

1. Choose a polynomial degree bound B = L(1/2, c), where c is a small

constant. The factor base consists of all irreducible polynomials with

degree less than B. Randomly guess an integer 0 < e < 2k− 1 and test

whether ge is B-smooth. If so, we get

ge =
∏

deg(pi(x))<B

pi(x)epi(x) ,

which gives the relation

e =
∑

deg pi(x)<B

epi(x) logg(pi(x)).

Continue the procedure until we collect enough relations.

2. Solve the linear system over Z/(2k−1)Z to find the discrete logarithms

of elements in the factor base.

3. To compute the target logg(α), we repeat choosing a random integer

m until αgm is B-smooth. If so, then we can compute logg(α) from the

knowledge of the discrete logarithms of elements in the factor base.

To improve the time complexity of Adleman’s algorithm, one can speed

up the process of finding relations, which plays an essential role in the al-

gorithm. Blake, Mullin, and Vanstone [8] proposed to do so using the idea
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of systematic equations. Generalizing the concept of systematic equations,

Coppersmith [19] developed the first algorithm with asymptotic time L(1/3)

for a field of characteristic 2. Coppersmith’s algorithm takes advantage of

the Frobenius map and the special representation of the field. Explicitly, let

F2n = F2[x]/(P (x)), where P (x) = xn+Q(x) is irreducible over F2 of degree

n and Q(x) is a low degree polynomial. He chooses k a power of 2 near
√
n

and computes n = rk− s, where 0 6 s < k. Coppersmith then generates his

systematic equations through the following way: firstly, he chooses a pair of

low degree polynomials A(x) and B(x) such that gcd(A(x), B(x)) = 1. Let

C(x) = xrA(x) +B(x) and D(x) = C(x)k. Then, he reduces the following:

D(x) = C(x)k mod P (x)

= xrkA(x)k +B(x)k mod P (x)

= xsQ(x)A(x)k +B(x)k mod P (x).

Both sides of the systematic equation have degrees O(
√
n). Thus the prob-

ability for both sides to be smooth is much higher than gxe for a randomly

chosen 0 6 e < 2k − 1.

Semaev [64] generalized Coppersmith’s algorithm to any field of fixed

characteristic.

Adleman and Demarrais [3] developed the first subexponential algorithm

for discrete logarithms over all finite fields Fpn with expected running time

L(1/2). Their algorithm consists of two subroutines, both of which are some

variations of the index calculus method.

• If n < p, they represent the field Fpn as O/(p), where O is some number

ring and (p) is the prime ideal generated by p. An element α ∈ O is
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smooth if the prime ideals in the factorization of (α) have norms below

a given bound.

• When n > p, they represent Fpn by Fp[x]/(f(x)), where f(x) ∈ Fp[x] is

irreducible with degree n. The element g(x) ∈ Fp[x]/(f(x)) is smooth

if its irreducible factors all have degree less than a given bound.

4.2.3 Number field sieve and function field sieve

The state-of-the-art general-purpose methods for solving the discrete loga-

rithm problem over finite fields are the number field sieve and the function

field sieve, which originated from the index-calculus algorithm. All these al-

gorithms run in subexponential time. For a finite field Fq, successful efforts

have been made to reduce the heuristic complexity of these algorithms from

Lq(1/2) to Lq(1/3).

The number field sieve technique was originally developed to factor big

integers N [10, 44]. The generalized number field sieve is the state-of-the-art

general-purpose algorithm for factorization.

Inspired by the technique of number field sieve to factor large integers,

Gordon [28] introduced the idea of using the number field sieve to solve

discrete logarithms in a finite field Fp of prime order. The asymptotic running

time of Gordon’s algorithm is Lp(1/3).

Let m be an integer and f(x) ∈ Z[x] be an irreducible monic polynomial

such that (p,∆f ) = 1 and f(m) ≡ 0 (mod p). Also, let α ∈ C be a root of

f(x), which is used to construct a number field K = Q(α). Let OK be the

ring of algebraic integers in K. Choosing p = (p, α−m), Gordon represents
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the filed as

Fp
∼= O/p.

Subsequently, the number field sieve method was investigated further by

[40, 61, 62, 63, 72, 73].

Adleman [2] firstly applied the function field sieve to solve discrete loga-

rithms in a field of small characteristic, which is an analogous of the number

field sieve. Later, Adleman and Huang [4] made an improvement on the

function field sieve. Function field sieve was further studied in [29, 39].

Joux and Lercier [41] developed some variations of function field sieve,

which applies to Fqn where q is a medium-sized prime power. The expected

running time is L(1/3). Their key idea is to speed up the sieving stage by

an efficient representation of the field.

Joux, Lercier, Smart and Vercauteren [42] studied several variations of

the number field sieve, which applies to the case Fpn , where p is a medium

to large prime. The asymptotic running time is L(1/3) if n is not too big.

Remarkably, the combination of the above two algorithms solve the dis-

crete logarithms in Fpn in all cases with heuristic time complexity Lpn(1/3).

4.2.4 Recent breakthroughs

Joux [38] designed the first algorithm with heuristic running time L(1/4) to

compute discrete logarithms in a field of small characteristic. Joux’s approach

combines the features of of Coppersmith’s algorithm [19] and Joux-Lercier’s

method [41] and Joux’s pinpointing technique [37]. Joux’s L(1/4) algorithm

relies on three basic ideas as follows:

1. Joux represents the field Fqk as Fq[x]/(f(x)) where f(x) is an irre-
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ducible factor of h1(x)xq − h0(x), where h0(x) and h1(x) are of low

degree. The advantage of this representation is that in such a field one

has the relation

xq =
h0(x)

h1(x)
.

2. Observing the well known fact that

Xq −X =
∏
α∈Fq

(X − α),

Joux uses this equation as his source systematic equation.

3. To amplify the initial systematic equations, Joux makes use of the

following homographies:

X → aX + b

cX + d
.

Also, Gologlu, Granger, McGuire, and Zumbragel [27] made an improve-

ment in the case when characteristic is 2.

Finally, these sequence of breakthrough results [27, 37, 38] recently on

the discrete logarithm problem over finite fields culminated in a discovery

of a quasi-polynomial algorithm for small characteristic fields, which we call

BGJT-algorithm [6, 7]. For a finite field Fq2k with k < q, their algorithm

runs in heuristic time qO(log k). This result, if correct, essentially removes

the discrete logarithm over small characteristic fields from hard problems in

cryptography.
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4.3 Right cosets of PGL2(Fq) in PGL2(Fq2)

Both [7] and [38] need to compute the right cosets of PGL2(Fq) in PGL2(Fq2)

as the preliminary. In this section, we presents an classification of such right

cosets.

Proposition 8. Let b ∈ Fq2 , c ∈ Fq2 \ Fq be variables. Given

v =
bq − b
c− cq

∈ Fq, w =
1− bcq

c− cq
∈ Fq2 , (4.1)

let (b1, c1), (b2, c2) be any two pairs satisfying (4.1). Let

A1 =

 1 b1

c1 1

 , A2 =

 1 b2

c2 1

 .

If both A1 and A2 are not singular, then they are in the same right coset of

PGL2(Fq) in PGL2(Fq2).

Proof: From (4.1), we deduce

 (c− wq

v
)q+1 = (w

q

v
)q+1 − 1

v

b = −vc+ w + wq.

Without loss of generality, assume γq+1 = (w
q

v
)q+1 − 1

v
, ζq+1

1 = ζq+1
2 = 1 and

c1 =
wq

v
+ ζ1γ, c2 =

wq

v
+ ζ2γ,

where ζ1, ζ2 are two distinct (q + 1)-th roots of unity. Hence

b1 = −vc1 + w + wq = w − vζ1γ,
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b2 = −vc2 + w + wq = w − vζ2γ.

It follows that

A1 =

 1 w − vζ1γ
wq

v
+ ζ1γ 1

 , A2 =

 1 w − vζ2γ
wq

v
+ ζ2γ 1

 .

Since A2 is not singular, we deduce

A−12 =
1

det(A2)

 1 −w + vζ2γ

−wq

v
− ζ2γ 1

 .

Thus,

A1A
−1
2 =

1

det(A2)

 (vζ1γ − w)(w
q

v
+ ζ2γ) + 1 −v(ζ1γ − ζ2γ)

ζ1γ − ζ2γ (vζ2γ − w)(w
q

v
+ ζ1γ) + 1


=

1

det(A2)

 m11 m12

m21 m22

 .

Note that m12 = −vm21,m11−m22 = (wq +w)m21. The last step is to prove

m11

m21
∈ Fq. Let δ = m11

m21
. Note that

δ ∈ Fq ⇐⇒ δ = δq

⇐⇒ m11m
q
21 = mq

11m21

⇐⇒ m11m
q
21 ∈ Fq.

Since γq+1 = (w
q

v
)q+1 − 1

v
= wq+1−v

v2
, we have wq+1

v
= vγq+1 + 1. Hence

m11 = wqζ1γ + vζ1γζ2γ − wζ2γ − vγq+1.
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Thus

m11m
q
21 = γq+1{(wq +w)− (wζq1ζ2 +wqζ1ζ

q
2) +v(ζ2γ+ ζq2γ

q)−v(ζ1γ+ ζq1γ
q)}.

Since

γq+1 ∈ Fq,

wq + w ∈ Fq, wζ
q
1ζ2 + wqζ1ζ

q
2 ∈ Fq,

ζ2γ + ζq2γ
q ∈ Fq, ζ1γ + ζq1γ

q ∈ Fq,

we deduce m11m
q
21 ∈ Fq, which implies m11

m21
∈ Fq and m22

m21
∈ Fq. Thus

A1A
−1
2 =

ζ1γ − ζ2γ
det(A2)

 m11

m21
−v

1 m22

m21


∈ PGL2(q),

which implies that A1 and A2 are in the same right coset of of PGL2(Fq) in

PGL2(Fq2). �

Remark 16. Following an approach similar to this one, one can also prove

that A1 and A2 are in the same left coset of of PGL2(Fq) in PGL2(Fq2).

Proposition 9. Let F∗q2 = 〈g〉. Each representative of a right coset of

PGL2(Fq) in PGL2(Fq2) is equivalent to one of the following four types:

1.

 1 b

c 1

, where b, c ∈ Fq2.
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2.

 1 b1

g d2g

, where b1, d2 ∈ Fq.

3.

 0 1

c d

, where c, d ∈ Fq2.

4.

 1 0

c d

, where c, d ∈ Fq2.

Proof: We determine the equivalence relation case by case. Let

 a b

c d

 =

 a1 + a2g b1 + b2g

c1 + c2g d1 + d2g


be a representative of a right coset of PGL2(Fq) in PGL2(Fq2), where

a1, a2, b1, b2, c1, c2, d1, d2 ∈ Fq.

First of all, if a = 0, then the matrix can be reduced to type (3) after

dividing b since b 6= 0. In the following, we assume a 6= 0. Without loss of

generality, we assume a = 1 and consider the matrix

 1 b1 + b2g

c1 + c2g d1 + d2g

 .

We have the following cases:

Case I. b2 6= 0

Subtracting d2
b2

times the first row from the second row, the matrix be-
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comes  1 b

c′ d′1

 ,

where c′ ∈ Fq2 , d
′
1 ∈ Fq.

1. If d′1 = 0, the matrix is equivalent to type (4).

2. If d′1 6= 0, the matrix is equivalent to type (1) since we can divide the

second row by d′1.

Case II. b2 = 0

If b1 = 0, then the matrix is equivalent to type (4).

If b1 6= 0, then the matrix becomes

 1 b1

c′ = c′1 + c′2g d2g


after subtracting d1/b1 times first row from the second row.

1. If d2 = 0, then the matrix can be reduced to type (4).

2. Assume d2 6= 0.

(a) If c′1 = 0, c′2 = 0, then the matrix can be reduced to type (3).

(b) If c′1 = 0, c′2 6= 0, then the matrix can be reduced to type (2) by

dividing the second row by c′2.

(c) If c′1 6= 0, subtracting 1
c′1

times the second row from the first row,

we get  − c′2
c′1
g b′

c′ d2g

 .
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Dividing the matrix by g, we get

 − c′2
c′1

b′g−1

c′g−1 d2

 .

i. If c′2 = 0, the matrix can be reduced to type (3).

ii. If c′2 6= 0, dividing the first row by − b′2
b′1

and the second row by

d2, the matrix is reduced to type (1).

�

Proposition 10. Let

 0 1

c d

 =

 0 1

c1 + c2g d1 + d2g


be one representative of a right coset of PGL2(Fq) in PGL2(Fq2), where

c1, c2, d1, d2 ∈ Fq. Then it is equivalent to one of the following types:

1.

 0 1

g β2g

, where β2 ∈ Fq.

2.

 0 1

1 + α2g β2g

, where α2, β2 ∈ Fq.

Proof: There are two cases to consider.

1. Assume c1 = 0. If d1 6= 0, subtracting d1 times the first row from the

second row, we get  0 1

c2g d2g

 .
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If d1 = 0, then the matrix is of the above form already. Since c2 6= 0,

after dividing the second row by c2, the matrix is reduced to type (1).

2. Assume c1 6= 0. If d1 6= 0, subtracting d1 times the first row from the

second row, we get  0 1

c1 + c2g d2g

 .

If d1 = 0, then the matrix is of the above form already. Dividing the

second row by c1, we get

 0 1

1 + c2g
d2
c1
g

 .

Thus the matrix is reduced to type (2).

�

Similarly, we have the following conclusion.

Proposition 11. Let

 1 0

c d

 =

 1 0

c1 + c2g d1 + d2g


be one representative of a right coset of PGL2(Fq) in PGL2(Fq2). Then it

is equivalent to one of the following types:

1.

 1 0

α2g g

, where α2 ∈ Fq.
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2.

 1 0

α2g 1 + β2g

, where α2, β2 ∈ Fq.

4.4 Where does the computation of the orig-

inal BGJT algorithm really happen?

Suppose that we need to compute discrete logarithm in the field Fq2k , where

q > k > 1. A main technique in [6], which bases on smooth polynomials, is

to find a nice ring generator ζ of Fq2k = Fq2 [ζ] over Fq2 satisfying

xq = h0(x)/h1(x),

where h1 and h0 are polynomials of very small degree. In many places of

the computation, polynomial degrees can be dropped quickly by replacing xq

with h0(x)/h1(x), which allows an effective attack based on smoothness.

The main issue with this approach is that the computation really takes

place in the ring Fq2 [x]/(xqh1(x) − h0(x)), where in the analysis of [6], the

computation is assumed to be in Fq2 [x]/(f(x)), where f(x) is the minimal

polynomial of ζ over Fq2 . Since f(x) divides xqh1(x) − h0(x), there is a

natural surjective ring homomorphism

Fq2 [x]/(xqh1(x)− h0(x))→ Fq2 [x]/(f(x)).

But the former ring, which is a direct sum of the latter field (if f(x) is a simple

factor of xqh1(x)−h0(x)) and a few other rings, is much larger in many cases.

The computation thus can be affected by the other rings, rendering several
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conjectures in [6, 38] problematic.

Interestingly, for the Kummer extension of the form Fq2 [x]/(xq−1 − a),

everything is fine. This is because the difference between the ring Fq2 [x]/(xq−

ax) and the field is rather small. The discrete logarithm of x, which is a zero

divisor in the former ring, can be computed easily in the latter field, since it

belongs to a subgroup of a small order (dividing (q− 1)(q2− 1)) in the field.

This is consistent with all announced practical implementations.

However, in case of more difficult non-Kummer extensions, we discover

that there are multiple problems.

1. First, if xqh1(x) − h0(x) has linear factors over Fq2 , the discrete loga-

rithms of these linear factors cannot be computed in polynomial time,

invalidating a basic assumption in [6]. One can verify that most of

polynomials given in [38, Table 1] have linear factors.

2. Second, even at the stage of finding discrete logarithms of linear el-

ements, we show that there are additional serious restrictions on the

choice of h0(x) and h1(x). For example, if xqh1(x)− h0(x) has another

irreducible factor over Fq2 of degree ki satisfying gcd(ki, k) > 1, we do

not see how the algorithm can work. We propose to select h0(x) and

h1(x) such that xqh1(x)−h0(x) has only one irreducible factor f(x) over

Fq2 of degree k, and all other irreducible factors over Fq2 have degrees

bigger than one and relatively prime to k. Under these assumptions, we

give an algorithm which will find the discrete logarithm of any linear

element in polynomial time, under a heuristic assumption supported

by our theoretical results and numerical data.

3. For a non-linear element, a clever idea, the so-called QPA-descent, was
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proposed in [6] to reduce its degree, until its relation to linear factors

can be found. While the above two problems about linear factors can be

fixed under our newly improved heuristic assumptions, another serious

problem is that there are traps in the QPA-descent. For these traps, the

QPA-descent described in [6] will not work at all. They will also block

the descent of other elements, hence severely affecting the usefulness of

the new algorithm.

4.5 Finding primitive elements and discrete

logarithms of linear factors

4.5.1 Using SNF of relation matrices to determine group

structures

Firstly, we recall the definition of the finitely generated group [21].

Definition 23. Let G be a group written multiplicatively. It is finitely gen-

erated if there exists {g1, . . . , gn} ⊂ G such that for any α ∈ G, there exist

e1, . . . , em ∈ Z such that

α =
m∏
i=n

geii .

The following is the well known fundamental theorem of finitely generated

abelian groups [21]:

Theorem 9. Let G be a finitely generated abelian group. Then there is an

isomorphism

G ∼= Zr × Z/n1Z× Z/n2Z× · · · × Z/nsZ,
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where r, s > 0, n1 > 2 and ni|ni+1 for 1 6 i 6 s − 1. Furthermore, the r

and ni are uniquely determined by G. The integer r is called the free rank

or Betti number of G and n1, n2, . . . , ns are called the invariant factors of G.

The isomorphic expression of G is called the invariant factor decomposition

of G.

Let G be a finite abelian group of order |N |. Enge [24] developed an

algorithm to determine the structure of G. The basic idea is to compute

the SNF of the relation lattice. We describe this method briefly. Let the

factor base S = {g1, g2, . . . , gn} be sufficiently large such that it generates G.

Consider the group homomorphism

φ : Zn → G

given by

(e1, e2, . . . , en) 7→
n∏
i=1

geii .

Since S generates G, φ is surjective and its kernel Γ is a full-dimensional

lattice of determinantN such thatG ∼= Zn/Γ. Thus the object of determining

the structure of G is reduced to determining the structure of Zn/Γ.

Enge’s algorithm thus consists of two phases:

1. Collecting relations to construct a relation matrix A which approaches

Γ well by some criterion.

2. Computing the SNF of A to find the invariant factors of G and the

generators.
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4.5.2 Finding the discrete logarithm of the linear fac-

tors

We first review the new algorithm in [6, 7]. Suppose that the discrete loga-

rithm is sought over the field Fq2k with k < q. For other small characteristic

fields, for example, Fpk ( p < k ), one first embeds it into a slightly larger

field:

Fpk → Fqk → Fq2k

where q = pdlogp ke. A quasi-polynomial time algorithm for Fq2k implies a

quasi-polynomial time algorithm for Fpk . We assume that

Fq2k = Fq2 [ζ]

where ζq = h0(ζ)
h1(ζ)

. Here h0 and h1 are polynomials over Fq2 relatively prime

to each other, and of a constant degree. In particular, deg(h0) < q+deg(h1).

To find such a nice ring generator ζ, one searches over all the polynomials

h0(x) and h1(x) of a constant degree in Fq2 [x], until h1(x)xq − h0(x) has an

irreducible factor f(x) of degree k with multiplicity one. Let the factorization

be

xqh1(x)− h0(x) = f(x)
l∏

i=1

(fi(x))ai (4.2)

where the polynomials f(x) and fi(x)’s are irreducible and pair-wise prime.

Denote the degree of fi(x) by ki.

Remark 17. In practice, it is enough to search only a quadratic polynomial

h0 (not necessarily monic) and a monic linear polynomial h1 in Fq2 [x]. How-

ever, proving the existence of such polynomials for any constant degree such
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that xqh1(x)− h0(x) has the desired factorization pattern seems to be out of

reach by current techniques.

For simplicity we assume that h1(x) is monic and linear. Most of the

known algorithms start by computing the discrete logarithms of elements in

a special set called a factor base, which usually contains small integers, or low

degree polynomials. In the new approach [6, 7, 38], the factor base consists

of the linear polynomials ζ + α for all α ∈ Fq2 , and an algorithm is designed

to compute the discrete logarithms of all the elements in the factor base. It

is conjectured that this algorithm runs in polynomial time. One starts the

algorithm with the identity:

∏
α∈Fq

(x− α) = xq − x.

Then apply the Möbius transformation

x 7→ ax+ b

cx+ d

where the matrix m =

a b

c d

 ∈ F2×2
q2 is nonsingular. We have

∏
α∈Fq

(
ax+ b

cx+ d
− α) = (

ax+ b

cx+ d
)q − ax+ b

cx+ d
.
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Clearing the denominator:

(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (ax+ b)q(cx+ d)− (ax+ b)(cx+ d)q

= (aqxq + bq)(cx+ d)− (ax+ b)(cqxq + dq).

Multiplying both sides by h1(x) and replacing xqh1(x) by h0(x), we obtain

h1(x)(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (aqh0(x) + bqh1(x))(cx+ d)− (ax+ b)(cqh0(x) + dqh1(x))

(mod xqh1(x)− h0(x)).

If the right-hand side can be factored into a product of linear factors over

Fq2 , we obtain a relation of the form

λe0
q2∏
i=1

(x+ αi)
ei =

q2∏
i=1

(x+ αi)
e′i (mod xqh1(x)− h0(x)), (4.3)

where λ is a multiplicative generator of Fq2 , α1 = 0, α2, α3, . . . , αq2 is a

natural ordering of elements in Fq2 , and ei’s and e′i’s are non-negative integers.

Following the same notations in [6], let Pq be a set of representatives of

the right cosets of PGL2(Fq) in PGL2(Fq2). Note that the cardinality of Pq

is q3 + q. It was shown in [6, 38] that the matrices in the same coset produce

the same relation (4.3).

Suppose that for some 1 6 g 6 q2, ζ + αg is a known multiplicative

generator of Fq2 [ζ] = Fq2 [x]/(f(x)). Since (4.3) also holds modulo f(x),
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taking the discrete logarithm with respect to the base ζ + αg, we obtain

e0 logζ+αg λ+
∑

16i6q2,i 6=g

(ei−e′i) logζ+αg(ζ+αi) ≡ e′g−eg (mod q2k−1). (4.4)

The above equation gives us a linear relation among the discrete logarithm

of linear factors. One hopes to collect enough relations such that the linear

system formed by those relations is non-singular over Z/(q2k−1)Z. It allows

us to solve logζ+αg(ζ + αi) for all the ζ + αi in the factor base.

However, if for some 1 6 z 6 q2,

(x+ αz)|xqh1(x)− h0(x),

the algorithm will unlikely compute logζ+αg(ζ + αz). It is because that x +

αz is zero or nilpotent (without loss of generality let f1 = x + αz) in the

Fq2 [x]/((x+ αz)
a1) component of the ring

Fq2 [x]/(xqh1(x)− h0(x)) = Fq2 [x]/(f(x))⊕
l⊕

i=1

Fq2 [x]/(fi(x)ai).

Hence in (4.3), if ez > 0, e′z is positive as well. Most likely we will have

ez = e′z, so the coefficient for logζ+αg(ζ + αz) in (4.4) will always be 0.

Remark 18. If e′z > ez > 1, it is possible to compute logζ+αg(ζ + αz).

However, this requires the low degree polynomial in the right hand side of

(4.3) to have the factor (x + αz)
2, which is unlikely. Our numerical data

confirm that it never happens when q is sufficiently large.

To compute the discrete logarithm of ζ + αz, we have to use additional

relations which hold for the field Fq2 [ζ] but may not hold for the bigger ring
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Fq2 [x]/(xqh1(x)− h0(x)). The equation

(ζ + αz)
q2k−1 = 1

is such an example. But this does not help in computing its discrete logarithm

in the field Fq2 [ζ], if it is the only relation involving ζ + αz.

In general, it is hard to find useful additional relations for x + αz, since

for the algorithm to work, it is essential that we replace xq by h0(x)/h1(x)

(not replace f(x) by zero) in the relation generating stage. Hence it is not

clear that the discrete logarithm of ζ + αz can be computed in polynomial

time, invalidating a conjecture in [6].

Remark 19. An exception is in the case of a Kummer extension, where the

zero divisor x in the ring has a small order in the field.

4.5.3 The tale of two lattices

To fix the above problem in a non-Kummer case, we can either change our

factor base to not include the linear factors of xqh1(x) − h0(x), or we can

search for h0 and h1 such that xqh1(x)− h0(x) does not have linear factors.

In the following discussion, we will assume that xqh1(x)−h0(x) has no linear

factor for simplicity. That is,

ki := deg(fi) > 2 (1 6 i 6 l).
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In this case, the linear factors x+αi’s are invertible in the ring Fq2 [x]/(xqh1(x)−

h0(x)) and equation (4.3) reduces to

λe0
q2∏
i=1

(x+ αi)
ei−e′i = 1 (mod xqh1(x)− h0(x)). (4.5)

We define two fundamental lattices in Zq2+1:

L1 = {(e0, e1, . . . , eq2)|λe0
q2∏
i=1

(x+ αi)
ei = 1 (mod f(x))},

L2 = {(e0, e1, . . . , eq2)|λe0
q2∏
i=1

(x+ α1)
ei = 1 (mod xqh1(x)− h0(x))}.

It is easy to see that L2 ⊆ L1. Consider the group homomorphism

ψ1 : Zq2+1 → (Fq2 [x]/(f(x)))∗

given by

(e0, e1, . . . , eq2) 7→ λe0
q2∏
i=1

(x+ αi)
ei .

The group homomorphism ψ2 is defined in the same way, except that modulo

f(x) is replaced by modulo (xqh1(x)− h0(x)).

Cheng and Wan proved Theorem 10 and Theorem 11 in [13]. We include

their proofs for the sake of completeness.

Theorem 10. If deg(h1) 6 2, then the maps ψ1 and ψ2 are surjective.

Proof: It is enough to prove that ψ2 is surjective. If not, the image H

of ψ2 would be a proper subgroup of (Fq2 [x]/(xqh1(x) − h0(x)))∗. We can

then choose a non-trivial character χ of (Fq2 [x]/(xqh1(x)− h0(x)))∗ which is

trivial on the subgroup H. Since χ is trivial on H which contains F∗q2 , we
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can use the Weil bound as given in Theorem 2.1 in [71] and deduce that

1 + q2 = |1 +
∑
α∈Fq2

χ(x+ α)| 6 (q + deg(h1)− 2)
√
q2 6 q2.

This is a contradiction. It follows that ψ2 must be surjective. �

Note that in the application of computing discrete logarithms, it is im-

portant that ψ1 is surjective. As a corollary, we obtain

Corollary 2. If deg(h1) 6 2, then

• the group Zq2+1/L1 is isomorphic to the cyclic group Z/(q2k − 1)Z,

• the group Zq2+1/L2 is isomorphic to

Z/(q2k − 1)Z⊕
l⊕

i=1

Z/(q2ki − 1)Z
⊕

(a finite p-group).

In particular, the group Zq2+1/L2 is not cyclic when l > 1. The relation

generation stage only gives lattice vectors in L2, which is far from the L1 if

l > 1. Thus, we need to add more relations to L2 in order to get close to L1.

Since λq
2−1 = 1, the vector (q2 − 1, 0, . . . , 0) is automatically in L2. Let

L∗2 be the lattice in Zq2+1 generated by L2 and the following q2 vectors

(0, q2k − 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, q2k − 1),

corresponding to the relations (x + αi)
q2k−1 = 1 modulo f(x) for αi ∈ Fq2 .

It is clear that

L∗2 = L2 + (q2k − 1)Zq2+1.
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The next result gives the group structure for the quotient Zq2+1/L∗2.

Theorem 11. For deg(h1) 6 2, there is a group isomorphism

Zq2+1/L∗2 ∼= Z/(q2k − 1)Z⊕
⊕
16i6l

Z/(q2 gcd(k,ki) − 1)Z.

Proof: Recall that

Zq2+1/L2
∼= A

def
= Z/(q2k − 1)Z⊕

l⊕
i=1

Z/(q2ki − 1)Z
⊕

(a finite p-group).

It is clear that

A/(q2k − 1)A ∼= Z/(q2k − 1)Z⊕
⊕
16i6l

Z/(q2 gcd(ki,k) − 1)Z.

The kernel of the surjective composed homomorphism

Zq2+1 −→ Zq2+1/L2
∼= A −→ A/(q2k − 1)A

is precisely L2 + (q2k − 1)Zq2+1 = L∗2. The desired isomorphism follows.

�

If gcd(ki, k) > 1 for some i, then L∗2 is still far from L1. We would like

L∗2 to be as close to L1 as possible in a smooth sense. For us, the more

interesting case is the following

Corollary 3. Let deg(h1) 6 2. If gcd(ki, k) = 1 for all 1 6 i 6 l, we have

an isomorphism

Zq2+1/L∗2 ∼= Z/(q2k − 1)Z⊕ (Z/(q2 − 1)Z)l.
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This corollary shows that under the same assumption, the lattice L∗2 is a

smooth approximation of L1 in the sense that the quotient L1/L∗2 is a direct

sum of small order cyclic groups.

The algorithm to compute the discrete logarithms in the factor base es-

sentially samples vectors from the lattice L2. Let r1, r2, . . . be the vectors

in L2 obtained by the relation-finding algorithm, i.e., from the relations in

(4.5). Let L̂2 be the lattice generated by those vectors. Let L̂1 be the lattice

generated by L̂2 and the following q2 + 1 vectors:

(q2 − 1, 0, . . . , 0), (0, q2k − 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, q2k − 1).

Computing the Hermite (or Smith) Normal Form of L̂1 is equivalent to solv-

ing the linear system L̂2 in the ring Z/(q2k − 1)Z. It is in general difficult to

find bases for the two lattices L1 and L2 directly. One can think that L̂1 and

L̂2 are the approximations of L1 and L2, respectively. These approximations

can be computed by the polynomial time algorithm. Obviously,

L̂2

⊆ L2 ⊆

⊆ L̂1 ⊆
L∗2 ⊆ L1.

These inclusions induce surjective group homomorphisms

Zq2+1/L̂2

→ Zq2+1/L2 →

→ Zq2+1/L̂1 →
Zq2+1/L∗2 → Zq2+1/L1.

If Zq2+1/L̂2 is cyclic, then its quotient Zq2+1/L2 will be cyclic. This is false if

l > 1 as we have seen before. Similarly, Zq2+1/L̂1 is not cyclic as its quotient
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Zq2+1/L∗2 is not cyclic if l > 1. Hence the conjecture in [35] also needs

modification. It seems reasonable to hope that L̂1 is a good approximation

to L∗2 in the sense that the quotient L∗2/L̂1 is a direct sum of small order

cyclic groups. In the interesting case where gcd(k, ki) = 1 for all 1 6 i 6 l,

our numerical data suggest the following heuristic is highly plausible.

Heuristic 1. Assume that xqh1(x)− h0(x) does not have linear factors, and

gcd(k, ki) = 1 for all 1 6 i 6 l. Then in the SNF of L̂1, the diagonal elements

are

1, 1, . . . , 1, s1, . . . , st, q
2k − 1,

where for 1 6 i 6 t, si > 1 and si|q2 − 1.

Example 18. Let q = 16, k = 11 and Fq2 = 〈λ〉.

In the first step, we choose the appropriate h0(x) and h1(x) as follows:

h0(x) = λ ∗ x2 + λ4 ∗ x+ 1,

h1(x) = x+ λ.

Thus we have the polynomial

h1(x) ∗ x16 − h0(x) = x17 + λ ∗ x16 + λ ∗ x2 + λ4 ∗ x+ 1.

The two irreducible factors of h1(x) ∗ x16 − h0(x) over Fq2 are of degree 11

and 6, respectively.

After collecting the relations and generating the SNF, the SNF is given
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by [A|B], where B is a zero matrix and

A =



1

. . .

1

15

15

255

309485009821345068724781055


257×257

.

Note that 162×11 − 1 = 309485009821345068724781055.

Example 19. Let q = 16, k = 13 and Fq2 = 〈λ〉.

In the first step, we choose the appropriate h0(x) and h(x) as follows:

h0(x) = λ ∗ x2 + λ7 ∗ x+ 1,

h1(x) = x+ λ.

Thus we have the polynomial

h1(x) ∗ x16 − h0(x) = x17 + λ ∗ x16 + λ ∗ x2 + λ7 ∗ x+ 1.

The two irreducible factors of h1(x) ∗ x16 − h0(x) over Fq2 are of degree 13

and 4, respectively.

After collecting the relations and generating the SNF, the SNF is given
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by [A|B], where B is a zero matrix and

A =



1

. . .

1

15

15

15

15

255

20282409603651670423947251286015


257×257

.

Note that 162×13 − 1 = 20282409603651670423947251286015.

Assuming the heuristics, Zq2+1/L̂1 is not much bigger than Zq2+1/L1,

namely,

Zq2+1/L̂1
∼= Z/s1Z⊕ Z/s2Z⊕ · · · ⊕ Z/stZ⊕ Z/(q2k − 1)Z.

We can find a generator for each component, as a product of linear polyno-

mials from the computation of the SNF. Suppose that for 1 6 i 6 t, the

generator for the i-th component is

λei0
∏

16j6q2

(x+ αj)
eij .

Since si|q2−1, the above generator belongs to Fq2 in Fq2 [x]/(f(x)). Assuming
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that it is λe
′
i0 , we have

λei0−e
′
i0

∏
16j6q2

(x+ αj)
eij = 1 (mod f(x)).

There are t such relations. Adding them to L̂1, we will finally arrive at the

lattice L1. It allows us to find a generator for (Fq2 [x]/(f(x)))∗, and to solve

the discrete logarithms for the factor base, with respect to this generator.

4.5.4 Huang-Narayanan’s method to determine prim-

itive elements

In the case of G = F×
pk

, where p is a small prime, Huang and Narayanan [35]

designed a polynomial-time algorithm to determine the primitive element

of G based on a result of F.R.K Chung [17] and Joux’s relation generation

method [38].

Firstly, Huang and Narayanan embed the field Fpk to Fq2k , where q = pm

and m = dlogp(k)e. The field Fq2k is represented in the same way as in [38].

That is, one searches for appropriate polynomials h0(x), h1(x) ∈ Fq2 [x] of

low degree such that the factorization of h1(x)xq − h0(x) over Fq2 [x] has an

irreducible factor I(x) of degree k. Let ζ be a root of I(x). The field Fq2k

is represented by Fq2 [ζ]. They remark that an isomorphism between two

explicit representations of a field of size pn can be computed deterministically

in time polynomial in n and log(p), which is due to Lenstra [43].

From a result of F.R.K Chung [17], let l be a prime power and t be a

positive integer satisfying (t− 1)2 < l and the field Flt = Fl[α]. Then the set

Fl + α generates F×lt . In the current case, Chung’s result implies that F∗q2k
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is generated by S = Fq2 + ζ since k < q by construction. In practice, S is

extended to the bigger set F = S ∪ {h1(x)} ∪ {λ}, where Fq2 = 〈λ〉.

Similarly as in [24], Huang and Narayanan also make use of the fact that

F×
q2k
∼= Z|F |/Γ,

where Γ is the relation lattice satisfied by elements of F . Thus one can

determine the generator of F×
q2k

by computing the SNF of a relation matrix

M , which approaches Γ well.

To collect the needed relations, Huang and Narayanan propose to con-

struct the relation matrix M via Joux’s relation generation algorithm [38].

4.5.5 Finding the discrete logarithms of linear polyno-

mials by SNF

Following the same notation as in the last section, suppose M is a good

approximation of Γ such that the SNF D = U ∗ M ∗ V determines the

structure of F×
q2k

correctly. Suppose the relation is represented as columns

of M and M is an m × n matrix. Then U is an m ×m matrix and V is an

n× n matrix. D has the form [D1|D2], where

D1 =



1

1

. . .

1

q2k − 1


m×m
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and D2 is a zero matrix.

We observe that we can not only find the primitive element γ from the

information of U−1, but also the discrete logarithms of elements in F based

on the found primitive element. Suppose the corresponding elements of i-th

row of M and D are ai and bi, respectively. Since

D = U ∗M ∗ V,

M = U−1 ∗D ∗ V −1,

each ai can be written as a product of bj and vice versa. Notice that bi = 1

for all 1 6 i 6 m− 1, thus we have the expression

ai = γei ,

which implies that logγ(ai) = ei, where ei is the i-th element of the last row

of U .

4.5.6 Examples

Example 20. In this example, we want to find the primitive element of

F162×11 and the discrete logarithms of linear polynomials.

In the first step, we define F∗162 = 〈λ〉 and search for h0(x), h1(x) ∈ F162 [x]

such that h1(x) ∗ x16 − h0(x) satisfies the conditions in Heuristic 1. Choose

h0(x) = λ ∗ x2 + λ4 ∗ x+ 1, h1(x) = x+ λ.
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We have

h1(x) ∗ x16 − h0(x) = x17 + λ ∗ x16 + λ ∗ x2 + λ4 ∗ x+ 1.

There are two irreducible factors of h1(x) ∗ x16 − h1(x) over F162:

f1(x) = x6 + (λ6 + λ4 + λ2 + 1) ∗ x5 + (λ7 + λ6 + λ4 + 1) ∗ x4

+ (λ7 + λ5 + λ4 + λ2 + λ) ∗ x3 + λ4 ∗ x2

+ (λ7 + λ4 + λ3 + λ2 + λ+ 1) ∗ x+ λ7 + λ4 + λ3 + 1,

f2(x) = x11 + (λ6 + λ4 + λ2 + λ+ 1) ∗ x10 + (λ7 + λ5 + λ4 + λ3 + g) ∗ x9

+ (λ7 + λ6 + λ5 + λ4 + λ) ∗ x8 + (λ7 + λ6 + λ5 + λ2 + λ+ 1) ∗ x7

+ (λ7 + λ5 + λ4 + λ2 + 1) ∗ x6 + (λ5 + λ2 + 1) ∗ x5

+ (λ6 + λ5 + λ3) ∗ x4 + (λ7 + λ6 + λ4 + λ2 + 1) ∗ x3

+ (λ7 + λ6 + λ4 + 1) ∗ x2 + (λ7 + λ6 + λ4) ∗ x

+ λ7 + λ6 + λ4 + λ3 + λ2.

We construct F162×11 as F162 [ζ], where ζ is a root of irreducible polynomial

f2(x) ∈ F162 [x].

In the second stage, we choose the factor base F = {λ} ∪ S, where S =

F162 +ζ. And we collect the relations among the elements in the factor base to

construct the relation matrix M . There are two types of relations to consider.

• The first type is according to Joux’s relation generation method. We

collect all the Möbius twist relations from the systematic equation, that

is, we run over all right cosets of PGL2(F16) in PGL2(F162) from our

classification.
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• The second type makes use of the following observation: λ255 = 1 and

for each αi ∈ F162, there exists an ei such that

λei = (ζ + αi)
162×11−1

162−1 .

Finally, we compute the SNF of M . In other words, we compute

D = U ∗M ∗ V.

We have D = [D1|D2], where D2 is a zero matrix and

D1 =



1

1

. . .

1

309485009821345068724781055


257×257

.

Since 309485009821345068724781055 = 1622−1, we claim that we have found

the primitive element of F∗1622, which can be recovered from the last column

of U−1 as follows

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0].

The corresponding element is

γ = ζ + λ166.

Furthermore, the discrete logarithms of elements in the factor base can be

retrieved from the last row of U . The result is in Appendix A.

For instance, we can verify that

• logγ(λ) = 209964339996441948585831853, γlog(λ) = λ,

• logγ(ζ) = 60710879082065564476318181, γlogγ(ζ) = ζ,

• logγ(ζ + λ55) = 115063015500116530915979577, γlogγ(ζ+λ
55) = ζ + λ55,

• logγ(ζ+λ197) = 187986527916727874578311046, γlogγ(ζ+λ
197) = ζ+λ197,

• logγ(ζ+λ255) = 267444368200903281347884604, γlogγ(ζ+λ
255) = ζ+λ255.

Example 21. In this example, we want to find the primitive element of

F162×11 and the discrete logarithms of linear polynomials following another

approach.

In the first step, we define F∗162 = 〈λ〉 and search for h0(x), h1(x) ∈ F162 [x]

such that h1(x) ∗ x16 − h0(x) satisfies the conditions in Heuristic 1. Choose

h0(x) = λ ∗ x2 + λ4 ∗ x+ 1, h1(x) = x+ λ.
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We have

h1(x) ∗ x16 − h0(x) = x17 + λ ∗ x16 + λ ∗ x2 + λ4 ∗ x+ 1.

There are two irreducible factors of h1(x) ∗ x16 − h1(x) over F162:

f1(x) = x6 + (λ6 + λ4 + λ2 + 1) ∗ x5 + (λ7 + λ6 + λ4 + 1) ∗ x4

+ (λ7 + λ5 + λ4 + λ2 + λ) ∗ x3 + λ4 ∗ x2

+ (λ7 + λ4 + λ3 + λ2 + λ+ 1) ∗ x+ λ7 + λ4 + λ3 + 1,

f2(x) = x11 + (λ6 + λ4 + λ2 + λ+ 1) ∗ x10 + (λ7 + λ5 + λ4 + λ3 + g) ∗ x9

+ (λ7 + λ6 + λ5 + λ4 + λ) ∗ x8 + (λ7 + λ6 + λ5 + λ2 + λ+ 1) ∗ x7

+ (λ7 + λ5 + λ4 + λ2 + 1) ∗ x6 + (λ5 + λ2 + 1) ∗ x5

+ (λ6 + λ5 + λ3) ∗ x4 + (λ7 + λ6 + λ4 + λ2 + 1) ∗ x3

+ (λ7 + λ6 + λ4 + 1) ∗ x2 + (λ7 + λ6 + λ4) ∗ x

+ λ7 + λ6 + λ4 + λ3 + λ2.

We construct F162×11 as F162 [ζ], where ζ is a root of irreducible polynomial

f2(x) ∈ F162 [x].

In the second stage, we choose the factor base F = {λ} ∪ S, where S =

F162 + ζ. And we collect the relations among the elements in the factor base

to construct the relation matrix M . There are there types of relations to

consider.

1. Generate 150 relations by Joux’s method.
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2. Generate Frobenius relations. That is, for each α ∈ F162, we have

(ζ + α)16 = ζ16 + αq =
h0(ζ)

h1(ζ)
+ α16,

which implies

h1(ζ) ∗ (ζ + α)16 = h0(ζ) + α16 ∗ h1(ζ).

If the polynomial in the right-hand side factorizes into linear polynomial

products, then we get a relation. In practice, we get 128 Frobenius

relations.

3. The last type of relation makes use of the following observation: λ255 =

1 and for each αi ∈ F162, there exists an ei such that

λei = (ζ + αi)
162×11−1

162−1 .

We compute the SNF of M to get

D = U ∗M ∗ V.

Since the diagonal element of D are

1, 1, . . . , 1, 309485009821345068724781055(= 1622 − 1),

we claim that we have found the primitive element, which can be recovered

from the message of the last column of U−1 as follows:

[-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21441445124877501493350844, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)].

The corresponding element is

γ = λ−1 ∗ (ζ + λ177)−21441445124877501493350844.

Furthermore, the discrete logarithms of elements in the factor base can be

read from the last row of U . The result is in Appendix B.

We verify the following instances:

• logγ(λ) = 245160674446712564244728522, γlog(λ) = λ,

• logγ(ζ) = 255670351189335847080296839, γlogγ(ζ) = ζ,

• logγ(ζ + λ100) = 68291259138980224088221968, γlogγ(ζ+λ
100) = ζ + λ100,

• logγ(ζ + λ177) = 3, γlogγ(ζ+λ
177) = ζ + λ177,

• logγ(ζ + λ186) = 49529503067517771000507583, γlogγ(ζ+λ
186) = ζ + λ186.

Example 22. In this example, we want to find the primitive element and

discrete logarithms of linear polynomials in F162×12.
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In the first step, we define F∗162 = 〈λ〉 and search for h0(x), h1(x) ∈ F162 [x]

such that h1(x) ∗ x16 − h0(x) satisfies the conditions in Heuristic 1. Choose

h0(x) = λ ∗ x2 + (λ6 + λ5 + λ4 + λ2) ∗ x+ 1, h1(x) = x+ λ.

We have

h1(x) ∗ x16 − h0(x) = x17 + λ ∗ x16 + λ ∗ x2 + (λ6 + λ5 + λ4 + λ2) ∗ x+ 1.

There are two irreducible factors of h1(x) ∗ x16 − h1(x) over F162:

f1(x) = x5 + (λ7 + λ5 + λ4 + λ) ∗ x4 + (λ7 + λ5 + λ3 + 1) ∗ x3

+ (λ7 + λ5 + λ4 + λ3) ∗ x+ λ7 + λ6 + λ5 + λ4 + λ3 + λ,

f2(x) = x12 + (λ7 + λ5 + λ4) ∗ x11 + (λ7 + λ5 + λ3 + λ2 + λ) ∗ x10

+ (λ6 + λ5 + λ4 + λ2 + λ) ∗ x9 + (λ7 + λ6 + λ4 + λ3 + λ) ∗ x8

+ (λ7 + λ5 + λ4 + λ2) ∗ x7 + (λ7 + λ6 + λ4 + 1) ∗ x6

+ (λ7 + λ4 + λ+ 1) ∗ x5 + (λ6 + λ4 + λ2) ∗ x4

+ (λ7 + λ2) ∗ x3 + (λ7 + λ5 + λ4 + λ3 + λ2 + λ) ∗ x2

+ (λ6 + λ3 + λ2) ∗ x+ λ7 + λ6 + λ5 + λ3.

We construct F162×12 as F162 [ζ], where ζ is a root of irreducible polynomial

f2(x) ∈ F162 [x].

In the second stage, we choose the factor base F = {λ} ∪ S, where S =

F162 +ζ. And we collect the relations among the elements in the factor base to

construct the relation matrix M . There are two types of relations to consider.

• The first type is according to Joux’s relation generation method. We
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collect all the Möbius twist relations from the systematic equation, that

is, we run over all cosets of PGL2(F16) in PGL2(F162) from our clas-

sification.

• The second type makes use of the following observation: λ255 = 1 and

for each αi ∈ F162, there exists an ei such that

λei = (ζ + αi)
1624−1

162−1 .

Next, we compute the SNF of M . Equivalently, we compute

D = U ∗M ∗ V.

Since the diagonal element of D are

1, 1, . . . , 1, 3, 3, 3, 3, 79228162514264337593543950335(= 1624 − 1),

the relations are not sufficient to determine the actual structure of F∗1624.

However, it is not far away from it since we have only four small none-one

components. Observe that 3|162 − 1, thus these four elements actually lie in

F162. Thus we can add these relations as follows.

1. The element β252 corresponding to the 252-th diagonal element can be

found from the 252-th column of U−1, which is

[-15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-476053333298771011871190636, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Thus,

β252 = λ−15 ∗ (z + λ16)−42 ∗ (z + λ100)e ∗ (z + λ168) ∗ (z + λ189)−5,

where e = −476053333298771011871190636. Since β252 = λ255, we add

the following column vector to the relation matrix:

[-15-255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-476053333298771011871190636, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
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2. The element β253 corresponding to the 253-th diagonal element can be

found from the 253-th column of U−1, which is

[-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-23930764333874738583871355, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Thus,

β253 = λ−3 ∗ (z + λ16)−9 ∗ (z + λ100)e ∗ (z + λ188) ∗ (z + λ189)−1,

where e = −23930764333874738583871355. Since β253 = λ170, we add

the following column vector to the relation matrix:

[-3-170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-23930764333874738583871355, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

3. The element β254 corresponding to the 254-th diagonal element can be

found from the 254-th column of U−1, which is

[-30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -71, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-951546016174340776180350742, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Thus,

β254 = λ−30∗(z+λ16)−71∗(z+g100)−951546016174340776180350742∗(z+λ189)−10.

Since β254 = λ170, we add the following column vector to the relation

matrix:
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[-30-170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -71, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-951546016174340776180350742, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

4. The element β255 corresponding to the 255-th diagonal element can be

found from the 255-th column of U−1, which is

[585, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1365, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

18624550419619218520589158924, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 195, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
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Thus,

β255 = λ585∗(z+λ16)1365∗(z+λ100)18624550419619218520589158924∗(z+λ189)195.

Since β255 = λ170, we add the following column vector to the relation

matrix:

[585-170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1365, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 18624550419619218520589158924, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 195,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Now, we compute the SNF of the new relation matrix M ′, which consists

of M and the four augmented relations, to get

D′ = U ′ ∗M ′ ∗ V ′.

Since the diagonal elements of D′ are

1, 1, . . . , 1, 79228162514264337593543950335 = 1624 − 1,

100



we claim that we have found the primitive element, which can be recovered

from the message of the last column of U ′−1 as follows:

[22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 88, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

152674035219163120011070411, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

The corresponding element is

γ = λ22 ∗ (z + λ16)88 ∗ (z + λ100)152674035219163120011070411.

Furthermore, the discrete logarithms of elements in the factor base can be

read from the last row of U ′. The result is in Appendix C.

For instance, we can verify that

• logγ(λ) = 78917463837737810779451621118, γlog(λ) = λ,

• logγ(ζ) = 62833090349644629822148545739, γlogγ(ζ) = ζ,

• logγ(ζ + λ73) = 6599517810135817353279741095, γlogγ(ζ+λ
73) = ζ + λ73,

• logγ(ζ + λ172) = 23893826286552840662073779336, γlogγ(ζ+λ
172) = ζ +

λ172,
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• logγ(ζ + λ251) = 76944331067097277203580421182, γlogγ(ζ+λ
251) = ζ +

λ251.

4.6 Traps to the original BGJT-algorithm and

a solution

4.6.1 The trap to the QPA-descent

Now we review the QPA-descent. Suppose that we need to compute the

discrete logarithm of W (ζ) ∈ Fq2k [ζ], where W is a polynomial over Fq2

of degree w > 1. The QPA-descent, firstly proposed in [6], is to represent

W (ζ) as a product of elements of smaller degree, e.g., 6 w/2, in the field

Fq2 [x]/(f(x)). To do this, one again starts with the identity:

∏
α∈Fq

(x− α) = xq − x.

Then apply the transformation

x 7→ aW (x) + b

cW (x) + d

where the matrix m =

a b

c d

 ∈ F2×2
q2 is nonsingular. We have

∏
α∈Fq

(
aW (x) + b

cW (x) + d
− α) = (

aW (x) + b

cW (x) + d
)q − aW (x) + b

cW (x) + d
.
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Clearing the denominator:

(cW (x) + d)
∏
α∈Fq

((aW (x) + b)− α(cW (x) + d))

= (aW (x) + b)q(cW (x) + d)− (aW (x) + b)(cW (x) + d)q

= (aqW̃ (xq) + bq)(cW (x) + d)− (aW (x) + b)(cqW̃ (xq) + dq),

where W̃ (x) is a polynomial obtained by raising the coefficients of W (x) to

the q-th power. Replacing xq with h0(x)/h1(x), we obtain

(cW (x) + d)
∏
α∈Fq

((aW (x) + b)− α(cW (x) + d))

= (aqW̃ (h0(x)/h1(x)) + bq)(cW (x) + d)

−(aW (x) + b)(W̃ (h0(x)/h1(x)) + dqh1(x))

(mod xqh1(x)− h0(x)).

It was shown in [6] that matrices in the same right coset of PGL2(Fq) of

PGL2(Fq2) generate the same equations. The denominator of the right-

hand side is a power of h1(x). Denote the numerator of the right-hand side

polynomial by Nm,W (x). If the polynomial Nm,W (x) is w/2-smooth, namely,

it can be factored completely into a product of irreducible factors over Fq2 ,

all have degree w/2 or less, we obtain a relation of the form

q2∏
i=1

(W (x) + αi)
ei = λe0

∏
g(x)∈S

g(x)e
′
g (mod xqh1(x)− h0(x)), (4.6)

where S ⊆ Fq2 [x] is a set of monic polynomials of degrees less than w/2 and

with cardinality at most 3w. Denote the vector (e1, e2, . . . , eq2) by vm. Note
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that it is a binary vector, and it is independent of W (x). Collecting enough

number of relations will allow us to represent W (x) as a product of elements

of smaller degrees. This process is the QPA-descent. A heuristic made in [6]

is that repeating this process, one can represent any element in Fq2 [x]/(f(x))

as a product of linear factors. Combining it with the fact that the discrete

logarithm of the linear factors are known, one solves the discrete logarithm

for any element.

However, the descent will not work if W (x) is a factor of xqh1(x)−h0(x).

Recall that α1 = 0.

Theorem 12. If W (x)|xqh1(x)− h0(x), e1 will always be 0 in (4.6).

In other words, if W (x) is a factor of xqh1(x)− h0(x), then it will never

appear in the left-hand side of (4.6) as a factor. So the descent for W (ζ) is

not possible.

Proof: The polynomialW (x) is a zero divisor in the ring Fq2 [x]/(xqh1(x)−

h0(x)). Hence if W (x) appears in the left-hand side of (4.6) as a factor, it

will also appear in the right-hand side. This contradicts to the requirement

that the factors in the right-hand side have degrees smaller than the degree

of W (x). �

Note that the trap factor W (ζ) can appear in the descent paths of other

elements, which essentially blocks the descents. It is especially troublesome

if xqh1(x)− h0(x) has many small degree factors.
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4.6.2 The trap-avoiding descent

Now we have discovered traps for the original QPA-descent. How can we

work around them? From the above discussion, we assume that we work

in a non-Kummer extension, and the polynomial xqh1(x) − h0(x) with the

factorization as in (4.2) satisfies

• deg(h0) 6 2, deg(h1) 6 1,

• ki > 1 for all 1 6 i 6 l; in other words, it is free of linear factors,

• gcd(k, ki) = 1 for all 1 6 i 6 l.

In the most interesting case where k is a prime, our numerical data show that

the above requirements can be easily satisfied. For example, when q = 1024,

the result is in Appendix D.

Heuristic 2. Let q be a prime power and k < q be a prime. Then there exist

polynomials h0 and h1 satisfying the above requirements.

Assume that the discrete logarithms of all linear polynomials have been

computed. Suppose that we need to compute the discrete logarithm of W (ζ),

where W (x) is an irreducible polynomial of degree less than k, and it is

relatively prime to f(x). If W (x)|xqh1(x) − h0(x), we will search for an

integer i such that W (x)i (mod f(x)) is relatively prime to xqh1(x)− h0(x).

Such an i can be found easily by a random process.

Now we can assume that gcd(W (x), xqh1(x)−h0(x)) = 1. If there are not

many traps, we will use a trap-avoiding strategy for the descent. The basic

idea is simple. Whenever we find a relation (4.6), we will not use it unless

the right-hand side is relatively prime to xqh1(x)− h0(x).
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Definition 24. Define the trap-avoiding descent lattice L(W ) associated with

W (x) to be generated by

{vm|Nm,W is w/2− smooth, and gcd(Nm,W , x
qh1(x)− h0(x)) = 1}.

Note that we use less relations than [6] does, since we have to avoid traps.

If the vector (1, 0, . . . , 0) is in the trap-avoiding descent lattice of W (x), then

W (x) can be written as a product of low-degree polynomials in Fq2 [x]/(f(x))

that are not traps. We believe that the following heuristic is very likely to

be true.

Heuristic 3. The trap-avoiding descent lattice for W (x) contains the vector

(1, 0, . . . , 0) if gcd(W (x), xqh1(x)− h0(x)) = 1.

Remark 20. The authors of [7] and [36] proposed their solutions for the

traps.

To provide a theoretical evidence, we will show that (1, 0, . . . , 0) is in its

super lattice that is generated by vm for all m ∈ Pq, regardless whether

Nm,W (x) is w/2-smooth or not. This is a slight improvement over [6], where

it is proved that (q3− q, 0, . . . , 0) is in the super lattice. To proceed, we first

make some definitions following [6]. There are two matrices in consideration.

The matrix H is composed by the binary row vectors vm for all

m =

 a b

c d

 ∈ Pq.
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It is a matrix with q3 + q rows and q2 columns. If we view m−1 as a map

from P1(Fq) to P1(Fq2) given by

(β1 : β2)→ (−dβ1 + bβ2 : cβ1 − aβ2),

then the i-th component of vm is 1 if there is a point P ∈ P1(Fq) such that

m−1(P ) = (αi : 1). We define a binary vector v+
m = (e1, . . . , eq2 , eq2+1) for

m ∈ Pq, where (e1, . . . , eq2) = vm, and

eq2+1 =

 1 if (a : c) ∈ P1(Fq)

0 otherwise.

One can verify that the last component of v+
m corresponds to whether there

is a point P ∈ P1(Fq) such that m−1(P ) = (1 : 0) = ∞. The matrix H+ is

composed of the vectors v+
m,m ∈ Pq. H+ is a matrix with q3 + q rows and

q2 + 1 columns. All the row vectors have exactly q+ 1 coordinates which are

1’s.

Denote the lattices generated by the row vectors of H and H+ by L(H)

and L(H+), respectively. In [6], the authors showed that v1 = (q2+q, . . . , q2+

q) ∈ L(H+) and v2 = (q2 + q, q + 1, . . . , q + 1) ∈ L(H+).

Theorem 13. The vector (1, 0, . . . , 0) is in the lattice L(H).

Proof: Fix a γ such that Fq2 = Fq[γ]. Firstly, observe that v3 =

(1, . . . , 1, q) ∈ L(H+). This follows from v3 =
∑

β∈Fq
vmβ ∈ L(H+), where

mβ =

 1 βγ

0 1

 ∈ Pq.
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There are q + 1 row vectors in H+ such that both the first and the last

coordinates are 1. Since the projective linear map on a projective line is

sharply 3-transitive, a third coordinate with value 1 will uniquely determine

the coset in Pq. Thus the sum of these q+1 vectors is v4 = (q+1, 1, . . . , 1, q+

1) ∈ L(H+).

From the above observations, we have

v5 = v2 − (q + 1)v3 = (q2 − 1, 0, . . . , 0, 1− q2) ∈ L(H+),

v6 = v4 − v3 = (q, 0, . . . , 0, 1) ∈ L(H+).

We deduce

v7 = qv6 − v5 = (1, 0, . . . , 0, q2 + q − 1) ∈ L(H+),

which implies (1, 0, . . . , 0) ∈ L(H). �
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Chapter 5

Conclusions and future work

Error-correcting codes and cryptography play important roles in information

communication. Generalized Reed-Solomon codes and cryptography systems

based on discrete logarithms are representatives of these areas, respectively.

In this dissertation, we have studied the deep hole problem of generalized

Reed-Solomon codes and the discrete logarithm problem over finite fields.

In the first part, we classify deep holes for Generalized Reed-Solomon

codes RSq(D, k). Specifically, we give a characterization of deep holes when

q is an odd prime, |D| > k > p−1
2

. Generalizing the result to finite fields of

composite order is a possible future work.

In the second part, we study the validation of the heuristics made in the

quasi-polynomial time algorithm solving the discrete logarithms in the small

characteristic fields [6]. We find that the heuristics are problematic in the

cases of non-Kummer extensions. We propose a few modifications to the

algorithm, including some extra requirements for the polynomials h0 and h1,

and a trap-avoiding descent strategy. The modified algorithm relies on three

improved heuristics.
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Proposition 12. If Heuristics 1, 2 and 3 hold, then the discrete logarithm

problem over Fqk (k < q) can be solved in time qO(log(k)).

We believe that proving (or disproving) these heuristics offers interesting

open problems that will help to understand the effectiveness of the new algo-

rithm. Besides, it is interesting to explore the applications of the idea used

to attack the discrete logarithms over finite fields to other problems.
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Appendix A

Discrete logarithms of elements

in the factor base of F1622

We define F∗162 = 〈λ〉 and choose

h0(x) = λ ∗ x2 + λ4 ∗ x+ 1, h1(x) = x+ λ.

We have

h1(x) ∗ x16 − h0(x) = x17 + λ ∗ x16 + λ ∗ x2 + λ4 ∗ x+ 1.

The primitive element of F∗1622 is

γ = ζ + λ166.

The discrete logarithms of elements in the factor base can be retrieved from

the last row of U .
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α logγ(α) α logγ(α)

λ 209964339996441948585831853 ζ 60710879082065564476318181
ζ + λ 179769773130828885784218745 ζ + λ2 86011917882104584081826403
ζ + λ3 236019112789849850849424681 ζ + λ4 46933633336121228215957387
ζ + λ5 221173465396923068473343096 ζ + λ6 308729720997288392806486823
ζ + λ7 238767020867656800163346885 ζ + λ8 249229692564647135746669833
ζ + λ9 255728248257958825516691391 ζ + λ10 238861220284485051312953966
ζ + λ11 141014425320486365997094437 ζ + λ12 57351169457668833342818523
ζ + λ13 272635298571027044685163086 ζ + λ14 100719322310340856608148427
ζ + λ15 65842862513074489251190232 ζ + λ16 189710146569034291571066191
ζ + λ17 259877715295635716869648508 ζ + λ18 152848223929271080204330031
ζ + λ19 110836263677250827248775962 ζ + λ20 231046529834919433871170995
ζ + λ21 65568872696411869821050900 ζ + λ22 60307334715434746813891976
ζ + λ23 200215536159932279444255679 ζ + λ24 44503929244825116272604823
ζ + λ25 151414288572987213210044884 ζ + λ26 191513208909429376661656905
ζ + λ27 31678494587456828868072198 ζ + λ28 262833678289567376907535806
ζ + λ29 261362561372989227740830210 ζ + λ30 64544113481768992685091099
ζ + λ31 110815309026334885271992487 ζ + λ32 38272929298248650299635142
ζ + λ33 209593099940198053153356910 ζ + λ34 254098376231227246727358108
ζ + λ35 286523381199680842916464938 ζ + λ36 225703061200455322748042555
ζ + λ37 277537835888029688430340594 ζ + λ38 144755374370533081585136109
ζ + λ39 282806199678420091551376553 ζ + λ40 242592573882865786904294688
ζ + λ41 164477375566249807027558901 ζ + λ42 16790940196799634667542997
ζ + λ43 201788476357268878225879561 ζ + λ44 30789569200819010309977199
ζ + λ45 69602113679960600249155254 ζ + λ46 56896044191628709633519462
ζ + λ47 146789497291881536620545103 ζ + λ48 3447317785707529939588559
ζ + λ49 122846561406747667920178036 ζ + λ50 264063636330769374324153912
ζ + λ51 163060632515077116828725728 ζ + λ52 286738283474003753928851604
ζ + λ53 221651022598497770744059571 ζ + λ54 180185031445968191355368650
ζ + λ55 115063015500116530915979577 ζ + λ56 263201882122936011414932390
ζ + λ57 275447731701131361388423846 ζ + λ58 137516488115605136995070807
ζ + λ59 201638635041094846892842858 ζ + λ60 248426265037071328946795238
ζ + λ61 21664945781132831882194145 ζ + λ62 21221761531665158545318743
ζ + λ63 204094435120631147798589806 ζ + λ64 254552889120096369314125659

Table A.1: Discrete logarithms of elements in the factor base in F1622
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ζ + λ65 289874636975270203885102287 ζ + λ66 38356433400535569851362782
ζ + λ67 127176781428152837391378571 ζ + λ68 117543900388947774136252027
ζ + λ69 175243306466911763718880391 ζ + λ70 107288241723807994583331372
ζ + λ71 57060669007602570552304555 ζ + λ72 28338929811091622870892315
ζ + λ73 13461254620400547729807065 ζ + λ74 275632831542344055603620024
ζ + λ75 282597104514664546849100229 ζ + λ76 249182090012406001134451073
ζ + λ77 44277451386825090602542608 ζ + λ78 25931437503993118314343671
ζ + λ79 304330643303114522350586653 ζ + λ80 35621348167969028340492880
ζ + λ81 220288083389953302898278730 ζ + λ82 37463523887513602799754496
ζ + λ83 31736067058981386973169537 ζ + λ84 182347154577034337451658430
ζ + λ85 189645984523454097888308178 ζ + λ86 73851516947168730695453792
ζ + λ87 286291850054026345086971052 ζ + λ88 216142461970107511110839872
ζ + λ89 299022377108822116949235262 ζ + λ90 107538391810250925781036332
ζ + λ91 135114964162929353763487128 ζ + λ92 271532521053492101130771969
ζ + λ93 126017230209131485181962279 ζ + λ94 123589557389618691363052966
ζ + λ95 267946559713519706538081809 ζ + λ96 131386396057039197282338325
ζ + λ97 63397409637910064344408164 ζ + λ98 268214482768399289515501003
ζ + λ99 62687163929754783208156355 ζ + λ100 226262069530141019264691342
ζ + λ101 291808574450751719799517857 ζ + λ102 288562355976184316607312602
ζ + λ103 279084552910072189762454922 ζ + λ104 7943621058944403017122421
ζ + λ105 244357329351520991437525817 ζ + λ106 138848339052569498416494549
ζ + λ107 48040365524838535430231015 ζ + λ108 227562018734899339503650488
ζ + λ109 124520273216977766000072425 ζ + λ110 152296484013242187044201132
ζ + λ111 96375242006871962930490322 ζ + λ112 267452696714805180937412774
ζ + λ113 292317477614323473950672871 ζ + λ114 197709236440116045373086290
ζ + λ115 185929856993322677943813088 ζ + λ116 252178911449513040531469757
ζ + λ117 223493922053908912629338774 ζ + λ118 231977308994914165631271516
ζ + λ119 221157793216777566794960635 ζ + λ120 101306948787438137176874791
ζ + λ121 45985416084608851965672309 ζ + λ122 151536904764013805070939232
ζ + λ123 106041505792500890577993672 ζ + λ124 134646753627026767171561772
ζ + λ125 180009515222720122517900009 ζ + λ126 70291012123675837358325645
ζ + λ127 218119369043810022265615572 ζ + λ128 245540875989692359348266090

Table A.2: Discrete logarithms of elements in the factor base in F1622 (con-
tinued)
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ζ + λ129 108004727810808935583811216 ζ + λ130 12384225256451216058248126
ζ + λ131 203964891268478593108042880 ζ + λ132 48787676106680171913341506
ζ + λ133 286380712217229044992437825 ζ + λ134 20308196758103421932887114
ζ + λ135 104964163126226016736276920 ζ + λ136 150341418593244145726226165
ζ + λ137 56890118196069214947473142 ζ + λ138 164177178807883281606926689
ζ + λ139 180973232382845501239575205 ζ + λ140 222477892953637131952122456
ζ + λ141 286594368161711752317875159 ζ + λ142 43688270978266751194323615
ζ + λ143 131943982337562116442533298 ζ + λ144 265241505787327465811780580
ζ + λ145 248887750459547196181380201 ζ + λ146 139168607160253932096148292
ζ + λ147 292985908824772032067975377 ζ + λ148 108414474692313764222372612
ζ + λ149 12660796348621758354580139 ζ + λ150 62594709934864216620976691
ζ + λ151 283674385814497667564551454 ζ + λ152 180856485911877441877787206
ζ + λ153 270232423430840911840226111 ζ + λ154 81941119355501810048530505
ζ + λ155 273028014582024357814680195 ζ + λ156 1619706945886859236014891
ζ + λ157 162333751620171367798908629 ζ + λ158 167354202157715136603694064
ζ + λ159 120511067271357845750183419 ζ + λ160 233721479650907236015866657
ζ + λ161 19261418932558824472714135 ζ + λ162 278722764612588770603271989
ζ + λ163 247964940434080041695664029 ζ + λ164 94119770840604026593707304
ζ + λ165 174823003349440590728062422 ζ + λ166 1
ζ + λ167 272387887732036258931657451 ζ + λ168 86633665014398563099078298
ζ + λ169 71240618417126117077211982 ζ + λ170 69380423528369019607274203
ζ + λ171 290473411745764444396746141 ζ + λ172 307647014722024343326661681
ζ + λ173 4292602385151658024498901 ζ + λ174 51100970268637288483849042
ζ + λ175 99823187350058002949074008 ζ + λ176 178755663142775723048287098
ζ + λ177 230420020557273960005126157 ζ + λ178 209911745634920886405958977
ζ + λ179 56710234708743977149294456 ζ + λ180 212390124967322735522547502
ζ + λ181 279215020213287223461597263 ζ + λ182 222759477499079297538790102
ζ + λ183 229557230363838312624419156 ζ + λ184 224179542377771463262260969
ζ + λ185 153494506783917713020068093 ζ + λ186 120501153194772518027564867
ζ + λ187 54594993515293880227016105 ζ + λ188 67047106912208099346143223
ζ + λ189 42590084650795238177614836 ζ + λ190 134939023546570646293216288
ζ + λ191 63788416473339949077139236 ζ + λ192 238537016122727763716873768

Table A.3: Discrete logarithms of elements in the factor base in F1622 (con-
tinued)

121



α logγ(α) α logγ(α)

ζ + λ193 295002255736956108222170497 ζ + λ194 33452384403016975443261448
ζ + λ195 226759344238885371947297049 ζ + λ196 164415770599894010763512388
ζ + λ197 187986527916727874578311046 ζ + λ198 175644518701047413423458844
ζ + λ199 28908169580134404810617896 ζ + λ200 105388726372550880815443900
ζ + λ201 155636927486808049556363921 ζ + λ202 176192095622001599103101451
ζ + λ203 108866575916975923491576193 ζ + λ204 294241899566954362455596797
ζ + λ205 267369168976532669538725609 ζ + λ206 76169186974092165494542307
ζ + λ207 156405280208919919468008289 ζ + λ208 157709828485516499901621574
ζ + λ209 24401378369416601087149902 ζ + λ210 169573661363014364539440440
ζ + λ211 304655298709895222747290922 ζ + λ212 7958103489122180990512778
ζ + λ213 194198690487772072207669312 ζ + λ214 20532767864657935340390007
ζ + λ215 53305984964867387236865971 ζ + λ216 38883929858903310463377543
ζ + λ217 90868289341404546199018233 ζ + λ218 306134802728098162291700270
ζ + λ219 184576654890510203939350760 ζ + λ220 226770287058514954515991828
ζ + λ221 10179366608172305409353807 ζ + λ222 106023716390656703238192576
ζ + λ223 277509672894038710611425998 ζ + λ224 9154533272889604905678469
ζ + λ225 186312962450092254443410871 ζ + λ226 90403414721509610199939565
ζ + λ227 92886667564241681561277764 ζ + λ228 33510479531643077540876160
ζ + λ229 183000976617553522988089591 ζ + λ230 91265380486368272182676515
ζ + λ231 59002359565778703024889233 ζ + λ232 34264867479868460810734942
ζ + λ233 297451755222104591022091022 ζ + λ234 57218595182614053027230395
ζ + λ235 178659004975298089368664498 ζ + λ236 102470218532138319325313375
ζ + λ237 33461539298237214439353268 ζ + λ238 156113141502578222172118134
ζ + λ239 285877312627484608446943264 ζ + λ240 85494712539152191660715126
ζ + λ241 21628792072511708954025118 ζ + λ242 250812219019574174253107656
ζ + λ243 219589814076890310926100124 ζ + λ244 161948955699197532689095526
ζ + λ245 130735119167633291898824545 ζ + λ246 84290185480225124048542976
ζ + λ247 223769879820343027098880311 ζ + λ248 149574265919691773280295254
ζ + λ249 176366643556585220965611906 ζ + λ250 49703412344191105681997600
ζ + λ251 77624305010052315824933994 ζ + λ252 16108619132191809860202607
ζ + λ253 268300592088050288704294264 ζ + λ254 16168148772228800730459551
ζ + λ255 267444368200903281347884604

Table A.4: Discrete logarithms of elements in the factor base in F1622 (con-
tinued)
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Appendix B

Discrete logarithms of elements

in the factor base of F1622 with

another base

We define F∗162 = 〈λ〉 and choose

h0(x) = λ ∗ x2 + λ4 ∗ x+ 1, h1(x) = x+ λ.

We have

h1(x) ∗ x16 − h0(x) = x17 + λ ∗ x16 + λ ∗ x2 + λ4 ∗ x+ 1.

The primitive element of F∗1622 is

γ = λ−1 ∗ (ζ + λ177)−21441445124877501493350844.
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The discrete logarithms of elements in the factor base can be retrieved from

the last row of U .
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λ 245160674446712564244728522 ζ 255670351189335847080296839
ζ + λ 143122710946038455208567275 ζ + λ2 11700422371149654268411332
ζ + λ3 37418405030167078068454494 ζ + λ4 64157124908740452291313973
ζ + λ5 59290014694581809190099094 ζ + λ6 154753693001528039689474567
ζ + λ7 135018924470777081678291815 ζ + λ8 37165475098659344235916287
ζ + λ9 43596175006155616900512999 ζ + λ10 15746580406555867545532324
ζ + λ11 74226434922941803317076548 ζ + λ12 188899958274082155577625187
ζ + λ13 179340325024048775064808014 ζ + λ14 262943479642042297809489208
ζ + λ15 186301062219820369186122688 ζ + λ16 280742966228932171882873349
ζ + λ17 44537570606883223833960472 ζ + λ18 47525890739556801076509499
ζ + λ19 23978285308313198592459098 ζ + λ20 9191775424776012229055820
ζ + λ21 241296759052488517370082850 ζ + λ22 172002074454009989493899044
ζ + λ23 216034232152620520304627826 ζ + λ24 277943387337254459797886222
ζ + λ25 106049914747997106463003451 ζ + λ26 172350248895571599445208685
ζ + λ27 197306182875189825683590812 ζ + λ28 82230899015227565528889459
ζ + λ29 90360508856614691582774480 ζ + λ30 303636478145173856642965461
ζ + λ31 184712976915317131366250098 ζ + λ32 15387215786408171879759348
ζ + λ33 107433211923636958124773235 ζ + λ34 177754888403207893359073887
ζ + λ35 160507417616491153570690782 ζ + λ36 207497685772120608376939870
ζ + λ37 111313844616941304884589716 ζ + λ38 195698693916321389531700816
ζ + λ39 29455772851300086648289957 ζ + λ40 86791224276969645656148162
ζ + λ41 53411828373357718099857214 ζ + λ42 46938099161694680002852703
ζ + λ43 197225954083187780466590984 ζ + λ44 135242023196247825242770531
ζ + λ45 247010497261771043018406936 ζ + λ46 293408476380379271330769713
ζ + λ47 14074240195783548647144927 ζ + λ48 25544636534887449413521681
ζ + λ49 238513112451271546123339589 ζ + λ50 107446387392143853262284813
ζ + λ51 83904274852733394929829962 ζ + λ52 265984404477168454689759996
ζ + λ53 26611968269059632640604164 ζ + λ54 275030054234498866162959260
ζ + λ55 145400693532206823697633383 ζ + λ56 25069597386942895739474395
ζ + λ57 25966369311974381456486219 ζ + λ58 97767382179440424780370198
ζ + λ59 40890148273304153517493382 ζ + λ60 278149683632964615564040782
ζ + λ61 26525104771995240472640740 ζ + λ62 55212125169498570189217737
ζ + λ63 52057644118912776804616834 ζ + λ64 172020358321342499978234571

Table B.1: Discrete logarithms of elements in the factor base in F1622 with
another base
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ζ + λ65 13045321065804662587191783 ζ + λ66 293137632483561768130291323
ζ + λ67 219503842400541478517777309 ζ + λ68 173708169587153582958392663
ζ + λ69 304991884465988207997152959 ζ + λ70 236543985435245020918625088
ζ + λ71 50999824672754506714174025 ζ + λ72 49040487145055091653989785
ζ + λ73 257406174312842731659623665 ζ + λ74 86916142926288897156366331
ζ + λ75 76575741693451191085290801 ζ + λ76 24408403746138757400297827
ζ + λ77 258795932491813075912963152 ζ + λ78 186116166588721082450992299
ζ + λ79 49890665498283796829214737 ζ + λ80 112986267468051107666047985
ζ + λ81 157802125233582107676234500 ζ + λ82 63973672119081157954335449
ζ + λ83 75850760194779005214740398 ζ + λ84 238694029016340489810341500
ζ + λ85 124400102589935296282320597 ζ + λ86 59235175165913832194019763
ζ + λ87 154474572161327988497020218 ζ + λ88 109415953610247923606625203
ζ + λ89 167789541198987617463719918 ζ + λ90 154691502115953278245052418
ζ + λ91 145205865690312019540310577 ζ + λ92 238874353540003219047262551
ζ + λ93 276980794776241478308085066 ζ + λ94 4191198402903810388253999
ζ + λ95 61478754412602543315697036 ζ + λ96 299835350952760045277218860
ζ + λ97 261161689968483171875200311 ζ + λ98 228927923162760119674219742
ζ + λ99 275360169323821494239640010 ζ + λ100 68291259138980224088221968
ζ + λ101 170883652185612340281406848 ζ + λ102 258439238725896290878663963
ζ + λ103 59186257162111562019475773 ζ + λ104 122511719569156525459378489
ζ + λ105 69821419855716190789379023 ζ + λ106 89015834697375054765446976
ζ + λ107 109499623021494421961741905 ζ + λ108 91356123031449102950454032
ζ + λ109 39521610919314535485540215 ζ + λ110 288521067796572294234412858
ζ + λ111 176333660812144562702845163 ζ + λ112 69083283226211912692523191
ζ + λ113 262145855895320993288474619 ζ + λ114 223973847182945185748086825
ζ + λ115 81032285485774567858791332 ζ + λ116 35728974678018449457346963
ζ + λ117 108573910208384053433108776 ζ + λ118 107613686776947203856317994
ζ + λ119 200165394781091769005262230 ζ + λ120 255793555285982368181353334
ζ + λ121 308147442724749704993318031 ζ + λ122 110765238296634305147455388
ζ + λ123 1642646081203898733018948 ζ + λ124 33738876733517376730227193
ζ + λ125 229274057599201713618556051 ζ + λ126 201433214666151905891637210
ζ + λ127 279964605912310499319259848 ζ + λ128 181100951002363804449323700

Table B.2: Discrete logarithms of elements in the factor base in F1622 with
another base (continued)
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ζ + λ129 103622568581519585619276944 ζ + λ130 255208048480927029185278729
ζ + λ131 268761893177928244799718430 ζ + λ132 62918530600723303569435719
ζ + λ133 34307722353387684169816680 ζ + λ134 202844605686682093759777826
ζ + λ135 54474716781140286048917955 ζ + λ136 217040864195007329640459460
ζ + λ137 136207577461235061764428488 ζ + λ138 306801853183997015251409786
ζ + λ139 217249468754053904498859335 ζ + λ140 1317592104461177030179659
ζ + λ141 171677698992261315963274471 ζ + λ142 45669043370126710306284780
ζ + λ143 191450849763089394089282262 ζ + λ144 151825266036171014467313880
ζ + λ145 242450480761586947100588724 ζ + λ146 168532258891661035665363688
ζ + λ147 46001997696396834415129293 ζ + λ148 22844487503677124317007353
ζ + λ149 165013509880868527318790671 ζ + λ150 51598955349120579196291939
ζ + λ151 223784485652523206699132326 ζ + λ152 258796837356147423953669864
ζ + λ153 296837545498641897122015239 ζ + λ154 255770271966867878962514425
ζ + λ155 291009919011058532357784885 ζ + λ156 300930460933712568379061499
ζ + λ157 239170405310483176003354816 ζ + λ158 35338581065788991302855186
ζ + λ159 81374545680450706377193796 ζ + λ160 159735497911843056882973803
ζ + λ161 264211704856467368877289805 ζ + λ162 128003063342223624949926976
ζ + λ163 156304632031609991724752731 ζ + λ164 85556503567264591078239641
ζ + λ165 159079026479153336120204208 ζ + λ166 117921281687833616656095494
ζ + λ167 36897129086682654192346059 ζ + λ168 4837138897022854829323192
ζ + λ169 54790314247026174674932188 ζ + λ170 230431197701873185453425542
ζ + λ171 199016777477779614336475119 ζ + λ172 279416397358750182755936884
ζ + λ173 265656141175630017331164154 ζ + λ174 18883100804010926316067583
ζ + λ175 230388861181388183960664672 ζ + λ176 98199271125411705493140117
ζ + λ177 3 ζ + λ178 142570552524755293275248763
ζ + λ179 43839382219727567115722204 ζ + λ180 260188008114808250064931868
ζ + λ181 181938241405059487794680557 ζ + λ182 197726446748992766843425643
ζ + λ183 147978401418231836084878324 ζ + λ184 288502523215974012952594521
ζ + λ185 99254748498175494329063262 ζ + λ186 49529503067517771000507583
ζ + λ187 253743673838617197881698420 ζ + λ188 182656614944510294632736262
ζ + λ189 118906500531229260548086764 ζ + λ190 301541555399574801647687147
ζ + λ191 155621073538013798501064759 ζ + λ192 183657371109996102351855277

Table B.3: Discrete logarithms of elements in the factor base in F1622 with
another base (continued)
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ζ + λ193 79512542991898202016103763 ζ + λ194 227451768028285780430620127
ζ + λ195 309343018264006547584815426 ζ + λ196 241946350445695204771062252
ζ + λ197 205696605635317462614292499 ζ + λ198 89100991046833477813984036
ζ + λ199 120504295183975708730894969 ζ + λ200 203109136212029700466823060
ζ + λ201 75708409138614621737562364 ζ + λ202 133280859693258015441507444
ζ + λ203 112246037963627791938335312 ζ + λ204 267187970885747179529069048
ζ + λ205 304624787618803358524298191 ζ + λ206 116788135825489062673160323
ζ + λ207 105382678516271575792458311 ζ + λ208 230832595293942592532363531
ζ + λ209 227069453395107697837040463 ζ + λ210 79199699021640775261314565
ζ + λ211 42756922053006075634015213 ζ + λ212 205121426327140748767301122
ζ + λ213 102621957424082188651702118 ζ + λ214 40687680231356695413187713
ζ + λ215 178593835233410231480344304 ζ + λ216 159857145905843740920399552
ζ + λ217 139365109108623334979437542 ζ + λ218 5262938317090958824682725
ζ + λ219 202111551923737297717435720 ζ + λ220 103492660096875226984706387
ζ + λ221 195226179915492843929215243 ζ + λ222 222082574499461234439438879
ζ + λ223 103006090504657036013554682 ζ + λ224 298439878680214213925733386
ζ + λ225 253782577639224680396649379 ζ + λ226 29126902460135912912793380
ζ + λ227 180147109735905326573969656 ζ + λ228 230748461851399252938513720
ζ + λ229 104055421814255009431675379 ζ + λ230 202432131744427334388828710
ζ + λ231 79475369164356306161226882 ζ + λ232 225554115741298593006909293
ζ + λ233 302554606516325067693378778 ζ + λ234 254624602515376302775462835
ζ + λ235 152239906767181946783801177 ζ + λ236 199062534280577877723867655
ζ + λ237 291857665334001612776521292 ζ + λ238 165898500169876180797090276
ζ + λ239 229349954818654248312795506 ζ + λ240 250328221613279087177116489
ζ + λ241 108507607860892074254945717 ζ + λ242 79626510054879541240635569
ζ + λ243 255025655855567932969326746 ζ + λ244 202214176599109893538041454
ζ + λ245 225210142780591034139565805 ζ + λ246 149938175730381096729825469
ζ + λ247 34500298375756404642131589 ζ + λ248 267536412650537293921487376
ζ + λ249 20183868058509174519152079 ζ + λ250 238576138271733013872267205
ζ + λ251 219316226389746180606652596 ζ + λ252 229218179578850304629458043
ζ + λ253 72513519521903370374564186 ζ + λ254 23822816313418411479863659
ζ + λ255 61496084422620635236180111

Table B.4: Discrete logarithms of elements in the factor base in F1622 with
another base (continued)
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Appendix C

Discrete logarithms of elements

in the factor base of F1624

We define F∗162 = 〈λ〉 and we choose

h0(x) = λ ∗ x2 + (λ6 + λ5 + λ4 + λ2) ∗ x+ 1, h1(x) = x+ λ.

We have

h1(x) ∗ x16 − h0(x) = x17 + λ ∗ x16 + λ ∗ x2 + (λ6 + λ5 + λ4 + λ2) ∗ x+ 1.

The primitive element of F∗1624 is

γ = λ22 ∗ (z + λ16)88 ∗ (z + λ100)152674035219163120011070411.

The discrete logarithms of elements in the factor base can be retrieved from

the last row of U .
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α logγ(α)

λ 78917463837737810779451621118
ζ 62833090349644629822148545739

ζ + λ 73525889303592561876827742453
ζ + λ2 47230079696105540726290927516
ζ + λ3 54917774429783426933636964484
ζ + λ4 7923543588610784621885423157
ζ + λ5 45717270668159078942360638485
ζ + λ6 33414682423761565163379346654
ζ + λ7 40255870638266346382207409315
ζ + λ8 43060777911476590304168366173
ζ + λ9 42718131279689233626782545422
ζ + λ10 61431209481469608202122557856
ζ + λ11 15420518988258832876964448416
ζ + λ12 52033134799593172555446361741
ζ + λ13 2865141078865862486872099307
ζ + λ14 9897867493079060888161014893
ζ + λ15 14112830488700460515374781089
ζ + λ16 31565952605284615774562307460
ζ + λ17 74899234251784049139464962555
ζ + λ18 9735193266396604110835872937
ζ + λ19 3746624937806817472283953705
ζ + λ20 51276010888349207343565164415
ζ + λ21 46724702733336032548408812110
ζ + λ22 45417240492128703795092645988
ζ + λ23 8473351582365439382725744881
ζ + λ24 57200882769996519643647198217
ζ + λ25 42062867158594407944206868909
ζ + λ26 53314752603614214713380073497
ζ + λ27 67801570807285324778714467569
ζ + λ28 65111040054663487435376557373
ζ + λ29 17479223786687203510917239844
ζ + λ30 35093733237113190746143475037
ζ + λ31 32570827880458575097784800932
ζ + λ32 12641117537395985096198374631

Table C.1: Discrete logarithms of elements in the factor base in F1624
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ζ + λ33 54899637611559841315634938459
ζ + λ34 27419590524173778347287346224
ζ + λ35 52804964157720351665905091944
ζ + λ36 32342299631230719587973850129
ζ + λ37 76936061386306080119873186312
ζ + λ38 27220689991489861337888431391
ζ + λ39 72932342784228951083331645916
ζ + λ40 5163471917405125299209080993
ζ + λ41 14303397013813561238733739956
ζ + λ42 16667521691891993395795895105
ζ + λ43 57014439471472481010709074059
ζ + λ44 38230243241529658763723141566
ζ + λ45 9089147221955832793253915324
ζ + λ46 18413793106346570296254066967
ζ + λ47 58811658572606698138627374963
ζ + λ48 58081754185828197344720742188
ζ + λ49 72966112765085137900112962112
ζ + λ50 30658168281362004830752264659
ζ + λ51 78547887407583391577398155025
ζ + λ52 32782409185238606453628068269
ζ + λ53 51990384895874794696621036010
ζ + λ54 46744121179621417982657086030
ζ + λ55 44373611950153893781607418907
ζ + λ56 76496867816713383248579218811
ζ + λ57 45400616131679528146328715254
ζ + λ58 62123869816878840747381133015
ζ + λ59 930661503889731437200888290
ζ + λ60 73123534784655137115281820428
ζ + λ61 68010719292134552328447538869
ζ + λ62 39077434130981808413153624096
ζ + λ63 13479182764941489266572502498
ζ + λ64 44012268866734707601622948042

Table C.2: Discrete logarithms of elements in the factor base in F1624 (con-
tinued)
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ζ + λ65 33485563897720043744760666730
ζ + λ66 28811251583862757756826394110
ζ + λ67 50381712729231411800736557829
ζ + λ68 7891147034897646905846787308
ζ + λ69 71253612566594565723283184607
ζ + λ70 28437808527264401458993371965
ζ + λ71 46061211109812613778391041288
ζ + λ72 61483240293102006622862467207
ζ + λ73 6599517810135817353279741095
ζ + λ74 48190888921109927390295438909
ζ + λ75 55989936308049697224625312022
ζ + λ76 50877871166489547030954202137
ζ + λ77 40956068935321194071525522395
ζ + λ78 5146966574825121891973075877
ζ + λ79 14222848471115701707370933804
ζ + λ80 37348579112228888657856012299
ζ + λ81 74746784848432190071437398076
ζ + λ82 16127759585546392351104788516
ζ + λ83 74954697215415662372458125821
ζ + λ84 55658636605676470444596384889
ζ + λ85 14708148697267344188393374547
ζ + λ86 32035998220878016075856889033
ζ + λ87 20489723269347166249126654847
ζ + λ88 9413766615298879233075673323
ζ + λ89 50955117320264787110432080509
ζ + λ90 7901735227400443026346617662
ζ + λ91 9116099488902248207854769713
ζ + λ92 16059240863801982139899752660
ζ + λ93 1759155259634072882948224827
ζ + λ94 72354759919198512727358335583
ζ + λ95 53756203853116868920996274814
ζ + λ96 8443539908717047061558454807

Table C.3: Discrete logarithms of elements in the factor base in F1624 (con-
tinued)
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ζ + λ97 46513442261311289802432158526
ζ + λ98 70983211743762146886003854384
ζ + λ99 11208015826498350926223213152
ζ + λ100 63382530011411470074835160385
ζ + λ101 48261588098972167932261071419
ζ + λ102 18170789754285975728674455437
ζ + λ103 59604979622792231316799446071
ζ + λ104 10828268485134176768803062891
ζ + λ105 4490654131473454217601360581
ζ + λ106 354637491581154438756224467
ζ + λ107 43786598502247468427610262652
ζ + λ108 45550133875011937859966834771
ζ + λ109 40426805794968671495292042340
ζ + λ110 70831593500600351493630884894
ζ + λ111 38211848688714283832772779989
ζ + λ112 50559173247880557268324805254
ζ + λ113 72761867963621550846111276770
ζ + λ114 53131979266488828611418770055
ζ + λ115 9092685379284022432504488589
ζ + λ116 39059558238350676994040688686
ζ + λ117 57998087941268909937031889117
ζ + λ118 7066305937852570853894326688
ζ + λ119 55430850414652056972279254955
ζ + λ120 76189912196933273000984417985
ζ + λ121 44365257402027681655849938372
ζ + λ122 31578669227499776635928761155
ζ + λ123 73346142737098850555132073374
ζ + λ124 10964682212185532349211175875
ζ + λ125 40935902046100394435467143521
ζ + λ126 68843551736314242138589242954
ζ + λ127 33549530699692743347412650386
ζ + λ128 5251959831744978724629814084

Table C.4: Discrete logarithms of elements in the factor base in F1624 (con-
tinued)
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ζ + λ129 48720013405934910184599067489
ζ + λ130 52810887224216171341505629833
ζ + λ131 69973286222071942108722018510
ζ + λ132 40120022074333217247940894555
ζ + λ133 65082174948570219261437338040
ζ + λ134 15137240274247981871381552261
ζ + λ135 72997232988609057750490144519
ζ + λ136 16957326851102048228374565848
ζ + λ137 74842503692180669082566904959
ζ + λ138 47784254542041912700501126872
ζ + λ139 14237362465375977488862393444
ζ + λ140 15494866232413153659878691929
ζ + λ141 35194116763538317561885818027
ζ + λ142 35478250996503101366591679877
ζ + λ143 16293509655131500790560009825
ζ + λ144 40483311535813431092200610602
ζ + λ145 63946247960775460702115826083
ζ + λ146 45708154259493184079324069607
ζ + λ147 53670251247571407089105595626
ζ + λ148 19978675019322247282247034342
ζ + λ149 49454873210696967199301318397
ζ + λ150 47311476144098852970104777757
ζ + λ151 70874229943316200053708158186
ζ + λ152 22696906826809709580994079639
ζ + λ153 38874215525524861393493298987
ζ + λ154 26919321661644114311155374107
ζ + λ155 53251123645128120067924131471
ζ + λ156 62960766233403049449501071566
ζ + λ157 29628696906149426734574566747
ζ + λ158 24947436124270621372066291143
ζ + λ159 63363038483596148789466937062
ζ + λ160 78560709418944366629852541000

Table C.5: Discrete logarithms of elements in the factor base in F1624 (con-
tinued)
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ζ + λ161 14003805075318532481874930454
ζ + λ162 11739171737333189280661232427
ζ + λ163 35647525880990763683938445106
ζ + λ164 12097242691103914294464212955
ζ + λ165 17548407743056291738406347200
ζ + λ166 31262491490678774063952856685
ζ + λ167 26887546081788951249033296959
ζ + λ168 73164552460333379527793867270
ζ + λ169 965220805225705439717638719
ζ + λ170 24281769713026219005112132883
ζ + λ171 13695690063475856495321861146
ζ + λ172 23893826286552840662073779336
ζ + λ173 59771669596121379938854176172
ζ + λ174 55040207046608453422185088350
ζ + λ175 31690877453464841957400227635
ζ + λ176 76889293533362156536054520830
ζ + λ177 45685901588350904393647104918
ζ + λ178 55934794697385194083775802463
ζ + λ179 63635657591138409339810039444
ζ + λ180 53055918281215512995956977848
ζ + λ181 73214485258330280479973912031
ζ + λ182 48652353886798566644595255794
ζ + λ183 51545977506340845920252296109
ζ + λ184 65306366887412850231462791436
ζ + λ185 77536022373477380043544676207
ζ + λ186 11070226367321982292028491344
ζ + λ187 6644289464348227423891038273
ζ + λ188 23119982482729165770995406907
ζ + λ189 27661868189986431004226496778
ζ + λ190 35147526635142226592869398871
ζ + λ191 63847966888383655248944826632
ζ + λ192 60085599479128183147908509282

Table C.6: Discrete logarithms of elements in the factor base in F1624 (con-
tinued)
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ζ + λ193 12512963122771577913588384874
ζ + λ194 42430101533909782101064573445
ζ + λ195 2101097408482302219013959622
ζ + λ196 26320835703303448158732216271
ζ + λ197 52335332381649792670505976489
ζ + λ198 35671253761139278690177306462
ζ + λ199 66959809020265317968572001179
ζ + λ200 17822865161245318442181226214
ζ + λ201 25053759128436340960875514488
ζ + λ202 49783313156879415886706848531
ζ + λ203 60013800270152312969261052738
ζ + λ204 43847694493995696205410571069
ζ + λ205 26994998616743322750476956255
ζ + λ206 64931983326831907507148915800
ζ + λ207 10787498278583206653574952326
ζ + λ208 24049789239406991010355886339
ζ + λ209 14931619280448805489604816491
ζ + λ210 26303340271863758230206943503
ζ + λ211 67299891735355836107517733049
ζ + λ212 54804182364625115791384257397
ζ + λ213 67205696913848972465919219927
ζ + λ214 6795168857144343929075996501
ζ + λ215 23830199566097830800303913292
ζ + λ216 481524113400969268009276979
ζ + λ217 75464820884702683001773192396
ζ + λ218 28730151542370916386458111499
ζ + λ219 27678050297289309066254349666
ζ + λ220 30149065873691108455970246057
ζ + λ221 16958924008888041990484245115
ζ + λ222 3236102407271925890957063132
ζ + λ223 55174626393916809355447711070
ζ + λ224 51961249814087632895241223161

Table C.7: Discrete logarithms of elements in the factor base in F1624 (con-
tinued)
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ζ + λ225 27419536717726951512925494753
ζ + λ226 43030034360240559345761960800
ζ + λ227 61608484891663412191407951286
ζ + λ228 51904222583728267581386869173
ζ + λ229 61156394747942852792210073448
ζ + λ230 28050394126071653871745143560
ζ + λ231 26663450942729852272874457543
ζ + λ232 67146953452324811886177106807
ζ + λ233 34617250485135966693590919545
ζ + λ234 68012893985383124432526071805
ζ + λ235 13111923774673046120000508735
ζ + λ236 18945241548530441951637018673
ζ + λ237 20832362322157966046021902755
ζ + λ238 38060105557851257663836313220
ζ + λ239 11020021046745233252368558399
ζ + λ240 41139993509923108868646860133
ζ + λ241 31111091371356149908269721282
ζ + λ242 71007746760749096783679520789
ζ + λ243 28867509349869515719580559645
ζ + λ244 57962624436187445128900557477
ζ + λ245 23364030560932846491908450395
ζ + λ246 33578001724187610824751722600
ζ + λ247 21851351944000328535515497397
ζ + λ248 1006482013169852109962624226
ζ + λ249 69350035722045762069996350548
ζ + λ250 26672118556411224622331956213
ζ + λ251 76944331067097277203580421182
ζ + λ252 2975337944196252896836725264
ζ + λ253 15139634842369290031879987383
ζ + λ254 19312232545952708515703701658
ζ + λ255 71604902619266588004240863616

Table C.8: Discrete logarithms of elements in the factor base in F1624 (con-
tinued)
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Appendix D

Table of h0(x) and h1(x)

Let q = 210,F∗q2 = 〈λ〉, and consider extensions of Fq2k such that the exten-

sion degree is prime and 512 < k < 1024. We want to compute h0(x) and

h1(x) over Fq2 [x] such that they satisfy the following properties:

• deg(h0) ≤ 2, deg(h1) ≤ 1;

• ki > 1 for all 1 ≤ i ≤ l; In other words, it is free of linear factors;

• gcd(k, ki) = 1 for all 1 ≤ i ≤ l.
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Extension Degree h0 h1
521 x2 + λ333 x+ λ
523 x2 + λ768 x+ λ
541 x2 + λ2838 x+ λ
547 x2 + λ1616 x+ λ
557 x2 + λ2978 x+ λ
563 x2 + λ399 x+ λ
569 x2 + λ1266 x+ λ
571 x2 + λ527 x+ λ
577 x2 + λ437 x+ λ
587 x2 + λ284 x+ λ
593 x2 + λ843 x+ λ
599 x2 + λ1244 x+ λ
601 x2 + λ2216 x+ λ
607 λ7 ∗ x2 + λ17 ∗ x+ λ406 x
613 x2 + λ296 x+ λ
617 x2 + λ1714 x+ λ
619 x2 + λ5864 x+ λ
631 x2 + λ682 x+ λ
641 x2 + λ4014 x+ λ
643 x2 + λ2592 x+ λ
647 x2 + λ600 x+ λ
653 x2 + λ397 x+ λ
659 x2 + λ717 x+ λ
661 x2 + λ5081 x+ λ
673 x2 + λ280 x+ λ
677 x2 + λ1797 x+ λ
683 x2 + λ302 x+ λ
691 x2 + λ3802 x+ λ
701 x2 + λ1934 x+ λ
709 x2 + λ3655 x+ λ
719 x2 + λ2543 x+ λ
727 x2 + λ3964 x+ λ
733 x2 + λ4427 x+ λ
739 x2 + λ4661 x+ λ
743 x2 + λ500 x+ λ
751 x2 + λ1405 x+ λ
757 x2 + λ1317 x+ λ+ 1

Table D.1: Representation of Fq2k for q = 210 and prime extension degree

139



Extension Degree h0 h1
761 x2 + λ3000 x+ λ
769 x2 + λ1645 x+ λ
773 x2 + λ1882 x+ λ
787 x2 + λ3996 x+ λ
797 x2 + λ2572 x+ λ
809 x2 + λ551 x+ λ
811 x2 + λ101 x+ λ
821 x2 + λ1941 x+ λ
823 x2 + λ1220 x+ λ+ 1
827 x2 + λ1607 x+ λ
829 x2 + λ2918 x+ λ
839 x2 + λ454 x+ λ
853 x2 + λ1386 x+ λ
857 x2 + λ1493 x+ λ
859 x2 + λ404 x+ λ
863 x2 + λ1063 x+ λ
877 x2 + λ1898 x+ λ
881 x2 + λ383 x+ λ
883 x2 + λ1824 x+ λ
887 x2 + λ4621 x+ λ
907 x2 + λ40 x+ λ
911 x2 + λ1784 x+ λ
919 x2 + λ4419 x+ λ
929 x2 + λ1119 x+ λ
937 x2 + λ2433 x+ λ
941 x2 + λ132 x+ λ
947 x2 + λ1078 x+ λ
953 x2 + λ1032 x+ λ
967 x2 + λ1509 x+ λ
971 x2 + λ1712 x+ λ
977 x2 + λ2460 x+ λ
983 x2 + λ2864 x+ λ
991 x2 + λ1310 x+ λ+ 1
997 x2 + λ1421 x+ λ
1009 x2 + λ3152 x+ λ
1013 x2 + λ738 x+ λ
1019 x2 + λ4900 x+ λ
1021 x2 + x+ λ306 x+ λ

Table D.2: Representation of Fq2k for q = 210 and prime extension degree
(continued)
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