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ABSTRACT

Optimal control equations are developed and applied to 
the chemical process regulator problem. The method of optimi­
zation uses a parametric expansion of the dynamic programming 
partial differential equation. This formulation requires the 
time domain state-variable approach to system dynamics. Com­
posite feedforward-feedback controllers are shown to be opti­
mum in the quadratic sense. The effect of system delay time, 
signal-to-noise ratio, and model misidentification is pre­
sented. Results from the experimental heat exchange process 
show that this design method can be used to obtain controllers 
which reduce control signal saturation with only a small reduc­
tion in effectiveness from that of the "ideal" feedforward and 
feedback. This optimal controller design was shown to be 
superior to the previously used frequency domain methods.

Ill
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OPTIMAL FEEDFORWARD-FEEDBACK CONTROL 

CHAPTER I 

INTRODUCTION
Optimal control theory has advanced at an unbelievable 

rate since the pioneering work of Wiener in the 19-10's. It 
is one of the unique scientific fields in which the theory 
has preceded application and has generally maintained this 
gap through the years. The electronic industry has always 
been the leader in applying the newly developed control 
techniques. The ability to obtain accurate mathematical 
models and make precise measurements has provided the 
impetus for the electrical engineering involvement in optimal 
control theory. The chemical process industry has not fol­
lowed this field closely and is rather slow to try new 
developments in control theory. The reason for this tar­
diness can be traced to the nature of chemical processes. 
Dynamic elements of chemical systems, such as heat transfer 
and fluid flow are relatively slow. These slow, unpredic­
table disturbances can introduce enough uncertainty so that 
the advantage gained by using a sophisticated controller is 
considerably reduced. The present work describes an appli­
cation of an existing control technique which has been
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modified to fit the requirements of chemical processes.

There are two different types of problems that are 
frequently encountered by control engineers. The servo­
mechanism control problem is associated with a change in 
operating conditions. The objective is to control the 
chemical process as it moves from one steady-state to 
another. The start-up and shut-down of systems fall in 
this category. In an optimal servomechanism controller 
design, the engineer is faced with several choices. The 
major optimization variable can be time or energy, i.e., 
start-up a process in the least amount of time or with the 
least amount of energy expended over a given length of time.

The regulator problem is concerned with controlling a 
system at a steady-state level in the presence of load dis­
turbances. The optimal regulator problem is concerned with 
maintaining control subject to constraints on the allowable 
operating range of some of the parameters. An infinite time 
interval is used in the optimization procedure.

It is this latter category - the regulator problem - 
which is of interest in this work. There are two different 
variables with which to implement a controller. A feed­
back controller monitors the system output and corrects for 
any deviation. The feedforward controller monitors the 
disturbance and corrects for any change in this variable. 
Both types of controllers are used in the chemical process 
today.
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The advantage in using a composite feedforward-feed­

back controller is that the undesirable characteristics of 
each individual controller is de-emphasized. The big 
limitations to obtaining good control with feedback alone 
are process time delays and noisy output measurements while 
feedforward controllers are sensitive to errors in the 
dynamic mathematical model. Since chemical processes usually 
contain all these limiting factors, the composite control­
ler seems to be the best way to regulate the process.

Statement of the Problem
The mathematical model of the systems under consider­

ation must be linear. There are no adequate methods for 
treating large classes of non-linear control problems. When 
a regulator problem is under consideration, the usual lin­
earization procedure used to modify non-linear system 
dynamics is not unreasonable. The reason for this success­
ful linearization is inherent in the regulatory problems 
because the objective is to control a variable at a par­
ticular steady state condition. If the system moves too far 
from this steady-state, the controller isn't doing a good 
job and the linear approximation errors would not be sig­
nificant in the overall controller design.

Figure (1-1) shows a block diagram of the overall 
controlled system. The vector-matrix notation is used for 
the system dynamics.
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x(t) = Bx (t) + Cm(t) + Du(t) (1.1)
g(t) = Ax(t) (1.2)

where x,m,u, and q are vectors and A, B, C, and D are 
continuous, time varying matrices. This representation 
allows multi-variable systems as well as single-input, 
single-output systems.

The manipulative signal is represented by 
m(t) = Qj)U(t) - Q^x(t) (1.3)

where is the matrix of feedforward gains and Q^is the 
matrix of feedback gains.

The load disturbance, u (t), is a random variable.
Laning and Battin (Ll) have presented a discussion on 
various statistical characterizations of physically observed 
systems. The great majority of load disturbances were found 
to be approximately gaussian. Therefore the later portion 
of the optimal controller design will be limited to gaussian 
load noise.

Literature Review 
Feedback control has been used in industrial processes 

for many years, while feedforward control is a relative new­
comer to the control scene. Articles concerning the use of 
feedforward control started to appear only within the 
last twenty years. The early pioneers of control theory 
were electrical engineers. However, because of the nature 
of their electrical devices, feedforw^ard control did not
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hold their interest.

Bollinger and Lamb (B9) used the ideal feedforward or 
mirror image control and then added a small feedback to 
correct for drifts and small errors. Harris and Schecter 
(Hi) presented a similar application of feedforward con­
trol to the linearized dynamics of a chemical reactor. In 
either case, no optimum feedback control was attempted. 
Haskins and Sliepcevich (H2) showed how certain classes 
of system non-linearities can be accounted for in the feed­
forward controller. Luyben and Gerster (L8) examined the 
application of feedforward control to distillation columns. 
Distillation is a process which would be a prime target for 
the use of feedforward control because the outlet variables 
are concentrations which usually can not be continuously 
monitored. Shinskey and MacMullen (M2) reported some exper­
iments with feedforward control of distillation columns.
Cadman, Rothfus, and Kermode (Cl) examined the effect of 
linearization of the dynamic distillation column model on the 
feedforward controller. Recently, Luyben (l9) presented a 
method for calculating non-linear feedforward controllers 
for the non-linear continuous stirred tank chemical reactor.

While none of these investigators tried to use any 
optimization techniques, Rozonoer (R2) has shown that the 
ideal feedforward controller is indeed an optimal one when 
no constraints are placed upon the system. So in the study 
of feedfort'/ard controllers, one is dealing with a type of
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optimal control.

Optimi?:ation techniques applied to feedback control 
isystems dominate the literature. The great majority of 
reported work is concerned with various methods to obtain 
optimum feedback control for a servomechanism problem.
This work is usually carried out by aeronautical and elec­
trical engineers who are working in the aerospace industry. 
Most of their problems fall within the servomechanism 
category.

Most of the work on optimal feedback control utilizes 
one of the four prevailing optimization techniques.

1. Variational Calculus (Nl)
2. Optimal Search (Bl)
3. Mathematical Programming (B2)
4. Maximum Principle (Kl)

One reference is provided for each of these techniques.
The vast amount of literature on the many facets of these 
concepts precludes an exhaustive review.

There have been two studies which have looked at some 
type of optimal composite feedforward-feedback control. 
Johansen (L3) used the results of Kalman(Kl) to define an 
optimal feedback control system in the presence of measure­
ment and load noise. Although his interests lay more with 
filtering the noise in a model-following controller than with 
providing a feedforward controller, the method of attack of 
both problems is very similar. As usual Johansen's work was
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directed, toward a servomechanisin problem, i.e., airplane 
navigation. One disadvantage of Kalman's method is that the 
problem formulation requires matrix partioning which doubles 
the dimensionality of the problem and always causes computer 
difficulties for even low dimensional problems.

Heidemann (H4) was interested in composite control of a 
distillation column. He used the discrete form of the 
maximum principle as presented by Kalman (Kl). However, 
Heidemann only calculated an optimal feedback controller and 
then added the ideal feedforward controller. In any case, 
the result was excellent control of an experimental 
distillation column.

Luecke (L4) used the frequency domain methods of Newton 
Gould, and Kaiser (Nl) to obtain an optimal composite con­
troller. The resulting form of the optimal composite con­
troller is a ratio of polynomials. Even with low order 
transfer functions, the controllers contained rather high 
order polynomials (in the frequency domain) in the numerator 
and denominator of the signal transfer function. A dis­
advantage of the Newton method is its limitation, at least 
for reasonable computational effort, to single-input, 
single output systems. The advantageous feature of the 
frequency domain control design is that the optimization 
is done completely in the frequency domain, making it more 
familiar to control engineers. Time domain formulations 
are a very recent phenomena.



CHAPTER II 

MATHEMATICAL BACKGROUND

The optimal controller design equations developed in 
the upcoming chapters require the use of some mathematical 
ideas which are not yet a part of the general chemical 
engineering background. For this reason a brief discussion 
of some of these ideas are included here.

Review of Statistical Design Concepts
The system under consideration is assumed to be subject to 

random load disturbances. in order to use the statistical 
characterization of this disturbance signal in conjunction 
with the design procedure, several well-known concepts from 
the theory of random variables are presented.

The mean value of a random signal, x(t), is its 
expected value which is defined by the following equation.

+®
E{x(t)} = / /(x,t)dx (2.1)

—  CO

where /(x,t) = the probability density
The mean value is, in general, a function of time.

9
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The conditional mean value of a.signal is a con­

venient function for the use in many physical situations. 
When a random signal is dependent on a deterministic signal, 
such as when the output of a plant is related to the 
input, more accurate estimates of the most probable future 
values of the random signal can be made if the determinis­
tic signal is known at a particular instant. For example 
the output of a plant can be calculated at a particular 
moment if the transfer function and the value of the input 
signal are known. Then a more accurate estimate of the 
future values of the output can be made simply because its 
value at that one particular moment is known. In these 
situations a conditiora 1 probability is used because it is 
defined as the probability function of a random signal 
subject to a particular fixed value of some dependent 
parameter. Therefore the conditional mean of a random
signal y subject to the fixed value x can be written as 

+ 00

E{y[x} = y/(y|x)dy (2.2)

where /(y|x) is the conditional probability density.
The autocorrelation 9^(ti,ts) of a given, signal, x(t) 

is defined as
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-j-CO -{-CO

,tg) = I I XI (ti)x2 (tg)/(xi,X2 ;ti,t2)dxidX2
(2.3)

Another statistical function prevalent in the automatic 
control literature is the spectral density or power spec­
tra of a signal which is the Fourier transform of its auto­
correlation.

+j00

«xx'®) = h  / (2.4)
ij.

We shall restrict the discussion of system disturbances 
to include only those signals which are stationary. Intuit­
ively, a stationary signal has the property that its statis­
tical characterization is not a function of time. Most dis­
turbances of interest to the chemical engineer are station­
ary or can be approximated as stationary over the range of 
interest. For this limited class of signals, the auto­
correlation is a function only of the time increment, 
ti-ta, i.e.

8 (ti-ts) = X 1X 2 /(Xi,x2;ti-ts)dx,dx2
—  CO — 00

The autocorrelation of a stationary signal can be 
written in a form similar to the mean.

0^(T) = E{x(t+T)x (t)} (2.6)
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As will be shown later, an estimation problem is 

encountered in the feedforward portion of the controller 
design procedure. We are interested in predicting the sig­
nal at time t + T solely from its past history up to time t. 
By standard techniques (P3) the linear mean square estimate 
can be expressed as

00

x(t+\) = J" x(a)w(t-0')da t > 0 (2.7)
o

The function, W(t-a), is the impulse response which is
subject to the following condition.
W(t) = 0  for t < 0 (2.8)

Equation (2.7) is the famous Wiener-Hopf integral equation.
The solution of this equation is not trivial but several
methods (Nl) of solution are available.

If we consider a system load disturbance signal which
is corrupted by measurement noise, then we have a combined
filter-prediction problem. However this again results in
a Wiener-Hopf integral equation (Nl).

If we consider normal or gaussian signals, our task is
simplified considerably. It has been shown (P3) that the
conditional mean can be used for mean square estimation.
To facilitate discussion, the following notation for the
conditional mean is introduced,

 t
e {x (u ) lx(t) ,u > t] = X (u) (2.9)
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The conditional mean of a normal signal is easily cal­
culated from the autocorrelation function and the mean.

x(u) = e {x }+ -q x(t) for u > t (2.10)

In order to use this convenient equation, we have res­
tricted ourselves to stationary, gaussian signals. This 
restriction is not devastating because most of the load 
disturbances of interest to chemical engineers can be in­
cluded in this class. The Wiener-Hopf equation was pre­
sented to show how non-Gaussian signals can be handled.
Since solving the Wiener-Hopf equation is a task in itself, 
it is not included in further discussions of the controller 
design method.

Mean Square Evaluation
As stated previously, we are interested in obtaining 

the mean square value of a signal in order to make a com­
parison of controller effectiveness. The mean square is a 
good indication of effective control when random distur­
bances are allowed (Ll).

Consider the process (in the frequency domain)
X(s) = P(s)D(s) (2.11)

A spectral density relationship for this process can be 
written.

*xx(^)" P(s)P(-s)G^^(s) (2.12)
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The above equation is a well known property of the spectral 
densities, so no attempt to derive it will be made. Many 
texts, including Laning and Battin (Ll), provide detailed 
expIanations.

The autocorrelation function is obtained from the spec­
tral density by taking the inverse transform and multiplying 
by 2ir. Thus

-j“
(2.13)

Since integration is along the imaginary axis, we may write
the inverse transform in terms of the real frequency, w.

+ 0 0

e^(T) = /8^^(jw)e"'^dw (2.14)
—  CO

The above equation leads to an easy way of evaluating the
mean square value of a signal. The mean square, as can be
seen by the definition in equation (2.14), is the value of
the autocorrelation function at T = 0. Therefore

+00

mean square value = 8^(o) = / $^^(jw)dw (2.15)
J-co

Appendix F shows how this equation can be computationally 
used to calculate the mean square value of a signal from the 
spectral density function.
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Solution of Matrix Differential Equations

In the formulation and solution of multivariable con­
trol problems, linear matrix differential equations result. 
The method of solving such equations is well known and is 
given here only for reference. A text such as Coddington 
and Levinson. (C4) should be consulted for rigorous discus­
sion of this topic.

The differential equation of interest is

= Ax(t) + Bu(t) o^t^T (2.16)dt

x(o) = x^

where A and B are constant matrices and x(t) and u(t) are 
vectors. Using the matrix exponential

& [e ^^x(t) = e ^^Bu(t) (2.17)

Integrating both sides of this equation from o to T
T

e '̂̂ x (T) = x^ + j e ^^Bu(t)dt (2.18)

Rearranging this result gives the equation which is commonly 
called the impulse response solution.
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T
x(T) = ^^Bu(t)dt (2.19)

The matrix exponential used in the above derivation is 
also referred to as the matrizant, the fundamental matrix, 
and the transition matrix.

The above derivation holds only for time-invariant sys­
tem dynamics, i.e., the matrices A and B are constant. For 
time-varying systems the matrix exponential is rather diffi­
cult to evaluate.

Dynamic Programming

The technique.used to optimize the control signal is 
called Dynamic Programming (B2). A brief discussion of this 
method is presented here for later reference.

The basic function to be minimized considered in this 
work can be written as 

T
e(t) = h(x,m,t)dt" (2.20)

subject to the constraints

X = f(x,m,t) ; mSM (2.21)

where M is a closed set.
The first step in applying the concept of dynamic program­
ming is to imbed the minimization problem into a larger class
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of problems. A dummy variable is introduced so that the 
present time can be treated as a constant during the mini­
mization procedure.

T -
e(/z) = I h(x,m,/i)djj. (2.22)

where /x€[t,T]

The state variable at time t, x(t), is treated as a constant 
or measured value.

Define the minimum cost function

E[x(fx),fi] = min e (pt) (2.23)
m

Now the Principle of Optimality is used to obtain an equation
for this minimum cost function. The Principle of Optimality
(B2) can be stated as :

An Optimal policy has the property that whatever 
choice of initial state and control vector is 
made, the remaining choice of control vectors 
must constitute an optimal policy with respect 
to the state resulting from the initial choice 
of control vector.
Breaking the interval of integration into two parts and 

then using the above principle allows us to write the follow­
ing equation.

fi+0 T

E[x({i),fi] = min min /h(x,m,a)da + /h(x,m,a)dCT
^  (2 24)(M,/i+6) ilS+5,T) (2.24}



18

or

E[x(p) ,̂ ] = mrn
m

iUrll+Ô)

fi+ô

h(x,m,CT)da + min 
m

M (P+6,T)
h(x,m,cr)da 
fi+5 (2.25)'

From the definition of the minimum cost function
T

e [x (jLi+6) ,/̂ +6] = min /h(x,m,a)da
m /

{H+6 ,T) -̂ )Ll+0

(2.26)

Using this result in the rearrangement of equation (2.25) 
gives

/Z+Ô
E[x(pj,^] = min < 

m
(/z,/x+ô)

h(x/m,a)d(T + e [x (jlî+ô) ,/i+0 ]

(2.27)

This solution is the familiar discrete recursive expres­
sion which is used in many digital computer solutions. The 
usual method of attack is to start at the terminal boundary 
condition and then calculate the optimal path using finite 
increments in the negative time direction (L2).

A continuous form of the dynamic programming algorithm 
can be found. Expand the minimum cost function in a Taylor 
series for a small increment, Ô.
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E[x(^+Ô),^+Ô] = E[x (m ),m ] + \âx(/i)

Se [x (m) ,m ] g
^ a/z 0 +

x(/i)Ô

(2.28)

Substituting equation (2.28) into equation (2.27) results 
in

E[x (/z),/z] = min h (x (/z) ,m (/z) ,/z) + e [x (/z),/z] 
m

(/z,/z+6)
T

&E[x (az) ,fz]
dx(ju) x(jtz)6 + Ô+ ... (2.29)

Subtract the minimum error function from both sides of equa­
tion (2.29) and then divide the equation by ô. In the limit 
as Ô approaches zero, the equation becomes

min
m(/z) h(x(iLt) ,m(/z) ,̂ ) + \ ox (;z)

X + 9e [x (m ) ,fz] 
a#z =  0

(2.30)
This partial differential equation is the continuous form of 
the dynamic programming algorithm which is used as the start­
ing point in the optimal controller equation development.

For more rigorous discussions and various applications 
several basic texts which are listed in the bibliography 
should be consulted (B3,L2,B11).



CHAPTER III 

OPTIMAL CONTROLLER DESIGN EQUATIONS

The object of this chapter is to present a method of 
calculating optimum controller designs for chemical processes. 
The method is limited to linear, time-varying systems. This 
restriction is not serious because a large number of control 
problems can be resolved with a linear approximation to the 
actual process dynamics. When deviations from steady-state 
operating conditions are not large, then the linear approxi­
mation is usually sufficient. With this restriction to lin­
ear models it is apparent that the controllers themselves 
will be linear functions. Using a linear approximation to a 
non-linear process in the optimal controller equation results 
in a linear-optimum controller. This name is usually given 
to the above mentioned optimal controllers to distinguish 
them from the optimal controllers calculated from the non­
linear dynamic model. Since these latter controllers are 
not easily calculated, the linear-optimum controllers can be 
used as long as the assumptions involved in the model approxi­
mation are valid. The calculation of the linear-optimum con­
trollers is the task of this work.

20
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Another limitation of this method of finding optimum 
controllers is the mathematical formulation of the constraints, 
The constraints on the system must be expressed in terms of 
quadratic functions. This again is not a serious limitation 
because the chemical engineer frequently deals with vari­
ances so quadratic constraints can be formulated easily.
System limitations resulting in variable "saturation" can 
not be directly included in the class of quadratic constraints. 
However, by putting a constraint on the square of the saturat­
ing variable, the fraction of time that the system violates 
the hard saturation barrier can be limited.

The matrix, time-domain representation of the process 
dynamics is used in this method. The more familiar transfer 
function representation can easily be changed into this form. 
Appendix A includes a discussion of the various ways to make 
this transformation.

Problem Formation 
Consider the general matrix formulation of process 

dynamics.

x(t) ^ Bx(t) + Cm(t) + Dü(t) (3.1)

q(t) = Ax(t) (3.2)

where
x(t) = state variable vector
fll(t) = control variable vector
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ü(t) = load disturbance 
q(t) = output vector

A,B/C,D = continuous time-varying matrices

The superbar is used to emphasize that the variables are 
vector quantities. In order to simplify notation, the super­
script is not used in later discussions. A particular element 
of the vector, x̂ , is recognized by subscript indices.

Since the system is linear, the perturbation form of the 
system dynamics can be used. The variables in the above equa­
tion are the deviations from steady state operating condi­
tions. This technique of presentation is common in the con­
trol literature. It relieves the mathematics of unnecessary 
complications because the steady-state value of the pertur­
bation variables is always zero.

The scalar performance index upon which the optimization 
is based is quadratic. A scalar function is used so that a 
multi-variable search, which would be extremely difficult, is 
not required. As in all variational mathematics, the scalar 
performance index function is formulated as an integral.
Since random variables are included in this procedure the 
functions in the scalar performance index are conditional 
means which emphasizes the dependence of the procedure on the 
present time, t.
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T
t r  t . ^ t
-J <q(CT), #q(a)> + <m(a), 'Sn(o-)) dae (t) - [ \q(cr), #q(a)> + \m(a), 'Sn(o-)) da (3.3)

where
T = terminal time boundary
$ = diagonal non-negative definite weighting factor matrix 
^ = diagonal positive definite weighting factor matrix.

The weighting matrices can also be time-varying functions. 
However, as a result of the inability to formulate desirable 
time-varying functions, constant weighting factors are used. 
The limitation of only diagonal elements in these matrices 
is not necessary but practical. A cross product constraint 
is difficult to formulate and does not seem to have any par­
ticular advantage in the results which are obtained.

Positive definite weighting matrices are used in equa­
tion (3.3). The integrand of the scalar performance index 
is positive and strictly convex. The more restrictive con­
dition on the control signal weighting factor is used so that 
an unrealistic unbounded optimum control signal will not be 
specified. Therefore the control signal is restricted to a 
closed set and the allowable control signal region is desig­
nated M. The minimization of the performance index with 
respect to the control signal is restricted to this allow­
able set M. This restriction is not explicitly noted in the 
minimization equation because of the complex notation, but
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is inherent in the procedure.
The superbars in the preceding equation (3.3) indicate 

the conditional mean as introduced in equation (2.9). The 
notation is a reminder that the integrand is a function of 
real time t.

Following the same procedure developed in the dynamic 
programming section of Chapter II, an instantaneous minimum 
performance index is defined by

t t
e [x (̂ ), ju] = min e(^) (3.4)

mill)

The index is defined in this manner because the real time t 
is treated as a fixed value in the minimization procedure.
The fact that the minimum performance index has only the 
state variable and the time variable in its argument is a 
well known result (B2). Note that for each instant the mini­
mization treats the real time t as the initial condition and 
it becomes very important in servomechanism problems to moni­
tor the real time t. However, in regulator problems the inter­
val of interest is the whole real time axis, making the par­
ticular fixed value of t arbitrary.

From the definition of the minimum performance index, it 
is apparent that the following boundary condition must hold.
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e [x (T),t ] J (g(a) ,<?q(a) > +(m(a),#m(a)>da (3.5)
T

Since the integrand is bounded on the allowable region, M, 
the integral must be zero.

(3.6)e Cx (T) ,T] = 0

The dynamic programming algorithm in the continuous 
form can be applied at this point. The dynamic programming 
algorithm was discussed in Chapter II.

,  ___________t  t
{ <g (M) ,#g(Â ) ) + (m (fi) , (m) > +m(/i)

5e[x(u) ,ul
x (m ) }

Ô x(/z)

dE[x(u) ,ul (3.7)
- + d/J,

The superscript Ton the partial derivative of the minimum 
performance index with respect to the state variable denotes 
the transpose of that vector.

The above partial differential equation could be inte­
grated by numerical techniques if the system order is limited 
to two or three dimensions. Larger dimensional problems can 
not be handled without a great deal of difficulty by present 
computer technology. The computer memory storage is not large 
enough. Computer storage limitation is a result of the famous 
"curse of dimensionality" (B2).
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The Parametric Expansion Solution 
One possible way of side-stepping this computational 

difficulty is to propose a mathematical form for the mini­
mum performance index. Merriam (M3) suggested a Taylor 
series expansion with respect to the state variable which 
is truncated after the quadratic term. The coefficients in 
the expansion are then treated as unknown parameters.

E[x (/x) ,/z] =!(//) - 2 x(/i)
T IT

x(n) K(/i)
(3.8)

where Kill) = symmetric n x n matrix 
J ill) = n-element vector 
I ill) = scalar element 

The partial derivatives needed in equation (3.7) are

T
5e[x (At) ,u1 
Ô xiii) /

' ' t
= -2J(^)^ + 2 xin)

/ i i
Kill)

T

5e[xin) .til
Ô/Z x(M) Jill) + Ixill)

(3.9)

Kin) X ill)

(3.10)

Equation (3.9) is simply the gradient of the minimum perform­
ance index with respect to the components of the state vari­
able vector. This derivative is in a tractable form because
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of the symmetry of the matrix K(/i) (B4) .
In order to obtain the minimum of the right hand side 

of equation (3.7) the derivative of the terms within the 
braces are differentiated with respect to each element of 
the vector m(/i) and then the result is set equal to zero. 
By rearranging this result the optimal control vector is 
obtained.

.T.-l Tm* (t) = 9 C J(t) - a C K(t) x(t) (3.11)

where m* € M

Substituting this expression into equation (3.7) and perform­
ing some manipulations, the equations which allow for the 
evaluation of the parameters J in) and Kifi) can be found.
These manipulations are tedious so they do not appear in this 
chapter. Appendix B contains the necessary algebraic detail. 

The resulting matrix differential equations are

.-1_T , „TJin) = Kin) c Jin) - 'B Jin) + k d nin) (3 .1 2)

kin) = K(]Li) K(^) - B^ Kin) - A^#A - Kin)B (3.13)

The parameter, I in) does not appear in the control equation 
and, therefore, does not add any information to the control­
ler design, so it is not presented here. The boundary condi­
tions for these equations follow directly from the boundary
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condition of the minimuin performance index which was stated 
in equation (3.5).

J(T) = 0; K(T) = 0  (3.14)

The optimum control vector in the real time control system is 
found from equation (3.11) when the parameters are evaluated 
at = t in conjunction with the solutions of equations (3.12) 
and (3.13). .

These equations were first derived by Merriam (M3) but 
were made unduly complicated by his unfortunate use of summa­
tion notation. His general controller parameter equations, 
corresponding to equations (3.12) and (3.13), contained sev­
eral typographical errors, thereby increasing the confusion. 
The development of the controller equations by matrix methods 
as presented in Appendix B is much simpler and far less con­
fusing.

It can be seen that the parameter, J [{i) , is a function 
of the load disturbance signal, u. This means that J is 
related to the feedforward portion of the controller. The 
other parameter. Kill) is the coefficient of the state vari­
able in the optimal controller equation (3.11). Therefore, 
Kill) is related to the feedback gain of the controller.

The dynamic programming equation is a sufficiency condi­
tion because of the manner in which the minimum cost function, 
E, was defined. The important features are continuity and
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convexity of this function. There are, of course, much weaker 
conditions under which this equation still remains sufficient 
to specify a unique optimum, but the above two properties are 
the most easily formulated.

Continuity is not restrictive because a discontinuous 
control implimentation is not physically realizable in chem­
ical processes. Convexity of the performance index is guar­
anteed by the quadratic forms in the integrand of equation
(3.3).

In finding the equations for the optimal controllers, 
a solution was assumed. The question arises: Is this assump­
tion valid? Peterson (P4) has shown that for linear systems, 
all terms of higher order than quadratic in the state vari­
able are zero. Therefore, the parametric expansion is valid 
for linear systems. Since non-linear systems are not included 
in these conditions it seems better to search for other ways 
to solve non-linear problems. The familiar linearization 
about the steady-state is a popular one, especially in regu­
lator control problems.

There are no worries concerning the stability of the 
controlled system. Merriam (M3) has shown that the minimum 
performance index is a Lyapunov function so the system is at 
least asymptotically stable in the large.
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Separable Load Disturbance 
If the load disturbance statistical characterization 

allows a separation of the conditional mean, equation (3.12) 
can be simplified. A separable signal can be represented as 
follows :

u(/x) = U(M) + U(M ,t) u(t) (3.15)

Since the conditional mean u (/i) is a linear factor in equa­
tion (3.12), it is immediately known that the solution J(/z)
can be written as the sum of the solutions for each additive

 t
component of the forcing term u (ju) . This linearity means 
that two parameters can be defined for J(t).

J(t) = R(t) + S(t) (3.16)

Then the equations defining these two parameters are

R(M) = [K(/i)Ĉ ”V -B^ ] Rin) + K(/i) D U(/2) (3.17)

S W  = [K(^)C#C^-B^] S(pJ + K(/i) DU(p,t)u(t) (3.18)

S(T) =0; R(T) = 0 (3.19)

Since u(t) is a non-zero constant with respect to this equa­
tion, equation (3.18) may be divided through by this factor. 
A new function is introduced which will prove to be more 
practical.
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SiiJL) = 1 ^  (3.20)
t

u(t)

With this new parameter, equation (3.16) is transformed into
t

J(t) = R(t) + S(t) u(t) (3.21)

where this redefined parameter is found by the following 
matrix differential equation:

S(At) = Ck(/z) C S(M) + Kill) DU(M/t) (3.22)

An important point can be noted when equation (3.21) above 
is substituted into the optimal control signal equation (3.11)

m*(t) = ^ C R(t) + # C S(t) u(t) + # C K(t) x(t)
(3.23)

m* 6 M

The three terms on the right hand side of this equation can 
be associated with physical contrdlers. The first term is 
the steady state correction, while the third term is the feed­
back controller. By the manipulation performed above, the 
second term has been shown to be a function multiplied by the 
input load disturbance signal and therefore is the feed­
forward controller.

The requirement for this simplification is the separa­
bility of the conditional mean of the load disturbance signal.
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It has been shown in equation (2.10) that stationary guassian 
signals have this property. The terms involved in the separ­
ated signal are easily calculated from equation (2.10).

In the statement of the general problem in Chapter I, 
the restriction to stationary, gaussian signals with zero 
mean value was presented and discussed. It can be seen that 
these limitations are not inherent in the optimal controller 
equations, but their absence complicates the solution of the 
equations to the point that the only feasible- control system 
would have to be connected to a digital computer for on-line 
controller calculations.

Time-Invariant Systems 
To this point time-varying system matrices were included 

in the controller equations. The majority of chemical pro­
cesses can be adequately represented by constant system ma­
trices, i.e., time-invariant systems. Not only are the time- 
varying optimal controller equations more laborious to re­
solve but it is extremely difficult to even formulate the 
system dynamics. For this reason it is necessary to consider 
the previously derived equations from the standpoint of obtain­
ing constant controller parameters.

For the time-invariant systems the terminal time boun­
dary T in the performance index in equation (3.3) approaches 
infinity (T— œ). Because of some mathematical difficulties
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the standard method of treating this problem is by using some 
arbitrarily large (but still finite) terminal time boundary.

Consider the matrix Riccati equation (3.13) which defines 
the feedback controller.

K(/X) = KilS) C^VK(A^) - B̂ K(/Li)B - (3.13)
K(T) = 0

The solution of interest is the "steady-state" value of K(/i).

lira Kin) = K (3.24)
T-fi-* eo

An illustration of the tirae behavior of the parameter K(/i) is 
shown in Figure (3-11) . The transient period of the variable 
K(m) is near the boundary condition (T- a>) . The usual expla­
nation given in optimal control texts associates the terminal 
boundary condition with an initial time and then the response 
of K(^) would be in the negative time direction. This inter­
pretation is intuitively acceptable to control engineers who 
are familiar with real time system response curves. One can 
see that as the terminal boundary T approaches infinity, the 
transient interval becomes less important in the description 
of the controller gain K. Therefore, it as this "steady- 
state" value which is desired in time-invariant controller 
design.



STEADY STATE T R A N S IE N T — 4

oo

w

Figure 3-1. Response trajectory of the 
feedback parameter, K(|̂ ) .
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The conditions on the system which guarantee that the 
parameter K(//) does have a unique finite value have been 
presented by Kalman (Kl) in a concept known as controllabil­
ity. A system is completely controllable if every allowable 
change of state can be made by an unconstrained control sig­
nal acting in a finite length of time. Kalman has shown that 
the cancellation of a system pole by a system zero (in the 
familiar transfer function nomenclature) is an example of a 
plant which is not completely controllable.

Some simplifications of the feedforward controller cal­
culation can be made when time-invariant systems are the 
topic of interest. Consider the feedforward equation

S(c) = [KĈ ' S(c) + KD U(At,t) (3.22)

S(T) = 0

The impulse response solution (equation 2.1) of equation 
(3.22) can be written as

t
S(t) = c(t-T) S(T) + (O(t-a) KD u(a-t) da (3.25)

-̂ T

where (p (t) = the fundamental matrix or matrizant of the 
homogeneous part of equation (3.22)
T-t

S(t) = - Jc(-C) KD U(€)d€ (3.26)
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Then with a similar argument as presented for the feedback 
parameter, the introduction of a very large terminal time 
boundary (T- œ) results in the following expression:

= - €) KD U(e)de (3.27)

The above equation shows that a constant (not a function of 
time) feedforward controller can be evaluated.

The practical methods of calculating the feedforward 
and feedback controllers for time-invariant systems are dis­
cussed in Appendices D and C, respectively.

Constraints
The constant weighting matrices in the performance 

index, equation (3.3), are energy constraints on the system. 
The weighting factors are actually Lagrange multipliers which 
imbed an integral energy constraint into the performance or 
cost function.

The saturation constraint is not in the proper mathemati­
cal form to be directly imbedded in the performance index. 
Newton, Gould, and Kaiser (Nl) have presented a method by 
which quadratic energy constraints can be used to approxi­
mate saturation constraints. Given the statistical charac­
terization of the saturating signal, the probability of find­
ing the signal outside the linear range is plotted as a func­
tion of the ratio of the saturation signal value to the root
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mean square response in the linear range. For example, if 
a saturation probability of 1% is acceptable, the above men­
tioned graph says that the root mean square response should 
be constrained to 40% of the saturation value. Fuller (F2) 
has also studied this problem. He states that the replace­
ment of saturation constraints with energy constraints do 
not give the best possible results in simple analytic linear 
and non-linear systems, but the disadvantage is almost negli­
gible when other limitations such as noise are incorporated 
in the actual physical systems.

Controller Specification
The optimal controller equation (3.11) is implicitly 

dependent on the values selected for the constant weight­
ing matrices, $ and which are used in the cost function
(3.3). There is no general way of picking particular values 
to do a specific control job. The usual procedure in servo­
mechanism work is to set up a systematic trial and error 
search until the desired trajectory is obtained. In the 
regulator problem, one could specify the desired response of 
the output variable to a unit step forcing and, in the same 
manner, search for a set of weighting values which specify a 
controlled output response trajectory corresponding to a 
desired one.

The disadvantage to this method of specifying a control­
ler is that any change in the desired output forces a repeat
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of all the calculations made previously. One of the major 
jobs of the design engineer is to calculate various alterna­
tives for economic analysis. Therefore, it seems that a 
performance diagram of mean square control effort as a func­
tion of mean square controlled output would provide this 
versatility.

A set of weighting factors is used to calculate various 
optimal controller parameters and configurations. Then the 
performance diagram can be found with the aid of equation 
(2.15).

Consider the following frequency domain representation 
of system dynamics.

X(s) = Pj^(s) + P^U(s) (3.28)

The optimal controller equation can be written as

M(s) = Qĵ U(s) - Q^X(s) (3.29)

Then substituting equation (3.29) into equation (3.28) and 
rearranging gives

X(s) = ° U(s) (3.30)
1 +  %

The control effort can be found by substituting equation
(3.30) into the optimal controller equation (3.29).
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X{s)^M(s) = [q - Q ----]u(s)
° ^ U(s) (3.31)

Then from the spectral density of the input load disturbance, 
the mean square controlled output and mean square control 
effort can be calculated from equation (2.15), which was 
discussed in Chapter II. Appendix F explains the calcula- 
tional procedure that can be used to evaluate this equation.

Summary of Optimal Control Equations 
The basic equations needed to obtain optimum feedforward 

and feedback controllers for linear time-invariant systems 
have been presented. It is convenient now to summarize these 
equations for easy reference.

(A) The system dynamics :
x(t) = Bx(t) + Cm(t) + Du(t) 
q(t) = Ax(t)

(B) The performance index:

T-» 00
 t f _________  t   t
e(t) = J <q(a) q(a) > + <m(a) m(G) > da

(3.1)
(3.2)

(3.3)

(C) The optimal controller equation:

m* (t) = <

M ; m* (t) >

^ C Csu(t) - Kx(t)]; m*(t) € M.

M ; m* (t) < M

(3.23a)

(3.23b)

(3.23c)



40

(D) Control parameter equations:
05

S = - J p(-e) KD u(e)de (3.27)
0

K = lira K(ai) (3.24)
(T-)i) -  CO

K(Ai) = KC - b'̂ K - kb - § a (3.13)

The above equations constitute the method by which the 
optimal controllers are calculated.



CHAPTER IV 

FIRST ORDER SYSTEM ANALYSIS

It is worthwhile to examine the application of the opti­
mal control design procedure to a first order system. The 
first order system was chosen because of its simplicity, 
since only in the single-pole first order system can the 
design equations be solved analytically. Higher order sys­
tems require digital computer solutions because of their 
complexity. With first order systems, the effects of various 
realistic factors such as time delays, measurement noise, and 
model misidentification are illustrated. The mean square con­
trol effort and mean square output are the indices upon which 
the effectiveness of the controllers are compared. Extensive 
digital computation was used to prepare the performance charts.

The system to be examined is a perfectly stirred tank 
which contains a heating coil. A diagram of the physical 
system is shown in Figure (4-1). The objective is to main­
tain the output temperature of the tank constant. The control 
variable is the temperature of the heating coils and the load 
disturbance is the input temperature. A process time delay 
occurs if the output is monitored at a point downstream from 
the tank outlet. A time delay in implementing a desired

41
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Figure 4-1. Perfectly stirred heating tank.
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control action is conceivable in this system. The control 
variable, coil temperature, is changed by variation of the 
flow rate of the heating media. This system can be slowly 
responding if the heat transfer properties of the coil wall 
are not favorable. The slow response effect of heat trans­
fer properties on the system dynamics is discussed later in 
the experimental description chapter. Noise is ever present 
in temperature measurements of flow systems. Physical pro­
perties such as heat transfer coefficients and heat capaci­
ties may change slowly over a period of time. For example, 
corrosion and scaling deposits change the heat transfer co­
efficient. We cannot monitor all the physical properties of 
the system continuously. Therefore these changes would cause 
an error in the process model. The effect of all these pro­
cess problems on obtaining good control is examined.

The First Order Model 
The process dynamics can be obtained by an energy bal­

ance around the unit. The resulting equations are

VCp dx(t) = FCp u(t-r^) - x(t) + UjjAjj mft-Tg) - x(t)
(4.1)

where
x(t) is the outlet temperature

u(t-T^) is the inlet temperature at a time r^before 
its effect in the outlet is observed.
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m(t-r_) is the coil temperature set by the controller at 
a time r_ before its effect in the outlet is 
observed.

U„ is the overall heat transfer coefficient.£1

is the heat transfer area of the coil.

F is the flow rate.
is the density of the fluid.

P is the heat capacity of the fluid.
V is the volume of the tank.

The above equation is a linear differential equation.
The forcing terms, mft-Tg) and u(t-T^), can have delayed 
arguments. This does not mean that v/e are dealing with the 
hard-to-solve delay differential equation. The latter type 
of differential equation occurs when the state variable x(t) 
appears in the equation with a delayed time argument.

Since the equation is linear, we can define a perturba­
tion model. The perturbation form is very convenient because 
it translates all the initial conditions of the equation to 
zero.

Define x (t) = x(t) - x^^ (4.2)
m(t) = m(t) - m^g (4.3)
u(t) = u(t) - Ugg (4.4)

where
Xgg = steady state outlet temperature
m^g = steady state coil temperature 
Ugg = steady state inlet temperature
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By introducing the above definitions and then taking the 
Laplace Transform, equation (4.1) can be rewritten as

K e ’'2® lee ^1®
x(s) = —— —— â +  —  u(s) (4.5)s + p s + jS

where

- V h . FC,

m(s), x(s), and u(s) are the Laplace transforms of m(t), 
x(t), and u(t) respectively.

For ease in later manipulation, let us make the follow­
ing definitions:

p ..  .  -  (4 - 6 )
•Si

'M s + g

="^2" (4-7)

In order to make meaningful controller specifications, 
the statistical nature of the load disturbance is required.
It is convenient to consider random disturbances with an auto­
correlation function which can be represented as

6 (T) = (4.8)

where
2 = mean square amplitude 

U = frequency (radians per unit time)
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This function is a good practical representation of physi­
cally observed random disturbances (L1,N1). The above auto­
correlation functions limits the design procedure to station­
ary, gaussian load disturbances. Since equation (4.8) is an 
adequate description of many of the observed load disturbances, 
it does not seem worthwhile to cloud the analysis with the 
more complex nongaussian, nonstationary representations.
The power spectral density of this function is more commonly 
used in the control literature.

Another incentive for using this type of load disturbance is 
that it is readily generated by available equipment in the 
Process Control Laboratory. Analog simulation tests of the 
resulting controller designs are an important part of the 
total design effort.

The preceding transform domain representation of the 
system dynamics was made because of its familiarity to control 
engineers. However, the starting point for the design proce­
dure requires the time-domain representation. For higher order 
systems, the time-domain equivalent of a given transfer func­
tion is not unique. There are several methods available to 
define the state (Al) variable. A discussion of the various 
methods is presented in Appendix A. The first order system
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process equations are
x(t) = -/S x(t) + K^(t-T^) + KpU(t-r^) (4.10)

The scalar performance index chosen as the basis for
the optimization is 

T
e = I 0x^ + #m^ dt (4.11)

■̂t

where

$ ^ 0  ; ^ > 0 ; T~* “

Let us now take the simple case of no time delays, i.e.
= Tg = 0. This is an unrealistic problem, but it will 

serve as a basis for comparison because of its position as 
the limiting case. Remember that negative values for and 

are physically unrealizable, so the case of zero time delay 
is a limiting one.

The optimal control law obtained in Chapter III has the 
following form for this example.

m.(t, <4.12,

where K, J are defined by the equations
FpK?

_ 2 L . +  2j8K - 0 = 0  (4.13)

J(t) = S u(t) (4.14)
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The parameter, S, is the steady state value obtained 
from the following boundary-value ordinary differential equa­
tion. This simplification in solving for the J(t) function 
arises from the separable nature of the statistical charac­
terization of the load disturbance.

S i n)  — S (M) + K Kĵ  U(M-t)

with the boundary condition

S(T) = 0  
where

U i{JL-t) = e ~ ^

The solution of this equation is

K
S =

(4.15)

(4.16)

(4.17)

The solution for the k parameter is

KM
+ \ m  + K (4.18)

By rearranging the equations into a more useful form, it 
can be seen that the optimal control law consists of a feed- 
forward component and a feedback component.

m(t) = Qjj u(t) - Q(̂ x(t) (4.19)
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The feedforward controller is

M

The feedback controller is

V' 2 ^

Q = -------------------- (4.21)

The controllers are functions of the ratio of the two 
weighting functions, it is of interest to examine the effect 
of limiting values of the weighting functions on the value of 
the controllers.

Let $-» OS. This corresponds to placing a very heavy pen­
alty on the deviations of the state variable, x. Therefore 
the allowable range of the state variable approaches zero as 
the weighting function 6, approaches “• Notice the effect on

Qd -
Knlim Q_ = - —  (4.22)

^  «°

The result is the "ideal" feedforward controller. This limit­
ing value is obtained by setting X = 0 and solving for per­
fect invariant control. From equation (4.5) we can get the 
same result.
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X(s) = 0 = ----- M(s) +   U(s) (4.23)
s + /8 s +

rearranging gives

KnM(s) = -   U(s) (4.24)

Therefore, "ideal" feedforward is the limiting case for this 
portion of the optimal controller.

Consider the case when ^ approaches zero. This corres­
ponds to very little concern for the magnitude of the control 
signal in the scalar performance index. The resulting effect 
on the feedback controller is

lim = » (4.25)
^  0

This is the classical result obtained by Newton, Gould, 
and Kaiser (Nl) which requires an infinite feedback gain for 
perfect attenuation.

For a first order system the ideal feedforward controller 
does the same job as an infinite feedback gain. However, the 
manner in which they attain the goal of perfect control is 
entirely different.

x(s). !° »(s) (4.2S,
1 + PM Qc
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Feedforward control attempts to cancel the gain of the sys­
tem, while the feedback controller increases the stability 
of the system. Stability increase can be thought of as a 
system desensitizing action, i.e., the system does not react 
to load disturbances. One, however, must be careful to point 
out that large feedback gains will not always increase the 
system stability. For systems of higher order, large feed­
back gains can actually move the system to instability (C5).

One noticeable result in equations (4.20) and (4.21) is 
that both control functions are dependent upon the ratio of 
the performance index weighting factors. The problem does 
not contain adequate degrees of freedom to allow different 
controllers for changes in both weighting factors. However, 
this result is to be expected. In most optimal control prob­
lems found in the literature, the weighting factor, $, is 
assumed to be one (unity). The weighting factor, corres­
ponds to a Lagrangian multiplier which imbeds an integral 
(energy) constraint on the control effort into the performance 
index. Bellman has presented a rigorous justification of 
this technique (B2) and also points out that in some cases 
there is no multiplier that will minimize the performance 
index. These abnormal problems should not be worried about 
until a problem at hand exhibits this behavior. The steps 
involved in solving abnormal problems are complex and time- 
consuming (B2) .
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With the above comments in mind, it seems convenient to
specify the weighting factor, 0, to be unity. Then, varying
the weighting factor, corresponds to varying the energy
constraint on the control effort.

A saturation constraint on the control effort, m, can
not be directly imbedded into the performance index. A
common procedure is to replace the saturation constraint
(m(t)  ̂constant) by the energy constraint (I m(t)dt s con-

J o
stant). The difficulty is that it is not clear how to assign 
a value to the energy constraint corresponding to a specific 
saturation constraint. In servomechanism problems the trans­
ient control effort trajectory is calculated. Then the energy 
constraint is adjusted until the control signal trajectory 
does not violate the saturation constraint. However, trajec­
tories are not useful in regulator problems. In the case of 
linear systems with gaussian disturbances, Newton, Gould and 
Kaiser (Nl) have proposed a method of replacing saturation 
with energy constraints. This constraint replacement problem 
is one of the major difficulties in optimal control theory.

A Particular System 
For purposes of illustration, several numerical values 

were chosen for the parameters in the system transfer func­
tion.
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/S = 2
2mean square disturbance amplitude, fx =25.

State variable weighting factor, = 1.0
Figure (4-2) is the performance diagram for this sys­

tem. Thé cross-plotted values of show where the various 
optimal controllers lie on the performance loci. For a par­
ticular disturbance frequency every combination of feedback 
and feedforward gains lie on a single line on the performance 
diagram as can be seen from Figure (4-3)-

From the general shape of the performance loci, it seems 
that a large amount of control effort is required to cause 
any noticeable reduction of the mean square output. This is 
deceiving. The performance diagram is plotted on the logarith­
mic scale which squeezes the range of interest. In terms of 
quality of performance. Figure (4-4) will give the reader 
another representation of the ability of these controllers 
to perform their tasks. In all upcoming work, the performance 
diagram is used because of its larger range.

With the results of Figure (4-4) in mind, we can more 
fully understand the performance chart. Figure (4-2). As 
the performance loci flattens out, indicating that small 
changes in the mean square control effort produce significant 
changes in the mean square output we must always keep in mind 
that this occurs at the 99% output efficiency level. Although 
a large portion of the mean square output range on the diagram
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is involved, it is only in the small number range which does 
not appreciably affect the output efficiency.

In terms of the control parameters, the decrease in 
mean square control specifies larger and larger feedback 
gains. There is, of course, a practical limit on the size 
of the feedback gain, but this limit has not been introduced 
in the optimization procedure. In fact, it is almost imposs­
ible to imbed a constraint on the feedback gain into the 
optimization equations. There are some indirect methods of 
accomplishing this, but they all are only rough estimates.
The reason that it is difficult to consider feedback gain 
constraints is that we are minimizing with respect to the 
control signal, m(t), not the gain portion of this signal. 
While a limit on the feedback gain is common, the constraint 
on the total control signal is more important. As the gain 
increases, it causes the output signal to decrease. The con­
trol signal, which is the product of these two functions, is 
approaching a limit. For ex^ple, the analog computer which 
is widely used to construct controllers has an operating 
range of * 100 volts. Therefore the output of the feedback 
amplifier should not exceed 100 volts. There is not an expli­
cit limit to the size of the feedback gain that can be used 
with this amplifier, but because of noise limitations of the 
analog equipment, it is not wise to use a gain larger than 
100. This would mean that the input voltage to the amplifier
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would be restricted to a range less than ^ 1 volt which is 
only 1% of the computer range. With this low signal, noise 
becomes a major limitation.

An important point to notice is that the mean square 
control effort for ideal feedforward control is the upper 
bound on control effort. Therefore, a constraint on the con­
trol effort hinders the operation of ideal feedforward as 
well as feedback controllers. This point has not been dis­
cussed in previous studies on ideal feedforward control. A 
probable reason for this is that the particular process under 
consideration does not have a strong constraint on control 
effort.

It is interesting to note the separate effects of each 
control action. In Figure (4-5), the weighting function ratio 
is plotted against the mean square output for three different 
control configurations; feedback control, feedforward control, 
and the combination of the two. These cases represent the 
extremes in the ability to measure the load or output signal.
IfJfor example, the load variable can not be measured, this 
situation corresponds to the case of no feedforward available. 
The feedback controller is more efficient than the feedfor­
ward controller throughout the whole range for the same weight­
ing function. At the same value of the weighting function, 
it can be seen that the composite controller is much better 
than either controller acting alone. Of course the value of
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the Qç gain needed to produce a given mean square output is 
much larger for the = 0 case than the composite case. In 
the composite case we have two gains and which contri­
bute to the control action, while in the other cases the 
and Qjj which contribute to the control action, while in the 
other cases the or have to make up in effort for the 
deleted member. In Figure (4-6) the same three cases are 
shown on the weighting factor versus mean square control 
effort diagram. (From this graph it can be seen that the 
feedback takes more control effort than the feedforward.)
The reason for this unequal division of control effort is 
that we have chosen to work with a load disturbance frequency 
of 1.5. Since only the feedforward controller is sensitive 
to load frequency, it is this controller whose efficiency is 
affected. When the frequency is zero, the optimal controller 
splits the work evenly between feedforward and feedback. The . 
work of the composite controller is split about evenly in this 
case because the ratio of the control gain to disturbance gain 
is unity.

Constraint on the Integral of the State Variable
Consider the effect of adding another constraint to the 

optimization problem. This new constraint specifies propor­
tional and integral feedback control action. Without intro­
ducing the integral constraint in the weighting matrix coupled
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with the fact that the integral output does not appear in 
the system dynamics, there is no possibility of obtaining 
integral control. The reason is that all of the possible 
coefficients of the integral output are zero. However, by 
adding a finite constraint on the integral output, the mathe­
matical manipulation of the various system matrices carries 
along a finite coefficient for the integral output.

Figure (4-7) shows the difference between mean square 
output and mean square integral output on the performance 
diagram. Notice that the mean square integral goes to infin­
ity as control effort goes to zero. If the integral output 
is used as the only output criterion in the scalar perform­
ance index (by setting the normal output weighting factor 
equal to zero), both proportional and integral control action 
are specified by the optimization technique. However, if the 
integral output is neglected, then only a proportional con­
troller is specified. Without an integral controller the 
mean square integral output is always infinite. This result 
points out the importance of including all the significant 
variables in the scalar performance index.

Figure (4.8) shows the effect of mean square integral 
output on the mean square output. By increasing the integral 
weighting factor, the mean square integral output correspond­
ing to a given mean square output is reduced. Furthermore a 
reduction in value of the proportional feedback gain needed
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to produce a given mean square output also results as seen 
from the cross-plotted values on Figure (4-8). This point 
can be illustrated by using the same value of mean square 
output for various combinations of integral and proportional 
gains.

MSQ Integral Output Prop. Feedback.
“ 3.38
1.8 3.14
0.16 1.55

The first value corresponds to the case when no integral 
constraint (integral weighting is zero) is considered. A 
lower mean square integral output uses less proportional feed­
back and more integral feedback to achieve the desired level 
of output attenuation.

The cross-plotted feedback proportional gains are approach­
ing a particular value as the mean square integral output 
approaches infinity. This limiting value is the proportional 
gain when no integral constraints are included in the per­
formance index.

By including the integral output in the design, we should 
be aware of its effect on the controlled process. The tran­
sient response of the controlled first order system to a step 
disturbance is a familiar example for explanation of these 
effects. Proportional control is subject to a phenomena called 
"offset". Increasing the weighting factor on the output
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variables just reduces the offset. Integral action relieves 
"offset". Whereas the proportional controller alone will 
never bring the system back to the desired state, adding 
integral control will allow attaining the desired value of 
the state variable. Varying the weighting factor of the 
integral output causes a difference in the manner in which 
the system tries to reach the desired state. As the inte­
gral controller gain increases, the system response becomes 
more oscillatory as shown in Figure (4-9). For a fixed pro­
portional gain, increases in integral gain cause the system 
to approach a small oscillatory response. Remember that the 
performance index is quadratic, so it does not discriminate 
against systems with a small highly oscillatory response.

When we increase the weighting factors, both propor­
tional and integral gains are affected. Figure (4-9) shows 
the effect of proportional gain on a system with PI control­
lers. It can be seen that an increase in the proportional 
gain of a PI controller reduces the over-shoot of the response 
trajectory.

When the output integral was included in the scalar per­
formance index, the integral weighting factor is considered 
to be another degree of freedom. Since there was one degree 
of freedom in choosing the weighting factors for the case of 
proportional control only, the present system will have two 
degrees of freedom. One specifies a relative weight between



67

FIXED PROP. GAIN Kl = 0
K2 <  K3 <  K4

K = INTEGRAL GAIN

u
COzo0.
COwir
0.ui
k

K2K3

K4
I-
z3

TIME

FIXED INTEGRAL GAIN

<  K2 <  K3

PROPORTIONAL GAIN
z2
CO
UJ(r

K2Q.
ÜJ
b

K3

TIME

Figure 4-9. Unit step response of a first 
order system with proportional- 
integral controllers.



68

feedforward and feedback, while the other specifies a rela­
tive weighting between proportional and integral action. In 
any case an increase in the weighting factors causes a decrease 
in system mean square output. Notice that an increase in 
weighting factor causes both proportional and integral gains 
to increase. Since these two parameters individually have 
opposite effects on the oscillatory nature of the system, our 
optimal control specifications combine both faster response 
with quicker damping. As the load disturbance appears in the 
system dynamics without any transfer function zeros, the inte­
gral constraint does not affect the feedforward controller.

The Effect of Feedback Noise 
In actual control equipment there is usually a dead band,

i.e., a certain finite signal must be obtained before the con­
trol and measurement equipment can detect it.. It is this dead 
band that limits the size of the feedback gain which can be 
physically realized since the optimal control law states that 
larger and larger feedback gains are required in order to make 
the output variable smaller and smaller.

In the previous mathematical formulation, we restricted 
the control variable, m(t), to be in the closed set;

M ^ m (t)  ̂m"*"

This type of set would include the case of control signal sat­
uration. The optimal control law is
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'■ M for m* (t) < M

m(t) = i m* for M  ̂m* (t) ^

L m"*" for m* (t) >

If the dead band region is included, the allowable set of
control signals must be changed. The following set would 
be desirable.

for m (t) < M,
;+m* (t) for ^ m* (t) ^

m(t) = < for  ̂m* (t) ^

m* (t) for ^ m* (t) ^

(4.28)

M, for m* (t) > (t)

This new formulation restricts the control signal to a set 
which is made up of the sum of two closed sets. Figure (4-10) 
shows a typical allowable control signal.

The problem in solution of the optimal control equations 
arises because of the discontinuities at points "a" and "b". 
This set of allowable control signals is not suitable for the 
previously developed theory.

One way to get around this difficulty is to consider noise 
in the feedback circuitry. The level of the feedback noise 
will allow us to pick reasonable weighting factors for the
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the performance indices. The basic idea of entering the 
new independent parameter, feedback noise, is to reduce 
the number of degrees of freedom of the whole design pro­
cedure. In Figure (4-11) the block diagram shows how feed­
back noise is related to the overall process.

The control equation for this system with noise in the 
feedback is

M(s) = Qjj U(s) - (X(s) + 6(s) ) (4.29)
Using this control equation in the first order process pre­
viously mentioned

P O + P P 0
X(s) = %  _ D - 2 C Ç _ ô ( s )  (4.30)

It can be seen that as Q̂, is made larger, the output variable 
X(s) approaches the negative value of the noise, 6 (s). The 
performance diagram. Figure (4-12), shows this very clearly. 
The important point is that there is a set of weighting fac­
tors which will give a physically realizable feedback gain. 
For example, when the mean square amplitude of the noise in 
the physical equipment is 0.01, the performance diagram shows 
this value to be the best possible control of the output that 
can be obtained. Further increases in the mean square con­
trol effort do not produce any reductions in the mean square 
output. This is intuitively reasonable because the control­
ler can not act upon something it can not see. Therefore
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the introduction of feedback noise serves the purpose of 
approximating the dead band phenomena of actual equipment.
In the control equipment literature the feedback noise level 
is usually referred to in terms of the signal-to-noise ratio 
(Nl). However, most of the control literature is concerned 
with relatively low signal-to-noise ratios such as is common 
in radar and communications networks. This equipment requires 
filters to estimate the true signal value.

We are only concerned with rather high signal-to-noise 
ratios. Furthermore, it is difficult to filter the noise in 
a measurement of a chemical process. The time constants 
prevalent in most heat transfer systems are so large that the 
filter would affect the system dynamics. The performance 
diagram. Figure (4-12), show that when the signal-to-noise 
ratio approaches unity, the system will not be subject to con­
trol. However, at a feedback mean square noise level of 1.0 
we can still reduce the output mean square to a value of 0.5 
which is 50% lower than the noise level. Notice that this is 
still an 85% reduction in the level of the output variable. 
But, normally when the noise level is too high, it is best 
to reconsider the measurement and control equipment to be 
used. However in the situations where there is no way to 
get around a high signal-to-noise ratio, the performance 
diagram shows that some attenuation below the .noise level 
is still possible with the right selection of feedback gain.
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Effect of Model Error 
In empirical mathematical process models the system 

gains and time constants are not known precisely and one 
can usually associate error bounds with each parameter.
These error bounds can be thought of as limits of the fluc­
tuation of system parameter. These fluctuations are ever 
present and can be a result of small non-linearities of the 
system. In order to grasp the importance of these uncer­
tainties, a sensitivity study can be made.

Consider the following functional form of the system 
dynamics

x(t) = /(x,t,p) (4.31)

where x = state variable 
t = time
p = a system parameter

The parameter, p, can be any of the system gains or time 
constant of interest. If we need to observe the effect of 
variations in the parameter, we can solve the above equation 
successively for various parameter values.

X = /(x,t,p + Ap) (4.32)

By comparing solutions we can obtain an indication of the 
sensitivity of the system. A more quantitative measure of 
this sensitivity can be defined
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Z(t,p) - lim x(t,p + Ap) - x(t,p) 
Ap^o ------ ^

or

g(t,p) (4.34)
op

This function Z(t,p) is called the sensitivity coefficient. 
This type of function has been used in recent years by con­
trol engineers to study stability, most notably the study of 
airplane stability (D2,K3,P2,T1).

In order to qualify the above sensitivity definition, 
we must recognize the two classes of sensitivity coefficients 
which are commonly used today. If the actual initial or 
steady state is not the nominal one used in the design stage, 
the difference acts as a static disturbance. This static 
sensitivity is not considered here. On the other hand, if 
varying parameters appear explicitly in the state transition 
equation, they are labeled dynamic disturbances. It is this 
latter class of variations which are of interest here. The 
reason for this interest is a result of several observations 
made during the experimental phase of this work and are 
explained in detail in the experimental chapter.

The sensitivity coefficient can be redefined for con­
venience in the following manner.
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Z(t,p) = lim x(t,p + ^p) - x(t,p) (4 35J
“ A p/p

or

Z(t,p) = j. (4.36)
3 In p

This definition gives an indication of the change in the 
state variable corresponding to a relative variation in the 
parameter.

A transform domain definition follows directly from the 
differention property of the Laplace integral.

Z(s) =  ̂ (4.37)
3 In p

Then we can use a mean square sensitivity coefficient in 
later discussions.

j“
©2z(0) = 4  / Z(s) Z(-s) ds (4.38)

— j o o

This mean square evaluation has been discussed earlier in the 
preliminary mathematical background presented in Chapter II.

The sensitivity coefficient is calculated from the error 
bound estimate of the parameter in question. This gives a 
"worst" value sensitivity. Then the sum of the mean square
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output of the model and the mean square sensitivities cal­
culated from all parameters subject to variation provides 
an estimate of the actual mean square output of the physi­
cal process.

(®xx> actual = <®xx)moael + 
where € is the parameter error bound.
Figure (4-13) shows the effect of error in the system gains 
upon the mean square output. Error in the system pole is 
negligible in comparison to the gain errors. It can be seen 
that the control signal gain, K^, is the most sensitive para­
meter when the composite controller is used. However, if 
only the feedforward portion of the controller is available, 
a variation in the disturbance gain causes a larger deviation. 
This points out the necessity of using a feedback controller 
whenever possible because of its ability to de-sensitize the 
system model errors as a safeguard in actual physical process 
control systems.

In Figure (4-13) each point on the forty-five degree 
line represents a value of mean square control effort. The 
actual mean square output is higher due to inclusion of the 
error bounds than the model mean square output. Notice that 
the actual output still goes to zero as the control effort 
increases but at a slower rate than the model output. When 
a feedforward controller alone is considered, the actual mean
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square output does not tend to zero, but rather it approaches 
some finite value.

This emphasizes the effect of model error on the optimum 
composite feedback-feedforward controller. It is the feed­
forward portion which is the cause of the higher mean square 
output.

Process Time Delay
Consider a first order process with a time delay. This 

model is extremely useful as a representation for many indus­
trial processes. Ziegler and Nichols (Zl) used this repre­
sentation as a guideline in formulating their highly success­
ful empirical design procedures for selecting controller 
parameters.

An example of the type of processes under consideration 
is shown in Figure (4-1). For simplification, but with no 
loss of generality, the time delay is assumed to be zero. 
The case of non-zero delay is discussed later. The trans­
fer function for this model is

X(s) = P^ e"’’® M(s) + P^ eT^s u(s) (4.40)

The constants and variables are the same as in the previous 
discussion. The parameter, r, in the exponential factor is 
the time delay. Time delays of this type are common in the 
chemical industry because of the nature of the flowing system
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in~that it takes time for an upset in the input stream to 
be detected in the outlet. This time interval is the delay 
time, T. Using equation (3.23) to get the controller

m*(t) = u(t) - x(t + r) (4.41)

The feedforward controller, Q^, and the feedback controller,
Q̂ , have been defined previously in equations (4.20) and 
(4.21). Since the argument of the state variable is t + r, 
this means that we must know the value of state variable,
X, T time units in the future. Although this is physically 
unrealizable, we do have an alternative. Rewriting the 
state variable in terms of the impulse response

t t
x(t+T) =<p(r) x(t) + I (p(t-7?) m(77)d?7 + / p(t-%) K^u {7))âri

t-T t-T
(4.42)

where tp (r) = matrizant or fundamental matrix of the homo­
geneous state variable equation.

Notice that x(t + r) is a function of the measurable quanti­
ties: x(t), m(t), u(t), and the control and load signal in
the past. This gives a completely measurable result. Since 
the inlet stream variables will not affect the outlet until 
T time units later, the inlet variable at time, t, and their 
recent past values will determine the outlet at time, t + r.
In practical applications, problems exist because we usually
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do not have a complete mathematical model which will include 
all the disturbances but a good approximation can be gener­
ated. The above equation can be rearranged into the follow­
ing form.

x(t+r) = e ^^x(t) + [e ^^^m(t) - e e ^^^m(t-r)} 

+ {e"^^ u(t) - e"^^ e"^^^"'^^^u(t-T) } (4.43)

The symbol, , denotes the convolution product.
Using equation (4.41) and (4.43) and taking the Laplace trans­
form results in

M*(s) = Qg U(s) - G x(s)

-P̂ Q(.(1 - e"^^) M(s) (4.44)

e"^^) U(s)

Simplifying

M*(s) = Q*(s) U(s) - Q*X(s) (4.45)

where

1 + P„Q,(1 -

Q = ----------------------- (4.47)
1 + P^Q^d - e"’'® e'ff)
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*  *Here the new functions, and are the feedforward and 
feedback controllers. It is interesting to consider the 
physical interpretation of these new functions. Although 
these functions appear complicated, they can be easily simu­
lated using block diagram algebra (C5). Figure (4-14) shows 
the block diagram of this system. Notice that the optimal 
control equations specify a minor loop around the feedback 
gain. This configuration is similar to the Smith linear 
prediction investigated by Buckley (B12,S2). However,
Buckley considered a pure dead time process which does not 
contain any other dynamic elements. This minor loop tries 
to "tune out" the process dead time. This apparatus is not 
commercially available. However, it can be approximated with 
analog and/or digital components. Buckley has reported some 
successful applications of this type of configuration (B12).

The performance diagram for this system with the minor 
feedback loop is exactly the same as the system with no dead 
time. If the minor loop is neglected, a point of instability 
can be reached. The instability is a direct result of the 
exponential term in the denominator of the overall system 
transfer function, i.e.

X(s) = e"’’® M(s) + eT^s U(s) (4.40)

But for the controller without the minor feedback loop

M(s) = Qjj U(s) - e"^f X(s) (4.49)
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Combining these two equations gives the overall controlled 
system transfer function.

To evaluate the behavior analytically, substitute the first 
order Fade expansions (B12) for the denominator exponential 
and rearrange so that

X(s) _ s +1)

( (r/2)s +1) (s + )S) + e"^^( (-r/2)s + 1)

(4.51)
and

X(s) ( 2^ "
(4.52)U(s)

From this simple approximation to the exponential, it can 
be seen that as the feedback gain increases, a point can be 
reached where the roots of the transfer function denominator 
move into the right-half plane. This result implies that the 
system becomes unstable, and the controller reinforces the 
disturbance at this point with the natural result of causing 
the system to become oscillatory.

Figure (4.15) shows the effect of deleting the minor feed­
back loop at various values of time delay. The larger time 
delays cause the system to go unstable at higher values of
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mean square output. The advantage of the performance chart 
over the root locus or Nyquist stability charts lies in the 
ability to show the degrees of attenuation that are possible 
before instability occurs. By adding the minor loop or at 
least a fractional part of the minor loop, increased attenua­
tion for the same time delay is apparent.

It is interesting to investigate the effect of integral 
control action in the case of a process delay. The integral 
or floating controller is popular in the chemical process 
industry (B12). As in the previous case, the optimal con­
troller specifies a minor feedback loop. This loop again 
causes the system to act like process with proportional and 
integral action with no delay time.

Without the minor loop the system can be unstable as 
discussed before. In fact, the point of instability on the 
mean square control versus mean square output occurs at the 
same point for each time delay. Therefore integral action 
does not provide any increased stability to the controlled 
system. The major function of integral control is to reduce 
the amount of control effort expended by the proportional 
controller.

Figure (4-15) shows the effect of various time delays 
on the mean square integral output. It is intuitive that the 
larger time delays should cause a decrease in the output 
attentuation. In order to maintain a given level of mean
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square integral output for larger time delays. Figure (4-15) 
shows that larger controller gains are required. The spread 
in the curves as lower mean square integral outputs are 
derived shows that the larger delay times cause a more oscil­
latory behavior.

Model errors due to time delay fluctuations do not affect 
the controlled mean square output to the same extent as does 
error in the system gains. Figure (4-17) shows that the time 
delay sensitivity is not as important when the optimum con­
troller containing the minor loop is used. However, if the 
minor loop is deleted then changes in the value of time delay 
can be vital, especially when the system is being operated 
close to the point of instability. Figure (4-18) shows how 
the point of instability is affected by time delay fluctua­
tions. This chart can be used in a design procedure to esti­
mate the attainable controlled output when an approximate 
error bound on the time delay is known. Time delay is a 
function cf the vessel volume and flow rates, so any fluctua­
tion or gradual change in these quantities will cause a change 
in the identified model time delay.

Effect of Control Delay
There are many instances in the operation of a process 

when a delay in the actuation of the control signal may occur. 
For example, a delay in implementation of the control signal
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occurs in system where the manipulative variable is tempera­

ture. A finite time is usually required to furnish the 

desired amount of thermal energy and there is also a finite 

time required to heat the control fluid to the desired tempera­

ture. The underlying limitation is due to a finite maximum 

heating rate.

When some of the physical limitations of a process 
cause the control actuation to be noticeably delayed, then 
it becomes necessary to consider this delay in the model 
equations. Referring to Figure (4-1), the system under 
discussion occurs when is negligible but cannot be 
ignored. The transform representation of this system is

X(s) = M(s) 4- P^U(s) (4.53)

The optimal control signal for this system is found from 
equation (3.23)

m*(t) = Q^u (t+T) - Q^x(t+r) (4.54)

This signal can never be obtained because it is physically 

impossible to measure the future value of the disturbance, 

u(t+T). However, the statistical characterization of the 

disturbance is known, so an estimate of the probable future 

values of the disturbance can be made.

Solving the feedforward equation (3.22) for this system 
gives:
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fi + "Vfî  + 0/^ -CiT

Qn = -  --------  -  ■ ... ® (4.55)
M a + y fî + <&/#

This equation is very similar to the feedforward function 
derived for the no time delay case which was expressed in 
equation (4.20).

The feedback term can be evaluated as previously 
shown from the matrix riccati equation (3.13)

0 = + "Vf + Km  ̂ (4.21)
^ %

The future value x(t+r) can be expressed as a function of 
the load and control variables with an impulse response 
relation, i.e. equation (2.19)

t t+T
x(t+r) = p(T) x(t) + J Kĵ (ju) â{i + J (p(t-fi)K̂ u(pi) dfi

t-T t
(4.56)

Using the conditional mean expression, equation (2.10), 
an estimate of the future values of the load disturbance can 
be made.

x(t+r) = e x(t) + {e ^^^m(t) - e ^^e ^^^m(t-T)}

r (̂fi-a)T+  lil u(t) (4.57)
fi-a
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where a = frequency of the load disturbance noise.
The symbol9^, denotes the convolution product of two functions 
(Nl). Combining equations (4.57) and (4.54),

m*(t) = u(t) - e“^’’ x(t) - [e“^!^m(t)

{^-a)T

(P-a)
(4.58)

Transforming this equation into the frequency domain and 
re-arranging
M(s) = 3ĵ U(s) - ^çX(s) (4.59)

e(^-“)^-l 
X jg-a ^
Qj) = ----------------------- ---------------- (4.60)

1 + P„Q^ {1 - e-fSe-2r,

°C =
1 + Pj,Qc< 1 - s (4.61)

Figure (4-14) shows how these equations can be simulated with 
the aid of block diagram algebra. In Figure (4-19), the per­
formance diagram for this system is shown for various values 
of delay time. Notice that the size of the time delay limits 
the amount of output attenuation that can be obtained. Intui­
tively, this result is reasonable, since processes can not be 
controlled if the control action takes place too late to com­
pensate for the disturbance.
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It is interesting to note the form of the feedforward 
controller. In order to reduce the algebraic detail, consi­
der the case where the time delay is rather large. By re­
arranging equation (4.58) and using the definition of PM
presented in equation (4.6), a one-pole, one-zero controller 
results.

.  %  -  %

' •

As a higher penalty (increased weighting factor) is placed in 
the output variable, it has been previously shown in equation 
(4.25) that approaches infinity. Therefore, the feed­
forward controller shown above approaches a differentiating 
predictor of the form:

3d = K(s+jS) (4.63)

Then the overall controlled system transfer function would 
be zero order rather than first order. The mean square value 
of this system would increase without bound in the attempt to 
achieve control (Fl).

This same type of differentiating predictor controller 
was observed by Luecke (L4), but his frequency domain approach 
does not allow the prediction of the controller parameters 
from the weighting function and system parameters. Therefore,
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■Luecke was only able to observe the overall predictor feed­
forward controller by repeating his calculational procedure 
for various values of the weighting factor.



CHAPTER V 

EXPERIMENTAL STUDIES

The purpose of this chapter is to show how the previous 
optimal controller design procedures can be applied to a 
physical system. Although the physical apparatus used is 
not a familiar piece of chemical plant equipment, it posses­
ses a number of features common to process equipment.

The laboratory process is a stirred tank jacketed vessel 
with hot and cold fluids entering the center and the annulus 
respectively. This process serves as a good test because it 
contains many of the little unknown disturbances of process 
equipment. Steady state drift, heat loss, measurement error 
and noise, instrumentation dead band, valve hysteresis, and 
controller delay due to pneumatic air lines are among the 
problems beset a plant engineer in his quest to obtain con­
trol over actual chemical processes. These effects were 
reduced as much as possible but certainly not entirely. In 
fact, if all these problems did not arise, then our objective 
to show how the controller design can be applied to a physical 
process would not be valid.

98
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Experimental Description 

The physical apparatus described herein is located in 
the Process Control Laboratory in the Engineering Center of 
the University of Oklahoma. It was originally assembled in 
the late 1950's. Several previous doctoral dissertations 
were concerned with various aspects of this equipment. Both 
identification (B5,F1,S1,S4) and control (H2,L4) were inves­
tigated. Though many changes evolved over the years, the 
last two investigators (L4,S1) used the same configuration.
In particular, the most recent investigator gives an exhaus^ 

tive equipment description. For this reason only the basic 
equipment and recent modifications are discussed here. The 
overall process flow chart is shown in Figure 5-1.

The heart of the process is the simulated reactor or

heat exchanger shown in Figure (5-2). Type metal was used 
for the wall for its heat transfer properties. Seven thermo­
couples were located at 3/4 inch spacing and were imbedded 
in the metal wall. These thermocouples were connected in 
parallel to give an average wall temperature. Hot oil 
(approximately 175®) entered the reactor through the bottom 
and was stirred by a 1/10 horsepower 1800 rpm motor. The 
coolant, Dow Chemical's industrial grade ethylene glycol, 
entered the bottom of the reactor through a series of per­
forations in the lucite and plates.
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Temperature Baths
The temperature of the turbine oil was maintained at 

a given level in two 30 gallon tanks, each independently 
controlled. High pressure steam was used as the controlling 
heat source. Control was provided by Brown Electronic 
recording-controlling pyrometers. These instruments 
operated pneumatic Research Control valves on the steam 
lines. By using the tanks in series the oil temperature 
was maintained within ± 0.25°F.

The ethylene glycol was maintained at a specified 
temperature in a 25 gallon plexiglass tank. A Ih ton 
Freon-12 compressor with evaporator coil in the tank pro­
vided the cooling. Another Brown Electronic controller 
was used to control the temperature. The controlling 
media was hot water flowing through a set of heat exchange 
coils within the coolant bath.

Flow System
Both the coolant and oil were circulated by Gould h inch 

helical gear pumps driven by 3/4 horsepower electric motors. 
The operating pressures at the pump outlets were the same at 
approximately 30 psi.

The flow through the pumps had to remain nearly con­
stant so that the control valves would operate in the linear 
range. This was accomplished through the use of a reactor 
bypass arrangement. The flow in each stream was divided so
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that the fluid passed through a control valve back into the 
temperature bath. All four valves were Research Controls, 
type 75b , with G trims. The pneumatic signal to these valves 
was generated by Taylor Transet electro-pneumatic controllers 
with an output range of 3-15 psi and an input range of ± 100 
volts. The electrical signals were transmitted through coaxial 
cable from their origination on the Donner analog computer.

The oil flow rate was measured by a Waugh, type GFLS, 
turbine meter and its corresponding Waugh pulse rate con­
verter. The output of the pulse rate converter was 0-200 
millivolts which made it necessary to provide amplification 
on the analog computer. A proportional-integral controller 
was constructed on the analog computer to control the flow 
rate {Figure 5-3). This was necessary primarily to overcome 
the very noticeable hysteresis in the control valves.

The coolant flow rate was measured with a Fisher-Porter 
type 10CI505 turbine meter. The AC signal from the meter 
was introduced into a custom made pulse rate converter. This 
converter was made by Dr. R. A. Sims in the Process Dynamics 
and Control Laboratory at the University of Oklahoma, and 
has an output range of 0-1 volts. A similar controller, 
shown in Figure (5-4),was constructed for the coolant flow 
system.

Temperature Measurement 
The output voltage of the thermocouples in the reactor 

were amplified with a Sanborn, Model 350-1500, low level DC
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preamplifier with a Model 350-2 plug-in unit. A gain of 500 
and input suppression of 5 millivolts were used. Figure (5-5) 
shows the configuration of temperature measuring equipment.

Analog Equipment 
The overall process controllers were contructed on the 

Donner, Model 3400, analog computer (B6). Model identifica­
tion data was recorded on the analog to digital converter 
which consisted mainly of a Dymec digital voltmeter and 
scanner coupled with a Hewlett Packard line printer.

The system load disturbance was generated by a custom 
built signal generator. At intervals, as determined by an 
adjustable time base, the output voltage was electronically 
switched. The resulting output was a constant square wave 
signal with random sign changes. The desired spectral den­
sity of the load disturbance was obtained by filtering the 
noise generator output. The final filtered noise had a 
frequency of about 1.5 radians per minute . (L4). This was 
chosen because the system time constants are in this range.

Dynamic Mathematical Model 
Appendix G presents a derivation of the theoretical 

linear mathematical model of this system. This model is not 
accurate because of its inherent limitation as an approxi­
mation to a nonlinear model. Inaccurate or changing para­
meters, such as, heat transfer coefficients and physical
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properties, are the probable causes of the model deficiencies.
An experimental identification technique developed by 

Heymann (H5) and Sims (SI) at the University of Oklahoma 
Process Dynamics and Control Laboratory was used to obtain 
a system transfer function. Simulation tests of the model 
on the analog computer were carried out to make adjustments 
to some of the parameters of this model. The final transfer 
function model of the experimental system is

X(s) - 1-87 U(s) - 0.418 (s 4- 2.76) M(s)
(S + 1.41 + 1.24i) (s + 1.41 - 1.24i)

where s = frequency in radians per minute ^
X(s) = wall temperature in volts (frequency domain)
U(s) = oil flow rate in volts (frequency domain)
M(s) = coolant flow rate in volts (frequency domain)

The model is shown in the form which is most useful for con­
trol purposes. Various scale factors within the system must 
be used if one wishes a transfer function in units more com­
mon to the variables (temperature in degrees, flow rates in 
Ibs/min.). This transfer function includes the dynamics of 
the value control system and the measure devices, so these 
factors do not have to be considered in arriving at an overall 
transfer function.

Figure (5-5) shows the responses of the system and the 
model to a unit step in coolant flow rate. Notice that there
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is a difference in the system response to a unit step of 
equal magnitude but opposite sign. This is due to the non­
linear product term in the dynamic model which can not be 
included in a transfer function representation. Figure (5-7) 
shows the responses to a unit step in oil flow rate. The 
product non-linearity exerts much more influence on the 
dynamic response of the oil side.

The initial slope of the model response is slightly 
smaller than the system responses. The system was given a 
unit step forcing on the analog computer, but the valves do 
not follow a forcing signal. The slightly underdamped flow 
control system responded to give an initially higher flow 
before it settled down to the steady state value of the 
imposed unit step input.

Controller Results
Figure (5-8) shows the control effort-system output 

relationship for the transfer function given in equation 
(5.1) as calculated from the computer programs listed in 
Appendix I. The stars on the diagram indicate controllers 
which were constructed to test their performance under pro­
cess conditions. A transfer function representation of 
these controllers is given in Table (5.1). These functions 
were the controller as programmed on the Donner analog com­
puter .
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Table 5.1

Controller Feedforward Feedback

BI

Ideal
Feedforward

= 0.947

% ■

Q =D

s+2.76

2.55
s+2.76

2.55
s+2.76

3.68
s+2.76

4.47
D s+2.76 

Time base is in minutes

Q = 1.31,,(s+3.39)
G s+2.76

■ C5..4.1). ( s+4 .40) 
s + 2.76

4.04 (s+4.3 + 7.3/sl 
s + 2.76

13.9 (s + 6.54) 
s + 2.76
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The uncontrolled open loop system output without the 
random forcing is shown in Figure (5-9). This system is 
rather stable with small steady-state fluctuations. Impos­
ing the random disturbance causes a slow-fluctuation in wall 
temperature. The third section of Figure (5-9) shows the 
response after application of the ideal feedforward control­
ler. This response is to be used as a standard of comparison 
with the calculated optimal controllers. Notice that when 
coolant saturation occurs there is a loss of ability to con­
trol the system with the ideal feedforward controller. This 
loss of control is expected since ideal feedforward requires 
maximum control effort which thereby increases the chances of 
control signal saturation.

Figure (5-10) shows the typical response trajectories 
of the experimental system when the optimal controllers are 
applied. Optimal controller "A" is not particularly effec­
tive because it was chosen close to the point of no control 
on the performance diagram. As optimal "B" specified more 
control effort, further attenuation of the output response 
results. However, the control signal, coolant flow rate, is 
operating at its saturation level in some instances. This 
saturation again causes a reduction in ability to control.

By adding an integral constraint, integral control action 
is specified. The optimal controller labeled "BI" is better 
than its proportional counterpart, controller "B", because of 
the absence of control signal saturation. This reduction in
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saturation is a direct result of the fact that the proportional 
integral controller specifies less proportional gain to attain 
the same level of attenuation.

Optimal "C" was selected from the performance diagram 
to use the most control effort. Some saturation of the con­
trol caused this controller to be only slightly better than 
the proportional-integral controller, "BI". Part of this 
output response shows the effect of controller start-up. 
Initiation of control action to an uncontrolled system is a 
servomechanism problem and was not the subject of this inves­
tigation. However, the result shows vividly that the optimal 
regulator controllers would not do a good job in start-up 
operations. Therefore, one must be careful in the distinc­
tion between servo and regulator problems— the same type of 
controllers are not used for both types of control.

It would be valuable to calculate the mean square output 
of these controlled systems and compare the results with the 
calculated values on the performance diagram. Unfortunately 
a mean square calculation on the analog computer is very 
difficult to obtain. Multiplication and division of signals 
over a rather long period of time are required to calculate 
a mean square value. These operations coupled with the long 
sampling period usually cause amplifier voltage saturation.
This type of calculation can only be successfully applied to 
high frequency signals where the sample period is rather short.
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A technique of comparing controller performance on the 

analog computer is to use the integrated absolute value ratio.
[xldt
u dt controlled

controller efficiency = 1 -
/ « J XI dt\— ;  uncontrolled
luldtj

Table (5-2) presents the controller efficiency compari­
son of the previously discussed controller configurations. 
Included in this table is the result for the ideal feedforward 
controller.

The system was also investigated with the opposite con­
figuration where the disturbance was the coolant flow rate 
and the manipulative variable was the oil flow rate. This 
system reacts differently to the former oil-disturbed experi­
ment. Figure (5-11) shows the performance chart for this 
configuration. The points on the diagram marked with triangles 
were investigated by simulation of their corresponding optimal 
controllers. The controller transfer functions are listed in 
Table (5.3) .

Notice that all of the optimal controllers are predictive 
in that the numerator is of higher order than the denominator. 
This results from the system reaction to coolant disturbances. 
Since the coolant flow rate has a quicker effect on the value 
of the output variable, the oil flow rate must have some pre­
diction included in the control equation in order to have any 
chance to counteract the coolant disturbance.
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Table 5.2

Type of

Controller

Controller Efficiency

/ h\ dt \

: I J lu| dt
(controlled)

/  1x1 dt
J* luj dt

(uncontrolled)

optimal A

optimal B

optimal BI

optimal C

Ideal
Feedforward

0.66

0.85

0.91

0.94

0.89
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Performance diagram of the experi­
mental system model with oil flow 
rate as manipulative variable.



Table 5.3

Controller Feedforward Feedback

CN
AX

Ideal
Feedforward

Q = 0.124s + 0.849
D

%
= 0.124s + 0.849

Q = 0.194s + 0.715

%
0.224s + 0.618

= 0.796s + 5.4

0.71s + 412 +
8

Q = 3.8s + 29.2
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Figure (5-12) shows the typical output response trajec­

tories of this system. Optimal controller "A" provides some 
output attenuation but the control variable, oil flow rate, 
operated almost as a bang-bang controller. The proportional- 
integral controller, labeled "AI", does a similar job of out­
put attenuation. However, the big advantage in this control­
ler is its specification of lower predictive and proportional 
gains. Then the control signal from the oil flow rate does 
not change as rapidly as before. Optimal controller "B" 
causes further attenuation but at the expense of wildly 
varying control signals. Ideal feedforward could not be 
simulated on the analog because the gains caused amplifier 
saturation.

None of these controllers seem to perform as well as 
they should. The main reason for reduced performance is 
the well-known (B.12) velocity-limitation of control valves. 
The value stems do not travel fast enough in response to a 
rapidly changing signal. Therefore a constraint not included 
in the optimization equations limits the amount of attenua­
tion that can be attained.

In order to put a constraint on the velocity (first 
derivative) of the control signal, the first derivative must 
appear in the transfer function. Equation (5.1) shows that 
the system output is not a function of the first derivative 
of the oil flow rate. The absence of this derivative term 
does not mean that this dependence does not exist. A zero



C O N TM L VARUBLC 
O IL  FLOW RATE 
L 6 /M IN

+*0

-30
OISTURSANCe
VAM AflLE
COOLANT FLOW RATE 
L B /M IN

OUTPUT VARIABLE 
W ALL TEMPERATURE

LliAÉAllM N.III
P r r V

L A (Wk /"AA. M  J. A/vV%,f "/V H,
tow

UNCOMTROLLEO SYSTEM 
(SCALE 1 /2 )

Figure 5-12. Response of experimental system to 
distrubances in coolant flow rate.
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of the complete transfer function may have been cancelled by 
a comparable system pole. Kalman (Kl) has shown that a sys­
tem which contains a pole and zero which cancel each other 
is not completely controllable. If the cancelled pole and 
zero were known, they could not be used in the optimal con­
trol design procedure. Kalman (Kl) has shown that the matrix 
riccati equation used to calculate the feedback gain matrix 
is asymptotically stable and approaches a unique steady- 
state _if the system is completely controllable. If thf: 
system is not controllable, the infinite-interval approxima­
tion used in Chapter III is no longer valid and the inclusion 
of cancelling poles and zeros would render the optimal con­
trol equations unsolvable.

If a process design engineer is confronted with the pro­
blem of absence of complete controllability, the most practi­
cal solution is to redesign the process. Physical character­
istics of the process, such as flow rates, heat transfer area, 
and steady state operating level could be modified so that 
the system dynamics become more favorable for the application 
of practical controllers.

The controller equations from this time domain method of 
formulating optimal control are much simpler than those speci­
fied by frequency methods. The following control equation was 
obtained by Luecke (L5) for a similar transfer function. Only 
the feedforward portion is reproduced here.
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°D =
^DN ^

 ̂" ^C^CN

where
■(1 + 0.33S) 

^DN (1 + 1.33S)

(1 + 0.035S) (1 + 0.120S) (1 + 0.33S) Tjj = -0.991  ----------— ----------LJ:---------
(1 + 0.029S) (1 + 0.083S) (S + 1.68) (1 + 1.38S)

^ ^ 0.558(1 + 0.76S + 0.15882)_______________
^ (1 + 0.033S) (1 + 0.496S) (1 + 0.366S + 0.03755^)

= (1 + 1.38S)(1.68 + S)
(1 + 1.33S)

One can see that this optimal controller would not be easy to 
simulate- Therefore, the simple controller equations listed 
in Tables (5.1) and (5.3) are far superior for practical rea­
lization. The time domain approach for optimal controllers
can be calculated once a completely general program is avail­
able. This program would be useful in selecting the range 
of practical controllability at the design stage of plant 
development.



CHAPTER VI

ANALOG COMPUTER SIMULATIONS

Many chemical process units, such as distillation columns 
and double pipe heat exchangers, exhibit third order dynamics. 
A theoretical energy balance of the experimental apparatus 
discussed in Chapter V shows the dynamics to contain three 
poles for both the oil side and the coolant side. However 
the model identification technique (h 5,S1) shows that a 
second order transfer function is an adequate representa­
tion.

One of the initial objections was to examine the effect 
on control objectives by using a first order transfer func­
tion with a time lag to approximate third order dynamics. 
Figure (6.1) shows typical unit step response trajectories 
for first and third order systems. In most physical appara­
tus there is a finite level at which the response is first 
detected. Measurement equipment has a lower sensitivity 
bound below which no signal is detected or the process itself 
may be noisy. In any case, it can be seen from this graph 
that the approximation of the third order by a first order 
plus a time lag function may be within the limits of required 
accuracy.
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F IR S T  O R D ER S Y S T E M

THIRD O R D ER  SY ST E M

PORTION OF SIG N A L M ASKED BY N O ISE

Figure 6-1. A comparison of the unit step res­
ponse trajectories of 1st and 3rd 
order systems.
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Third Order Model

The theoretical transfer function of the experimen­
tal heat exchange process was modeled on the analog com­
puter. The analog flow diagram is shown in Figure (6.2). 
The transfer function is

_ (0.156) (s + 0.329)W - 0.207 (s + 0.569)W^X(Sj — ------------ — — . - . - - __Q.
(s + 0.117) (s + 0.45) (s + 0.583)

Using the cancellation methods of Luecke, McGuire, and 
Grosser (l5), the following approximation was made.

. 0-195 w - 0.449 (g.;)
(s + 0.117)

A performance diagram was calculated for each of these
transfer functions and they are shovm in Figure (6.3). The
breakaway line indicates the point of instability when the 
minor loop is deleted. For this discussion the coolant 
flow rate, W^, was chosen as the load disturbance.

Table (6.1) shows the controller transfer functions 
corresponding to the indicated stars on the performance 
chart. These controllers were constructed on the analog 
computer. The exponential in the minor feedback loop of 
the first order model was approximated by a third order 
Fade expansion. Although the first order controller equa­
tions appear complex, they are readily simulated if a 
block diagram, such as Figure (4.16), is formulated.
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Table 6.1

Model I 
Order

i
Feedforward Controller Feedback Controller

Hw

1st %  =
-l.5s-0.175

1.84 (s+0.117) + 1.99 (1 - e_________ I
-s-0.117

s + 0.117 + 0.866 (1 - e )

■0.117
Qn = -

4.44 ( s + 0.117) e
-s-0.117

s + 0.117 + 0.866 (1 - e )

3rd 0.166s + 0.0948
0.156s + 0.0513 Qp = 0.458 s + 0.632 s + 0.266 

0.156 + 0.0513
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The response curves for these controllers are shown in 
Figures (6.4) and (6.5). The manner in which the controlled 
systems were actually simulated on the analog computer did 
not allow recording of the control signal as was done in 
the experimental work. The reason for this method of simula­
tion was to avoid the possibility of controller saturation, 
which was discussed in the chapter on experimental work. 
Furthermore, analog simulation allows amplitude and time 
scaling of the functions to allow for smoother operations. 
These simulation techniques allow the points in question to 
be emphasized without the background noise and unknown sys­
tem upsets encountered in physical processes.

The optimal controllers calculated from the third order 
model are definitely superior. However, the controllers cal­
culated from the first order approximation do a reasonable 
job of attenuating the system output. They might even do a 
better job if an accurate simulation of the minor loop delay 
time were available. The Fade approximation used in most 
analog devices does not provide the required accuracy. Figure 
(6.6) shows the unit step response of the transportation de­
lay generator used with the Donner Analog computer. This 
dead time simulation has a frequency limitation which might 
cause further inaccuracies when used with faster reacting 
systems (B6).
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It should be noted that no instabilit^was observed when 
the minor feedback loop is neglected even though the control­
ler used in the example was past the instability point. One 
reason for this observation is that it m.ay be caused by the 
cascading of approximations. The delay time can only be 
approximated on the analog computer and the model itself is 
an approximation of the third order system

Actually the approximation of delay time by the Fade Ex­
pansion may be more effective than the true exponential. When 
obtaining the first order approximation of higher order models, 
zeros and poles of the transfer function are cancelled against 
each other with the remainder being placed in the exponential 
term. Therefore, in the original analysis, the exponential 
was used as an approximate function for a ratio of polynomials. 
Then the Fade approximation, which is a net zero order ratio 
of polynomials, would be closer to the actual system. The 
overall efect is to replace several characteristic parameters 
from the original system transfer function with one parameter 
-T, the delay time.

Although this dead time approximation may be useful on 
some cases, large distillation columns and double-pipe heat 
exchanges exhibit a definite dead time which is about the mag­
nitude of the fluid residence time. In these situations the 
exponential should be simulated in the best possible way, 
generally with an on-line digital computer.
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In general, more effort must be expended to obtain a 
third order mathematical model than a first order time lag 
model. The increase in controller effectiveness with the 
use of the high order model does not seem sufficient to war­
rant the expanded identification technique required for the 
relatively slow responding chemical and thermal systems.



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS

The optimal controllers derived from the Dynamic Program­
ming optimization technique are easily simulated for practical 
control jobs. This time domain formulation specifies both 
feedforward and feedback controllers which carry an almost 
equal share of the control effort. It has been shown that 
the limiting cases of these controllers are the ideal feed­
forward and infinite feedback controllers.

The problems associated with these limiting cases cause 
the control engineer to "back down" the performance chart to 
obtain realistic controller configurations. It is well-known 
that a very large feedback gain is undesirable when control 
signal saturation occurs. However the less known fact that 
ideal feedforward also contributes to controller saturation 
is apparent from the performance chart of the optimally con­
trolled system.

If a system output in which the disturbance reacts faster 
than the manipulative signal is to be controlled, the optimal 
control equations specify predictive controllers. This is a 
fact of life from which there is no reprieve. Because of the 
difficulties involved in the practical simulation of predictive

138
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controllers, it is worthwhile to consider ways of redesign­
ing the system to relieve the necessity of using predictive 
control. The modifications would not be in the realm of 
optimal control, but they would be pointed out from the unsuit­
able controllers specified by optimal control theory. This 
aspect of specification of unsuitable but still realizable 
controllers is one of the unfortunate results of optimal 
control theory. It is not mathematically feasible to exclude 
certain controller configuration because of the simulation 
difficulties.

Optimal controllers for time delay systems can be speci­
fied with this method. It has been shown that optimal con­
trol of systems with process dead time can be obtained with 
the use of a Smith linear predictor. Furthermore the exact 
parameters of this minor feedback loop are specified. Previous 
investigators (B12) have used the cut-and-try method of select­
ing minor loop parameters. Some of the difficulties involved 
in the practical use of the minor feedback loop were pointed 
out in the analog simulation tests.

Recommendations
Optimal control theory seems to be of more value in servo­

mechanism problems. In these situations a trajectory of the 
state variable is specified. It is much harder to obtain a 
good trajectory by trial and error methods for a servo problem 
than it is to find by the same methods a reasonably good con­
troller for a regulatory situation. The same equations need
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to be solved for both servo and regulator problems. Further­
more, the equipment in the Process Dynamics Laboratory could 
be modified to study start-up and shut-down operations. There 
is no work reported in the literature of composite controlled 
servomechanism problems.

Because of the increased use of digital computers in 
chemical process control, the sampled-data formulation of the 
optimization problem should be studied. Fast response systems, 
such as chemical reactors sensitive to temperature variations, 
would provide the best test for the discrete sampled-data con­
trollers .

The optimal controller equations developed in this work 
are valid for multivariable systems without resorting to un­
coupling techniques. It would be valuable to compare control­
ler configurations obtained by uncoupling (non-interaction) 
techniques with those obtained by the equations presented in 
Chapter III. The basis of comparison should be ease of simu­
lation of the specified controllers.
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APPENDIX A 

VECTOR EQUATIONS FROM TRANSFER FUNCTIONS

Most instrumentation engineers express system dynamics 
in the transfer function form. Therefore it is necessary to 
convert the transfer function into a vector differential 
equation in order to use the optimal controller design 
procedure. A three-pole, one-zero transfer function was 
selected as an example.

Consider the following system:

^ ‘=1 = (sTc)
(A.l)

where X = system output variable
M = control variable
U = disturbance variable 

= system gains 
a,b,c = system poles

e = control zero
d = disturbance zero

This type of configuration was found to fit the experimen­
tal heat exchanger discussed earlier. It has been found to 
be of sufficient order to describe the dynamics of many 
chemical processes.

Using standard techniques from the theory of Laplace
146
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Transforms, we can convert the above expression into a non- 
homogeneous third-order ordinary differential equation. 
Since we work with perturbation variables, it is assumed 
that all initial conditions are zero.

X + a X + & X + a x  = m +;Sm + u +gu (A.2)1 3 1  1 1  O  1 2 2 2 2

where x^ (t) = inverse laplace transform of X(s)

(t) = inverse laplace transform of K^M(s)

Ug(t) = inverse laplace transform of K^U(s)
For ease in manipulation it is convenient to combine the 
system gains, and K^, with their respective variables. 
The subscripts used above will become apparent later.

Define the following variables:

X = X 1 3

*3 " \  (A. 3)
m = m3 3
Û = u3 3

Then the above differential equation becomes

X = a x - 0'x - a x  + m +^m + u  +gu (A.4)3 O  1 1 3  3 3  3 3 3 3

which can be placed in matrix form

X  = Bx + Cm + Du (A. 5)
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where

X =

X o o1
X m = m u = u2 2 2
X m u3 3 3

0 1 0
B = 0 0 1

a a

0 0 0
c = 0 0 0

0 p 1

0 0 0
D = 0 0 0

0 g 1

The preceding development is not the only possible way of 
formulating the system vector differential equation. Let 
z(t) be the state variable vector which is defined by

(t) = x(t) - f^m(t)

z (t) = x(t) - f m(t) - f m(t)2 O 1 (A. 6)

z (t) = X - f m(t) - f m(t) - f m(t)3 0 1 2
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where

f = f = 0o 1

f = 12 -

f = jS - a3 2
Then the system d^memics can be represented by

z (t) = Bz (t) + Cm (t) + Du(t)

x(t) = Az (t)

(A. 7)

This equation is similar to the previous relation (A.5) for 
the system dynamics. In fact matrices B and D are defined 
exactly as in that earlier equation. The difference lies 
in matrices C and A.

C =
f 0 01
0 f 02
0 0 f

1 0  0 
A = 0 1 0

0 0 0
Matrix A referred to as the output matrix. Usually we are 
only interested in the output x(t). This would require only 
a single entry in the output matrix located in the upper 
left corner element. However, if we consider constraints on 
the first derivative, we must add the central element.
Since we almost never have a second derivative constraint, 
the lower right element is neglected. If one does not need
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it, there is nothing gained in carrying a full matrix in 
the calculations.

The above formulation of the state equations is called 
the standard method. It can be developed for an nth-order 
system. Any text on the state-variable approach covers this 
method (Al, Dl, 01). The standard method was not repeated 
in the most general form here because of its complex not­
ation.

There is another configuration which can be used. The 
previously discussed standard state equation form can be 
converted into a form where the B matrix is a Jordan matrix. 
This conversion can be accomplished by means of a similarity 
transformation

Define the following transformation 
z = Pq

where P is the modal matrix. The vector, z, is state var­
iable used in equation (A.7). Remember that the modal matrix 
is made from the column eigenvectors of the matrix B.
Then

Pq = BPq + Cm + Du (A. 9)

X = APq 

Premultiplication by P  ̂yields

q = P~^BPq + P“^Cm + P~^Du (A.10)

Then since P is the modal matrix of B, the similarity trans-
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-1form P BP ..results in a Jordan canonical form. The principal 

diagonal elements are the eigenvalues of B. Equation (A.10) 
is known as the normal form of the state dynamics.

Obviously, more calculation is required to obtain the 
normal form. However in this form the conditions for con­
trollability and observability are easily obtained. These 
concepts have not been used in this work, so the normal 
form was not employed.

One can see that a choice of several forms of the state 
dynaraical equations is available. Furthermore, the system 
can be time-scaled to make the computer calculations more 
reliable. Therefore, the preliminary manipulation decisions 
preclude building the state vector equation with the digital 
computer directly from the system poles, zeros, and gains.



APPENDIX B

DERIVATION OF CONTROLLER PAPAlMETER EQUATIONS

In Chapter III, a mathematical form for the solution of 
the continuous Dynamic Prcgramming algorithm was postulated.

E[ x(pt) , ^ j = I iji) - 2 I. K(>j)x(/i) 
(B.l)

The partial differential equation which must be solved is

T

Min {<q(fi)/ 1>q(Ai)> + (xn(/i), \&m{^)> + 
m(M)

5 E[ x f i U) ,  111

\ô x(^)
x(Ai) '

_ _ SE[ x(u) , ul
0/i

t
(B.2)

The partial derivatives of e [ x(/i) ,/i]needed in this equation 
are

 t \
SELxLu) ,jJ.l

Ô x(/i)
-2Ĵ  (/i) 2 x(/i) K(/i) (B.3)

t 1 \T
8E[x(/x);,_fciJ ^ 2 t

J (jLi) +
t

x(/i)
0/i L V

K(/i) x(/i)

(B.4)
The optimal control equation is also needed to satisfy the
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minimization procedure indicated in equation (B.2).
r.-l .T-1m ifl) = C J(p) - # C K(/i) xilJL) (B.5)

To simplify notation, the conditional means and time 
arguments will be deleted from the rest of this discussion. 
Using equations (B.3), (B.4), and (B.5) in equation (B.2)
results in

• m * m «  fn rn m m-I + 2x^J - X Kx = x -"a a Ax + (-2J + 2x^K) Du

1 r ^m  T-2J + 2x K C -2J + 2KX

(B.6)+ (-2J^ + 2x^K) Bx

Expanding this equation gives

-I + 2x"̂  J - x"̂ Kx = Cj '̂ C - 2j'̂ Du}

+x^{+ 2KC ^ V j - 2B^J + 2KDu}

+x^[A^ Ô A  - KC a t 2KB}x
(B.7)

This equation must hold for all values of the state variable 
X, so like powers of x on each side of the equation can be 
equated.

In order to be able to equate the quadratic terms, the 
terms within the braces of the right-hand side quadratic 
must be shown to be symmetric because the left-hand side, K,
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is symmetric. The first three terms are already symmetric 
so it remains to be shown that the matrix, 2KB, can be 
manipulated into a symmetric form.

2KB = (KB + B^K) + (KB - B^K) (B.8)
The first term on the right-hand side of this equation is
symmetric, while the second term is skew-symmetric. It will
be shown that the quadratic form of the skew-symmetric matrix
is zero.

Consider two arbitrary vectors y and z, which are 
related by
y = Bz (B.9)

Then z^(KB - B^K)z = z^KBz - z^B^Kz (B.IO)

or z‘̂(KB - b\ ) z = z'̂ Ky - y\z = 0 (B.ll)
because K is a symmetric matrix. Therefore the symmetry of 
the quadratic term has been demonstrated.

The equations which determine the parameters are

I W  = J^(p)D^- j'̂ (M)C iI"Vj(m) (B.12)

K(A4) = K(^)C - b\(M) - K(,a)B - (B.13)

J(P) = K(^)C Ç C J(/i) - B J(M) + KD (̂i) (B.14)
The boundary conditions for this equation follow directly 
from equation (3.6)
I(T) = 0; J(T) = 0; K(T) = 0  (B.15)

Merriam (M3) arrived at the same results by way of a 
complicated summation notation operation. Because of typog­
raphical errors in his presentation, and the difference in
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nomenclature, the equations are presented here. One of the 
probable reasons why there has not been any applications of 
this technique has been the complicated summation notation 
which was used to present the original idea.



APPENDIX C 

SOLVING THE MATRIX RICCATI EQUATION

In order to obtain the feedback controller as shown in 
Chapter III, a matrix Riccati equation must be solved- Reid 
(Rl) has presented a method for solving the matrix Riccati
equations by using an associated system of linear matrix 
equations.

Consider the matri.-. Riccati equation presented as 
equation (3.13) in Chapter III.

K(/i) = -K(M)C ^'^CK(m ) + + K(/i)B + a "̂ * A (C.l)
where all the matrices are n x n square matrices. The
matrix elements are continuous on the finite interval 
t ^  ̂T. The associated system of linear matrix equations
is
y(M) = By(p) - C (C.2)

z(/i) = $ A yifx) ~ B zifJi) (C.3)
The boundary conditions for these equations are
Y(T) = I, the identity matrix (C.4)
z(T) = K(T) (C.5)

The matrix y(/i) is nonsingular on the interval in question.
The solution to the matrix Riccati equation is given by
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Kin) = zin) y~^in) (C.6)
This can easily be verified by differentiating this exp‘- 
ression and substituting for the derivatives of z(/i) and 
y(p) from equations (C.2) and (C.3).

In order to solve for z{ji) and y(p), it is convenient 
to define the following system.
W(U) = GW(M) (C.7)

where
W(/A) =

2 in)
(C.8)

B -C ^ :

-A - # A -a:'
(C.9)

W(/i) is a vector containing an element and G(n) is a 2n 
X 2n matrix. In any case, the equation (C.7) is a simple 
homogeneous linear matrix differential equation. The 
solution of this equation is well known
W(M) = (p(M-T) W(T) (C.IO)

G Cu~T'where p(#-T) = e , the matrix exponential.
Divide the matrix exponential into four n x n matrices

p (/i-T)
(P-Tj 1 Pis(p-T)

*21 (n-T)
• ^

(C.ll)

The associated vectors can be written as



158

Y(M) -  <P (p^T) y(T) + z(T) (C.12)11 12

z(M) = fp^^iH-T) y(T) + zCT) (C.13)

Substituting the boundary equations for the associated 
vectors given in equations (C.4) and (C.5) and then solving 
for the feedback parameter using equation (C.6) results in

—1
K(t+T) = C<p3i(r) + #ss(S; k (t )3 . i2(t)k (t ) ]

(C.14)
where r = ^ - T

Since only the '"rtnady "tate'' value of K is desired,
the above equation is used a stepping procedure. Notice
that the steps are taken in the negative r direction. In
this manner the previously calculated K(t+T) is used as K(T)
in each successive step. 7K-- technique is a convenient
method since the matrix exponential which is a function of
the stepping interval T need only be calculated once. The
procedure is continued u.ntl'*
K(t + T) - K(t) ;

K(t) "
where 6 is some previous1/ determined error bound.

This procedure is net the only method of obtaining the 
steady state value of .the m.it 'ix Ri-cc.ati equation. MacFarlan 
(Ml) has presented a methot which needs the system eigen­
vectors and eigenvalues. Pne to the inability to calculate 
eigenvectors precisely by digital computer methods, this 
method does not seem to be r>ore useful than the stepping
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procedure. Blackburn (B8) has recently presented a method 
which uses the Newton-Raphsen iterative technique. Again 
this does not seem to be a major improvement because of the 
limitations of the Newton-Raphsen technique.

This discussion presents only highlights of the math­
ematical concepts involved in solving the matrix Riccati 
equation. More detail can be gathered from some of the 
references cited in the Bibliography (Kl, L3, 01)



APPENDIX D

SOLUTION OF THE OPTIMAL FEEDFORWARD EQUATION

In order to obtain the feedforward portion of the 
optimal controller, equation (3.31) must be evaluated. 
This equation is limited to time-invariant systems as 
discussed in Chapter III.

fS = - ; Çj(-€)KDU(c)d€ (D.l)Jo
The separable portion of the conditional mean of the

lead disturbance signal, U(c), is easily found for gaussian
disturbances. A zero mean is used because of the pertur­
bation form of the system dynamics. Since this is the type 
of signal of interest in this work, equation (2.10) of the 
mathematical background chapter provides the method of 
obtaining U(c).

U(f) = §(§)■ e > o (D.2)

This equation is the ratio of the autocorrelation functions
of the disturbance. The autocorrelation function for 
gaussian signals has the following mathematical form.
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for c ■> o

where a. = frequency
~ = mean square amplitude

(D.3)

Therefore, 
U(ç) = e (D.4)

For a single input nth order system this quantity would 
be an n X n matrix which contained the exponential terms in 
the diagonal elements.

U(e) = e

1
.0

= (D.5)

The number of diagonal elements used depends on 
of zeroes in the system transfer function. Subs 
this equation into equation [D.l) gives

tituting

S = - rJ (D.6)

or

(D.7)

Since we are dealing with stable systems

S = iai
-1 mKC “C K - 1T.-l KDU (D.8)



162

This equation is easily evaluated once the feedback para­
meter, K, is found. This method was used in the computer 
program listed in Appendix I.

This simple result does not hold for multiple-input 
problems- Some other method must be tried. Although no 
multiple-input problems are considered in this work, 
several possible solution methods are proposed.

Returning to the vector-matrix equation (3.22) which 
is the starting place for the solution of the feedforward 
controller, one may treat this equation as an initial 
boundary problem. Then by rising some suitable integration 
scheme, the steady state value may be reached by integrating 
in the negative time direction.

Redefine U(€) in the fo’lowing manner

U(€) = eac

where a = (D.9)

The diagonal elements of the matrix exponential contain 
the frequencies of the various input disturbances. The off- 
diagonal elements would normally be zero for the great 
majority of practical problems.
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Equation (D.l) becomes

S = - I e^^KDe^^de (D.IO)

where P = [sF - KC # V k ]
Bellman (B4) has shown that the above equation is the sol­
ution of the matrix equation

P S + S 5  = KD (D.ll)
provided the integral exists for all KD. Furthermore the 
necessary and sufficient condition that this integral exist 
is that + IX . = 0 where X. and p. are the characteristic“ 3 X J
roots of P and â respectively (B4). For physically realiz­
able systems the above conditions are always met because the 
characteristic roots of these matrices are always negative.

Rearranging equation (D.ll) into a form convenient for 
trial and error solution gives 

— 1 _ 1S = P "KD - P as (D.12)
The feedforward gain, s / the right-hand side of this 
equation is used to calculate a new matrix s* This proced­
ure would be continued until some convergence criteria is 
satisfied.

Actually equation (D.lll may be solved directly. 
Rewriting

[PXI + S = KD (D.13)

or s = [PXI + IX«"''̂ ]""KD (D.14)
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The symbol, X/ indicates the first power Kroneker product 
and is defined as
AXB = (â jB) i,j = 1,..N (D.15)

Note that the Kroneker product of two N-dimensional matrices 
is a N^-dimensional matrix. This quadratic increase in dim­
ensionality limits the practicality of this solution method. 
The trouble lies with the computer algorithms which perform 
the matrix inversion operation indicated in equation (D.14).



APPENDIX E 

MATRIX EXPONENTIAL EVALUATION

The fundamental matrix of a vector differential equation 
must be evaluated in the controller design procedure. This 
matrix is also called the transition matrix, the fundamental 
matrix, or the matrizant. Suppose we have a vector differen­
tial equation.

X ( t )  = AX (E.l)
where A is a constant matrix and X is a vector 
The solution of this equation is

X(t) = e^(^ " ^o^ XtCg) (E.2)

The matrix, i;: the fundamental matrix. An
excellent reference for further discussion of the properties 
of this function is Coddincton and Levinson (C4).

tAIf A is a constant- the fundamental matrix, e , can 
be defined by a convergent power series

In the actual calculation of this function, only the
first thirty-six terms are used. The reason for this
truncation and a corresponding condition to insure accuracy 
will be developed now.

The IBM 360 computer carries about seven significant
165
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digits in the single precision mode- So in order to get an 
answer correct to three places to the right of the decimal, 
no term of the series should exceed 10^. The largest term
of the e^ series is the one where i is the smallest integer

t ti -such that  ̂<1. Therefore —ry should be less than 10 .

This argument can be applied to the fundamental matrix 
by using some type of norm. A conservative norm which can 
be used is

j|tA|| = Min {max S | ta j, max E ( ta |} (E.4)
j i ij i j ij

Then if |jta|| < 10 we have sufficient accuracy for our cal­
culations .

To compute e^^ for at which is too large, define 
T = such that I jral I <10. We can use the property

e^ ® = e^e® (E.5)
then

(e^A)2^ = = e^^^ = (E.6)

The computation of a fundamental matrix for a large argument 
was not needed in the control design used in this thesis 
because only the regulator problem was considered. When a 
servomechanism problem is attacked, this method would be 
invaluable.

In the computer program listing in Appendix I, the 
exponential evaluation is carried out by the subroutine 
XPEVAL. The norm calculation is done in the XNORM sub-
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routine. The subroutine STPSZ uses the norm to calculate a 
time step which would insure accuracy as discussed above.



APPENDIX F

MEAN SQUARE CALCULATION

In Chapter II, equation (2.15) relating the spectral 
density function to the signal mean value was presented.

joo

6xx(o) = 4 / P(s) P(-s) $g^(s)ds (F.l)
—  j  CO

From the even property of the spectral density function, the 
above equation can be re-written as

j"
6^ ( 0 ) = Y r p(s) D(s) P(-s) D(-s)ds (F.2)

)

Since the system dynamics are to be represented by 
ordinary differential equations, the transform represen­
tation consists of the ratio of two polynomials. Therefore 
the integral of equation (F.2) can be rewritten in separated 
polynomial form.

^xx<=> = (--3)

where
ic(s) = S c.s 

i=o ^
n i d(s) = L d.s 
i=o ^

n = system order
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Because of the generality of this particular form, 

several general methods of solution of equation (F.2) has 
been postulated. Newton, Gould, and Kaiser (Nl) have pres­
ented tables for evaluating systems up to order n=10. In 
order to use their tables, large computer subroutines would 
have to be generated. The method given by Laning and Battin 
(Ll) and Fuller (PI) is in a more suitable format for com­
puter implimentation.

Expand the numerator of equation (F.3) to obtain the 
following form

r:-1 ^
(s) c(-s) = B (F.4)

i=o ~

Then the mean square can be calculated from the equation on 
the next page. The denominator determinant is the well- 
known nth-order Hurwitz determinant which is associated with 
stability criteria for the characteristic (denominator) 
polynomial. Notice that the numerator determinant is the 
same determinant but with its first row replaced by the 
coefficients used in equation (F.4).

The computer program which does this calculation is 
listed in Appendix I.
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^n-1 ''?o

V2---- .0

‘̂n-l V3---- .0

0 0......

dn-1 ^n-3--- .0

^n-2
0 V r - - - .0

0 .....

0 0......

(F. 5)



APPENDIX G

THEORETICAL MODEL OF THE EXPERIMENTAL PROCESS

Energy balances around the old system, coolant system, 
and the reactor wall provide a mathematical model of the 
experimental heat transfer process. The resulting equations 
are

(pvc )jif = - Cp,«*T* (G.l)

< p v c „ ) ü  =

-  V o ’̂ci (G 3)
where

p = density subscripts f = oil
V = Volume = wall
C = Specific heat c = coolantP
T* = temperature i = inside
h = heat transfer coefficient o = outside
A = heat transfer area in = oil in
W = flow rate ci = coolant in
Q = heat loss ss = steady state

superscript * = total variable
In order to arrive at the above equations, several assump­
tions were made.
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A. The temperature of each subsystem (coolant, wall, 

oil) is constant within the heat transfer vessel. 
This is the perfect mixing assumption.

B. Oil and coolant inlet temperatures are constants.
C. All physical properties, such as heat capacities, 

heat transfer coefficients, aind densities remain 
constant.

These equations can be changed to a perturbation form 

T* = If + Tfss (G.4)

<  =  ( G . 5 )

VI* = W  + W* (6.7)

W* = K + p? (6.8)c c css
Substituting these definitions into the model equation 
results in

(pVCp)fif . - (hfAf ^ ^ (Cpflü,

■ CpfTfss** “ (6.9)

h A '(PVC^)^I^ = hfAflf - (h..Af + ĥ Â )!*, + I^_ (6.10)
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(PVCp)^i^ = 2h^A^T^ - (h^A^ + - 20^^

(?coss - ?ci) - 2Cp^W^T^ (G.Il)

A standard procedure in handling these non-linear 
models is to expand them in a Taylor Series around the 
steady-state value and retain only the first order terms. 
Since we are interested in controlling the process around 
this steady-state, this linearization is usually not a 
disastrous assumption.

Using the constants listed in table (G.l) and taking 
the Laplace transform, of the above equations gives the 
following transfer function

m = 0.155(s 4- 0.329)W - 0.207 (s 4- 0.569)Wr^
(s + 0.117) (s + 0.45) (s -f 0.583)

This equation is presented in the scaled frequency 
domain where the frequency variable, s, is in units of rad­
ians per ten real time seconds for use in the analog simul­
ation .

The system is a net second order system. The identif­
ied model was found to be second order too, but the para­
meters are considerably different. The reason for this 
discrepancy lies in the assumptions made in deriving the 
theoretical model. The linearization is questionable in 
light of the step response trajectories shown in Figures
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(5-6) and (5-7). Another assumption that probably is not 
very good is that the coolant side is perfectly mixed. This 
illustrates the pitfall of reliance on theoretical models.



175 
Table G-1 

List of System Constants

Symbol ' Nomenclature Value ' Units *Source

Cpc coolant heat capacity 0.54 BTU/lb“F 1

Cpw wall heat capacity 0.037 BTU/lfa°F 1

oil heat capacity 0.405 BTU/lbPF 2
oil side heat transfer 

coefficient
27. BTU/hr°F ft̂ 3

h0 coolant side heat transfer 
coefficient

87. BTU/hrOF ft̂ 3

inside heat transfer area 0.322 ft̂ 2

A0 outside heat transfer area 0.444 ft" 2

ĉi coolant inlet temperature 42. ®F 3

*̂ fss oil steady state tem­
perature

158. Op 3

'in oil inlet temperature 172. ®F 3

Iwss steady state wall tempera­
ture

88. oy 3

Vc coolant volume 0.0102 ft' 2

"f oil volume 0.017C ft̂ 2

Vw wall volume 0.0153 ft' 2
Wss steady state oil flow 165. lb/hr 3

Wcss steady state coolant flow 44. lb/hr 3

pc coolant density 77.3 Ib/ft̂ 1

^f oil density 53.0 Ib/ft̂ 2

"w wall density 640.5 Ib/ft̂ 2

Ql heat loss 0.04 BTU/sec 3

Sources; 1. Handbook; 2, Laboratory measurements; 3. Steady state data.



APPENDIX H

NOMENCLATURE

A = output matrix (1.2)
Ajj = heat transfer area of the coil (4.1)
B = system matrix (1.1)
C - control signal matrix (1.1)
Cp = heat capacity of the fluid (4.1)
D = disturbance matrix (1.1)
eifi) = scalar performance index (2.21)
E[x(/i), /i] = minimum scalar performance index (2.23)
E ' = expected value of x (2.1)
f(x,t) = probability density (2.1)
f(y/t) = conditional probability density (2.2)
F = flow rate (4.1)
G(t) = partitioned matrix
h = functional notation (2.20)
I(u) = scalar element (3.8)
J(u) = n-element feedforward vector (3.8)
K(u) = symmetric n x n feedback matrix (3.8)
Kp = disturbance gain (4.5)
Kjj = control signal gain (4.5)
m(t) = control vector (1.2)
M = allowable closed set of control signals
m* = optimal control signal (3.22)
M(s) = control signal in frequency domain
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= disturbance transfer function (3.28)
= control signal transfer function (3.28) 

q(t) = output vector (1.2)
= feedback matrix (1.3)

Qjj = feedforward matrix (1.3)
Q = process time delay feedforward controller
° (4.46)
Q* = process time delay feedback controller (4.47)

= control time delay feedback controller (4.61)
Q = control time delay feedforward controller
° (4.60)
R = steady state deviation term in controller

(3.16)
S = feedforward parameter (3.16)
s = frequency in radians per unit time
t = time
T = terminal time bovmdary (3.3)
u(t) = disturbance vector (1.1)
Ujj = overall heat transfer coefficient (4.1)
/i® = mean square amplitude (4.8)
U(s) = disturbance in frequency domain
V = volume of the tank (4.1)
W = frequency (2.14)
W(t) = partitioned vector
x(t) = state variable vector (1.1)
x(s) = state variable in frequency domain (1.2)
y . = associated vector
2 = associated vector
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Z = relative sensitivity coefficient (4.37)
Z = sensitivity coefficient (4.34)

' Greek Letters 
/S = first order pole (4.5)
O’ = variable of integration (3.13)
Ç = parameter error bound
A = dummy time variable
T = time delay (4.1)
$ = output weighting factor (3.3)

= spectral density (2.4) 
tp = fundamental matrix (3.25)
^ = control weighting factor (3.3)
66(s) = feedback noise (4.29)
p = density of the fluid (4.1)
0^ = autocorrelation function of x (2.3)
V - frequency in radians per unit time (4.8)
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APPENDIX I

COMPUTER PROGRAMS FOR CONTROLLER CALCULATION

This appendix contains the computer program listings 
used to calculate the parameters of the optimal controller 
equation. These programs were written in Fortran IV and 
used on the IBM Modal 360-40 computer located in the Merrick 
Computer Center of the University of Oklahoma.

Explanation of input format is provided within the 
programs via comment statements. The output is obvious from 
headings built into the output format statements.



c
c
c
c
c
c

PROGRAM 2 0 0  HARRY WEST
OPTIMAL FEEDBACK GAIN CALCULATION PROGRAM
READ I N  MATRICES ROW BY ROW
REMEMBER THAT P H I  15 ACTUALLY P H I - I N V E R S E
REMEMBER THAT THE THETA MATRIX I S  ACTUALLY A*THETA*ATRANSPOSE | 

COMMON G ( 1 2 t l 2 l , X P ( 1 2 » I 2 l
DIMENSION 8 1 6 , 6 ) , C I 6 , 6 ) , P H I 1 6 , 6 ) , T H E T A I 6 , 6 l , C P H ( 6 , 6 ) , C P C ( 6 , 6 )  
DIMENSION X P l l ( 6 , 6 ) , X P 1 2 f 6 , 6 | , X P 2 1 t 6 , 6 l , X P 2 2 I 6 , 6 ) , S S K f 6 , 6 ) , E ( 6 , 6 )  
DIMENSION S S S ( 6 , 6 ) , U L 0 G I C I 6 , 6 ) , D ( 6 , 6 ) , X K D ( 6 , 6 ) , S ( 6 , 6 ) , S J < 6 , 6 )  
READ!5 , ICO)  N , T , E P S L , F R E Q  
EPSf O . 0 0 0 0 0 1  
DO 8 0 0  1 = 1 , N
R E A D ( 5 , 1 0 1 l f B I I , J ) , J = I , N )

8 0 0  CONTINUE
DO 8 0 1  1 = 1 , N
R E A 0 I 5 , 1 0 1 ) 1 C ( 1 , J ) , J = 1 , N )

8 0 1  CONTINUE
DO 0 0 5  1 = 1 , N

8 0 5  R E A D ( 5 , 1 0 1 ) ( D ( I , J ) , J = 1 , N )
DO 8 0 6  1 = 1 , N

8 0 6  R E A O I S , 1 0 1 ) I U L O G I C ( I , J ) , J = 1 , N )
DC 8 0 3  1 = 1 , N
READ!5 , 1 0 1 ) ( P H I I I , J ) , J = 1 , N )

8 0 3  CONTINUE
W R I T E ( 6 , 1 0 2 )
W R I T E ( 6 , 1 0 6 )  N 
CALL M A T P R T ( N , B , 6 )
W R I T E ( 6 , 1 0 3 )  N 
CALL M A T P R T ( N ,C ,6 )
W R 1 T E C 6 ,1 1 2 )  N 
CALL M A T P R T I N ,D ,6 )
W R I T E ( 6 , 1 1 3 )  N
CALL M A T P R T IN ,U L O G IC ,6 )
W R I T E ( 6 , 1 0 4 )  N 
CALL M A T P R T I N , P H I , 6 )

M AIN0020
M AIN0030
MAINOOlO
MAIN0040
MA1N0050
MAIN0060
M AIN0070
M AIN0080
MAIN0090

M AIN0140

M AIN0150
M AIN0160
M A I N 0 I 7 0
MAIN0180
MAIN0190
MAIN0200

M AIN0240
M AIN0220
M AIN0260
M A IN 0270
MAIN02B0
MAIN0290
M A IN 0300
MAIN0310

M AIN0320
H A IN 0 3 3 0

H00O



8 0 7  CONTINUE
0 0  8 0 2  1 = 1 , N
R E A D ( 5 , i 0 1 1 ( T H £ T A C I , J I , J = l , N I  

8 0 2  CONTINUE 
N2=2*N
C A L i  M U L T I P < N , C , P H I , C P H , 6 I  
00 200 1=1,N 
0 0  2 0 0  J = 1 , N

2 0 0  E ( 1 , J ) = C ( J , 1 #
CALL M U L T I P I N , C P H , E , £ P C , 6 I  
DO 2 0 1  1 = 1 , N 
I P N p l + N  
0 0  2 0 1  J = 1 , N  
J P N = J + N  
Gf  1 , J ) = B ( 1 , J )
G I I , J P N ) = - 1 . 0 « C P C ( 1 , J )
G ( 1 * N , J ) = - 1 . 0 * T H E T A ( 1 , J 1  
Gf 1 P N , J P N ) = - 1 . 0 * B ( J , < I »

2 0 1  CONTINUE 
CALL XNORM|N,GNQRNl 
CALL S T E P S 2 ( G N 0 R M ,T » J A U ,K K )
CONTINUE

$ % » * * * * *  USE NEGATIVE TAU 
TAÜP-TAU 

2 4 5  CONTINUE
CALL XPEVALCN2,TAU)
0 0  2 4 8  1 = 1 , N 
0 0  2 4 8  4 = 1 , N  
X P I K I ,  J )  = X P C I , J I  
X P 1 2 1 1 , J ) = X P ( 1 , J + N )
X P 2 1 f  1 , J M X P I 1 « N , J )
X P 2 2 1 : , J ) = X P ( : + N , J + N 1  

2 4 8  CONTINUE
CALL S S K A L f X P l l , X P 1 2 , X P 2 1 , X P 2 2 , N , l T E R , E P S L , S S K i  
W R l T E ( 6 t l l 9 l
W R 1 T E C 6 ,1 1 7 I  T A U . E P S L . I T E R

********************

M AIN0210
M A IN 0250
MA1N0230
M AIN0360
M AIN0370
MAIN0380
M AIN0390

MA1N0410
MAIN0420
M AIN0430
MA1N0440
MA1N0450
MA1N0460
M AIN0470
M AIN0480
M AIN0490
MA1N0500
M AIN0510
MAIN0550
MA1N0560

MA1N1050
MA1N0830
MAIN0850
H A IN 0 8 6 0
MAIN0B70
M AIN0880
MA1N0890
M AIN0900
H A IN 0 9 1 0
M AIN0920

MAIN0935

œ



M R 1 T E ( 6 » 1 0 5 )  N MAIN0340
CAL4 H A TPR TIN «THETA,6)  M AIN0350
CALI  M U L T I P I N t S S K v O f C P H v ô l  
CALL M U L T :P * N ,C P H ,U L 0 G iC ,X K D ,6 #
CALL M U L T I P ( N , S S K , C P C , C P H , 6 #
DO 2 0 6  1 = 1 , N 
DO 2 0 6  J = 1 , N  

2 0 6  C P H < I , J ) = C P H ( I , J ) - B ( J , : )
DO 2 0 2  1 = 1 , N I

2 0 2  C P H f 1 « I 1 = C P H I 1 , | } « F R E Q
CALL : N V E R i ( C P H , N , E P S , S l N G U L )
I F ( 3 1 N G U L - i . O )  2 0 4 , 2 0 3 , 2 0 3

2 0 3  CONTINUE 
STOP

2 0 4  CONTINUE
CALL NULIIP(N,CPHtXK0tS,6}
00 205 1=1,N
DO 205 J=1,N H

2 0 5  S ( I , J 1 = - S ( I , J )  *
CALL :M A T P R T f N ,S S K ,6 i  MAIN0940
W R 1 T E ( 6 , 1 I 4 }  N
CALL M A T P R T f N , S , 6 )
CONTINUE
CALL M U L T I P I N , P H I , E , C P C , 6 )
CALL M U L T I P I N , C P C , S , G J , 6 I
W R I T E ( 6 , 1 1 5 )  N
CALL N A T P R T ( N , S J , 6 I
CALL M U L T I P I N ,C P C # S S K ,C P H ,6 1
M R I T E C 6 , 1 1 6 I  N
CALL N A T P R T I N t C P H ,6 l
W R I T E ( 6 , 1 1 8 I
GO TO 807

1 0 0  F 0 R M A T I 1 S , 3 F 1 2 . 7 1  MAIN
1 0 1  FORMATI6F1 0 . 4 )
1 0 2  FQ RM ATI1H 1,2X,«STE ADY STATE RICCATI  HH W E S T ' / / )
1 0 3  F 0 R M A T f / / 2 X , ' C  MATRIX FOLLOWS*15 , ' D I M E N ' )



1 0 4
1 0 5
1 0 6
1 0 7
108
1 0 9
110 
111 
112
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
118  
1 1 9

C
C
Cc

229

4 ,  ' K K = ' , I 5 / )  
T A U » , F 1 0 , 4 / I

F O L L O W S ' , 1 5 , «D IM E N * ) 
F O L L O W S ' , 1 5 , ' O I M E N ' )

F O R # 4 A T l y / 2 X , 'P H I  MATRI X FO L L O W S' , 1 5  DI HEN« I 
F O R M A T ! / / 2 X , 'T H E T A  MATRIX F O L L O W S ' , I 5 , « D I MEN®I 
F 0 R M A T I 2 X , 'B  MATRIX F O L L O W S ' , 1 5 , « D I M E N S IO N ' )
FORMAT ! 1 H 1 , 2 X , ' G N 0 R M = ' , E 1 5 . 5 )
FORMAT!1 5 )
F O R M A T ! 1 H C ,2 X , 'E X P  TIME S T E P ' , F I O . 4 , 'D E S IR E D  T - " , F 1 0  
F O R M A T ! 1 H 1 ,2 X , 'E X P  FOR DESIRED T = * , F 1 0 . 4 , 2 X , ' E V A L  AT 
F 0 R M A T ! 6 E 1 2 . 4 )
F 0 R M A T ! / / 2 X , '  D MATRIX
F 0 R M A T ! / / 2 X , 'LOGICAL ü  MATRIX
F 0 R M A T I / / 2 X , '  SPARAMETER MATRIX F O L L O W S ' , 1 5 , ' O I M E N ' I  
F 0 R M A T ! y / 2 X , ' 0 P T M A L  FEEDFORWARD 
FORMAT! / / 2 X , ' OPTMAL FEEDBACK 
F 0 R M A T ! 2 X , ' T A U = ' , 2 1 2 . 4 , 2 X , ' E R R 0 R = ' , F 1 0 . 4 , 2 X , ' I T E R = • , 1 5 / I 
FO R M A T !1 H O ,2 0 X , 'E N D  OF DATA S E T ' )
F 0 R M A T ! 1 M 1 , 2 X , 'STEADY STATE KALMAN METHOD»/)
STOP
END
SUBROUTINE XPEVAL!N2,TAUI 
COMMON G ! 1 2 , 1 2 ) , X P ! 1 2 , 1 2 )
DIMENSION AC ALC !1 2 , 1 2 ) , X I D N T ! 1 2 , 1 2 ) , XACALC!1 2 , 1 2 ) , G T A U ! 1 2 , 1 2 )

GAINS
GAINS

' , 1 5 , ' D I M E N ' ) 
' , 1 5 , 'O I M E N ' )

SINCE WE HAVE SET A L I M I T  ON THE TIME S T E P ,  WE HAVE 
HOW MANY TERMS OF EXPONENTIAL S E R IE S  I S  TO BE USED 
ZERO THE WORKING MATRICES 

DO 2 2 9  1 = 1 , 1 2  
DO 2 2 9  J = l , 1 2  
X P ! I , J ) = 0 . 0  
A C A L C ! I , J ) = 0 . 0  
X A C A L C ! I , J ) = 0 . 0  
X I O N T ! I , J ) = 0 . 0  
GTAWl! I ,  J ) = 0 . 0  
DO 2 3 0  1 = 1 , N2 
DO 2 3 0  J = 1 , N 2  
G T A U ! 1 , J ) = T A U « G ! I , J I  
I F ! I - J ) 2 3 2 , 2 3 1 , 2 3 2

A GUIDE TO 
1 3 7  TERMS)

EXPVOOlO
EXPV0020
EX PV0030
E X P V 0 0 4 0
EX PV 0050
EX PV 0060
EXPVOlOO
EXPVOllO
EX PV 0120
EX PV 0130
EX PV0140
E X PV 0 1 5 0
EX PV 0160
EX PV 0170
EX PV0190
EXPV0200
EPPV021Q
EXPV0220

00w



2 3 1

2 3 2
2 3 3  
2 3 0  
2 3 5

2 3 9
2 4 0

200
201

C
C
C

100
101
102
105
110
111

X I O N T U t J l ^ l . O  
GO TQ 2 3 3  
X I D N T C I » J l = 0 . 0  
ACA L C I I  « J ) ^G T A U f1 f J }
X P M »  J  )«ACALC ( I  f  J l  4-XlONTCI t J  ) 
CONTINUE 
0 0  2 4 0  1 = 2 , 3 6  
X= I
X I = 1 . 0 / X
CALL a U l I I P ( N 2 , G T A U , A C A L C , XACALC, 1 2 I
0 0  2 3 9  J = 1 , N 2
0 0  2 3 9  K = 1 ,N 2
ACALCIJ• K1=XI«XACALCIJ, KI
X P ( j , K ) ^ X P ( J , K I « A C A L C I J , K )
CONTINUE
W R I T E ( 6 , 2 0 0 )
F O R M A T I 8 0 X , 'X P E V A L ' I
F O R M A T I 2 0 X , 1 3 , 1 0 X , E 1 4 . 5 I
RETURN
ENO
SUBROUTINE MATPRTIN,A,MOIM)
OIMENSION ACN0IM,M01NI

T H IS  I S  A SPECIAL MATRIX 
MOIM = 12 FOR 2N MATRIX 

0 0  1 0 5  1 = 1 , N 
I F ( M O I M - 1 2 : 1 0 0 , 1 0 1 , 1 0 1  
* R I T E ( 6 , 1 1 0 I  I A I I * J ) t J = l , N )  
GO TO 1 0 2
W R I T E ( 6 , 1 1 1 I  * A ( I , J # . J = 1 , N I
CONTINUE
CONTINUE
F 0 R M A T ( 1 X , 6 E 1 5 . 5 )
FORMAT! 1 X , 1 2 E 1 1 . 4 )
RETURN
ENO

PR IN T SUBROUTUNE 
6  FOR TH E

FOR T H IS  
N MATRIX

PROGRAM

EX PV 0230
EX PV0240
EX PV 0250
E X P V 0 2 6 0
E X PV 0270
EX PV 0320
EX PV0330
EXPV0340
EX PV 0350
EX PV0360
EX PV0400
EX PV 0410
EXPV0420
EX PV 0430
EX PV 0480

EX PV 0490  
E X PV 0500  
MATPOOlO 
MATP0020 
MATP0030 
MATP0040 
MATP0050 
MATP0060 
MATP0070 
MATPOOSO 
MATP0090 
MATPOlOO 
MATPOl lO 
MATPO1 2 0  
MATP0130 
MATP0140 
MATP0150 
MATP0160

004̂



SUBROUTINE XNORM( N #6N0RH)
COMMON G f 1 2 v l 2 ) « X P I 1 2 v l 2 I
DIMENSION G A B f 1 2 . 1 2 I v S U M R f 1 2 } «SUMCC121
N2=2*N
DO 2 0 1  1 ^ 1 «12  
S U M R ( I } = 0 . 0  
S U M C I I ) - 0 . 0

2 0 1  CONTINUE
DO 2 0 2  1 = 1 , N2 
0 0  2 0 2  J = l f N 2

2 0 2  G A B ( I , J l = A B S f G ( l , J l l  
DO 2 0 3  I = I , N 2
DO 2 0 3  J = 1 , N 2
SUMRI n = SUMRf 1 ) » G A B M , J )
S U M C # I } = S U M C ( I } + G A B ( j , I }

2 0 3  CONTINUE
R M A X = A M A X i ( S U M R ( l } ,S U M R ( 2 ) ,S U M R I 3 } ,S U M R 4 4 } ,S U M R ( 5 ) ,S U M R ( 6 ) ,  

1 S U M R I 7 ) é S U M R IB ) * S U M R 1 9 ) ,S U M R I L O ) , S U M R I l l ) , S U M R I 1 2 ) }
CMAX= AMAX1 ( SUMC111»SUMC( 2 ) , SUMCI 31 » SUMC14 ) » SUMC15 ) , SUMC16 ) ,  

1 S U M C I 7 ) , S U M C < 8 ) , S U M C ( 9 ) , S U M C ( 1 0 ) , S U M C ( 1 1 ) , S U M C I 1 2 ) )  
GN0RM=AMIN1IRMAX,CMAXI 
W R 1 T E ( 6 , 2 0 0 )

2 0 0  FORMATI80X»>XNORM ■)  i
RETURN 
END
SUBROUTINE ST E PSZIGN ORM .T ,T AU ,K K)
KK=0
TMAX=10.0/GNORM 
I F !  T-TMAX) 2 1 0 , 2 1 0 , 2 1 1  

211 KK=KK+1 
D I V = 1 . 0  
DO 2 1 4  J = 1 , K K  

2 1 4  D I V = D I V * 2 . 0  
TAU = T / O I V
I F # T A U - T M A X ) 2 1 2 » 2 1 2 , 2 1 1  

2 1 0  TAU=T

NORMOOIO
NORM0020
NORM0030
NORM0040
NORM0050
N0RM0060
NORM0070
NORMOOBO
N0RM0090
NORMOlOO
NORMOIIO
NORM0120
NORM0130
NORM0140
NORM0150
N0RM0160
NORM0170
NORM0I80
NORM0190
NORM0200
NORM0210

NORM0220 
NORM0230 
STEPOOlO 
S T E P 0 0 2 0  
S T E P 0 0 3 0  
S T E P 0 0 4 0  
S T E P 0 0 5 0  
S T E P 0 0 6 0  
S T E P 0 0 7 0  
S TEPOO80  
S T E P 0 0 9 0  
TTEPOlOO 
S T E P O l lO

œVI



cc
c
c
cc

ll
2 1 2  CONTINUE

WR1TE(6,200)
200 FORNATC80X,»STEPSZ»I 

RETURN 
END
SUBROUTINE S S K A L ( X P I 1 , X P 1 2 , X P 2 1 , X P 2 2 , N , I T E R , E P S L , S S K I

CALCULATES STEADY STATE FEEDBACK GAIN USING THE KALMAN EQUATION 
WE ARE USING A STEP PROCEDURE TO CONVERGE TO THE STEADY STATE 
* ♦  THE IMPORTANT TH*ING TO NOTICE I S  THAT THE TAU ARGUEMENT OF 
THE FUNDAMENTAL MATRIX I S  NEGATIVE**

DIMENSION X P I 1 I 6 « 6 } , X P 1 2 ( 6 » 6 1 t X P 2 1 ( 6 , 6 1 , X P 2 2 l 6 , 6 ) t S S K I 6 f 6 )  
DIMENSION S S K l ( 6 , 6 f , S S K 2 ( 6 , 6 ) , S S K N ( 6 , 6 )
DO 250 1=1,N 
00 250 J=1,N

2 5 0  S S K f I , J I = C . O  
I T E R = 0

2 5 1  CONTINUE
CALL M U L T I P I N , X P 2 2 , S S K , S S K 1 , 6 )
CONTINUE
CALL M U L T I P I N , X P 1 2 , S S K , S S K 2 , 6 )
DC 2 5 2  1 = 1 , N 
0 0  2 5 2  J = 1 , N
S S K I I  I , J ) = X P 2 i l I , J ) * S S K l (  I , J )

2 5 2  S S K 2 ( I , J ) = X P l l ( I , J l * S S K 2 f I , J )
E P S = 0 . 0 0 0 0 0 0 1
CALL INVERTISSK2,NtEPS,SINGULI 
IFISINGUL-1.0# 254,255,255 

255 CONTINUE
W R I T E I 6 , 2 0 1 )
RETURN 

2 5 4  CONTINUE
CALL a U L T I P I N , S S K l , S S K 2 , S S K N , 6 #
C A L I  C N V T S T f S S K N ,S S K ,N ,S S K T S T I  

TO AVOID ROUND O F F ,  WE FORCE SYMMETRY

STEP0I20

S T E P 0 I 3 0  
S T E P 0 1 4 0  
SKAIOOlO 
S K A I 0 0 3 0  
S K A I 0 0 4 0  
S K A I 0 0 5 0  
S K A I 0 0 6 0  
S K A I 0 0 7 0  
SKAIOOBO 
SKAIOlOO 
S K A I O l l O  
S K A I 0 1 2 0  
S K A I 0 1 3 0  
SKA 101,40 
S K A I 0 1 5 0  
S K A I 0 1 6 0  
S K A I 0 1 7 0  
SKAIOIBO 
S K A I 0 1 9 0  
S K A I 0 2 0 0  
S K A I 0 2 1 0  
S K A I 0 2 2 0  
S K A I 0 2 3 0  
S K A L0240  
S K A I 0 2 5 0  
S K A I 0 2 6 0  
S K A I 0 2 7 0

SKAL0280
S K A I 0 2 9 0
S K A I 0 3 3 0
S K A I 0 3 4 0
S K A I 0 3 5 0

roa\



00 256 1=1,N 
00 256 J=1,N 

256 SSK(I,J)=(SSKN(:,J)+SSKN(J,I))/2.0 
IFCSSKTSI-EPSLI 258,258,259 

259 ITER=ITER+1 
TAU^TAU+T 
GO TO 251 

258 CONTINUE
WRITEI6,200)

200 FORMAT!80X.«SSKALZ*I
201 F0RMATC25X,*IT BLEU UP IN SSKAL##

RETURN
ENO
SUBROUTINE CNVTST4SSKN,SSK,NtSSKTST) 
DIMENSION SSKNI6,6},SSK46,6I 
SUMNM=0.0 
SUMOM=0.0
TEST THE CONVERGENCE OF THIS ITERATION 

00 255 1=1,N
SUMNM=SUMNM+ABS(SSKNI1 , I I ^ S S K I 1 , 1 ) 1  
SUMOM=SUMOM*ABSfSSKNII• 1 1 )

2 5 5  CONTINUE
SSKTST=SUNNM/SUMDH
RETURN
ENO
SUBROUTINE INVERT IA,N,EPS,SINGULI

C
C SUBROUTINE INVERT INVERTS A MATRIC IN I T ' S  OWN SPACE USING THE
C GAUSS-JQROAN METHOD WITH COMPLETE MATRIX P I V O T IN G .  I . E .  AT EACH
C ' STAGE THE PIVOT HAS J H E  LARGEST ABSOLUTE VALUE OF ANY ELEMENT IN 
C THE REMAINING MATRIX. THE COORIINATES OF THE SUCCRSSIVE MATRIX
C PIVO TS USED AT EACH STAGE O f  THE RECUCTION ARE RECORDED IN THE
C SUCCESSIVE ELEMENTS P O S IT IO N S  OF THE ROW CIKYMN UBOEX VECTIRS
C R ABO C .  THESE ARE LATER CALLED UPON BY THE PROCEDURE PERMUTE W H IIN V 0 0 0 9 0
C REARRANGES THE ROWS AND COLUMSS OF THE MATRIX. I F  THE MATRIX I S  INVOOIOO
C SINGULAR THE PROCEDURE EXIT S TO AN APPROPRIATE LABEL IN THE MAIN I N V O O l lO

S K A I 0 3 6 0  
S K A I 0 3 7 0  
S K A I 0 3 8 0  
S K A I 0 3 9 0  
S K A I 0 4 0 0  
S K A I 0 4 I 0  
S K A I 0 4 6 0  
SKA10 4 7 0

S K A I 0 4 8 0  
SKA10 4 9 0  
CONVOOlO 
CQNV0020 
C 0 N V 0 0 3 0  
C 0N V 0040  
CGNV0050 
C 0 N V 0 0 6 0  
CONV0070 
CONV0075 
CONV0090 
CONVOlOO 
CONVOI10 
C 0V V 0120  
INVOOOlO 
I N V 0 0 0 2 0  
1 N V 0 0 0 3 0  
I N V 0 0 0 4 0  
I N V 0 0 0 5 0  
I N V 0 0 0 6 0  
I N V 0 0 0 7 0  
I N V 0 0 0 8 0

00-o
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RETURN
C
9

C
C
C
c
c
c
c
c
c
c
C i
c
c
c

c
c

I N V 0 0 8 5 0
IN V 0Ô 860
I N V 0 0 8 7 0
1 N V 0 0 8 8 0
PEROOOlO

FORMAT ( l H l t 2 3 H T H E  MATRIX I S  SINGULAR , 5 H  I  =  1 5 , 1 2 1 1 0 1 1  
END
SUBROUTINE P E R M U T ( A , S , D , N , J J #
PERMUTE I S  A PROCEDURE USING J E N S E N ' S  DEVI,CE WHICH EXCHANGES ROWS P E R 0 0 0 2 0  
OR COLUMN SOF A MATRAX TO ACHIEVE A REARRANGEMENT S P E C I F I E D  BY T H E P E R 0 0 0 3 0  
PERMUTATION VECTORS S « 0 .  ELEMENTS OF S SPE C IFY  THE ORIGINAL SO URCEPER00040  
LOCATIONS WHILE ELEMENTS OF 0  S P E C IF Y  THE DESIRED SESTIN ATION P E R 0 0 0 5 0  
LOCATIONS. NORMALLY A AND 8  WILL BE CALLED AS SUBSCRIPTED V A RIA B LEPER 00060  
OF THE SAME ARRAY. THE PARAMETERS J , K  NOMINATE THE SU BSCRIPTS P E R 0 0 0 7 0  
OF THE DIMENSION AFFECTED BY THE PERMUATION, P I S  THE 4ENSEN P E R 0 0 0 8 0
PARAMETER. AS AN EXAMPLE OF THE USE OF T H I S  PROCEDURE SUPPOSE R , C  P E R 0 0 0 9 0  
TO CONTAIN THE ROW AND COLUMN SUBSCRIPTS FO THE SUCCESSIVE MATRIXPEROOlOO 
PIVO TS USED IN A MATRIX INVERSION OF AN ARRAY A .  I . E .  R f l l  , C ( Z 1 )  P E R O O llO  
ARE THE RRLATIVE SUBSCRIPTS OF THE F I S S T  P I V O T ,  R ( 2 ) * C ( 2 )  OF THE P E R 0 0 I 2 0  
SECOND PIVOT AND SO ON.  THE TWO CALLS ,  CALL P E R M U T E ! A f J , P I ,  A ! K , P P E R 0 0 1 3 0  
l i J « K , R t C t N , P )  AND CALL P E R N U T E I C A I P , J ) , A I P , K ) , J , K , C , R , N , P I  WILL P E R 0 0 1 4 0  
PERFORM THE REQUIRED REARRANGEMENT OF TOWS AND COLUMNS R E S P E C T IV E L P E R O 0 I 5 0
REAL A ! 6 , 6 I , W
INTEGER J t K f N t P t S ( 6 ) , D C 6 l , T A 6 f 6 1 , L 0 C I 6 1 , I , T , T A G J , T A G K
SETUP I N I T I A L  VECTOR TAG NUMBER AND ADDRESS ARRAYS
DO I  1 = 1 , N
T A G ! I I « 1
L O C ! l l = I
CONTINUE

START PERMUTATION

DO 4  1 = 1 , N 
T = S  C11 
J = L O C ( T I .
K ^ D I I I
I F  4 J . E Q . K I  GO TO 3  
I F I J J . E Q . l l  GO TO 5 
DO 2  P = 1 , N

P E R 0 0 1 6 0
P E R 0 0 1 7 0
P E R 0 0 1 9 0
P E R 0 0 2 1 0
P E R 0 0 2 2 0
P E R 0 0 2 3 0
P E R 0 0 2 4 0
P E R 0 0 2 5 0
P E R 0 0 2 6 0
P E R 0 0 2 7 0
P E R 0 0 2 8 0
P E R 0 0 2 9 0
P E R 0 0 3 0 0
P E R 0 0 3 1 0
P E R 0 0 3 2 0

HVOO



3
4

C
C
C
c
c

W = A ( J , P )
A U * P H A I K , P i  
A ( K , P ) a W  

2 CONTINUE 
GO TO 6

5 CONTINUE 
DO T P = 1 , N  
W = A ( P , J )
A ( P , J M A ( P , K I
A(P,K)=W

7 CONTINUE
6 CONTINUE 

TA64JI»TAGIKI 
TAG(K)«T 
TAGJ=TAG(J#
TAGK=TAC(K#
L O C ( T ) a L O C ( T A G j ;
L 0 C 4 T A G J ) * J
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE M U L T IP 4 N * B ,C ,A ,M D IM )
REAL A4NDIH,N01NI*B4NDIM»MDIMI,C4MD1M,MDIMI 
INTEGER N«I«3tK
T H IS  PROCEDURE M U LT IPL IES  TWO MATRICES B AND C 
SUCH THAT A 4 I « 3 l = B f  W K I « C 4 K » J I  ANO STORES 
THE RESULT IN  A .

DO 1 1 * 1 , N 
DO 1 J = 1 , N  
A ( I , J # * 0  
0 0  I  K = 1 ,N
A 4 I , J I * A 4 I , J l * B 4 1 f K } R C 4 K , J )
RETURN

P E R 0 0 3 8 0  
P E R 0 0 3 9 0  
P E R 0 0 4 0 0  
P E R 0 0 4 1 0  
P E R 0 0 4 2 0  
P E R 0 0 4 3 0  
P E R 0 0 4 4 0  
PER0 0 4 5 0  
P E R 0 0 4 6 0  
P E R 0 0 4 7 0  
MULOOOlO

MUL00030 
MUL0 0 0 4 0  
MUL00050 
MUL0 0 0 6 0  
MUL00070  
N U L 0 0 0 8 0  
MUL0 0 0 9 0  
MULOOlOO 
MULOOllO 
MUL0 0 1 2 0  
M UL00130 
MUL0 0 1 4 0

H*VO
H


