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ABSTRACT

Optimal control equations are developed and applied to
the chemical process regulator problem. The method of optimi-
zation uses a parametric expansion of the dynamic programming
partial differential eguation. This formulation requires ths
time domain state-variable approach to system dynamics. Com-
posite feedforward-feedback controllers are shown to be opti-
mum in the quadratic sense. The effect of system delay time,
signal-to-noise ratio, and model misidentification is pre-
sented. Results from the experimental heat exchange process
show that this design method can be used to obtain controllers
which reduce control signal saturation with only a small reduc-
tion in effectiveness from that of the "ideal" feedforward and
feedback. This oﬁtimal controller design was shown to be

superior to the previously used frequency domain methods.
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OPTIMAI, FEEDFORWARD-FEEDBACK CONTROL
CHAPTER T

INTRODUCTION

Optimal control theory has advanced at an unbelievable
rate since the pioneering work of Wiener in the 1910's. It
is one of the unique scientific fields in which the theory
has preceded application and has genefally maintained this
gap through the years. The electronic industry has always
been the leader in applying the newly developed control
techniques. The ability to obtain accurate mathematical
models and make precise measurements has provided the
impetus for the electrical engineering involvement in optimal
control theory. The chemical process industry has not fol-
lowed this field closely and is rather slow to try new
developments in control theory. The reason for this tar-
diness can be traced to the nature of chemical processes.
Dynamic elements of chemical systems, such as heat transfer
and fluid flow are reiatively slow. These slow, unpredic-
table disturbances can introduce enough uncertainty so that
the advantage gained by using a sophisticated controller is
considerably reduced. The present work describes an appli-

cation of an existing control technique which has been

1
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modified to fit the requirements of chemical processes.

There are two different types of problems that are
frequently encountered by control engineers.' The servo-
mechaﬂism control problem is associated with a change in
operating conditions. The objective is to control the
chemical process as it moves from one steady-state to
another. The start-up and shut-down of systems fall in
this category. In an optimal servomechanism controller
design, the engineer is faced with several choices. The
major optimization variable can be time or‘energy, i.e.,
start-up a process in the least amount of time or with the
least amount of energy expended over a given léngth of time.

The regulator problem is concerned with controlling a
system at a steady-state level in the presence of load dis-
turbances. The optimal regulator problem is concerned with
maintaining control subject to constraints on the allowable
operating range of some of the parameters. An infinite time
interval is used in the optimization procedure.

It is this latter category - the regulator problem -
which is of interest in this work. There are two different
variables with which to implement a controller. A feed-
back controller monitors the system output and corrects for
any deviation. The feedforward controller monitors the
disturbance and corrects for any change in this &ariable.
Both types of controllers are used in the chemical process

today.
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The advantage in usiﬁg a composite feedforward-feed-
back controller is that the undesirable characteristics of.
each individual controller is de—emphésized. The big
limitations to obtaining good conérol with feedback alone
are procéss time delays and noisy output measurements while
feedfdrward controllers are sensitive to errors in the
dynamic mathematical model. Since chemical processes usually

contain all these limiting factors, the composite control-

ler seems to be the best way to regulate the process.

Statement of the Problem

The mathematical model of the systems under consider-
ation must be linear. There are no adequate methods for
treating large classes of non-linear control problems. When
a regulator problem is under consideration, the usual lin-
earization procedure used to modify non-linear system
dynamics is not unreasonable. The reason for this succéss—
ful linéarization is inherent in the regulatory problems
because the objective is to control a variable at a par-
ticular steady state condition. If the system moves too far
from this steady-state, the controller isn't doing a good
job and the linear approximation errors would not be sig-
nificant_in the overall controller design.

Figure (l1-1) shows a block diagram of the overall
controlled system. The vector-matrix notation is usea for

the system dynamics.
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x (t) Bx(t) + Cm(t) + Dult) . (1.1)

a(t) Ax (t) (1.2)
where x,m,u, and g are vectors and A, B, C, and D are
continuous, time varying matrices. This representation
allows multi-variable systems as well as single-input,
single-output systems.

The manipulative signal is represented by

m(t) = Quu(t) - Q.x(t) (1.3)

where QD is the matrix of feedforward gains and Qcis the
matrix of feedback gains.

The lqad disturbance, u(t), is a random variable.
Laning and Battin (L1) have presented a discussion on
various statistical characterizations of physically observed
systems. The great majority of load disturbances were found
to be approximately gaussian. Therefore the later portion
of the optimal controller design will be limited to gaussian

load noise.

Literature Review

Feedback control has been used in industrial processes
for many years, while feedforward control is a relative new-
comer to the control scene. Articles concerning the use of
feedforward control started to appear only within the
last twenty years. The early pioneers of control theory
were electrical engineers. However, because of the nature

of their electrical devices, feedforward control did not



hold their interest.

Bollinger and Lamb (B9) used the ideal feedforward or
mirror image control and then added a small feedback to
correct for drifts and small errors. Harris and Schecter
(H1) presented a similar application of feedforward con-
trol to the linearized dynamics of a chemical reactor. 1In
either case, no optimum feedbaék control was attempted.
Haskins and Sliepcevich (H2) showed how certain classes
of system non-linearities can be accounted for in the feed-
forward controller. Luyben and Gerster (L8) examined the
application of feedforward control to distillation columns.
Distillation is a process which would be a prime target for
the use of feedforward control because the outlet variables
are concentrations which usualiy can not be continuously
monitored. Shinskey and MacMullen (M2) reported some exper-
iments with feedforward control of distillation cOlumns.
Cadman, Rothfus, and Kermode (Cl) examined the effect of
linearization of the dynamic distillation column model on the.
feedforward controller. Recently, Luyben (L9) presented a
method for calculating non-linear feedforward controllers
for the non-linear continuous stirred tank chemical reactor.

While none of these investigators tried to use any
optimization techniques, Rozonoer (R2) has shown that the
ideal feedforward controller is indeed an optimal one when
no constraints are placed upon the system. So in the study

of feedforward controllers, one is dealing with a type of



optiﬁlal coni;rol .

Optiﬁization technigques applied to feedback control
5yétems dominate the literature. The great majority of
reporfed work is concerned with various methods to obtain
optimum feedback control for a servomechanism problem.

This work is usually carried out by aeronautical and elec-
trical engineers who are working in the aerospace industry.
Most of fheir problems fall within the servomechanism
category.

Most of the work on optimal feedback control utilizes
one of the four prevailing optimization techniques.

1. ?ariational Calculus (N1)

2. Optimal Search (Bl)

3. Mathematical Programming (B2)

4. Maximum Principle (K1)

One reference is provided for each of these techniques.
The vast amount of literature on the many facets of these
concepts precludes an exhaustive review.

There have been two studies which have looked at some
type of optimal composite feedforward-feedback control.
Johansen (L3) used the.results of Kalman (K1) to define an
optimal feedback control system in the presence of measure-
ment and load ppise. Although his interests lay more with
filtering the noise in a model-following controller than with
providing a feedforward controller, the method of attack of

both problems is very similar. -As usual Johansen's work was
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directed. toward a servomechanism problem, i.e., airplane
navigation. One disadvantage of Kalman's method is that the
problem formulation requires matrix partioning which doubles
the dimensionality of the problem and always causes computer
difficulties for even low dimensional problems.

Heidemann (H4) was interested in composite control of a
distillation column. He used the discrete form of the
maximum principle as presented by Kalman (Kl). However,
Heidemann only calculated an optimal feedback controller and
then added the ideal feedforward controller. 1In any case,
the result was excellent control of an experimental
distillation column.

Luecke (L4) used the fregquency domain methods of Newton
Gould, and Kaiser (N1) to obtain an optimal composite con-
troller. The resulting form of the optimal composite con-
troller is a ratio of polynomials. Even with low order
transfer functions, the controllers contained rather high
order polynomials (in the freguency domain) in the numerator
and denominator of the signal transfer function. A dis-
advantage of the Newton method is its limitation, at least
for reasonable computational effort, to single-input,
single output systems. The advantageous feature of the
frequency domain control désign is that the optimization
is done completely in the frequency domain, making it more
familiar to control engineers. Time domain formulations

are a very recent phenomena.



CHAPTER II
MATHEMATICAL BACKGROUND

The optimal controller design equations developed in
the upcoming chapters require the use of some mathematical
ideas which are not yet a part of the general chemical
engineering background. For this reason a brief discussion

of some of these ideas are included here.

Review of Statistical Design Concepts

The system under consideration is assumed to be subject to
random load disturbances. In order to use the statistical
characterization of this disturbance signal in conjunction
with the design procedure, several well-known concepts from
"the theory of random variables are presented.

The mean value of a random signal, x(t), is its
expected value which is defined by the following equation.

+o
E{x(t)} = f(x,t)dx (2.1)
-
where f(x,t) = the probability density
The mean value is, in general, a function of time.

9
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The conditional mean value of a.signal is a con-
venient function for the use in many physical situations.
When a random signal is dependent on a deterministic signal,
such as when the output of a plant is related to the
input, more accurate estimates of the most probable future
values of the random signal can be made if the determinis-
tic signal is known at a particular instant. For example
the output of a plant can be calculated at a particular
moment if the transfer function and the value of the input
signal are known. Then a more accurate estimate of the
future values of the output can be madé sinmply because its
value at that one particular moment is known. In these
situations a conditiom 1 probability is used because it is
defined as the probability function of a random signal
subject to a particular fixed value of some dependent
parameter. Therefore the conditional mean of a random
signal y subject to the fixed value x can be written as
+
E{y|x} = yfylx)ay | (2.2)
s
where f(ylx) is the conditional probability density.
The autocorrelation 9X(t1,tz) of a given. signal, x(t)

is defined as
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po e .
Gx(tl,te) = j( d/— x1 (t1)xz2 (t2) fx1,xz2:t1,t,)dx:1d%,
-® - (2.3)
Another statistical function prevalent in the automatic
control literature is the spectral density or power spec-
tra of a signal\which is the Fourier transform of its auto-
correlation.
+j
3 (s) = e"5Te_(m)ar (2.4)
- )

We shall restrict the discussion of system disturbances
to include only those signals which are stationary. Intuit-
ively, a stationary signal has the property that its statis-
tical characterization is not a function of time. Most dis-
turbances of interest to the chemical engineer are station-
ary or can be approximated as stationary over the range of
interest. For this limited class of signals, the auto-
correlation is a function only of the time increment,

tl-tzl i.e.

L

(o] +m
6 (t,-t2) = j[' XixX2f(Xy,x2:t,-t2)dx,dx2 (2.5)

The autocorrelation of a stationary signal can be

written in a form similar to the mean.

ex () = E{x(t+T)x(t)} (2.6)
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As will be shown later, an estimation problem is
encountered in the feedforward portion of the controller
design procedure. We are interesfed in predicting the sig-
nal at time t + T solely from its past history up to time t.
By standard techniques (P3) the linear mean sguare estimate
cah be expressed as

.eo
x (t+d) = x (@)W (t-a)do t >0 (2.7)
o
The function, W(t-«), is the impulse response which is
subject to the following condition.

w(t) = 0 for t <0 (2.8)
Equation (2.7) is the famous Wiener-Hopf integral equation.
The solution of this equation is not trivial but several
methods (Nl) of solution are available.

If we consider a system load disturbance signal which
is corrupted by measurement noise, then we have a combined
filter-prediction problem. However this again results in
a Wiener-Hopf integral equation (N1).

If we consider normal or gaussian signals, our task is
simplified considerably. It has been shown (P3) that the
conditional mean can be used for mean square estimation.

To facilitate discussion, the following notation for the
conditional mean is introduced,

t
E{x()|x(t),u >t} = x() (2.9)
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The conditional mean of a normal signal is easily cal-

culated from the autocorrelation function and the mean.

t .
x (u) = E{x}+ Qig:El x (t) ' for u > t (2.10)

In order to use this convenient eguation, we have res-
tricted ourselves to stationary, gaussian signals. This
restriction is not devastating because most of the load
disturbances of interest to chemical engineers can be in-
cluded in this class. The Wiener—Hopf.equation was ére—
sented to show how non-Gaussian signals can be handled.
Since solving the Wiener-Hopf equation is a task in itself,
it is not included in further discussions of the controller

design method.

Mean Square Evaluation

As stated previously, we are interested in obtaining
the mean square value of a signal in order to make a com-
parison of controller effectiveness. The mean square is a
good indication of effective control when random distur-
bances are allowed (L1l).

Coﬁsider the process (in the frequency domain)

X(s) = P(s)D(s) (2.11)
A spectral density relationship for this process can be

written.

P (s)= P(s) P(~s) ¥, (s) . (2.12)
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The above equation is a well known property of the spectral
densities, so no attempt to derive it will be made. Many
texts, including Laning and Battin (Ll), provide detailed
explanations.

The autocorrelation function is obtained from the spec-
tral density by taking the inverse transform and multiplying
by 2wm. Thus

jcn
6,(1) =3 3 (s)e%Tas | (2.13)
..jco
Since integration is along the imaginary axis, we may write
the inverse transform in terms of the real frequency, w.
+®

wT

GX(T) = Gxx(jw)e aw (2.14)

- O

The above equation leads to an easy way of evaluating the
mean square value of a signal. The mean square, as cén be
seen by the definition in equation (2.14), is the value of
the autocorrelation function at T = 0. Therefore

s

mean square value = Sx(o) = @%x(jw)dw (2.15)

-0

Appendix F shows how this equation can be computationally
used to calculate the mean square value of a signal from the

spectral density function.



15

Solution of Matrix Differential Equations

In the formulation and solution of.multivariable con-
trol problems, linear matrix differential equations result.
The method of solving such equations is well known and is
given here only for reference. A text such as Coddington
and Levinson (C4) should be consulted for rigorous discus-
sion of this topic.

The differential equation of interest is

é_g_éﬂ = Ax(t) + Bu(t) oStsT (2.16)
x(o) = X

where A and B are constant matrices and x(t) and u(t) are

vectors. Using the matrix exponential

4 [e’Atx(t)] = e PRy (t) (2.17)
at
Integrating both sides of this equation from o to T

T

efATx(T) =X+ efAtBu(t)dt (2.18)

o

Rearranging this result gives the eguation which is commonly

called the impulse response solution.
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T

AT eA(T—t)

x(T) = e x, + Bu (t)dt : (2.19)

o
The matrix exponential used in the above derivation is
also referred to as the matrizant, the fundamental matrix,
and the transition matrix.
The above derivation holds only for time-invariant sys-
tem dynamics, i.e., the matrices A and B are constant. For
time-varying systems the matrix exponential is rather diffi-

cult to evaluate.

Dynamic Programming

The technigue used to optimize the control signal is
called Dynamic Programming (B2). A brief discussion of this
method is presented here for later reference.

The basic function to be minimized considered in this
work can be written as

T
e(t) = h(x,m,t)dt ~ (2.20)
t

subject to the constraints

x = £(x,m,t) ; mEM (2.21)
where M is a closed set.
The first step in applying the concept of dynamic program-

ming is to imbed the minimization problem into a larger class
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of problems. A dummy variable is introduced so that the
present time can be treated as a constant during the mini-
mization procedure.
T o-
e () = fh(x,m,u)du (2.22)
7]

where ué€lt,T]

The state variable at time t, x(t), is treated as a constant
or measured value.

Define the minimum cost function

E(x(u), ] = min e(p) (2.23)
m

Now the Principle of Optimality is used to obtain an eqguation
for this minimum cost function. The Principle of Optimality

(B2) can be stated as:

An Optimal policy has the property that whatever
choice of initial state and control vector is
made, the remaining choice of control vectors
must constitute an optimal policy with respect
to the state resulting from the initial choice
of control wvector.

Breaking the interval of integration into two parts and

then using the above principle allows us to write the follow-

ing equation.
p+o T

Elx(u).,p] = min min h(x,m,0)dc + [ h(x,m,0)do
m m

u+d
(4, pu+6) (p+6,T)

(2.24)
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or
©+6 T
Blx(),#] = min J(h(x,m,o)do + min h(x,m,oc)do
(u,ﬂ+5) u (ﬂ+?,T) g+ (2.25)

From the definition of the minimum cost function

T
Elx(u+6) ,u+6] = min J(h(x,m,o)dc (2.26)
m
(p+6,T) p+0

Using this result in the rearrangement of equation (2.25)

gives
n+6
Blx(u),1)] = min , J[g(x,m,o)do + E[x(u+6),u+6]
(u.ﬁ+6) 7 (2.27)

This solution is the familiar discrete recursive expres-
§ion which is used.in many digital computer solutins. The
usual method of attack is to start at the terminal boundary
condition and then calculate the optimal path using finite
increments in the negative time direction (L2).

A continuous form of the dynamic programming algorithm
can be found. Expand the minimuﬁ cost function in a Taylor

series for a small increment, §.
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T

Elx (u+6) ,u+6] = E[x (1) 1] +f33[x(ﬂ)'“] x (1) 6
\BX(u)

+ JElx(u),p]

5 + ... (2.28)
op

Substituting equation (2.28) into equation (2.27) results

in
E[x () ,nl = min h(x (), m(u),2) + Elx(u), )
m
(B, p+6)
T
+.§§Ez§g),g] x()6 + BEgZ(H),H] 6+ ... (2.29)

Subtract the minimum error function from both sides of equa-
tion (2.29) and then divide the equation by 6. In the limit
as 6 approaches zero, the eguation becomes

T

min . E[x(),ul | % + SE[x(u),ul |=0
m () hx(p) ., m(p), p) + o% (1) x + 3

(2.30)
This partial differential equation is the?;ontinuous form of
the dynamic programming algorithm which is used as the start-
ing point in the optimal controller equation development.
For more rigorous discussions and various applications
several basic texts which are listed in the bibliography

should be consulted (B3,L2,Bll).



CHAPTER III
OPTIMAL CONTROLLER DESIGN EQUATIONS

The object of this chapter is to present a method of
calculating optimum controller designs for chemical processes.
The method is limited to linear, time-varying systems. This
restriction is not serious because a large number of control
problems can be resolved with a linear approximation to the
actual process dynamics. When deviations from steady-state
operating conditions are not large, then the linear approxi-
mation is usually sufficient. With this restriction to lin-
ear models it is apparent that the controllers themselves
will be linear functions. Using a linear approximation to a

non-linear process in the optimal controller equation results

in a linear-optimum controller. This name is usually given

to the above mentioned optimal controllers to distinguish
them from the optimal controllers calculated from the non-
linear dynamic model. Since these latter controllers are

not easily calculated, the linear-optimum controllers can be
used as long as the assumptions involved in the model approxi-
mation are valid. The calculation of the linear-optimum con-

trollers is the task bf this work.

20
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Another limitation of this method of finding optimum
controllers is the mathematical formulation of the constraints.
The constraints on the system must be expressed in terms of
guadratic functions. This again is not a serious limitation
because the chemical engineer frequently deals with vari-
ances so quadratic constraints can be formulated easily.

System limitations resulting in variable "saturation" can

not be directly included in the class of guadratic constraints.
However, by putting a constraint on the square of the saturat-
ing variable, the fraction of time that éhe system violates
the hard saturation barrier can be limited.

The matrix, time-domain representation-of the process
dynamics is used in this method. The more familiar transfer
function representation can easily be changed into this form.
Appendix A includes a discussion of the various ways to make

this transformation.

Problem Formation

Consider the general matrix formulation of process

dynamics.
;(t) Bx(t) + cm(t) + Du(t) (3.1)
a(t) = Aax(t) (3.2)
where -
X(t) = state variable vector

m(t) = control variable vector
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u(t) = load disturbance

q(t) output vector

A,B,C,D = continuous time-varying matrices

The superbar is used to emphasize that the variables are
vector qﬁantities. In order to simplify notation, the super-
script is not used in later Jdiscussions. A particular element
of the vector, X is recognized by subscript indices.

Since the system is linear, the perturbation form of the
system dynamics can be used. The variables in the above equa-
tion are the deviations from steady state operating condi-
tions. This technique.of presentation is common in the con-
trol literature. It relieves the mathematics of unnecessary
complications because the steady-state value of the pertur-
bation variables is always zero.

The scalar performance index upon which the optimization
is based is quadratic. A scalar function is used so that a
multi-variable search, which would be extremely difficult, is
not required. As in all variational mathematics, the scalar
performance index function is formulated as an integral.

Since ranaom variables are included in this procedure the
functions in the scalar performance index are conditional
means which emphasizes the dependence of the procedure on the

present time, t.
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T
t t . t
e(t) ={ (qlo), ¥g(o)? *+ <(m(oc), ¥m(c)) do (3.3)
t
where
T = terminal time boundary
¢ = diagonal non-negative definite weighting factor matrix

¥ = diagonal positive definite weighting factor matrix.

The weighting matfices can also be time-&arying functions.
However, as a result of the inability to formulate desirable
time-vérying functions, constant weighting factors are used.
The limitation of only diagonal elements in these matrices
is not necessary but practical. A cross product constraint
is difficult to formulate and does not seem to have any par-
ticular advantage in the results which are obtained.
Positive definite weighting matrices are used in equa-
tion (3.3). The integraﬁd of the scalar performance index
is positive and strictly convex. The more restrictive con-
dition on the control signal weighting factor is uéed so that
an unrealistic unbounded optimum control signal will not be
specified. Therefore the control signal is restricted to a
closed set and the allowable control signal region is desig-
nated M. The minimization of the performance index with
respect to the control signal is restricted to this allow-
able set M. This restriction is not explicitlY'noted in fhe

minimization eqguation because of the complex notation, but
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ié inherent in the procedure.

The superbars in the preceding eguation (3.3) indicate
the conditional mean as introduced in equation (2.9). The
notation is a reminder that the integrand is a function of
real time t.

Following the same procedure developed in the dynamic
programming section of Chapter II, an instantaneous minimum

performance index is defined by

+ & .
Elx (), 2] = min e (u) (3.4)
m () ‘

The index is defined in this manner because the real time t
is treated as a fixed value in the minimization procedure.
The fact that the minimum performance index has only the
state variable and the time variable in its argument is a
well known result (B2). Note that for each instant the mini-
mization treats the real time t as the initial condition and
it becomes very important in servomechanism problems to moni-
tor the real time t. However, in regulator problems the inter-
val of interest is the whole real time axis, making the par-
ticular fixed value of t arbitrary.

From the definition of the minimum performance index, it

is apparent that the following boundary condition must hold.
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T
T _A min ' t ' t
Elx(T),T] = m (T) “/—(q(o),éq(0)7' t(m (o), T m(o) ddo (3.5)
T

Since the integrand is bounded on the allowable region, M,

the integral must be zero.

. | .
E[x(T),T] =0 | (3.6)

The dynamic programming algorithm in the continuous
form can be applied at this point. The dynamic programming

algorithm was discussed in Chapter II.

T
t t (3 ["_‘_t * t
m%n) { <a). &g @) + m@u), En(e)) +'§ﬂ%ﬂ x(p) }
i o x(u)
____t
3E[x ()., pu]l (3.7)
= <+ a#

The superscript T onh the partial derivative of the minimum
performance index with respect to the state variable denotes
the transpose of that wvector.

The above partial differential equation could be inte-
grated by numerical techniques if the system order is limited
to two or three dimensions. Larger dimensional problems can
not be handled without a great deal of difficulty by present
computer technology. The computer memory storage is not large
enough. Computef storage limitation is a result of the famous

"curse of dimensionality" (B2).
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The Parametric Expansion Solution

One possible way of side-stepping this computational
difficulty is to propose a mathematical form for the mini-
mum performance index. Merriam (M3) suggested a Taylor
series expansion with respect to the state variable which
is truncated after the quadratic term. The coefficients in

the expansion are then treated as unknown parameters.

t £)\T £\T t
Elx(p),p] = 1(u) - 2{x(©) J@) + [x@) | K@) x@
(3.8)
where K(i4) = symmetric n X n matrix
J(t) = n-element vector
I(¢) = scalar element
The partial derivatives needed in equation (3.7) are
T T
L)l ) = 25T+ 2 (X® | K@) (3.9)
3 x(un)
T T
t
(1Y . ___t . __t . ___t
Eleal = i) -2 (X@ | S+ (X@ | KEFE

(3.10)

Equation (3.9) is simply the gradient of the minimum perform-
ance index with respect to the components of the state vari-

able vector. This derivative is in a tractable form because
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of the symmetry of the matrix K(u) (B4).

In order to obtain the minimum of the right hand side
of equation (3.7) the derivative of the terms within the
braces are differentiated with respect to each element of
the vector m(g) and then the result is set equal to zefo.
By rearranging this result the optimal control vector is

obtained.

_ _ ___t
m* (£) = ¥ lcTa(t) - ¢ lck(t) %(O) (3.11)

where m* € M

Substituting this expression into equation (3.7) and perform-

ing some manipulations, the equations which allow for the

evaluation of the parameters J(u) and K(#) can be found.

These manipulations are tedious so they do not appear in this

chapter. Appendix B contains the necessary algebraic detail.
The resulting matrix differential equations are

- __t
K(u) c¥ 1T Ju) - BT J (L) + KD u(u) (3.12)

1l

J (k)

x(p) cv tef x(u) - BT k() - aTem - x(u)B (3.13)

K (1)

The parameter, I(u) does not appear in the control equation
and, therefore, does not add any information to the control-
ler design, so it is not presented here. The boundary condi-

tions for these equations follow directly from the boundary
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condition of the minimum performance index which was stated

in equation (3.6).
J(T) = 0; K(T) =0 . (3.14)

The optimum control vector in the real time control system is
found from equation (3.11l) when thé parameters are evaluated
at § = t in conjunction with the solutions of equations (3.12)
and (3.13).

These eguations were first derived by Merriam (M3) but
were made unduly complicated by his unfortunate use of summa-
tion notation. His general controller parameter equations,
corresponding to equations (3.12) and (3.13), contained sev-
eral typograpﬁical errors, thereby increasing the confusion.
The development of the controller equations by matrix methods
as presented in Appendix B is much simpler and far less con-
fusing.

It can be seen that the parameter, J(u), is a function
of the load disturbance signal, u. This means that J is
related to the feedforward portion of the controller. The
other parameter, K(u) is the coefficient of the state vari-
able in the optimal controller equation (3.11). Therefore,
.K(u¢) is related to the feedback gain of the controller.

The dynamic programming equation is a sufficiency condi-
tion because of the manner in which the minimum cost function,

E, was defined. The important features are continuity and
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convexity of this function. There are, of course, much weaker
conditions under which this equation still remains sufficient
to specify a unique optimum, but the above two properties are
the most easily formulated.

Continuity is not restrictive because a discontinuous
control implimentation is not physically realizable in chem-
ical processes. Convexity of the performance index is guar-
anteed by the quadratic forms in the integrand of equation
(3.3).

In finding the equations for the optimal controllers,

a solution was assumed. The guestion arises: Is this assump-
tion valid? Peterson (P4) has shown that for linear systems,
all terms of higher order than quadratic in the state vari-
able are zero. Therefore, the parametric expansion is wvalid
for linear systems. Since non-linear systems are not included
in these conditions it seems better to search for other ways
to solve non-linear problems. The familiar linearization
about the steady-state is a popular one, especially in regu-
lator.control problems.

There are no worries concerning the stability of the
controlled system. Merriam (M3) has shown that the minimum
performance index is a Lyapunov function so the system is at

least asymptotically stable in the large.
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Separable Load Disturbance

If the load disturbance statistical characterization
allows a separation of the conditional mean, equation (3.12)
can be simplified. A separable signal can be represented as

follows:

t t
u(p) =Uup) + U ,t) u(t) (3.15)

t .
Since the conditional mean u(f) is a linear factor in equa-

tion (3.12), it is immediately known that the solution J(u)

can be written as the sum of the solutions for each additive
t

component of the forcing term u(#) . This linearity means

that two parameters can be defined for J(t).
J(t) = R(t) + §(t) (3.16)

Then the equations defining these two parameters are

R(e) = [K()eT 1eT-8T) R(u) + K(g) D T (3.17)

z T T, = t

S(p) = [Ku)c¥ c -B"] S(u) + K(u) DU(u,t)u(t) (3.18)

§(T) =0; R(T) =0 (3.19)
t

Since u(t) is a non-zero constant with respect to this equa-
tion, equation (3.18) may be divided through by this factor.
A new function is introduced which will prove to be more

practical.
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S .
s (p) = (®) (3.20)

o]

(t)

With this new parameter, equation (3.16) is transformed into
____t
J(t) = R(t) + s(t) u(t) (3.21)
where this redefined parameter is found by the following

matrix differential equation:
5 _ -1 T _T
S(u) = [K(g) ¢ ¥ "c™-B"] s(#) + K(p) DU(u,t) (3.22)

An important point can be noted when eguation (3.21) above
is substituted into the optimal control signal equation (3.11).

: t t
cTrR(t) + ¥ icTs(t) T(E) + ¥ icTk(t) X(©)

(3.23)

m¥*(t) = ¥t

m*¥ € M

The three terms on the right hand side of this equation can
be associated with physical contrdlers. The first term is
the steady state correction, while the third term is the feed-
back controller. By the manipulation performed above, the
second term has been shown to be a function multiplied by the
ihput load disturbance signal and therefore is the feed-
forward controller.

The requirement for this simplification is the separa-

bility of the conditional mean of the load disturbance signal.
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It has been shown in equation (2.10) that stationary guassian
signals have this property. The terms involved in the separ-
ated signal are easily calculated from equation (2.10).

In the'statement of the general problem in Chapter I,
the restriction to stationary, gaussian signals with zero
mean value was presented and discussed. It can be seen that
these limitations are not inherent in the optimal controller
equations, but their absence complicates the solution of the
equations to the point that the only feasible control system
would have to be connected to a digital computer for on-line

controller calculations.

Time~Invariant Systems

To this point time-varying system matrices were included
in the controller equations. The majority of chemical pro-
cesses can be adequately represented by constant system ma-
trices, i.e., time-invariant systems. Not only are the time-
varying optimal controller equations more laborious to re-
solve but it is extremely difficult to even formulate the
system dynamics. For this reason it is necessary to consider
the previously derived equations from the standpoint of obtain-
ing constant controller parameters.

For the time-invariant systems the terminal time boun-
dary T in the performance index in equation (3.3) approaches

infinity (T- «). Because of some mathematical difficulties
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the standard method of treating this problem is by using some
arbitrarily large (but still finite) terminal time boundary.
Consider the matrix Riccati equation (3.13) which defines

the feedback controller.

1

K(u) = K(g) C¥ C'K(1) - B'K(1)B - ATda (3.13)

K(T) 0

The solution of interest is the "steady-state" value of K(u).

lim K(¢) =K (3.24)
Tl o

An illustration of the time behavior of the parameter K(u) is
shown in Figure (3-11). The transient period of the variable
"K(u) is near the boundafy condition (T- »). The usual expla-
nation given in optimal control texts associates the terminal
Boundary condition with an initial time and then the response
of K(u) would be in the negative time direction. This inter-
pretation is intuitively acceptable to control engineers who
are familiar with real time system response curves. One can
see that as the terminal boundary T approaches infinity, the
transient interval becomes leés important in the description
of the controller gain K. Therefore, ;t is ﬁhis‘"steady-
state"” value which is desired in time;in§éiiant controller

design.
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The conditions on the system which guarantee that the
parameter K(4) does have a unique finite value have been
presented by Kalman (K1) in a concept known as controllabil-

ity. A system is completely controllable if every allowable

change of state can be made by an unconstrained control sig-
nal acting in a finite length of time. Xalman has shown that
the cancellation of a system pole by a system zero (in the
familiar transfer function nomenclature) is an example of a
plant which is not completely coﬁtrollable.

Some simplifications of the feedforward controller cal-
culation can be made when time-invariant systems are the

topic of interest. Consider the feedforward equation

[KC‘I:-lCT—BT] S(1) + KD U(M,t) (3.22)

él(u)
s(Tr) =0

The impulse response solution (equation 2.1) of equation
(3.22) can be written as
t
S(t) = o (t-T) sS(T) + o (t-a) KD U(o-t) da (3.25)
T
where ¢ (t) = the fundamental matrix or matrizant of the
. homogeneous part of equation (3.22)

T-t .
s(t) = - fgo(—e) KD U (¢)de (3.26)
0
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Then with a similar argument as presented for the feedback
parameter, the introduction of a very large terminal time

boundary (T- &) results in the following expression:

-]

S = - J[w(—e) KD U(e)de (3.27)
0
The above equation shows that a constant (not a function of
time) feedforward controller can be evaluated.
The practical methods of calculating the feedforward
and feedback controllers for time-invariant systems are dis-

cussed in Appendices D and C, respectively.

Constraints

The constant weighting matrices in the performance
index, equation (3.3), are energy constraints on the system.
The weighting factors are actually Lagrange multipliers which
imbed an integral energy constraint into the performance‘or
cost function.

The saturation coﬁstraint is not in the proper mathemati-
cal form to be directly imbedded in the performance index.
Newton, Gould, and Kaiser (N1l) have presented a method by
which quadratic energy constraints can be used to approxi-
mate saturation constraints. Given the statistical charac-
terization of the saturating signal, the probability of find-
ing the signal outside the linear range is plotted as a func-

tion of the ratio of the saturation signal value to the root
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mean square response in the linear range. For example, if

a saturation probability of 1% is acceptable, the above men-
tioned graph says that the root mean sguare response should
be constrained to 40% of the saturation value. Fuller (F2)
has also studied this problem. He states that the replace-
ment of saturation constraints with energy constraints do

not give the best possible results in simple analytic linear
and non-linear systems, but the disadvantage is almost negli-
gible when other limitations such as noise are incorporated

in the actual physical systems.

Controller Specification

The optimal controller equation (3.11) is implicitly
dependent on the values selected for the constant weight-
ing matrices, ® and V¥, which are used in the cost function
(3.3). There is no general way of picking particular Vélues
to do a specific control job. The usual procedure in servo-
mechanism work is to set up a systematic trial and error
search until the desired trajectory is obtained. 1In the
regulator problem, one could specify the desired response of
the output variable to a unit step forcing and, in the same -
" manner, search for a set of weighting values'which specify a
controlled output responée trajectory corresponding to a
desired one.

The disadvantage to this method of specifying a control-

ler is that any change in the desired output forces a repeat
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of all the calculations made previously. One of the major
jobs of the design engineer is to calculate various alterna-
tives for economic analysis. Therefore, it seems that a
performance diagram of mean sqguare control effort as a func-
tion of mean square controlled output would provide this
versatility.

A set of weighting factors is used to calculate wvarious
optimal controller parameters and configurations. Then the
performance diagram can be found with the aid of equation
(2.15). |

Consider the following frequency domain representation

of system dynamics.

X(s) = PMM(s) + PDU(s) (3.28)

The optimal controller equation can be written as
M(s) = QU(s) - Q9.X(s) (3.29)

Then substituting equation (3.29) into equation (3.28) and

rearranging gives

P Q.+ P
x(s) = 22 Py (3.30)

1 + PMQC

The control effort can be found by substituting equation

(3.30) into the optimal controller eqguation (3.29).
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X :
M(s) = [o) - Q. ;J—(‘:—]U(s) | _ (3.31)

Then from the spectral density of the input load disturbance,
the mean square controlled output and mean square control
effort can be calculated from equation (2.15), which was
discussed in Chapter II. Appendix F explains the calcula-

tional procedure that can be used to evaluate this equation.

Summary of Optimal Control Egquations

The basic equations needed to obtain optimum feedforward
and feedback controllers for linear time-invariant systems
have been presented. It is convenient now to summarize these

equations for easy reference.

(A) The system dynamics:
x(t) = Bx(t) + Cm(t) + Du(t) (3.1)
q(t) = Ax(t) (3.2)

(B) The performance index:

To o
t _t t

e(t) = f (g(0).s q(0)? + {m(0), v m(o)? do (3.3)
t

(C) The optimal controller equation:
(
Mt ; m*(t) > M (3.23a)
-1 __t __t .

m*(t) =< ¥e[su(t) - Kx(t)]: m*(t) € M, (3.23b)

M ; m*(t) <M (3.23c)




40

(D) Control parameter equations:

-]

S = - J[.@(-s) KD U(e)de (3.27)
0
K = lim K () (3.24)
(T-1)- =
K(u) = KC ¥ e’k - BYK - KB - AT & a (3.13)

The above equations constitute the method by which the

optimal contrdlers are calculated.



CHAPTER IV
FIRST ORDER SYSTEM ANALYSIS

It is worthwhile to examine the application of the opti-
mal control design procedure to a first order system. The
first order system was'chosen because of its simplicity,
since only in the single-pole first order system can the
design equations be solved analytically. Higher order sys-
tems require digital computer solutions because of their
complexity. With first order systems, the effects of various
realistic factors such as time delays, measurement noise, and
model misidentification are illustrated. The mean sguare con-
;rél effort and mean sguare output are the indices upon which
the effectiveness of the controllers are compared. Extensive
digital computation was used to prepare the performance charts.

The system to be examined is a perfectly stirred tank
which contains a heating coil. A diagram of the physical
system is shown in Figure (4-1). The objective is to main-
tain the output temperature of the tank consfant. The control
variable is the temperature of the heating coils and the load
disturbance is the input temperature. A process time delay
occurs 1f the output is monitored at a point downstream from
the tank outlet. A time delay in implementing a desired

41
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control action is conceivable in this system. The control
variable, coil temperature, is changed by variation of the
flow rate of the heating media. This system can be slowly
responding if the heat transfer properties of the coil wall
are not favorable. The slow response effect of heat trans-
fer properties on the system dynamics is discussed later in
the experimental description chapter. Noise is ever present
in temperature measurements of flow systems. Physical pro-
perties such as heat transfer coefficients and heat capaci-
ties may change slowly over a period of time. For example,
corrosion and scaling deposits change the heat transfer co-
efficient. We cannot monitor all the physical properties of
the system continuously. Therefore these changes would cause
an errxor in the process model. The effect of all these pro—

cess problems on obtaining good control is examined.

The First Order Model

The process dynamics can be obtained by an energy bal-

ance around the unit. The resulting equations are

VCP dgét) = FCP u(t-Tl) - X(t) + UHAH m(t-Tz) - X(t)
(4.1)
where
% (t) is the outlet temperature
ﬁ(t—Tl) is the inlet temperature at a time T.before

its effect in the outlet is observed.
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is the coil temperature set by the controller at
a time 7. before its effect in the outlet is
observed?

is the overall heat transfer coefficient.

is

is

is

is

is

the

the

the

the

the

heat transfer area of the coil.

flow rate.

density of the fluid.

heat capacity of the fluid.

volume of the tank.

The above equation is a linear differential equation.

The forcing terms, ﬁ(t-Tz) and ﬁ(t—Tl), can have delayed

arguments.

This does not mean that we are dealing with the

hard-to-solve delay differential equation. The latter type

of differential eqguation occurs when the state variable x(t)

appears in the equation with a delayed time argument.

Since the equation is linear, we can define a perturba-

tion model.

The perturbation form is very convenient because

it translates all the initial conditions of the equation to

Zexro.

Define x(t)

where

m(t)

u(t)

SS

m
Ss

u
SS

= %(t) - x (4.2)

SsS
= fi(t) - m (4.3)
= G(t) - u (4.4)

= steady state outlet temperature

= steady state coil temperature

= steady state inlet temperature



45

By introducing the above definitions and then taking the

Laplace Transform, eguation (4.1) can be rewritten as-

~T.S -T.S

Ke "2 KDe 1

x(s) = ———— m(s) + u(s) - (4.5)

where

s BT T
e T g ST

m(s), x(s), and u(s) are the Laplace transforms of m(t),
x(t), and u(t) respectively.
For ease in later manipulation, let us make the follow-

ing definitions:

By -T.s (4.6)
mMTsrBE °?
KD -T_.S
. PLo= e 2
D s + B (4.7)

In order to make meaningful controller specifications,
the statistical nature of the load disturbance is required.
It is convenient to consider random disturbances with an auto-

correlation function which can be represented as

6, = p2e2vI7l (4.8)
where
uz = mean sguare amplitude

v = frequency (radians per unit time)
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This function is a good practical representation of physi-
cally observed random disturbances (Ll,Nl). The above auto-
correlation functions limits the design procedure to station—
ary, gaussian load disturbances. Since equation (4.8) is an
adequate description of many of the observed load disturbances,
it does not seem worthwhile to cloud the analysis with the
more complex nongaussian, nonstationary representations.

The power spectral density of this function is more commonly
used in the control literature.

2p2v

@##(s) = w2 (4.9)

Another incentive for using this type of load disturbance is
that it is readily generated by available eguipment in the
Process Control Laboratory. Analog simulation tests of the
resulting controller designs are an important part of the
total design effort.

The preceding transform domain representation of the
system dynamics was ﬁade because of its familiarity to control
engineers. However, the starting point for the design proce-
dure requires.the time-domain representation. For higher order
systems, the time-domain eguivalent of a given transfer func-
‘tion is not unique. There are several methods available to
define the state (Al) variable. A discussion of the wvarious

methods is presented in Appendix A. The first order system
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process equations are

x(t) = -8 x(t) + Ky (t-T,) + Kou(t-7) - (4.10)

The scalar performance index chosen as the basis for
the optimization is
T
_ 2 2
e = &x” + ¥m” 4t (4.11)
t
where

20 ; ¢¥>0 ; o=

Let us now take the simple case of no time delays, i.e.
T, =T, = 0. This is an unrealistic problem, but it will
serve as a basis for comparison because of its position as
the limiting case. Remember that negative values for Tl and
T, are physically unrealizable, so the case of zero time delay
is a limiting one.

The optimal control law obtained in Chapter III has the

following form for this example.

KI(E) KK x(t)

m* (t) (4.12)
¥ ¥
where K, J are defined by the eguations
2
K + 28K - & =0 (4.13)
Y

J(t) = S u(t) - (4.14)
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The parameter, S, is the steady state value obtained
from the following boundary-value ordinary differential equa-
tion. This simplification in solving for the J(t) function
arises from the separable nature of the statistical charac-

terization of the load disturbance.

. [k
S(u) = 3 + Bls (1) + K Ky U(u-t) | (4.15)

with the boundary condition

S(T) =0 (4.16)
where
v(p-t) = e )
The solution of this equation is
K KD
S = (4.17)

vV + B+ K Kﬁ

The solution for the K parameter is

k=Y | -8 +\/§5+ Kﬁ-—?— (4.18)
Ky v

By rearranging the equations into a more useful form, it
can be seen that the optimal control law consists of a feed-
¢

forward component and a feedback component.

m(t) = @y u(t) - Qc* () (4.19)



The feedforward controller 1is

- 2 2 B
QD = - .K_D . ﬁ " Vﬁ * KM A (4.20)
Km v o+ 8% +

Y

é%
<o

The feedback controller is

=-B+ _\/32+K:,I—:—

Ky

Qe (4.21)

The controllers are functions of the ratio of the two
weighting functions. It is of interest to examine the effect
of limiting values of the weighting functions on the value of
the controllers.

Let & ». This corresponds to placing a very heavy pen-
alty on the deviations of the state variable, x. Therefore
the allowable range of the state variable approaches zero as

the weighting function &, approaches «=. Notice the effect on

QD'
lim QD = - EE (4.22)
& =D K,

The result is the "ideal" feedforward controller. This limit-
ing value is obtained by setting X = 0 and solving for per-
fect invariant control. From equation (4.5) we can get the

same result.
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X(s) =0 = M(s) + U(s) (4.23)
s + 8 s + B
rearranging gives
KD
M(s) = - — U(s) (4.24)

Ky

Therefore, "ideal" feedforward is the limiting case for this
portion of the optimal controller.

Consider the case when ¥ approaches zero. This corres-
ponds to very little concern for the magnitude of the control
signal in the scalar performance index. The resulting effect
on the feedback controller is

lim Q= o (4.25)
L Q © .

This is the classical result obtained by Newton, Gould,
and Kaiser (N1) which requires an infinite feedback gain for
perfect attenuation.

For a first order system the ideal feedforward controller
does the same job as an infinite feedback gain. However, the
" manner in which they attain the goal of perfect control is
entirely different.

P _Q_ + P A
x(s) = 2D Dugs) (4.26)

1 + PM QC
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Feedforward control attempts to cancel the gain of the sys-
tem, while the feedback controller increases the stability
of the system. Stability increase can be thought of as a
system desensitizing action, i.e., the system does not react
to load disturbances. One, however, must be careful to point
out that large feedback gains will not always increase the
system stability. For systems of higher order, large feed-
back gains can actually move the system to instability (C5).
One noticeable result in equations (4.20) and (4.21) is
that both control functions are dependent upon the ratio of
the performance index weighting factors. The problem does
not contain adeguate degrees of freedom to allow different
controllers for changes in both weighting factors. However,
this result is to be expected. In most optimal control prob-
lems'found in the literature, the weighting factor, 3, is
assumed to be one (unity). The weighting factor, V¥, corres-
ponds to a Lagrangian multiplier which imbeds an integral
(energy) constraint on the control effort into the performance
index. Bellman has presented a rigorous justification of
this technique (B2) and also points out that in some cases
there is no multiplier that will minimize the performance
index. These abnormal problems should not be worried about
until a problem at hand exhibitsthis behavior. The steps
involved in solving abnormal problems are complex and time-

consuming (B2).
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With the above comments in mind, it seems convenient to
'specify the weighting factor, &, to be unity. Then, varying
the weighting factor, V¥, corresponds to varying the energy
constraint on the control effort.

A saturation constraint on the control effort, m, can
not be directly imbedded into the performance index. A
common procedure is to replace the saturation constraint

©
(m(t) =< constant) by the energy constraint {[onut)dt < con-
stant). The difficulty is that it is not clear how to assign
a value to the energy constraint corresponding to a specific
saturation constraint. In servomechanism problems the trans-
ient control effort trajectory is calculated. Then the energy
constraint is adjusted until the control signal trajectory
does not violate the saturation constraint. However, trajec-
tories are not useful in regulator problems. In the case of
linear systems with gaussian disturbances, Newton, Gould and
Kaiser (N1) have proposed a method of replacing saturation
with energy constraints. This constraint replacement problem

is one of the major difficulties in optimal control theory.

A Particular System

For purposes of illustration, several numerical values

were chosen for the parameters in the system transfer func-

tion.

Ry = Kp = 1
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B =2
mean square disturbance amplitude, #2 = 25.
state variable weighting factor, &, = 1.0

Figure (4-2) is the performance diagram for this sys-
tem. The cross-plotted values of &/¥ show where the various
optimal controllers lie on the performance loci. For a par-
ticular disturbance frequency every combination of feedback
and feedforward gains lie on a single line on the performance
diagram as can be seen from Figure (4-3).

From the general shape of the pefformance loci, it seems
that a large amount of control effort is required to cause
any noticeable reduction of the mean sgqguare output. This is
deceiving. The performance diagram is plotted on the logarith-
mic scale which squeezes the range of interest. In terms of
guality of performance, Figure (4-4) will give the reader
another representatidn of the ability of these controllers
to perform their tasks. In all upcoming work, the performance
diagram is used because of its larger range.

With the results of Figure (4-4) in mind, we can more
fully understand the performance chart, Figure (4-2). As
the performance loci flattens out, indicating that small
changes in the mean square control effo;t produce significant
changes in the mean square output we must always keep in mind
that this occurs at the 99% output efficiency level. Although

a large portion of the mean sguare output range on the diagram
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is involved, it is only in the small number range which does
not appfeciably affect the output efficiency;

In terms of the control parameters, the decrease in
mean sgquare control specifies larger and larger feedback
gains. There is, of course, a practical limit on the size
of the feedback gain, but this limit has not been introduced
in the optimization procedure. 1In fact, it is almost imposs-
ible to imbed a constraint on the feedback gain into the
optimization equations. There are some indirect methods of
accomplishing this, but they all are only rough estimates.
The reason that it is difficult to consider feedback gain
constraints is that we are minimizing with respect to the
control signal, m(t), not the gain portion of this signal.
While a limit on the feedback gain is common, the constraint
on the total control signal is more important. As the gain
increases, it causes the output signal to decrease. The con-
trol signal, which is the product of these two functions, is
approaching a limit. For example, the analog computer which
is widely used to construct controllers has an operating
range of ¥ 100 volts. Therefore the output of the feedback
amplifier should not exceed 100 volts. There is not an expli-
cit limit to the size of the feedback gain that can be used
with this amplifier, but because of noise limitations of the
analog equipment, it is not wise to use a gain larger than

100. This would mean that the input voltage to the amplifier
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would be restricted to a range less than ¥ 1 volt which is
only 1% of the computer range. With this low signal, noise
becomes a major limitation.

An important point to notice is that the mean sqguare
control effort for ideal feedforward control is the upper
bound on control effort. Therefore, a constraint on the con-
trol effort hinders the operation of ideal feedforward as
well as feedback controllers. This point has not been dis-
cussed in previous studies on ideal feedforward control. A
probable reason for this is that the particular process under
consideration does not have a strong constraint on control
effort.

It is interesting to note the separate effects of each
control action. In Figure (4-5), the weighting function ratio
is plotted against the mean square output for three different
control configurations; feedback control, feedforward control,
and the combination of the two. These cases represent the
extremes in the ability to measure the‘load ér output signal.
If, for example, the load variable can not be measured, this
situation corresponds to the case of no feedforward available.
The feedback controller is more efficient than the feedfor-
ward controller throughout the whole range for the same weight-
ing function. At the same value of the weighting function,
it can be seen that the composite controller is much better

. than either controller acting alone. Of course the value of
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the QC gain needed to produce a given meén square output is
much larger for the QD = 0 case than the coméosite case. In
the composite case we have two gains QC and QD which contri-
bute to the control action, while in the other cases the QC
and QD which contribute to the control action, while in the
other cases the QC or QD have to make up in effort for the
deleted member. In Figure (4-6) the same three cases are
shown on the weighting factor versus mean square control
effort diagram. (From this graph it can be seen that the
feedback takes more control effort than the feedforward.)

The reason for this unequal division of control effort is

that we have chosen to work with a load disturbance frequency
of 1.5. Since only the feedforward controller is sensitive

to load frequency, it is this controller whose efficiency is
affected. When the frequency is zero, the optimal controller
splits the work evenly between feedforward and feedback. The.
work of the composite controller is split about evenly in this
case because the ratio of the control gain to disturbance gain

is unity.

Constraint on the Integral of the State Variable

Consider the effect of adding another constraint to the
optimization problem. This new constraint specifies propor-
tional and integral feedback control action. Without intro-

ducing the integral constraint in the weighting matrix coupled
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with the fact that the integral output does not appear in

the system dynamics, there is no possibility'of obtaining
integral control. The reason is that all of the possiblé
coefficients of the integral output are zero. However, by
adding a finite constraint on the integral output, the mathe-
matical manipulation of the various system matrices carries
along a finite coefficient for the integral output.

Figure (4-7) shows the difference between mean square
output and mean square integral output on the performance
diagram. Notice that the mean square integral goes to infin-
ity as control effort goes to zero. If the integral output
is used as the only output criterion in the scalar perform-
ance index (by setting the normal output weighting factor
equal to zero), both proportional and integral control action
are specified by the optimization technique. However, if the
integral output is neglected, then only a proportional con-
troller is specified. Without an integral controller the
mean square integral output is always infinite. This result
points out the importance of including all the significant
variables in the scalar performance index.

Figure (4.8) shows the effect of mean square integral
output on the mean sguare output. By increasing the integral
weighting factor, the mean sguare integral output correspond-
ing to a given mean square output is reduced. Furthermore a

reduction in value of the proportional feedback gain needed



MEAN SQUARE CONTROL EFFECT, (Mz)

100

o

LA

1 ]

LILBRL L LA v UL BAARL ¥ UL RLLL ¥ UL

E ‘— INTEGRAL OUTPUT é
r -
~ ‘"NORMAL OUTPUT - .
P -
- -
1 [ S S YN [ LA Ll 1 L. i Lt hhdte [l L. L 20
Ol . I 10 100

MEAN SQUARE OUTPUT, (X2)

Figure 4-7. Performance diagram for both
the output and the integral
output.

€9



64

MEAN SQUARE INTEGRAL OUTPUT, (fx)?

100.0~ T T T TVTTT] T T T T TIVTIT] T ¥ T 1T TrIT0
™ PFB = PROPORTIONAL FEEDBACK GAIN 3
= 3
- PFB= 0.5 ]
1o AN INCREASING -
C INTEGRAL _
- WEIGHTING .
0.1 1 L L 1 1ttt 1 L 11111
0.0 0. Lo 10.0
MEAN SQUARE OUTPUT, (X2)
Figure 4-8. Effect of integral constraints

on the mean square output.



65

to produce a given mean square output also results as seen
from the cross-plotted values on Figure (4-8). This point
can be illustrated by using the same value of mean squaré

output for various combinations of integral and proportional

gains.
MSQ Integral OQutput Prop. Feedback
® ' 3.38
1.8 0 3.14
0.16 1.55

The first value corresponds to the case when no integral
constraint (integral weighting is zero) is considered. A
lower mean square integral output uses less proportional feed-
back and more integral feedback to achieve the desired level
of output attenuation.

The cross-plotted feedback proportional gains are approach-
ing a particular value as the mean square integral output
approaches infinity. This limiting value is the proportional
gain when no integral constraints are inc;uded in the per-
formance index.

By including the integral output in the design, we should
be aware of its effect on the controlled process. The tran-
sient response of the controlled first order system to a step
disturbance is a familiar example for explanation of these
effects. Proportional control is subject to a phenomena called

"offset". Increasing the weighting factor on the output
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variables just reduces the offset. Integral action relieves
"offset".‘ Whereas the proportional controller alone will
never bring the system back to the desired state, adding
integral control will allow attaining the desired value of
-the state variable. Varying the weighting factor of the
integral output causes a difference in the manner in which
the system tries to reach the desired state. As the inte-
gral controller gain increases, the system response becomes
more oscillatory as shown in Figure (4~9). For a fixed pro-
portional gain, increases in integral gain cause the system
to approach a small oscillatory response. Remember that the
performance index 1is quadratic, so it does not discriminate
against systems with a small highly oscillatory response.

When we increase the weighting factors, both propor-
tional and integral gains are affected. Figure (4-9) shows
the effect of proportional gain on a system with PI control-
lers. It can be seen that an increase in the proportiénal
gain of a PI controller reduces the over-shoot of the response
trajectory.

When the output integral was included in the scalar per-
formance index, the integral weighting factor is considered
to be another degree of freedom. Since there was one degree
of freedom in choosing the weighting factors for the case of
proportional control only, the present system will have two

degrees of freedom. Onec specifies a relative weight between



UNIT STEP RESPONSE

UNIT STEP RESPONSE

67

FIXED PROP. GAIN Ki=0

K2 < K3 < K4
K = INTEGRAL GAIN

Ki

K3 K2

K4

TIME —

FIXED INTEGRAL GAIN

KI < K2 < K3
K = PROPORTIONAL GAIN

Kl

K2

K3 N————

Figure 4-9.

TIME —

Unit step response of a first
order system with proportional-
integral controllers.



68

feedforward and feedback, while the other specifieé a rela-
tive weighting between proportional and integral action. 1In
any case an increase in the weighting factors causes a decrease
in system mean sguare output. Notice that an increase in
weighting factor causes both proportional and integral gains

to increase. Since these two parameters individually have
opposite effects on the oscillatory nature of the system, our
optimal control specifications combine both faster response
with quicker damping. As the load disturbance appears in the
system dynamics without any transfer function zeros, the inte-

gral constraint does not affect the feedforward controller.

The Effect of Feedback Noise

In actual control equipment there is usually a dead band,
i.e., a certain finite signal must be obtained before the con-
trol and measurement equipment can detect it. It is this dead
band that limits the size of the feedback gain which can be
physically realized since the optimal control law states that
larger and larger feedback éains are required in order to make
the output variable smaller and smaller.

In the previous mathematical formulation, we restricted

the control variable, m(t), to be in the closed set;

M Ssm(t) s M

This type of set would include the case of control signal sat-

uration. The optimal control law is
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M for m*(t) < M

m(t) = m* for M < m*(t) S Mt
M% for m* (t) > M+

If the dead band region is included, the allowable set of
control signals must be changed. The following set would

be desirable.

4

*
for m (t) < My

m* (t) for M; < m*(t) < MT

m(t) = j 0 for M’{ S m*(t) < M) (4.28)
mk(£) for My < m*(t) s M;
+ * +
{ M2 for m*(t) > M2(t)

This new formulation restricts the control signal to a set
which is made up of the sum of two closed sets. Figure (4-10)
shows a typical allowable control signal.

The problem in solution of the optimal control equations
arises because of the discontinuities at points "a" and "b".
This set of allowable control signals is not suitable for the
previously developed theory.

One way to get around this difficulty is to consider noise
in the feedback circuitry. The level of the feedback noise

will allow us to pick reasonable weighting factors for the
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the performance indices. The basic idea of entering the
new independent parameter, feedback noise, is to reduce
the number of degrees of freedom of the whole design pro-
cedure. 1In Figure (4-11) the block diagram shows how feed-
back noise is related to the.overall process.

The control eguation for this system with noise in the

feedback is

M(s) = Q) U(s) - Q. (X(s) +6(s) ) ~ - (4.29)
Using this control equation in the first order process pre-

viously mentioned

PO + P P.Q
X(s) =MD D - MW 5 (s) (4.30)

1+ PMQC 1+ PMQc

It can be seen that as Q% is made largef, the output variable
X (s) approaches the negative value of the noise, 6(s). The
performance diagram, Figure (4-12), shows this very clearly.
The important point is that there is a set of weighting fac-
tors which will give a physically realizable feedback gain.
For example, when the mean square amplitude of the noise in
the physical equipment is 0.0l1, the performance diagram shows
this value to be the best possible control of the output that
can be obtained. Further increases in the mean square con-
trol effort do not produce any reductions in the mean square
output. This is intuitively reasonable because the coﬁtrol-

ler can not act upon something it can not see. Therefore
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Figure 4-11. Block diagram of a controlled
system with measurement noise
in feedback.
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the introduction of feedback noise serves the purpose of
approxXimating the dead band phenomena of actual equipment.

In the control equipment literature the feedback noise level
is usually referred to in terms of the signal-to-noise ratio
(N1) . However, most of the control literature is concerned
with relatively low signal-to-noise ratios such as is common
in radar and communications networks. This equipment requires
filters to estimate the true signal value.

We are only concerned with rather high signal-to-noise
ratios. Furthermore, it is difficult to filter the noise in
a measurement of a chemical process. The time constants
prevalent in most heat transfer systems are so large that the
filter would affect the system dynamics. The performance
diagram, Figure (4-12), show that when the signal—to—noise'
ratio approaches unity, the system will not be subject to con-
trol. However, at a feedback mean sguare noise level of 1.0
we can still reduce the output mean square to a value of 0.5
which is 50% lower than the noise level. Notice that this is
still an 86% reduction in the level of the output variable.
But, normally when the noise level is too high, it is best
to reconsider the measurement and control equipment to be
used. However in the situations where there is no way to
get around a high signal-to-noise ratio, the performance
diagram shows that some attenuation below the .noise level

is still possible with the right selection of feedback gain.
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Effect of Model Error

In empirical mathematical process models the system
gains and time constants are not known precisely and one
can usually associate error bounds with each parameter.
These error bounds can be thought of as limits of the fluc-
tuation of system parameter. These fluctuations are ever
present and can be a result of small non-linearities of the
system. In order to grasp the importance of these uncer-
tainties, a sensitivity study can be made.

Consider the following functional form of the system

dynamics
x(t) = f(x,t,p) (4.31)
where x = state variable
t = time
p = a system parameter

The parameter, p, can be any of the system gains or time
constant of interest. If we need to observe the effect of
variations in the parametexr, we can solve the above equation

successively for various parameter values.
x = f(x,t,p + Ap) (4.32)

By comparing solutions we can obtain an indication of the
sensitivity of the system. A more quantitative measure of

this sensitivity can be defined
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Z(t,p) = 1lim x(t.p + Ap) - x(t,
Ao o (t.p Ap) (t,p) (4.33)
p
or
~ 3 x(t,
Z(t,p) = 2 x(t.p) (4.34)
op

This function %(t,p) is called the sensitivity coefficient.
This type of function has been used in recent years by con-
trol engineers to study stability, most notably the study of
airplane stability (p2,K3,P2,T1),

In order to qualify the above sensitivity definition,
we must recognize the two classes of sensitivity coefficients
which are commonly used today. If the actual initial or
steady state is not the nominal one used in the design stage,
the difference acts as a static disturbance. This static
sensitivity is not considered here. On the other hand, if
varying parameters appear explicitly in the state transition
equation, they are labeled dynamic disturbances. It is this
latter class of variations which are of interest here. The
reason for this interest is a result of several observations
made during the experimental phase of this work and are
explained in detail in the experimental chapter.

The sensitivity coefficient can be redefined for con-

venience in the following manner.
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z(t,p) = lim Xx(t.p + &p) - x(t.p) (4.35)
Ap- ~
- oxr
z(t,p) = 2 *(t:P) - (4.36)
d ln p

This definition gives an indication of the change in the
state variable corresponding to a relative variation in the
parameter.

A transform domain definition follows directly from the

differention property of the Laplace integral.

Z(s) = 9 X(s) (4.37)

3 In p
Then we can use a mean square sensitivity coefficient in
later discussions.
jco
©,,(0) == f z(s) z(-s) ds (4.38)

J .
_Jm

This mean sguare evaluation has been discussed earlier in the

preliminary mathematical background presented in Chapter II.
The sensitivity coefficient is calculated from the error

bound estimate of the parameter in question. This gives a

"worst" wvalue sensitivity. Then the sum of the mean square



78

output of the model and the mean square sensitivities cal-
culated from all parameters subject to variation provides
an estimate of the actual mean sguare output of the physi-
cal process.

©@..)

XX

2

(© €

—xx)model + sz (4.39)

aétual =
where € is the parameter error bound.

Figure (4-13) shows the effect of error in the system gains
upon the mean square output. Error in the system pole is
negligible in comparison to the gain errors. It can be seen
that the control signal gain; Ky is the most sensitive para-
meter when the composite controller is used. However, if
only the feedforward portion of the controller is available,

a variation in the disturbance gain causes a larger deviation.
This points out the necessity of using a feedback controller
whenever possible because of its ability to de-sensitize the
system model errors as a safeguard in actual physical process
control systems.

In Figure (4-13) each point on the forty-five degree
line represents a value of mean square control effort. The
actual mean square output is higher due to inclusion of the
error bounds than the model mean square output. Notice that
the actual output still goes to zero as the control effort
increases but at a slower rate than the model output. When

a feedforward controller alone is considered, the actual mean



MEAN SQUARE QUTPUT (WITH MODEL ERROR), 0@) +(22)

O

0.01

5 I R LA 1 I ELLE] 1 LI LB " |
C i ]
» -
10% KM' FEED FORWARD ONLY-
10% Kp» FEED FORWARD ONLY: =
q
q
QOOIK 1 L1 3 1010l i g byl i 11 2 s
0.001 ool Qt 10

Figure 4-13.

MEAN SQUARE OUTPUT (NO MODEL ERROR),(X2)

The effect of model error on the
mean square output of an
optimally controlled first
order system.

6L



80

square output does not tend to zero, but rather it approaches
some finite value.

This emphasizes the effect of model error on the optimum
composite feedback-feedforward controller. It is the feed-
forward portion which is the cause of the higher mean square

output.

Process Time Delay

Consider a first order process with a time delay. This
model is extremely useful as a representation for many indus-
trial processes. 2Ziegler and Nichols (Z1l) used this repre-
sentation as a guideline in formulating their highly success-
ful empirical design procedures for selecting controller
parameters.

An example of the type of processes under consideration
is shown in Figure (4-1). For simplification, but with no
loss of generality, the time delay T, is assumed to be zero.

The case of non-zero delay T, is discussed later. The trans-

fer function for this model 1is

TS

X(s) =B, e M(s) + B & U(s) (4.40)

P

M
The constants and variables are the same as in the previous
discussion. The parameter, T, in the exponential factor is

the time delay. Time delays of this type are common in the

chemical industry because of the nature of the flowing system
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inTthat it takes time for an upset in the input stream to
be detected in the outlet. This time interval is the delay

time, T. Using eqguation (3.23) to get the controller
mn* (t) = Q u(t) - Qc x(t + 7) (4.41)

The feedforward controller, QD' and the feedback controller,
Qcr have been defined previously in equations (4.20) and
(4.21). Since the argument of the state variable is t + 7T,
this means that we must know the value of state variable,
X, T time units in the future. Although this is physically
unrealizable, we do have an alternative. Rewriting the
state variable in terms of the impulse response
t t
x(t+1) = @ (7) x(t) + o(t-n) K, m(mdn + [ o(t-n) Kju(n)dn

t-7 -7
(4.42)

where ¢ (T) = matrizant or fundamental matrix of the homo-
geneous state variable equation.

Notice that x(t + 7) is a function of the measurable quanti-
ties: x(t), m(t), u(t), and the control and load signal in
the past. This gives a completely measurable result. Since
the inlet stream variables will not affect the outlet until
7T time units later, the inlet variable at time, t, and their
recent past values will determine the outlet at time, t + 7.

In pracfical applications, problems exist because we usually
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do not have a complete mathematical model which will include
all the disturbances but a good approximation can be gener-
ated. The above equation can be rearranged into the follow-

ing form.

x(t41) = e PTx(t) + K, (e PTxm(e) - &7 e FETx me-r))

+ Ky {e—BT;éll(t) - BT e_ﬁ(t_T);étl(t—T)} (4.43)

The symbol, )¢ , denotes the convolution product.
Using equation (4.41) and (4.43) and taking the Laplace trans-
form results in

u*(s) = g, U(s) - o, P x(s)

B0 (1 - e TS e BTy M(s) (4.44)

-PDQC(l - TS e-BT) U(s)

Simplifying
* %

M (s) = o (s) U(s) - QX (s) (4.45)
where 8r

oy = - (4.46)

1l + QMQC(l - e 7S e—ﬁr)
-BT
. Q. ©
Q% = (4.47)

_ -Ts _-BT
1+PMQC(1 e e )
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* *
Here the new functions, Q_ and QC are the feedforward and

D
feedback controllers. It is interesting to consider the
physical interpretation of these new functions. Although
these functions appear complicated, they can be easily simu—’
lated using block diagram algebra (C5). Figure (4-14) shows
the block diagram of this system. Notice that the optimal
control equations specify a minor loop around the feedback
gain. This configuration is similar to the Smith linear
prediction investigated by Buckley (B12,S2). However,
Buckley considered a pure dead time pfocess which does not
contain any other dynamic elements. This minor loop tries

to "tune out" the process dead time. This apparatus is not
commercially available. However, it can be approximated with
analog and/or digital components. Buckley has reported some
successful applications of this type of configuration (B12).

- The performance diagram for this system with the minor
feedback loop is exactly the same as the system with no dead
time. If the minor loop is neglected, a point of instability
can be reached. The instability is a direct result of the
exponential term in the denominator of the overall system
transfer function, i.e.

X(s) = PM e TS M(s) + PD e TS U(s) (4.40)

But for the controller without the minor feedback loop

M(s) = Q) Uls) - 05 e PT x(s) | (4.49)
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Figure 4-14. Block diagram of a first order

time delay system.
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Combining these two equations gives the overall controlled
system transfer function.

x(s) _ ™% * Fp

u(s) s (4.50)

-87T
+ PMQC e

To evaluate the behavior analytically, substitute the first
order Pade expansions (B1l2) for the denominator exponential

and rearrange so that

x(s) B * Kp) ((-7/2) s +1)

UEs)  ((r/2)s + 1) (s + B) + K0, e PT( (-1/2)s + 1)

(4.51)
and
X (s) (KyQpKp) ( %S -1
= =BT (4.52)
U(s) T 2 8 T¥y%ce -8T
—~s° + (1 + ?;.— 5 ) s+ B + KMQ e

From this simple approximation to theexponential, it can
be seen that as the feedback gain increases, a point can be
reached where the roots of the transfer function denominator
move into the right-half plane. This result implies that the
system becomes unstable, and the controller reinforces the
disturbance at this point with the natural result of causing
the system to become oscillatory.

Figure (4.15) shows the effect of deleting the minor feed-
back loop at various values of time delay. The larger time

delays cause the system to go unstable at higher wvalues of
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mean square output. The advantage of the performance chart
over the root locus or Nyquist stability charts lies in the
ability to show the degrees of attenuation that are possible
before instability occurs. By adding the minor loop or at
least a fractional part of the minor loop, increased attenua-
tion for the same time delay is apparent.

It is interesting to investigate the effect of integral
control action in the case of a process delay. The integral
or floating controller is popular in the chemical process
industry (B12). As in the previous case, the optimal con-
troller specifies a minor feedback loop. This loop again
causes the system to act like process with proportional and
integral action with no delay time.

Without the minor loop the system can be unstable as
discussed before. In fact, the point of instability on the
mean sguare control versus mean sguare output occurs at the
same point for each time delay. Therefore integral action
does not provide any increased stability to the controlled
system. The major function of integral control is to reduce
the amount of control effort expended by the proportional
controller.

Figure (4-16) shows the effect of various time delays
on the mean sguare integral output. It i; intuitive that the
larger time delays should cause a decrease . in the output

attentuation. 1In order to maintain a given level of mean
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square integral output for larger time delays, Figure (4-16)
shows that larger controller gains are required. The spread
in the curves as lower mean square integral outputs are
derived shows that the larger delay times cause a more oscil-
latory behavior.

Model errors due to time delay fluctuations do not affect
the controlled mean square output to the same extent as does
error in the system gains. Figure (4-17) shows that the time
delay sensitivity is not as important when the optimum con-
troller containing the minor loop is used. However, if the
minor loop is deleted then changes in the value of time delay
can be vital, especially when the system is being operated
close to the point of instability. Figure (4-18) shows how
the point of instability is affected by time delay fluctua-
tions. This chart can be used in a design procedure to esti-
mate the attainable controlled output when an approximate
error bound on the time delay is known. Time delay is a
function ¢£ the vessel volume and flow rates, so any fluctua-
tion or gradual change in these quantities will cause a change

in the identified model time delay.

Effect of Control Delavy

There are many instances in the operation of a process
when a delay in the actuation of the control signal may occur.

For example, a delay in implementation of the control signal



2 62)

MEAN SQUARE OUTPUT (XZ)+ (2

o

ol

ol

20

=N | ] I | L 3R IR B AL | | ] | | LR B IR B B | | | § | | | DL LB =
L FEEDFORWARD ALONE -
- TIME DELAY = 1.0 .
[ 10% ERROR\ .
i 5% ERROR i
L COMPOSITE CONTROL -
- I0% ERROR  TIME DELAY =25 -

10% ERROR  TIME DELAY = 1.0 7

[} 1 [ 1 L 0 2111 [ 1 ] t Lttt 4 t ] 1 1 1

.01 I I 10

MEAN SQUARE OUTPUT (NO MODEL ERROR) (X_a)

Sensitivity of a first order
time delay system to errors
in the value of the model
time lag.

Figure 4-17.



% MEAN SQUARE ATTENUATION AT UNSTABLE POINT

o ['] ] [
o | 5 I 15

REDUCED TIME DELAY, T/T

Figure 4-18. The influence of time delay on
the point of instability which
occurs when the minor feedback
is deleted.

16



92

occurs in system where the manipulative variable is tempera-
ture. A finite time is usually required to furnish the
desired amount of thermal energy and there is also a finite
time required to heat the control fluid to the desired tempera-
ture. The underlying limitation is due to a finite maximum
heating rate.

When some of the physical limitations of a process
cause the control actuationhto be noticeably delayed, then
it becomes necessary to consider this delay in the model
equations. Referring to Figure (4-1l), the system under
discussion occurs when Tl is negligible but 72 cannot be
ignored. The transform representation of this system is

X(s) = P S M(s) + PU(s) (4.53)

The optimal control signal for this system is found from

equation (3.23)
m (t) = Quu (£+7) = Qx (t+7) (4.54)

This signal can never be obtained because it is physically
impossible to measure the future value of the disturbance,
u({t+7r). However, the statistical characterization of the
disturbance is known, so an estimate of the probable future
values of the disturbance can be made.

Solving the feedforward equation (3.22) for this system

gives:
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Ky g+ VB2 + ry® o/¥ o-or

K w4+ Vg2 +KM2 &/

9 = (4.55)

This equation is very similar to the feedforward function
derived for the no time delay case which was expressed in
equation (4.20).

The feedback term QC can be evaluated as previously

shown from the matrix riccati equation (3.13)

_ "B+ V8® + Ky &/ ' (4.21)
Km

%

The future value x(t+T) can be expressed as a function of
the load and control variables with an impulse response

relation, i.e. equation (2.19)

_ , t t+7
x(t+7) = o (1) x(t) +f<p(t-u) Kym(p) dp + fcp(t'-u)KD u(p) dp
t-7 t

(4.56)

Using the conditional mean expression, equation (2.10),
an estimate of the future values of the load disturbance .can

be made.
x(t+7) = e—ﬂT x(t) + Ky, {e_BT)fm(t) - e—BTe—(t—T)Qfm(t-T)}

{ e(B-a)T—l}
B-a

+ u(t) (4.57)
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where @ = frequency of the load disturbance noise.
The symbol?¢, denotes the convolution product of two functions
(N1). Combining equations (4.57) and (4.54),

-8

mo(t) =gy u(t) - o, e PT x(t) - K0, {eFTym(t)

(B-a)T_
s l}u (t)

- e'BT e—ﬁxt—Tjgézn(t—T)}- KpQe {—75:55———'

(4.58)
Transforming this equation into the frequency domain and

re-arranging

M(s) = Qju(s) - 9.X(s) (4.59)
(B-a)T
e -1
, % - Kplel—pg™}
o = (4.60)

_ _~Ts_-BT
1+ PMQc {1 e e }

-87

]

_ _—Ts_-BT
1+ PMQC( 1 e e ) (4.61)

Figure (4-14) shows how these equations can be simulated with
the aid of bloqk diagram algebra. In Figure (4-19), the per-
formance diagram for this system is shown for various values
of delay time. Notice that the size of the time delay limits
the amount of output attenuation that can be obtained. Intui-
tively, this result is reasonable, since processes can not be
controlled if the control action takes place too late to com-

pensate for the disturbance.
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It is interesting to note the form of the feedforward
controller. 1In order to reduce the algebraic detail, consi-
der the case where the time delay is rather large. By re-
arranging equation (4.58) and using the definition of P

M
presented in equation (4.6), a one-pole, one-zero controller

results.
{e(B-a)T_l
o -KOQ, 6 {——)
6D - D D~C B-« , s + B (4.62)
B+ K% 1 s+l
B + KyQq

As a higher penalty (increased weighting factor) is placed in
the output variable, it has been previously shown in equation
(4.25) that QC approaches infinity. Therefore, theAfeed—
forward contfoller showh above approaches a differentiating

predictor of the form:

Op = K(s+8) (4.63)

Then the overall controlled system transfer function would
be zero order rather than first order. The mean square value
of this system would increase without bound in the attempt to
achieve control (Fl).

This same type of differentiating predictor controller
was observed by Luecke (L4), but his frequepcy domain approach
does not allow the prediction of the controller parameters

from the weighting function and system parameters. Therefore,
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Luecke was only able to observe the overall predictor feed-
forward controller by repeating his calculational procedure

for various values of the weighting factor.



CHAPTER V
EXPERIMENTAL STUDIES

The purpose of this chapter is to show how the previous
optimal controller design procedures can be applied to a
physical system. Although the physical apparatus used is
not a familiar piece of chemical plant equipment, it posses-
ses a number of features common to process equipment.

The laboratory process is a stirred tank jacketed vessel
with hot and cold fluids entering the center and the annulus
respectively. This process serves as 'a good test because it
contains many of the little unknown disturbances of process
equipment. Steady state drift, heat loss, measurement error
énd noise, instrumentation dead band, valve hysteresis, and
controller delay due to pneumatic air lines are among the
problems beset a plant engineer in his guest to obtain con-
trol over actual chemical processes. These effects were
reduced as much as possible but certainly not entirely. In
fact, if all these problems did not arise, then our objective
to show how the controller design can be applied to a physical
process would not be valid.

o8
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Experimental Description

The physical apparatus described herein is located in
the Process Control Laboratory in the Engineering Center of
the University of Oklahoma. It was originally assembled in
the late 1950's. Several previous doctoral dissertatiqns
were concerned with various aspects of this equipment. Both
identification (B6,F1,S1,S4) and control (H2,I4) were inves-
tigated. Though many changes evolved over the years, the
last two investigators (14,S1) used the same configuration.
In particular, the most recent investigator gives an exhaus-

tive equipment description. For this reason only the basic
equipment and recent modifications are discussed here. The
overall process flow chart is shown in Figure 5-1.

The heart of the process is the simulated reactor or

heat exchanger shown in Figure (5-2). Type metal was used
for the wall for its heat transfer properties. Seven thermo-
céuples were located at 3/4 inch spacing and were imbedded

in the metal Qall. These thermécouples were connected in
parallel to give an average wall temperature. Hot oil
(approximately 175°) entered the reactor through the bottom
and was stirred by a 1/10 horsepower 1800 rpm motor. The
coolant, Dow Chemical's industrial grade ethylene glycol,
entered the bottom of the reactor through a series of per-

forations in the lucite and plates.
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Temperature Baths

The temperature of the turbine oil was maintained at
a given level in two 30 gallon tanks, each independently
controlled. High pressure steam Qas used as the controlling
heat source. Control was provided by Brown Electronic
recording-controlling pyrometers. These instruments
operated pneumatic Research Control valves on the steam
lines. By using the tanks in series the oil temperature
was maintained within = 0.25°F.

The ethylene glycol was maintained at a specified
temperature in a 25 gallon plexiglass tank. A 1% ton
Freon-12 compressor with evaporator coil in the tank pro-
vided the cooling. Another Brown Electronic controller
was used to control the temperature. The controlling
media was hot water flowing through a set of heat exchange

coils within the coolant bath.

Flow System

Both the coolant and oil were circulated by Gould % inch
helical gear pumps driven by 3/4 horsepower electric motors.
The operating pressures at the pump outlets were the same at
approximately 30 psi.

The flow through the pumps had to remain nearly con-
stant so that the control valves would operate in the linear
range. This was accomplished through the use of a reactor

bypass arrangement. The flow in each stream was divided so
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that the fluid passéd through a control valve back into the
temperature bath. All four valves were Research Controls,

type 75B, with G trims. The pneumatic signal to these valves
was generated by Taylor Transet electro-pneumatic controllers
with an output range of 3-15 psi and an input range of + 100
volts. The electrical signals were transmitted through coaxial
cable from their origination on the Donner analog computer.

The oil flow rate was measured by a Waugh, type GFLS,
turbine meter and its corresponding Waugh pulse rate con-
verter. The output of the pulse rate converter was 0-200
millivolts which made it necessary to provide amplification
on the analog computer. A proportional-integral controller
was constructed on the analog computer to control the flow
rate (Figure 5-3). This was necessary primarily to overcome
the very noticeable hysteresis in the control valves.

The coolant flow rate was measured with a Fisher-Porter
ﬁype 10CI505 turbine meter. The AC signal from the meter
was introduced into a custom made pulse rate converter. This
converter was made by Dr. R. A. Sims in the Process Dynamics
and Control Laboratory at the University of Oklahoma, and
has an output ranée of 0-1 volts. A similar controller,
shown in Figure (5-4),was constructed for the coolant flow

system.

Temperature Measurement
The odtput voltage of the thermocouples in the reactor

were amplified with a Sanborn, Model 350-1500, low level DC
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preamplifier with a Model 350-2 plug-in unit. A gain of 500
and input suppression of 5 millivolts were used. Figure (5-5)

shows the configuration of temperature measuring equipment.

Analog Equipment

TEe overall process controllers were contructed on the
Donner, Model 3400, analog computer (B6). Model identifica-
tion data was recorded on the analog to digital converter
which consisted mainly of a Dymec digital voltmeter and
scanner coupled with a Hewlett Packard line printer.

The system load disturbance was generated by a custom
built signal generator. At intervals, as determined by an
adjustable time base, the output voltage was electronically
switched. The resulting output was a constant square wave
signal with random sign changes. The desired spectral den-
sity of the load disturbance was obtained by filtering the
noise generator output. The final filtered noise had a
frequency of about 1.5 radians per minute (I4). This was

chosen because the system time constants are in this range.

Dynamic Mathematical Model

Appendix G presents a derivation of the theoretical
linear mathematical model of this system. This model is not
accurate because of its inherent limitation as an approxi-
mation to a nonlinear model. 1Inaccurate or changing para-

meters, such as, heat transfer coefficients and physical
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properties, are the probable causes of the model deficiencies.
An ‘experimental identification technique developed by

Heymann (H5) and Sims (S1) at the University of Oklahoma

Process Dynamics and Control Laboratory was used to obtain

a system transfer function. Simulation tests of the model

on the analog computer were carried out to make adjustments

to some of the parameters of. this model. The final transfer

function model of the experimental system is

X(s) = 1.87 U(s) - 0.418(s + 2.76) M(s) (5.1)

(S + 1.41 + 1.24i) (s + 1.41 - 1.24i)

where s = frequency in radians per minute

X(s) = wall temperature in volts (fregquency domain)

U(s) oil flow rate in volts (frequency domain)

M(s) coolant flow rate in volts (frequency domain)

The model is shown in the form which is most useful for con-
frol purposes. Various scale factors within the system must
be used if one wishes a transfer function in units more com-
mon to the variables (temperature in degrees, flow rates in
1bs/min.). This transfer function includes the dynamics of
the value control system and the measure devices, so these
factors do not have to be considered in arriving at an overall
transfer function.

Figure (5-6) shows the responses of the system and the

model to a unit step in coolant flow rate. Notice that there
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is a difference in the system response to a unit step of
equal magnitude but opposite sign. This is due to the non-
linear product term in the dynamic model which can not be
included in a transfer function representation. Figure (5-7)
shows the fesponses to a unit step in oil flow rate. The
product non-linearity exerts much more influence on the
dynamic response of the oil side.

The initial slope of the model response is slightly
smaller than the system responses. The system was given a
unit step forcing on the analog computer, but the valves do
not follow a forcing signal. The slightly underdamped flow
control system responded to give an initially higher flow
before it settled down to the steady state value of the

imposed unit step input.

Controller Results

Figure (5-8) shows the control effort-system output
relationship for the transfer function given in eguation
(5.1) as calculated from the computer programs listed in
Appendix I. The stars on the diagram indicate controllers
which were constructed to test their performance under pro-
cess conditions. A transfer function representation of
these controllers is given in Table (5.1). These functions
were the controller as ?rogrammed on the Donner analog com-

puter.
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Table 5.1

Controller Feedforward Feedback
A Q. = _0.947 = 1.31 _ (s+3,39)
D s+2.76 s+2.76
B Q - 2.55 = (5.41) (s+4.40)
s+2.76 s + 2.76
BI Q = 235 = _4.04 (s+4.3 + 7..3/s)
D . s+2.76 s + 2.76
c Q = 3.68 = 13.9 (s + 6.?4)
D s+2.76 s + 2.76
Ideal
Feedforward Q = Y A
D s+2.76

Time base is in minutes
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The uncontrolled open loop system output without the
random forcing is shown in Figure (5-9). This system is
rather stable with small steady-state fluctuations. Impos-
ing the random disturbanéé'causes a slow fluctuation in wall
temperature. The third section of Figure (5-92) shows the
response after application of the ideal feedforward control-
ler. This response is to be used as a standard of comparison
with the calculated optimal controllers. Notice that when
coolant saturation occurs there is a loss of ability to con-
trol the system with the ideal feedforward controller. This
loss of control is expected since ideal feedforward requires
maximum control effort which thereby increases the chances of
control signal saturation.

Figure (5-10) shows the typical response trajectories
of the experimental system when the optimal controllers are
applied. Optimal controller "A" is not particularly effec-
tive because it was chosen close to the point of no control
on the performance diagram. As optimal "B" specified more
control effort, further attenuation of the output response
results. However, the control signal, coolant flow rate, is
operating at its saturation level in some instances. This
saturation again causes a reduction in ability to control.

By adding an integral constraint, integral control action
_ is specified. The optimal controller labeled "BI" is better
than its proportional counterpart, controller "B", because of

the absence of control signal saturation. This reduction in
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saturation is a direct result of the fact that the proportional
integral controller specifies less proportional gaiﬁ to attain
the same level of attenuation.

Optimal "C" was selected from the performance diagram
to use the most control effort. Some saturation of the con-
trol caused this controller to be only slightly better than
the.proportional-integral controller, "BI". Part of this
output response shows the effect of controller start-up.
.Initiation of control action to an uncontrolled system is a
servomechanism problem and was not the subject of this inves-
tigation. However, the result shows vividly that the optimal
regulator controllers would not do a good job in start-up
operations. Therefore, one must be careful in the distinc-
tion between servo and regulator problems—--the same type of
controllers are not used for both types of control.

It would be valuable to calculate the mean square output
af these controlled systems and compare the results with the
calculated values on the performance diagram. Unfortunately
a mean sguare calculation on the analog computer is very
difficult to obtain. Multiplication and division of signals
over a rather long period of time are required to calculate
a mean sguare value. These operations coupled with the long
sampling period usually cause amplifier voltage saturation.
This type of calculation can only be successfully applied to

high frequency signals where the sample period is rather short.
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A technique of comparing controller performance on the
analog computer is to use the integrated absolute value ratio.

_ lx]dt
Ilu]dt controlled
controller efficiency = 1 = e—0

I,xldt

l ldt uncontrolled
u

Table (5-2) presents the controller efficiency compari-
son of the previously discussed controller configurations.
Included in this table is the result for the ideal feedforward
controller.

The system was also investigated with the opposite con-
figuration wherevthe disturbance was the coolant flow rate
and the manipulative variable was the oil flow rate. This
system reacts differently to the former oil-disturbed experi-
ment. Figure (5-11) shows the performance chart for this
configuration. The points on the diagram marked with triangles
ﬁere investigated by simulation of their corresponding optimal
controllers. The controller transfer functions are listed in
Table (5.3).

Notice that all of the optimal controllers are predictive
in that the numerator is of higher order than the denominator.
This results from the éystem reaction to coolant disturbances.
Since the coolant flow rate has a quicker effect on the value
of the output variable, the oil flow rate must have some pre-
diction included in the control equation in order to have any

chance to counteract the coolant disturbance.
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Table 5.2
Controller Efficiency
Type of
f 'xl dt
—————— | (controlled)
Jﬂ lu’ dt
Controller 1 -
I lxl dt
————] (uncontrolled)
J‘ lu, dt
optimal A 0.66
optimal B 0.85
optimal BI | 0.91
optimal C 0.9
Ideal
Feedforward 0.89
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Table

5.3

Controller

Feedforward

Feedback

Al

Ideal
Feedforward

0.124s + 0,849

0.124s + 0.849

0.194s + 0,715

0.224s + 0.618

0.796s + 5.4

0.71s + 412 + 6.4
8

3.8s + 29,2
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Figure (5-12) shows fhe typical output response trajec-
"tories of this system. Optimal controller "A" provides some
output attenuation but the control variable, oil flow rate,
operated almost as a bang-bang controller. The proportional-
integral controller, labeled "AI", does a similar job of out-
put attenuation. However, the big advantage in this control-
ler is its specification of lower predictive and proportional
gains. Then the control signal from the o0il flow rate does
not change as rapidly as before. Optimal controller "B"
causes further attenuation but at the expense of wildly
varying control signals. 1Ideal feedforward could not be
simulated on the analog because the gains caused amplifier
saturation.

None of these controllers seem to perform as well as
they should. The main reason for reduced performance is
the well-known (B.1l2) velocity-limitation of control wvalves.
The value stems do not travel fast enough in response to a
rapidly changing signal. Therefore a constraint not included
in the optimizafién equatiogg limits the amount of attenua-
tion that can be attained.

In order to put a constraint on the velocity (first
derivative) of the control signal, the first derivative must
appear in the transfer function. Equation (5.1) shows that
the system output is not a function of the first derivative
of the o0il flow rate. The absence of this derivative term

does not mean that this dependence does not exist. A zero
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of the complete transfer function may have been cancelled by
a comparable system pole. Kalman (K1) has shown that a sys-
tem which contains a pole and zero which cancel each other

is not completely controlléble. If the cancelled pole and
zero were known, they could not be used in the optimallcon-
trol design procedure. Kalman (K1) has shown that the matrix
riccati eguation used to calculate the feedback gain ma:rix
is asymptotically stable and approaches a unique steady-
state if the system is completely controllable. If the
system is not controllable, the infinite-interval approxima-
tion used in Chapter III is no longer.valid and the inclusion
of cancelling poles and zeros would render the optimal con-
trol equations unsolvable.

If a process design engineer is confronted with the pro-
blem of absence of complete controllability, the most practi-
cal solution is to redesign the process. Physical character-
istics of the process, such as flow rates, heat transfer area,
and steady state operating level could be modified so that
the system dynamics become more favorable for the application
of practical controllers.

The controller equations from this time domain method of
formulating optimal control are much simpler than those speci-
fied by frequency methods. The following control equation was
obtained by Luecke (L5) for a similar transfer function. Only

the feedforward portion is reproduced here.
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THQ
D*C
O - T
b
oy =
1= Tl
where
(1 + 0.338)
O = -
DN (1 + 1.33s)
1 + 0.035s) (1 + O. .33
T, = -0.991 (L + ) (1 + 0.1208) (1 + 0.335)
(L + 0.029S) (1 + 0.083S) (s + 1.68) (1 + 1.388)
. 0.558 (1L + 0.76S + 0.1585°%)
€ (1 + 0.0338) (1 + 0.496S) (1L + 0.3665 + 0.03755%)
0 = 1+ 1.385) (1.68 + S)
CN

(L + 1.338)

One can see that this optimal controller would not be easy to

simulate. Therefore, the simple controller equations listed

in Tables (5.1) and (5.3) are far superior for practical rea-

lization. The time domain approach for optimal controllers

can be calculated once a completely general program is avail-

able. This program would be useful in selecting the range

of practical controllability at the design stage of plant

development.



CHAPTER VI
ANALOG COMPUTER SIMUIATIONS

Many chemical process units, such as distillation columns
and double pipe heat exchangers, exhibit third order dynamics.
A theoretical energy balance of the experimental apparatus
discussed in Chapter V shows the dynamics to contain three
poles for both the 0il side and the coolant side. However
the model identification technique (H5,S1l) shows that a
second order transfer function is an adeguate representa-
tion.

| One of the initial objections was to examine the effect
on control objectives by using a first order transfer func-
tion with a time lag to approximate third order dynamics.
Figure (6.1) shows typical unit step response trajectories
for first and third order systems. In most physical appara-
tus there is a finite level at which the response is first
detected. Measurement equipment has a lower sensitivity
bound below which no signal is detected or the process itself
may be noisy. In any case, it can be seen from this graph
that the approximation of the third order by a first order
plus a time lag function may be withiﬁ the limits of required
accuracy.

126
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FIRST ORDER SYSTEM

THIRD ORDER SYSTEM

PORTION OF SIGNAL MASKED BY NOISE

t —>

Figure 6-1. A comparison of the unit step res-
ponse trajectories of 1lst and 3rd
order systems.
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Third Order Model

The theoretical transfer function of the exper imen-
tal heat exchange process was modeled on the analog com-
puter. The analog flow diagram is shown in Figure (6.2);

The transfer function is

(0.156) (s + 0.329)W - 0.207 (s + 0.569)Wc

X(s) = (6.1)

(s + 0.117) (s + 0.45) (s + 0.583)

Using the cancellation methods of Luecke, McGuire, and
Crosser (L5), the following approximation was made.

1.0s-

_0.195 e W - 0.449 el -5y

¥(s) < (6.2)

(s + 0.117)

A performance diagram was calculated for each of these
transfer functions and they are shown in Figure (6.3). The
breakaway line indicates the point of instability when the
minor loop is deleted. For this discussion the coolant
flow rate, Wc, was chosen as the load disturbance.

Table (6.1) shows the contrxoller transfer functions
corresponding té the indicated stars on the performance
chart. These controllers were constructed on the analog
computer. The exponential in the minor feedback loop of
the first order model was approximated by a third order
Pade expansion. Although the first order controller equa-
tions appear complex, they are readily simulated if a

block diagram, such as Figure (4.16), 1is formulated.
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Table 6.1

T€T

Model i v
order § Feedforward Controller Feedback Controller
§ |
E
i
!
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The response curves for these controllers are shown in
Figures (6.4) and (6.5). The manner in which the controlled
systems were actually simulated on the analog computer did
not allow recording of the control signal as was done in
the experimental work. The reason for this method of simula-
tion was to avoid the possibility of controller saturation,
which was discussed in the chapter on experimental work.
Furthermore, analog simulation allows amplitude and time
scaling of the functions to allow for smoother operations.
These simulation techniques allow the points in guestion to
be emphasized without the background noise and unknown sys-
tem upsets encountered in physical processes.

The optimal controllers calculated from the third order
model are definitely superior. However, the controllers cal-
culated from the first order approximation do a reasonable
job of attenuating the system output. They might even do a
better job if an accurate simulation of the minor loop delay
time were available. The Pade approximation used in most
analog devices does not provide the required accuracy. Figure
(6.6) shows the unit step response of the transportation de-
lay generator used with the Donner Analog coﬁputer. This
dead time simulation haé a frequency limitation which might
cause further inaccuracies when used with faster reacting

systems (B6).
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It should be noted that no instability.was observed when
the minor feedback loop is neglected even though the control-
ler used in the example was past the instability point. One
reason for this observation is that it may be caused by the
cascading of approximations. The delay time can only be
approximated on the analog computer and the model itself is
an approximation of the third order system

Actually the approximation of delay time by the Pade Ex-
pansion may be more effective than the true exponential. When
obtaining the first order approximation of higher order models,
zeros and poles of the transfer function are cancelled against
each other with the remainder being placed in the exponential
term. Therefore, in the original analysis, the exponential
was used as an approximate function for a ratio of polynomials.
Then the Pade approximation, which is a net zero order ratio
of polynomials, would be closer to the actual system. The
overall efect is to replace several characteristic parameters-
from the original system transfer function with one parameter
-7, the delay time.

Although this dead time approximation may be useful on
some cases, large distillation columns and double-pipe heat
exchanges exhibit a definite dead time which is aﬁout the mag-
nitude of the fluid residence time. In these situations the
exponential should be simulated in the best possible way,

generally with an on-line digital computer.
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In general, more effort must be expended to obtain a
third order méthematical model than a first order time lag
nodel. The increase in controller effectiveness with the
use of the high order model does not seem sufficient to war-
rant the expanded identification techniqﬁe required for the

relatively slow responding chemical and thermal systems.



CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

The optimal controlleré derived from the Dynamic Program-
ming optimization technique are easily simulated for practical
control jobs. This time domain formulation specifies both
feedforward and feedback controllers which carry an almost
equal share of the control effort. It has been shown that
the limiting cases of these controllers are the ideal feed-
forward and infinite feedback controllers.

The problems associated with these limiting cases cause
the control engineer to "back down" the performance chart to
obtain realistic controller configurations. It is well-known
that a very large feedback gain is undesirable when control
signal saturation occurs. However the less known fact that
ideal feedforward also contributes to controller saturation
is apparent from the performance chart of the optimally con-
trolled system. |

If a system output in which the disturbance reaéts faster
than the manipulative signal is to be controlled, the optimal
control equations specify predictive controllers. This is a
fact of life from which there is no reprieve. Because of the

difficulties involved in the practical simulation of predictive

138
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controllers, it is worthwhiie to consider ways of redesign-

ing the system to relieve the necessity of using predictive
control. The modifications would not be in the realm of
optimal control, but they would be pointed out from the unsuit-
able controllers specified by optimal control theory. This
aspect of specification of unsuitable but sfill realizable
controllers is one of the unfortunate results of optimal
control theory. It is not mathematically feasible to exclude
certain controller configuration because of the simulation
difficulties.

Optimal controllers for time deléy systems can be speci-
fied with this method. It has been shown that optimal con-
trol of systems with process dead time can be obtained with
the use of a Smith linear predictor. Furthermore the exact
parameters of this minor feedback loop are specified. Previous
investigators (B12) have used the cut-and-try ﬁethod of select-
ing minor loop parameters. Some of the difficulties involved
in the practical use of the minor feedback loop were pointed

out in the analog simulation tests.

Recommendations

Optimal control theory seems to be of more value in servo-
mechanism problems. In these situations a trajectory of the
state variable is specified. It is much harder to obtain a
good trajectory by trial and error methods for a servo problem
than it is to find by the same methods a reasonably good con-

troller for a regulatory situation. The same equations need
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to be solved for both servo and regulator problems. Further-
more, the equipment in the Process Dynamics Laboratory could
be modified to study start-up and shut—-down operations. There
is no work reported in the literature of composite controlled
servomechanism problems.

Because of the increased use of digital computers in
chemical process control, the sampled-data formulation of the
optimization problem should be studied. Fast response systems,
such as chemical reactors sensitive to. temperature variations,
would provide the best test for the discrete sampled-data con-
trollers.

The optimal controller equations developed in this work
are valid for multivariable systems without resorting to un-
coupling techniques. It would be valuable to compare control-
ler configurations obtained by uncoupling (non-interaction)
technigues with those obtained by the equations preserited in
Chapter III. The basis of comparison should be ease of simu-

lation of the specified controllers.
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AéPENDIX A
VECTOR EQUATIONS FROM TRANSFER FUNCTIONS

Most instrumentation engineers express system dynamics
in the transfer function form. Therefore it is necessary to
convert the transfer function into a vector differential
equation in order to use the optimal controller design
procedure. A three-pole, one-zero transfer function was
selected as an example.

Consider the following system:

X(s) %‘fi)*élb) (stc) Mis) + (s+aI)<D(L2:g; (sray° (s)
(a.1)
where X = system output variable

M = control variable
U = disturbance variable

Km,KD = system gains

a,b,c = system poles
e = control zero
d = disturbance zero

This type of configuration was found to fit the experimen-
tal heat exchanger discussed earlier. It has been found to
be of sufficient order to describe the dynamics of many
chemical processes.

Using standard techniques from the theory of Laplace
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Transforms, we can convert the above expression into a non-
homogeneous third-order ordinary differential equation.
Since we work with perturbation wvariables, it is assumed
that all initial conditions are zero.

X +0.¥ +a%X +ax =m +8m +u +qu A.2
1 2 1 11 0O 2 2 32 2 g2 ( )

inverse laplace transform of X(s)

where xl(t)

ma(t) inverse laplace transform of KmM(s)

ue(t) = 1inverse laplace transform of KDU(s)
For ease in manipulation it is convenient to combine the
system gains, KM and Ky with their respective variables.

The subscripts used above will become apparent later.

Define the following wvariables:

X =X

1 2

X =x
2 3 (A.3)

m =m

2 3

u =u

2 3

u‘ ‘ 3
Then the above differential equation becomes

X = - X - 00X +m + Bm + u + gu - (A.4
3 a0x1 1 2 2 3 3 BZ 3 g2 ( )

which can be placed in matrix form

X = Bx + Cn + Du : (A.5)
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where
x o (o]
1
X = x m = m u = u
2 2 2
x m u
3 | 3 3
[
0O 1 O
B = 0 0 1
’aoczlaa
0O 0 O
cC = 0O 0 O
(o I ] lj
O 0 0]
D = 0O 0 O
0 g 1

The preceding development is not the only possible way of
formulating the system vector differential ecuation. Let

E(t) be the state variable vector which is defined by

zl(t) x(t) - fom(t)

z (t) = x(t) - foﬁ(t) - £ m(t) (A.6)

2 (8) = x - £m(t) - flﬁ(t) - £,m(t)
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where
f = f = 0
o 1
£ = 1
2 .
£ = B8 - o

Then the system dynamics can be represented by

Z(t) = Bz(t) + Cm(t) + Dua(t) (2.7)

x(t) AZ (t)

This equation is similar to the previous relation (A.5) for
the system dynamics. 1In fact matrices B and D are defined
exactly as in that earlier equation. The difference lies

in matrices C and A.

£ 0 0]
1
c = lo £ o
2
0 0 f
b a-J
(1 0 o]
A = |o 1 o0
0 0 O
- -

Matrix A refe?red to as the output matrix. Usually we are
only interested in the output x(t). This would reguire only
a single entry in the output matrix located in the upper
left corner element. However, if we consider constraints on
the first derivative, we must add the central element.

Since we almost never have a second derivative constraint,

the lower right element is neglected. If one does not need
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it, there is nothing gained in carrying a full matrix in
the calculations.

The above formulation of the state equations is called
the standard method. It can be developed for an nth-order
system. Any text on the state-variable approach covers this
method (Al, D1, 0l). The standard method was not repeated
in the most general form here because of its complex not-
ation.

There is another configuration which can be used. The
previously discussed standard state equation form can be
converted into a form where the B matrix is a Jordan matrix.
This conversion can be accomplished by means of a similarity
transformation

Define the following transformation

z = Pqg

where P is the modal matrix. The wvector, z, is state var-
iable used in equation (A.7). Remember that the modal matrix

is made from the column eigenvectors of the matrix B.

Then
Pq = BPg + Cm + Du | (a.9)
X = APg

Premultiplication by P—l yields

1

¢ = plepq + P icm + 2 lDu (A.10)

Then since P is the modal matrix of B, the similarity trans-
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form P—lBP”results in a Jordan canonical form. The principal
diagonal elements are the eigenvalues of B. Equation (A.10)
is known as the normal form of the state dvnamics.

Obviously, more calculation is required to obtain the
normal form. However in this form the conditions for con-
trollability and observability are easily obtained. These
concepts have not been used in this work, so the normal
form was not employed.

One can see that a choice of several forms of the state
dynamical equations is available. Furthermore, the system
can be time-scaled to make the computer calculations more
reliable. Therefore, the preliminary manipulation decisions
preclude building the state wvector equation with the digital

computer directly from the system poles, zeros, and gains.

N——



APPENDIX B
DERIVATION OF CONTROLLER PARAMETER EQUATIONS

In Chapter III, a mathematical form for the solution of
the continuous Dynamic Programming algorithm was postulated.

T T
t t [ ¢

——

L __t
EL x(u), 21 = I(u) - 2{ x(p) JM)+\xW) K () % ()
(B.1)

The partial differential equation which must be solved is

s, ]

t t 3 |l' / TR -—-=—-t’»
min  ({Q), Ta@) + @@, Tn@) + 2=kl 28 oy
m{{) 3 % (@)

[——t ]
_SE[ x(u), p!
5 (8.2)
____t
The partial derivatives of E[ x{u) ,ulneeded in this equation
are
T T
- £ t
(aE‘-x“" e*‘-’) = 2% + ¥ | k@) (8.3)
3 x(u)
t T g
aE‘-;m _[-L-" . t . t . t
= === I () -2 i x () J(u) +| x(u) K() x (i)
op
(B.4)

The optimal control eguation is alsoc needed to satisfyv the
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minimization procedure irdicated in equation (B.2).

___t
moe) = VEictaw - vtk X@ (B.5)

To siaplify notation, the conditional means and time
arguments will be deleted from the rest of this discussion.
Using equations (B.3), (B.4), and (B.5) in equation (B.2)
results in

-I + 2x°J - x'Kx = x'AT % Ax + (-2J° + 2x°K) Du

( 237 + 2x K) cvlel Jo7 + 2kx

+ (-2JT + 2xTK) Bx (B.6)

Expanding this eguation gives

T+ 2xT T - xkx = {3%c ¢ 1icTs - 25Tpu}

+xT{+ ke ¢ el - 2875 + 2KDu}

+x7{aT @A - ko ¥ lcTk + 2KB}x
(B.7)
This equation must hold for all values of the state variable
x, so like powers of x on each side of the equation can be
equated.
In order to be able to equate the guadratic terms, the
terms within the braces of the right-hand side gquadratic

must be shown to be symmetric because the left-hand side, K,
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is symmetric. The first three terms are already symmetric
so it remains to be shown that the matrix, 2KB, can be
manipulated into a symmetric form.

2KB = (KB + B'K) + (KB - B'K) (B.8)
The first term on the right-hand side of this equation is
symmetric, while the second term is skew-symmetric. It will
be shown that the quadratic form of the skew-symmetric matrix
is zero.

Consider two arbitrary vectors v and z, which are

-

related by

y = Bz (B.9)
Then zT(KB - BTK)z = zTKBz - zTBTKz (B.10)
or zT(KB - BTK)z = zTKy - yTKz = 0 (B.li)

because K is a symmetric matrix. Therefocre the svmmetry of
the quadratic term has been demonstrated.

The equations which determine the parameters are

1) = JT@ne- 3Twc ¥ icTa() (.12)
K@ = x@c ¥ Tk - sk - x@s - aT & (8.13)
. -1 T —t

JH) = K@)C ¥ C'Jg) - B J|) + K> (#) (8.14)

The boundary conditions for this squation follow directly
from equation (3.6)
I(T) = 0; J(T) = 0; K(T) =0 (B.15)
Merriam (M3) arrived at the same results by way of a

notation oparation. Because of typog-

ja

complicated summatio

raphical errors in nis presentation, and the difference in
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nomenclature, the equations are presented here. One of the
probable reasons why there has not been any applications of
this technigue has keen the complicated summation notation

which was used to present the original idea.



ADPENDIX C
SOLVING THE MATRIX RICCATI EQUATION

In order to obtain the feedback controller as shown in
Chapter III, a matrix Riccati equation must be solved. Reid
{(R1l) has presented a method fcr sclving the matrix Riccati
eguations by using an assuvciated system of linear matrix
equations.

Consider the matris. Ricocati equation presented as
egquation {3.1%}; in Chapter Iri.

K(R) = -K@)c ¥icr) + BTR() + X(u)B + AT

@A (C.1l)
where all the matrices are 1 x n sgquare matrices. The
matrix elements are continucns on the finite intexval

t s 4 = T. The associated system of linear matrix equations

is
y(u) = By@) - ¢ ¥icTzi) (c.2)
z(py = 2T ¢ a YiH) ~ B = (M) (C.3)

The boundary conditions for these equaticns are
v{(T) = I, the identity matrix (c.4)
z(T) = K(T) . 1 {c.5)
The matrix y(g) is nonsingular on the interval in question.

The soluticn to the matrix Riccati equation is given by
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L) (C.6)

This can easily be verified by differentiating this exp- .

K(p) = z{p) y

ression and substituting for the derivatives of z(u) and
v{g) from equations (C.2) and (C.3).
In oxrder to solve for z{u} and v(u), it is convenient

to define the following syztem.

W) = oWl (c.7)
where -
Wig) = {..‘5‘.%..; (c.8)
L 2z {34} %
. [ B : - x’{f‘-cmg .
g = a.r;.....: ..... ,h}-..’ (C.9)
A" $ A . “3 j

W{u) is a vector containing an element and G{u} is a 2n
X 2n matrix. In any case, the squation (C.7) is a simple
homoéeneous linear matrix differential equation. The
solution of this eqguation is well Known

Wig) = eoE-T) 7T (C.10)

G{Md~71 . . .
where ¢(y—T) = e {u . the matrix exponential.

Divide the matrix exponantial into four n X n matrices

(02 =73 T @, (@-f
w(#-T) = .Q"‘.““:vhv»“‘..i’ (c’ll)
t?el(#“T} Do, T

The associated vectors can be written as
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il

v = e (1) y(@ + ¢ (u-T) (D) (c.12)

z () <p21(u-T) y(T) + wza(#-T) z(T) (C.13)

Substituting the boundary eguations for the associated
vectors given in eguations {C.4) and {C.5) and then solving

for the feedback parzmeter using equation {C.6) results in

-1
R(t+7) = [o,07) + vy KIPY] . [04,07) + 0.:20T)K(T) ]
(c.14)

where T = p -~ 7T

Since only the "zinady - szete” walue of K is desired,
the above eguatic: is used in a stepping procedure. Notice
that the ste?s are taker irn the negative 7 direction. 1In
this manner the previously caleniated K{:+T) is used as K(T)
in each successive ston. Tﬁér rachnrigue is a convenient
method since the matrix expcenential which is a function of
the stepping interval T need only be calculated cnce. The

proceduré is continued wntil

Rt + 7) ~ X(t) . .
K (t) T

where € is some previcusi s ievteryminad error bound.

This prccedure is not <he only methed of obtaining the
steady state wvalue of the mat-ix Riccati equation.' MacFarlan
(M1) has presented s meth~o~ which naeds the zysten eigen-
vectors and eigenvaliues. !'un to the inability to calculate
eigenvectors precisely by digital computer methods, this

method does not seem te b2 rmnre useful than the stepping
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procedure. Blackburn (B8) has recently presented a method
which uses the Newton-Rarhsen iterative technique. Again
this does not seem to be a major imﬁrovement because of the
limitations of thelNewton~Raphsen technique.

This discussion presents only highlights of the math-
ematical concepts involved in solving the matrix Riccati

equation. More detail can be gathered from scome of the

references cited in the Bilkliography (X1, L3, 01)



APPENDIX D
SOLUTION OF THE OPTIMAIL FEEDFORWARD EQUATION

In order to obtain the feedforward portion of the
optimal controller, equation (3.31l) must be evaluated.
This equation is limited to time-invariant systems as
discussed in Chap'ter'III°

®

Ie .
s = -j & (-< YRDU {¢ § 3¢ . (-1)

o]

The separable porticon of the conditional mean of the
la d disturbance signal, U(e€), is easily found for gaussian
disturbances. A zero mean is used becausé of the pertur-
bation form of the-system dynamics. Since this is the type
of signal of interest in this work, equation (2.10) of the
mathematical background chapter provides the method of

obtaining U(¢).

Ue) = %%%% for € > o (D.2)

This equation is the ratio of the autocorrelation functions
of the disturbance. The autocorrelation function for
gaussian signals has the following mathematical form.
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O (¢) = we for ¢ > o (D.3)

frequency

g
o
®
H
o
R
n

= mean sqguare amplitude

c
~
m
~
1
o
~~
)
K

[}

1 3 -4 s - -
ji2 Input nth order 3vs

be an n x n matrix which contained the expcnentizl terms in

the dizagonal eslements.

(=1
-ce : c. : Qe -
U(e) = e . . d=e U (D.5)
: 1 )
O eeeeecaaansaad 1
The number of diagecnal sliements used dezsnds on the number

of zeroes in the system transfsr Zfunction. Substituting

this equaticn into eguation [D.1) ¢i

8
(R |
w
L=
|
e
0
N
|
(=]
(@
-3
D)\I
[}
m
4
|
$2
m
(e}
n

S = -J o X -€xpe T*€ vac (D.86)

or

S = - e* *-Sde KDU iD.7)

(D.8)
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This equation is easily evaluated once the feedback para-

meter, K, is found. This method was used in the computer

program listed in Appendix I.

This simple iésult does not hold for multiple-input
problems. Some other method must be tried. Although no
multiple-input problems are considered in this work, -
several possible solution methods are proposed.

Returning tc the vector-matrix eguation (3.22) which
is the starting place for the sclution of the feedforward
controller, cne may treat this equation as an initial
oundary problem. Then by n5ing some suitable integration
scheme, the steady staie vaiue may be reached by integrating
in the negative time dirsction.

Redefine U(¢) in the fo!lowing manner

Ule) = &%

- -
)

where o = I : : (D.9)
o € ® % A ( -, ® 9 " A b e v w € . > c. ':!
- n;

The diagonal elements of ths matrix exponential contain
the frequencies of the various innput disturbances., The off-
diagonal elements would normally be zero for the great

majority of practical problems.
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Equation (D.l) becomes

s = - | eTxpe®ac (D.10)

where P = [BY - KC ¥ tcTk]

Bellman (B4) has shown that the above equation is the sol-
ution of the matrix eguaticn

PsS+sa = KD (D.11)
provided the integral exists feor all XD. Furthermcre the
necessary and sufficient condition that this integral exist
is that Ai + #j'= 0 where Ai and “j are the characteristic
roots of P and @ raspachrively (B4). For physically realiz-
able systers the above cond@tions are always met because the
characteristic robts of these matrices are always negative.

Rearringing equaticn {D.11) intoc a form convenient for

trial and error solution gives

[ ) H

S = P KD - P ‘as (D.12)
The feedforwaxd gain,é , arn the right-hand side of this
equation'is vsed to calculate & rew matrix §. This proced-
ure would be continued until 2owme convergence criteria is
satisfied.

Actually eguation {D.ii} may be solved directly.

Rewriting

[pPx1I + Ixa»'T] 8§ = KD (D.13)

~q =1,
or .s = [PXxI + Ixa *] KD , (p.14)
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The symbol, X, indicates the first power Kroneker product
and is defined as

AXB = (a;sB) i,9 = 1,..N (D.15)

Note that the Kroneker product of two N-dimensional matrices
is a N°-dimensional matrix. This qugdratic increase in dim-
ensionality limits the practicality of this solution method.
The trouble lies with the computer algorithms which perform

the matrix inversion operation indicated in eguation (D.14).



AFPENDIX E
MATRIX EXPONENTIAL EVALUATION

The fundamental matrix of a vector differential equation
must be evaluated in the controller design procedure. This
matrix is also called the traxsition matrix, the fundamental
matrix, or the matrizant. ‘S:;pose we have a vector differen-

tial equation.

x(t) = AX : (E.1)
where A is a constanz métfix and ¥ is a vector

The solution of this ezuatiun is

X(t) = Xy ) (E.2)

FT—
The matrix, e‘z“t

tOj, iz the fundarental matrix. An
excellent reference for further discussion of the properties
of this function is Coddington and Levinson (C4).

If A is a constanz. the fundamertal matrix, etA, can

be defined by a ccavergent power serles

@acyt

eA t
is (E.3)

i g8

i=o

In the actual calculation of this function, only the
first thirty-six terms are used. 7Th2 reason for this
truncation and a ccrrespondiné condition to insure -accuracy
will be developeé now.

The IBM 360 computer carriez abcut seven significant’
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digits in the single precision mode. So in order to get an
answer correct to three places to the right of the decimal,
no term of the series should exceed 10°. The largest term
of the et series 1is the one where i is the smallest integer

i
such that 1 E T <l. Therefore —%7 should be less than 10*.

This argument can be applied to the fundamental matrix
by using some type of norm. A conservative notm which can

be used is

|ltal]l = Min {qu z | ta [, max I [ ta [3 (E.4)
J 1 13 1 3 ij

Then if Ilta]l < 10 we have sufficient accuracy for our cal-
culations.

To compute eat for at which is too large, define

T =.5§_ such that [|7Ta]| < 10. We can use the property
HAt+tB _ AB | (E.5)
then
K K
A, 2 TA 27 TA tA
™% = (¥™HF - . — (E.6)

The computation of a fundamental matrix for a large argument
was not needed in the control design used in this thesis
because only the regulator problem was considered. When a
servomechanism problem is attacked, this method would be
invaluable.

In the computer program listing in Appendix I, the
exponential evaluation is carried out by the subroutine

XPEVAL. The norm calculation is done in the XNORM sub-
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routine. The subroutine STPSZ uses the norm to caiculate a

time step which would insure accuracy as discussed above.



APPENDIX F
MEAN SQUARE CALCUILATION

In Chapter II, equation (2.15) relating the spectral
density function to the signal mean value was presented.
jco
= X } DP(-5]
Gxx(o) = 3 P(s} pP(-s} @ad(s)ds (F.1)
.-jco
From the even property of the spectral density function, the

above equation can be re-writiten as

o

6 {0} = %j ris) Dls) P(-s) D(-s)ds (F.2)

Since the system dynamics are tc be represented by
ordinary &ifferential eguations, the transform represen-
tation consists of the ratio of two poiynomials. Therefore
the integral of equation {(¥.2) can be rewritten in separated

polynomial form.

- _ c(s) c(-s)
Qkx(b) T d(s) d{-s) (F.3)
where

n-1 s
c(s) = T c.s*

i=o

n 3

d{(s) = Z dis*

i=o
n = system orderxr

1538
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Because of the generality of this particular form,
several general methods of solution of equation (F.2) has
been postulated. Newtoh, Gould, and Kaiser (N1) have pres-
ented tables for evaluating systems up to order n=10. 1In
order to use their tables, large computer subroutines would
have to be generated. The method given by Laning and.Battin
{L1) and Fuller (Fl) is in a more suitable format for com-
puter implimentation.

Expand the numerator of equation (¥.3) to obtain the

following form

c{s} ={-s) L g.s (F.4)
Then the ms2an sguare can be calculated from the eguation on
the next page. The denominator determinant is the well-
known nth-order Hurwitz determinant which is asscociated with
stability criteria for the characteristic (denominator}
polyncmial. ¥otice thzit th# numerator determinant is the
same determinant but with its first row replaced by the
coefficients used in egquat:zon (7.4},

The computer program which Joes this calculation is

listed in Appendix I.
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APPENDIX G
THEORETICAIL MODEL OF THE EXPERIMENTAIL PROCESS

Enerqgy balancés around the old system, coolant system,
and the reactor wall provide a mathematical model of the

experimental heat transfer process. The resulting equations

are .
. * %* * * d
(pVCp) fo = hiAiTw - hiAin + Cpr-inW - ChW Tf (G.1)
* hoAg ® * .
{pvv )w’rw = h2a.7; 4+ —5> T, - (hA +hA 2T, (G.2)
{pVC, )CTco = 2';10?.0 w h A 'I‘ + chcTcz.Wc - ZcpcwcTco
-~ hoAsTci . {G.3)
where
p = density subscripts £ = oil
vV = Volume ' w = wall
Cp = S8pecific heat | c = ‘coolant
T* = temperature . i = inside
h = heat transfer cosfficient o = outside
A = heat transfer arex in = . 0il in
W = flow rate : ci = coolant in
Q = heat loss ss = steady state
suparscript * = total wvariable

In order to arrive at the abowve eguations, several assump-

tions were made.
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A. The temperature of each subsystem (coolant, wall,
oil) is constant within the heat transfer vessel.
This is the perfect mixing assumption.

B. O0il and coﬁlant inlet temperatures are constants.

C. All physical prop=srties, such as heat capacities,
heat transfer coefficients, and densities remain
constant.

These equations can be changed to a perturbation form

* *
Te = Tg* Tees (G.4)
T; = T+ T;ss N (G.5)
TZO = Ty F Tchs {G.6)
W= W szs (¢.7)
W: = WLt W:ss {G.8})

Substituting these definlitions inte tne model equaticn

results in

. = — -+ 3 A Y 3 s R '3
(pVCp)fo h (hsA; CoffseiTe * BT ‘Cprln
- Cpr==53W - cpfﬁwf (. 9)
; SR
(Ve ) Ty = BA;Te = {(hA; +hANT, +—5- T (6.10)



(pvcp)c'rc = 2h AT, - (R A + chéwcss) Teo = 2Cpe
* "
(Tooss ~ Tei) Wo = 2C,N.T, (G.11)

A standard procedure in handling these non-linear
models is to expand them in a Taylor Series around the
steady-state value and retain only the first order terms.
Since we are interested im controlling the process around
this steady-state, this linearization is usually not a
disastrous assumption.

Using the conztants listed in table {G.1l) and taking

the above equations gives the

My

the Laplace transfcrm ©

following transfar function

_ 0.156(s + £.329IW - 0.207{s + 0.569)}We~
hd (s # 0.117) (s + 0.45) (s + 0.583)

3

(G.12)

This eguation is presented in the scaled frequency
domain where the frequency variable, s, is in units of rad-
ians per ten real time seccnds for use in the analog simul-
ation.

The system is a net second order system. The identif-
ied model was found to be second order too, but the para-
meters are con51der ly disfferent. The reason for this
discrepancy lies in the assumpticons made in deriving the
theoretical model. The linesarization is questionéble in

light of the step response trajectories shown in Figures
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{5-6) and (5-7). Another assumption that probably is not
very good is that the coolant side is perfectly mixed. This

illustrates the pitfall of reliance on theoretical models.

‘
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Table G-1

List of System Constants

Symbol : Nomenclature Value Units t Source

Cpc coolant heat capacity 0.54 BTU/1b°F 1

pr wall heat capacity 0.037 BTU/1b°F 1

Cpf oilbheat capacity 0.405 BTU/1PF 2

hi 0il side §e§t transfer 27. BIU/hx°F ft2 3

coefficient

& coolant side heat transfer 87. BTU/hroF £¢2 3

0 coefficienr '

Ai inside heat transier arca ¢.322 ft2 2
A° outside heat transfer area 0.444 ft2 2
Tci coolant inlzt temperature 42 °rF 3
Tee 0il steady state tem- 158. °F 3

perature

Tin 0il inlet temperature 172. °F 3
T steady state wall tempera- 88. °F 3
wss ture
VC coolant volume 0.0102 ft3 2
Vf 0il wveiume 6.017C ft3 2
Vw wall volume 0.0153 ft3 2
wss steady state oil flow 165. ib/hr 3
Wcss steady state cooiant flow 44, ib/hr 3
pc cooclant density 77.3 1b/ft3 i
pf oil density 53.0 Ib/ft3 2
pw wall density 648.5 1b/ft3 2

heat loss 0,04 BTU/sec 3

Sources:

1. Handbook;

2. Lgboratory meassurements; 3.

teady state data.
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APPENDIX H
NOMENCLATURE

oﬁtput matrix (1.2)

heat transfer area of the coil (4.1)
system matrix (1l.1)

control signal matrix (1.1)

heat capacity of the fluid (4.1)
disturbance matrix (1.1)

scalar performance index (2.21)
minimum scalar performance index (2.23)
expected value of x (2.1)

probability density (2.1)

.conditional probability density (2.2)

‘flow rate (4.1}

partitioned matrix

functional notation (2.20)

scalar elemeﬁt (3.8)

n—-element feedforward vector (3.8)
symmetric n x n feedback matrix (3.8)
disturbance gain k4.5)

control signal gain (4.5)

control vector (1.2)

all&wable closed set of control signals
optimal control signal (3.22)

control signal in frequency domain
176
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disturbance transfer function (3.28)
control signal transfer function (3.28)
ogtput vector (1.2)

feedback matrix (1.3)

feedforward matrix (1.3)

process time delay feedforward controller
(4.46)

process time delay feedback controller (4.47)
control time delay feedback controller (4.61)

control time delay feedforward controller
(4.60)

steady state deviation term in controller
(3.16)

feedforward parameter (3.16)

frequency in radians per unit time
time

terminal time boundary (3.3)
disturbance vector (1.1)

overall heat transfer coefficient (4.1)
mean square amplitude (4.8)

disturbance in frequency domain

volume of the tank (4.1)

frequency (2.14)

partitioned vector

state variable veétof (1.1)

state variable in frequency domain (1l.2)
associated vector

associated vector
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relative sensitivity coefficient (4.37)

sensitivity coefficient (4.34)

Greek Letters

first order pole (4.5)
variable of integration (3.13)
parameter error bound

dummy time variable

time delay {4.1)

output weighting factor (3.3)
spectral density {2.4)
fundamental matri# (3.25)
control weighting factor (3.3)
feedback noise (4.29)

density of the fluid (4.1)

autocorrelation function of x (2.3)

frequency in radians per unit time (4.8)
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APPENDIX I

COMPUTER PROGRAMS FOR CONTROLLER CALCULATION

This appendixlcontéins the computer program listings
used to calculate the parameters cf the optimal controller
equation. These programs were written in Fortran IV and
used on the IBM Model 360-40 computer located in the Merrick
Computer Center nf the Universit& of Oklahoma.

Explanation of input format is provided within the
programs via comment statements. The output is obvious.from

headings built intc the ocuipu format statements. -



'xXzXzXzz2)

PROGRAM 200 HARRY WEST MAINOO20
OPTIMAL FEEDBACK GAIN CALCULATION PROGRAM MAINOO30
READ IN MATRICES ROW BY ROW MAINOO10
REMEMBER THAT PHI ‘IS ACTUALLY PHI-INVERSE MAINOO40O
REMEMBER THAT THE THETA MATRIX IS ACTUALLY A*THETA®*ATRANSPOSE | MAIN0050
MAINOOG6O
COMMON :G(12+12)XP(12,412) MAINOO70
DIMENSIGN BU6+6) ¢C16+46) yPHILE+6) 9 THETALO696)4LPH(626)9CPCL6,6) MAINOOSO
DIMENSION XPL1U6+6) o XPL20 696D XP21{ 6960 4 XP22(696)¢SSKI646),E(646) MAINOO9O
DIMENSION SSS(6+6)sULOGICE6+6)9D(696) 3 XKDU696)951696)9541646)
READ(5+9100) Ne¢T4EPSL+FREQ MAINO140
EPS=0.000001
D0 800 I=1,4N MAINO150
READ(591010(B(1¢J)ed=19N) MAINO160
800 CONTINUE MAINO170
DO 801 I=1,N MAINO180
READ(S9 101 )IC1¢d) 9 J=1yN) MAINO190 .
801 CONTVINUE MAINO200
DO 805 I=14N
805 READ(55101)0(D(1¢J)ed=1¢N)
DO 806 1I=1,N
806 READ(S¢101){ULOGIC(I5J)eJ=1,N)
DO 803 I=1,N ' MAINO240
READ(Ss101){PHICI ¢J):9d=14N) MAINO220
803 CONTINUE - MAINO260
‘ WRITE(6,4102) MAINO270
WRITE(6,106) N MAINO280
CALL MATPRTINsBs6) MAINO290
WRITE(6¢103) N MAINO30O
CALL MATPRT(NsCos6) . MAINO310
WRITE(6,4112) N
CALL MATPRTANsD,6) .
WRITE(64113) N
CALL MATPRT N ULOGICe6)
WRITE(64104) N MAINO320

CALL MATPRTINsPHI6)

MAINO330

o8t



807

802

200

201

245

248

CONTINUE

DO 802 I=1¢N
READ(S,LOL)(THETAC(L vyd) 9 3=14N)
CONTINUE '
N2=2%N

CALL MULTIP(N,CyPHI sCPH,6)
DO 200 I=1,4N

DD 200 J=1,N

E(L4J)=ClJy]I)

CALL MULTIPUNoCPHEL£PC,y6)
DO 201 I=1,N

IPN=1+4N

DO 201 J=1.N

JPN=J+N

Glled)=B(1,4)
GlIsJPN)=-1.0%CPC(I,J)
GUI@NyJ )=—1.0%THETALL,J)
GUIPNIPN)=~1.0%B(Jsl) -
CONTINUE

CALL XNORMIN,GNORM) :

CALL STEPSZ(GNORM T oTAU,KK)

‘CONTINUE

FhEkETE TR
TAU=-TAU
CONTINUE
CALL XPEVAL(N2,TAU)
D0 248 1I=1,.N
DO 248 J=1.N
XP11(1,J)=XPL1¢J) .
XP12( 19 J)=XPU{I¢J#N)
XP21U 14 J)=2XPUI*N,J) .
XP22( 1o J)=XP{I#N,J+N)
CONTINUE

USE NEGATIVE TAU

kR EkEEk&k k&K kkkdkkk

CALL SSKAL(XPLll3XP1l2¢XP21l¢XP22yN9ITERJEPSL,SSK)

WRITE(64119)
WRITE(6+9117) TAULEPSL, ITER

MAINO210
MAINO250
MAINO230
MAINO360
MAINO370
MAINO380
MAINO390

MAINO410
MAINO420
MAINO430
MAINO440
MAINO0450
MAINO460
MAINO470
MAINO480
MAINO490
MAINO500
MAINOS10
MAINO550
MAINOS60

MAIN1050
MAINOB30
MAINO850
MAINOB60
MAINOB70
MAINO88O
MAINO890
MAINO900
MAINO910
MAIN0920

MAINO935

18T



206
202

203
204

205

100

- 101

- 102
-103

WRITE(6,105) N

CALL MATPRT(NeTHETA6) .
CALL MULTIPINySSKyDeGPH6)
CALL MULTIPUN,CPHoULOGICyXKDe6)
CALL MULTIP(N’SSK9CPCoCPHo6l
00 206 I=1,N

DO 206 J=1.N
CPH(I'J)~CPH(I'J1—B(J91)

D0 202 I=1,N
CPHII.I)=CPH(I:II*FREQ

CALL INVERT{CPHsNoEPS,SINGUL)
IF(SINGUL-1.0) 204,203,203
CONTINUE

stop

CONT INUE

CALL MULTIPIN,CPHeXKD9S+6)
DO 205 I=14N

DO 205 J=14N

SULedd==5l14J)

CALA :NATPRT(N9ySSKy6)
WRITE(69114) N

CALL MATPRT(NgsS,6)

CONTINUE

CALL MULTIPIN,PHILZEL«CPC46) -
CALL MULTIPUN+CPCyS+SJe6)
WRITE(64115) N

CALL NATPRT(N,SJ+6) .

CALL MULTIPINYCPCySSKsCPH,6)
WRITE(64116) N

CALL NATPRTINJCPH,6)
WRITE(6,4118)

GO T0 807

FORMATLIS ,3F12.7)

FORNAT(6F10.4)

FORMATULH1,2X,*STEADY STATE RICCATI - HH WEST*//)
FORMAT(//2Xe*C MATRIX FOLLOWS®IS5,*DIMEN®)

MAINO340
MAINO350

MAINO940

MAIN

28T
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104
105
106
107
108
109

- 110

111
112
113
114
115
116

117
- 118

119

229

FORNAT(//2X9*PHI MATRIX FOLLOWS® oI5 ¢*DIMEN®)
FORMAT(//2X¢*THETA MATRIX FOLLOWS®9159*DIMEN?)
FORMAT(2X9*B MATRIX FOLLOWS®yISe°DIMENSION®)
FORMAT (1H1 42Xy *GNORM=*4E15.5)

FORMAT(IS) i

FORMAT(LHO92X*EXP TIME STEP®* 4F10.49"DESIRED T-%¢F10c49 *KK=¢y157)
FORMATU(1HL1+2X9*EXP FOR DESIRED T=*»F1l0.4+2Xe*EVAL AT TAU'",F10.4/)

FORMAT(6EL12.4)

FORMAT( /72X, D MATRIX FOLLOWS®,15,°DIMEN®)
FORMAT(//2X4"LOGICAL U MATRIX FOLLOWS®¢15,°DIMEN')
FORMATL//2Xe* SPARAMETER MATRIX FOLLOWS®915,°*DIMEN®)
FORMAT(/7/2Xy*OPTMAL FEEDFORWARD GAINS "915,°DIMEN')
FORMAT( /72Xy *OPTMAL .FEEDBACK GAINS *9I5¢'DIMEN")
FORMATI2X s *TAU=® yEL12.4 92X 9 *ERROR=" yFl04¢2Xe * ITER=", [5/)
FORMAT( LHO9 20Xy *END DF DATA SET*)

FORMAT(1K1+2Xy *STEADY STATE KALMAN METHOD®/)

sTap '

END

SUBROUTINE XPEVAL(N2,TAU)

COMMON G(12412)4XP(12412)

DIMENSION ACALCE12412) ¢ XIDNT(12912) 9 XACALC{12412)¢GTAU(12,412)

SINCE WE HAVE SET A LIMIT ON THE TIME STEPe WE HAVE A GUIDE TO
HOM MANY TERMS OF EXPONENTIAL SERIES IS TO BE USED {37 TERMS)
ZERO THE WORKING MATRICES

DO 229 1=1y12

DO 229 J=1,12

XP(1¢J)=0.0

ACALC(1,+J)=0.0

XACALC(19J)=0.0

XIDNT{I44)=0.0

GTAU(1yJ)=0.0

DO 230 I=1,N2

DO 230 J=14N2

GTAU(I¢JI=TAU*G(I¢J)

IF(1-J)232+231,232

EXPVOO10
EXPV0020
EXPVO030
EXPV0040
EXPV0O050
EXPV0060
EXPVO100
EXPVO110
EXPVO0120
EXPVO130
EXPVO140
EXPVO150
EXPV0O160
EXPVO170
EXPVO190
EXPV0200
EPPVO210
EXPV0220

=
(04]
w



Iz Xz X3

231

232
233
230
235

239
240
200
201

- 100
- 101

102
105

- 110

111

XIDNTU1+J)=1.0

GO 70 233

XI{ONT (19J)=0.0

ACALC(1 ¢J)=2GTAUlI44)
XP(I9J)SACALC(I ¢ J)¢XIDNTL(I,4J)
CONT INUE

DO 240 I=2,36

Xx=1 =

XI=1.0/X

CALL \MULTIP(N2+GTAUACALCXACALLC,12)
DO 239 J=14N2

00 239 K=1.N2
ACALC(J oK )=XT#XACALCL J+K)
XP{Js K)=3XP (JoKIHACALCLY K)
CONTINUE

WRITE(6,200)
FORMAT (80X *XPEVAL")
FORMAT(20X913910X+EL14.5)
RETURN '

END

SUBROUTINE MATPRTI(NyAyMDIM)
DIMENSION A(MOIM,MDINI

THIS IS A SPECIAL MATRIX PRINT SUBROUTUNE FOR THIS PROGRAM
MDIM = 12 FOR 2N MATRIX 6 FOR

D0 105 I=1,N
1F(#DIM-129100,4101,101
MRITE(6+110) (Allyd)oed=1yN) -
GO T0 102

NRITE(6+111) (AlReJdeJ=14N)
CONTINUE

CONTINUE

FORMAT(1X+6EL15.5)
FORMAT(1Xy12E11.4)

RETURN

END

TH E N MATRIX

EXPV0230
EXPV0240
EXPV0250
EXPV0260

“EXPVO270

EXPV0320
EXPV0330
EXPV0340
EXPV0350
EXPVO360
EXPV0400
EXPV0O410
EXPV0420
EXPV0430
EXPV0480

EXPV0490
EXPVO500
MATPOO10
MATP0020
MATP0030
MATP0040
MATP0OOS50
MATP0060
MATPOOT0
MATPOOBO
MATPOOS0O
MATPO100
MATPO110
MATPO120
MATPO130
MATPO140
MATPO150
MATPO160

78T



201

202

203

200

211
214

210

SUBROUT INE XNORM(Ns GNORM)
COMMON G(12512)¢XPL{12,12)
DIMENSION GAB(12412)¢SUMR(12),SUMC(12)
N2=2%N

DO 201 I=1,12

SUMR(1)=0.0

SUMC(1)=0.0

CONTINUE

DO 202 I=1¢N2

DO 202 J=14N2
GAB(19J0=ABS(G{I,JM)

D0 203 I=1,N2

DO 203 J=1,N2

SUMRL I )=SUMR(I )¢GAB(IcJ)
SUMCLI)=SUMCHII+GAB(JI,I) .
CONTINUE

RMAX=AMAXL1ESUMR(1)e SUMR(2) o SUMR(3 )y SUMR{4) ¢SUMRIS) »SUMRIB)»
1SUMR(7) 3 SUMR(8) ¢ SUMRI{9) ySUMR(10) ySUMRE11) »SUMNRI12))
CMAX=AMAX1{SUMC{ 1)o SUMC(2) o SUMC( 30 ¢ SUMC(4) »SUNMC(5) »SUMC(6),
~1SUMC(7) oSUMCLB) 9 SUMCE9I) ySUMC(10)»SUMC(11),SUMCL12))

GNORM=AMIKL (RMAX,CMAX)
WRITE(69200) -
FORBATIBOX 9 *XNORM ?) I
RETURN

END

SUBROUTINE STEPSZ(GNORM,T TAUKK)
KK=0

TMAX=10 .0/ GNORM

IF(L T-TMAX) 210,210,211

KK=KK+1

DIV=1.0

DO 214 J=1sKK

DIV=DIV¥*2.0

- TAU =T/0D1V
IFATAU-TMAX)2124212,211

TAU=T

NORMOO10
NORM0O0O20
NORMOO30
NORM0O040
NORMO0S50
NORMO0O060
NORMOO70
NORM0080
NORM0O090
NORMO100
NORMO110
NORMO120
NORMO130
NORMO140
NORMO150
NORMO160
NORMO170
NORMO180
NORM0190
NORM0200
NORMO210

NORMO220
NORM0O230
STEPOO10
STEPOO20
STEPOO30
STEP0040
STEPOOS50
STEPOO60
STEPOO70
STEPOOS0

STEPO090

TTEPO100
STEPOL10

S8T



212
200

2 X xXzXzkeX2

c

250

251

252

255

254

i
CONTINUE

WRITEL6,200)

FORMAT( 80X,y *STEPSZ*)

RETURN

END

SUBROUTINE SSKALUXPL19XP1l29XP21l 9y XP22¢NyoITERZEPSL,SSK)
CALCULATES STEADY STATE FEEDBACK GAIN USING THE KALMAN EQUATION
WE ARE USING A STEP PROCEDURE TO CONVERGE TO THE STEADY STATE
*% THE IMPGRTANT THING TO NOTICE IS THAT THE TAU ARGUEMENT OF
THE FUNDAMENTAL MATRIX IS NEGATIVE*%

DIMENSICN XPL1U696) 9 XPL2(696)oXP2LL696)4XP2216+6)9SSK(646)
DIMENSI'ON SSK1(646) ¢SSK2(696) ¢SSKN(6,6)

DO 250 I=1,N

00 250 J=1.N

SSK(I44)=C.C

ITER=0

CONTINUE

CALE MULTIPUINsXP229SSKeSSK1le6)
CONTINUE

CALL MULTIPINXPL2ySSKySSK246)
DG 252 1=1,4N

D0 252 J=1,N
SSK1(I4J)=XP2L(1,,J0#SSK1(1I,4)
SSK2{19J)=XPL1(1 s J)¢SSK2{1,J)
EPS=Q,C000001

CALL INVERTISSK29NoEPS,SINGUL)
IF{SINGUL~1.0) 2544255,255

CONTINUE

WRITE(6,201)

RETURN

CONTINUE

CALL MULTIPEN2SSK19SSK2¢SSKNe6)

CALL CNVTSTUSSKNySSKeN,y SSKTST)
TO AVOID ROUND OFF, WE FORCE SYMMETRY

STEPO120

STEPD130
STEPO140
SKAI0010
SKAI0030
SKAI0040
SKAI0050
SKAI0060
SKAI0070
SKAI0080
SKAI0100
SKAIO110
SKAI0120
SKAI0130
SKA10140
SKAI0150
SKA10160
SKAI10170
SKA10180
SKAI0190
SKAI0200
SKAI0210
SKA10220
SKAI0230
SKAL0240
SKAI0250
SKAI0260
SKATI0270

SKALO0280
SKA10290
SKAIO330
SKAI0340
SKAI0350

981
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DO 256 I=1leN SKAI0360

D0 256 J=1.N SKATO0370
256 SSKUI9J)=(SSKN(I¢J)¢SSKN(Jy1)}/2.0 SKAI0380
IF(SSKTST-EPSL) 258,258,259 SKAI0390
259 ITER=1ITERe] SKAI0400
TAU=TAU+T SKAIO410
GO .T0 251 SKA10460
258 CONTINUE SKA10470
WRIVE(6,200)

200 FORMATLBOXe *SSKALZ*)
201 FORMATI25Xs*1IT BLEW UP IN SSKAL?) .

RETURN SKAI0480
END SKAI0490
SUBROUTINE CNVUST{SSKNySSKyNsSSKTST) CONVOO10
DIMENSION S3KN(696) ¢SSK(646) - COGNVO0020
SUMNM=0.0 ‘ CONV0030
SUMDM=0.0 CONVO0040
TEST THE CONVERGENCE OF THIS ITERATION CONV0050
D0 255 I=1,N" CONVO0060
SUMNM=SUMNM+ABS(SSKNUI 9 I)=SSK{X4I)) CONVOOT0
SUMDM=SUMDMeABS (SSKN( I, 1)) - CONVO0075
255 CONTINUE CONV0090
SSKTST=SUMNM/SUMDM ~ CONVO100
RETURN CONVO110
END - cavvol2o
SUBROUT INE INVERT (A¢N,EPS,SINGUL) INVOOOLl0
INV00020

SUBROUTINE INVERT INVERTS A MATRIC IN IT*S OWN SPACE USING THE INV00030
, GAUSS—JGRDAN METHOD WITH COMPLETE MATRIX PIVOTING. I.E. AT EACH INV00040
STAGE THE PIVOT HAS JHE LARGEST ABSOLUTE VALUE OF ANY ELEMENT IN INV00050
- THE REMAINING MATRIX. THE COORIINATES OF THE SUCCRSSIVE MATRIX INVO0060
PIVMOTS USED AT EACH STAGE OF ‘-THE RECUCTION ARE RECORDED EIN THE INV00070
SUCCESSIVE ELEMENTS POSITIONS OF THE ROW CIKYMN UBDEX VECTIRS INV00080
R -ABD C . THESE ARE LATER CALLED UPON BY THE PROCEDURE PERMUTE WHIINV0OO0090
REARRANGES THE ROWS AND COLUMSS OF THE MATRIX. IF THE MATRIX IS INVOO1l00
SINGULAR THE PROCEDURE EXITS VO AN APPROPRIATE LABEL IN THE MAIN INVOOLl1l0

L8t
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RETURN

CONTINUE

DO 5 J=1,N

JKaN~-J¢l

- IF (JK<EQ.I) GO TO S

ICNTJ=C(JK)

ACLENT o ICNTJI=ALICNTCICNTJI/ALICNTLICNT1) .

CONTINUE

ACICNT, ICANT1)=1/7ALICNT ICNT1)

PINVOT=0 .

00 7 K=1yN

IF (K.EQ.I) GO TO 7

DO 6 J=1,.N

JK=N~-J+1

IF (JK.EQ.I) .GO YO 6

ICNTJ=CL{JK) .

ICNTK=aR(K)

H=ALICNT  ICNTII*ALICNTKLICNTL)

ACICNTKe ICNTJ )=ACICNTKy ICNTJS)-H

IF(leGEeKe CReloeGEeJKs OR.ABSI(PIVOT )eGE-ABS(ALICNTK, ICNTI))) .
1 GG YO 6

PIvi=K

PIVJ = JK

PIVOT=ALICNTK, ICNTJ)

CONTINUE

ACLONTK 9 ICNTL)=—A(ICNT ICNTLI*ACICNTKy ICNTL1)

CONTINUE

CONTINUE

REARRANGE RONWS

CALL PERMUT(AR,CyN,0)
REARRANGE CCLUMNS

CALL  PERMUT (A9CoRoNy1)

‘INV00480
INV00490
INV00500
INV00510
INV00520
INV00530
INV00540
INV00550
INV00560
INV00S570
INVO0580
INV00590
INV0D600
INV0OO0S10
INV00620
INV00630
INV00640
INV00650

INV00660

INV00690
INV00700
INVOOT10
INVOO730
INV00T40
INVOOTSO
INV00760
INVOO770
INV00780
INV00790

INVOO810
INV00820
INV00830

681



C-N )

(o]

O OHCree

QOOOOOODOQOODOO

RETURN " INV00850

INV00860
FORMAT (1HL923HTHE MATRIX IS SINGULAR +5H I = 15,(2110)) INVOO870
END . INV0O0880
SUBROUTINE: PERNUT(A¢S¢DeNeJJ) ’ PER0OOO10

PERMUTE 1S A PROCEDURE USING JENSEN'S DEVICE WHICH. EXCHANGES ROWS PER00020
OR COLUMN SGOF A MATRIX TO ACHIEVE A REARRANGEHENT SPECIFIED BY THEPERO00030
PERMUTATION VECVTORS S¢D. ELEMENTS OF S SPECIFY THE ORIGINAL - SOURCEPER00040

. LOCATIONS WHILE ELEMENTS OF D SPECIFY THE DESIRED SESTINATION PER000S0
LOCATIUONS. NORMALLY :A AND B WILL :BE CALLED AS SUBSCRIPTED VARIABLEPERO0060
OF THE SANE ARRAY. THE PARAMETERS J¢K NOMINATE THE SUBSCRIPTS PER000O70
‘OF THE DIMENSION AFFECTED BY THE PERMUATION, P - IS THE 4ENSEN PERO00BO

PARAMETER. AS AN EXAMPLE OF THE USE OF THIS PROCEDURE SUPPOSE R4C PER00090
TO CONTAIN THE ROW AND COLUMN SUBSCFIPTS FO THE SUCCESSIVE MATRIXPER00100
PIVOTS USED IN A MATRIX INVERSION OF AN ARRAY A. I.E. R{1l) ,C{(Z1) PEROOLLO
ARE THE RRLATIVE SUBSCRIPTS OF THE FISST PIVOT, R(2);C(2) :OF THE PERO0120
SECOND: PIVOT AND SO ON. THE THO CALLS o CALL PERMUTE(A(J.P)y ALK,PPEROO130
) oJeKsRgCyNoP) 'AND CALL PERMUTELCALIP4J)4ALP¢K)3JyKeCoeRyN,P) WILL PEROO140
PERFORMN THE REQUIRED REARRANGEHENT OF TOWS AND COLUNNS RESPECTIVELPEROO150

IF (J.EQ.K) GO TO
IFlJJ.EQ.1) GO TO
D0 2 P=1,N

3
5

REAL Al6e6) oM PER00160
INTEGER- JoKnNnPrS(6)oD(6loTAG(6laLOC(bDolvT'TAGJ'TAGK PEROO170
SETUP INITIAL 'VECTOR TAG NUMBER AND ADDRESS ARRAYS PEROO190
DG 1 I=1,N PEROO210
- TAGLL )=1 PER00220
LOCtI =] PER00230
CONTINUE ! PER00240
PER00250

START PERMUTATION PER00260
N PER00270

DO 4 I=1,N PERO0280
T=S(1) PER00290
J=L0C(T) . PEROO300
K=D{(I) PEROO310

PER00320

06T



S W

OOOHOO

W=A(JP) .
AlJsP )=A(KP)
AtKP)=H
CONTINUE
G0..T0 6

-CONTINUE

D07 P=1,4N
W=ALPod)
AlRgJIZA(PK)
AlPK)=N
CONTINUE

- CONTINUE
- TAGLJ I=TAGIK)
- TAGIK)=T

TAGJI=TAG(J)

TAGK=TAG(K)

LOCLT )=LOCITAGY) -

LOCLTAGJ )=y

CONT INUE

CONTINUE

RETWRN

END

SUBROUTINE MULTIPINeBeCoAsMDIMNM) .
REAL A(MDIMoMDIM) oBCMDIMyMDIM) CI(MDIM,MDIM)
INTEGER NolsdoK

THIS PROCEDURE MULTIPLIES TWO MATRICES 8 AND C
SUCH THAT A(I930=B(LsK)*(KyJ) AND STORES

- THE RESULT. IN A.

DO .1 I=1,N

.00 1 J=14N

AlleJd)=0 -

DO 1 K=1,N
AlL9Jd)=A(15J)¢B(I+K)FCLKyd) .
RETURN

PER0OO380
PER00390
PER00400
PER0OO0410
PER00420
PER00430
PER00440
PER00450
PER0O0460
PER00470
MUL00010

MUL00030
MUL 00040
MUL000S0
MUL 00060
MUL00070
MUL. 00080
MUL 00090
MUL00100
MULOO110
MUL 00120
MUL 00130
MUL 00140
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