@° PLOS | ONE

CrossMark

click for updates

G OPENACCESS

Citation: Lill Y, Jordan LD, Smallwood CR, Newton
SM, Lill MA, Klebba PE, et al. (2016) Confined
Mobility of TonB and FepA in Escherichia coli
Membranes. PLoS ONE 11(12): é0160862.
doi:10.1371/journal.pone.0160862

Editor: Eric Cascales, Centre National de la
Recherche Scientifique, Aix-Marseille Université,
FRANCE

Received: April 15,2016
Accepted: July 26, 2016
Published: December 9, 2016

Copyright: © 2016 Lill et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in
any medium, provided the original author and
source are credited.

Data Availability Statement: All trajectory and
processed data files are available from the Purdue
University Research Repository database, DOI: 10.
4231/R75X26XV.

Funding: These studies were supported by grant
MCB09522999 from the National Science
Foundation (P.E.K., S.M.N., and K.R.) and
GM53836 from the National Institutes of Health (P.
EK.and S.M.N.).

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Confined Mobility of TonB and FepA in
Escherichia coliMembranes

Yoriko Lill', Lorne D. Jordan?, Chuck R. Smallwood>"?, Salete M. Newton?, Markus A. Lill*,
Phillip E. Klebba?*, Ken Ritchie*

1 Department of Physics, Purdue University, West Lafayette, Indiana, United States of America,

2 Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas,
United States of America, 3 Department of Chemistry and Biochemistry, University of Oklahoma, Norman,
Oklahoma, United States of America, 4 Department of Medicinal Chemistry and Molecular Pharmacology,
Purdue University, West Lafayette, Indiana, United States of America

na Current address: Department of Molecular and Cellular Biology, University of California, Berkeley,
California, United States of America
* peklebba @ksu.edu (PEK); kpritchie @ purdue.edu (KR)

Abstract

The important process of nutrient uptake in Escherichia coli, in many cases, involves transit
of the nutrient through a class of beta-barrel proteins in the outer membrane known as
TonB-dependent transporters (TBDTs) and requires interaction with the inner membrane
protein TonB. Here we have imaged the mobility of the ferric enterobactin transporter FepA
and TonB by tracking them in the membranes of live E. coli with single-molecule resolution
at time-scales ranging from milliseconds to seconds. We employed simple simulations to
model/analyze the lateral diffusion in the membranes of E.coli, to take into account both the
highly curved geometry of the cell and artifactual effects expected due to finite exposure

time imaging. We find that both molecules perform confined lateral diffusion in their respec-

0.006

tive membranes in the absence of ligand with FepA confined to a region 0.180% .7

radius in the outer membrane and TonB confined to a region 0.266" s WM in radius in the

inner membrane. The diffusion coefficient of these molecules on millisecond time-scales

pmin

was estimated to be 21" pm®/s and 5.47)> pm?/s for FepA and TonB, respectively, implying
that each molecule is free to diffuse within its domain. Disruption of the inner membrane
potential, deletion of ExbB/D from the inner membrane, presence of ligand or antibody to
FepA and disruption of the MreB cytoskeleton was all found to further restrict the mobility of
both molecules. Results are analyzed in terms of changes in confinement size and interac-
tions between the two proteins.

Introduction

The important process of nutrient uptake in Escherichia coli requires transport across the lipo-
polysaccharide (LPS)-rich outer membrane (OM), passage through the periplasmic space that
contains the peptidoglycan (PG), and finally transport across the cell’s inner membrane (IM),
that surrounds the cytoplasm. In many cases, the first step in this process involves transit
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through a class of beta-barrel proteins in the OM known as TonB-dependent transporters
(TBDTs). Certain uptake pathways require interactions between TBDT and the IM protein
TonB, via an undetermined, energy-dependent mechanism [1, 2]. Structural studies showed
direct interactions between the C-terminus of TonB [3, 4] and a domain in TBDT called the
TonB box.

TBDTs are energy-dependent gated channels that usually transport large metal complexes
which cannot fit through porins, and are too scarce to enter by mass-action-driven transport.
The number of TBDTs varies among different bacteria, from 7 demonstrated TBDTs in E. coli
to 65 predicted TBDTs in Caulobacter crescentus [5]. In E. coli TBDTs scavenge and bind
micronutrients with high affinities, especially iron chelates (called siderophores), but also vita-
min B12, and they are parasitized by colicins, phages, and naturally occurring antibiotics [5].
In other bacteria they were reported to serve as receptors for nickel complexes and even carbo-
hydrates [6]. Siderophores are microbial iron chelators that themselves bind iron with high
affinity to solubilize Fe’* in the environment. The cognate receptors for ferric enterobactin,
ferrichrome and ferric citrate, FepA, FhuA and FecA respectively, are examples of E. coli
TBDT. A typical TBDT spans the OM as an amphipathic 22-stranded B-barrel of about 50 A in
diameter with long extracellular loops, and a globular N-terminal domain that fills the barrel
[7]. The 150-residue N terminus blocks uptake through the barrel; it is held by hydrogen
bonds and polar contacts with the interior wall of the barrel [8] and it must move or rearrange
for transport to occur. Binding of specific substrates on the extracellular surface of TBDT relo-
cates the TonB box region on the periplasmic surface of the TBDT, allowing its interaction
with the C-terminus of TonB [5]. Ferric enterobactin transport through FepA may involve dis-
lodgement of the plug domain from the B-barrel (ball-and-chain model), or formation of a
smaller diffusion channel (transient pore model) [9, 10]. Site-directed alkylation experiments
indicated that the N-terminal domain of FepA at least in part dislodges into the periplasm to
allow passage of ferric enterobactin [10].

Energy-dependent uptake through TBDT' requires interaction with TonB in complex with
ExbB and ExbD in the IM (see Fig 1 for a schematic representation of this system). TonB con-
tains a proline-rich stretch of about 100 amino acids that may interact with ExbD, a globular
C-terminus that binds the TonB-box of TBDT, and a hydrophobic, transmembrane N-termi-
nus domain that may interact with ExbB [11]. Crystal structures described the C-terminus of
TonB in dimeric form [12, 13], and in monomeric form in complex with OM transporters [3,
4]. The monomeric TonB C-terminus was also characterized by NMR in solution [14]. The
TonB-ExbB-ExbD complex is thought to derive energy from proton-motive force across the
IM, and transmit it to the OM [15]. ExbD was predicted to have a similar structure to TonB,
with its N-terminal domain spanning the IM and the majority of its sequence residing in the
periplasm [16]. In higher abundance, ExbB was predicted to mainly reside on the cytoplasmic
side of the IM, with three transmembrane domains. The exact stoichiometry of the Ton-
B-ExbBD oligomer is unknown, but recent evidence suggests an ExbB,ExbD, complex [17].
Mechanistically, it was shown that TonB remains in the inner membrane and does not shuttle
across the periplasmic space during activity as was once proposed [18, 19]. Thus, the N-termi-
nal transmembrane domain of TonB remains resident in the IM, but downstream regions of
the TonB polypeptide cross the periplasmic space to interact with TBDTs. ExbBD show
sequence homology to the flagellar “stator” proteins MotAB [20], which inferred a rotational
motion by TonB that was supported by measurements of GFP-TonB anisotropy [21]. Hence,
TonB may pull or twist the N-termini of TBDTs to promote transport of substrates into the
periplasm. ATP-binding-cassette (ABC) transporters subsequently move the metal complexes
through the periplasm and IM.
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Fig 1. Schematic of the interaction between the TonB-ExbB-ExbD complex in the inner membrane
and its interaction with the Ferric enterobactin (FeEnt) TBDT FepA in the outer membrane of E. coli. In
this study, either FepA was labeled extracellularly with Alexa-555 or TonB was labeled intracellularly with
GFP. IM: inner membrane, PG: peptidoglycan layer, OM: outer membrane.

doi:10.1371/journal.pone.0160862.9001

The technique of single-molecule and single particle tracking has been used for the past 15
years to probe structure and interactions on length scales ranging from tens of nanometers to
micrometers in the membranes of bacterial cells. The earliest study of outer membrane protein
mobility using single particle tracking was performed by Oddershede et al. [22], observing the
diffusion of LamB in live E. coli. Since then several studies have employed fluorescent probes
to observe the molecular mobility in bacteria at the single molecule level. Specifically, high-
speed single-molecule tracking (SMT) has been employed to observe GFP or Kaede labeled
protein diffusion in the E. coli cytoplasm at observation rates up to 250 Hz [23, 24] and up to
1000 Hz [25] and in the inner membrane of E. coli at rates up to 1000 Hz [26]. Leake et al. has
employed single molecule methods to monitor the mobility and stoichiometry of TatA in the
twin-arginine translocation (Tat) system and of MotB of the bacterial cytoplasmic membrane
with fluorescent proteins [27, 28]. Rassam et al. tracked colicin labeled BtuB and Cir in the
outer membrane of E. coli and found both proteins confined in domains approx. 0.5 um diam-
eter domains [29]. A recent report has also studied TcpP in V. cholerae cells using a super-res-
olution imaging with photoactivated localization microscopy (PALM) and single-molecule
tracking to reveal localization and mobility [30].

Here, we conducted single molecule imaging to measure the mobility of the ferric entero-
bactin transporter FepA and TonB in the membranes of live E. coli at time-scales ranging from
milliseconds to seconds. In an iron deficient environment, as many as 35,000 copies/cell of
chromosomally encoded FepA exist in the OM [19], as opposed to TonB, which occurs at a
maximum concentration of 1000 copies/cell [31]. Thus, the low rate of ferric siderophore
uptake (about 5 per min; [19, 32, 33]), together with the finding that all FepA proteins in the
OM transport ferric enterobactin [34], suggest that the rate limiting factor in the uptake is
TonB’s capacity to find and facilitate ligand-bound OM transporters. We discovered that both
proteins show confined diffusion in their respective membranes. At high time resolutions, the
diffusion coefficient for each protein was similar, implying essentially free motion within their
confining regions. The movement of FepA occurred in a much smaller region than that of
TonB. We also investigated the effect of membrane potential on the mobility of FepA and
TonB, as well as the effect of ExbB/ExbD deletion on TonB mobility. Our results show small
effects on the lateral mobility of FepA and TonB through disruption of the inner membrane
potential. Deletion of ExbB/ExbD only slightly altered the diffusion behavior of TonB as well.
The presence of ferric enterobactin in solution slowed the lateral mobility of FepA and TonB.
We conducted simple simulations to model/analyze the lateral diffusion in the membranes of
E.coli, to take into account both the highly curved geometry of the cell and artifactual effects
expected due to finite exposure time imaging [35].

Materials and Methods
Bacterial strains

E.coli strain BN1071 (F-, entA, pro, trp, B1) harbored plasmid pGT, that encodes GFP-TonB
[19]. In this construct, a mutant version of Aequorea vitoria GFP (sg-GFP, pQbioT7-GFP from
QbioGene, Irvine, CA, which contains substitutions F64L, S65C, 1167T) was cloned in frame
between the natural tonB promoter and the wild-type tonB structural on the low copy vector
pHSG575 [19, 36], to produce pGT. GFP-TonB has normal TonB activity, including ferric
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siderophore uptake and colicin susceptibility [19]. OKN23, which lacks exbB and exbD, was
derived also from BN1071 by site-directed deletion mutagenesis. The doubling time of
BN1071, the parent E. coli strain, is ~60 min in iron deficient minimal media [37]. Both the
growth of its derivative strain OKN3/pGT, and its rate of >FeEnt transport, are indistinguish-
able from that of BN1071 [19].

Fluorescence labeling of FepAS271C/FepAA698C

OKN3 (AfepA) is a derivative of E.coli K-12 strain BN1071 that we transformed with plasmids
harboring wild-type fepA or its mutant derivatives. We used site-directed Cys substitution
mutations to create fepA alleles S271C and A698C on pITS23, a derivative of pHSG675 that car-
ries wild-type fepA under its natural promoter [10, 38, 39]. We modified the resulting cys resi-
dues with Alexa 488 or 546 maleimide in live cells. FepA is the only OM protein that is
significantly labeled by these procedures [10, 38]. The strain OKN3/pGT/pITS23fepAS271C
also grows and transports FeEnt just like BN1071 [21, 38].

Antibody against FepA

Anti-FepA monoclonal antibodies (MAD 44, MAb 45) were diluted from ascitic fluids and
used at 1/200 [38, 40]. They recognize FepA surface epitopes within residues 290-339, and
block binding of both ferric enterobactin and colicin B. We labeled them with Alexa-555
using the reagents and protocol of Invitrogen/Molecular Probes (Eugene, OR).

Ferric Enterobactin
FeEnt was prepared and purified as previously described [38, 41].

Growth of cells

After overnight growth at E. coli strains in Luria-Bertani (LB) media supplemented with strep-
tomycin and chloramphenicol, we subcultured them at 1% into morpholinopropanesulfonate
(MOPS)-buffered minimal medium [42] without iron, to incubate a further 5-7 hours at 37°C.
For experiments with A22 (S-(3,4- Dichlorobenzyl)isothiourea), the MOPS medium contained
A22 at 30pg/ml during this incubation. The cells labeled with Alexa 488/546 were kept on ice
for 1-2 days until they were revived at room temperature in MOPS medium for >1 hour
before single-molecule imaging.

Sample preparation for single-molecule imaging

Glass-bottom cover dishes were used as sample chambers. The cover dishes were immersed in
5% Contrad detergent overnight. After 30 min of sonication, they were immersed in 0.1 M
KOH overnight, sonicated 30 min, and rinsed in clean water. Prior to use, 100 pl of 0.1 mg/ml
poly-L-lysine (M.W 70,000-150,000, Sigma) was allowed to adsorb to the dried cover glass.
Excess poly-L-lysine solution was removed and the cover glass was rinsed with clean water. E.
coli cells were plated in the chamber and allowed to adhere to the poly-L-lysine layer for 20
min in MOPS minimal medium. Excess nonadherent cells were washed away with phosphate
buffered saline (PBS).

Single-molecule measurement

Imaging was performed using oblique angle laser illuminated epifluorescence microscopy. An
argon-ion (488 nm, Spectra Physics, Newport, Irvine, CA) or He-Ne (543 nm, Research Elec-
tro-Optics, Inc., Boulder, CO) laser was directed by a dichroic mirror (Chroma Technology,
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Bellows Falls, VT) off the optical axis through the objective (1.45 NA oil immersion, Olympus
America, Melville, NY) to illuminate only the adherent cells instead of the entire sample cham-
ber. Fluorescence emission was collected through the dichroic mirror and an emission filter
(500-550 nm or 562.5-637.5-nm, Chroma) on a dual multichannel-plate intensified, Peltier-
cooled CCD camera (Turbo-120Z, Stanford Photonics, Palo Alto, CA) acquired as a continu-
ous stream of 30 - 1000Hz without delay between images. Image magnification was set to have
the pixel resolution to be about 50 nm/pixel at the camera. The sample with E.coli cells in PBS
were kept at approximately 32°C during the measurements which lasted up to 1 hour. Presence
of doubling cells showed their viability under these condition and there was no evidence of
changes in the measured properties throughout the observation time. For the experiments
with the proton ionophore CCCP, cells were observed in PBS containing 0.5 mM CCCP. To
observe the effect of antibody or ligand binding to FepA on its own or TonB diffusion, we
added monoclonal antibody against FepA to 0.1 mg/ml or FeEnt to about 1 puM, respectively,
in PBS.

Data collection was performed as follows. Cells in a field of view were illuminated ini-
tially for a few minutes to photobleach existing fluorescence in the cell to aid in imaging
single molecules. Trajectories were then collected by illuminating the cell for only a few sec-
onds more. Laser powers ranged from 30-0.3 W/cm®. To avoid effects of this laser illumina-
tion, we observed each field of view once, then moved to a new area of the dish. Only those
fluorescence signals which showed single step photobleaching and or blinking during the
observation time were used in the analysis. The illumination power was set at each observa-
tion frame rate to keep the signal-to-noise ratio, defined as (I, — I,)/+ /02, + 02,, where I
and I, are the sums and ¢%; and ¢°;, are the variances in the sum of intensity in a 9x9 pixel
box surrounding the signal and neighboring the signal, respectively, to approximately 2 to
maximize the lifetime of the fluorescence signal.

Single-molecule analysis

The video images that contained signal from single GFPs or Alexa 488/546 were analyzed to
follow diffusion. The limited focal depth of the single molecule microscopy set up and an illu-
mination off the optical axis through the objective allowed detection of relatively thin section
in the plane of the sample. The apparent position of the fluorescent molecules in the video
image was determined in two-dimension as described in previous studies [43]. Data in which
fluorescent molecules appeared at least ten consecutive frames were employed in the analysis.
To analyze molecular movement quantitatively, the mean-square displacement (MSD), (r*(£)),
of the observed fluorescent molecules was calculated for each trajectory. All the average MSD
at each time delay was determined by averaging over the MSD calculated for each trajectory
obtained from each experiment.

Individual fluorescent molecules were imaged diffusing in live E. coli and tracked to deter-
mine their trajectories. The imaging was done at rates of 30, 40, 60, 120, 260, 400 and 1000 Hz
and data was collected at each rate for at least 10 frames. For observing longer time range,
additional imaging was done at rates 1, 2, 5, 10, and 20 Hz. The MSD of fluorescent molecules,
averaged over all trajectories measured at that rate, vs. time delay was determined at each rate.
For each frame rate in each of the observed conditions, at least 70 (except for FepA in the pres-
ence of CCCP, 20-100) trajectories were used in the averaging. In order to produce a single,
combined MSD curve over all rates, the y-intercept of a linear regression through the first six
MSD points at 1000 Hz was set to the origin and then each successive MSD curve’s y-intercept
was set so as to make a continuous MSD curve over all time scales. We determined micro-
scopic diffusion coefficients by assuming simple Brownian motion for the short time range.
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The MSD should follow a linear dependence on time according to (r*) = 4Dt + &, where D,
the effective diffusion coefficient can be determined by a linear fit to the average MSD versus
time delay. &° is due to the finite accuracy with which the particle position can be measured.
From our measured 6> we find our precision in localization to be about 50 nm at 1000 Hz.
Since the data collected at the rates slower than 60 Hz did not show any change in diffusion
behavior at the longer time scale, we have employed only the data obtained at 60 Hz and faster
for detailed analysis.

Monte Carlo simulation

A program described in previous study was modified to perform Monte Carlo simulations of
2-dimensional TonB and FepA diffusion in the membrane [25]. Briefly, at the beginning of
each run of the simulation, a single molecule, represented as point particle, was randomly
placed on the surface of an ideal E. coli cell (a cylinder whose length equals its diameter with
hemispherical end caps). Since we observed most TonB molecules within the cylindrical por-
tion of E.coli, we only allowed the simulations for TonB diffusion to reside in the cylindrical
portion of the ideal cell, employing reflective boundary conditions at the edges of the cylinder.
The diffusion of FepA was modeled on the entire simulated cell surface. Steps were then taken
on the surface in random directions with lengths taken from a normal distribution whose
width depends on the simulated particle’s diffusion coefficient. Confinement was implemented
by centering a circular area of given radius on the surface about the point particle’s initial posi-
tion with reflective boundary conditions.

Simulations were run internally at a time scale of 0.5 ms per step. To simulate blurring
effects due to the finite exposure time of the camera, sequential positions obtained in the simu-
lation were averaged to reproduce measurements taken at the experimental frame rates. For
each frame rate and simulation condition (diffusion coefficient and confinement radius), 1000
trajectories were collected. Simulations were analyzed for each frame rate used in the same
manner as the experimental measurements and the computed combined MSD was compared
to the observed combined MSD. Fitting was performed by minimizing the reduced Chi-
squared value between the simulated and observed combined MSD for varying diffusion coef-
ficient and confinement size. The vertical shift for each simulated frame rate was left as a free
parameter in the fitting to the observed combined MSD. The reduced chi-squared surface over
a range of diffusion coefficients and confinement sizes for all the experimental data are shown
as supporting figures (54 Fig).

Results
Spatial Distribution of TonB and FepA

Initial Observation of GFP-TonB and Alexa-labeled FepA containing cells, prior to any photo-
bleaching, is shown in Fig 2. Treatment of the cells with the membrane depolarizing drug
CCCP or the cytoskeleton disrupting drug A22 did not affect the localization patterns. Further,
the cell strain lacking ExbB/D also showed no change in the localization of TonB.

Reduction in overall intensity through photobleaching of this initial, bright fluorescence
signal for GFP-TonB and Alexa-labeled FepA containing cells is shown in Fig 2B and 2D.
TonB shows apparent clustering as the total intensity of fluorescence is reduced under all con-
ditions we have studied in this paper. In comparison, Alexa-labeled FepA showed a faint (low
contrast) indication of clustering during photobleaching of the initial fluorescence. Due to the
small expected size of these apparent clusters (see single molecule tracking results below) and
the highly curved nature of the cells, quantitative analysis of these images was not performed.
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Fig 2. Images of the distribution of TonB (a, b) and FepA (c, d) in the membranes of E. coli at high (a, ¢) and
low (b, d) concentrations of active fluorescent markers. At low concentration, both proteins show apparent
clustering in their respective membranes.

doi:10.1371/journal.pone.0160862.g002

Mobility of TonB and FepA

We observed the lateral mobility of GFP-TonB and Alexa-FepA in the absence of FeEnt
through direct imaging of individual molecules. The motions of both molecules were confined
in regions much smaller than the cell dimension (Fig 3A). From the average maximum mean-
square displacement (MSD) of each molecule during observation, which should asymptotically
approach (r*) = L*/3 in 2-D where L is the confinement diameter [44], TonB was confined
within a radius of about 0.2 um, and FepA within about 0.1 pum, respectively. They reached
their respective boundaries within about 50 ms and 10 ms, respectively. We did not observe
any change in the confined diffusion behavior over 10 s observation time. Note that one can
compare directly the mobility here with that of cytoplasmic GFP in the same cellular system in
reference (25) to see that we are observing a unique mobility due to GFP-TonB being mem-
brane bound.

The observed average MSDs of TonB and FepA in their membranes were modeled using
Monte Carlo simulations of diffusive motion over an idealized 3-D cell surface projected onto
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a2-D “camera” as is in the actual experiment. The diffusion of TonB and FepA was well
described with models employing confinements that restrict Brownian motion within about
0.266" 00 km and 0.1807¢ 0> pm in radius, respectively with short-time (microsecond time-
scale) diffusion coefficients set in the range 5.4") 2 um®/s for TonB and 21°] um?®/s for FepA
(Fig 3B and 3C). Neither varying cell sizes nor implementing the presence of obstacles in the

membrane improved the fit.

Mobility of TonB and FepA under various conditions and treatments

In what follows we will model changes in the mobility of FepA by the simulation above, report-
ing changes in confinement size and microscopic diffusion coefficient. For changes in the
mobility of TonB, we will employ two models in the analysis. First we will, as for FepA, use the
above simulation method to determine possible changes in confinement size and microscopic
diffusion coefficient. The second model, will assume that changes in TonB mobility and con-
finement may be due to differential interaction with the more highly confined FepA. Changes
in confinement is then modeled as a mixture of a fraction of TonB diffusing as TonB does in
the wild-type cell in the absence of added FeEnt and a fraction that diffuses as the more highly
confined FepA does due to interaction. This is accomplished by using the experimental results
of the last section as standard curves (Fig 3) and fitting the observed MSD for TonB under a
given condition as a mixture of the two standard curves.

The proton ionophore CCCP dissipates the proton-motive force (PMF) in membranes,
and is used to investigate energy-dependent mechanisms in cells. Previous studies showed that
CCCP prevents transport of substrates by TBDTs [34, 45, 46], and we looked at the mobility of
both TonB (Fig 4A) and FepA (Fig 4B) in CCCP-treated cells. Simulation of TonB diffusion
implied a similar confinement size of 0.240fgjg§8 um radius with a diffusion coefficient of
3.8"% um?/s at short times (S1A Fig). The MSD of TonB motion was also fit using a weighted
average of the MSD for TonB and FepA in the absence of CCCP (S1B Fig) revealing a best fit
when the curve consisted of 65 + 5% the MSD for TonB and 35 + 5% the MSD for FepA. The
mobility of FepA changed slightly in the presence of CCCP, with a diffusion coefficient of
277 um®/s and a confinement radius of 0.150") 01> um, comparable to the confinement size
in untreated cells (S1C Fig).

To check the effect of the siderophore FeEnt on the mobility of both FepA and TonB, their
motion was imaged in the presence of an excess, saturating amount of FeEnt. While FeEnt had
little apparent effect on FepA mobility in the OM (Fig 4D), its presence and binding to FepA
in the OM restricted TonB motion in the IM. Fitting by the confinement model suggests that
diffusion coefficient of FepA is 20"' um*/s with a marginal reduction in confinement size to
0.160"0" um, whereas the mobility of TonB was decreased overall to a diffusion coefficient of
3.8"07 um*/s and a confinement radius of 0.186 ") )+
Fig 4C and 4D. If we instead assume a fraction of TonB is bound to FepA and hence moves as
if confined in the same domain FepA is confined in, the MSD for TonB can be fitted by a
weighted average of the MSD of TonB (53 + 3%) in the absence of FeEnt and 47 + 3% the
MSD for FepA.

In cells lacking ExbB and ExbD, which participate with TonB in energy acquisition from
the electrochemical gradient across the IM, the lateral mobility of TonB was more restricted as
well (Fig 5A). Fitting the MSD with a combination of the MSD’s from TonB and FepA in wild-
type cells revealed a best fit when the curve consisted of 35 + 2% the MSD for TonB and
65 + 2% the MSD for FepAs. The best simulation assuming changes in confinement size and
diffusion coefficient to fit to the experimental data from E.coli without ExbB and ExbD was

pm in the presence of FeEnt as shown in
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Fig 4. Effect of CCCP and ligand FeEnt on MSDs of TonB and FepA. TonB in the presence (triangles) and
absence (circles) of (a) CCCP or (c) FeEnt. FepA in the presence (upside-down triangles) and absence (squares) of
(b) CCCP or (d) FeEnt. Fitting suggests that the effect of CCCP and the ligand FeEnt on the mobility of TonB is a
reduction in the diffusion coefficient and confinement size and a reduction in confinement size for FepA.

doi:10.1371/journal.pone.0160862.9004

with a confinement size set to 0.1787)0)> um in radius and a short-time diffusion coefficient at

1.470% um?®/s (S3A Fig).

The mobility of GFP-TonB was also observed while OM-resident FepA was exposed to
anti-FepA MADs (Fig 5B). The binding of anti-FepA MAbs 44 or 45 [40] blocks FeEnt uptake
and induces conformational changes in FepA. The resulting MSD plot best fit a mixture of
43 + 3% of the MSD of baseline TonB and 57 + 3% for the MSD for FepA. Simulations sug-
gested a reduced confinement size (0.200")" um) compared to the absence of the antibody
against FepA, but an increased diffusion coefficient 10.0"} 7 um?/s (S3C Fig).

To test if the MreB-based cytoskeleton was responsible for confining TonB, we observed
the mobility of TonB in the presence of the MreB-disrupting drug A22 [47, 48]. There was a
measured effect in the MSD of TonB in cells treated with A22 compared to that of untreated
cells (Fig 5C). In these cells, rounded due to disruption of MreB polymerization, TonB diffu-
sion was modeled with a confinement of 0.183) > um and diffusion coefficient of 6.37)0
um?/s. The results of all fits are summarized in Tables 1 and 2.
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Fig 5. Effect of (a) deletion of ExbB/D (triangles), (b) presence of monoclonal antibody against FepA
(triangles), and (c) presence of MreB—disrupting drug A22 (triangles) on MSDs of TonB (circles).
Fitting suggests that the effect of deletion of ExbB/D and disruption of MreB is to reduce the size of
confinement of TonB while the effect of anti-FepA is to increase the mobility of TonB which appears as a
decrease in confinement size.

doi:10.1371/journal.pone.0160862.9005
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Table 1. Parameters to fit to variable confinement size model

Molecule/Condition Diffusion coefficient (um?/s) Confinement in radius (pm)
TonB 5.4%07 0.2667% 50
TonB/CCCP 3.8 0.2407 00
TonB/Aexbb/d 14702 0.178%0 00
TonB/anti-FepA 10.07¢ 0.2000 007
TonB/A22 6.3 0183750
TonB/FeEnt 3.8"07 01865502
FepA 217 0.1807 o7
FepA/CCCP 27413 0.150001
FepA/FeEnt 207 0.160"050

doi:10.1371/journal.pone.0160862.t001

Discussion

Lateral diffusion of TonB in the inner membrane and FepA in the outer membrane, observed
by single-molecule tracking showed confined mobility. Simulation of Brownian motion in the
highly curved membrane in confinement domains well described the experimental data that
were fitted to the model by employing diffusion coefficients similar in order of magnitude to
that from earlier single-molecule studies on E.coli membrane proteins [22, 49, 50]. From the

simulated data, the diffusion coefficient of TonB was estimated as about 5.4")> um?/s, with a

+0.007
—0.009

the range of 21" um®/s with a confinement size of 0.180*) (¢ um in radius. The confinement

compartment size of about 0.266 pm in radius. FepA’s diffusion coefficient was found in
of both proteins was consistent with the apparent clustered distribution of these proteins we
observed when we viewed higher concentrations of the labeled proteins in the membranes.

Assuming that the above results represent the base diffusion properties of TonB and FepA
in their respective membranes under ligand free conditions, we also analyzed the mobility of
each protein under varying conditions in light of possible interactions between them. Because
the mobility of FepA was essentially unchanged in the conditions we tested, and because FepA
was confined to a smaller region than TonB, interactions between the two proteins may be
revealed as a shift in the confinement of TonB from its larger domain to the smaller domain of
FepA. As such, we analyzed the mobility of TonB under different conditions as a mixture of
the mobilities of FepA and TonB under ligand-free conditions. Under ligand-free conditions,
TonB may still interact transiently with FepA but since it is confined in a larger region than
FepA these interactions must be transient. A shift in confinement of TonB to smaller areas
would imply the appearance of longer lasting interactions with FepA.

In this analysis, the effect of membrane depolarization by CCCP was minimal with the
MSD of TonB split: 35 + 5% of TonB molecules behaved like FepA and 65 + 5% like

Table 2. Parameters to fit mixed diffusion mode model

Molecule/Condition % FepA % TonB
TonB/CCCP 355 65+5
TonB/Aexbb/d 65+2 35+2
TonB/anti-FepA 57+3 43+3
TonB/A22 48"3 527,
TonB/FeEnt 47+3 53+3
FepA/CCCP 1005, 05"
FepA/FeEnt 10070 . 00

doi:10.1371/journal.pone.0160862.t002
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undisturbed TonB. In cells lacking ExbB and ExbD, TonB’s mobility was split into 65 + 2%
like FepA and 35 + 2% like undisturbed TonB. These results imply that TonB may interact
more strongly with FepA in the absence of ExbB/D, thus restricting the motion of a large por-
tion of TonB to the domain that delimits FepA.

A recent study of the motion of GFP-TonB in the IM, measured by fluorescence anisotropy,
showed restriction in GFP-TonB movement compared to freely diffusing cytoplasmic GFP
[21]. Disruption of membrane potential (necessary for transport of iron across the OM)
decreased the rotational motion of TonB. On the other hand, deletion of the proposed energy
harvesting complex ExbB/D that presumably allows TonB to acquire energy for transport
from the membrane potential, increased the rotational mobility of TonB. Our data show that
in cells treated with CCCP, or lacking ExbBD (AexbBD), the lateral mobility of TonB was more
restricted under both conditions. Upon addition of the cognate ligand FeEnt, while FepA’s
mobility was decreased in terms of diffusion coefficient while keeping the confinement size
relatively unchanged, TonB’s MSD become more restricted overall. Interpreting this result in
terms of interactions, FepA’s MSD was essentially unchanged, whereas TonB’s MSD could be
fitted as a mixture between 47 £ 3% of FepA’s MSD and 53 + 3% of ligand-free TonB’s MSD.
The former subpopulation diffusing like ligand-free FepA may be a consequence of the inter-
action between TonB and FepA during FeEnt transport. The data suggest that about 1/2 of the
time TonB was free from, or only transiently interacting with FepA, whereas the other half of
the time TonB was bound to FepA. The addition of anti-FepA MADbs that recognized the
receptor’s ligand binding site restricted TonB’s motion slightly more, such that 57 + 3% moved
like FepA and only 43 + 3% moved like baseline TonB. Because these antisera inhibit FeEnt
uptake [40], it is likely that they simulate ligand binding, but without subsequent transport,
and thereby cause long-lived interactions between TonB and FepA.

These findings taken together imply that interaction between TonB and FepA may be inves-
tigated through the mobility of TonB, which changes in response to association with FepA.
The timescale at which we observed dynamics allowed us to detect determinants of diffusion
behavior along the membrane that are structural in nature, as well as from molecular interac-
tions. A method to observe mobility a at smaller timescale would allow detection of molecular
interaction effects in more detail, to further dissect the step-by-step mechanism of ligand
transport through the FepA-TonB/ExbBD complex.

Finally, to test if the MreB-based cytoskeleton was responsible for the structure confining
TonB, we imaged mobility in cells in the presence of A22. TonB diffusion in these cells had a
confinement of 0.183f3:33g um and diffusion coefficient of 63:1)2 pmz/ s. The decrease in con-
finement size of TonB in these A22 treated cells despite the disruption of MreB polymerization
suggests that the cytoplasmic structure is most likely not the cause of confined lateral mobility
of TonB in the cytoplasmic membrane. The limiting factor leading to relatively immobile
TonB maybe the result of mesh like structure of peptidoglycan in the periplasm keeping the C-
terminus of TonB in confined regions.

Supporting Information

S1 Fig. Cells treated with membrane potential disrupting CCCP. Fit to the MSD of TonB
(data: solid triangles, fit: open triangles) by (a) confinement model and (b) assuming a mixture
of the MSD for ligand-free TonB (Fig 3B) and FepA (Fig 3C). Fit to the MSD of FepA (data:
solid upside-down triangles, fit: open upside-down triangles) (c) confinement model and (d)
assuming a mixture of the MSD for ligand-free TonB (Fig 3B) and FepA (Fig 3C).

(TIF)

PLOS ONE | DOI:10.1371/journal.pone.0160862 December 9, 2016 14/18


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160862.s001

@° PLOS | ONE

Confined Mobility of TonB and FepA

S2 Fig. TonB and FepA mobility in the presence of FeEnt. Fit to the MSD of TonB (data:
solid triangles, fit: open triangles) by (a) confinement model and (b) assuming a mixture of the
MSD for ligand-free TonB (Fig 3B) and FepA (Fig 3C). Fit to the MSD of FepA (data: solid
upside-down triangles, fit: open upside-down triangles) (c) confinement model and (d) assum-
ing a mixture of the MSD for ligand-free TonB (Fig 3B) and FepA (Fig 3C).

(TIF)

S3 Fig. Model fits to the MSD of TonB. Fit to the MSD of TonB (data: solid triangles, fit:
open triangles) by (a,c,e) confinement model and (b,d,e) assuming a mixture of the MSD for
ligand-free TonB (Fig 3B) and FepA (Fig 3C) for cells (a,b) lacking ExbB/D, (c,d) in the pres-
ence of anti-FepA and (e,f) in the presence of MreB disrupting A22.

(TIF)

S4 Fig. Reduced chi-squared distribution between the MSD of the models and the experi-
mental data. Reduced chi-squared surfaces from Monte Carlo simulation fits to the observed
MSDs: ligand-free (a) TonB and (b) FepA, (c, d) TonB and FepA in the presence of FeEnt, (e,
f) TonB and FepA in the cells treated with CCCP, (g) TonB for the cells lacking ExbB/D, and
TonB in the presence of (h) anti-FepA antibody and (i) A22. Reduced chi-squared distribution
for models assuming a mixture of the MSD for ligand-free TonB (Fig 3B) and FepA (Fig 3C):
(j» k) TonB and FepA in the presence of FeEnt, (I, m) TonB and FepA in the cells treated with
CCCP, (n) TonB for the cells lacking ExbB/D, and TonB in the presence of (o) anti-FepA anti-
body and (p) A22.

(PDF)
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