
IMPLEMENTATION AND EVALUATION OF

BALANCED AND NESTED GRID

(BANG) FILE STRUCTURES

BY

TIONG-HU LIAN
II

Bachelor of Science in Engineering

National Taiwan University

Taiwan, R. 0. C.

1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1988

. \ J' ;.; . t • : : ~ ~ . ,
' • ' • ·: ;" ~ .. •• t . . .

OkJa'h~mr. State Un1v. Library

IMPLEMENTATION AND EVALUATION OF

BALANCED AND NESTED GRID

(BANG) FILE STRUCTURES

Thesis Approved:

Thesis Adviser

HU-.·du c!:&

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would like to express sincere gratitude to my thesis

adviser, Dr. D. D. Fisher, for his suggestion, assistance,

patience, and encouragement through this study. I also wish

to express my deep appreciation to my committee members,

Dr. H. Lu, and Dr. K. M. George for their contributions and

advice, and Dr. G. E. Hedrick for substituting during my

oral examination.

I wish to express my gratitute to the Department of

Computing and Information Sciences of Oklahoma State

University and Dr. H. Lu for providing me a teaching

assistantship.

A special thank goes to my parents, Mr. and Mrs.

Tjin-Siong Lian, and my brothers and sisters for their help

in every aspect.

iii

Chapter

I.

II.

III.

IV.

v.

VI.

TABLE OF CONTENTS

INTRODUCTION • . •

LITERATURE REVIEW

GRID FILE

Introduction • .
Grid File Structure .
Grid directory
Performance . . • • .
Update • •

~plitting •••
Merging

Query • • . •

BANG FILE

Introduction • • •
Mapping function

·Directory
Update • . •

Splitting
Merging . . • • .

Searching strategy
Exact match query
Partial match query
Region query •

PERFORMANCE COMPARISON

Implementation of 3D grid file and
3D BANG file • • • •

Grid file algorithm .••..•.
BANG file algorithm . • .

Performance evaluation

SUMMARY AND CONCLUSION

BIBLIOGRAPHY -.

iv

Page

1

5

17

17
19
21
24
26
27
33
37

40 ..-----·

40
43
55
60
62
63
66
66
67
69

70

70
73
89
94

117

119

LIST OF TABLES

Table Page

I. Performance Comparison 12

II. Data Distribution 97

III. Databucket Utilization . . . 98

IV. Range Retrieval of Test File I 100

v. Range Retrieval of Test File II 100

VI. Range Retrieval of Test File III 101

VII. Range Retrieval of Test File IV 101

v

LIST OF FIGURES

Figure Page

1. 3 Dimensional MDBT .. 8

2. Example of 2-D-B-tree 8

3. Linear Hashing ... 14

4. Organization of Grid File 19

5. Single Level Directory . 22

6. Directory Structure 23

7. Accessing Method . . 25

8. Splitting of Databucket and Subdirectory Region 28

9. Splitting of Subdirectory Bucket and Root
Directory Region 28

10. Subscales 32

11. Buddy and Neighbor System 35

12. Deadlock in Neighbor System 35

13. Deadlock in Buddy System . 35

14. Directory Merging 36

15. Region Query ... 38

16. The BANG File Structure 42

17. The Grid File Structure 42

18. Numbering Method 44

19. Splitting History for 3 Dimensional Data Space 46

20. Space Partition 49

21. Region Numbering . 54

vi

Figure

22. Nested Directory ...

23.

24.

25.

26.

Double Level Directory

Splitting . . .

Merging

Query

27. Splitting of Directory Region

28. The Growth of the Directory

29. Data Distribution of Test File 1 •.

30.

31.

Databucket Utilization for Test File 1 .

Pointer Overhead for Test File 1

32. Data Distribution of Test File 2 .

33. Databucket Utilization for Test File 2

34. Pointer Overhead for Test File 2 .

35.

36.

37.

38.

Data Distribution of Test File 3 .

Databucket Utilization for Test File 3 •

Pointer Overhead for Test File 3 .

Data Distribution of Test File 4 .

39. Databucket Utilization for Test File 4 .

40. Pointer Overhead for Test File 4 ...

vii

Page

55

58

61

64

67

79

95

103

104

105

106

107

108

109

110

111

112

115

116

CHAPTER I

INTRODUCTION.

Indatabase systems it is often reguired to make a

retrieval based on a set of keys, which is called multikey

retrieval or associative retrieval. The method of retrieving

the records by this type of query is a complex operation

since it requires the retrieval of a set of records that

satisfies given attributes. In this thesis we are concerned

with a large database where all records have to be distri

buted among disk blocks in the secondary storage. A query to

a set of records that matches the query is completed by

retrieving all disk blocks where the records are located.

Therefore, the efficiency of the query depends on the

database organization within the secondary storage.

Currently there are several file structures that are

proposed to deal with multikey retrieval such as inverted

files or secondary index files for those fields or attribu

tes which may be used as access keys during the query,

multidimensional search trees or k-d trees[l,2] and various

multikey hashing file structures. However, these file

structures have some shortcomings. A retrieval of the

records that match the query in the inverted file structure

1

2

requires an excessive number of disk accesses. If the

distribution of records is not uniform, then the k-d tree is

highly unbalanced. In order to keep it balanced, a costly

restructuring of the tree may be required. The hashing file

structure handles the collisions by using an overflow

bucket. This design method increases the number of disk

accesses during a query, especially a query to a record

which does not exist.

In this thesis we compare two types of index-based file

structures, the grid file[l4] and the BANG file[7] structu

re, used to organize large, dynamic, k-dimensional records

efficiently. By large it is meant that all the records and

most of the index must be stored in the secondary storage.

By dynamic it is meant that insertions and deletions of

records are intermixed with the queries.

The grid file is a file structure that organizes the

data space of a given set of records. Each indexed attribute

is handled symmetrically. Some properties are expected from

the grid file structure.

1. High adaptability to the change of data distribu

tion. A disk block can be split or merged in respon

se to the insertion or deletion of a record.

2. Efficient query. An exact match query can always be

completed in two disk accesses; furthermore, an

efficient region query is obtained because the grid

file structure preserves the neighborhood property

of the records.

3

3. Reasonable storage utilization.

The BANG file is a file structure that attemps to

eliminate the disadvantages of the grid file structure. We

expect the following additional advantages of the BANG file.
. .

1 .•. The size of the di-rectory is more compact. In the

grid file structure, the size of directory grows

rapidly because multiple directory elements point

to the same data bucket. In order to eliminate the

overhead of these pointers, the BJ~~G file structure

allows a region to be nested inside another region

where the shape of the region is not necessarily

convex.

2. The BANG file structure maintains a higher storage

utilization. The distribution of records within

the data buckets is more uniform because the parti-

tion algorithm tries to find a boundary that parti-

tions the overflowing data bucket into two almost

balanced data buckets. This property provides two

advantages:

a. a range query can be _completed with less disk

accesses;

b. less splitting and merging .

. 3. The merging algorithm is simpler since no deadlock

detection is required.

In the next section several structures that handle

multidimensional records are reviewed. The concept and

design strategy of the grid file and BANG file are discussed

in Chapters 3 ~nd 4 .. In Chapter 5 we present the comparison

between 3 dimensional grid file and BANG file in space

utilization and range query. In order to show the advantage

of "the BANG file over the grid file, we generate a set of 3

dimensional recorcis. where the values of each attribute

follow a Poisson distribution. In this chapter we discuss

·the work needed· to modify· the 3 dimensional implementation

into an n dimensional implementation where n > 3. The final

conclusion of this thesis and suggestions for further study

are given in Chapter 6.

4

CHAPTER II

LITERATURE REVIEW

Fil& structur~s that provide m~ltikey access to records

are of interest in various fields of data processing. For

example, in an enrollment file which contains information

about the students of a university, it may be desirable to

search for all international students who are majoring in

engineering and have 3 <= GPA <= 4. The design of a file

structure that allows efficient access to the records in

multidimensional data (each record is identified by several

attributes) is significantly more difficult than in one

dimensional data, since natural orders of multidimensional

data do not exist.

In practical applications the most common method for

multikey access to data is to construct an inverted file,

i.e., an independent index or directory file for each attri

bute. However, for associative queries involving more than

one key, e.g. region query, it may become necessary to

access a number of inverted files and, further, to perform

costly intersections in order to obtain the records that

satisfy the query. Another disadvantage of this method is

the cost to modify the index files during an insertion or

deletion.

5

6

Several multikey file structures have been proposed

that avoid the deficiencies of the inverted file by

combining all keys into a single access path, so that the

same structure handles all keys. In general multikey file

structures can be classified according to whether they are

static or dynamic and whether they are based on comparative

search or address· computation .. In the following we discuss

some examples of multikey file organizations based on

comparative search, such as quadtrees[6], k-d trees [1,2],

multidimensional B-trees, and k-d-B trees, and some multikey

file orqanizations based on address computation structures

such as interpolation based i~dex maintenance, and

multidimensional linear dynamic hashing.

Quadtrees[6] are a generalization of binary trees for

the treatment of data with inherently two-dimensional

structure. Each node of the quadtree stores one record and

has up to four sons. The root of the tree divides the

universe into four quadrants, namely NE, NW, SW, and SE.

Insertion of a new record into a quadtree is based on the

same philosophy that governs insertion into binary trees. At

each node, a comparison is made and the correct subtree is

chosen for the next test. The position to insert the new

record is found after the comparison with the leafnode.

There are several disadvantages in the use of quadtrees to

organize a dynamic multidimensional data.

1. In a nonuniform data distribution, a costly restruc

turing is needed to keep the quadtrees balanced.

2. Deletion of a record from quadtrees is complex. The

difficulty lies in deciding what to do with the

subtrees that were attached to the deleted node.

3. The number of sons of a node for k dimensional data

is 2k. If. Jt.is large, the amount of memory required

to store the nodes and the number of pointers is

very' large~ furthermore, many null pointers for the

leafnodes. In the balance quadtrees with level = x,

the number of null pointers is as much as kx-l.

7

A k-d tree [1, 2] is a natur'al generalization of the

well-known binary search tree to handle multikey records. In

a standard binary search tree, a single key is used to

decide whether a record lies to the left or the right of a

node. In a multidimensional search tree(k-d tree) this

decision is made based on different keys. Consider that each

record in the file has k keys, K1, K2, •. , Kk. On the first

level of the tree the decision to go right or left when

inserting a new record is done by comparing the first key of

the new record with the first key of the record stored at

the root of the k-d tree. Consider the root of the tree has

level 1 = 0, then the key used to make the decision is (1 +

1) mod k. Therefore, for any node x with the key discrimi

nator KJ , all nodes in the left subtree of x have KJ values

less than x's KJ value and likewise all nodes in the right

subtree have greater ~ value. There are some shortcomings

of this file structure in dealing with a large and dynamic

database.

8

L!~----------------------~~
attribute AJ

- ~--
L!V!t(2)

• • •

Figure 1. 3 Dimensional MDBT. [11]

root ID >

regio n page

- ~. <J
I ~

I
->

l I

pointer page

Figure 2. Example of 2-D-B-tree[22].

9

1. In nonuniform data distribution, the tree may become

unbalanced. A costly restructuring algorithm is

needed to keep the tree to be balanced.

2. In a large database, the size of an index is large

and should be stored in secondary storage. A search

fo~ a record or set of records needs several disk

accesses.

A multidimensional B-tree[18,24] is a file structure

that organizes multidimensional data by using the B-tree

where each node of the B-tree itself is a B-tree. Figure 1

shows an example of 3 dimensional data organized by multidi-

mensional B-trees. Each of the n attributes of the data to

be indexed is represented by a separate level in the tree

directory. The values of the i-th attribute are organized as

B-trees of order mt , where mt may vary according to the

length of the values of the i-th attribute. Each attribute

value Xi in level i has a pointer to a B-tree at level i+l

which·stores all different values of attribute At+t with

common value Xt for attribute At • This set of values of

attribute At+t with common value Xi is called a filial set.

In order to allow direct access to any level i of a multidi-

mensional B-tree organization, all filial sets at level i

are linked together and a pointer LEVEL[i] points to the

root of the first filial set of each such linked list. The
I

root node of each B-tree contains three additional pointers,

called NEXT, LEFT, and RIGHT pointer. The NEXT pointer

points to the root of the next B-tree in the list to provide

10

a sequential access along the list of B-trees in a level.

The LEFT and RIGHT pointers of a B-tree X point to two

filial sets in the linked list. All parents of the filial

sets between these two filial sets reside in X. In a B-tree,

it is assumed that each node of the tree is assigned to one

disk block. If this restriction is enforced, the index

Storage utilization may be ~ery low and thus the number of

index pages very high. In order to maintain reasonable

storage utilization, several nodes may be assigned into the

same page. One assumption for the multidimensional B-tree is

that the distribution of data is uniform. This assumption is

to ensure that all B-trees on the same level have the same

height which quarantees a minimal retrieval time of O(logm

N) [18] for an exact match query of the multidimensional B

tree. In the case of a nonuniform distributed database, the

retrieval time may be as much as O(k * logm N).

Another file structure that combines the properties of

B-trees and K-D-trees is the K-D-B tree[22]. K-D-B-trees,

like B-trees, are multiway trees with fixed-size nodes .that

are always totally balanced in the sense that the number of

nodes accessed on a path from the root node to a leaf node

is the same for all nodes. It is expected that the multidi

mensional search efficiency of balanced K-D-trees and the

I/O efficiency of B-trees should both be approximated in K

D-B-tree. K-D-B-trees consist of a collection of pages and a

variable root ID that gives the page ID of the root page.

11

There are two types of pages in a K-D-B-tree.

1. The pointer pages which store the leaf nodes of the

tree. These pages contain pointers to those records

which correspond to a region in k-dimensional space.

2. The region pages that reflect the partitioning of a

region into nonoverlapping subregions.

Th• root of the t~•e repre~ents the entire data space. ' .

Like K-D-trees, K-D-B-trees partition the search space

into two subspaces based on comparison with some element of

a single domain. There are several methods that can be used

to select the dimension for splitting. One way is to choose

tha dimension cyclically. This cyclic method might be

modified if something is known about queries. In the case

that most of the partial range queries specify a certain

dimension only, then it would be desirable to split that

dimension several times before splitting the other

dimensions. Figure 2 depicts an example of 2-D-B-tree.

In his report, Kriegel[11] shows the performance compa-

rison between 4 file structures in dealing with multidimen-

sional databases. They are inverted file, multidimensional

B-tree, K-D-B-tree, and grid file structure. The result of

his experiments shows that the inverted file has the worst

performance both in space requirement and response time for

the queries ·and the multidimensional B-tree ranks third. The

performances of the K-D-B-tree and the grid file depend on

the data distribution scheme. For a database where the

attributes are nonuniformly distributed, the grid file has

TABLE I

PERFORMANCE COMPARISON

~
Uniform Non-uniform

. .
r .

a b c b c

1 Inv. files 3 4 4 4 4 . .

2 MDBT 2 3 3 3· 3

3 K-D-B-trees 2 2 2 2 1

4 Grid file 1 1 1 1 2

a represents space utilization.
b represents insertion, deletions, and exact match

queries.

12

c represents partial match queries and range queries.
1 represents the best performance and 4 represents

the worst performance.

best performance relative to space requirements, and

processing times for insertions, deletions and exact match

queries. The K-D-B-.tree performs best for partial match

queries and region queries. For a database with uniformly

distributed and independent attributes, the overall perfor-

mance of the grid file overcomes the performance of the K-D-

B-tree. However this type of database is unlikely in real

life. Table 1 shows the summary of this result. In this

thesis we also introduce the BANG file, a modification of

the grid file structure. Based on its design strategy, we

expect that this file structure is more adaptable to the

13

nonuniform distributed database.

Multidimensional linear dynamic hashing[19] and inter

polation-based index maintanance[3] are multikey file

structures which are derived from linear hashing[12]. In the

classical hashing method, a collision is handled by over

flow buckets. However, if all collisions are resolved by

overflow bu'ckets, 'the access. performance of. 'the hashing

method deteriorates rapidly. To avoid this disadvantage,

linear hashing resolves the problem of collisions by

dynamically modifying the current hashing function ht (x) to

ht+1 (x). Suppose the insertion of record r into bucket ho (r)

leads to a collision. Instead of storing r in the overflow

bucket, the linear hashing method splits the records in

bucket ho (c) into two subsets by utilizing the split func

tion h1 •

Let D be the key space. ho :D --> {0, 1, ... , n-11 be

the function that is used to load the file. The functions

h1, bz, •.• ,ht, .• ; are called split functions for ho if

they obey the following requirements:

[range condition]: ht : D --> {0, 1, ... , 2 1 n- 11

[split condition]: for each rinD

ht (r)-[
ht- 1 (r) or

,._;_

ht-1 (r) + 21-1 *n

i = 0, 1, 2, . . .

14

Two variables are maintained for this process:

NEXT points to the next chain to be split

LEVEL represents the number of times the address

space has doubled in size.

The .ini.tial. .. value of. both variables are set to 0 and update

as follows

. NEXT = . (NEXT + i) mod (n . * . 21 r

if (NEXT == 0) then L = L + 1 ·

ho (r) = 0 ho (r) = 1 ho (r) = 2

28 25 18
32 29 22
36 37
40 45

(a) Before Splitting.

ht (r) ho (r) ho (r)

24
32
40

0

25
29
37
45

1

18
22

2

35
31

3

ho (r) =

35
31

ht (r)

28
36

4

(b) After Splitting of bucket 0.

Figure 3. Linear Hashing.

3

15

For example, a file with records 25, 35, 18, 22, 28,

29, 32, 36, 40, 31, 37, 45 is organized by using the linear

hashing method with hash function ho (r) = r mod n, where n =
4. The bucket capacity is b = 4 records. The resulting file

is shown in Figure 3.a. If th~ record 24 is inserted, then a

collision occurs. The address m where the record r = 24 is

·stored is determined as follows: ·

m = ·ho (r)

if m <NEXT then m = ht+l (r)

The result is shown in Figure 3.b. As more records are

inserted into the file, we eventually arrive at the situa-

tion where each of the original chains has participated in a

split operation. In this case the file is as if it were

loaded using hash function ht (r) and the process can be

repeated indefinitely(h2 (r), ha (r), ...).

Multidimensional linear dynamic hashing[19] is a multi-

key file structure that uses the idea of linear hashing. If
' .

an insertion of a record causes a collision, one of two

actions may occur .
.

1. If the load factor does.not exceed a predefined

value, then the collision is handled by an overflow

bucket.

2. If the load factor exceeds the predefined value, the

bucket·is split and the records are redistributed

am6ng the two newly formed buckets.

A collision during insertion is handled by applying the

hashing function to the key in cyclic order, i.e., when the

16

first N collisions occur in a file consisting of N buckets,

they are solved bY. splitting the buckets along dimension 0,

as if the records consist only the key ko . At the completion

of this sequence of splits the number of buckets has doubled

in size,. and now if more collisions occur they will be

resolved by splitting along dimension 1 until the address

·space ~oubl~~,a~ain. The main disadvantage of this method is

the data distribution must be uniform, otherwise the over-

flow chains may be long and therefore reduce the performance.

Interpolation-based index maintanance[3] is an

adaptation of Litwin's linear hashing. A sequence of hash

functions ho, h1, ... is defined to suppo~t the desired

operations insert, delete, update, and query. These hash

functions map records to chains. Each chain is associated

with a region. In order to utilize the idea of Litwin's

linear hashing in multidimensional data, the multikey

records is mapped into a single key records. [3] suggests a

method called shuffle order. Consider k = (kl, k2, ... , kd)

is a point inK= [0,1)d. Each component kJ ~f k has a

binary representation

kJ = IkJ 1 2-1
i?; I

, then define

S (k) = I I kJ 1 2- d < 1 - 1 > - J
;~, i~jfa

where S(k) is mapping from K = [0,1)d to [0,1). Then the

record is treated as if it has only one key S(k). Similar to

the multidimensio~al linear dynamic hashing, this method is

also sensitive to the non-uniform distributed data.

CHAPTER III

GRID FILE

Introduction

Consider a file F as a collection of records. Each

record R ofF is an ordered k-tuple (a1, a2, ... , ak), where

at can be used as the search key to access the records in

file F. The value of each attribute at is chosen from a

linear ordered domain Di. In addition to the key values,

each record may contain some information which is not used

as the access key. A file that contains this type of records

is called k-dimensional file. In a large database, all

records should be stored in the secondary storage as a

collection of disk blocks or buckets. A block is a unit of

data transferred between storage devices and the main memory

for processing. In a computer system, the size of block is

fixed and relatively small compared to the size of the

database. A query to a record or set of records is handled

by retrieving it from the secondary storage. The amount of

time required to read or write a block, which is the sum of

seek time, latency time and transfer time, is much longer

than the processing time in the main memory. Therefore, one

criteria that can be used to measure the efficiency of a

17

18

file structure is the number of disk accesses required for

basic operations such as insertion and deletion of a record

during an exact match query.

The efficiency of a region query is influenced by the

storage utilization and the storage scheme of a) file system.

Records that match this type of query may be stored in

several data buckets. A low stbra~e uiilization of the data

buckets may cause these records to occupy more data buckets

which means more disk accesses are needed. Another important

property that may affect the performance of the region query

is the distribution scheme of the records among the data

buckets. A file structure that stores the records by

preserving their neighborhood property provides a better

performance in region query.

A dynamic file system is a file system where deletions

and insertions are intermixed with the queries. An efficient

file system should have the flexibility to grow and shrink

dynamically and be able to adapt itself to the change of

data distribution. Reference [14] suggests 4 principles that

guide the design of the grid file structure.

1. Two disk accesses needed for an exact match query.

2. An efficient processing of a range query in large

linearly ordered domains.

3. Splitting and merging of grid blocks involves two

disk blocks.

4. Reasonable bucket utility .

..

19

Grid File Structure

Grid file is a file structure which is designed to

organize a set of data by partitioning a k dimensional data

space according to an orthogonal grid. The boundaries of

these grids are d~fined by k one dimensional arrays, called

scales. Each scale represents an attribute/key of the file F

and the range.between.the first and the last elements of a

scale determines the range of the corresponding attribute.

Each element of the scale represents a (k-1) dimensional

hyperplane that partitions the data space into two disjoint,

box-shape regions.

< data bucket

grid directo

I
1 3 v

ry

>

2 I
>
> D

scales

Figure 4. Organization of Grid File.

Figure 4 shows an example of grid file system with

dimension = 2. The relation between the grid cells and the

data buckets in the secondary storage is maintained in the

grid directory which consists of two parts.

20

1. A k-dimensional dynamic array, called the grid

array. Each element of the grid array represents a

grid ce11·~ ·The <::on tents ·of a grid cell is a pointer

to a data bucket which contains all records that lie

in the corresponding grid cell.

2. A set of k one-dimensional arrays, called scales.

These scales are used to refer to the grid array.

In a large database, where thousands of data buckets

are needed to hold the entire database, the size of the grid

array is likely to be very large too. To make optimal use of

the main memory, the grid array must be stored on secondary

storage, but the scales are small and can be kept in main

memory. In order to achieve the two-disk-access property for

exact match queries, all records that lie in a grid cell

must be stored in the same data bucket. By enforcing this

constraint, both successful and unsuccessful exact match

queries can always be completed by 2 disk accesses. One for

accessing the grid array and the other for accessing the

data bucket.

In a dynamic database, the data and grid directory

bucket may need to be modified in response to the insertions

and deletions. An insertion into a data bucket may cause it

to overflow. In the index-based file system, the overflow is

21

handled by an overflow bucket. This method increases the

number of disk accesses needed during an exact match query,

especially for an unsuccessful query. The grid file system

handles the overflow by splitting the data bucket into two.

A deletion of a record may cause the content of a data

bucket to drop below a certain threshold. To maintain

reasonable storage utilization and to reduce the number of

disk accesses required during ·a region query, the grid file

allows a data bucket to be shared by several grid cells. A

merging of two data buckets is allowed if and only if the

new grid region remains convex (k-dimensional rectangular) ,

and the contents of the new bucket after merging does not

exceed a certain threshold to avoid having this bucket

overflow after a few subsequent insertions.

Grid Directory

In order to make optimal use of the available main

memory, the grid directory must be stored on secondary

storage. All grid directory elements are distributed among

several disk blocks. The method of how the grid directory

elements are organized in these directo~y blocks affects the

performance of the grid file, due to the number of disk

accesses needed for neighborhood and update operations. One

possible method is to store the elements of the grid direc

tory array in secondary storage by using the conventional

row/column major order. Although it optimizes storage utili

zation, this storage method apparently suffers from several

22

disadvantages.

1. A costly restructuring of the entire grid directory

may be needed during the splitting or merging

operations.

2. The number of disk-accesses during the neighborhood

operations is increased, because the row/column

major storag~ method ~oes riot preserve the neighbor

hood. pr6p~rties of the directory elements symmetri-

cally .with respect to all dimensions.

Consider the grid file system as shown in Figure 5.

Assuming that the directory bucket capacity = 4, then 4

buckets are needed to store the whole directory. If a region

query to the shaded area as shown in Figure 5 is issued,

then all directory buckets have to be accessed in order to

retrieve all records namely 2~ 6, 10, 14 that match the

query.

One approach[14] is to manage the grid directory with

/,' . il

f·jlfV'-
2

3 1 3

0 0 1 3 0 4 8 12
4 1 5 9 13

1 4 5 7 2 6 10 14
2 3 7 11 15

2 8 9 11
4

' 3 12 13 ;(' 15 directory.buckets

0
I

1 2
I

3
I

Figure 5. Single Level Directory.

4
.
2

4

sl s2 s3

::I E8
sl

s3 2

s5
l

~1
v

5 3 5 1 3
sl

s2

s3

s4

s5

ll l2 l3 l4 l5 l6 ~7

a. Single Level Directory.

s3 s4 s5

E8 f-:1-:-~subscale
3 1 su bdirectory

I

~3
I

~5
v

s3

I s4

I s5

I

~7

->roo

>

>

l5 l6· l7

t directory

b. Double Level Directory.

Figure 6. Directory Structure.

23

~' <?',
~'

sl

s2

s3

s4

s5

24

another grid file. We call the directory of this grid file

the root directory and the corresponding scales as root

scales. The root directory is a scaled-down version of the

original grid directory, in which the limit of resolution is

significantly coarser •. Each element of the root directory is

a pointer to a directory bucket which contains the corres-

poriding pa~t of ~h~·original grid directory. In the follow-

ing discussion, we call this directory the subdirectory and

the scales corresponding to it the subscales. Figure 6.a

shows the example of a single level directory and Figure 6.b

shows the corresponding double level directory. The double

level grid directory design strategy has some advantages

'
with the cost of extra main memory for the root directory

and root scales.

1. The split and merge operations on the grid directory

are restricted to 2 disk accesses.

2. The two-disk-access principle of exact match query

is preserved by storing the root directory and root

scales in main memory.

3. Since the neighborhood property of the directory

elements is preserved in symmetrical way, an effi-

cient region query can be expected.

Performance

The performance of a file structure can be determined

by its storage utilization and by the number of the disk

accesses during a query. The grid file assures 2 disk

25

accesses for both successful and unsuccessful exact match

query by the restriction that all data points that fall into

a grid region should be stored in the same disk block. In

the traditional file structure which handles an overflow by

the overflow bucket, an attemP.:t to access a record may

require the search along the list of overflow buckets,

especially i~ the record·does not exist. In grid file, an

overflow is handled by splitting the overflow bucket and the

correspondence between the data buckets and the directory

elements is maintained . The same rule is also applied if

the subdirectory bucket overflows.

10
A

0 0
50

> --+--> r-70
1 80

90 90

r'4t1iojio
(66,52)

root directory subdirectory

Figure 7. Accessing Method.

. II

B

67,55
> 66,59

69,52

data bucket

Figure 7 shows how the grid file performs the exact

match query in two disk accesses. If the exact match query

to find the record P with key A1 = 66 and A2 = 52 is issued,

26

the query is performed as follows.

1. Convert the attribute value 66 into interval index 2

on the horizontal scale, and attribute 52 into

interval index 1 on the vertical scale. Use these

interval indices to find the correct root directory

element which point to the subdirectory bucket.

Since the root direct6ry and root scale are located

in main memory, no disk access is needed to perform

this operation.

2. Retrieve the subdirectory bucket pointed by the root

directory element which is obtained from step one.

3. Search the subscale retrieved from step 2 to find

the correct subdirectory element which contains a

pointer to the correct data bucket where the record

P is located.

4. Retrieve the data bucket and search for record P. If

it exists, then it must be located in this bucket.

This simple example shows that the exact match query can

always be completed in two disk accesses.

The performance of the grid file structure is also

influenced by the storage utilization of the directory and

data buckets. A low storage utilization increases the number

of disk blocks that have to be retrieved during a region

query, since more buckets are needed to handle the records.

Update

All records in a grid file are organized by spreading

27

them among disk blocks or data buckets according to their

locations in the data space. Since the size of the disk

block is fixed, an insertion ~nto the block may cause it to

overflow. In order to maintain a one to one correspondence

between the grid region and the data bucket, an overflow

invokes the splitting algorithm. In a double level directory

grid file, the ·subdirect6ries are also stored in the disk

blocks. A splitting of an overflow data bucket may cause its

corresponding subdirectory bucket to be split. If a record

or a directory element is deleted from the bucket, the

population of the bucket may fall below a certain threshold.

In order to maintain a reasonable storage utilization, a

deletion, which causes the bucket to underflow, will invoke

a merging algorithm. In short, a splitting of a data bucket

R or a merging of two data buckets into a new data bucket R

occurs at 4 levels.

1. Only the data bucket R is split or merged.

2. A region in the subdirectory B corresponding to the

data bucket R has to be split or merged.

3. The directory bucket B has to be split or merged.

4. The splitting or merging of directory bucket B

causes the root directory and root scale to be split

or merged.

Splitting

In a double level directory grid file, an overflow of a

data bucket is handled by partitioning the grid region of

I

A

I

A B A B

I I I su bscale

L,

<-
. E·

I I
da

c

c
I

I I

D c D
subdirectory

(a) (b)

Figure 8. Splitting of Databucket and
Subdirectory Region.

D c C' D

I I
root scale

L,
E

I subdir

<l
ectory

B A B

. root d1rectory

Figure 9. Splitting of Subdirectory Bucket
and Root Directory Region.

28

B'

E

E'

E

E'

29

the subdirectory which is corresponding to the overflowing

data bucket. If this region consists of one grid cell only,

a new boundary has to be inserted into one of the scales and

the correspondence between the newly created grid cell and

the data bucket has to be updated. For example, if the data

bucket E in Figure 8 overflows, then a new boundary is

inserted into one· of the subscales and the data bucket is

split into two new buckets E and E'. The dimension chosen

for inserting a new boundary is decided in the following

way.

1. Find the range r[i] of the grid region to be split

for each dimension.

2. Compute the partition level l[i] for each dimension

by the following algorithm.

for(i=1; i<=k; i++) { /* k-dimensional data */

l[i] = 0;

temp= D[i]; /*ra~ge of dimension i*/

while(temp != r[i]) {

temp = temp div 2;

l[i] = l[i] + 1;

The value of l[i] denotes the number of bisections

of domain i needed to obtain an interval r[i].

3. Find the smallest partition level l[i], if it exists

then i is chosen as the partition dimension.

4. If more than one dimension with minimal value of

30

l[i], then find a scale with the smallest number of

boundary among the dimensions found in step 3.

5. Else, choose the smallest dimension number among the

dimensions found in step 3 as the splitting dimen

sion (D [1] < D [2] < • • • < D [n]) •

After the splitting dimension i is chosen, all records

in the overflowingdata bucket are redistributed. Records

that fall into the left part of the new boundary are moved

to the new data bucket. If the overflowing condition is

removed after the splitting, i.e. at least one record is

moved into the new bucket, then the new boundary is inserted

into the scale i and the correspondence between the newly

formed data bucket and the grid regions is maintained. In a

nonuniformly distributed database, the first partition of

this chosen dimension may not remove the overflowing

condition. In this case, the next dimension is chosen until

the overflowing condition is removed.

If the region corresponding to the overflowing data

bucket consists of more than one grid cell, some modifica

tion has to be made in choosing the partition dimension. To

avoid the addition pointers overhead during the splitting,

the first attempt is to choose the dimension with the

existing boundary entry in its scales. For example, if the

data bucket B of Figure S.a overflows, it is split into two

data bucket B and B' without introducing a new boundary into

the scale.

A splitting of a subdirectory region as shown in Figure

31

8 may cause the directory bucket itself to overflow. In this

case, the directory bucket has to be split and the

correspondence between the root directory and subdirectory

buckets has to be maintained. Similar to the data bucket,

the splitting of the directory bucket has two possible

condition(see Figure 9):

· 1· •. the·· overflowing directory bucket c is shared by more

than one grid cell of root directory;

2. the overflowing directory bucket E is pointed by

a grid cell.

The method to choose the splitting dimension discussed

above can also be used for directory bucket with some

additional conditions.

1. The subscales of the two new pages are created as

shown in Figure 10. The old subscale of the

splitting dimension is split into two new subscales.

The "left" subscale is assigned to one of the new

pages. All regions of the old subdirectory that lie

in the "left" part of the hyperplane defined by the

split boundary a2.2 are assigned into this new page.

The ·right part of the subscale and the corresponding

subdirectory regions are assigned into the other

page. The subscales of other dimensions are the same

with the old subdirectory.

2. A data bucket can only be shared among several grid

cells of the same subdirectory. If some grid cells

of the overflowing subdirectory that share the same

bl

b2

b3

bl

b2

b3

..

I I I I .

~1 ~2 ~3 ~2

. root d1rectory

(a)

>

I I I I I

~1 ~2 :k2 ~3 ~2

. root d1rectory

(b)

I I I I

~1 ~2 ~3 ~

-
subd1rectory

b2

y1

y2

y3

--b3
I I I

~1 ~2 ~2

3

b2

yl

y2

y3

b3

subscale

<-

I I

~3 ~3

. subd1rector1es

Figure 10. Subscales.

32

33

data bucket are redistributed among the two new

pages, then the corresponding data bucket has to be

split.

Mergina
..... · F'' ..

A deletion of a record from a data bucket may cause the

population of the· data bucket ·to ·fall· below a certain

threshold. To avoid the degradation of grid file performance

due to the low storage utilization, a merging operation is

invoked to merge an underflowing databucket with another

databucket. The merging of these two buckets can be comple

ted if and only if:

1. the resulting region corresponding to the newly

formed bucket is "box-shaped";

2. no deadlock occurs after the merging;

3. the population of the data bucket after the merging

does not exceed a certain threshold.

A deadlock occurs if buckets can not be merged because

the resulting region would not be box-shaped. As a conse

quence, the average bucket occupancy may decrease and the

size of the grid directory increases, which means a degra

dation of grid performance.

In this section we discuss two methods proposed in [14]

to find the candidate with which an und.erflowing bucket can

merge, namely,

1. the multidimensional buddy system;

2. the neighbor system.

34

Given an interval r1 which can be obtained by repeated-

ly partitioning the corresponding dimension Di. There is

exactly one interval r2 such that r1 and r2 are disjoint and

the union of r1 and r2 can be obtained by repeated parti-

tioning of. the dimension. Di.!". r2 .is called the buddy of rl.

A multidimensional buddy system is a method to merge a

giid'iegion ~ith its buddy~ Since· there is exactly one buddy

in each dimension, there are at most k candidates that can

be selected as the victim for merging. In the neighbor

system, a grid region can be merged with either of its two

adjacent neighbors in each dimension as long as the result

region is box-shaped, therefore, there are at most 2k candi-

dates with which a data bucket can merge. An example of the

buddy system and neighbor system is shown in Figure 11.

A merging of two grid regions by using the neighbor

system may lead to a deadlock in a grid file of two or more

dimensions(Figure 12). In a three or more dimension grid

file, the buddy system merge can also lead to a deadlock

(Figure 13).

The merging of two data buckets is performed by

appending the records of one data bucket to the other. The

correspondence between the subdirectory and the data buckets

,is maintained by placing the pointers of the region corres-

ponding to the discarded bucket into the other bucket. In

order to avoid overflow in the newly merged data bucket soon

after a few subsequent insertions, two buckets are merged if
'

and only if the population of the new bucket does not exceed

/

35

··~

buddy system

neighbor systein

'Figure 11. Buddy and Neighbor System[14].

Figure 12. Deadlock in Neighbor System.

Figur7 13. Deadlock in Buddy System. ·

a certain threshold. A lower threshold of 30 % and upper

threshold of 70% are suggested[9].

If two data buckets are merged, the boundary along

which the two buckets are merged is checked. If it is no

longer ne~~ed, then it _is removed __ from subscales and the

36

correspondence between subscales and the directory elements

- are updated. The· '"removing- of a· boundary from the subscale

may cause the storage utilization of directory bucket falls

below a certain threshold. In order to maintain a reasonable

stor~ge utilization, a merging algorithm is invoked. Figure

~4 shows an example of subdirector~ merging.

The subscales of the subdirectory resulting from the

merging are created as follows. For the merged dimension the

new subscale is obtained by concatenation of two subscales

of old subdirectories and all other subscales are the same

b1 bl

2

3

~1 I I I
a2 a3 a4

before after

Figure 14. Directory Merging.

with the scales before merging. Figure 14 shows an example

merge operation with the horizontal dimension as merging

dimension.

Query

37

Searches are typically initiated in response to a query

for the set of records. In·this.section we consider 3 types

of query.

1. Exact match query

2. Partial match query

3. Region query

An exact match query is a query which specifies the

value for each of the indexed attributes. The grid file

system supports the exact match query efficiently. Each

query, successful or unsuccessful, can always be completed

in twe disk accesses. The first disk access is to retrieve

the directory bucket to find a correct directory element and

the second is to retrieve the correct data bucket where the

record should be located if it exists. The grid file struc

ture does not prohibit the existence of records with the

same key value for each dimension. The only restriction is

that the total number of these records does not exceed the

size of disk block. An example of exact match query is given

in Figure 7.

A double level directory implementation of grid file

preserves the neighborhood properties of the data points

according to their location in data space. This property

root directory subdirectory
10 50

0 0

50 60
1 R1 > 1

.• 65
R2 2

70
0 1 2 0 1 2 3

[66<

J .· 4~ sf fa~
I

=A1<=72~63<=A2<=74]

~o-' !5 ~0 ~5 Ao

70

I 0
75

1
80

- >
2

90
0 1 2 3

!o !5 ~0 ~5 !o

Figure 15. Region Query.

promises an efficient range query of the grid file. All data

points that are neighbors in data space would be likely to

be located in the same bucket. In Figure 15 we present an

example of range query.

Consider a 2 dimensional record space with attribute A1

with domain 0 to 80 and attribute A2 with domain 10 to 90.

Assume that the root and subdirectories are partitioned as

shown in Figure 15. A range query with specification

[66<=A1<=72, 63<=A2<=74] is executed as follows. The key

39

value 66 and key value 72 of Al are converted into interval

2 of the horizontal dimension. The key value 63 and 74 of A2

are converted into interval 1 and interval 2 of the vertical

dimension. Based on these intervals, the subdirectory blocks

corresponding to the r~gions .Rl and R2 of root directory are

retrieved. The same method is used to find the regions where

the reco'rd·s that match the query lie in the subdirectory. ,.

All data buckets that correspond .to these regions are

retrieved and searched to find the records that match the

query. In order to minimize number of disk accesses, each

bucket that matches the query is retrieved exactly once.

CHAPTER IV

BANG FILE

Introduction

The BANG file[7], a balanced and nested grid file, ~s a

multidimensional file structure that is well suited for

managing dynamic databases. As in the grid file[14], the

BANG file maintains the correspondence between the data

bucket and grid region. The main disadvantage of the grid

file structure is the rapid increase of the size of its

directory, especially if the data distribution is not

uniform. Most of these directory entries point to the same

data bucket. In order to avoid this shortage, the BANG file

structure maintains a one to one correspondence between a

directory entry and a data bucket. Each directory entry of
G~

the BANG file is represented by a unique number pair <r,l>,

where r is the region number and 1 is the level number. To

achieve this compact directory size, the BANG file structure

makes some modifications to the fundamental strategies of

the grid file.

1. BANG file allows nested block regions. If two block

regions into which the data space has been parti-

tioned intersect, then one of these regions comple-

40

tely encloses the other.

2. If a data bucket overflows, the splitting is

performed until the best balanced condition is

achieved. One advantage of this approach is the

better utilization of the secondary storage.

41

Figures 16 and 17 show the differences between these

t·wo file systems in handling the data .. In .case of overflow,

the grid file stops the partitioning of the grid region as

soon as the overflow condition is removed. This strategy may

cause one of the resulting buckets to have a low population

and the other to have high population. A few insertions or

deletions into these buckets may invoke another splitting or

merging algorithm. If the.distribution of data is not

uniform over the data space, several partitionings may be

needed to remove the overflow condition. These partitionings

cause the directory of the grid file structure to grow with

exponential rates. In the BANG file structure, an overflow

is handled by successive divisions of the overflow region

until a balance in.the storage utilization is achieved

without significantly increasing the directory size.

a

X
X

X

2

a

X

X

b a b

X X X
X X X

X

X X X
..

x X
2

X

X X

1 1

Figure 16. The BANG File Structure. v
(Max. block capacity = 3)

b a b

X X X

X X

X

X X X

X X

2
X

X X

1 1

Figure 17. The Grid File Structure.

42

c

X
X

43

Mapping function

In this section we discuss a region numbering method

that provides the following properties.

1. Each region is identified by a unique.number pair

<r,l>, where r represents a region number and 1 is

the level number.

2. The region number can be easily calculated from a

given set of n key values (k1, k2, ••• , kn) and the

partial level of each dimension (11, l2 , ••• , ln),

where level number 1 = t 11 •

3. Given a region number r at level ·1, then the region

R that encloses region r at level 1-1 can be easily

computed.

Figure 18 shows the ~xample of this numbering method.

For the sake of simplicity we present an e.~ample of a file

system with dimension = 2. Assuming that there is no

preferred attribute, then the partition algorithm chooses

the partition dimension in cyclic sequence. In order to

show the relation between the region number and its corres-

pending coordinates, all region and coordinate numbers are

given in binary representation.

Based on Figure 18, we derive some conclusions.

1. The total number of the grid regions at level 1 is

21 • If the single grid region at level 1=0 is
2J!

44

1 1

p * p * p *
10 11

2

1
0 0 1. 00 01

0 1 0 1

(a) (b) (c)

level = 0 level = 1 level = 2

1011

3 1 3 3 1 3

p * 1010 1110 p * 1111
~"'-~ '""'-..

010 110 ,01i) 111
'-,,~--~/

2

0
0010 0110 0011 0111

4
10

2
1000 1100 1001 1101 01

1 4
000 100 001 101 0000 0100 0001 0101 00

I oo I o1 I 1o I 11 I I oo I o1 I 1o I 11 I

(d) (e)

level = 3 level = 4

Figure 18. Numbering Method.

45

assigned a number r = 0, then every grid region

number at level 1, for all 1 > 0, can be represented

by 1 bits.

2. If the dimension i is split, the domain of coordina-

te i is doubled by extending the the binary repre-

sentation of the coordinate i by one bit(the least

significant bit). ·As an example~ the· coordinate

0 (binary) of dimension 1 in Figure 18.c is split

into coordinates 00 and 01 as shown in Figure 18.d.

3. If a region r at level 1 is split by partitioning

the dimension i, then the result is 2 regions that

are uniquely numbered as r and r + af . This can be

achieved by concatenating the least significant bit

of the newly-formed coordinate in dimension i at

level 1+1 to the most significant bit of the corres-

ponding region number at level 1. For example, a

splitting of the grid region 011 in Figure 18.d

produces 2 grid regions numbered 0011 and~~-

4. If a record p falls into a region r at level 1, then

the region that encloses p at level 1-1 can be

computed by removing the most significant bit from

r. For example, a record P in Figure 18.e that is

enclosed in region 1011 at level 1=4 is also enclo-

sed in region 011 in level 1=3.

Figure 19 depicts a tree representation of the

splitting history of the data space for dimension = 3. The

purposes of ~his figure are to show:

0

0

0/\
DO 10

!\ /~
oo/1\:1

0

- Q 1

0 1 : 1

b1 : oj\
b1o.1 : 01

c1: (\

c1b1o.1 : 001 a1a2: 1y~
0110 1110 0001 1001------,

o~~ ~:: o o:t, \: o o::!. ~:~1 ~i~~~1
b1b2 b2o.2c1b1o.1

initial level

coordino.te of
1st d i mens ion

1 s t p o. r t i t i o n

coordinate of
2nd dimension

2nd po.rtition

coordino.te of
3rd dimension

3rd po.rtition

coordino.te of
1 s t d. i m e n s 1 o n

4-th po.rtit1on

c o o r d· i n o. t e o f
2nd d1mension

5th po.rtit1on

o.2c1b1o.1

Figure 19. Splitting History for 3 Dimensional Data ~pace

~
0"1

47

1. the numbering method discussed above can be applied

in the file system with dimension greater than 3;

2. the method to generate a region number based on the

coordinate numbers.

Consider a data space with domains (Dt 1 D2 1•··~ Dn) and

the partial levels (lt I l2 ~···; ln) corre~ponding to each

dimension. The smallest region number that encloses a data

point P with key values (kt, k2 1 ••• 1 kn) can be obtained by

the following steps.

1. Transform the set of key values of P into the set of

coordinates (dt I d2 1•••• do) of the region that

encloses P.

ft = kt I ID I • . Eq. 4 .1

ft is the fraction of domain Dt where the key value

kt is located.

• • Eq. 4. 2

dt is the coordinate of dimension i at partial level

lt where the key value kt is located.

2. Use the following algorithm to calculate the

smallest region number that encloses P.

I* Algorithm 1 *I

r = 0 ; I* r is region number *I
for(j = level; ~ >= 1; j--) { ·

i = ((j-1) mod n); I* n is dimension *I
r = r*2 + (dt mod 2); I* dt is coordinate *I
dt = dt div 2;

J
return(r);

48

In the following we present the splitting of a three

dimensional BANG file. The dimension for splitting is chosen

in cyclic sequence starting with dimension 1. Figure 20.a

shows the initial state of the data space. ~he single region

at this level is numbered as region 0 and the level is o.~

So, the unique number pair for this region is <0,0>, where

the.first 0 represents.the region number and the second 0

represents the level number.

If region r at level 1 is split, then the two newly

formed regions are numbered as r and r + 21 , and the level

is increased by one. In Figure 20.b we show the state of the

data space after the first splitting on dimension 1. The

region <0,0> is partitioned into region <0,1> and <1,1>.

Since the region <0,1> and region <1,1> are enclosed in

region <0,0>, a record that is enclosed in region <0,1> or

region <1,1> is also enclosed in region <0,0>. Given a

region number at current level, then all regions that

enclose it at previous levels can be calculated by the

following algorithm.

I* Algorithm 2 *I

I* 1 is the current level and r is the region number
at current level *I

I* r[i] is the region number at level'i *I

temp = r;
for(i = 1 - 1; i >= 0; i--) {

if(temp >= 21)
temp = temp - 21 ;

r[i] = temp;

./
0 /

1

0
I

/

/
/

1

(a). Initial.

,)----;,)----

/

/
/

(b). 1st Partition.

Figure 20. Space Partition.

49

i.

50

1

2

1

0
I

1

(c). 2nd Partition.

1.

0
I

1

(d). 3rd Partition.

Figure 20 (cont)

1

0

3

2.

Q

51

r
6 14 7 15

2 10 3 11

4 12 5 13
0 8 1 9

(e). 4th Partition.

1 22 30 23 31
18 26 19 27

6 14 7 15
2 10 3 11

20 28 21 29
16 24 17 25

4 12 5 13
0 8 1 9

0 2.. .3

(f). 5th Partition.

Figure 20 (cont)

18

2

16

0

40

30

20

26

10

24

8

>
10

0

19

3

17

1

I 50 58
27

34 42
11

48 56
25

32 40
9

---.·-- .---

I 22 30 23
51 59

6 14 7
35 43

20 28 21
49 57

4 12 5
33 41.

(g). 6th Partition.

I 54 62 55
31

38 46 39
15

52 60 53
29

36 44 37
13

80

(h). An Example of Calculating Region Number.

Figure 20 (cont)

52

63

47

61

45

Figure 20.h shows an example to calculate a region

number. Given a record P with key values (25,15,50), then

the region in which it falls can be calculated as follows.

1. Calculate the index for each dimension by using

Equations 4.1 and 4.2.

11 = 2, f1 = 25 I 40, d1 = 2

12 =·2, f2 = 15 I 40~ d2- 1

13 = 2, f3 = 50 I 80, d3 = 2

2. By using the Algorithm 1, the region <21,6> where

P lies can be calculated.

53

The example above shows that a region number can be obtained

without having to refer to the scales. Therefore no scales

are needed in the directory.

Figure 21 shows how the regions are numbered during the

splitting. The predecessor of a node represents the region

that encloses it at previous level. For example, the

sequence of the regions that enclose region <51,6> starting

from the lowest level to the highest level are: <19,5>,

<3,4>·, <3,3>, <3,2>, <1,1>, <0,0>. The same sequence can

also be obtained by using Algorithm 2.

54

< r ,1+1> . ' < 0,6>
< o,s>L<3216>

<r,l>{ < 014>~ <1616>
<r+21 ,1+1> < 0,3>{<

<161S>L<48,6>
< 816>

< 8,s>L<4016>
814>~ <2416>

< 0,2>
<24,S>L<S6 16>

< 416>
. < 4,S>L<3616>

< 414>~ <20,6>
{ <20,5>-l:<52,6>

413> <1216>
. •' ~<12 I S>L<44 I 6>

<12,4> __r:<2816>
<2815> <60,6>

<011> < 2,6>
< 2,S>L<34,6>

< 214>~ <18,6>
{ <18,5>_r:<50,6>

< 213> <10,6>
~<10,s>-l:<42,6>

<10,4> __r:<26,6>
<26,5> <58,6>

< 212> < 616>
< 6,5>-1:<38,6>

< 614>~ <22,6>
{ <22,5>-l:<54,6>

< 6,3> <14,6>
~<14,5>-1:<46,6>

<14,4> __r:<30,6>
<30,5> <62,6>

<0,0> < 1,6>
< 1 15>-1:<33,6>

< 1,4>~ <17,6>

1,3>{<
<17,5>-1:<49,6>

< < 9,6>
< 9,5>-1:<41,6>

9,4>~ <25,6>
<2515>-1:<5716>

< 112> < 5,6>
< s,s>-1:<3716>

< 5,4>~ <21,6>
{ <21,5>-l:<53,6>

< 5,3> <13,6>
~<13,5>-1:<45,6>

<13,4> . __r:<29,6>
<2915> <61,6>

<1,1> < 3,6>
< 315>-1:<35,6>

< 3,4>~ <19,6>
{ <19,5>-l:<51,6>

< 3,3> <11,6>
~<11,5>-1:<43,6>

<11,4> __r:<2716>
<27,5> <59,6>

< 3,2> < 7,6>
< 7,5>-1:<39,6>

< 114>~ <23,6>
{ <23,5>-l:<55,6>

< 7,3> <15,6>
~<1515>-1:<47,6>

. <15,4> __r:<31,6>
<31,5> <6116>

Figure 21. Region Numbering.

55

Directory

Each directory entry of the BANG file structure is a

number pair <r,l>, where r is a unique region identifier and

1 is a level number. To avoid high pointer overhead as

experienced by the grid file, the BANG file system maintains

a one to one correspondence between the directory entry and

the data block. In order to maintain it, the BANG file

system does not require the subspace corresponding to a data

block to be a hyperrectangle.

R1

)2

0

CJ .

1

1.

(a)

2 r

0

P1

11

3

'

~
I

3 1

(b)

Figure 22. Nested Directory.

15
4

7
2

* P2
4

3

Consider the current state of a data space organized by

the BANG file system as shown in Figure 22.a. The data space

is partitioned into two block regions R1 and R2~ R1 encloses

the entire data space and R2 is enclosed or nested within

56

R1. S2 is the subspace enclosed by region R2, and S1 the

subspace enclosed by region R1 minus subspace S2. The

directory of the BANG file in this state contains 2 entries.

The first entry <3,2> points to a data bucket that contains

all records that fall into subspace S2, and second entry

<0,0> points to a data bucket that contains all records that

fall into the subspace S1. Since the data. point P in Figure

22.a is enclosed by the region <3,2>, region <1,1>, and also

region <0,0>, an ambiguity may arise during the search of

the directory to find an entry that points to the correct

data bucket which contains P.

For example, a directory of the BANG file with the

current state as shown in Figure 22.b has 4 entries (<0,1>,

<1,2>, <3,2>, <,7,3>). Suppose the directory entries are

arranged as above, and a query for a record Pl is issued.

The smallest region at current level 1 that encloses the

location of P1 in the data space can be computed by trans-

forming the set of its key values into a unique region

identifier by using the mapping function discussed in the

previous section. Based on this identifier, all regions that

may enclose P1 at every level can be derived. In this case

they are <7,3>, <2,2>, <0,1>, and <0,0>. During the

search of directory, the first entry that matches with these

regions is <0,1>, but the record P~ is not located in the
I

data bucket pointed by it. To avoid this ambiguity, the

directory entries of the BANG file structure are arranged in

order of increasing partition level. During a search for a

57

data point P , the directory is scanned to find the first

smallest region that encloses P. In this example the

directory entries are arranged in the order of <7,3>,<3,2>,

<1,2>, <0,1>.

If the directory does not contain the entry for the

smallest region r at current level 1 that encloses a data

point P, the search is .continued unt.il the next smallest

region that encloses P is encountered. As an example, the

smallest region that encloses P2 as shown in Figure 22.b is

<13,4>. This region identifier is not directly recorded in

the directory. The search is continued for the next smallest

region <5,3> that encloses P. This procedure continues until

the entry <1,2> is found. This example shows that, although

the directory does not contain an entry for the smallest

region that encloses a data point P at current level, there

is no ambiguity in locating the correct directory entry as

long as the entries are arranged in increasing level number

and some merging constraints are maintained.

In a large database system, the size of the BANG file

director_!__.~~ .. too 1 arge to })_e . s t~~-~-~-.. _i:rl_ ~~~---.-~::.~-~~-::_~----~=-~-~=Y -~

Therefore, the directory entries should be distributed among

a sequence of disk blocks. Without a proper organization, a

costly search is required to find a directory entry, i.e.

approximately half of these blocks have to be searched
~ ... -- ., • • n , ... ~"-·~-- .. ··~"·••••- ,,.. .. ···-· ,., ...••• ,.,..," .• ,...,.,...,__ .. ~ ••. ,. ,,...,.._.,,.,~-·"····· ...• •· .. ~. ···~ ·-~~, """"~··..-.•••_. .. ~,.,-· .• __ ___ .._,.,...,..._....._ __ ,. -~-· ., ~- ..

problem is to manage these director~---~~~-~~ts .'.!~.t.~---~~-~-~-~~~
---~--~- - _.,.,.~- ~---~ .. ,. _ ""'~''"". , ..

BANG file. In the following discussion, we call the direc-

I

3 If 7

0 1.
I ..
3 1 3

I

3 7

f-
0 ~1

I

3 1 3

11 27

0

5 3 5 1 5 3 5

4

2

4

4

2

4

(a)

directory

root 2nd level

<0,0>-----> <7,4>
<3,2>
<1,2>
<0,1>

directory
before after

root 2nd level root 2nd level

<0,0>-> <7,4> <3,2>-> <7,4>
<1,4> <0,0> <3,2>
<3,2>
<1,2>
<0,1>

<1,4>
overflow > <1,2>

<0,1>

(b)

directory
before

root 2nd level

<0,0>-> <27,5>
<11,5>

after

root 2nd level

4 <7,4>

<3,3>-> <27,5>
<0,0> <11,5>

<3,4>

(c)

<3,2>
<0,0>

overflow
<7,4>

> <15,4>
<0,0>

Figure 23. Double Level Directory.

58

59

tory of this BANG.file as root directory and the directory

that manages the data points as second level directory. When

a directory bucket overflows, it is split by using the same

method applied to the data bucket. Each directory entry is

treated as a data point. A partition algorithm is invoked

recursively until the best balance condition is achieved.

In the.root direc~ory, each entry points to a directory

bucket. All entries of the second level directory, in which

corresponding regions are enclosed in the region represented

by the entry in root directory, have to be stored in the

same directory bucket. The arrangement of the entries of the

root directory is the same with the second level directory,

i.e. all entries are arranged in increasing partition level.

In Figure 23 we show an example of how the directory

bucket is ·split and its effects to the root directory.

Assume that the maximum capacity of a directory bucket is 4

entries, and the current state of the BANG file system is

shown is Figure 23.a. At first, the root directory contains

a single entry which represents the whole data space.

Suppose an insertion of a data point P causes a data bucket

to overflow. Thepartitioning of this data bucket introduces

a new directory entry into the corresponding directory

bucket, which in turn causes this directory bucket to

overflow. The result of the partitioning of this directory

bucket is shown in Figure 23.b. The best balance condition

is achieved after 2 partitions. All second level directory

entries with corresponding regions are enclosed in region

J

60

<3,2> are located in the same directory bucket and the rest

of the entries are located in the other directory bucket,

which is pointed to by the root directory entry <0,0>.

Figure 23.c shows a possibility that may arise during

the partitioning of an overflow directory bucket. In order

to balance the contents of the resulting directory buckets,

the overflow bucket is successively partitioned until 1 = 3.

The resulting root directory entries are <3,3> and <0,0>.

The assignment of the entries of the old directory bucket to

the new directory buckets pointed by <3,3> and <0,0> is the

same with the previous example, except for the entry <3,2>

which part of its region is enclosed in region <3,3> (shaded

area in Figure 23) and the other part is enclosed in region

<0,0>. In this case, the region represented by <3,2> is

partitioned into two regions. One of these regions (<3,4>)

is enclosed in region <3,3> and the other (<15,4>) is

enclosed in region <0,0>. If the content of the regions

falls below a certain threshold, then the merging algorithm

is invoked to maintain a reasonable storage utilization.

Update

In a dynamic file system, insertions and deletions of

records are intermixed with the queries. If an insertion of

a record causes the bucket to overflow, the partitioning

algorithm is invoked to partition the corresponding block

region into two new regions. This procedure is repeated

until the best balance condition is achieved. In order to

* *

*

*
* *

0 *

* D
*

0 *

<0,0> <3,2>
<0,0>

(a} overflow (b)

* 0 E3 7 D 0 ~ 7 *

* *
0 * 0 * *

<7,3> <7,3>
<3,3> <3,3>
<0,0> <2,2>

<0,0>

{c) {d)

Figure 24. Splitting (Max capacity = 6}.

61

62

maintain a reasonable storage utilization, a merging algo

rithm is invoked if a deletion causes the bucket capacity to

fall below a certain threshold.

splitting

An insertion of a record into a data bucket may cause

it to overflow. In order to maintain a one to one corres

pondence between data bucket and directory entry, the over

flowing data bucket has to be partitioned. Figure 24 shows

some conditions of splitting and their effects on the direc

tory structure.

1. The partitioning of the data space is performed

until the best balance condition is achieved. If n,

where n > 1, partitions are needed to achieve this

balance, then the directory entry <r,l> of the old

region is modified into two new entries <r,l> and

<r1,l+n>, where r1 is the identifier of the newly

formed region. A partition of region <0,0> in

Figure 24.a modifies the directory entry <0,0> into

two new entries <3,2> and <0,0> as shown in

Figure 24.b.

2. If the balance condition is achieved at the first

level of division, then the directory entry <r,l> of

the old region is replaced by the identifiers of the

two resulting regions <r,l+1> and <r+21 ,1+1> •. For

63

example, the directory entry <3,2> in Figure 24.b

is replaced by directory entries <3,3> and <7,3> in

Figure 24.c. In this case, the two resulting

regions are called the buddy regions.

3. The partitioning of a region is always treated as a

continuation of a higher level split. For example,

If the data bucket pointed by grid region <0,0> in

Figure 24.c overflo~s~ the partitioning is started

from level 0. The resulting regions after achieving

the balance condition are identified by <2,2> and

<0,0>. These two entries are added into directory to

replace the entry <0,0> as shown in Figure 24.d.

Merging

To maintain reasonable storage utilization, a merging

algorithm is invoked if deletion of a record causes the

population of a data bucket to fall below a certain thres

hold. In order to avoid having this data bucket overflow

soon after a few subsequent insertions, the merging is

performed only if the population of the resulting data

bucket does not exceed some predefined value. Figure 25

shows the strategy of choosing the victims for merging.

1. If the population of a region falls below a certain

limit, the first attempt is to merge it with one of

the regions which it "immediately" encloses, start

ing from the smallest. Suppose after a deletion, the

.Population of the region identified by <1,2> falls

0

15

3 7

_:j
1 Is

<15,4>
<9,4>
<7,4>
<5,4>
<3,3>
<1,2>
<0,1>

(a)

0 1

<5,4>
<7,3>
<1,2>
<0,0>

(d)

15 -
3 7

0 1 II 5
"

<15,4>
<7,4>
<5,4>
<3,3>
<1,2>
<0,1>

(b)

-

7
......__

,..
15 0

Figure .25: Merging.

0

1

<7,3>
<1,2>
<0,0>

(e)

3

1

<5,4>
<7,3>
<3,3>
<1,2>
<0,1>

(c)

,.--

7
1-----

* p

64

7

lf5

65

below a certain limit, then the merging algorithm is

invoked to merge it with the region identified by

<9,4>. If it is failed, then the algorithm tries to

merge it with the region identified by <5,4>.

2. If the first attempt fails, then the second attempt

is to merge the region with its buddy. For example,

the merging of the region <15,4> with the region

<7,4>.

3. If the second attempt fails, then the third attempt

is to merge a region with its "immediately"

enclosing region. For example, if the contents of

the region <3,3> falls below a certain limit, the

merging algorithm is invoked to merge it with

region <0,0>.

Since the shape of a subspace in the BANG file does not

have to be a hyperrectangle, no deadlock detection is

required during the merging of two regions. The reason for

merging with the "immediate" enclosed or enclosing region is

to avoid the ambiguity that may arise. Suppose the region

<5,4> is merged with region <0,0>, which does not immediate

ly enclose region <5,4>, then ambiguity may arise during the

search for data point P as shown in Figure 25.e. When a

query for the data point P is issued, the directory is

searched for the entry <5,4>, the search is continued until

the smallest region <1,2> that encloses data point P is

66

found. Then the data bucket pointed by <1,2> is searched

while the data point P is stored in the data bucket pointed

by <0,0>.

Searching strategy

In this section we discuss 3 types of query.

1. Exact match query, one which specifies a value for

each of the indexed attributes.

2. Partial match query, which specifies values for

d < n of the indexed attributes.

3. Region query, one in which a range is specified for

each indexed attribute.

Exact match query

The general form of the exact match query is (A1 = k1),

(A2 = k2) , (A3 = k3) , •••• , (An = kn) , where ki is a value

of attribute Ai and n is the number of indexed attributes.

In order to retrieve the correct data bucket that contains

the record P, the given key values are transformed into an

identifier of the smallest region <r,l> that encloses P at

current level 1. Based on this identifier, the record P is

searched in the following steps.

1. Seareh the root directory to find an entry <r1,11>

which represents· the smallest region in the root

directory that encloses region <r,l>.

67

2. Retrieve the directory bucket pointed by the entry

<rl,ll>.

3. Search the directory bucket to find an entry <r2,12>

which represents the smallest region that encloses

region <r,l>.

4. Retrieve the data bucket pointed by <r2,12>. If the

record P exists, then it should be located in this

data bucket.

In the BANG file system, the unsuccessful and success-

ful exact match queries can always be completed with only

two disk accesses. Figure 26.a shows a simple example of the

exact match query.

Partial match query

The general form of the.partial match query is (Att =

k11) , (At 2 = Kt 2) , ••• , (A1 d = Kt d) , where il < i2 < . . • <

id, and id < n is the number of specified attributes. The

V/J.

f-1-1-1--1
(a)

Exact Match Query

~L.;
V//.
'l/.
V/h

f-1--1--1--i f-1--1--1--i
(b) (c)

Partial Match Query Region Query

Figure 26: Query

68

method to retrieve the data points that match the query is

similar to the exact match query, except that the given key

values are transformed into a set of region identifiers by

the following method.
.

1. Transform the key values of specified dimensions

into the coordinate numbers C11, Ctz, ... , Ctd

(refers to equations 4.1 and 4.2).

2. Calculate all region identifiers based on the combi-

nation of this coordinates with each coordinate of

each unspecified dimension.

Figure 26.b shows an example of partial match query for

2 dimensions data space. The searching method of the partial

match query follows.

1. Find the set of region identifiers that matches the

query as shown as a shaded area in Figure 26.b.

2. Remove one region identifier from the set and use

the same method as in exact match query to locate

the data bucket corresponding to it.

3. Find all records in the data bucket that match the

query.

4. If the set is not empty then goto 2, else the query

is completed.

In order to minimize the number of disk accesses, the

same directory and data buckets are loaded from disk into

memory exactly once.

69

Region query

The general form of the region query is Li <= Ai <= Ui,

where Li and Ui are the bounds for attribute Ai. The method

of retrieving the matching data points in region query is

exactly the same with the partial match query. Figure 26.c

shows an example of region query.

CHAPTER V

PERFORMANCE COMPARISON

Implementation of 3D grid and 3D BANG file

In this chapter we discuss the algorithms of the grid

and BANG file structures. These algorithms are designed to

handle n dimensional records. In order to maximize the

utilization of the main memory, a double level directory

method is used. Since the contents of a databucket is fixed,

an insertion or deletion of a record may invoke a splitting

or a merging procedure, repectively. The splitting operation

is performed until the overflow condition is removed and the

merging operation is done until no buckets can be merged

without violating the merging restriction.

In our implementation, a record consists of. sever~l

keys of type integer and some additional information which

is not of interest to our discussion here. For n dimensional
•

files, each record is identified by the combination of n

keys. In this project, we allow several records to have the

same combination of keys. The only restriction is that the

number of these records may not exceed the maximum capacity

of a databucket.

70

71

Algorithm 3 shows the main body of the programs for

grid and BANG file structures. Algorithm 4 is the algorithm

ACTION() for the grid file structure and Algorithm 5 is for

the BANG file structure.

Algorithm 3

main ()
f

choose the action to be done;
if(choice is build) {

J

Initialize new file information;
ACTION(insert);

else {
Read existing file information;
if(choice is range query)

Performs range query;
else

ACTION(choice);

Algorithm 4

ACTION(choice)
{

for(all records) {
Get root region;
Read subdirectory bucket;
Get subdirectory region;
Read databucket;
if(action is insertion) {

If(databucket is not full)
Insert the record into the bucket;

else ·
Split databucket and insert the record into

one of the buckets;
}

else if(action is exact match query or deletion)
for(all records in the bucket){

Check if there is a record that match the
input record;

if(yes) {
if(choice is exact match query)

Print out the result;

Algorithm 5

ACTION(choice)
{

else if(choice is deletion)
Delete the record from the file;

for(all records)

72

Find smallest region r that encloses the record;
Find the smallest entry rl in the root directory

that encloses r;
Read subdirectory bucket pointed by rl;
Find the smallest entry r2 in the sub directory

that encloses r;
Read databucket pointed by r2;
if(action is insertion) {

If(databucket is not full)
Insert record into the bucket;

else
Split databucket and insert the record into

one of the resulting buckets;
}
else if(action is exact match query or deletion)

for(all records in the bucket){
Check if the record match the input record;
if(match) {

if(choice is exact match query)
Print out the result;

else if(choice is deletion)
Delete the record from the file;

73

Grid file algorithms

In our implementation of the grid and BANG file

structures, the root directory is stored in the main memory

and the subdirectory is stored in a directory file.

The data structures used to describe the root and sub-

directory are given by the following structure declarations:

ROOT_DIRECTORY {
int bound_number[DIMENSION];
int *scales[DIMENSION];
CELL *cell;

SUBDIRECTORY {
int bound_number[DIMENSION];
int scales[DIMENSION][MAX BOUND PER DIMENSION]; - - -CELL cell[MAXIMUM_CELL_PER_BUCKET]
int lowest[DIMENSION];

The field identifiers in the data structures for root and

subdirectory have the following meaning:

field identifier description

bound_number Represents the number of the scale

' boundaries for each dimension.

scales Stores the grid scale for each dimension.

Each scale is a one dimension array.

cell Grid directory array which is stored

in row major order. Each entry of this

array consists the pointer to a bucket

74

and the contents of the bucket. The size

of 'scales' and 'cell' are fixed for sub-

directory and dynamically allocated for

the root directory.

lowest Lowest key of each dimension for a

subdirectory.

An insertion or deletion of a record may cause a data-

bucket to overflow or underflow. In our implementation of

the grid file, the overflowing databucket is split by using

the "binary buddy method". The splitting dimension is chosen

based on the 'level' value of each dimension of the region

to be split. The level value represents the number of split-

ting operations done to obtain the interval of the region at

the corresponding dimension. Algorithm 6 shows the method to

calcul.ate the level value and to find the splitting

dimension.

Algorithm 6

FIND_SPLITTING DIMENSION(reg)
{

for(i = 0; i < DIMENSION; i++) {
rangel = MAX_KEY - MIN_KEY;

J

range2 = reg->up_bound[i] - reg->low_bound[i];
for(level = 0; rangel != range2; level++)

rangel = rangel I 2;
reg~>level[i] = level;

for(choice = O,i = 1; i < DIMENSION; i++)
if(reg->level[choice] == reg->level[i])

if(reg->share[choice] < reg->share[i])
choice = i;

else if(reg->level[choice] > reg->level[i])
choice = i;

return(choice);

75

The variable· 'reg' of Algorithm 6 represents a region

of the directory, where all array elements in the region

point to the same bucket. The information of the subdirec-

tory region that points to the databucket, where a record

should be located, is stored in the variable 'gd_c' and the

information of the root directory region that points to the

same subdirectory bucket is stored in the variable 'gr_c'.

tn the foll6wing we present the data structure used to store

the region information of a directory~

REGION_INFORMATION {
int lower_bound[DIMENSION];
int upper_bound[DIMENSION];
int left_index[DIMENSION];
int right_index[DIMENSION];
int level[DIMENSION];
int share[DIMENSION];
int pointer;
int number:

The field identifiers of the structure REGION_INFORMATION

have the following meaning:

field identifier description

lower_bound & Show range of the attributes of a regi-

upper_bound on. All records with key values within

this range should be located in the

bucket pointed by region pointer.

left_index & Show the leftmost and rightmost indices

right_index of the region.

76

level Shows the splitting history of the regi-

on.

share Shows the number of directory array

elements in each dimension that have the

same pointer.

pointer Pointer to a bucket.

number Shows the contents of the bucket pointed

by the pointer.

Given a record, the following algorithms illustrate the

method to find the directory region that points to the

bucket where the record can be found. The variable 'type'

may be ROOT or SUBDIR to indicate the root or subdirectory

region. The variable rd_c is equal to gr_c if type is· ROOT

and equal to gd_c if type is SUBDIR. The argument cond is

used during the range query to show whether the value of

argument key itself is or is not included .in the query

region. If the range query condition is >= or <= key then

the value of cond is set to 1, else if the range query

condition is > or < key then the value of cond is set to 0.

Algorithm 7

GRID_REGION(type,scales,bound_number,cell,rd_c)
{

GET_INDICES(key,indices,scales,bound_number,cond);
j = CELL_NUMBER(indices,bound_number);
for(i = 0; i < DIMENSION; i++) {

Find the leftmost directory element at dimension
i that has the same pointer with element j;

Find the rightmost directory element at dimensi
on i that has the same pointer with element j;

Algorithm 8

GET_INDICES(key,indices,scales,bound_number,cond)
{

for(i = 0; i < DIMENSION; i++) {
index = 0;
if(cond[i] == 1)

else

while{key[i] >= scales[index])
index = index + 1;

while(key[i] > scales[index])
index = index + 1;

indices(i] = index;

Algorithm 9

CELL_NUMBER(indices,bound)
{

cellnumber = 0;
for(i = DIMENSION - 1; i >= 0; i--)

cellnumber= cellnumber * bound[i] + indices[i];
return(cellnumber);

In order to maintain the two disk access principle, a

databucket splitting procedure is invoked if the insertion

of a record cause a databucket to overflow.

Algorithm 10

DATABUCKET_SPLITTING()
{

while(databucket overflows) {

77

dim= FIND_SPLITTING_DIMENSION{gd_c);
if(subdirectory bucket is not overflow after the

databucket splitting) {
if{the overflow condition is removed } {

splitting_:_key =
(gd_c.lower[dim] + gd_c.upper[dim])/2;

Split databucket into two;
Write both buckets into data file;
Set lptr and rptr to point to the left and

right regions after splitting;

78

else {
Split subdirectory region without removing

the overflow condition;
Set lptr and rptr to point to the left and

right regions after splitting;
}

MODIFY_DIRECTORY_REGION(SUBDIR 1dim,lptr,rptr,
lnum,rnum,grd_c,bnum,cells,scales);

if(overflow condition is solved)
Write subdirectory bucket into file;

else
. Split subdirectory bucket;

To maintain the correspondence of the subdirectory

elements and the databuckets, the subdirectory region that

points to the overflowing databucket has to be modified.

The splitting of a databucket is continued until the over-

flow condition is removed, i.e., at least 1 record is moved

to another bucket.

A modifying of the directory region may or may not

introduce a new boundary into the scale of the splitting

dimension. Figure 27 shows an example of directory region·

splitting. Let the shaded area represent the directory

region that points to the overflowing bucket and pl, p2, p3,

and p4 represent the pointers to the databucket. If the

region consists of more than one element in the splitting

dimension, then the splitting is done by modifying the

pointers as shown in Figure 27.b. If the regiori consists of

only one element in the splitting dimension, the splitting

is done by insertion of a new boundary into the scale of the

splitting dimension as shown in Figure 27.c.

79

p2 p4

I I
p2

I I

p1 p3

I. . I I I .. I I I

new boundary _j

(a) (b) (c)

Figure 27. Splitting of Directory Region.

Algorithm 11

MODIFY_DIRECTORY_REGION(type,dim,lptr,rptr,lnum,rnum,
grd_c,bnum,cells,scales)

if(number of cells in the region at splitting
dimension > 1)

MODIFY_REGION_POINTER(type,dim,lptr,rptr,lnum,
rnum,grd_c,bnum,cells,scales[dim);

else
INSERT_NEW_BOUND(type,dim,lptr,rptr,lnum,rnum,

rd_c,scales,cells,bnum);
if(type == SUBDIR)

modify the root region that points to the split
subdirectory;

Algorithm 12

MODIFY_REGION_POINTER(type,dim,lptr,rptr,lnum,rnum,
region,bnum,cells,scales[dim])

find the index where the region splitting occurs;
for(i = 0; i ~ DIMENSION; i++)

ptr[i] = region->low_index[i];

for(flag = 1; flag; } {
number= element number with indices ptr[];
if(element is in the right of the splitting

boundary)

}

cell[number]->ptr = rptr;
cell[number]->number = rnum;

else {

I

cell[number]->ptr = lptr;
cell[number]->number = lnum;

80

flag = LOOP_IS_NOT_OVER(ptr,region->low_index,
region~>high_index);

Algorithm 13

INSERT_NEW_BOUND(type,dim,lptr,rptr,lnum,rnum,rd_c,
scales,cell,bnum)

{
boundary = index where a new bound is inserted;
for(all dimension) {

}

low[] = ptr[] = 0;
high[] = last index of each region;
old_bound[] =.#of boundaries before splitting;
new bound[] = # of boundaries after splitting;

if(type ==ROOT)
get memory for new root directory;

else
get new subdirectory bucket;

for(all cells in the directory) {
old_cell = CELL_NUMBER(ptr,old_bound);
if(ptr[dim] <boundary){

}

new_cell = CELL_NUMBER(ptr,new_bound);
copy old cell information into new cell;

else if(ptr[dim] > boundary) {
ptrl = the indices of the new cell;
new_cell = CELL_NUMBER{ptrl,new_bound);
copy old cell information into new cell;

} .
else {

ptrl = the indices of the new cell;
new_cell = CELL_NUMBER(ptr,new_bound);
new_cell2 = CELL_NUMBER(ptrl,new_bound);
if(old cell is not included in the region)

copy old cell information into new: celll
and new cell2;

}

else {
set info of new cell1 to lptr and lnum;
set info of new cell2 to rptr and rnum;

flag= LOOP_IS_NOT_OVER(ptr,low,high);

81

Insert a new boundary into the scale of splitting
dimension;

Modify the boundary number;

In orde~ to develop the algorithms for n dimensional

grid file, we use the loop

for(i = 0; i < n; i++)
ptr[i] = low[i];

for(flag = 1; flag;) {

flag= LOOP_IS_NOT_OVER(ptr,low,high);

to replace the loops

for(iO = low[O]; iO < high[O]; iO++) {
for(i1 = low[l]; i1 < high[1]; i1++) {

for(in = low[n]; in< high[n]; in++) {

. .

Algorithm 14

LOOP_IS_NOT_OVER(ptr,low,high)
{

ptr[O]++;
for(i = 0; i < DIMENSION•- 1; i++) {

if(ptr[i] <= high[i])
return(1);

else {

}

ptr[i] = low[i];
ptr[i+1]++;

} '

if(ptr[DIMENSION-1] > high[DIMENSION-1])
return(O);

else
return(1);

The insertion of a new boundary into the directory

82

scale may cause the subdirectory bucket to overflow. In this

condition the subdirectory bucket and the corresponding root

directory region has to be split. Algorithm 15 shows the

method to split the directory bucket. The argument 'mid'

represents a boundary in scale of dimension 'dim' where

splitting occurs.

In order to avoid the condition in which a databucket

is pointed by several cells of different subdirectory

buckets, before the splitting of the subdirectory bucket,

all databuckets t~at are pointed to by a region that enclo-

ses the array elements in both sides of 'mid' have to be

split.

Algorithm 15

SPLIT_DIRECTORY_BUCKET(bucketl,mid,bucket2,dim)
{

Split all databuckets that are shared by the

83

grid cells in both side of 'mid';
SPLIT_SUBDIRECTORY_TO_TWO(bucketl,mid,bucket2,dim);

Algorithm 16

SPLIT_SUBDIRECTORY_TO_TWO(bucketl,mid,bucket2,dim)
{

for(all dimension} {

}

lidx num[]=number of boundary for 'left' bucket;
ridx num[]=number of boundary for 'right' bucket;

for(all cell} {

}

old_cell = cell number at old bucket;
new_cell = cell number for new bucket;
if(old_cell is in the left of mid}

Copy old cell into new cell of bucket!;
else

Copy old cell into new cell of bucket2;

for(i = 0; i < DIMENSION; i++) {
bucketl->b_num[i] = lidx_num[i];
bucket2->b_num[i] = ridx_num[i];
bucketl->lowest[i] = gdr_bct.lowest[i];
if(i != dim) {

}

bucket2->lowest[i] = gdr_bct.lowest[i];
Copy all boundaries of scales[i] to bucketl

and bucket2;

else {
bucket2->lowest[i] = (gr_c.low_b[i] +

gr_c.up_b[i] I 2;
for(all boundaries)

if(boundary is in the left of mid}
Copy the boundary to scales of bucketl;

else
Copy the boundary to scales of bucket2;

84

Deletion of a record may cause the contents of the

databucket to fall below a_ certain threshold. In order to

maintain a reasonable bucket utilization, a merging

procedure is invoked to attempt to merge the underflowing

databucket with another databucket. Two databuckets can be

merged only if all conditions discussed in the previous

chapter are satisfied. The merging algorithm is shown below.

Algorithm 17

MERGING {)
{

for(; ;}
if(subdirectory encloses to several databuckets}

FIND_MERGING_CANDIDATE(SUBDIR,dim,MAX_DATA,
mg_c, gd_c,total);

if(merging candidate is found) {
Merge databuckets;
Modify subdirectory;

else
return;

else
single = 1;

if(subdirectory is underflow) {
if(merging candidate is found)

Merge subdirectory buckets;
modify the root directory;

else
if(single)

return;

• Algorithm 18

FIND_MERGING_CANDIDATE(type,dim,max,mg_c,gd_c,total)
{

for(all dimension) {
Find the buddy of the underflowing region;

85

if (the contents after merging exceeds the
upper threshold)

Try another dimension;
if(no deadlock occurs after merging)

Merging candidate is found and return;
else

Try another dimension;

No merging candidate;

Deadlock is a condition where no regions can be merged

because the resulting region would not have the box shape.

In order to prevent deadlock, two regions are merged if the

deadlock doesnot happen after the merging. The following

algorithm is used to check the occurrence of a deadlock. Let

R1 and R2 be the regions to be merged and R be the resulting

region after the merge. Let B be a directory region and both

B1 and B2 be two regions resulting from the binary splitting

of the region B. B1 and B2 are two disjoint regions.

Algorithm 19

DEADLOCK_CHECKING()
{

do {
if (B == R) {

No deadlock occurs after the merging of region
R1 and R2; return;

else {
Split B into two disjoin regions B1 and B2;

86

if(splitting is not success) {
deadlock occurs if the the regions are

merged;

•

return;
l
else {

if (R is include in Bl)
B = Bl;

else
B = B2;

A directory block B is said to be deadlock free if all

regions in B can be successively merged into B. Let B be a

directory block, if B can be split into two disjoint regions

Bl and B2. Then the merging of regions Bl and region B2 is

deadlock free too. Without losing generality, let R be

included in Bl. If Bl can be split into two disjoint regions

B3 and B4 , then the merging of region B3 and region B4 is

deadlock free. If the process can be continued until the

regions Rl and R2 are obtained, then the merging of the

regions Rl and R2 should also be deadlock free.

A boundary of directory scale may be removed if it is

no longer needed. Given an index x of a dimension i, if all

directory elements with index x at dimension i have pairs

with the elements with index x+l at the same dimension, then

the boundary that splits the indices x and x+l can be remo-

ved. The removing of a boundary from a scale may cause the

contents of the subdirectory bucket to fall below a certain

threshold. In this condition, a procedure that attempts to

merge the directory buckets is invoked.

Algorithm 20

MERGE_SUBDIRECTORY_BUCKET()
{

for(i = 0; i < DIMENSION; i++) {
if (i is not the merging dimension}

Merge the scales of two old subdirectory
buckets into new scale;

else

87

Concate the scales of two old subdirectory
buckets into a new scale;

}
Copy .all elements of the subdirectory buckets into

the new bucket;
Modify the root region after merged;

In our implementation of the grid and BANG file

structures, we support two types of query, the exact match

query and the range query. A successful or unsuccessful

exact match query can always be completed in two disk

accesses. The first access is to read the directory bucket

and the second access is to read the databucket.

Range query is a query where the range of values is

specified for all dimensions. In range query, all buckets

that intersect with the query region are retrieved. To

increase the performance of a range query, a bucket that is

pointed to by several directory elements is retrieved only

once. The following algorithm shows the method to check

whether a region has or has not been processed. The argument

'
low_idx denotes the leftmost indices of query region for

each dimension and the argument idx represents the indices

of the·current directory element.

Algorithm 21

CHECK_NEIGHBOR(current,idx,low_idx,bnum,cell)
{

for(i = 0; i < DIMENSION; i++) {
if(idx[i] > low_idx[i]} {

number = left neighbor of current cell;

88

if(the cell[current] and cell[number] point to
the same bucket) {

The bucket has been processed;
return(1);

}
The bucket hasnot been processed;
return(O);

In our implementat~on of the grid file structure, the

range value of a cell with index i at dimension j is

[leftt ,rightt). Given a query with a range leftt <= x <

rightt , then i is the only index at dimension j that

intersects with the query region. If the range is left1 <= x

<= rightt , then the indices i and i+1 of dimension j ·

intersect with the query region. Algorithm 22 shows how the

range query is performed. The arguments low and high

represent the lowest and the highest key values of the query

region for each dimension. The argument cond_r is set to 1

if the highest key is included in the query range, and set

to 0 if the highest key is not included in the query region.

Algorithm 22

RANGE_RETRIEVAL(low,high,cond_l,cond_r)
{

Get the leftmost and rightmost indices of the root
directory that intersect with the query region;

89

for(all directory elements in the region) {
Check if the subdirectory bucket pointed by

current root directory cell has been processed;
if(it has not been processed){

Read subdirectory bucket;
Get the leftmost and rightmost indices of the
subdirectory that intersect with query region;
for(all directory elements in the region) {

Check if the databucket pointed by current
subdirectory cell has been processed;

if(it has not been processed)
Read databucket and retrieve all records

that match the query;

BANG file algorithms

The main difference between the grid file and the BANG

file structures is the method of splitting the overflow

bucket and the merging of the underflow bucket. In the grid

file structure, the splitting is stopped as soon as the

overflow condition is removed. In the BANG.file structure,

the splitting is continued until the best balance condition

is reached.

As discussed in Chapter 4, each directory entry of the

BANG file structure is.a unique pair of region number and

level number. The data structures for the root and
1

subdirectory are declared as follows:

NODE {
long
int
int
int

}

region;
level;
header;
pointer;

ROOT_DIRECTORY {
int header;
NODE *cell;

SUBDIRECTORY {
int header;

90

NODE cell[MAXCELL];

The field identifiers in the data structures above have the

following meanings.

field identifiers description

region Denotes the region number of a

directory entry.

level Denotes the number of partition needed

to obtained a region.

header in NODE Shows the contents of the bucket

pointed by the pointer.

pointer Points to a bucket. For root directory

it points to the subdirectory bucket

and for subdirectory it points to the

databucket.

header in ROOT and Shows number of directory entries in

SUBDIRECTORY root and subdirectory.

Algorithm 5 shows how to find a bucket where a record

should be located. Given a record r, Let d be the databucket

where record r should be located if it exists and s be the

91

subdirectory bucket that contains the pointer to the data-

bucket d. The smallest region R that encloses the record r

can be calculated by using Algorithm 1. In order to locate

the subdirectory bucket s, the root directory is searched

to find the smallest directory entry that encloses region R.

Given the smallest region R, Algorithm 23 shows how to find

the root directory entry that points to subdirectory bucket

s .

Algorithm 23

DIRECTORY_REGION(cell,content,smallest,rcell)
{

for(i = 0; i <= smallest.level; i++) I
Calculate the region that encloses 'smallest• at

level 'smallest.level - i' and store its
information in rcell;

for(all directory entries) {
if(there is an entry which is equal rcell)

return;

An insertion of a record may cause the databucket to

overflow. In the BANG file structure, the splitting of a

bucket is done until the best balance condition is reached.

The splitting strategy for a subdirectory bucket is similar

to the splitting of databucket. Suppose R is a region of the

root directory that points to an overflow subdirectory buc-

ket B. Let regions R1 and R2 be the results of the splitting

of region R and the buckets B1 and B2 be pointed to by

regions R1 and R2. All entries in bucket B that enclosed

92

region Rl are moved into bucket Bl and the rest are moved to

bucket B. If there is an entry E in a subdirectory bucket B

with a region that is enclosed in region Rl and region R2 as

shown in Figure 23.c, then the region of the entry E and the

corresponding databucket should be split into two, the first

is enclosed in region Rl and the other is enclosed in region

R2.

Algorithm 24

SPLIT(}
{

Split the databucket;
Write both buckets into the file;
Find the unique <region,level> pair for both new and

old directory entries;
If(subdirectory is not overflow) {

Insert the new directory entry and modify old
entry;

Sort the directory entries;
Write directory bucket;

else
Split subdirectory bucket and modify root

directory;

Algorithm 25

SPLIT DIRECTORY_BUCKET()

Find the splitting regions Rl and R2;
if(there is a region E shared by Rl and R2)

Split the region E and the corresponding
databucket;

Split the subdirectory bucket;
Find the unique <region,level> for Rl and R2;
Remove the entry R from and insert the new entries

Rl and R2 into the root directory;
Sort the entries in the root directory;

93

The deletion of a record from a databucket or the

deletion of a directory entry from a subdirectory bucket may

cause the population of the bucket to fall below a certain

threshold. In order to maintain the occupancy rates of the

bucket, a merging attempt is done to merge the underflowing

bucket with another bucket. The following algorithm shows

how the merging is performed.

Algorithm 26

MERGING_DATA_BUCKET()
{

do until no regions can be merged {
Merge with a region that is immediately included

in region to be merged;
if (!success) {

Merge with its buddy region
if (!success)

Merge with a region that is immediately
enclosed the region to be merged;

Given a region R at level L, the buddy of this region can be

calculated by using the following Algorithm.

Algorithm 27

BUDDY()
{

}

reg= 2 ** (L- 1);
if(R > reg)

buddy = R - reg;
else

buddy = R + reg;

In our implementation of the BANG file structure, we

provide two types of query, the exact match query and the

range query. Algorithm 28 shows how the range query is

performed.

Algorithm 28

RANGE_RETRIEVAL(low,high,cond_l,cond_r)
{

for(all root directory entries){
if'(the entry is included in query region) {

Read subdirectory bucket;

94

for(all entries in the subdirectory bucket) {
if(the entry is included in query region)

Read databucket and retrieve all records
that match the query;

Performance evaluation

It this section, we discuss the performances of the

grid file and the BANG file structures. Based on the imple-

mentation methods of both file structures as discussed in

Chapters III and IV, we expect that the BANG file has some

advantages over the gJ:iid file.

1. In the BANG file structure, the expansion rates of
, I

the director~ elements is proportional to the
, I!

expansion ~ates of the disk blocks. Each directory
\ I,

entry corresponds to a disk block. In the grid file

structure, ·the splitting of a disk block increases

the number of directory elements rapidly. Figure 28

95

shows the example of the growth of the grid file

during splitting. Before splitting the directory

contains 24 elements(Figure 28.a). If the databucket

corresponding to the starred directory element over

flows, the bucket is split, and the directory ele

ments are increased to 30(Figure 28.b).

2. During the splitting, the contents o~ two newly

formed buckets are almost balanced for the BANG file

structure. Therefore, we expect better storage

utilization, especially for a nonuniform data

distribution.

*

(a) (b)

Figure 28. The Growth of the Directory.

In this thesis, we use the discrete event simulation

method to predict the behavior of the grid file and the BANG

file structures. To compare the performances of these two

file structures, two programs are developed to simulate the

behavior of these file structures in response to different

sets of data. The specifications of our simulation studies

are as follows.

96

1. Two simulation programs for grid file and BANG file

structures were implemented in C language on the

IBM PC/AT.

2. The database files were used to compare the perfor

mances of the two file structures consist of records

with 3 attributes with the key range of 0 <= x <

16384. The values of each attribute follow a

poisson, normal or uniform distribution.

3. The data and subdirectory buckets are stored in disk

blocks. The size of each block is fixed. A disk

block is split if it overflows. If the contents of a

disk block falls below a certain threshold, a proce

dure is invoked in order to merge two blocks to

maintain reasonable storage utilization. The number

of disk blocks needed to hold all records determines

the storage performance of the file structure.

4. The statistics of the databucket utilization is

recorded for every 200 insertions. The rate of the

directory entry overhead is only recorded for the

grid file structure. Each bucket in the BANG file

structure is pointed to by exactly one directory

entry. Therefore, there is no directory entry over

head for BANG file structure.

The following table shows some information about the

grid and BANG file system as used in our experiment.

Dimension
Length of data and directory bucket
Records per databucket
Number of inserted records

4
2048 bytes
64
10000 - 16000

To compare the performances of the grid file and the

BANG file structures, we examine both file structures

applied to four databases with types of data distribution.

Each database contains 3 dimensional records with the dis-

tribution as shown in Table II. The databucket utilization

and the number of directory entries per databucket for the

grid file and the BANG file structures in response to the

various test files are shown in Table III.

TABLE II

DATA DISTRIBUTION

Test file Dimension Number of
records

1 2 3

1 Fig. 29 similar similar 10000

2 Fig. 32 similar similar 10000

3 Fig. 35 similar similar 16000

4 Fig. 38.a Fig. 38.b Fig. 38.c 10000

97

98

TABLE III

DATABUCKET UTILIZATION

Test Average databucket Average # of subdirectory
file utilization entries per databucket

grid BANG grid BANG

1 69.6% 69.5% 1.14 1

2 60.0% 67.6% 1.86 1

3 51.4% 68.3% 2.18 1

4 58.7% 68.5% 1.99 1

Based on the observation of Figures 29 to 40 and the

table above, we find that the BANG file structure has a

consistent performance in databucket utilization for all

types of data distributions. This is not surprising since

the BANG file structure always divides the overflowing data-

bucket into two balanced databuckets. The databucket utili-

zation of the grid file structure depends on the type of

data distribution. In uniform data distribution as shown

in Figure 29, both grid and BANG file structures have the

same performances in bucket utilization. In the database with

the attributes that are· clustered in a small range of data

space as shown in Figure 33, 36 and 39, the BANG file struc-

ture has a better bucket utilization over the grid file

structure. Table III also shows the average number of sub-

99

directory entries per databucket. For all types of data

distributions the BANG file structure maintains one direc

tory entry per databucket. The number of directory entries

per databucket for the grid file depends on type of data

distribution. If the distribution of data is uniform then

grid file has approximately one directory entry per data

bucket. For a non uniformly distributed database, the grid

file has approximately two directory entries per databucket.

Tables IV to VII show the statistics for the range

queries which are uniformly distributed within the range of

the attribute. For each of the given range sizes, the

results are averaged over 100 randomly generated queries.

The range denotes the ratio of the size of the range speci

fied in the query to the size of the range of all values of

the attribute. The results of our experiments show that the

performances of the grid file and the BANG file structures

depend on the type of data distribution. For test file 1,

which is uniformly distributed, both file structures have

the same query performance. For test file 3, which is

normally distributed, the performance of the BANG file is

superior over the grid file. For test file 2 and test file

4, the performances of both file structures depend on the

range size of the query. The grid file has a slight

superiority over the BANG file in the small range size, and

vice versa for the large range size.

100

TABLE IV

RANGE RETRIEVAL OF TEST FILE I

Range size 5% 10% 20% 25% 30%

Records found 1.41 10.39 80.12 155.52 267.9

Buckets accessed 3.58 5.70 14.42 20.82 28.07
for grid f·ile

Buckets accessed 3.60 5.73 14.54 20.96 28.10
for BANG file

TABLE V

RANGE RETRIEVAL OF TEST FILE II

Range size 5% 10% 20% 25% 30%

Records found 1.07 8.20 54.37 85.49 118.12

Buckets accessed 2.75 3.79 7.12 8.62 11.57
for grid file

Buckets accessed 3.29 3.98 6.15 7.22 8.87
for BANG file

101

TABLE VI

RANGE RETRIEVAL OF TEST FILE III

Range size 5% 10% 20% 25% 30%

Records found 2.68 25.77 239.98 516.96 1636.24

Buckets accessed 3.71 6.48 22.09 38.34 84.11
for grid file

/ Buckets accessed 3.52 5.40 16.22 28.24 68.88
for BANG file

TABLE VII

RANGE RETRIEVAL OF TEST FILE IV

Range size 5% 10% 20% 25% 30%

Records found 1.47 11.67 73.21 122.86 176.24

Buckets accessed 2.95 4.22 9.35 12.99 17.65
for grid file

Buckets accessed 3.50 4.51 8.49 11.09 14.33
for BANG file

Based on the observation on the behaviour of both file

structures in response to the range query, we find that in

the clustered area of the records, the bucket utilization of

the grid file is better that the BANG file. The query

102

performance of the grid file structure is better than the

BANG file structure for range queries with small range sizes

which are concentrated in the clustered area of the

data space. If the range of the queries is large and the

queries are uniformly distributed over the whole area, then

the query perfomance of the BANG file structure is better

than the grid file structure.

I

DATA DISTRIBUTION GRAPH

160

140

120

100

80

60

40

20

o~---
0 4000 8000 12000 16000

2000 6000 10000 14000

A TIRIBUTE OF DIMENSION 1

Figure 29. Data Distribution of Test File 1.
(Similar for all Dimension} p

0
w

~
(:)
~
CL
-::::J u
-')

0

DATA BUCKErr lTTILIZArfiON

0.9

0.8

~-- CH:- -,
!

0.7,
I 1

I BPNG i

0.6r
0.5

I
I

0.4!-

03~
.-~ OLL

n 1 .
w. i

ol
c 4C~\JQ

2CJO\J c·:._:n~_;, __ .. ·=·~(JC:{~:

i ~UMBER CJF REC=,;:;,C;'S

Figure 30. Databucket Utilization for Test File 1.
p
0
o%:>

:::j:t:;

I
~
~

:::j:t:;

~
~

SUBDIRECTORY POINTER 0\IERHEAD

FOR GRID FILE

0.5

0.4

0.3

0.2

0.1

o~~----------------~~----------------
0 4000 8000

2000 6000 10000

NUMBER OF RECORDS

Figure 31. Pointer Overhead for Test File 1.
0
U1

G as
~

DATA DISTRIBTJTION GRAPH

600

500

400

300

200

100

00 4000 8000 12000 16000
2000 6000 10000 14000

ATlRIBJl'E OF OIM&JSION 1

Figure 32. Data Distribution of Test File 2.
(Similar for all Dimension)

0
0\

i
:::::>

~ m

DATABUCKET UTIUZATION

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0 0
2000

4000
6000

NUMBER OF RECORDS

8000
10000

Figure 33. Databucket Utilization for Test File 2.

GRID

BANG

t->
0
....,J

~

I
I-

~ rn
~

~ g

SUBDIRECTORY POINTER 0\TERHEAD

FOR GRID FilE

2.5

1.5

1

0.5

o~---
0 4000 8000

2000 6000 10000

NUMBER OF RECORDS

Figure 34. Pointer Overhead for Test File 2.
0
(X)

I

DATA DISTRIBUTION GRAPH

1400

1200

1000

800

600

400

200

o~~~----~----------------~~----------
0 4000 8000 12000 16000

2000 6000 10000 14000

ATilBUTE OF DIMENSION 1

Figure 35. Data Distribution of Test File 3.
(Similar for all Dimension)

......
0
\.0

DATABUCKET UTILIZATION

i
:,:)

~ 03----- -

0.1

o~--------------------------------------
0 4000 8000 12000 16000

2000 6000 10000 14000

NUMBER OF RECORDS

Figure 36. Databucket Utilization for Test File 3.

GRID

BANG

p
p
0

~

~
~
~
~

~ g

SUBDIRECTORY POINTER OVERHEAD

FOR GRID FILE

2.5

2

1.5

1

0.5

00 4000 8000 12000 16000
2000 6000 10000 14000

NUMBER OF RECORDS

Figure 37. Pointer Overhead for Test File 3.
......
1->

G
r5

~

DATA DISTRIBUTION GRAPH

600

500

400

0 .
0 4000 8000 12000 16000

2000 6000 10000 14000

A TIRIBU1E Cf" DIMENSION 1

(a) Dimension 1.

Figure 38. Data Distribution of Test File 4.

......

......
N

DATA DISTRIBUTION GRAPH

600

500

400

G
§ 300

rE
200

100

o~------~~------------------~---------
0 4000 8000 12000 16000

2000 6000 10000 14000

A TIRIBUTE OF OlMENSlOi'--1 2

(b) Dimension 2.

F'igure 38 (cont}
....
w

~
~

DATA DISTRIBUTION GRAPH

600

500

400

300

200

100

o~'------------------~~~----------------
0 4000 8000 12000 16000

2000 6000 10000 14000

A TIRIBUTE OF DIMENSION 3

(c) Dimension 3.

Figure 3 8 {con t)
......
~

s
~
::J
1-w
~ u
E2

DATABUCI<ET UrfiUZATION

0.8

0.7
,y-"--.'

./~·

0.6 ,......_)"~ -...-~

I* 0.5
j

oAr/~

0.31..1

0.2r-
0.1 ~-
0~------------~--------------

'"' u 4CH:,;(J
2tJOO

i'~! __ ~~\ .. ·~s~~~ ~.E .. :.>.:=..~~·~~·~

Figure 39. Databucket Utilization for Test File 4.

GRID

B.ANG

!-'
!-'
(Jl

:::U::t

~·
~
~
i:B
I

:::U::t

SUBDIRECTORY POINTER OVERHEAD

FOR GRID FILE

2

1

~ 0.5

~
o~---------------------------------------

0 4000 8000
2000 6000 10000

NUMBER OF RECORDS

Figure 40. Pointer Overhead for Test File 4. 1-'
(11

CHAPTER VI

SUMMARY AND CONCLUSIONS

In this thesis we compare the performances of two types

of index-based file structures, the grid file and the BANG

file structures, which are suitable to organize large,

dynamic, k-dimensional records. Both file structures have a

good adaptation to the change of data distribution. An over

flow is handled by splitting the bucket into two and an

underflow is handled by a merging operation. The main diffe

rence between the two file structures is the method of

handling an overflow databucket. In the grid file structure,

an overflow databucket is split into two. The splitting

operation is completed as soon as the overflow condition is

removed. In the BANG file structure, an overflow databucket

is split into two balanced databuckets.

Conclusions of our simulation studies are as follows.

1. The databucket utilization and the subdirectory

entry overhead of the grid file structure is

influenced by the type of data distribution. This

influence is not so obvious in the BANG file

structure.

117

118

2. In the uniform distributed database, both file

structures have the same performance in databucket

utilization and the number of buckets accessed

during the range query.

3. The more the distribution of records in the database

differs from uniform, the better the BANG file in

databucket utilization and subdirectory entry over

head.

4. In non uniform database, the grid file structure has

a better performance than the BANG file structure

for region queries with small range sizes which are

concentrated in the area where the records are

clustered. If the range size is large and the query

region is uniformly distributed over the data space,

then the BANG file has a better performance than a

the grid file structure.

BIBLIOGRAPHY

1. Bentley, J. L. "Multidimensional Binary Search Trees

Used for Associative Searching." Communications of

the ACM 18, 9(1975), 509-517.

2. Bentley, J. L. "Multidimensional Binary Search Trees in

•
Database Applications." IEEE Trans. on Software

Engineering SE-5, 4(July 1979), 333-340.

3. Burkhard, W. A. "Interpolation-Based Index Maintenance."

In Proc. ACM Symp. Principles of Database Systems

(1983), 76-85

4. Casey, R. G. "Design of Tree Structures for Efficient

Querying." Communications of the ACM 16, 9(1973),

549-556.

5. Claybrook, B.G., Claybrook, A.M., Williams, J. "Defining

Database Views as Data Abstractions." IEEE Trans.

on Software Engineering SE-11, 1 (Jan 1985), 3-14.

6. Finkel, R. A., Bentley, J. L. "Quad Trees, a data

structure for Retrieval on Composite keys." Acta

Informatica 4, ~(1974), 1-9.

7. Freeston, M. "The BANG File: A New Kind of Grid File."

Proc. ACM SIGMOD 1987 Annual Conference SIGMOD

Record 16, 3(Dec. 1987), 260-269.

119

120

8. Han, c. C. "A Grid File Approach to Large Multidimensi

nal Dynamic Data Structure." Unpub MS Thesis,

Oklahoma State University, (Dec 1987).

9. Hinrichs, K. "Implementation of The Grid File Design

Concepts and Experience." BIT 25, 3(1985), 569-582.

10. Knuth, D. E. "The Art of Computer Programming Vol. 3:

Sorting and Searching." Addison-wesley, Reading,

Mass. 1973, 550-567.

11. Kriegel, H. P. "Performance Comparison of Index Struc

tures for Multi-key Retrieval." Proc. ACM SIGMOD,

BOSTON, Massachusetts (1983), 186-196.

12. Litwin, W. "Linear Hashing : A New Tool for File and

Table Addressing." Proceedings Sixth International

Conference on Very Large Databases, Montreal,

Canada (1980), 212-223.

13. Lum, V. Y. "Multi-attribute Retrieval with Combined

Indexes." Communications of the ACM 13, 11(1970),

660-665.

14. Nievergelt, J., Hinterberger, H., Sevcik, K.C. "The

Grid File: An Adaptable, Symmetric Multikey File

Structure." ACM Trans. on Database ·systems 9, 1

(1984) 1 38-71.

15. Orenstein, J. A. "Multidimensional Tries Used for

Associative searching.", Information Processing

Letters 14, 4(June 1982), 150-157.

121

16. Otoo, E. J. "A Multidimensional Digital Hashing Scheme

for Files With Composite Keys." Sigmod Rec. (USA),

14, 4(Dec 1985), 214-229.

17. Otoo, E. J., Merrett, T. H. "A Storage Scheme for

Extendible Arrays." Computing 31, 1(1983), 1-9.

18. Ouksel, M., Scheuermann, P. "Multidimensional B-Trees:

Analysis of Dynamic Behavior.", Bit 21(1981),

401-418.

19. Ouksel, M., Scheuermann, P. "Storage Mappings for Multi

dimensional Linear Dynamic Hashing.", In Proc. ACM

Symp. Principles of Database Systems(1983), 90-105.

20. Peterson, J. L., Norman, T. A., "Buddy Systems."

Communications of the ACM 20, 6(1977), 421-431.

21. Regnier, M. "Analysis of Grid File Algorithms." BIT

25(1985), 335-357.

22.·Robinson, J. T. "The K-D-B-Tree: A Search Structure for

Large Multidimensional Dynamic Indexes." Proc. ACM

SIGMOD, Ann Arbor, Michigan (1981), 10-18.

23. Saritepe, H.N.A. "An Analytical Comparison of Grid

File and K-D-B-Tree Structures." Unpub. MS Thesis,

OSU (Dec. 1987).

24. Scheuermann, P., Ouksel, M. "Multidimensional B-Trees

for Associative Searching in Database Systems."

Information system 7, 2(1982), 127-137.

25. Vallarino, 0., "On The Use of Bit Maps for Multiple Key

Retrieval." ACM SIGPLAN Notices 11, (1976 Special

Issue), 108-114.

d
VITA

Tiong-Hu Lian

Candidate for the Degree of

Master of Science

Thesis: IMPLEMENTATION AND EVALUATION OF BALANCED
AND NESTED GRID (BANG) FILE STRUCTURES

Major Field: Computinq and Information Sciences

Biographical:

Personal Data: Born in Padangr Indonesia, March 22,
1960, the son of Mr. and Mrs. Tjin-Siong Lian.

Education: Graduated from Indonesia High School, in
April 1979; received Bachelor of Science in Civil
Engineering from National Taiwan University in
1983: completed requirements for the Master of
Science degree in Computing and Information
Science at Oklahoma State University in December,
1988.

Professional Experience: Field supervisor at R.S.E.A.
construction company, Indonesia, 1984-1985;
Graduate assistant at Oklahoma State University,
Computing and Information Science Department,
January 1988 to May 1988.

